
ptg16518442

ptg16518442

C++ Without Fear
Third Edition

ptg16518442

This page intentionally left blank

ptg16518442

C++ Without Fear
Third Edition

A Beginner’s Guide That
Makes You Feel Smart

Brian Overland

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
Sao Paulo • Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

ptg16518442

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use
of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

Overland, Brian, 1958– author.
 C++ without fear : a beginner’s guide that makes you feel smart / Brian Overland.—Third
edition.

pages cm
 Includes index.

ISBN 978-0-13-431430-3 (pbk. : alk. paper)—ISBN 0-13-431430-1 (pbk. : alk. paper)
1. C++ (Computer program language) I. Title.

QA76.73.C153O838 2016
005.13’3—dc23

2015033385

Copyright © 2016 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request forms and
the appropriate contacts within the Pearson Education Global Rights & Permissions Department,
please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-431430-3
ISBN-10: 0-13-431430-1
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, December 2015

http://www.pearsoned.com/permissions/

ptg16518442

Once more, for Colin

ptg16518442

This page intentionally left blank

ptg16518442

vii

Contents

Preface xxiii

We’ll Have Fun, Fun, Fun… xxiii

Why C and C++? xxiv

C++: How to “Think Objects” xxiv

Purpose of the Third Edition xxiv

Where Do I Begin? xxv

Icons and More Icons xxvi

Anything Not Covered? xxvii

A Final Note: Have Fun! xxviii

Acknowledgments xxix

About the Author xxxi

Chapter 1 Start Using C++ 1

Install Microsoft Visual Studio 1

Create a Project with Microsoft 2

Writing a Program in Microsoft Visual Studio 5

Running a Program in Visual Studio 5

Compatibility Issue #1: stdafx.h 6

Compatibility Issue #2: Pausing the Screen 8

If You’re Not Using Microsoft 8
Example 1.1. Print a Message 9
How It Works 9

ptg16518442

Contentsviii

Exercises 11
Interlude What about the #include and using? 11

Advancing to the Next Print Line 12
Example 1.2. Print Multiple Lines 13
How It Works 14
Exercises 15
Interlude What Is a String? 15

Storing Data: C++ Variables 16

Introduction to Data Types 17
Interlude Why Double Precision, Not Single? 19
Example 1.3. Convert Temperatures 19
How It Works 21
Optimizing the Program 23
Exercises 25

A Word about Variable Names and Keywords 26
Exercise 26

Chapter 1 Summary 27

Chapter 2 Decisions, Decisions 29

But First, a Few Words about Data Types 29

Decision Making in Programs 31
Interlude What about Artificial Intelligence (AI)? 31
if and if-else 32
Interlude Why Two Operators (= and ==)? 35
Example 2.1. Odd or Even? 36
How It Works 37
Optimizing the Code 38
Exercise 39

Introducing Loops 39
Interlude Infinite Loopiness 42
Example 2.2. Print 1 to N 43
How It Works 44
Optimizing the Program 45
Exercises 46

True and False in C++ 46
Interlude The bool Data Type 47

The Increment Operator (++) 48

Statements versus Expressions 49

ptg16518442

Contents ix

Introducing Boolean (Short-Circuit) Logic 51
Interlude What Is “true”? 53
Example 2.3. Testing a Person’s Age 53
How It Works 54
Exercise 54

Introducing the Math Library 55
Example 2.4. Prime-Number Test 55
How It Works 57
Optimizing the Program 58
Exercise 58
Example 2.5. The Subtraction Game (NIM) 58
How It Works 61
Exercises 61

Chapter 2 Summary 62

Chapter 3 And Even More Decisions! 65

The do-while Loop 65
Example 3.1. Adding Machine 67
How It Works 68
Exercises 69

Introducing Random Numbers 69
Example 3.2. Guess-the-Number Game 72
How It Works 74
Optimizing the Code 76
Exercises 77

The switch-case Statement 77
Example 3.3. Print a Number 80
How It Works 81
Exercises 82

Chapter 3 Summary 83

Chapter 4 The Handy, All-Purpose “for” Statement 85

Loops Used for Counting 85

Introducing the “for” Loop 86

A Wealth of Examples 88
Interlude Does “for” Always Behave Like “while”? 90
Example 4.1. Printing 1 to N with “for” 90

ptg16518442

Contentsx

How It Works 91
Exercises 92

Declaring Loop Variables “On the Fly” 92
Example 4.2. Prime-Number Test with “for” 93
How It Works 95
Exercise 96

Comparative Languages 101: The Basic “For” Statement 96

Chapter 4 Summary 97

Chapter 5 Functions: Many Are Called 99

The Concept of Function 99

The Basics of Using Functions 101
Step 1: Declare (Prototype) the Function 101
Step 2: Define the Function 102
Step 3: Call the Function 102
Example 5.1. The avg() Function 103
How It Works 104
Function, Call a Function! 105
Exercises 106
Example 5.2. Prime-Number Function 106
How It Works 108
Exercises 109

Local and Global Variables 109
Interlude Why Global Variables at All? 111

Recursive Functions 112
Example 5.3. Prime Factorization 113
How It Works 115
Interlude Interlude for Math Junkies 117
Exercises 117
Example 5.4. Euclid’s Algorithm for GCF 118
How It Works 119
Interlude Who Was Euclid? 121
Exercises 121
Interlude Interlude for Math Junkies: Rest of the Proof 122
Example 5.5. Beautiful Recursion: Tower of Hanoi 122
How It Works 125
Exercises 126
Example 5.6. Random-Number Generator 127

ptg16518442

Contents xi

How It Works 128
Exercises 129

Games and More Games 129

Chapter 5 Summary 131

Chapter 6 Arrays: All in a Row... 133

A First Look at C++ Arrays 133

Initializing Arrays 135

Zero-Based Indexing 135
Interlude Why Use Zero-Based Indexes? 136
Example 6.1. Print Out Elements 137
How It Works 137
Exercises 138
Example 6.2. How Random Is Random? 139
How It Works 141
Exercises 143

Strings and Arrays of Strings 144
Example 6.3. Print a Number (from Arrays) 145
How It Works 147
Exercises 147
Example 6.4. Simple Card Dealer 148
How It Works 150
Exercises 152

2-D Arrays: Into the Matrix 152

Chapter 6 Summary 153

Chapter 7 Pointers: Data by Location 155

What the Heck Is a Pointer, Anyway? 155

The Concept of Pointer 156
Interlude What Do Addresses Look Like? 157

Declaring and Using Pointers 158
Example 7.1. Print Out Addresses 161
Example 7.2. The double_it Function 162
How It Works 163
Exercises 164

Data Flow in Functions 165

Swap: Another Function Using Pointers 165
Example 7.3. Array Sorter 166

ptg16518442

Contentsxii

How It Works 170
Exercises 172

Reference Arguments (&) 172

Pointer Arithmetic 173

Pointers and Array Processing 175
Example 7.4. Zero Out an Array 177
How It Works 178
Writing More Compact Code 178
Exercises 179

Chapter 7 Summary 180

Chapter 8 Strings: Analyzing the Text 181

Text Storage on the Computer 181
Interlude How Does the Computer Translate Programs? 182

It Don’t Mean a Thing if It Ain’t Got that String 183

String-Manipulation Functions 184
Example 8.1. Building Strings 186
How It Works 187
Exercises 189
Interlude What about Escape Sequences? 189

Reading String Input 190
Example 8.2. Get a Number 192
How It Works 193
Exercise 195
Example 8.3. Convert to Uppercase 195
How It Works 196
Exercises 197

Individual Characters versus Strings 197
Example 8.4. Breaking Up Input with strtok 198
How It Works 200
Exercises 201

The C++ String Class 201
Include String-Class Support 202
Declare and Initialize Variables of Class string 203
Working with Variables of Class string 203
Input and Output 205
Example 8.5. Building Strings with the string Class 205
How It Works 206

ptg16518442

Contents xiii

Exercises 207
Example 8.6. Adding Machine #2 207
How It Works 208
Exercises 209

Other Operations on the string Type 209

Chapter 8 Summary 210

Chapter 9 Files: Electronic Storage 213

Introducing File—Stream Objects 213
How to Refer to Disk Files 215
Example 9.1. Write Text to a File 216
How It Works 217
Exercises 219
Example 9.2. Display a Text File 219
How It Works 221
Exercises 222

Text Files versus “Binary” Files 222
Interlude Are “Binary Files” Really More Binary? 224

Introducing Binary Operations 225
Example 9.3. Random-Access Write 227
How It Works 229
Exercises 230
Example 9.4. Random-Access Read 230
How It Works 232
Exercises 233

Chapter 9 Summary 233

Chapter 10 Classes and Objects 237

OOP, My Code Is Showing 237

What’s an Object, Anyway? 238
Interlude OOP…Is It Worth It? 240

Point: A Simple Class 241
Interlude Interlude for C Programmers: Structures and Classes 242

Private: Members Only (Protecting the Data) 243
Example 10.1. Testing the Point Class 246
How It Works 247
Exercises 248

ptg16518442

Contentsxiv

Introducing the Fraction Class 248

Inline Functions 251

Find the Greatest Common Factor 253

Find the Lowest Common Denominator 254
Example 10.2. Fraction Support Functions 255
How It Works 256
Exercises 258
Example 10.3. Testing the Fraction Class 258
How It Works 260
Interlude A New Kind of #include? 261
Exercises 262
Example 10.4. Fraction Arithmetic: add and mult 262
How It Works 266
Exercises 267

Chapter 10 Summary 267

Chapter 11 Constructors: If You Build It… 269

Introducing Constructors 269

Multiple Constructors (Overloading) 270

C++11/C++14 Only: Initializing Members 271

The Default Constructor—and a Warning 272
Interlude Is C++ Out to Trick You with the Default Constructor? 273

C++11/C++14 Only: Delegating Constructors 274
Example 11.1. Point Class Constructors 275
How It Works 277
Exercises 277
Example 11.2. Fraction Class Constructors 278
How It Works 280
Exercises 281

Reference Variables and Arguments (&) 281

The Copy Constructor 282
Interlude The Copy Constructor and References 284

A Constructor from String to Fract 285

Chapter 11 Summary 286

ptg16518442

Contents xv

Chapter 12 Two Complete OOP Examples 289

Dynamic Object Creation 289

Other Uses of new and delete 290

Blowin’ in the Wind: A Binary Tree App 291

The Bnode Class 294

The Btree Class 296
Example 12.1. Names in Alpha Order 298
How It Works 299
Exercises 300
Interlude Recursion versus Iteration Compared 301

Tower of Hanoi, Animated 302
After Mystack Class Design 304
Using the Cstack Class 304
Example 12.2. Animated Tower 305
How It Works 308
Exercises 311

Chapter 12 Summary 311

Chapter 13 Easy Programming with STL 313

Introducing the List Template 313
Interlude Writing Templates in C++ 314
Creating and Using a List Class 315
Creating and Using Iterators 316
C++11/C++14 Only: For Each 318
Interlude Pointers versus Iterators 319
Example 13.1. STL Ordered List 319
How It Works 320
A Continually Sorted List 321
Exercises 323

Designing an RPN Calculator 323
Interlude A Brief History of Polish Notation 325
Using a Stack for RPN 325
Introducing the Generalized STL Stack Class 327
Example 13.2. Reverse Polish Calculator 329
How It Works 330
Exercises 332

ptg16518442

Contentsxvi

Correct Interpretation of Angle Brackets 333

Chapter 13 Summary 333

Chapter 14 Object-Oriented Monty Hall 335

What’s the Deal? 335

TV Programming: “Good Deal, Bad Deal” 337
Example 14.1. The PrizeManager Class 339
How It Works 340
Optimizing the Code 341
Exercises 342
Example 14.2. The DoorManager Class 343
How It Works 344
Exercises 346
Example 14.3. The Full Monty Program 347
How It Works 349
Exercises 350

The Monty Hall Paradox, or What’s Behind the Door? 351

Improving the Prize Manager 353

Chapter 14 Summary 356

Chapter 15 Object-Oriented Poker 359

Winning in Vegas 359

How to Draw Cards 361

The Card Class 363

The Deck Class 364

Doing the Job with Algorithms 366
Example 15.1. Primitive Video Poker 368
How It Works 369
Exercises 370

The Vector Template 371

Getting Nums from the Player 372
Example 15.2. Draw Poker 373
How It Works 376
Exercises 378

How to Evaluate Poker Hands 378
Example 15.3. Draw-Poker Payout! 383

ptg16518442

Contents xvii

How It Works 385
Exercises 386

Chapter 15 Summary 387

Chapter 16 Polymorphic Poker 389

Multiple Decks 389

Switching Decks at Runtime 391

Polymorphism Is the Answer 392
Example 16.1. A Virtual Dealer 396
How It Works 397
Exercises 399
Interlude What Is the Virtual Penalty? 399

“Pure Virtual” and Other Abstract Matters 401

Abstract Classes and Interfaces 402

Object Orientation and I/O 403
cout Is Endlessly Extensible 404
But cout Is Not Polymorphic 404
Example 16.2. True Polymorphism: The IPrintable Class 405
How It Works 408
Exercises 409

A Final Word (or Two) 410

An (Even More) Final Word 411

Chapter 16 Summary 412

Chapter 17 New Features of C++14 415

The Newest C++14 Features 415
Digit-Group Separators 416
String-Literal Suffix 417
Binary Literals 418
Example 17.1. Bitwise Operations 421
Exercises 421

Features Introduced in C++11 422

The long long Type 422
Interlude Why a “Natural” Integer? 424
Working with 64-Bit Literals (Constants) 424
Accepting long long Input 425

ptg16518442

Contentsxviii

Formatting long long Numbers 426
Example 17.2. Fibonacci: A 64-Bit Example 427
How It Works 430
Exercises 431
Localizing Numbers 431
Interlude Who Was Fibonacci? 432

Range-Based “for” (For Each) 433
Example 17.3. Setting an Array with Range-Based “for” 435
How It Works 437
Exercises 437

The auto and decltype Keywords 438

The nullptr Keyword 439

Strongly Typed Enumerations 440
enum Classes in C++11 Onward 442
Extended enum Syntax: Controlling Storage 442

Raw-String Literals 443

Chapter 17 Summary 444

Chapter 18 Operator Functions: Doing It with Class 447

Introducing Operator Functions 447

Operator Functions as Global Functions 450

Improve Efficiency with References 452
Example 18.1. Point Class Operators 454
How It Works 456
Exercises 457
Example 18.2. Fraction Class Operators 457
How It Works 460
Optimizing the Code 461
Exercises 462

Working with Other Types 463

The Class Assignment Function (=) 463

The Test-for-Equality Function (==) 465

A Class “Print” Function 466
Example 18.3. The Completed Fraction Class 467
How It Works 470
Exercises 471

ptg16518442

Contents xix

A Really Final Word (about Ops) 471

Chapter 18 Summary 472

Appendix A Operators 475

The Scope (::) Operator 478

The sizeof Operator 478

Old- and New-Style Type Casts 479

Integer versus Floating-Point Division 480

Bitwise Operators (&, |, ^, ~, <<, and >>) 480

Conditional Operator 481

Assignment Operators 482

Join (,) Operator 482

Appendix B Data Types 483

Precision of Data Types 484

Data Types of Numeric Literals 485

String Literals and Escape Sequences 486

Two’s-Complement Format for Signed Integers 487

Appendix C Syntax Summary 491

Basic Expression Syntax 491

Basic Statement Syntax 492

Control Structures and Branch Statements 493
The if-else Statement 493
The while Statement 493
The do-while Statement 494
The for Statement 494
The switch-case Statement 495
The break Statement 496
The continue Statement 496
The goto Statement 497
The return Statement 497
The throw Statement 497

ptg16518442

Contentsxx

Variable Declarations 498

Function Declarations 500

Class Declarations 502

Enum Declarations 503

Appendix D Preprocessor Directives 505

The #define Directive 505

The ## Operator (Concatenation) 507

The defined Function 507

The #elif Directive 507

The #endif Directive 508

The #error Directive 508

The #if Directive 508

The #ifdef Directive 509

The #ifndef Directive 510

The #include Directive 510

The #line Directive 511

The #undef Directive 511

Predefined Constants 512

Appendix E ASCII Codes 513

Appendix F Standard Library Functions 517

String (C-String) Functions 517

Data-Conversion Functions 518

Single-Character Functions 519

Math Functions 520

Randomization Functions 521

Time Functions 521

Formats for the strftime Function 523

ptg16518442

Contents xxi

Appendix G I/O Stream Objects and Classes 525

Console Stream Objects 525

I/O Stream Manipulators 526

Input Stream Functions 528

Output Stream Functions 528

File I/O Functions 529

Appendix H STL Classes and Objects 531

The STL String Class 531

The <bitset> Template 533

The <list> Template 534

The <vector> Template 536

The <stack> Template 538

Appendix I Glossary of Terms 541

Index 559

ptg16518442

This page intentionally left blank

ptg16518442

xxiii

Preface

It’s safe to say that C++ is the most important programming language in the
world today.

This language is widely used to create commercial applications, ranging from
operating systems to word processors. There was a time when big applications
had to be written in machine code because there was little room in a computer
for anything else. But that time has long passed. Gone are the days in which
Bill Gates had to squeeze all of BASICA into 64K!

C++, the successor to the original C language, remains true to the goal of
producing efficient programs while maximizing programmer productivity.
It typically produces executable files second in compactness only to machine
code, but it enables you to get far more done. More often than not, C++ is the
language of choice for professionals.

But it sometimes gets a reputation for not being the easiest to learn. That’s
the reason for this book.

We’ll Have Fun, Fun, Fun…
Anything worth learning is worth a certain amount of effort. But that doesn’t
mean it can’t be fun, which brings us to this book.

I’ve been programming in C since the 1980s and in C++ since the 1990s, and
have used them to create business- and systems-level applications. The pitfalls
are familiar to me—things like uninitialized pointers and using one equal sign (=)
instead of two (==) in an “if” condition. I can steer you past the errors that
caused me hours of debugging and sweat, years ago.

But I also love logic problems and games. Learning a programming language
doesn’t have to be dull. In this book, we’ll explore the Tower of Hanoi and the
Monty Hall paradox, among other puzzles.

Learning to program is a lot more fun and easy when you can visualize con-
cepts. This book makes heavy use of diagrams and illustrations.

ptg16518442

Prefacexxiv

Why C and C++?
There’s nothing wrong with other programming languages. I was one of the
first people in the world to write a line of code in Visual Basic (while a project
lead at Microsoft), and I admire Python as a high-level scripting tool.

But with a little care, you’ll find C++ almost as easy to learn. Its syntax is
slightly more elaborate than Visual Basic’s or Python’s, but C++ has long been
seen as a clean, flexible, elegant language, which was why its predecessor, C,
caught on with so many professionals.

From the beginning, C was designed to provide shortcuts for certain lines of
code you’ll write over and over; for example, you can use “++n” to add 1 to a
variable rather than “n = n + 1.” The more you program in C or C++, the more
you’ll appreciate its shortcuts, its brevity, and its flexibility.

C++: How to “Think Objects”
A systems programmer named Dennis Ritchie created C as a tool to write oper-
ating systems. (He won the Turing Award in 1983.) He needed a language that
was concise and flexible, and could manipulate low-level things like physical
addresses when needed. The result, C, quickly became popular for other uses
as well.

Later, Bjarne Stroustrup created C++, originally as a kind of “C with classes.”
It added the ability to do object orientation, a subject I’ll devote considerable
space to, starting in Chapter 10. Object orientation is a way of building a pro-
gram around intelligent data types. A major goal of this edition is to showcase
object orientation as a superior, more modular way to program, and how to
“think objects.”

Ultimately, C++ became far more than just “C with classes.” Over the years,
support was added for many new features, notably the Standard Template
Library (STL). The STL is not difficult to learn and this book shows you how
to use it to simplify a lot of programming work. As time goes on, this library is
becoming more central to the work of C++ programmers.

Purpose of the Third Edition
The purpose of the third edition is simple: double down on the strengths of past
editions and correct limitations.

In particular, this edition aims at being more fun and easier to use than ever.
Most of the features of the previous edition remain, but the focus is more on

ptg16518442

Preface xxv

the practical (and entertaining) use of C++ and object orientation, and not as
much on esoteric features that see little use. For example, I assume you won’t
want to write your own string class, because all up-to-date C++ compilers have
provided this feature for a long time now.

In this edition, I also put more stress on “correct” programming practices
that have become standard, or nearly so, in the C++ community.

This edition of the book starts out by focusing on successful installation and
usage of the Microsoft C++ compiler, Community Edition. If you have another
C++ compiler you’re happy with, fine. You can use that because the great
majority of examples are written in generic C++. The first chapter, however,
guides you through the process of using the Microsoft compiler with Visual
Studio, if you’ve never used them before.

Other features of this edition include:

◗ Coverage of new features in C++11 and C++14: This edition brings you up to
date on many of the newest features introduced since C++11, as well as intro-
ducing some brand-new features in C++14. It’s assumed you have a C++
compiler at least as up to date as the Microsoft Community Edition, so I’ve
purged this edition of the book of some out-of-date programming practices.

◗ Even more puzzles, games, exercises, and figures: These features, all a suc-
cessful part of the second edition, show up even more frequently in this edition.

◗ More focus on the “whys” and “how tos” of object orientation: The class and
object features of C++ have always held great promise. A major goal in revising
this edition was to put greater emphasis on the practical value of classes and
objects, and how to “think objects.”

◗ More on the STL: The Standard Template Library, far from being difficult to
learn, can make your life much easier and make you more productive as a pro-
grammer. This edition explores more of the STL.

◗ Useful reference: This edition maintains the quick-reference appendixes in the
back of the book and even expands on them.

Where Do I Begin?
This edition assumes you know little or nothing about programming. If you
can turn on a computer and use a menu system, keyboard, and mouse, you can
begin with Chapter 1. I’ll lead you through the process of installing and using
Microsoft C++ Community version.

ptg16518442

Prefacexxvi

You should note that this version of C++ runs on recent versions of Microsoft
Windows. If you use another system, such as a Macintosh, you’ll need to down-
load different tools. But the rules of generic C++ still apply, so you should be
able to use most of the book without change.

Icons and More Icons
Building on the helpful icons in the first two editions, this edition provides
even more—as signposts on the pages to help you find what you need. Be sure
to look for these symbols because they call out sections to which you’ll want to
pay special attention.

These sections take apart program examples and explain, line by line,
how and why the examples work. You don’t have to wade through long
programming examples—I do that for you! (Or, rather, we go through
the examples together.)

After each full programming example, I provide at least one exercise,
and usually several, that build on the example in some way. These
encourage you to alter and extend the programming code you’ve just
seen. This is the best way to learn. The answers to the exercises can be
found on my Web site (brianoverland.com).

These sections develop an example by showing how it can be improved,
made shorter, or made more efficient.

As with “Optimizing,” these sections take the example in new direc-
tions, helping you learn by showing how the example can be varied or
modified to do other things.

This icon indicates a place where a keyword of the language is intro-
duced and its usage clearly defined. These places in the text summarize
how a given keyword can be used.

The purpose of this icon is similar to “Keyword,” but instead it calls
attention to a piece of C++ syntax that does not involve a keyword.

“Pseudocode” is a program, or a piece of a program, in English-language
form. By reading a pseudocode summary, you understand what a pro-
gram needs to do. It then remains only to translate English-language
statements into C++ statements.

H
ow

 It
 Works

Ex
er

cis
es

Op
ti

m

izing

Va
ria

tion

K
ey

wo
rd

Ke
y

Sy

ntax

Ps
eu

do

code

ptg16518442

Preface xxvii

This book also uses “Interludes,” which are side topics that—while highly illu-
minating and entertaining—aren’t always crucial to the flow of the discussion.
They can be read later.

Note � Finally, some important ideas are sometimes called out with notes; these
notes draw your attention to special issues and occasional “gotchas.” For example,
one of the most common types of notes deals with version issues, pointing out
that some features require a recent compiler:

C++14 � This note is used to indicate sections that apply only to versions of C++
compliant with the more recent C++ specifications.

Anything Not Covered?
Nothing good in life is free—except maybe love, sunsets, breathing air, and
puppies. (Well actually, puppies aren’t free. Not long ago I looked at some Great
Dane puppies costing around $3,000 each. But they were cute.)

To focus more on topics important to the beginner-to-intermediate pro-
grammer, this edition has slightly reduced coverage of some of the more esoteric
subjects. For example, operator overloading (a feature you might never get
around to actually programming into your classes) is still present but moved to
the last chapter.

Most other topics—even relatively advanced topics such as bit manipulation—
are at least touched upon. But the focus is on fundamentals.

C++ is perhaps the largest programming language on earth, much as English
has the largest vocabulary of natural languages. It’s a mistake for an introduc-
tory text to try to cover absolutely everything in a language of this size. But
once you want to learn more about advanced topics in C++, there are plenty of
resources.

Two of the books I’d recommend are Bjarne Stroustrup’s The C++ Program-
ming Language, Fourth Edition (Addison-Wesley, 2013), which is by the original
author of the C++ language. This is a huge, sophisticated, and exhaustive text,
and I recommend it after you’ve learned to be comfortable writing C++ code.
As for an easy-to-use reference, I recommend my own C++ for the Impatient
(Addison-Wesley, 2013), which covers nearly the whole language and almost
every part of the Standard Template Library.

Graphical-user-interface (GUI) programming is specific to this or that platform
and is deserving of its own—or rather many—books. This book introduces you
to the core C++ language, plus its libraries and templates, which are platform
independent.

ptg16518442

Prefacexxviii

A Final Note: Have Fun!
There’s nothing to fear about C++. There are a few potholes here and there, but
I’m going to steer you around them. Occasionally, C++ can be a little harder on
you if you’re not careful or don’t know what you’re doing, but you’ll be better off
in the long run by being made to think about these issues.

C++ doesn’t have to be intimidating. I hope you use the practical examples
and find the puzzles and games entertaining. This is a book about learning and
about taking a road to new knowledge, but more than that, it’s about enjoying
the ride.

ptg16518442

xxix

Acknowledgments

This edition is largely the result of a conversation between editor Kim
Boedigheimer and myself while we had tea in a shop next to Seattle’s Pike Place
Market. So I think of this book as being as much hers as mine. She brought in an
editorial and production team that made life easy for me, including Kesel Wilson,
Deborah Thompson, Chris Zahn, Susan Brown Zahn, and John Fuller.

I’m especially indebted to Leor Zolman (yes, that’s “Leor”), who provided the
single finest technical review I’ve ever seen. Also providing useful input were
John R. Bennett, a software developer emeritus from Microsoft, and online
author David Jack (“the logic junkie”), who suggested some useful diagrams.

ptg16518442

This page intentionally left blank

ptg16518442

xxxi

About the
Author

Brian Overland published his first article in a
professional math journal at age 14.

After graduating from Yale, he began working on
large commercial projects in C and Basic, includ-
ing an irrigation-control system used all over the
world. He also tutored students in math, computer
programming, and writing, as well as lecturing to
classes at Microsoft and at the community-college
level. On the side, he found an outlet for his life-
long love of writing by publishing film and drama
reviews in local newspapers. His qualifications as
an author of technical books are nearly unique

because they involve so much real programming and teaching experience, as
well as writing.

In his 10 years at Microsoft, he was a tester, author, programmer, and manager.
As a technical writer, he became an expert on advanced utilities, such as the
linker and assembler, and was the “go-to” guy for writing about new technology.
His biggest achievement was probably organizing the entire documentation set
for Visual Basic 1.0 and having a leading role in teaching the “object-based”
way of programming that was so new at the time. He was also a member of the
Visual C++ 1.0 team.

Since then, he has been involved with the formation of new start-up companies
(sometimes as CEO). He is currently working on a novel.

ptg16518442

This page intentionally left blank

ptg16518442

1

1
Start Using C++

Nothing succeeds like success. This chapter focuses on successfully installing
and using the C++ compiler—the tool that translates C++ statements into an
executable program (or application).

I’m going to assume at first that you’re using Microsoft Visual Studio, Com-
munity Edition. This includes an excellent C++ compiler—it’s powerful, fast,
and has nearly all of the up-to-date features. However, the Microsoft compiler
raises some special issues, and one of the purposes of this chapter is to acquaint
you with those issues so you can successfully use C++.

If you’re not using this compiler, skip ahead to the section, “If You’re Not
Using Microsoft.”

I’ll get into the more abstract aspects of C++ later, but first let’s get that com-
piler installed.

Install Microsoft Visual Studio
Even if you have an older version of Microsoft Visual Studio, you should con-
sider updating to the current Community Edition, because it has nearly all the
up-to-date features presented in this book. If you’re already running Enterprise
Edition, congratulations, but make sure it’s up to date.

Here are the steps for installing Microsoft Visual Studio Community Edition:

1 Regardless of whether you’re downloading from the Internet (you can use a search
engine to look up “Visual Studio download”) or, using the CD accompanying this
book’s Barnes & Noble Special Edition, get a copy of the file vc_community on
your computer. If you’re downloading, this will be found in your Download folder
after using the site.

2 Double click the file vc_community. This launches the installation program. The
following screen appears:

ptg16518442

Chapter 1 Start Using C++2

Install button

Used with permission from Microsoft.

3 Click the Install button in the lower-right corner. Installation should begin right
away.

4 If you’re downloading from the Internet, be prepared for a long wait! If you’re using
the CD, installation will be many, many times faster.

If all goes well, Microsoft Visual Studio, which includes the Microsoft C++
compiler, should be installed on your computer, and you’re ready to start pro-
gramming. First, however, you need to create a project.

Create a Project with Microsoft
There are some files and settings you need for even the simplest program, but
Visual Studio puts all the items you need into something called a project.

With Visual Studio, Microsoft makes things easy by providing everything
you need when you create a project. Note that you will need to create a new proj-
ect for each program you work on.

ptg16518442

1
Create a Project with Microsoft 3

So let’s create a project.

1 Launch Visual Studio. After you’ve installed it, you should find that Visual Studio is
available on the Start menu (assuming you’re running Windows). Visual Studio
should then appear onscreen.

2 From the File menu (the first menu on the menu bar), choose the New Project com-
mand. The New Project window then appears.

Step 4

Step 3

Step 5

Used with permission from Microsoft.

3 In the left pane, select Visual C++.

4 In the central windowpane, select Win32 Console Application.

5 There are four text boxes at the bottom of the window. You need only fill out one.
In the Name box, type the name of the program: in this case, “print1.” The Solution
name box will automatically display the same text.

6 Click OK in the bottom right corner or just press ENTER.

ptg16518442

Chapter 1 Start Using C++4

The Application Wizard appears, asking if you’re ready to go ahead. (Of course
you are.) Click the Finish button at the bottom of the window.

Used with permission from Microsoft

After you complete these steps, a new project is opened for you. The major
area on the screen is a text window into which you can enter a program. Visual
Studio provides a skeleton (or boilerplate) for a new program containing the
following:

// print1.cpp: Defines the entry point...
//

#include "stdafx.h"

int _tmain(int arg, _TCHAR* argv[])
{
 return 0;
}

You’re probably asking, what is all this stuff? The first thing to be aware of is
that any line that begins with double slashes (//) is a comment and is ignored by
the compiler.

ptg16518442

1
Running a Program in Visual Studio 5

Comments exist for the benefit of the programmer, presumably to help a
human read and understand the program better, but the C++ compiler com-
pletely ignores comments. For now, we’re going to ignore them as well.

So the part you care about is just:

#include "stdafx.h"

int _tmain(int arg, _TCHAR* argv[])
{
 return 0;
}

Writing a Program in Microsoft Visual Studio
Now—again, assuming you’re using Microsoft Visual Studio—you’re ready to
write your first program. The previous section showed the skeleton (or boiler-
plate) that’s already provided. Your task is to insert some new statements.

In the following example, I’ve added the new lines and placed them in bold—
so you know exactly what to type:

#include "stdafx.h"

#include <iostream>
using namespace std;

int _tmain(int arg, _TCHAR* argv[])
{
 cout << "Never fear, C++ is here!";
 return 0;
}

For now, just leave #include "stdafx.h" and t_main alone, but add new state-
ments where I’ve indicated. These lines are Microsoft specific, and I’ll have
more to say about them in the section “Compatibility Issue #1: stdafx.h.” First,
however, let’s just run the program.

Running a Program in Visual Studio
Now you need to translate and run the program. In Visual Studio, all you do is
press Ctrl+F5 or else choose the Start Without Debugging command from the
Debug menu.

ptg16518442

Chapter 1 Start Using C++6

Visual Studio will say that the program is out of date and ask if you want to
rebuild it. Say yes by clicking the Yes button.

Note � You can also build and run the program by pressing F5, but the output of
the program will “flash” and not stay on the screen. So use Ctrl+F5 instead.

If you received error messages, you probably have mistyped something. One
of the intimidating aspects of C++, until you get used to it, is that even a sin-
gle mistyped character can result in a series of “cascading errors.” So, don’t get
upset, just check your spelling. In particular, check the following:

◗ The two C++ statements (and most lines of code you type in will be C++ state-
ments), end with a semicolon (;), so be careful not to forget those semis.

◗ But make sure the #include directives do not end with semicolons(;).

◗ Case sensitivity absolutely matters in C++ (although spacing, for the most part,
does not). Make sure you did not type any capital letters except for text enclosed
in quotation marks.

After you’re sure you’ve typed everything correctly, you can rebuild the pro-
gram by pressing Ctrl+F5 again.

Compatibility Issue #1: stdafx.h
If you’re like me, you’d prefer not to deal with compatibility issues but get right
to programming. However, there are a couple of things you need to keep in
mind to make sure you succeed with Microsoft Visual Studio.

In order to support something called “precompiled headers,” Microsoft
Visual Studio inserts the following line at the beginning of your programs.
There’s nothing wrong with this, unless you paste sample code over it and then
wonder why nothing works.

#include "stdafx.h"

The problem is that other compilers will not work with this line of code, but
programs built with Microsoft Visual Studio require it, unless you make the
changes described in this section.

You can adopt one of several strategies to make sure your programs compile
inside Microsoft Visual Studio.

ptg16518442

1
Compatibility Issue #1: stdafx.h 7

◗ The easiest thing to do is to make sure this line of code is always the first line
in any program created with Visual Studio. So, if you copy generic C++ code
listings into a Visual Studio project, make sure you do not erase the directive
#include "stdafx.h".

◗ If you want to compile generic C++ code (nothing Microsoft-specific), then,
when creating a project, do not click the Finish button when the Application
Wizard window appears. Instead, click Next. Then, in the Application Settings
window, click the “Precompiled Headers” button to de-select it.

◗ After a project is created, you can still change settings by doing the following:
First, from the Project menu, choose the Properties command (Alt + F7). Then,
in the left pane, select Precompiled Headers. (You may first have to expand
“Configuration Properties” and then expand “C/C++” by clicking on these
words.) Finally, in the right pane, choose “Not Using Precompiled Headers”
from the top drop-down list box.

With the last two options, Microsoft-specific lines such as #include
"stdafx.h" still appear! However, after the Precompiled Headers option box is
de-selected, the Microsoft-specific lines can be replaced with generic C++ code.

Also note that Visual Studio uses the following skeleton for the main
function:

int _tmain(int arg, _TCHAR* argv[])
{

}

instead of:

int main()
{

}

Both of these work fine with Visual Studio, but if you keep the version that
features the word _tmain, remember that it requires #include stdafx.h as well.

The items inside the parentheses, just after _tmain, support access to
 command-line arguments. But since this book does not address command-line
arguments, you won’t need them for the examples in this book. Just leave them
as they are.

ptg16518442

Chapter 1 Start Using C++8

Compatibility Issue #2: Pausing the Screen
As stated earlier, if you build and run the program by pressing Ctrl+F5, your
results should be satisfactory, but if you press F5, you’ll get the problem of the
program output flashing on the screen and disappearing.

If you’re using Microsoft Visual Studio, the easiest solution is to just press
Ctrl+F5 (Start Without Debugging) every time you build and run the program.
However, not all compilers offer this option.

Another way to deal with the problem of output flashing on the screen and
disappearing is to add the following line of code, just above “return 0;”:

 system("PAUSE");

When this statement is executed, it has roughly the same effect as pressing
Ctrl+F5. It causes the program to pause and print “Press any key to continue.”

The problem with this statement is that it is system specific. It does what you
want in Windows, but it might not work on another platform. Only put this
statement in if you’re reasonably sure you want your program to run just on
Windows-based systems.

If you’re working on another platform, you’ll need to look for another solu-
tion. Check your compiler documentation for more information.

Now, if you’re using Microsoft Visual Studio, skip ahead to Exercise 1.1.

If You’re Not Using Microsoft
If you’re not using Microsoft Visual Studio as your compiler, most of the steps
described in the previous sections won’t apply. If any documentation comes
with your compiler, make sure you read it in case, like Microsoft Visual Studio,
it has idiosyncrasies of its own.

With compilers other than Visual Studio, do not put in the line #include
"stdafx.h" and make sure you use the simpler program skeleton:

int main() {

}

Beginning with the next section, this book is going to adhere fairly closely to
generic C++, which has nothing that is platform or vendor specific. But in this
chapter, I’ll keep reminding you of what you need to do for Visual Studio.

ptg16518442

1
If You’re Not Using Microsoft 9

Example 1.1. Print a Message
Here is the program introduced earlier, written in generic C++ (except for the
comment, which indicates what you have to do to run it in Visual Studio).

print1.cpp

// If you're using Microsoft V.S. leave in this line:
// #include "stdafx.h"

#include <iostream>
using namespace std;

int main()
{
 cout << "Never fear, C++ is here! ";
 return 0;
}

Remember that exact spacing does not matter, but case-sensitivity does.
Also remember that if and only if you are working with Microsoft Visual

Studio, then, at the beginning of the program, you must leave in the following
line:

#include "stdafx.h"

After entering the program, build and run it (from within Microsoft Visual
Studio, press Ctrl+F5). Here’s what the program prints when correctly entered
and run:

Never fear, C++ is here!

However, this output may be run together with the message “Press any key to
continue.” In the upcoming sections, we’re going to correct that.

H
ow

 It
 Works

How It Works
Believe it or not, this simple program has only one real statement. You can think
of the rest as “boilerplate” for now—stuff you have to include but can safely
ignore. (If you’re interested in the details, the upcoming “Interlude” discusses
the #include directive.)

ptg16518442

Chapter 1 Start Using C++10

Except for the one line in italics, the lines below are “boilerplate”: these are
items that always have to be present, even if the program doesn’t do anything.
For now, don’t worry about why these lines are necessary; their usage will
become clearer as you progress with this book. In between the braces ({}), you
insert the actual lines of the program—which in this case consist of just one
important statement.

#include <iostream>
using namespace std;

int main()
{

Enter_your_statements_here!
 return 0;
}

This program has one only real statement. Don’t forget the semicolon (;) at
the end!

cout << "Never fear, C++ is here!";

What is cout? This is an object—that’s a concept I’ll discuss a lot more in
the second half of the book. In the meantime, all you have to know is that cout
stands for “console output.” In other words, it represents the computer screen.
When you send something to the screen, it gets printed, just as you’d expect.

In C++, you print output by using cout and a leftward stream operator (<<)
that shows the flow of data from a value (in this case, the text string “Never fear,
C++ is here!”) to the console. You can visualize it this way:

"Never fear, C++ is here!"

cout << "Never fear, C++ is here! " ;

Console
(output)

Don’t forget the semicolon (;). Every C++ statement must end with a semico-
lon, with few exceptions.

For technical reasons, cout must always appear on the left side of the line
of code whenever it’s used. Data in this case flows to the left. Use the leftward
“arrows,” which are actually a pair of less-than signs (<<).

ptg16518442

1
If You’re Not Using Microsoft 11

The following table shows other simple uses of cout:

STATEMENT ACTION

cout << "Do you C++?"; Prints the words “Do you C++?”

cout << "I think,"; Prints the words “I think,”

cout << "Therefore I program."; Prints the words “Therefore I program.”

Ex
er

cis
es

 EXERCISES

Exercise 1.1.1. Write a program that prints the message “Get with the program!” If
you want, you can work on the same source file used for the featured example
and alter it as needed. (Hint: Alter only the text inside the quotation marks;
otherwise, reuse all the same programming code.)

Exercise 1.1.2. Write a program that prints your own name.

Exercise 1.1.3. Write a program that prints “Do you C++?”

What about the #include and using?

I said that the fifth line of the program is the first “real” statement of the
program. I glossed over the first line:

#include <iostream>

This is an example of a C++ preprocessor directive, a general instruction
to the C++ compiler. A directive of the form

#include <filename>

loads declarations and definitions that support part of the C++ standard
library. Without this directive, you couldn’t use cout.

If you’ve used older versions of C++ and C, you may wonder why no
specific file (such as an .h file) is named. The filename iostream is a virtual
include file, which has information in a precompiled form.

If you’re new to C++, just remember you have to use #include to turn on
support for specific parts of the C++ standard library. Later, when we start
using math functions such as sqrt (square root), you’ll need to switch on
support for the math library:

#include <cmath>

▼ continued on next page

Interlude

ptg16518442

Chapter 1 Start Using C++12

▼ continued

Is this extra work? A little, yes. Include files originated because of a dis-
tinction between the C language and the standard runtime library. (Pro-
fessional C/C++ programmers sometimes avoid the standard library and
use their own.) Library functions and objects—although they are indis-
pensable to beginners—are treated just like user-defined functions, which
means (as you’ll learn in Chapter 4) that they have to be declared. That’s
what include files do.

You also need to put in a using statement. This enables you to refer
directly to objects such as std::cout. Without this statement, you’d have to
print messages this way:

 std::cout << "Never fear, C++ is here!";

We’re going to be using cout (and its cousin, cin) quite a lot, so for now
it’s easier just to put a using statement at the beginning of every program.

Advancing to the Next Print Line
With C++, text sent to the screen does not automatically advance to the next
physical line. You have to print a newline character to do that. (Exception: If
you never print a newline, the text may automatically “wrap” when the current
physical line fills up, but this produces an ugly result.)

The easiest way to print a newline is to use the predefined constant endl. For
example:

cout << "Never fear, C++ is here!" << endl;

Note � The endl name is short for “end line”; it is therefore spelled “end ELL,” not
“end ONE.” Also note that endl is actually std::endl, but the using statement
saves you from having to type std::.

Another way to print a newline is to insert the characters \n. This is an escape
sequence, which C++ interprets as having a special meaning rather than inter-
preting it literally. The following statement has the same effect as the previous
example:

cout << "Never fear, C++ is here!\n";

Interlude

ptg16518442

1
Advancing to the Next Print Line 13

Example 1.2. Print Multiple Lines
The program in this section prints messages across several lines. If you’re fol-
lowing along and entering the programs, remember once again to use upper-
case and lowercase letters exactly as shown—although you can change the
capitalization of the text inside quotation marks and the program will still run.

If you’re working with Visual Studio, the only lines you should add are the
ones shown here in bold. Leave #include stdafx.h and _tmain alone. If you’re
working with another compiler, the code should look as follows, minus the
comments (//).

print2.cpp

// If you're using Microsoft V.S. leave in this line:
// #include "stdafx.h"

#include <iostream>
using namespace std;

int main()
{
 cout << "I am Blaxxon," << endl;
 cout << "the godlike computer." << endl;
 cout << "Fear me!" << endl;
 return 0;
}

Remember that exact spacing does not matter, but case-sensitivity does.
The resulting program, if you’re working with Visual Studio, should be as

follows. The lines in bold are what you need to add to the code Visual Studio
provides for you.

#include "stdafx.h"

#include <iostream>
using namespace std;

int _tmain(int arg, _TCHAR* argv[])
{
 cout << "I am Blaxxon," << endl;
 cout << "the godlike computer." << endl;

ptg16518442

Chapter 1 Start Using C++14
 cout << "Fear me!" << endl;
 return 0;
}

After entering the program, compile and run it. Here’s what the program
prints when correctly entered and run:

I am Blaxxon,
the godlike computer.
Fear me!

H
ow

 It
 Works

How It Works
This example is similar to the first one I introduced. The main difference is this
example uses newline characters. If these characters were omitted, the program
would print

I am Blaxxon, the godlike computer.Fear me!

which is not what we wanted.
Conceptually, here’s how the statements in the program work:

"I am Blaxxon, "

cout << "I am Blaxxon, " << endl;

Console
(output)

Newline

You can print any number of separate items this way, though again, they
won’t advance to the next physical line without a newline character (endl). You
could send several items to the console with one statement

cout << "This is a " << "nice " << "C++ program.";

which prints the following when run:

This is a nice C++ program.

Or, you can embed a newline, like this

cout << "This is a" << endl << "C++ program.";

ptg16518442

1
Advancing to the Next Print Line 15

which prints the following:

This is a
C++ program.

The example, like the previous one, returns a value. “Returning a value” is
the process of sending back a signal—in this case to the operating system or
development environment.

You return a value by using the return statement:

return 0;

The return value of main is a code sent to the operating system, in which 0
indicates success. The examples in this book return 0, but they could return an
error code sometimes (−1 for example) if you found that to be useful. However,
I would ignore that for now.

Ex
er

cis
es

 EXERCISES

Exercise 1.2.1. Remove the newlines from the example in this section, but put in
extra spaces so that none of the words are crammed together. (Hint: Remem-
ber that C++ doesn’t automatically insert a space between output strings.) The
resulting output should look like this:

I am Blaxxon, the godlike computer. Fear me!

Exercise 1.2.2. Alter the example so that it prints a blank line between each two
lines of output—in other words, make the results double-spaced rather than
single-spaced. (Hint: Print two newline characters after each text string.)

Exercise 1.2.3. Alter the example so that it prints two blank lines between each of
the lines of output.

What Is a String?

From the beginning, I’ve made use of text inside of quotes, as in this
statement:

cout << "Never fear, C++ is here!";

Everything outside of the quotes is part of C++ syntax. What’s inside the
quotes is data.

▼ continued on next page

Interlude

ptg16518442

Chapter 1 Start Using C++16

▼ continued

In actuality, all the data stored on a computer is numeric, but depending
on how data is used, it can be interpreted as a string of printable characters.
That’s the case here.

You may have heard of “ASCII code.” That’s what kind of data “Never
fear, C++ is here!” is in this example. The characters “N”, “e”, “v”, “e”, “r”,
and so on, are stored in individual bytes, each of which is a numeric code
corresponding to a printable character.

I’ll talk a lot more about this kind of data in Chapter 8. The important
thing to keep in mind is that text enclosed in quotes is considered raw data,
as opposed to a command. This kind of data is considered a string of text
or, more commonly, just a string.

Storing Data: C++ Variables
If all you could do was print messages, C++ wouldn’t be useful. The funda-
mental purpose of nearly any computer program is usually to get data from
 somewhere—such as end-user input—and then do something interesting with it.

Such operations require variables. These are locations into which you can
place data. You can think of variables as magic boxes that hold values. As
the program proceeds, it can read, write, or alter these values as needed. The
upcoming example uses variables named ctemp and ftemp to hold Celsius and
Fahrenheit values, respectively.

ctemp ftemp

10.5 50.9

How are values put into variables? One way is through console input. In
C++, you can input values by using the cin object, representing (appropriately
enough) console input. With cin, you use a stream operator showing data flow-
ing to the right (>>):

ctemp
Console
(input)

cin >> ctemp ;

Interlude

ptg16518442

1
Introduction to Data Types 17

Here’s what happens in response to this statement. (The actual process is a
little more complicated, but don’t worry about that for now.)

1 The program suspends running and waits for the user to enter a number.

2 The user types a number and presses ENTER.

3 The number is accepted and placed in the variable ctemp (in this case).

4 The program resumes running.

So, if you think about it, a lot happens in response to this statement:

cin >> ctemp;

But before you can use a variable in C++, you must declare it. This is an
absolute rule and it makes C++ different from Basic, which is sloppy in this
regard and doesn’t require declaration (but generations of Basic programmers
have banged their heads against their terminals as they discovered errors crop-
ping up as a result of Basic’s laxness about variables).

This is important enough to justify restating, so I’ll make it a cardinal rule:

✱ In C++, you must declare a variable before using it.

To declare a variable, you first have to know what data type to use. This is a
critical concept in C++ as in most other languages.

Introduction to Data Types
A variable is something you can think of as a magic box into which you can
place information—or, rather, data. But what kind of data?

All data on a computer is ultimately numeric, but it is organized into one of
three basic formats: integer, floating-point, and text string.

5 -33 106

-8.7 2.003 387.1

"Call me Ishmael"

Integer

Floating-point

Text String

ptg16518442

Chapter 1 Start Using C++18

There are several differences between floating-point and integer format. But
the main rule is simple:

✱ If you need to store numbers with fractional portions, use a floating-point
variable; otherwise, use integer types.

The principal floating-point data type in C++ is double. This may seem
like a strange name, but it stands for “double-precision floating point.” There
is also a single-precision type (float), but its use is relatively infrequent. When
you need the ability to retain fractional portions, you’ll get better results—and
fewer error messages—if you stick to double.

aFloat

A double declaration has the following syntax. Note that this statement is
terminated with a semicolon (;), just as most kinds of statements are.

double variable_name;

You can also use a double declaration to create a series of variables:

double variable_name1, variable_name2, ...;

For example, this statement creates a double variable named aFloat:

double aFloat;

This statement creates a variable of type double.
The next statement declares four double variables named b, c, d, and amount:

double b, c, d, amount;

The effect of this statement is equivalent to the following:

double b;
double c;
double d;
double amount;

The result of these declarations is to create four variables of type double.

b c d amount

K
ey

wo
rd

ptg16518442

1
Introduction to Data Types 19

An important rule of good programming style is that variables should usu-
ally be initialized, which means giving them a value as soon as you declare
them. The declarations just shown should really be:

double b = 0.0;
double c = 0.0;
double d = 0.0;
double amount = 0.0;

Starting in the next chapter, I’ll have a lot more to say about issues such as
data types and initialization. But for the next program, I’ll keep the code sim-
ple. We’ll worry about initialization in Chapter 2 onward.

Why Double Precision, Not Single?

Double precision is like single precision, except better. Double precision
supports a greater range of values, with better accuracy: It uses 8 bytes
rather than 4.

C++ converts all data to double precision when doing calculations,
which makes sense given that today’s PCs include 8-byte co-processors.
C++ also stores floating-point constants in double precision unless you
specify otherwise (for example, by using the notation 12.5F instead of 12.5).

Double precision has one drawback: it requires more space. This is a fac-
tor only when you have large amounts of floating-point values to be stored
in a disk file. Then, and only then, should you consider using the single-pre-
cision type, float.

Example 1.3. Convert Temperatures
Every time I go to Canada, I have to convert Celsius temperatures to Fahrenheit
in my head. If I had a handheld computer, it would be nice to tell it to do this
conversion for me; computers are good at that sort of thing.

Here’s the conversion formula. The asterisk (*), when used to combine two
values, means “multiply by.”

Fahrenheit = (Celsius * 1.8) + 32

Now, a useful program will take any value input for Celsius and then convert
it. This requires the use of some new features:

◗ Getting user input

◗ Storing the value input in a variable

Interlude

ptg16518442

Chapter 1 Start Using C++20

Here is the complete program. Create a new project called “convert.” Then
enter the new program, and compile and run (press Ctrl + F5 if you’re using
Microsoft).

convert.cpp

// If you're using Microsoft V.S. leave in this line:
// #include "stdafx.h"

#include <iostream>
using namespace std;

int main()
{
 double ctemp, ftemp;

 cout << "Input a Celsius temp and press ENTER: ";
 cin >> ctemp;
 ftemp = (ctemp * 1.8) + 32;
 cout << "Fahrenheit temp is: " << ftemp;
 return 0;
}

Remember, yet again (!), that if and only if you’re working with Microsoft
Visual Studio, you must leave the following line in at the beginning of the
program:

#include "stdafx.h"

Programs are easier to follow when you add comments, which in C++ are
notated by double slashes (//). Comments are ignored by the compiler (they
have no effect on program behavior), but they are useful for humans. Here is
the more heavily commented version:

convert2.cpp

// If you're using Microsoft V.S. leave in this line:
// #include "stdafx.h"

#include <iostream>
using namespace std;

ptg16518442

1
Introduction to Data Types 21

int main()
{

 double ctemp; // Celsius temperature
 double ftemp; // Fahrenheit temperature

 // Get value of ctemp (Celsius temp).

 cout << "Input a Celsius temp and press ENTER: ";
 cin >> ctemp;

 // Calculate ftemp (Fahrenheit temp) and output.

 ftemp = (ctemp * 1.8) + 32;
 cout << "Fahrenheit temp is: " << ftemp << endl;

 return 0;
}

This commented version, although it’s easier for humans to read, takes more
work to enter. While following the examples in this book, you can always omit
the comments or choose to add them later. Remember this cardinal rule for
comments:

✱ C++ code beginning with double slashes (//) is a comment and is ignored by
the C++ compiler to the end of the line.

Using comments is always optional, although it is a good idea, especially if
any humans (including you) are going to ever look at the C++ code.

H
ow

 It
 Works

How It Works
The first statement inside main declares variables of type double, ctemp
and ftemp, which store Celsius temperature and Fahrenheit temperature,
respectively.

double ctemp, ftemp;

This gives us two locations at which we can store numbers. Because they
have type double, they can contain fractional portions. Remember that double
stands for “double-precision floating point.”

convert2.cpp, cont.

ptg16518442

Chapter 1 Start Using C++22

ctemp ftemp

The next two statements prompt the user and then store input in the variable
ctemp. Assume that the user types 10. Then the numeric value 10.0 is put into
ctemp.

"Enter a Celsius temp and press ENTER: "

cout << "Enter a Celsius temp and press ENTER: " ;

Console
(output)

cin >> ctemp;

Console
(input)

ctemp

10.0

In general, you can use similar statements in your own programs to print a
prompting message and then store the input. The prompt is very helpful because
otherwise the user may not know when he or she is supposed to do something.

Note � Although the number entered in this case was 10, it is stored as 10.0. In
purely mathematical terms, 10 and 10.0 are equivalent, but in C++ terms, the
notation 10.0 indicates that the value is stored in floating-point format rather
than integer format. This turns out to have important consequences.

The next statement performs the actual conversion, using the value stored in
ctemp to calculate the value of ftemp:

ftemp = (ctemp * 1.8) + 32;

ptg16518442

1
Introduction to Data Types 23

This statement features an assignment: the value on the right side of the equal
sign (=) is evaluated and then copied to the variable on the left side. This is one
of the most common operations in C++.

Again, assuming that the user input 10, this is how data would flow in the
program:

ftemp = (ctemp * 1.8) + 32 ;

ctemp

10.0

ftemp

50.0
(ctemp * 1.8) + 32
(10.0 * 1.8) + 32

Finally, the program prints the result—in this case, 50.

"Fahrenheit temp is: "

cout << "Fahrenheit temp is: " << ftemp ;

Console
(output)

ftemp

50.0

Op
ti

m

izing

Optimizing the Program
If you look at the previous example carefully, you might ask yourself, was it
really necessary to declare two variables instead of one?

Actually, it wasn’t. Welcome to the task of optimization. The following ver-
sion improves on the first version of the program by getting rid of ftemp and
combining the conversion and output steps:

ptg16518442

Chapter 1 Start Using C++24

convert3.cpp

// If you're using Microsoft V.S. leave in this line:
// #include "stdafx.h"

#include <iostream>
using namespace std;

int main()
{
 double ctemp; // Celsius temperature

 // Prompt and input value of ctemp.

 cout << "Input a Celsius temp and press ENTER: ";
 cin >> ctemp;

 // Convert ctemp and output results.

 cout << "Fahr. temp is: " << (ctemp * 1.8) + 32;
 cout << endl;

 return 0;
}

Do you detect a pattern by now? With the simplest programs, the pattern is
usually as follows:

1 Declare variables.

2 Get input from the user (after printing a prompt).

3 Perform calculations and output results.

For example, the next program does something different but should look
familiar. This program prompts for a number and then prints the square. The
statements are similar to those in the previous example but use a different vari-
able (x) and a different calculation.

ptg16518442

1
Introduction to Data Types 25

square.cpp

// If you're using Microsoft V.S. leave in this line:
// #include "stdafx.h"

#include <iostream>
using namespace std;

int main()
{
 double x = 0.0;

 // Prompt and input value of x.

 cout << "Input a number and press ENTER: ";
 cin >> x;

 // Calculate and output the square.

 cout << "The square is: " << x * x << endl;
 return 0;
}

Ex
er

cis
es

 EXERCISES

Exercise 1.3.1. Rewrite the example so it performs the reverse conversion: Input a
value into ftemp (Fahrenheit) and convert to ctemp (Celsius). Then print the
results. (Hint: The reverse conversion formula is ctemp = (ftemp − 32) / 1.8.)

Exercise 1.3.2. Write the Fahrenheit-to-Celsius program using only one variable,
ftemp. This is an optimization of Exercise 1.3.1.

Exercise 1.3.3. Write a program that inputs a value into a variable x and outputs the
cube (x * x * x). Make sure the output statement uses the word cube rather than
square.

Exercise 1.3.4. Rewrite the example square.cpp using the variable name num rather
than x. Make sure you change the name everywhere “x” appears.

ptg16518442

Chapter 1 Start Using C++26

A Word about Variable Names and Keywords
This chapter has featured the variables ctemp, ftemp, and n. Exercise 1.3.4 sug-
gested that you could replace “x” with “num,” as long as you do the substitution
consistently throughout the program. So “num” is a valid name for a variable
as well.

There is an endless variety of variable names I could have used instead. I could,
for example, give some variables the names killerRobot or GovernorOfCalifornia.

What variable names are permitted, and what ones are not? You can use any
name you want, as long as you follow these rules:

◗ The first character should be a letter. It cannot be a number. The first character
can be an underscore (_), but the C++ library uses that naming convention
internally, so it’s best to avoid starting a name that way.

◗ The rest of the name can be a letter, a number, or an underscore (_).

◗ You must avoid words that already have a special, predefined meaning in C++,
such as the keywords.

It isn’t necessary to sit down and memorize all the C++ keywords. You need
to know only that if you try using a name that conflicts with one of the C++
keywords, the compiler will respond with an error message. In that case, try a
different name.

Ex
er

cis
e

 EXERCISE

Exercise 1.3.5. In the following list, which of the words are legal variable names in
C++, and which are not? Review the rules just mentioned as needed.

x1

EvilDarkness

PennslyvaniaAve1600

1600PennsylvaniaAve

Bobby_the_Robot

Bobby+the+Robot

whatThe???

amount

ptg16518442

1
27Chapter 1 Summary

count2

count2five

5count

main

main2

Chapter 1 Summary
Here are the main points of Chapter 1:

◗ Creating a program begins with writing C++ source code. This consists of C++
statements, which bear some resemblance to English. (Machine code, by con-
trast, is completely incomprehensible unless you look up the meaning of each
combination of 1s and 0s.) Before the program can be run, it must be translated
into machine code, which is all the computer really understands.

◗ The process of translating C++ statements into machine code is called compiling.

◗ After compiling, the program also has to be linked to standard functions stored
in the C++ library. This process is called linking. After this step is successfully
completed, you have an executable program.

◗ If you have a development environment, the process of compiling and linking
a program (building) is automated so you need only press a function key. With
Microsoft Visual Studio, press Ctrl+F5 to build programs.

◗ If you’re working with Microsoft Visual Studio, make sure you leave #include
"stdafx" at the beginning of every program. If you start a project by going
through the New Project command, the environment will always put this in for
you. Just make sure you don’t delete #include "stdafx" when pasting code into
the environment.

#include "stdafx.h"

◗ Simple C++ programs have the following general form:

#include <iostream>
using namespace std;

int main()
{

ptg16518442

Chapter 1 Start Using C++28
Enter_your_statements_here!
return 0;

}

◗ To print output, use the cout object. For example:

cout << "Never fear, C++ is here!";

◗ To print output and advance to the next line, use the cout object and send a
newline character (endl). For example:

cout << "Never fear, C++ is here!" << endl;

◗ Most C++ statements are terminated by a semicolon (;). Directives—lines
beginning with a pound sign (#)—are a major exception.

◗ Double slashes (//) indicate a comment; all text to the end of the line is ignored
by the compiler itself. But comments can be read by humans who have to main-
tain the program.

◗ Before using a variable, you must declare it. For example:

double x; // Declare x as a floating-pt variable.

◗ Variables that may store a fractional portion should have type double. This
stands for “double-precision floating point.” The single-precision type (float)
should be used only when storing large amounts of floating-point data on disk.

◗ To get keyboard input into a variable, you can use the cin object. For example:

cin >> x;

◗ You can also put data into a variable by using assignment (=). This operation
evaluates the expression on the right side of the equal sign (=) and places the
value in the variable on the left side. For example:

x = y * 2; // Multiply y times 2, place result in x.

ptg16518442

29

2 Decisions,
Decisions

If you’ve worked through Chapter 1, you’ve already begun to do real program-
ming: getting input, crunching numbers, and printing output. But to really do
anything interesting, you have to give the program the ability to make deci-
sions. IF this, THEN do that, and so on.

Computers don’t really make the decisions the way humans do (not with-
out Artificial Intelligence, a topic I discuss on page 31). Like everything else in
a program, decisions must be absolutely clear and precise, and depend on the
result of comparing two numbers. And yet, upon such simple decisions, it’s pos-
sible to build complex, interesting, and rich behavior.

But First, a Few Words about Data Types
You can think of a variable as a magic box or a bucket to hold data. But it can
hold only so much information—information being a precious commodity.
A variable is not infinite.

Chapter 1 developed examples using floating-point data. This chapter uses
integer data, which (unlike floating point) cannot hold fractional portions. You
might think that you should just use double, the floating-point type, for all sit-
uations. But it’s inefficient to use double when you don’t really need it.

Under the covers, integer and floating-point formats look nothing alike.
Here’s how a value—150—is stored in different formats. I’ve made a number of
simplifying assumptions here: for example, floating-point format uses binary,
not decimal, representation (and integer format usually uses something called
two’s complement, which I describe in Appendix B).

ptg16518442

Chapter 2 Decisions, Decisions30

150Integer format (int)

Floating-point (double) 0 1.500000002

value

s exponent mantissa

The range of type double is much greater than integer; it can also store frac-
tional portions of a number. But its use is more taxing on computer resources.
Furthermore, its precision for very high integers is limited, and rounding errors
can occur.

So, use the right data type for the job. It is definitely better to use the integer
format when you’re working with whole numbers only.

Here’s the syntax for declaring an int (integer) variable. You can declare a
variable with or without giving it an initial value, although good programming
practice strongly favors initialization. If you fail to initialize a variable and it’s
local to a function—a concept to be discussed later—it will be initialized with
“garbage,” that is, a meaningless random value.

int variable_name;

int variable_name = initial_value;

You can also declare multiple int variables together:

int variable1, variable2, variable3,...;

Each variable (variable1, variable2, and so on) can be initialized, whether or
not the others are (but remember that initialization is always a good idea). For
example:

int a = 0, b = 1, c, d, e, f, g = 20;

You can assign values between integer and floating-point variables, but if you
assign a floating-point value to an integer, the compiler complains about loss of
data.

int n = 5;
double x = n; // Ok: convert 5 to floating-pt
n = 3.7; // Warning: convert from double to int
n = 3.0; // This also gets a warning.

If you assign 3.7 to n, the fractional portion, 0.7, is dropped, so that the value 3 is
stored in the variable n. But assigning 3.0 is also problematic, because the pres-
ence of a decimal point (.) causes a value to be stored in floating-point (double)
format.

K
ey

wo
rd

ptg16518442

2
Decision Making in Programs 31

C++14 � Beginning with C++11, the specification supports the long long int type,
which has a comparatively immense large range. I’ll have more to say about
long long int in Chapter 10, “Classes and Objects.” (Note: Some compilers have
already been supporting this type for several years.) Most implementations that
support this type use 64 bits rather than the default 32-bit integer size.

Decision Making in Programs
Remember, a computer can carry out only those instructions that are clear and
precise. The computer always does exactly what you say. It follows instructions
even if they are absurd; it has no judgment with which to question anything.
Once again, this is one of the cardinal rules of programming—maybe the car-
dinal rule:

✱ A computer can carry out only those instructions that are absolutely clear.

A computer has no such thing as discretion or judgment. It can follow only
those rules that are mathematically precise, such as comparing two values to see
whether they are equal.

What about Artificial Intelligence (AI)?

“But,” I hear you say, “computers are smart! They can use judgment. What
about that program Big Blue that beat Gary Kasparov, the world’s chess
champion, in 1997?”

Artificial intelligence (AI) is the exception that proves the rule. It might
seem that an AI computer program is exercising judgment, but only because
of a complex program made up of thousands, even millions, of individual
little decisions, each of which is simple and mathematically clear.

Consider the human brain. The operation of each neuron is simple:
given sufficient stimulus, it fires; otherwise, it doesn’t. It’s the network of
billions of neurons, analogous to the millions of lines in a big computer
program, that creates a host for consciousness.

Is that so different from a computer? This question leads us to Very Big
Dilemmas. If a computer can be conscious, is it murder to shut it off or junk
it? But if a computer cannot be conscious, then what is it about the brain
that’s so special? Answering such questions is far outside the scope of this
book, but I consider this issue—could robots or computers theoretically
become conscious?—to be the most central problem in philosophy today.

▼ continued on next page

Interlude

ptg16518442

Chapter 2 Decisions, Decisions32

▼ continued

It remains a super-controversial question as to whether human brains, at
the deepest level, are any more intelligent than computer circuits, or whether,
as physicist Roger Penrose contends, the brain is “non- computational” and
therefore cannot be captured by computer software. That question is out-
side the scope of this book!

if and if-else
The simplest way to program behavior is to say, “If A is true, then do B.” That’s
what the C++ if statement does. Here is the simple form of the if statement
syntax:

if (condition)
statement

There are more complex forms of this statement, which we’ll get to soon. But
first consider an if statement that compares two variables, x and y.

if (x == y)
 cout << "x and y are equal.";

This is strange. There are two equal signs (==) here instead of one (=). This
is not a typo. C++ has two separate operators in this regard: One equal sign
means assignment, which copies a value into a variable. Two equal signs (==)
means test for equality.

Note � Using assignment (=) where you meant to use test for equality (==) is one
of the most common C++ programming errors. If you’re going to program in
any of the C family of programming languages (C#, C++, Java, etc.), this is an
important rule you’ll need to get used to as soon as possible!

What if, instead of executing one statement in response to a condition, you
want to do a series of things? The answer is you can use a compound statement
(or block):

if (x == y) {
 cout << "x and y are equal." << endl;
 cout << "Isn't that nice?";
 they_are_equal = true;
}

Interlude
K

ey
wo

rd

ptg16518442

2
Decision Making in Programs 33

The significance of the block is that either all these statements are executed
or none of them is executed. If the condition is not true, the program jumps
past the end of the block. A block can be plugged into the if statement syntax
because of another cardinal rule:

✱ Anywhere you can use a statement in C++ syntax, you can use a compound
statement (or block).

The block itself is not terminated by a semicolon (;)—only the statements
inside are terminated by a semicolon. This is one of the few exceptions to the
general rule that statements end with a semicolon in C++.

Here’s the if statement syntax again:

if (condition)
statement

Applying the cardinal rule I just stated, we can insert a block for the statement

if (condition) {
statements

}

where statements is zero or more individual C++ statements.
You can also specify actions to take if the condition is not true. This is

optional. As you might guess, this variation uses the else keyword:

if (condition)
statement1

else
statement2

Either statement1 or statement2, or both, can be a compound statement (that
is, a block). And, in fact, many programming teachers and professionals insist
that you should always use this “block style,” even when the blocks have single
statements, because the block style makes it easy to go back and add statements
without inadvertently causing an error.

Here’s an example, using statement-block style:

if (x == y) {
 cout << "x and y are equal";
} else {
 cout << "x and y are NOT equal";
}

K
ey

wo
rd

ptg16518442

Chapter 2 Decisions, Decisions34

The following diagram illustrates the flow of control:

cout << "x, y equal";

x == y

Evaluate condition.
Is it true (nonzero)?

"else" clause...if
omitted, this step
is skipped.

Execute statement1.

YES

DONE.

The "if-else" statement

NO

cout << "x, y not equal";

Execute statement2.

The if-else statement is highly flexible. Although, technically speaking, there
is no “else-if” keyword, you can achieve the same effect by simply adding new if
clauses inside the else clauses. For example:

if (x == 1) {
 cout << "x equals 1";
} else if (x == 2) {
 cout << "x equals 2";
} else if (x == 3) {
 cout << "x equals 3";
} else if (x == 4) {
 cout << "x equals 4";
}

This is actually a poor way of printing out the value of x, but it does illustrate
cascading if and else clauses, creating the same effect as “else-if.” In this case, it
would be much easier to write the following:

cout << "x equals " << x;

ptg16518442

2
Decision Making in Programs 35

Why Two Operators (= and ==)?

If you’ve used another programming language such as Pascal or Basic, you
may wonder why = and == are two separate operators. After all, Basic uses
a single equal sign (=) for both assignment and test for equality, using con-
text to tell them apart.

In C and C++, the following code is freely permitted. Yet it’s almost
always wrong.

int x, y;
...
if (x = y)

// ERROR! Assignment!
 cout << "x and y are equal";

What this example does is assign the value of y to x and use that value
as the test condition. If this value is nonzero, it is considered “true.” Con-
sequently, if y is any value other than zero, the previous condition is “true”
and the statement is always executed!

Here is the correct version, which will do what you want:

if (x == y)
 // CORRECT: test for equality
 cout << "x and y are equal";

Here, x == y is an operation that tests for equality and evaluates as true
or false. The important thing to remember is not to confuse test for equal-
ity with assignment (x = y).

Why allow this potential source of problems? Well, most expressions in
C++ (the main exception being calls to void functions) produce a value,
and this includes assignment (=), which is an expression with a side effect.
So, you can initialize three variables at once by doing this,

x = y = z = 0; // Set all vars to 0.

which is equivalent to this:

x = (y = (z = 0)); // Set all vars to 0.

Each assignment, beginning with the rightmost one (z = 0), produces
the value that was assigned (0), which is then used in the next assignment
(y = 0). In other words, 0 is passed along three times, each time to a new
variable.

▼ continued on next page

Interlude

ptg16518442

Chapter 2 Decisions, Decisions36

▼ continued

C++ treats “x = y” as an expression that produces a value. And there’d
be nothing wrong with that, except that almost any valid numeric expression
can be used as a condition. Therefore, the compiler does not complain if you
write this, even though it’s usually wrong:

if (x = y)
 // Do action... (Probably should have used ==)

Example 2.1. Odd or Even?
OK, enough preliminaries. It’s time to look at a complete program that uses
decision making. This is a simple example, but it introduces a new operator (%)
and shows the if-else syntax in action.

The program takes a number from the keyboard and reports whether it is
odd or even.

even1.cpp

#include <iostream>
using namespace std;

int main()
{
 int n = 0, remainder = 0;

 // Get a number from the keyboard.

 cout << "Enter a number and press ENTER: ";
 cin >> n;

 // Get remainder after dividing by 2.

 remainder = n % 2;

 // If remainder is 0, the number input is even.

 if (remainder == 0) {
cout << "The number is even." << endl;

Interlude

ptg16518442

2
Decision Making in Programs 37

 } else {
cout << "The number is odd." << endl;

 }
 return 0;
}

If you’re following along and want to enter this example by hand, the
 comments—lines beginning with double slashes (//)—are optional. You don’t
have to enter those.

Remember that comments are ignored by the C++ compiler itself. They are
“no-ops.” But if you plan to ever come back to the program, possibly to revise it
or to show it to someone else, comments can have great value. You can use them
to remind yourself what specific parts of the program do. Although, in theory, you
can put anything you want inside a comment, presumably you’ll write com-
ments that are helpful to a human reading the program.

H
ow

 It
 Works

How It Works
The first statement of the program declares two integer variables, n and
remainder:

 int n = 0, remainder = 0;

The next thing the program does is get a number and store it in the variable n.
This should look familiar by now:

 cout << "Enter a number and press ENTER: ";
 cin >> n;

After a number is input this way, all the program needs to do is test n to see
whether it is odd or even. How do you do that? Answer: You divide the number
by 2 and look at the remainder. If the remainder is 0, the number is even (in other
words, the number is perfectly divisible by 2). Otherwise, the number is odd.

That’s exactly what this program does. The following statement divides by 2
and gets the remainder. This is called modulus or remainder division. The result
is stored in a variable named (appropriately enough) “remainder.”

 int remainder = n % 2;

Again, if the remainder is 0, that means n divides evenly into 2. The num-
bers 2, 4, 6, 8, and 10 are all even numbers, and when you divide by 2 you get a
remainder of 0. The numbers 1, 3, 5, and 7 are all odd, and when you divide by 2
you get a remainder of 1.

even1.cpp, cont.

ptg16518442

Chapter 2 Decisions, Decisions38

The percent sign (%) loses its ordinary meaning in C++ and instead signifies
“remainder division.” Here are some sample results:

EXAMPLE
REMAINDER FROM
DIVISION REMARKS

3 % 2 1 Odd

4 % 2 0 Even

25 % 2 1 Odd

60 % 2 0 Even

25 % 5 0 Divisible by 5

13 % 5 3 Not divisible by 5; 3 is left over after division

This special kind of division—remainder division—is restricted to integer
data types. Dividing two integers produces a quotient and a remainder.

int my_quotient = 17/3; // Result is 5.
int my_remainder = 17%3; // Result is 2.

In contrast, division of two floating-point numbers (such as 4.5 divided
by 2.0) results in a single floating-point result… in this case, 2.25.

After dividing n by 2 and getting the remainder, we get a result of either 0
(even) or 1 (odd). The if statement compares the remainder to 0 and prints the
appropriate message.

 if (remainder == 0) {
cout << "The number is even." << endl;

 } else {
cout << "The number is odd." << endl;

 }

Notice the double equal signs (==). As I mentioned earlier, test for equality
uses double equal signs; a single equal sign (=) would mean assignment. If I’m
getting repetitive on this subject, it’s because when I was first learning C, I made
this mistake too many times myself!

Op
ti

m

izing

Optimizing the Code
The version of the odd-or-even program I just introduced is not as efficient as
it could be. The remainder variable is not necessary in this case. This version is
a little better:

ptg16518442

2
Introducing Loops 39

even2.cpp

#include <iostream>
using namespace std;

int main()
{
 int n;

 // Get a number n from the keyboard.

 cout << "Enter a number and press ENTER: ";
 cin >> n;

 // Get remainder after dividing by 2.
 // If remainder is 0, then n is even.

 if (n % 2 == 0) {
cout << "The number is even.";

 } else {
cout << "The number is odd.";

 }
 return 0;
}

This version performs modulus division inside the condition, comparing the
result to 0. Because the operation is done this way, there is no need to make use
of an additional variable called “remainder.”

Ex
er

cis
e

 EXERCISE

Exercise 2.1.1. Write a program that reports whether a number input is divisible by 7.

Introducing Loops
One of the most powerful concepts in any programming language is that of
loops. Looping is one of the things that enables a program to do far more than
perform a simple calculation and quit. In this section, you’ll see how a few lines
of C++ can set up an operation to be performed dozens of times or (if you
choose) thousands of times or even millions.

ptg16518442

Chapter 2 Decisions, Decisions40

When a program is in a loop, it performs an operation over and over as long
as a condition is true. The simplest form is the classic while statement.

while (condition)
statement

As with if, you can replace statement with a compound statement or block,
which in turns lets you put as many statements inside the loop as you want.

while (condition) {
statements

}

The while keyword creates a loop that evaluates the condition and executes
the statement if the condition is true. Then the loop repeats this operation
until the condition is false.

Probably the simplest program example is a loop that prints the numbers 1
to n, where n is a number input at the keyboard. We’ll look first at this program
in pseudocode form. For the next page or so, I use the variable names I and N,
because they make the pseudocode easier to follow. Assume that the variables
have already been declared.

Here’s how to print the numbers from 1 to N:

1 Get a number from the keyboard and store in N.

2 Set I to 1.

3 While I is less than or equal to N,

3A Output I to the console.

3B Add 1 to I.

The first two steps initialize the variables I and N, which are integers. I is set
directly to 1. N is set by keyboard input. Assume that the user inputs 2.

Console
(input)

2

N

1

I

K
ey

wo
rd

ptg16518442

2
Introducing Loops 41

Step 3 is the interesting one. The program first considers whether I (which
is 1) is less than or equal to N (which is 2). Since I is less than N, the program
carries out steps 3A and 3B. First, it prints the value of I.

Console
(output)

3. While I is less than or equal to N,

3A. Print I

 3B. Add 1 to I

2

N

1

I

Then it increases the value of I by 1. (This is also called incrementing.)

2

N

2

I

+1

3. While I is less than or equal to N,

3A. Print I

 3B. Add 1 to I

Once it has carried out these steps, the program performs the comparison
again. Because this is a while statement, not an if, the program continues to
perform steps 3A and 3B until the condition is no longer true.

Console
(output)

3. While I is less than or equal to N,

3A. Print I

 3B. Add 1 to I

2

N

2

I

ptg16518442

Chapter 2 Decisions, Decisions42

So far, the condition is still true (because I is still less than or equal to 2), so
the program continues.

2

N

3

I

+1

3. While I is less than or equal to N,

3A. Print I

 3B. Add 1 to I

After printing the new value of I, the program increments I again.
The program performs the test once more. Because I is now greater than N,

the condition (is I less than or equal to N?) fails, causing the program to finally
end. 3 is never printed. The output of the program is:

1 2

Because the user had input 2, the loop executed twice. But with a large input
for N (say, 1024), the loop would continue many more times.

Think about it: Here’s a program a few steps long that could (depending on
the value input for n) print millions of numbers just as easily as it could print
two numbers. The theoretical value of n has no limit, except for the maximum
integer size; the largest number that can be stored in an int variable on a 32-bit
system is approximately 2 billion (that is, 2,000 million). But note that the new
long long int type (mandated in the C++11 and C++14 specs) is far larger still
as it is usually based on 64 bits.

Infinite Loopiness

Can you set the loop condition in such a way that it will always be true? And
if so, what happens? The answer is yes, and the loop will run until some-
thing interrupts it. (One such way to set the loop condition is to use the
break keyword, as you’ll see in upcoming material.)

Unless you have a mechanism for escaping from a loop, it’s important to
make sure it doesn’t run forever. Otherwise, the program will seem to reach a
state where it sits there and does nothing. It is doing something, but it’s stuck
in a pointless loop that, left to itself, threatens to go on till the end of time.

Therefore, always make sure there’s some way to exit (even if it involves
the break keyword, which I’ll introduce in the “Optimizing the Program”
section on page 58).

Interlude

ptg16518442

2
Introducing Loops 43

Example 2.2. Print 1 to N
Now let’s use C++ code to implement the loop described in the last section.
This uses a simple while loop with compound-statement syntax. Here and in
the remainder of the book, I stick to the C++ convention of using lowercase
letters for variable names.

count1.cpp

#include <iostream>
using namespace std;

int main()
{
 int i = 0, n = 0;

 // Get number from the keyboard and initialize i.

 cout << "Enter a number and press ENTER: ";
 cin >> n;
 i = 1;

 while (i <= n) { // While i less than or equal n,
cout << i << " "; // Print i,
i = i + 1; // Add 1 to i.

 }
 return 0;
}

Some of the comments are on the same line as the C++ statements. This
works because a comment begins with the double slashes (//) and continues
to the end of line. Comments can be on their own lines or to the right of the
statements. Note that these to-the-end-of-line comments make line breaks sig-
nificant. Make sure you have enough space to put your comments in without
causing lines to wrap.

This program, when run, counts to the specified number. For example, if the
user inputs 6, the program prints the following:

1 2 3 4 5 6

ptg16518442

Chapter 2 Decisions, Decisions44
H

ow
 It

 Works

How It Works
This example introduces a new operator—although I’m sure you’ve surmised
what it does. This is the less-than-or-equal-to test.

i <= n

The less-than-or-equal operator (<=) is one of several relational operators,
all of which return true or false.

OPERATOR MEANING

== Test for equality

!= Test for inequality (greater than or less than)

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

If you followed the logic in the “Introducing Loops” section, you know the
loop itself is straightforward. The braces ({}) create a statement block so that the
while loop executes two statements each time through, rather than one.

while (i <= n) { // While i less than or equal n,
 cout << i << " "; // Print i,
 i = i + 1; // Add 1 to i.
}

If you think about it, you’ll see that the last number to be printed is n, which
is what we want. As soon as i becomes greater than n, the loop ends and the out-
put statement never executes for that case. The first statement inside the loop is
as follows:

 cout << i << " "; // Print i,

This statement adds a space after i is printed. This is so the output is spaced
like this:

1 2 3 4 5

rather than this:

12345

ptg16518442

2
Introducing Loops 45

The loop then adds 1 to i before continuing to the next cycle. This ensures
that the loop eventually ends, because i will sooner or later become greater than
n (at which point the loop condition will fail).

 i = i + 1; // Add 1 to i.

It may be easier to see how a while loop works in the following diagram,
which shows the flow of control in the loop.

{cout << i << " ";
 i = i + 1;}

i <= n

Evaluate condition.
Is it true (nonzero)?

Execute statement.

YES

DONE.

The "while" Loop

NO

Op
ti

m

izing

Optimizing the Program
The program can be made more efficient by combining a couple of the state-
ments. You can do this by initialization, in which you assign a value as you
declare it. You can use the equal sign (=) to give any numeric or string variable
a value.

int variable = value;

In this revised program, i is initialized to 1 so it doesn’t need to be assigned
a value later. In this example, n is also initialized, although strictly speaking, it
doesn’t need to be. But getting into the habit of initializing variables is a good
idea.

K
ey

wo
rd

ptg16518442

Chapter 2 Decisions, Decisions46

count2.cpp

#include <iostream>
using namespace std;

int main()
{
 int i = 1, n = 0;

 // Get number from the keyboard and initialize i.

 cout << "Enter a number and press ENTER: ";
 cin >> n;

 while (i <= n) { // While i less than or equal n,
cout << i << " "; // Print i,
i = i + 1; // Add 1 to i.

 }

 return 0;

}

Ex
er

cis
es

 EXERCISES

Exercise 2.2.1. Write a program to print all the numbers from n1 to n2, where n1
and n2 are two numbers specified by the user. (Hint: You’ll need to prompt for
two values n1 and n2; then, initialize i to n1 and use n2 in the loop condition.)

Exercise 2.2.2. Alter the example so that it prints all the numbers from n to 1 in
reverse order, as in 5 4 3 2 1. (Hint: To decrement a value inside the loop, use the
statement “i = i − 1;”.)

Exercise 2.2.3. Alter the example so that it prints only even numbers, as in 0, 2, 4.
(Hint: One of the things you’ll need to do is initialize i to 0.)

True and False in C++
What exactly are “true” and “false”? Are these values stored in the computer in
numeric form, like any other? Yes. Every Boolean (relational) operator returns 1 or 0:

ptg16518442

2
True and False in C++ 47

IF THE CONDITION EVALUATED IS... THE EXPRESSION RETURNS...

True 1

False 0

Also, any nonzero value fed to a condition is interpreted as true. So, in this
example, the statements are always executed:

if (true) { // ALWAYS EXECUTED
 // Do some stuff.
}

This next case creates an infinite loop, which is normally a program-logic
error, unless you provide some way to break out of it (such as a break or return
statement):

// INFINITE LOOP!

while (true) {
 // Do some stuff.
}

The bool Data Type

For quite a few years now, C++ compilers have supported the bool (“Bool-
ean”) type, which is similar to the integer type but holds only two values:
true (1) or false (0). Any nonzero numeric input is converted to 1 (“true”).
You should use the bool type if it is supported.

bool is_less_than;

is_less_than = (i < n); // Store the value
// true (1) if
// i is less than n.

Only the very oldest compilers lack support for the bool data type. If
your computer lacks it, you’ll need to use the int type in place of bool and
use the number 1 in place of true.

Interlude

ptg16518442

Chapter 2 Decisions, Decisions48

The Increment Operator (++)
If you look at many lines of computer programs, you see certain statements
come up over and over—so much so that you start to wonder if there isn’t some
kind of “shorthand” or shortcut that would reduce the work of programming.
The C and C++ languages are extremely good at this, which helps explain the
immense popularity of the C-language family in today’s computing world.

One of the most common things to do is to add 1 to a variable. In C++, you
can do this by putting double plus signs (++) in front of or after a variable name.
For example:

n++;
++n;

The effect of the statement, in either case, is to increase n by 1. Consider the
loop of the previous section:

while (i <= n) { // While i less than or equal n,
 cout << i << " "; // Print i,
 i = i + 1; // Add 1 to i.
}

The second statement inside the loop can be replaced with a statement using
the increment operator, producing the following:

while (i <= n) { // While i less than or equal n,
 cout << i << " "; // Print i,
 ++i; // Add 1 to i.
}

So far, this substitution has saved only a few keystrokes. But it gets better.
The item ++i is “an expression with a side effect,” meaning it produces a value
and performs an action. This is the prefix version, which increments the vari-
able and then gets its value.

C++ also supports postfix expressions such as “i++”: This is an expression
with the same value as i; but after i++ is evaluated, it adds 1 to i. So, the loop can
be shortened to this:

while (i <= n) { // While i less than or equal n,
 cout << i++ << " "; // Print i, then add 1 to i.
}

Do you see what this does? The statement prints out the current value of i
and then increments it.

ptg16518442

2
Statements versus Expressions 49

However, you need to show care here. Including the expression “i++” several
times in a single statement causes multiple incrementing and can have unpre-
dictable results. A good rule is to use it at most once per statement.

You might wonder whether there is a corresponding operator for subtrac-
tion. In fact, there are four increment/decrement operators. Here, var means
any numeric variable: Generally, it should be an integer to work with these
operators reliably.

OPERATOR ACTION

var++ Pass along the current value of var; then add 1 to var.

++var Add 1 to var; then pass along the result.

var-- Pass along the current value of var; then subtract 1 from it.

--var Subtract 1 from var; then pass along the result.

In many contexts, you can use either “i++” or “++i” and the effect will be the
same. For example, there is no difference in results when the expression appears
alone:

++i;

But while the postfix version (i++) used to be the preferred style for cases
like this, the prefix version (++i) is now preferred by most C++ experts. When
you’re working with integers, the difference between postfix and prefix incre-
ment is not significant, but when you work with more complex types, the prefix
version potentially results in a more efficient program. Many experts feel it’s
important to get people into the right habits. This is why the prefix version
(++i) is now favored in those cases where either would suffice.

So, even though it may seem to be a “Mrs. Grundy” rule, I will prefer the
prefix version of increment (++) and decrement (−−) for the remainder of the
book, wherever possible.

Statements versus Expressions
Until now, I’ve gone along using the terms statement and expression. These are
fundamental terms in C++, so it’s important to clarify them. In general, you
recognize a statement by its terminating semicolon (;).

cout << ++i << " ";

ptg16518442

Chapter 2 Decisions, Decisions50

A simple statement such as this is usually one line of a C++ program. But
remember that a semicolon terminates a statement, so it’s legal (though not rec-
ommended) to put two statements on a line:

cout << i << " "; ++i;

Fine, you say—a statement is (usually) one line of a C++ program, terminated
with a semicolon. So, what’s an expression? An expression usually produces a
value (with a few notable exceptions). You terminate an expression to get a sim-
ple statement. Here’s a sample list of expressions, along with descriptions of what
value each produces:

x // Produces value of x
12 // Produces 12
x + 12 // Produces x + 12
x == 33 // Test for equality: true or false
x = 33 // Assignment: produces value assigned
++num // Produces value before incrementing
i = num++ + 2 // Complex expression; produces

// new value of i

Because these are expressions, any of them can be used as part of a larger
expression, including assignment (=). The last three have side effects. x = 33
alters the value of x, and num++ alters the value of num. The last example
changes the value of both num and i. Remember, any expression can be turned
into a statement by using a semicolon (;).

++num;

The fact that any expression can be turned into a statement this way makes
some strange statements possible. You could, for example, turn a literal con-
stant into a statement, but such a statement would do exactly nothing.

12;

This is a legal statement in C++. Why would anyone write such a statement?
The answer is they wouldn’t. It just illustrates the point that any expression in
C++ (with a few exceptions) can be turned into a statement.

But that’s not to say that statements aren’t significant. By putting expressions
into different statements, you guarantee that everything in one statement is
evaluated before everything in the next statement. The danger of putting every-
thing into a single statement is that it becomes difficult to predict the order of
execution in extremely complex expressions. In the following statements, the
order in which things happen is clear:

ptg16518442

2
Introducing Boolean (Short-Circuit) Logic 51

++i; // Increment i.
++i; // Increment i again.
j = i++; // Assign i to j, then inc. i.

Introducing Boolean (Short-Circuit) Logic
Sometimes you need words like and, or, and not to express a decision. This is
just common sense. For example, here (in pseudocode) is a decision that uses
“and”:

If age > 12 and age < 20

 The subject is a teenager

Programmers use Boolean algebra, named for the nineteenth-century
 mathematician George Boole, to express such conditions. For example, the sub-
expressions “age > 12” and “age < 20” are each evaluated, and if both are true,
the whole expression is true:

age > 12 and age < 20

The following table summarizes the three logical (Boolean) operators in C++:

SYMBOL OPERATION C++ SYNTAX ACTION

&& AND expr1 && expr2 Evaluate expr1. If it’s true, evaluate
expr2. Then, if both are true,
return true; otherwise, return
false.

|| OR expr1 || expr2 Evaluate expr1. If false, evaluate
expr2. Then, return true unless
both are false.

! NOT ! expr1 Evaluate expr1. Reverse the true/
false value.

So, the earlier example expresses “and” this way in C++:

if (age > 12 && age < 20) { // if age>12 AND age<20
 cout << "The subject is a teenager.";
}

Ps
eu

do

code

ptg16518442

Chapter 2 Decisions, Decisions52

Logical operators have lower precedence than the relational operators (<, >,
>=, <=, !, and ==), which in turn have lower precedence than arithmetic oper-
ators (such as + and *). Consequently, the following statement does what you’d
probably expect:

if (x + 2 > y && a == b) {
 cout << "The data passes the test";
}

This means “If x + 2 is greater than y, and a is equal to b, then print the mes-
sage.” You can, if you choose, make the program clearer for humans who read it
by using parentheses—even though this doesn’t change what it does.

if (((x + 2) > y) && (a == b)) {
 cout << "The data passes the test";
}

In C++, the “and” and “or” operators (&& and ||) employ short-circuit logic:
this means the second operand is evaluated only if it needs to be. This can make
a difference if the second condition has side effects.

Evaluate condition1.
Is it true (nonzero)?

YES YES

false true

Logical AND (&&)

NO

Evaluate condition1.
Is it true (nonzero)?

NO

Note � Don’t confuse the logical operators with the C++ bitwise operators (&, |,
^, and ~). The bitwise operators compare each bit in one operand to the corre-
sponding bit in the other. Bitwise operators do not use short-circuit logic, while
logical operators do.

ptg16518442

2
Introducing Boolean (Short-Circuit) Logic 53

What Is “true”?

The logical operators—&&, ||, and !—can take any expressions as input as
long as they are convertible to bool, which is a subtype of integer. Any non-
zero expression is considered “true.” Some programmers take advantage of
this behavior to write shortcuts:

if (n && b > 2) {
 cout << "n is nonzero and b is > than 2.";
}

Many programmers dislike the use of any conditions other than those
that have obvious true/false values (such as “x > 0” or “x == 0”). However,
the following condition, which says “Do as long as n is nonzero,” is a short-
cut favored by some:

if (n--) { // If n doesn't equal 0.
 cout << n << endl;
}

This fragment is a succinct way of counting down from n to zero. The
problem is that if n somehow gets set to a negative value, you’re in trouble
because the decrement operator (−−) will just keep subtracting the value of
n. So, even in this case, it’s safer to use this:

if (n-- > 0) {
 cout << n << endl;
}

Example 2.3. Testing a Person’s Age
This section demonstrates a simple use of the “and” operator (&&). The pro-
gram here determines whether a number is in a particular range—in this case,
the range of teen numbers, 13 through 19 inclusive.

range.cpp

#include <iostream>
using namespace std;

int main() {
 int n;

▼ continued on next page

Interlude

ptg16518442

Chapter 2 Decisions, Decisions54

 cout << "Enter an age and press ENTER: ";
 cin >> n;

 if (n > 12 && n < 20) {
cout << "Subject is a teenager." << endl;

 } else {
cout << "Subject is not a teenager." << endl;

 }
 return 0;
}

H
ow

 It
 Works

How It Works
This brief program uses a condition made up of two relational tests:

n > 12 && n < 20

Because logical “and” (&&) has lower precedence than relational operations
(> and <), the “and” operation is performed last. The test performs as if written
this way:

(n > 12) && (n < 20)

Consequently, if the number input is greater than 12 and less than 20, the
condition evaluates to true and the program prints the message “Subject is a
teenager.”

In expressions like these, it’s common for programmers to omit these extra
parentheses because the precedence is assumed to be obvious. But it might not
be so obvious if you’re new to C++. In Appendix A, Table A.1 (pages 476-477)
lists all operators, indicating precedence between them.

However, in addition to consulting that table, you can remember a few basic
principles. In general, arithmetic operators have high precedence, relational
operators (such as <, >, and ==) have lower precedence, and assignment (==)
has nearly the lowest precedence of all.

Increment and decrement operators (++ and −−) have some of the highest
precedence, despite the fact they have side effects.

Ex
er

cis
e

 EXERCISE

Exercise 2.3.1. Write a program to test a number for being in the range 0 to 100,
inclusive.

range.cpp, cont.

ptg16518442

2
Introducing the Math Library 55

Introducing the Math Library
Up to this point, I’ve used the C++ standard library for the support of input-
output streams. That enabled the code to use cout and cin, which is why the
programs had to include the following line:

#include <iostream>

Now, I’m going to introduce one of the math functions. You can use any of
the C++ operators (such as +, *, −, /, and %) without library support because
operators are intrinsic to the language itself. But to use math functions, you
need to include this line:

#include <cmath>

This #include directive brings in declarations for all the math functions, so
you don’t have to prototype them yourself. (I’ll have a lot more to say about
function prototypes in Chapter 5, “Functions: Many Are Called.”) C++ supports
many math functions, such as the trig and exponential functions, but this chap-
ter uses just one: sqrt, which returns a square root.

#include <cmath>
//...

double x = sqrt(2.0); // Assign square root of 2 to x

Programmers affectionately refer to this as the “squirt” function. As with
most math functions, this function accepts and returns a floating-point result.
If you assign the result to an integer, C++ drops the fractional portion (and also
issues a warning message).

int n = sqrt(2.0); // Place the value 1 into n,
// after truncating 1.41421.

double x = sqrt(2); // Ok: int converted to double.

The second statement in this example works because you can freely assign an
integer to an argument that expects a floating-point value. Going in the reverse
direction is more problematic and can cause loss of data. (In particular, having
a result such as 1.41421 is a nearly catastrophic loss of data.)

Example 2.4. Prime-Number Test
We now have enough tools to do something interesting: determine whether a
number is prime. A prime number is a number divisible only by itself and 1. It’s

ptg16518442

Chapter 2 Decisions, Decisions56

obvious that 12,000 is not prime, since it’s a multiple of 10, but it’s less obvious
whether 12,001 is a prime number. This is a classic math problem to give to a
computer program. Here’s the code:

prime1.cpp

#include <iostream>
#include <cmath>
using namespace std;

int main() {
 int n = 0; // Number to test for prime-ness
 int i = 2; // Loop counter
 bool is_prime = true; // Boolean flag...

// Assume true for now.

 // Get a number from the keyboard.

 cout << "Enter a number and press ENTER: ";
 cin >> n;

 // Test for prime by checking for divisibility
 // by all whole numbers from 2 to sqrt(n).

 while (i <= sqrt(n)) {
if (n % i == 0) { // If i divides n,

is_prime = false; // n is not prime.
}
++i; // Add 1 to i.

 }

 // Print results

 if (is_prime) {
cout << "Number is prime." << endl;

 } else {
cout << "Number is not prime." << endl;

 }
 return 0;
}

ptg16518442

2
Introducing the Math Library 57

When the program is run, if the user enters 12000, the program will print the
following:

Number is not prime.

To discover what happens with 12001, I’ll leave you to run the program for
yourself.

Note � When running the program, enter 12000 rather than 12,000. A C++ pro-
gram doesn’t normally expect or permit commas inside numerals. In Chapter 10,
I show a way around this limitation.

H
ow

 It
 Works

How It Works
The core of the program is the following loop:

 while (i <= sqrt(n)) {
if (n % i == 0) { // If i divides n,

is_prime = false; // n is not prime.
}
++i; // Add 1 to i.

 }

Let’s look at this a little more closely. Here’s a pseudocode version of this loop:

Set i to 2.

While i is less than or equal to the square root of i,

 If n is divisible by the loop counter (i),

 n is not prime.

 Add 1 to i

The loop checks for divisors starting with 2, stopping at the square root of n,
because if it was going to find divisors, it would have found them by that point.

The divisibility test uses the modulus operator (%) introduced earlier. This
operator performs division and returns the remainder. If the second number, i,
perfectly divides the first, the remainder is 0; in that case, n is not prime.

if (n % i == 0) {
is_prime = false;

}

The beginning of the program assumes the number is prime (is_prime =
true), so if no divisors are found, the result is true. Remember that the values
true and false are predefined in all but the most ancient versions of C++.

Ps
eu

do

code

ptg16518442

Chapter 2 Decisions, Decisions58
Op

ti
m

izing

Optimizing the Program
There are several ways this program can be improved, but the most important
change is to exit the loop after a divisor is found. There is no reason to continue,
since that would waste CPU time. The C++ break keyword exits the nearest
enclosing loop. Here is the revised code:

 while (i <= sqrt(n)) {
if (n % i == 0) {

is_prime = false;
break; // BREAK OUT OF LOOP NOW!

}
++i;

 }

Ex
er

cis
e

 EXERCISE

Exercise 2.4.1. Optimize the program by calculating the square root of n just once,
rather than repeatedly. You’ll need to declare another variable and set it to the
square root of n. The type should be double. You can then use this variable in
the while condition.

Example 2.5. The Subtraction Game (NIM)
In this final example, we’ll use the tools described in the chapter to create a
simple game and give the computer a strategy that wins every time—unless the
human player adopts the absolute optimal strategy for his or her own side.

Welcome to the game of NIM. The simplest version is the Subtraction Game,
in which two players take turns subtracting a number from a common total.
Each player may subtract either 1 or 2. Whoever first reduces the total to zero or
less wins. For example:

1 We agree to start with the number 7, and you go first.

2 You subtract 2 from the total, making it 5.

3 I also subtract 2 from the total, making it 3.

4 You subtract 1 from the total, making it 2.

5 I subtract 2 from the total, making it 0. I win!

ptg16518442

2
Introducing the Math Library 59

This is a simple game with a simple winning strategy. Consider what happens
if the total is 3. Then, regardless of whether you subtract 1 or 2, I can always
cause the next subtraction to get to zero and I win. Therefore, if I make the total 3, I
can force a win.

Similarly, if I make the total 6, then whether you subtract 1 or 2, I can make
the total 3, which indirectly forces a win for me. I win on the following turn.

The winning strategy, therefore, is for me to always make the total a multi-
ple of 3 if I can. Programmatically, how do I do this? I use our old friend, the
remainder-division operator:

SITUATION BEST RESPONSE

total % 3 produces 2. Subtract 2; the new total will be an exact multiple of 3.

total % 3 produces 1. Subtract 1; the new total will be an exact multiple of 3.

total % 3 produces 0. The total is already a multiple of 3. All I can do is subtract 1 and
hope for the best.

The pseudocode version of the program is as follows:

Print invitation to play and ask for a starting total.

While true // This is an “infinite loop”

 If total % 3 is 2

 Subtract 2 from total and announce move

 Else

 Subtract 1 from total and announce move

 If total is 0 or less

 Announce “I win!” and exit

 Prompt opponent for move

 While input is not 1 or 2

 Re-prompt for input

 Adjust total by input amount and announce result

 If total is 0 or less,

 Announce “You win!” and exit

This is the most complex program yet. It creates a complete game, with
an optimal computer strategy. The user can win only by selecting each move
perfectly.

Ps
eu

do

code

ptg16518442

Chapter 2 Decisions, Decisions60

nim.cpp

#include <iostream>

using namespace std;

int main()
{
 int total = 0, n = 0;

 cout << "Welcome to NIM. Pick a starting total: ";
 cin >> total;
 while (true) {

// Pick best response and print results.

if ((total % 3) == 2) {
total = total - 2;
cout << "I am subtracting 2." << endl;

} else {
total--;
cout << "I am subtracting 1." << endl;

}
cout << "New total is " << total << endl;
if (total <= 0) {

cout << "I win!" << endl;
break;

}

// Get user's response; must be 1 or 2.

cout << "Enter num to subtract (1 or 2): ";
cin >> n;
while (n < 1 || n > 2) {

cout << "Input must be 1 or 2." << endl;
cout << "Re-enter: ";
cin >> n;

}
total = total - n;
cout << "New total is " << total << endl;

ptg16518442

2
Introducing the Math Library 61

if (total <= 0) {
cout << "You win!" << endl;
break;

}
 }
 return 0;
}

H
ow

 It
 Works

How It Works
The program makes use of the “or” operator (||) introduced earlier. If either
condition—n is less than 1 or n is greater than 2—is true, the user is prompted
for a new value.

while (n < 1 || n > 2) {
cout << "Input must be 1 or 2." << endl;
cout << "Re-enter: ";
cin >> n;

}

Because of short-circuit logic, if the first condition (n < 1) is true, the second
condition is not evaluated because it’s not necessary.

This program example also uses the break keyword, which exits out of the
loop.

break;

Ex
er

cis
es

 EXERCISES

Exercise 2.5.1. One problem is that if the initial starting number is less than 1, the
program will deal in negative numbers and never end. Revise the program so
that it only accepts an initial total greater than 0.

Exercise 2.5.2. For the more ambitious: Write a version that permits subtracting
any number from 1 to n, where n is stipulated at the beginning of the game.
For example, the user when prompted might say that each player can subtract
any number from 1 to 7. Can you create an optimal computer strategy for this
general case?

Exercise 2.5.3. Revise the program so that it keeps playing the game until the user
wants to quit. (Hint: You’ll need to add yet another loop around the existing
main loop.)

nim.cpp, cont.

ptg16518442

Chapter 2 Decisions, Decisions62

Chapter 2 Summary
Here are the main points of Chapter 2:

◗ Use the right data type for the job. A variable that can have no fractional por-
tion should be given type int, unless it exceeds the range of int type—more
than 2 billion (two thousand million).

◗ You can declare integer variables by using the data type’s name followed by a
variable name and semicolon. You can also declare multiple variables, separat-
ing adjacent variable names with a comma.

int variable;
int variable1, variable2, ...;

◗ Constants have int or double type as appropriate. Any value with a decimal
point is automatically considered a floating-point value: 3 is stored as an int,
but 3.0 is stored as a double.

◗ The simplest decision-making structure in C++ is the if statement.

if (condition)
statement

◗ The if statement has an optional else clause, so you can use this form:

if (condition)
 statement
else
 statement

◗ Anywhere you can use a statement, you can use a compound statement (or
block), consisting of zero or more statements enclosed in braces ({}). This syntax
is preferred by many C++ programmers, even where not strictly necessary.

if (condition) {
 statements
}

◗ Don’t confuse assignment (=) with test for equality (==). Here’s a correct use of
the two operators:

if (x == y) {
 is_equal = true;
}

ptg16518442

2
63Chapter 2 Summary

◗ The while keyword executes a statement as long as the condition is true. As with
other C++ statements, the compound-statement (or block) syntax is preferred
even when not strictly necessary.

while (condition) {
statement

}

◗ The modulus operator performs division and then returns the remainder. For
example, the result of the following expression is 3:

13 % 5

◗ An expression is a value formed by a variable, literal, or smaller expression com-
bined with C++ operators (this can include assignment, =).

◗ Any expression can be turned into a statement by adding a semicolon.

num++;

◗ The increment operator is convenient shorthand for adding 1 to a number. This
creates an expression with a side effect:

cout << n++; // Print n and then add 1 to n.

◗ You can use the C++ logical (Boolean) operators “and” (&&), “or” (||), and
“not” (!) to create complex conditions. The “and” and “or” operators use
short-circuit logic.

◗ The easiest way to get out of a loop is often to use the break keyword.

break;

ptg16518442

This page intentionally left blank

ptg16518442

65

3 And Even More
Decisions!

Building on simple decision-making structures, Chapter 2, “Decisions, Decisions,”
showed how computers can do complex and interesting things, such as play a
game, repeat an operation a set number of times, and perform mathematical
operations.

Critical to these operations are something called control structures—a set of
keywords (if, else, while) and associated grammar—that control what the pro-
gram does next. These control structures, nearly all inherited from C, include
just a few simple but extremely versatile keywords. This chapter introduces two
more: do-while and switch.

Remember that by controlling what the program does next, you control the
program! It’s that simple.

The do-while Loop
If you’ve worked through Chapter 2, you should have seen that the while loop
is powerful and versatile. In fact, if you had to rely solely on the while loop, you
could still write sophisticated programs.

But while has its limitations. Take another look at the syntax:

while (condition) {
statements

}

Testing the condition before executing the loop typically makes sense. But
what if you need to execute the action before performing a test? Such cases are
more common than you’d think.

Consider the task of flipping a coin until you get heads. In such a procedure,
you always flip a coin before deciding whether to stop. You could try to use
ordinary “while” logic, resulting in this pseudocode:

ptg16518442

Chapter 3 And Even More Decisions!66

While you haven’t flipped any heads

 Flip a coin and note the result

This works, but it’s not optimal. The first time you evaluate the condition—
Have you flipped any heads?—the answer ought to be, “Of course I haven’t
flipped any heads, I haven’t flipped the coin yet.” So the first time you apply the
test, you’re doing unnecessary work.

A more optimal plan would look like this:

Do

 Flip a coin and note the result

While you’ve flipped zero heads.

It should be noted that this pseudocode is equivalent to the following:

Flip a coin and note the result

While you haven’t flipped any heads

 Flip a coin and note the result

There’s no huge gain in efficiency here, no ability to write something that
couldn’t be done before. But this approach is more efficient and in the C/C++
family of languages, efficiency is considered important.

We can obtain this efficiency with do-while keywords, which have the fol-
lowing syntax:

do statement
while (condition);

As always, the statement can be a block (or “compound statement”) even
when there is just one statement inside the loop:

do {
statements

} while (condition);

Remember, in this context statements must be filled in with zero or more
C++ statements. You can always use just one statement in the body of the loop
if you choose.

As a simple example, you can use a do-while loop to count down from a
specified number:

do {
 cout << n << endl;

Ps
eu

do

code

K
ey

wo
rd

ptg16518442

3
The do-while Loop 67

 --n;
} while (n > 0);

This looks a lot like the while loops introduced in Chapter 2. The one differ-
ence is that the body of the loop, which prints the value of n, is executed at least
once, no matter what.

Here’s a flow-chart representation of do-while.

Evaluate condition.
Is it true (nonzero)?

Execute statement.

YES

The "do while" Loop

DONE.

NO

Example 3.1. Adding Machine
There’s not really anything you can do with do-while that you can’t do with
a standard while loop, but sometimes do-while fits the needs of the program
better.

Consider a virtual adding machine, in which the user enters a series of num-
bers and then enters a special code in order to exit. (We can use zero.) The
program prompts the user repeatedly for input but—and this is the important
part—the user will always be prompted at least once when running the pro-
gram. This is why it’s a good do-while example.

ptg16518442

Chapter 3 And Even More Decisions!68

adding.cpp

#include <iostream>

using namespace std;

int main()
{
 int sum = 0;
 int n = 0;

 do {
cout << "Enter a number (0 for exit): ";
cin >> n;
n += sum;

 } while (n > 0);
 cout << "The sum is " << sum << endl;
 return 0;
}

This program, simple though it is, is actually useful. If all you need to do is
add a column of figures, this program, when run, provides a faster, more conve-
nient tool than a spreadsheet. Here’s what a sample session looks like for adding
four numbers—11, 124, 89, and 477:

Enter a number (0 for exit): 11
Enter a number (0 for exit): 124
Enter a number (0 for exit): 89
Enter a number (0 for exit): 477
Enter a number (0 for exit): 0
The sum is 701

H
ow

 It
 Works

How It Works
When interpreting the statement “sum + = n,” remember that this statement is
equivalent to:

sum = sum + n;

The one difference—which has no effect in this case—is that in this second
version (sum = sum + n) evaluates the variable “sum” twice. I could have used
the longer version of this statement, but I chose to use the more compact ver-
sion. Here’s the pseudocode for the program:

ptg16518442

3
Introducing Random Numbers 69

Initialize Sum to 0

Do

 Prompt the user for a number

 Input that number into N

 Add N to Sum

While N > 0

Print Sum

In simple terms, this amounts to “Prompt for a number N and add it to sum.
Repeat this action until N > 0 is no longer true. Then print sum.”

You could write this as a standard while loop if you chose. The easiest way to
do that would be to create an infinite loop—by using while(true)—and using
break to exit.

 while (true) {
cout << "Enter a number (0 for exit): ";
cin >> n;
n += sum;
if (n <= 0) { // If n is NOT greater than 0,

break; // exit.
}

 }

Ex
er

cis
es

 EXERCISES

Exercise 3.1.1. Revise the program so that it accepts floating-point input and prints
a floating-point result. Make sure that you notate the constants correctly.

Exercise 3.1.2. Can you revise the example so that it uses a while loop, but does not
use either the do or break keyword? Note that the result should produce exactly
the same behavior under all conditions that Example 3.1 does.

Introducing Random Numbers
In the next section, we’re going to use a do-while loop in another game pro-
gram. To keep it interesting, we need a way to generate random numbers. That’s
often true of games and simulations.

It may seem strange, but the production of random numbers is not so trivial.
Ask yourself: Just where do you get such numbers? What do you use for “virtual
dice”?

Ps
eu

do
code

ptg16518442

Chapter 3 And Even More Decisions!70

Humans turn out to be poor at generating random numbers. If asked to
write down 10 random numbers, you’d probably never write sequences that
contained 1-2-3 or 9-9-9. Randomness, we reason, should not produce patterns.
And yet, given enough random numbers, these sequences do show up and even-
tually must show up!

Fortunately, C++ programs can generate random numbers through a two-
step process. This is what provides “virtual dice”:

1 Set a random-number “seed.”

2 Produce the next number in the series by using a complex mathematical transfor-
mation (the details of which you don’t need to know).

I’ll consider these in reverse order. The complex math transformation
(step 2) takes a number and produces another using an algorithm so complex
the user can’t predict what the next number will be. That’s enough to simulate
 randomness—to give us numbers that for all practical purposes are random.
There’s just one problem: Although the sequence is virtually impossible to pre-
dict, it is nonetheless deterministic, just as everything inside a digital computer is
deterministic.

Consequently, if you don’t set a random “seed,” a program will get the same
series of supposedly random numbers every time you run it. So, the second time
you run the program, the numbers being generated won’t really be random at all.

To prevent that from happening, you need to set a seed and make sure it’s
guaranteed to be different every time you set it. Now we’re almost back to the
original problem: where do you get such a number?

Fortunately, there’s an easy answer: use the system time.
From the C++ programmer’s point of view, getting a random number is

really a three-step process. First, you need to make use of some new include
statements to bring in support for two parts of the C++ library:

#include <cstdlib> // Supports srand and rand functs.
#include <ctime> // Supports ctime function.

The first line, including <cstdlib>, brings in the declarations for randomiza-
tion functions. The second line, including <ctime>, brings in declarations for
time functions.

The next step is to set the seed. Remember that no matter how many times
the program gets a random number, you need set this seed only once.

srand(time(nullptr));

ptg16518442

3
Introducing Random Numbers 71

Note � The nullptr keyword has been supported since C++11 as a way of repre-
senting null pointer values. But if you have a compiler that’s more than a few
years old, you may need to use NULL instead.

After setting the randomization “seed,” the program can produce all the ran-
dom numbers needed, by calling the rand function. But again, it shouldn’t need
to set the randomization seed more than once. For example:

cout << rand() << endl; // Print a random number.
cout << rand() << endl; // Print another.

What kind of random number do you get? What range is it in?
The answer is you get a number that may be anywhere in the unsigned integer

range. The largest possible value is defined in <cstdlib> as RAND_MAX. This
is probably not much help. But if you apply the remainder-division operator, %,
also called the modulus operator, you’ll always get a number in the range 0 to n − 1.
Then, if you want to get a number in the range 1 to n, add one.

For example, to simulate the rolling of 10 dice, you could use this mini-
program:

#include <iostream>
#include <cstdlib> // Include support for randomizing.
#include <ctime> // Include support for ctime.

using namespace std;

int main() {
 srand(time(nullptr));
 for (int i = 0; i < 10; ++i) {

cout << (rand() % 6) + 1 << endl;
 }
 return 0;
}

Note that the expression “(rand() % 6) + 1” can be written without the outer
set of parentheses because the precedence of % is higher than plus (+):

cout << rand() % 6 + 1;

Now that you know how to generate random numbers, you’re prepared for
the next section, which creates an interesting (and fun!) game.

ptg16518442

Chapter 3 And Even More Decisions!72

Example 3.2. Guess-the-Number Game
The idea is simple enough. First, the program “thinks up a random number”—
it does this by using the randomization procedures in the last section—and
then it asks you, the end user, to guess the number.

At that point, the program has to make a decision, but it’s fairly simple:

◗ If your guess is higher than the target number, it reports that fact and prompts
for another guess.

◗ If your guess is lower than the target number, it reports that fact and prompts
for another guess.

◗ If your guess is correct, it reports that fact and causes the program to break out
of the loop. The game then ends.

This game is going to require a loop, because until you guess the right number,
the program must continue. A do-while is a natural choice because it executes the
body of the loop at least once, which is what this program needs to do.

There’s another consideration to keep in mind. Despite how fascinating this
game is, the user might want a way to exit the program early. Let’s use 0 to indi-
cate a desire for early exit. The pseudocode for the program is:

Set Boolean variable do_more to true.

Do

 Randomly choose a target number between 1 and 50.

 Prompt the user for a number and store in N.

 If N equals 0

 Set do_more to false

 Else if N > target number

 Print “Guess is too high”

 Else if N < target number

 Print “Guess is too low”

 Else

 Print “You win!”

 Set do_more to false

While do_more is true

Ps
eu

do

code

ptg16518442

3
Introducing Random Numbers 73

You should be able to see what’s going on here. A Boolean variable, do_more,
controls the action of the loop. Therefore, the program can easily terminate
the loop by setting do_more to false. If not terminated, this loop just reports
whether the user’s guess was too high, too low, or just right, and then (if appro-
priate) it continues to prompt the user.

guessing.cpp

#include <iostream>
#include <cstdlib> // Supports rand and srand.
#include <ctime> // Supports time function.

using namespace std;

int main()
{
 int n = 0;
 bool do_more = true;

 srand(time(nullptr)); // Set random seed.
 int target = rand() % 50 + 1; // Get random 1-50.

 do {
cout << "Enter your guess: ";
cin >> n;
if (n == 0) {

cout << "Bye! ";
do_more = false;

} else if (n > target) {
cout << "Guess is too high. ") << endl;

} else if (n < target) {
cout << "Guess is too low. ") << endl;

} else {
cout << "You win! ";
cout << "Answer is " << n << endl;
do_more = false;

}
 } while (do_more);

 return 0;
}

ptg16518442

Chapter 3 And Even More Decisions!74

Suppose the program is running and it selects the number 35 as the secret
target. Sample input/output for this program might be:

Enter your guess: 25
Guess is too low.
Enter your guess: 40
Guess is too high.
Enter your guess: 32
Guess is too low.
Enter your guess: 36
Guess is too high.
Enter your guess: 35
You win! Answer is 35

If you have a sense for what the right strategy is, you should be able to get the
right number in far fewer than 50 attempts. You should even be able to do it
in considerably fewer than 25 steps. Can you figure out what is the maximum
number of guesses you will ever, ever need? In other words, what is the mini-
mum of the maximum? How many guesses do you need to guarantee that you
can get the answer—assuming you have an optimal strategy that makes this
number as small as possible? There is, in fact, a precise answer.

H
ow

 It
 Works

How It Works
This program is fairly simple. The basic idea is easy enough to grasp: “Generate
a random number. Then, prompt the user until he or she either guesses this
number or enters 0.” In addition, the program tells the user whether the guess is
too high or low, as appropriate.

First, however, the program needs to choose a new random number, held in
secret, each and every time it is run; otherwise, the game would be more boring
than watching paint dry. But trying to guess a random, and unknown, num-
ber should keep it interesting. Generally speaking, the following lines of code
should be included in every program that needs random numbers:

#include <cstdlib> // Supports rand and srand.
#include <ctime> // Supports time function.
...
srand(time(nullptr)); // Set random seed.

The first two lines, the #include directives, bring in the appropriate declara-
tions for functions you’ll be calling. The call to srand, setting a random seed,
must be made from within a function, such as main, but it need only be done
once in any program that is going to generate one or more random numbers.

ptg16518442

3
Introducing Random Numbers 75

The next line of code, executed from within main, actually generates the
random number:

 target = rand() % 50 + 1; // Get random 1 to 50.

Let’s break this down. The call to rand generates a number that could be
anywhere in the unsigned int range, which is pretty large! The remainder, or
modulus, operator (%) has the effect of dividing by 50 and then returning the
remainder. The result must be in the range 0 to 49 inclusive.

Adding 1 to this number then produces a number in the range 1 to 50, which
is what we wanted.

C++14 � The C++14 specification includes new-and-improved randomization
functions in the Standard Template Library. These functions don’t save you
from having to do the work of setting a seed, but they do provide a more flexible
choice of ranges, random-number generators (“engines”), and probability dis-
tributions. However, for the simplest applications, the standard old-style ran-
domization functions featured here work just fine.

The main loop itself prompts for a choice by the user. It then reacts to this
choice by reporting whether the guess is too high, too low, or just right, and finally
continues or exits depending on the value of a Boolean variable, do_more:

 do {
cout << "Enter your guess: ";
cin >> n;

// Respond to this choice...

 } while (do_more);

There’s a subtlety to this code that sometimes even experienced program-
mers sometimes fail to understand. When testing a Boolean variable, it isn’t
necessary to compare it explicitly to true.

Instead, you could write the following—and I know at least one programmer
with many years of experience at Microsoft who might have done just that. The
part that’s different here is shown in bold.

 do {
cout << "Enter your guess: ";
cin >> n;

// Respond to this choice...

 } while (do_more == true);

ptg16518442

Chapter 3 And Even More Decisions!76

Why is this test, “do_more == true”, unnecessary (legal, but unnecessary)?
Think about it: The result of a comparison such as “do_more == true” is either
true or false. But here we can assume that do_more already evaluates true or
false precisely because it’s a Boolean value! Therefore, this test has the effect of
converting a Boolean value into the same Boolean value, which is pointless.

What if you want to reverse the true/false condition, that is, test for the con-
dition that do_more is false? You can certainly do it this way:

do_more == false

This is true if do_more is false, and vice-versa. But a simpler way to do the
same thing is to use the logical NOT operator (!).

! do_more

This means “NOT do_more,” which is true if do_more is false, and vice-versa.

Note � In the very oldest versions of the C language, and even in some of the
oldest C++ compilers, the bool type was not supported, and programmers had
to use integer variables instead, using 1 for true and 0 for false. However, unless
you’re living in the Stone Age, this is no longer the case and your compiler
should support the bool type.

Op
ti

m

izing

Optimizing the Code
If you’re working with Microsoft Visual Studio, you may have noticed that the
call to srand causes the environment to generate a warning error. This error
(which really poses no possible danger in this situation) is about possible “loss
of information” because data of type time_t (a long integer) is assigned to a
function that takes data of type unsigned int.

Because both fields are integers and because the positive or negative sign makes
no difference here, you can actually ignore this warning. Many programmers, how-
ever, like to write their code in such a way that all warning errors are prevented.

If you really want to get rid of that warning message, the solution is to use a
cast. The simplest cast is the old-style C cast.

srand((unsigned int) time(nullptr));

The recommended and preferred style, however, is to use one of the new cast-
ing operators, static_cast. This syntax is verbose and ugly; however, there are
reasons why static_cast is preferred. See Appendix A, “Operators,” for more
information on casts.

srand(static_cast<unsigned int>(time(nullptr)));

ptg16518442

3
The switch-case Statement 77

The general syntax for static_cast is the following:

static_cast<type>(expression)

The action takes the specific expression and converts it to a numerically
equivalent expression having the specified type. Even if the compiler already
knows how to do this (for example, in assigning a signed integer type to an
unsigned integer type), the effect is to suppress warning errors.

Ex
er

cis
es

 EXERCISES

Exercise 3.2.1. Revise the program so that it uses a while loop. You can either con-
tinue to use the do_more variable, or you can instead do away with this variable
and use the break keyword to exit as appropriate.

Exercise 3.2.2. After you’ve played the game a few times (or even if you haven’t),
you should have some idea of the optimum player’s strategy. Can you summarize
this strategy in pseudocode?

Exercise 3.2.3. Assuming that you’ve completed Exercise 3.2.2, you should be able
to write a program that implements the optimum strategy. Assume that you,
the user, have picked a number in secret. The program should go into a loop in
which it asks YOU (the user) whether the guess is too high, too low, or just right.
The program should then use the high/low answer to refine its guess and make
another. Note that you are on your honor to answer honestly. Tip: To make the
program easy to write, use an arbitrary system of numbers to signal the answer:
1=too high, 2=too low, 3=success. This should be printed in the prompt:

Tell me how I did. 1=too high, 2=too low, 3=success.

Exercise 3.2.4. This exercise is more of a math question than a programming ques-
tion, but it’s still interesting. For any game in which there are n possible choices,
what is the minimum number of guesses needed to ensure success in the game?
(For example, if 7 is this number, it would mean that by following optimum
strategy, you’ll never need more than 7 guesses.)

The switch-case Statement
As with the do-while loop, the switch-case control structure isn’t strictly nec-
essary. You can write any number of useful programs in C++ by relying on if,
else, and while.

K
ey

wo
rd

ptg16518442

Chapter 3 And Even More Decisions!78

The switch-case statement is useful because so many sections of so many
programs do nothing more than test for a sequence of values. Although if and
else are sufficient for handling all such situations, the switch-case syntax can
be used to write somewhat cleaner, easier-to-maintain code. (In addition, the
compiler may be able to implement switch-case more efficiently than if-else,
making it ever-so-slightly faster at run time.) Here’s a common example:

if (n == 1) {
 cout << "one" << endl;
} else if (n == 2) {
 cout << "two" << endl;
} else if (n == 3) {
 cout << "three" << endl;
}

You can see what this is doing, because such programming code is pretty
simple. It tests a number, n, and depending on the numeric value (1, 2, or 3), it
prints a different word.

The following switch-case statement does the same thing, but I would sug-
gest that it is somewhat easier for a human programmer to read. (As for the
computer itself, it doesn’t care.)

switch (n) {
 case 1:

cout << "one" << endl;
break;

 case 2:
cout << "two" << endl;
break;

 case 3:
cout << "three" << endl;
break;

}

Although this version of the code is cleaner and easier to read (or at least I’d
contend it is), it does require more lines and it also requires the use of break
statements—except in the case where you want control to “fall through” to a
case below it, which is rare.

The switch statement has this general syntax:

switch(value) {
 statements
}

K
ey

wo
rd

ptg16518442

3
The switch-case Statement 79

Here’s how the switch-case statement works:

1 It evaluates the expression inside the parentheses. This value should have some
integer or single-character type.

2 It then jumps to the line with the matching case label, which must be a constant.

3 Program execution then continues normally, but will break out of the enclosing
switch block if the break keyword is encountered.

This creates a flow of control that looks like this:

switch (n)
(Evaluate n and goto
matching case stmt.)

cout << "1";
break;

case 1:

cout << "2";
break;

case 2:

cout << "3";
break;

case 3:

This looks pretty simple. But the switch-case statement has some subtle
features. First, you can optionally have a statement labeled default. This is the
statement that control will jump to if none of the cases match the target value.
This, in effect, is a “None of the Above” case. For example:

 default:
cout << "none of the above" << endl;
break;

The break statement in this particular case is largely unnecessary, but some
programmers put it in anyway as a matter of style.

What happens if you don’t include the break statement? The answer is
that one case would just “fall through” into the case below it. There are some
unusual situations in which you might want to do that, but usually you will
want to break.

ptg16518442

Chapter 3 And Even More Decisions!80

Another subtlety is that a labeled statement has the following form:

label: statement

The case and default labels are just special cases of label names. Because a
labeled statement is itself a statement, it’s legal to have a statement that has many
labels. For example:

case 'a':
case 'e':
case 'i':
case 'o':
case 'u':
 cout << "Char. Is a vowel.";
 break;

Example 3.3. Print a Number
Although computers deal in simple numbers, they need to format those numbers
for presentation to humans. The most sophisticated example is that of comput-
erized phone systems, which change numerical amounts into spoken words.

We’re not going to do anything quite that advanced, but we can do the writ-
ten equivalent: printing out numbers in a natural language (English). The basic
logic is the same as that used for phone systems.

What the following application does is take a numeric amount from 20 to 99
and print it out in English—for example printing out the digits 53 as “fifty three.”

printnum.cpp

#include <iostream>

using namespace std;

int main()
{
 int n = 0;

 cout << "Enter a number from 20 to 99";
 cin >> n;
 int tens_digits = n / 10;
 int units_digits = n % 10;

ptg16518442

3
The switch-case Statement 81

 switch(tens_digits) {
case 2: cout << "twenty "; break;
case 3: cout << "thirty "; break;
case 4: cout << "forty "; break;
case 5: cout << "fifty "; break;
case 6: cout << "sixty "; break;
case 7: cout << "seventy "; break;
case 8: cout << "eighty "; break;
case 9: cout << "ninety "; break;

 }
 switch(units_digits) {

case 1: cout << "one" << endl; break;
case 2: cout << "two" << endl; break;
case 3: cout << "three" << endl; break;
case 4: cout << "four" << endl; break;
case 5: cout << "five" << endl; break;
case 6: cout << "six" << endl; break;
case 7: cout << "seven" << endl; break;
case 8: cout << "eight" << endl; break;
case 9: cout << "nine" << endl; break;

 }
}

H
ow

 It
 Works

How It Works
If you’ve programmed before in another computer language, you might object
that this example could be made much more efficient with something called
an “array.” That’s absolutely true, and I’ll get to that efficiency improvement in
Chapter 6, “Arrays: All in a Row....” But assume for now that switch-case is the
best we have.

To understand how this program works, it’s necessary to review the division (/)
and remainder (%) operators. The division operator, when applied to two inte-
gers, produces an integer result, rounded down. So, for example, let’s suppose
the user enters the number 49. The first thing the program does is extract the
tens digit as follows:

49 /10

If the program were, instead, working with floating-point data (as in the
expression 49.0 / 10.0), the answer would be 4.9, which, if rounded, becomes 5.0.
But only integers are involved here, so the result is rounded down to 4.

printnum.cpp, cont.

ptg16518442

Chapter 3 And Even More Decisions!82

The remainder operator, %, works only on integers. Remember that it pro-
duces the amount left over from division. Therefore, the following expression
produces the value 9:

49 % 10

In summary, then, the following lines of code provide an efficient way to
break a two-digit number down into its individual digits, 4 and 9:

 int tens_digits = n / 10;
 int units_digits = n % 10;

After extracting these two numbers, the program then uses them in a switch-
case block and, as a result, prints the following:

 forty nine

Is this an impressive result? Maybe not so much. But consider that a com-
puterized phone system would use this same logic to select the sounds to pro-
nounce “forty-nine” aloud.

Ex
er

cis
es

 EXERCISES

Exercise 3.3.1. The program in Example 3.3 (the number-printing program) is
more useful if it allows repeated use rather than requiring you to restart it every
time. (Actually that’s true of most programs.) Therefore, place the bulk of the
program in a do-while loop that repeats until the user enters 0, at which point
it exits.

Exercise 3.3.2. Revise the program so that it can handle numbers in the range 0 to 9.
This should be easy.

Exercise 3.3.3. Revise the program so that it can handle numbers in the range 11 to 19.
This will require a good deal more work than Exercise 3.3.2 does, because you
have to account for all the “teen” words.

Exercise 3.3.4. Extend the program so that it handles values as high as 999. (Hint:
you’ll need to complete Exercise 3.3.3 first, or the range of acceptable values will
have many “holes” in it.)

ptg16518442

3
83Chapter 3 Summary

Chapter 3 Summary
Here are the main points of Chapter 3:

◗ The do-while loop is similar to the while loop except for one important detail:
with the do-while loop, the body of the loop is guaranteed to be executed at
least once.

do statement
while (condition);

◗ As with other control structures, you can replace the statement placeholder
with a compound statement, also called a block. The effect is to place the body
of the line inside braces.

do {
statements

} while (condition);

◗ A common way to control a loop is by using a loop-control variable declared
Boolean (bool type), which is then set to true or false as appropriate. Remem-
ber that such a value does not need to be compared to true but can be tested
directly.

◗ You can, in effect, test such a Boolean value to false by using the logical NOT
operator (!) to reverse its true/false meaning.

◗ To generate random numbers in a C++ program, include both <cstdlib>, which
supports the srand and rand functions, and <ctime>, which supports the time
function.

#include <cstdlib>
#include <ctime>

◗ The next step in generating random numbers is to set a random-number seed.
This is necessary so that each time you run the program, you get a different
series of “random” (actually pseudorandom) numbers.

srand(ctime(nullptr));

◗ Thereafter, you can generate the next random number in the sequence by calling
rand. This produces a number in the unsigned int range. By applying the
remainder operator (%), you can get a random number from 0 to n − 1:

cout << rand() % n; // Print random 0 to n - 1

ptg16518442

Chapter 3 And Even More Decisions!84

◗ The switch-case statement is an alternative to repeated if and else if clauses, in
situations where a single value is tested over and over. Such an example might be:

if (n == 1) {
 cout << "1";
} else if (n == 2) {
 cout << "2";
} else if (n == 3) {
 cout << "3";
}

◗ Such code could be replaced with a nearly equivalent switch-case statement.

switch(n) {
case 1: cout << "1"; break;
case 2: cout << "2"; break;
case 3: cout << "3"; break;
}

◗ Syntactically, a switch-case statement (or rather, a switch-case block) has the
following syntax:

switch (value) {
statements

}

◗ This block does the following: First, it evaluates the value. It then transfers con-
trol to the statement whose case label, if any, matches this value. If no such label
matches the value, then control is transferred to a statement labeled default, if
there is such a statement.

◗ Control then proceeds in a normal linear fashion until a break statement is
encountered, transferring control to the end of the switch-case block.

◗ The addition-assignment operator (+=) provides a concise way to add a value
to a variable. There is also a subtraction-assignment operator. Here are some
examples:

n += 50; // n = n + 50
n -= 25; // n = n - 25

ptg16518442

85

4
The Handy,
All-Purpose
“for” Statement

Some tasks are so common that C++ provides special syntax just to repre-
sent them with fewer keystrokes: the increment operator (++) is one example.
Because adding 1 is so common, C++ provides the increment operator to save
space, although many other languages make do without it.

++n; // Add 1 to n.

Subtraction by one is common as well, so C++ also provides the decrement
operator, used in the expressions −−n and n−−.

Another example is the C++ for statement. Its only purpose is to make cer-
tain kinds of loops more concise. However, this turns out to be so useful that
programmers rely on it heavily and I use it throughout the rest of this book.

You’ll find that once you use it a few times, the for statement will become
second nature. Its most common use is “repeat a series of actions n times,” but
it’s more versatile than that and you can use it in many different situations.

Loops Used for Counting
When you worked with while loops in Chapter 2, “Decisions, Decisions,” you
may have noticed the typical use of a loop is to count to a number, performing
some action a specific number of times. For example:

i = 1;
while(i <= 10) {
 cout << i << " ";
 ++i;
}

ptg16518442

Chapter 4 The Handy, All-Purpose “for” Statement 86

This code basically just prints numbers from 1 to 10. The loop variable gets
an initial value of 1 and then is incremented each time through the loop. You
can summarize what happens this way:

1 Set i to 1.

2 Perform the loop action.

3 Set i to 2.

4 Perform the loop action.

5 Set i to 3.

6 Perform the loop action.

7 Continue in this manner up to, and including, setting i to 10.

In other words, perform the loop 10 times, each time giving a successively
higher value to i. This produces the sequence 1, 2, 3, … 10. The body of the loop
might do something like “print the number.”

We can identify three such actions: initialize the loop counter; test the loop
condition; and, if true, execute the statement and the increment. Then go back to
step 2 until the condition is false.

i = 1;
while (i <= 10) {
 cout << i << " ";
 ++i;
}

initializer: evaluated just once, before the loop begins

condition

increment: evaluated after each
execution of the loop statement

It would be helpful to have a way to express these actions in one succinct
statement. Then it would be easy to write a loop that counts to 10.

Introducing the “for” Loop
The for statement provides a mechanism that lets you specify the initializer,
condition, and increment in one compact line.

K
ey

wo
rd

ptg16518442

4
Introducing the “for” Loop 87

for (i = 1; i <= 10; ++i)
 cout << i << " ";

initializer: evaluated just once, before the loop begins

condition

increment: evaluated after each
execution of the loop statement

This is obviously more concise. All the settings that control the loop’s opera-
tion are placed between parentheses. More formally, here is the syntax of the for
statement, along with the equivalent while loop:

1 2 3 1

for (initializer ; condition ; increment)
 statement

initializer;
while (condition){
 statement
 increment;
}

2

3

Syntax diagrams are all well and good, but sometimes it’s more helpful to
look at a flowchart. It’s easy to see from the following chart that the initializer is
evaluated one time, after which the for statement sets up an enhanced version
of the while loop by evaluating increment before cycling. Remember, this prints
all numbers from 1 to 10:

cout << i << " ";

i <= 10

Evaluate condition.
Is it true (nonzero)?

Execute statement.

YES

DONE.

The "for" Loop

NO

i = 1

Evaluate initializer.

++i

Evaluate increment.

1 2 3

ptg16518442

Chapter 4 The Handy, All-Purpose “for” Statement 88

As with the other control structures, the loop statement can be a compound
statement (or block). This syntax follows from the rule that wherever you can
use a statement in C++, you can also use a block.

I’ve found that a structure like for can still be fuzzy until you look at a lot of
examples. That’s the purpose of the next section.

C++14 � With C++11 and later, C++ provides a new version of the for keyword
that automatically works on all members of a collection, similar to “for each” in
some other languages. To use this version, however, you need to understand
arrays and containers. I present this new version of for in Chapter 17, “New
 Features of C++14.”

A Wealth of Examples
Let’s start with a slight variation of the example you’ve already seen. The loop
variable, i, is initialized to 1 (i = 1), and the loop continues while the condition
(i <= 5) is true. This is the same as the earlier example, except that the loop
counts only to 5.

for(i = 1; i <= 5; ++i) {
 cout << i << " ";
}

This produces the following output:

1 2 3 4 5

The next example runs from 10 to 20 rather than 1 to 5:

for(i = 10; i <= 20; ++i) {
 cout << i << " ";
}

This produces the following output:

10 11 12 13 14 15 16 17 18 19 20

Here, the initializer is i = 10, and the condition is i <= 20. These expressions
determine the initial and terminal settings of the loop. (The condition terminates
the loop when it is no longer true; therefore, the highest value of i will be 20 in
this case.)

These settings do not have to be constants. In this next example, they are
determined by variables. The loop counts from n1 to n2.

ptg16518442

4
A Wealth of Examples 89

n1 = 32;
n2 = 38;
for (i = n1; i <= n2; ++i) {
 cout << i << " ";
}

This produces the following output:

32 33 34 35 36 37 38

The increment expression can be any expression at all; it does not have to be ++i.
You can just as easily use −−i, which causes the for loop to count downward.
Note the use of greater than or equal to (>=) in the condition in this example.

for(i = 10; i >= 1; --i) {
 cout << i << " ";
}

This produces the following output:

10 9 8 7 6 5 4 3 2 1

The for statement is highly flexible. By changing the increment expression,
you can count by 2 rather than by 1.

for(i = 1; i <= 11; i = i + 2) {
 cout << i << " ";
}

This produces the following output:

1 3 5 7 9 11

As a final example, you don’t have to use i as the loop variable. Here’s an
example that uses a loop variable named j:

for(j = 1; j <= 5; ++j) {
 cout << j * 2 << " ";
}

This produces the following output:

2 4 6 8 10

Note that in this case, the loop statement prints j * 2, which is why this loop
prints even numbers.

ptg16518442

Chapter 4 The Handy, All-Purpose “for” Statement 90

Does “for” Always Behave Like “while”?

I said that a for loop is a special case of while and performs exactly as the
corresponding while loop would. That’s almost true. There is one minor
exception, which—for the purposes of this entire book and 99 percent of all
the code you will ever write—will likely make no difference. The exception
involves the continue keyword. You can use this keyword in a loop, placing
it in its own statement, to say “Advance immediately to the next cycle of the
loop.”

continue;

This is a kind of “Advance directly to Go” statement. It doesn’t break out
of the loop (which the break keyword does); it just speeds things up.

The difference in behavior is this: In a while loop, the continue state-
ment neglects to execute the increment (++i) before advancing to the next
cycle of the loop. In a for loop, the continue statement does execute the
increment before advancing. This second behavior would usually be the
behavior you’d want, and that provides one more reason why for is useful.

Example 4.1. Printing 1 to N with “for”
Now we’ll apply the for statement in a complete program. This example does
the same thing as Example 2.2 on page 43: It prints all the numbers from 1 to n.
But this version is more compact.

count2.cpp

#include <iostream>
using namespace std;

int main()
{
 int n = 0;
 int i = 0; // Loop counter in "for" statement.

 // Get num from the keyboard and initialize i.

 cout << "Enter a number and press ENTER: ";
 cin >> n;

Interlude

ptg16518442

4
A Wealth of Examples 91

 for (i = 1; i <= n; ++i){ // For i = 1 to n
cout << i << " "; // Print i.

 }
 return 0;
}

When you run the program, it counts to the specified number. For example,
if the user inputs 9, the program prints the following:

1 2 3 4 5 6 7 8 9

H
ow

 It
 Works

How It Works
This example features a simple for loop. The loop condition in this example
uses n, a number that the program gets from the user.

 cout << "Enter a number and press ENTER: ";
 cin >> n;

The loop prints numbers from 1 to n, where n is the number entered.

 for (i = 1; i <= n; ++i){ // For i = 1 to n
cout << i << " "; // Print i.

 }

To review:

◗ The expression “i = 1” is the initializer expression; it’s evaluated just once, before
the loop is executed. This initial value of i is therefore 1.

◗ The expression “i <= n” is the condition. This is checked before each loop cycle
to see whether the loop should continue. If, for example, n is 9, the loop termi-
nates when i reaches 10, so the loop is not executed for the case of i equal to 10.

◗ The expression “++i” is the increment expression, which is evaluated after each
execution of the loop statement. This drives the loop by adding 1 to i each time.

The program logic is therefore equivalent to:

Set i to 1.

While i is less than or equal to n,

 Print i,

 Add 1 to i.

count2.cpp, cont.
Ps

eu
do

code

ptg16518442

Chapter 4 The Handy, All-Purpose “for” Statement 92
Ex

er
cis

es

 EXERCISES

Exercise 4.1.1. Use the for statement in a program that prints all the numbers from
n1 to n2, where n1 and n2 are two numbers specified by the user. (Hint: You’ll
need to prompt for the two values; then, inside the for statement, initialize i to n1,
and use n2 in the loop condition.)

Exercise 4.1.2. Rewrite the example so that it prints all the numbers from n to 1 in
reverse order. For example, the user enters 5, and the program prints 5 4 3 2 1.
(Hint: In the for loop, initialize i to n, use the condition i >= 1, and subtract 1
from i in the increment step.)

Exercise 4.1.3. Write a program that prints all numbers from 1 to n, but prints only
even numbers or only odd numbers. Each number printed will be 2 higher than
the last.

Declaring Loop Variables “On the Fly”
One of the benefits of the for statement is that you can efficiently use it to
declare a variable that has scope local to the loop itself. The variable is declared
“on the fly,” for the explicit use of the for loop. For example:

 for (int i = 1; i <= n; ++i){ // For i = 1 to n
cout << i << " "; // Print i.

 }

Here, i is declared inside the initializer expression of the for statement. The vari-
able i becomes local—not just to the function, but to the loop itself—so changes
made to i within the loop do not affect any copies of i declared outside the loop.

If you use this technique, you don’t need to declare i separately from the loop,
of course. You can rewrite Example 4.1 this way:

count3.cpp

#include <iostream>
using namespace std;

int main()
{
 int n = 0;

ptg16518442

4
Declaring Loop Variables “On the Fly” 93

// Get a number from the keyboard.

 cout << "Enter a number and press ENTER: ";
 cin >> n;

 for (int i = 1; i <= n; ++i){ // For i = 1 to n
cout << i << " "; // Print i.

 }
 return 0;
}

Example 4.2. Prime-Number Test with “for”
Now let’s return to the prime-number example of Example 2.3 (page 53), but
write that program using a for loop rather than while. This example determines
whether a number input is a prime number. (Remember, a number is prime if it
is evenly divisible only by itself and 1.)

The same basic logic is involved as in Example 2.3. Here is pseudocode for a
prime-number test:

Set i to 2.

While i is less than or equal to the square root of n,

 If i divides evenly into n,

 n is not prime.

Add 1 to i.

The for-loop version uses exactly the same approach; when compiled, it car-
ries out the same instructions as the while loop. However, because the essential
nature of a for loop is to perform counting—in this case counting from 2 to the
square root of n—we can think of it a little differently. The same things happen,
but conceptually this approach is a little simpler:

For all whole numbers from 2 up to the square root of n,

 If i divides evenly into n,

 n is not prime.

Here’s the complete program for testing whether a number is a prime num-
ber. Again, this is a version of the program described in Example 4.2, so most of
it should look familiar.

count3.cpp, cont.
Ps

eu
do

code

Ps
eu

do

code

ptg16518442

Chapter 4 The Handy, All-Purpose “for” Statement 94

prime2.cpp

#include <iostream>
#include <cmath>

using namespace std;

int main()
{
 int n = 0; // Number to test for prime-ness
 bool is_prime = true; // Boolean flag; assume true

// until proven otherwise

 // Get a number from the keyboard.

 cout << "Enter a number and press ENTER: ";
 cin >> n;

 // Test for prime by checking for divisibility
 // by all whole numbers from 2 to sqrt(n).

 for (int i = 2; i <= sqrt(n); ++i) {
if (n % i == 0) {

is_prime = false;
}

 }

 // Print results

 if (is_prime) {
cout << "Number is prime." << endl;

 } else {
cout << "Number is not prime." << endl;

 }
 return 0;
}

When the program is run, if the user enters 23, the program prints the
following:

Number is prime.

ptg16518442

4
Declaring Loop Variables “On the Fly” 95

H
ow

 It
 Works

How It Works
The beginning of the program uses #include directives to enable needed support
from the C++ library. The C++ math library is used here because the program
needs to call the sqrt function to get the square root of a number.

#include <iostream>
#include <cmath>

The rest of the program defines the main (and so far, only) function. The
first thing that main does is declare the variables the program will use. (Note:
The loop variable i is declared in the for loop itself.)

 int n = 0; // Number to test for prime-ness
 bool is_prime = true; // Boolean flag; assume

// true until proven
// otherwise

The purpose of is_prime is to store a value of true or false.
If the program can’t find a divisor for n, it should conclude that the number

is prime. Therefore, is_prime gets a default setting of true. In other words, we’ll
consider a number prime until that condition is proven false.

The heart of the program is the for loop that performs the prime-number
test. As I described in Chapter 2, it’s necessary to test for divisors only up to the
square root of n. If a divisor is not found by then, the number is prime.

Remember that the expression n%i divides n by i and returns the remainder.
A remainder of 0 means that i divides into n perfectly, which would mean that
n is not prime.

 for (int i = 2; i <= sqrt(n); ++i) {
if (n % i == 0) {

is_prime = false;
}

 }

Remember how a for loop works: the first expression in parentheses, i = 2, is
the initializer; the second expression, i <= sqrt(n), is the condition; and the last
is the increment. Let’s review:

◗ The initializer, i = 2, is executed only once, before any cycles of the loop.

◗ The condition, i <= sqrt(n), is evaluated at the top of the loop. A false value (i not
less than or equal to sqrt(n)) causes the loop to exit immediately. A true value
causes the loop to keep going.

ptg16518442

Chapter 4 The Handy, All-Purpose “for” Statement 96

◗ The increment, ++i, is executed after the body of the loop.

This for loop is therefore equivalent to the following:

 int i = 2; // Initializer: Do once.
 while (i <= sqrt(n)) { // Is i less than or

// equal to sqrt(n)?
if (n % i == 0) { // If so, do all this...

is_prime = false;
}
++i; // Inc. at bottom of loop.

 }

Ex
er

cis
e

 EXERCISE

Example 4.2.1. Revise Example 4.2 to make it more optimal. When you consider
the speed of today’s microprocessors, it’s unlikely you’ll see a difference in exe-
cution, although if you attempt to test an extremely large number, say, more
than a billion, you might see a difference. (By the way, good luck in finding a
prime number in that range, if you’re just looking for one by chance. Prime
numbers become rarer as you get into larger values.) In any case, the following
changes to code make the program more efficient for large numbers:

◗ Calculate the square root of n only once by declaring a variable square_root_
of_n and determining its value before entering the for loop. This variable
should be a double variable.

◗ Once a divisor of n is found, you don’t need to look for any more divisors.
Therefore, in the if statement inside the loop, add a break statement (breaking
out of the loop) after setting is_prime to false.

Comparative Languages 101: The Basic “For” Statement
If you’ve programmed in Basic or FORTRAN, you’ve seen statements much like
the C++ for statement, whose purpose is to count from one number to another.
For example, this Basic loop prints numbers from 1 to 10:

For i = 1 To 10
 Print i
Next i

The Basic “For” statement has the advantage of clarity and ease of use. It
admittedly takes fewer keystrokes to use than C++’s for. But despite that, the
advantage of the C++ for statement is its flexibility.

ptg16518442

4
97Chapter 4 Summary

One way in which the C++ for statement is so much more flexible is that
you can use it with any three valid C++ expressions. The condition (the middle
expression) doesn’t even have to be a logical expression such as i < n, although
it ought to be. For the purposes of evaluating a condition in an if, while, or for
statement, any nonzero value is considered “true.”

The for statement does not require you to use all three expressions (initializer,
condition, and increment). If initializer or increment is missing, it’s ignored. If the
condition is omitted, it’s considered “true” by default, setting up an infinite loop.

for(;;) {
 // Infinite loop!
}

An infinite loop can be a bad thing—unless you have some way to break out
of it, for example, by using the break statement. In the following example, the
user can break out of the loop by entering the value 0:

for (;;) {
 // Do some stuff...

 cout << "Enter a number and press ENTER: ";
 cin >> n;
 if (n == 0) {

break;
 }

 // Do some more stuff...
}

Chapter 4 Summary
Here are the main points of Chapter 4:

◗ The purpose of a for statement is usually to repeat an action while counting to a
particular value. The statement has the following syntax:

for (initializer; condition; increment)
statement

This is equivalent to the following while loop:

initializer;
while (condition) {

statement
 increment;

ptg16518442

Chapter 4 The Handy, All-Purpose “for” Statement 98

◗ A for loop behaves exactly like its while-loop counterpart, with one exception:
In a for loop, the continue statement increments the loop variable before
advancing to the top of the next loop cycle.

◗ As with other kinds of control structures, by using opening and closing braces ({})
you can always use a compound statement, or block, with for. There are many
programmers who recommend this style because it’s easier to go back and add
statements later, and because in complex programs, the braces can help clarify
program structure.

for (initializer; condition; increment) {
statement

}

◗ A variable such as i in the following example is called a loop variable:

for (i = 1; i <= 10; ++i) {
 cout << i << " ";
}

◗ In the initializer expression, you can declare a variable “on the fly.” This decla-
ration gives the variable scope local to the for loop itself, meaning that changes
to the variable don’t affect variables of the same name outside the loop.

for (int i = 1; i <= 10; ++i) {
 cout << i << " ";
}

◗ As with if and while, the loop condition of a for statement can be any valid C++
expression that evaluates to a true/false value or a numeric value; any nonzero
value is considered “true.”

◗ You can omit any and all of the three expressions inside the parentheses of the
for statement (initializer, condition, increment). If the condition is omitted, the
loop is executed unconditionally. (In other words, the loop is infinite.) Remem-
ber to use a break statement to get out of it.

for (;;) {

 // Infinite loop!

}

ptg16518442

99

5 Functions:
Many Are Called

Programmers and computer scientists talk about creating reusable code, the
Holy Grail of software development. There are many tools designed with this
goal in mind. But the function (called a procedure or subroutine in other lan-
guages) is the most basic tool of all.

The function—which in C++ may or may not return a value—is based on
this simple idea: once someone figures out how to accomplish a specific task,
such as calculating a square root, you shouldn’t have to figure it out again.

So, instead of writing the same lines of programming code over and over,
you write the function just once, and then execute it whenever you want to per-
form the desired task. This is known as “calling” a function.

In short, functions make your life easier.

The Concept of Function
If you’ve followed the book up until this point, you’ve already seen the use of a
function—the sqrt function—that takes a single number as input and returns
a result.

double sqrt_of_n = sqrt(n);

This is not far removed from the mathematical concept of function. A func-
tion takes zero or more inputs, called arguments, and returns an output, called
a return value. Here’s another example—this function takes two inputs and
returns their average:

cout << avg(1.0, 4.0);

Once a function is written, you can call it any number of times. By calling
a function, you transfer execution of the program to the function-definition

ptg16518442

Chapter 5 Functions: Many Are Called100

code, which runs until it is finished or until it encounters a return statement;
execution is then transferred back to the caller.

This may sound strange if you’re not used to it. It’s easy to see in a diagram.
In the following example, the program 1) runs normally until it calls the function
avg, passing the arguments a and b, and 2) as a result, the program transfers
execution to avg. (The values of a and b are passed to x and y, respectively.)

void main() {
 double a = 1.2;
 double b = 2.7;
 cout << "Avg is" << avg(a,b);
 cout << endl;
 cout << endl;
 system("PAUSE");
}

double avg(double x, double y) {
 double v = (x + y)/2;
 return v;
}

1

2

The function runs until 3) it encounters return, which causes execution to
return to the caller of the function. The function then prints the value that was
returned. Finally, 4) execution resumes normally inside main, and the program
continues until it ends.

void main() {
 double a = 1.2;
 double b = 2.7;
 cout << "Avg is" << avg(a,b);
 cout << endl;
 cout << endl;
 system("PAUSE");
}

double avg(double x, double y) {
 double v = (x + y)/2;
 return v;
}

4

3

ptg16518442

5
The Basics of Using Functions 101

Note that in a program, only main is guaranteed to be executed. Other func-
tions run only when called. But there are many ways a function can be called.
For example, main can call a function A, which in turn calls functions B and C,
which in turn call D.

The Basics of Using Functions
I recommend the following approach for creating and calling user-defined
functions:

1 At the beginning of your program, declare the function.

2 Somewhere in your program, define the function.

3 Other functions can then call the function.

Step 1: Declare (Prototype) the Function
Although not strictly necessary in all cases, you should usually prototype your
functions—except for main—at the beginning of a program. C++ requires
that a function be declared before being used: such a declaration can be either a
prototype or a definition (which is Step 2).

If you’re lazy and want to avoid work, you can define your functions in the
reverse order in which they were called, and you might be able to get by without
prototypes. But this strategy fails as soon as you have two functions that call
each other, which is more common than you’d think.

The use of prototypes frees you from the worry, “Did I define this function
yet?” before you call the function.

A function prototype provides type information only. It has this syntax:

return_type function_name (argument_list);

The return_type is a data type indicating what kind of value the function
returns (what it passes back). If the function does not return a value, use void.

The argument_list is a list of zero or more argument names—separated by
commas if there are more than one—each preceded by the corresponding type.
(Technically, you don’t need the argument names in a prototype, but it is a good
programming practice.) For example, the following statement declares a function
named avg, which takes two arguments of type double and returns a double value:

double avg(double x, double y);

The argument_list may be empty, which indicates that it takes no arguments.

Ke
y

Sy

ntax

ptg16518442

Chapter 5 Functions: Many Are Called102

Step 2: Define the Function
The function definition tells exactly what the function does. It uses this syntax:

return_type function_name (argument_list) {
statements

}

Much of this looks like a prototype. The only thing that’s different is that the
semicolon is replaced by zero or more statements between two braces ({}). The
braces are required no matter how few statements you have. For example:

double avg(double x, double y) {
 return (x + y) / 2;
}

The return statement causes immediate exit and it specifies that the func-
tion returns the amount (x + y) / 2. Functions with no return value can still use
the return statement, but only to exit early.

return;

Step 3: Call the Function
Once a function is defined, it can be used—or rather, called—any number of
times, from any function. For example:

n = avg(9.5, 11.5);
n = avg(5, 25);
n = avg(27, 154.3);

A function call is an expression: as long as it returns a value other than void,
it can be used inside a larger expression. For example:

z = x + y + avg(a, b) + 25.3;

When the function is called, the values specified in the function call
are passed to the function arguments. Here’s how a call to the avg func-
tion works, with sample values 9.5 and 11.5 as input. These are passed to the
function, as arguments. When the function returns, the value in this case is
assigned to z.

Ke
y

Sy

ntax

ptg16518442

5
The Basics of Using Functions 103

z = avg(9.5, 11.5);

double avg(double x, double y) {
 return (x + y) / 2;
}

(9.5 + 11.5) / 2
21.0 / 2

10.5z

Another call to the function might pass different values—in this case, 6 and 26.
(Because these are integer values, they are implicitly converted, or promoted, to
type double.)

z = avg(6, 26);

double avg(double x, double y) {
 return (x + y) / 2;
}

(6.0 + 26.0) / 2
32.0 / 2

16.0z

Example 5.1. The avg() Function
This section shows a simple function call in the context of a complete program.
It demonstrates all three steps: declare a function, define it, and call it.

avg.cpp

#include <iostream>
using namespace std;
// Function must be declared before being used.
double avg(double x, double y);

▼ continued on next page

ptg16518442

Chapter 5 Functions: Many Are Called104

int main()
{
 double a = 0.0;
 double b = 0.0;
 cout << "Enter first number and press ENTER: ";
 cin >> a;
 cout << "Enter second number and press ENTER: ";
 cin >> b;

 // Call the function avg().
 cout << "Average is: " << avg(a, b) << endl;
 return 0;
}
// Average-number function definition
//
double avg(double x, double y) {
 return (x + y)/2;
}

H
ow

 It
 Works

How It Works
This code is a very simple program, but it demonstrates the three steps I out-
lined earlier:

1 Declare (that is, prototype) the function at the beginning of the program.

2 Define the function somewhere in the program.

3 Call the function from within another function (in this case, main).

Although function declarations (prototypes) can be placed anywhere in a
program, you should almost always place them at the beginning. The general
rule is that functions must be declared before being called. (They do not, how-
ever, have to be defined before being called, which makes it possible for two
functions to call each other.)

double avg(double x, double y);

The function definition for the avg function is extremely simple, contain-
ing only one statement. In general, though, function definitions can contain as
many statements as you want.

avg.cpp, cont.

ptg16518442

5
The Basics of Using Functions 105

double avg(double x, double y) {
 return (x + y)/2;
}

The main function calls avg as part of a larger expression. The computed
value (in this case, the average of the two inputs, a and b) is returned to this
statement in main, which then prints the result.

cout << "Average is: " << avg(a, b) << endl;

Va
ria

tion

Function, Call a Function!
A program can have any number of functions. For example, you could have two
functions in addition to main, as in the following version of the program. Lines
that are new or changed are in bold.

avg2.cpp

#include <iostream>
using namespace std;
// Functions must be declared before being used.
void print_results(double a, double b);
double avg(double x, double y);

int main()
{
 double a = 0.0;
 double b = 0.0;
 cout << "Enter first number and press ENTER: ";
 cin >> a;
 cout << "Enter second number and press ENTER: ";
 cin >> b;

 // Call the function pr_results().
 print_results(a, b);
 return 0;
}
// print_results function definition
//
void print_results(double a, double b) {

▼ continued on next page

ptg16518442

Chapter 5 Functions: Many Are Called106

cout << "Average is: " << avg(a, b) << endl;
}
// Average-number function definition
//
double avg(double x, double y) {
 return (x + y)/2;
}

This version is a little less efficient, but it illustrates an important principle:
You are not limited to only one or two functions; you can have as many as you
want. This program creates a flow of control as follows:

main() → print_results() → avg()

Ex
er

cis
es

 EXERCISES

Exercise 5.1.1. Write a program that defines and tests a factorial function. The fac-
torial of a number is the product of all whole numbers from 1 to N. For exam-
ple, the factorial of 5 is 1 * 2 * 3 * 4 * 5 = 120. (Hint: Use a for loop as described
in Chapter 3.)

Exercise 5.1.2. Write a function named print_out that prints all the whole numbers
from 1 to N. Test the function by placing it in a program that passes a number
n to print_out, where this number is entered from the keyboard. The print_out
function should have type void; it does not return a value. The function can be
called with a simple statement:

print_out(n);

Example 5.2. Prime-Number Function
Chapter 2 included an example that was actually useful: determining whether
a specified number was a prime number. We can also write the prime-number
test as a function and call it repeatedly.

The following program uses the prime-number example from Chap-
ters 2 and 3 but places the relevant C++ statements into their own function,
prime.

avg2.cpp, cont.

ptg16518442

5
The Basics of Using Functions 107

prime2.cpp

#include <iostream>
#include <cmath> // Include because sqrt is called.

using namespace std;

// Function must be declared before being used.
bool prime(int n);

int main()
{
 int n = 0;

 // Set up infinite loop; break if user enters 0.
 // Otherwise, evaluate n for prime-ness.

 while (true) {
cout <<"Enter num (0 = exit) and press ENTER: ";
cin >> n;
if (n == 0) { // If user entered 0, EXIT

break;
}
if (prime(n)) { // Call prime(i)

cout << n << " is prime" << endl;
} else {

cout << n << " is not prime" << endl;
}

 }
 return 0;
}

// Prime-number function. Test divisors from
// 2 to sqrt of n. Return false if a divisor
// found; otherwise, return true.
bool prime(int n) {
 for (int i = 2; i <= sqrt(n); ++i) {

if (n % i == 0) { // If i divides n evenly,
return false; // n is not prime.

}
 }
 return true; // If no divisor found, n is prime.
}

ptg16518442

Chapter 5 Functions: Many Are Called108
H

ow
 It

 Works

How It Works
As always, the program adheres to the pattern of 1) declaring function type
information at the beginning of the program (prototyping the function), 2)
defining the function somewhere in the program, and 3) calling the function.

The prototype says that the prime function takes an integer argument and
returns a bool value, which will be either true or false. (Note: If you have a
really old compiler, you may have to use the int type instead of bool.)

bool prime(int n);

The function definition is a variation on the prime-number code from
Chapter 3, which used a for loop. If you compare the code here to Example 4.2
on page 93, you’ll see only a few differences.

bool prime(int n) {
 for (int i = 2; i <= sqrt(n); ++i) {

if (n % i == 0) { // If i divides n evenly,
return false; // n is not prime.

}
 }
 return true; // If no divisor found, n is prime.
}

Another difference is that instead of setting a Boolean variable, is_prime,
this version returns a Boolean result. The logic here is as follows:

For all whole numbers from 2 to the square root of n,

 If n is evenly divisible by the loop variable (i),

 Return the value false immediately.

Remember that the modulus operator (%) carries out division and returns
the remainder. If this remainder is 0, that means the second number divides the
second evenly; in other words, it is a divisor or factor of the second number.

The action of the return statement here is key. This statement returns imme-
diately, causing program execution to exit from the function and passing control
back to main. There’s no need to use break to get out of the loop.

The loop in the main function calls the prime function. The use of a break
statement here provides an exit mechanism, so the loop isn’t really infinite. As
soon as the user enters 0, the loop terminates and the program ends. Here, I’ve
put the exit lines in bold:

 while (true) {
cout <<"Enter num (0 = exit) and press ENTER: ";

Ps
eu

do

code

ptg16518442

5
Local and Global Variables 109

cin >> n;
if (n == 0) { // If user entered 0, EXIT

break;
} if (prime(n)) { // Call prime(i)

cout << n << " is prime" << endl;
} else {

cout << n << " is not prime" << endl;
}

 }

The rest of the loop calls the prime function and prints the result of the
prime-number test. Note that this function returns a true/false value, and so
the call to prime(i) can be used as an if/else condition.

Ex
er

cis
es

 EXERCISES

Exercise 5.2.1. Optimize the prime-number function by calculating the square
root of n only once during each function call. Declare a local variable sqrt_of_n
of type double. (Hint: A variable is local if it is declared inside the function.)
Then use this variable in the loop condition.

Exercise 5.2.2. Rewrite main so that it tests all the numbers from 2 to 20 and prints
out the results, each on a separate line. (Hint: Use a for loop, with i running
from 2 to 20.)

Exercise 5.2.3. Write a program that finds the first prime number greater than 1
billion (1,000,000,000).

Exercise 5.2.4. Write a program that lets the user enter any number n and then
finds the first prime number larger than n.

Local and Global Variables
Nearly every programming language has a concept of local variable. As long as
two functions mind their own data, as it were, they won’t interfere with each
other.

That’s definitely a factor in the previous example (Example 5.2). Both main
and prime have a local variable named i. If i were not local—that is, if it was
shared between functions—then consider what could happen.

First, the main function executes prime as part of evaluating the if condi-
tion. Let’s say that i has the value 24.

ptg16518442

Chapter 5 Functions: Many Are Called110
if (prime(i)) {
 cout << i << " is prime" << endl;
} else {
 cout << i << " is not prime" << endl;
}

The value 24 is passed to the prime function.

// Assume i is not declared here, but is global.
int prime(int n) {
 for (i = 2; i <= sqrt((double) n); ++i)

if (n % i == 0) {
return false;

}
 }
 return true; // If no divisor found, n is prime.
}

Look what this function does. It sets i to 2 and then tests it for divisibility
against the number passed, 24. This test passes because 2 does divide into 24
evenly and the function returns. But i is now equal to 2 instead of 24.

Upon returning, the program executes

cout << i << " is not prime" << endl;

which prints the following:

2 is not prime

This is not what we wanted, since we were testing the number 24! So, to avoid
this problem, declare variables local unless there is a good reason not to do so.

Is there ever a good reason to not make a variable local? Yes, although if you
have a choice, it’s better to go local because you want to avoid functions inter-
fering with each other as much as possible.

You can declare global—that is, nonlocal—variables by declaring them out-
side of any function definition. It’s usually best to put all global declarations
near the beginning of the program, before the first function. A variable is rec-
ognized only from the point it is declared, to the end of the file.

For example, you could declare a global variable named status:

#include <iostream>
#include <cmath>
using namespace std;
int status = 0;

ptg16518442

5
Local and Global Variables 111

void main()
{

//
}

Now, the variable named status may be accessed by any function. Because
this variable is global, there is only one copy of it; if one function changes the
value of status, this reflects the value of status that other functions see.

Why Global Variables at All?

For the reasons shown in the previous section, global variables can be dan-
gerous. Habitual use of global variables can cause shocks to a program
because changes performed by one function cause unexpected effects in
another.

But if they are so dangerous, why use them at all?
Well, they are often necessary, or nearly so. Global variables are some-

times the best way to communicate information among multiple functions;
otherwise, you might need a long series of argument lists that transfer all
the program information back and forth.

Beginning with Chapter 11, we’ll work with classes, which provide an
alternative, and generally superior, way for closely related functions to share
data with each other: functions of the same class have access to private data
that no one else does.

By default, C++ passes arguments by value, which means that a function gets
its own copies of the data passed to it. Consequently, changes to the arguments
have no effect outside the function; they are input-only data. The return value,
in contrast, is output by the function.

This seems to create a situation in which the function can provide output
to its caller only through its return value, or by modifying the value of global
variables, which is sometimes acceptable but also has a downside (namely, it’s
undesirable to have too many global variables). Chapter 7, “Pointers: Data by
Location,” explains how to get around these limitations and use arguments to
pass more than one value back.

For now, you can conceive of the data flow to and from functions this way,
in which data flows to the function through its arguments and back through its
return value.

Interlude

ptg16518442

Chapter 5 Functions: Many Are Called112

Function arguments,
passed by value

global vars

local vars

Return
Value

FUNCTION

Note that modification of global variables is another way for a function to
change data that can affect the rest of the program. But in general, it’s best to
have as few global variables as possible.

Recursive Functions
So far, I’ve only shown the use of main calling other functions defined in the
program, but in fact, any function can call any function. But can a function call
itself?

Yes, it can. And as you’ll see, it’s not as crazy as it sounds. The technique of
a function calling itself is called recursion. The obvious problem is the same as
that for infinite loops: if a function calls itself, when does it ever stop? The prob-
lem is easily solved, however, by putting in some mechanism for stopping.

Remember the factorial function from Exercise 5.1.1 (page 106)? We can
rewrite this as a recursive function:

int factorial(int n) {
 if (n <= 1) {

return 1;
 } else {

return n * factorial(n - 1); // RECURSION!
 }
}

For any number greater than 1, the factorial function issues a call to itself
but with a lower number. Eventually, the function factorial(1) is called, and the
cycle stops.

There is a literal stack of calls made to the function, each with a different
argument for n, and now they start returning. The stack is a special area of

ptg16518442

5
Recursive Functions 113

memory maintained by the computer: It is a last-in-first-out (LIFO) mechanism
that keeps track of information for all pending function calls. This includes
arguments and local variables, if any.

You can picture how to call a factorial(4) this way:

factorial(4)

4 * factorial(3)

3 * factorial(2)

2 * factorial(1)

1

Many functions that use a for statement can be rewritten so they use recur-
sion instead. But does it always make sense to use that approach?

No. The example here is not an ideal one, because it causes the program
to store all the values 1 through n on the stack, rather than totaling them up
directly in a loop. This approach is not efficient. The next section makes a better
use of recursion.

However, this section does illustrate the two most important aspects of
recursion. A recursive function, that is, a function that recalls itself, must do the
following:

◗ Solve a general problem at level n by assuming the problem has already been
solved for level n − 1.

◗ Specify at least one terminal condition, such as n = 1 or n = 0.

Example 5.3. Prime Factorization
The prime-number examples we’ve looked at so far are fine, but they have a lim-
itation. They tell you, for example, that a number such as 12,001 is not prime,
but they don’t tell you anything more. Wouldn’t it be more useful to know what
numbers divide into 12,001?

It’d be more useful to generate the prime factorization for any requested num-
ber. This would show us exactly what prime numbers divide into that number.
For example, if the number 36 is input, the output will be:

2, 2, 3, 3

ptg16518442

Chapter 5 Functions: Many Are Called114

If 99 is input, the output will be:

3, 3, 11

And, if a prime number is input, the result will be the number itself. For
example, if 17 is input, the output will be 17.

We have almost all the programming code to do this already. Only a few
changes need to be made to the prime-number code. To get prime factorization,
first get the lowest divisor and then factor the remaining quotient. To get all the
divisors for a number n, do this:

For all whole numbers from 2 to the square root of n,

 If n is evenly divisible by the loop variable (i),

 Print i followed by a comma, and

 Rerun the function on n / i, and

 Exit the current function

If no divisors found, print n itself

This logic is a recursive solution, which we can implement in C++ by having
the function get_divisors call itself.

prime3.cpp

#include <iostream>
#include <cmath>

using namespace std;

void get_divisors(int n);
int main()
{
 int n = 0;
 cout << "Enter a number and press ENTER: ";
 cin >> n;
 get_divisors(n);
 cout << endl;
 return 0;
}
// Get divisors function
// This function prints all the divisors of n,

Ps
eu

do

code

ptg16518442

5
Recursive Functions 115

// by finding the lowest divisor, i, and then
// rerunning itself on n/i, the remaining quotient.
void get_divisors(int n) {
double sqrt_of_n = sqrt(n);
 for (int i = 2; i <= sqrt_of_n; ++i) {

if (n % i == 0) { // If i divides n evenly,
cout << i << ", "; // Print i,
get_divisors(n / i); // Factor n/i,
return; // and exit.

}
 }
 // If no divisor is found, then n is prime;
 // Print n and make no further calls.
 cout << n;
}

H
ow

 It
 Works

How It Works
As always, the program begins by declaring functions; in this case, there is one
function other than main. The new function is get_divisors.

Also, the beginning of the program includes iostream and cmath because the
program uses cout, cin, and sqrt. You don’t need to declare sqrt directly, by the
way, because this is done for you in cmath.

#include <iostream>
#include <cmath>

void get_divisors(int n);

The main function just gets a number from the user and calls get_divisors.

int main()
{
 int n = 0;
 cout << "Enter a number and press ENTER: ";
 get_divisors(n);
 cin >> n;
 cout << endl;
 return 0;
}

prime3.cpp, cont.

ptg16518442

Chapter 5 Functions: Many Are Called116

The get_divisors function is the interesting part of this program. It has a
void return value, which means it doesn’t pass back a value. But it still uses the
return statement to exit early.

void get_divisors(int n) {
 double sqrt_of_n = sqrt(n);
 for (int i = 2; i <= sqrt_of_n; ++i)

if (n % i == 0) { // If i divides n evenly,
cout << i << ", "; // Print i,
get_divisors(n / i); // Factor n/i,
return; // and exit.

}
 // If no divisor is found, then n is prime;
 // Print n and make no further calls.
 cout << n;
}

The heart of this function is a loop that tests numbers from 2 to the square
root of n (which has been calculated and placed in the variable sqrt_of_n).

 for (int i = 2; i <= sqrt_of_n; ++i) {
if (n % i == 0) { // If i divides n evenly,

cout << i << ", "; // Print i,
get_divisors(n / i); // Factor n/i,
return; // and exit.

}
 }

If the expression n % i == 0 is true, that means the loop variable i divides
evenly into n. In that case, the function does several things: it prints out the
loop variable, which is a divisor, calls itself recursively, and exits.

The function calls itself with the value n/i. Because the factor i is already
accounted for, the function needs to get the prime-number divisors for the
remaining factors of n, and these are contained in n/i.

If no divisors are found, that means the number being tested is prime. The
correct response is to print this number and stop.

cout << n;

For example, suppose that you input 30. The function tests to see what the
lowest divisor of 30 is. The function prints the number 2 and then reruns itself
on the remaining quotient, 15 (because 30 divided by 2 is 15).

During the next call, the function finds the lowest divisor of 15. This is 3,
so it prints 3 and then reruns itself on the remaining quotient, 5 (because 15
divided by 3 is 5).

ptg16518442

5
Recursive Functions 117

Here’s a visual summary: each call to get_divisors gets the lowest divisor and
then makes another call unless the number being tested is prime.

get_divisors(30)

print "2," get_divisors(15)

print "3," get_divisors(5)

print "5"

Interlude for Math Junkies

A little reflection shows why the lowest divisor is always a prime number.
Suppose we test a positive whole number and that A is the lowest divisor but
is not a prime. Since A is not prime, it must have at least one divisor of its
own, B, that is not equal to either 1 or A.

But if B divides evenly into A and A is a divisor of the target number, then
B must also be a divisor of the target number. Furthermore, B is less than A.
Therefore, the hypothesis that the lowest divisor is not prime results in a
contradiction.

This is easy to see by example. Any number divisible by 4 (a nonprime) is
also divisible by 2 (a prime). The prime factors will always be found first, as
long as you keep looking for the lowest divisor.

Ex
er

cis
es

 EXERCISES

Exercise 5.3.1. Rewrite the main function for Example 5.3 so that it prints the
prompt message “Enter a number (0 = exit) and press ENTER.” The program
should call get_divisors to show the prime factorization and then prompt the
user again, until he or she enters 0. (Hint: If you need to, look at the code for
Example 5.2 on page 106.)

Exercise 5.3.2. Write a program that calculates triangle numbers by using a recur-
sive function. A triangle number is the sum of all whole numbers from 1 to n,
in which n is the number specified. For example, triangle(5) = 5 + 4 + 3 + 2 + 1.

Exercise 5.3.3. Modify Example 5.3 so that it uses a nonrecursive solution. You will end
up having to write more code. (Hint: To make the job easier, write two functions:

Interlude

ptg16518442

Chapter 5 Functions: Many Are Called118

get_all_divisors and get_lowest_divisor. The main function should call get_all_
divisors, which in turn has a loop: get_all_divisors calls get_lowest_divisor
repeatedly, each time replacing n with n/i, where i is the divisor that was found. If
n itself is returned, then the number is prime and the loop should stop.)

Example 5.4. Euclid’s Algorithm for GCF
In the early grades of school, we’re asked to figure out greatest common fac-
tors (GCFs). For example, the greatest common factor of 15 and 25 is 5. Your
teacher probably lectured you about GCF until you didn’t want to hear about it
anymore.

Wouldn’t it be nice to have a computer figure this out for you? We’ll focus
just on GCF because, as I’ll show in Chapter 10, if you can figure out the CGF
of two numbers, you can easily compute the lowest common multiple (LCM).

The technique was worked out almost 2,500 years ago by a Greek mathemati-
cian named Euclid, and it’s one of the most famous in mathematics.

To get CGF: For whole two numbers A and B:

If B equals 0,

 The answer is A.

Else

 The answer is GCF(B, A%B)

You may remember remainder division (%) from earlier chapters. A%B
means this:

Divide A by B and produce the remainder.

For example, 5%2 equals 1 and 4%2 equals 0. A result of 0 means that B
divides A evenly.

If B does not equal 0, the algorithm replaces the arguments A, B with the
arguments B, A%B and calls itself recursively. This solution works for two
reasons:

◗ The terminal case (B equals 0) is valid. The answer is A. You can easily see that
the largest number that divides evenly into both A and 0 is A.

◗ The general case is valid: GCF(A, B) equals CGF(B, A%B), so the function calls
itself with new arguments B and A%B.

The general case is valid if the following is true: the greatest common factor
of the pair (B, A%B) is also the greatest common factor of the pair (A, B).

Ps
eu

do

code

ptg16518442

5
Recursive Functions 119

It turns out this is true and, because it is, the GCF problem is passed along
from the pair (A, B) to the pair (B, A%B). This is the general idea of recursion:
Pass the problem along to a simpler case involving smaller numbers.

It can be shown that the pair (B, A%B) involves numbers less than or equal
to the pair (A, B). Therefore, during each recursive call, the algorithm uses suc-
cessively smaller numbers until B is zero.

I save the rest of the proof for an interlude at the end of this section. Here is a
complete program for computing greatest common factors:

gcf.cpp

#include <cstdlib>
#include <iostream>
using namespace std;
int gcf(int a, int b);

int main()
{
 int a = 0, b = 0; // Inputs to GCF.

 cout << "Enter a: ";
 cin >> a;
 cout << "Enter b: ";
 cin >> b;
 cout << "GCF = " << gcf(a, b) << endl;
 return 0;
}

int gcf(int a, int b) {
 if (b == 0) {

return a;
 } else {

return gcf(b, a%b);
 }
}

H
ow

 It
 Works

How It Works
All that main does in this case is to prompt for two input variables a and b, call
the greatest-common-factor function (gcf), and print results:

cout << "GCF = " << gcf(a, b) << endl;

ptg16518442

Chapter 5 Functions: Many Are Called120

As for the gcf function, it implements the algorithm discussed earlier:

int gcf(int a, int b) {
 if (b == 0) {

return a;
 } else {

return gcf(b, a%b);
 }
}

The algorithm keeps assigning the old value of B to A and the value A%B
to B. The new arguments are equal or less to the old. They get smaller until B
equals 0.

For example, if we start with A = 300 and B = 500, the first recursive call
switches their order. (This always happens if B is larger.) From that point
onward, each call to gcf involves smaller arguments until the terminal case is
reached.

VALUE OF A VALUE OF B
VALUE OF A%B (DIVIDE AND
GET REMAINDER)

300 500 300

500 300 200

300 200 100

200 100 0

100 0 Terminal case: answer is 100

When B is 0, the gcf function no longer computes A%B, but instead produces
the answer.

If the initial value of A is larger than B, the algorithm produces an answer
even sooner. For example, suppose A = 35 and B = 25.

VALUE OF A VALUE OF B
VALUE OF A%B (DIVIDE AND
GET REMAINDER)

35 25 10

25 10 5

10 5 0

5 0 Terminal case: answer is 5

ptg16518442

5
Recursive Functions 121

Who Was Euclid?

Who was this Euclid guy? Wasn’t he the Greek who wrote about geome-
try (something like “The shortest distance between two points is a straight
line”)?

Indeed he was. Euclid’s Elements is one of the most famous books in
Western civilization. For almost 2,500 years it was used as a standard text-
book in schools. In this work, he demonstrated for the first time a tour de
force of deductive logic, proving all that was then known about geometry.
In fact, he invented the whole idea of proof. It is a great work that has had a
profound influence on mathematicians and philosophers ever since.

It was Euclid who (according to legend) said to King Ptolemy of Alexan-
dria, “Sire, there is no royal road to geometry.” In other words, you gotta
work for it.

Although its focus is on geometry, Euclid’s book has results in num-
ber theory as well. The algorithm here is the most famous of these results.
Euclid expressed the problem geometrically, finding the biggest length
commensurable with two sides of a rectangle. He conceived the problem in
terms of rectangles, but we can use any two integers.

Ex
er

cis
es

 EXERCISES

Exercise 5.4.1. Revise the program so that it prints out all the steps involved in the
algorithm. Here is a sample output:

GCF(500, 300) =>
GCF(300, 200) =>
GCF(200, 100) =>
GCF(100, 0) =>
100

Exercise 5.4.2. For experts: Revise the gcf function so that it uses an iterative (loop-
based) approach. Each cycle through the loop should stop if B is zero; otherwise, it
should set new values for A and B and then continue. You’ll need a temporary
variable—temp—to hold the old value of B for a couple of lines: temp = b, b = a%b,
and a = temp.

Interlude

ptg16518442

Chapter 5 Functions: Many Are Called122

Interlude for Math Junkies: Rest of the Proof

Earlier, I worked out some of a proof of Euclid’s algorithm. What remains is to
show that the greatest common factor of the pair (B, A%B) is also the greatest
common factor of the pair (A, B). This is true if we can show the following:

◗ If a number is a factor of both A and B, it is also a factor of A%B.

◗ If a number is a factor of both B and A%B, it is also a factor of A.

If these statements are true, then all the common factors of one pair are
common factors of the other pair. In other words, the set of common fac-
tors (A, B) is identical to the set of common factors (B, A%B). Since the two
sets are identical, they have the greatest member and therefore they share the
greatest common factor.

Consider the remainder-division operator (%). It implies the following,
where m is a whole number:

 A = mB + A%B

A%B is equal or less than A, so the general tendency of the algorithm is
to get progressively smaller numbers. Assume that n, a whole number, is a
factor of both A and B (meaning it divides both evenly). In that case:

 A = cn
 B = dn

where c and d are whole numbers. Therefore:

 cn = m(dn) + A%B
 A%B = cn - mdn = n(c - md)

This demonstrates that if n is a factor of both A and B, it is also a factor of
A%B. By similar reasoning, we can show that if n is a factor of both B and
A%B, it is also a factor of A.

Because the common factors for the pair (A, B) are identical to the com-
mon factors for the pair (B, A%B), it follows that they share the greatest
common factor. Therefore, GCF(A, B) equals GCF(B, A%B). QED.

Example 5.5. Beautiful Recursion: Tower of Hanoi
Strictly speaking, the earlier examples don’t require recursion. With some
effort, they can be revised as iterative (loop-based) functions. But there is a

Interlude

ptg16518442

5
Recursive Functions 123

mathematical puzzle that illustrates recursion beautifully, solving a problem
that would otherwise be very difficult to figure out.

This is the Tower of Hanoi puzzle: You have three stacks of rings. Each ring
is smaller than the one it sits on. The challenge is to move all the rings from the
first stack to the third, subject to these constraints:

◗ You can move only one ring at a time.

◗ You can place a ring only on top of a larger ring, never a smaller.

It sounds easy, until you try it! Consider a stack four rings high: You start by
moving the top ring from the first stack, but where do you move it and what do
you do after that?

To solve the problem, assume we already know how to move a group of n − 1
rings. Then, to move n rings from a source stack to a destination stack, do the
following:

1 Move n − 1 rings from the source stack to the (currently) unused, or “other,” stack.

2 Move a single ring from the source stack to the destination stack.

3 Move n − 1 rings from the “other” stack to the destination stack.

This is easier to envision graphically. First, the algorithm moves n − 1 rings
from the source stack to the “other” stack (“other” being the stack that is neither
source nor destination for the current move). In this case, n is 4 and n − 1 is 3, but
these numbers will vary.

1 Move n − 1 rings from source to “other.”

After this recursive move, at least one ring is left at the top of the source stack. This
top ring is then moved: this is a simple action, moving one ring from source to
destination.

ptg16518442

Chapter 5 Functions: Many Are Called124

2 Move one ring directly from source to destination.

Finally, we perform another recursive move, moving n − 1 rings from “other” (the
stack that is currently neither source nor destination) to the destination.

3 Move n − 1 rings from “other” to destination.

Source Other Destination

What permits us to move n − 1 rings in steps 1 and 3, when the constraints
tell us that we can move only one?

Remember the basic idea of recursion. Assume the problem has already been
solved for the case n − 1, although this may require many steps. All we have to
do is tell the program how to solve the nth case in terms of the n − 1 case. The
program magically does the rest. Of course, we don’t know how to move n rings
yet, but we will. The recursion technique enables us to move n rings by assuming
that the problem has been solved for n – 1.

It’s also important to solve the terminal case, n = 1. But that’s trivial because
where one ring is involved, we simply move the ring as desired.

Source Destination

The following program shows the C++ code that implements this algorithm:

ptg16518442

5
Recursive Functions 125

tower.cpp

#include <iostream>
using namespace std;
void move_rings(int n, int src, int dest, int other);
void move_a_ring(int src, int dest);

int main()
{
 int n = 3; // Stack is 3 rings high

 move_rings(n, 1, 3, 2); // Move stack 1 to stack 3
 return 0;
}

void move_rings(int n, int src, int dest, int other) {
 if (n == 1) {

move_a_ring(src, dest);
 } else {

move_rings(n - 1, src, other, dest);
move_a_ring(src, dest);
move_rings(n - 1, other, dest, src);

 }
}

void move_a_ring(int src, int dest) {
 cout << "Move from " << src << " to "

<< dest << endl;
}

H
ow

 It
 Works

How It Works
The program is fairly short considering what it does. In this example, I’ve set the
stack size to just three rings, although it can be any positive integer:

int n = 3; // Stack is 3 rings high

The call to the move_rings function says that three rings should be moved
from stack 1 to stack 3; these are determined by the second and third arguments,
respectively. The “other” stack, stack 2, will be used in intermediate steps.

move_rings(n, 1, 3, 2); // Move stack 1 to stack 3

ptg16518442

Chapter 5 Functions: Many Are Called126

This small example—moving only three rings—produces the following out-
put. You can verify the accuracy of this solution by using three different coins,
all of different sizes.

Move from 1 to 3
Move from 1 to 2
Move from 3 to 2
Move from 1 to 3
Move from 2 to 1
Move from 2 to 3
Move from 1 to 3

Try setting n to 4 and you’ll get a list of moves more than twice as long.
The core of the move_ring function is the following code, which implements

the general solution described earlier. Remember, this recursive approach
assumes the n − 1 case has already been solved. The function therefore passes
along most of the problem to the n − 1 case.

move_rings(n - 1, src, other, dest);
move_a_ring(src, dest);
move_rings(n - 1, other, dest, src);

Notice how the functional role of the three stacks is continually switched
between source (where to move a group of rings from), destination (where the
group is going), and other (the intermediate stack, to which some of the rings
will go before they end up at the destination).

Ex
er

cis
es

 EXERCISES

Exercise 5.5.1. Revise the program so that the user can enter any positive integer
value for n. Ideally, you should test the input to see whether it is greater than 0.

Exericse 5.5.2. Instead of printing the “Move” message directly on the screen, have
the move_ring function call yet another function, to which you give the name
exec_move. The exec_move function should take a source and destination
stack number as its two arguments. Because this is a separate function, you can
use as many lines of code as you need to print a message. You can print a more
informative message:

Move the top ring from stack 1 to stack 3.

ptg16518442

5
Recursive Functions 127

Example 5.6. Random-Number Generator
OK, we’ve had enough fun with recursion. It’s time to move on to another,
highly practical example. This one generates random numbers—a function at
the heart of many game programs.

The test program here simulates any number of dice rolls. It does this by call-
ing a function, rand_0toN1, which takes an argument, n, and randomly returns
a number from 0 to n − 1. For example, if the user inputs the number 6, this
program simulates dice rolls:

3 4 6 2 5 3 1 1 6

Here is the program code:

dice.cpp

#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;
int rand_0toN1(int n);

int main()
{
 int n = 0;
 int r = 0;

 srand(time(nullptr)); // Set seed for randomizing.
 cout << "Enter number of dice to roll: ";
 cin >> n;
 for (int i = 1; i <= n; ++i) {

r = rand_0toN1(6) + 1; // Get a number 1 to 6
cout << r << " "; // Print it

 }
 return 0;
}
// Random 0-to-N1 Function.
// Generate a random integer from 0 to N-1, with each
// integer an equal probability.
//
int rand_0toN1(int n) {
 return rand() % n;
}

ptg16518442

Chapter 5 Functions: Many Are Called128
H

ow
 It

 Works

How It Works
Example 3.2 (page 72) in Chapter 3 laid out the basic principles of random-
number generation in a C++ program. Here, I do a quick review.

The beginning of the program has to include certain files to support the
functions needed for random-number generation:

#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;

Next, the program then has to set a random-number seed to start off the
sequence of numbers (actually pseudo-random numbers) that the program is
going to generate. Using the system time this way guarantees a different set of
random numbers every time the program is run.

srand(time(nullptr));

Note � Remember that since C++11, compilers have been required to support the
nullptr keyword, which has a zero value but has pointer type. If you have a
compiler that’s more than a few years old, you might need to use NULL or 0
instead. Also remember that you may need to apply the static_cast operator to
get rid of all warning messages. See Chapter 3 for more information.

The rest of main prompts for a number and then prints the quantity of random
numbers requested. A for loop makes repeated calls to rand_0toN1, a function
that returns a random number from 0 to n − 1:

 for (int i = 1; i <= n; ++i) {
r = rand_0toN1(6) + 1; // Get num from 1 to 6
cout << r << " "; // Print it out

 }

Here is the function definition for the rand_0toN1 function:

int rand_0toN1(int n) {
 return rand() % n;
}

The range of numbers produced by rand is large; typically, it’s all of the unsigned
integer range (its highest value defined by MAX_RAND). But the beauty of the
remainder-division (“mod”) operator is that it is guaranteed to produce a result
in the range 0 to n – 1, no matter how large the range of the values is, as long as
the random-number generator produces numbers at least as high as N – 1.

ptg16518442

5
Games and More Games 129

In this case, the function is called with the argument 6, so it returns a value
from 0 to 5. Adding 1 to the number gives a random value in the range 1 to 6,
which is what we want.

Ex
er

cis
es

 EXERCISES

Exercise 5.6.1. Write a random-number generator that returns a number from 1 to N
(rather than 0 to N – 1), where n is the integer argument passed to it.

Exercise 5.6.2. Write a random-number generator that returns a random floating-
point number between 0.0 and 1.0. (Hint: Call rand, cast the result r to type
double by using static_cast<double>(r), and then divide by the highest value
in the int range, RAND_MAX.) Make sure you declare the function with the
double return type.

Games and More Games
Now that we know how to write functions and generate random numbers, it’s
possible to enhance some game programs.

We can improve the Subtraction Game example at the end of Chapter 2.
Right now, when the user plays optimal strategy, the computer responds by
choosing 1, which is arbitrary and predictable. We can make this more inter-
esting by randomizing the computer’s response in these situations—situations
in which there is no winning play. The following program makes the necessary
changes, with the altered lines of code in bold:

nim2.cpp

#include <iostream>
#include <ctime>
#include <cstdlib>
using namespace std;
int rand_0toN1(int n);

int main()
{
 int total, n;

 srand(time(nullptr)); // Set seed for randomizing.
 cout << "Welcome to NIM. Pick a starting total: ";
 cin >> total;

▼ continued on next page

ptg16518442

Chapter 5 Functions: Many Are Called130

 while (true) {
// Pick best response and print results.

if ((total % 3) == 2) {
total = total - 2;
cout << "I am subtracting 2." << endl;

} else if ((total % 3) == 1) {
--total;
cout << "I am subtracting 1." << endl;

} else {
n = 1 + rand_0toN1(2); // n = 1 or 2.
total = total - n;
cout << "I am subtracting ";
cout << n << "." << endl;

}
cout << "New total is " << total << endl;
if (total == 0) {

cout << "I win!" << endl;
break;

}

// Get user's response; must be 1 or 2.

cout << "Enter num to subtract (1 or 2): ";
cin >> n;
while (n < 1 || n > 2) {

cout << "Input must be 1 or 2." << endl;
cout << "Re-enter: ";
cin >> n;

}
total = total - n;
cout << "New total is " << total << endl;
if (total == 0) {

cout << "You win!" << endl;
break;

}
 }
 return 0;
}

int rand_0toN1(int n) {
 return rand() % n;
}

nim2.cpp, cont.

ptg16518442

5
131Chapter 5 Summary

Chapter 5 Summary
Here are the main points of Chapter 5:

◗ In C++, you can use functions to define a specific task, just as you might use a
subroutine or procedure in another language. C++ uses the name function for
all such routines, whether they return a value or not.

◗ You need to declare all your functions (other than main) at the beginning of
the program so that C++ has the type information required. Function declara-
tions, also called prototypes, use this syntax:

type function_name (argument_list

◗ You also need to define the function somewhere in the program, to tell what the
function does. Function definitions use this syntax:

type function_name (argument_list) {
statements

}

◗ A function runs until it ends or until the return statement is executed. A return
statement that passes a value back to the caller has this form:

return expression;

◗ A return statement can also be used in a void function (a function with no
return value) just to exit early, in which case it has a simpler form.

return;

◗ Local variables are declared inside a function definition; global variables are
declared outside all function definitions, preferably before main. If a variable is
local, it is not shared with other functions; two functions can each have a vari-
able named i (for example) without interfering with each other.

◗ Global variables enable functions to share common data, but such sharing pro-
vides the possibility of one function interfering with another. It’s a good policy
not to make a variable global unless there’s a clear need to do so.

◗ C++ functions can use recursion—meaning they call themselves. (A variation
on this is when two or more functions call each other.) This technique is valid
as long as there is a case that terminates the calls. For example:

int factorial(int n) {
 if (n <= 1) {

ptg16518442

Chapter 5 Functions: Many Are Called132
return 1;

 } else {
return n * factorial(n - 1); // RECURSION!

 }
}

ptg16518442

133

6 Arrays: All in
a Row...

One of the themes in this book so far has been that computers can only carry
out instructions that are precise and clear. How, then, can a computer operate
on thousands, millions, even billions of bytes of data?

The answer is that programming languages permit you to define something
called an array. An array is a data structure that has similar items of data—
called elements—and it can have as many of these items as you want.

The beauty of this mechanism is that as long as you can control and define the
general case, it’s as easy for a program to operate on an exceptionally large array
(even billions of items, if memory will allow) as it is to operate on a small one.

This is a major clue as to why computers and programming are useful.
Computers have no problem doing a repetitive task over and over… even if it’s
 performed a million times on a million different items.

A First Look at C++ Arrays
Suppose you’re writing a program to analyze scores given by five judges in an
Olympic kite-flying contest. You need to store all five values for a while so you
can measure statistical properties: range, average, median, and so on. Also, sup-
pose the judges are known by number.

One way to store the information is to declare five separate variables. Since
the scores have a fractional portion (0.1 being the lowest and 9.9 being about the
highest), use type double.

double scores1, scores2, scores3, scores4, scores5;

That’s a lot to enter. Wouldn’t it be nice to just enter the word scores and tell C++
to declare five variables for you? That’s exactly what happens when you declare
an array.

double scores[5];

ptg16518442

Chapter 6 Arrays: All in a Row... 134

This declaration creates five data items of type double and places them
next to each other in memory. In C++ programs, these items are referred to as
scores[0], scores[1], scores[2], scores[3], and scores[4]. The numbers between
brackets are indexes.

scores[0] scores[1] scores[2] scores[3] scores[4]

In the rest of the program, you can perform operations on each of these items
as if it were an individual variable.

scores[0] = 2.7; // Judge 0 gives a low score.
scores[2] = 9.5; // Judge 2 gives a high score.
scores[1] = scores[2]; // Judge 1 copies Judge #2.

Each of these array elements (scores[0], scores[1], and so on) acts like a vari-
able of type double—the difference being that it is referred to, in part, by a
number. After these operations are performed, the array looks like this:

scores[0]

scores[0] = 2.7;

scores[1] scores[2] scores[3] scores[4]

scores[2] = 9.5;

scores[1] = scores[2];

2.7 9.5 9.5

With only five elements, an array can be helpful. But that’s nothing com-
pared to the convenience of larger arrays. Look how much labor you save if you
have an array with 1,000 elements:

int votes[1000]; // Declare array with 1000 elements

This declaration creates an array with 1,000 elements, running from votes[0]
to votes[999]. Imagine if, instead, you had to type a thousand declarations
yourself!

To summarize, you can declare variables of int or double (or any other sup-
ported data type) by using this syntax:

ptg16518442

6
Zero-Based Indexing 135

type array_name[size];

As a result, array_name is created as an array of the specified size. Each element
of the array has the indicated type. The elements of the array range from array_
name[0] to array_name[size-1].

Initializing Arrays
Referring to a variable you’ve forgotten to initialize can end up producing gar-
bage (garbage being a technical term for a meaningless value). Remember, you
can initialize a variable when it’s declared, even when you declare more than
one on the same line.

int sum = 0, fingers = 10;

You can initialize an array with the use of a comma-separated list of initial-
izers. This approach uses a simple notation involving brackets and commas:

double scores[5] = {0.0, 0.0, 0.0, 0.0, 0.0};
int ordinals[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

Each of these lines is terminated with a closing brace followed by a semicolon (;).
Data declarations and function prototypes always end with a semicolon.

Note � If a variable or an array is global, then by default C++ initializes it to zero.
(In the case of arrays, C++ initializes every element to zero.) But local variables
not initialized contain random meaningless values, also known as “garbage.”

Zero-Based Indexing
C++ arrays work a little differently from the way you might expect. If you have
N items, they are not numbered 1 to N, but from 0 to N − 1. Again, for an array
declared this way,

double scores[5];

the elements are as follows:

scores[0]
scores[1]
scores[2]
scores[3]
scores[4]

Ke
y

Sy
ntax

ptg16518442

Chapter 6 Arrays: All in a Row... 136

No matter how you declare an array, the highest index number (in this case, 4)
will always be one less than the size of the array (in this case, 5). This may seem
counterintuitive.

But seen from another angle, it makes perfect sense. The index number in a
C or C++ array is not an ordinal number (that is, a position) as much as it is an
offset. That is, the index number of an element is a measure of the distance from
the beginning of the array.

And the first element, of course, is zero positions away from the beginning.
The index of the first element is therefore 0. This is worth restating as another
cardinal rule:

✱ In a C++ array of size N elements, the indexes run from 0 to N − 1.

Why Use Zero-Based Indexes?

Many other languages use 1-based indexing. The declaration ARRAY(5) in
FORTRAN creates an array with indexes running from 1 to 5. But all pro-
grams, regardless of what language they are written in, must ultimately be
translated into machine language, which is what the CPU actually executes.

At the machine level, array indexing is handled through offsets. One
register (a memory location on the CPU itself) contains the address of an
array—actually, the address of the first element. Another register contains
an offset: the distance to the desired element.

What is the offset of the first element? Zero, just as in C++. With a lan-
guage such as FORTRAN, the 1-based index must first be translated into a
0-based index by subtracting by 1. It is then multiplied by the size of each
element. To get the element with index I, do this:

address of element I = base address + ((I - 1) * size
of each element)

In a 0-based language such as C++, the subtraction no longer has to be
done. This results in a more efficient calculation at runtime:

address of element I = base address + (I * size of
each element)

Even though it results in only a slight saving of CPU cycles, it’s very much
in the spirit of C-based languages to use this approach because it is closer to
what the CPU does.

Interlude

ptg16518442

6
Zero-Based Indexing 137

Example 6.1. Print Out Elements
Let’s start by looking at one of the simplest programs possible that uses an array.
The rest of the chapter gets into more interesting programming challenges.

print_arr.cpp

#include <iostream>
using namespace std;

int main()
{
 double scores[5] = {0.5, 1.5, 2.5, 3.5, 4.5};

 for(int i = 0; i < 5; ++i) {
cout << scores[i] << " ";

 }
 return 0;
}

The program, when run, prints this:

0.5 1.5 2.5 3.5 4.5

H
ow

 It
 Works

How It Works
The program uses a for loop that sets the loop variable, i, to a series of values—0,
1, 2, 3, 4—corresponding to the range of indexes in the array, the scores.

 for(int i = 0; i < 5; ++i) {
cout << scores[i] << " ";

 }

This kind of loop is extremely common in C++ code, so you often see these
expressions used with for: i = 0, i < SIZE_OF_ARRAY, and ++i.

The loop cycles five times, each time with a different value for i.

ptg16518442

Chapter 6 Arrays: All in a Row... 138

VALUE OF I ACTION OF THE LOOP VALUE PRINTED

0 Print scores[0] 0.5

1 Print scores[1] 1.5

2 Print scores[2] 2.5

3 Print scores[3] 3.5

4 Print scores[4] 4.5

You can also understand the action of this loop visually. The following figure
demonstrates the action of the first two cycles of the loop.

scores[0] scores[1] scores[2] scores[3] scores[4]

0.5 1.5 2.5 3.5 4.5

scores[0] scores[1] scores[2] scores[3] scores[4]

0.5 1.5 2.5 3.5 4.5

cout

cout

0

I

1

I

Ex
er

cis
es

 EXERCISES

Exercise 6.1.1. Write a program that initializes an array of eight integers with the values
5, 15, 25, 35, 45, 55, 65, and 75, and then prints each of these out. (Hint: Instead of
using the loop condition i < 5, use i < 8, because in this case there are eight elements.)

Exercise 6.1.2. Write a program that initializes an array of six integers with the val-
ues 10, 22, 13, 99, 4, and 5. Print each of these out and then print their sum.
(Hint: You’ll need to keep a running total.)

ptg16518442

6
Zero-Based Indexing 139

Exercise 6.1.3. Write a program that prompts the user for each of seven values,
stores these in an array, and then prints out each of them, followed by the total.
You will need to write two for loops for this program: one for collecting data
and another for calculating the sum and printing out values.

Example 6.2. How Random Is Random?
Chapter 3, “And Even More Decisions!” introduced the use of so-called random
numbers. But randomness—the deliberate lack of predictability—is a philo-
sophical paradox. The essence of a computer algorithm is predictability. True
randomness may not be a theoretical possibility.

But is it a practical possibility? If we ask a program to output a series of these
numbers, do they behave in a way that has all the qualities we’d expect of a true
random sequence?

The rand_0toN1 function outputs an integer from 0 to N − 1, where N is the
argument to the function. We can use this function to get a series of numbers
from 0 to 9, and count how many we get of each digit. What you’d expect to
happen is this:

◗ Each of the 10 digits should be produced about one-tenth of the time.

◗ But the digits shouldn’t be produced with absolutely equal frequency. Especially
with a small number of trials, you should see variation. However, as the number
of trials increase, the ratio of actual hits to expected hits for each digit (one-
tenth of the total number) ought to get closer and closer to 1.0.

If these conditions can be met, we have a good example of practical random-
ness, which is probably good enough for the great majority of game programs.

We can test these conditions by using an array of 10 integers to register the
results. When the program is run, it will prompt for a number of trials to run.
It will then report the total number of hits for each of the numbers 0 to 9. Here’s
what sample output for 20,000 trials should look like:

Enter number of cases to do: 20000

0: 1950 Accuracy: 0.975
1: 2026 Accuracy: 1.013
2: 1897 Accuracy: 0.9485
3: 2102 Accuracy: 1.051
4: 2019 Accuracy: 1.0095
5: 1997 Accuracy: 0.9985
6: 1999 Accuracy: 0.9995

ptg16518442

Chapter 6 Arrays: All in a Row... 140
7: 1969 Accuracy: 0.9845
8: 2033 Accuracy: 1.0165
9: 2008 Accuracy: 1.004

With 20,000 trials, you should get a fast response. Depending on your com-
puter, it may take millions of trials before you see a noticeable delay. I have
run this program with as many as 2 billion trials (input: 2000000000, or
2'000'000'000 in C++14, which accepts the apostrophe as a digit-group sep-
arator). My desktop computer, which is a few years old, takes 28 minutes to
respond in that case. But your computer may be faster.

It’s interesting to run this program with different values for N. You should
find, as I have, that as the number of trials increase, the accuracy (the ratio of
expected hits to actual hits) does in fact get closer to 1.0, consistent with math’s
Law of Large Numbers.

Here’s the code for this program:

stats.cpp

#include <iostream>
#include <cstdlib>
#include <ctime>

using namespace std;

int rand_0toN1(int n);
int hits[10];

int main()
{
 int n = 0; // Number of trials; prompt from user
 int r = 0; // Holds a random value

 srand(time(nullptr)); // Set seed for randomizing.

 cout << "Enter how many trials and press ENTER: ";
 cin >> n;

 // Run n trials. For each trial, get a num 0 to 9
 // and then increment the corresponding element
 // in the hits array.

 for (int i = 0; i < n; ++i) {
r = rand_0toN1(10);

ptg16518442

6
Zero-Based Indexing 141

++hits[r];
 }

 // Print all elements in the hits array, along
 // with ratio of hits to EXPECTED hits (n / 10).

 for (int i = 0; i < 10; ++i) {
cout << i << ": " << hits[i] << " Accuracy: ";
double results = hits[i];
cout << results / (n / 10.0) << endl;

 }
 return 0;
}

// Random 0-to-N1 Function.
// Generate a random integer from 0 to N-1.
//
int rand_0toN1(int n) {
 return rand() % n;
}

H
ow

 It
 Works

How It Works
The program begins with a couple of declarations:

int rand_0toN1(int n);

int hits[10];

The rand_0toN1 function is declared here because it is going to be called by
main. The declaration of hits creates an array of 10 integers, ranging in index
from 0 to 9. Because this array is global (declared outside of any function), all its
elements are initialized to 0.

Note � Technically, the array is initialized to all-zero values because it has a static
storage class. Local variables can also be declared static, causing them to retain
values between calls even though they are not visible outside the function.

The main function begins by defining two integer variables, n and r, and by
setting the seed for the sequence of random numbers. This needs to be done in

stats.cpp, cont.

ptg16518442

Chapter 6 Arrays: All in a Row... 142

every program that uses random-number generation. (Remember to use NULL
if your computer is really old and doesn’t support nullptr.)

srand(time(nullptr)); // Set seed for randomizing.

The program then prompts for the value of n. This should look familiar by now:

 cout << "Enter how many trials and press ENTER: ";
 cin >> n;

The next part of the program is a for loop that carries out the requested
number of trials (namely, n) and stores results in the hits array.

// Run n trials. For each trial, get a num 0 to 9
// and then increment the corresponding element
// in the hits array.

for (int i = 0; i < n; ++i) {
 r = rand_0toN1(10);
 ++hits[r];
}

Note that r could actually be defined locally to the loop, which would make
sense. That is left as an exercise.

Each time through, the loop gets a random number r between 0 and 9 and
then records this as a “hit” for the number chosen by adding 1 to the appropri-
ate array element. At the end of the process, the element hits[0] contains the
number of 0s generated, hits[1] contains the number of 1s generated, and so on.

The expression hits[r]++ saves a lot of programming effort. If you weren’t
using an array, you’d have to write a series of if/else statements, or an equivalent
switch statement, like this:

if (r == 0)
 ++hits0;
else if (r == 1)
 ++hits1;
else if (r == 2)
 ++hits2;
else if (r == 3)
 ++hits3;
// etc.

Because we’re working with arrays, what would otherwise take 20 lines of code
takes only one! This single statement adds 1 to whatever element is selected by r:

++hits[r];

ptg16518442

6
Zero-Based Indexing 143

The rest of main consists of a loop that prints all the elements of the array.
This action reports the results and is run after all the trials have been per-
formed. As before, this code is much more concise than would be the case if we
weren’t using an array:

// Print all the elements in the hits array, along
// with ratio of hits to EXPECTED hits (n / 10).

for (int i = 0; i < 10; ++i) {
 cout << i << ": " << hits[i] << " Accuracy: ";
 double results = hits[i];
 cout << results / (n / 10.0) << endl;
}

The middle line of this compound statement may seem odd, but it is necessary.
The results are put in a temporary variable of type double. Because double has a
larger range than int, the compiler does not complain of information loss.

double results = hits[i];

This assignment needs to be done to force floating-point division in the statement
that follows. Otherwise—as happens when you divide one integer by another—
C++ would perform integer division, throwing fractional results away! An alterna-
tive would have been to use static_cast<double>(hits[i]) to cast the data.

The rand_0toN1 function is the same function I introduced at the end of
Chapter 2, “Decisions, Decisions.”

// Random 0-to-N1 Function.
// Generate a random integer from 0 to N-1.
//
int rand_0toN1(int n) {
 x = rand() % n;
}

Ex
er

cis
es

 EXERCISES

Exercise 6.2.1. Instead of declaring and defining the variable r at the beginning
of the function, declare it inside the loop that uses it. With this approach, r
does not need to be initialized to 0 because you can assign a meaningful value
directly. (This saves only a small amount of code, but it does make sense.)

Exercise 6.2.2. Alter Example 6.2 so that it generates not 10 different values but 5:
In other words, use the rand_0toN1 function to get a 0, 1, 2, 3, or 4. Then per-
form the requested number of trials, in which you’d expect each value of the
five values to be produced one-fifth of the time.

ptg16518442

Chapter 6 Arrays: All in a Row... 144

Exercise 6.2.3. Alter the example so that it can work with any number of values,
simply by changing one setting in the program. You can do this with a #define
directive near the beginning of the code. This directive instructs the compiler
to replace all occurrences of a symbolic name (in this case, VALUES) with the
specified text.

For example, to have each random trial generate one of five different values
(0 through 4), first put the following directive at the beginning of the code:

#define VALUES 5

Then use the symbolic name VALUES throughout the program, wherever
the program refers to the number of possible values. For example, you’d declare
the hits array as follows:

int hits[VALUES];

From then on, you can control the number of different values by going back
and changing one line—the #define directive—with a different number and
then recompiling. The beauty of this approach is that the behavior of the pro-
gram can be so easily modified by that one line of code.

Exercise 6.2.4. Rewrite the code in main so that it uses a loop similar to the one
in Example 5.2 (page 106), allowing the user to keep rerunning sessions any
number of times until he or she enters 0 to terminate the program. Before each
session, you need to reinitialize all the elements of the hits array to 0. You can
do that either by including a for loop that sets each element to 0 or by calling a
function that contains such a loop.

Strings and Arrays of Strings
To do the examples in the remainder of this chapter, I’m going to have to get a
little ahead of the story to show how to declare arrays of strings. In Chapter 8,
“Strings: Analyzing the Text,” we’ll return to the subject of strings.

Up until now, I’ve shown the use of string literals. For example, to print a
message, you’d use a line of code like this:

cout << "What a good C++ am I.";

You can also have string variables, just as you can have integer and floating-
point variables. There are actually two kinds of strings, as I’ll explain in
Chapter 8: traditional C-strings, which have type char*, and the C++ string
class, which has been supported by the standard C++ library for a number of
years now.

ptg16518442

6
Strings and Arrays of Strings 145

For example, the following code first stores the string in the variable named
message and then prints it. This approach uses the string class, and <string>
must be included to support this class.

include <string>
using namespace std;
...
string message = "What a good C++ am I";
cout << message;

The rest of this chapter uses arrays of strings. You declare them just as you’d
declare any type of array. For example:

string members[] = {"John", "Paul", "George", "Ringo"};

As with any other array, you can access an individual element by using an
index. For example:

cout << "The leader of the band is " << members[0];

This prints out the following:

The leader of the band is John.

Because the names of the members are all stored in the array, we can use a
loop to print all of them out efficiently. For example, this code

for (int i = 0; i < 4; ++i) {
 cout << members[i] << endl;
}

prints out this list of names:

John
Paul
George
Ringo

Example 6.3. Print a Number (from Arrays)
In this section, we’ll look at another example which, although it can be written
without arrays, is much more compact and efficient when written with them.
Example 3.3, on page 80, translated a numeric value into English words. 49, for
example, would produce the text “forty nine.”

The switch-case statement is probably the cleanest, most compact way to do
that without arrays. But the use of arrays makes the example much shorter still.

ptg16518442

Chapter 6 Arrays: All in a Row... 146

Instead of conditionally executing different lines of code, this example selects
elements from two arrays of strings. The result is a classic “Choose one from
column A, one from column B” approach, written elegantly and compactly.

print_n_arr.cpp

#include <iostream>
#include <string> // REMEMBER TO INCLUDE THIS!

using namespace std;

string tens_names[] = {"", "", "twenty", "thirty",
 "forty", "fifty", "sixty", "seventy", "eighty",
 "ninety" };

string units_names[] = {"", "one", "two", "three",
 "four", "five", "six", "seven", "eight", "nine" };

int main()
{
 int n = 0;

 cout << "Enter a number from 20 to 99: ";
 cin >> n;
 int tens_digits = n / 10;
 int units_digits = n % 10;
 cout << "The number you entered was ";
 cout << tens_names[tens_digits] << " ";
 cout << units_names[units_digits] << " ";
 return 0;
}

If you compare this version of the program, line by line, with the earlier version
(Example 3.3 on page XX), you should be amazed at how much more compact
this version is.

A sample session might look like the following:

Enter a number from 20 to 99: 23
The number you entered was twenty three.

ptg16518442

6
Strings and Arrays of Strings 147

H
ow

 It
 Works

How It Works
A comparison between this example and Example 3.3 demonstrates the power
of arrays. The use of a value chosen from an array causes differing effects—
printing a different word depending on the value—and this eliminates the need
for a long series of if-else statements or even a switch-case statement.

This doesn’t mean that you’ll always be able to get rid of an if-else or switch-
case statement and replace it by using arrays, but in this case you certainly can.

We can imagine the action of the program this way: First, it uses the value
tens_digits as an index, selecting a value from the array tens_names:

tens_digits = 2

0

""

1

""

2

"twenty"

3

"thirty" . . .

Next, the program uses value units_digits as an index, selecting a value from
the array units_names:

units_digits = 3

0

""

1

"one"

2

"two"

3

"three" . . .

Keep in mind that C++ arrays (as with arrays in most of the C-program-
ming language family) are zero based, so that the first element in every array is
indexed by a 0 value. This is true for all kinds of arrays.

Ex
er

cis
es

 EXERCISES

Exercise 6.3.1. What happens if the end user enters a number outside the range
20 to 99? Values 1 to 19 will result in harmless, though erroneous, results, but
high values (above 99) are potentially catastrophic because they cause out-of-
range indexing errors, which you want to avoid at all costs. (Note: Managed

ptg16518442

Chapter 6 Arrays: All in a Row... 148

environments such as Microsoft Studio limit the damage by throwing an excep-
tion, immediately halting the program.) Prevent this risk by writing code that
only accepts an input value between 20 and 99. Ideally, you should use a loop
that keeps querying the end user until a valid number is entered.

Exercise 6.3.2. The remaining exercises expand the extent of acceptable range.
When applied to input from 1 to 9, the output will be correct, except that it has
an extra space in front of it. Solve this problem.

Exercise 6.3.3. Introduce support for “teen” values 10 through 19. You’ll need to
add another array and another conditional test to the program.

Exercise 6.3.4. Finally, extend support for the hundreds digits, so that values from
1 to 999 can be handled. If you’re really ambitious, you can even revise the pro-
gram so it handles numbers all the way up to 999,999!

Example 6.4. Simple Card Dealer
For the final example in this chapter, I’ll introduce a simple application that
I’ll return to in Chapter 15, “Object-Oriented Poker.”

How do we simulate the action of a Poker dealer? To keep things easy, I’ll
make two simplifying assumptions:

1 We only care about ranks in this case, not suits.

2 We won’t, for now, worry about the problem of reshuffling.

Sample output, therefore might look like this:

A 5 3 K K

or this:

Q 7 10 6 7

Also, let’s test the deal-a-card function by dealing exactly five cards, as you’d
get in a simple game of poker (although again, ignore suits for now).

Cards behave differently from dice, even though both are randomization
devices. Each roll of a die is an independent event. Dice have no memory, but a
deck of cards does. If, for example, four aces have been dealt but half the deck
remains, the probability of getting another ace goes to zero.

The way we simulate this “deck memory” is with another array! The tech-
nique is to produce an array of integers and give them values equal to their

ptg16518442

6
Strings and Arrays of Strings 149

position: 0, 1, 2, 3, 4, all the way up to 51. Then randomize the array—that is,
shuffle it—and deal off the top.

Remember that because this application uses randomization, it needs to
include the following:

#include <cstdlib>
#include <ctime>

We’ll also need an array of card names, so <string> must be included as well.

dealer.cpp

#include <iostream>
#include <string> // Needed for string class.
#include <cstdlib> // Needed for randomization.
#include <ctime>

using namespace std;

int deck[52];

string card_names[] = {"A", "2", "3", "4", "5", "6",
 "7", "8", "9", "10", "J", "Q", "K" };

void swap_cards(int i, int j);
int rand0_to_N(int n);

int main()
{
 srand(ctime(NULL)); // Set random seed.

 // Initialize deck 0, 1, 2, 3... 51

 for (int i = 0; i < 52; ++i) {
deck[i] = i;

 }

 // Shuffle deck.

 for (int i = 51; i > 0; --i) {
int j = rand0_to_N(i);

▼ continued on next page

ptg16518442

Chapter 6 Arrays: All in a Row... 150

swap_cards(i, j);
 }

 // Deal 5 cards.

 for (int i = 0; i < 5; ++i) {
int j = deck[i] % 13;
cout << card_names[j] << " ";

 }
 cout << endl;
 return 0;
}

//
void swap_cards(int i, int j) {
 int temp = deck[i];
 deck[i] = deck[j];
 deck[j] = temp;
}

//
int rand0_to_N(int n) {
 return rand() % (n + 1);
}

H
ow

 It
 Works

How It Works
Although this program is longer than some others in this book, it’s still simple
and easy to understand. The central data structure in this program is deck[], an
array of 52 integers.

int deck[52];

This array is not explicitly initialized. As a global variable, it’s therefore ini-
tialized to zero values by default. But it’s dangerous to rely on such behavior,
because if deck[] is made local, its values are initialized to garbage—which is a
humorous way of saying it could contain anything.

The real initialization of the deck array is done in the main function, which
uses a simple loop to set values to 0, 1, 2, 3, and so on, in that order. This is
achieved by setting each element to its index value.

dealer.cpp, cont.

ptg16518442

6
Strings and Arrays of Strings 151

 for (int i = 0; i < 52; ++i) {
deck[i] = i;

 }

Next, shuffle the deck! That turns out to be fairly easy.

 for (int i = 51; i > 0; --i) {
int j = rand0_to_N(i);
swap_cards(i, j);

 }

The effect here is to fill each position of the array with a randomly selected
value, picked with equal probability from the numbers 0 to 51. Here’s the
pseudocode equivalent:

For I equal 51 counting down to 1,

 Set J equal to a random number from 0 to I

 Swap elements at positions I and J

Think of it this way: Start with 52 cards. Take the bottom card and randomly
swap it with any card in the deck, which (and this is significant) may include
the bottom card itself. If the replacement card is the bottom card, then the swap
is a no-op, which is fine. The final result is that the bottom card ends up being
any of the 52 cards with equal probability.

Then, set that card aside and focus on the remaining 51 cards. Repeat the oper-
ation on those cards, resulting in the selection of one of those 51. Set that card
aside, placing it on top of the previously selected card, and repeat again with the
remaining 50 cards. After this has been done down to the last two cards, the deck
is fully randomized. Moreover, if the randomization itself is good, then every card
can be in any position, with equal probability for any case.

This next diagram, before and after shuffling.

Ps
eu

do

code

ptg16518442

Chapter 6 Arrays: All in a Row... 152

Given a fully shuffled deck, we now deal cards off the top, one at a time, con-
verting a number to its corresponding card. This is done by using the remain-
der-division operator (%), which takes a number from 0 to 51 and produces a
number in the range 0 to 12 (one of 13 different values) with equal distribution.

int j = deck[i] % 13;

After this calculation, j will be a number from 0 to 12 with (initially) equal
probability. The last thing to do is to look this number up in the card_names
array to convert a number from 0 to 12 into a short string such as “A”, “K”, “Q”,
“J”, “10”, and so on.

Ex
er

cis
es

 EXERCISES

Exercise 6.4.1. Alter the program so that it prints out card ranks as full names:
“ace,” “two,” “three,” and so on. You may want to print two and three as “deuce”
and “trey,” respectively.

Exercise 6.4.2. Print out suits as well as ranks, so that the program prints a full card
name such as “ace of spades.” There are just four suits: clubs, diamonds, hearts,
and spades. This information can also be attached to the numbers 0 to 51. You
can think of the first 13 numbers as clubs, the next 13 as diamonds, and so on.
(Hint: you can divide by 4 to get a number from 0 to 3; in other words, you can
use a combination of remainder division (%) and integer division (/) to associate
a number with a unique combination of rank and suit.)

Exercise 6.4.3. Precisely what changes do you need to make to simulate dealing
from a six-deck “shoe”? This involves six complete 52-card decks shuffled
together. Revise the code for the six-deck shoe, using card numbers 0 through 51
only—thus preserving the suit-assigning ability from the previous exercise.
(Hint: you can use remainder division to convert a larger set of numbers into
repetitions of 0 through 51.) How does dealing from this shoe affect the proba-
bility of poker hands? Is it more or less likely to be dealt four aces?

2-D Arrays: Into the Matrix
Most computer languages provide the ability not only to create ordinary,
one-dimensional arrays, but to create multidimensional arrays as well. C++ is
no exception.

Two-dimensional arrays in C++ have this form:

type array_name[size1][size2];

ptg16518442

6
153Chapter 6 Summary

The number of elements is size1 * size2, and the indexes in each dimen-
sion are 0-based just as in one-dimensional arrays. For example, consider this
declaration:

int matrix[10][10];

This creates a 10-by-10 array, having 100 elements. Each dimension has index
numbers running from 0 to 9. The first element is therefore matrix[0][0], and
the last element is matrix[9][9].

To process such an array programmatically, you need to use a nested loop
with two loop variables. For example, this code initializes all the members of
the array to 0:

for (int i = 0; i < 10; i++) {
 for (int j = 0; j < 10; j++) {

matrix[i][j] = 0;
 }
}

Here is how this code works:

1 The variable i is set to 0, and a complete set of cycles of the inner loop—with j rang-
ing from 0 to 9—is done first.

2 One cycle of the outer loop is then complete and i is incremented to the next higher
value, which is 1. Then, all the cycles of the inner loop run again, with j (as always)
ranging from 0 to 9.

3 The process is repeated until i is incremented past its terminal value, 9.

Consequently, the values of i and j will be (0, 0), (0, 1), (0, 2), ... (0, 9), at
which point the inner loop is complete, i is incremented, and the inner loop
begins again: (1, 0), (1, 1), (1, 2) and so on. In all, 100 operations will be per-
formed, because each cycle of the outer loop, which runs 10 times, performs 10
cycles of the inner loop.

In C++ arrays, the index on the right changes the fastest. This means the ele-
ments matrix[5][0] and matrix[5][1] are next to each other in memory.

Chapter 6 Summary
Here are the main points of Chapter 6:

◗ Use bracket notation to declare an array in C++. Declarations have this form:

type array_name[number_of_elements];

ptg16518442

Chapter 6 Arrays: All in a Row... 154

◗ For an array of size n, the elements have indexes ranging from 0 to n − 1.

◗ You can use loops to process arrays of any size efficiently. For example, assume
an array was declared with SIZE_OF ARRAY elements. The following loop ini-
tializes every element to 0:

for(int i = 0; i < SIZE_OF_ARRAY; ++i)
 my_array[i] = 0;

◗ You can use a list of values between set braces to initialize arrays:

double scores[5] = {6.8, 9.0, 9.0, 8.3, 7.1 };

◗ You can use the string class to declare a string variable. (I’ll explain more about
this type as well as traditional C-strings in Chapter 8.) For example:

#include <string>
using namespace std;
...
string name = "Joe Bloe";

◗ You can then declare arrays of strings just as you can declare other kinds of
arrays. For example:

string band[] = {"John", "Paul", "George", "Ringo"};

◗ You can index arrays of strings just as you can other kinds of arrays:

cout << "The leader of the group was " << band[0];

◗ C++ does not check array bounds for you at runtime (except in managed envi-
ronments such as Visual Studio). Therefore, show care that you don’t write
array-access code that overwrites other areas of memory.

◗ Two-dimensional arrays are declared this way:

type array_name[size1][size2];

ptg16518442

155

7 Pointers: Data
by Location

C and C++ programmers are sometimes thought to be a special breed, in part
because they understand pointers. This also gives C++ a reputation for being
difficult. “What’s a pointer, anyway?” But the idea is fairly simple.

A pointer is just a variable that stores the location of another piece of data.
Think of it this way: Sometimes it’s easier to write down a location to a cabinet
full of data rather than to copy all the contents.

Which would you rather do: spend all night copying the contents of a file
cabinet, or just tell someone (assuming it’s someone you trust) where the data is
located? And consider what happens if you need to give this person the ability to
change the data. Then you must give them the location of the original data, not
copies of it.

If you can understand that, you can understand pointers.

What the Heck Is a Pointer, Anyway?
The CPU doesn’t understand names or letters: It refers to locations in mem-
ory by number, or address. You usually don’t know what these numbers are,
although you can print them out if you want. For example, the computer
might store variables a, b, and c at numeric addresses 0x220004, 0x220008, and
0x22000c. These are numbers in hexadecimal notation (that’s base 16).

a

b

c

Value Address

5

3

8

0x220004

0x220008

0x22000c

ptg16518442

Chapter 7 Pointers: Data by Location156

There’s nothing magic about these particular addresses; they are just num-
bers I picked at random. In practice, many things will affect what addresses are
used at runtime, and the physical addresses of your data will probably be different
every time you run the program. You can’t know in advance what addresses will
be assigned to your variables, but you can use those addresses during run time,
as you’ll shortly see.

Now you’re ready to understand what a pointer is.

The Concept of Pointer
A pointer is a variable that contains a numeric address. While most variables
contain useful information (such as 5, 3, and 8 in this example), a pointer con-
tains the location of another variable. So, a pointer is useful only as a way to get
to something else. But—as with the file cabinet of data you’d rather not have
to make copies of—sometimes it’s much more efficient to use pointers, that is, to
pass the location of the data, not copies of it.

a

b

c

p

Value Address

5

3

8

0x220004

0x220004

0x220008

0x22000c

0x220010

Sometimes a function needs to send another function a large amount of data.
One way to do this is to copy all that information and pass it along. But another,
more efficient way is just to give the address of the data to work on.

By default, arguments in C++ are passed by value. When an argument is
passed to a function, it gets its own copy of that value, which it can do anything
with: manipulate the value, print it, double it, divide it—anything. But those
changes only affect the temporary copies.

How, then, does a function change the value of a variable passed to it? One
way to do that is to pass the location of the data. As with a file cabinet, if you tell
people the location, they can modify the data. But if you give copies of the data,
changes to that data will have no permanent effect.

There are still other reasons for using pointers. As you’ll see in Chapter 12,
“Two Complete OOP Examples,” pointers enable you to create data structures

ptg16518442

7
The Concept of Pointer 157

with links to other data structures, to any level of complexity. So, you can have
linked lists and internal networks in memory. Later in this book, we’ll look at
data structures like that.

What Do Addresses Look Like?

In the previous section, I assumed the variables a, b, and c had the physi-
cal addresses 0x220004, 0x220008, and 0x22000c. These are hexadecimal
numbers, meaning they use base 16.

There’s a good reason for using hexadecimal notation. Because 16 is an
exact power of 2 (2 * 2 * 2 * 2 = 16), each hexadecimal digit corresponds to
a pattern of exactly four binary digits—no more, no less. Here’s how hexa-
decimal digits work:

HEXADECIMAL
DIGIT

EQUIVALENT
DECIMAL

EQUIVALENT
BINARY

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

a 10 1010

b 11 1011

c 12 1100

e 13 1101

e 14 1110

f 15 1111

The advantage of hexadecimal notation is its close relation to binary. For
example, the hex numeral 8 is 1000 in binary, and hex numeral f is 1111.
Therefore, 88ff is equivalent to 1000 1000 1111 1111.

▼ continued on next page

Interlude

ptg16518442

Chapter 7 Pointers: Data by Location158

▼ continued

For computer architects, who need to translate numbers into bit pat-
terns quickly, this is essential. Also, because every hex digit corresponds to
four binary digits—no more, no less—you can tell at a glance how wide an
address is: 0x8000 has four digits, therefore it corresponds to precisely 16
binary digits.

Every computer architecture uses addresses of some fixed width. It’s
important to know at a glance whether an address is too large to fit on a
certain computer.

At the time of this writing, 32-bit architecture is the universal norm on
personal computers, although it will someday give way to 64-bit architec-
ture. With 32-bit addresses, no address can have more than 32 binary digits
(eight hexadecimal digits). Technically, all addresses should be expressed in
eight hex digits: for example, 0x000080ff. For simplicity’s sake, this chapter
uses smaller addresses and neglects the leading zeroes, just to make the fig-
ures manageable on the page.

Remember that 32-bit addressing supports more than 4 billion locations
in memory, although this is even now being exceeded by memory hardware,
requiring clever work-arounds on the part of computer and operating-
system designers. Someday, 64-bit architecture will support a virtually
unlimited number of addresses.

Declaring and Using Pointers
A pointer declaration uses the following syntax:

type *name;

For example, you can declare a pointer p, which can point to variables of type
int:

int *p;

At the moment, the pointer is not initialized. All we know is that it can point
to data objects of type int. But type matters. The base type of a pointer deter-
mines how the data it points to is interpreted: p has type int*, so it should point
only to int variables.

The next statements declare an integer n, initialize it to 0, and assign its
address to pointer p:

int n = 0;
p = &n; // p now points to n!

Interlude
Ke

y
Sy

ntax

ptg16518442

7
Declaring and Using Pointers 159

The ampersand (&) gets the address of its operand. You generally don’t care
what the address is. All that matters is that p contains the address of n; that is, p
points to n and now you can use p to manipulate n.

After p = &n is executed, p contains the address of n. A possible memory layout
for the program is shown here.

Value Address

0x230004

0x230004n

p

0

0x230220

p = &n;

.

.

.

.

In all these examples, the addresses shown are arbitrary. A program will
likely use different addresses every time it is run. The important thing about
pointers is the relationships they create.

Here comes the interesting part: Applying the indirection operator (*) says
“the thing pointed to.” Assigning a value to *p has the same effect as assigning
that value to n, because n is what p points to.

*p = 5; // Assign 5 to the int pointed to by p.

So, because of the asterisk (*), this operation changes the thing that p points to,
not the value of p itself. Now the memory layout looks like this:

Value Address

0x230004

0x230004n

p

5

0x230220

*p = 5;

.

.

.

.

The effect of the statement, in this case, is the same as n = 5. The computer
finds the memory location pointed to by p and puts the value 5 at that location.

ptg16518442

Chapter 7 Pointers: Data by Location160

You can use a value pointed to by a pointer both to get and to assign data.
Here’s another example of pointer use:

*p = *p + 3; // Add 3 to the int pointed to by p.

The value of n changes yet again—this time from 5 to 8. The effect of this
statement is the same as n = n + 3. The computer finds the memory location
pointed to by p and adds 3 to the value at that location.

Value Address

0x230004

0x230004n

p

8

0x230220

*p = *p + 3;

.

.

.

.

To summarize, when p points to n, referring to *p has the same effect as
referring to n. Here are more examples:

WHEN P POINTS TO N, THIS
STATEMENT

HAS THE SAME EFFECT AS THIS
STATEMENT

*p = 33; n = 33;

*p = *p + 2; n = n + 2;

cout << *p; cout << n;

cin >> *p; cin >> n;

But if using *p is the same as using n, why bother with *p in the first place?
One reason, remember, is that pointers enable a function to change the value of
an argument passed to it. Here’s how it works in C and C++:

1 The caller of a function passes the address of a variable to be changed. For example,
the caller passes &n (the address of n).

2 The function has a pointer argument, such as p, that receives this address value.
The function can then use *p to manipulate the value of n.

ptg16518442

7
Declaring and Using Pointers 161

Example 7.1. Print Out Addresses
Before making practical use of pointers, let’s print some data and compare
pointer values to the standard int variables. What’s essential here is to under-
stand the difference between a variable’s content and its address.

pr_addr.cpp

#include <iostream>
#include <stdlib.h>

using namespace std;

int main()
{
 int a = 2, b = 3, c = 4;
 int *pa = &a;
 int *pb = &b;
 int *pc = &c;
 cout << "Value of pointer pa is: " << pa << endl;
 cout << "Value of pointer pb is: " << pb << endl;
 cout << "Value of pointer pc is: " << pc << endl;
 cout << "The values of a, b, and c are: ";
 cout << a << ", " << b << ", " << c << endl;
 return 0;
}

When run, this program should output results similar (but not necessarily
identical to) the following, which is what I got:

The value of pointer pa is: 0x22ff74
The value of pointer pb is: 0x22ff70
The value of pointer pc is: 0x22ff6b
The values of a, b, and c are: 2, 3, 4

This tells us that the values of a, b, and c are 2, 3, and 4. The addresses are
expressed as hexadecimal numbers, 0x22ff74, 0x22ff70, and 0x22ff6b, but your
results will vary. Physical addresses depend on many things you don’t control.

What matters is that once you get a pointer—a variable containing another
variable’s address—you can use it to manipulate the thing to which it’s pointing.

Although a, b, and c were declared in that order, my C++ compiler assigned
their addresses in reverse order: c got a lower address than a. There’s a lesson

ptg16518442

Chapter 7 Pointers: Data by Location162

here: except in the case of array elements (which we’ll get to in this chapter),
and classes (which we’ll get to later), never make assumptions about the order-
ing of variables in memory.

After a, b, and c are declared, the program declares pointers and initializes
them to the addresses of a, b, and c. Remember that the ampersand (&) means
“Get the address of.”

 int *pa = &a;
 int *pb = &b;
 int *pc = &c;

Example 7.2. The double_it Function
Now let’s put pointers to use. This program uses a function named double_it,
which doubles a variable passed to it or, rather, doubles a variable whose address
is passed to it.

#include <iostream>
using namespace std;

void double_it(int *p);

int main()
{
 int a = 5, b = 6;

 cout << "Val. of a before doubling: " << a << endl;
 cout << "Val. of b before doubling: " << b << endl;

 double_it(&a); // Pass address of a.
 double_it(&b); // Pass address of b.

 cout << "Val. of a after doubling: " << a << endl;
 cout << "Val. of b after doubling: " << b << endl;
 return 0;
}

void double_it(int *p) {
 *p = *p * 2;
}

ptg16518442

7
Declaring and Using Pointers 163

H
ow

 It
 Works

How It Works
This is a straightforward program. The main function does just the following:

1 Print the values of a and b.

2 Call the double_it function to double the value of a by passing the address of a (&a).

3 Call the double_it function to double the value of b by passing the address of b (&b).

4 Print the values of a and b again.

This example needs pointers to work. You could write a version of double_it
that took a simple int argument, but such a function would do nothing.

void double_it(int n) { // THIS DOESN'T WORK!
 n = n * 2;
}

The problem is that when an argument is passed to a function, the function
gets its own copy of the argument. As soon as the function returns, that copy is
thrown away.

Getting a variable passed to you is like getting photocopies of a secret doc-
ument. You can view the information, but you have no access to the originals.
But getting a pointer is like getting the location of the original documents. You
not only get to look at them, but you can also make changes. So to enable a
function to change the value of a variable, use pointers.

void double_it(int *p);

This declaration says that “the thing pointed to by p” has int type. Therefore,
p itself is a pointer to an int. The caller must pass an address, which it does by
using the address operator (&).

double_it(&a);

void double_it(int *p) {
 *p = *p * 2
}

Visually, here’s the effect in terms of a hypothetical memory layout. The
address of a is passed to the function, which then uses it to change the value of a.

ptg16518442

Chapter 7 Pointers: Data by Location164

Value Address

0x2f00

0x2f00
0x2f04

a
b

p

5

0x30fb

Value Address

0x2f00

0x2f00
0x2f04

a
b

p

10
6

0x30fb

*p = *p * 2;

6

p &a

.

.

.

.

.

.

.

.

The program then calls the function again, this time passing the address of b.
The function now uses this address to change the value of b.

Value Address

0x2f04

0x2f00
0x2f04

a
b

p

5

0x30fb

Value Address

0x2f04

0x2f00
0x2f04

a
b

p

10
12

0x30fb

*p = *p * 2;

6

p &b

.

.

.

.

.

.

.

.

Ex
er

cis
es

 EXERCISES

Exercise 7.2.1. Write a program to call a function triple_it that takes the address
of an int and triples the value pointed to. Test it by passing an argument n,
which is initialized to 15. Print out the value of n before and after the function
is called. (Hint: The function should look similar to double_it in Example 7.1.
Remember to pass &n.)

Exercise 7.2.2. Write a program with a function named convert_temp: The function
takes the address of a variable of type double and applies Centigrade-to-Fahrenheit
conversion. A variable that contains a Centigrade temperature should, after the
function is called, contain the equivalent Fahrenheit temperature. Test the func-
tion. (Hint: The relevant formula is F = (C * 1.8) + 32.)

ptg16518442

7
Swap: Another Function Using Pointers 165

Data Flow in Functions
Passing a pointer is a way of achieving (or simulating) pass by reference of ordi-
nary variables. In other words, by receiving a pointer value, a function gains the
ability to manipulate not just copies of these values, but the values of the actual
variables passed to it.

This has the obvious advantage of enabling a function to, in effect, pass back
more than one value. Sometimes a function needs to set a whole series of values
as part of its “data-output” effect—and simply having one return value is
 insufficient. One way to pass back information (outputting data to the rest of
the program) is to have the function manipulate global variables, but it’s best to
limit the number of global variables if you can.

Now you know how to pass arguments directly (by value) or by reference
through a pointer, and this enables you to write functions with a more sophisti-
cated input/output data flow:

Function arguments,
passed by value

global vars

local vars

Return
Value

FUNCTION

Function arguments,
by ptr or reference

Swap: Another Function Using Pointers
Suppose you have two int variables and you want to swap their values. It’s easy to
do this with a third variable, temp, whose function is to hold a temporary value.

temp = a;
a = b;
b = temp;

ptg16518442

Chapter 7 Pointers: Data by Location166

Now, wouldn’t this be a useful bit of functionality to put into a function,
which you could then call whenever you needed? So, for example, if you had
two variables A and B, and you wanted to exchange their values, you could call
a swap function.

This looks good, but remember: unless you pass pointers to the variables
(that is, pass their addresses), changes to the variables are ignored.

Here’s a solution that works, using pointers to enable the function to alter the
variables:

// Swap function.
// Swap the values pointed to by p1 and p2.
//
void swap(int *p1, int *p2) {
 int temp = *p1;

*p1 = *p2;
*p2 = temp;

}

The expressions *p1 and *p2 are integers, and you can use them as you would
any integer variables. But remember that p1 and p2 are also addresses, and the
addresses themselves do not change. The data that’s altered is the data pointed to
by p1 and p2. This is easy to see with an example.

Assume that big and little are initialized to 100 and 1, respectively.

int big = 100;
int little = 1;

The following statement calls the swap function, passing the addresses of these
two variables. Note the use of the address operator (&) here:

swap(&big, &little);

Now if you print these variables, you’ll see that the values have been exchanged.

cout << "The value of big is now " << big << endl;
cout << "The value of little is now " << little;

The values at the addresses in p1 and p2 change, not p1 and p2 themselves.
This is why the indirection operator (*) is often called the at operator.

Example 7.3. Array Sorter
Now it’s time to show the power of this swap function. Pointers are not lim-
ited to pointing to simple variables, although I used that terminology to keep

ptg16518442

7
Swap: Another Function Using Pointers 167

things simple. An int pointer, for example, can point to any memory location
that stores an int value. This means it can point to elements of an array as well
as point to a variable.

Here, for example, the swap function is used to swap the values of two ele-
ments of an array named arr:

int arr[5] = {0, 10, 30, 25, 50};

swap(&values[2], &values[3]);

Given the right procedure, you can use the swap function to sort the values
of an array. Take a look at arr again—this time with the data jumbled around.

2530 0 1050

arr[0] arr[1] arr[2] arr[3] arr[4]

Here’s a straightforward solution—the well-known (but not sophisticated)
“selection sort” algorithm:

1 Find the lowest value and put that value in arr[0].

2 Find the next lowest value and put that value in arr[1].

3 Continue in this manner until you get to the end.

Here is the solution written out in pseudocode:

For i = 0 to n – 2,

 Find the lowest value in the range a[i] to a[n–1]

 If i is not equal to the index of the lowest value found,

 Swap a[i] and a[index_of_lowest]

That’s the plan. The effect will be to put the lowest value in a[0], the next
lowest value in a[1], and so on. Note that by

For i = 0 to n - 2,

I mean a for loop in which i is set to 0 during the first cycle of the loop, 1 during
the next cycle of the loop, and so on, until i is set to n – 2, at which point it com-
pletes the last cycle. Each cycle of the loop places the correct element in a[i] and
then increments i.

Inside the loop, a[i] is compared to all the remaining elements (the range a[i]
to a[n − 1], which includes all elements on the right). By the time every value of i

Ps
eu

do

code

ptg16518442

Chapter 7 Pointers: Data by Location168

has been processed, the whole array will have been sorted. Here’s an example of
the first three cycles of the loop, illustrated:

8 33 15 7 12 16 2 59

0 1 2 3 4 5 6 7

Swap a[0] with the lowest element in this range

2 33 15 7 12 16 8 59

0 1 2 3 4 5 6 7

Swap a[1] with the lowest element in this range

2 7 15 33 12 16 8 59

0 1 2 3 4 5 6 7

Swap a[2] with the lowest element in this range

But how do we find the lowest value in the range a[i] to a[n − 1]? We need
another algorithm.

What the following algorithm does is 1) start by assuming that i is the lowest
element and so initialize “low” to i; and 2) whenever a lower element is found,
this lower element becomes the new “low” element.

To find the lowest value in the range a[i] to a[n − 1], do the following:

Set low to i

For j = i + 1 to n − 1,

 If a[j] is less than a[low]

 Set low to j

We then combine the two algorithms. After this, it’s an easy matter to write
the C++ code.

For i = 0 to n − 2,

 Set low to i

Ps
eu

do

code

ptg16518442

7
Swap: Another Function Using Pointers 169

 For j = i + 1 to n − 1,

 If a[j] is less than a[low]

Set low to j

 If i is not equal to low,

 Swap a[i] and a[low]

Here’s the complete program that uses this algorithm to sort an array:

sort.cpp

#include <iostream>
using namespace std;

void sort(int n);
void swap(int *p1, int *p2);

int a[10];

int main ()
{
 for (int i = 0; i < 10; ++i) {

cout << "Enter array element #" << i << ": ";
cin >> a[i];

 }
 sort(10);

 cout << "Here is the array, sorted:" << endl;
 for (int i = 0; i < 10; ++i) {

cout << a[i] << " ";
 }
 return 0;
}

// Sort function: sort array named a with n elements.
//
void sort (int n) {
 int lowest = 0;

 for(int i = 0; i < n - 1; ++i) {

▼ continued on next page

ptg16518442

Chapter 7 Pointers: Data by Location170

// This part of the loop finds the lowest
// element in the range i to n-1; the index
// is set to the variable named low.

low = i;
for (int j = i + 1; j < n; ++j) {

if (a[j] < a[low]) {
low = j;

}
}

// This part of the loop performs a swap if
// needed.

if (i != low) {
swap(&a[i], &a[low]);

}
 }
}

// Swap function.
// Swap the values pointed to by p1 and p2.
//
void swap(int *p1, int *p2) {
 int temp = *p1;

*p1 = *p2;
*p2 = temp;

}

H
ow

 It
 Works

How It Works
Only two parts of this example are directly relevant to understanding pointers. The
first is the call to the swap function, which passes the addresses of a[i] and a[low]:

swap(&a[i], &a[low]);

An important point here is that you can use the address operator (&) to take the
address of array elements, just as you can use it with variables.

The other part of the example that’s relevant to pointer use is the function
definition for swap, which I described in the previous section.

sort.cpp, cont.

ptg16518442

7
Swap: Another Function Using Pointers 171

// Swap function.
// Swap the values pointed to by p1 and p2.
//
void swap(int *p1, int *p2) {
 int temp = *p1;

*p1 = *p2;
*p2 = temp;

}

As for the sort function, the key to understanding it is to note what each part
of the main loop does. The main for loop successively sets i to 0, 1, 2, …, up to
and including n − 2. Why n − 2? It’s because by the time it gets to the last ele-
ment (n − 1), all the sorting will have been done. (There is no need to compare
the last element to itself.)

 for(int i = 0; i < n - 1; ++i) {
//...

 }

The first part of the loop finds the lowest element in the range that includes
a[i] and all the elements to its right. An inner loop conducts this search using a
variable, j, initialized to start at i + 1 (one position to the right of i).

low = i;
for (int j = i + 1; j < n; ++j) {

if (a[j] < a[low]) {
low = j;

}
}

This, by the way, is an example of a nested loop, and it’s completely legal. A
for statement is just another kind of statement; therefore, it can be put inside
another if, while, or for statement, and so on, to any degree of complexity.

The other part of the loop has an easy job. All it has to do is ask whether
i differs from the index of the lowest element (stored in the variable “low”).
Remember that the != operator means “not equal.” There’s no reason to do the
swap if a[i] is already the lowest element in the range; that’s the reason for the if
condition here.

if (i != low) {
swap(&a[i], &a[low]);

}

ptg16518442

Chapter 7 Pointers: Data by Location172
Ex

er
cis

es

 EXERCISES

Exercise 7.3.1. Rewrite the example so that instead of ordering the array from low
to high, it sorts the array in reverse order: high to low. This is easier than it
may look. It’s helpful, for the sake of clarity, if you rename the variable low as
“high.” Otherwise, you need to change only one statement; this statement does
the comparison.

Exercise 7.3.2. Rewrite the example so that it sorts an array that has elements of
type double. It’s essential that you rewrite the swap function to work on data
of the right type for the example to work correctly. But note that you should not
change the type of any variables that serve as loop counters or array indexes—such
variables should always have type int, regardless of the remaining data’s type.

Exercise 7.3.3. Revise the example so it implements the bubble-sort algorithm,
which is potentially faster than the selection-sort algorithm. Bubble sort com-
pares each element to its neighbor and swaps if they’re not in order. After this
is done for the whole array, the highest value in the array “bubbles up” to the
highest array position. After the whole array is processed, then the first n − 1
elements are processed, then the first n − 2 elements, and so on, each time put-
ting the highest element remaining into the rightmost position. The advantage
of the algorithm is that if the array is sorted at any point, it can quit early.

Here is the pseudocode for the bubble sort of Exercise 7.3.3:

For I equals N − 1 down to but not including 0:

 For J equals 0 up to but not including I:

 Set in_order flag to true

 If arr[J + 1] < arr[J]

Swap arr[J + 1], arr[J]

Set in_order flag to false

 If in_order, break out of loop

If you choose, you can implement this algorithm with no reference to the
in_order flag, but then you won’t be able to take advantage of early exit. This
means possibly longer execution time, but less code to write.

Reference Arguments (&)
The previous section implemented something called “pass by reference,”
although technically, what it did was to pass pointers.

Ps
eu

do

code

ptg16518442

7
Pointer Arithmetic 173

In classic C, that was as close as you could get to passing by reference, and
therefore, use of pointers was generally mandatory. It was difficult for any serious
program to avoid them. But in C++, you have the option of using a reference
argument.

To declare a reference argument in C++, apply the ampersand (&) to the dec-
laration. In other contexts, this is the “address” operator, but in the context of
a declaration, it turns a symbol into a reference—which is an alias for another
variable. For example:

void swap(int &a, int &b);

The function definition then just manipulates the arguments normally, not
treating them as pointers. Because these are reference arguments, declared with &,
changes to the arguments are permanent and will affect the caller. Notice that
no pointer syntax is involved when you use this approach:

void swap(int &a, int &b) {
 int temp = p1;
 p1 = p2;
 p2 = temp;
}

The advantage of this approach is that once they are declared as reference
arguments, you can then pass arguments without having to take their address
or use pointer syntax. This is an easier way to implement pass by reference.

swap(a[i], a[low]); // Swap a[i] and a[low]

Under the covers, references are frequently implemented through the use
of pointers, even though this under-the-cover stuff is kept invisible to you. It’s
worth understanding how pointers work, however, because they have so many
other applications.

Pointer Arithmetic
One of the important uses of pointers is to process arrays efficiently. Suppose
you declare this array:

int arr[5] = {5, 15, 25, 35, 45};

Of course, the elements arr[0] through arr[4] can all be used like individual
integer variables. You can, for example, write statements such as “arr[1] = 10;”.
But what is the expression “arr” itself? Can “arr” ever appear by itself?

ptg16518442

Chapter 7 Pointers: Data by Location174

Yes, it can because “arr” is a constant that translates into an address—
specifically, the address of the first element. Because it’s a constant, you cannot
change the value of “arr” itself. You can, however, use it to assign a value to a
pointer variable:

int *p;
p = arr;

The statement “p = arr” is equivalent to this:

p = &arr[0];

The former expression (p = arr) is a more concise, cleaner way to initialize a
pointer to the address of the first element, arr[0]. Is there a similar technique
for the other elements? You betcha. For example, to assign p the address of
arr[2], you use this:

p = arr + 2; // p = &arr[2];

C++ interprets all array names as address expressions. arr[2] translates into
the following:

*(arr + 2)

If you’ve been paying attention, you may think this looks wrong. We add 2 to
the address of the start of the array, arr. But the element arr[2] is not 2, but
8 bytes away (4 for each integer—assuming you are using a 32-bit system)! Yet
this still works. Why?

It’s because of pointer arithmetic. Only certain arithmetic operations are allowed
on pointers and other address expressions (such as arr). These are as follows:

address_expression + integer
integer + address_expression
address_expression - integer
address_expression - address_expression

When integer and address expressions are added together, the result is
another address expression. Before the calculation is completed, however, the
integer is automatically scaled by the size of the base type. The C++ compiler
performs this scaling for you.

new_addr = old_addr + (integer * size_of_base_type)

So, for example, if p has base type int, adding 2 to p has the effect of increasing
it by 8 because 2 times the size of the base type (4 bytes) yields 8.

Ke
y

Sy

ntax

ptg16518442

7
Pointers and Array Processing 175

Scaling is an extremely convenient feature of C++, because it means that
when a pointer p points to an element of an array and it is incremented by 1, this
always has the effect of making p point to the next element:

++p; // Point to next element in the array.

This is one of the most important things to remember when using pointers:

✱ When an integer value is added or subtracted from an address expression, the
compiler automatically multiplies that integer by the size of the base type.

Another way of saying this is to say that adding N to a pointer produces an
address N elements away from the original pointer value.

Address expressions can also be compared to each other. You should not
make assumptions about a memory layout except where array elements are
involved. The following expression is always true:

&arr[2] < &arr[3]

This is another way of saying that the following is always true, just as you’d
expect:

arr + 2 < arr + 3

Pointers and Array Processing
Because pointer arithmetic works the way it does, functions can access elements
through pointer references rather than array indexing. The result is the same,
but the pointer version (as I’ll show) executes slightly faster.

In these days of incredibly fast CPUs, such minor speed increases make little
difference for most programs. CPU efficiency was far more important in the
1970s and 1980s, with their slow processors. CPU time was often at a premium.

But for a certain class of programs, the superior efficiency gained from C
and C++ can still be useful. C and C++ are the languages of choice for people
who write operating systems, and subroutines in an operating system or device
driver may be called upon to execute thousands or even millions of times a sec-
ond. In such cases, the small efficiencies due to pointer usage can be significant.

Here’s a function that uses a pointer reference to zero out an array with n
elements:

void zero_out_array(int *p, int n) {
 while (n-- > 0) { // Do n times:

*p = 0; // Assign 0 to element pointed
// to by p.

ptg16518442

Chapter 7 Pointers: Data by Location176
++p; // Point to next element.

 }
}

This is a remarkably compact function that would appear more compact still
without the comments (but remember that comments have no effect on a pro-
gram at runtime). Here’s another version of the function, using code that may
look more familiar:

void zero_out_array2(int *arr, int n) {
 for (int i = 0; i < n; i++) {

arr[i] = 0;
 }
}

But this version, while nearly as compact, may run a bit slower (depending
on the ability of the compiler to optimize the runtime code). The value of i
must be scaled and added to arr each and every time through the loop to get the
location of the array element arr[i].

arr[i] = 0;

This, in turn, is equivalent to the following:

*(arr + i) = 0;

It’s actually worse than that, because the scaling effect has to be done at run-
time; so at the level of machine code, the calculation is as follows:

*(arr + (i * 4)) = 0;

The problem is that the address has to be recalculated over and over again. In
the pointer version, the address arr is figured in only once. The loop statement
does less work.

*p = 0;

Of course, p has to be incremented each time through the loop, but both
versions have a loop variable to update. Incrementing p is no more work than
incrementing i.

Here’s how the pointer version works. Each time through the loop, *p is set to 0,
and then p itself is incremented to the next element. (Because of scaling, p is
actually increased by 4 each time through the loop, but that’s an easy
operation.)

ptg16518442

7
Pointers and Array Processing 177

0x2ff0

0x2ff0
0x2ff4
0x2ff8

a[0]
a[1]
a[2]

p

0
2
3

p = a;

*p = 0;

0x3310

0x2ff0
0x2ff4
0x2ff8

0x3310

0x2ff0
0x2ff4
0x2ff8

0x33100x2ff4

a[0]
a[1]
a[2]

p

0
0
3

p++;

*p = 0;

0x2ff8

a[0]
a[1]
a[2]

p

0
0
0

p++;

*p = 0;

.

.

.

.

.

.

.

.

.

.

.

.

Example 7.4. Zero Out an Array
Here’s the zero_out_array function in the context of a complete example. All
this program does is initialize an array, call the function, and then print the
elements so that you can see how it worked.

zero_out.cpp

#include <iostream>

using namespace std;

void zero_out_array(int *arr, int n);

int a[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

int main() {

 zero_out_array(a, 10);

 // Print out all the elements of the array.

 for (int i = 0; i < 10; ++i) {
cout << a[i] << " ";

 }
 return 0;
}

▼ continued on next page

ptg16518442

Chapter 7 Pointers: Data by Location178

// Zero-out-array function.
// Assign 0 to all elements of an int array of size n.
//
void zero_out_array(int *p, int n) {
 while (n-- > 0) { // Do n times:

*p = 0; // Assign 0 to element pointed
// to by p.

++p; // Point to next element.
 }
}

H
ow

 It
 Works

How It Works
The key to understanding the zero_out function is to remember that adding 1
to a pointer makes it point to the next element of an array.

++p;

This example demonstrates how to pass an array in C++. The first argument
shown here, a, translates into the address of the first element:

 zero_out_array(a, 10);

Therefore, to pass an array, just use the array name. The function gets the
address of the first element and should treat this as a pointer value.

Op
ti

m

izing

Writing More Compact Code
In Example 7.3, the while loop in the zero_out_array function does two things:
it zeros out an element and then increments the pointer so it points to the next
element.

 while (n-- > 0) {
 *p = 0;

++p;
 }

If you recall from past chapters, p++ is just an expression, and expressions
can always be used within larger expressions. That means we can combine the
pointer-access and increment operations to produce this:

 while (n-- > 0) {
 *p++ = 0;
 }

zero_out.cpp, cont.

ptg16518442

7
Pointers and Array Processing 179

To properly interpret *p++, I have to introduce two aspects of expression
evaluation: precedence and associativity. Operators such as assignment (=) and
test for equality (==) have low precedence, meaning that they are applied after
other operations are resolved.

The pointer-indirection (*) and increment (++) operators both have the same
level of precedence, but (unlike most operators) they associate right to left. There-
fore, the statement *p++ = 0; is evaluated as if it were written this way:

*(p++) = 0;

This means increment pointer p, but only after using its value in this operation:

*p = 0;

Incidentally, using parentheses differently would produce an expression that
is legal, but not, in this case, useful.

(*p)++ = 0; // Assign 0 to *p and then increment *p.

The effect of this statement would be to set the first array element to 0 and
then to 1, over and over; p itself would never be incremented, and you’d fail to
process most of the array. The expression (*p)++ says, “Increment the thing p
points to,” not p itself.

Whew! That’s a lot of analysis required to understand a tiny piece of code.
You’re to be forgiven if you swear never to write such cryptic statements your-
self. But statements such as “*p++ = 0” are actually pretty common.

Note � Appendix A, "Operators," summarizes precedence and association for all
C++ operators.

Ex
er

cis
es

 EXERCISES

Exercise 7.4.1. Rewrite the program to use a direct-pointer reference for the loop
that prints out the values of the array. Declare a pointer p and initialize it to
start the array. The loop condition should be p < a + 10.

Exercise 7.4.2. Write and test a copy_array function that copies the contents of
one int array to another array of the same size. The function should take two
pointer arguments. The operation inside the loop should be as follows:

*p1 = *p2;
p1++;
p2++;

If you want to write more compact but cryptic code, you can use this statement:

*(p1++) = *(p2++);

ptg16518442

Chapter 7 Pointers: Data by Location180

Or, you can even use the following, which means the same thing:

*p1++ = *p2++;

Chapter 7 Summary
Here are the main points of Chapter 7:

◗ A pointer is a variable that can contain a numeric memory address. You can
declare a pointer by using the following syntax:

type *p;

◗ You can initialize a pointer by using the address operator (&).

p = &n; // Assign address of n to p.

◗ Once a pointer is initialized, you can use the indirection operator (*) to manip-
ulate data pointed to by the pointer.

p = &n;
*p = 5; // Assign 5 to n.

◗ To enable a function to manipulate data (pass by reference), pass an address.

double_it(&n);

◗ To receive an address, declare an argument that has a pointer type.

void double_it(int *p);

◗ An array name is a constant that translates into the address of its first element.
A reference to an array element a[n] is translated into the pointer reference,
*(a + n).

◗ When an integer value is added to an address expression, C++ performs scal-
ing, multiplying the integer by the size of the expression’s base type.

new_addr = old_addr + (integer * size_of_base_type)

◗ The unary operators * and ++ operators associate right-to-left. Consequently,
this expression

*p++ = 0;

does the same thing as the following expression, which sets *p to 0 and then
increments the pointer p to point to the next element:

*(p++) = 0;

ptg16518442

181

8
Strings:
Analyzing
the Text

Most computer programs, at some point in their lives, have to communicate
with a human being. The standard way to do this is to use text strings. The word
string conjures up an image of a series of characters, closely strung together.

However, there seems to be a paradox: Computer processors only under-
stand numbers. How, then, can they communicate with humans? The answer
is: through a special kind of code that associates each letter with a number.
That’s the basis for understanding text strings, so this chapter starts by examin-
ing that subject.

For years now, C++ compilers have supported a sophisticated string class
that makes working with text strings easier. For example, the following line
of code concatenates strings without paying any attention to string lengths or
capacities—it just magically works.

string titled_name = "Sir " + beatle_name;

This chapter begins by presenting the “old school” C-string type, but if you
want to work with the sophisticated, and easier-to-use, string class, you can go
directly to the section of this chapter titled “The C++ String Class” (page 201).

Text Storage on the Computer
In Chapter 1, “Start Using C++,” I stated the computer stores text numerically,
just like any other kind of data. But with text data, each byte uses a special code
that corresponds to a particular character: This is called ASCII code. Suppose I
declared the following string:

char str[] = "Hello!";

C++ allocates exactly seven bytes—one byte for each character and one
for a terminating null byte. This is the standard “C-string,” as opposed to the

ptg16518442

Chapter 8 Strings: Analyzing the Text 182

sophisticated (and easier-to-use) string class. A C-string is a simple array of
char. Here’s what the string data looks like in memory:

72 101 108 108 111 33 0

'H' 'e' 'l' 'l' 'o' '!' (null)
Actual data:
ASCII code for:

You can turn to Appendix D and see the ASCII code for every character. In
reality, the computer doesn’t actually store alphanumeric characters; it stores
only numbers. When and how, then, are the numeric values translated into text
characters?

This translation happens at least two times: when data is typed at the key-
board and when it’s displayed on the monitor. When you press H on the
keyboard, a series of actions happen at a low level that result in the ASCII code
for H (72) being read into your program, which then stores that value as data.

The rest of the time, a text string is just a series of numbers—or more spe-
cifically, a series of bytes ranging in value from 0 to 255. But as programmers,
we can think of C++ storing text characters in memory, one byte per character.
(Exception: The international standard, Unicode, uses more than one byte per
character.)

How Does the Computer Translate Programs?

Programming books sometimes point out that the CPU doesn’t understand
the C++ language. All the C++ statements must be translated into machine
code before they can be executed. But who or what does the translation?

Oh, that’s no mystery, they say; the translation is done by the compiler,
which itself is a computer program. But in that case, the computer is doing
the translation.

When I was first learning how to program, this seemed to me an insolv-
able paradox. The CPU (the “brain” at the heart of the computer) doesn’t
understand a word of C++, yet it performs the translation between C++
and its own internal language. Isn’t that a contradiction?

C++ source
(.cpp)

Compiler
and linker

Executable
(.exe)

A large part of the answer is this: C++ source code is stored in a text
file, just as you might store an essay or a memo. But text characters, as I’ve

Interlude

ptg16518442

It Don’t Mean a Thing if It Ain’t Got that String 183
8

▼ continued

pointed out, are stored in numeric form. Therefore, when the compiler
works on this data, it’s doing another form of number crunching, evaluat-
ing data and making decisions according to precise rules.

In case that doesn’t clear things up, imagine this: You have the task of
reading letters from a person who knows Japanese but no English. You,
meanwhile, know English but not one word of Japanese. (My apologies to
philosopher John Searle, who originated this idea with his “Chinese Room”
thought experiment.)

But suppose you have an instruction book that tells you how to translate
Japanese characters into their English-language equivalent. The instruc-
tion book itself is written in English, so you have no problem using it.

So, even though you don’t understand Japanese, you’re able to translate
all the Japanese you want by carefully following instructions.

That’s really what a computer program is—an instruction book read by
the CPU. A computer program is an inert thing—a sequence of instruc-
tions and data—yet the “knowledge” inside a computer arises from its
programs. Programs enable a computer to do all kinds of clever things,
including translating a text file containing C++.

A compiler, of course, is a very special program, but what it does is not
at all strange or impossible. As a computer program, it’s an “instruction
book” as described. What it tells the computer is how to read a text file con-
taining C++ source code and output another instruction book: this output
is your C++ program in executable form.

The very first compilers had to be written in machine code. Later, old
compilers could be used to write new compilers; so, through a bootstrap
process, even skilled programmers were writing machine code with less
frequency.

It Don’t Mean a Thing if It Ain’t Got that String
If you read Chapter 6, “Arrays: All in a Row...,” you may have already guessed
what a string is: an array. More specifically, a string is an array of base type char.

Technically, char is an integer type, one byte wide, large enough to store 256
different values (ranging from 0 to 255). This is more than enough space to con-
tain all the different ASCII codes for the standard set of characters, including
uppercase and lowercase letters, as well as numerals and punctuation marks.
(However, note that some languages, such as Japanese and Chinese, have far
more than 256 characters and therefore require a wider character type.)

Interlude

ptg16518442

Chapter 8 Strings: Analyzing the Text 184

You can, if you want, create a char array of a definite size but no initial values:

char str[10];

This creates a string that can hold up to 10 bytes but has yet to be initialized. More
often, programmers give initial values to a string when they declare it; for example:

char str[10] = "Hello!";

This declaration creates the array of char shown and equates the name str to
the starting address of this array. (Remember that the name of an array always
translates into its starting address.) This figure shows only the characters repre-
sented, not the ASCII codes—but underneath, it’s all numbers.

H e l l o ! \0

Space reserved for the string

The character \0 is C++ notation for a null character: it means the actual value
0 is stored in this byte (as opposed to value 48, the ASCII code for the digit “0”). A
C++ string terminates with a null byte, which indicates where the string data ends.

If you don’t specify a definite size but initialize the string anyway, C++ allocates
just enough space necessary for the string (including its null-terminator byte).

char s[] = "Hello!";
char *p = "Hello!";

The effect of these two statements is roughly the same, but there are some
differences: s is considered to name an array; therefore s itself is a constant that
cannot change. But technically speaking, p is a pointer rather than an array, and
it can be reassigned to point to other locations. In either case, C++ allocates just
enough space in the data segment and assigns the starting address to the name s
(which can’t change) or, alternatively, to the initial value of p (which can).

H e l l o ! \0

String-Manipulation Functions
Just as it provides math functions to crunch numbers, C++ provides functions
to manipulate strings. These functions take pointer arguments; that is, they get
the addresses of the strings, but they work on the string data pointed to.

ptg16518442

String-Manipulation Functions 185
8

Here are some of the most commonly used string functions:

FUNCTION DESCRIPTION

strcpy(s1, s2) Copy contents of s2 to destination string s1

strcat(s1, s2) Concatenate (join) contents of s2 onto the end of s1

strlen(s) Return length of string s (not counting terminating null)

strncpy(s1, s2, n) Copy s2 to s1, but copy no more than n characters

strncat(s1, s2, n) Concatenate contents of s2 onto the end of s1, copying no more
than n characters

Possibly the most common are strcpy (“string copy”) and strcat, which
stands for “string concatenation.” Here’s an example of their use:

char s[80];
strcpy(s, "One");
strcat(s, "Two");
strcat(s, "Three ");
cout << s;

This produces the following output:

OneTwoThree

This example illustrates some important points:

◗ The string variable, s, must be declared with enough space to hold all the char-
acters in the resulting string. C++ does nothing to ensure that there is space
enough to hold all the string data necessary; this is your responsibility.

◗ Although the string is not initialized, 80 bytes are reserved for it. This example
assumes that storing 80 characters (including the null) will be sufficient.

◗ The string literals “One” and “Two” and “Three” are arguments. When a
string literal appears in code, C++ allocates space for the string and returns the
address of the data: That is, in the C++ code, a string name is treated as equiv-
alent to an address. Therefore, “Two” and “Three” are interpreted as address
arguments.

The action of the statement

strcat(s, "Two");

ptg16518442

Chapter 8 Strings: Analyzing the Text 186

looks like this:

T w o \0

T w o \0O n e

You incur a risk with these string functions, as you can see: How do you
guarantee that the first string is large enough for the existing string data along
with the new? One approach is to make the target string so large you don’t think
its capacity will ever be exceeded.

A more secure technique is to use the strncat and strncpy functions. Each
of these functions avoids copying more than n characters, including the termi-
nating null. For example, the following operation cannot exceed the memory
allocated for s1:

char s1[20];
// . . .
strncpy(s1, s2, 20);
strncat(s1, s3, 20 - strlen(s1));

Example 8.1. Building Strings
Let’s start with a simple string operation: building a long string out of smaller
strings. The following program gets a couple of strings from the user (by calling the
getline function, described later), builds a larger string, and then prints the results:

buildstr.cpp

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
 char str[600];
 char name[100];
 char addr[200];
 char work[200];

ptg16518442

String-Manipulation Functions 187
8

 // Get three strings from the user.

 cout << "Enter name and press ENTER: ";
 cin.getline(name, 100);
 cout << "Enter address and press ENTER: ";
 cin.getline(addr, 200);
 cout << "Enter workplace and press ENTER: ",
 cin.getline(work, 200);

 // Build the output string, and then print it.

 strcpy(str, "\nMy name is ");
 strcat(str, name);
 strcat(str, ", I live at ");
 strcat(str, addr);
 strcat(str, ",\nand I work at ");
 strcat(str, work);
 strcat(str, ".");

 cout << str << endl;
 return 0;
}

Here’s a sample session using this program:

Enter name and press ENTER: Niles Cavendish
Enter address and press ENTER: 123 May Street
Enter work and press ENTER: Bozo's Carnival of Fun

My name is Niles Cavendish, I live at 123 May Street,
and I work at Bozo's Carnival of Fun.

H
ow

 It
 Works

How It Works
This example starts with a new include-file directive:

#include <cstring>

This is needed because it brings in declarations for the strcpy and strcat func-
tions. As a general rule, using any standard-library function that begins with
the three letters str requires you to include <cstring>.

buildstr., cont.

ptg16518442

Chapter 8 Strings: Analyzing the Text 188

The first thing that the main function does is to declare a series of strings to
hold data. The program assumes these strings are sufficiently large that they
won’t be exceeded:

 char str[600];
 char name[100];
 char addr[200];
 char work[200];

It seems absurd that you’d ever want to enter a name longer than 100 characters,
so these limits are probably sufficient, especially if you’re writing the program
for your own use.

But of course any such limits can be exceeded, and if you write programs for
large numbers of other people, it’s wise to assume that users are going to test
every limit they can at some point. (This problem is addressed in Exercise 8.1.1.)

The other part of the example that’s new is the use of the getline member
function (or method):

cin.getline(name, 100);

The getline method gets an entire line of input—all the characters input
before the user pressed ENTER. The first argument (in this case, name) speci-
fies the destination string. The second argument specifies the maximum num-
ber of characters to copy; this should never be more than n − 1, where n is the
number of bytes allocated for the string.

After entering input into the three strings—name, addr, and work—the
 program builds the string. The first call is to strcpy, which copies string data to
the beginning of str. (Calling strcat wouldn’t produce correct results in this case,
unless you knew that the first byte of str was a null—not a safe assumption here.)

strcpy(str, "\nMy name is ");

The characters \n are a C++ escape sequence: They are not intended liter-
ally but instead represent a special character. In this case, \n denotes a newline
character.

The program builds the rest of the string by calling strcat repeatedly.

 strcat(str, name);
 strcat(str, ", I live at");
 strcat(str, addr);
 strcat(str, ",\nand I work at ");
 strcat(str, work);
 strcat(str, ".");

ptg16518442

String-Manipulation Functions 189
8

Ex
er

cis
es

 EXERCISES

Exercise 8.1.1. Rewrite the example so that it cannot exceed the limits of str. For
example, you’d replace the statement

strcat(str, addr);

with the following statement:

strncat(str, addr, 600 - strlen(str));

Exercise 8.1.2. After completing Exercise 8.1.1, test it by experimenting with different
limitations for the str string. It helps if you replace the number 600 with the sym-
bolic constant STRMAX, putting the following #define directive at the beginning
of the program. During preprocessing, this directive causes the compiler to replace
occurrences of STRMAX in the source code with the indicated text (600).

#define STRMAX 600

You can then use STRMAX to declare the length of str

char str[STRMAX];

and then use STRMAX to determine how many bytes to copy:

 strncpy(str, "\nMy name is ", STRMAX);
 strncat(str, name, STRMAX - strlen(str));

The beauty of this approach is that if you need to change the maximum string
size, you need to change only one line of code (the line containing the #define
directive) and then recompile.

What about Escape Sequences?

Escape sequences can create some odd-looking code, if you’re not used to
them. Consider this statement:

cout << "\nand I live at";

This has the same effect as the following:

cout << endl << "and I live at";

The key to understanding an odd-looking string such as \nand is to
remember this rule:

▼ continued on next page

Interlude

ptg16518442

Chapter 8 Strings: Analyzing the Text 190

▼ continued

✱ In C++ source code, when the compiler reads a backslash (\), the very
next character is interpreted as having a special meaning.

In addition to \n, which represents a newline, other escape sequences
include \t (tab) and \b (backspace).

Now, if you have an inquiring mind, you may be asking this: How do I
print an actual backslash? The answer is simple. Two backslashes in a row (\\)
represent a single backslash. For example, consider this statement:

cout << "\\nand I live at";

This prints the following text:

\nand I live at

Note that Chapter 17, “New Features of C++14,” explains how to create
“raw string literals,” which give no special meaning to the backslash (\).

Reading String Input
So far, I’ve been treating data input in a simplistic way. In previous examples, I
assumed that the user types a number—for example, 15—and that this value is
entered directly into the program. Actually, there’s more to it than that.

All the data entered with a keyboard is initially text data: This means ASCII
codes. So, when you’re a user and you press 1 and 5 on the keyboard, the first
thing that happens is that these characters are entered into the input stream.

32 49 53 32.

Input stream:

(sp) '1' '5' (sp)
Actual data:
ASCII code for:

The cin object, which has been told to get a number, analyzes this text input
and produces a single integer value, in this case the value 15. That number gets
assigned to an integer variable in a statement such as this one:

cin >> n;

If the type of n were different (say, if it had type double), a different conver-
sion would be called for. Floating-point format requires a different kind of value

Interlude

ptg16518442

Reading String Input 191
8

to be produced. Normally, the stream-input operator (>>), as interpreted by the
cin object, handles all this for you.

The previous section introduced the getline method, which has some
strange-looking syntax:

cin.getline(name, 100);

The dot (.) is necessary to show that getline is a member of the object cin.
Admittedly, there’s some new terminology here.

I’ll explain a lot more about objects starting in Chapter 10, “Classes and
Objects.” For now, think of an object as a data structure that comes with built-in
knowledge of how to do certain things. The way you call upon an object’s
 abilities is to call a member function:

object.function(arguments)

The object is what the function applies to—in this case, cin. The function in
this case is getline. (Also, file-input objects, introduced in Chapter 9, “Files:
Electronic Storage,” support this function.) Calling cin.getline is an alternative
to getting input by using the stream operator (>>):

cin >> var;

We’ve seen this kind of statement used to get int and double data. Can you
use it with strings? Yes.

cin >> name;

The problem with this statement is that it doesn’t do what you might expect.
Instead of getting an entire line of input—that is, all the data that the user types
before pressing ENTER—it gets data up to the first white space (“white space”
being programmer-ese for a blank space, tab, or newline). So, given this line of
input,

Niles Cavendish

the effect of “cin >> name” would be to copy the letters “Niles” into the string
variable, name, while “Cavendish” would remain in the input stream to be
picked up by the next input operation.

So, assume the user types in the following and then presses ENTER:

50 3.141592 Joe Bloe

This works fine if you’re expecting two numbers and two strings separated by a
blank space. Here’s the statement that would successfully read the input:

cin >> n >> pi >> first_name >> last_name;

Ke
y

Sy

ntax

ptg16518442

Chapter 8 Strings: Analyzing the Text 192

But in general, the use of the stream input operator decreases your control.
I avoid it myself, except for simple test programs. One of the limitations of this
operator is that it doesn’t allow you to set a default value. Suppose, for example,
you prompt for a number:

cout << "Enter number: ";
cin >> n;

If the user presses ENTER without typing anything, nothing happens. The
computer just sits there, waiting for the user to type a number and press ENTER
again. If the user keeps pressing ENTER, the program will wait forever, like a
stubborn child.

Personally, I think it’s much better to have the program support the behavior
implied by the following prompt:

Enter a number (or press ENTER to specify 0):

Wouldn’t you find it convenient to have 0 (or whatever number you choose)
as a default value? But how do you implement this behavior? This next example
demonstrates how.

Note � If you use the getline function at all, you may find that further operations
using the stream input operator (>>) do not work correctly. This is because the
getline function and the stream-input operator make different assumptions
about when a newline character is “consumed.” It’s a good idea to stick to one
approach or the other.

Example 8.2. Get a Number
The following program gets numbers and prints their square roots, until the
user either presses 0 or presses ENTER directly after the prompt:

get_num.cpp

#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdlib>
using namespace std;

double get_number();

ptg16518442

Reading String Input 193
8

int main()
{
 double x = 0.0;

 while(true) {
cout << "Enter a num (press ENTER to exit): ";
x = get_number();
if (x == 0.0) {

break;
}
cout << "Square root of x is: " << sqrt(x);
cout << endl;

 }
 return 0;
}

// Get-number function.
// Get number input by the user, taking only the first
// numeric input entered. If user presses ENTER with
// no input, then return a default value of 0.0.
//
double get_number() {
 char s[100];

 cin.getline(s, 100);
 if (strlen(s) == 0) {

return 0.0;
 }
 return atof(s);
}

You can use this same function (get_number) in all your programs as a bet-
ter way of getting numeric input.

H
ow

 It
 Works

How It Works
The program begins by including <cstring> and <cmath>, which bring in type
information for string functions and math functions; also, <cstdlib> brings in

get_num.cpp, cont.

ptg16518442

Chapter 8 Strings: Analyzing the Text 194

the declaration of the atof function used in this example. In addition, the pro-
gram declares the get_number function up front.

#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdlib>

using namespace std;

double get_number();

What the main function does should be familiar by now. It performs an
infinite loop, which is terminated when 0 is returned by the get_number func-
tion. When any value other than zero is entered, the program calculates a square
root and prints the results.

 while (true) {
cout << "Enter a num (press ENTER to exit): ";
x = get_number();
if (x == 0.0) {

break;
}
cout << "Square root of x is: " << sqrt(x);
cout << endl;

 }

What’s new here is the get_number function itself. When this function calls
getline, it returns an entire line of input up to n − 1 characters. Since the n
argument in this case is 100, it will read, at most, 99 characters, leaving one byte
for the terminating null. If the user presses ENTER directly after the prompt,
getline returns an empty string.

double get_number() {
 char s[100];

 cin.getline(s, 100);
 if (strlen(s) == 0) {

return 0.0;
 }
 return atof(s);
}

Once the input line is stored in the local string, s, it’s a trivial matter to return
0 if the string is empty.

ptg16518442

Reading String Input 195
8

 if (strlen(s) == 0) {
return 0.0;

 }

The literal 0.0 is equal to 0 but is stored in double format. Remember that every
literal containing a decimal point is considered a floating-point number by C++.

If the length of string s is not 0, data in the string must be converted. Because
we’re not relying on the stream operator (>>), the get_number function must
take responsibility for interpreting data itself. Therefore, it needs to examine
the characters read—the ASCII codes sent from the keyboard—and produce a
double value.

Fortunately, the C++ standard library supplies a handy function—atof—for
doing just that and we can make use of it here. The atof function takes string
input and produces a floating-point (double) value, just as its cousin atoi pro-
duces an int value.

 return atof(s);

This function has a sibling—atoi—that does the same thing for integers:

 return atoi(s); // Return an int value.

Ex
er

cis
e

 EXERCISE

Exercise 8.2.1. Rewrite Example 8.2 so that it accepts only integer input. (Hint:
You’ll want to change all types directly affected, from double to int format,
including constants.)

Example 8.3. Convert to Uppercase
In this example, I’ll show a simple program that accesses individual characters.
Remember that although you can think of a string as a single entity, it’s actually
made up of a series of characters, which are typically (but not always) uppercase
and lowercase letters.

upper.cpp

#include <iostream>
#include <cstring>
#include <cctype>
using namespace std;

▼ continued on next page

ptg16518442

Chapter 8 Strings: Analyzing the Text 196

void convert_to_upper(char *s);

int main()
{
 char s[100];

 cout << "Enter string to convert & press ENTER: ";
 cin.getline(s, 100);

 convert_to_upper(s);
 cout << "The converted string is:" << endl;
 cout << s << endl;
 return 0;
}

void convert_to_upper(char *s) {
 int length = strlen(s);

 for (int i = 0; i < length; i++) {
s[i] = toupper(s[i]);

 }
}

H
ow

 It
 Works

How It Works
The main purpose of this example is to show that you can manipulate individ-
ual characters of a string. To pass a string to a function, pass its address. To do
that, of course, you just give the name of the string. (This is the standard proce-
dure to pass any kind of array.)

 convert_to_upper(s);

The function uses the argument passed—which, after all, is an address—
to index into the string data.

void convert_to_upper(char *s) {
 int length = strlen(s);

 for (int i = 0; i < length; i++) {
s[i] = toupper(s[i]);

 }
}

upper.cpp, cont.

ptg16518442

Individual Characters versus Strings 197
8

This example introduces a new function, toupper. The two functions, toupper
and tolower, operate on individual characters:

FUNCTION DESCRIPTION

toupper(c) If c is a lowercase letter, return the uppercase equivalent; otherwise,
return c as is.

tolower(c) If c is an uppercase letter, return the lowercase equivalent; otherwise,
return c as is.

The following statement therefore converts a character to uppercase (if it is a
lowercase letter) and replaces the original character with the result:

s[i] = toupper(s[i]);

Again, note that to use these functions, you must include <cctype>:

#include <cctype>

Ex
er

cis
es

 EXERCISES

Exercise 8.3.1. Write a program that is similar to Example 8.3 but converts the
string input to all lowercase. (Hint: Use the tolower function from the C++
library.)

Exercise 8.3.2. Rewrite Example 8.3 so that it uses direct pointer reference,
described at the end of Chapter 6, rather than array indexing. If you have
reached the end of the string, the value of the current character is a null-termi-
nator, so you can test for the end-of-string condition by using *p == '\0'. You
can also use *p itself as the condition, because it is nonzero if it’s not pointing to
a zero (or null) value.

while (*p++) {
 // Do some stuff...
}

Individual Characters versus Strings
C++ makes a distinction between individual characters and strings. A lot
depends on whether you use single or double quotation marks.

The expression 'A' represents a single character. During compilation, C++
replaces this expression with the ASCII value for a letter 'A', which happens to
be 65 decimal.

ptg16518442

Chapter 8 Strings: Analyzing the Text 198

On the other hand, expression "A" represents a string of length 1. When C++
sees this expression, it places two bytes in the data area:

◗ The ASCII code for the letter 'A', as shown earlier.

◗ A null-terminating byte.

The C++ compiler then replaces the expression "A" with the address of this
two-byte array. 'A' and "A" are different because one is converted to an integer
value, whereas the other represents a string and so is converted to an address.

This may seem like a lot to digest, but just remember to pay close attention to
the quotation marks. The following code provides an example of how they can
be intermixed correctly:

char s[] = "A";
if (s[0] == 'A') {
 cout << "The first letter of the string is 'A'. ";
}

This produces a correct result. But this next comparison is an error, because
it tries to compare a character to an address:

if (s[0] == "A") { // WRONG!
 //...

This fragment attempts to compare an element of the string array s with an
address expression, "A". The cardinal rules are as follows:

✱ Expressions in single quotation marks (such as 'A') are treated as numeric
values after translation into ASCII codes. They are not arrays.

✱ Expressions in double quotation marks (such as "A") are arrays of char and, as
such, are translated into addresses.

Example 8.4. Breaking Up Input with strtok
When you read in a line of text (for example, with the getline function), you’ll
often find you need to break it into smaller strings. For example, consider this
text input:

Me, myself, and I.

ptg16518442

Individual Characters versus Strings 199
8

Suppose you want to break this into the individual substrings separated by
commas and spaces (delimiters). As a test, you might print each of the sub-
strings on its own line.

Me
Myself
and
I

You can do this yourself through a combination of searching for delimiter
characters and then indexing the string to select the substrings you find. But it’s
easier to use the strtok function (string token) from the C++ standard library.

In this context, the word token means a substring containing a single word.
There are two ways to use this function.

FUNCTION USAGE DESCRIPTION

strtok(source_string, delims) Return the first token from source string, using the
delimiters found in delims.

strtok(nullptr, delims) Using the source string already specified (during an ear-
lier call to strtok), get the next token. Use the delimiters
found in delims.

The first time you use strtok, specify both the source string and the delim-
iter characters; strtok returns a pointer to the first substring (that is, token) it
finds. For example:

p = strtok(the_string, ", ");

Thereafter, call strtok, specifying a null value for the first argument; strtok
returns the next token from this same source string. The function remembers
what source string it was working on and where it was in that string.

p = strtok(nullptr, ", ");

If, instead, you specify source_string again, strtok starts over and returns the
first token.

The return value from the function is usually a pointer to a token; but if
there are no further tokens (substrings) left to read, strtok returns a null value,
which can be tested for equality to zero or to false.

Note � If you have a compiler more than a few years old, you may need to use
NULL in place of nullptr. This keyword has been a part of the specification
since C++11.

ptg16518442

Chapter 8 Strings: Analyzing the Text 200

Here is a simple program that interprets spaces and commas as delimiters
(separator characters) and prints each substring (each token) on its own line:

tokenize.cpp

#include <iostream>
#include <cstring>

using namespace std;

int main()
{
 char the_string[81], *p;

 cout << "Input a string to parse: ";
 cin.getline(the_string, 81);
 p = strtok(the_string, ", ");
 while (p != nullptr) {

cout << p << endl;
p = strtok(nullptr, ", ");

 }
 return 0;
}

H
ow

 It
 Works

How It Works
This program is a simple demonstration of strtok. It begins with #include
directives.

#include <iostream>
#include <cstring>

Before going into the while loop, the program calls strtok and specifies the
input string. It finds the first token (substring), if any, and returns a pointer to it.

 p = strtok(the_string, ", ");

This is the only place that the_string is specified. After that, the loop calls
strtok with a nullptr first argument, which means “keep working on the same
input string, and return the next token (substring) within it.”

 while (p != nullptr) {
cout << p << endl;

ptg16518442

The C++ String Class 201
8

p = strtok(nullptr, ", ");
 }

A nullptr return value means “there are no tokens left to read.”

Ex
er

cis
es

 EXERCISES

Exercise 8.4.1. Revise the example so that in addition to printing out tokens (sub-
strings) one to a line, the program also prints a statement telling how many
tokens it found.

Exercise 8.4.2. Put all the tokens back together but separated by ampersands (&).
Print the result.

Exercise 8.4.3. Use an ampersand (&) as a delimiter.

The C++ String Class
Null-terminated strings used in C and C++ are referred to as C-strings. They’re
not as convenient as the built-in strings that Visual Basic provides, which hide
nearly all the details from you.

For a number of years now, almost all C++ compilers have provided a similar
type, called by the highly original name, string. (Technically, the name of this
C++ type is std::string, but if you include the using namespace statement, you
don’t have to use the std:: prefix.)

The string type is an example of a class, and individual strings are objects,
just as cin and cout are. For example, suppose you have two strings labeled
first_name and last_name:

#include <string>
using namespace std;
...
string first_name("Abe ");
string last_name("Lincoln");

Instead of worrying about arrays or about indexing characters, there are
many operations you can perform almost as if these objects were primitive
pieces of data.

ptg16518442

Chapter 8 Strings: Analyzing the Text 202

first_name

string first_name = "Abe " "Abe "

last_name

string last_name = "Lincoln" "Lincoln"

For example, you can use the addition sign (+) to concatenate these strings
without worrying about issues such as length or capacity.

string full_name = first_name + last_name;

This statement joins the two strings and forms a new string named full_
name, which is automatically the right length. You don’t need to worry about
whether the new string has enough space to store the combined names because
the string class itself manages all storage issues for you.

first_name

"Abe Lincoln"

last_name

full_name

+

string full_name =
 first_name + last_name

"Lincoln""Abe "

And, if you need to index individual characters, you still can, indexing them
just as you would a C-string. Similar considerations apply: an individual char-
acter has type char, just as it would if you were indexing a C-string.

string s = "I am what I am.";
cout << s[3]; // Print fourth char (m).

The string class has nearly all the advantages of the C-string type but is
often easier and more convenient to use. About the only disadvantage of the
string class is that it is not compatible with the strtok function, which requires
C-strings to work with.

Include String-Class Support
To use the new string type, the first thing you need to do is turn on support for
it by using an #include <string> directive. This is not the same directive that
enables C-string support in the function library. These directives look similar.

ptg16518442

The C++ String Class 203
8

#include <string> // Support new string class

But remember, C-string support uses “cstring” rather than “string”:

#include <cstring> // Support old-style string
// functions

What a difference the “c” makes! By the way, you can turn on support for
both, but including “cstring” is only necessary if you are going to be calling old-
style functions such as strcpy.

As with cin and cout, the name string must be qualified with the std:: prefix
unless you include the using statement at the beginning of your programs:

using namespace std;

If you don’t include this statement, you can always refer to the string class with
its std prefix, as std::string. However, the “using namespace” statement makes the
std:: prefix unnecessary for anything from the C++ library.

Declare and Initialize Variables of Class string
Once you have turned on support for the string type, it’s easy to use it to declare
variables. (Again, if you omit the namespace statement, you’d refer to the class
as std::string instead of string.)

string a, b, c;

This creates three variables having C++ standard-library class string. Notice
how easy this is: You don’t have to worry about how much space might be needed
for each string. You can initialize the strings in a number of ways. For example:

string a("Here is a string."), b("Here's another.");

You can also use the assignment operator (=) for this purpose.

string a, b;
a = "Here is a string.";
b = "Here's another.";

You can also combine declaration and initialization by using the equal sign (=):

string a = "Here is a string.";

Working with Variables of Class string
The standard-library string class works as you’d probably expect. Unlike
C-strings, string objects can be copied and compared without calling library
functions.

ptg16518442

Chapter 8 Strings: Analyzing the Text 204

For example, suppose you have the following strings:

string cat = "Persian";
string dog = "Dane";

You can assign new data without worrying about capacity. In this case, dog,
which had four characters, “automagically” grows to store seven characters:

dog = "Persian";

You can compare these strings by using the test-for-equality operator (==).
This does what you’d expect: it returns true if the contents are identical. (To
perform this comparison with C-strings, you’d need to call strcmp.)

if (cat == dog) {
 cout << "cat and dog have the same name";
}

To copy from one string variable to another, just use the assignment opera-
tor (=). Again, this does what you’d expect: it copies string contents, not a
pointer value.

string country = dog;

Remember, you can concatenate (join) strings by using a plus sign (+).

string new_str = a + b;

You can even embed string literals in this operation:

string str = a + " " + b;

However, the following statement does not compile:

string str = "The dog" + " is my friend"; // ERROR!

The problem is that although the plus sign (+) is supported as a concatenation
operator between two string variables or between a string variable and a
C-string, it is not supported between two C-strings and string literals are still
C-strings.

Note � You can solve this problem—the inability to concatenate two string literals—
by using an “s” suffix to make them true instances of the C++ string class.
Chapter 17, “New Features of C++14,” describes this feature.

Another way to solve the problem is to place two C-string literals next to each
other, separated only by a space or a newline. The compiler will automatically
concatenate C-string literals placed next to each other.

ptg16518442

The C++ String Class 205
8

Input and Output
Variables of type string work with cin and cout just as you’d expect.

string prompt = "Enter your name: ";
string name;
cout << prompt;
cin >> name;

Use of the stream-input operator (>>) has the same drawback that it does
with C-strings: characters are returned from the keyboard up until the first
white-space character.

But you can use the getline function to put an entire line of input into a
string variable. This version doesn’t require you to enter a maximum number of
characters to read because the string variable will store data of any size.

getline(cin, name);

Example 8.5. Building Strings with the string Class
This example performs the same action as Example 7.1, except that it uses string
variables:

buildstr2.cpp

#include <iostream>
#include <string> // Include support for string class.
using namespace std;

int main()
{
 string str, name, addr, work;

 // Get three strings from the user.

 cout << "Enter name and press ENTER: ";
 getline(cin, name);
 cout << "Enter address and press ENTER: ";
 getline(cin, addr);
 cout << "Enter workplace and press ENTER: ";
 getline(cin, work);

▼ continued on next page

ptg16518442

Chapter 8 Strings: Analyzing the Text 206

 // Build the output string, and then print it.

 str = "\nMy name is " + name + ", " +
"I live at " + addr +
",\nand I work at " + work + ".\n";

 cout << str << endl;
 return 0;
}

H
ow

 It
 Works

How It Works
If anything, this version of the program is easier to write than the version
in Exercise 8.1. The first difference is the include directive, which must refer to
<string>, not <cstring>.

#include <string>
using namespace std;

The using namespace statement, as usual, enables you to refer to std symbols
(such as cin, cout, and also string) without a std prefix.

Then, things get easier. This version of the program declares four string vari-
ables without worrying about how much space to reserve for each.

 string str, name, addr, work;

The program then calls the getline function without needing to specify the
maximum number of characters to read.

 cout << "Enter name and press ENTER: ";
 getline(cin, name);
 cout << "Enter address and press ENTER: ";
 getline(cin, addr);
 cout << "Enter workplace and press ENTER: ";
 getline(cin, work);

Finally, the program builds the string. The addition operator (+) provides a
concise way to represent string concatenation.

 str = "\nMy name is " + name + ", " +
"I live at " + addr +
",\nand I work at " + work + ".\n";

buildstr2.cpp, cont.

ptg16518442

The C++ String Class 207
8

Then, it’s an easy matter to print the resulting string.

 cout << str;

Ex
er

cis
es

 EXERCISES

Exercise 8.5.1. Get three pieces of information from the user: a dog’s name, its
breed, and its age. Then print a sentence combining all this information.

Exercise 8.5.2. Print a complex paragraph that uses all this data multiple times
across several sentences.

Example 8.6. Adding Machine #2
Working with strings—whether C-strings or the string class—provides a way
of getting one line of input at a time and making intelligent decisions about
what to do with it. Using a combination of the getline function and pointer
usage, you can build a much better version of the Adding Machine program in
Chapter 2, “Decisions, Decisions.”

That program had to use an arbitrary code (such as 0) to terminate the series
of numbers to add, which creates obvious problems. What this improved ver-
sion does is to continue to accept numbers until the end user presses ENTER
after entering no input.

You could write this program with either kind of string: a traditional C-string
(a null-terminated array of char) or an instance of the STL string class. After
you’ve used both, however, you’ll probably agree that working with the latter is
easier.

adding2.cpp

#include <iostream>
#include <string> // Include support for string class.
using namespace std;

bool get_next_num(int *p);

int main()
{
 int sum = 0;
 int n = 0;

▼ continued on next page

ptg16518442

Chapter 8 Strings: Analyzing the Text 208

 while (get_next_num(&n)) {
sum += n;

 }
 cout << "The total is: " << sum << endl;
 return 0;
}

bool get_next_num(int *p) {
 string input_line;
 cout << "Enter num (press ENTER to quit): ";
 getline(cin, input_line);
 if (input_line.size() == 0) {

return false;
 }

*p = stoi(input_line);
return true;

}

H
ow

 It
 Works

How It Works
This is a simple program. All it does is prompt for another number until the
user presses ENTER after entering a zero-length string.

One subtlety of this program is that it uses a different version of the getline
function than that described earlier in this chapter. Remember: for C-strings,
use the getline method. For objects of string type, use the getline function.
This is admittedly a little counterintuitive.

char my_cstr[10]; // C-string decl.
string my_str; // string object.

cin.getline(my_cstr, 10); // Use this on C-strings
getline(cin, my_str); // Use this on string objects.

The return value in this example is used to signal the “terminate now” con-
dition. Therefore, the numeric value entered has to be returned some other way.
This is done by using a pointer argument to simulate pass by reference. The
numeric value is “returned,” in effect, through this pointer:

*p = stoi(input_line);

The stoi function has been provided since C++11 to convert from the string
type to an integer. For converting to floating-point numbers, C++11 also

adding2.cpp, cont.

ptg16518442

Other Operations on the string Type 209
8

provides the stof function. If your compiler is too old to support stoi and stof,
you can still use the old standbys, atoi and atof. The only problem is that if you
use one of these functions, you need to use the c_str function to convert to
C-style format first.

*p = atoi(input_line.c_str());

This looks ugly, but it works with earlier versions of C++.

Ex
er

cis
es

 EXERCISES

Exercise 8.6.1. Revise the get_next_num function so that a default value is speci-
fied as one of the arguments. If the end user presses ENTER without entering
any text, the function returns this default value.

Exercise 8.6.2. Rewrite the example so that it accepts floating-point numbers and
prints a floating-point result. Remember that C++ supports the stof and atof
functions just described.

Other Operations on the string Type
Again, you can access individual characters in a string object with the same
syntax used to access characters inside C-strings.

string[index]

For example, the following code prints out a string’s individual characters, one
to a line:

#include <string>
using namespace std;
//...
string dog = "Mac";
for (int i = 0; i < dog.size(); ++i) {
 cout << dog[i] << endl;
}

When run, this code prints the following:

M
a
c

As with C-strings, or any array in C, string variables use zero-based index-
ing. This is why the initial setting for i is 0.

ptg16518442

Chapter 8 Strings: Analyzing the Text 210

The loop condition depends on the length of the string. To find this length
with a C-string, you’d use the strlen function. With a string object, use the size
member function.

int length = dog.size();

Chapter 8 Summary
Here are the main points of Chapter 8:

◗ Text characters are stored in the computer according to their ASCII codes. For
example, the string “Hello!” is represented by the byte values 72, 101, 108, 108,
111, 33, and 0 (for the terminating null).

◗ The traditional “C-string” type uses a terminating null—a 0 byte value. This
enables string-handling functions to determine where the string ends. When
you declare a string literal such as “Hello!”, C++ automatically allocates space
for this terminating null along with the other characters.

◗ The current length of a string (determined by searching for the terminating
null) is not the same as the total amount of storage reserved for the string. The
following declaration reserves 10 bytes of storage for str but initializes it so
that its current length is only 6. The string will have 3 unused bytes as a result,
enabling it to grow later if needed.

char str[10] = "Hello!";

◗ Library functions such as strcpy (string copy) and strcat (string concatenation)
can alter the length of an existing string. When you perform these operations,
it’s important that the string have enough space reserved to accommodate the
new string length.

◗ The strlen function gets the current length of the string.

◗ Include the string.h file to provide type information for string-handling
functions.

#include <cstring>

◗ If you try to increase the length of a string without having the necessary space
reserved, you’ll overwrite another variable’s data area, creating hard-to-find bugs.

char str[] = "Hello!";
strcat(str, " So happy to see you."); // ERROR!!!!

ptg16518442

211
8

Chapter 8 Summary

◗ To ensure that you don’t copy too many characters to a string, you can use the
strncat and strncpy functions.

char str[100];
strncpy(str, s2, 100);
strncat(str, s2, 100 - strlen(str));

◗ The stream operator (>>), used with the cin object, provides only limited con-
trol over input. When you use it to send data to a string address, it only gets the
characters up to the first white space (blank, tab, or newline).

◗ To get a full line of input, use the cin.getline member function (method). The
second argument specifies the maximum number of characters to copy to the
string (not counting the terminating null).

cin.getline(input_string, max);

◗ An expression such as 'A' represents a single integer value (after translation into
ASCII code); an expression such as "A" represents an array of char and is there-
fore translated into an address.

◗ The STL string class lets you create, copy contents (=), test for equality of contents
(==), and concatenate (+) strings without having to worry about size issues.

◗ To use the string class, include <string>. Also, remember that the full name is
std::string, although the std prefix is unnecessary if you use a “using namespace
std” statement.

#include <string>
using namespace std;

◗ You can index a string object to get an individual character (a char value), just
as you can with C-strings.

char c = str_obj[2]; // c = third character.

◗ To get a line of input with a string object (which is a flexible operation because
you don’t have to specify a maximum number of characters), use the getline
function, which is a global function, not a member.

getline(cin, str_obj); // str_obj gets input line.

◗ The C++ library provides the stoi and stof functions for converting a string
object to a numeric value. The library also provides atoi and atof functions for
conversion of a char* (C-string) to a numeric value, integer and floating-point
(double) respectively.

◗ To use a string object as a C-string, convert from one to the other by calling the
string object’s c_str method.

ptg16518442

This page intentionally left blank

ptg16518442

213

9 Files: Electronic
Storage

At some point in your programming career, you’re going to have to deal with
disk files. Most real-world applications store and retrieve persistent informa-
tion, for example, applications such as payroll programs, spreadsheets, and text
editors, to name just a few. Even simpler applications often need long-term data
storage.

When the program ends, you don’t want this information to vanish into
the ether. For example, what if this data was your payroll information or the
 Kentucky Colonel’s secret fried-chicken recipe? In some cases, you may want it
to stick around—for years and years.

Disk files, unlike main memory (or RAM), continue to maintain their state
even when the computer is turned off. So, when you need a place to put data for
later use, put it in a disk file.

Introducing File—Stream Objects
In using cin and cout (console input and output), you’ve already made use of
“objects”—self-contained entities that know how to respond to requests. Now
it’s time to introduce some new objects. C++ provides file streams that support
the same set of function calls and operators that cin and cout do.

C++ programmers often talk about streams. A stream is something to which
you can read or write data. It’s that simple. The term evokes the image of data
flowing like water in a river, that is, f lowing from some source (for example,
the console) or toward some destination (for example, a file). Although data
streams are not always as endless as a river, it’s a useful image.

Writing to a text file involves a few simple steps. The first step is to enable
support for file-stream operations by using an #include <fstream> directive.
This implicitly brings in declarations for file-stream operations.

#include <fstream>

ptg16518442

Chapter 9 Files: Electronic Storage214

The second step is to create a file-stream object and associate it with a disk
file. (I’ve chosen the name fout, but you could choose any name you want:
MyGoofyFile, RoundFile, Trash, or whatever.) Also, I’ve specified a file named
output.txt.

ofstream fout("output.txt"); // Open file output.txt

Now the object fout is associated with the file output.txt and has type
ofstream. When you open a file stream, you can use any of the following
types:

◗ ofstream, for file-output streams

◗ ifstream, for file-input streams

◗ fstream, a generic file stream (to which you have to specify input, output, or
both when you open it; more on that later)

The third step is as follows: After you successfully create the object, you can
write to it just as you would write to cout. This sends data to the associated file,
in this case, output.txt.

fout << "This is a line of text.";

As a variation on an example from Chapter 1, “Start Using C++,” you could
use the following code to write to the disk file output.txt:

#include <fstream>
// ...
ofstream fout("output.txt"); // Open file output.txt

fout << "I am Blaxxon," << endl;
fout << "the cosmic computer.";

The object fout provides access to the disk file. In object-oriented terms,
we can say that fout encapsulates the file, in terms of its ability to receive out-
put. First, fout is declared, associating it with a particular disk file (output
.txt in this example). Afterward, writing to fout results in sending data to
this same file.

ptg16518442

9
Introducing File—Stream Objects 215

"I am Blaxxon"

ofstream fout("output.txt");

output.txt Newline

fout

fout << "I am Blaxxon" << endl;

output.txt

fout

You can have multiple file-stream objects open at the same time—one for
each file you want to interact with.

ofstream out_file_1("memo.txt");
ofstream out_file_2("messages.txt");

When you’re done reading or writing to a file, you should call the close function.
This causes the program to give up ownership of the file so that some other
process can access it. C++ closes the file for you when the program exits suc-
cessfully, but it’s a good idea to close files as soon as you no longer need them.

out_file_1.close();
out_file_2.close();

How to Refer to Disk Files
In the previous section, I showed how you can create a file object by specifying
the file’s name. If successful, this declaration opens the file for output, giving
you exclusive access.

ofstream fout("output.txt");

By default, the file referred to is in the current directory—the directory from
which you run the program. (Or, to use Windows or Macintosh lingo, this is the
current folder.) But you can, if you want, specify a complete path name, option-
ally including a drive letter. This is all part of the complete filename or, more
precisely, the file specification.

ptg16518442

Chapter 9 Files: Electronic Storage216

For example, you can open a file in a particular directory on the C: drive.

ofstream fout("c:\\Users\\Briano\\output.txt");

This works on my computer, by the way, because I have a directory with this
name. But you probably don’t (unless you’re a really big fan of mine!).

The string literal here uses the C++ backslash notation. The backslash character
has a special meaning in C++ programs: for example, \n represents a newline,
and \t represents a tab. To represent the backslash itself, use two in a row. So,
“c:\\Users\\Briano\\output.txt” in a C++ program code names this file:

c:\Users\Briano\output.txt

Yet there is a better, more portable approach. Although Windows (and other
systems) use the backslash to navigate the file system, C++ accepts a forward
slash (/) as a file-path divider and then translates it as appropriate for the local
platform. To put it simply, you can use a string like this instead:

string path_name = "c:/Users/Briano/output.txt"

So, for example, you might create a file object this way:

ofstream fout("c:/Users/Briano/output.txt");

This statement, executed on a Windows or DOS system, would open the file
named earlier for writing, assuming that the path is valid.

Example 9.1. Write Text to a File
The example in this section does about the simplest thing you can do with a text
file: open it, write a couple of lines of text, close it, and exit.

The program prompts the user for the name of a file to which you want to
write. As a user, you enter the exact filename, including drive letter and com-
plete path if desired. Do not use two backslashes to represent one: That is a
notational convention within C++ program code only and has no effect on the
user or on how strings are stored generally.

For example, as the user you might enter this

c:\documents\output.txt

and if the file is successfully opened, text will be written to this file.

Note � This program will replace whatever file you specify, destroying its old
contents. Therefore, when you run it, be careful not to enter the name of an
existing file unless you don’t mind losing that file’s contents.

ptg16518442

9
Introducing File—Stream Objects 217

writetxt.cpp

#include <iostream>
#include <fstream>

using namespace std;

int main() {
 char filename[MAX_PATH + 1];

 cout << "Enter a file name and press ENTER: ";
 cin.getline(filename, MAX_PATH);
 ofstream file_out(filename);
 if (! file_out) {

cout << filename << " could not be opened.";
cout << endl;
return -1;

 }
 cout << filename << " was opened." << endl;
 file_out << "I read the" << endl;
 file_out << "news today," << endl;
 file_out << "ooh boy.";
 file_out.close();
 return 0;
}

After running this program, you’ll probably want to view its contents to verify
that the program wrote the text successfully. You can use any text editor or
word processor to do that. (Or, if you are inside an MS-DOS command shell,
you can use the TYPE command.)

H
ow

 It
 Works

How It Works
The program starts by enabling support for the iostream and fstream portions
of the C++ library.

#include <iostream>
#include <fstream>

using namespace std;

ptg16518442

Chapter 9 Files: Electronic Storage218

There’s only one function, main. The first thing it does is to prompt for a
filename:

 char filename[FILENAME_MAX];

 cout << "Enter a file name and press ENTER: ";
 cin.getline(filename, FILENAME_MAX);

This last line refers to FILENAME_MAX, a predefined constant that specifies
the maximum length for filenames (including the path name) supported on the
system. (This is portable; alternatively, you can use MAX_PATH, but that is sup-
ported by Windows systems only.) Allocating FILENAME_MAX characters guar-
antees the string named “filename” will be big enough to hold any valid filename.

The next thing that the main function does is create a file object, file_out.

 ofstream file_out(filename);

This statement attempts to open the named file. If the attempt to open the file is
unsuccessful, a null value is placed in file_out. This value can then be tested in
an if statement: A null value equates to false in this context.

If the file was not successfully opened, the program prints an error message
and exits. The logical negation operator (!) reverses the true/false value, so
in effect this is a test to see whether file_out is null, indicating failure to open
the file.

if (! file_out) {
 cout << filename << " could not be opened.";
 cout << endl;
 return -1;
}

There are a couple of reasons the file open could fail. The user may have
entered an invalid file specification. Or, the user attempted to open a file that
has been given read-only privileges by the operating system and cannot be
overwritten.

If the file was successfully opened, the program writes confirmation on the
console, writes text to the file, and then closes the file stream.

 cout << filename << " was opened." << endl;
 file_out << "I read the" << endl;
 file_out << "news today," << endl;
 file_out << "ooh boy.";
 file_out.close();
 return 0;

ptg16518442

9
Introducing File—Stream Objects 219

Ex
er

cis
es

 EXERCISES

Exercise 9.1.1. Rewrite Example 9.1 so it prompts for directory location and file-
name separately. (Hint: Use two strings and use the strcat function to join
them.)

Exercise 9.1.2. Write a program that lets the user enter any number of lines of text,
one at a time. In effect, this creates a primitive editor that permits text entry
but no editing of a line of text after it’s been entered. Set up a loop that doesn’t
terminate until the user presses ENTER without typing any text (a zero-length
string).

Alternatively, you can recognize a special code (for example, @@@) to termi-
nate the session. You can then use the strcmp (“string compare”) function to
detect this string. You may recall that what this function does is to compare two
C-strings and return 0 if they have the same contents.

if (strcmp(input_line, "@@@") == 0) {
 break;
}

Remember to print a short prompt before each line of text, such as the
following:

Enter (@@@ to exit) >>

Example 9.2. Display a Text File
After you write to a file, you’ll want to view it. Writing a complete text editor is
beyond the scope of this book, but the examples in this chapter cover some of
the basic elements. The main thing a word processor or text editor does is open
a file, read lines of text, let the user manipulate those lines of text, and then
write out the changes.

This example displays 24 lines of text at a time, asking the user whether to
continue. The user can print another 24 lines or quit. I picked this number
as typical of the number of vertical lines in a window less one to interact with
the user.

This example opens a stream as an ifstream, which assumes text and input
modes: The file will not open successfully unless you have named a file that
already exists.

ptg16518442

Chapter 9 Files: Electronic Storage220

readtxt.cpp

#include <iostream>
#include <fstream>
using namespace std;
#define COL_WIDTH 80

int main() {
 int c; // input character
 char filename[FILENAME_MAX];
 char input_line[COL_WIDTH + 1];

 cout << "Enter a file name and press ENTER: ";
 cin.getline(filename, FILENAME_MAX);

 ifstream file_in(filename);

 if (! file_in) {
cout << filename << " could not be opened.";
cout << endl;
return -1;

 }

 while (true) {
for(int i = 1; i <= 24 && !file_in.eof(); ++i) {

file_in.getline(input_line, COL_WIDTH);
cout << input_line << endl;

}
if (file_in.eof()) {

break;
}
cout << "More? (Press 'Q' and ENTER to quit)";
cin.getline(input_line, COL_WIDTH);
c = input_line[0];
if (c == 'Q' || c == 'q') {

break;
}

 }
 return 0;
}

ptg16518442

9
Introducing File—Stream Objects 221

H
ow

 It
 Works

How It Works
This example is similar to Example 8.1 but it checks a couple of different condi-
tions to determine whether it should keep reading more lines.

After determining whether the file stream was successfully opened, the program
sets up an infinite loop that exits when either of the following conditions is true:

◗ The end of the file is reached.

◗ The user indicates that he or she does not want to continue.

Here’s the main loop in skeletal form:

while (true) {
 // ...
}

Within the loop, the program reads up to 24 lines—less, if the end of file is
reached first. The easy way to implement this is to use a for loop with a complex
condition:

 for(int i = 1; i <= 24 && ! file_in.eof(); ++i) {
file_in.getline(input_line, FILENAME_MAX);
cout << input_line << endl;

}

The loop continues only as long as i is less than or equal to 24 and the end-of-
file condition is not detected. The expression

file_in.eof()

returns true if the end of the file has been reached. Logical “not” (!) reverses this con-
dition, so that “! file_in.eof()” returns true only as long as there is more data to read.

The rest of the main loop checks to see whether it should continue; if not, it
breaks out of the loop and the program ends.

if (file_in.eof()) {
break;

}
cout << "More? (Press 'Q' and ENTER to quit)";
cin.getline(input_line, 1);
c = input_line[0];
if (c == 'Q' || c == 'q') {

break;
}

ptg16518442

Chapter 9 Files: Electronic Storage222
Ex

er
cis

es

 EXERCISES

Exercise 9.2.1. Alter Example 9.2 so the user can optionally enter a number in
response to the “More?” prompt. The number determines how many lines to
print at a time instead of 24. (Hint: Use the atoi library function to convert
string input to integer; if the value entered is greater than 0, modify the num-
bers of lines to read.)

Exercise 9.2.2. Alter the example again so that it prints the contents of the file in
all-uppercase letters. You may find it helpful to copy some of the code from
Exercise 8.3 on page 195.

Text Files versus “Binary” Files
So far, we’ve used text files; a text file can be read or written to just like the con-
sole. As with the console, text files contain data in character form.

If you view the file with a text editor, or print the file on the console, you’ll
see the contents in human-readable form. For example, when you write the
number 255 to a text file, the program writes the ASCII character codes for 2,
5, and 5.

file_out << 255;

But there’s another way to store data. Instead of writing the ASCII character
codes for 255, you could write the value 255 directly. If you then tried to view
the file with a text editor, you wouldn’t see the numerals 255. Instead, the text
editor would try to show you ASCII code 255, which is not a regular printable
character.

Programming manuals talk about two kinds of files:

◗ Text files, which you read and write to as you would the console. Usually, every
byte written to a text file is the ASCII code for a printable character.

◗ So-called binary files, which you read and write to, use the actual numeric values
of the data. With this approach, ASCII translation is not involved.

This second technique may sound simpler, but it’s not. To view such a file in
a meaningful way, you need an application that understands what the fields of
the file are supposed to be and how to interpret them. Are a group of bytes to be
interpreted as integer, floating-point, or string data? And where does one group
of bytes start and another begin?

ptg16518442

9
Text Files versus “Binary” Files 223

When you create a file-stream object, you can specify text mode (the default)
or binary mode. The mode setting itself changes one important detail:

✱ In text mode, each newline character (ASCII 10) is translated into a carriage
return–linefeed pair during a write operation; during a read operation, a
carriage return–linefeed pair is translated back into a newline.

Let’s consider why the translation is necessary for text mode. Early in the
book, the examples used newline characters. These can be printed separately or
embedded in the strings themselves.

char *msg_string = "Hello\nYou\n";

Strings embed a single byte (ASCII code 10) to indicate a newline. But printing
to the console requires two actions: printing a carriage return (ASCII code 13),
which moves the cursor to the beginning of the line, and printing a linefeed
(ASCII code 10).

When a string is written to the console, each newline in memory is translated
into a carriage return–linefeed pair. For example, here’s what the string “Hello\
nYou\n” looks like when stored in main memory, and what it looks like when
written to the console:

H e l l o 10 Y o u 10 0

H e l l o 10 Y o u 10 1313

Console
(or disk file)

OK, you say. So, this translation must be done when printing strings on the
console. But is it necessary for text files as well?

Yes, it is. Data sent to a text file must have the same format as data sent to the
console. This allows C++ to treat all streams of text (whether console or on
disk) the same way.

But with a binary file, no such translation should ever be performed. The
value 10 may occur in the middle of a numeric field and it must not be inter-
preted as a newline. If you translated this value, you’d likely create a great many
errors.

ptg16518442

Chapter 9 Files: Electronic Storage224

There’s another difference—probably the most important—between text-
mode and binary-mode operations. It concerns the choices you make as a
programmer.

◗ If you open a file in text mode, you should use the same operations you use for
communicating with the console; these involve the stream operators (<<, >>)
and the getline function.

◗ If you open a file in binary mode, you should transfer data only by using the
read and write member functions. These are direct read/write operations.

In the next section, I discuss these two functions.

Are “Binary Files” Really More Binary?

The reason people use the term binary file is that with such a file, if you
write the byte value 255, you’re actually writing the binary value of 255
directly.

11111111

The use of the term binary is in some ways misleading. If you write 255
as text, you’re still writing binary data, except that now each of these binary
values is an ASCII character code. Conceptually, programmers tend to
think of this as “text” format as opposed to “binary,” because a text editor
displays a file as text.

Incidentally, here’s how 255 is actually written in text mode:

00110010 00110101 00110101

This binary sequence represents the numbers 50, 53, and 53, which in
turn are the ASCII codes for the numerals 2, 5, and 5. When this data is sent
to the console, you see the string of digits 255.

But the important point here is this: This is text mode, as opposed to
binary mode, because while working in text mode, you don’t care about
the underlying binary representation. All you care about is that the file is
seen as a stream of text characters. So, even though ultimately everything is
binary, you should just think of this mode as “text mode.”

Throughout this chapter, I adopt the standard term binary file to mean
a file in which data isn’t necessarily interpreted as ASCII character codes.
With a text file, everything is assumed to be readable as text, given the right
text-file reader. Files in which this is not true are called binary.

Interlude

ptg16518442

9
Introducing Binary Operations 225

Introducing Binary Operations
When working with binary files, you read and write data directly to the file
rather than translating data into text representations. Suppose you have the fol-
lowing data declarations. These variables occupy 4, 8, and 16 bytes, respectively.

int n = 1;
double x = 215.3
char *str[16] = "It's C++!"

The following statements write the values of the three variables (n, amount,
and str) directly to the file. Assume that binfil is a file-stream object success-
fully opened in binary mode.

binfil.write((char*)(&n), sizeof(n));
binfil.write((char*)(&x), sizeof(x));
binfil.write(str, sizeof(str));

By the way, in this chapter (and Chapter 10, “Classes and Objects”) I am
using the old-fashioned C-language type cast:

(type) data_item

Normally, use of the reinterpret_cast operator (which recasts pointers)
would be preferred here. But frankly, I just didn’t have space to get all that in
and, while the C++ specification committee doesn’t like old-style casts, it has
decided to live with them. You will not get an error message using the shorter—
and frankly more convenient—older style. (For information on all the newer,
preferred casts, see Appendix A.)

Here’s what the data looks like after being written. (The actual binary repre-
sentations use strings of 1s and 0s, but I’ve translated these to make them more
readable.)

"It's C++!"3 215.3

4 bytes 8 bytes 16 bytes

To read this file, you need to know how to interpret these three fields. In
reality, the lines between different fields are invisible; in fact, they don’t even
exist, except in the mind of the programmer. (Remember, data on a computer,
including disk files, is nothing but a series of bytes containing binary numbers.)

There is nothing in the file itself that tells you where one field begins and
another starts. With a text file, you can always read a field by reading to the next
newline or white space, but you can’t do that with a binary file.

ptg16518442

Chapter 9 Files: Electronic Storage226

Therefore, when you read a binary file, you have to know what kind of data to
expect. In the example just shown, data had this structure: an int, a double, and
a 16-byte array of char, in that order. Thus, you could read the data by following
this procedure:

1 Read 4 bytes directly into an integer variable.

2 Read 8 bytes directly into a double variable.

3 Read 16 bytes into a string.

That’s exactly what the following lines of code do.

binfil.read((char*)(&n), sizeof(n));
binfil.read((char*)(&x), sizeof(x));
binfil.read(str, 20);

The order in which these reads are done is critical. If, for example, you tried
to read the double (floating-point) field first, the results would be garbage
because integer data and floating-point have incompatible formats.

Binary reads require a lot more precision than reading streams of text. With
text input, a string of digits such as “12000” can be read as either integer or
floating-point, because the text-to-numeric conversion functions know exactly
how to interpret such a string. But a direct binary read performs no conversions
of any kind. Copying an 8-byte double directly to a 4-byte integer would create
a really unfortunate situation.

The moral: Know your data formats precisely before proceeding with binary I/O.
You perform input/output to a binary file by using the read and write mem-

ber functions. These functions each take two arguments: a data address and a
number of bytes, represented here as size.

fstream.read(addr, size); // Read data into addr

fstream.write(addr, size); // Write data from addr

The first argument is a data address in memory: In the case of the read function,
this is a destination to read the file data into. In the case of the write fun c tion, this is
a source address telling where to get the data to write to the file.

In either case, this first argument must have the type char*, so you need to
pass an address expression (a pointer, an array name, or an address obtained
with &). You also need to change the type by using a char* type cast, unless the
type is already char*.

binfil.write((char*)(&n), sizeof(n));

ptg16518442

9
Introducing Binary Operations 227

In the case of string data, you don’t need to use the char* cast because strings
already have that type.

binfil.write(str, sizeof(str));

The sizeof operator is helpful here for specifying the second argument. It
returns the size of the specified type, the variable, or the array.

Example 9.3. Random-Access Write
This next example writes binary data to a file. Again, observing a strict format
is critical. Data fields are differentiated not by a newline or whitespace (as in a
text file) but by program behavior.

The programs in this section and the next view a file as a series of fixed-
length records, in which each record stores two pieces of data:

◗ A string field 20 bytes in length (19 characters maximum, plus one byte for a
terminating null)

◗ An integer

This next example supports random access. The user can go directly to any
record, specified by number. Data does not have to read data sequentially, start-
ing at the beginning of the file and reading or writing each record in sequence.

If the user writes to an existing record number, that record is overwritten. If
the user writes to a record number beyond the current length of the file, the file
is automatically extended in length as needed.

writebin.cpp

#include <iostream>
#include <fstream>

using namespace std;

int get_int(int default_value);

int main() {
 char filename[FILENAME_MAX];
 int n = 0;
 char name[20];

▼ continued on next page

ptg16518442

Chapter 9 Files: Electronic Storage228

 int age = 0;
 int recsize = sizeof(name) + sizeof(int);

 cout << "Enter file name: ";
 cin.getline(filename, FILENAME_MAX);

 // Open file for binary write.

 fstream fbin(filename, ios::binary | ios::out);
 if (!fbin) {

cout << "Could not open " << filename << endl;
return -1;

 }

 // Get record number to write to.

 cout << "Enter file record number: ";
 n = get_int(0);

 // Get data from end user.

 cout << "Enter name: ";
 cin.getline(name, sizeof(name) - 1);
 cout << "Enter age: ";
 age = get_int(0);

 // Write data to the file.

 fbin.seekp(n * recsize);
 fbin.write(name, sizeof(name) - 1);
 fbin.write((char*)(&age), sizeof(int));
 fbin.close();
 return 0;
}

#define COL_WIDTH 80 // 80 is typical column width

// Get integer function
// Get an integer from keyboard; return default
// value if user enters 0-length string.
//

writebin.cpp, cont.

ptg16518442

9
Introducing Binary Operations 229

int get_int(int default_value) {
 char s[COL_WIDTH+1];

 cin.getline(s, COL_WIDTH);
 if (strlen(s) == 0) {

return default_value;
 }
 return atoi(s);
}

H
ow

 It
 Works

How It Works
The concept of record is at the heart of this example. A record is a data format
repeated throughout a file, giving uniformity to the file’s structure. No mat-
ter how long the file grows, it’s always easy to find a record by using its record
number.

Note � Whenever you use records in an array or a binary file, the more natural
way to implement them is to use a C structure or C++ class. I spend a lot of time
on classes starting in Chapter 10, “Classes and Objects.”

One of the first things the program does is to calculate this record length:

 int recsize = sizeof(name) + sizeof(int);

You can use this length information to go to any record. For example, record
number 0 is at offset 0 in the file, record number 1 is at offset 24, record number
2 is at offset 48, record number 3 is at offset 72, and so on.

0

0

20 24 44 48

21
char * 20 int char * 20 int

Offset:

Rec.#:

The program opens the file by specifying two flags: ios::binary and ios::out.
Opening in ios::out mode enables a file to be opened for writing; however, be
careful, because this will destroy old contents of existing files. It also lets you
open new files.

 fstream fbin(filename, ios::binary | ios::out);

writebin.cpp, cont.

ptg16518442

Chapter 9 Files: Electronic Storage230

If the file was opened successfully, the program gets a record number from the user.

 cout << "Enter file record number: ";
 n = get_int(0);

The get_int function uses a technique for getting an integer, described in the
previous chapter. The program then gets new data from the user.

 cout << "Enter name: ";
 cin.getline(name, sizeof(name) - 1);
 cout << "Enter age: ";
 age = get_int(0);

Moving to the location of the specified record is just a matter of multiplying
the number by the record size (recsize, equal to 24) and then moving to that
offset. The seekp member function performs this move.

 fbin.seekp(n * recsize);

The program then writes the data and closes the file.

 fbin.write(name, sizeof(name) - 1);
 fbin.write((char*)(&age), sizeof(int));
 fbin.close();

Ex
er

cis
es

 EXERCISES

Exercise 9.3.1. Write a program similar to Example 8.3 that writes records to a file,
in which each record contains the following information: model, a 20-byte
string; make, another 20-byte string; year, a five-byte string; and mileage, an
integer.

Exercise 9.3.2. Revise Example 9.3 so that it prompts the user for a record number
and then prompts the user for the rest of the data and repeats. To exit, the user
enters –1.

Example 9.4. Random-Access Read
Of course, the program in Example 8.3 isn’t very useful unless you have a way of
reading the data placed there. The program here reads data using the same record
format used in the previous section: a 20-byte string followed by a four-byte inte-
ger. The code is similar to that of Example 8.3, except for a few key statements.

In this case, the file is opened with flags ios::bin and ios::in; the latter
requires the file to already exist to be successfully opened.

ptg16518442

9
Introducing Binary Operations 231

readbin.cpp

#include <iostream>
#include <fstream>

using namespace std;

int get_int(int default_value);

int main() {
 char filename[FILENAME_MAX];
 int n = 0;
 char name[20];
 int age = 0;
 int recsize = sizeof(name) + sizeof(int);

 cout << "Enter file name: ";
 cin.getline(filename, FILENAME_MAX);

 // Open file for binary read-write access.

 fstream fbin(filename, ios::binary | ios::in);
 if (!fbin) {

cout << "Could not open " << filename << endl;
return -1;

 }

 // Get record number and go to record.

 cout << "Enter file record number: ";
 n = get_int(0);
 fbin.seekp(n * recsize);

 // Read data from the file.

 fbin.read(name, sizeof(name) - 1);
 fbin.read((char*)(&age), sizeof(int));

 // Display the data and close.

▼ continued on next page

ptg16518442

Chapter 9 Files: Electronic Storage232

 cout << "The name is: " << name << endl;
 cout << "The age is: " << age << endl;
 fbin.close();
 return 0;
}

// Get integer function
// Get an integer from keyboard; return default
// value if user enters 0-length string.
//
int get_int(int default_value) {
 char s[81];

 cin.getline(s, 80);
 if (strlen(s) == 0) {

return default_value;
 }
 return atoi(s);
}

H
ow

 It
 Works

How It Works
Most of this program does the same thing as Example 9.3, but because this pro-
gram reads input from the file, it must be opened in ios::in mode (and that
requires that it already exists). As before, the program gets a record number and
moves to the appropriate offset after multiplying by recsize.

 fbin.seekp(n * recsize);

The statements that differ from those in Example 9.3 read data from the file
into the variables name and age. These are nearly the same as the corresponding
write statements in the other example; in fact, the arguments are the same.

 fbin.read(name, sizeof(name) - 1);
 fbin.read(((char*)(&age), sizeof(int));

Once data is read into the two variables—name and age—the program
prints the data, closes the file, and it’s done.

 cout << "The name is: " << name << endl;
 cout << "The age is: " << age << endl;
 fbin.close();

readbin.cpp, cont.

ptg16518442

9
233Chapter 9 Summary

Ex
er

cis
es

 EXERCISES

Exercise 9.4.1. Write a program similar to Example 9.4 that reads records from a
file, in which each record contains the following information: model, a 20-byte
string; make, another 20-byte string; year, a five-byte string; and mileage, an
integer.

Exercise 9.4.2. Revise Example 9.4 so that it prompts the user for a record number
and then prints the data at that record and repeats. To exit, the user enters –1.

Exercise 9.4.3. Revise the example further so that it performs both random-access
read and write. Once this is completed, you’ll have one program that can handle
all input/output operations for files observing this format. The file should open
with the flags ios:binary | ios::out | ios::in. The latter requires the file to exist
before being opened.

You’ll need to present a command to the user by printing a menu of options:

1 Write a record.

2 Read a record.

3 Exit.

The general loop of the program should do the following: print the menu,
carry out a command, and exit if option 3 is chosen. Then repeat.

Chapter 9 Summary
Here are the main points of Chapter 9:

◗ To switch on file-stream support from the C++ standard library, use this
#include statement, which brings in prototypes and declarations as needed.

#include <fstream>

◗ File-stream objects provide a way to communicate with files. To create a
file-output stream, use an ofstream type declaration. For example:

ofstream fout(filename);

◗ You can then write to the stream as you’d write to cout.

fout << "Hello, human." << endl;

ptg16518442

Chapter 9 Files: Electronic Storage234

◗ To create a file-input stream, use an ifstream declaration. A file-input stream
supports the same operations that cin does, including the getline function.

ifstream fin(filename);

char input_string[MAX_PATH + 1];
fin.getline(input_string, MAX_PATH);

◗ If the file can’t be opened, the file-stream object is set to a null (zero). You can
test the object in a condition: if the value is zero, there was an error and the pro-
gram should react as appropriate.

if (! file_in) {
 cout << "File " << filename;
 cout << " could not be opened.";
 return -1;
}

◗ After you’re done working with a file-stream operator (regardless of mode), it
is good programming practice to close it. This frees up the file so that it can be
accessed by other programs.

fout.close();

◗ Files can be opened in either text mode or binary mode. In text mode, you read
and write to a file just as you would the console. In binary mode, you use mem-
ber functions to read and write data directly. To open a file stream in binary,
random-access mode, use the flags ios::out and ios::binary or ios::in and
ios::binary.

◗ Random-access mode enables you to go directly to any position in the file. You
can read any portion of the file and overwrite any existing portions without
affecting the rest. If the file pointer is moved beyond the file’s current length,
the file is automatically extended as needed.

◗ Use the seekp member function to move the file pointer. The function takes an
argument giving an offset (in bytes) from the beginning of the file.

fbin.seekp(offset);

◗ The read and write functions each take two arguments: a data address and the
number of bytes to copy.

fstream.read(addr, size);
fstream.write(addr, size);

ptg16518442

9
235Chapter 9 Summary

◗ With the read function, the address argument specifies a destination; the func-
tion reads data from the file into this location. With the write function, the
address argument specifies a source; the function reads data from that source
into the file.

◗ Because the type of the address argument is char*, you need to apply a cast if it
is not a string. Use the sizeof operator to determine the number of bytes to read
or write.

binfil.write((char*)(&n), sizeof(n));
binfil.write((char*)(&x), sizeof(x));
binfil.write(str, sizeof(str));

ptg16518442

This page intentionally left blank

ptg16518442

237

10 Classes and
Objects

One of the most fascinating topics in C++ is object orientation. Once you
understand it and have written a few programs using the object-oriented-
programming (OOP) techniques, it becomes a natural way to program. However,
the concepts are subtle and challenging at first.

Object orientation is, above all, a way of approaching analysis and design.
There are some helpful tools in C++, but they work only as long as you under-
stand what OOP design is all about.

As I’m going to show in the next six chapters, there are many projects that
would be much harder to do without the object-oriented approach.

OOP, My Code Is Showing
Object-oriented programming (OOP) is a modular approach to programming:
it creates groups of closely related code and data that work together. The major
rule is this:

✱ In OOP design you begin by asking: what are the principal data structures
you’re working on, and what actions need to be performed on each?

In upcoming chapters, such as Chapter 15, “Object-Oriented Poker,” I’ll show
how a potentially messy and difficult project—writing a Video Poker game—
becomes easier to design if you use an object-oriented approach.

I’ll go into this in much greater detail in Chapter 15, but here’s a quick over-
view. The classes in the poker game will be:

◗ The Deck class. This class takes care of all the randomization, shuffling, and
reshuffling of a deck of cards, freeing the rest of the program from worrying
about these details.

ptg16518442

Chapter 10 Classes and Objects238

◗ The Card class. This class contains the information needed to track a specific
card: both rank (deuce through ace) and suits (because in Poker, flushes are
possible). We’ll give each Card object the ability to display itself.

With these two classes written, writing a main program that plays the game
is straightforward. Remember that each class is a combination of closely related
functions and data structures. Many books talk about “encapsulation” and
“data abstraction,” but these are just words for: Hide the details!

After you write a class, the next step is to use that class to create objects. But
just what is an object?

What’s an Object, Anyway?
A class is a data type—although potentially an intelligent one. There’s a one-to-
many relationship between a data type and instances of that type. For example,
there’s only one int type (along with a few related types, such as unsigned), but
you can have any number of integers—even millions of them.

The term object refers to an instance in C++, especially an instance of a class.
In the poker game, there will be one instance of the Deck class and at least five
instances of the Card class.

Simply put, an object is an intelligent data structure, the structure of which is
determined by its class. An object is like a data record but it can potentially do
so much more. It can respond to requests in the form of function calls. If you’re
new to this idea, you may find it exciting. I hope you do.

Here are the general steps in OOP. They are performed more or less in this
order, although in practice you’ll probably move back and forth:

1 Declare a class, or acquire one through a library.

2 Create one or more instances (called objects) of this class.

3 Manipulate the objects to accomplish your goals.

Consider each of these in turn. First, design and write the class. A class is an
extended data structure, one that defines behavior for its instances (in the form
of function members, or methods) as well as data fields.

CLASS data members
(data fields)

function
members
(methods)

These are all
declared in the
class declaration

ptg16518442

10
What’s an Object, Anyway? 239

Once a class is declared and its members defined, the program can create any
numbers of instances of that class—that is, the objects. This is a one-to-many
relationship.

OBJECT

data

OBJECT

data

OBJECT

data

one-to-many
relationship

CLASS data members
(data fields)

function
members
(methods)

Finally, the program uses the objects to store data. Moreover, the program
can make requests of these objects, asking them to perform tasks. While each
object contains its own data, its function code is shared with all other objects of
the same class.

MAIN PROGRAM
OBJECT

data
Creates objects and uses them
by calling their function
members.

All objects of the same
class share their function
code, which is declared
in the class declaration.

OBJECT

data

OBJECT

data

ptg16518442

Chapter 10 Classes and Objects240

This is not yet a complete picture, however, because there are other possibilities,
such as objects containing other objects. Still, this description provides a general
picture of the relationship between classes, objects, and the rest of the program.

To illustrate these mechanics, I’ll spend the rest of the chapter focusing on
two simple classes: Point and Fraction.

OOP…Is It Worth It?

Object orientation goes at least as far back as the 1960s with the Simula lan-
guage, along with other attempts to make programming more data-centric.
It got a boost in the 1970s when the Xerox PARC group (the same people
who developed the graphical user interface) invented Smalltalk, a language
built on the idea of independent objects sending messages to each other. By
the 1980s, the concepts began to be widely evangelized.

In the early 1990s, OOP became the standard it is today. Bjarne Stroustrup
married OOP to the popular C language, creating C++. Pascal and Basic
also got object-oriented extensions. Thereafter, new languages followed,
such as C# and Java. Today, you can’t get away from it.

But do OOP concepts actually help you program more efficiently? There
has been some backlash to the great push for everyone to become object
oriented. Detractors argue that you end up writing the same amount of
code and data anyway.

Yet a couple of points are undeniable:

◗ Graphical-user-interface (GUI) systems have come to dominate the
world. Although you don’t have to use an OOP language to write for such
systems, they are well matched. Conceptually, they are highly compati-
ble ideas, both developed at PARC.

◗ More and more, code and data are packaged into OOP form. If you want
to take advantage of libraries such as Microsoft Foundation Classes (for
Windows) or the C++ Standard Template Library (STL), you have no
choice but to master the basics of object-oriented syntax.

Clearly, then, OOP is here to stay. And when you use the Structured Tem-
plate Library, as I’ll show in Chapter 13, “Easy Programming with STL,”
you’ll reap big benefits.

Interlude

ptg16518442

10
Point: A Simple Class 241

Point: A Simple Class
Here’s the general syntax of the C++ class keyword:

class class_name {
declarations

};

Except when you write a subclass, the syntax is no more complicated than
this. The declarations can include data declarations, function declarations, or
both. Here’s a simple example that involves only data declarations:

class Point {
 int x, y; // private -- may not be accessed
};

But members of a data structure declared with the class keyword are private
by default, which means they cannot be accessed from outside the class. This
first attempt at declaring a Point class therefore produces a class that is not useful.
To be of any use, the class needs to have at least one public member.

class Point {
public:
 int x, y;
};

This is better. Now the class can actually be used. Given a class declaration for
Point, you can go on to the second major step: declaring objects. In this case,
the objects are pt1, pt2, and pt3.

Point pt1, pt2, pt3;

After creating these objects, you can assign values to individual data fields
(called data members):

pt1.x = 1; // Set pt1 to 1, -2.
pt1.y = -2;
pt2.x = 0; // Set pt2 to 0, 100.
pt2.y = 100;
pt3.x = 5; // Set pt3 to 5, 5.
pt3.y = 5;

What the Point class declaration does is to say that each Point object contains
two data fields, x and y, which are also called members. You can use these mem-
bers just as you would any integer variable.

K
ey

wo
rd

ptg16518442

Chapter 10 Classes and Objects242
cout << pt1.y + 4; // Print sum of two integers.

In general, to refer to a data field of an object, use the following syntax:

object.member_name

In this case, object refers to an instance of the Point class, and member_name
can be either x or y.

Before we leave this simple version of the Point class, there’s an aspect of syn-
tax worth commenting on: a class declaration ends with a semicolon.

class Point {
public:
 int x, y;
};

When you’re starting to write C++ code, it’s easy to get tripped up on the
semicolon. A class declaration requires a semicolon after the closing brace (}),
whereas a function definition should not be followed by a semicolon. (At best,
you’d be producing a null statement.)

Keep in mind this cardinal rule:

✱ A class or data declaration always ends with a semicolon.

So, class declarations place a semicolon after the closing brace, whereas func-
tion definitions do not.

Interlude for C Programmers: Structures and Classes

In C++, the struct and class keywords are equivalent, except that members
of a struct are public by default. Both keywords create classes in C++. This
means that the general term class and the keyword class are not precisely
co-extensive; in other words, it’s possible to have a class that is not created
with the class keyword.

In C, when you declare a structure, you have to reuse the struct keyword
wherever the new type name appears—for example, when creating individ-
ual data items.

struct Point pt1, pt2, pt3;

This is not necessary in C++. Once you declare a class (with either the
struct or class keyword), you can use the name in all contexts involving a

Ke
y

Sy

ntax

Interlude

ptg16518442

10
Private: Members Only (Protecting the Data) 243

▼ continued

type. So after you port C-language code to C++, you can replace the previous
data declaration with this:

Point pt1, pt2, pt3;

The support of struct in C++ arises from the need for backward com-
patibility. C code often uses the struct keyword.

struct Point {
 int x, y;
};

The C language has no public or private keyword, and the user of a
struct type must be able to access all members. For backward compatibil-
ity with C, therefore, types declared with struct had to have members that
were public by default.

Does C++ really even need a class keyword? Technically, no, but the
class keyword performs a self-documenting function because the purpose
of a class is usually to add function members. Moreover, class members are
private by design. In object orientation, making a member public ought to
happen only as a deliberate choice.

Private: Members Only (Protecting the Data)
In the previous section, the Point class permitted direct access to its data members
because they were declared public. But what if you want to control access to data
members? You might, for example, want to ensure that the data is in a particu-
lar range. The way to do that is to make the members private and provide access
through public functions.

The following version of Point prevents direct access to x and y from outside
the class:

class Point {
private: // Data members (private)
 int x, y;
public: // Member functions
 void set(int new_x, int new_y);
 int get_x();
 int get_y();
};

Interlude

ptg16518442

Chapter 10 Classes and Objects244

This class declaration declares three public member functions—set, get_x, and
get_y—as well as two private data members. Now, after declaring Point objects,
the object’s user can manipulate values only by calling one of the functions:

Point point1;
point1.set(10, 20);
cout << point1.get_x() << ", " << point1.get_y();

This prints the following:

10, 20

This syntax is not really new. I’ve used it in past chapters with objects, such
as strings and cin. The dot (.) syntax says that a certain function (in this case,
get_x) applies to a particular object.

point1.get_x()

Of course, the member functions don’t work by magic; like other functions,
they have to be defined somewhere. But you can place the function definitions
anywhere you like, as long as the class has been declared.

The “Point::” prefix clarifies the scope of these definitions so that the com-
piler knows they apply to the Point class. The prefix is important, because other
classes could have their own functions with these same names.

void Point::set(int new_x, int new_y) {
 x = new_x;
 y = new_y;
}

int Point::get_x() {
 return x;
}

int Point::get_y() {
 return y;
}

The “Point::” scope prefix is applied to the function name. The return type (void
or int, as the case may be) still appears where it would be with a standard func-
tion definition—at the very beginning. So think of “Point::” as a function-name
modifier.

The syntax for member-function definitions can be summarized as follows:

type class_name::function_name (argument_list) {
statements

}

Ke
y

Sy

ntax

ptg16518442

10
Private: Members Only (Protecting the Data) 245

These function definitions give you, the author of the class, control over the
data. You can, for example, rewrite the Point::set function so that negative input
values are converted to positive.

void Point::set(int new_x, int new_y) {
 if (new_x < 0) {

new_x *= -1;
 }
 if (new_y < 0) {

new_y *= -1;
 }
 x = new_x;
 y = new_y;
}

Here, I’m using the multiplication-assignment operator (*=); “new_x *= −1”
that has the same effect that “new_x = new_x * −1” does.

Although function code outside the class cannot refer to private data mem-
bers x and y, function definitions within the class can refer to class members
directly, whether private or not.

You can visualize the Point class this way: every Point object shares this same
structure.

set()

get_x()

get_y()

x y private

Point class

ptg16518442

Chapter 10 Classes and Objects246

Remember that the class declaration describes the structure and behavior
for the type (Point). But each Point object stores its own individual data values.
For example, the following statement prints the x value stored in p1:

cout << pt1.get_x(); // Print value of x in pt1.

But this next statement prints the x value stored in p2:

cout << pt2.get_x(); // Print value of x in pt2.

Example 10.1. Testing the Point Class
The following program performs some simple tests on the Point class, using it
to set and get some data. Code that’s new is in bold; the rest is existing code pre-
viously used in this chapter.

Point.cpp

#include <iostream>
using namespace std;

class Point {
private: // Data members (private)
 int x, y;
public: // Member functions
 void set(int new_x, int new_y);
 int get_x();
 int get_y();
};

int main() {
 Point pt1, pt2; // Create two Point objects.

 pt1.set(10, 20);
 cout << "pt1 is " << pt1.get_x();
 cout << ", " << pt1.get_y() << endl;
 pt2.set(-5, -25);
 cout << "pt2 is " << pt2.get_x();
 cout << ", " << pt2.get_y() << endl;
 return 0;
}

ptg16518442

10
Private: Members Only (Protecting the Data) 247

 void Point::set(int new_x, int new_y) {
 if (new_x < 0)

new_x *= -1;
 if (new_y < 0)

new_y *= -1;
 x = new_x;
 y = new_y;
}

int Point::get_x() {
 return x;
}

int Point::get_y() {
 return y;
}

When run, the program should print out the following:

p1 is 10, 20
p2 is 5, 25

H
ow

 It
 Works

How It Works
This is a simple example. The Point class must be declared first so that it can be
used by main. Then, main can directly use the name “Point” to create objects
pt1 and pt2.

 Point pt1, pt2; // Create two Point objects.

The set, get_x, and get_y member functions can then be applied to any
Point objects. For example, the following three statements call Point functions
through the Point object p1, thereby accessing p1’s data:

 pt1.set(10, 20);
 cout << "pt1 is " << pt1.get_x();
 cout << ", " << pt1.get_y() << endl;

These next statements call Point functions through the p2, thereby accessing
p2’s data:

 pt2.set(-5, -25);
 cout << "pt2 is " << pt2.get_x();
 cout << ", " << pt2.get_y() << endl;

Point.cpp, cont.

ptg16518442

Chapter 10 Classes and Objects248

You can create any number of Point objects and each stores its own copy of
the data members. But all objects of the same class support the function mem-
bers defined in that class. Therefore, all Point objects support the set, get_x, and
get_y functions, but each will have its own data values for x and y.

Ex
er

cis
es

 EXERCISES

Exercise 10.1.1. Revise the set function so that it establishes an upper limit of 100 for
values of x and y; if a value greater than 100 is entered, it is reduced to 100.
Revise main to test this behavior.

Exercise 10.1.2. Write two new functions for the Point class, set_x and set_y, which
set the individual values x and y. Remember to reverse the negative sign, if any,
as is done in the set function.

Exercise 10.1.3. Revise the example so that it displays the x and y values of five
Point objects.

Exercise 10.1.4. Revise the example so that it creates an array of seven Point objects.
Set up a loop that prompts for values for each of the seven objects and another
loop to print out all the values. (Hint: you can use a class name to declare an
array, just as you can with any other type.)

Point array_of_points[7];

Introducing the Fraction Class
One of the best ways to think about object orientation is to consider it a way
to define useful new data types. In C++, a class becomes an extension to the
language itself. A perfect example is a Fraction class (which could also be called
a “rational number” class) that stores numbers representing a numerator and a
denominator.

The Fraction class is useful if you ever need to store numbers such as 1/3 or 2/7
and you need to store them precisely. You can even use the class to store dollar-
and-cents figures, such as $1.57.

In creating the Fraction class, it becomes important to restrict access to the
data members for several reasons. For one thing, you should never allow a 0
denominator, because the ratio 1/0 is not a legal operation.

And, even with legal operations, it’s important to simplify ratios so there’s a
unique expression of every rational number. For example, 3/3 and 1/1 specify
the same quantity, as do 2/4 and 1/2.

ptg16518442

10
Introducing the Fraction Class 249

In the next few sections, we’ll develop functions that automatically handle
this work of rejecting 0 denominators and reducing fractions. Users of the class
will be able to create any number of Fraction objects, and operations such as the
following will do the right thing “automagically.”

Fraction a(1, 6); // a = 1/6
Fraction b(1, 3); // b = 1/3

if (a + b == Fraction(1, 2))
 cout << "1/6 + 1/3 equals 1/2" << endl;

Yes! You can even support the addition operator (+), as I’ll show in Chapter 18,
“Operator Functions: Doing It with Class”! But let’s start with the simplest ver-
sion of this class.

class Fraction {
private:
 int num, den; // Numerator and denominator.
public:
 void set(n, d);
 int get_num();
 int get_den();
private:
 void normalize(); // Convert to standard form.
 int gcf(); // Greatest Common Factor.
 int lcm(); // Lowest Common Denominator.
};

This class declaration has three parts:

◗ Private data members, num and den, which store numerator and denominator.
In the fraction 1/3, for example, 1 is the numerator and 3 is the denominator.

◗ Public function members; these provide access to class data.

◗ Private function members; these are support functions we’ll make use of later in
the chapter. For now, they just return zero values. As private members, they can’t
be accessed from outside, but they are useful for internal operations, as you’ll see.

With these functions declared, you can use the class for simple operations such
as these:

Fraction my_fract;
my_fract.set(1, 2);

ptg16518442

Chapter 10 Classes and Objects250
cout << my_fract.get_num();
cout << "/"';
cout << my_fract.get_den();

So far, this isn’t very interesting, but it’s a place to start. You can visualize the
Fraction class this way:

set()

get_num()

get_den()

normalize()

gcf()

lcm()

num den private

private

Fraction class

The member functions need to be defined somewhere. These definitions can
be placed anywhere after the class declaration.

void Fraction::set(int n, int d) {
 num = n;
 den = d;
}

int Fraction::get_num(){
 return n;
}

ptg16518442

10
Inline Functions 251

int Fraction::get_den(){
 return d;
}

// TO BE DONE...
// The remaining functions are syntactically correct,
// but don't do anything useful yet.
// We'll fill them in later.

void Fraction::normalize(){
 return;
}

int Fraction::gcf(int a, int b){
 return 0;
}

int Fraction::lcm(int a, int b){
 return 0;
}

Inline Functions
Three of the functions in the Fraction class do simple things: set or get data.
They are good candidates for inlining.

When a function is inlined, the program does not transfer control to a sep-
arate block of code. Instead, the compiler replaces the function call with the
body of the function. For example, suppose that the set function is inlined as
follows:

void set() {num = n; den = d;}

Now, whenever the following statement is encountered

fract.set(1, 2);

the compiler inserts the machine instructions for the “set” function. The result
is the same as if the following code was inserted into the program. (This code is
legal even if num and den are private because it’s being performed by a member
function.)

{fract.num = 1; fract.den = 2;}

ptg16518442

Chapter 10 Classes and Objects252

You can make functions inline by placing their function definitions in the
class declaration itself. These function definitions do not need to be followed by
semicolons (;) even though they are member declarations.

The altered lines in the following example are in bold:

class Fraction {
private:
 int num, den; // Numerator and denominator.
public:
 void set(int n, int d)

{num = n; den = d; normalize();}
 int get_num() {return num;}
 int get_den() {return den;}
private:
 void normalize(); // Convert to standard form.
 int gcf(int a, int b) // Greatest Common Factor.
 int lcm(int a, int b) // Lowest Common Denom.
};

Because the three private functions are not inlined, their function defini-
tions still need to be included separately, using the “Fraction::” prefix to clarify
that these are definitions of Fraction class functions.

void Fraction::normalize(){
 return;
}

int Fraction::gcf(int a, int b){
 return 0;
}

int Fraction::lcm(int a, int b){
 return 0;
}

If a function definition is short, you can improve efficiency by writing it as an
inline function. Remember, this is done just by simply including the function’s
definition inside the class declaration itself, so it doesn’t need to be defined any-
where else.

The following table compares class inline functions to other functions:

ptg16518442

10
Find the Greatest Common Factor 253

INLINE FUNCTIONS OTHER CLASS FUNCTIONS

Defined (not just declared) inside the
class declaration itself

Defined outside the class declaration but
prototyped inside the class

No scope prefix (such as “Point::”) is used The scope prefix must be used in the definition

At run time, body of function is
“inlined”—inserted into the code

At run time, a true function call is made,
transferring execution to another code location

Appropriate for small functions Appropriate for longer functions

Has some restrictions; cannot use
recursive calls

No special restrictions

Find the Greatest Common Factor
Actions inside the Fraction class are based on two concepts in number theory:
greatest common factor and lowest common multiple. Chapter 5, “Functions:
Many Are Called,” described Euclid’s algorithm for greatest common factor
and we can use that here.

NUMBERS GREATEST COMMON FACTOR

12, 18 6

12, 10 2

25, 50 25

50, 75 25

Here is Euclid’s algorithm from Chapter 5, written as a recursive C++ function:

int gcf(int a, int b) {
 if (b == 0) {

return a;
 } else

return gcf(b, a%b);
 }
}

Now, to rewrite this as a member function, we just add the Fraction:: prefix
to give it Fraction-class scope:

int Fraction::gcf(int a, int b) {
 if (b == 0) {

ptg16518442

Chapter 10 Classes and Objects254
return a;

 } else
return gcf(b, a%b);

 }
}

Strange things happen if negative numbers are passed to the GCF function:
it still produces correct results—gcf(35, −25) produces 5—but the resulting
sign becomes difficult to predict. To remove this problem, we can use the abs
(absolute value) function to ensure only positive values are returned. Here, the
changes to the original version of gcf are in bold:

int Fraction::gcf(int a, int b) {
 if (b == 0) {

return abs(a);
 } else {

return gcf(b, a%b);
 }
}

Find the Lowest Common Denominator
Another useful support function gets the lowest common multiple (LCM).
Because we already have the GCF function, LCM should be easy.

The LCM is the lowest number that is a multiple of both of two inputs. This
is the converse of the greatest common factor (GCF). So, for example, the LCM
of 200 and 300 is 600. The greatest common factor is 100.

The trick in finding the LCM is to isolate the greatest common factor and
multiply by this factor only once. In multiplying A and B, you implicitly include
the same factor twice. The common factor must therefore be removed from A
and from B. The formula is

n = GCF(a, b)

LCM(A, B) = n * (a / n) * (b / n)

which simplifies to the following:

LCM(A, B) = a / n * b

ptg16518442

10
Find the Lowest Common Denominator 255

The LCM function is now easy to write.

 int Fraction::lcm(int a, int b) {
int n = gcf(a, b);
return a / n * b;

 }

Example 10.2. Fraction Support Functions
The GCF and LCM functions can now be added to the Fraction class. Here’s a
first working version of the class. I’ve also added code for the normalize func-
tion, which simplifies fractions after each operation. Code that’s new or altered
from earlier versions is in bold.

Fract1.cpp

#include <cstdlib>

class Fraction {
private:
 int num, den; // Numerator and denominator.
public:
 void set(int n, int d)

{num = n; den = d; normalize();}
 int get_num() {return num;}
 int get_den() {return den;}
private:
 void normalize(); // Convert to standard form.
 int gcf(int a, int b); // Greatest Common Factor.
 int lcm(int a, int b); // Lowest Common Denom.
};

// Normalize: put fraction into standard form, unique
// for each mathematically different value.
//
void Fraction::normalize(){

 // Handle cases involving 0

 if (den == 0 || num == 0) {
num = 0;

▼ continued on next page

ptg16518442

Chapter 10 Classes and Objects256

den = 1;
 }

 // Put neg. sign in numerator only.

 if (den < 0) {
num *= -1;
den *= -1;

 }

 // Factor out GCF from numerator and denominator.

 int n = gcf(num, den);
 num = num / n;
 den = den / n;
}

// Greatest Common Factor
//
int Fraction::gcf(int a, int b){
 if (b == 0)

return abs(a);
 else

return gcf(b, a%b);
}

// Lowest Common Multiple
//
int Fraction::lcm(int a, int b){
 int n = gcf(a, b);
 return a / n * b;
}

H
ow

 It
 Works

How It Works
When the gcf function calls itself in the recursive function call,

gcf(a/i, b/i)

it’s not necessary to use the Fraction:: prefix. That’s because inside a class func-
tion, class scope is assumed. Similarly, when the Fraction::lcm function calls
gcf, class scope is again assumed.

Fract1.cpp, cont.

ptg16518442

10
Find the Lowest Common Denominator 257

int Fraction::lcm(int a, int b){
 int n = gcf(a, b);
 return a / n * b;
}

In general, each time the C++ compiler comes across a variable or function
name, it looks for the declaration of that name in this order:

◗ It looks within the same function (in the case of local variables).

◗ It looks within the same class.

◗ If no declaration is found at the function or class level, the compiler looks for a
global declaration.

The normalize function is the only new code here. The first thing the func-
tion does is to handle cases involving zero. A denominator equal to 0 is invalid,
so the fraction is changed to 0/1. In addition, all values with numerators equal
to 0 are equivalent.

0/1 0/2 0/5 0/-1 0/25

These are all put in a standard form of 0/1.
One of the main goals of the Fraction class is to ensure that equal values are

represented the same way. This will make it easy to implement the test-for-
equality operator later on. Negative numbers pose an issue. For example, these
two expressions represent the same value

-2/3 2/-3

as do these:

4/5 -4/-5

The easiest solution is to test the denominator: If it’s less than 0, reverse the
sign of both the numerator and denominator.

 if (den < 0) {
num *= -1;
den *= -1;

 }

The rest of the function is straightforward: Find the greatest common factor
and then divide both the numerator and denominator by this amount:

 int n = gcf(num, den);
 num = num / n;
 den = den / n;

ptg16518442

Chapter 10 Classes and Objects258

For example, take the fraction 30/50. The greatest common factor is 10. The
normalize function executes the necessary division and produces 3/5.

The normalize function is important because it ensures equivalent values are
expressed the same way. Also, when we start crunching numbers with the Frac-
tion class, large numbers can accumulate for the numerator and denominator.
To avoid overflow errors at runtime, it’s important to reduce Fraction expres-
sions at every opportunity.

Ex
er

cis
es

 EXERCISES

Exercise 10.2.1. Rewrite the normalize function so that it uses the division-
assignment operator (/=). Remember that this operation

a /= b

is equivalent to the following:

a = a / b

Exercise 10.2.2. Inline every class function in which it would be reasonable to do so.
(Hint: gcf can’t be inlined because it is recursive, and normalize is too long.)

Example 10.3. Testing the Fraction Class
Once you have completed a class declaration, you need to test it by creating and
using objects. The following code prompts for input values and displays values
after simplifying the fractions:

Fract2.cpp

#include <iostream>
#include <string>
using namespace std;

class Fraction {
private:
 int num, den; // Numerator and denominator.
public:
 void set(int n, int d)

{num = n; den = d; normalize();}
 int get_num() {return num;}
 int get_den() {return den;}

ptg16518442

10
Find the Lowest Common Denominator 259

private:
 void normalize(); // Convert to standard form.
 int gcf(int a, int b); // Greatest Common Factor.
 int lcm(int a, int b); // Lowest Common Denom.
};

int main()
{
 int a, b;
 string str;
 Fraction fract;
 while (true) {

cout << "Enter numerator: ";
cin >> a;
cout << "Enter denominator: ";
cin >> b;
fract.set(a, b);
cout << "Numerator is " << fract.get_num()

<< endl;
cout << "Denominator is " << fract.get_den()

<< endl;
cout << "Do again? (Y or N) ";
cin >> str;
if (!(str[0] == 'Y' || str[0] == 'y'))

break;
 }
 return 0;
}

// ---
// FRACTION CLASS FUNCTIONS

// Normalize: put fraction into standard form, unique
// for each mathematically different value.
//
void Fraction::normalize(){

 // Handle cases involving 0

▼ continued on next page

Fract2.cpp, cont.

ptg16518442

Chapter 10 Classes and Objects260

 if (den == 0 || num == 0) {
num = 0;
den = 1;

 }

 // Put neg. sign in numerator only.

 if (den < 0) {
num *= -1;
den *= -1;

 }

 // Factor out GCF from numerator and denominator.

 int n = gcf(num, den);
 num = num / n;
 den = den / n;
}

// Greatest Common Factor
//
int Fraction::gcf(int a, int b) {
 if (b == 0) {

return abs(a);
 } else {

return gcf(b, a%b);
 }
}

// Lowest Common Multiple
//
int Fraction::lcm(int a, int b){
 int n = gcf(a, b);
 return a / n * b;
}

H
ow

 It
 Works

How It Works
A common practice is to put class declarations, along with any other needed
declarations and directives, into a header file. Assuming that the name of this

Fract2.cpp, cont.

ptg16518442

10
Find the Lowest Common Denominator 261

header file was Fraction.h, you’d need to add the following to a program that
used the Fraction class:

#include "Fraction.h"

Function definitions that are not inlined must be placed somewhere in the
program, or else they must be separately compiled and linked into the project.

The third line of main creates an uninitialized Fraction object.

Fraction fract;

Other statements in main then set the Fraction and print its value. Note that
the call to the “set” function assigns values, but it also calls the normalize func-
tion, which automatically causes the fraction to be simplified as appropriate.

fract.set(a, b);
cout << "Numerator is " << fract.get_num()

<< endl;
cout << "Denominator is " << fract.get_den()

<< endl;

A New Kind of #include?

In the previous example, you may notice I introduced new syntax for the
#include directive. Remember that to turn on support for an area of the C++
library, the preferred method is to use angle brackets.

#include <iostream>

But to include declarations from your own project files, you need to use
quotation marks.

#include "Fraction.h"

The two forms of the #include directive do almost the same thing, but
with the quote-mark syntax, the C++ compiler is directed to look first
in the current directory and then, only after that, to look in the standard
include-file directory (which is usually set by an environment variable or
environment setting of the operating system).

Depending on what C++ compiler you have, you could probably get
away with using the quote-mark syntax for both library files and project
files. But the standard practice is to use angle brackets to turn on features of
the standard library, which is the practice I follow in this book.

Interlude

ptg16518442

Chapter 10 Classes and Objects262
Ex

er
cis

es

 EXERCISES

Exercise 10.3.1. Write a program that uses the Fraction class to set a series of values:
2/2, 4/8, −9/−9, 10/50, 100/25. Have the program print out the results and ver-
ify that each fraction was correctly simplified. So, for example, 100/25 should
be automatically simplified to 5/4.

Exercise 10.3.2. Create an array of five Fraction objects. Then, write a loop to input
the numerator and denominator for each. Finally, write a loop to print each of
the five objects, using “get” functions.

Exercise 10.3.3. If you’re really ambitious, write and test another member func-
tion. This one should display both numerator and denominator. If you like, you
can even have it display this data in fractional form, such as “1/2” or “2/5,” for
example.

Example 10.4. Fraction Arithmetic: add and mult
The next step in creating a Fraction class is to add some arithmetic functions,
add and mult. Addition is the hardest, but you may recall the technique from
school. Consider this addition of two fractions:

A/B + C/D

The trick is first to find the lowest common denominator, which is the same as
the lowest common multiple (LCM) between B and D.

LCD = LCM(B, D).

We now have a convenient utility function, LCM, to do just that. Then A/B has
to be converted to a fraction that uses this lowest common denominator (LCD):

A * LCD/B
-- -----
B * LCD/B

We then get a fraction in which the denominator is LCD. It’s similar for C/D.

C * LCD/D
-- -----
D * LCD/D

ptg16518442

10
Find the Lowest Common Denominator 263

After these multiplications are done, the two fractions will have a common
denominator (LCD), and they can be added together. The resulting fraction is
as follows:

(A * LCD/B) + (C * LCD/D)

LCD

Therefore, the algorithm is as follows:

Calculate LCD from LCM(B, D)

Set Quotient1 to LCD/B

Set Quotient2 to LCD/D

Set numerator for the new fraction to A * Quotient1 + C * Quotient2

Set denominator for the new fraction to LCD

The solution for multiplication of two fractions is quite a bit easier.

Set numerator for the new fraction to A * C

Set denominator for the new fraction to B * D

We can now write code that declares and implements the two new functions.
As before, the lines that are bold represent new or altered lines; everything else
is the same as in the previous example.

Fract3.cpp

#include <iostream>
using namespace std;

class Fraction {
private:
 int num, den; // Numerator and denominator.
public:
 void set(int n, int d)

{num = n; den = d; normalize();}
 int get_num() {return num;}
 int get_den() {return den;}
 Fraction add(Fraction other);
 Fraction mult(Fraction other);

▼ continued on next page

Ps
eu

do

code

ptg16518442

Chapter 10 Classes and Objects264

private:
 void normalize(); // Convert to standard form.
 int gcf(int a, int b); // Greatest Common Factor.
 int lcm(int a, int b); // Lowest Common Denom.
};

int main()
{
 Fraction fract1, fract2, fract3;

 fract1.set(1, 2);
 fract2.set(1, 3);
 fract3 = fract1.add(fract2);
 cout << "1/2 plus 1/3 = ";
 cout << fract3.get_num() << "/" << fract3.get_den()

<< endl;
 return 0;
}

// ---
// FRACTION CLASS FUNCTIONS
// Normalize: put fraction into standard form, unique
// for each mathematically different value.
//
void Fraction::normalize(){

 // Handle cases involving 0

 if (den == 0 || num == 0) {
num = 0;
den = 1;

 }

 // Put neg. sign in numerator only.

 if (den < 0) {
num *= -1;
den *= -1;

 }

Fract3.cpp, cont.

ptg16518442

10
Find the Lowest Common Denominator 265

 // Factor out GCF from numerator and denominator.

 int n = gcf(num, den);
 num = num / n;
 den = den / n;
}

// Greatest Common Factor
//
int Fraction::gcf(int a, int b) {
 if (b == 0) {

return abs(a);
 } else {

return gcf(b, a%b);
 }
}

// Lowest Common Denominator
//
int Fraction::lcm(int a, int b){
 int n = gcf(a, b);
 return a / n * b;
}

Fraction Fraction::add(Fraction other) {
 Fraction fract;
 int lcd = lcm(den, other.den);
 int quot1 = lcd/den;
 int quot2 = lcd/other.den;
 fract.set(num * quot1 + other.num * quot2, lcd);
 return fract;
}

Fraction Fraction::mult(Fraction other) {
 Fraction fract;
 fract.set(num * other.num, den * other.den);
 return fract;
}

Fract3.cpp, cont.

ptg16518442

Chapter 10 Classes and Objects266
H

ow
 It

 Works

How It Works
The add and mult functions apply the algorithms that I described earlier. They
also use a new type signature: each of these functions takes an argument of type
Fraction and also returns a value of type Fraction. Consider the type declara-
tion of the add function.

1 2 3

Fraction Fraction::add (Fraction other);

Each occurrence of “Fraction” in this declaration has a different purpose.

◗ The use of Fraction at the beginning of the declaration indicates that the func-
tion returns an object of type Fraction.

◗ The name prefix Fraction:: indicates that the add function is declared within
the Fraction class.

◗ Within the parentheses, Fraction indicates that there is one argument, named
other, which has type Fraction.

Each of these uses is distinct. For example, you could have a function that
takes an argument of type int and returns a Fraction object, but is not declared
within the Fraction class. The declaration would look like this:

Fraction my_func(int n);

Because the Fraction::add function returns an object of type Fraction, it
must first create a new object.

 Fraction fract;

The function then applies the algorithm I described earlier.

 int lcd = lcm(den, other.den);
 int quot1 = lcd/other.den;
 int quot2 = lcd/den;

Finally, after setting the values for the new Fraction object (fract), the function
returns this object:

 return fact;

ptg16518442

10
267Chapter 10 Summary

Ex
er

cis
es

 EXERCISES

Exercise 10.4.1. Rewrite main so that it adds any two fractions input and prints the
results.

Exercise 10.4.2. Rewrite main so that it multiplies any two fractions input and
prints the results.

Exercise 10.4.3. Write an add function for the Point class introduced earlier. The
function should add the x values to get the new value of x, and it should add the
y values to get the new value of y.

Exercise 10.4.4. Write sub and div functions for the Fraction class, along with code
in main to test these functions. (The algorithm for sub is similar to that for add,
although you can write an even simpler function by multiplying the numerator
of the argument by −1 and then just calling the add function.)

Chapter 10 Summary
Here are the main points of Chapter 10:

◗ A class declaration has this form:

class class_name {
 declarations
};

◗ In C++, the struct keyword is equivalent to the class keyword, except that in
classes declared with struct, members are public by default.

◗ Because members of a class declared with the class keyword are private by
default, you need to declare at least one member public.

class Fraction {
private:
 int num, den;
public:
 void set(n, d);
 int get_num();
 int get_den();
private:
 void normalize();

ptg16518442

Chapter 10 Classes and Objects268
 int gcf();
 int lcm();
};

◗ Class and data declarations end with a semicolon; function definitions do not.

◗ Once a class is declared, you can use it as a type name, just as you would int,
float, double, and so on. For example, you can declare a series of objects:

Fraction a, b, c, my_fraction, fract1;

◗ Functions of a class can refer to other members within that same class (whether
private or not) without use of the scope operator (::).

◗ To place a member-function definition outside its class’s declaration, use this
syntax:

type class_name::function_name (argument_list)

statements

}

◗ If you place a member-function definition inside the class declaration, the func-
tion is inline. When the function is called, machine instructions that imple-
ment the function are placed into the body of the program.

◗ When you inline a function, no semicolon is needed after the closing brace.

void set(n, d) {num = n; den = d;}

◗ The class declaration must precede all uses of the class. The function defini-
tions can be placed anywhere in the program (or even in a separate module),
but they must follow the class declaration.

◗ If a function has a class for its return type, it must return an object of that type.
One way to do this is to first declare such an object as a local variable.

ptg16518442

269

11 Constructors:
If You Build It…

One of the themes in this book is that object orientation is a way to create fun-
damental new data types—types that, if useful enough, can be reused in multiple
programs.

An important aspect of types is that you can initialize them. It’s also rea-
sonable to ask to do this with objects as well to be able to initialize them upon
construction. In fact, that makes object-oriented syntax much more convenient
and programmer-friendly.

A constructor is essentially an initialization function. Welcome to the craft
of C++ construction.

Introducing Constructors
A constructor tells the compiler how to interpret declarations like this:

Fraction a(1, 2); //a = 1/2

Given what you’ve seen of the Fraction class, you’d probably guess that what
this declaration ought to do is have the same effect as the following statements:

Fraction a;
a.set(1, 2);

And in fact, in this chapter, we’re going to make the class behave precisely that
way. That’s what constructors are for.

A constructor declaration has this syntax:

class_name(argument_list)

This makes for an odd-looking function. There is no return type—not even
void. The class name, in a sense, is the return type. Here’s an example:

 Fraction(int n, int d);

Ps
eu

do

code

ptg16518442

Chapter 11 Constructors: If You Build It… 270

Within the context of the class, the declaration looks like this:

class Fraction {
public:
// ...
 Fraction(int n, int d);
// ...
};

This is only a declaration, of course. Like any function, the constructor needs
to be defined somewhere. You can place the definition outside the class declara-
tion, if you choose, in which case you have to clarify scope.

Fraction::Fraction(int n, int d) {
 set(n, d);
}

A constructor defined outside of the declaration has this syntax:

class_name::class_name(argument_list) {

 statements

}

The first use of class_name is in the name prefix (class_name::), which states
that this is a member function of the specified class—that is, it has class scope.
The second use of class_name says that this function is a constructor.

You can also inline the constructor. Because most constructors are short,
they are often good candidates for inlining.

class Fraction {
public:
// ...
 Fraction(int n, int d) {set(n, d);}
// ...
};

Now, with this constructor in place, you can initialize Fraction objects as you
declare them.

Fraction frOne(1, 0), frTwo(2, 0), frHalf(1, 2);

Multiple Constructors (Overloading)
In C++, you can reuse a name to create different functions, relying on different
argument lists to differentiate them. This extends to constructors.

Ke
y

Sy

ntax

ptg16518442

11
C++11/C++14 Only: Initializing Members 271

For example, you can declare several different constructors for the Fraction
class—one with no arguments, another with two, and a third with just one
argument. At compile time, the compiler looks at the argument list to see which
constructor to call.

class Fraction {
public:
// ...
 Fraction();
 Fraction(int n, int d);
 Fraction(int n);
// ...
};

C++11/C++14 Only: Initializing Members

C++14 � This section applies only to C++11 and later compilers.

Beginning with C++11, the language provides a new way to specify default ini-
tial values for data members. This technique might sound like it conflicts with
writing constructors or makes them unnecessary. Actually, it doesn’t; the two
techniques work together smoothly.

With the Point class, it’s reasonable for an object to default to zero values.
C++11 enables you to do this by initializing members within the class declara-
tion itself.

class Point {
 public:

int x = 0;
int y = 0;

};

Now, an uninitialized Point object takes on zero values even if it is local.

int main() {
 Point silly_point;
 cout << silly_point.x; //This prints 0.

For the Fraction class, you’d want to assign 1 to the denominator, not 0,
because 0/0 is not a legitimate fraction!

class Fraction {
 private:

int num = 0;

ptg16518442

Chapter 11 Constructors: If You Build It… 272
int den = 1;

...

When you use C++ to initialize values this way, every constructor assigns the
specified value (in this case, 0 and 1) for each data member you choose to ini-
tialize, except where a constructor overrides that setting with values of its own.

If you write no constructors at all, this approach provides an alternative way
to initialize objects to reasonable default values. As usual, however, it’s recom-
mended that you always ought to write a default constructor, unless you want
to prevent the class user from creating an object without initializing it (as
described in the next section).

The Default Constructor—and a Warning
Every time you write a class, you should usually write a default constructor—
that’s the constructor with no arguments—unless you want to strictly require
the user of the class to initialize every object as soon as he or she declares it. This
is because if you write no constructors, the compiler supplies a default con-
structor for you, which does nothing. But if you write any constructors at all,
the compiler does not supply a default constructor.

Suppose you declare a class with no constructors.

class Point {
private:
 int x, y;
public:
 set(int new_x, int new_y);
 int get_x();
 int get_y();
};

Because you wrote a class with no constructors, the compiler supplies one: a
default constructor. That’s the constructor with no arguments. Because this con-
structor is supplied for you, you can go ahead and use the class to declare objects.

Point a, b, c;

But look what happens as soon as you do define a constructor:

class Point {
private:
 int x, y;
public:
 Point(int new_x, int new_y) {set(new_x, new_y);}

ptg16518442

11
The Default Constructor—and a Warning 273

 set(int new_x, int new_y);
 int get_x();
 int get_y();
};

With this constructor in place, you can now declare objects this way:

Point a(1, 2), b(10, -20);

But now, you get an error if you try to declare objects with no arguments!

Point c; //ERROR! No more default constructor

The compiler-supported default constructor that you had been relying on is
rudely yanked away!

When you first start writing classes, this behavior can take you by surprise.
You use a class without writing constructors, letting users of the class declare
objects this way:

Point a, b, c;

But this innocent-looking code breaks as soon as you write a constructor other
than the default constructor.

In some cases, you might not want a default constructor at all; instead, you
might want to force the user of the class to initialize objects to specific values. In
that case, this behavior is perfectly acceptable.

Is C++ Out to Trick You with the Default Constructor?

It may seem strange that C++ operates this way, lulling you into a false
sense of security by supplying a default constructor (again, that’s the con-
structor with no arguments) and then yanking it away from you as soon as
you write any other constructor.

Admittedly, this is weird behavior. It’s one of the quirks that C++ has
because it has to be both an object-oriented language and a language
designed to be relatively backwardly compatible with C. (Actually, it is not
100 percent backwardly compatible, but it comes close.)

The struct keyword, in particular, causes some issues. C++ treats a
struct type as a class (as I’ve mentioned), but it also has to work so that C
code, such as the following, still compiles successfully in C++:

struct Point {
 int x, y;
};

▼ continued on next page

Interlude

ptg16518442

Chapter 11 Constructors: If You Build It… 274

▼ continued

struct Point a;
a.x = 1;

The C language has no public or private keyword, so this code can com-
pile only if struct classes have members that are public by default. Another
problem is that the C language has no concept of a constructor; so if this
code is to compile in C++, then the C++ compiler must supply a default
constructor, enabling statements like this to compile:

struct Point a;

By the way, C++ supports this usage but also allows you to drop struct in
this context:

Point a; //"struct" not necessary

So, for backward compatibility, C++ had to supply an automatic default
constructor. However, if you write any constructor at all, it’s assumed that
you are writing original code in C++ and, therefore, that you know all
about member functions and constructors.

In that case, your excuse—that you don’t know about constructors—
is gone, and C++ assumes you ought to write everything you need, includ-
ing the default constructor.

Remember, also, that C++ gives you the choice of not writing a default
constructor in order to force the class user to initialize objects explicitly.
This can be quite useful at times; for example, in Chapter 12, “Two Com-
plete OOP Examples,” the default constructor is deliberately omitted so
that someone who creates a node must initialize it.

C++11/C++14 Only: Delegating Constructors

C++14 � This section applies only to compilers implementing the C++11 spec
and later.

Once you’ve written a constructor for a given class, it would be nice to be able to
reuse it in other constructors. C++14 lets you do this—in fact, it has been part
of the standard specification beginning in C++11 (but some compiler vendors
have implemented it only recently). Suppose you have this simple declaration of
the Point class:

Interlude

ptg16518442

11
C++11/C++14 Only: Delegating Constructors 275

Class Point {
private:
 int x, y;
public:
 Point(int new_x, int new_y) {x = new_x; y = new_y;}
};

It would be nice to be able to write a default constructor by reusing the existing
constructor. Here’s how to do that with C++11 and later compilers:

Class Point {
private:
 int x, y;
public:
 Point(int new_x, int new_y) {x = new_x; y = new_y;}
 Point():Point(0, 0) {}
};

Look again at that new line of code:

 Point():Point(0, 0) {}

This declares a default constructor, but it delegates the work to the other con-
structor: it calls the constructor with two integer arguments and passes the
arguments 0, 0. With the C++11 specification (fully supported in C++14 of
course), still another way to achieve this result is to initialize individual data
members within the class.

Class Point {
private:
 int x = 0;
 int y = 0;
public:
 Point(int new_x, int new_y) {x = new_x; y = new_y;}
 Point(){}
};

Example 11.1. Point Class Constructors
This example revisits the Point class from the previous chapter and adds a couple
of simple constructors: the default constructor and a constructor taking two
arguments. It then tests these in a simple program.

ptg16518442

Chapter 11 Constructors: If You Build It… 276

Point2.cpp

#include <iostream>
using namespace std;

class Point {
private: //Data members (private)
 int x, y;
public: //Constructors
 Point() {x = 0; y = 0;}
 Point(int new_x, int new_y) {set(new_x, new_y);}

// Other member functions

 void set(int new_x, int new_y);
 int get_x();
 int get_y();
};

int main() {
 Point pt1, pt2;
 Point pt3(5, 10);

 cout << "The value of pt1 is ";
 cout << pt1.get_x() << ", ";
 cout << pt1.get_y() << endl;

 cout << "The value of pt3 is ";
 cout << pt3.get_x() << ", ";
 cout << pt3.get_y() << endl;
 return 0;
}

void Point::set(int new_x, int new_y) {
 if (new_x < 0)

new_x *= -1;
 if (new_y < 0)

new_y *= -1;
 x = new_x;
 y = new_y;
}

ptg16518442

11
C++11/C++14 Only: Delegating Constructors 277

int Point::get_x() {
 return x;
}

int Point::get_y() {
 return y;
}

H
ow

 It
 Works

How It Works
Two declarations in the class declaration create the constructors.

public: //Constructors
 Point() {x = 0; y = 0;}
 Point(int new_x, int new y) {set(new_x, new_y);}

Note that the constructors are declared in the public section of the class. If they
were declared private, they wouldn’t be accessible to users of the Point class, and
so the whole point (as it were) would be lost.

The default constructor sets Point members to zero, which is useful behavior
if the user of the class forgets to initialize them explicitly.

 Point() {x = 0; y = 0;}

The code in main uses the default constructor twice (for pt1 and pt2), and it
uses the second constructor once (for pt3).

 Point pt1, pt2;
 Point pt3(5, 10);

Ex
er

cis
es

 EXERCISES

Exercise 11.1.1. Add code to the two constructors of the Point class to report their
use. The default constructor should print “Using default constructor,” and the
other should print “Using (int, int) constructor.” (Tip: If you want to keep these
functions inline, you can have the function definitions span multiple lines if
you need to do so.)

Exercise 11.1.2. Add a third constructor that takes just one integer argument. This
constructor should set x to the argument specified and set y to 0.

Exercise 11.1.3. If you have a C++11 or later compiler, use individual member ini-
tialization (described a few sections earlier) to create a default value of 0 for

Point2.cpp, cont.

ptg16518442

Chapter 11 Constructors: If You Build It… 278

both x and y. Then, write a default constructor that does nothing and a con-
structor that assigns a value to x but not to y. Finally, test the combinations. You
should find that 0 is an effective default for x and y, but that one or both can be
overridden in the constructors.

Example 11.2. Fraction Class Constructors
This example features a default constructor that sets the fraction to 0/1. As
always, lines that are new or altered are in bold. Everything else is unchanged
from the previous version of the Fraction class in Chapter 10.

Fract4.cpp

#include <iostream>
using namespace std;

class Fraction {
private:
 int num, den; //Numerator and denominator.
public:
 Fraction() {set(0, 1);}
 Fraction(int n, int d) {set(n, d);}

 void set(int n, int d)
{num = n; den = d; normalize();}

 int get_num() {return num;}
 int get_den() {return den;}
 Fraction add(Fraction other);
 Fraction mult(Fraction other);
private:
 void normalize(); // Convert to standard form.
 int gcf(int a, int b); // Greatest Common Factor.
 int lcm(int a, int b); // Lowest Common Denomin.
};

int main() {
 Fraction f1, f2;
 Fraction f3(1, 2);

 cout << "The value of f1 is ";

ptg16518442

11
C++11/C++14 Only: Delegating Constructors 279

 cout << f1.get_num() << "/";
 cout << f1.get_den() << endl;

 cout << "The value of f3 is ";
 cout << f3.get_num() << "/";
 cout << f3.get_den() << endl;
 system("PAUSE");
 return 0;
}

// ---
// FRACTION CLASS FUNCTIONS

// Normalize: put fraction into standard form, unique
// for each mathematically different value.
//
void Fraction::normalize(){

 // Handle cases involving 0

 if (den == 0 || num == 0) {
num = 0;
den = 1;

 }

 // Put neg. sign in numerator only.

 if (den < 0) {
num *= -1;
den *= -1;

 }

 // Factor out GCF from numerator and denominator.

 int n = gcf(num, den);
 num = num / n;
 den = den / n;
}

// Greatest Common Factor
//

▼ continued on next page

Fract4.cpp, cont.

ptg16518442

Chapter 11 Constructors: If You Build It… 280

int Fraction::gcf(int a, int b){
 if (b == 0)

return abs(a);
 else

return gcf(b, a%b);
}

// Lowest Common Multiple
//
int Fraction::lcm(int a, int b){
 int n = gcf(a, b);
 return a / n * b;
}

Fraction Fraction::add(Fraction other) {
 Fraction fract;
 int lcd = lcm(den, other.den);
 int quot1 = lcd/den;
 int quot2 = lcd/other.den;
 fract.set(num * quot1 + other.num * quot2, lcd);
 return fract;
}

Fraction Fraction::mult(Fraction other) {
 Fraction fract;
 fract.set(num * other.num, den * other.den);
 return fract;
}

H
ow

 It
 Works

How It Works
If you followed Example 11.1, this example is straightforward. The twist is that
the default constructor needs to set the denominator value to 1 rather than 0.

 Fraction() {set(0, 1);}

The code in main uses constructors three times. The first two variable decla-
rations (f1, f2) invoke the default constructor. The declaration of f3 invokes the
other constructor.

Fract4.cpp, cont.

ptg16518442

11
Reference Variables and Arguments (&) 281

Ex
er

cis
es

 EXERCISES

Exercise 11.2.1. Rewrite the default constructor so that instead of calling set(0, 1),
it sets the data members, num and den, directly. Is this more or less efficient? Is
it necessary to call the normalize function?

Exercise 11.2.2. Write a third constructor that takes just one int argument. Respond
by setting num to this argument and by setting den to 1. Do you need to call
normalize?

Reference Variables and Arguments (&)
Before you proceed to learn about the other special constructor (called the copy
constructor), it’s necessary to take a detour to learn about C++ references. These
were briefly introduced in Chapter 6.

The simplest way to manipulate a variable, of course, is to do so directly.

int n;
n = 5;

The next way to manipulate a variable—as you should recall from Chapter 6—
is to use a pointer.

int n, *p;
p = &n; // Let p point to n.
*p = 5; // Set the THING p POINTS TO, to 5.

Here, p points to n, so setting *p to 5 has the same effect as setting n to 5.
The important idea here is that there’s one copy of n, but you can have any

number of pointers to it. Getting a pointer to n does not create a new integer,
just another way to manipulate n.

A reference does much the same thing, although it avoids the pointer syntax.

int n;
int &r = n;

The ampersand (&) is the same character used for the address operator. The
difference is that here it’s being used in a data declaration. In this context, it
creates a reference variable that refers to the variable n. This means that changes
to r (the reference variable) cause changes to n.

r = 5; // This has the effect of setting n to 5.

ptg16518442

Chapter 11 Constructors: If You Build It… 282

The crucial thing that references and pointers have in common here is that
they just create another way to refer to an existing data item; they do not allo-
cate new data. For example, I can create many references to n.

int n;
int &r1 = n;
int &r2 = n;
int &r3 = n;

r1 = 5; // n is now 5.
r2 = 25; // n is now 25.
cout << "New value of n is " << r3; // Print n.

Now, changes to any of the reference variables—r1, r2, and r3—all cause
changes to n.

Reference variables like this are rarely used in C++. Much more useful are ref-
erence arguments. Remember the swap function from Chapter 6, which required
pointers? You can create the same behavior by using reference arguments.

void swap_ref(int &a, int &b) {
 int temp = a;
 a = b;
 b = temp;
}

Remember that in this example, the swap function does not get copies of a
and b but references to them. This enables swap to make permanent changes to
the arguments.

Passing a reference has an effect much like passing a pointer, but the pointer syntax
is eliminated. So, in this example, you pass integers rather than pointers to integers.

int big = 100;
int little = 1;
swap_ref(big, little); // swap big and little

The Copy Constructor
Another special constructor is the copy constructor. It’s notable for two reasons.
First, this constructor gets called in a number of common situations, whether
you’re aware of its existence or not.

Second, if you don’t write one, the compiler automatically supplies one for
you, although it may not always do what you want. This compiler-supplied con-
structor just performs a simple member-by-member copy (although for most
classes, that behavior is sufficient).

ptg16518442

11
The Copy Constructor 283

The copy constructor is automatically called in these circumstances:

◗ When the return value of a function has class type.

◗ When an argument has class type. A copy of the argument is made and then
passed to the function.

◗ When you use one object to initialize another. For example:

Fraction a(1, 2);
Fraction b(a);

Remember that you can also use the equal sign (=) to perform initialization
of one object by another.

Fraction b = a;

Finally, you should realize that in C++11 and later, braces can—and
should—be used to specify multiple initialization arguments.

Fraction a {1, 2};

Now, how do you write your own customized copy constructor, should you
need one? Remember, if you don’t write one the compiler automatically sup-
plies one for you.

The syntax for a copy constructor declaration is:

class_name(class_name const &source)

The const keyword ensures that the argument cannot be altered by the function,
which makes sense because making a copy of something should never corrupt the
original.

This syntax also uses a reference argument. The function gets a reference to
the source object, not a new copy of it.

Here’s an example for the Point class. First, the copy constructor has to be
declared within the class declaration.

class Point {
//...
public: // Constructors
 Point(Point const &src);
//...
};

Because this function definition was not inlined, the definition has to be
included separately. Outside of the class declaration, Point must occur three
times, the first time to define the scope.

K
ey

wo
rd

ptg16518442

Chapter 11 Constructors: If You Build It… 284
Point::Point(Point const &src) {
 x = src.x;
 y = src.y;
}

Why write a copy constructor at all, if the compiler supplies one? In this
case—and also in the case of the Fraction class—it isn’t necessary. The compiler-
supplied copy constructor performs a simple member-by-member copy opera-
tion, which is sufficient.

Writing your own copy constructor is necessary only in cases where each object
has resources allocated for it (such as memory), requiring not a member-by- member
copying procedure but deep copying, where each new instance of a class is allocated
its own resources. But none of the examples in this book rely on deep copying.

The Copy Constructor and References

One of the main reasons C++ needs to support references is so that you can
write copy constructors. Consider, for example, what would happen if you
declared a copy constructor this way:

Point(Point const src)

The compiler doesn’t allow this, and a little reflection shows why. When
an argument is passed to a function, a copy of that object must be placed
on the stack (the area of memory used to store function arguments and
addresses). But this would mean that for the copy constructor to work, it
would have to make a copy of that same kind of object first; therefore, it
would have to call itself! This would be an infinite regress.

So why not declare it this way?

Point(Point const *src)

There’s nothing syntactically wrong with such a declaration and, in fact,
it’s a valid constructor. But it’s not a copy constructor. This syntax indicates
that a pointer, not an object, is the argument, so it would only work with
pointers to objects, not with Point objects themselves.

Happily, the difficulty is not insurmountable because it’s basically a
problem in syntax.

Using a reference enables the function to work as a copy constructor.
Syntactically, the argument is an object, not a pointer. However, because
the implementation of the call most likely involves pointers under the cover,
no infinite regress occurs.

Point(Point const &src)

Interlude

ptg16518442

11
A Constructor from String to Fract 285

A Constructor from String to Fract
Wouldn’t it be nice to initialize a Fraction object from a string? For example:

Fraction a = "1/2", b = "1/3";

This is possible if we write a constructor that takes a char* string as its one
argument. With this constructor, it becomes easier to initialize arrays of Frac-
tion objects.

Fraction arr_of_fract[4] = {"1/2", "1/3", "3/4"};

Of course, it would be nice to do away with the quotation marks. But
that won’t do. Without the use of a char* string (necessitating the quotation
marks), C++ would actually carry out the integer division 1/3 and then round
it down to 0.

Fraction a = 1/3; // This won't do what we want!

So, let’s accept the quotation marks. First, we’re going to need to access
C-string functions, so that mandates an include directive.

#include <cstring>

Next, the constructor has to be declared within the Fraction class declaration.

 Fraction(char *s);

OK, that was easy. Writing the function definition is more involved, but don’t
worry; we’ll deconstruct the code and see how it works.

Fraction::Fraction(char *s) {
 int n = 0;
 int d = 1;
 char *p1 = strtok(s, "/, ");
 char *p2 = strtok(NULL, "/, ");
 if (p1) {

n = atoi(p1);
 }
 if (p2) {

d = atoi(p2);
 }
 set(n, d);
}

ptg16518442

Chapter 11 Constructors: If You Build It… 286

The first thing this function does is declare two integer variables and give
them reasonable defaults.

 int n = 0;
 int d = 1;

The default value of d (which will be assigned to the denominator) is 1. This
enables the user of the class to initialize Fraction objects this way:

Fraction a = "5"; // Initialize a to 5/1.

The next two statements extract two substrings separated by the divide sign (/)
or, optionally, a comma (,).

 char *p1 = strtok(s, "/, ");
 char *p2 = strtok(NULL, "/, ");

If the strtok function (explained in Chapter 7) can’t get another substring
from the input string, it returns a null pointer. Therefore, the code must test to
see whether p1 and/or p2 are null pointers before passing them to the atoi func-
tion and finally calling set.

 if (p1) {
n = atoi(p1); // Convert to int.

 }
 if (p2) {

d = atoi(p2); // Convert to int.
 }
 set(n, d);

Putting this code into the Fraction class and testing it is left as an exercise for
the reader.

Chapter 11 Summary
Here are the main points of Chapter 11:

◗ A constructor is an initialization function for a class. It has this form:

class_name(argument_list)

◗ If a constructor is not inlined, the constructor’s function definition has this form:

class_name::class_name(argument_list) {
 statements
}

ptg16518442

11
287Chapter 11 Summary

◗ You can have any number of different constructors. They have the same func-
tion name (which is the name of the class). But each constructor must be
uniquely identified by number or by type of argument.

◗ The default constructor is the constructor with no arguments at all. It has this
declaration:

class_name()

◗ The default constructor is called when an object is declared with no argument
list. For example:

Point a;

◗ If you declare no constructors, the compiler automatically supplies a default
constructor for you. This automatic constructor does nothing; it is a no-op.
However, if you write any constructors at all, the compiler does not supply a
default constructor for you.

◗ So, to program defensively, you will usually want to write a default constructor.
It can include zero statements, if you want. For example:

Point a() {};

◗ In C++, a reference is a variable or argument declared with the ampersand (&).
The result is (almost always) that a pointer is passed under the covers, but no
pointer syntax is involved. The program appears to be passing a value, even
though it’s probably passing a pointer.

◗ A class’s copy constructor is called whenever an object needs to be copied. This
includes situations in which an object is passed to a function or the function
returns an object as its return value.

◗ The copy constructor uses a reference argument, as well as the const keyword,
which prevents changes to an argument. The copy constructor has this syntax:

class_name(class_name const &source)

◗ If you don’t write a copy constructor, the compiler supplies one for you. It car-
ries out a simple member-by-member copy.

ptg16518442

This page intentionally left blank

ptg16518442

289

12 Two Complete
OOP Examples

In the last two chapters, I laid out the basic syntax of class and object declara-
tions. Now we’re ready to apply object-oriented principles to programs that do
something fun and useful.

First, I’ll explore a Binary Tree example, which is one of the more intriguing and
challenging topics in programming, and then I’ll return to the Tower of Hanoi
puzzle from Chapter 5, “Function: Many Are Called.” The new version of the pro-
gram uses character-based animation to show the puzzle solution in action.

But first, a few more preliminaries....

Dynamic Object Creation
Pointers have yet another use: constructing networks of objects. This is called
dynamic memory allocation because it requests memory at run time, letting the
program decide when to allocate new objects rather than having memory needs
fixed for all time, before the program is run.

In C++, the easiest way to allocate memory during run time is to use the new
keyword.

ptr = new type;

In this syntax, type can be either a built-in type such as int or double, or a
user-defined type such as a class; and ptr is a pointer of matching type.

For example, assuming Fraction is a class that’s already been declared, the
following statement creates a Fraction object and returns a pointer to it:

Fraction *p = new Fraction;

The object itself has no name—remember that “Fraction” is the name of the
class, not the object—and you might think that makes referring to the object

K
ey

wo
rd

ptg16518442

Chapter 12 Two Complete OOP Examples290

difficult. But you can access the object all you want through the pointer. Here
are some statements that use a pointer to manipulate an object:

(*p).set(10, 20); // Set values 10, 20.
(*p).set(2, 27); // Set values 2, 27
cout << (*p).get_num(); // Print the num value.
cout << (*p).get_den(); // Print the dent value.

This example—which I’m about to rewrite—uses the following syntax:

(*ptr).member_name

You might think that such syntax is extremely common, and you’d be right.
It’s so common that there is an operator that exists merely to represent this
operation more succinctly. It saves only two keystrokes, but it makes programs
more readable:

ptr->member_name

This means: dereference the ptr to get an object and then access the specified
member of that object.

In the next few sections, you’re going to see this operator (−>) used a great
deal. For example, you can rewrite the statements shown earlier as:

p->set(10, 20); // Set values 10, 20.
p->set(2, 27); // Set values 2, 27.
cout << p->get_num(); // Print the num value.
cout << p->get_den(); // Print the dent value.

The new keyword has some variations. You can give an object an initial value
by specifying arguments. For example:

Fraction *p = new Fraction(2, 3);

What this statement does is to pass along the arguments 2 and 3 to the match-
ing constructor. If there’s no such constructor, this is a syntax error.

Other Uses of new and delete
This is a brief detour, so if you’re eager to see a sample app, skip ahead to the
next section. But there is more to the new keyword, as well as to the delete key-
word, which is often used in conjunction with new.

You can use new to create a whole series of data items—this can be done
with data items of any valid type that’s been defined, either a primitive or

Ke
y

Sy

ntax

ptg16518442

12
Blowin’ in the Wind: A Binary Tree App 291

user-defined class. The following statements allocate 19 integers (int) and 50
Point objects:

int pInt = new int[10]; // Allocate 10 ints.
Point pPt = new Point[50]; // Allocate 50 Point objs.

There is a size dimension in each case; this dimension can either be a constant
or a value computed at run time, such as a variable.

Having allocated memory items, you can then access them through the
address returned by new and stored in the pointer, just as if all the items were
part of an array. For example, the following statements initialize this data:

for (int i = 0; i < 10; ++i) {
 pInt[i] = i;
}

for (int i = 0; i < 50; ++i) {
 pPt[i].set(i, 2);
}

To avoid “memory leaks,” it’s a good idea to explicitly delete memory you’ve
requested. When a C++ program terminates, all memory requested is released
back to the system. However, there are some programs that run in the back-
ground or, at any rate, run for a long time. When such programs neglect to
release allocated memory, they can cause memory leaks that eventually can
slow down and even crash your system.

The delete keyword has two forms. Use the second form if you allocated mul-
tiple items as shown earlier in this section. The effect in each case is not to destroy
the pointer ptr but to release memory previously allocated to this pointer.

delete ptr;

delete [] ptr;

For example:

delete pNode; // Delete a node
delete [] pInt; // Delete all 10 ints.

Blowin’ in the Wind: A Binary Tree App
Okay, let’s move onto a practical application: how about an app that takes a list
of names and prints them out in alphabetical order? This is relevant to real-
world situations in which you need to sort a list.

K
ey

wo
rd

ptg16518442

Chapter 12 Two Complete OOP Examples292

There are many ways to accomplish this goal, but for this chapter, I’m choosing
something called an “ordered binary tree.” Why it’s called a tree, you’ll see in a
moment.

Note � The C++ Standard Template Library (STL) implements its own forms
of binary trees, in the <set> and <map> template classes. However, it’s useful to
program binary trees yourself to learn how they work.

A binary tree starts with a pointer to a root node. If the tree is empty, the root
pointer will have a null value.

root NULL

After we insert the first node, the tree looks like the diagram shown below.
This creates a tree consisting of a single node, which of course is at the root. You
can think of “Kids” as having two child nodes, each of which are NULL. But to
keep the figure uncluttered, I’ve just assumed the NULLs are there.

root "Kids"

Let’s add two more values: “Mark” and “Brian.” Each new node is added into
its proper place. If a new node has a value alphabetically earlier in the sorting
order, it gets added as a left-side child of some existing node. If a new node is
alphabetically later in the sorting order, it gets added as a right-side child. In the
case of “Mark” and “Brian,” one of these values is attached as a left node (lesser)
and the other is attached as the right node. Here is the result:

root "Kids"

"Brian" "Mark"

ptg16518442

12
Blowin’ in the Wind: A Binary Tree App 293

Now we add a third fourth value: “Marthy.” Where should this go in the
tree? Both the “Brian” and “Mark” nodes have open spots to add children, but it
makes sense to put “Marthy” on the far right because this string is later in alpha
order than any of the nodes so far.

root "Kids"

"Brian" "Mark"

"Marthy"

Finally, let’s add nodes containing the strings “Allan” and “Colin.” Can you see
why they have to be added where they are, as child nodes of “Brian”? Remember
the rules: 1) a child node can only be added in an open position, and 2) a “lesser”
value, that is, a string earlier in alpha order than its parent, can be added as a left
child, while a “greater” value, a string later in alpha order than its parent, can be
added as a right child.

root "Kids"

"Brian" "Mark"

"Marthy""Colin""Allan"

ptg16518442

Chapter 12 Two Complete OOP Examples294

By now, you should be able to figure out for yourself where “Lisa” and “Zelda”
would go. Every time a new node is inserted into the tree, there’s an unambiguous
place it should go. The tree is maintained so everything in a subtree to its left is
“less” than everything in a subtree to its right.

You may also be able to guess how the tree can be printed out, producing all
the names in alphabetical order. To me, this algorithm is amazing, because it
does so much in just a few steps. This is a beautiful example of recursion.

To Print out a subtree whose root is pointed to by p:

If the node pointed to is NOT null,

 Print out the subtree on the left

 Print out the value of the current node

 Print out the subtree on the right

It may seem amazing this tiny algorithm can do so much. In addition, it
works perfectly even if the tree grows to thousands or even millions of nodes in
size. That’s the power of recursion for you.

To create a name-sorting application, we need to design and code two classes:
Bnode and Btree.

The Bnode Class
First, we need a class on which to model nodes. Nodes don’t do much of any-
thing. They are passive. But the constructor for this class turns out to be both
convenient and an excellent way to prevent errors—and for that reason, it’s useful
to make a class for nodes.

Each node object needs three public members, containing its string value
and two pointers to subtrees—one on the left and one on the right.

Here’s the declaration of the Bnode class. As with all class declarations, its
closing brace is followed by a semicolon.

class Bnode {
public:
 string val;
 Bnode* pLeft;
 Bnode* pRight;
 Bnode(string s){val = s; pLeft = pRight = nullptr;}
};

Ps
eu

do

code

ptg16518442

12
The Bnode Class 295

A class cannot contain instances of itself. That would be like Bertrand Russell’s
paradox of the set that contains itself. Such a class would be infinitely large if it
were legal (which it’s not).

But pLeft and pRight are not really instances of Bnode. They are pointers to other
objects of the same class. Such pointers make in-memory networks and trees possi-
ble. Think of it this way: a parent does not contain a child (except for nine months,
of course!), but a parent can have a family tie to one or more children.

We can picture each instance of Bnode as having the following design: Each
of the pointers, pLeft and pRight, can either have a null value or point to a child
node. Either or both of the pointers may be null—a null value indicating there
is currently no child on that side. If both pointers are null, the node object is a
“leaf” or terminus that currently has no children.

(a string object)
Val

pLeft pRight

The constructor is very helpful because of its convenience and error-prevention.
There is no default constructor for this class, and therefore the user of this class can-
not create a node without assigning a value:

Bnode my_node; // ERROR! Not assigned a value!

Instead, the user of the class must initialize the node with some string value
if he or she wants to create a node.

Bnode my_node("Emily"); // This is legal.

But the biggest advantage of this constructor is that it’s impossible to create
a node without initializing the two pointers to a null value (nullptr, or NULL
if the nullptr keyword is not supported). The importance of this feature can’t
be overstated. If the pointers were permitted to be uninitialized, and therefore
contain random “garbage” values, the consequences for the program could be
catastrophic. That source of error has been eliminated.

Note � The nullptr keyword has been supported beginning with the C++11 spec-
ification. If your compiler is more than a few years old, you may need to use
NULL instead of nullptr.

ptg16518442

Chapter 12 Two Complete OOP Examples296

C++14 � Compilers that are C++11 and later provide support for in-class initializa-
tion. So, for example, when pLeft and pRight are declared in the private section of
the Bnode declaration, they can be initialized with null pointers. Constructors, if
any, can choose to override these settings, but otherwise, such initialization imposes
default values. See page 271 in the previous chapter for more information.

The Btree Class
The Btree class (for “binary tree”) is the other class needed in this program.
Could the program be written as a series of separate functions and data struc-
tures, without being made a class? Yes, but writing Btree as a class is helpful in a
number of ways.

First, the functions for this class are designed for use with class data and
should not be used in any other context. The code and data are designed to
work closely together, and OOP offers a good way to package them.

More importantly, access to data within the tree is controlled. It’s impossi-
ble for users of the class to reach inside and tinker with private data. No direct
access to any node is permitted. The user can’t do something stupid like assign
a bad value to a pointer. With a correctly written class, the class user has to do
only two things: insert a name into the tree and print out the contents.

Here’s an initial declaration of the Btree class. (We’ll refine it in a moment.)
Note how the location of the tree—its root—is kept private.

// INITIAL VERSION OF THE BTREE CLASS
class Btree {
public:
 Btree() {root = nullptr; }
 void insert(string s);
 void print();
private:
 Bnode* root;
};

Because the user of the class has no access to the root, he or she has no way to
directly access any node at all, and this prevents him or her from doing some-
thing dangerous such as changing a pointer value. It’s not that users want to
cause the system failure (at least most do not!), but for many people it’s too
tempting to open up the internals of a data structure and go mucking about.

Here’s the full declaration of the class, including helper functions; these
functions, like the root variable, are private and not for outside use.

ptg16518442

12
The Btree Class 297

// FULL BTREE CLASS DECLARATION, W/ HELPER FUNCTIONS
class Btree {
public:
 Btree() {root = nullptr; }
 void insert(string s)

{root = insert_at_sub(s, root);}
 void print() {print_sub(root);}
private:
 Bnode* root;
 Bnode* insert_at_sub(string s, Bnode* p);
 void print_sub(Bnode* p);
};

To the class declaration, we add a couple of “helper” functions to carry out
operations needed to support the public functions. These helper functions,
insert_at_sub and print_sub, cannot be inlined because they are recursive.
They have to be defined outside of the class declaration and therefore require
the use of the “Btree::” prefix to clarify scope.

Bnode* Btree::insert_at_sub(string s, Bnode* p) {
 if (!p) {

return new Bnode(s);
 } else if (s < p->val) {

p->pLeft = insert_at_sub(s, p->pLeft);
 } else if (s > p->val) {

p->pRight = insert_at_sub(s, p->pRight);
 }
 return p;
}

void Btree::print_sub(Bnode* p) {
 if (p) {

print_sub(p->pLeft);
cout << p->val << endl;
print_sub(p->pRight);

 }
}

The second of the two function definitions, print_sub, is pure elegance. All it
does is say “Print the tree on my left, then print my value, then print the tree on
my right.” Recursion makes this algorithm incredibly easy. Note the terminal
condition: if a pointer to a child has a null value, the function just returns.

ptg16518442

Chapter 12 Two Complete OOP Examples298

The other function, insert_at_sub, could have been written without recur-
sion, but the function is easier to write this way. An iterative solution depends
on loops instead of the function calling itself. Writing the iterative solution will
be discussed in an upcoming exercise.

Like all recursive functions, insert_at_sub needs a terminating condition.
It finds this condition when, after traversing the tree, it reaches a null pointer
value. A new node should then be created.

return new Bnode(s);

The address of this new object is returned to the caller, where it’s assigned, as
appropriate, to pLeft, pRight, or the root pointer. If a null pointer has not been
reached, the function just returns the pointer passed to it.

However, that means in the majority of cases—cases where no new node
is created—nothing special is done with the return value, and therefore this
approach is admittedly not optimal. It’s also one reason why the iterative solu-
tion, while resulting in more lines of programming code, is more efficient.

Example 12.1. Names in Alpha Order
With the Bnode and Btree classes in place, it’s easy to write a program that prompts
for a series of strings and then prints them out in alphabetical order. In the follow-
ing program listing, the three lines that refer to the binary-tree object are in bold.

alpha_tree.cpp

#include <iostream>
#include <string>
using namespace std;

// INSERT BNODE AND BTREE DECLARATIONS
// HERE, ALONG W/ BTREE FUNCTION CODE

int main()
{
 Btree my_tree;
 string sPrompt = "Enter a name (ENTER when done): ";
 string sInput = "";

 while (true) {
cout << sPrompt;

ptg16518442

12
The Btree Class 299

getline(cin, sInput);
if (sInput.size() == 0) {

break;
}
my_tree.insert(s);

 }
 cout << "Here are the names, in order." << endl;
 my_tree.print();
}

Here’s a sample session with this program. I’ve put user input in bold.

Enter a name (ENTER when done): John
Enter a name (ENTER when done): Paul
Enter a name (ENTER when done): George
Enter a name (ENTER when done): Ringo
Enter a name (ENTER when done): Brian
Enter a name (ENTER when done): Mick
Enter a name (ENTER when done): Elton
Enter a name (ENTER when done): Dylan
Enter a name (ENTER when done):
Here are the names, in order:
Brian
Dylan
Elton
George
John
Mick
Paul
Ringo

H
ow

 It
 Works

How It Works
This program creates one Btree object named my_tree. The Btree object, in
turn, creates multiple Bnode objects, one for each name entered by the user, but
these nodes are all hidden from everything but the Btree object itself.

There are many other ways to produce a sorted list of names. You could, for
example, put all the names into an array and then sort the array, using tech-
niques described in Chapter 6, “Arrays: All in a Row...,” but a binary tree has
special advantages.

alpha_tree.cpp, cont.

ptg16518442

Chapter 12 Two Complete OOP Examples300

For one thing, a binary tree can grow without limit, subject only to the amount
of memory available. For another, in the case of extremely large data types, using
a binary tree is potentially much faster than using an array. This is because access
time in a tree grows logarithmically, meaning that it doesn’t take much longer to
find one element out of a million than it does one out of a thousand.

That assumes, however, that the tree remains relatively balanced, and there’s
no guarantee of that. Algorithms to keep a tree continually balanced exist, but
they are relatively difficult and are outside the scope of this book, but you’re
welcome to research that subject on your own!

The heart of the program, in many ways, is the Btree::insert_at_sub func-
tion, which guarantees that strings are added to the tree in strict alphabetical
order. The pseudocode version of this function can be summarized as follows:

To insert a string s into subtree pointed to by p:

If p is null,

 Create a new node and return a pointer to it

Else if s is “less than” string at this node

 Insert s into left subtree

Else if s is “greater than” string at this node

 Insert s into right subtree

Return p

There are a couple of subtleties to this procedure. If target string s is neither
less than or greater (in alpha order) than the value of the current node, we’ve
found a matching string and no further action should be taken. In that case, the
function just returns without ever creating a new node.

Most of the time, the return value has little significance because the function
usually just returns the pointer argument passed to it. However, when a new
node is finally created, its address is passed back to its parent node, as appropri-
ate, so that the new node is properly attached.

Ex
er

cis
es

 EXERCISES

Exercise 12.1.1. Write and test a get_size function for the Btree class. You should be
able to do this by adding another private data member called nSize.

Exercise 12.1.2. Write and test a Btree function named size_of_subtree, which cal-
culates the number of nodes at a subtree pointed to by p. When applied to the
entire tree (by passing the root pointer), you should get the same answer as in
Exercise 12.1.1. Test that theory to see if it’s true.

Ps
eu

do

code

ptg16518442

12
The Btree Class 301

Exercise 12.1.3. Write and test a find function for the Btree class. This function
should take a string as input, and return a Boolean value (true or false) depend-
ing on whether or not that string is in the tree. Write a recursive solution.

Exercise 12.1.4. Write and test a find function as in Exercise 12.1.3, but this time
use an iterative solution. Remember that an iterative solution is one that relies
on loops and does not call itself.

Exercise 12.1.5. Write and test a get_first and a get_last function for Btree; these
functions will return the alphabetically first or alphabetically last string in the
tree. You can use either a recursive or iterative approach.

Exercise 12.1.6. Objects that persist for a long time but do not release unused
memory can cause the problem of “memory leaks” in your computer, hogging
resources and slowing down performance. So, when you’re done with the binary
tree, a good idea is to release it—including all the nodes in the tree. Write a
function to do just that: remove every node. You will need to write a recur-
sive function, to which you give the root address. (Hint: to release an object
allocated with new, use the statement “delete p;” where p is the pointer to the
object.)

Exercise 12.1.7. Write an iterative insert function, replacing the one shown in the
example. (Hint: within the loop, first test to see if the target string is, in alpha
order, less than or greater than the string at the current node. Then check to see
if the relevant child node—pLeft or pRight—is or is not null.

Recursion versus Iteration Compared

The recursive solution for deleting a list is tempting—the code for that
approach is shorter. But is it more efficient? The truth is, as much as I
pushed recursion in Chapter 4, “The Handy, All-Purpose ‘for’ Statement,”
if you have a choice between an iterative or a recursive solution, the itera-
tive solution is usually more efficient. You may prefer the recursive solution
because you have to write fewer lines of code, but it’s useful to consider
what happens with recursion.

A recursive solution causes a function call at each level. In the binary-tree
example, there would be one additional function call for each node. And,
if the tree were a million nodes deep, the system would have to execute a
million function calls!

▼ continued on next page

Interlude

ptg16518442

Chapter 12 Two Complete OOP Examples302

▼ continued

When we get into numbers like that, function-call overhead gets expen-
sive. The program traverses the list and puts the addresses of each node on
the special C++ stack segment—that’s the area in memory reserved for
holding arguments and local variables. The functions then return, popping
addresses off the stack and deleting nodes, in reverse order. For example:

0x1000ff40
0x1000ff30
0x1000ff20
0x1000ff10
Etc.

In contrast, the iterative solution goes through the list and deletes the
nodes in the order it finds them. In contrast, the recursive solution is a
“breadcrumb” solution that leaves a trail of breadcrumbs as it traverses the
list (metaphorically speaking) and then goes back and picks up the crumbs,
deleting nodes in the process. But that’s inefficient.

So, recursion is not only more elegant, but for a certain class of problem,
it is the only practical solution. The Tower of Hanoi puzzle, which we’ll
return to shortly, would be vastly more difficult to solve without recur-
sion. And there’s an even bigger class of recursive problem: the C++ code
that built the compiler you’re using now involves a lot of recursive function
calls, without which it would’ve been far more difficult to write.

Tower of Hanoi, Animated
Chapter 5 showed how to solve the Tower of Hanoi puzzle by printing instruc-
tions on how to move the rings. But wouldn’t it be more fun to watch the rings
move around?

To do this—to show the animated version of the solution—is going to require
more programming. How do we break down the problem?

One way to start is to realize that the puzzle consists of three rings (or
“stacks”). We can design a general class called Cstack and use it to create three
objects. Each Cstack object will obey the following ideas:

◗ The highest level in each stack will be 0. The level below it is 1, the level below
that is 2, and so on.

◗ For each Cstack object, the variable tos will represent Top of Stack, or rather,
one level above the highest ring. So, tos will range in value from −1 (full stack)
to n − 1 (empty stack).

Interlude

ptg16518442

12
Tower of Hanoi, Animated 303

We need to track the state of each of the three stacks. Let’s say that each of the rings
has a number that indicates its relative size, 1 being the smallest and 0 indicating an
empty space. So, for example, if there are four rings total, then the following is true:

◗ An empty stack has array values {0, 0, 0, 0}; tos = 3. This means that index number 3,
corresponding to the fourth position, is one level “above” the top of the stack.

◗ A stack with just one ring, the third largest, has {0, 0, 0, 3}; tos = 2. This means
that index number 2, corresponding to the third position, is one level “above”
the top of the stack.

◗ If the next smallest ring is pushed onto that stack, it has {0, 0, 2, 3}; tos = 1, indi-
cating that index number 1, which corresponds to the second position, is one
level above the top of the stack.

◗ If the smallest ring is pushed onto that stack, it has {0, 1, 2, 3}; tos = 0, indicating
the first position in the array—again, one level above the top of the stack.

◗ A completely full stack has array values {1, 2, 3, 4}; tos = −1.

The top-of-stack value, tos, is an array index one position “higher” than
the top ring. Before a ring is popped, tos for the stack increases, pointing to
a “lower” position. After a ring is pushed onto a stack, its tos value decreases,
indicating a “higher” position.

This may seem counterintuitive, but when the stacks need to be displayed,
this approach is easiest. The first array position in each stack corresponds to the
physically highest position. Gravity pulls the rings down, so the top position is
usually empty space (0).

1. State of stacks just prior to n = stacks[0].pop();

1 pop

tos = 1

{0, 0, 1, 4}

tos = 1

tos = 0

{0, 0, 2, 3}

2. State of stacks just after stacks[1].push(n);

tos = 2

{0, 0, 0, 4}

push(1)

{0, 1, 2, 3}

ptg16518442

Chapter 12 Two Complete OOP Examples304

After Mystack Class Design
To store the ring positions for the three stacks (pole positions), we need to cre-
ate a data structure called a stack. Earlier, I discussed a special area of memory
called “the stack,” which stores arguments and local variables. But that’s not the
stack I’m talking about here.

This example calls for a special, customized stack class. Unlike most stacks,
this class has to allow for empty space at the top, letting the rings fall to the
bottom. The first few places will often contain 0. When the program displays a
picture of the three stacks, you’ll see why this approach is necessary.

We need to design our own customized “stack” class—let’s call it Cstack—
from which three objects will be created. The design of the class is:

rings[MAX_LEVELS]
tos (top of stack)
populate(int size)
clear(int size)
push(int n)
int pop()

Data members

Function members

 Cstack class

The rings array in each object contains most of the data. It stores rings of dif-
ferent sizes by using a series of integers, 1 indicating the smallest ring and 0 indi-
cating empty space. (So, {1, 2, 3} indicates the three smallest rings, and {0, 0, 2}
indicates the second smallest ring, with two empty spaces above it.) The tos mem-
ber signifies the top-of-the-stack position.

The previous section illustrated the use of the push and pop functions. These
are common operations on any kind of stack.

The populate and clear functions perform initialization that’s useful if you
want the program to be able to reset and start over.

Using the Cstack Class
Once the Cstack class is declared, we use it by creating three of these custom-
ized stack objects and initializing them. The three objects are placed in an array
of these objects:

Cstack stacks[3];

ptg16518442

12
Tower of Hanoi, Animated 305

At the beginning of each animation cycle, the following happens:

◗ stacks[0].populate() is called to fill the first stack.

◗ stacks[1].clear() and stacks[2].clear() are called to set the other
stacks to the empty state.

This approach provides a lot of flexibility. As long as the size doesn’t exceed
MAX_LEVELS (a constant declared at the beginning of the program), the ani-
mation can be restarted with any size requested by the user. For example, if the
stack size is 5, the populate and clear functions are called to fill the first stack
with values 1 to 5 and to leave the other two stacks empty (0 value) in the first
five positions.

tos = –1

stacks[0] = {1, 2, 3, 4, 5} stacks[1] = {0, 0, 0, 0, 0} stacks[2] = {0, 0, 0, 0, 0}

tos = 4

With this array of three objects in place (each of which contains its own
array), we can now move rings between the three positions by calling pop and
push as appropriate and then, after each move, printing a picture that represents
the new state.

Example 12.2. Animated Tower
With the Cstack class design in place, we can now write the animated version
of the Tower of Hanoi. This program builds on the Tower of Hanoi example in
Chapter 5, using the recursive logic there to solve the problem of moving all the
rings from pole 1 to pole 3.

Remember the two constraints: you can move only one ring at a time, and a
larger ring can never be placed on a smaller ring.

This version solves the problem and displays the state of the three poles (that is,
the three stacks of rings) after each and every move.

ptg16518442

Chapter 12 Two Complete OOP Examples306

tower_visi.cpp

#include <iostream>

using namespace std;

#define MAX_LEVELS 10

// Declare three pole positions, or rather, stacks.
// Each stack is an object containing ring values.
// stacks[3] is an array three of these objects.

class Cstack {
 public:

int rings[MAX_LEVELS]; // Array of ring values.
int tos; // Top-of-stack index.
void populate(int size); // Initialize stack.
void clear(int size); // Clear the stack.
void push(int n);
int pop(void);

} stacks[3];

void Cstack::populate(int size) {
 for (int i = 0; i < size; i++) {

rings[i] = i + 1;
 }
 tos = -1;
}

void Cstack::clear(int size) {
 for (int i = 0; i < size; i++) {

rings[i] = 0;
 }
 tos = size - 1;
}

void Cstack::push(int n) {
 rings[tos--] = n;
}

int Cstack::pop(void) {
 int n = rings[++tos];

ptg16518442

12
Tower of Hanoi, Animated 307

 rings[tos] = 0;
 return n;
}

void move_stacks(int src, int dest, int other, int n);
void move_a_ring(int source, int dest);
void print_stacks(void);
void pr_chars(int ch, int n);

int stack_size = 7;

int main() {
 stacks[0].populate(stack_size);
 stacks[1].clear(stack_size);
 stacks[2].clear(stack_size);
 print_stacks();
 move_stacks(stack_size, 0, 2, 1);
 return 0;
}

// Move stacks: solve problem recursively...
// move N stacks by assuming problem solved for N-1.
// src = source stack, dest = destination stack.
//
void move_stacks(int n, int src, int dest, int other){
 if (n == 1) {

move_a_ring(src, dest);
 } else {

move_stacks(n-1, src, other, dest);
move_a_ring(src, dest);
move_stacks(n-1, other, dest, src);

 }
}

// Move a Ring: Pop off a ring from source (src) stack,
// place it on destination stack, and print new state.
//
void move_a_ring(int source, int dest) {
 int n = stacks[source].pop(); // Pop off source.
 stacks[dest].push(n); // Push onto dest.
 print_stacks(); // Show new state.
}

▼ continued on next page

tower_visi.cpp, cont.

ptg16518442

Chapter 12 Two Complete OOP Examples308

// Print Stacks: For each physical level, print the
// ring for each of the three stacks.
//
void print_stacks(void) {
 int n = 0;
 for (int i = 0; i < stack_size; i++) {

for (int j = 0; j < 3; j++) {
n = stacks[j].rings[i];
pr_chars(' ', 12 - n);
pr_chars('*', 2 * n);
pr_chars(' ', 12 - n);

}
cout << endl;

 }
 system("PAUSE"); // A pause is needed here; use
} // another method if you need to.

void pr_chars(int ch, int n) {
 for (int i = 0; i < n; i++) {

cout << (char) ch;
 }
}

H
ow

 It
 Works

How It Works
The core of this program is a recursive function that works just like the Tower
of Hanoi solution in Chapter 5; see that chapter for an explanation of the logic.
Much of the time this function, move_stacks, calls itself. Only some of its action
involves actually moving a ring.

But the difference comes when it’s time to actually move a ring: instead of
just printing a message, this version calls a new function, move_a_ring, that
takes care of the details of moving a single ring from one stack to another and
displaying the result.

// Move stacks: solve problem recursively...
// move N stacks by assuming problem solved for N-1.
// src = source stack, dest = destination stack.
//
void move_stacks(int n, int src, int dest, int other){
 if (n == 1) {

move_a_ring(src, dest);

tower_visi.cpp, cont.

ptg16518442

12
Tower of Hanoi, Animated 309

 } else {
move_stacks(n-1, src, other, dest);
move_a_ring(source, dest);
move_stacks(n-1, other, dest, src);

 }
}

Now, how exactly do we move a single ring from one position to another?
There was no way to do this in the application in Chapter 5, which just

printed a message. But now, since we have three stack objects that reflect the
current state, we manipulate that state by doing the following:

1 Pop the top ring off the source stack and remember its size as n.

2 Push a ring of size n onto the destination stack.

3 Print the new state.

That’s exactly what the move_a_ring function does in three simple statements:

// Move a Ring: Pop off a ring from source stack,
// place it on destination stack, and print new state.
//
void move_a_ring(int source, int dest) {
 int n = stacks[source].pop(); // Pop off source.
 stacks[dest].push(n); // Push onto dest.
 print_stacks(); // Show new state.
}

The pop and push functions are member functions defined for the class. These
are functions that use each object’s top-of-stack indicator, tos, to get the top ring
from the stack (pop) or to put a new ring onto the top of the stack (push).

Recall that member functions are defined inside a class (Cstack in this case)
and are actually called through objects (stacks[]).

void Cstack::push(int n) {
 rings[tos--] = n;
}

int Cstack::pop(void) {
 int n = rings[++tos];
 rings[tos] = 0;
 return n;
}

ptg16518442

Chapter 12 Two Complete OOP Examples310

The pop function gets the size number of the ring at the top of the stack;
replaces that ring with empty space, 0, thus removing that ring from the stack; and
finally returns n, the saved size number. That number, returned by this func-
tion, is then given as input to the push function so that it puts a ring of the cor-
rect size onto another stack.

Finally, the program uses print_stacks and a convenient support function,
pr_chars, to print the current state.

You should now be able to see why the program uses 0 to indicate empty space
and why 0s must be placed “above” the positive ring values. That is, if a stack is
less than full, then there will be one or more 0s in the topmost (early) positions.
Where there is a 0 at a particular level, meaning no ring is there, the program
prints blank spaces. This arrangement reflects the physics of the simulation: rings
fall to the bottom!

In programmatic terms, the function accesses the rings[] array within each
object, getting the value for an entire physical level before moving on to the next
level. If the ring value is 0 for a particular position, nothing is printed but blank
spaces. (This reflects the empty space atop a less-than-full stack.) If the ring
value is greater than 0, the program prints two asterisks (*) times the size of the
ring and prints spaces around it. For example, if the ring size is 3, the program
prints six asterisks.

// Print Stacks: For each physical level, print the
// ring for each of the three stacks.
//
void print_stacks(void) {
 int n = 0;
 for (int i = 0; i < stack_size; i++) {

for (int j = 0; j < 3; j++) {
n = stacks[j].rings[i];
pr_chars(' ', 12 - n);
pr_chars('*', 2 * n);
pr_chars(' ', 12 - n);

}
cout << endl;

 }
}

The pr_chars function is just a handy way of printing repeated characters.

void pr_chars(int ch, int n) {
 for (int i = 0; i < n; i++)

cout << (char) ch;
}

ptg16518442

12
311Chapter 12 Summary

Finally, when this program runs, you probably don’t want all the output to be
produced without pause because it would then produce several screen’s worth
of characters. Therefore, you need a way to stop after each iteration and ask the
end user to continue. On Windows-based systems, the system("PAUSE") com-
mand is ideal for this purpose.

system("PAUSE");

But if your system does not support this command—or you want to write
something more portable—you can, instead, prompt the user to continue by
using the techniques introduced in Chapter 8, “Strings: Analyzing the Text.”

#include <string> // Put at top of program
. . .
string dummy;
cout << "Press ENTER to continue.";
getline(cin, dummy);

Ex
er

cis
es

 EXERCISES

Exercise 12.2.1. Prompt the user for how many rings to use in the starting posi-
tion. This number should be no more than MAX_LEVELS (which we set to 10,
largely because of screen-space considerations). Then repeat; if the user enters 0,
then end the program; otherwise, continue with a new session. With this ver-
sion, the use of the populate and clear member functions becomes evident. You
need to be able to reset the initial state.

Exercise 12.2.2. Instead of implementing rings as an array inside each object,
implement it as a pointer of type int*. Then, use new, within the populate and
clear member functions, to allocate a series of integers. Can you use the delete
keyword to efficiently prevent memory leaks in this situation?

Chapter 12 Summary
Here are the main points of Chapter 12:

◗ Some C++ code deals heavily with pointers to objects. With such pointers, it’s
convenient to use the indirection operator −> to access a member of the object
pointed to. For example:

// Get the num member of object pointed to.
int n = pFraction->num;

ptg16518442

Chapter 12 Two Complete OOP Examples312
// Call the set function for object pointed to.
pFraction->set(0, 1);

◗ The use of dynamic memory allocation, along with pointers, to objects makes it
possible to create complex structures in memory such as linked lists and binary
trees. These can be as simple or complex as you choose.

◗ Use the new keyword to dynamically allocate an object at runtime.

Node *pNode = new Node;

◗ When you create your own lists and trees in memory, it becomes important to
prevent memory leaks by deleting each individual object as soon as you know
you no longer need it. Programs that fail to deal with memory leaks can cause
your computer to prematurely run low on memory and need to be rebooted.

◗ Use the delete keyword to release objects and free up memory.

delete p; // p points to an object
delete[] p; // p points to an array of objects.

◗ You can create arrays of objects (instances of a class), just as you can create
arrays of other kinds of data.

class Cstack {
 ...
} stacks[3];

◗ Sometimes an application has so much output that you need a way to pause the
program and prompt the end user before continuing. The system("PAUSE");
statement is ideal for this purpose if your system supports it. But if your system
does not, or if you want to write more portable code, you can instead prompt for
a string object as described in Chapter 8.

string dummy;
cout << "Press ENTER to continue.";
getline(cin, dummy);

◗ Recursion is sometimes the only practical way to solve a problem, as in the
Tower of Hanoi puzzle. But otherwise, if there is both an iterative (loop-based)
and recursive solution, the iterative version is almost always more efficient.

ptg16518442

313

13
Easy
Programming
with STL

One of the best things about C++ is the availability of the Standard Template
Library (STL), which now comes with most compilers.

A template is a generalized data type you can use to create sophisticated con-
tainers. For example, the list template enables you to build linked lists of integers,
floating-point numbers, or even your own kind of objects.

Don’t worry if this sounds new or exotic. The STL is an amazing resource
that solves many common programming problems. The general philosophy—
as with functions, classes, and objects—is: once a programming problem is
solved, why should anyone have to solve it again?

These days, the great majority of C++ compilers widely used now provide
full support for STL. If your compiler is C++14 (or even C++11) compliant, it
should definitely support it.

Introducing the List Template
STL—remember, that’s the Standard Template Library—provides broad support
for collections, or containers, built on top of other types.

You specify an underlying type and STL builds a sophisticated container
around this type. For example:

list<int> iList; // List of integers
list<string> strList; // List of strings
list<Fraction> bunchOFract; // List of Fractions

There is no limit to the different kinds of lists you can create this way. The
base type, as you see in this example, can be a primitive type or a class you’ve
written (such as Fraction).

Using the list template creates a linked list that makes insertions and dele-
tions particularly efficient. The STL supports other kinds of generalized data

ptg16518442

Chapter 13 Easy Programming with STL314

structures such as vector, an array that grows without limit, and set and map,
which are built on top of binary trees.

Note � All the STL names are part of the std namespace, which means you must
either use the characters std:: before each and every STL name, such as “stack”
or “list,” or just keep using namespace std; in your programs, as I have been
suggesting in every example.

Writing Templates in C++

The earliest versions of C++ contained no support for writing templates at
all. But within a few years of C++’s first appearance, programmers (espe-
cially professional programmers) were clamoring for template support.

The template technology is still one of the most advanced realizations of
the philosophy of reusable code, which says once a problem has been solved,
it shouldn’t have to be solved again.

Templates take this idea to the level of general algorithms. Once a mech-
anism has been created to contain integers, for example, it should be possible to
reuse the same code with other data types: double, for example, or strings,
or objects of any class. It’s as though someone took a set of container classes
and related functions and did a global search-and-replace operation,
replacing all instances of int with some other type.

C++ provides strong support for writing your own template classes and
template functions. For example, you can use the template keyword to
declare a generalized container class called “pair”:

template class<T>
class pair {
public:
 T first, last;

};

Given this declaration, you can then declare any number of “pair” con-
tainer classes:

pair<int> intPair;
pair<double> floatPair;
pair<string> full_name;

intPair.first = 12;

Interlude

ptg16518442

13
Introducing the List Template 315

▼ continued

However, for the most part, the subject of writing your own templates is
outside the scope of this book, which is intended as a general introduction
to how to write programs in C++ and how to think like a C++ program-
mer. Writing your own templates is a subject that, if covered in full detail,
could easily add a few hundred pages.

Template writing is an advanced but fascinating topic. A number of
excellent advanced texts are devoted exclusively to that subject.

But, although the subject of writing your own templates is outside the
scope of this book, I encourage even relatively new C++ programmers to
take advantage of the Standard Template Library as soon as they understand
classes and pointers. STL classes are amazing time-savers and are easy to use.
Someone else has done the work and you take advantage of that work.

Creating and Using a List Class
Before using the list template, you need to turn on support for it by using an
#include directive.

#include <list>
using namespace std;

Then you can create your own linked-list classes. The syntax for declaring an
STL list class is as follows:

list<type> list_name;

If you do not include the “using namespace” statement, items from the STL must
be qualified with the std:: prefix, as is true for many other objects and the tem-
plates in the standard library, but “using namespace std” takes care of that problem.
To use the template without a “using namespace” statement, use this syntax:

std::list<type> list_name;

Here are some more examples that are really easy to use:

#include <list>
using namespace std;
...
list<int> list_of_ints;
list<int> another_list;
list<double> list_of_floatingpt;
list<Point> list_of_pts;
list<string> LS;

Interlude
K

ey
wo

rd

ptg16518442

Chapter 13 Easy Programming with STL316

Once you’ve created a list, it starts out empty and you need to add elements to it.
You can do this with the push_back member function. This adds elements to
the end (that is, the back) of the list. For example:

list<string> LS;

LS.push_back("Able");
LS.push_back("Baker");
LS.push_back("Charlie");

You can also use the push_front member function, which adds elements
to the front of the list. If you think about it, the effect is the same except that
it ends up adding the strings in reverse order.

LS.push_front("Able");
LS.push_front("Baker");
LS.push_front("Charlie");

For a numeric list, of course, you could add numeric elements.

list<int> list_of_ints;

list_of_ints.push_back(100);

As you can see, we can create a linked list of any base type and add data to it.
To do much more than this, you usually need iterators.

C++14 � The following paragraph applies to C++14 compilers only. (Actually, the
feature was introduced in C++11 but it took time for some vendors, including
Microsoft, to support it.)

With C++14-compliant compilers, you can initialize most STL containers,
including list containers, by using a comma-separated list, just as you can with
arrays. For example:

list<int> iList = {1, 2, 3, 4, 5];

Creating and Using Iterators
A number of templates in STL use iterators, which are devices for stepping
through a list one element at a time—that is, iterating through it.

Iterators look and feel a great deal like pointers, especially in their use of ++, −−,
and * operators, even though there are differences. You declare an iterator this way:

list<type>::iterator iterator_name;K
ey

wo
rd

ptg16518442

13
Introducing the List Template 317

For example, to declare a list and an iterator for it, you could use these
statements:

list<string> LS;
list<string>::iterator iter;

Now iter can be used to iterate through the list LS, since their underlying types
(string) are compatible.

STL lists have begin and end functions that return an iterator to the begin-
ning and the end of the list, respectively. The following statement uses begin to
initialize an iterator:

list<string>::iterator iter = LS.begin();

For a string list LS with four elements, you can visualize the operation this way:

iter - LS.begin();

LS:
string
data

LS.begin()

iter

string
data

string
data

string
data

(END)

LS.end()

Properly initialized, iter can now be used almost like a pointer. You can make
iter point to the next item by using the increment operator.

++iter; // Advance one element in the list.

When the iterator is incremented, it steps through the list, much as a pointer
does within an array.

iter++;

LS:
string
data

LS.begin() iter

string
data

string
data

string
data

(END)

LS.end()

ptg16518442

Chapter 13 Easy Programming with STL318

To access the data the iterator points to, apply the indirection operator (*)
just as you would with a pointer.

cout << *iter << endl; // Print string pointed to.

Combining these elements, you can write a loop that prints all the elements
of the list, one to a line. This works because the end member function produces an
iterator that points to the position just after the last element, not the last element
itself. Therefore, if we are at the end position, we’ve processed all the elements.
We’re done!

Conversely, if we haven’t reached LS.end(), we aren’t done. That makes the
loop condition easy to write.

iter = LS.begin(); // Start at beginning.
while (iter != LS.end()){ // While not done,
 cout << *iter << endl; // Print string
 ++iter; // Advance to next.
}

This can be written more compactly with a for loop.

for (iter = LS.begin(); iter != LS.end(); ++iter) {
 cout << *iter << endl;
}

C++11/C++14 Only: For Each
With the ranged-based for syntax introduced in Chapter 10, it’s even easier to
print out all the items in a list. You don’t even need to use an iterator.

C++14 � The following paragraph describes a feature first introduced in C++11
that should be implemented by all C++14 compilers. However, if your compiler
is more than a few years old, this feature might not be supported.

Here’s how you print out a list by using range-based for. Chapter 17, “New Features
of C++14,” provides more details on how this works. The following code will work
with any STL container (including any list container); only the name “LS” will
change from one case to the next!

for (auto x : LS) {
 cout << x << endl;

}

ptg16518442

13
Introducing the List Template 319

Pointers versus Iterators

By now, you can see why I stated that iterators look a lot like pointers. The
designers of STL classes deliberately made iterators look and feel like point-
ers in order to work smoothly with the rest of the C++ language. Reus-
ing prefix and postfix increment (++) is convenient—they do what you’d
expect them to do—as is using the indirection operator (*). And all this is
supported by C++’s operator-overloading syntax.

But don’t confuse iterators with true pointers, or what we might call
“raw” pointers. The latter offer no protection against invalid memory
access, so you must be more careful with pointers.

Iterators are safe and designed to be that way. The program can attempt
to increment an iterator off the end of a cliff, so to speak (by iterating past
the end of a container or list), but if it does so, nothing drastic happens.
The iterator no longer accesses data inside the container. An out-of-control
pointer can overwrite and corrupt memory all over the system, but an iter-
ator on the loose can’t touch anything it shouldn’t.

Example 13.1. STL Ordered List
We now have nearly all the knowledge of iterator and list syntax to write an
ordered list program. When you see how short this is, you’ll understand why
programmers love STL.

We need to add just one piece to the puzzle, however. STL list classes come
with a built-in sort function, among other things.

LS.sort(); // Sort the list alphabetically.

Note � To support the sort function as well as other member functions of list,
the underlying data type of the list must define reasonable behaviors for the
less-than operator (<) as well as the assignment and test-for equality opera-
tors (= and ==). The string class, of course, already defines these behaviors. If
these operators are not defined, then some list member functions may not be
supported.

Interlude

ptg16518442

Chapter 13 Easy Programming with STL320

Here’s the complete program:

alphalist2.cpp

#include <iostream>
#include <list>
#include <string>
using namespace std;

int main()
{
 string s;
 list<string> LS;
 list<string>::iterator iter;

 while (true) {
cout << "Enter string (ENTER to exit): ";
getline(cin, s);
if (s.size() == 0) {

break;
}
LS.push_back(s);

 }
 LS.sort(); // Sort, and then print elements.

 for (iter = LS.begin(); iter != LS.end(); iter++) {
cout << *iter << endl;

 }
 return 0;
}

H
ow

 It
 Works

How It Works
This is a short program considering all it does. It lets the user enter any number
of strings of any size (subject only to the physical limits of the system itself).
After the user is done, the program prints the strings all in alphabetical order.
For example, if I enter the following strings

John
Paul
George

ptg16518442

13
Introducing the List Template 321

Ringo
Brian Epstein

the program prints the names in this order:

Brian Epstein
George
John
Paul
Ringo

Most of this program logic you’ve seen before. Half the statements in main
do nothing more than prompt the user for input and then add a string to the end
of the list by using LS.push_back(). As usual, if the user just presses ENTER,
resulting in a string of zero length, that is taken as a convenient “I’m done” signal.

 while (true) {
cout << "Enter string (ENTER to exit): ";
getline(cin, s);
if (s.size() == 0) {

break;
}
LS.push_back(s);

 }

The real power of the class is revealed by one call to sort, a power member
function.

 LS.sort();

Finally, the iterator (iter) is used to print all the members.
STL iteration makes a “print all members” function easy to write. In partic-

ular, when the iteration reaches LS.end(), that means the iteration has moved
one past the last element in the list, and so the work is done.

Conversely, a condition of iter != LS.end() means the list has not been
entirely processed, and so work should continue.

 for (iter = LS.begin(); iter != LS.end(); ++iter) {
cout << *iter << endl;

 }

Va
ria

tion

A Continually Sorted List
The only problem with the approach in the previous section is that it doesn’t
sort until all the desired elements have been inserted in the list. That’s fine for

ptg16518442

Chapter 13 Easy Programming with STL322

small applications, where you’ll never notice the difference, but for exception-
ally long lists (thousands or even millions of elements in length), the sorting
time may be noticeable.

A better solution for large databases is to maintain data so that it is continually
sorted. Each new element is added into its proper place in the ordering. This
was true of the binary tree created in the last chapter.

Maintaining a list that’s continually sorted is not difficult. Instead of using
this statement to add a string

LS.push_back(s);

use the following statements every time you add an element; these statements
first determine the alphabetically correct position. The insert then function
inserts a new element (in this case, a string) just before the element pointed to
by the iterator.

for(iter = LS.begin(); iter != LS.end() && s > *iter;) {
 ++iter;
}
SL.insert(iter, s);

How can it be this easy? One reason is that, once again, iter != LS.end()
is such a convenient test condition. Because LS.end() corresponds to one
position past the last element, it enables the loop to test every element, from
beginning to end, inclusive. The last element doesn’t have to be treated as a
special case.

Another thing that makes this loop easy to write is that the STL insert func-
tion is robust; it behaves well in potentially bad situations, further removing the
need to deal with special cases. Consider what happens if the list is empty. In
that case, the insert function just adds s as the first element.

Or what if the iterator, iter, gets to the very end without finding an insertion
point? In that case, the insert function does exactly what you’d want: It adds s
to the end of the list, inserting it just before the “end”—meaning just after the
last element.

But even such an ordered list may not be an ideal solution. For exception-
ally large data sets, the delay experienced while the program searches through a
ten-million-element list may be unacceptable. Let’s say that it searches through,
on average, five million elements to find a correct insertion point. That’s a costly
operation. In contrast, the binary-tree example in Chapter 12 theoretically
enables near-instantaneous access times. The Btree class described in that chapter
created a primitive binary tree. More sophisticated binary trees are provided in
the STL through the map and set templates. (Still, I contend it’s a lot of fun to
try writing your own binary tree!)

ptg16518442

13
Designing an RPN Calculator 323

Ex
er

cis
es

 EXERCISES

Exercise 13.1.1. Revise Example 13.1 so that it keeps a continually sorted list (as just
shown).

Exercise 13.1.2. Revise Example 13.1 so that it keeps a continually sorted list, but
keeps it in reverse order.

Exercise 13.1.3. Revise the example so that it reports the size of the list. You can
write code to count the number of insertions, or you can simply call the tem-
plate’s size function, which has the syntax list.size().

Exercise 13.1.4. Using the list template, write a program that takes any number of
floating-point amounts as inputs. Add each to the list and then report the fol-
lowing information by iterating through the list: 1) lowest number, 2) highest
number, 3) total, and 4) average. Is it possible to produce this information with-
out a list or array? Why might you want to use a list anyway?

Designing an RPN Calculator
No, this isn’t a Registered Practicing Nurses calculator; it’s the amazing Reverse
Polish Notation (RPN) calculator, which can take an input line of any complexity,
analyze it, and perform all the calculations specified.

This may sound daunting, and to be honest, it’s a project usually reserved for
serious computer-science majors at large colleges and universities. But the STL,
along with the strtok function from the standard C++ library, does most of the
work for you.

The beauty of RPN is that it specifies mathematical and logical expressions unam-
biguously, removing the need for parentheses. As a grammar, it has just two rules:

expression → numeric-literal

expression → expression expression operator

This notation indicates that every expression to be evaluated is either a sim-
ple number (that’s easy enough) or two expressions followed by an operator.
Do you see how recursive this is? Smaller expressions can be recombined inside
larger ones, to any level of complexity.

If you don’t get this yet, stay with me just a bit. Most obviously, RPN notation
can evaluate something like this:

2 3 +

ptg16518442

Chapter 13 Easy Programming with STL324

This means “Add 2 and 3.” The result is 5. This works because expression
expression operator is valid; 2 and 3, each being numeric literals, are valid
expressions and they are followed by an operator (+). So far, so good. Now con-
sider this more complex expression:

2 3 + 17 10 - *

When you understand RPN, this is clear. An expression can be made up of
any two operands followed by an operator. The critical point here is that the
operands are themselves expressions. Constructing expressions within expres-
sions within expressions can go on for as long as you like.

In effect, the operator that is closest to the operands has precedence. 2 3 + is
a valid expression, but so is 17 10 −. These two expressions are then followed by
multiplication (*), forming the one large expression.

2 3 + 17 10 – *

5 7

35

*

The result to be calculated here is 35. The RPN expression is equivalent to the
following input line using standard notation (also called infix notation):

(2 + 3) * (17 - 10)

A disadvantage of standard arithmetic notation is that it is heavily dependent
on parentheses, which are unnecessary with RPN.

By the way, to complete the syntax, we ought to list the operators supported.

operator → +

operator → *

operator → –

operator → /

This just means that the operator can be +, *, −, or /.
Or, we can express this syntax in one line with “OR.” Note that OR is not in

bold here, which means the “OR” is not intended literally.

operator → + OR * OR − OR /

ptg16518442

13
Designing an RPN Calculator 325

Here are some more examples of Reverse Polish Notation and what each
means in terms of standard arithmetic notation:

2 10 5 4 - / + // ==> 2 + (10 / (5 - 4))
1 2 3 * * 10 9 - + // ==> (1 * (2 * 3)) + (10 - 9)
5 3 - 15 * // ==> (5 - 3) * 15

A Brief History of Polish Notation

Polish Notation was invented by a distinguished philosopher, professor,
and logician named Jan Łukasiewicz. Although little known to the general
public in most countries, he made significant contributions to early twenti-
eth-century systems of axiomatic logic.

In 1920, Professor Łukasiewicz created a scheme to remove the need for
parentheses from logical expressions, thus making those expressions more
succinct, but the scheme was equally applicable to math. He named it Pol-
ish Notation in honor of his nationality. In his version, which we might call
forward Polish notation, operators are prefixes, as in:

+ 2 3

In the early 1960s, computer scientists F. L. Bauer and E. W. Dijkstra
invented a similar scheme but used operator suffixes rather than prefixes.
They named it Reverse Polish Notation, honoring Łukasiewicz for invent-
ing it first, albeit with prefixes.

Reverse Polish Notation (or RPN) became widely used by the public in
the 1970s and 1980s when it was used in many hand-held scientific calcu-
lators. RPN (as you’ll see in this chapter) is particularly easy to implement
on a stack-based computing system. RPN is still the basis of some existing
programming languages such as PostFix.

Is it possible for computers to implement forward Polish notation? Yes,
but it is much more difficult because when you read an operator, you don’t
know what to apply it to yet. Your best bet in writing a forward Polish inter-
preter is to read all the items (tokens) into a list and then reverse the list!

Using a Stack for RPN
If you’ve read the chapters of this book in sequence, you’ve come across the
term stack before. First, there’s “the stack,” which is used to store local variables,
argument values, and return addresses.

Then there’s the customized stack described in Chapter 12 for the Tower of
Hanoi puzzle. That was a special stack because it did something unusual: keeping

Interlude

ptg16518442

Chapter 13 Easy Programming with STL326

track of empty spaces. For example, if a pole for a five-ring puzzle contains the
two smallest rings and no other rings, this state of affairs is notated as {0, 0, 0, 1, 2}.

STL provides support for a generalized stack class that does a lot of the same things
as these other stacks. An STL stack is a simple last-in-first-out mechanism (LIFO).

Here’s how it’s used to implement an RPN calculator. Again, consider this
input line:

2 3 + 17 10 - *

How can we attack this? Common sense tells us a couple of things: first,
when the program reads a number, it must save it for later use; second, when the
program reads an operator, it should perform an operation, perform “number
crunching” on the two operands, and save the result.

The strategy is therefore:

1 When the program reads a number, it pushes it on top of a stack.

2 When the program reads an operator (+, *, −, or /), it pops two values off the stack,
computes the result, and pushes this result back onto the stack. Because a last-in-
first-out mechanism is used, an operator will bind to the nearest two expressions
that precede it, which is exactly what we want.

Let’s see how this works for the line of input 2 3 + 17 10 − *.
First, the algorithm reads the numbers 2 and 3, and pushes these numbers

onto the stack. In the following diagram, sp is the stack pointer, indicating the
top of the stack. STL provides no access to this pointer, but it’s useful to under-
stand that it’s there.

High memory addresses

Low memory addresses
2

sp

1) Push 2

2) Push 3 3

Next, the program reads an addition sign (+). It pops two numbers, adds
them, and pushes the result back on the stack.

5

sp

3) Pop 2 and 3,
and push 2+3
onto stack

ptg16518442

13
Designing an RPN Calculator 327

Then, the algorithm reads the next two numbers, 17 and 10, and pushes these
on top of the stack.

5

sp

4) Push 17

5) Push 10

17

10

Next (we’re almost done), the algorithm reads another operator: subtraction (−).
Again, it pops the top two numbers, performs a calculation, and pushes the result
onto the stack.

5

7

sp

6) Pop 10 and 17,
and push 17-10
onto stack

Finally, the algorithm reads a multiplication operator (*). One final time, it
pops two numbers. Then it multiplies them together and pushes the result onto
the stack.

35

sp

7) Pop 7 and 5,
and push 5*7
onto stack

The final result is 35, which is correct.

Introducing the Generalized STL Stack Class
In the previous section, we saw how a simple stack mechanism, storing numbers,
could be used to implement a Reverse Polish Notation calculator. Now, let’s use
an STL stack for the program.

Before using the list template, you need to turn on support for it by using an
#include directive.

#include <stack>

ptg16518442

Chapter 13 Easy Programming with STL328

You can then create a generalized stack mechanism with syntax similar to
that used for STL lists.

stack<type> stack_name;

Remember, as with the list template, that the std:: prefix is necessary unless you
include a “using namespace std;” statement. Otherwise, you must refer to the
stack template as std::stack.

For example, you can create stacks with statements like these:

#include <stack>
using namespace std;
...
stack<int> stack_of_ints;
stack<Fraction> stack_of_Fraction_objects;
stack<double> xStack;

Each of these statements creates an empty stack. To insert elements, use the
push member function. The most useful of the stack member functions are
shown in this table:

STACK CLASS
FUNCTION DESCRIPTION

stack.push(data) Pushes data (of stack’s underlying type) onto top of stack

stack.top() Returns data (of stack’s underlying type) from top of stack,
but it does not remove data; for that, use pop

stack.pop() Removes top item of stack (but does not return its value)

stack.size() Returns the number of items currently stored in the stack

stack.empty() Returns true if stack is empty, false otherwise

Using a stack class to push data onto the top of the stack is easy enough.

stack<int> stack_of_ints;
...
stack_of_ints.push(-5);

However, the STL stack design splits the pop operation into two steps, so
popping off an item requires a “top and pop” operation.

int n = stack_of_ints.top(); // Copy top of stack.
stack_of_ints.pop(); // Remove top of stack.

ptg16518442

13
Designing an RPN Calculator 329

Example 13.2. Reverse Polish Calculator
The following program involves about a page of code, which is a remarkably small
size for a program that can evaluate complex expressions. The strtok function
does most of the work of interpreting input; the STL stack class, num_stack, does
most of the work of pushing and popping numbers off a stack.

rpn.cpp

#include <iostream>
#include <cstring> // Use old-style cstrings so that we

// can use the strtok function.
#include <stack>

using namespace std;
#define MAX_CHARS 100

int main()
{
 char input_str[MAX_CHARS], *p;
 stack<double> num_stack;
 int c;
 double a, b, n;

 cout << "Enter RPN string: ";
 cin.getline(input_str, MAX_CHARS);
 p = strtok(input_str, " ");
 while (p) {

c = p[0];
if(c == '+' || c == '*' || c == '/' || c == '-'){

if (num_stack.size() < 2) {
cout << "Error: too many ops."<< endl;
return -1;

}
b = num_stack.top(); num_stack.pop();
a = num_stack.top(); num_stack.pop();
switch (c) {

case '+': n = a + b; break;
case '*': n = a * b; break;

▼ continued on next page

ptg16518442

Chapter 13 Easy Programming with STL330

case '/': n = a / b; break;
case '-': n = a - b; break;

}
num_stack.push(n);

} else {
num_stack.push(atof(p));

}
p = strtok(nullptr, " ");

 }
 cout <<"The answer is: " << num_stack.top()<< endl;
 return 0;
}

H
ow

 It
 Works

How It Works
The program begins, as always, with #include directives. Note that <stack>
is used to turn on support for the STL stack template.

#include <stack>

This enables a stack to be created and built on any base type. What type is
needed here?

Clearly, this should be double, the floating-point type, because there’s no good
reason to limit the end user to integer data only; we want to be able to do things
like adding 1.4 to 2.345.

The next statement creates a stack of type double.

 stack<double> num_stack;

Next, the program gets a line of string input from the user and starts to break
it down. The strtok function, as explained in Chapter 8, finds the first “token”
(that is, word or item) from the input string. The first argument to strtok spec-
ifies this string. The second argument specifies the character or characters (in
this case, a blank space) to be recognized as token separators.

 p = strtok(input_str, " ");

The function returns a pointer to a substring containing the first token. Note
that for this to work properly, each and every item must be separated by one or
more spaces, including the operators. So, the following will work as expected

2 3 + 17 10 - *

but not this:

2 3+ 17 10-*

rpn.cpp, cont.

ptg16518442

13
Designing an RPN Calculator 331

It might be reasonable to allow this input, but you’d need a more sophisti-
cated lexical analyzer that you’d have to write yourself. (Note that the C++14
library includes support for regular expressions, which can be used to perform
“tokenizing,” but that’s an advanced topic.)

After the initial call to strtok, you can call strtok again, specifying nullptr
as the first argument. Calling the function this way says, “Give me the next
token from the same input string used before.” In other words, using a nullptr
argument enables you to get the next token, and the next after that, and so on,
without starting over.

The program carries out this function call near the bottom of the main loop.

 p = strtok(nullptr, " ");

Note � The nullptr keyword has been supported since C++11. If your compiler is
more than a few years old, you may need to use NULL instead.

The program’s main loop processes the next token as long as there is another to
process. The first step in responding to a token is to determine whether it is an
operator (+, *, −, or /). If it is an operator, the program does several things.

The program’s first response to an operator is to ensure there are at least two
items on the stack. This is important because if you attempt to pop an empty
stack, the STL pop function goes off into the Twilight Zone and causes severe
problems. To prevent that, the program has a short error-checking section that
prints an error message and exits if needed.

if (num_stack.size() < 2) {
cout << "Error: too many ops." << endl;
return -1;

}

The second response to reading an operator is to pop two numbers off the
stack. These are put into b and a, in reverse order. Remember that a stack is a
last-in-first-out device, so reverse order has to be observed.

b = num_stack.top(); num_stack.pop();
a = num_stack.top(); num_stack.pop();

With STL stack classes, you have to use a “top and pop” technique, because
the two member functions, top and pop, each do only part of a “pop” operation.

The third response to an operator is to perform the specified calculation and
put the result back on the stack. The program uses switch-case logic explained
in Chapter 3. Depending on whether the operator is +, *, /, or −, the program

ptg16518442

Chapter 13 Easy Programming with STL332

jumps to a different case statement, performs a calculation, and then breaks out
of the switch block.

switch (c) {
case '+': n = a + b; break;
case '*': n = a * b; break;
case '/': n = a / b; break;
case '-': n = a - b; break;

}

After the calculation is performed, the result—stored in n—is pushed back
onto the stack.

num_stack.push(n);

That takes care of everything that has to be done in response to an operator. If
the item read is not an operator, the action to be taken is a great deal simpler. All we
do is translate the item into a floating-point number and push it onto the stack.

num_stack.push(atof(p));

What if the item doesn’t contain a valid number? For example, what if it con-
tains letters instead? That’s not a problem: atof returns 0 in that case, and there is
no harm in operating on 0. (Just don’t try to divide by it!)

Ex
er

cis
es

 EXERCISES

Exercise 13.2.1. Extend the RPN calculator in Example 13.2 by adding a unary
operator signified by a pound sign (#). Have this operator take the reciprocal of
its one operand. That is, x should yield 1/x. Remember that all four of the exist-
ing operators are binary operators, taking two operands. But the grammar for a
unary operator is as follows:

expression → expression unary-op

Exercise 13.2.2. Add a caret operator (̂) to perform unary negation; that is, reverse
the sign of the operand, changing positive numbers to negative and vice-versa.

Exercise 13.2.3. Revise the program so that it keeps prompting the user for another
line of input to calculate until the user enters an empty line by just pressing
ENTER. That is to say, continue the cycle of prompting for input, interpreting
it as RPN, and printing the answer, until the user wants to quit. Don’t quit after
one go-round. (By the way, to make sure this program works correctly every
time, you ought to clear the stack before beginning a new operation.)

ptg16518442

13
333Chapter 13 Summary

Correct Interpretation of Angle Brackets
Because brackets (< and >) have multiple uses in C++, ambiguity is possible
when you get into heavy use of templates. The following declaration creates a
problem for C++ syntax:

list<stack <int>> list_of_stacks;

This statement should create a list of stacks. This behavior is perfectly intelli-
gible; C++ is being directed to create a container class that contains other con-
tainers within it, which, no matter how complex that sounds, is perfectly valid.

But in this case, traditional C++ is syntactically challenged. It normally
interprets two right-angle brackets in a row (>>) as the right-shift operator, and
that causes a baffling syntax error. (This same operator, incidentally, is over-
loaded as a stream data in-flow operator with objects such as cin.)

In traditional C++, therefore, it is necessary to insert a space between the
two right-angle brackets to ensure correct interpretation.

list<stack <int> > list_of_stacks;

In C++11 and later, however, adding this space is not necessary, because it
specifies that the language must correctly interpret two right-angle brackets
according to context.

Chapter 13 Summary
Here are the main points of Chapter 13:

◗ To enable use of the list template, use an include directive.

#include <list>

◗ Each use of the name “list” must be qualified as std::list, unless, of course, you
place a using statement in your program.

using namespace std;

◗ You declare a list container class by using this syntax:

list<type> list_name;

◗ Once a list is created, you can add items of the appropriate type to it by using
push_back (push to back of list) and push_front (push to front of list).

#include <list>
using namespace std;

ptg16518442

Chapter 13 Easy Programming with STL334
...
list<int> Ilist;
Ilist.push_back(11);
Ilist.push_back(42);

◗ You can access members of a list by creating an iterator, which is not a pointer
but uses several of the same operators. For example:

list<int>::iterator iter;

◗ You can loop through a list by calling the list’s begin and end functions. For
example, the following code prints each item in the list, one to a line:

for (iter = Ilist.begin(); iter != Ilist.end(); i++)
 cout << *iter << endl;

◗ As with the list class, you turn on support for last-in-first-out (LIFO) stack
classes with an #include statement.

#include <stack>
using namespace std;
...
stack<string> my_stack;

◗ The push function pushes an item onto the top of the stack.

my_stack.push("dog"); // Put onto top of stack

◗ To pop items off the top of the stack, use a “top and pop” technique.

string s = my_stack.top(); // Get top item
my_stack.pop(); // Remove top item

◗ Popping an empty stack is a fatal error, so be sure to check stack size by calling
the size or empty function whenever you need to do so.

ptg16518442

335

14 Object-Oriented
Monty Hall

Do you like solving paradoxes and riddles? This chapter provides more experi-
ence in applying object orientation while attacking one of the more interesting
riddles of our time.

In studying the sample program in this chapter, you’ll learn the solution to
one of the most perplexing and famous paradoxes of modern times—no kidding!
Follow along to learn how to solve the paradox and see practical examples of
C++ class-object syntax at work.

This chapter explores one of the most interesting uses for computers. When
you have a question that can’t be solved by people arguing, you can sometimes
use a computer program, assuming it is written correctly, to run a simulation
and see what happens. Isn’t that better than just arguing forever?

What’s the Deal?
In the 1960s, the most popular game show in America was Let’s Make a Deal,
starring a charismatic host named Monty Hall. Monty’s name will forever be
associated with this entertaining show and the logical paradox it inspired.

This paradox—the logic of which I’ll explore in detail in the second half of the
chapter—is not really based on Let’s Make a Deal, but on a hypothetical game
show that never aired. (If it ever does air, you’ll learn in this chapter how to max-
imize your chances of winning the game.) Monty Hall himself stated that there
are differences between this hypothetical game and the real Let’s Make a Deal.
That’s good for me, as it prevents conflicts with intellectual-property law.

Instead of playing Let’s Make a Deal, we’re going to play a hypothetical game
called Good Deal, Bad Deal. The host will not be Monty Hall but rather a guy
named “Monty Schmall.”

Here’s how the game works: Monty asks the contestant to pick one of three
doors, behind each of which is a prize. Not all the prizes are good. Two out of
three of them are stinkers—something worth a few dollars, if that much.

ptg16518442

Chapter 14 Object-Oriented Monty Hall336

Behind just one of the doors is a fabulous prize, such as—in the booming
voice of the announcer—“YOUR BRAND NEW CAR!”

The joke’s on you!

? ? ?

Here’s where it starts to get interesting: After the contestant makes her initial
selection, Monty Schmall shows her what’s behind one of the doors she didn’t
pick. This door will be one of the ones with a stinker.

Now, having shown her this “bad” door, Monty asks another question. There
are now two doors left: the one picked initially, and an alternative door, the one
the contestant did not pick, the contents of which has not yet been revealed.
Monty asks: “Do you want to stick with your initial choice, or do you want to
switch to the remaining door?”

For example, if the contestant’s initial choice was Door No. 1, and Door No. 2
was revealed to have a stinker, does she want to stick with Door No. 1 or switch
to Door No. 3?

For many people—including more than a few with PhD’s and other scholarly
credentials—it’s obvious that the choice between Doors 1 and 3 is a 50/50 prop-
osition, and that you can’t improve your chances by switching.

And yet these people are wrong. To find out why, we’re going to write a program
to simulate the game show and see what happens. To summarize, the rules are as
follows:

1 Behind one of three doors, randomly selected, is a valuable prize. The other two
doors have worthless prizes, or “stinkers.”

2 The contestant makes an initial selection but is not told (at first) whether it’s the
winning choice or not.

3 Monty then reveals one of the doors the contestant did not choose, revealing it to
be a stinker. If the contestant’s first choice has the good prize, Monty (or his pro-
ducers) must randomly decide which of the other two doors to reveal, because they
both have stinkers.

ptg16518442

14
TV Programming: “Good Deal, Bad Deal” 337

4 After this reveal is done, there remain two doors: the contestant’s first choice and
another door yet to be opened. Monty asks: “Do you want to stick with your first
choice, or switch to the remaining door?” Do you stick with Door No. 1 (assuming
it’s your first pick) or switch to Door No. 3?

TV Programming: “Good Deal, Bad Deal”
It’s fun to apply the object-oriented approach in modeling real-world objects.
Pretend you’re Monty Schmall. You’re both the host and the executive producer
of Good Deal, Bad Deal, but you can’t do everything yourself. You need to dele-
gate tasks to your staff.

With the object-oriented approach, we ask what the important pieces of data
are and how we want to manipulate them. In this case, there are two major
groups of data:

◗ The lists of good and bad prizes.

◗ The status of the doors, including: the identity of the door that has the one good
prize instead of the stinkers, as well as which door should be revealed first and
thereby eliminated.

So there are the two groups of data—prize data and door-related data—that
need to be managed. As executive producer, you delegate the data management
to two of your associate producers. We can carry out this scheme by creating
two classes, PrizeManager and DoorManager.

(main program)
Monty Schmall

(DoorManager object)
Door Manager

(PrizeManager object)
Prize Manager

In object orientation, there’s a one-to-many relationship between classes and
objects. But in this case, there is just one object for each class. Each object will
act like an associate producer.

PrizeManager prize_mgr; // Create objects.
DoorManager class_mgr;

ptg16518442

Chapter 14 Object-Oriented Monty Hall338

The design of the Prize Manager class is simple. There is one constructor
along with two public functions. The prize lists themselves are maintained as
local data in the member functions.

Prize Manager Class

PrizeManager()

get_good_prize()

get_bad_prize()

public

Prize lists (maintained as
local data)

private

The Door Manager’s job is more elaborate. First, this producer has to deter-
mine in secret which door has the good prize. The other two doors will have
stinkers. Later, depending on which door the contestant chooses, the Door
Manager determines which door will be revealed as the “bad” door and which
door will be offered as the alternative door.

DoorManager Class

get_alt_door()

get_bad_door()

query_door()

DoorManager()

start_new_game()

set_sel_door()

selDoor

altDoor

badDoor

winDoor

public

private

ptg16518442

14
TV Programming: “Good Deal, Bad Deal” 339

This looks like a lot of members. But the process is straightforward. Here’s
how the functions are used:

◗ The start_new_game function determines which of three doors—0, 1, or 2—is
the winning door (although to users of the class, these doors will be represented
externally as 1, 2, and 3).

◗ After the contestant (that is, the user) selects a door, Monty calls the set_sel_door
function to register that choice. The Door Manager uses that information to
determine the alternative door (altDoor) as well as the “bad” door (badDoor), the
one Monty will reveal to have a stinker.

◗ After the contestant makes her final choice, Monty calls the query_door func-
tion to determine whether the final choice is the winning door, that is, the one
with the good prize.

The necessary information is represented internally with four data members,
each of which is an integer containing a 0, 1, or 2 (which are translated into 1, 2,
and 3 outside the class).

DATA MEMBER USAGE

winDoor Contains the number of the winning door. The DoorManager
object chooses this number randomly at the start of each
new game.

selDoor Specifies the door that the contestant initially selects.

badDoor Specifies the “bad” door, the door that’s revealed as a stinker
before the final choice is offered.

altDoor Specifies the “alternative” door. Monty offers the contestant a
chance to stick with her first choice (selDoor) or to switch to
this door.

With this help from his producers, the job of Monty Schmall (represented by
the main program) is relatively easy.

Example 14.1. The PrizeManager Class
The PrizeManager contains only two public functions, get_good_prize and
get_bad_prize. This makes the class easy to write.

ptg16518442

Chapter 14 Object-Oriented Monty Hall340

prizemgr.cpp

// Remember to include string, cstdlib, and ctime,
// and using namespace std in the enclosing program.

class PrizeManager {
public:
 PrizeManager() {srand(time(NULL));}
 string get_good_prize();
 string get_bad_prize();
};

string PrizeManager::get_good_prize() {
 static const string prize_list[5] = {

"YOUR BRAND NEW CAR!",
"A BA-ZILLION DOLLARS!",
"A EUROPEAN VACATION!",
"A CONDO IN HAWAII!",
"TEA WITH THE QUEEN OF ENGLAND!"

 };
 return prize_list[rand() % 5];
}

string PrizeManager::get_bad_prize() {
 static const string prize_list[8] = {

"two week's supply of Spam.",
"a crate of rotting fish heads.",
"a visit from a circus clown.",
"two weeks at a clown college.",
"a ten-year-old VCR player.",
"a lesson from a mime.",
"psychoanalysis from a clown.",
"a tour of the city dump."

 };
 return prize_list[rand() % 8];
}

H
ow

 It
 Works

How It Works
Remember that get_good_prize and get_bad_prize must be called through an
object, because these are class functions.

ptg16518442

14
TV Programming: “Good Deal, Bad Deal” 341

PrizeManager prize_mgr;
cout << prize_mgr.get_good_prize() << endl;

Because this class consists of only two functions and their local variables,
you might wonder why it needs to be a class at all. Couldn’t these two member
functions be provided as global functions that are called directly, rather than
through an object?

That would be true if there were no chance any data members would be added
to this class in the future. However, when this class is revised and improved
later in the chapter, it will be helpful to have the class organization, as you’ll see.

One of the fine points of the code is that it uses the static and const keywords
to modify the declarations of the arrays of strings. Without these keywords,
the string literals would be loaded into local-variable memory (on the stack),
over and over again, every time the function was called. As local variables, these
arrays have local visibility; but because they are static, they are loaded into
memory only once.

Op
ti

m

izing

Optimizing the Code
One potential drawback of the approach used so far is that the two arrays have
“hard-coded” array sizes. The sizes have to be accurately determined by inspection,
and (worse) if you add or delete elements, you have to make sure that you put in
the new size correctly. Otherwise, the line of code that performs randomization
will fail to execute correctly:

return prize_list[rand() % 8];

If the hard-coded number (8) is too small, some prizes will never be chosen. But
if this number is too large, the program will eventually fail, causing it to quit—if
you’re in the Microsoft Visual Studio managed environment—or possibly do much
worse.

So, even though it’s more work initially, a better approach is to use the com-
piler itself to determine the size of the array. Leave the array size blank, and
then use the sizeof operator to determine the number of elements as follows:

sizeof(prize_list) / sizeof(string)

This says: take the total size of prize_list and divide by the size of one element
(a string object in this case). This produces the number of elements. Perhaps
there should be a quicker and easier way to get the size of an array, but this is the
only way currently supported in C++.

Now the two functions can be revised as follows. With this approach, strings
can be added or removed as you like, and the size data will always be automati-
cally correct.

ptg16518442

Chapter 14 Object-Oriented Monty Hall342
string PrizeManager::get_good_prize() {
 static const string prize_list[]= {

"YOUR BRAND NEW CAR!",
"A BA-ZILLION DOLLARS!",
"A EUROPEAN VACATION!",
"A CONDO IN HAWAII!",
"TEA WITH THE QUEEN OF ENGLAND!"

 };
 int sz = sizeof(prize_list) / sizeof(string);
 return prize_list[rand() % sz];
}

string PrizeManager::get_bad_prize() {
 static const string prize_list[] = {

"two week's supply of Spam.",
"a crate of rotting fish heads.",
"a visit from a circus clown.",
"two weeks at a clown college.",
"a ten-year-old VCR player.",
"a lesson from a mime.",
"psychoanalysis from a clown.",
"a tour of the city dump."

 };
 int sz = sizeof(prize_list) / sizeof(string);
 return prize_list[rand() % sz];
}

Ex
er

cis
es

 EXERCISES

Exercise 14.1.1. Test the PrizeManager class by writing a test program that includes
the class declaration and then uses it to create an object. Finally, use that object
by calling its two functions. Set up a loop that randomly calls one or the other
of the functions until the end user enters a “quit” command.

Exercise 14.1.2. Modify the two PrizeManager functions by adding strings of your
own. Then, make all modifications necessary for the functions to work cor-
rectly. (Note that to make sure the size values are correct, you can either change
the sizes by hand or else use the technique described in the previous section.)

Exercise 14.1.3. It’s probably not desirable to have the same prize two or more times
in a row. Add a couple of data members and use them to prevent a prize already
picked by a function from being picked in the next function call.

ptg16518442

14
TV Programming: “Good Deal, Bad Deal” 343

Example 14.2. The DoorManager Class
The Door Manager’s principal tasks are 1) to secretly choose which of the three
doors has the desirable prize, and 2) to decide—based on both the winning
door and the contestant’s selected door—which of the doors is revealed as a
stinker in the middle of the game (the “bad” door).

doormgr.cpp

// The program that includes this class should also
// include cstdlib and ctime.
//
class DoorManager {
public:
 DoorManager() {srand(time(NULL)); }
 void start_new_game();
 void set_sel_door(int n);
 int get_alt_door() { return altDoor + 1; }
 int get_bad_door() { return badDoor + 1; }
 bool query_door(int n) {return n == (winDoor + 1); }
private:
 int winDoor;
 int selDoor, altDoor, badDoor;
};

void DoorManager::start_new_game() {
 winDoor = rand() % 3;
}

void DoorManager::set_sel_door(int n) {
 selDoor = n - 1;
 if (selDoor == winDoor) {

if (rand() % 2) { // Random true or false
altDoor = (selDoor + 1) % 3;
badDoor = (selDoor + 2) % 3;

} else {
badDoor = (selDoor + 1) % 3;
altDoor = (selDoor + 2) % 3;

}

▼ continued on next page

ptg16518442

Chapter 14 Object-Oriented Monty Hall344

 } else { //Else, if the selected door is not the
// winning door...

// Alternative door MUST be the winning door!
altDoor = winDoor;

// Assign badDoor the number in {0, 1, 2}
// not equal to either selDoor or altDoor.
badDoor = 3 - selDoor - altDoor;

 }
}

H
ow

 It
 Works

How It Works
As with the PrizeManager class, only one instance of DoorManager is used in
the program. This is a simple process: use the class to create one object, and
then use that object to call member functions. For example:

DoorManager door_mgr;
door_mgr.new_game();

DoorManager is a good example of a C++ class, because it maintains some
key pieces of data internally. Users of the class can access this private data only
by calling member functions.

One reason this is necessary is that in order to keep the math simple, the doors
are identified internally as 0, 1, and 2, even though these same doors are identified
outside the class as 1, 2, and 3. If the contestant picks Door No. 3, this is stored
within the object as 2, not 3. Such differences are invisible to the user of the class,
who only knows about doors numbered 1, 2, and 3, and has no access to how
things work inside the class.

The DoorManager object has the responsibility for choosing the “bad” door,
that is, the door revealed to have a stinky prize.

Consider the case in which the contestant chooses the correct door initially.
This will happen one-third of the time. In that case, one of the remaining doors
has to be randomly chosen as the “bad” door, and the other door will be the
“alternative” door.

There are several ways to make this random selection, but modular arithmetic
is most efficient. The MOD 3 operation (which is what “% 3” does) takes 0, 1,
or 2 as input and produces the other two numbers in the set. So, for example,
if selDoor is 1, altDoor and badDoor are assigned the values 0 and 2, but not
necessarily in that order.

doormgr.cpp, cont.

ptg16518442

14
TV Programming: “Good Deal, Bad Deal” 345
if (rand() % 2) { // Random true or false

altDoor = (selDoor + 1) % 3;
badDoor = (selDoor + 2) % 3;

} else {
badDoor = (selDoor + 1) % 3;
altDoor = (selDoor + 2) % 3;

}

The MOD 3 operation (%3) is like using a special clock that has one hand
and three positions: 0, 1, and 2. You can start at any of these numbers and mov-
ing the hand forward will produce the other two numbers.

0

12

Now consider the case in which the door initially selected by the contes-
tant is not the winning door, which will happen two-thirds of the time. The
“bad” door, the one that’s going to be revealed by Monty, cannot be the initially
selected door. Nor can the bad door be the winning door. By the process of
elimination, therefore, we can assign all three doors: altDoor must necessarily
be the winning door because that’s the only result consistent with the rules.

// Alternative door MUST be the winning door!
altDoor = winDoor;

// Assign badDoor the number in {0, 1, 2}
// not equal to either selDoor or altDoor.
badDoor = 3 - selDoor - altDoor;

This point is absolutely critical, so let’s go over it again. Remember, we are con-
sidering the case in which the selected door (selDoor) does not match the winning

ptg16518442

Chapter 14 Object-Oriented Monty Hall346

door—a condition that the Door Manager can detect as soon as the selection is
made. The Door Manager then infers the following:

◗ selDoor is not the winning door (because we just assumed that).

◗ badDoor, by definition, cannot be the winning door.

◗ Whichever door remains is the winning door, but altDoor is never the same as
either selDoor or badDoor; therefore, it must be the same as the winning door,
because altDoor is the only door left.

The last line of code does the following, again for the case in which the
selected door is not the winning door: the Door Manager uses the value selDoor
(the door selected by the contestant) and altDoor (the door presented as an alter-
native to the contestant) to calculate the value of badDoor.

We know that the values 0, 1, and 2 are distributed uniquely among the three
variables and no value is repeated. Therefore, the three variables must have a
combined total of 3.

selDoor + badDoor + altDoor = 3

Then, applying seventh-grade algebra, we solve for the variable badDoor.

badDoor = 3 – selDoor – altDoor

This simple algebraic trick lets us calculate the value of badDoor because, by this
point, the program has already determined the value of the other two variables.

Ex
er

cis
es

 EXERCISES

Exercise 14.2.1. If an object-oriented approach were not used with this example—
if, instead, the Door Manager class were implemented as a series of separate
data declarations and functions—what would be the risks to the program? Why
might the Monty Schmall program fail badly?

Exercise 14.2.2. Write a program to test the DoorManager class by repeatedly making
an initial selection (offering this choice to the end user), and then getting the
value of badDoor and altDoor by calling the function members. Finally, use
the query_door function to see if the contestant’s choice was the winning one.
Print out all these results. Run this program a few times to see if the results are
consistent with the rules of the game.

Exercise 14.2.3. The door values are maintained internally as 0, 1, and 2. The
class can use the values 1, 2, and 3 instead, but this requires the MOD arith-
metic in the set_sel_door function to be slightly more complex. Revise all the

ptg16518442

14
TV Programming: “Good Deal, Bad Deal” 347

class functions to store the door changes internally as 1, 2, 3 instead of 0, 1, 2.
Although some of the code will be slightly more complex, several other func-
tions will be shorter as a result, because no conversion between inner and outer
numbers will need be made. (Hint: for the numbers 1, 2, and 3 to work correctly
during the MOD operation, 1 should be subtracted, then the arithmetic opera-
tion applied, and then finally 1 should be added.)

Example 14.3. The Full Monty Program
The following program listing assumes that the PrizeManager and DoorManager
classes are inserted where indicated.

monty.cpp

#include <iostream>
#include <cstdlib>
#include <ctime>
#include <string>
using namespace std;

// INCLUDE PRIZEMANAGER AND DOORMANAGER
// DECLARATIONS HERE.

void play_game();
int get_number();

PrizeManager prize_mgr;
DoorManager door_mgr;

int main()
{
 cout << "Welcome to Good Deal, Bad Deal!" << endl;
 cout << "I'm your host, Monty Schmall." << endl;
 string s;
 while (true) {

play_game();
cout << "Play again? (Y or N): ";
getline(cin, s);
if (s[0] == 'N' || s[0] == 'n') {

break;

▼ continued on next page

ptg16518442

Chapter 14 Object-Oriented Monty Hall348

}
 }
 return 0;
}

void play_game() {
 string s;
 cout << "Which of three doors would you like";

<< " (1, 2, 3)? ";
 int n = get_number();
 door_mgr.set_sel_door(n);
 cout << "Before I reveal what's behind the door,"

<< " I'm going to show a door you DIDN'T"
<< " pick." << endl;

 cout << "Behind Door No. "
<< door_mgr.get_bad_door() << " is..."
<< prize_mgr.get_bad_prize() << endl << endl;

 cout << "Now, would you like to switch from Door"
<< " No. " << n << endl << " to Door No. "
<< door_mgr.get_alt_door() << "? (Y or N): ";

 getline(cin, s);
 if (s[0] == 'Y' || s[0] == 'y') {

n = door_mgr.get_alt_door();
 }
 cout << endl << "Ok. You just won... ";
 if (door_mgr.query_door(n)) {

cout << prize_mgr.get_good_prize();
 } else {

cout << prize_mgr.get_bad_prize();
 }
 cout << endl << endl;
}

int get_number() {
 string sInput;
 while(true) {

getline(cin, sInput);
int n = stoi(sInput);
if (n >= 1 && n <= 3) {

return n;
}
cout << "You must enter 1, 2, or 3. Re-enter:";

 }
}

monty.cpp, cont.

ptg16518442

14
TV Programming: “Good Deal, Bad Deal” 349

What follows now is a sample session, with end-user input in bold. Remember
that this is a simulation of a hypothetical show, so it doesn’t have all the ele-
ments of a real TV show, obviously.

Welcome to Good Deal, Bad Deal!
I'm your host, Monty Schmall.
Which of three doors would you like (1, 2, 3)? 3
Before I show you what's behind the door,
I'm going to show you a door you DIDN'T pick.

Behind Door No. 2 is... a visit from a circus clown.

Now, would you like to switch from Door No. 3
to Door No. 1? (Y or N): Y

Ok, you just won... YOUR BRAND NEW CAR!

Play again? (Y or N): N

The program presents the same choices the user would have if he or she were
a contestant on a real game; it’s also written so that you can repeatedly play the
game and see results of different choices. If you play the game a sufficient num-
ber of times, it should become clear which strategy is best.

I contend that if you play the game enough and track the results, the winning
strategy will eventually become clear. There is a particular strategy that wins
the game two-thirds of the time!

H
ow

 It
 Works

How It Works
If you understand the purpose of the two classes, the main program should be
straightforward. This part of the C++ code presumes that the PrizeManager and
DoorManager classes have already been declared, and it uses the class names to
create two objects, one of each type.

PrizeManager prize_mgr;
DoorManager door_mgr;

Each of these objects takes over an important job, leaving relatively little for
the main program to do except interact with the end user. The classes, as we’d
expect with most object-oriented programming, have already done much of the
heavy lifting.

Even with the character-based user interface assumed in this book, com-
munication with the end user is not always trivial. For example, the following

ptg16518442

Chapter 14 Object-Oriented Monty Hall350

function is included so that you can query the user to input the number 1, 2,
or 3. The function keeps prompting the user until he or she enters one of these
numbers.

int get_number() {
 string sInput;
 while(true) {

getline(cin, sInput);
int n = stoi(sInput);
if (n >= 1 && n <= 3) {

return n;
}
cout << "You must enter 1, 2, or 3. Re-enter:";

 }
}

Note � If you have a compiler that is more than a few years old, you may need
to use the atoi function instead of stoi, which is supported by compilers that
are compliant with C++11 and later. The alternative to using stoi is to use the
expression “atoi(sInput.c_str())”.

Ex
er

cis
es

 EXERCISES

Exercise 14.3.1. One mild defect of this program is that it sets the randomization
seed (calling srand) more than once, which is clearly inefficient. Rewrite all the
code necessary to ensure that srand is called once and only once.

Exercise 14.3.2. Revise the program so that it keeps a running count of which deci-
sions were made (how often the user stuck with the first door, how often she
switched) and, as the user is about to quit, summarizes the “win” percentage for
each decision: What is the win percentage when the player sticks with the first
door? What is the win percentage when the player switches?

Exercise 14.3.3. Revise the program so it doesn’t interact with the end user except
to report results. Run the game silently thousands of times to test 1) How often
did picking Door No. 1 and sticking with that selection yield a good prize? 2)
How often did picking Door No. 1 and switching yield a good prize? Do the
same for each of the doors. Remember that there are six possible plays alto-
gether. Run in “silent mode” a thousand times for each possible play and report
the results in tabular form.

ptg16518442

14
The Monty Hall Paradox, or What’s Behind the Door? 351

The Monty Hall Paradox, or What’s Behind the Door?
In 1990, Marilyn vos Savant, known as the world’s smartest woman due to her
record-breaking I.Q. scores, presented the Monty Hall problem in her column
for Parade magazine, and in answer to a reader’s letter. For millions of readers, it
was the first time they’d encountered this question. In fact, it was raised at least
as early as 1975, when it was mentioned in a letter to The American Statistician
magazine by University of California professor Steve Selvin.

This puzzle, or challenge, is the exact same one posed in this chapter,
although I’ve added some humorous elements. The choice is simple. There are
only two possible choices: stick with the first door you selected, or (after one of
the stinkers has been revealed) switch to the remaining door.

Almost everyone who considers this question for the first time insists on the
same answer: it must be a 50/50 proposition. There are two doors left after one
of the bad doors is revealed. Therefore, regardless of whether you stick to your
first selection or switch to the remaining door, the probability is exactly 50% of
winning the big prize. Right?

Wrong. It’s not equal at all. In her column, Marilyn vos Savant tried to explain
her reasoning, but thousands of people wrote in to say she was mistaken.

The correct answer, the one she gave, is that if you stay with your first choice,
your chances of winning the game are only 1/3. But if you switch, your chances
increase to 2/3, well above 50%!

There are many ways to show this and yet people have great trouble accepting it.
What is the difference between the two doors? The difference is that the initial
choice was made with no information, so that choice has only a one-third prob-
ability of being right. But the choice of the remaining, or “alternative” door,
contains within it the benefit of more information because one of the bad doors
has been eliminated.

Imagine a picture of the three doors. For any door, the probability of it being
the winning door is 1/3.

?

1/3 2/3

? ?

ptg16518442

Chapter 14 Object-Oriented Monty Hall352

At this point, there’s nothing in this scenario or picture that anyone would
dispute, assuming the game isn’t rigged. Right now, the chance of winning is
obviously 1/3.

Now consider what happens after one of the stinkers is revealed. Suppose
you chose Door No. 1 to begin with, and then Door No. 2 is revealed and elim-
inated. In that case, the probability of Door No. 1 being the winning choice
doesn’t change—there’s no reason it should—but it becomes more likely that
Door No. 3 is the right choice. Its probability goes from 1/3 to 2/3, while the
probability of Door Number 2 being the winning door goes from 1/3 to 0.

?

1/3 2/3

2/30

X ?

The situation becomes even clearer if you consider a hypothetical game with
five doors (still having only one good prize) in which Monty reveals three bad
doors, not just one. You should be able to see that the probability that the alter-
native door turns out to be the winning door is 4/5.

?

1/5 4/5

4/50

X
0

X
0

X ?

Even that might not convince you, but you should be convinced by examin-
ing the C++ code in this chapter. Again, start by noting that the probability of
the user’s first choice being right is only 1/3, and it remains so. In that case, the
allocation of the other two doors is random, as described.

ptg16518442

14
Improving the Prize Manager 353

But it’s more likely that the first door the user chooses is not the winning
door (a condition that has a probability of 2/3). In that case, the program exe-
cutes the following statement:

altDoor = winDoor;

And there it is: the solution to the paradox and the proof that Marilyn was right!
If the first door selected is not the winner (and remember, that’s at a probability of
2/3), the program sets the alternative door to be the same as the winning door.

Logically, then, the probability of the alternative door being the winning
door is 2/3. The smart move is to always switch doors in the final decision.

The reader may object that this is all my doing. By setting altDoor (the alter-
native door) to the value of winDoor, you may think I’ve rigged the game. But
that’s not so. The statement “altDoor = winDoor” necessarily follows as a con-
sequence of the rules. There’s no other way to write the program while observing all
the rules presented on page 339. For reasons of pure logic, therefore, the alterna-
tive door must be the more likely winner.

As for Marilyn vos Savant’s column, it became legendary and made famous
what came to be called “the Monty Hall Paradox.” It’s a paradox not because
there’s no solution, but because so many people think that the solution is crazy.
It runs counter to human intuition. But that just shows that intuition some-
times conflicts with the logical consequences of probability theory.

Within weeks, thousands of people wrote in, including some who were
respected scholars, insisting that—in this case, at least—she had to be mistaken.
So strongly did they feel, they seriously questioned whether she was really the
smartest person in the world after all, and at least one letter made the sexist com-
ment that only a male mind could handle problems in logic. Ms. Savant went
on to devote three subsequent columns to defending her reasoning and still not
everyone was convinced!

I like to think I’ve done a public service with this chapter. If you understand
C++ and can follow the program I’ve described here, you’ll find proof she was
right. If you’re still not convinced, run a simulation of a few thousand games, as
described in Exercise 14.3.3, which should convince you beyond all doubt.

Improving the Prize Manager
A unique feature of this chapter is the fun we get to have with prizes. Other
versions of the Monty Hall Paradox typically have one good prize and one bad:
usually, a car (good) and a goat (not good). The humorous aspect of my version
is that you can get all kinds of disappointing prizes, such as a visit from a circus
clown, and the winning prizes can be (for example) a condo in Hawaii or tea
with the Queen of England.

ptg16518442

Chapter 14 Object-Oriented Monty Hall354

But by sheer chance, the user might see the same prizes over and over again.
Producing a greater variety of prizes would make for a more entertaining game.
We’d like to see the Prize Manager only select prizes not seen yet, until the list
of prizes is exhausted.

A good way to adopt this behavior is the shuffle-up-and-deal approach,
which selects elements of a prize list until they are used up, at which point the
object automatically shuffles the list.

The shuffling algorithm is one described in Example 6.4 on page 148. We
assume an array just big enough to hold all the prizes. Each index number, 0 to
N − 1, has an equal chance of ending up in any position after shuffling.

For I = N − 1 Down to 2

 J = Random 0 to I

 Swap array[I] and array[J]

The algorithm, when correctly coded, takes an array of numbers from 0 to N − 1,
which may start out in any order (provided that all the numbers are present), and
produces an array of those same numbers, shuffled into newly randomized posi-
tions. If you analyze the algorithm carefully, you may realize there’s always a chance
that an element might get swapped with itself, but this has only a minor effect on
performance, so it’s not really worth worrying about. (Although you could test I
and J for equality if you wanted, and if they are equal, don’t bother to swap.)

The following code shows the revised PrizeManager class, rewritten so that it
doesn’t repeat prizes. It’s necessary to have some new data members, such as an
advancing index for each array. With this approach, when you get to the end of
an array, it’s time to “shuffle up and deal.”

Notice that this C++ code uses two sets of arrays. Rather than shuffling the prize
lists themselves, each of the two prize lists is controlled by an array filled with index
numbers. The shuffle function randomizes the arrays of indexes, which are then
used to select from the prize lists in what amounts to random order.

Prizemgr2.cpp

// Remember to include string, cstdlib, and ctime,
// and using namespace std in the enclosing program.

class PrizeManager {
public:
 PrizeManager();
 string get_good_prize();
 string get_bad_prize();

Ps
eu

do

code

ptg16518442

14
Improving the Prize Manager 355

private:
 int good_array[5];
 int bad_array[8];
 int good_index;
 int bad_index;
 void shuffle(int *p, int n);
};

PrizeManager::PrizeManager() {
 srand(time(NULL));
 for (int i = 0; i < 5; ++i) {

good_array[i] = i;
 }
 for (int i = 0; i < 8; ++i) {

bad_array[i] = i;
 }
 good_index = bad_index = 0;
 shuffle(good_array, 5);
 shuffle(bad_array, 8);
}

string PrizeManager::get_good_prize() {
 if (good_index >= 5) {

shuffle(good_array, 5);
good_index = 0;

 }
 static const string prize_list[5] = {

"YOUR BRAND NEW CAR!",
"A BA-ZILLION DOLLARS!",
"A EUROPEAN VACATION!",
"A CONDO IN HAWAII!",
"TEA WITH THE QUEEN OF ENGLAND!"

 };
 return prize_list[good_array[good_index++]];
}

string PrizeManager::get_bad_prize() {
 if (bad_index >= 8) {

shuffle(bad_array, 8);
bad_index = 0;

 }

▼ continued on next page

Prizemgr2.cpp, cont.

ptg16518442

Chapter 14 Object-Oriented Monty Hall356

 static const string prize_list[8] = {
"two week's supply of Spam.",
"a crate of rotting fish heads.",
"a visit from a circus clown.",
"two weeks at a clown college.",
"a ten-year-old VCR player.",
"a lesson from a mime.",
"psychoanalysis from a clown.",
"a tour of the city dump."

 };
 return prize_list[bad_array[bad_index++]];
}

 void PrizeManager::shuffle(int *p, int n) {
 for (int i = n - 1; i > 1; --i) {

j = rand() % (i + 1); // j = random 0 to i
int temp = p[i]; // SWAP!
p[i] = p[j];
p[j] = temp;

 }
}

Chapter 14 Summary
The main purpose of Chapter 14 has been to reinforce object-oriented concepts
and show more examples of their use. But Chapter 14 also introduced, or gave
greater emphasis, to several new ideas. These concepts and ideas are summa-
rized here:

◗ Remember that object orientation is about modular programming. You can
think of objects as assistants or coworkers to whom you delegate duties. Each
has access to his or her own personal information and agrees to respond to cer-
tain requests.

◗ After declaring a class, you can create one or more objects. With some applica-
tions, you might have classes for which you only declare one object. But this is
still perfectly valid.

PrizeManager prz_manager;

Prizemgr2.cpp, cont.

ptg16518442

14
357Chapter 14 Summary

◗ Class members are either public or private. (There is a third option, protected,
mentioned in Chapter 16, “Polymorphic Poker.”) There are many advantages
to keeping some data private, but a particularly strong one arises in situations in
which an outside number (say, numbers running from 1 to 3) must be translated
into an internal representation (say, 0 to 2). Because the data members are private,
users of the class cannot “reach in” and refer to the data members directly. This
can prevent a large source of errors.

◗ Remainder division (%) is useful for its support of modular arithmetic. One of
the uses of modular arithmetic is to start with a number in a particular set (for
example, 0, 1, or 2) and then advance to the other numbers in the same set.

doorAlt1 = (doorChoice + 1) %3;
doorAlt2 = (doorChoice + 2) %3;

◗ You can use the sizeof operator to let the compiler determine the size of an
array. This has the benefits of making the program easier to maintain in the
long run and also eliminating a source of potential errors.

int sz = sizeof(my_array) / sizeof(*my_array);

◗ Sometimes the best way to settle an argument is to just run a computer simula-
tion of the problem, assuming the simulation is correctly written.

ptg16518442

This page intentionally left blank

ptg16518442

359

15 Object-Oriented
Poker

Any hour of any day in Las Vegas, Nevada, you can hear them: the unending
“ding-ding-ding!” sounds from what used to be “one-armed bandits,” but these
days are more likely to be machines playing video poker.

Now—at no expense!—you can bring the excitement of this classic game to
your own computer, thanks to C++. Basically, each round of the game is a hand
of draw poker, followed by a payout at the end. (Sorry, but I’m not set up to take
your money, even if it were legal to do so. You’ll have to be content with winning
virtual dollars.)

Although it’s possible to write this program without object orientation, I’m
going to use this chapter to further demonstrate some more object-oriented
features: how to return an object from a function, how to enable an object to
display itself, how to manipulate arrays of objects, and finally, how to use the
vector template, one of the most useful parts of the C++ Standard Template
Library.

Winning in Vegas
The object of poker is to end up with the best hand of five cards you can. In
the draw poker variant, used in video poker, you get a chance to improve your
hand. Then, depending on how good that hand is, you get a payoff anywhere
from one unit (the size of your bet, letting you break even) up to hundreds of
times your bet. Jackpot!

In nearly all forms of poker, the more cards you have with matching rank, the
better. Getting four of any rank is exceptional and earns a big payoff, although
you won’t see it often. Matching just two cards in rank gives you a pair, a much
lower hand. It’s not entirely worthless, but at least you break even rather than
losing money. In between these hands is three of a kind, which, no surprise,
pays off better than a pair (at 2 to 1) but nowhere near as well as four of a kind.

ptg16518442

Chapter 15 Object-Oriented Poker360

There are also a number of special hands. Most people find these easy to
learn. Note that order of the cards never matters in poker. If you have one of the
following hands, with your cards in any order relative to each other, you still have
a high hand:

◗ Full house: three of a kind combined with a pair. For example: A-A-A-5-5 or
8-8-8-K-K. Valued just below four of a kind.

◗ Flush: all five cards of the same suit. Valued just below a full house.

◗ Straight: all five cards in a continuous sequence. For example, J-10-9-8-7. Even
if these are arranged as 9-7-8-10-J, it’s still a straight. Valued just below a flush,
but above three of a kind.

◗ Two pair: fairly self-explanatory. Valued above a pair but below three of a kind.

In the second half of the chapter, I’m going to show how to write C++ code
that looks at the player’s hand and detects which of these hands are present. The
rank of your final hand (after drawing) determines your payoff.

If you know anything about poker, or if you’re just insightful, you may notice
that it’s logically possible for the same hand to be both a straight and a flush.
This gives rise to two extra-special hands:

◗ Straight flush: A hand that’s both a straight and a flush. For example, 6-5-4-3-2,
all hearts. Remember that order never matters.

◗ Royal flush: A-K-Q-J-10, all in the same suit. This is the highest hand of all,
except for five of a kind, which isn’t possible with a standard deck and no wild
cards. The payout of a royal flush is fantastic, as you’d imagine. Royal flushes
are a subset of straight flushes, but of the highest rank.

To make things easier to digest, I’m going to follow a specific game plan in
writing the poker application:

First, we’ll develop the Deck and Card classes, laying the groundwork for
the application. Second, we’ll write the main program for the simplest version
of the game, which uses the Deck and Card classes to play one round with no
redraws.

Third, we’ll improve the game by enabling the user to keep or redraw as
many cards as she chooses, just as in draw poker. Finally, we’ll write another
class, Evaluator, which knows how to analyze any group of five cards and tell
what kind of hand it is: a flush, four of a kind, full house, a pair, and so on. This
evaluation of the hand will determine the payout.

And now, it’s off to Vegas, as it were.

ptg16518442

15
How to Draw Cards 361

How to Draw Cards
Object-oriented techniques, although not absolutely critical in this example,
provide a superior way to analyze the problem. As with other examples in the last
few chapters, we begin by asking: what are the major pieces of data in the pro-
gram and how do we need to manipulate them?

Object orientation is helpful in design because you start with the big picture
and fill in the details later. At the most general level, what’s involved in a video
poker game?

First, there’s a deck of cards. Video poker is meant to simulate dealing from
an actual deck, so that you would never see, for example, five aces of spades in
a row, which would be impossible if a real deck were involved. Maintaining and
shuffling are easy, because earlier chapters in this book introduced the basic
techniques.

Another important kind of data is the individual card. This is a fairly small
unit of data, but it does have both rank and suit information (the latter cannot
be entirely ignored in poker because when it comes to flushes, suits do matter).
This simple data type can be given some intelligence, so it knows how to display
itself.

Conceptually, here’s the flow of data in the overall program. The main pro-
gram calls on the Deck class to supply five Card objects, and then the main
program gives each of these objects the command, “Print yourself!”

main programDeck object
(my_desk)

Card

Card

Card

Card

Card

ptg16518442

Chapter 15 Object-Oriented Poker362

We need to design and implement two classes. Writing the main program
should then be about as easy as getting a free drink at a Las Vegas casino.

The Card class is especially simple. Clearly, it needs rank and suit data mem-
bers. If there was some need to protect this data from outside access, these
 members could be made private with access available through function members
only. However, there isn’t much to be gained by privatizing this data. Let’s just
provide direct access for a change.

The interesting members of the class are the functions. The constructors will
enable us to create Card objects more easily, occasionally saving a line of code or
two. The display function, although it could be made a global function, belongs
in the class because of its tight association with the object. In short, it’s a better
way of organizing things.

Conceptually speaking, you can think of the display function as giving each
Card object a kind of intelligence. It knows how to print itself.

rank

suit

Card Class

Card()

Card(int, int)

display()

public

Name lists (local
data)

private

Now, let’s move on to the Deck class. This shouldn’t be difficult to write
either.

By now, you should find the functions of the Deck class easy to write because
its main duties are to shuffle up when needed, hiding this detail from the user
of the class, and dealing a card when requested. Chapter 14, “Object-Oriented
Monty Hall,” ended with code that carried out these operations, and Chapter 6,
“Arrays: All in a Row...,” ended with a similar example.

The only substantially new thing about the Deck class is that its deal_a_card
function returns a Card object rather than an integer.

The Deck class has the following structure—still relatively simple. If you’ve
followed this book up until now, this class should be a breeze to implement.

ptg16518442

15
The Card Class 363

shuffle()

Deck()

Deck Class

cards[]

iCard

deal_a_card()
public

private

Okay, enough theory. Let’s examine the two classes in detail.

The Card Class
The Card class is basically a data record containing two integers, but it has some
additional features. In the last few chapters, we’ve seen how useful constructors
are, and the constructors for the Card class are going to save a few lines of code
here and there.

In addition, this class supports a display function, which builds some intelli-
gence into the data structure.

Here’s the C++ code for the class, which is quite short:

card.cpp

// Remember to include string and
// using namespace std in the enclosing program.

class Card {
public:
 Card() {}
 Card(int r, int s) { rank = r; suit = s; }
 int rank;
 int suit;
 string display();
};

string Card::display() {
 static const string aRanks[] = {" 2", " 3", " 4",

▼ continued on next page

ptg16518442

Chapter 15 Object-Oriented Poker364

" 5", " 6", " 7", " 8", " 9", "10", " J", " Q",
" K", " A" };

 static const string aSuits[] = {
"clubs", "diamonds", "hearts", "spades" };

 return aRanks[rank] + " of " + aSuits[suit] + ".";
}

The string-array data is stored in two local variables, effectively making it
private. For efficiency’s sake, these are both declared static const, as explained
in Chapter 14, so that the data is loaded into memory only once, not every time
the function is called.

The Deck Class
The Deck class is more elaborate than the Card class, but what it has to do is still
fairly simple. Here’s the code listing:

deck.cpp

// Remember to include string, cstdlib, ctime and
// using namespace std in the enclosing program.

class Deck {
public:
 Deck();
 Card deal_a_card();
private:
 int cards[52];
 int iCard;
 void shuffle();
};

Deck::Deck() {
 srand(time(NULL));
 for (int i = 0; i < 52; ++i) {

cards[i] = i;
 }
 shuffle();
}

card.cpp, cont.

ptg16518442

15
The Deck Class 365

void Deck::shuffle() {
 iCard = 0;
 for (int i = 51; i > 0; --i) {

int j = rand() % (i + 1);
int temp = cards[i];
cards[i] = cards[j];
cards[j] = temp;

 }
}

Card Deck::deal_a_card() {
 if (iCard > 51) {

cout << endl << "RESHUFFLING..." << endl;
shuffle();

 }
 int r = cards[iCard] % 13;
 int s = cards[iCard++] / 13;
 return Card(r, s);
}

This book has featured similar C++ code before. What’s new here is that the
deal_a_card has a class return type, Card, which means that the function must
return a Card object:

 Card deal_a_card();

The last line of the function definition returns just such an object. In this
case, the constructor is called directly:

 return Card(r, s);

The heart of the class is its ability to automatically “shuffle up and deal” as
needed. Let’s review the shuffling algorithm again.

For I = 51 down to 1

 J = Random 0 to I

 Swap cards[I] and cards[J]

It’s amazing that such a small algorithm can do so much. It uses the for state-
ment, which in C++ is highly flexible. You can always use it to count down to
something as well as up.

deck.cpp, cont.
Ps

eu
do

code

ptg16518442

Chapter 15 Object-Oriented Poker366

Index number 51 is the last position in the deck. The code causes swapping
between that position and a position index by J, in which J can run from 0 all
the way up to and including 51. This effectively says “swap positions with any
card in the deck.”

During the next iteration of the loop, I is set to 50 (the next highest number)
and J can be any random number from 0 to 50. What this does is to select any
card for this next-to-highest position from all the remaining cards in the deck.
And so the loop continues. The third iteration selects a card from positions 0 to 49,
and so on. Eventually, every position in the deck is filled with a randomly
selected card.

Notice that the algorithm always carries out a swap, even though, on occa-
sion, I and J may be the same.

The question of whether I and J should always be swapped—even though
they might be equal—is a classic case for optimization analysis, an issue many
programmers ignore but C++ programmers tend to think is important.

In this case, the potential inefficiency of swapping I and J unnecessarily must
be compared to the cost of frequently performing a test for equality. Because
I and J are integers, it isn’t worth performing this test. But if I and J were more
complex kinds of objects, it might be more efficient to run the test and swap
I and J only if they’re unequal.

 if (i != j) {
int temp = cards[i];
cards[i] = cards[j];
cards[j] = temp;

 }

Finally, remember that to use a class, you must first create at least one object
and then call its functions through that object. For example, the first statement
below instantiates the Deck class directly, creating the object my_deck, and then
the second statement uses my_deck to produce an instance of the Card class.

Deck my_deck;
Card crd = my_deck.deal_a_card()

Doing the Job with Algorithms
Chapter 13, “Easy Programming with STL,” introduced the C++ Standard
Template Library (STL) as a wonderful time-saving device. The library includes
the collection templates, such as list and stack, which can contain almost any
kind of base type. The other major category in the STL are the algorithms,
which perform common programming tasks—again, operating on nearly any
kind of base type.

ptg16518442

15
Doing the Job with Algorithms 367

Note � Like many parts of the C++ library, each STL algorithm requires a
std:: prefix, unless you include the “using namespace std” statement, in which
case you don’t have to worry about the issue.

To use any of the STL algorithms, first make use of the #include directive.

#include <algorithm>

One of the most frequently used algorithms is swap, which switches the value
of two arguments, provided that their types match precisely. (If the types do not
match perfectly, the algorithm may fail, as the action then becomes ambiguous.)
For example:

#include <algorithm>
using namespace std;
...
int lil = 1, big = 1000;
swap(lil, big);
cout << "big is now: " << big << endl;

By using swap, you have to add one additional line (#include <algorithm>)
but you can save several lines of code. The shuffle function can then be reduced to:

void Deck::shuffle() {
 iCard = 0;
 for (int i = 51; i > 0; --i) {

int j = rand() % (i + 1);
swap(cards[i], cards[j]);

 }
}

But you can do even better than that. The random_shuffle algorithm does
almost all the work of the function, saving even more lines of code. This algo-
rithm assumes that the program has already set a random seed. Assuming it
has, you can specify a range of elements to be shuffled randomly, as follows:

random_shuffle(beg_rage, end_range);

In this syntax, beg_range is an iterator or pointer to the beginning of the
range of the collection (such as an array) to be shuffled; end_range is an iterator
or pointer to one position past the last element in the target range. For example:

void Deck::shuffle() {
 iCard = 0;
 random_shuffle(cards, cards + 52);
}

K
ey

wo
rd

ptg16518442

Chapter 15 Object-Oriented Poker368

Example 15.1. Primitive Video Poker
This version of the program is the simplest possible form of the game. It allows
no redraws and it doesn’t evaluate the hands. We’re going to add those features
later on in this chapter.

Poker1.cpp

#include <iostream>
#include <string>
#include <cstdlib>
#include <ctime>
using namespace std;

// INCLUDE THE DECK AND CARD CLASS
// DECLARATIONS AND DEFINITIONS HERE.

Deck my_deck;
Card aCards[5];
void play_game();

int main() {
 string s;
 while (true) {

play_game();
cout << "Play again? (Y or N): ";
getline(cin, s);
if (s[0] == 'N' || s[0] == 'n') {

break;
}

 }
 return 0;
}

void play_game() {
 for (int i = 0; i < 5; ++i) {

aCards[i] = my_deck.deal_a_card();
cout << i + 1 << ". ";
cout << aCards[i].display() << endl;

 }
}

ptg16518442

15
Doing the Job with Algorithms 369

As with some other examples in this book, I’ve written the main function so
that it keeps playing the game until the user wants to exit. Here’s a sample ses-
sion of this program:

1. A of clubs.
2. 10 of diamonds.
3. K of spades.
4. 3 of spades.
5. A of hearts.
Play again? N

This hand constitutes a pair: specifically a pair of aces (A). Order makes
no difference, except for clarity and aesthetics. Consider that in a real poker
game, you could lay out the cards in this order and the hand would still be
a pair. One of the time-honored rules is “the cards speak for themselves,”
meaning that every poker player is honor-bound to recognize this hand as a
pair even if the holder of this hand doesn’t bother to put the aces next to each
other.

On such questions did more than a few Riverboat gamblers reach for their
guns. The cards speak for themselves. It shouldn’t matter how you arrange
them. That principle will matter later in this chapter, when the computer is
taught how to recognize the value of hands; it must do so without expecting
matching cards to be next to each other.

H
ow

 It
 Works

How It Works
Most of the work of this program is done by the Card and Deck classes, so
there’s not much for the main program to do. The program creates the Deck
object, which it then uses by requesting that object to deal cards.

Deck my_deck;
Card aCards[5];

Remember, to get a Card object we call the Deck object’s deal_a_card mem-
ber function.

aCards[i] = my_deck.deal_a_card();

The program, as you can see, puts every card dealt into an array, as well as
displaying that card.

ptg16518442

Chapter 15 Object-Oriented Poker370

0

Card

aCards array

1

Card

2

Card

3

Card

4

Card

But why even bother with the array? I could have just printed the cards
directly, as in the following code. This code looks similar to Example 15.1, but
you will see no reference to members of an array.

void play_game() {
 for (int i = 0; i < 5; ++i) {

Card crd = my_deck.deal_a_card();
cout << i + 1 << ". ";
cout << crd.display() << endl;

 }
}

In the next section, we’re going to start programming in the ability for the
end user to draw new cards, replacing each of those she wants to discard, while
keeping others. We’re going to need a place to hold all this information. That’s
why the array is needed.

Ex
er

cis
es

 EXERCISES

Exercise 15.1.1. Looking at the code, you should be able to tell what the default
action is in response to the query “Play again?” What is this default action?

Exercise 15.1.2. Rewrite the program so that there is no default action. In other
words, require the user to type either a “Y” or “N.” Keep querying the user until
she responds accordingly.

Exercise 15.1.3. Rewrite the program so that it shuffles up after each and every
hand. (Hint: this might involve some revision to the Deck class.)

Exercise 15.1.4. If they are available on your system, use character-based graphics
to print symbols for suits: ♣ ♦ ♥ ♠. You can then print out the card values in
this simple format: “A ♠” (ace of spades). Not all systems have these symbols
available. If they are, they are at ASCII character values 3, 4, 5, and 6. You can
access these values as “\3”, “\4”, and so on. IBM machines and clones based
closely on IBM support these.

ptg16518442

15
The Vector Template 371

The Vector Template
Chapter 13, “Easy Programming with STL,” introduced two of the more useful
templates from the C++ Standard Template Library (STL), the list and stack
templates. Another one of the most useful templates is the vector template. As
with the list and stack, we can build a vector container for any underlying type
we want. For example:

vector<int> vec_of_ints;
vector<string> vec_of_strings;
vector<double> vec_of_flts;
vector<Card> vec_of_objs;

A vector, for nearly all intents and purposes, is like an array, only better. It
can grow without limit, other than the limit of physical memory imposed by
the computer itself.

After declaring an array, you can add elements to it by calling its push_back
function. For example:

vector<int> iVec;
iVec.push_back(10);
iVec.push_back(20);
iVec.push_back(30);

The result of these statements is a vector of integers (iVec) that holds the values
10, 20, 30, just as an integer array might hold these values. You can go ahead and
index the vector just as you would an array:

cout << iVec[0] << " ";
cout << iVec[1] << " ";

You can use iterators to access a vector’s elements, just as shown for list con-
tainers in Chapter 13. But an even simpler way is just to index a vector as you
would an array, getting the length by calling the size function.

for (int i = 0; i < iVec.size(); ++i) {
 cout << iVec[i] << endl;
}

The code shown so far creates and prints out a vector that is currently of size 3.
But new elements can be added at any time without fear of exceeding size limits
(because a vector grows as needed). After this next statement, the size of the
vector will be 4.

iVec.push_back(55);

ptg16518442

Chapter 15 Object-Oriented Poker372

Finally, one of the most convenient features of vectors is that you can clear
their contents at any time, resetting the size of the vector to 0.

iVec.clear(); // Erase contents and start over.

C++14 � The next paragraph applies to C++14 compilers only. (Actually, the fea-
ture was introduced in C++11 but it took time for some vendors, including
Microsoft, to support it.)

With C++14-compliant compilers, you can initialize most STL containers,
including vector containers, by using a comma-separated list, just as you can
with arrays. For example:

vector<int> iVec = {1, 2, 3, 4, 5];

Getting Nums from the Player
With most programs, one of the most important issues is user interface. Just
what do we want the end user’s experience to be?

We’d like to give the user the ability to select any combination of cards
to keep from the five dealt, and (what amounts to the same thing, just from
another angle) the ability to select any combination of cards to discard.

One way to do that is to query the user about each card separately.

Do you want to redraw card Number 1? Y
Do you want to redraw card Number 2? N
Do you want to redraw card Number 3? Y
...

But that would be boring, and who wants to bore people? We’d like to enable
the user to enter all the requests on a single line, like this (again with user input
in bold):

Enter #'s of cards to discard: 1, 3, 5

Yet we can do even better. Why require commas between numbers, or even
spaces? Two-digit numbers are not a possibility here, because the only valid
choices are all one-digit each: 1, 2, 3, 4, or 5. We should, therefore, let the user
just run the choices together, which after a while, she’ll want to do.

Enter #'s of cards to discard: 135

There’s an easy way to support this entry system. You can index string
objects to get individual characters, just as you can with C-strings. For example,

ptg16518442

15
Getting Nums from the Player 373

you can scan a string for the digit characters “1” through “5,” and print out each
one found.

As explained in Chapter 8, “Strings: Analyzing the Text,” if you index either
a C-string or a C++ string object, you get a single value of type char. This value
is actually a number that translates into a character when printed. Table E.1 on
page 514 lists the ASCII character codes.

// Scan a digit string and print '1' thru '5' only.

for (int i = 0; i < sInput.size(); ++i) {
 int n = sInput[i] – '0';
 if (n >= 1 && n <= 5) {

cout << n << " ";
 }
}

This loop works because although you may not know what the ASCII value
of the digits are, you can rely on their relative order in the sequence. So, if a
character is '0', subtracting '0' produces the number 0, obviously. But it’s also
true that if a character is '1', subtracting '0' produces the number 1. If a character
is '2', subtracting '0' produces the number 2, and so on. Therefore, subtracting
the ASCII value '0' converts to the numeric value of the digit.

We can use that fact to recognize the digits 1 through 5, and add the equiv-
alent index number 0 through 4 to a vector of such numbers (because C++ has
zero-based arrays).

for (int i = 0; i < sInput.size(); ++i) {
 int n = sInput[i] – '0';
 if (n >= 1 && n <= 5) {

selVec.push_back(i – 1);
 }
}

Example 15.2. Draw Poker
Using the vector template and the ability to scan strings for individual digits,
we can at last write the version of video poker that enables a player to discard
any combination of cards and draw new ones.

Lines of code that are new or changed from Example 15.1 are printed here
in bold.

ptg16518442

Chapter 15 Object-Oriented Poker374

Poker2.cpp

#include <iostream>
#include <string>
#include <cstdlib>
#include <ctime>
#include <vector>
using namespace std;

// INCLUDE THE DECK AND CARD CLASS
// DECLARATIONS AND DEFINITIONS HERE.

Deck my_deck;
Card aCards[5];
bool aFlags[5];
vector<int> selVec;

void play_game();
bool draw();

main() {
 string s;
 while (true) {

play_game();
cout << "Play again? (Y or N): ";
getline(cin, s);
if (s[0] == 'N' || s[0] == 'n') {

break;
}

 }
 return 0;
}

void play_game() {
 for (int i = 0; i < 5; ++i) {

aCards[i] = my_deck.deal_a_card();
aFlags[i] = false;
cout << i + 1 << ". ";
cout << aCards[i].display() << endl;

 }
 cout << endl;

ptg16518442

15
Getting Nums from the Player 375

 // Draw new cards, and then re-display

 if (draw()) {
for (int i = 0; i < 5; ++i) {

cout << i + 1 << ". ";
cout << aCards[i].display();
if (aFlags[i]) {

cout << " *";
}
cout << endl;

}
cout << endl;

 }
}

bool draw() {
 string sInput;
 selVec.clear();
 cout << "Input #'s of cards to redraw: ";
 getline(cin, sInput);
 if (sInput.size() == 0) {

return false;
 }
 // Read input string, adding an
 // element to selVec for each digit read.

 for (int i = 0; i < sInput.size(); ++i) {
int n = sInput[i] - '0';
if (n >= 1 && n <= 5) {

selVec.push_back(n - 1);
}

 }
 // For each number (0-4) in selVec, redraw
 // the corresponding card.

 for (int i = 0; i < selVec.size(); ++i) {
int j = selVec[i]; // Select a card
aCards[j] = my_deck.deal_a_card();
aFlags[j] = true;

 }
 return true;
}

Poker2.cpp, cont.

ptg16518442

Chapter 15 Object-Oriented Poker376

Here’s a sample session. You should notice the difference, which is that the
player can redraw any combination of cards! As in earlier sample sessions, user
input is in bold.

1. A of clubs.
2. 10 of diamonds.
3. K of spades.
4. 3 of spades.
5. A of hearts.

Enter #'s of cards to redraw: 234
1. A of clubs.
2. A of diamonds. *
3. 7 of diamonds. *
4. 7 of clubs. *
5. A of hearts.

Play again? N

Wow, a full house: three aces and two 7’s! Wouldn’t it be nice if the program
could recognize that fact and reward you accordingly? That’s what we’re going
to add to the program in the last part of the chapter.

H
ow

 It
 Works

How It Works
The first thing the new version of the program does is to declare some new data
structures:

bool aFlags[5];
vector<int> selVec;

The aFlags array is a set of five flags, one corresponding to each card in the
hand. When a flag is set to true, that means that card has been redrawn. This
makes it easy to print an asterisk (*) next to each card that represents a redraw.

Next, the play_game function was changed so it calls the draw function,
which gets input from the user as to what cards should be redrawn, if any. If
the user presses ENTER but enters no input, it’s assumed that she simply wants
to keep the cards she has, and no further action is taken on this hand. A return
value of false indicates this condition.

 if (draw()) {

// Reprint the hand...

 }

ptg16518442

15
Getting Nums from the Player 377

The draw function has two major things to do, each accomplished with a
simple loop: 1) inquire from the user which cards are to be redrawn and 2)
redraw those cards, identified by the user as cards 1 through 5, by requesting
new cards from the Deck object. These actions can be broken down into the
following pseudocode:

Prompt user for input string

For each character in input string

 If character is a digit 1 through 5

 Push N-1 onto selVec

For each element of selVec

 Set J to the current element of selVec

 Replace aCards[J] with a new card

These loops might be a little easier to understand with an example. Suppose
the user enters the input string "125". The first loop subtracts 1 from each of
these numbers and produces a vector with the following values:

0 1 4

The second loop then steps through this vector (which is very much like an
array, remember) and redraws three cards, replacing corresponding elements of
the Cards array: aCards[0], aCards[1], and aCards[4].

0index ->

aCards

selVec

user input

Card
(DRAW)

0

"125"

1 4

1

Card
(DRAW)

2

Card

3

Card

4

1user #-> 2 3 4 5

Card
(DRAW)

Ps
eu

do

code

ptg16518442

Chapter 15 Object-Oriented Poker378
Ex

er
cis

es

 EXERCISES

Exercise 15.2.1. Rewrite the play_game function so that it prints an asterisk (*) next
to redrawn cards at the beginning of each line. Do it in such a way that every-
thing else lines up.

Exercise 15.2.2. Implement selVec with the list template introduced in Chapter 13.
You’ll probably want to call it something else, such as selList (“selection list”).
Lists cannot be indexed the way vectors and arrays can, but you can step through
a list using the techniques discussed in the first half of Chapter 13.

Exercise 15.2.3. Implement selVec as an ordinary C++ array. (Hint: you’ll need to
have an absolute limit, as well as adding a variable that tracks the current num-
ber of cards selected for redrawing.)

Exercise 15.2.4. Prevent any card from being redrawn more than once. Right now,
the user can enter “333” and the result is that Card Number 3 will be replaced over
and over. The ultimate effect will be the same as if it were drawn only once, but
this is inefficient, and furthermore, if you’re counting down the deck, there will be
cards you never see. Prevent this from happening so that if the user types “333”,
the card will be redrawn, but only once.

How to Evaluate Poker Hands
Now we come to the most interesting challenge of all. It’s not immediately obvious
how a computer program could look at a group of (mostly) unarranged cards
and detect whether there are three of a kind, a flush, or a pair, but it shouldn’t be
impossible, either.

And it’s actually not that difficult. In most cases, what’s involved is just
counting repetitions of things. For example, if we count four of any rank, the
hand is four of a kind. What we need is to count the occurrences of all 13 ranks
and 4 suits, and track all this information somewhere.

This is where—as has so often been the case—arrays come to our rescue.
Two simple arrays of integers can be used to track the counts.

int rankCounts[13];
int suitCounts[4];

After these arrays are initialized to all-zero values, it’s easy to use them to
count all the repetitions of ranks and suits.

ptg16518442

15
How to Evaluate Poker Hands 379

for (int i = 0; i < 5; ++i) {
 int r = aCards[i].rank;
 int s = aCards[i].suit;
 ++rankCounts[r];
 ++suitCounts[s];
}

Consider the hand A-A-A-5-5, in any order (a full house). After the program
counts the number of cards of each rank, the resulting rankCounts array—too
big to fit on just one line—looks like this:

0

2

0

3

0

4

2

5

0

6

0

7

0

8

0

9

0

10

0

J

0

Q

0

K

3

A

Or, suppose that the hand is A-K-Q-J-10, an ace-high straight, again, in any
order. Here’s what the rankCounts array looks like after counting each of these
cards:

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

1

10

1

J

1

Q

1

K

1

A

Now we can evaluate hands by examining these two arrays, rankCounts and
suitCounts. There’s a lot to do here, only because there are so many kinds of
hands to consider.

In the interest of modular design, we’re going to put all the hand-evaluation
code in yet another class, which I’ll name “Eval.” As with the other classes, we’ll
create just one object and call functions through that object.

What’s gained by putting everything in a class? You could write all these
functions and data separately. The main advantage is that when you look at the
Eval class, it’s clear that all these functions and data are intended to be used
together, to be part of the same module, as it were. They aren’t isolated pieces of
the program.

And there’s another advantage: Private members are protected from outside
access, removing the temptation of class users to “reach in” and tinker with
internals, creating hidden dependencies and potential bugs.

Here’s the code listing for the Eval class. It may seem long, but most of the
individual functions are relatively short and simple to understand.

ptg16518442

Chapter 15 Object-Oriented Poker380

Note � There is one hand this class fails to recognize. In poker, an ace is either
high or low, as most benefits the player. In practice, this almost always means
an ace will be high, but there is one exception: the hand A-2-3-4-5, in any order,
constitutes a 5-high straight and is nicknamed “a bicycle.” Recognizing this
hand is left as an exercise.

eval.cpp

// Note that enclosing program must include <string>
// as well as using namespace std;
//
class Eval {
public:
 Eval(Card* pCards);
 string rank_hands();
private:
 int rankCounts[13];
 int suitCounts[4];
 int has_reps(int n);
 bool is_straight();
 bool verify_straight(int n);
 bool is_flush();
 bool is_two_pair();
};

Eval::Eval(Card* pCards) {
 for (int i = 0; i < 13; ++i) { // Clear arrays

rankCounts[i] = 0;
 }
 for (int i = 0; i < 4; ++i) {

suitCounts[i] = 0;
 }
 for(int i = 0; i < 5; ++i) { // Init arrays

int r = pCards[i].rank;
int s = pCards[i].suit;
++rankCounts[r];
++suitCounts[s];

 }
}

ptg16518442

15
How to Evaluate Poker Hands 381

string Eval::rank_hands() {
 string s;
 if (is_straight() && is_flush()) {

if (ranksCount[12] && ranksCount[11]) { // A&K
s = "You have a ROYAL FLUSH! PAYOUT = 800";

}else {
s = "You have a STRAIGHT FLUSH! PAYOUT = 50";

}
 } else if (has_reps(4)) {

s = "You have FOUR OF A KIND! PAYOUT = 25";
 } else if (has_reps(3) && has_reps(2)) {

s = "You have a FULL HOUSE! PAYOUT = 9";
 } else if (is_flush()) {

s = "You have a FLUSH! PAYOUT = 6";
 } else if (is_straight()) {

s = "You have a STRAIGHT! PAYOUT = 4";
 } else if (has_reps(3)) {

s = "You have three of a kind. PAYOUT = 3";
 } else if (is_two_pair()) {

s = "You have two pair. PAYOUT = 2";
 } else if (has_reps(2)) {

s = "You have a pair. PAYOUT = 1";
 } else {

s ="You have no pair. PAYOUT = 0";
 }
 return s;
}

// Has reps function.
// Return true if any rank is repeated
// the specified number of times.

int Eval::has_reps(int n) {
 for(int i = 0; i < 13; ++i) {

if (rankCounts[i] == n) {
return true;

}
 }
 return false;
}

▼ continued on next page

eval.cpp, cont.

ptg16518442

Chapter 15 Object-Oriented Poker382

// Is straight function.
// Look for first "singleton" in the ranks,
// and then verify if it begins a straight.

bool Eval::is_straight() {
 for (int i = 0; i < 8; ++i) {

if (rankCounts[i] == 1) {
return verify_straight(i);

}
 }
 return false;
}

bool Eval::verify_straight(int n) {
 for (int i = n + 1; i < n + 5; ++i) {

if (rankCounts[i] != 1) {
return false;

}
 }
 return true;
}

bool Eval::is_flush() {
 for(int i = 0; i < 4; ++i) {

if (suitCounts[i] == 5) {
return true;

}
 }
 return false;
}

bool Eval::is_two_pair() {
 int n = 0;
 for(int i = 0; i < 13; ++i) {

if (rankCounts[i] == 2) {
++n;

}
 }
 return n == 2;
}

eval.cpp, cont.

ptg16518442

15
How to Evaluate Poker Hands 383

Example 15.3. Draw-Poker Payout!
The following code listing presents the main program with the changes necessary
to interact with the Eval class. (None of the class declarations and definitions are
included here.) Only two lines need to be added to use Eval, and these are printed
in bold.

Poker3.cpp

#include <iostream>
#include <string>
#include <cstdlib>
#include <ctime>
#include <vector>
using namespace std;

// INCLUDE DECK, CARD, AND EVAL CLASS
// DECLARATIONS AND DEFINITIONS HERE.

Deck my_deck;
Card aCards[5];
bool aFlags[5];
vector<int> selVec;

void play_game();
bool draw();

main()
{
 string s;
 while (true) {

play_game();
cout << "Play again? (Y or N): ";
getline(cin, s);
if (s[0] == 'N' || s[0] == 'n') {

break;
}

 }
 return 0;
}

▼ continued on next page

ptg16518442

Chapter 15 Object-Oriented Poker384

void play_game() {
 for (int i = 0; i < 5; ++i) {

aCards[i] = my_deck.deal_a_card();
aFlags[i] = false;
cout << i + 1 << ". ";
cout << aCards[i].display() << endl;

 }
 cout << endl;

 // Draw new cards, and then re-display

 if (draw()) {
for (int i = 0; i < 5; ++i) {

cout << i + 1 << ". ";
cout << aCards[i].display();
if (aFlags[i]) {

cout << " *";
}
cout << endl;

}
cout << endl;

 }
 Eval my_eval(aCards);
 cout << my_eval.rank_hand() << endl;
}

bool draw() {
 string sInput;
 selVec.clear();
 cout << "Input #'s of cards to redraw: ";
 getline(cin, sInput);
 if (sInput.size() == 0) {

return false;
 }
 // Read input string, adding an
 // element to selVec for each digit read.

 for (int i = 0; i < sInput.size(); ++i) {
int n = sInput[i] - '0';

Poker3.cpp, cont.

ptg16518442

15
How to Evaluate Poker Hands 385

if (n >= 1 && n <= 5) {
selVec.push_back(n - 1);

}
 }
 // For each number (0-4) in selVec, redraw
 // the corresponding card.

 for (int i = 0; i < selVec.size(); ++i) {
int j = selVec[i];
aCards[j] = my_deck.deal_a_card();
aFlags[j] = true;

 }
 return true;

}

Here’s a sample session of this (finally) finished program. As in earlier sample
sessions, user input is in bold.

1. J of clubs.
2. 10 of diamonds.
3. J of spades.
4. 3 of spades.
5. J of hearts.

Enter #'s of cards to redraw: 2 4
1. J of clubs.
2. J of diamonds. *
3. J of spades.
4. 7 of clubs. *
5. J of hearts.

You have FOUR OF A KIND! PAYOUT = 25
Play again? N

H
ow

 It
 Works

How It Works
All the work of evaluating the hand is done by the Eval class, so almost nothing
needs to be added to the main program.

Within the Eval class, an enormous amount of work is done by the has_reps
member function, even though it’s relatively simple. All this function does is

Poker3.cpp, cont.

ptg16518442

Chapter 15 Object-Oriented Poker386

detect whether any rank of card managed to achieve the specified number of
occurrences. For example, if it’s passed the value 4, then it returns true if and
only if there is an element of ranksCount equal to 4. This would indicate that a
four of a kind is present.

int Eval::has_reps(int n) {
 for(int i = 0; i < 13; ++i) {

if (rankCounts[i] == n) {
return true;

}
 }
 return false;
}

With this function in place, the rest of the Eval class is straightforward, even
if it seems long. Only the detection of straights presents any real difficulty.
There are several ways this problem can be solved, but I chose a way that’s fairly
easy to program. It amounts to a double algorithm. First, it’s necessary to find
where a straight might begin. Then, we verify whether or not the rest of the
straight is present.

For I = 0 to up and including 8

 If aCards[I] equals 1

 Return the value of verify_straight(I)

Return false

In other words, starting with the first position in the array, try to find an
element of the countRanks array exactly equal to 1. If such an element is found,
verify that the next four cards after this one fill out a straight (so we’re looking
for another four singletons in a row). We do this by calling the verify_straight
function.

For I = N + 1 up to but not including N + 5

 If aCards[I] does NOT equal 1

 Return false

Return true

Ex
er

cis
es

 EXERCISES

Exercise 15.3.1. Enable the rank_hands function to return payout informa-
tion numerically. (Hint: you’ll need to add another argument to the function

Ps
eu

do

code

ptg16518442

15
387Chapter 15 Summary

declaration.) Then, keep track of the player’s bank account for the duration of
the game, telling her how much she has after each hand. Note that it costs 1 unit
to play, therefore a payoff of 0 causes a loss of one unit, and a payoff of 1 is actu-
ally break-even. Start the initial bank at 100.

Exercise 15.3.2. Revise the rank_hands function so that it recognizes A-2-3-4-5 as
a straight. This is called a “bicycle” and it is the lowest straight in poker, ranking
just below 2-3-4-5-6. (Again, remember that order does not matter.)

Exercise 15.3.3. Revise the rank_hands function to recognize the special hands
called Big Tiger and Little Tiger. A suggested payout is 4. These hands, which
are only allowed when house rules permit them, rank just above a straight. Both
hands are special no-pair hands. A Big Tiger has a king as its highest card and
an 8 as its lowest. A Little Tiger has an 8 as its high card and a 3 as its lowest.

Chapter 15 Summary
The main purpose of this chapter has been to reinforce and provide more exam-
ples of class- and object-writing techniques presented earlier, but it did present
some new ideas, summarized here:

◗ An object type—that is, a class—can be a return type just as any other type
(such as primitive data) can. You declare the return type the same way: at the
beginning of the function declaration. For example:

Card deal_a_card();

◗ To return an object from a function, it’s often helpful to call a class constructor.

return Card(r, s); // Return a Card object.

◗ You can have arrays of objects just as you can have arrays of primitive data.
Such arrays can even be placed inside other class declarations—in which case
you have an object containing other objects.

Card aCards[5];

◗ You can optionally use the swap or random_shuffle algorithm instead of writ-
ing your own shuffling routine. To use a C++ STL algorithm, make sure to
include <algorithm>.

#include <algorithm>

ptg16518442

Chapter 15 Object-Oriented Poker388

◗ The vector template is one of the most useful parts of the STL. It provides con-
tainers that are very similar to arrays and can be indexed just as arrays are, but
they grow without limit. To use this template, include <vector>.

#include <vector>

◗ You can then build vector containers on any kind of type. For example:

vector<int> iVec;
vector<double> fVec;

◗ To populate a vector, you can call the push_back function, which adds an ele-
ment to the end of the vector.

vector<int> my_vec;
my_vec.pushback(100);
my_vec.pushback(200);
my_vec.pushback(1000);

◗ Then, using references to the size of the vector (obtained by calling its size func-
tion), you can use indexing to iterate through the vector.

for (int i = 0; i < my_vec.size(); ++i) {
 cout << my_vec[i] << endl;
}

◗ A vector can be cleared by calling its clear function.

my_vec.clear();

ptg16518442

389

16 Polymorphic
Poker

If the only thing that object orientation accomplished was to encourage a more
modular programming style, grouping tightly related code and data together, it
would still be worthwhile. But there’s more.

The central idea in OOP is that of an intelligent data type. Simply making a
function into a member function is only a beginning. Ideally, objects bring with
them the knowledge of which function to call; you should be able to switch out
one object, switch in another, and get new behavior without changing anything
else. You can even switch objects at runtime and get new behavior.

Sound like a dream? But that’s what this chapter is going to explore. We’ll
start by examining the Deck class used in the previous chapter, “Object-
Oriented Poker.”

Multiple Decks
When playing the video poker game of Chapter 15, there may be times you’ll
want to use a deck that behaves differently.

You might want to do this for testing purposes. While reading Chapter 15,
for example, it may have occurred to you that royal flushes occur so rarely they
are nearly impossible to get, unless you play the game for thousands of hours,
and even then, you might not ever get one. The odds of getting one on the initial
deal are 1 in 649,170!

This creates a problem for your testing department. The probability of a
royal flush is less than one in half a million, so how are you going to verify that
your program will recognize a royal flush when it does come up?

One answer is specialized decks. You could create a variation on the Deck
class that produces cards from a stacked Deck, in which the first five cards are
A-K-Q-J-10. Another approach is to use a pinochle deck, which only uses ace
through nine, but it features two copies of each such card. High-value hands are
more likely to occur with such a deck.

ptg16518442

Chapter 16 Polymorphic Poker390

The declaration and implementation of a pinochle deck is as follows: lines
altered from the standard Deck class are in bold. Remember this deck only has 48
cards in it, and we can imagine cards 24 through 47 repeating the ranks and
suits of cards 0 to 23.

class PinochleDeck {
public:
 PinochleDeck();
 Card deal_a_card();
private:
 int cards[48];
 int nCard;
 void shuffle();
};

PinochleDeck:: PinochleDeck() {
 srand(time(NULL));
 for (int i = 0; i < 48; ++i) {

cards[i] = i;
 }
 shuffle();
}

void PinochleDeck::shuffle() {
 nCard = 0;
 for (int i = 47; i > 0; --i) {

int j = rand() % (i + 1);
int temp = cards[i];
cards[i] = cards[j];
cards[j] = temp;

 }
}

Card PinochleDeck::deal_a_card() {
 if (nCard > 47) {

cout << endl << "RESHUFFLING..." << endl;
shuffle();

 }
 int r = (cards[nCard] % 6) + 7; // r = 9 thru A

 // Divide deck in half (%24), then divide by 6
 // to produce suit values 0 thru 3.

ptg16518442

Switching Decks at Runtime 391
16

 int s = (cards[nCard++] % 24) / 6;
 return Card(r, s);
}

How would you switch to this new version of the Deck class? You could add
all this code to the program and then change the line

Deck my_deck;

to this:

PinochleDeck my_deck;

Then you’d have to recompile the program, and (assuming nothing was mis-
typed) this would work. Calls to the deal_a_card function should be correctly
resolved because C++ lets every class have a function by this name if it wants to.

aCards[i] = my_deck.deal_a_card();

Switching Decks at Runtime
Unfortunately, the problems for your testing department have just begun. We’ve
created a situation in which every time testers want to switch to the pinochle
Deck class, the entire program must be recompiled. Maybe that’s not such a big
hardship if you’re a one-person shop, but even then, you don’t want to waste
your time constantly rebuilding the program.

What you need, then, is a way to switch between decks at runtime. Ideally,
you’d like to change the declaration of my_deck in response to run-time con-
ditions, and then have the following line of code call the appropriate function:

my_deck.deal_a_card()

But no matter how you try to trick the compiler, I can assure you that this
won’t work. The problem is much deeper than syntax. I can potentially declare
my_deck to be an object of one of many different classes.

Deck my_deck;
PinochleDeck my_deck;
StackedDeck my_deck;
DoubleDeck my_deck;

But no matter how you may try to trick the compiler, when it comes to calling
a member function, the compiler has to make a definite decision about what
physical address in memory to bind to. Now there’s not one deal_a_card function,
there are many.

ptg16518442

Chapter 16 Polymorphic Poker392

We can use the scope operator (::) to clarify which version of the function is
meant to be called. But that’s not going to help in this situation:

Deck::deal_a_card()
PinochleDeck::deal_a_card()
StackedDeck::deal_a_card()
DoubleDeck::deal_a_card()

There’s a makeshift solution to the problem, but it’s not a great one. First, you
could use #define directives to indicate the various decks of decks:

#define DECK52 0
#define PIN_DECK 1
#define DBL_DECK 2

Then, you could include all the different deck types in the program—meaning
you need to create one deck of each object type, even though you’re only going to
use one of these types. This is highly inefficient and wasteful of resources.

Deck my_deck;
PinochleDeck my_pin_deck;
DoubleDeck my_dbl_deck;

Finally, whenever the program wanted to call the deal_a_card function,
it would have to use an intermediate function with a switch statement to deter-
mine which version of the function to call.

Card get_a_card() {
 switch(deck_selector) {
 case DECK52:

return my_deck.deal_a_card();
 case PIN_DECK:

return my_pin_deck.deal_a_card();
 case DBL_DECK:

return my_dbl_deck.deal_a_card();
 }
}

It may work, but it’s got problems. We need to find a better answer.

Polymorphism Is the Answer
The solution offered at the end of the last section is a poor one. It may work in
some cases, but it makes for extra coding, as well as inefficiency. Worse yet,

ptg16518442

Polymorphism Is the Answer 393
16

every time a new deck type is added to the project, new lines of code have to be
added to the main program and everything has to be recompiled.

And it gets worse still. If an object is heavily used throughout the main pro-
gram, and not just for one function, you might need a proliferation of switch
statements throughout your program.

What we’d really like would be a way to call the deal_a_card function and
have it automatically call the appropriate implementation for that object, even if
its precise type is not known ahead of time.

my_deck.deal_a_card(); // Always works!

In computer science, such a function is called polymorphic, meaning “many
forms.” More accurately, what’s meant here is unlimited forms; there is no limit
to the number of different ways that deal_a_card may be implemented by dif-
ferent classes. If the function is polymorphic then—as if by magic—the correct
version of that function gets called at runtime.

In C++, polymorphic functions are supported but carefully controlled.
There are two absolute requirements:

◗ The classes involved must be related through inheritance. One must be derived
from another, or they must both be derived from a common base class.

◗ The function must be declared virtual in the base class.

To digest all this, you need to understand inheritance. It’s a way of creating
a class that automatically inherits all the members of another class, called the
base class. For example, if you wanted to create a variation on the Deck class
with one extra function, you could do it this way:

class MyDeckClass : public Deck {
public:
 int cards_remaining(); // Code to be provided.
};

In this example, MyDeckClass automatically has all the members that the
Deck class does, plus one more. However, in this particular case, the class will
probably fail miserably because it has no access to private members of Deck.
That’s why there’s a third access level, protected, which grants access to all
derived classes (including “descendant” classes).

The other requirement is that the function be declared virtual—but the virtual
keyword need only be applied once per function, in the base class. There’s an
important general rule here:

✱ Any function that might be overridden by a derived class should be declared
virtual.

ptg16518442

Chapter 16 Polymorphic Poker394

This is the most important rule regarding virtual functions. There are some
others; for example, you can make an inline function into a virtual function,
but the compiler will only expand such a function when it is “safe” to do so—
that is, when the exact type of the object can be fixed at compile time.

Another rule is that constructors cannot be made virtual. Constructors, by
the way, are problematic for inheritance in general. They are the only kind of
member not automatically inherited (although it’s possible to specify an inher-
ited constructor in C++11 and later), so that generally speaking, each class that
needs constructors must supply its own.

To declare a function virtual, just precede the function declaration with the
keyword virtual.

virtual function_declaration;

This should only be done in the base class. For example, if you wanted to
make it possible for programmers (yourself or others), to derive classes from the
Deck class and implement their own version of deal_a_card, declare it this way:

class Deck {
public:
 Deck();
 virtual Card deal_a_card();
private:
 int cards[52];
 int nCard;
 void shuffle();
};

Then, the PinochleDeck class needs to be derived from the Deck class. If
this is done, it relates the two classes through inheritance. Polymorphism then
becomes possible.

class PinochleDeck : public Deck {
public:
 PinochleDeck();
 Card deal_a_card(); // Automatically virtual! This

// funct is virtual because
// it was declared so in the
// base class.

private:
 int cards[48];
 int nCard;
 void shuffle();
};

K
ey

wo
rd

ptg16518442

Polymorphism Is the Answer 395
16

Another approach to polymorphism is to derive the deck classes from a com-
mon base class, or “interface.” The interface, being an abstract class, cannot
be instantiated. But you can pass the address of an object of a derived type to
a pointer of the base type. That is to say, you can 1) create an object, 2) take its
address, and 3) pass that address to a pointer, even though the pointer is of the
base-type class (the interface). For example:

IDeck *pDeck; // Point to the base type, IDeck.

// Create an object of derived type and assign its
// address to the pointer, pDeck.

pDeck = new PinochleDeck;
...
aCards[i] = pDeck->deal_a_card();

This example uses the pointer-dereference-and-member-access operator (−>)
introduced in Chapter 12, “Two Complete OOP Examples.” This operator deref-
erences a pointer and then accesses a member, so the last statement in this example
is equivalent to:

aCards[i] = (*pDeck).deal_a_card();

The important point here is that pDeck can be assigned to point to any object
at runtime as long as the object’s class is derived from IDeck. If that’s the case,
and if deal_a_card is declared virtual, then the call to deal_a_card will always
do the right thing: it will call the deal_a_card function defined for the object’s
own class.

The importance of this feature can’t be overstated. A pointer of interface (that
is, base-class) type can point to an object of a derived class at compile time, or it
can point to different kinds of objects at runtime in response to changing con-
ditions, such as a user’s selection.

IDeck *pDeck;

if (strSel == "standard") {
 pDeck = new Deck;
} else (strSel == "pinochle") {
 pDeck = new Pinochle_Deck;
}

In IDeck, the deal_a_card function is declared virtual. For that reason,
no matter what object’s address is assigned to pDeck (assuming it is a legal

ptg16518442

Chapter 16 Polymorphic Poker396

assignment), the following statement will always call the correct implementa-
tion of the function.

Card crd = pDeck->deal_a_card();

Example 16.1. A Virtual Dealer

Ideck.cpp

// THE CARD CLASS MUST BE DECLARED FIRST,
// AS IDECK REFERS TO THAT TYPE. SEE
// CHAPTER 15.

class IDeck {
public:
 virtual Card deal_a_card() = 0;
};

class PinochleDeck : public IDeck {
public:
 PinochleDeck();
 Card deal_a_card();
private:
 int cards[48];
 int nCard;
 void shuffle();
};

PinochleDeck::Deck() {
 srand(time(NULL));
 for (int i = 0; i < 47; ++i) {

cards[i] = i;
 }
 shuffle();
}

void PinochleDeck::shuffle() {
 nCard = 0;
 for (int i = 47; i > 0; --i) {

int j = rand() % (i + 1);
int temp = cards[i];

ptg16518442

Polymorphism Is the Answer 397
16

cards[i] = cards[j];
cards[j] = temp;

 }
}

Card PinochleDeck::deal_a_card() {
 if (nCard > 47) {

cout << endl << "RESHUFFLING..." << endl;
shuffle();

 }
 int r = (cards[nCard] % 6) + 7; // r = 9 thru A

 // Divide deck in half (%24), then divide by 6
 // to produce suit values 0 thru 3.

 int s = (cards[nCard++] % 24) / 6;
 return Card(r, s);
}

H
ow

 It
 Works

How It Works
The important part of this example is the first few lines. They set up an inher-
itance relationship and make deal_a_card into a virtual function, so that the
correct version of that member function is always called at runtime.

class IDeck {
public:
 virtual Card deal_a_card() = 0;
};

class PinochleDeck : public IDeck {
...

You could declare any number of other decks and they would become related
through this inheritance hierarchy, assuming that they also were derived from
IDeck. To be instantiated, by the way, a derived class must first supply its own
implementation of the deal_a_card function.

Note � For technical reasons not worth explaining, the keyword “public” should
precede the name of the base class in the first line of the derived class declara-
tion. You can use “private” or “protected” in this context, but that’s an advanced
technique that many programmers never actually use.

Ideck.cpp, cont.

ptg16518442

Chapter 16 Polymorphic Poker398

Remember that the ultimate purpose of inheritance and virtual functions is
that 1) any object can be selected at runtime, provided that it’s of a class derived
from a common base type, and 2) the right implementation of each virtual
function will be called.

A silly (but informative) example might be several “animal” classes derived
from a common Animal class.

class IAnimal { // Base class.
public:
 virtual void speak() = 0;
};

class Dog : public IAnimal { // Derived class.
 void speak();
};

class Cat : public IAnimal { // Derived class.
 void speak();
};

A pointer of type IAnimal can point to an object of either derived class, Dog
or Cat. Then, calling the object’s speak() function will always do the right thing,
invoking either Dog::speak or Cat::speak as appropriate.

IAnimal *pAnimal;
pAnimal = new Dog();
...
pAnimal->speak(); // Calls Dog::speak.

If this same pointer is reassigned to point to a Cat object, then the same state-
ment calls Cat::speak instead of Dog::speak.

pAnimal = new Cat();
...
pAnimal->speak(); // Calls Cat::speak.

In this case, calling either Cat::speak or Dog::speak as appropriate may seem
trivial, since we can see which kind of object pAnimal points to in this sim-
ple example. But much more complex scenarios are possible, such as having an
array of IAnimal pointers. In that case, every element of the array might point
to an object of a different class.

pAnimal *zooArray[10];
// Initialize the array to point to different animals...

ptg16518442

Polymorphism Is the Answer 399
16

for (int i = 0; i < 10; ++i) {
 zooArray[i]->speak();
}

In this last example, the loop causes each animal in the zoo to “speak” correctly,
even though each type of object may have a different implementation of the speak
function. These implementations, it must be remembered, are provided by different
classes and each class may be different as long as all are derived from IAnimal.

Once again, remember that −> is the pointer-dereference-and-member-
access operator, so that the loop statement in this last example is equivalent to:

 (*zooArray[i]).speak();

Ex
er

cis
es

 EXERCISES

Exercise 16.1.1. Write at least one Deck class of your own and derive it from IDeck,
so that it can be related to other Deck classes in an inheritance hierarchy. Then
test this out and make sure the correct version is called. At the beginning of
the program, allow the user to choose between the standard Deck class and the
PinochleDeck class.

Exercise 16.1.2. Write a program that features the IAnimal interface just shown,
along with derived classes, Dog, Cat, and Cow, all derived from IAnimal. Test
the polymorphic aspect of this design by creating an array of different “animal”
objects. Then call the speak() function for each element of the array.

What Is the Virtual Penalty?

Although it’s not necessary to know how virtual function calls are imple-
mented by C++, it’s useful to understand the trade-off: Virtual functions
are more flexible, but there is a small penalty to be paid. If you’re really sure
that a certain function will never be overridden, there is no point in mak-
ing it virtual.

The penalty, however, is small, particularly in light of the speed and
capacity of today’s computers. There are actually two penalties: a perfor-
mance penalty and a space penalty.

When a C++ program executes a standard function call, it does what
I outlined in Chapter 5: it transfers control of the program to a specific
address and returns when the function is done. This is a simple action.

▼ continued on next page

Interlude

ptg16518442

Chapter 16 Polymorphic Poker400

▼ continued

normalize() {

}

Execution of a virtual function is more involved. Each object contains a
hidden “vtable” pointer that points to a table of all the virtual functions for
its class. (This pointer is typically called “vptr.”) For example, all objects of
class FloatFraction contain a vtable pointer to the table of virtual functions
for FloatFraction. If a class has no virtual functions at all, by the way, its
objects don’t need to have a vtable pointer and that saves some space.

To call a virtual function, the program uses the vtable pointer (vptr) to
make an indirect function call. This process, in effect, looks up the func-
tion address at runtime. (Remember, this is done under the covers and so is
completely invisible to the C++ source code.) You can visualize the action
this way:

normalize() {

}

vtable

an_object

normalize

funct1

funct2

Virtual function table;
contains the addresses
for the virtual functions
in a given class

Because each object contains a vtable pointer, you can say that the knowledge
of how to carry out an action is built into the object itself. The vtable pointer
enables each object to have this “knowledge,” because it points to imple-
mentations specific to its own class.

Clearly, the penalties are slight. The performance penalty arises from the
greater time required to make an indirect function call (although that dif-
ference is measured in microseconds). The space penalty arises from the
bytes taken up by vptr and the table itself. The moral: Make a function virtual
if there’s any chance it will be overridden. The cost is slight.

Interlude

ptg16518442

“Pure Virtual” and Other Abstract Matters 401
16

“Pure Virtual” and Other Abstract Matters
So, virtual functions matter. The issue is that of always getting the right implemen-
tation of a member function to execute even when that function is overridden in
a derived class.

The implications of this ability go a long way. Inheritance hierarchies are
deeply ingrained in development systems such as Microsoft Foundation Classes,
Java, and Visual Basic.

With these systems, you subclass a general Form, Window, or Document class
to create your own implementation. The operating system calls on your object
(through your class declaration and implementation) to perform certain tasks—
Repaint, Resize, Move, and so on. These actions are all virtual functions, which is
what ensures that your functions are called using your implementation of your code.

Operating system

Repaint

Resize

Move

My_Form

Repaint = 0

Resize = 0

Move = 0

Form

Subclasses

Interfaces, or abstract classes, use pure virtual functions. A pure virtual func-
tion is neither required nor expected to have an implementation. You indicate
a pure virtual function by using the notation =0. For example, a class might
define normalize as follows:

class Number {
protected:
 virtual void normalize() =0;
};

Here, the normalize function is pure virtual. The declaration has no function
definition.

ptg16518442

Chapter 16 Polymorphic Poker402

Note � It’s possible, though not recommended, to give a definition for a function that
is pure virtual… that is, to define it in the class in which the prototype includes
“=0”! This may seem like a contradiction. The purpose of doing this would be to
create a default implementation for the function but still have the effect of creating an
abstract class, as explained in the next section. Usually, though, programmers will
not provide a function definition in the base class if that function is pure virtual (=0).

Abstract Classes and Interfaces
An abstract class is a class that has one or more pure virtual functions, that is, a
function that includes “=0” in its prototype. An important rule is that abstract
classes cannot be instantiated. This means you can’t use the class to declare objects.

For example, if Number is an abstract class, trying to instantiate it produces
an error.

Number a, b, c; // ERROR: Number is abstract class
// because it has a pure virtual
// func. a, b, c cannot be created.

But an abstract class can be useful as a general pattern for its subclasses. Sim-
ply put, you use an abstract by deriving subclasses, implementing any virtual
functions that need to be implemented, and then finally using the subclass to
instantiate objects.

Suppose you have an inheritance hierarchy for Windows development and
that this hierarchy includes an abstract Form class. You can subclass this to cre-
ate individual, concrete forms.

Repaint

Resize

Move

Repaint = 0

Resize = 0

Move = 0

Form

Pure virtual
functions

Repaint

Resize

Move

Repaint

Resize

Move

Form1 Form2 Form3

ptg16518442

Object Orientation and I/O 403
16

Before you can use a subclass to instantiate (that is, create) objects, it must
provide function definitions for all the pure virtual functions. A class that leaves
even one of these functions unimplemented is abstract and therefore cannot be
used to instantiate objects.

All this is useful in turn, because it gives you a way of specifying and enforc-
ing a general set of services, or interface, according to the following rules:

◗ Each subclass is free to implement all these services (i.e., pure-virtual func-
tions) in any way it wants.

◗ Every service needs to be implemented, or the class cannot be instantiated.

◗ Every class must strictly observe type information—return type and the type
of each argument. This gives the inheritance hierarchy discipline so that really
stupid actions (passing the wrong kind of data, for example) are flagged by the
compiler.

The author of a subclass knows that he or she must implement the services
defined in the interface—such as Repaint, Move, and Load in this case—but
within that mandate, he or she is free. And because all these functions are vir-
tual, the correct implementation is always executed, no matter how an object
is accessed.

I’m about to show, I hope, an example of how all of this is useful.

Object Orientation and I/O
One of the best demonstrations of the power of object orientation (OOP) is the
way it extends input/output through the use of the stream classes.

Once upon a time, there was the C language, which required the use of a
library function called printf if you wanted print to the console. This function
had cousins named fprintf (print to a text file) and sprintf (print to a string).

printf("Here's an int: %d", i); // Print an integer
printf("Here's a flt pt: %f", x); // Print a double

The problem with these functions is that if you create your own data type—
say a Fraction class or complex-number class—there is no way to extend printf
to work with your class; printf and its cousins have a fixed set of data formats
(%d, %f, %s, and so on), and these can never be modified.

You could, in theory, redefine printf by using #define to intercept calls,
substitute your own function, and then call printf yourself through a function
pointer when you needed to, but this is a horrendous “hack,” requiring large
amounts of ugly programming.

ptg16518442

Chapter 16 Polymorphic Poker404

cout Is Endlessly Extensible
C++ introduced the I/O stream classes, although it still supports the old C
functions for backward compatibility. The stream classes demonstrate the
extensibility of OOP.

As you’ll see in Chapter 18, making a class “printable” is simply a matter of
writing an operator<< function. For example, you can write such a function
for the Fraction class:

ostream &operator<<(ostream &os, const Fraction &fr) {
 os << fr.num << "/" << fr.den;
 return os;
}

This operator function makes Fraction objects printable in many contexts,
not only with console output (cout) but also with any file or string using the
I/O stream classes.

Fraction fr1(1, 2); // fr1 = 1/2.

cout << fr1; // Print to console.
fout << "The value is: " << fr1; // Print to file.

So, in theory, one might say that for any class of object, the following state-
ment can be made to work smoothly:

cout << "The value of the object is " << an_object;

But cout Is Not Polymorphic
However, although this is not at first obvious, there is a limitation. Stream
classes can work with an object only if its type is known at compile time. The
client code must know all about the object’s class.

But isn’t that always true? How can you even refer to an object whose type
isn’t fully defined?

Actually, it’s quite possible to refer to an object whose type isn’t defined. For
example, you could use a void pointer. If you use such a pointer and dereference
it, cout will not know how to print the object.

void *p = &an_object;
cout << *p; // ERROR! *p cannot be printed

Ideally, you ought to be able to specify a dereferenced pointer to an object
(that is, an expression such as *p) and have the object always be printed in the
correct format. Another way of saying this is, the knowledge of how to print an
object ought to be built into the object itself.

ptg16518442

Object Orientation and I/O 405
16

This would involve not a void* pointer but rather a pointer to a general inter-
face, which we might call IPrintable:

IPrintable *p = &an_object;

The ability to use such pointers is important in systems programming. You
might get a pointer to a new type of object over the Internet. You’d like to ensure
that the correct function code is called, even if the object has a new type that the
client code (the user of the object) knows nothing about.

In short, you’d like your programs to work seamlessly with new data classes
to be defined in the future.

To do this, we can declare the abstract class IPrintable with one pure virtual
function named print_me. In the next example, I show that any class that sub-
classes IPrintable and implements print_me can be correctly printed by cout (or
any instance of an ostream class)—even if the class is newer than the client code—
so that the specific class of the object isn’t even known by the main program.

The following statements will work, even though nothing at all may be
known about the class of an_object beyond the fact it subclasses IPrintable.

IPrintable *p = &an_object; // Object's class must
// subclass Printable.

cout << *p; // This will be printed in the
// correct format,
// as defined by
// the class of an_object.

There’s an important rule that makes this code possible: a pointer to an
object of subclass type can be passed to a pointer of base-class type. Or, to put it
more simply:

✱ Something specific (a subclass) can always be passed to something more
general (a base class).

The converse is not true (passing a base-class pointer to a subclass pointer)
unless there is a conversion function to support it.

Example 16.2. True Polymorphism: The IPrintable Class
This next example demonstrates a way to work with output stream classes and
objects (such as cout) that is truly polymorphic. By observing a general interface—
realized here as the abstract class named IPrintable—you can correctly print any
kind of object, even if the exact type of that object is not known at compile time.

ptg16518442

Chapter 16 Polymorphic Poker406

This approach is polymorphic because a single function call can result in
an unlimited number of implementations at runtime. The number of possible
responses is theoretically infinite.

That may seem impossible, but I meant what I wrote. You can print an object
without knowing its type or its function code because you (that is, the client
code) don’t need to know how to print the object. The knowledge of how to be
printed is built into the object and its class.

Printme.cpp

#include <iostream>
using namespace std;

class IPrintable {
 virtual void print_me(ostream &os) = 0;

 friend ostream &operator<<(ostream &os,
const IPrintable &pr);

};

// Operator<< function:
// All this does is cause virtual function print_me
// to be called, sending output to the stream.
//
ostream &operator<<(ostream &os, const IPrintable &pr) {
 pr.print_me(os);
 return os;
};

// CLASSES SUBCLASSING PRINTABLE
//---

class P_int : public IPrintable {
public:
 int n;

 P_int() {};
 P_int(int new_n) {n = new_n; };

ptg16518442

Object Orientation and I/O 407
16

 void print_me(ostream &os); // override
};

class P_dbl : public IPrintable {
public:
 double val;

 P_dbl() {};
 P_dbl(double new_val) {val = new_val; };
 void print_me(ostream &os); // override
};

// IMPLMENTATIONS OF PRINT_ME
//---

void P_int::print_me(ostream &os) {
 os << n;
}

void P_dbl::print_me(ostream &os) {
 os << " " << val << "f";
}

// MAIN FUNCTION
//--
int main()
{
 IPrintable *p;
 P_int num1(5);
 P_dbl num2(6.25);

 p = &num1;
 cout << "Here is a number: " << *p << endl;
 p = &num2;
 cout << "Here is another: " << *p << endl;
 return 0;
}

Printme.cpp, cont.

ptg16518442

Chapter 16 Polymorphic Poker408
H

ow
 It

 Works

How It Works
The code in this example consists of three major parts:

◗ The abstract class, IPrintable, and a pointer, p, which is able to point to an object
of any class derived from IPrintable

◗ The subclasses, P_int and P_dbl, which contain an integer and floating-point
value, respectively, that tell how to print the object

◗ The main function, which puts these classes to the test

The IPrintable class is an abstract class that you can also think of as an inter-
face that defines a single service: the virtual function print_me.

class IPrintable {
 virtual void print_me(ostream &os) = 0;

 friend ostream &operator<<(ostream &os,
const IPrintable &pr);

};

The idea of the class is simple: subclasses of IPrintable implement the func-
tion print_me to define how they send data to an output stream (ostream).

The IPrintable class also declares a global friend function. Chapter 18,
“Operator Functions: Doing It with Class,” explains more about how to write
such functions. For now, just accept that this function is valid.

This operator function converts an expression such as this

cout << an_object

into a call to the object’s own print_me function.

an_object.print_me(cout)

Because print_me is virtual, the correct version of print_me is always called
no matter how the object is accessed.

Printable *p = &an_object;
//...
cout << *p;

If print_me were not a virtual function, this code would not work. In that
case, the function IPrintable::print_me would be called… but since IPrintable
doesn’t even implement print_me, the result would be a runtime error.

The actual implementations of print_me do little in this particular example,
but that’s not important. Integers and floating-point values are easily printed.

ptg16518442

Object Orientation and I/O 409
16

I put in a small difference between them—printing a couple of extra spaces and
an “f” suffix for the floating-point implementation—so you can notice that a
different version of print_me is being called.

void P_int::print_me(ostream &os) {
 os << n;
}

void P_dbl::print_me(ostream &os) {
 os << " " << val << "f";
}

Implementations of print_me for other classes can be much more interesting.
Here, for example, is how you might implement print_me for the Fraction class:

void Fraction::print_me(ostream &os) {
 os << get_num() << "/" << get_den();
}

How is this useful? Well, you could have an array of objects of different types. As
long as they all were instances of classes derived from Printable, you could print all
of them, each in the correct format as determined by the objects’ own classes.

The bottom line here is this: in a very real sense, the objects know how to
print themselves! The line containing “cout <<” essentially says to each object
“Print yourself.” The amazing thing is that each object may (in effect) execute a
different piece of code, tailor-made for its own particular subclass.

IPrintable array_of_objects[ARRAY_SIZE];
//...
for (int i = 0; i < ARRAY_SIZE; i++) {
 cout << array_of_objects[i] << endl;
}

Ex
er

cis
es

 EXERCISES

Exercise 16.2.1. Write a version of the Point class from Chapter 10, so that it sub-
classes IPrintable and implements the print_me function. Then test the results.
Implement the print_me function so that it displays output in the format “(x, y)”.

Exercise 16.2.2. Revise the Fraction class from Chapters 10 and 11 so that it sub-
classes IPrintable and implements the print_me function. Then test the results
by using code such as the following to print a Fraction object:

Fraction fract1(3, 4);
//...

ptg16518442

Chapter 16 Polymorphic Poker410
IPrintable *p = &fract1;
cout << "The value is " << *p;

If all goes well, you should find that the Fraction object is printed in the correct
format.

A Final Word (or Two)
When I was first learning about object-oriented programming way back in the
1980s, I developed the idea that object-oriented programming was all about cre-
ating individual, self-contained entities that communicate by sending messages
to each other. The Smalltalk language, for example, is built around this idea.

Object1 Object2 Object3

Code + data Code + data Code + data

These days, I still think that’s not a bad way to get a grip on some of the major
concepts. Individual, self-contained entities like to shield their contents; they
therefore have encapsulation—the ability to keep their data private.

I’m not sure how well inheritance is demonstrated by this model, although
you can make it fit. If each of the individual objects is like a microprocessor or
chip (to think of it all in hardware terms), then ideally you should be able to pop
out a chip, make some modifications or improvements to it, and pop it back in.

Above all, the model of “independent entities sending messages to each
other” is a good way of illustrating what polymorphism and virtual functions
are all about.

Recall what I said a little earlier about the IPrintable interface in the intro-
duction to Example 16.2. Here, I paraphrase it in general terms:

✱ You can use an object without knowing its type or what functions it calls
because the knowledge of how to perform the service is built into the object
itself, not the user of that object.

This principle is consistent with the idea of independent objects that com-
municate by sending messages. The user of an object doesn’t need to tell the
object how to do its job. What goes on inside another object is a mystery. You
send a message, knowing that the object will respond in some appropriate way.

ptg16518442

An (Even More) Final Word 411
16

In essence, objects—independent units of code and data—are liberated from
slavish dependence on the internal structure of other objects.

But the result is not anarchy. Object-oriented programming systems enforce
discipline in the area of type checking. If you want to support an interface, you
have to implement all the services (that is, virtual functions) of that interface,
and you have to match the types in the argument lists exactly.

You can implement a function in a way that had not yet been written at the
time the client code was written. Remember that the following code will always
work correctly, without being revised or recompiled, even if the specific type of
an_object changes—that is, if the pointer is reassigned to point to a different
kind of object (provided only that the new object must also have a class derived
from IPrintable).

IPrintable = &an_object;
cout << *p;

An (Even More) Final Word
But what does all this mean? Why does polymorphism matter? Is it because it
contributes to code reuse? Well, yes. But it’s not primarily that.

Object-oriented programming is really more about systems—graphical sys-
tems, network communication, and other aspects of the technology in which
we daily become more enmeshed. Items in a graphical-user interface, or in a
network, act like independent objects sending messages to each other.

Traditional programming techniques were developed for a different world, a
world in which it could be a triumph just to submit a stack of punch cards and
see your program have a successful beginning, middle, and end, rather than
gagging and puking. In this world, you assumed that you were the only game in
town.

Today’s software has become more complex as it has become richer. The suc-
cess of Microsoft Windows, for example, stems in part from its rich set of com-
ponents. And the component model is not as easy to implement with traditional
programming techniques. You want to be able to plug ever-newer software
components into complex existing frameworks such as Windows.

Ultimately, this way of looking at things is closer to the reality of the great
wide world. One of the most exalted claims made for object orientation is that
“it more closely models the real world.” That’s an inflated claim but one with a
nugget of truth. We do live in a complex world. We do interact with things and
people independent from ourselves. We do need to trust in specialized knowl-
edge that others can bring. And maybe if we could liberate software objects,
giving them the independence and freedom to do what each of them knows
how to do best, we might feel more encouraged to liberate ourselves.

ptg16518442

Chapter 16 Polymorphic Poker412

Chapter 16 Summary
Here are the main points of Chapter 16:

◗ Polymorphism means that the knowledge of how to perform a service is built
into the object itself, not the client (that is, the software that uses it). Conse-
quently, the resolution of a single function call or operation can take unlimited
different forms.

◗ Polymorphism is made possible by virtual functions.

◗ The address of a virtual function is not resolved until runtime. (This is also
called late binding.) The class of an object—as known at runtime—determines
which implementation of a virtual function is executed.

◗ To make a function virtual, precede its declaration in the class with the virtual
keyword. For example:

virtual Card deal_a_card();

◗ Once a function is declared virtual, it is virtual in all subclasses. You don’t need
to use the virtual keyword more than once per function.

◗ You cannot make a constructor virtual. Technically, you can make an inline func-
tion into a virtual function, but the compiler cannot expand it as an inline function
unless it’s safe to do so. An example of when it would be safe would be a case in
which the exact type could be determined at compile time. If it cannot be so deter-
mined, the function cannot be inlined.

◗ There is a small performance penalty and a small space penalty whenever a
function is made virtual, but the advantages of making it a virtual function
almost always make up for it.

◗ As a general rule, any member function that might be overridden should be
declared virtual.

◗ A pure virtual function usually has no implementation (that is, no function defi-
nition) in the class in which it is declared. You declare a pure virtual function by
using =0 notation. For example:

virtual void print_me() =0;

◗ A class with at least one pure virtual function is an abstract class. Such a class
cannot be used to instantiate objects, although its subclasses can.

Number a, b, c; // ERROR!

ptg16518442

413
16

Chapter 16 Summary

◗ Abstract classes are useful as a means to create a general interface—a list of ser-
vices that a subclass provides by implementing all the virtual functions.

◗ In the final analysis, polymorphism is a way of liberating objects from slavish
dependence on each other because the knowledge of how to perform a service
is built into each individual object. Ultimately, it’s this feature that gives object
orientation its special flavor and makes it object oriented, rather than merely
class oriented.

ptg16518442

This page intentionally left blank

ptg16518442

415

17 New Features
of C++14

It’s a mark of C++’s importance that the specification is updated every three
years so that, like clockwork, you can expect interesting and useful new lan-
guage features.

Professional programmers depend on C++ to write commercial software.
The C++ community is therefore highly aware of ever-changing programming
needs and what might help to write the best, most efficient, and most reliable
software.

Many of the newest features are aimed at advanced programmers. There are
new features in the spec helpful for writing templates and lambdas—functions
defined “on the fly.” You can read about these features in my book C++ for
the Impatient, but they don’t enter into elementary programing. This chapter
focuses on features most likely to be useful to the beginning-to-intermediate
programmer.

The Newest C++14 Features
Only a few features of C++14 are likely to be useful to the newer C++ programmer,
but some of them really are interesting and they answer needs that program-
mers have had for many years.

Here’s a summary of these new features:

◗ Digit-group separators in literal constants. It’s always been difficult to write large
constant numbers into a program, because you can’t write them as (for example)
“674,501”—but now you can.

◗ String-literal suffix. You can now append an “s” suffix to a literal string, which
(by default) has the C-string type, an array of char. The “s” suffix gives the lit-
eral the same type as a string object.

ptg16518442

Chapter 17 New Features of C++14 416

◗ Binary literals. C++ has included support for writing numbers in hexadecimal
and octal radix from the beginning. But some programmers have asked for
binary (base-2) radix for a long time; their wish has been granted.

Digit-Group Separators
The newest C++ specification enables you to use the single quotation mark (')
as a digit separator. This is among the most useful new features. New program-
mers make the mistake of entering digit-group separators all the time, incorrectly
writing this:

1,320,000

instead of this:

1320000

This is a long-standing issue. A computer has no problem reading something
like “1320000” because it scans the digits, reading one at a time. But reading
such digits is difficult for humans, who read numbers by “chunking” groups
together and saying, “Ah yes, it’s over a million.”

You might ask, “Why can’t the compiler just look at the numbers and ignore
the commas?” That would be a good feature, were it not for conflicts in syntax.
Consider a function call taking several integers:

my_func(1,2,3);

If commas were accepted as digit-group separators, how would the compiler
interpret the following?

My_func(1,200,333,500,100);

So instead of commas, the C++14 specification uses single-quote marks to
separate groups of digits. The result is a little strange looking at first, but you
should get used to it quickly. For example, the previous function call could be
revised as follows:

my_func(1'200,333'500,100);

You should be able to see this function call is equivalent to the next one:

my_func(1'200, 333'500, 100);

Needless to say, you’ll always be better off putting in spaces between argu-
ments, but C++ has never required that and adding such a requirement would
have created massive backward-compatibility problems.

ptg16518442

17
The Newest C++14 Features 417

This new feature—adding support for group separators—makes sense in an
era in which programs are gaining the ability to handle larger and larger num-
bers. Later in the chapter, I present the long long integer type, mandated by the
C++11 spec. But that type can be very difficult to initialize without group sep-
arators. For example, with the separators, you could initialize a number to 100
billion (that is, 100 thousand million) this way:

long long int big_n = 100'000'000'000;

Without the digit separators, you have to perform this initialization as
follows:

long long int big_n = 100000000000;

You can see the problem. Missing even a single zero would cause the amount to
be wrong by a factor of 10.

The digit separators can be used in any grouping pattern you like, and you
can use them with any radix and with fractional amounts as well as integers.
For example:

double pi = 3.141'592'653;
int goofy_num = 1'02'000'5;

When the compiler reads single-quotation marks in the context of a numeric
literal, it basically ignores them. Very much like comments, digit separators are
there only as an aid to humans reading and maintaining the code.

String-Literal Suffix
The “s” suffix, applied to a string literal, creates a true string object rather than
a C-string.

"text"s

In most situations in which you need to use text strings, you’re better off using
the STL string object, which frees you from worrying about size limitations,
provides many useful member functions, and enables you to write convenient
lines of code like this:

#include <string>
using namespace::std;
...
string sFirst = "Elvis ";
string sLast = "Presley ";
string sFullName = sFirst + sLast;

ptg16518442

Chapter 17 New Features of C++14 418

But in C++, you can’t get away from C-strings altogether. In order to maintain
backward compatibility with C and with old software, string literals in C++
(assuming they have no special suffix) have C-string type. They’re simple arrays
of type char, terminated by a null value as explained in Chapter 8, “Strings:
Analyzing the Text.”

char str[] = "I am a null terminated C-string."
char *p = "So am I."

This behavior—interpreting string literals as C-strings, not string objects—
is occasionally a problem, because although you can write statements like

string sName = sFirst + " Adams";

you can’t write this:

string sName = "John Quincy " + "Adams";

The problem with this last statement is that although a string object can interact
with C-strings (making the earlier statement valid), C-strings themselves, having
type char*, have no behavior defined for the + operator. Instead, you must use
the strcat function, which is much less elegant.

But with the “s” suffix, string literals become genuine string objects, so you
can write statements like the following all day long, which is convenient when
you want to span more than one physical line:

string sName = "John Quincy "s + "Adams"s;

There are other situations in which it’s useful to specify a literal as having
string type. Suppose you return a string from a function, but the function
has string type, or worse, it has auto return-value type, meaning that the com-
piler has to deduce what the type of the function is. In that case, use of the “s”
suffix may be extremely useful as a way of clarifying that you intended to return
a true string object rather than an array of char.

return "Hello!"s; // Return as a string object.
// not a char*.

Binary Literals
In C++14, you can write numeric literals in binary radix by using a “0b” or “0B”
prefix.

0bdigits

ptg16518442

17
The Newest C++14 Features 419

For example:

cout << 0b110 + 0b001; // Prints 7 (= 0b111).

As everyone knows, all data inside a computer is made up of 1’s and 0’s. That
you can read something other than 1’s and 0’s on the screen is due to a complex
series of actions involving the operating system as well as the BIOS (Basic Input
Output System). But if you could see the actual pattern of data at any memory
location, it would be made up of 1’s and 0’s.

Many programmers have long wanted to be able to read and write data in
this primitive form. That would make it easier to write bit masks, for example,
which are used to turn individual bits on and off within a compact piece of data.
For years, C and C++ programmers have had to settle for using hexadecimal and
binary notation.

Now you can test bit masks directly. For example:

cout << data | 0b1111; // Turn on low 4 bits.
cout << data & 0b1111; // Mask out all but

// low 4 bits.

To understand these statements, I need to briefly introduce the bitwise oper-
ators—which I’ve skipped until now because you rarely if ever need them in
beginning-to-intermediate programming.

OPERATOR NAME DESCRIPTION

& Bitwise AND Sets a bit in result to 1 if both corresponding bits
in the operands are 1.
Other bits in result are set to 0.

| Bitwise OR Sets a bit in result to 1 if either corresponding bits
in the operands is 1.
Other bits in result are set to 0.

^ Bitwise exclusive OR Sets a bit in result to 1 if either, but not both, of
the corresponding bits in the operands is 1.
Other bits in result are set to 0.

~ Bitwise negation Takes one operand. Reverses the value of each bit,
so each 1 in the operand becomes a 0 in the result,
and vice-versa.

By “corresponding bits,” I mean bits in the same position. So if 0b1100 is
AND’ed with 0b0011, the result is 0b0000. But if they are OR’ed together, the
result is 0b1111.

ptg16518442

Chapter 17 New Features of C++14 420

This is easier to see with a diagram. For example, suppose you use bitwise AND
to combine two amounts, one equal to 0b111000 and the other equal to 0b101011.
You can see how corresponding bits in each operand are combined using AND. A
bit is set to 1 in the result only if both of the corresponding bits in the operands are 1.

1 1 1 0 0 0 0b111000

1 0 1 0 1 1 0b101011

Bitwise AND

1 0 1 0 0 0 0b111000 & 0b101011

Using the binary-radix notation, you can write statements such as the follow-
ing, incorporating the single quote mark as digit separator as described in the
previous section. Remember, this uses bitwise OR (|):

cout << 0b1111'0000 | 0b0000'1111 << endl;

The result of this statement is 1111 1111, which has 1’s in all lower eight posi-
tions of an integer field, with the rest set to 0. The statement therefore prints:

255

The digit string “255” is not in binary-radix format, of course. An easy way
to do that—to get output in binary radix as well—is to use the bitset tem-
plate. To use this template, you don’t specify an underlying type but rather
a fixed number of bits. When printed, a bitset produces a digit string containing
1’s and 0’s.

As with other templates, you set up its usage with an include statement and
a using statement:

#include <bitset>
using namespace std;

Then declare and initialize the bit set:

bitset<8> my_bit_field(0b1111'0000 & 0b1100'0000);
cout << my_bit_field << endl;

This should print the following:

11000000

ptg16518442

17
The Newest C++14 Features 421

Example 17.1. Bitwise Operations
This next example is a simple program that prints the results of a series of bit-
wise operations. Both the operands and the results are printed out in binary
(base 2) radix. Your challenge is to anticipate the output and see if your predic-
tions match the results that get printed.

binaryr.cpp

#include <iostream>
#include <bitset>
using namespace std;

int main()
{
 bitset<8> a(0b1111'0000 & 0b1001'0000);
 bitset<8> b(0b1111'0000 | 0b1001'0000);
 bitset<8> c(0b1010'1010 & 0b1000'1111);
 bitset<8> d(0b1010'1010 | 0b1000'1111);
 cout << a << endl;
 cout << b << endl;
 cout << c << endl;
 cout << d << endl;
}

Ex
er

cis
es

 EXERCISES

Exercise 17.1.1. Write a program similar to this example, but use it to test the effect
of the exclusive or operator (̂) several times.

Exercise 17.1.2. Write a program similar to this example, but use it to test the effect
of the bitwise negation operator (~) several times. Remember that negation is a
unary operator—it takes just one operand.

Exercise 17.1.3. Write a program that takes any integer input, masks out all four of
the lowest bits, and prints the result. Is there an operation involving modular
division (%) that would always produce the same result?

Exercise 17.1.4. In what situations, if any, do logical operators (&&, ||, and !) always
produce the same results as their corresponding bitwise operators, &, |, and ^?
(Hint: for signed types, such as int, having a 1 in all positions produces an

ptg16518442

Chapter 17 New Features of C++14 422

overall value of negative 1. With unsigned types, such as unsigned long, 1 in all
positions produces the highest value in the range.)

Features Introduced in C++11
C++14, of course, is an upgrade to the most recent specification before it: C++11.
Many of the newer features, therefore, are brought over from that slightly older
specification. In some cases, a compiler manufacturer may have only recently
gotten around to implementing full C++11.

The new C++11-specific features described in this chapter include the following:

◗ The long long int type. This new data type stores values far beyond the limit of
the long int type, which is typically plus or minus 2 billion (thousand million).
The long long int type is a 64-bit number that can store astronomical values far
in excess of a billion, but with absolute precision, unlike double.

◗ Ranged-base for (“ for each”). This syntax is a variation on the C++ for key-
word. Instead of explicitly setting begin and end points in a loop, you just say,
“Process each item in the group.” It’s simpler, easier, and less error prone.

◗ The auto and decltype keywords. These can be convenient when working with
complex, exotic types.

◗ The nullptr keyword. This is the new way to represent null (zero-value) pointers.
Although not yet strictly required, it is now strongly recommended.

◗ Strongly typed enumerations. You can use this feature to refer to meaningful
symbolic names rather than arbitrary numbers; it’s another way to get rid of
“magic numbers.” This is a long-standing feature in C++ but greatly strength-
ened in C++11. Both weak and strong enum types are now supported.

◗ Raw string literals. This feature lets you enter string literals without having to
use escape characters for " and \.

The long long Type
In the PC environment, the C and C++ languages have generally supported
16-bit integers as short and 32-bit as long. For some time now, int, which is the
“natural” integer type, has been equivalent to long.

But it’s not hard to go beyond the limit of 32-bit storage. One alternative is
to switch to floating point, which—because of scientific notation—can store

ptg16518442

17
The long long Type 423

astronomically big and tiny values. But floating-point data cannot store big
numbers with absolute precision.

Sixty-four bits is the future of computing and is the natural size for integers
to migrate to, but the long type is already taken (32 bits). For that reason, two
“longs” are needed.

TYPE

TYPICAL MEANING
(SUPPORTED ON
NEARLY ALL PCS) C++ IMPLEMENTATION

char Usually 8 bits, large enough
to hold an ASCII character

Enough size to hold a standard
character

short int 16 bits, limit of 64KB At least 16-bits wide; size equal
to or greater than char in size; no
larger than int

long int 32 bits, limit of approxi-
mately 4 billion (plus or
minus 2 billion)

Size equal to or greater than int in
size

long long int 64 bits, limit of 4 billion
squared

C++11 and later only; size greater
than long… required to be at least
64 bits if supported.

Each of these types has an unsigned version, such as unsigned short and
unsigned long. Unsigned values do not store negative values, but instead store
twice as many positive values. So, what you lose in the negative range, you gain
back by having a bigger positive range. Signed integers (the default) store both
positive and negative values.

The syntax for declaring long long integers is similar to that for any type.
Integer types have a quirk. Except with the int type itself, the keyword int is
optional.

long long variables;

long long int variables; // int is optional

And there is also the unsigned version, which stores only non-negative values:

unsigned long long variables;

unsigned long long int variables; // int is optional

K
ey

wo
rd

ptg16518442

Chapter 17 New Features of C++14 424

For example:

long long i; // i is uninitialized 64-bit int.
long long i = 0; // i initialized to 0.
long long i, j, k; // i, j, and k all 64-bit ints.

Why a “Natural” Integer?

I use the int type throughout this book. For the current PC environment,
int is equivalent to long, the 32-bit type. As the “natural” integer, int is
intended to correspond to the processor size of the target environment so
that programs run efficiently.

There is one downside: If you ever port your code to a smaller archi-
tecture (16 bits), programs that run beautifully on 32-bit architecture can
break without warning. It’s possible your int variables hold values larger
than 64KB; if so, when ported to a 16-bit architecture, your programs will
encounter serious bugs.

The upshot is that you are safe using int in programs for your own use
only. But…

Code developed professionally at Microsoft avoids this approach. The
int type is never used in serious commercial projects. Microsoft developers
conscientiously stick to types with fixed sizes that have names like INT32,
controlled and defined in header files. This is because they are develop-
ing software for many platforms to be used all over the world. For a begin-
ner, such an approach is overkill. But keep these issues in mind if you ever
intend to write commercial (widely distributed) software or port to differ-
ent platforms.

Working with 64-Bit Literals (Constants)
For the most part, using the 64-bit type is as easy as declaring variables as long
long. But there is also the issue of initialization. Fortunately, the following
works just fine, even though the numeric literal, 0, has int type and n has long
long int type:

long long n = 0;

This is OK, because C++ automatically promotes a smaller type, such as int,
into a larger type such as long long and does so without complaint. But what if
you need to initialize n with a larger value?

long long n = 123000123000456; // ERROR

Interlude

ptg16518442

17
The long long Type 425

The problem is that the literal in this example is too large to be stored as a stan-
dard int, so you will likely get an error message. To ensure that such a large
number (larger than 2 billion or so) can be stored, use the new “LL” suffix,
which stands for long long, of course:

long long n = 123000123000456LL; // LL used; no error

You can also use the “ULL” prefix for unsigned long long:

long long n = 123000123000456ULL; // ULL used; OK.

Using a single-quote mark as digit separator—a new feature just introduced
in C++14, and which I covered earlier—can be very helpful here:

long long n = 123'000'123'000'456ULL; // ULL used; OK.

Accepting long long Input
Earlier, I used the atoi function to convert strings to integers. C++ compilers
that support long long also provide a useful support function, atoll, to convert
char* strings (C strings) to long long integers.

char *input_string[MAX_WIDTH + 1];
cin.get(input_string, MAX_WIDTH);

long long n = atoll(input_string);

The long long type presents another challenge: When numbers get to be this
big, they are difficult for an end user to type in or read. This is a problem I
discussed at length earlier with regard to the single-quote mark, which is now
supported in C++ code for writing large numeric literals.

But you may want your user to be able to use commas as well. For example:

123,000,123,000,446,001

There’s an easy solution: You can strip away these characters before converting
to a number. The following function performs this task and I invite you to use it
in your own programs. You’re welcome.

Note � To support the atoll function used here, you’ll need to include <cstdlib>.

#define GROUP_SEP ','

long long read_formatted_input(string s) {
 for (int i = 0; i < s.size(); ++i) {

ptg16518442

Chapter 17 New Features of C++14 426
if (s[i] == GROUP_SEP)

s.erase(i, 1);
 }
 return atoll(s.c_str());
}

Formatting long long Numbers
Printing formatted numbers with the proper digit-group separators is more of
a challenge, because the program has to make intelligent decisions about where
to put those characters.

The STL stringstream class is helpful here. Using this special class, you
can write to a string as you would write to the console or a file. Make sure you
include both these files:

#include <string>
#include <sstream>

Now you can create and use a “string stream.” You can write to the following
object, s_out, just as you would write to cout. After you are done writing to
the stream object, you convert it to an actual string by using the str member
function.

stringstream s_out;
s_out << "The value of i answer is" << i << endl;
string s = s_out.str()

We now have enough techniques to write a function that takes a long long as
input and returns a formatted string.

#define GROUP_SEP ','
#define GROUP_SIZE 3

string output_formatted_string(long long num) {

 // Read data into string s.

 stringstream temp, out;
 temp << num;
 string s = temp.str();

 // Write first characters, in front of
 // first separator (GROUP_SEP).

ptg16518442

17
The long long Type 427

 int n = s.size() % GROUP_SIZE;
 int i = 0;
 if (n > 0 && s.size() > GROUP_SIZE) {

out << s.substr(i, n) << GROUP_SEP;
i += n;

 }

 // Handle all the remaining groups.

 n = s.size() / GROUP_SIZE - 1;
 while (n-- > 0) {

out << s.substr(i, GROUP_SIZE) << GROUP_SEP;
i += GROUP_SIZE;

 }
 out << s.substr(i); // Write the rest of digits.
 return out.str(); // Convert stream -> string.
}

Again, I invite you to steal this code to use freely in your own programs.
The function is as long as it is because I’ve provided comments for readability. As

always, if you are trying to type it in fast, the comments are optional on your part.
This example uses substr, an important function of the string class. Its first

argument is a starting position (0-based, remember), and the second argument is
the number of characters to select from that position onward. The substr func-
tion returns the indicated substring. When the second argument is omitted, it
returns the substring from the indicated position forward to the end of the string.

The function takes numeric input such as 88123000567001LL and returns
a string formatted with group separators, making it more readable to the end
user. You can then print the resulting string on the console.

88,123,000,567,001

Example 17.2. Fibonacci: A 64-Bit Example
OK, enough preliminaries! Here’s a practical example: Suppose you want to
know what the fiftieth Fibonacci number is. It turns out that the answer is well
outside the range of a standard int or long (32 bits), and is a perfect application
for long long.

First, a quick refresher on Fibonacci numbers: This is a famous set of num-
bers, in which each member, after the first two, is equal to the total of the two
numbers preceding it. The first few numbers in the series are:

1 1 2 3 5 8 13 21 34 55 89 144

ptg16518442

Chapter 17 New Features of C++14 428

This set of numbers has a formal mathematical definition:

F(0) = 1
F(1) = 1
F(n) = F(n-1) + F(n-2)

At first glance, this definition is a perfect candidate for recursion. The for-
mal definition translates smoothly into C++ code. (You’ll notice my use of long
long, which is needed here because Fibonacci numbers get large quickly.)

long long Fibo(long long n) {
 if (n < 2) {

return 1;
 } else {

return Fibo(n - 1) + Fibo(n - 2);
 }
}

But as beautiful as this version is, it’s incredibly inefficient. You won’t notice a
problem running it on low values, say up to Fibo(30). But once you get around
Fibo(40) or so, the delay becomes unacceptably long—even in this era of fast
processors. This is because every increase in n geometrically increases the num-
ber of function calls.

The iterative version requires a few more lines of code. But unlike the recursive
version, it can handle Fibo(50) at (what seems like) an instantaneous speed
instead of taking hours.

long long Fibo(int n) {
 if (n < 2)

return 1;
 long long temp1 = 1;
 long long temp2 = 1;
 long long total = 0;
 while (n-- > 1) {

total = temp1 + temp2;
temp2 = temp1;
temp1 = total;

 }
 return total;
}

With this version, the issue is not processor time but the ability to hold large
numbers. That’s why long long is needed here, but note that even this huge
range is exceeded before you reach Fibo(100).

ptg16518442

17
The long long Type 429

Here is the complete program that prompts for a number and calculates
Fibo(n), the Nth Fibonacci number:

fibo.cpp

#include <iostream>
#include <string>
#include <sstream>

using namespace std;

int long long Fibo(int n);
string output_formatted_string(long long num);

int main() {
 int n = 0;
 cout << "Enter a number: ";
 cin >> n;
 string s = output_formatted_string(Fibo(n));
 cout << "Fibo(" << n << ") = " << s << endl;
 return 0;
}

long long Fibo(int n) {
 if (n < 2)

return 1;
 long long temp1 = 1;
 long long temp2 = 1;
 long long total = 0;
 while (n-- > 1) {

total = temp1 + temp2;
temp2 = temp1;
temp1 = total;

 }
 return total;
}

#define GROUP_SEP ','
#define GROUP_SIZE 3

▼ continued on next page

ptg16518442

Chapter 17 New Features of C++14 430

string output_formatted_string(long long num) {

 // Read data into string s.

 stringstream temp, out;
 temp << num;
 string s = temp.str();

 // Write first characters, in front of
 // first separator (GROUP_SEP).

 int n = s.size() % GROUP_SIZE;
 int i = 0;
 if (n > 0 && s.size() > GROUP_SIZE) {

out << s.substr(i, n) << GROUP_SEP;
i += n;

 }

 // Handle all the remaining groups.

 n = s.size() / GROUP_SIZE - 1;
 while (n-- > 0) {

out << s.substr(i, GROUP_SIZE) << GROUP_SEP;
i += GROUP_SIZE;

 }
 out << s.substr(i); // Write the rest of digits.
 return out.str(); // Convert stream -> string.
}

For example, if the end user inputs 70, the program prints this result:

Fibo(70) = 308,061,521,170,129

H
ow

 It
 Works

How It Works
The main function gets a number from the console and passes it to a function,
Fibo. The resulting long long integer result is passed to the print_formatted_
string function, which produces a nicely formatted string result. This string is
then printed.

 string s = output_formatted_string(Fibo(n));
 cout << "Fibo(" << n << ") = " << s << endl;

fibo.cpp, cont.

ptg16518442

17
The long long Type 431

The rest of the code then works as described earlier. The program uses the
iterative version of the Fibo function, which—although not as elegant as the
recursive version—is infinitely more practical: it produces instantaneous
results even for high numbers. The recursive version would take hours to calcu-
late Fibo(50) if it didn’t bring down the system first.

Ex
er

cis
es

 EXERCISES

Exercise 17.2.1. Write a version of the program that maintains an array of 70 integers
of type long long. Then fill up this array with the first 70 Fibonacci numbers.
(Note: In our nomenclature, we’ve dubbed the first number F(0), not F(1).)
Instead of using the Fibo(0) function from Example 17.2, set F(0) and F(1)
directly. Then write a loop to calculate each remaining array element, (F(2) to
F(70)), by adding the values of the two preceding array elements. Print the array
with calls to the output_formatted_string function already provided.

Exercise 17.2.2. Write a program that prompts for a number, which you then store
as a long long. Permit the user to enter the number using optional digit sepa-
rators. Then determine the first prime number bigger than the number entered
and print this print number. If needed, refer to the prime-number-testing code
in Chapters 2 and 4.

Va
ria

tion

 Localizing Numbers
In Chapter 8, I introduced the #define preprocessor directive. This directive is
useful in minimizing the appearance of “magic numbers” (numbers whose use
appears to be entirely arbitrary) from your program.

The syntax for the simple use of #define is as follows:

#define symbol_name replacement_text

The result is that the C++ preprocessor replaces each occurrence of symbol_
name it finds in the rest of the source file (outside of comments and printed
strings) with the replacement_text.

If you want to compile the program to work correctly for end users in other
countries, you may need to pay attention to formats. Large numbers have one
format for Americans and British, and another for France and many other
European countries. Still other countries use a dot (.), reserving the comma (,)
as a decimal-point (radix) indicator.

1,235,070,556 // American/UK format
1 235 070 556 // Continental format
1.235.070.556 // Alternative European format

ptg16518442

Chapter 17 New Features of C++14 432

I wrote the program in this chapter to provide the easiest possible control.
The format used by the print_formatted_string function is determined by the
two #define directives. You never need to change more than these two lines:

#define GROUP_SEP ','
#define GROUP_SIZE 3

GROUP_SEP specifies the group separator: a comma, blank space, apostro-
phe, or dot, as appropriate; GROUP_SIZE sets the number of digits grouped
together. China and Japan often use groupings of four; most countries use three.

Who Was Fibonacci?

Fibonacci did not invent Fibonacci numbers, yet we can thank him for
computers. He brought decimal numbers to Europe, and if we didn’t
understand the decimal system, we wouldn’t understand binary numbers.
Without binary numbers, no computers.

This great visionary was a man named Leonardo Bonacci, whose nick-
name was “son of Bonacci”—or in Italian, “Fibonacci.” Born in 1170, he is
considered the greatest European mathematician of the Middle Ages.

His most famous work, Liber Abaci (meaning “Book of Calculation”),
introduced Europe to the decimal-number system devised in India and used
by Arabs (hence, “Arabic numerals”). It also introduced Europe to a fascinat-
ing problem that Hindu mathematicians had asked and answered back in the
sixth century: was there a series of numbers, they wondered, that described
the population growth of a pair of rabbits in an ideal environment, free of
famine and predators? Their answer was a series of numbers: 1, 1, 2, 3, 5, 8, 13,
and so on, later dubbed “Fibonacci numbers” in the West.

Did the ancient Hindus realize the secrets of Nature that lay hidden in
this deceptively simple series? It turns out the ratio of two consecutive such
numbers converge toward a mysterious transcendental number, approxi-
mately 1.618, which the Greeks called the Golden Ratio. The Parthenon is
designed on this ratio and, 2,000 years later, Leonardo da Vinci’s famous
Vitruvian Man would diagram how thoroughly the Golden Ratio matches
the ratios of the human form: the length of a leg to the length of the torso,
for example, and the length of the torso to the length of the body.

When we see so much of nature described this way, does that mean
someone is trying to tell us something? All we know for sure is that
there’s something in the nature of existence that responds to the beauty of
mathematics.

Interlude

ptg16518442

17
Range-Based “for” (For Each) 433

Range-Based “for” (For Each)
One of the most popular features introduced in C++11 (and still supported in
C++14, obviously) is range-based for. This is a technique for writing less code—
and getting fewer errors—when you use a for loop to process an array or other
container.

Some other languages have had this feature for years. It says, “Process every
item in the group” without having to worry about where you begin or end. The
language automates the details of beginning and ending, provided only that
this information is available to the compiler.

This approach has two benefits:

◗ It saves programming effort because it frees you from worrying about how to
properly initialize and set terminal conditions in a for loop.

◗ It frees you from one of the most common sources of bugs in C++ programs:
incorrectly setting loop conditions. Even the most experienced programmers
commit this sin.

Here’s the general syntax. It comes in two forms. Look closely; the only dif-
ference you can see here is that of an ampersand (&).

for(base_type& variable : container) // Reference
statement

for(base_type variable : container) // By value
statement

The statement, as always, can be a compound statement, or “block,” enclosed
in curly braces ({}), and this is always recommended. The variable has scope
limited to the statement or block.

In the first version of this syntax, the variable is a reference type, which
means it has the ability to manipulate the data. If you want to manipulate the
values in the container, use this version. The second version of the syntax pro-
vides access only to copies of values.

Here’s a practical example, using an array. This code fragment sets every
member of my_array to 0:

int my_array[10];
for(int& i : my_array) {
 i = 0;
}

K
ey

wo
rd

ptg16518442

Chapter 17 New Features of C++14 434

This next example sets every member of my_array to 5:

for(int& i : my_array) {
 i = 5;
}

Remember, if you don’t intend to change any values, you can protect the data
by dropping the ampersand (&). For example, this will print all the elements of
my_array:

for(int i : my_array) {
 cout << i << endl;
}

Alternatively, you can protect values by using the ampersand (&), but declaring
the loop variable const. This has the advantage of keeping i as a reference vari-
able and thus avoiding the performance cost associated with copying.

for(const int& i : my_array) {
 cout << i << endl;
}

Here’s an example that prints all the values of an array of type double. This
employs d as a “value” variable, so that it results in each element of the array
being copied. Inside the loop, the code can manipulate these copies however it
wants without affecting the original values. (However, as just noted, this version
incurs the cost of copying 100 elements.)

double float_pt_nums[100];
...
for(double d : float_pt_nums) {
 cout << d << endl;
}

But in this next example, which sets all the floating-point values to 0.0, the
ampersand (&) is required.

for(double& d : float_pt_nums) {
 d = 0.0;
}

The C++ range-based for syntax is flexible. The container can be

◗ Any kind of array.

◗ An STL string object. (The elements within a string object are individual char-
acters.) Base type is char.

ptg16518442

17
Range-Based “for” (For Each) 435

◗ Instances of STL classes that define an iterator, such as list and vector.

◗ Initialized lists (see the example immediately following).

The range-based for syntax supports initialized lists using curly braces. For
example, the following code fragment prints the first 12 Fibonacci numbers,
one to a line. This is the simplest way to print a lot of numbers:

for(int& n : {1,1,2,3,5,8,13,21,34,55,89,144}) {
 cout << n << endl;
}

Range-based for does have limitations. Because range-based for cycles through
a container without explicit index numbers, pointers, or iterators, it can be harder
to do certain things. Every element tends to get treated the same way.

For example, what if you want to set an array to {0, 1, 2, 3, 4}? Using a stan-
dard for statement, you’d write something like this:

for(int i = 0; i < 5; i++) {
 array[i] = i;
}

Fortunately, with a little extra programming, this is still doable with range-
based for:

int j = 0;
for (int& i : array) {
 i = j++;
}

There is one other drawback to range-based for (which isn’t bad, considering
all its advantages). The loop variable must be declared local to the loop. You do
not have the option of declaring it outside the loop.

Example 17.3. Setting an Array with Range-Based “for”
The following example shows the use of range-based for in several contexts:

range_based_for.cpp

#include <iostream>
#include <cstdlib>

using namespace std;

▼ continued on next page

ptg16518442

Chapter 17 New Features of C++14 436

#define SIZE_OF_ARRAY 5

int main()
{
 int arr[SIZE_OF_ARRAY];
 int total = 0;

 // For each element, prompt for a value,
 // store, and add to total.
 //
 for (int& n : arr) {

cout << "Enter array value: ":
cin >> n;
total += n;

 }
 cout << "Here are the values: ";

 // Print each element.
 //
 for (int n : arr) {

cout << n << endl;
 }

 cout << "Total is: " << total << endl;
 cout << "Now, I'm going to zero out ";
 cout << "the values. " << endl;

 // Set each element to 0.
 //
 for (int& n : arr) {

n = 0;
 }

 cout << "Here are the values: ";
 for (int n : arr) {

cout << n << endl;
 }
 return 0;
}

range_based_
for.cpp, cont.

ptg16518442

17
Range-Based “for” (For Each) 437

H
ow

 It
 Works

How It Works
There’s nothing new in this example other than the use of the C++11 range-
based for syntax. It’s useful to compare what the statements would look like
without it. For example, to print every element of the array, arr, you’d normally
write this:

for (int i = 0; i < SIZE_OF_ARRAY; i++) {
 cout << arr[i] << endl;
}

Not bad, but look how much more succinct the newer version is, using range-
based for:

for (int n : arr) {
 cout << n << endl;
}

Remember, you can use any type, but the type of the variable and the base
type of the container must match. For example, if arr_floating_pt is an array of
elements of type double, you’d use a reference to (or rather a copy of) a double,
not int:

for (double x : arr_floating_pt) {
 cout << x << endl;
}

Don’t forget that to alter values within the container, you need the amper-
sand (&).

for (int& n : arr) {
 n = 0;
}

Ex
er

cis
es

 EXERCISES

Exercise 17.3.1. Instead of prompting the user with the direction, “Enter array
value,” prompt the user by printing “Enter array value #X of 5: ” where X is the
current array index. Do this while still using range-based for. (Hint: You’ll need
to set another variable, such as j, to 0 and then increment it.)

Exercise 17.3.2. Initialize an array to {1, 2, 3, 4, 5}. Then, use range-based for to
double each element of the array. Print out the results to confirm that the state-
ments worked as expected. (Hint: Don’t forget to include the ampersand (&).)

ptg16518442

Chapter 17 New Features of C++14 438

The auto and decltype Keywords
For beginners, the auto keyword might not seem like a huge convenience, but
when you start to write more complicated programs with exotic data types, you
might find it saves you significant work.

Note � The auto keyword used to have another use: to indicate an automatic
(that is, stack-based) storage class. Local variables are always given this storage
class anyway, unless specifically declared static. The use of auto to indicate stor-
age class is now entirely obsolete (and no longer supported!).

When a variable is declared with the auto keyword, its type is determined by
context—specifically, by the thing that initializes it. Once fixed, the variable’s
type does not change. auto is not a variable-data type. For example:

auto x1 = 5; // x1 is an int.
auto x2 = 3.1415 // x2 has type double
auto x3 = "Hello"; // x3 has type char*
auto x4 = "Hi!"s; // x4 has string

You may wonder, at first, what the point of the keyword is. Advanced C++
programmers sometimes use some exotic types. Consider a function return_pp_
Fraction that returns a pointer to a Fraction object. In that case, you could declare
and initialize x by writing this:

Fraction **x = return_pp_Fraction();

But you could instead write this:

auto x = return_pp_Fraction();

Even better is the use of the auto keyword within range-based for. Suppose
weirdContainer is an array of pointers to pointers to Fraction objects. In that
case, you could write this

for (Fraction& **x : weirdContainer) ...

or you could just write

for (auto& x : weirdContainer) ...

The auto keyword is so useful here that it can almost be stated as part of
range-based for syntax. The container will determine the type of the variable,
and therefore use of auto in this context guarantees that this type will always be
correct.

ptg16518442

17
The nullptr Keyword 439

for(auto& variable : container) // Reference
statement

for(auto variable : container) // By value
statement

The auto keyword is related to another C++11 keyword, decltype, which
returns the type of its argument.

decltype(x) y; // Declare y to have same type as x.

The auto keyword is also useful in declaring the return type of a function,
particularly a function that returns a complex type or a type that might change
in a later version of the program. Remember that the return type will be deter-
mined by what the function actually returns—so you’ll need to be careful
about what you’re returning. In the following case, though, the return type is
obviously int:

auto func1() {
 if (x == y) {

return 1;
 } else {

return 2;
 }
}

But this next function has return type char*:

auto func2() {
 if (x == y) {

return "equal";
 } else {

return "not equal";
 }
}

Obviously, all the return statements in a given function need to have pre-
cisely matching return types, or an ambiguity is created for the compiler.

The nullptr Keyword
The nullptr keyword provides the new, preferred way to represent a null pointer,
meaning it “points nowhere.” This is not the same as an uninitialized pointer!
For example, consider the strtok function introduced in Chapter 8. One of the
ways you use the function is by calling it with a null-pointer argument.

K
ey

wo
rd

ptg16518442

Chapter 17 New Features of C++14 440

Traditionally, the technique for making a pointer hold a null value is to set it
to 0 or the predefined constant NULL.

int *p = 0; // p points "nowhere" for now
int *p2 = NULL; // so does p2.

For now, these techniques still work, and they may be supported for some
time to come for the sake of backward compatibility. But using 0 to initialize
or set pointers is bad form because the same value can be used to set ordinary
(scalar) variables, which should not be the case.

int i = 0; // 0 also used with pointers

The virtue of nullptr is that it is specific to pointers. It’s part of the language
and will work correctly for all programs in which it is appropriate. If your com-
piler supports nullptr, then whenever convenient you should start using it in
place of NULL. For example:

 p = strtok(the_string, ", ");
 while (p != nullptr) {

cout << p << endl;
p = strtok(nullptr, ", ");

 }

Note that when any pointer is set to null (that is nullptr), it is equivalent to
false when it is tested directly as a condition. So this conditional test

 while (p != nullptr) { // While p is not false
 ...
 }

is equivalent to the following:

 while (p) { // While p is true (not null)
 ...

 }

Strongly Typed Enumerations
The more you program, the more you want to get rid of “magic numbers,”
which are numeric literals that appear in the program for no apparent reason.
It’s much better to use meaningful symbolic names.

As a first approach, one might assign the numbers 1, 2, and 3 to the choices.
Most of the time, the values don’t matter. The most important thing is that the

ptg16518442

17
Strongly Typed Enumerations 441

three numbers are used consistently to indicate the choices. Consider state-
ments in a game of Rock, Paper, Scissors:

cout << "Enter Rock, Paper, or Scissors: "
cin >> input_str;
int c = input_str[0];

if (c == 'R' || c == 'r') {
 player_choice = 1; // 1 = rock
} else if (c == 'P' || c == 'p') {
 player_choice = 2; // 2 = paper
} else if (c == 'S' || c == 's') {
 player_choice = 3; // 3 = scissors
}

The programmer has to remember that 1 means rock, 2 means paper, and 3
means scissors. Without comments, this kind of program code is nearly incom-
prehensible. We need to get rid of the “magic numbers” and replace them with
meaningful names.

Our next attempt at trying to store this information is to use a series of
#define directives.

#define ROCK 1
#define PAPER 2
#define SCISSORS 3

Now we represent ROCK as 1, PAPER as 2, and SCISSORS as 3. The code is
instantly more readable.

if (comp == ROCK && player == SCISSORS)
 cout << "Rock smashes scissors. I WIN! " << endl;

This is a big improvement, but wouldn’t it be nice to automate the assignment
of these numbers? C++ allows you to do just that, with the enum keyword.

enum {rock, paper, scissors };

The effect of this declaration is to create rock, paper, and scissors as symbolic
constants that are assigned values of three consecutive integers: 0, 1, and 2. (By
default, they start at 0.) You can then assign values of this class and test them as
appropriate.

if (c == 'R' || c == 'r') player = rock;
...
if (comp == rock && player == scissors)
 cout << "Rock smashes scissors. I WIN! " << endl;

ptg16518442

Chapter 17 New Features of C++14 442

In traditional C++, you can optionally declare an enumerated type by using
a type name after enum. This is a weak type: You can assign enumerated values
to integers but not the other way around.

enum Choice {rock, paper, scissors };

Choice your_pick = paper, my_pick = rock;
int i = my_pick; // Ok.
my_pick = 1; // Error! Requires cast.
my_pick = static_cast<Choice>(1); // Ok.

enum Classes in C++11 Onward
C++11 and later compilers support a new way of using the enum keyword. By
combining enum with class, you create not just symbolic names but also a class.

enum class Choice {rock, paper, scissors };

You can now declare variables of type Choice. Such variables can be set or
initialized only to Choice values, namely, rock, paper, or scissors. The advan-
tage is you can never accidentally assign a value that isn’t from the group or
accidentally mistake an enumerated value for an integer. Conversion between
a strong enum value to an integer, or vice versa, requires a static_cast
conversion.

Choice comp = Choice::rock;
Choice player = Choice::paper;
Choice x = 0; // Error - 0 not in class Choice!
Choice y = 1; // Error - 1 not in class Choice!
Choice me = static_cast<Choice>(0) // Ok, cast used
int i = Choice::rock; // Error -- requires cast.

Extended enum Syntax: Controlling Storage
The syntax described in the previous section is probably sufficient for nearly all
uses of class name declarations, but occasionally you may need more control
over storage. The full syntax is as follows:

enum class enumeration_type : storage_type {
symbols

};

For example, you can specify that your symbols should be implemented by
the C++ as unsigned long integers.

ptg16518442

17
Raw-String Literals 443

enum class Choice : unsigned long {
 rock, paper, scissors
};

Another flexibility of the syntax is that you can optionally specify values for
the symbols, as follows:

enum class Numbers {
 zero,
 ten = 10;
 eleven,
 twelve,
 hundred = 100,
 hundred_and_one
};

By default, enumerations start at 0. Otherwise, if not explicitly assigned a
value, each symbol gets the value of the previous symbol plus 1. Therefore, in
the example just shown, the symbols have the values you’d expect.

Numbers oceans = Numbers::eleven; // Assign oceans 11

Raw-String Literals
The string literal conventions introduced in Chapter 7, “Pointers: Data by Loca-
tion,” create a standard C-string of type char*. (C++ also supports a wchar_t*
format for wide-character strings often used in international applications.)

The standard convention for string literals supports special characters such as
tab and newline, but it also forces certain ordinary characters—notably \ and "—
to be “escaped” by means of the backslash. For example, to represent this string
data in traditional C++

The "file" is c:\docs\a.txt.

you have to use this representation:

char s[] = "The \"file\" is c:\\docs\\a.txt.";

This at least has the virtue of being unambiguous to the compiler. But the
C++11 specification supports a new “raw-string” convention, whereby every-
thing between R"(and)" is considered part of the string and no characters need
to be “escaped.” Everything really is taken literally.

char s[] = R"(The "file" is c:\docs\a.txt.)";

ptg16518442

Chapter 17 New Features of C++14 444

The R prefix signals a C++ raw-string literal. This is more readable, don’t
you think? In general, the syntax is as follows:

R"(raw-string-text)"

Instead of using “(” and “)” to enclose the string, you can add another char-
acter (or string of characters, up to 16 in length) to further delimit the string.
This example uses “R*(” and “)*”:

char s[] = R"*(The "file" is c:\docs\a.txt.)*";

The delimiter character—in this case, *—takes on its special meaning only
in the special contexts shown. Otherwise, it can be used literally within the
string, as can every character.

Chapter 17 Summary
Here are the main points of Chapter 17:

◗ The new C++14 specification supports the use of an apostrophe (') as a digit sep-
arator for large numbers. These are for readability only and do not affect the value
of the number. For example, you can initialize a number to 10 million this way:

int n = 10'000'000;

◗ In the C++14 specification, the “s” suffix is supported by the standard library
to enable the specification of a string literal of genuine string type rather than
char*. This can be particularly helpful when used with functions that have auto
return type.

return "Hello"s;

◗ Finally, the C++14 specification adds support for the binary radix (that is, base
2). Such numerals work well when you are performing binary operations.

cout << data | 0b1111; // Turn on low 4 bits.

◗ The C++14 specification contains all the new features introduced in C++11,
some of which are only now being implemented on all compilers.

◗ C++11 adds support for the long long int, a 64-bit integer. There is also a corre-
sponding unsigned long long int type. In declaring variables of either type, the
int keyword is optional.

long long x = 0;
unsigned long long y = 0;

ptg16518442

17
445Chapter 17 Summary

◗ For numeric literals outside the range of long integers, compilers that are C++11
and later provide new numeric literal prefixes: LL for long long and ULL for
unsigned long long.

long long x = 1230004560012LL;

◗ The atoll function takes string input and returns a long long (64-bit) integer.

◗ Range-based for is a new syntax that says, “Do this statement for each member
of specified container.” The container can be an array, STL string object, or any
STL class that supports a begin and end function, such as the list template.

◗ This for syntax is simplest if you don’t need to alter the contents of the con-
tainer during the loop:

for(int n : my_array) // Print each member of
 cout << n << endl; // my_array

◗ Use an ampersand (&) in the variable declaration if you want to enable change
of values.

for(int& n : my_array) // Set each member of
 n = 0; // my_array to 0

◗ The auto keyword declares a data item in which the type is determined by con-
text. (But once declared, the type is fixed.) For example:

int my_int_array[NUM_ITEMS];

for (auto x : my_int_array)
 cout << x << endl; // x has int type

◗ The decltype keyword returns the type of its argument.

◗ Use the nullptr keyword to initialize a pointer that “points nowhere.”

int *p = nullptr;

◗ Compilers that are C++11 and later support both weak and strong enum (enu-
merated types). Use of enum class (see the following example) creates a strongly
typed set of enumerated values in which a separate namespace is created and
values cannot be assigned to or from another integer type without a cast.

enum class type_name { symbols };

◗ The R prefix is used in C++11-complaint compilers to permit raw-string literals
in which no character needs to be escaped, not even quote marks (") and back-
slashes (\). The sequences "(and)" delimit the string. Here is the general syntax:

R"(raw-string-text)"

ptg16518442

This page intentionally left blank

ptg16518442

447

18
Operator
Functions: Doing
It with Class

One of the more interesting things you can do with C++ is to define how opera-
tors work with objects of your classes. You can define a Fraction type, for example,
and then create a way for the following statements to be meaningful in C++:

Fraction fr1(1, 2), fr2(1, 4);
cout << fr1 + fr2 << endl;

Wouldn’t it be nice if this would add 1/2 to 1/4 and then print the characters
“3/4”? Well, you can make C++ do just that. And you can make such code even
more readable by adding the Fraction(string) constructor shown at the end of
Chapter 11. In that case, you can write this:

Fraction a = "1/2", b = "1/6";
cout << a + b << endl; // Print "2/3".

In this scenario, the addition operator (+) has been made into an operator
function. And the technique is called operator overloading.

The ability to write such functions is an appealing feature of C++, but it’s
only useful when you want to create what (in effect) becomes a new primitive
data type. In practice, this is an advanced technique only a few C++ program-
mers get around to using, so I’ve saved it for last.

Introducing Operator Functions
The basic syntax for writing class-operator functions is fairly simple.

return_type operator@(argument_list)

In this syntax, replace the symbol @ with a valid C++ operator, such as +,
−, *, or /. You can use any operator symbol supported for C++ standard types.
Normal precedence and associativity rules are enforced, as appropriate, for the
symbol. (See Appendix A.)

K
ey

wo
rd

ptg16518442

Chapter 18 Operator Functions: Doing It with Class448

You can define an operator function as either a member function or a global
(that is, nonmember) function.

◗ If you declare an operator function as a member function, then the object
through which the function is called corresponds to the left operand.

◗ If you declare an operator function as a global function, then each operand cor-
responds to a function argument.

Here’s how the + and − operator functions are declared inside the Point class:

class Point {
//...
public:

 Point operator+(Point pt);
 Point operator-(Point pt);
};

Given these declarations, you can apply operators to a Point object.

Point point1, point2, point3;
point1 = point2 + point3;

The compiler interprets this statement by calling the operator+ function
through the left operand—point2 in this case. The right operand—point3 in
this case—becomes the argument to the function. You can visualize the rela-
tionship this way:

point2 + point3

operator+ (Point pt)

What happens to point2? Is its value ignored? No. The function treats point2
as “this object,” so that unqualified use to x and y refer to point2’s copy of x and y.
You can see how this works in this function definition:

Point Point::operator+(Point pt) {
 Point new_pt;
 new_pt.x = x + pt.x;
 new_pt.y = y + pt.y;
 return new_pt;
}

ptg16518442

18
Introducing Operator Functions 449

Unqualified use of data members x and y refers to values in the left operand
(point2 in this case). The expressions pt.x and pt.y refer to values in the right
operand (point3 in this case).

The operator function is declared with Point return type, which means it returns
a Point object. This makes sense: if you add two points together, you should get
another point, and if you subtract a point from another, you should get another
point. But C++ allows you to specify any valid type for the return-value type.

If there is a Point(int, int) constructor, you can write the function more suc-
cinctly as follows:

Point Point::operator+(Point pt) {
 return Point(x + pt.x, y + pt.y);
}

The argument list can contain any type. Overloading is permitted here: You
can declare an operator function that interacts with the int type, another oper-
ator function that interacts with the float type, and so on.

In the case of the Point class, it might make sense to permit multiplication by
an integer. The declaration of the corresponding operator function (within the
class) would look like this:

Point operator*(int n);

The function definition might reasonably look like this:

Point Point::operator*(int n) {
 Point new_pt;
 new_pt.x = x * n;
 new_pt.y = y * n;
 return new_pt;
}

Again, the function returns a Point object, although you could return anything
you choose.

As a contrasting example, you could create an operator function that calculates
the distance between two points and returns a floating-point (double) result. For
this example, I’ve chosen the % operator, but you can choose any other binary
operator defined in C++. The important thing here is that you can choose any
return type that would be appropriate for the operation you’re performing.

#include <cmath>

double Point::operator%(Point pt) {
 int d1 = pt.x – x;

ptg16518442

Chapter 18 Operator Functions: Doing It with Class450
 int d2 = pt.y – y;
 return sqrt(d1 * d1 + d2 * d2);
}

Given this function definition, the following code would correctly print out
the distance between points (20, 20) and (24, 23) as 5.0:

Point pt1(20, 20);
Point pt2(24, 23);
cout << "Distance between points is :" << pt1%pt2;

Operator Functions as Global Functions
You can also declare operator functions as global functions. You no longer have
all the relevant functions centered in the class declaration, but it’s sometimes
necessary to use this approach.

A global operator function is declared outside of any class. The types in the
argument list determine what kinds of operands the function applies to. For
example, the Point class addition-operator function can be written as a global
function. Here’s the declaration (the prototype), which should appear before
the function is called:

Point operator+(Point pt1, Point pt2);

Here’s the function definition:

Point operator+(Point pt1, Point pt2) {
 Point new_pt;
 new_pt.x = pt1.x + pt2.x;
 new_pt.y = pt1.y + pt2.y;
 return new_pt;
}

You can visualize a call to this function this way:

point2 + point3

operator+ (Point pt1, Point pt2)

Now both operands are interpreted as function arguments. The left operand
(point2 in this case) gives its value to the first argument, pt1. There is no con-
cept of “this object,” and all references to Point data members must be qualified.

ptg16518442

18
Operator Functions as Global Functions 451

That can create a problem. If the data members are not public, this function
cannot access them. One solution is to use function calls, if available, to get
access to the data.

Point operator+(Point pt1, Point pt2) {
 Point new_pt;
 int a = pt1.get_x() + pt2.get_x();
 int b = pt1.get_y() + pt2.get_y();
 new_pt.set(a, b);
 return new_pt;
}

But that’s not a pretty solution, and with some classes, it may not even work
because the members might be completely inaccessible. A better solution is to
declare a function as a friend function, which means that the function is global,
but it has access to private members.

class Point {
//...
public:

 friend Point operator+(Point pt1, Point pt2);
};

Sometimes it’s necessary to write an operator function as a global function.
In a member function, the left operand is interpreted as “this object” in the
function definition. But what if the left operand does not have an object type?
What if you want to support an operation like this?

point1 = 3 * point2;

The problem here is that the left operand has int type, not Point type. The
only way to support such an operation is to write a global function.

Point operator*(int n, Point pt) {
 Point new_pt;
 new_pt.x = pt.x * n;
 new_pt.y = pt.y * n;
 return new_pt;
}

To gain access to private data members, the function may need to be made a
friend of the class.

class Point {
//...
public:

ptg16518442

Chapter 18 Operator Functions: Doing It with Class452
 friend Point operator*(int n, Point pt);
};

You can visualize the call to the function this way:

3 * point2

operator*(int n, Point pt)

Improve Efficiency with References
Every time an object is passed or returned as a value, a call to the copy con-
structor is issued and memory must be allocated. But you can minimize these
actions by using reference types.

Here’s a Point-class add function, along with an addition-operator (+) func-
tion that calls it, written without the use of reference types:

class Point {
//...
public:

 Point add(Point pt);
 Point operator+(Point pt);
};

Point Point::add(Point pt) {
 Point new_pt;
 new_pt.x = x + pt.x;
 new_pt.y = y + pt.y;
 return new_pt;
}

Point Point::operator+(Point pt) {
 return add(pt);
}

This is an obvious way to write these functions, but look how much an
expression such as “pt1 + pt2” results in the creation of new objects:

◗ The right operand is passed to the operator+ function. A copy of pt2 is made
and passed to the function.

ptg16518442

18
Improve Efficiency with References 453

◗ The operator+ function calls the add function. Now another copy of pt2 must
be made and passed along to this function.

◗ The add function creates a new object, new_pt. This calls the default construc-
tor. When that function returns, the program makes a copy of new_pt and
passes it back to its caller (the operator+ function).

◗ The operator+ function returns the object to its caller, requiring yet another
copy of new_pt to be made.

That’s a lot of copying! Five new objects are created, involving one call to the
default constructor and four calls to the copy constructor. This is extremely
inefficient behavior.

Note � In these days of super-fast CPUs, it may seem as if efficiency is not a
factor. But you can never be sure how a class will be used, and some programs
execute a loop thousands or even millions of times a second. So, when there’s
an easy way to make your code more efficient, you ought to take advantage
of it.

You can eliminate two of these copy operations by using reference argu-
ments. Here is the revised version, with altered lines in bold:

class Point {
//...
public:

 Point add(const Point &pt);
 Point operator+(const Point &pt);
};

Point Point::add(const Point &pt) {
 Point new_pt;
 new_pt.x = x + pt.x;
 new_pt.y = y + pt.y;
 return new_pt;
}

Point Point::operator+(const Point &pt)
 return add(pt);
}

ptg16518442

Chapter 18 Operator Functions: Doing It with Class454

One of the benefits of using reference types, such as Point&, is that the imple-
mentation of the function calls changes, but no other change is required in the
source code.

I also use the const keyword here; this keyword prevents changes to the
argument being passed. When the function got its own copy of the argument,
it couldn’t alter the value of the original copy, no matter what it did. The const
keyword preserves data protection, so that you can’t accidentally alter the value
of an operand.

The use of references eliminates two instances of object copying. But each time
one of these functions returns, it makes a copy of an object. You can cut down
on this copying by making one or both of the functions inline. The operator+
function, which does nothing more than call the add function, is a good candi-
date for inlining.

class Point {
//...
public:

 Point operator+(const Point &pt) {return add(pt);}
};

When the operator+ function is inlined, operations such as “pt1 + pt2” are
translated directly into calls to the add function. This saves another copy oper-
ation. Now most of the copying has been eliminated. The class is much more
efficient.

Example 18.1. Point Class Operators
You now have all the tools you need to write efficient, useful operator func-
tions for the Point class. The following code shows a complete declaration of the
Point class, along with code that tests it by operating on objects.

Code brought over from Chapter 11 is left in normal font. New or altered
lines are in bold.

point3.cpp

#include <iostream>
using namespace std;

class Point {
private: // Data members (private)
 int x, y;

ptg16518442

18
Improve Efficiency with References 455

public: // Constructors
 Point() {set(0,0);}
 Point(int new_x, int new_y) {set(new_x, new_y);}
 Point(const Point &src) {set(src.x, src.y);}

// Operations

 Point add(const Point &pt);
 Point sub(const Point &pt);
 Point operator+(const Point &pt) {return add(pt);}
 Point operator-(const Point &pt) {return sub(pt);}

// Other member functions

 void set(int new_x, int new_y);
 int get_x() const {return x;}
 int get_y() const {return y;}
};

int main()
{
 Point point1(20, 20);
 Point point2(0, 5);
 Point point3(-10, 25);
 Point point4 = point1 + point2 + point3;

 cout << "The point is " << point4.get_x();
 cout << ", " << point4.get_y() << "." << endl;
 return 0;
}

void Point::set(int new_x, int new_y) {
 if (new_x < 0) {

new_x *= -1;
 }
 if (new_y < 0) {

new_y *= -1;
 }
 x = new_x;
 y = new_y;
}

▼ continued on next page

point3.cpp, cont.

ptg16518442

Chapter 18 Operator Functions: Doing It with Class456

Point Point::add(const Point &pt) {
 Point new_pt;
 new_pt.x = x + pt.x;
 new_pt.y = y + pt.y;
 return new_pt;
}

Point Point::sub(const Point &pt) {
 Point new_pt;
 new_pt.x = x - pt.x;
 new_pt.y = y - pt.y;
 return new_pt;
}

H
ow

 It
 Works

How It Works
This example adds a series of operator functions to the Point class.

 Point add(const Point &pt);
 Point sub(const Point &pt);
 Point operator+(const Point &pt) {return add(pt);}
 Point operator-(const Point &pt) {return sub(pt);}

To review, the operator+ function is an inline function that translates expres-
sions such as the following into calls to the add function:

Point point1 = point2 + point3;

This expression, in effect, gets translated into:

Point point1 = point2.add(point3);

The add function, in turn, creates a new point and initializes it by adding the
coordinates of “this object” (point2 in this example) to the coordinates of the
argument (point3). The operator- and sub functions work in a similar manner.

This example also adds the const keyword to the declarations of the get_x
and get_y functions. In this context, the const keyword says, “The function
agrees not to change any data member or call any function other than another
const function.”

 int get_x() const {return x;}
 int get_y() const {return y;}

point3.cpp, cont.

ptg16518442

18
Improve Efficiency with References 457

This is a useful change. It prevents accidental changes to data members,
it allows the functions to be called by other const functions, and it allows
the functions to be called by functions that have agreed not to alter a Point
object.

For example, suppose you declare a const Point object:

const Point p1, p2, p3;
cout << p1.get_x(); // Is this legal?

The important idea here is that const member functions enable this second
statement to be successfully executed—and it’s perfectly reasonable because all
it tries to do is call a member function of p1 that doesn’t change it.

The rule that applies to const member functions is:

✱ If an object is declared const, only const member functions of this object can
be called. If an object is not declared const, both const and non-const func-
tions can be called.

Ex
er

cis
es

 EXERCISES

Exercise 18.1.1. Write a test to see how many times the default constructor and the
copy constructor are called. (Hint: Insert statements that send output to cout;
you can span multiple lines if needed, as long as the function definitions are
syntactically correct.) Then, run the program with and without the reference
arguments (const Point &) changed back to ordinary arguments (Point). How
much more efficient is the former approach?

Exercise 18.1.2. Write and test an expanded Point class that supports multiplica-
tion of a Point object by an integer. Use global functions, aided by friend decla-
rations, as described in the previous section.

Exercise 18.1.3. Write a similar class but for a three-dimensional point (Point3D).

Example 18.2. Fraction Class Operators
This example uses techniques similar to those in Example 18.1 to extend basic
operator support to the Fraction class. As before, the code uses reference argu-
ments (const Fraction &) for efficiency.

ptg16518442

Chapter 18 Operator Functions: Doing It with Class458

Fract5.cpp

#include <iostream>
using namespace std;

class Fraction {
private:
 int num, den; // Numerator and denominator.
public:
 Fraction() {set(0, 1);}
 Fraction(int n, int d) {set(n, d);}
 Fraction(const Fraction &src);

 void set(int n, int d)
{num = n; den = d; normalize();}

 int get_num() const {return num;}
 int get_den() const {return den;}
 Fraction add(const Fraction &other);
 Fraction mult(const Fraction &other);
 Fraction operator+(const Fraction &other)

{return add(other);}
 Fraction operator*(const Fraction &other)

{return mult(other);}

private:
 void normalize(); // Convert to standard form.
 int gcf(int a, int b); // Greatest Common Factor.
 int lcm(int a, int b); // Lowest Common Denom.
};

int main()
{
 Fraction f1(1, 2);
 Fraction f2(1, 3);

 Fraction f3 = f1 + f2;

 cout << "1/2 + 1/3 = ";
 cout << f3.get_num() << "/";
 cout << f3.get_den() << "." << endl;
 return 0;
}

ptg16518442

18
Improve Efficiency with References 459

// ---
// FRACTION CLASS FUNCTIONS

Fraction::Fraction(Fraction const &src) {
 num = src.num;
 den = src.den;
}

// Normalize: put fraction into standard form, unique
// for each mathematically different value.
//
void Fraction::normalize(){

 // Handle cases involving 0

 if (den == 0 || num == 0) {
num = 0;
den = 1;

 }

 // Put neg. sign in numerator only.

 if (den < 0) {
num *= -1;
den *= -1;

 }

 // Factor out GCF from numerator and denominator.

 int n = gcf(num, den);
 num = num / n;
 den = den / n;
}

// Greatest Common Factor
//
int Fraction::gcf(int a, int b){
 if (b == 0)

return abs(a);

▼ continued on next page

Fract5.cpp, cont.

ptg16518442

Chapter 18 Operator Functions: Doing It with Class460

 else
return gcf(b, a%b);

}

// Lowest Common Multiple
//
int Fraction::lcm(int a, int b){
 int n = gcf(a, b);
 return a / n * b;
}

Fraction Fraction::add(const Fraction &other) {
 Fraction fract;
 int lcd = lcm(den, other.den);
 int quot1 = lcd/other.den;
 int quot2 = lcd/den;
 fract.set(num * quot1 + other.num * quot2, lcd);
 return fract;
}

Fraction Fraction::mult(const Fraction &other) {
 Fraction fract;
 fract.set(num * other.num, den * other.den);
 return fract;
}

H
ow

 It
 Works

How It Works
The add and mult functions are taken from previously existing code in the Frac-
tion class. All I’ve done is change the type of the argument so that each of these
functions uses reference arguments, providing a more efficient implementation.

 Fraction add(const Fraction &other);
 Fraction mult(const Fraction &other);

When the declarations of these functions change, the function definitions must
change as well, to reflect the altered argument type. But this change affects only the
function heading (shown in bold). The rest of the definitions stay the same.

Fraction Fraction::add(const Fraction &other) {
 Fraction fract;
 int lcd = lcm(den, other.den);

Fract5.cpp, cont.

ptg16518442

18
Improve Efficiency with References 461

 int quot1 = lcd/den;
 int quot2 = lcd/other.den;
 fract.set(num * quot1 + other.num * quot2, lcd);
 return fract;
}

Fraction Fraction::mult(const Fraction &other) {
 Fraction fract;
 fract.set(num * other.num, den * other.den);
 return fract;
}

The operator functions do nothing more than call the appropriate member
function (add or mult) and return the value. This is because of how the inline
operator+ and operator* functions are written. For example, when the compiler
sees the expression

f1 + f2

it translates this expression by making the following function call:

f1.operator+(f2)

Similarly, when the compiler sees the expression

f1 * f2

it translates this function into:

f1.mult(f2)

The statements in the main function test the operator-function code by
declaring fractions, adding them, and printing the results.

Op
ti

m

izing

Optimizing the Code
The Fraction class has a useful Fraction(int, int) constructor. You can take
advantage of this constructor, revising the add and mult functions to be more
succinct so that they don’t have to call the set function.

Fraction Fraction::add(const Fraction &other) {
 int lcd = lcm(den, other.den);
 int quot1 = lcd/den;
 int quot2 = lcd/other.den;
 return Fraction(num * quot1 + other.num * quot2,

lcd);
}

ptg16518442

Chapter 18 Operator Functions: Doing It with Class462
Fraction Fraction::mult(const Fraction &other) {
 return Fraction(num * other.num, den * other.den);
}

There’s another important way in which you can improve the class, which I
mentioned earlier in regard to the Point class: you can declare most of the member
functions to be const functions.

Which ones should be so declared? The answer is simple: if a member func-
tion does not change the object through which it is declared, it should ideally be
declared as a const member function. In many programs this won’t matter, but
it does matter if there’s any chance the class user will declare const objects.

const Fraction one_half(1, 2), one_third(1, 3);

These objects will only support calls to member functions that are also
declared const. (Non-const objects can call both const and non-const func-
tions.) Such member functions, in turn, are barred from making any changes to
the object through which they are called.

So which member functions should be const? The answer is, most of them.
The constructors should not be declared const, and neither should the func-
tions that change the contents of the object: set and normalize. However, all
the operator functions in this particular case should ideally be const, because
although they might create a new object, they make no change to the object
through which they are called.

To declare a member function const, place the keyword right after its decla-
ration but before the semicolon or opening brace. For example:

 Fraction add(const Fraction &other) const;
 Fraction mult(const Fraction &other) const;

Ex
er

cis
es

 EXERCISES

Exercise 18.2.1. Revise the main function of the example so it prompts for a series
of fraction values, exiting the input loop when 0 is entered for a denominator.
Make the program track the sum of all the fractions entered and print the result.

Exercise 18.2.2. Write an operator− function (subtraction) for the Fraction class.

Exercise 18.2.3. Write an operator/ function (division) for the Fraction class.

Exercise 18.2.4. Revise the Fraction class so that every member function is declared
const, except for the functions for which this would be inappropriate (set, nor-
malize, and the constructors).

ptg16518442

18
The Class Assignment Function (=) 463

Working with Other Types
Thanks to overloading, you can write many different functions for each opera-
tor, in which each function works on different types. For example:

class Fraction {
//...
public:
 operator+(const Fraction &other);
 friend operator+(int n, const Fraction &fr);
 friend operator+(const Fraction &fr, int n);
}

Each of these functions deals with a different combination of int and Fraction
operands, enabling you to support expressions like this:

Fraction fract1;
fract1 = 1 + Fraction(1, 2) + Fraction(3, 4) + 4;

But there’s an easier way to support operations with integers. All you really need
is a function that converts integers to Fraction objects. If such an operation were in
place, you’d only need to write one version of the operator+ function. In an expres-
sion such as the following, the compiler would convert the number 1 into Fraction
format and then call the Fraction::operator+ function to add two fractions.

Fraction fract1 = 1 + Fraction(1, 2);

It turns out that such a conversion function is easy to write—it’s supplied by
the Fraction constructor that takes a single int argument! This is a simple con-
structor and it can be made an inline function for efficiency.

 Fraction(int n) {set(n, 1);}

The Class Assignment Function (=)
When you write a class, the C++ compiler automatically supplies certain func-
tions for you. I’ve introduced two of these so far, and this section introduces a
third.

◗ The default constructor. The compiler version initializes nothing. Also, the
compiler yanks this constructor away if you write any constructors of your own.
To be safe, you should write your own default constructor, unless you want to
force the class user to initialize the object.

ptg16518442

Chapter 18 Operator Functions: Doing It with Class464

◗ The copy constructor. The behavior of the automatic version is to perform
a simple member-by-member copy of the source object.

◗ The assignment-operator function (=). This is the new one.

The compiler supplies an assignment-operator function if you don’t. That’s
why you’ve been able to do operations such as this one:

f1 = f2;

Chapter 15, “Object-Oriented Poker,” relied on this behavior, as it assigned
objects returned by a function to an array of those objects. The data in a Card object
was, in each case, copied directly into the array with base type Card.

The compiler-supplied operator= function is similar to the compiler-
supplied copy constructor: it performs a simple member-by-member copy (or
rather, assignment). But remember that the copy constructor creates a new
object, so they are not identical.

To write your own assignment-operator function, use the following syntax:

class_name& operator=(const class_name &source_arg)

This function is similar to the copy constructor, but it should return a ref-
erence to an object of the class rather than create a new object. Here’s what the
operator= function might look like for the Fraction class:

class Fraction {
//...
public:
 Fraction& operator=(const Fraction &src) {

set(src.num, src.den);
return *this;

 }
};

This code involves the use of the keyword, this. The keyword in this case gives
a pointer to the current object—that is, the object though which the member
function was called.

this

The effect of “return *this;” is to return the object itself! And yet, because of
the way the function is declared, what gets returned is a reference, not a copy.
That’s exactly what is supposed to happen in a C++ assignment, by the way:
the value produced by an assignment is actually a reference to the left operand,
which is what makes it possible to write code such as the following:

K
ey

wo
rd

ptg16518442

18
The Test-for-Equality Function (==) 465

int a, b, c;
a = b = c = 0; // Assign 0 to all of these variables.

But for now, it’s enough to know that for a class like this one, you don’t need
to write an assignment-operator function at all. The default behavior is ade-
quate here, and the compiler always supplies this operator function if you don’t.

An assignment operator would be needed in cases in which each object of
the class owned resources in addition to its data members; resources that, for
example, were allocated upon construction. This would be the case if you were
to write your own version of the string class from scratch.

The Test-for-Equality Function (==)
The compiler supplies an assignment-operator (=) function if you don’t write
one, but test for equality is another matter. The compiler does not automatically
supply an operator== function for your classes. So the following code does not
work if you don’t write the required function:

Fraction f1(2, 3);
Fraction f2(4, 6);

if (f1 == f2) {
 cout << "The fractions are equal.";
} else {
 cout << "The fractions are not equal.";
}

What this ought to do, of course, is print a message stating that the fractions
are equal, even though different numbers (2/3 vs. 4/6) were entered.

Thanks to the normalize function we’ve written for the Fraction class, com-
parisons will work correctly. If the numerators and denominators are both
equal, then the fractions are equal. Therefore, the operator== function can be
written as follows:

bool Fraction::operator==(const Fraction &other) {
 if (num == other.num && den == other.den) {

return true;
 } else {

return false;
 }
}

ptg16518442

Chapter 18 Operator Functions: Doing It with Class466

This function definition can be made even more concise:

bool Fraction::operator==(const Fraction &other) {
 return (num == other.num && den == other.den);
}

The function definition is now short enough that it can be reasonably inlined.

class Fraction {
//...
public:
 int operator==(const Fraction &other) {

return (num == other.num && den == other.den);
 }
};

A Class “Print” Function
It’s annoying to have to keep writing essentially the same lines of code every
time we want to print the contents of a fraction.

 cout << f3.get_num() << "/";
 cout << f3.get_den() << "." << endl;

The obvious way to reduce this work is to write a function. You can even name a
member function “print,” because it is not a reserved word in C++.

void Fraction::print() {
 cout << num << "/";
 cout << den;
};

But what you’d really like to do would be to print an object this way:

cout << fract;

The way to support such statements is to write an operator<< function that
interacts with cout’s parent class, ostream. The function must be a global func-
tion, because the left operand is an object of the ostream class, and we don’t
have access to updating or altering ostream code.

The function should be declared as a friend of the Fraction class so that it has
access to private members.

class Fraction {
//...

ptg16518442

18
A Class “Print” Function 467

public:
friend ostream &operator<<(ostream &os, Fraction &fr);
};

This function returns a reference to an ostream object. This is necessary so that
statements such as the following work correctly:

cout << "The fraction's value is " << fract << endl;

Here’s a definition for the operator<< function. This will print the Fraction
object in a pleasing form, such as “2/3”.

ostream &operator<<(ostream &os, Fraction &fr) {
 os << fr.num << "/" << fr.den;
 return os;
}

This solution directs the Fraction output to be sent to any ostream object
specified. For example, if outfile is a text-file output object, you can use it to
print a fraction to the file.

outfile << fract;
cout << "The object " << fract;
cout << " was printed to a file." << endl;

Example 18.3. The Completed Fraction Class
Here is a more or less complete version of the Fraction class, along with code to
test it. As before, only code that is new is shown in bold here.

Fract6.cpp

#include <iostream>
using namespace std;

class Fraction {
private:
 int num, den; // Numerator and denominator.
public:
 Fraction() {set(0, 1);}
 Fraction(int n, int d) {set(n, d);}
 Fraction(int n) {set(n, 1);}
 Fraction(const Fraction &src);

▼ continued on next page

ptg16518442

Chapter 18 Operator Functions: Doing It with Class468

 void set(int n, int d)
{num = n; den = d; normalize();}

 int get_num() const {return num;}
 int get_den() const {return den;}
 Fraction add(const Fraction &other);
 Fraction mult(const Fraction &other);
 Fraction operator+(const Fraction &other)

{return add(other);}
 Fraction operator*(const Fraction &other)

{return mult(other);}
 bool operator==(const Fraction &other);
 friend ostream &operator<<(ostream &os,

Fraction &fr);

private:
 void normalize(); // Convert to standard form.
 int gcf(int a, int b); // Greatest Common Factor.
 int lcm(int a, int b); // Lowest Common Denom.
};

int main()
{
 Fraction f1(1, 2);
 Fraction f2(1, 3);

 Fraction f3 = f1 + f2 + 1;

 cout << "1/2 + 1/3 + 1 = " << f3 << endl;
 return 0;
}

// ---
// FRACTION CLASS FUNCTIONS

Fraction::Fraction(Fraction const &src) {
 num = src.num;
 den = src.den;
}

// Normalize: put fraction into standard form, unique
// for each mathematically different value.
//

Fract6.cpp, cont.

ptg16518442

18
A Class “Print” Function 469

void Fraction::normalize(){

 // Handle cases involving 0

 if (den == 0 || num == 0) {
num = 0;
den = 1;

 }

 // Put neg. sign in numerator only.

 if (den < 0) {
num *= -1;
den *= -1;

 }

 // Factor out GCF from numerator and denominator.

 int n = gcf(num, den);
 num = num / n;
 den = den / n;
}

// Greatest Common Factor
//
int Fraction::gcf(int a, int b){
 if (b == 0)

return abs(a);
 else

return gcf(b, a%b);
}

// Lowest Common Multiple
//
int Fraction::lcm(int a, int b){
 int n = gcf(a, b);
 return a / n * b;
}

▼ continued on next page

Fract6.cpp, cont.

ptg16518442

Chapter 18 Operator Functions: Doing It with Class470

Fraction Fraction::add(const Fraction &other) {
 int lcd = lcm(den, other.den);
 int quot1 = lcd/den;
 int quot2 = lcd/other.den;
 return Fraction(num * quot1 + other.num * quot2,

lcd);
}

Fraction Fraction::mult(const Fraction &other) {
 return Fraction(num * other.num, den * other.den);
}

bool Fraction::operator==(const Fraction &other) {
 return (num == other.num && den == other.den);
}

// ---
// FRACTION CLASS FRIEND FUNCTION

ostream &operator<<(ostream &os, Fraction &fr) {
 os << fr.num << "/" << fr.den;
 return os;
}

H
ow

 It
 Works

How It Works
This example adds just a few more capabilities to the Fraction class:

◗ A constructor that takes a single int argument

◗ An operator function that supports the test-for-equality operator (==)

◗ A global function that supports printing Fraction objects to an ostream object
such as cout

A benefit of having a Fraction(int) constructor is that the program automati-
cally converts integers to Fraction objects as needed.

 Fraction(int n) {set(n, 1);};

The action of this function is to use whatever number is specified as numer-
ator and use 1 for the denominator. 1 is converted to 1/1, 2 is converted to 2/1, 5
is converted to 5/1, and so on.

Fract6.cpp, cont.

ptg16518442

18
A Really Final Word (about Ops) 471

The other new extensions to the Fraction class incorporate code introduced
in previous sections. First, the class declaration is expanded so that it declares
two new functions.

 int operator==(const Fraction &other);
 friend ostream &operator<<(ostream &os, Fraction &fr);

The operator<< function is a global function but is also a friend of the Frac-
tion class. It can therefore access private data (specifically, num and den).

ostream &operator<<(ostream &os, Fraction &fr) {
 os << fr.num << "/" << fr.den;
 return os;
}

Ex
er

cis
es

 EXERCISES

Exercise 18.3.1. Alter the operator<< function of the example so that it prints
numbers in the format “(n, d)”, where n and d are the numerator and denomi-
nator (num and den members), respectively.

Exercise 18.3.2. Write greater-than (>) and less-than (<) functions, and revise the
main function of the example to test these functions. For example, test whether
1/2 + 1/3 is greater than 5/9. (Hint: Remember that A/B is greater than C/D if
A * D > B * C.)

Exercise 18.3.3. Write an operator<< function for sending the contents of a Point
object to an ostream object (such as cout). Assume the function has been
declared as a friend function of the Point class. Write the function definition.

Exercise 18.3.4. Revise the class to declare all member functions const, except for
those few (set, normalize, and the constructors) for which this would not be
appropriate.

A Really Final Word (about Ops)
Writing class operator functions is an appealing side of C++. But it’s only occa-
sionally used in declaring new classes, even by advanced programmers.

Why isn’t it used more? One reason is that it’s potentially a good deal of work
just to produce something that might be labeled “syntactic sugar.” It’s primarily
a convenient trick that enables someone to write

fract1 + fract2

ptg16518442

Chapter 18 Operator Functions: Doing It with Class472

instead of

fract1.add(fract2)

Admittedly, the operator-overloaded version (the first one) saves some typ-
ing. But some programming firms actively discourage their C++ programmers
from writing operator functions because such usage doesn’t improve efficiency
at runtime and potentially hinders it.

Yet this book has been using the operator-function capability all along. Writing
an operator function is also called operator overloading, which means redefin-
ing what an operator does when it’s applied to a particular kind of object. We’ve
been using this all along in the case of cin and cout.

cout << "Enter number to store in n: ";
cin >> n;

The so-called “stream operators,” << and >>, are really the bit-shift opera-
tors from the old C language, redefined to do something different when applied
to a stream object. Although this usage is convenient, it does not set a good
precedent. (It’s probably worth it, though, because the visual metaphor it creates in
this case is so ideal.) Usually, the general, abstract meaning of an operator should
remain the same, even when applied in a new context. For example, you’d
expect the plus sign (+) to always perform some sort of addition—which, argu-
ably, it does for string objects.

Why, then, did C++ designer Bjarne Stroustrup put the operator overloading
capability into C++ from the beginning? No doubt it was to help achieve one
of the design goals of C++: for the language was always more than “C with
classes”; it was a way of building powerful and flexible data types, almost as if
you were extending the language itself.

And that turns out to be one of the best ways to understand object orien-
tation, at least as it is realized in C++. At a certain level, classes are extremely
sophisticated user-defined types, empowered to do all kinds of interesting
things and every bit as convenient as the primitive types—int, double, and so
on. In the final analysis, there’s probably no programming language in exis-
tence that offers all the possibilities and choices that C++ does.

Chapter 18 Summary
Here are the main points of Chapter 18:

◗ An operator function for a class has the following declaration, in which @
stands for any valid C++ operator.

return_type operator@(argument_list)

ptg16518442

18
473Chapter 18 Summary

◗ An operator function may be declared as a member function or a global function.
If it is a member function, then (for a binary operator) there is one argument. For
example, the operator+ argument for the Point class could have this declaration
and definition:

class Point {
//...
public:
 Point operator+(Point pt);
};

Point Point::operator+(Point pt) {
 Point new_pt;
 new_pt.x = x + pt.x;
 new_pt.y = y + pt.y;
 return new_pt;
}

◗ Given this code, the compiler now knows how to interpret the addition sign
when applied to two objects of the class. This expression produces another
object of the Point class:

point1 + point2

◗ When an operator function is used this way, the left operand becomes the
object through which the function is called, and the right operand is passed as
an argument. So in the operator+ definition just shown, unqualified references
to x and y refer to the values of the left operand.

◗ Operator functions can also be declared as global functions. For a binary oper-
ator, the function has two arguments. For example:

Point operator+(Point pt1, Point pt2) {
 Point new_pt;
 new_pt.x = pt1.x + pt2.x;
 new_pt.y = pt1.y + pt2.y;
 return new_pt;
}

◗ One drawback of writing the operator function this way is that it loses access to
private members. To overcome this limitation, declare the global function as a
friend of the class. For example:

class Point {
//...

ptg16518442

Chapter 18 Operator Functions: Doing It with Class474
public:
 friend Point operator+(Point pt1, Point pt2);
};

◗ If an argument takes an object but does not need to alter it, you can often
improve the efficiency of a function by revising it to use a reference argument—
for example, changing an argument of type “Point” to type “const Point&.”

◗ A constructor with one argument provides a conversion function. For exam-
ple, the following constructor enables automatic conversion of integer data into
Fraction-class format:

Fraction(int n) {set(n, 1);};

◗ If you don’t write an assignment-operator function (=), the compiler automat-
ically supplies one for you. The behavior of the compiler-supplied version is to
perform a simple member-by-member assignment.

◗ The compiler does not supply a test-for-equality function (==), so you need to
write your own if you want to be able to compare objects. It’s a good idea to use
the bool return type, if your compiler supports it; otherwise, use the int return
type for this function.

◗ To write a “print” function for a class, write a global operator<< function; the
first argument should have the ostream type, so that the stream operator (<<)
is supported for cout and other output-stream classes. You should first declare
this function as a friend to your class. For example:

class Point {
//...
public:
 friend ostream &operator<<(ostream &os, Fraction &fr);
};

◗ In the function definition, the statements should write data from the right
operand (fr in this case) to the ostream argument. Then the function should
return the ostream argument itself. For example:

ostream &operator<<(ostream &os, Fraction &fr) {
 os << fr.num << "/" << fr.den;
 return os;
}

ptg16518442

475

A
Operators

Table A.1 lists C++ operators with their precedence, associativity, description,
and syntax. The levels—to which I’ve assigned numbers—have no significance
beyond the fact that all operators at the same level have equal precedence.

Associativity can be left-to-right or right-to-left. This matters when two
operators are at the same level of precedence. For example, in the expression

*p++

the * and ++ operators are at the same level of precedence (level 2), so the order
of evaluation is determined by associativity—in this case, right-to-left. The
expression is therefore evaluated as if written this way:

*(p++)

meaning that it is the pointer p itself (not what it points to) that gets incremented.
Note that level-2 operators in this table are unary operators; that is, they

operate on only one expression. Most other operators are binary, having two
operands. Some operators (such as *) have both a unary and binary version—
and they do very different things.

The items in the syntax column represent several kinds of expressions:

◗ expr: Any expression.

◗ num: Any numeric expression (including char).

◗ int: An integer (also includes char).

◗ ptr: A pointer (that is, an address expression).

◗ member: A member of a class.

◗ lvalue: An item that can legally be the target of an assignment. This includes a
variable, an array element, a reference, or a fully dereferenced pointer. Literals
and array names can never be lvalues.

ptg16518442

Appendix A Operators476
Table A.1: C++ Operators by Precedence Level

LEVEL ASSOCIATION OPERATOR DESCRIPTION SYNTAX

1 L-to-R () Function call func(args)

1 L-to-R [] Access array element array[int]

1 L-to-R −> Access class member ptr−>member

1 L-to-T . Access class member object.member

1 L-to-R :: Clarify scope class::name
::name

2 R-to-L ! Logical negation !expr

2 R-to-L ~ Bitwise negation ~int

2 R-to-L ++ Increment ++num
num++

2 R-to-L -- Decrement --num
num--

2 R-to-L − Change sign of −num

2 R-to-L * Get contents at (dereference) *ptr

2 R-to-L & Get address of &lvalue

2 R-to-L sizeof Get size of data in bytes sizeof(epxr)

2 R-to-L new Allocate data object(s) new type
new type[int]
new type(args)

2 R-to-L delete Remove data object(s) delete ptr
delete [] ptr

2 R-to-L cast Change type (type) expr

3 L-to-R .* Pointer-to-member (rarely used) obj.*ptr_mem

3 L-to-R −>* Pointer-to-member (rarely used) ptr−>*ptr_mem

4 L-to-R * Multiply num * num

4 L-to-R / Divide num / num

4 L-to-R % Modulus (remainder) int % int

5 L-to-R + Addition num + num
ptr + int
int + ptr

5 L-to-R − Subtraction num − num
ptr − int
ptr − ptr

6 L-to-R << Left shift (bitwise); also stream op expr << int

6 L-to-R >> Right shift (bitwise); also stream op expr>>int

ptg16518442

477

LEVEL ASSOCIATION OPERATOR DESCRIPTION SYNTAX

7 L-to-R < Is less than? num < num
ptr < ptr

7 L-to-R <= Is less than or equal? num <= num
ptr <= ptr

7 L-to-R > Is greater than? num > num
ptr > ptr

7 L-to-R >= Is greater than or equal? num >= num
ptr >= ptr

8 L-to-R == Test for equality num == num
ptr == ptr

8 L-to-R != Test for inequality num != num
ptr != ptr

9 L-to-R & Bitwise AND int & int

10 L-to-R ^ Bitwise XOR (exclusive OR) int ^ int

11 L-to-R | Bitwise OR int | int

12 L-to-R && Logical AND expr && expr

13 L-to-R || Logical OR expr || expr

14 R-to-L ?: Conditional operator: evaluate expr1:
if nonzero, evaluate and return expr2;
otherwise, evaluate and return expr3

expr1 ? expr2 : expr3

15 R-to-L = Assign lvalue = expr

15 R-to-L += Add and assign lvalue += expr

15 R-to-L −= Subtract and assign lvalue −= expr

15 R-to-L *= Multiply and assign lvalue *= expr

15 R-to-L /= Divide and assign lvalue /= expr

15 R-to-L %= Modular divide and assign lvalue %= expr

15 R-to-L >>= Right shift and assign lvalue >>= expr

15 R-to-L <<= Left shift and assign lvalue <<= expr

15 R-to-L &= Bitwise AND and assign lvalue &= expr

15 R-to-L ^= Bitwise XOR and assign lvalue ^= expr

15 R-to-L |= Bitwise OR and assign lvalue |= expr

16 R-to-L , Join (evaluate both expressions and
return expr2)

expr1, expr2

Table A.1: C++ Operators by Precedence Level (continued)

ptg16518442

Appendix A Operators478

The rest of this appendix provides more detail on some of the operators, in
order of precedence.

◗ The (::) scope operator

◗ The sizeof operator

◗ Cast operators

◗ Integer vs. floating-point division

◗ Conditional (?:) operator

◗ Assignment operators

◗ Join (,) operator

The Scope (::) Operator
This operator has several related uses. First, it can be used to refer to a symbol
declared in a class or namespace.

class::symbol_name

namespace::symbol_name

The scope operator can also be used to refer to a global—or rather, an
unqualified—name. This might be used, for example, to refer to a global sym-
bol from within a class’s member function when there is a name conflict.

::symbol_name

The sizeof Operator
The sizeof operator returns the size of the type of its operand in bytes.

◗ If sizeof is used on a pointer, it returns the width of the pointer itself (currently
4 bytes on today’s 32-bit computers), not the base type.

double x = 0.0;
double *p = x;
cout << sizeof(p); // Print 4.
cout << sizeof(x); // Print 8.

◗ If sizeof is used on an array, it returns the total size of all the elements of the
array. For example, if sizeof(int) is 4, then the following prints 40:

Ke
y

Sy

ntax

ptg16518442

Old- and New-Style Type Casts 479
int arr[10];
cout << sizeof(arr); // Print 40.

◗ sizeof can be used directly on a type name (including class names).

cout << sizeof(char); // Print 1.

Old- and New-Style Type Casts
For backward compatibility, C++ supports the old-style C type cast:

 (type) expression

The C++ standards committee had long planned to deprecate this usage. A
deprecated usage is one that the compiler advises the programmer against using,
generating a warning message. However, because C++ is still being used to com-
pile large amounts of C legacy code, the committee decided not to deprecate this
type cast.

The four new-style casts are still preferred within the C++ community (see
Table A.2). Admittedly, they are longer and take more work to put into pro-
grams, but they have the advantage of being more self-documenting. The habit
of using these operators (and not the old-style C type cast) reduces the possibility
of using an improper cast accidentally.

Table A.2: C++ Cast Operators (New Style)

CAST SYNTAX DESCRIPTION

static_cast<type>(expression) Recasts expression into the data format of type, such as casting double
to int (and removing warning messages), or to cast to or from an enum
type. Essentially, static_cast says, “Yes, I really do want to do this.” For
the cast to work, some sort of conversion must be possible between the
types involved.

reinterpret_cast<type>(expression) Recasts one pointer type to another or casts between a pointer type and int,
or vice versa. This cast is potentially dangerous (so make sure you need it
before using it) because it changes how data at a particular address is to
be interpreted.

dynamic_cast<type>(expression) Casts a base-class pointer to a subclass pointer after verifying that the
object pointed to has the specified subclass type. Produces NULL if cast is not
valid. Requires that the classes involved have one or more virtual func-
tions. This is casting downward through an inheritance hierarchy; going
the other way (assigning subclass pointer to a base-class pointer) is freely
permitted and requires no cast.

const_cast<type>(expression) Casts a non-const expression to a const type. It is your responsibility to
make sure the expression is not one that will be changed.

Ke
y

Sy

ntax

ptg16518442

Appendix A Operators480

Integer versus Floating-Point Division
Most of the operators in Table A.1 are self-explanatory, but special consider-
ations apply to some types. When one integer is divided by another, the remain-
der is thrown away.

int quotient = 19 / 10; // quotient = 1

In this case, the fractional portion (0.9) is discarded. To get a remainder
resulting from integer division, use the modulus (%) operator.

int remainder = 19 % 10; // remainder = 9

In the following example, integer division is performed, throwing away
much of the result, even though quotient has floating-point format and could
have stored the result, 1.9:

double quotient = 19 / 10; // quotient = 1.0

However, if one of the operands has type double (which is the case when a
decimal point is used in a numeric literal), the other operand is promoted to
double and floating-point division is carried out.

double quotient = 19 / 10.0; // quotient = 1.9

Bitwise Operators (&, |, ^, ~, <<, and >>)
Bitwise AND, OR, and exclusive OR (&, |,)̂ operate on two integer expressions
of the same width. If one operand has a different width (size) than the other,
then the smaller of the two is promoted to the larger width. The action of these
operators is to compare bit-n in one operand to bit-n in the other and set bit-n
in the resulting integer. For example:

cout << hex;

cout << (0xe & 0x3); // 1110 & 0011 -> 0010 (AND)
cout << endl;
cout << (0xe | 0x3); // 1110 | 0011 -> 1111 (OR)
cout << endl;
cout << (0xe ^ 0x3); // 1110 ^ 0011 -> 1101 (XOR)

Note that exclusive OR (also called XOR) means “either or but not both.”

ptg16518442

Conditional Operator 481

Bitwise negation (~) is a unary operator that produces a result containing the
reverse setting of each bit in its operand. For example:

cout << hex;

cout << (~(char)0xff); // 1111 1111 -> 0000 0000 (0)
cout << endl;
cout << (~(char)0x89); // 1000 1001 -> 0111 0110 (76)

When used on integers, double-angle brackets (<< and >>) are not stream
operators but bit-shift operators:

integer << number_of_positions_to_shift
integer >> number_of_positions_to_shift

These operators originated in the C language solely to perform bit shifts, not
I/O. In C++, they are overloaded to work with streams—in effect becoming
stream input/output operators but only through redefinition. However, they
retain the same precedence and associativity no matter how they are used.

Conditional Operator
The conditional operator (?) provides a way to perform if-then-else logic within an
expression; it is another option for writing extremely compact code. A simple exam-
ple is that of comparing x to 1 and then printing 1 or 0 depending on the result.

if (x == 1) {
 cout << 1 << endl;
} else {
 cout << 0 << endl;
}

With the conditional operator, this could be expressed as follows:

cout << (x == 1 ? 1 : 0) << endl;

The general form of the operator is

condition ? expr1 : expr2

The condition is evaluated. If true (nonzero), then expr1 is evaluated and
returned as the value of the overall expression; otherwise, expr2 is evaluated
and returned as the value of the overall expression.

Precedence of the conditional operator is very low, so a conditional expres-
sion (like that just shown) typically needs to be enclosed in parentheses.

Ke
y

Sy

ntax

ptg16518442

Appendix A Operators482

Assignment Operators
All the assignment operators return the value that was assigned, thus permit-
ting multiple assignments such as the following:

x = y = z = 0;

Many assignment operators are provided as convenient shorthand for some
operate-and-assign action. For example, the expression

i += 1;

is functionally equivalent to the following:

i = i + 1;

Similarly, for all the operators such as \=, *=, −=, and so on. Note that the
expression

(i += 1)

is equivalent to

(++i)

because they both say, “Add 1 to the value of i, and then pass this value along to
the larger expression.”

Join (,) Operator
The join, or comma, operator is a way of combining multiple expressions in the
space of a single expression. This is useful in for statements in which there’s a
need to initialize or increment more than one variable.

for (int i = 0, int j = 0; ; i++, j++) {
 ...

In general, the action of the comma operator is to evaluate both conditions
on either side of the comma (,) and then return the value of the second expres-
sion. In addition to for, another useful situation is the following, where the
comma is used to execute several actions at the top of a loop before finally test-
ing the condition i < 10:

while (i = j + 1, cout << "i", i < 10) {
 i++;
}

This operator (,) has the lowest precedence of all C++ operators.

ptg16518442

483

B
Data Types

Although the C++ specification is somewhat general when it comes to ranges
of types, certain ranges are (for all practical purposes) universal on computers
with a 32-bit architecture. This includes all personal computers in use today,
both PCs and Macs. However, some of these ranges are subject to change. When
64-bit architecture becomes standard, for example, you should expect int to be
identified with 64-bit integers.

The int and double types are the “natural” sizes for integer and floating-point
numbers, respectively, for the computer’s own architecture. This means that
when any integer type is used in an expression (such as char), it is automatically
promoted to int provided that can be done without loss of information. There is
never any reason to use short or float except where compact storage formats on
disk or other data streams require it.

Table B.1 lists data types and their ranges on 32-bit computers and is fol-
lowed by sections describing other issues in data-type storage. I use “billion”
here in the American sense: a thousand million (1,000,000,000).

Here are some notes on version support:

◗ Some types are marked “ANSI.” Almost all but the oldest compilers now sup-
port ANSI-required types, so unless your compiler is extremely out of date, it
will support these.

◗ Some types are marked “C++11.” Compilers that are compliant with C++11 or
later support these, and that should include all compilers that claim to support
C++14, such as Microsoft Community Edition.

ptg16518442

Appendix B Data Types484
Table B.1: C++ Intrinsic Data Types

TYPE
DESCRIPTION
(FOR 32-BIT SYSTEMS)

RANGE
(ON 32-BIT SYSTEMS)

char 1-byte integer (used to hold ASCII character value) 0 to 255

unsigned char 1-byte unsigned integer 0 to 255

signed char 1-byte signed integer −128 to 127

short 2-byte integer −32,768 to 32, 767

unsigned short 2-byte unsigned integer 0 to 65,535

Int 4-byte integer (but same as short on 16-bit systems) Approx. ± 2 billion

unsigned int 4-byte unsigned integer (but same as unsigned short on
16-bit systems)

Approx. 4 billion

long 4-byte integer Approx. ± 2 billion

unsigned long 4-byte unsigned integer Approx. 4 billion

bool Integer in which all nonzero values are converted to
true (1); also holds false (0) (ANSI)

true or false

wchar_t Wide character, for holding Unicode characters (ANSI) Same as unsigned int

long long 64-bit signed integer (C++11) Approx. ±9 x 10 to the 18th

unsigned long long 64-bit unsigned integer (C++11) Approx. 1.8 x 10 to the 19th

float Single-precision floating point 3.4 x 10 to the 38th

double Double-precision floating point 1.8 x 10 to the 308th

long double Extra-wide double-precision (ANSI) At least as great as double

Precision of Data Types
All integer types have absolute precision at all times. That is one of their chief
advantages. For example, you can be close to the top of the long long range, and
adding 1 to the amount is accurately reflected in the new value, whereas adding
1 to a very high float number might have no effect, with the added value of 1
lost because of rounding.

◗ The float type has 7 (decimal) digits of precision.

◗ The double type has 15 (decimal) digits of precision.

◗ Values in float format can store the value 0.0 precisely. They can also store tiny
values as close to zero as 1.175 x 10 to the −38th.

◗ Values in double format can store the value 0.0 precisely. They can also store
tiny values as close to zero as 2.225074 x 10 to the −308th.

ptg16518442

Data Types of Numeric Literals 485

Data Types of Numeric Literals
In C++ (and programming generally), a literal is a series of characters that the
compiler immediately recognizes as a fixed value upon reading. In the core lan-
guage, these are always numbers and text strings. A literal is different from a
symbol (usually a variable, class, or function name), which has to have a value
assigned to it.

int i = 23; // 23 is a literal
int j = number_of_students; // Not a literal
int k = MAX_PATH; // Not a literal

In these statements, 23 is the only literal that appears. MAX_PATH may be
changed into a literal during preprocessing (where a #define statement may
replace it with a literal value such as 256), but it is not yet a literal.

All literals are constants, but not all constants are literals. For example, array
names are constants in C and C++, but they are symbols, not literals.

The default numeric format is decimal (base 10). The default storage for
whole numbers is int type. But several other numeric formats may be used with
literals:

◗ The 0x prefix specifies hexadecimal (base 16).

◗ A leading 0 specifies octal (base 8).

◗ With compilers that are fully C++14 compliant, the 0b prefix specifies binary
radix (base 2).

◗ Scientific notation indicates floating-point format: The literal is stored in double
format.

◗ Use of a decimal point, even if followed by 0, indicates floating-point format;
again, the literal is stored in double format.

Here’s an example:

int a = 0xff; // Assign 1111 1111 (256) to a.
int b = 0100; // Assign octal 100 (64) to b.
double x = 3.14; // Assign flt. pt. number
double y = 3.0; // This also assigns flt pt.
double z = 1.6e5; // Use of scientific notation:

// 1.6 times 10 to the fifth

In addition, several suffixes may affect how the value of a literal is stored.
Storage of a literal can sometimes matter because it can affect the precision it

ptg16518442

Appendix B Data Types486

has, what range is permitted, or what conversion has to be applied later on to
copy the data to another location. Furthermore, some integer values cannot be
represented without applying the proper suffix.

◗ The L suffix indicates storage of an integer in long int format. long is equivalent
to int on most computers in use today.

◗ The U suffix indicates storage of an as unsigned int. (This doubles the range
supported for positive numbers; see “Two’s-Complement Format for Signed
Integers” later in this appendix.)

◗ The F suffix indicates storage in float format (usually 4-byte floating point)
rather than double (8-byte floating point). Usually this is unnecessary or even
undesirable but might be necessary in a situation in which you were reading
4-byte floating-point numbers from a binary file, for example.

◗ If long long is supported, then the LL and ULL suffixes are supported for long
long and unsigned long long formats, respectively. Some integer values are so
large they cannot be written out as literals except with one of these suffixes
(because otherwise the compiler attempts to fit integer literals into int format).

Also note that if your compiler is fully C++14 compliant, you can use single
quote marks (') in numeric literals as digit-group separators. See Chapter 17 for
more information.

String Literals and Escape Sequences
Ordinary string literals have char* format. They are translated into a char*
array with one byte allocated for each character plus an extra byte for the null
terminator.

char str[] = "This is a string. ";

Wide character strings are similar, but to indicate a wide-character literal,
use an “L” prefix: this causes the compiler to allocate a wchar_t array, which
includes two bytes for each character, including the null terminator.

wchar_t unicode_str[] = L"This is a Unicode string. ";

The appearance of a backslash in a string literal indicates that the backslash
itself—along with the very next character—is not interpreted as a backslash but
instead has special meaning as an escape character. Table B.2 summarizes the
meaning of escape characters.

ptg16518442

Two’s-Complement Format for Signed Integers 487
Table B.2: Escape Characters in C++

ESCAPE CHARACTER MEANING

\' Literal single quotation mark

\" Literal double quotation mark (necessary because otherwise
a quotation mark is recognized as terminating the string
literal)

\\ Literal backslash

\a Bell

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\nnn ASCII character corresponding to number nnn, where nnn
is an octal number (base 8)

\xhh ASCII character corresponding to number hh, where hh is a
hexadecimal number (base 16)

Two’s-Complement Format for Signed Integers
Virtually all personal computers in use today (including Macs) use two’s-com-
plement format for storing signed integers. Two’s complement is a technique
for representing negative numbers along with positive numbers. Although the
leftmost bit always indicates the sign of the quantity, it is not precisely the same
as a sign bit.

With signed formats (for example, int as opposed to unsigned int), only the
bottom half of the range is used to represent positive values, along with zero.
The top half of the range represents negative values. Consequently, a pattern
with leftmost bit set to 1 always indicates a negative value.

Here’s how the format works. To take the negative of any number, follow
these steps:

1 Reverse the setting of each bit (this is logical bitwise negation, also called the one’s
complement).

2 Add 1.

ptg16518442

Appendix B Data Types488

For example, to produce −1 for a single-byte number, first start with the bit
pattern for 1. Remember, we’re going to get the negative by reversing each bit
and adding 1.

0000 0001

First, we reverse each bit:

1111 1110

Adding 1 then produces the two’s complement. This is therefore the two’s com-
plement representation of −1:

1111 1111

And, in fact, for every signed integer format, the setting of all 1s in every bit
position always signifies −1. If we were using unsigned format, this bit pattern
would instead be interpreted as 255.

Using all 1s to represent −1 is mathematically sound. If you take the negative
again, you get positive 1, exactly as expected. Remember, to get the negative of
any signed number, reverse each digit and then add 1. You can see how this gets
us back to positive 1:

 1111 1111 (This is -1)

 0000 0000 Reverse each bit.
+ 0000 0001 Add 1.
===========
 0000 0001

The −1 value, of course, is not the lowest possible negative value. The lowest
signed value is always a bit pattern of 1 followed by all 0s:

1000 0000

With a signed, two’s-complement format, this is interpreted as −128. (In
unsigned format, it would be interpreted as positive 128.) Adding 1 in signed
format produces −127, a slightly higher number:

1000 0001

The general rule is that any signed quantity with 1 in its leftmost bit is inter-
preted as a negative number.

Incidentally, taking the two’s complement of 0 produces 0 itself. This is math-
ematically correct, because multiplying 0 by −1 should produce 0.

ptg16518442

Two’s-Complement Format for Signed Integers 489
 0000 0000 // Start with 0
 1111 1111 // Reverse each bit (one's complement)
+ 1 // Now add 1 to get two's complement
===========
 0000 0000 // "Flips over," producing 0 again!

The advantage of using two’s-complement format for representing signed
numbers is that so many mathematical operations work smoothly with it and
don’t need to check a sign bit. With a few exceptions, the same machine instruc-
tions that work on unsigned integers work correctly, and without change, on
signed integers. For example, if you add any number to its negative, you end up
with zero, exactly as expected.

0000 0001 1
1111 1111 Add -1
=========
0000 0000 Result "flips over," producing 0.

ptg16518442

This page intentionally left blank

ptg16518442

491

C Syntax
Summary

This appendix gives a general overview of the core C++ language.

Basic Expression Syntax
Except in the case of void expressions, an expression is something that pro-
duces a value. Expressions are the fundamental building blocks of statements,
because an expression can be turned into a statement by adding a semicolon (;).

Smaller expressions can form part of larger expressions. For example, an
expression is formed by addition:

expression + expression

Each of these can be any two smaller expressions that produce a numeric
value. (Also, pointers may be added to integers; see Appendix A.) The result is
an expression that can be used, in turn, in still larger expressions.

In C and C++, expressions can produce side effects. For example, the following
decrements j by 1, multiplies the result by 3, and then assigns that result to both
x and y:

x = (y = 3 * --j);

This statement contains one long expression terminated by a semicolon (;).
Note that assignment is not a kind of statement but merely another kind of
expression. Several of these expressions have side effects. First, --j decrements
the value of j before using j in the assignment expression:

y = 3 * --j

Assignment is an expression with a side effect, in this case, setting the value
of y. As with all assignment operators (see Appendix A), the value assigned is
passed along to the larger expression, which in turn assigns this same value to x.

ptg16518442

Appendix C Syntax Summary492

The following are all expressions:

literal
symbol
expression op expression // (binary op)
op expression // (unary op)
expression op // (unary op)
function(args)

In addition, C++ supports one trinary operator: the conditional operator.

Basic Statement Syntax
Statements are the building blocks of C++ programs because a program con-
sists of one or more functions, and each function consists of zero or more
statements.

The most common form of a statement in C++ is an expression terminated
by a semicolon (;). Notably, semicolons are statement terminators, not state-
ment separators as they are in Pascal.

expression;

It is also valid to have a statement with no expression. This is an empty
statement.

;

Any number of statements can be grouped together to form a compound
statement (also called a block). Remember that a compound statement is valid
anywhere a single statement is valid.

{ statements }

Each of the control structures (covered in the next four sections) also defines
a statement. Control structures can therefore be nested to any level.

In addition to these statements and the control structures (if, while,
do-while, and switch), there are several “branching,” or direct-transfer-of-control
statements: break, continue, return, and goto.

A statement can be labeled with a symbolic name (following the same rules
as variable names), as follows:

label: statement

This syntax (like that for control structures) is recursive so that a statement
can have multiple labels—a fact that switch-case statements sometimes take
advantage of.

ptg16518442

Control Structures and Branch Statements 493

Control Structures and Branch Statements
This section contains a section on each of the statements that controls execu-
tion in a C++ program.

The if-else Statement
The if statement has two forms. The first form is as follows, in which condition is
an expression that evaluates to true (any nonzero value) or false (a zero value):

if (condition)
 statement

Standard practice is to use relational expressions (such as n > 0), which
always produce true or false, or an expression of type bool. It can also be effec-
tive to use a pointer as a condition in C++. If the pointer is null (for example,
because a file-open attempt failed), the condition equates to false; otherwise, it
equates to true.

Pointers can be compared to NULL by using logical negation (!), meaning
“not.” For example, in this case, several statements are executed if the file was
not successfully opened:

ofstream fout(silly_file_name);
if (!fout) {
 cout << "Could not print ";
 cout << silly_file_name;
 return -1;
}

An if statement can have an optional else clause:

if (condition)
 statement1
else
 statement2

The while Statement
The while statement has the following syntax:

while (condition)
 statement

ptg16518442

Appendix C Syntax Summary494

The condition is a true/false expression; see the if statement for rules apply-
ing to conditions.

The action of the while statement is to first to evaluate the condition. If it is
true, then the statement is executed, and then the condition is tested again. The
cycle continues until condition is false or unless some other action terminates
the loop, such as break.

For example, the following code fragment prints a message five times:

int n = 5;

while (n-- > 0) {
 cout << "Hello.";
 cout << endl;
}

The do-while Statement
The do-while statement has the following syntax:

do
 statement
while (condition);

The operation of the do-while statement is the same as the while statement,
except that with the do-while statement, the enclosed statement is executed at
least once; the condition is evaluated afterword.

The for Statement
The for statement provides a compact way of using three expressions (abbrevi-
ated expr) to control execution of a loop.

for (init_expr; condition_expr; increment_expr)
 statement

This expression is essentially the same as the following in its behavior
(except, as noted later, with regard to the continue statement):

init_expr;
while (condition_expr) {
 statement
 increment _expr;
}

ptg16518442

Control Structures and Branch Statements 495

The init_expression can declare one or more variables; if it does, the variables
declared are local to the for statement. For example, the following code frag-
ment prints the whole numbers from 1 to 10:

for (int i = 1; i <= 10; ++i) {
 cout << i << endl; // i local to this block.
}

For more information, see Chapter 3, which I have devoted entirely to the for
statement.

The switch-case Statement
The switch-case statement is an alternative to the use of repeated if-else. It has
this syntax:

switch (target_expression) {
 statements
}

Within the statements, you can place any number of statements labeled with
the case keyword. A case statement has this syntax:

case constant: statement

It follows from the recursive nature of the syntax that a single statement may
(optionally) have multiple labels. For example:

case 'a':
case 'e':
case 'i':
case 'o':
case 'u':
 cout << "is a vowel";

You can also include an optional default label.

default: statement

Statement labels need to be unique within the scope of the switch statement
but not necessarily the larger program.

The action of switch is to evaluate the target_expression. Control is then
transferred to the case statement, if any, whose constant value matches the value
of target_expression. If none of these values matches but there is a statement
labeled default, then control is transferred there. If none of the values matches
and there is no default statement, control passes to the first statement after the
end of the switch statement.

ptg16518442

Appendix C Syntax Summary496

For example, the following code fragment prints “is a vowel,” “may be a
vowel,” or “is not a vowel,” depending on the value of c.

switch(c) {
 case 'a':
 case 'e':
 case 'i':
 case 'o':
 case 'u':

cout << "is a vowel";
break;

 case 'y':
cout << "may be a vowel";
break;

 default:
cout << "is not a vowel";

}

Once control is transferred to any statement within the block, execution is
continues normally, falling through unless a break statement is encountered.
For this reason, each “case block” should usually be terminated with a break
 statement.

The break Statement
The break statement transfers execution out of the nearest enclosing while,
do-while, for, or switch-case statement. Execution is transferred to the first
statement past the end of the block.

break;

The continue Statement
The continue statement causes execution to be transferred to the end of the
current while, do-while, or for statement, effectively advancing to the next iter-
ation (cycle) of the loop.

continue;

If continue is used inside a for loop, the increment portion of the for state-
ment is executed as part of the action of advancing to the next iteration.

ptg16518442

Control Structures and Branch Statements 497

The goto Statement
Traditionally, using goto is strongly discouraged because its overuse tends to cre-
ate something called spaghetti code, in which the flow of control in the program
resembles a tangled heap of spaghetti; these days it might also be compared to the
mess of interconnected wires in the back of a home-entertainment system.

But goto is still useful as a way of breaking out of a deeply nested loop, since a
single break statement would not do the job.

goto label;

The label is a symbol (that is, a name) used to label a statement within the
same function. Remember that labeled statements have this syntax:

label: statement

The return Statement
The return statement has two forms. The first, used with void functions, causes
immediate exit from the current function. Control returns to the caller of the
function.

return;

When within functions that are not void, the return statement must return a
value of the appropriate type.

return value;

Note that when used within main, the return statement returns control to
the operating system. In such a case, the return value may be a success or failure
code (0 usually associated with no errors, or success).

return EXIT_SUCCESS;

The throw Statement
The throw statement raises an exception, which must then be handled by the
nearest enclosing catch block; otherwise, the program terminates abruptly.

throw exception_object;

The exception_object may have any type; catch statements handle an object
by looking for that type. The matching catch block will have either the same
type or a base-class type (that is, it must be an ancestor class of the type of
object thrown).

ptg16518442

Appendix C Syntax Summary498

Variable Declarations
A data declaration is a statement that creates one or more variables of a partic-
ular type. If the type is a class, the variables are objects. In the following syntax,
var_decl is one or more variable declarations, separated by commas if there is
more than one:

modifiers type var_decls;

Each var_decl is a variable declaration with an optional initialization. For the
meaning of the optional modifiers, see the end of this section.

Either of these is valid:

var_name

var_name = init_expression

The init_expression is any valid expression of the corresponding type or
an expression that can be converted to the type. If the variable is an array,
init_expression may also be an aggregate:

{ init_expression, init_expression... }

For example, the following statements declare three variables of type int;
two of them are initialized:

int i = 0, j = 1, k;

And this example declares a two-dimensional array and initializes it:

double[2][2] = {{1.5, 3.9}, {23.0, -8.1}};

If the variable being declared is an object (it has class type), it can be ini-
tialized through “function-style” syntax, which passes arguments along to the
appropriate constructor.

Fraction fract1(1, 2);

The C++0x specification also allows you to use aggregate-style initialization
with objects:

Fraction fract1{1, 2};
Fraction fract2 = {10, 3};

In a variable declaration, the variable name can be qualified with operators,
including [], *, (), and &; these create arrays, pointers, pointers to functions,
and references, respectively. To determine what kind of item has been declared,

ptg16518442

Variable Declarations 499

ask yourself what the item would necessarily represent in executable code. For
example, the variable declaration

int **ptr;

means that **ptr, when it appears in executable code, is an item of type int; ptr
itself is therefore a pointer to a pointer to an integer, because it would have to be
dereferenced twice to produce an integer. Likewise, the following declaration
creates a pointer to a function—and that function must take a single double
argument and return a double return value.

double (*fPointer)(double);

Pointers to functions are used as callback functions (for example, passed to
the qsort library function) and in tables of functions. A pointer to a function
needs to be assigned the address of a function before being called.

double (*fPointer)(double);
fPointer = &sqrt;
...
int x = (*fPointer)(5.0); // Call sqrt(5)

The exception to this general procedure is that the ampersand (&) creates
a reference during declaration. Note that reference variables need to be initial-
ized, or else need to be reference arguments; otherwise, they have nothing to
refer to. References, unlike pointers, cannot be reassigned to refer to new data.

int n = 0;
int &silly = n; // silly is a reference for n.

The optional modifiers to a variable declaration can include any of the
following:

◗ auto: This is largely outmoded and unnecessary. It indicates automatic storage
class, which local variables have by default. (Do not confuse with auto variable
definitions permitted by C++14, in which the auto keyword is used in place of
a type.)

◗ const: A variable declared const is prevented from being changed by being on
the left part of an assignment, incremented, or decremented. Also, a pointer
or reference to a const variable may not be passed to a function unless that
function is also declared const or unless the function declares the argument as
const. Pointers and references to a const type may not change the data to which
they refer.

ptg16518442

Appendix C Syntax Summary500

◗ extern: An extern declaration gives a variable visibility among all modules of
the project. (In addition to an extern declaration, the variable also needs to be
defined in exactly one module; you can do this by initializing it and declaring it
without extern.)

◗ register: A suggestion to the compiler that it should dedicate a register (onboard
processor memory) to the variable. Modern optimizing compilers do this anyway
when it would improve program performance and therefore may ignore this
modifier.

◗ static: When used with a local variable or data member, it indicates there is
only one copy of the variable. In the case of local variables, this means that the
function “remembers” the value between function calls. It’s incompatible with
recursive functions.

◗ volatile: A rarely used but occasionally important keyword; volatile is an indi-
cator to the compiler that it must not place a variable in a register or make any
assumptions about when it can change. This is most often used when a variable
corresponds to a location that is being manipulated by some outside hardware
device (such as a port).

Function Declarations
Before a function can be called by another function, it must first be declared
or defined. It can be given a type declaration first (a prototype). The definition
can then be placed anywhere in the source code or another module linked into
the project.

A function prototype has this syntax:

modifiers type function_name(argument_list);

For the meaning of the optional modifiers, see the end of this section. The
type specifies the return value of the function. A function can optionally have
void type, specifying that it does not return a value.

The argument list contains one or more argument declarations separated by
commas if there are more than one. The argument list may be left blank, indi-
cating that the function has no arguments. (Unlike C, C++ does not permit the
use of a blank argument list to mean an indeterminate list.)

Each entry in the argument list has the following form. Declaration syntax
follows other rules specified for variable declarations (see previous section), and
it permits an optional initializing expression indicating a default argument. But
note that each type and var_decl must be one-to-one.

type var_decl

ptg16518442

Function Declarations 501

A more complete syntax for a function prototype is therefore as follows, in
which there are zero or more occurrences of type var_decl. If there are more
than one, they are separated by commas:

modifiers type function_name(type var_decl, ...);

Syntax for a complete declaration, including function definition, is the same,
except that it includes a block with zero or more statements. (Note that any
modifiers previously declared in a prototype do not, as a general rule, need to be
repeated in the definition.)

modifiers type function_name(argument_list) {
 statements
}

A function definition does not end with a semicolon (;) after the final
brace—unlike a class declaration. Also, note that names of arguments (but not
types) can be omitted from a prototype but not from a function definition.

The optional modifiers can include any of the following:

◗ const: A const function is restricted from changing the value of its arguments
and from calling other functions not declared const. But this permits it to be
called by other const functions.

◗ inline: A suggestion to the compiler that the function be made an inline func-
tion. Modern optimizing compilers do this on their own whenever it would
improve speed and compactness, making this keyword less necessary. In addi-
tion, a member function defined within its class declaration is automatically
inlined.

◗ static: In multiple-module projects, a function automatically has external linkage
unless declared with static. (Each function still needs to be prototyped in any
source file that uses it, however, thus making header files necessary.)

◗ virtual: Used with member functions only. Declaring a function virtual means
that calls to the function are handled through indirect calls that involve a
vtable, which, in practical terms, means that the destination of the function call
is not resolved until runtime. In C++, the details of carrying this out are invisible
to the programmer, so you call a virtual function exactly the way you’d call any
other function. The virtual keyword needs to be applied only once, when the
function is first declared in the base class.

ptg16518442

Appendix C Syntax Summary502

Class Declarations
A class declaration extends the language by creating a new type. Once a class is
declared, the class name can be used directly as a type name, just like an intrinsic
data type such as int, double, float, and so on. The basic syntax for a class dec-
laration is as follows:

class class_name {
 declarations
};

Unlike a function definition, a class declaration is always terminated by a
semicolon (;) after the closing brace.

The declarations can include any number of data and/or function defini-
tions. Within the declarations, the public, protected, and private keywords can
occur, along with a colon (:) to indicate the access level of the declarations that
follow it. For example, in the following class declaration, data members a and b
are private; data member c, as well as function f1, are public.

class my_class {
private:
 int a, b;
public:
 int c;
 void f1(int a);
};

Note when you use the class keyword to declare a class, members are private
by default.

Within a class declaration, constructors and destructors have the following
special declarations. You can have any number of constructors differentiated by
argument lists. You can have at most one destructor.

class_name (argument_list) // Constructor
~class_name() // Destructor

The syntax for a subclass declaration includes the name of a base class.
Although the use of public in this context is not required, it is strongly recom-
mended. Without it, default base-class access level is private, which makes all
inherited members private.

class class_name : public base_class {
 declarations
};

ptg16518442

Enum Declarations 503

Most versions of C++ support multiple inheritance, in which you list more
than one base class separated by commas. For example, in this example, the
class Dog is derived from both Animal and Pets and therefore inherits all mem-
bers of both classes:

class Dog : public Animal, public Pets {
...
}

Note � The syntax here applies to the struct and union keywords as well as class.
A struct class is the same as a class defined with the class keyword, except that
with struct, members are public by default, and with class, members are private
by default. Members of a union class are also public by default. Members of
a union share the same address in memory. (Basically, a union can be used to
create a “variable data type” class in which different data formats are in use
at different times.)

Enum Declarations
The enum keyword can be used to create a series of symbolic names (symbols) each
with a constant integer value. It has this general syntax, in which name is optional:

enum name {
 symbol_decls
};

In this syntax, symbol_decl consists of one or more names, separated by
commas if there are more than one. In addition, each may optionally have an
assigned value:

symbol = assigned_value

If a symbol is not assigned a value (which must be a literal or other constant),
its value is that of the previous symbol plus one. If it is the first symbol and not
assigned a value, it is given the value zero.

For example, the following declaration creates enumerated constants rock,
paper, scissors and gives them the values 0, 1, and 2.

enum {rock, paper, scissors};

Optionally, these can be given a type name, which creates a weakly typed
enumeration. (For information on how to create strongly typed enumerations
with C++14, see Chapter 17.)

enum Choice {rock, paper, scissors};

ptg16518442

Appendix C Syntax Summary504

Now the word Choice can be used to declare variables just like any other type
name. The underlying type of an enumeration is actually integer, and you can
assign enumerated constants to integer variables. However, you can’t go in the
opposite direction without a cast.

Choice my_play = rock;
int n = paper; // Ok without cast

// But this requires a cast...

Choice your_play = static_cast<Choice>(1);

ptg16518442

505

D Preprocessor
Directives

The C++ preprocessor can perform a number of useful actions before the regu-
lar compilation phase. For example, the #define directive can be used to replace
all occurrences of a certain word with another—creating easy-to-interpret
symbolic constants rather than arbitrary-looking numbers. The directives have
other uses, the most important of which are probably including header files and
making sure that such header files are compiled only once.

In addition to the directives listed here, C++ also supports a #pragma directive,
but its use is entirely implementation defined. See your compiler documenta-
tion for more information.

This appendix covers the directives in alphabetical order, followed by a list of
predefined compiler constants.

The #define Directive
The #define directive has three forms, each of which has a different use.

#define symbol_name

#define symbol_name replacement_text

#define symbol_name(args) replacement_text

The first version of #define is used to control compilation, by affecting the
behavior of the #ifdef and related directives later. For example, you might use
the following directive to indicate that the C++0x specification is supported.
See #if, #ifdef, and #ifndef for more information.

#define CPLUSPLUS_0X

ptg16518442

Appendix D Preprocessor Directives506

The second version is useful in creating predefined constants to help remove
“magic numbers” (that is, arbitrary numbers) from your program. For exam-
ple, you might define column width just once in your program:

#define COL_WIDTH 80
...
char input_string[COL_WIDTH+1];

One of the advantages of using this approach is that if you decide to change
the column width, you only need to change it in one place (namely, the #define
directive); the change is then automatically reflected throughout the source file
wherever COL_WIDTH appears.

The third version is used to define macro functions, which take one or more
arguments and expand them into larger expressions. The effect is something
like inline functions, which are expanded into the body of the caller. Macro
functions, however, have some limitations. They are usually limited to single
expressions, and they have no type checking.

The following example macro function produces the maximum of two num-
bers. It takes advantage of the condition (?:) operator; see Appendix A for more
information on this operator.

#define MAX(A, B) ((A)>(B) ? (A) : (B))

The extra parentheses, though not always necessary, help ensure that the
expressions A and B are evaluated in their entirety before the other operators
are applied (just in case A and B are complex expressions). Here is an example
that uses this macro:

int x, y;
cout << "Enter a number: "
cin >> x;
cout << "Enter another: "
cin >> y;

cout << "The maximum is:" << MAX(x, y);

During preprocessing, the compiler expands the last line shown in the pre-
vious code into the following (in which I’ve removed the extra parentheses
for clarity). The action of the conditional (?:) operator is to evaluate the first
expression (in this case, x>y) and return x if true or y if false.

cout << "The maximum is:" << (x>y ? x : y);

ptg16518442

The #elif Directive 507

The ## Operator (Concatenation)
The concatenation operator is used within macros to join text together, as in
this macro, designed to generate file names:

#define FILE(A, B) myfile__##A.##B

The expression FILE(1, doc) should generate the following:

myfile__1.doc

The defined Function
This function is almost always used in conjunction with #if and #elif. It has this
syntax:

defined(symbol_name)

If symbol_name is defined (it doesn’t matter what value, if any, the sym-
bol was given), the defined function returns true; otherwise, it returns false.
For example, this function can be used to turn an #if directive into an #ifdef
directive:

#if defined(CPLUSPLUS_0x)

For a more complete example, see the next section.

The #elif Directive
The #elif directive can be used as part of a conditional compilation block. #elif
forms the beginning of an “else if” block. In the following example, different
source code is compiled depending on whether the symbol CPLUSPLUS_0x has
been defined, the symbol ANSI has been defined, or neither has been defined.
It does not matter what value (if any) was assigned to these symbols.

#if defined(CPLUSPLUS_0x)

// Here you might place code supported by
// C++0x-compliant compilers only.

#elif defined(ANSI)

ptg16518442

Appendix D Preprocessor Directives508
// Here you might place code for compilers that are
// ANSI compliant but not C++0x compliant.

#else

// Place code here for compilers not ANSI compliant.

#endif

Given this conditional-compilation block, you can control what gets com-
piled by inserting or deleting one line that precedes this block, such as the
following:

#define ANSI // Use ANSI features (but not C++0x)

The #endif Directive
The #endif directive forms the end of a conditional-compilation block. It is
used in conjunction with #if, #ifdef, #ifndef, and #elif. Note that the syntax
used here is not like C++ language syntax; the preprocessor has a language all
its own that resembles Basic more than it does C++.

For examples of use, see any of the related sections: #if, #ifdef, #ifndef,
and #elif.

The #error Directive
The #error directive generates an error message during compilation. For
example:

#ifndef __cplusplus < 199711
#error C++ compiler out of date.
#endif

The #if Directive
The #if directive is used to begin a conditional compilation block. It is mostly
used in conjunction with the defined function. For example, although this is
implementation specific, compilers may choose to refer to predefined constants
such as __win32__ or __linix__ to indicate what operating system they are
running on.

ptg16518442

The #ifdef Directive 509
#if defined(__win32__)
char op_sys[] = "Microsoft Windows";
#endif

If the value following #if is true, the compiler reads and processes lines of
code up until the nearest matching #elif, #else, or #endif directive; otherwise,
it ignores those lines.

Another use for #if and #endif is to temporarily “comment out” large blocks
of code. Notice that C-style comment symbols (/* and */) do not nest properly
and—if you attempt to nest them—cause errors:

/* (Begin a "commented-out" block...
/*
char op_sys[] = "Overco Operating System";

*/ // OOPS! This ends the first comment.
*/ // Syntax error!

However, #if/#endif pairs can be as deeply nested as you like. Each #if/#endif
pair can be used to “comment out” lines of code that you do not want to compile
at this particular time. One commented-out block can be placed inside another.

#if 1

// Do some stuff.
#if 1

// Do some more stuff.
#endif
...
#endif

The #ifdef Directive
The #ifdef directive begins a conditional compilation block. Although closely
related to the #if directive, it is a more succinct way of expressing what the
#if directive usually does. The following syntax

#ifdef symbol_name

is exactly equivalent to the following:

#if defined(symbol_name)

ptg16518442

Appendix D Preprocessor Directives510

The first example in the previous section could be rewritten as follows:

#ifdef __win32__
char op_sys[] = "Microsoft Windows";
#endif

The #ifndef Directive
This directive is similar to the #ifdef directive but reverses its logical meaning;
it enables conditional compilation only if the specified symbol has not been
defined.

#ifndef symbol_name

This directive is widely used to avoid conflicts that can occur when multiple
header files are in use.

For example, the following statements can be used to prevent compilation of
a header file that has already been compiled. For example:

#ifndef FRACT_H
#define FRACT_H

// Here is the body of Fraction.h

#endif

The first time that the file Fraction.h is read in, it defines the symbol
FRACT_H; that, in turn, prevents Fraction.h from being compiled a second
time, no matter how many different files include it.

The #include Directive
The #include directive has two different versions. Both are almost always used
to include header files, which contain function prototypes and symbolic con-
stants needed to work with a project or a portion of the standard library.

#include <filename>

#include "filename"

In either case, the effect of #include is to suspend compilation of the current
file and instead run the compiler on the named file until the end of that file is
reached. Then the compiler returns to compiling the current file.

ptg16518442

The #undef Directive 511

The first version (using angle brackets) searches for the named file in the
directory or folder set aside for header files. In the case of MS-DOS and Windows,
for example, this directory is indicated by the setting of an INC environment
variable.

The second version (using quotation marks) searches for the named file in
the same way but also searches the current directory or folder.

By convention, the first version is almost always used to include library
header files or header files supplied by vendors (even though both versions
would work), while the second version is used for header files for the project.
For example:

#include <iostream>
#include <cmath>
#include "Fraction.h"

Note � Each standard library file beginning with c, as in cmath, corresponds to
a traditional .h file inherited from the C language. Another example is cctype,
which corresponds to the ctype.h file used in C. With C++, the newer form is
preferred, even if the older (C-style) headers still work for now.

The #line Directive
The #line directive has two forms.

#line filename number
#line number

The effect is to reset the values of the __FILE__ and __LINE__ constants, as
well as affecting how error messages are printed by the computer. For example:

#line myfile.cpp 100

The #undef Directive
The #undef directive undoes the definition of the named symbol, so it is no
longer considered defined.

#undef symbol_name

ptg16518442

Appendix D Preprocessor Directives512

Predefined Constants
Table D.1 lists constants that all C++ preprocessors are required to support.
Specific implementations of C++ may define others as well.

Table D.1: C++ Predefined Constants

CONSTANT MEANING IF DEFINED

__cplusplus Indicates support of a particular version of C++. Current, up-to-date
compilers should define it as 199711 or greater.

__DATE__ Expands to a date string in the format mm dd yyyy.

__FILE__ Name of file being compiled.

__LINE__ Current line being compiled.

__STDC__ Defined by C compilers as 1. Usually defined by C++ compilers to indi-
cate support for C, but this is implementation-defined.

__TIME__ Expands to a time string in the format hh:mm:ss.

ptg16518442

513

E
ASCII Codes

This appendix presents ASCII codes according to decimal value, hexadecimal
value, and corresponding character. Hexadecimal codes can be used to embed
values into a string. You can also print characters by using a (char) cast. For
example:

cout << "Hex code 7e is " << "\x7e" << endl;

// Print ASCII codes from 32 to 42.
for (int i = 32; i <= 42; i++)
 cout << i << ": " << (char) i << endl;

Some nonprintable characters have special meanings:

◗ NUL: null value

◗ ACK: acknowledgment signal (used in network communications)

◗ BEL: bell

◗ BS: backspace

◗ LF: linefeed

◗ FF: form feed (new page)

◗ CR: carriage return

◗ NAK: no acknowledgment

◗ DEL: delete

ptg16518442

Appendix E ASCII Codes514

Table E.1 gives the standard ASCII codes.

Table E.1: Standard ASCII Codes

DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR

00 00 NUL 26 1a 52 34 4 78 4e N 104 68 h

01 01 27 1b 53 35 5 79 4f O 105 69 i

02 02 28 1c FS 54 36 6 80 50 P 106 6a j

03 03 29 1d GS 55 37 7 81 51 Q 107 6b k

04 04 30 1e RS 56 38 8 82 52 R 108 6c l

05 05 31 1f US 57 39 9 83 53 S 109 6d m

06 06 ACK 32 20 space 58 3a : 84 54 T 110 6e n

07 07 BEL 33 21 ! 59 3b ; 85 55 U 111 6f o

08 08 BS 34 22 " 60 3c < 86 56 V 112 70 p

09 09 35 23 # 61 3d = 87 57 W 113 71 q

10 0a LF 36 24 $ 62 3e > 88 58 X 114 72 r

11 0b CR 37 25 % 63 3f ? 89 59 Y 115 73 s

12 0c 38 26 & 64 40 @ 90 5a Z 116 74 t

13 0d 39 27 ' 65 41 A 91 5b [117 75 u

14 0e 40 28 (66 42 B 92 5c \ 118 76 v

15 0f 41 29) 67 43 C 93 5d] 119 77 w

16 10 42 2a * 68 44 D 94 5e ^ 120 78 x

17 11 43 2b + 69 45 E 95 5f - 121 79 y

18 12 44 2c , 70 46 F 96 60 ` 122 7a z

19 13 45 2d - 71 47 G 97 61 a 123 7b {

20 14 46 2e . 72 48 H 98 62 b 124 7c |

21 15 NAK 47 2f / 73 49 I 99 63 c 125 7d }

22 16 SYN 48 30 0 74 4a J 100 64 d 126 7e ~

23 17 49 31 1 75 4b K 101 65 e 127 7f DEL

24 18 50 32 2 76 4c L 102 66 f

25 19 51 33 3 77 4d M 103 67 g

ptg16518442

ASCII Codes 515

Table E.2 lists extended ASCII codes; note that these are somewhat imple-
mentation dependent. They are most likely to be correct for computers of
American manufacturers running Windows.

Table E.2: Extended ASCII Codes for American Equipment Manufacturers

DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR

128 80 Ç 154 9a Ü 180 b4 ½ 206 ce Ý 232 e8 Φ

129 81 ü 155 9b ¢ 181 b5 Ò 207 cf Ø 233 e9 Θ

130 82 é 156 9c £ 182 b6 Ó 208 d0 Ù 234 ea Ω

131 83 â 157 9d ¥ 183 b7 Ç 209 d1 Õ 235 eb δ

132 84 ä 158 9e ₧ 184 b8 Æ 210 d2 Ö 236 ec ∞

133 85 à 159 9f ƒ 185 b9 Ô 211 d3 Ê 237 ed ϕ

134 86 å 160 a0 á 186 ba Â 212 d4 É 238 ee ε

135 87 ç 161 a1 í 187 bb È 213 d5 Ã 239 ef ∩

136 88 ê 162 a2 ó 188 bc Î 214 d6 Ä 240 f0 ≡

137 89 ë 163 a3 ú 189 bd Í 215 d7 Ü 241 f1 ±

138 8a è 164 a4 ñ 190 be Ì 216 d8 Û 242 f2 ≥

139 8b ï 165 a5 Ñ 191 bf ¹ 217 d9 » 243 f3 ≤

140 8c î 166 a6 ª 192 c0 º 218 da ¸ 244 f4 ⌠

141 8d ì 167 a7 º 193 c1 ¿ 219 db █ 245 f5 ⌡

142 8e Ä 168 a8 ¿ 194 c2 ¾ 220 dc ▄ 246 f6 ÷

143 8f Å 169 a9 ⌐ 195 c3 ¼ 221 dd ▌ 247 f7 ≈

144 90 É 170 aa ¬ 196 c4 ¶ 222 de ▐ 248 f8 °

145 91 æ 171 ab ½ 197 c5 À 223 df ▀ 249 f9 ·

146 92 Æ 172 ac ¼ 198 c6 Ï 224 e0 α 250 fa ·

147 93 ô 173 ad ¡ 199 c7 Ð 225 e1 ß 251 fb √

148 94 ö 174 ae « 200 c8 Ë 226 e2 Γ 252 fc ⁿ

149 95 ò 175 af » 201 c9 Å 227 e3 ϖ 253 fd ²

150 96 û 176 b0 ░ 202 ca Ú 228 e4 ∑ 254 fe ■

151 97 ù 177 b1 ▒ 203 cb × 229 e5 σ 255 ff

152 98 ÿ 178 b2 ▓ 204 cc Ñ 230 e6 µ

153 99 Ö 179 b3 · 205 cd Á 231 e7 τ

ptg16518442

This page intentionally left blank

ptg16518442

517

F
Standard
Library
Functions

The most commonly used library functions fall into a few categories: string
functions, data-conversion functions, single character functions, math func-
tions, time functions, and randomization functions. This appendix provides
an overview. Note that I do not cover I/O functions such as printf or fprintf,
because I assume you are using C++ stream classes.

For more information on the stream objects cin, cout, and the stream
classes, see Appendix G.

String (C-String) Functions
To use these functions, include the file <cstring>. The functions apply to tradi-
tional C char* strings, not to the STL string class.

In Table F.1, s, s1, and s2 are null-terminated char* strings; or rather, each
of these equates to the address of one of these strings. Also, n is an integer, and
ch is a single character. Except where otherwise noted, each of these functions
returns the address of its first argument.

Table F.1: Common String Functions

FUNCTION ACTION

strcat(s1, s2) Concatenates the contents of s2 onto the end of s1.

strchr(s, ch) Returns a pointer to the first occurrence of ch in string s; returns NULL if ch
cannot be found.

strcmp(s1, s2) Performs a comparison between contents of s1 and s2, returning a negative
integer, 0, or a positive integer, depending on whether s1 appears before s2 in
alpha order, has same contents as s2, or appears later than s2.

strcpy(s1, s2) Copies contents of s2 into s1, replacing existing contents.

continue

ptg16518442

Appendix F Standard Library Functions518

FUNCTION ACTION

strcspn(s1, s2) Searches s1 for occurrence of any character in s2; returns index of first
matching s1 character; returns the length of s1 if none found.

strlen(s) Returns current length of s (not including null byte).

strncat(s1, s2, n) Same action as strcat but copies at most n characters.

strncmp(s1, s2, n) Same action as strcmp but compares at most n characters.

strncpy(s1, s2, n) Same action as strcpy but copies at most n characters.

strpbrk(s1, s2) Searches s1 for occurrence of any character in s2; returns a pointer to first
matching s1 character; returns NULL if none found.

strrchr(s, ch) Same action as strpbrk but searches s1 in reverse order.

strspn(s1, s2) Searches s1 for first character that does not match any character in s2; returns
index of this character; returns length of s1 if none found.

strstr(s1, s2) Searches s1 for the first occurrence of substring s2; returns a pointer to
substring found within s1; returns NULL if not found.

strtok(s1, s2) Returns a pointer to the first token (substring) in s1, using delimiters specified in
s2. Subsequent calls to this function with NULL for the first argument find the
next token within the current string—the previously set value of s1. Specifying a
non-null value for s1 resets the tokenization process with a new string.

Data-Conversion Functions
To use the functions in Table F.2, include <cstdlib>.

Table F.2: Data-Conversion Functions

FUNCTION ACTION

atof(s) Reads a char* text string as a f loating-point digit string and returns the equiv-
alent double. The function skips past leading spaces and stops reading after
the first character that doesn’t form part of a valid f loating-point representation
(such as “1.5” or “2e1.2”).

atoi(s) Reads a char* text string as a digit string and returns the equivalent int. The
function skips past leading spaces and stops reading after the first character that
doesn’t form part of a valid integer representation (such as “–27”).

atol(s) Reads a char* string and produces a long value; on 32-bit systems, this is
equivalent to atoi.

atoll(s) Similar to atoi, but it produces a long long integer value. Required in the
C++0x specification

Table F.1: Common String Functions (continued)

ptg16518442

Single-Character Functions 519

Single-Character Functions
To use any of the functions in Table F.3 or Table F.4, include <cctype>. Each of
the functions in this first subgroup tests a single character and returns true or
false.

Table F.3: Character-Testing Functions

FUNCTION ACTION

isalnum(ch) Is the character alphanumeric (a letter or digit)?

isalpha(ch) Is the character a letter?

iscntrl(ch) Is the character a control character? (These include backspace,
linefeed, form feed, and tab, among others; these are nonprintable
characters that perform actions.)

isdigit(ch) Is the character a digit in the range 0 to 9?

isgraph(ch) Is the character visible? (This includes printable characters other
than a space.)

islower(ch) Is the character a lowercase letter?

isprint(ch) Is the character printable? (This includes space characters.)

ispunct(ch) Is the character a punctuation character?

isspace(ch) Is the character a white space? (This includes tab, newline, and form
feed, in addition to the simple space character.)

isupper(ch) Is the character an uppercase letter?

isxdigit(ch) Is the character a hexadecimal digit? This includes digits in the
range 0 through 9, as well as A through E and a through e.

Including <cctype> also adds declarations for the following two conversion
functions.

Table F.4: Character Conversion Functions

FUNCTION ACTION

tolower(ch) Returns a lowercase letter if ch is an uppercase letter; otherwise,
returns ch as is

toupper(ch) Returns an uppercase letter if ch is a lowercase letter; otherwise,
returns ch as is

ptg16518442

Appendix F Standard Library Functions520

Math Functions
To use any of the functions in Table F.5, include <cmath>. Each of the func-
tions in this first takes an argument of type double and returns a double result,
except where noted. Each of these functions returns the result of the operation,
and none of them alter their argument or arguments.

In using these functions, keep in mind that an integer can be given where
a double argument is required; the integer is promoted without C++ printing
a warning message. However, to assign a double result to an integer variable
causes a warning message to be issued if a cast is not used. (The new style cast
useful in this case would be static_cast.)

Table F.5: Math Functions

FUNCTION ACTION

abs(n) Returns the absolute value of int argument n. Result has type int.
For f loating-point version, see fabs.

acos(x) Arc cosine of x.

asin(x) Arc sine of x.

atan(x) Arc tangent of x.

ceil(x) Rounds upward to nearest integer (but still returns result as a
 double).

cos(x) Cosine of x.

cosh(x) Hyperbolic cosine of x.

exp(x) Raises the mathematical constant e to the power of x.

fabs(x) Returns the absolute value of x.

floor(x) Rounds x downward to the nearest integer (but still returns result as
a double).

log(x) Natural logarithm (base e) of x.

log10(x) Base 10 logarithm of x.

pow(x, y) Raises x to the power of y. (For example, pow(2,5) returns 32.)

sin(x) Sine of x.

sinh(x) Hyperbolic sine of x.

sqrt(x) Square root of x.

tan(x) Tangent of x.

tanh(x) Hyperbolic tangent of x.

ptg16518442

Time Functions 521

Randomization Functions
To use the functions in Table F.6, include both <cstdlib> and <ctime>. See
Chapter 4 for more information on using these three functions.

Table F.6: Randomization Functions

FUNCTION ACTION

rand() Returns the next number (an integer) in the current random-number
sequence. This sequence should first be set by calling srand. The
number returned ranges in value between 0 and RAND_MAX
(defined in <cstdlib>).

srand(seed) Takes the seed number—an unsigned int—to start the random-
number sequence used for calls to rand.

time(NULL) Returns the system time. Calling this function is a good choice for
getting the seed number to pass to srand.

Time Functions
To support the library functions in Table F.7, include <ctime>. The general
procedure with these functions is to call the time function to get a time_t
value representing the current time as a number. Then use that value as input
to gmtime or localtime, which fills a tm structure listing specific information
including month, day of the week, and so on. The declaration of the tm struc-
ture is shown at the end of this section.

Alternatively, you can call the asctime function to get a char* string
describing the time in human-readable form—or ctime, which produces the
same result more directly:

#include <ctime>
#include <iostream>

time_t t = time(NULL); // Put time into t.
cout << ctime(&t); // Display current time.

You can also use strftime, which returns a formatted time string.

ptg16518442

Appendix F Standard Library Functions522
Table F.7: Time Functions

FUNCTION DESCRIPTION

asctime(tm_ptr) Takes a pointer to a tm structure and returns a char* string in
the format “Ddd Mmm DD HH:MM:SS YYYY\n” in which Ddd
is a three-letter abbreviation for day of the week and Mmm is a
three-letter abbreviation for the month. See also ctime.

clock() Returns number of clock ticks on internal clock. To convert to
seconds, divide by CLOCKS_PER_TICK predefined symbol.

ctime(time_ptr) Takes a pointer to a time_t value (returned by the time function)
and returns a char* string in the same format that asctime
returns. This function is equivalent to calling localtime and
then passing the resulting structure to asctime.

difftime(t1, t2) Returns t1–t2 in seconds, in which t1 and t2 are time_t values.

gmtime(time_ptr) Takes a pointer to a time_t value (returned by the time function) and
returns a pointer to a tm structure using Greenwich Mean Time.

localtime(time_ptr) Takes a pointer to a time_t value (returned by the time function)
and returns a pointer to a tm structure using local time.

mktime(tm_ptr) Converts tm structure pointed to by tm_ptr into a time_t value
and returns that value. The tm_wday and tm_yday members of
the tm structure are ignored.

strftime(s, n, fmt, tm_ptr) Takes a pointer to a tm structure (tm_ptr), formats time data
from that structure according to a format string fmt, and places
the result in string s. See the next section for details. n is the maxi-
mum number of characters to write, including null.

time(time_ptr) Returns the current time as a time_t value (usually unsigned
long, although this is implementation dependent). If the argu-
ment is null, it is ignored. If it is not null, the return value is copied
to the address specified.

Here is an example that uses some of these functions to print the day of the
week as a number from 0 to 6:

#include <ctime>
...
time_t t = time(NULL);
tm *tm_pointer = localtime(&t);
cout << "The day is " << tm_pointer->tm_mday;
cout << endl;

The declaration of the tm structure is as follows:

tm struct tm {
 int tm_sec; // Seconds, 0-59

ptg16518442

Formats for the strftime Function 523
 int tm_min; // Minutes, 0-59
 int tm_hour; // Hours, 0-23
 int tm_mday; // Day of month, 1-31
 int tm_mon; // Month,0-11
 int tm_year; // Years since 1900
 int tm_wday; // Days since Sunday, 0-6
 int tm_yday; // Days since Jan. 1, 0-365
 int tm_isdst; // Daylight Savings Time...
} // positive: DST in effect,

// zero: not in effect,
// negative: unknown

Formats for the strftime Function
The strftime function has the following declaration:

size_t strftime(
 char *str, // String to write to.
 size_t n, // Max. chars to write,

// including null terminator.
 char *fmt, // Format string
 tm *tm_ptr // Ptr to tm structure.
);

The strftime function uses time data from the structure pointed to by
tm_ptr and writes that data to string str. The fmt argument contains format-
ting characters determining what data to write and how to write it, using the
format specifiers listed in Table F.8. For example, the following code fragment
displays what day of the week it is:

#include <iostream>
#include <ctime>

char s[100];
time_t t = time(NULL);
tm *tm_ptr = localtime(&t);
strftime(s, 100, "Today is %A.", tm_ptr);
cout << s << endl;

ptg16518442

Appendix F Standard Library Functions524
Table F.8: Format Characters for strftime

FORMAT SPECIFIER DESCRIPTION

%a Day of the week, abbreviated.

%A Day of the week, spelled out.

%b Month name, abbreviated.

%B Month name, spelled out.

%c Complete month and day.

%D Day of the month, 01 to 31.

%H Hour, 00 to 23 (based on 24-hour clock).

%I Hour, 00 to 11 (based on 12-hour clock).

%J Day of the year, 000 to 366.

%m Month, 01 to 12.

%M Minute, 00 to 59

%p a.m./p.m. designation.

%S Seconds, 00 to 61 (up to two leap seconds)

%U Week number, 01 to 53. Week 1 starts with first Sunday.

%w Weekday, 0 to 6, in which Sunday is 0.

%W Week number, 01 to 53. Week 1 starts with first Monday.

%x Date.

%X Time.

%y Year, 00 to 09, within the century.

%Y Year.

%Z Time zone; blank if time zone is not known.

%% Literal %.

ptg16518442

525

G I/O Stream Objects
and Classes

The objects and classes in this appendix support reading and writing to the
console, as well as to files and strings. To read and write to the console, include
<iostream>:

#include <iostream>
cout << "Hello, world." << endl;

To write data to a string, include <sstream>. String streams support a mem-
ber function (in addition to the ones listed here), str, which returns the data in
string format.

#include <sstream>

stringstream s_out;
s_out << "The value of i answer is " << i << endl;
string s = s_out.str()

Console Stream Objects
The objects listed in Table G.1 provide predeclared streams to which to read or
write text to the console. Each of them supports the appropriate stream operator
(<< or >>). For example:

cout << "n is equal to " << n << endl;

ptg16518442

Appendix G I/O Stream Objects and Classes 526
Table G.1: Stream Objects

FUNCTION DESCRIPTION

cerr Console error-message stream. By default it writes characters to the
console just as cout does; however, this stream may be redirected with-
out affecting cout. Use of this object is fairly rare.

cin Console input stream. Reads input from the console as a stream of
ASCII (8-bit) characters.

clog Console log stream. Similar to cerr and cout, but intended to display
runtime messages that are not necessarily errors. Use of this object is
rare; many programmers never use it.

cout Console output stream. Displays output to the console as a stream of
ASCII (8-bit) characters.

wcerr Wide-character error-message stream. Similar to cerr but writes text as
a series of wide characters.

wcin Wide Console Output. Similar to cin but reads input from the console
as a stream of wide characters.

wclog Wide-character log stream. Similar to clog but writes text as a series of
wide characters.

wcout Wide-character Console Output. Similar to cout but writes text as a
series of wide characters.

I/O Stream Manipulators
The I/O manipulators in Table G.2 can be used with stream objects to modify
how they read or write text. For example, the following statement writes “0x1f”
to the console.

cout << hex << showbase << 31; // Output 0x1f.

Some I/O manipulators affect both input and output streams, although
many affect output only. For example, if hex is used, input is interpreted in hex
format. In this code fragment, input of 10 would actually put the value 16 into n.

cin >> hex >> n;

ptg16518442

I/O Stream Manipulators 527
Table G.2: Stream Manipulators

MANIPULATOR DESCRIPTION

boolalpha Writes out Boolean values true and false as “true” and “false”
rather than 1 and 0 (the default).

dec Switches to decimal format (the default) for integers.

fixed Displays f loating-point numbers in fixed-point format.

hex Switches to hexadecimal format for integers.

left Left-justifies output. (Matters only when a minimum print-field
width has been specified: see the width function in Table G.4.)

noboolalpha Turns off boolalpha, so that true and false are not printed.

noshowbase Turns off showbase.

noshowpoint Turns off showpoint. Floating-point 5 is written as “5.”

nouppercase Displays numeric data in lowercase letters, so that hexadecimal FF
(for example) with showbase on is displayed as 0xff (the default).

nounitbuf Turns off unitbuf.

oct Switches to octal format for integers.

right Right-justifies output. (Matters only when a minimum print-field
width has been specified: see the width function in Table G.4.)

scientific Displays all f loating-point numbers in scientific notation.

showbase When writing octal or hex format, displays the “0x” or “0” prefix.

showpoint Always displays decimal point when writing out a f loating-point
number. For example, f loating-point 5 is written as “5.0.”

showpos Shows the positive sign (+) for positive numbers.

uppercase Displays numeric data in uppercase letters, so that hexadecimal
FF (for example) with showbase on is displayed as 0XFF.

unitbuf For output streams, causes output buffer to be f lushed after each
output operation.

endl When sent to an output stream, this prints a character.

ends When sent to an output stream, this outputs a null terminator.
This manipulator is generally used only with strstream objects.

flush Flushes the buffer, so that any text in the buffer is immediately
written out to destination.

ptg16518442

Appendix G I/O Stream Objects and Classes 528

Input Stream Functions
The functions in Table G.3 can be called by input streams such as cin as well as
input-file streams. For example:

char input_str[COL_WIDTH];
cin.getline(str, COL_WIDTH);

Table G.3: Input Stream Functions

FUNCTION DESCRIPTION

get() Gets the next character from the input stream

getline(s, n) Copies line of input to string address s, getting no more than n-1
characters

peek() Returns the next character without removing it from the stream

putback(c) Puts character c back onto the input stream

read(s, n) Binary read operation: reads n bytes and places data at address s,
which needs to be cast to char* type if the data is not in char format.

Output Stream Functions
The functions in Table G.4 can be called by output streams such as cout as well
as output-file streams and string streams. For example, the following code frag-
ment prints a number n in a print field 20 characters wide and right-justifies it:

cout.width(20);
cout << right << n << endl;

Table G.4: Output Stream Functions

FUNCTION DESCRIPTION

base(n) Set the radix for output operations to n, which must be 8, 10, or 16.

fill(c) Set the fill character used to fill print fields when the output is smaller
that the width. (By default, this is a space.)

flush() Flush the output buffer, causing output to be immediately printed.

precision(n) Set the number of digits of precision for writing floating-point numbers.

put(c) Output character c.

width(n) Set minimum print-field width for the next output operation.

write(s, n) Binary write operation: writes n bytes directly from data at address s,
which needs to be cast to char* type if the data is not in char format.

ptg16518442

File I/O Functions 529

File I/O Functions
To enable the member functions in this section, include <fstream>.

#include <fstream>

You can create a file of type fstream, ifstream, or ofstream and optionally
attempt opening a file when declaring the file object—or you can declare the
object first and then attempt opening with the open function. The default mode
is text.

ofstream fout(filename);

Note that a file object contains NULL after a file-open attempt fails. See
Chapter 8 for more information on the use of file-stream objects. File-stream
objects support the member functions in Table G.5, as well as the ones shown in
the earlier tables.

Table G.5: File I/O Functions

FUNCTION DESCRIPTION

open(file, mode) Instead of opening a file when a file-object is declared, you can call
this function separately to open the indicated file, a char* string
containing a file specification. The mode argument takes one or
more of the f lags listed in Table G.6.

close() Closes the file.

eof() Returns true if end-of-file marker has been reached.

is_open() Returns true if file has been successfully opened.

seekg(pos) Moves input-file pointer to indicated position (an offset from begin-
ning of the file in bytes).

seekg(off, dir) Moves input-file pointer by the indicated offset off (which may be
positive or negative) in the direction indicated by dir. See Table G.7
for values.

seekp(pos) Same as seekg but intended for use with output files.

seekp(off,dir) Same as seekg but intended for use with output files.

tellg() Returns file position—an offset from beginning of file in bytes.

tellp() Same as tellg but intended for use with output files.

ptg16518442

Appendix G I/O Stream Objects and Classes 530

The flag values in Table G.6 are used with the mode argument of the open func-
tion. They can be combined through the bitwise OR operator (|). For example:

// Open named file (filename) for binary input.

fstream fout;
fout.open(filename, ios::binary | ios::in);

Table G.6: File Mode Flags

FUNCTION DESCRIPTION

ios::binary Open file in binary mode.

ios::in Open file for input operations.

ios::out Open file for output operations.

ios::ate Position file pointer at end of file.

ios::app (Append.) Position file pointer at end of file after each i/o operation.

ios::trunc (Truncate.) Remove all existing contents before doing any other
 operations.

The constants in Table G.7 are used in conjunction with the seekg and seekp
functions.

Table G.7: Seek Direction Flags

DIRECTION VALUE DESCRIPTION

ios::beg Seek operation is relative to beginning of the file.

ios::cur Seek operation is relative to the current position; the offset
moves the file pointer forward if positive or backward if negative.

ios::end Seek operation moves file pointer forward beyond current end
of file if offset positive; if negative, file pointer is moved back-
ward from end of file.

ptg16518442

531

H STL Classes and
Objects

Although the Standard Template Library (STL) supports many useful tem-
plates, this appendix summarizes the use of five (the ones used in this book).

◗ The string class

◗ The bitset template

◗ The list template

◗ The vector template

◗ The stack template

The STL String Class
The features in this section require including <string>. STL string objects are
declared simply as string—or std::string if the std namespace is not being used.
The simple string class actually instantiates the template class basic_string for
type char, so the functions listed here are also supported by basic_string classes:

#include <string>
using namespace std;

basic_string<char> s1; // Equivalent to string
basic_string<wchar_t> s2 = L"Hello"; // Wide string
wcout << s2;

Once declared, string objects support copying of contents (=), concatenation (+),
and comparison of contents (<, >, and =). Unlike standard C-strings (char* strings),
STL strings can be assigned data without worrying about size considerations.

ptg16518442

Appendix H STL Classes and Objects532
#include <string>
using namespace std;
...
string your_dog = "Fido";
your_dog = "Montgomery"; // String automatically

// grows.

string my_dog = "Mr. " + your_dog;

The string objects can be indexed as if they were char* strings.

cout << "The third character is" << my_dog[2];

With most of the functions listed in Table H.1, str may be either a STL string
or a char* string. The return value, except where otherwise noted, is a reference
to the current string object (the object through which the function is called).

In all these functions, position numbers use zero-based indexing.

Table H.1: String Member Functions

FUNCTION DESCRIPTION

append(str) Appends string str onto current string

append(str, n) Appends first n characters of str onto current string

append(n, c) Appends n copies of character c onto current string

begin() Returns an iterator pointing to the beginning of the string; this corresponds to a
single character

clear() Clears the contents of the string; has no return value

c_str() Returns the C-string (char*) equivalent of current string

empty() Returns true if the string is currently empty; false otherwise

erase(pos, n) Erases n characters starting at position pos

end() Returns an iterator pointing to the end of the string (the position one past the last
character)

insert(pos, str) Inserts string str at position pos

insert(iter, c) Inserts character c at position pointed to by iterator iter

find(str, pos) Finds first occurrence of substring str, starting search at position pos; returns posi-
tion of string found; returns string::npos if not found

find(str) Finds first occurrence of substring str; returns position of string found; returns
string::npos if not found

find(c, pos) Finds first occurrence of character c, starting search at position pos; returns posi-
tion of character found; returns string::npos if not found

ptg16518442

The <bitset> Template 533

FUNCTION DESCRIPTION

find(c) Finds first occurrence of character c; returns position of character found; returns
string::npos if not found

find_first_of(s, pos) Finds first occurrence of a character that is also in string s, starting search at pos;
if pos is omitted, searches from beginning of string; returns position of character
found; returns string::npos if no such character found

find_first_not_of(s, pos) Finds first occurrence of a character that is not in string s, beginning at pos; if pos
is omitted, searches from beginning of string; returns position of character found;
returns string::npos if every character in string is also in s

replace(pos, n, str) Replaces n characters, starting at position, pos with str

replace(iter1, iter2, str) Replaces characters in range from iterators iter1 to iter2, with str

size() Returns the current length of the string

substr(pos, n) Returns substring at position pos of length n

swap(str) Swaps existing contents with those of specified string, an STL string; has no return
value

The <bitset> Template
To enable use of the bitset template, include <bitset>.

#include <bitset>
using namespace std;

The bitset template is unlike some other templates in that it is not built
around a base type, but rather on a constant integer of fixed size. This size indi-
cates the number of bits that the data type will hold (notably, in a compact format).
For example:

bitset<8> his_bits(255); // Store 8 bits exactly.
bitset<16> her_bits(108); // Store 16 bits exactly.

The value used to initialize a bitset need not be a constant, but it should be an
integer value, in this case, 255 or 108. The bitset enables access to individual bits of
this value through indexing and other operations. Bit 0 is the least significant bit.
Bit 1 is one position to its left, and so on. (Bitset indexing, unlike other indexing,
appears to be in right-to-left ordering, because of the way we write numbers.)

if (his_bits[0]) {
 cout << "Lowest bit is 1.";
}

Table H.1: String Member Functions (continued)

ptg16518442

Appendix H STL Classes and Objects534

Printing a bitset results in a display of a string of “1” and “0” digit characters.

cout << his_bits << endl;

Table H.2 describes the principal bitset member functions.

Table H.2: Bitset Member Functions

MEMBER FUNCTION DESCRIPTION

flip() Performs bitwise negation, changing each 1 to a 0 and
vice-versa

set(n) Sets individual bit at position n to 1; if n is omitted, sets all
bits to 1

test(n) Returns value of the bit indexed by n (this function, unlike
indexing, performs a range check on n)

reset(n) Sets individual bit at position n to 0; if n is omitted, sets all
bits to 0

to_string() Returns value of the bitset, as a string object containing “1”
and “0” digit characters

to_ulong() Returns value of the bitset as an unsigned long integer

to_ullong() Returns value of the bitset as an unsigned long long integer

The <list> Template
To enable use of the list template, include <list>.

#include <list>
using namespace std;

List classes can then be instantiated, creating a list container for the indi-
cated base type. You can then add elements by calling any member functions
such as push_back.

// Create several kinds of lists.

list<int> list_of_int;
list<double> list_of_double;
list<string> list_of_string;
list<Point> my_list;

list<int> IList; // Create list, add elements.
IList.push_back(5);
IList.push_back(225);

ptg16518442

The <list> Template 535
IList.push_back(100);
IList.sort(); // Sort list by value.

In C++11 and later (this includes the C++14 specification, of course), you
can initialize a list more directly.

list<int> IList = {2, 225, 100};

After declaring a list, you can declare an iterator and use it to step through
the list.

list<int>::iterator ii; // Declare ii as iterator.

for(ii = IList.begin(); ii != IList.end(); ++ii){
 cout << *ii << endl;
}

In C++11 and later, you can use range-based for with any list container, even
if created in another function, because C++ can always determine the begin-
ning, end, and size of any container generated with list.

for (int i : list_of_int) {
 cout << i << endl;
}

See Chapter 17 for more information on range-based for.
Table H.3 lists the good majority of member functions supported for list

templates. A few functions—merge, splice, and predicates—are complex and
difficult to describe in a short summary. See your compiler documentation for
more information on those.

Note that, unlike some containers, the list template has a built-in sort func-
tion, which can be very useful in many situations.

Table H.3: List Template Member Functions

MEMBER FUNCTION DESCRIPTION

assign(n, val) Replaces entire list contents with n copies of val, a data
object of the base type

begin() Returns an iterator that points to the beginning of the list

clear() Erases contents of the list

empty() Returns true if the list is empty; false otherwise

end() Returns an iterator to the end of the list (one position past
the last element)

continues

ptg16518442

Appendix H STL Classes and Objects536

MEMBER FUNCTION DESCRIPTION

erase(iter) Erases the element pointed to by iterator iter

erase(iter1, iter2) Erases the elements in the range from iter1 to iter2

front() Returns the first element

insert(iter, val) Inserts indicated value just before the position pointed to by
iter; if iter is equal to end(), then element is inserted at end
of list

insert(iter, n, val) Inserts n elements just before the position pointed to by iter;
each has the indicated value, val

pop_back() Erases the last element in the list; behavior is “undefined” if
list is empty (but don’t count on your program still running)

pop_font() Erases the first element in the list; behavior is “undefined” if
list is empty

push_back(val) Adds specified value, val, to back of the list

push_front(val) Adds specified value, val, to the front of the list

rbegin() Returns a (reverse) iterator that points to last element

rend() Returns a (reverse) iterator that points to one position before
the beginning of the list

reverse() Reverses the current order of all elements in the list

sort() Sorts elements in the list, using comparison operator (<)
defined for the base type

unique() Erases duplicate adjacent elements from the list

The <vector> Template
One of the most useful parts of the STL is the vector template, which allows you
to build vector containers for any base type. A vector is similar to an array, but it
can grow without limit. You can, for example, declare a vector this way:

vector<int> my_vec(100, 0); // my_vec contains 100 0's.

You can then index this container just as you would an array, using zero-
based indexes (and if it needs to grow, use push_back or insert).

my_vec[0] = 5; // Assign 5 to first element.

To enable use of the list template, include <vector>.

#include <vector>
using namespace std;

Table H.3: List Template Member Functions (continued)

ptg16518442

The <vector> Template 537

Vector classes can then be instantiated, creating a list container for the indi-
cated base type. You can then add elements by calling member functions such
as push_back.

// Create several kinds of vectors.

vector<int> iVec;
vector<double> fVec;
vector<string> strVec;
vector<Point> pt_vector;

vector<int> my_vec;
my_vec.push_back(10);
my_vec.push_back(150);
my_vec.push_back(-250);

In C++11 and later (this includes the C++14 specification, of course), you
can initialize a vector directly.

vector<int> iVec = {10, 150, -250};

After creating a vector, you can declare an iterator and use it to step through.
(You can also use indexing to step through the vector, just as you can do with
an array.)

vector<int>::iterator ii; // Declare ii as iterator.

for (ii = iVec.begin(); ii != iVec.end(); ++ii){
 cout << *ii << endl;
}

In C++11 and later, you can use range-based for with any vector container,
even if it was created in another function, because C++ can always determine
the beginning, end, and size of any vector.

for (int i : iVec) {
 cout << i << endl;
}

See Chapter 17 for more information on range-based for.
Table H.4 lists the principal member functions supported for vector

templates.

ptg16518442

Appendix H STL Classes and Objects538
Table H.4: Vector Template Member Functions

MEMBER FUNCTION DESCRIPTION

assign(n, val) Replaces vector contents with n copies of val, a data object of
the base type

begin() Returns an iterator that points to the beginning of the vec-
tor’s elements

clear() Erases entire contents of the list

empty() Returns true if contents are empty; false otherwise

end() Returns an iterator to the end of the vector (one position past
the last element)

erase(iter) Erases the element pointed to by iterator iter

erase(iter1, iter2) Erases the elements in the range from iter1 up to but not
including iter2

front() Returns the first element

insert(iter, val) Inserts indicated value just before the position pointed to by
iter; if iter is equal to end(), then element is inserted at end
of list

insert(iter, n, val) Inserts n elements just before the position pointed to by iter;
each has the indicated value, val

pop_back() Erases the last element; behavior is “undefined” if the vector
is empty

pop_font() Erases the first element; behavior is “undefined” if the vector
is empty

push_back(val) Adds specified value, val, to the end of the vector

rbegin() Returns a (reverse) iterator that points to last element

rend() Returns a (reverse) iterator that points to one position before
the beginning of the vector

size() Returns the current number of elements

The <stack> Template
To enable use of the stack template, include <stack>.

#include <stack>
using namespace std;

Stack classes can then be instantiated, with each declaration creating a stack
that uses the indicated type.

ptg16518442

The <stack> Template 539
stack<int> stack_of_int;
stack<double> stack_of_double;
stack<string> stack_of_string;
stack<Point> my_stack;

The stack template creates a simple last-in-last-out (LIFO) mechanism sup-
porting just a few member functions. Because the template doesn’t provide
begin and end functions for iteration, a stack class is not a full container class;
it cannot be used with ranged-based for supported by the C++0x specification.

Once you declare a stack class, you can push and pop members. Note that
popping an STL stack actually requires two operations: top to get the top mem-
ber of the stack and pop to remove it. So, remember to “top and pop.”

stack<string> beats;
beats.push("John");
beats.push("Paul");
beats.push("George");
beats.push("Ringo");
cout << beats.top() << endl; // Print "Ringo".
a_stack.pop();
cout << beats.top() << endl; // Print "George".
a_stack.pop();

Note that attempting to pop or remove an item from an empty stack pro-
duces “undefined” results, which usually means your program will journey off
to the Twilight Zone and stay there. So, be careful not to pop empty stacks.

Table H.5 summarizes the most frequently-used stack template functions.

Table H.5: Stack Template Member Functions

FUNCTION DESCRIPTION

push(val) Pushes value (of stack’s underlying type) onto top of stack

top() Returns data (of stack’s underlying type) from top of stack, but does not
remove data; for that, use pop

pop() Removes top item of stack; does not return data

size() Returns the number of items currently stored in the stack

empty() Return true if stack is empty; false otherwise

ptg16518442

This page intentionally left blank

ptg16518442

541

I Glossary of
Terms

This section provides an overview of terminology used in this book. For more
detailed information on these topics, see the index.

abstract class: A class that cannot be used to create objects but that may still
be useful as a general pattern (in other words, interface) for other classes. An
abstract class has at least one pure virtual function. Such a function is declared
virtual and uses the syntax “= 0;” for its implementation.

access level: The level—private, protected, or public—that determines who or
what can access members of a given class. Public members are freely accessible
outside the class (although references to such members have to be properly quali-
fied). Private members are accessible within the class, but never from outside, and
protected members are accessible within the class and any derived classes.

address: The numeric location of a piece of data or program code in memory.
This location is often called a “physical location” in memory (although opening
the computer to try to find this location won’t help you). Addresses, when dis-
played, are usually shown in hexadecimal notation (base 16) and aren’t very
meaningful except in the context of a program. The CPU understands only
numbers, not words or letters: Numbers used by the CPU to access locations
within main memory are addresses.

ANSI: American National Standards Institute. ANSI C++ is a recent specification
of C++ that includes many features (such as the bool type and new-style cast
operators) required for compilers to be up-to-date. However, it is superseded by
the C++11 and C++14 specifications, which are even newer.

application: A complete, functioning program, as seen from the user’s point of
view. A word processor is an application; so is a spreadsheet. Basically, any com-
piled, tested program that does something useful is an application. The C++
compiler is a kind of application, although useful only to a specialized audience
(programmers). You should think of the compiler as a tool, and the program,
once compiled, as the application.

ptg16518442

Appendix I Glossary of Terms542

argument: A value passed to a function; also known as a parameter.

array: A data structure made up of multiple elements, in which each element
has the same base type. Individual elements are accessed through an index
number as well as the array name. For example, an array declared as int arr[5]
is an array of five int values, accessed as arr[0] through arr[4]. In C and C++,
index numbers run from 0 to N − 1, where N is the size of the array.

ASCII: A coding system, adopted by convention, which assigns each printable
character (and some nonprintable characters) a unique number in the 1-byte
range (0 to 255). Consequently, in C++ a character is stored as char (a 1-byte
integer), and a string is stored in an array of char. Use of ASCII code is built into
the computer and low-level software so that when you type an H, for example,
the ASCII code for H is put into the data stream and an H is displayed on the
screen. (These details are far below the level of most programs, which means
you don’t have to worry about how all this happens.)

Some such coding system is necessary for programs to handle text, because
at the level of machine code (the computer’s native language), only numbers
are understood. There are some other character coding systems (EBCDIC), but
ASCII is universally adopted among personal computers and most minicom-
puter systems.

associativity: The rule (either left-to-right or right-to-left) that determines how
to evaluate an expression that combines two or more operators at the same level
of precedence. For example, in the expression *p++, the operators associate
right-to-left, so the expression is equivalent to *(p++). This means the pointer
gets incremented to point to the next element, rather than incrementing the
element itself.

backward compatibility: The policy that states new versions of the C++ com-
piler should continue to support old programs even while introducing new fea-
tures. C++ was intended to be largely backward compatible with the C language,
although it is not quite 100 percent so. Lack of backward compatibility can cause
big problems for programmers, who may find that programs that compiled and
ran perfectly well before are suddenly “broken” just because they updated their
compiler, as in, “The specification committee broke my programs!” The com-
mittee tries to avoid that at nearly all costs.

base class: A class from which you derive another class. All members of the base
class are inherited by the derived class, except for constructors.

bit: A single digit equal to 0 or 1, stored in the CPU or in memory. Eight bits
make up a byte. You cannot get access to individual bits except through bit
fields, bitset templates, and bitwise operations.

ptg16518442

Glossary of Terms 543

bitset: A special kind of collection, supported by the STL, which represents a
set of bits in compact form. With a bitset, you can access individual bits one at
a time by indexing into the bitset. The least significant bit is indexed as bit 0. See
Chapter 17 and Appendix H for more information.

bitwise operations: Operations that compare individual bits in one operand to
individual bits in another. Such operations are useful in creating compact bit
storage, as well as in creating bit masks, which can be used to mask out com-
binations of several bits at a time or (by using bitwise OR) to set a group of
selected bits to 1. For a contrast, see also logical operations.

block: A group of statements put between two curly braces ({}). Blocks are exe-
cuted as a unit—usually either all or none of the statements are executed. Blocks
can define a level of visibility or scope, so that a local variable declared within a
block is visible only within that block. See also compound statement.

Boolean: A true/false value or true/false operation. In ANSI C++ and later, the
bool type is fully supported. Where a Boolean value is expected (for example,
inside an if condition), any nonzero value is converted to 1 and interpreted as
true. Note that data objects declared with bool can be assigned the special values
true and false. (These are equal to 1 and 0 respectively, but intended to be used
in Boolean operations. When any nonzero value is assigned to a Boolean type, it
is converted to “true,” or rather, 1.)

byte: A group of eight bits stored together. Memory in a computer is organized
in bytes, so each byte has its own unique address.

C++11, C++14: These are the most up-to-date specifications for C++ as of
this writing. Some of the C++11 features—such as user-defined literals and
range-based for—are features that C++ programmers have requested for years.
C++14 includes all these features, as well as adding other convenient tools such
as binary radix and group separators. See Chapter 17 for more information.

C-string: The old text-string type supported by the C language and still fully
supported in C++: the format consists of an array of char and includes a
null-terminating byte. Use of the STL string class offers many advantages over
using C-strings, but string literals are still stored as C-strings, and some of the
old-style string functions (such as strtok) in the standard library are still useful.
See Chapter 8 for more information.

callback: A function whose address you give to another process or function so
that it can call back your function at the specified address. An example may
help clarify: To call the C++ standard library function qsort, you need to pass a
qsort address of a comparison function you supply. qsort then calls this func-
tion in order to help determine the proper ordering of any two elements of an
array.

ptg16518442

Appendix I Glossary of Terms544

With C++ and other object-oriented languages, callback functions are made
largely obsolete through the use of virtual functions, which provide a safer and
more structured way of doing what callbacks do.

cast: Also known as type cast (or occasionally as data cast). An operation that
changes the type of an expression. When a type with a smaller range is assigned
to a variable of greater range, C++ automatically promotes the smaller type,
and no cast is usually necessary. However, when going in the reverse direction,
such as assigning a floating-point number to an integer variable, a cast is neces-
sary to avoid a warning message.

Casts are also useful in other situations. In writing to a binary file, a pointer
of base type char is expected, so you need to recast other address types to char*.
If you are using the new-style type cast, this requires reinterpret_cast, because
it involves pointers. For examples using the new-style casts, as well as the old
“C-style” cast, see Appendix A.

class: A user-defined data type, or a data type defined in a library. In C++, a
class can be declared by using the class, struct, or union keyword. In tradi-
tional programming, a user-defined type, or struct, can contain any number of
data members. Object-oriented programming in C++ fully supports structs but
adds the ability to declare functions members as well (also called “methods”).
Once a class is declared, you can use it to create any number of class instances,
called objects. See object-oriented programming.

code: Another word for “the program” before it’s compiled to produce an appli-
cation. When C++ programmers speak of “code,” they are usually referring
to the C++ source code, which is the group of C++ statements that make up
the program. This use of the word code originated in the early days of com-
puter programming, when all programming had to be done in machine code.
In those days, each instruction was encoded in a unique pattern of 1s and 0s.
Computer languages such as C and C++ are a thousand times more readable,
but the term “code” lives on.

compiler: The language translator that reads your C++ program and produces
machine code and (ultimately) an executable file that can be run on the com-
puter. This executable file is also called an application.

compound statement: A group of zero or more statements (typically more than
one) enclosed in curly braces ({}). Also called a block or statement block. One of
the fundamental rules of C and C++ syntax is that in any place a single state-
ment is valid, so is a compound statement. For example, you can use this syntax
to put any number of statements inside the body of a while loop, so that each
time through the loop, multiple statements are executed. Note that a compound
statement, or block, can define a level of visibility for local variables, so that any
such variable declared within it is local to that block only.

ptg16518442

Glossary of Terms 545

constant: A value that is not allowed to change. All literals are constants, but
not all constants are literals. In C and C++, an array name is a symbol (that is,
a name), but it is a constant that evaluates to the address of the first element.

constructor: A special member function that is automatically called when an
object (an instance of a class) is created. Implicitly, a constructor returns an
instance of the class, although constructors never have an explicit return type.
(Syntactically speaking, every function in C++ must have a return type—even
if it is void—with the two exceptions being constructors and destructors.) Usu-
ally, a constructor performs initialization of some kind; note, however, that the
compiler-supplied default constructor (see default constructor) performs none.

control structure: A way to control what happens next in a program rather
than just “go onto the next statement,” which is usually what happens. Control
structures can make decisions, repeat operations, or transfer execution to a new
program location. The if, while, do-while, for, and switch-case statements are
all control structures.

copy constructor: A constructor in which an object is initialized from another
object of the same type. For each class, the compiler provides a copy constructor
if you don’t write one: It performs a simple member-by-member copy.

CPU: Central processing unit. Although nearly all computers in use today have
coprocessors that do some of the work (notably floating-point operations and
graphics), a personal computer generally has one and only one central processor,
which is a silicon “chip” that evaluates each machine-code instruction in a pro-
gram. (Remember that all programs are translated into machine code before
being run.) The central processor’s execution of these instructions, one by one,
is what drives a computer program to make decisions, perform arithmetic, copy
values to memory, and so on.

data member: A data field of a class; each object of the class has its own copy of
the data member, unless the member is declared static.

declaration: A statement that provides type information for a variable, class,
member, or function. A data declaration—unless it is an extern declaration—
creates a variable, causing the compiler to allocate memory for it. A function
declaration can be either a prototype (which contains type information only)
or a definition (which tells what the function does). In C++, every variable and
function except for main must be declared before being used; note, however,
that #include directives bring in declarations for large portions of the standard
library.

default constructor: A constructor that has no arguments. For each class, the
compiler provides an automatic default constructor if you write no construc-
tor of your own. But if you write any constructor, the compiler takes away the

ptg16518442

Appendix I Glossary of Terms546

automatic default constructor, and then you cannot create objects without ini-
tializing them. Such behavior can catch you by surprise, but it is useful when
you want to force the user of the class to initialize new objects.

You can avoid this behavior by writing your own default constructor. The
compiler-supplied default constructor performs no initialization. Other than allo-
cating memory for the object (which all constructors do implicitly), it is a no-op.

definition, function: A series of statements that tells what a function does.
When a function is called, program control is transferred to these statements.

deprecate: A deprecated feature is one that the C++ specifications committee
strongly discourages from being used, so much so that the compiler generates a
warning message that the programming feature in question may not always be
supported. For a long time, the committee had intended to deprecate old-style
C casts but changed its mind when it became clear how much C legacy code had
been maintained with C++.

dereference: The process of getting data that a pointer points to. If p is a pointer
that points to n, then the expression *p “dereferences” the pointer by getting the
data stored in n. In theory, you can have a pointer to a pointer to a pointer; in
that case, the expression ***p fully dereferences the pointer, producing data of
the base type.

derived class: See subclass.

destructor: Not as lethal as it sounds. A destructor is a member function that
performs cleanup and termination activities when an object is destroyed. The
destructor is called just before an object is about to be removed from memory.
The declaration of a destructor is ~class_name(). Writing a destructor is not
required but is a good idea when objects of a class have ownership of resources
(such as memory and file handles) that need to be given back so other processes
can use them.

directive: A general command to the compiler. Directives affect how the com-
piler interprets the program but do not correspond directly to runtime actions.
For example, the #include directive causes the compiler to include the contents
of another source file. Unlike most statements, directives do not end with a
semicolon (;).

encapsulation: The ability to hide or protect contents, exposing the underlying
functionality of what is protected by providing a general (and ideally easy-to-use)
interface. For example, by declaring a file-stream object, you gain the ability to
read and write to files without having to deal with the operating system’s low-
level file commands. Encapsulating complex operations and data into classes
with consistent, easy-to-use interfaces is a general goal of object-oriented
programming.

ptg16518442

Glossary of Terms 547

end user: The person who runs a program, as opposed to writing it. Most pro-
grams are designed for end users (typically referred to as users) who are not
experts and have no knowledge of programming. Ironically, though, the first
user of a program—the first person to try it—is almost always the programmer
him- or herself.

exception: An unusual occurrence at runtime, typically (but not always) a run-
time error. What all exceptions have in common is that they disrupt the normal
flow of the program and require immediate action. If an exception is not han-
dled, the program terminates abruptly (and quite rudely) without so much as
an explanation to the user. An example of an exception is attempting to divide
by zero. C++ provides the try, catch, and throw keywords to let you centralize
exception handling in your programs.

floating point: A data format that can store fractional portions of numbers
as well as storing numbers in a much larger range than integer types (such as
int, short, and long). On a computer, floating-point numbers are stored inter-
nally in base 2 but displayed in decimal format. Rounding errors are possible.
Many ratios—such as 1/3—cannot be stored precisely in floating-point format,
although they can be approximated to a certain precision. The principal floating-
point type in C++ is double, which stands for “double precision.”

Rounding errors are always possible with floating-point numbers, because
each floating-point format has a limited precision; in some cases, very high
integers may not be stored precisely, although a long int or long long int might
be able to store the same number with absolute precision. In general, you should
never use a floating-point type where an integer type would be sufficient.

GCF (greatest common factor): The highest integer that divides evenly into
each of two numbers. For example, the greatest common factor of 12 and 18 is 6;
the greatest common factor of 300 and 400 is 100.

global variable: A variable shared by all functions in the same source file (or at
least all functions whose definitions appear after the declaration of the global
variable). You declare a global variable in C++ by declaring it outside of any
function. In a multiple-module program, you can even share a global variable
among all the functions in the program by using extern declarations. A global
variable is visible from the point where it is declared until the end of the file. A
global variable automatically has a static storage class.

header file: A file that contains a series of declarations and, optionally, direc-
tives; it is intended to be included (through the use of #include directives) in
multiple files. This technique saves programmers from having to enter all the
needed declarations into each module of a project, and from having to declare
prototypes for library functions. Remember that classes, variables, and func-
tions all have to be declared in C++ before being used.

ptg16518442

Appendix I Glossary of Terms548

IDE: Integrated development environment; a text editor from which you can
run the compiler as well as test your program.

implementation: A word with many different meanings, but one of the most
common is: an implementation of a virtual function that provides a function
definition, thereby implementing that function with a particular response.

index: The number used to refer to an element of an array. Index numbers are
also used with char* strings (which are really arrays), STL string objects, and
any container class that supports the brackets operator []. Note that C++ uses
zero-based indexing, rather than one-based, in virtually all contexts.

indirection: Accessing data indirectly through a pointer. For example, if
pointer ptr points to a variable amount, then the expression “*ptr = 10” changes
the value of the amount through indirection.

infinite loop: A loop that apparently continues forever because (for example)
the while condition is always true. Usually, an infinite loop represents a fatal
error in a program, unless there is some kind of exit condition, such as a break
or return statement.

inheritance: The ability to give one class the attributes of another, previously
declared class. This is done through subclassing. The new class automatically
has all the members declared in the base class, except for constructors. See
subclass.

inline function: A function whose statements are inserted into the body of the
function that calls it. In a normal function call, program control jumps to a new
location and then returns when execution is complete. This does not happen
with an inline function. Instead, the inline function call is expanded by being
replaced with the statements defined for it, much like a “macro.”

When a member function is defined within a class declaration rather than
outside the class declaration, the function is automatically made an inline
function.

instance/instantiation: An instance of something is a concrete realization
of a general category. For example, the Sears Tower is an instance of the cate-
gory “building.” In C++, the word instance is usually synonymous with the word
object. Any individual value or variable is an instance of some type. The number 5
is an instance of int, and the number 3.1415927 is an instance of double. Every
object is an instance of some class. When a class is instantiated, it means the
class has been used to create an object.

integer: A whole number or, rather, a number with no fractional part. This
includes the numbers 1, 2, 3, and so on, as well as 0 and negative numbers −1,
−2, −3, and so on. Theoretically, there are an infinite number of integers, but on
a computer, any integer type has a finite range, just as other data types do.

ptg16518442

Glossary of Terms 549

interface: This is another word with many different meanings, depending on
the context. In this book, I’ve used it to refer to a general set of services that dif-
ferent subclasses can implement, each in their own way. In C++, you can use an
abstract class to define an interface.

iteration/iterative: Computing by using repeated statements (loops). An
iterative—as opposed to a recursive—solution is one that repeats a series of
statements over and over, usually in a while loop, do-while loop, or for loop.
Iteration is the process of repeating a group of statements by jumping back up to
the top of the loop after the bottom is reached.

iterator: An object or variable used to cycle through the elements of a container,
typically in a for loop. In the case of arrays, you can use a simple loop counter
as a primitive iterator, but be careful to set its beginning and ending limits care-
fully. With STL container classes such as <list>, iterators provide a safe and
convenient way to cycle through all the elements, although range-based for is
typically even better. See Chapter 13 for more information.

keyword: A word (such as if, for, while, return, or do) that has special meaning to
the C++ language. Function and variable names that you come up with your-
self, or are provided by a library, are not and cannot be keywords.

late binding: Assigning an address to a function at runtime rather than compile
or link time. Usually, when a function call is made in a program, the address of
the function must be bound to a target address. Late binding causes this deci-
sion to be delayed until runtime, at which point the target address may change.
This is how C++ and other languages enable member functions to be polymor-
phic. The exact type of an object pointed to may not be known until runtime, at
which point a different implementation of the function is called depending on
the object’s class.

LCM: Lowest common multiple, the lowest number that two numbers can be
divided into evenly. For example, the lowest common multiple of 20 and 30
is 60, because 20 and 30 both divide evenly into 60 (leaving no remainder).
Another way of saying this is to say that 20 and 30 are both factors of 60.

LIFO: Last-in-first-out; this is a system of data management that is character-
istic of any kind of stack. The last item to be put on the stack is the first item to
be popped off. This is why stack operations are usually referred to as “pushing”
and “popping.”

literal: A fixed number such as 5, −100, or 3.1415927, or a text string such as
“Mary had a little lamb.” A literal is something the compiler recognizes as hav-
ing a specific value upon reading it in a source file. Its value is fully determined
at compile time.

ptg16518442

Appendix I Glossary of Terms550

A literal value, unlike a symbol, is not looked up in a table; therefore, it can be
used immediately without being initialized. (More often, it is the initialization!)
All literals are constants, but not all constants are literal.

local variable: A variable that is private to a particular function or statement
block. The benefit of local variables is that each function can have its own vari-
able x (for example), but changes to x within one function won’t interfere with
the value of x in any other function. We can say that the local variable x is visible
only within its function.

In C++, every block (or compound statement) can declare local variables of
its own. Such variables are not visible outside the block.

Most local variables combine two traits: local visibility and an automatic
storage class, meaning they are allocated on the stack as temporary variables.
Local variables declared static retain local visibility but have a static storage
class, being loaded into the program only once, at startup.

logical operations: Operations that are intended to create complex Boolean
(true/false) expressions. For example, logical AND (&&) produces true if and
only if both operands are true. For the purposes of conditional evaluation,
any nonzero expression or operand is considered “true.” Therefore, the logical
expression “5 && 2” evaluates to true, but the bitwise expression “5 & 2” com-
bines the bit patterns 101 with 010 and thereby produces zero (false). In C++,
logical expressions use short-circuit logic, so that if the first expression in op1
&& op2 is false, the second operand is never evaluated.

loop: A group of statements repeated over and over: The image of “loop” comes
from the way control cycles back to the top, each time the bottom is reached.

loop counter: A variable used to control the number of times a loop is executed.
The loop counter is omitted in range-based for.

lvalue: A “left value,” meaning a value that can appear on the left side of an
assignment statement. In other words, an lvalue is something you can assign a
value to. Variables are lvalues; literals are not. Other examples of lvalues include
array members, most class data members (if they are ordinary variables, not array
names), and fully dereferenced pointers. Array names, as opposed to array mem-
bers, are not lvalues because they are constants.

machine code: The computer’s own internal language. Such a language (dif-
ferent for every make and model of processor) consists of a unique pattern of
1s and 0s for each possible action; this is why programs are referred to as code
because each machine instruction is a code for a different operation. The term
code originated in the 1950s and stuck.

Few programmers ever write in machine code anymore—or even assembly
language, which is similar to machine code but uses intelligible names for

ptg16518442

Glossary of Terms 551

instructions, such as COPY, JUMP, or JNZ (“jump if not zero”), instead of bit
patterns. Because a language like Basic or C++ is closer to human language
and frees the programmer from having to worry about the processor’s architec-
ture, a programmer writing in C++ can generally accomplish the same task that a
machine-code or assembly-code programmer could, only many, many times faster.

main function: The main function is the starting point of a C++ program, and
it does not need to be declared before being used. In a console application, a
main function is required; other types of applications may use other kinds of
starting points. In a console application, main is the only function guaranteed
to be run. Other functions in a program are executed only when called.

main memory: The memory in which all computer programs run; it is also
called “RAM.” Although programs are stored in a disk file or network location,
a computer must download a program into main memory before it can run
that program. This area is volatile and impermanent; but, generally speaking,
it is the only memory that the CPU can access directly. Main memory must be
shared with other programs running at the same time, including the operating
system.

member: An item declared inside a class. Data members are similar to the fields
of a record or structure. Member functions define operations exclusive to the
class, which (generally speaking) operate on members of the class.

member function: A function declared within a class. Member functions are
sometimes called methods in other languages. When you call a member func-
tion, it applies to the object through which it was called. But note that all objects
of the same class support the same member functions, as well as data members.

memory: Although memory can either be volatile or persistent (in other words,
stored in a disk file or other semipermanent medium), the term memory itself
usually refers to main memory.

method: See member function.

module: A large, semi-independent division of a program. A module corre-
sponds to one source file. In the largest programs, multiple modules—each in
its own source file—may be compiled and linked together. Object orientation
encourages an approach that is highly modular but uses class declarations to
delineate modules rather than requiring separate source files.

nesting: Placing one control structure inside another, or one declaration inside
another.

newline: A signal to the monitor that says to start a new line of text.

null pointer: A pointer with a zero value. This indicates a “pointer to nowhere”:
not an uninitialized pointer (which is a dangerous item that could point

ptg16518442

Appendix I Glossary of Terms552

anywhere at all) but rather a pointer that’s specifically set to have no current
association with any piece of data. A pointer can be compared to NULL, or
rather nullptr, to see if it currently points to any meaningful address.

In C++11 and later, nullptr is a keyword that has a zero value but always has
a pointer—or rather address—type. The nullptr keyword, when supported,
should be used in preference to NULL for pointer initialization and compari-
sons. See Chapter 12 for examples.

object: A unit of data that can have behavior (in the form of member func-
tions) as well as an internal state. The concept stems for the old concept of
“data record” but is much more flexible. By writing member functions, you can
define an object’s ability to respond to requests. Furthermore, because of poly-
morphism in C++, the knowledge of how to carry out an operation is built into
the object itself, not the user of the object. The type of an object is its class, and
for a given class you can declare any number of objects.

However, even though an object combines both state (data) and behavior
(functions), all function code is shared by objects of the same class and, there-
fore, the class is where member functions are declared and defined.

object code: The machine code generated by the compiler and stored in an
intermediate file to be linked into the final executable file (EXE on Windows
systems). This term has no connection to objects and object-oriented program-
ming whatsoever. The similarity of the names is frankly unfortunate.

object-oriented programming (OOP): An approach to program design and
coding that makes data objects more central, enabling you to define objects
by what they do as much as by what data they contain. The object-oriented
approach starts by asking, “What kinds of data does the program need, and
what kinds of operations can be defined on each such data object?”

As a design methodology, the object-oriented approach has significant
advantages. It’s easier to break down a big project into its major components
when using this approach. Large programs tend to be better organized and
more comprehensible with object orientation, because they don’t consist of
dozens of isolated functions and isolated data structures, but rather modules
(or rather, classes) of closely related code and data working together. This is
extremely helpful in making larger programs easier to read and maintain.

one-based indexing: A system of indexing arrays and strings, which starts at
index number 1. C and C++ use zero-based indexing instead, in virtually every
context.

OOPS: A user’s cry when he spills water on his laptop. But seriously, it’s
an acronym for object-oriented programming systems. See object-oriented
programming.

ptg16518442

Glossary of Terms 553

operand: An expression involved in a larger expression through some operator.
For example, in the expression x + 5, the items x and 5 are operands.

operator: A special symbol (usually a single character such as +) that combines
one or more subexpressions into a larger expression. Some operators are unary,
meaning they take only one operand; others are binary, meaning they take two
operands. In the expression x + *p, the plus sign is a binary operator and, in this
case, the asterisk (*) is a unary operator.

overloading: The reuse of a name or symbol for different—although usually
related—purposes. Function overloading lets you use the same name any num-
ber of times to define different functions, as long as each function has a dif-
ferent argument list. Operating overloading lets you define how standard C++
operators (such as *, +, and <) work with objects of your own classes.

persistent memory: Memory that forms a semipermanent record so that after
the program finishes or the computer is turned off, the data hangs around.
Computers provide persistent memory in the form of disk files and other media,
such as memory sticks.

pointer: A variable that contains the address of another variable, array, or function.
A pointer can also be a null pointer, in which case it “points nowhere.” Pointers
have many uses in C++, as described in Chapter 7. In general, pointers are valu-
able because they give you a way of passing a handle to a hunk of data without
having to copy all the data itself; you have to copy only the pointer value: that
is, the address. Pointers also make dynamic-memory allocation possible, as well
as making it possible to create linked lists, trees, and other data structures in
memory.

polymorphism: A multisyllabic term meaning “many forms”; in computer
programming terms, this is the ability to call a function and have it respond
in infinitely many ways at runtime: The implementation to be called depends
on the object, and the object (which can change in response to runtime conditions)
brings with it its own function code.

A more compact way of saying this is: the knowledge of how to respond to
a function call is built into the object itself, not the code that uses the object.
Therefore, existing software can interact smoothly with new software yet to be
written. In C++, polymorphism is made possible through virtual functions.
See Chapter 16 for more information.

precedence: The rules that determine which operations to carry out first in a
complex expression. For example, in the expression 2 + 3 * 4, multiplication (*)
is carried out first, because multiplication has higher precedence than addition.
See Appendix A for the precedence of all operators.

processor: See CPU.

ptg16518442

Appendix I Glossary of Terms554

program: A group of commands (or rather statements) that, taken together,
perform useful actions. A word processor is a program and so is a spreadsheet.
(From the standpoint of a user, a program is usually called an application.) C++
is a language for writing computer programs using a distinct set of keywords
and syntax; this version of the program (called source code) is then translated
into machine-readable form (machine code) that is run directly on the com-
puter itself. See application.

prototype: A function declaration that gives type information only. A proto-
type is a declaration but not a definition. (Remember that a definition tells what
the function does.)

pure virtual function: A function that has no implementation—that is, no
definition—in the class in which it is declared. In place of an implementation,
a pure virtual function has the syntax “=0;”.

radix: The base of a number system. Decimal radix (base ten) is the default
numbering system in most contexts. C++ also provides octal (0 prefix) and
hexadecimal (0x prefix) for numeric literals. C++14 finally adds binary radix
(0b prefix), in which all digits are 1s and 0s.

range: The high and low limits of what can be stored in a particular type of
variable. For example, the limit of an unsigned char (one byte) is 0 to 255.

range-based “for”: This is C++’s version of the “for-each” syntax that several
other computer languages have. This language feature (introduced in the C++11
spec) enables you to process every element of a container without having to ini-
tialize beginning and ending conditions. As such, range-based for can prevent a
major source of errors. See Chapter 17 for more information.

In C++11 and later, range-based for works with STL containers—as long
as they have begin and end functions—and it works with arrays on a limited
basis. The limitation with arrays is that if an array is declared local to one func-
tion and passed to another, the second function will have no knowledge of how
large the array is, and range-based for in that case will fail. However, range-
based for works well with arrays declared as global variables.

recursion: A programming technique in which a function calls itself. This
sounds like a logical paradox leading to an infinite regress. Yet the technique
is perfectly sound as long as there is a terminating condition—some condition
under which the function no longer calls itself. At that point, the function calls, all
stored on the stack, begin returning one by one. See Chapter 5 for several exam-
ples of recursion. A recursive approach is typically less efficient than an iterative
approach, but some problems, notably the Tower of Hanoi puzzle in Chapter 5,
are far more difficult to solve without recursion.

ptg16518442

Glossary of Terms 555

reference: A variable or argument that serves as an alias for another variable or
argument. To use an analogy, “Mark Twain” was an alias for Samuel Clemens.
The different names referred to the exact same individual. In this sense, “Mark
Twain” is a reference to Samuel Clemens.

References behave in a way not so different from pointers but without pointer
syntax. One big difference between pointers and references (aside from syntax)
is that once a reference is assigned, it cannot be made to refer to something else.
Note that passing a variable by reference causes the function to refer to the orig-
inal variable itself, not a copy, so changes made to such an argument have lasting
side effects.

scope: The area over which a variable is visible in a program. Local variables
have local scope, which means that changes to a variable inside a function
have no effect on code outside the function; therefore, every function can have
its own local variable i, for example, without affecting the value of i in other
functions. Scope can also be defined by namespaces and classes, in which case
the scope operator (::) can enable visibility of a symbol outside its ordinary
namespace.

source file: A text file containing C++ statements (and optionally, comments
and/or directives).

stack: The word stack has at least two distinct meanings in computer program-
ming. There is a special area of memory set aside called “the stack,” in which
the computer places the addresses of functions to return to, as well as the values
of arguments and local variables during each function call. This management
of the stack is usually invisible to the C++ programmer. In addition, some
programs use a stack-like mechanism for their own purposes, and such a data
type is provided by the STL. What all stacks have in common is that they use a
last-in-first-out (LIFO) system of data management, so that the first item to be
popped off a stack is the last item that was pushed on top of it.

Standard Template Library (STL): A library of templates supported by recent
versions of C++. STL includes the easy-to-use string class, which provides
many advantages over the old C-string type. It also includes a simplified stack
class, as well as many useful container classes. This book introduces the STL
string class as well as the bitset, list, vector, and stack templates.

statement: A basic unit of syntax in a C++ program. A C++ statement is
roughly analogous to a command or sentence. As with sentences in natural lan-
guages, there is no fixed length for a C++ statement. It can be terminated at any
time—usually with a semicolon (;)—but it can become as complex as you like.
A function definition consists of zero or more statements.

In C and C++, an enormous amount of work can theoretically be done
inside a single expression, which is finally terminated by a semicolon to form a

ptg16518442

Appendix I Glossary of Terms556

statement. Why, then, bother with multiple statements? Because a statement is
a unit of execution. In a complex expression, it can be difficult to predict what
order things happen in… but statements are executed one after another, in the
order in which placed in the program, except where control structures change
the flow.

The moral, therefore, is not to let complex expressions get out of hand, but to
use reasonable-length statements to control the order in which things happen.

statement block: See compound statement.

static storage class: Technically, global variables have static storage class, as
do local variables declared with the static keyword. Such data objects—unlike
automatic variables (put on the stack) or dynamically allocated data (created
with new)—are created just once, at the beginning of the program. In the
case of local static, they are only visible in one function but still have a lifetime
co-extensive with that of the program itself.

STL: See Standard Template Library.

storage class: The manner in which a variable is stored on the computer: Static
storage class maintains just one copy of the variable in the data area used by the
program; automatic storage class (used by default for local variables) allocates
space for the variable on the stack. This enables each instance of the function to
maintain its own copy of the variable. It also means that the data is re-allocated
and re-initialized, each and every time the function is called.

string: A series of text characters, which you can use to represent names, words,
phrases… anything consisting of printable or unprintable characters. C++
compilers support C-strings, which are arrays of char*, as well as the newer STL
string type, which defines behavior for assignment (=), test-for-equality (==),
and concatenation (+).

The STL string type, in general, is usually much easier to use than the
C-string type, especially as you don’t have to worry about size limitations. Such
strings grow as needed, subject only to available memory.

string literal: A text string enclosed in quotation marks, such as:
“Here comes the sun.”
When C++ reads a text string from the source file (assuming it is not inside

a comment), it stores the characters as a C string, which is an array of char that
includes an extra byte for the null terminator. The string name is then associated
with the address of this data. Note that the backslash (\) signals an escape char-
acter in a C++ string. To represent an actual backslash, use two: \\. (See Appen-
dix B for a list of escape characters.)

subclass: A class that inherits, or is derived from, another class (called the
base class). The subclass inherits all the members of the base class except for

ptg16518442

Glossary of Terms 557

constructors. Any declarations within the subclass create new or overridden
members. Note: it is unsafe to override a function not declared virtual.

symbol: A variable, class, or function name. Unlike a literal, a symbol is just a
name, and it derives its meaning and value according to context. Usually, it has
no set value until assigned a value or initialized. Symbols (or symbolic names)
must adhere to C++ naming rules: A symbol must begin with a letter or under-
score (_), and the remaining characters must be letters, numbers, or uses of the
underscore (_).

template: A generalized class, usually a container of some sort, that is built
around a more specific class. For example, the STL list class can be used to create
lists of any type: list<int>, list<float>, list<double>, and so on. Templates make
use of a generalized algorithm or solution and apply to different kinds of data.
Recent C++ compilers support the ability to define new templates; they also
supply many useful templates in the Standard Template Library (STL).

text string: See string.

token: A word, symbol, or operator produced through lexical analysis. In
plainer terms, if you input a line of text, each item separated by spaces or comma
is usually regard as a token. So in the input string “amt = 3 + 15”, “amt”, “3”, “+”,
and “15” are all tokens.

two’s complement: The most common format, especially on today’s personal
computers, for storing signed (as opposed to unsigned) integers. The leftmost
bit in such a number is 1 if the number is negative; it is 0 if the number is non-
negative. See Appendix B for more information.

variable: A named location for storing program data. Each variable has a
unique location in program memory (its address). Other attributes of a vari-
able include its type (for example, int, double, or float), its visibility (local or
global), and its storage class.

vector: An array that can grow without limit. The STL supports such a mechanism
in the form of the vector template. See Chapter 15 for examples.

virtual function: A function whose address is not determined until runtime,
through a process called late binding. In C++, virtual functions are closely con-
nected to the concept of polymorphism. Virtual functions have special flexibility:
you can safely override a virtual function in a subclass, knowing that no matter
how an object is accessed, the right version of the function will always be called.
So, for example, a function call such as ptr->vfunc() will call the object’s own ver-
sion of vfunc rather than the base-class version. See late binding.

In ancient Rome, virtu meant “manliness”; in modern parlance, virtual
means “to have the behavior of.” This example of (otherwise regrettable) sexism

ptg16518442

Appendix I Glossary of Terms558

has one redeeming feature: It suggests that for a man to take his place in society,
his behavior was paramount; in ancient Rome, a man had to earn the right to
be a consul, praetor, senator, or man of respect, and that meant correct (and
“manly”) behavior. Thus, the connecting thread in the word “virtual” over the
millenia is that it focuses on behavior. In the computer world, we say that if
something is virtual, it emulates the behavior of the real thing. For example, a
virtual function call looks just like an ordinary function call and is used just
like such a function call. It is virtual because to the caller, it is just as good as a
“real” function call, even though the actual address is not fixed until runtime.

visibility: Essentially the same as scope. Global variables are visible from the
place they are declared, onward to the end of the source file. Local variables are
visible only within the functions they are declared. See scope.

zero-based indexing: A system of indexing arrays and strings that starts at 0
and runs to N − 1, where N is the size of the container. The second element is
indexed as 1, the third is indexed as 2, and so on. Although this technique may
seem less reasonable at first, it makes sense when you think of indexes as being
like offsets. Thus, the first element is always 0 units distant from the beginning.
C and C++ use zero-based indexing for arrays and strings, and for almost every
other context imaginable.

ptg16518442

559

Index
Symbols
-- (decrement operator), 53–54
// (double slashes), 4, 20
-> (arrow operator), 290, 395
+ (addition-operator function), 452–454
+= (add and assign), 477, 482
–= (subtract and assign), 477, 482
*= (multiply and assign), 477, 482
/= (divide and assign), 477, 482
?: (conditional operator), 481
, (join operator), 482
< and > (angle brackets), 333
= (assignment operator)

== vs., 35–36
for classes, 463–465
in decision making, 35–36
introduction to, 32
overview of, 482
for values, 45

* (asterisk)
as indirection operator, 159–160, 179
as “multiply by” operator, 19

\ (backslash notations), 216
{} (braces), 102
' (digit separator)

example of, 425
introduction to, 415–417
in literal constants, 415
summary of, 444

/ (forward slash notations), 216

! (not operator), 51, 218
% (percent sign)

as modulus division operator, 36–39, 71
as remainder-division operator, 71, 122

:: (scope operator), 478, 555
| OR operator, bitwise, 480–481
|| OR operator, logical, 51–53
++ (increment operator)

introduction to, 48–49
logical, 52–54
statements vs. expressions and, 49–51
zero-out-array function and, 179

++i prefix expression, 48–51
== (equality operator), 32, 35–36
<= (less-than-or-equal operator), 44–45
== (test-for-equality operator), 465–466
& (ampersand)

as bitwise operator, 480–481
creating reference variables with,

281–282, 287
getting addresses with, 159–162
in “and operator,” 51–54
reference arguments and, 172–173

&,|,^,~,<<,>> (bitwise operators),
480–481

&& (AND operator, logical)
introduction to, 51–52
testing ages example of, 53–54
true values and, 53

(concatenation operator), 507

ptg16518442

Index560
Numbers
2-D arrays, 152–153
32-bit architecture

as default, 31
limits of storage on, 42
long integers in, 422–424
as standard on PCs, 158

64-bit architecture
adoption of, 158
literals in, example of, 427–431
literals in, generally, 424–425
long long integers in, 422–424

A
abs (absolute value) function, 254
Abstract classes

defined, 541
in polymorphic poker, 402–403
pure virtual functions in, 402, 412

Access
levels of, defined, 541
restricting, 243–246

Access class member operator (->), 290, 395
add function, 262–266, 460–462
Add-and-assign operator (+=), 477, 482
Adding machines

do-while loops in, 67–69
strings for text analysis in, 207–209

Addition-operator (+) function, 452–454
Addresses

appearance of, 157–158
defined, 541
pointers and, 155–158
printing, 161–162
of variables, 161–162

AI (artificial intelligence), 31–32
Algorithms

by Euclid, 119–122, 253
#include directive for, 367, 387
in poker games, 366–367
random_shuffle, 367, 387

selection sort, 167–168
swap, 367, 387

Alphabetical sorting, 298–300
Alt + F7 (properties command), 7
American National Standards Institute

(ANSI), 541
The American Statistician, 351
Ampersand (&). See & (ampersand)
AND operator, bitwise (&), 480–481
AND operator, logical (&&), 51–53
Angle brackets (< and >), 333
ANSI (American National Standards Insti-

tute), 541
Applications, defined, 541
argument_list, 101
Arguments

constructors and, 281–282
defined, 99, 542
passing, 102–103
reference, 172–173, 555

Arithmetic
in Fraction class, 262–267
modular, 353
in pointers, 173–175

Arrays
2-D, 152–153
in C++, generally, 133–135
defined, 542
evaluating poker hands with, 378–379
in Good Deal, Bad Deal game, 341–342
initializing, 135
introduction to, 133
matrix and, 152–153
pointers and, 175–180
in poker games, 148–152, 387
in print out elements, 137–139
printing numbers from, 145–147
processing, 175–180
random numbers and, 139–144
sorting, 165–166
strings and, 144–148, 183–184

ptg16518442

Index 561

summary of, 153–154
in text analysis, 183–184
zero-based indexing in, 135–139

Arrow operator (->), 290, 395
Artificial intelligence (AI), 31–32
ASCII code

defined, 542
extended, 515
overview of, 513–515
standard, 514
strings and, 181–184, 190
in text files, 222–224

Assignment, defined, 23
Assignment (=) operator. See = (assignment

operator)
Associativity, 542
Asterisk (*)

as indirection operator, 179
as “multiply by” operator, 19

atof function, 195
atoi function

64-bit literals and, 425
in Good Deal, Bad Deal game, 350
strings and, 195

atoll function, 425
auto keyword, 422
avg () function

calling, 100, 102–103
main function and, 105
overview of, 103–106

B
Backslash (\) notations, 216
Backward compatibility, defined, 542
Base 2 (binary) radix. See Binary (base 2) radix
Base classes, defined, 542
Basic, 96, 240
Basic Input Output System (BIOS), 419
begin function, 317–318
Big Blue, 31
Binary (base 2) radix

bitwise operations and, 421

introduction to, 416
radix, defined, 554
summary of, 444

Binary digits, 157–158
Binary files, writing to, 226
Binary literals, 416, 418–420
Binary operations

examples of, 227–232
exercises in, 233
introduction to, 225–227
random-access read, 230–233
random-access write, 227–230

Binary Tree app
alphabetical sorting in, 298–300
Bnode class in, 294–296
Btree class in, 296–301
overview of, 291–294

BIOS (Basic Input Output System), 419
Bits, defined, 542
Bitset, defined, 543
<bitset> template, 533–534
Bitwise operations

in C++14, 421
defined, 543
operators for, 52, 419–420, 480–481

Blocks, 32–33, 543
Bnode class, 294–296
Bonacci, Leonardo, 432
Book of Calculation (Liber Abaci), 432
bool (Boolean) data type

in decision making, generally, 47
logical operators and, 53
prime-number functions and, 107–108
random numbers and, 76

Boole, George, 51
Boolean operations

data type in. See bool (Boolean) data type
in decision making, generally, 51–53
defined, 543
example of, 53–54
logical operators in, 51–52
true values in, 53

ptg16518442

Index562

braces ({}), 102
Branch statements, 493–497
break statements

in decision making, 46–47
keywords in, 42
prime-number functions and, 108–109
switch-case statements and, 78–79
syntax of, 496

Btree class, 296–301
Building programs, defined, 27
Building strings, 186–189
Bytes, defined, 543

C
C++ class string

building strings with, 205–209
declaring/initializing variables of, 203
other operations using, 209–210
for text analysis, generally, 201–205

C++ compilers
data types in, 17–19
defined, 544
double vs. single precision in, 19
#include in, 11–12
introduction to, 1, 27
keywords in, 26–27
non-Microsoft Visual Studio, 8
optimizing programs in, 23–25
printing messages in, generally,

9–11
printing multiple lines in, 13–15
printing newline characters in, 12
storing data in, 16–17
strings in, generally, 15–16
summary of, 27–28
temperature conversions in, 19–23
using statements in, 12
variable names in, 26–27
variables in, generally, 16–17
Visual Studio. See Visual Studio, Com-

munity Edition
C++ for the Impatient, 415

C-strings
accessing characters inside, 209–210
in Adding Machine #2, 207–209
cstring for. See cstring
defined, 543
introduction to, 181–182
as null-terminated strings, 201–202
strcmp and, 204
string literals in, 204–205

C++11
64-bit literals in, example of, 427–431
64-bit literals in, generally, 424–425
auto keyword in, 438–439
decltype keyword in, 438–439
defined, 543
delegating constructors in, 274–281
for each in, generally, 318, 433–435
for each in, setting arrays with, 435–437
enum classes in, 442–443
extended enum syntax, controlling stor-

age with, 442–443
Fibonacci numbers in, 427–432
initializing members in, 271–274
localizing numbers in, 431–432
long long type in, 64-bit literals and,

424–425
long long type in, accepting input

from, 425–426
long long type in, formatting num-

bers in, 426–427
long long type in, generally, 422–424
natural integers in, 424
new features in, generally, 422, 444–445
nullptr keyword in, 439–440
range-based for in, generally, 433–435
range-based for in, setting arrays with,

435–437
raw-string literals in, 443–444
strongly typed enumerations in, 440–443

C++14
binary literals in, 416, 418–420
bitwise operations in, 421

ptg16518442

Index 563

defined, 543
delegating constructors in, 274–281
digit-group separators in, 415–417
for each in, 318
initializing members in, 271–274
list templates in, 316
literal constants in, 415–417
new features in, exercises for, 421–422
new features in, generally, 415, 444–445
specifications for, 75
string-literal suffixes in, 415, 417–418

Calculators. See RPN (Reverse Polish Nota-
tion)

Callback functions, defined, 543–544
Calling functions

introduction to, 99–100
multiple functions, 105–106
overview of, 102–103

Card class
drawing cards and, 361–362
introduction to, 238
overview of, 363–364
in primitive video poker, 368–370

Card games
arrays in, 148–152
poker. See Poker
polymorphic poker. See Polymorphic

poker
Cascading errors, 5
case labels, 80
Case sensitivity, 5
Casts

defined, 544
operators for, 76–77, 479
reinterpret_cast operator, 225
static_cast operator, 76–77
type. See Type casts

Celsius temperature conversions, 19–25
Central processing units (CPUs), 545
char*. See also C-strings

constructors and, 285–286
converting to long long integers, 425

converting to numeric values, 211
raw string literals and, 443
as string type, 144
in text analysis, 184
type cast, 226–227, 235

char
building strings and, 186–188
C-strings and, 182
in expressions, 475
in file storage, 226–227, 235
single value of type, 373
size of, 423
string-literal suffixes and, 415
strings and, generally, 181–188

cin (console input)
file-stream objects in, generally, 213
introduction to, 16–17
strings for text analysis and, 190–192
summary of use of, 27–28

Clarity of instructions, 31
Class assignment (=) operator. See also =

(assignment operator), 463–465
Class-operator functions

class assignment, 463–465
exercises in, 462, 471
in Fraction class, completed code for,

467–471
in Fraction class, generally, 457–462
in Fraction class, print function,

466–467
as global functions, 450–452
integers and, 463
introduction to, 447–450
operator overloading and, 472
optimizing code for, 461–462
in Point class, 454–457
printing with, 466–467
references, improving efficiency with,

452–454
summary of, 472–474
test-for-equality, 465–466
types, working with other, 463

ptg16518442

Index564

Class string. See C++ class string
Classes

abstract. See Abstract classes
access restrictions and, 243–246
add in, 262–266
base, 542
constructors and. See Constructors
container, 314
declaration of. See Declaration of classes
defined, 544
derived, 546
exercises in, 248, 258, 262
Fraction. See Fraction class
greatest common factors in, 253–260
I/O stream, 525–530
#include in, 261
inline functions in, 251–253
introduction to, 237
<list>, 315–316
list container, 333
mult in, 262–266
objects and. See Objects
operator functions and. See Class-opera-

tor functions
pair container, 314
Point. See Point class
private, 243–246
public, 241–242
stack. See Stack classes
in Standard Template Library, 531–539
static storage, 556
storage, 556
structures and, 242–243, 267
subclasses, 556–557
summary of, 267–268
support for functions in, 255–258
testing, 246–248, 258–261
virtual base, 393–396

class_name, 270
clear function, 372, 388
Code, defined, 544

Comments
in decision making, 37
double-precision floating data type and,

20–21
introduction to, 4–5

Comparative languages, 96–97
Compatibility issues

in C++11. See C++11
in C++14. See C++14
in Visual Studio, 5–8

Compilers. See C++ compilers
Compound statements, 32–33, 544
Concatenation operator (##), 507
Condition expressions

example of, 91, 95–96
introduction to, 86–88

Conditional operator (?:), 481
Conditions

expressions for. See Condition
expressions

introduction to, 40
true vs. false, 46–47

Console input (cin). See cin (console input)
Console output (cout). See cout (console

output)
Console stream objects, 525–526
const keyword, 454–457, 462
Constants

in 64-bit architecture, 424–431
defined, 545
digit-group separators in, 415
literal, 415, 424–431
predefined, 512

Constructors
arguments and, 281–282
copy. See Copy constructors
default. See Default constructors
defined, 545
delegating, 274–281
in Fraction class, 278–281, 285–286
initializing members in, 271–274

ptg16518442

Index 565

introduction to, 269–270
multiple, 270–271
overloading, 270–271
in Point class, 275–278, 283–284
reference variables and, 281–282, 284
returning objects from functions with,

381–387
strings and, 285–286
summary of, 286–287
warnings about, 272–274

Container classes, 314
Containers, 434–435
Content vs. address of variables, 161–162
Continually sorted lists, 321–322
continue statements, 90, 496
Control structures

defined, 545
do-while loops. See do-while loops
introduction to, 65
summary of, 83
switch-case statements, 77–82
syntax of, 493–497

Converting characters to uppercase, 195–197
Copy constructors

class assignment function and, 464
defined, 545
introduction to, 281–284
reference variables and, 287

cout (console output)
file-stream objects in, generally, 213
introduction to, 10–14
ostream and, 466–467
in polymorphic poker, 404–405
summary of use of, 28–29

CPUs (central processing units), defined, 545
Creating projects with Microsoft, 2–5
Cstack class, 304–305
c_str method, 212
cstring. See also C-strings

building strings with, 186–187
converting characters to uppercase, 195

defined, 517–518
getting numbers with, 192–194
#include directive and, 285
in RPN calculators, 329
support for, 203

Ctrl+F5 (Start Without Debugging), 5–6, 8
Cube vs. square, 25

D
Data-conversion functions, defined, 518
Data declarations, 241–242
Data flow in functions, 165
Data members, 241–246, 545
Data types

in C++, generally, 17–19
in decision making, 29–31
escape sequences, 486–487
intrinsic, 484
of numeric literals, 485–486
overview of, 483
precision of, 484
signed integers, 487–489
string literals, 486–487
two’s-complement format for, 487–489

Dealing cards
arrays in, 148–152
deal_a_card function for, 392–393
Deck class in. See Deck class

Decision making
artificial intelligence in, 31–32
bool data type in, 47
Boolean logic in, example of, 53–54
Boolean logic in, generally, 51–53
control structures in. See Control

structures
data types and, 29–31
if and if-else statements in, 32–35
increment operators in, 48–49
infinite loops in, 42, 47
introduction to, 29
loops in, example of, 42–45

ptg16518442

Index566

Decision making (continued)
loops in, generally, 39–42
loops in, optimizing program for, 45–46
math library in, example of, 55–57
math library in, generally, 55
math library in, optimizing program for,

57–58
odd-or-even programs in, 36–39
prime number test in, generally, 55–57
prime number test in, optimizing pro-

gram for, 57–58
printing 1 to N in, 43–46
in programs, generally, 31–34
statements vs. expressions in, 49–51
in Subtraction Game, 58–61
summary of, 62–63
testing ages in, 53
true vs. false in, 46–47, 53
= vs. == operators in, 35–36

Deck class
drawing cards and, 361–363
introduction to, 237
multiple decks and, 389–391
overview of, 364–367
in primitive video poker example,

368–370
switching decks at runtime and, 391–396

Declaration
of class strings, 203
of classes. See Declaration of classes
defined, 545
of functions, 101, 104
of pointers, 158–160

Declaration of classes
Fraction class, 249, 267
introduction to, 241–242
syntax in, 502–503

decltype keyword, 422
Deconstructors, defined, 546
Decrement operator (--), 53–54

Default constructors
class assignment function and, 463
defined, 545–546
introduction to, 272–274

Default statements, 79–80
#define directives

defined, 505–506
localizing numbers with, 431–432
in polymorphic poker, 392

defined function, 507
Definition of functions, 102–104, 546
Delegation

of constructors, 274–281
of tasks, 337–339

delete keyword, 290–291, 312
Deprecation, defined, 546
Dereferencing, defined, 546
Derived classes, defined, 546
Dice games, 127
Digit separator ('). See ' (digit separator)
Directives

#define. See #define directives
defined, 546
#elif, 507–508
#endif, 508
#error, 508
#if, 508–509
#ifdef, 509–510
#ifndef, 510
#include. See #include directives
#line, 511
preprocessor. See Preprocessor directives
#undef, 511

Directories, 215
Disk files

file-stream objects in, generally, 213–214
referring to, 215–216
storage and, 213

Displaying text files, 219–222
Divisors, 108

ptg16518442

Index 567

do-while loops
adding machine example of, 67–69
guess-the-number game example of,

72–77
introduction to, 65–67
random numbers and, 69–77

do-while statements, 494
DoorManager class

inserted in game code, 347–350
introduction to, 343–346

double (double-precision floating data
type)
declaring arrays with, 133–134
defined, 18–19
example of, 20–21
in file storage, 225
inefficiency of, 29
overview of, 29–30
single precision vs., 19
summary of use of, 28

Double slashes (//), 4, 20
Double value, 195
Double_it function, 162–164
Draw-poker payout, 383–386
Drawing cards, 361–363, 373–378
Dynamic memory allocation, 289
Dynamic object creation, 289–290

E
Electronic storage. See File storage
Elements, 121
Elements of arrays, 133–134
#elif directive, defined, 507–508
Encapsulation, 214, 546
end function, 317–318
End users, 547
#endif directive, defined, 508
endl object, 13–14
enum declarations, 503–504
Equality (==) operator, 32, 35–36
#error directive, defined, 508

Escape sequences
data types and, 486–487
introduction to, 188
strings for text analysis and, 189–190

Euclid’s algorithm, 119–122, 253
Eval class, 379–386
Exceptions, defined, 547
Expressions, 324, 491–492
Extensibility, 404–405

F
Factors, 108, 116
Fahrenheit temperature conversions, 19–25
false

bool data type and, 47
Boolean logical operators and, 51–53
in decision making, 46–47, 53
is_prime for, 95–96
predefined, 57
random numbers and, 75–76
setting do_more to, 73–76
testing for equality and, 35
true vs., 254
while statements and, 40, 44

Fibonacci numbers, 427–432
File I/O functions, 529–530
File storage

binary operations, examples of, 227–232
binary operations, exercises in, 230, 233
binary operations, generally, 225–227
disk files, referring to, 215–216
displaying text files, exercises, 222
displaying text files, generally, 219–221
file-stream objects in. See File-stream

objects
introduction to, 213
random-access read, 230–233
random-access write, 227–230
summary of, 233–235
text vs. binary files in, 222–224
writing text to files in, 216–218

ptg16518442

Index568

File-stream objects
disk files, referring to, 215–216
exercises in, 219
introduction to, 213–215
writing text to files and, 216–218

float (single-precision data type), 28
FloatFraction, 400
Floating point data

defined, 17–19, 547
double-precision. See double (dou-

ble-precision floating data type)
example of, 20–21
single-precision, 28

Floating-point division operator, 480
Flush hands, 360
Folders, 215
for each, 422
for loops

introduction to, 86–88
printing elements in arrays with,

137–138
for statements in, 88–90, 92–96

for statements
in comparative languages, 96–97
exercises in, 92
introduction to, 85
in for loops, declaring variables, 92–96
in for loops, examples of, 88–91
in for loops, generally, 86–88
prime number tests with, 93–96
printing 1 to N with, 90–91
summary of, 97
while loops vs., 90

FORTRAN, 95, 136
Forward Polish Notation, 325
Forward slash (/) notations, 216
fout, 214–215
Fraction class

add in, 262–266
arithmetic functions in, 262–267
class operator functions and, 457–462

completed code for, 467–471
constructors in, 278–281
dynamic object creation in, generally, 289
exercises in, 258, 262, 267, 462
greatest common factors in, 253–260
#include in, 261
inline functions in, 251–253
introduction to, 248–251
lowest common denominators in,

254–260
mult in, 262–266
objects in, 285–286
optimizing code for, 461–462
print function and, 466–467
private access to, 249, 267
public members in, 249, 267
support for functions in, 255–258
testing in, 258–261

Friend functions, 451–452
fstream, 214
Full house hands, 360
Functions. See also specific functions

avg(). See avg () function
calling. See Calling functions
class-operator. See Class-operator

functions
concept of, 99–101
declaring, 101, 104, 500–501
defining, 102, 104, 546
Euclid’s algorithm and, 119–122
Fraction class supporting, 255–258
global, 109–112, 450–452
greatest common factors and, 119–122
inline, 251–253, 458
introduction to, 99
library. See Library functions
local vs. global variables in, 109–112
prime factorization in, 113–118
prime-number, 106–109
prototyping, 101
pure virtual. See Pure virtual functions

ptg16518442

Index 569

random-number generator, 127–129
recursive, 112–113, 122–126
returning objects from, 362–365,

381–387
in Subtraction Game, 129–130
summary of, 131–132
Tower of Hanoi puzzle and, 122–126
using, generally, 101

G
Games

dice, 127
Good Deal, Bad Deal. See Good Deal, Bad

Deal game
Guess-the-number, 72–77
poker. See Poker
polymorphic poker. See Polymorphic

poker
Subtraction, 58–61, 129–130
video. See Video games

Garbage, 135
GCFs (greatest common factors). See Greatest

common factors (GCFs)
get_divisors function, 114–117
get_good_prize, get_bad_prize,

339–342
getline method, 188–192
get_number function, 190–195
Global functions, 450–452
Global variables, 547
Golden Ratio, 432
Good Deal, Bad Deal game

delegating tasks in, 337–339
DoorManager class in, generally,

343–346
DoorManager class, inserting in game

code, 347–350
example of complete code for, 347–350
exercises in, 342, 346–347, 350
introduction to, 335–337
optimizing code for, 341–342
paradox in, 351–353

PrizeManager class in, generally,
339–342

PrizeManager class in, optimizing,
353–356

PrizeManager class, inserted in game
code, 347–350

summary of, 356–357
Goto statements, 497
Graphical-user-interfaces (GUIs), 240
Greatest common factors (GCFs)

defined, 547
in Fraction class, 253–260
main function and, 119–122

Guess-the-number game, 72–77
GUIs (Graphical-user-interfaces), 240

H
Hall, Monty. See also Good Deal, Bad Deal

game, 335
Hard-coded array sizes, 341–342
Header files, defined, 547
Hexadecimal notation, 157

I
I/O (input/output) stream

console stream objects, 525–526
file I/O functions, 529–530
input stream functions, 528
manipulators, 526–527
objects and classes, generally, 525
output stream functions, 528
in polymorphic poker, 403–410

i++ postfix expression, 48–51
IDEs (integrated development environments),

548
#if directive, 508–509
if-else statements

arrays vs., 147
example of, 36–37
explanation of, 37–38
introduction to, 32–35
syntax of, 493

ptg16518442

Index570

if statements, 32–35, 38
#ifdef directive, defined, 509–510
#ifndef directive, defined, 510
ifstream

displaying text files and, 219
introduction to, 214
summary of, 234

Implementation, defined, 548
#include directives

<algorithm>, 367, 387
<cmath>, 55
defined, 510–511
in Fraction class, 261
<fstream>, 213–214, 233
<list>, 315, 333
semicolons and, 6
<stack>, 327, 330, 334
"stdafx.h," 5–7, 12, 28–29
<string> class, 202–203

Increment expressions, 41–42, 86–91, 95–97
Increment operator (++). See ++ (increment

operator)
Independent, self-contained objects, 410–411
Index numbers

defined, 548
of elements in arrays, 136
in one-based indexing, 552
in zero-based indexing, 135–139, 558

Indirection, defined, 548
Indirection operator (*), 159–160
Individual characters vs. strings, 197–198
Infinite loops

in decision making, 42, 47
defined, 548

Infix notation, 324
Inheritance

defined, 548
polymorphism and, 392–396

Initialization
of arrays, 135
constructors for, 269

expressions for, 86–88, 91, 95–97
of Fraction objects from strings,

285–286
of members, 271–272
of objects, 283

Inline functions
defined, 548
in Fraction class, 251–253

Input, getting with cin, 16, 22, 526
Input, getting from a file, 220–221, 528
Input/output (I/O) stream. See I/O (input/

output) stream
Input stream functions, 528
insert function, 319–322
Installation of Visual Studio. See also Visual

Studio, Community Edition, 1–2
Instances/instantiation, defined, 548
int (integer) data type

class operator functions and, 463
declaring arrays with, 134–135
in file storage, 226
introduction to, 17–18, 29
long long, 31, 42
operators and, 480
pointers to variables of, 158
size limitations on variables in, 42
summary of, 62
variables in, generally, 30

Integers. See also int (integer) data type
defined, 548
value of, 175
variables of, 37

Integrated development environments (IDEs),
548

Intelligent data structures, 238
Interfaces

defined, 549
in polymorphic poker, 402–403

International formats, 431–432
Intrinsic data types, 484
ios::in/ios::out, 229–234

ptg16518442

Index 571
iostream (virtual include files), 211
IPrintable class, 405–409
is_prime, 95, 106–108
Iteration/iterative computing, defined, 549
Iterators

in Binary Tree app, 298
defined, 549
listing, 321–322, 334
in STL, creating/using, 316–318
in STL, pointers vs., 319

iVec (vector of integers), 371–372

J
Join (,) operator, 482

K
Kasparov, Gary, 31
Keywords

auto, 422
case, 78–80
class, 241
const, 454–457
decltype, 422
defined, 549
delete, 290–291, 312
do, 65–66
else, 33–34
for, 65–83
if, 32–35, 38
new, 289–291, 312
nullptr, 331, 422
return, 102–108
struct, 272–273
this, 464
in Visual Studio, 26–27
while, 40

L
Labeled statements, 80
Last-in-first-out (LIFO)

in calling functions, 113
defined, 549

in RPN calculators, 325
in Standard Template Library, 334

Late binding
defined, 549, 557
in polymorphic poker, 412

Law of Large Numbers, 140
LCD (lowest common denominator), 254–

260, 262–266
LCM (lowest common multiple), 262–266,

549
Left value (Lvalue), 550
Less-than-or-equal operator (<=), 44–45
Let’s Make a Deal, 335
Liber Abaci (Book of Calculation), 432
Library functions

<cstring>, 517–518
data-conversion, 518
math, 520
overview of, 517
randomization, 521
single-character, 519
strftime, formats for, 523–524
string, 517–518
time, 521–523

LIFO (last-in-first-out) mechanisms. See Last-
in-first-out (LIFO)

#line directive, defined, 511
Linking, 27
<list> classes, 315–316
List container classes, 333
<list> template

in C++11/C++14 , for each, 318
continually sorted lists in, 321–322
iterators in, creating/using, 316–318
<list> classes in, creating/using,

315–316
ordered list example in, 319–321
pointers vs. iterators in, 319
in Standard Template Library,

534–536
in STL, generally, 313–314
writing templates in C++ and, 314–315

ptg16518442

Index572

Literal constants, 415
Literals

binary, 416, 418–420
defined, 549–550
numeric, 485–486
operator, 447–461
public, 241
raw string, 422
return, 47, 102
string, 415–418, 486–487, 556
switch, 78–80
virtual, 394
while, 40

Local variables
defined, 550
global variables vs., 109–112

Localizing numbers, 431–432
Location of data. See Pointers
Logical (Boolean) operators. See also Boolean

operations, 51–53
Logical negation operator (!), 51, 218
Logical operations, defined, 550
long integer data type (time_t), 76
long long int data type

in 64-bit architecture, 424–425,
427–431

accepting from C++11, 425–426
in C++14, 417
formatting in C++11, 426–427
infinite loops and, 42
introduction to, 31

Loop counters, defined, 550
Loops

break keyword and, 58, 61
for counting numbers, 85–86
defined, 550
exercises in, 46
explanation of example of, 44
for. See for loops
infinite, 42
introduction to, 39–42

optimizing program for, 45–46
in prime number test, 57
printing 1 to N example of, 42–45

Lowest common denominator (LCD), 254–
260, 262–266

Lowest common multiple (LCM), 262–266,
549

Lukasiewicz, Jan, 324
Lvalue (left value), 550

M
Machine code

compiling C++ statements into, 27
defined, 550–551
linking to C++ functions, 27

main function
avg function and, 105
building strings and, 188
defined, 551
functions in, generally, 100–101
get_divisors function and, 115
greatest common factors and, 119–120
introduction to, 74–75
local vs. global variables in, 109–112
Point class and, 247
rand_0toN1 function and, 140–143

Main memory, defined, 551
Manipulators, I/O stream, 526–527
Math

algorithms for. See Algorithms
arithmetic functions in. See Arithmetic
functions for, defined, 520

Math library
of decision making, 55–57
introduction to, 11
optimizing program for, 57–58

matrix, 152–153
Member functions, 268, 551
Members, defined, 551
Memory, 291, 551
Messages, printing, 9–11

ptg16518442

Index 573

Methods
c_str, 212
defined, 551
getline, 188–192

Microsoft
code developed at, 424
Foundation Classes by, 240
Visual Studio by. See Visual Studio,

Community Edition
MOD 3 operation, 344–345
Modular arithmetic, 353
Modules, defined, 551
Modulus division (%)operator, 36–39, 71
Monty Hall game. See Good Deal, Bad Deal game
Monty Hall Paradox, 351–353
mult (multiplication) function, 19, 262–266,

460–462
Multiple constructors, 270–271
Multiple decks, 389–391
Multiple lines, printing, 13–15

N
Nested loops, 171
Nesting, defined, 551
new keyword, 289–291, 312
New-style type casts, 479
Newline characters

defined, 551
printing, 12–15

NIM (Subtraction Game), 58–61, 129–130
No-ops, 37
Non-Microsoft Visual Studio, 8
normalize function

in Fraction class constructors, 278–280
in Fraction class, generally, 255–261
in Fraction class, math functions, 264
virtual function calls and, 399–401

Not (!)operator, 51, 218
Null pointers

in Binary Tree app, 292–296
defined, 551–552
introduction to, 71

nullptr keyword
in C++11/C++14, 422
introduction to, 142
in RPN calculators, 331

Number-printing program, 80–82
Numeric literals, 485–486

O
Object code, defined, 552
Object-oriented programming (OOP)

alphabetical sorting in, 298–300
binary tree apps in, 291–294
Bnode class in, 294–296
Btree class in, 296–301
Cstack class in, 304–305
defined, 552
delete keyword in, 290–291
dynamic object creation in, 289–290
examples of, 289
exercises in, 300–301
general steps in, 238–240
Monty Hall game in. See Good Deal, Bad

Deal game
new keyword in, 289–291
objects in, generally, 237–238, 240
poker in. See Poker
polymorphic poker in, 403–411
pros vs. cons of, 240
recursion vs. iteration in, 301–302
stack classes in, 304
summary of, 311–312
Tower of Hanoi animation in, 302–311

Object-oriented programming systems
(OOPS), 552

Objects. See also Classes
defined, 238–240, 552
I/O stream, 525–530
independent and self-contained, 410–411
introduction to, 237
in OOP, generally, 237–238, 240
in Standard Template Library, 531–539
strings and, 191

ptg16518442

Index574

Odd-or-even programs, 36–39
Offsets, 136
ofstream, 214–215, 233
Old-style type casts, 479
One-based indexing, defined, 552
OOP (object-oriented programming). See

Object-oriented programming (OOP)
OOPS (Object-oriented programming

systems), 552
Operands, defined, 553
Operator overloading, 447, 472
Operators. See also specific operators

assignment, See = (assignment
operator)

bitwise, 52, 419–420, 480–481
cast, 76–77, 479
classes and. See Class-operator functions
conditional, 481
defined, 553
floating-point division, 480
increment. See ++ (increment operator)
integer, 480
join, 482
new-style type casts, 479
old-style type casts, 479
overview of, 475
by precedence level, 476–478
scope, 478
sizeof. See sizeof operator
type casts, 479

Optimizing programs, in Visual Studio, 23–25
OR operator, bitwise (|), 480–481
OR operator, logical (||), 51–53
Ordered lists, 319–321
ostream (output stream)

defined, 528
IPrintable class and, 408
print function and, 466–467

Output, printing to the console, 10–12, 512
Output stream (ostream). See ostream

(output stream)
Output, writing to a file, 213–218, 529–530

Overloading
constructors and, 270–271
defined, 553
operator, 447, 472

P
p = arr statements, 174
Pair container classes, 314
Parade magazine, 351
Paradoxes

in Monty Hall game, 351–353
Russell’s, 295

Pascal, 240
Pass by reference, 165–172
Passing arguments, 102–103
Passing pointers, 165–173
Pausing screens, 7–8
Penrose, Roger, 32
Percent sign (%). See % (percent sign)
Persistent memory, 553
Pinochle, 389–396
Point class

class operator functions and, 454–457
constructors in, 275–278, 283–284
declaration of, 241–242
delegating constructors in, 274–275
initializing members in, 271–274
private access to, 243–248
public access in, 241–242
testing, 246–248

Pointer-indirection (*) operator, 179
Pointers

addresses, appearance of, 157–158
arithmetic in, 173–175
array processing and, 175–180
array sorting and, 165–166
in Binary Tree app, 292–298, 309
concept of, 156–157
content vs. address of variables, 161–162
data flow in functions and, 165
declaring, generally, 158–160
defined, 155–156, 553

ptg16518442

Index 575
double_it function and, 162–164
in dynamic object creation, 289–290
introduction to, 155
iterators vs., 319
printing addresses and, 161–162
reference arguments and, 172–173
reference variables and, 281
summary of, 180
swap function and, generally, 165–166
swap function for sorting arrays and,

166–172
using, generally, 158–160

Poker
algorithms for, 366–367
arrays in, 148–152
Card class in, 363–364
Deck class in, 364–366
draw-poker payout in, 383–386
drawing cards in, example of code for,

373–378
drawing cards in, generally, 361–363
evaluating hands in, 378–382
exercises in, 370, 378, 386–387
getting numbers from players in, 373
introduction to, 359
polymorphic. See Polymorphic poker
primitive version of, 368–370
strategy for winning, 359–360
summary of, 387–388
vector template for, 371–377

Polish Notation. See also RPN (Reverse Polish
Notation), 325

Polymorphism
abstract classes/interfaces in, 402–403
cout in, 404–405
#define directives in, 392
exercises in, 399, 409–410
extensibility in, 404–405
I/O in, 403–410
independent, self-contained objects in,

410–411

introduction to, 389
multiple decks in, 389–391
OOP in, 403–411
polymorphism in, cout vs., 404–405
polymorphism in, generally, 392–396
polymorphism in, IPrintable class for,

405–409
pure virtual functions in, 401–402
summary of, 412–413
switching decks at runtime in, 391–392
virtual dealers in, 396–399
virtual penalties in, 399–400

Polymorphism, defined, 412, 553
Pop function

introduction to, 309–310
in RPN calculators, 328–331
in Standard Template Library, 334

Precedence levels
defined, 553
operators by, 476–478

Precision of data types, 484
Precompiled headers, 6–7
Predefined constants, 512
Preprocessor directives

concatenation operator, 507
#define, 505–506
defined, 507
#elif, 507–508
#endif, 508
#error, 508
#if, 508–509
#ifdef, 509–510
#ifndef, 510
#include, 510–511
#line, 511
overview of, 505
predefined constants, 512
#undef, 511

Prime factorization, 113–118
Prime number functions, 106–109
Prime number tests, 55–57, 93–96

ptg16518442

Index576

printf, 403
Printing

1 to N, 43–46, 90–91
addresses, 161–162
with class operator functions, 466–467
elements in, 137–139
messages, 9–11
multiple lines, 13–15
newline characters, 12–15
number-printing program for, 80–82
numbers, 145–147
output with cout, 10–12, 525
square roots, 190–195
with for statements, 90–91

PrizeManager class
inserted in game code, 347–350
introduction to, 339–342
optimizing, 353–356

Procedures. See Functions
Processors, 545
Programs. See also specific programs

building, generally, 27
decision making in, 31–34
defined, 554
odd-or-even, 36–39
optimizing, generally, 23–25
translation of, 182–183
writing, generally, 5

Promoting values, 103
Properties command (Alt + F7), 7
Prototypes, defined, 554
Prototyping functions, 101
Pseudo-random numbers, 128
Pure virtual functions

defined, 554
in polymorphic poker, 401–402, 412

push function, 309–310
push_back function, 371, 388
push_back member function, 315, 328, 333–334
push_front member function, 315, 328,

333–334

Q
query_door function, 339

R
Radix, defined. See also Binary (base 2) radix,

554
rand function, 71–75
rand_0toN1 function, 139–143
Random-access read, 230–233
Random-access write, 227–230
Random numbers

arrays and, 139–144
do-while loops and, 69–77
generator for, 127–129
guess-the-number game example of,

72–76
introduction to, 69–71
optimizing code for, 76–77

Randomization functions, defined, 521
random_shuffle algorithm, 367, 387
Range-based “for,” 422, 554
Range, defined, 554
Raw pointers, 319
Raw string literals, 422
read function, 190, 226, 230–234
Records, 229–230
Recursion

in Binary Tree app, 294, 297–298, 312
defined, 554
functions for, generally, 112–113
iteration vs., 301–302
prime factorization in, 114
in Tower of Hanoi puzzle, 122–126

Reference arguments
defined, 555
pointers and, 172–173
swap behavior with, 282

Reference variables
constructors and, 281–282, 284
copy constructors and, 287
defined, 555

ptg16518442

Index 577

References
arguments. See Reference arguments
class operator functions and, 452–454
passing by, 165–172
variables in. See Reference variables

reinterpret_cast operator, 225
Relational operators, 44
Remainder division, 37–39, 59–61
Remainder-division operator (%), 71, 122
return statements

functions and, generally, 102
get_divisors function and, 116
introduction to, 47
prime-number functions and, 108
syntax of, 494–495, 497

Return values
introduction to, 99–102
local vs. global variables in, 111–112
passing pointers and, 165
in poker games, 375–377, 381–387

Returning objects from functions, 362–365,
381–387

return_type data, 101
Reverse Polish Notation (RPN). See RPN

(Reverse Polish Notation)
Rings, moving, 302–303
Royal flush hands, 360
RPN (Reverse Polish Notation)

design of, generally, 323–325
example of code for, 329–332
exercises in design of, 332
stack classes for, 327–328
stacks for, 325–327

Running programs, 5–6
Russell, Bertrand, 295

S
s (string-literal suffix), 415, 417–418
Scaling integers, 174–177
Scope, defined, 555
Scope (::) operator, 478, 555
Searle, John, 183

Seed, 70–71
Seekp member function, 211, 234–235
Select door functions, 339–346
Selection sort algorithm, 167–168
Selvin, Steve, 351
Semicolons

blocks and, 33
C++ statements and, 10
class/data declarations and, 242, 268
data declarations and, 135
function prototypes and, 135
#include directives and, 6
statements vs. expressions and, 49–50
summary of use of, 28

set_sel_door function, 343
Short-circuit (Boolean) logic. See also Boolean

operations, 51–54
Shuffling cards, 148–152
Side effects, 50
Signed integers, 487–489
Simula, 240
Single-character functions, 519
Single-precision data type (float), 28
size function, 371, 388
sizeof operator

defined, 478–479
in file storage, 227, 235
in Good Deal, Bad Deal game, 341–342
in poker games, 357

Smalltalk, 240, 410
sort functions, 319–322
Sorting arrays, 167–171
Source files, defined, 555
sqrt (square root) function, 11, 99
Square vs. cube, 25
Squirt function, 55
srand, 70–76
Stack classes

design of, 304
in object-oriented programming, 304–305
in RPN calculator design, 327–328
use of, 304–305

ptg16518442

Index578
<stack> template, 538–539
Stacks

of calls, 112–113
classes in. See Stack classes
defined, 555
in RPN calculator design, 325–327

Standard Template Library (STL). See STL
(Standard Template Library)

Start Without Debugging (Ctrl+F5), 5–6, 8
start_new_game function, 339
Statement blocks, 32–33, 544
Statements. See also specific statements

branch, 493–497
compound, 32–33, 544
default, 79–80
defined, 555–556
expressions vs., 49–51
labeled, 80
syntax of basic, 492

Static storage classes, defined, 556
static_cast operator, 76–77
std namespace, 314–315
std:: prefix, 12, 328
stdafx.h, 6–7
STL (Standard Template Library)

angle brackets in, 333
<bitset> template in, 533–534
in C++11/C++14, 318
classes and objects in, generally, 531
continually sorted lists in, 321–322
defined, 555
for each in, 318
introduction to, 313
iterators in, 316–318
<list> classes in, 315–316
<list> template in, 313–314,

534–536
ordered list example in, 319–321
pointers vs. iterators in, 319
Polish Notation and, 325
prerequisites for using, 240

RPN calculators, designing generally,
323–325

RPN calculators, example of code for,
329–332

RPN calculators, exercises in design of, 332
RPN calculators, stack classes for,

327–328
RPN calculators, stacks for, 325–327
<stack> template in, 538–539
string class in, 531–533
summary of, 333–334
<vector> template in, 536–538
writing templates in, 314–315

Storage
classes, 556
of files. See File storage
in Visual Studio, 16–17

Straight flush hands, 360
Straight hands, 360
strcat (string concatenation), 185–188
strcmp (string compare), 219
strcpy (string copy), 185–188
Streams

file-stream objects. See File-stream
objects

I/O. See I/O (input/output) stream
introduction to, 213
iostream, 211
stringstream, 426–427

strftime functions, 523–524
String class

introduction to, 144–145
in Standard Template Library, 531–533

String functions
compare (strcmp), 219
concatenation (strcat), 185–188
copy (strcpy), 185–188
defined, 517–518

String-literal suffix (s), 415, 417–418
String literals, 486–487, 556
String-manipulation functions, 184–190

ptg16518442

Index 579

Strings
arrays and, 144–148
building, 186–189
C-strings, 543
class. See C++ class string
constructors, 285–286
defined, 556
for text analysis. See Strings, for text

analysis
in Visual Studio, generally, 15–16

Strings, for text analysis
Adding Machine #2, 207–209
arrays and, 183–184
building, 186–189
building strings, 205–209
C++ class string in, generally, 201–205,

209–210
converting characters to uppercase,

195–197
declaring/initializing variables in, 203
escape sequences and, 189–190
getting numbers with, 190–195
#include <string> class support,

202–203
individual characters vs., 197–198
introduction to, 181
printing square roots with, 190–195
reading input and, generally, 190
string-manipulation functions and,

184–190
strtok in, 198–201
summary of, 210–211
text storage on computers and, 181–182
translation of programs, 182–183
variables of class string, 203–205

stringstream class, 426–427
Strongly typed enumerations, 422
Stroustrup, Bjarne, 240, 472
strtok function

for breaking up input, 198–201
in RPN calculators, 323, 329–331

struct keyword, 272–273
Structures, 242–243, 267
Subclasses, defined, 556–557
Subroutines. See Functions
Subtract-and-assign operator (–=), 477,

482
Subtraction Game (NIM), 58–61, 129–130
Subtraction operator (–), 476
swap algorithm, 367, 387
Swap function

pointers and, generally, 165–166
for sorting arrays, 166–172

switch-case statements
arrays vs., 145, 147
introduction to, 77–82
number-printing program example of,

80–82
in RPN calculators, 331–332
syntax of, 495–496

switch statements, 142
Switching decks at runtime, 391–392
Symbols, defined, 557
Syntax

of basic expressions, 491–492
of basic statements, 492
of branch statements, 493–497
of break statements, 496
of class declarations, 502–503
of continue statements, 496
of control structures, 493–497
of do-while statements, 494
of enum declarations, 503–504
of function declarations, 500–501
of goto statements, 497
of if-else statements, 493
of return statements, 497
of for statements, 494–495
of switch-case statements, 495–496
of throw statements, 497
of variable declarations, 498–500
of while statements, 493–494

ptg16518442

Index580
T
Temperature conversions, 19–25
Templates. See also specific templates

defined, 557
in Standard Template Library. See STL

(Standard Template Library)
Test-for-equality (==) operator, 465–466
Tests

of ages, 53
for equality, 465–466
prime number, 55–57, 93–96

Text
analyzing with strings. See Strings, for

text analysis
binary files vs., 222–224
displaying, 222
storage of, 181–182
string data, generally, 17–18
strings. See Strings
writing to files, 216–218

this keyword, 464
throw statements, 497
Time functions, defined, 521–523
time_t (long integer data type), 76
t_main, 5, 7
Tokens, defined, 557
Top and pop operations, 328–331, 334
Top of Stack (tos), 302–303, 309
Tower of Hanoi puzzle

animating, example of, 305–311
animating, exercises in, 311
animating, generally, 302–304
Cstack class in, using, 304–305
functions in, 122–126
stack classes in, designing, 304

Translation of programs, 182–183
true

as absolute value function, 254
in Boolean logic, 51–54, 108–109
Boolean variables and, 75–76, 83

break statements and, 42
in decision making, 46–47, 53
if statements and, 32–35
is_prime for, 95
nonzero values as, 97
in prime number tests, 55–57
random numbers and, 75–76
reversing, 218
in strings, 204
in Subtraction Game, 59–61
while statements and, 40–44
while(true), 69, 107–108, 130

TV programs. See Good Deal, Bad Deal
game

Two pair hands, 360
Two’s-complement

defined, 557
format for data types, 487–489
introduction to, 29

Type casts
defined, 544
in file storage, 225
new-style, 479
old-style, 479
operators, 479

Types
casts of. See Type casts
class operator functions and, 463
of data. See Data types
double-precision floating. See double

(double-precision floating data type)
integer, See int (integer) data type
Single-precision floating, 28
in STL, generally, 313

U
#undef directive, defined, 511
Unsigned long long integers, 425
Unsigned short/unsigned long integers, 423
Uppercase characters, 195–197

ptg16518442

Index 581

using statements
namespace std, 328, 333
printing messages and, 12

V
Values

absolute value function, 254
assignment operator for, 45
double, 195
false. See false
left, 550
pointers and, generally, 156
random numbers and, 75–76
return. See Return values
true. See true

Variables
in C++, generally, 16–17
data types in, 17–19
declaring, 498–500
defined, 557
names of, 26–27
pointers as, 156
summary of use of, 28

Vector of integers (iVec), 371–372
vector template

in poker, generally, 371–377
in polymorphic poker, 388
in Standard Template Library, 536–538

Vectors, defined, 557
Video games

poker, generally. See Poker
polymorphic poker. See Polymorphic

poker
Vinci, Leonardo da, 432
virtual base classes, 393–396
Virtual dealers, 396–399
Virtual dice, 69–70
Virtual functions

address resolution for, 412
defined, 557–558

Virtual include files (iostream), 211
Virtual keyword, 394
Virtual penalty, 399–400, 412
Visibility, defined, 558
Visual Studio, Community Edition

compatibility issues and, 5–8
creating projects with Microsoft and, 2–5
data types in, 17–19
double vs. single precision in, 19
installation of, 1–2
introduction to, 1
keywords in, 26–27
optimizing programs in, 23–25
pausing screens in, 7–8
printing messages in, generally, 9–11
printing multiple lines in, 13–15
printing newline characters in, 12
running, generally, 5–6
running programs in, 5–6
stdafx.h in, 6–7
storing data in, 16–17
strings in, generally, 15–16
summary of, 27–28
temperature conversions in, 19–23
variable names in, 26–27
variables in, 16–17
writing programs in, 5

Visual Studio, Non-Microsoft, 8
Vitruvian Man, 432
void pointers, 404–405
vos Savant, Marilyn, 351–353
vtable pointers (vtpr), 400

W
while loops

do-while loops vs., 65–67
for loops vs., 90
printing 1 to N with, 43–45
zero-out-array function and, 178

while statements, 40, 493–494

ptg16518442

Index582

while(true), 69
write function

generally, 226
random-access, 227–230, 234–235

Writing programs, in Visual Studio, 5
Writing templates, in STL, 314–315

Writing text to files, 216–218
Writing to a binary file, 226

Z
Zero-based indexing, 135–139, 558
zero-out-array function, 177–179

ptg16518442

This page intentionally left blank

ptg16518442

Take the Next Step to Mastering C++

Bjarne Stroustrup

Herb Sutter

Musser/Derge/Saini

Herb Sutter Herb Sutter Andrei Alexandrescu Koenig/Moo

Nicolai M. Josuttis

Vandevoorde
Josuttis

Bjarne Stroustrup

Paul J. Deitel Deitel/Deitel Pete Becker Björn Karlsson

Scott Meyers Scott Meyers Scott Meyers Stephen C. Dewhurst

Sutter/Alexandrescu

For more information on these titles
visit informit.com/cplusplus

Brian Overland

informit.com/cplusplus

ptg16518442

Addison-Wesley • Cisco Press • IBM Press • Microsoft Press • Pearson IT Certif ication • Prentice Hall • Que • Sams • VMware Press

REGISTER YOUR PRODUCT at informit.com/register

• Download available product updates.

• Access bonus material when applicable.

• Receive exclusive offers on new editions and related products.
(Just check the box to hear from us when setting up your account.)

• Get a coupon for 35% for your next purchase, valid for 30 days. Your code will
be available in your InformIT cart. (You will also find it in the Manage Codes
section of your account page.)

Registration benefits vary by product. Benefits will be listed on your account page
under Registered Products.

InformIT is the online home of information technology brands at Pearson, the world’s foremost
education company. At InformIT.com you can

• Shop our books, eBooks, software, and video training.
• Take advantage of our special offers and promotions (informit.com/promotions).
• Sign up for special offers and content newsletters (informit.com/newsletters).
• Read free articles and blogs by information technology experts.
• Access thousands of free chapters and video lessons.

Learn about InformIT community events and programs.

http://www.InformIT.com
http://www.InformIT.com
http://www.informit.com/promotions
http://www.informit.com/newsletters
http://www.informit.com/community
http://www.InformIT.com
http://www.InformIT.com/register

ptg16518442

You love our titles and you love to
share them with your colleagues and friends...why
not earn some $$ doing it!

If you have a website, blog, or even a Facebook
page, you can start earning money by putting
InformIT links on your page.

Whenever a visitor clicks on these links and makes
a purchase on informit.com, you earn commissions*
on all sales!

Every sale you bring to our site will earn you a
commission. All you have to do is post the links to
the titles you want, as many as you want, and we’ll
take care of the rest.

Apply and get started!
It’s quick and easy to apply.
To learn more go to:
http://www.informit.com/affiliates/
*Valid for all books, eBooks and video sales at www.informit.com

Join the

Informit
Affiliate Team!

	Contents
	Preface
	We’ll Have Fun, Fun, Fun…
	Why C and C++?
	C++: How to “Think Objects”
	Purpose of the Third Edition
	Where Do I Begin?
	Icons and More Icons
	Anything Not Covered?
	A Final Note: Have Fun!
	Acknowledgments
	About the Author
	Chapter 1 Start Using C++
	Install Microsoft Visual Studio
	Create a Project with Microsoft
	Writing a Program in Microsoft Visual Studio
	Running a Program in Visual Studio
	Compatibility Issue #1: stdafx.h
	Compatibility Issue #2: Pausing the Screen
	If You’re Not Using Microsoft
	Example 1.1. Print a Message
	How It Works
	Exercises
	Interlude What about the #include and using?

	Advancing to the Next Print Line
	Example 1.2. Print Multiple Lines
	How It Works
	Exercises
	Interlude What Is a String?

	Storing Data: C++ Variables
	Introduction to Data Types
	Interlude Why Double Precision, Not Single?
	Example 1.3. Convert Temperatures
	How It Works
	Optimizing the Program
	Exercises

	A Word about Variable Names and Keywords
	Exercise

	Chapter 1 Summary

	Chapter 2 Decisions, Decisions
	But First, a Few Words about Data Types
	Decision Making in Programs
	Interlude What about Artificial Intelligence (AI)?
	if and if-else
	Interlude Why Two Operators (= and ==)?
	Example 2.1. Odd or Even?
	How It Works
	Optimizing the Code
	Exercise

	Introducing Loops
	Interlude Infinite Loopiness
	Example 2.2. Print 1 to N
	How It Works
	Optimizing the Program
	Exercises

	True and False in C++
	Interlude The bool Data Type

	The Increment Operator (++)
	Statements versus Expressions
	Introducing Boolean (Short-Circuit) Logic
	Interlude What Is “true”?
	Example 2.3. Testing a Person’s Age
	How It Works
	Exercise

	Introducing the Math Library
	Example 2.4. Prime-Number Test
	How It Works
	Optimizing the Program
	Exercise
	Example 2.5. The Subtraction Game (NIM)
	How It Works
	Exercises

	Chapter 2 Summary

	Chapter 3 And Even More Decisions!
	The do-while Loop
	Example 3.1. Adding Machine
	How It Works
	Exercises

	Introducing Random Numbers
	Example 3.2. Guess-the-Number Game
	How It Works
	Optimizing the Code
	Exercises

	The switch-case Statement
	Example 3.3. Print a Number
	How It Works
	Exercises

	Chapter 3 Summary

	Chapter 4 The Handy, All-Purpose “for” Statement
	Loops Used for Counting
	Introducing the “for” Loop
	A Wealth of Examples
	Interlude Does “for” Always Behave Like “while”?
	Example 4.1. Printing 1 to N with “for”
	How It Works
	Exercises

	Declaring Loop Variables “On the Fly”
	Example 4.2. Prime-Number Test with “for”
	How It Works
	Exercise

	Comparative Languages 101: The Basic “For” Statement
	Chapter 4 Summary

	Chapter 5 Functions: Many Are Called
	The Concept of Function
	The Basics of Using Functions
	Step 1: Declare (Prototype) the Function
	Step 2: Define the Function
	Step 3: Call the Function
	Example 5.1. The avg() Function
	How It Works
	Function, Call a Function!
	Exercises
	Example 5.2. Prime-Number Function
	How It Works
	Exercises

	Local and Global Variables
	Interlude Why Global Variables at All?

	Recursive Functions
	Example 5.3. Prime Factorization
	How It Works
	Interlude Interlude for Math Junkies
	Exercises
	Example 5.4. Euclid’s Algorithm for GCF
	How It Works
	Interlude Who Was Euclid?
	Exercises
	Interlude Interlude for Math Junkies: Rest of the Proof
	Example 5.5. Beautiful Recursion: Tower of Hanoi
	How It Works
	Exercises
	Example 5.6. Random-Number Generator
	How It Works
	Exercises

	Games and More Games
	Chapter 5 Summary

	Chapter 6 Arrays: All in a Row
	A First Look at C++ Arrays
	Initializing Arrays
	Zero-Based Indexing
	Interlude Why Use Zero-Based Indexes?
	Example 6.1. Print Out Elements
	How It Works
	Exercises
	Example 6.2. How Random Is Random?
	How It Works
	Exercises

	Strings and Arrays of Strings
	Example 6.3. Print a Number (from Arrays)
	How It Works
	Exercises
	Example 6.4. Simple Card Dealer
	How It Works
	Exercises

	2-D Arrays: Into the Matrix
	Chapter 6 Summary

	Chapter 7 Pointers: Data by Location
	What the Heck Is a Pointer, Anyway?
	The Concept of Pointer
	Interlude What Do Addresses Look Like?

	Declaring and Using Pointers
	Example 7.1. Print Out Addresses
	Example 7.2. The double_it Function
	How It Works
	Exercises

	Data Flow in Functions
	Swap: Another Function Using Pointers
	Example 7.3. Array Sorter
	How It Works
	Exercises

	Reference Arguments (&)
	Pointer Arithmetic
	Pointers and Array Processing
	Example 7.4. Zero Out an Array
	How It Works
	Writing More Compact Code
	Exercises

	Chapter 7 Summary

	Chapter 8 Strings: Analyzing the Text
	Text Storage on the Computer
	Interlude How Does the Computer Translate Programs?

	It Don’t Mean a Thing if It Ain’t Got that String
	String-Manipulation Functions
	Example 8.1. Building Strings
	How It Works
	Exercises
	Interlude What about Escape Sequences?

	Reading String Input
	Example 8.2. Get a Number
	How It Works
	Exercise
	Example 8.3. Convert to Uppercase
	How It Works
	Exercises

	Individual Characters versus Strings
	Example 8.4. Breaking Up Input with strtok
	How It Works
	Exercises

	The C++ String Class
	Include String-Class Support
	Declare and Initialize Variables of Class string
	Working with Variables of Class string
	Input and Output
	Example 8.5. Building Strings with the string Class
	How It Works
	Exercises
	Example 8.6. Adding Machine #2
	How It Works
	Exercises

	Other Operations on the string Type
	Chapter 8 Summary

	Chapter 9 Files: Electronic Storage
	Introducing File—Stream Objects
	How to Refer to Disk Files
	Example 9.1. Write Text to a File
	How It Works
	Exercises
	Example 9.2. Display a Text File
	How It Works
	Exercises

	Text Files versus “Binary” Files
	Interlude Are “Binary Files” Really More Binary?

	Introducing Binary Operations
	Example 9.3. Random-Access Write
	How It Works
	Exercises
	Example 9.4. Random-Access Read
	How It Works
	Exercises

	Chapter 9 Summary

	Chapter 10 Classes and Objects
	OOP, My Code Is Showing
	What’s an Object, Anyway?
	Interlude OOP…Is It Worth It?

	Point: A Simple Class
	Interlude Interlude for C Programmers: Structures and Classes

	Private: Members Only (Protecting the Data)
	Example 10.1. Testing the Point Class
	How It Works
	Exercises

	Introducing the Fraction Class
	Inline Functions
	Find the Greatest Common Factor
	Find the Lowest Common Denominator
	Example 10.2. Fraction Support Functions
	How It Works
	Exercises
	Example 10.3. Testing the Fraction Class
	How It Works
	Interlude A New Kind of #include?
	Exercises
	Example 10.4. Fraction Arithmetic: add and mult
	How It Works
	Exercises

	Chapter 10 Summary

	Chapter 11 Constructors: If You Build It…
	Introducing Constructors
	Multiple Constructors (Overloading)
	C++11/C++14 Only: Initializing Members
	The Default Constructor—and a Warning
	Interlude Is C++ Out to Trick You with the Default Constructor?

	C++11/C++14 Only: Delegating Constructors
	Example 11.1. Point Class Constructors
	How It Works
	Exercises
	Example 11.2. Fraction Class Constructors
	How It Works
	Exercises

	Reference Variables and Arguments (&)
	The Copy Constructor
	Interlude The Copy Constructor and References

	A Constructor from String to Fract
	Chapter 11 Summary

	Chapter 12 Two Complete OOP Examples
	Dynamic Object Creation
	Other Uses of new and delete
	Blowin’ in the Wind: A Binary Tree App
	The Bnode Class
	The Btree Class
	Example 12.1. Names in Alpha Order
	How It Works
	Exercises
	Interlude Recursion versus Iteration Compared

	Tower of Hanoi, Animated
	After Mystack Class Design
	Using the Cstack Class
	Example 12.2. Animated Tower
	How It Works
	Exercises

	Chapter 12 Summary

	Chapter 13 Easy Programming with STL
	Introducing the List Template
	Interlude Writing Templates in C++
	Creating and Using a List Class
	Creating and Using Iterators
	C++11/C++14 Only: For Each
	Interlude Pointers versus Iterators
	Example 13.1. STL Ordered List
	How It Works
	A Continually Sorted List
	Exercises

	Designing an RPN Calculator
	Interlude A Brief History of Polish Notation
	Using a Stack for RPN
	Introducing the Generalized STL Stack Class
	Example 13.2. Reverse Polish Calculator
	How It Works
	Exercises

	Correct Interpretation of Angle Brackets
	Chapter 13 Summary

	Chapter 14 Object-Oriented Monty Hall
	What’s the Deal?
	TV Programming: “Good Deal, Bad Deal”
	Example 14.1. The PrizeManager Class
	How It Works
	Optimizing the Code
	Exercises
	Example 14.2. The DoorManager Class
	How It Works
	Exercises
	Example 14.3. The Full Monty Program
	How It Works
	Exercises

	The Monty Hall Paradox, or What’s Behind the Door?
	Improving the Prize Manager
	Chapter 14 Summary

	Chapter 15 Object-Oriented Poker
	Winning in Vegas
	How to Draw Cards
	The Card Class
	The Deck Class
	Doing the Job with Algorithms
	Example 15.1. Primitive Video Poker
	How It Works
	Exercises

	The Vector Template
	Getting Nums from the Player
	Example 15.2. Draw Poker
	How It Works
	Exercises

	How to Evaluate Poker Hands
	Example 15.3. Draw-Poker Payout!
	How It Works
	Exercises

	Chapter 15 Summary

	Chapter 16 Polymorphic Poker
	Multiple Decks
	Switching Decks at Runtime
	Polymorphism Is the Answer
	Example 16.1. A Virtual Dealer
	How It Works
	Exercises
	Interlude What Is the Virtual Penalty?

	“Pure Virtual” and Other Abstract Matters
	Abstract Classes and Interfaces
	Object Orientation and I/O
	cout Is Endlessly Extensible
	But cout Is Not Polymorphic
	Example 16.2. True Polymorphism: The IPrintable Class
	How It Works
	Exercises

	A Final Word (or Two)
	An (Even More) Final Word
	Chapter 16 Summary

	Chapter 17 New Features of C++14
	The Newest C++14 Features
	Digit-Group Separators
	String-Literal Suffix
	Binary Literals
	Example 17.1. Bitwise Operations
	Exercises

	Features Introduced in C++11
	The long long Type
	Interlude Why a “Natural” Integer?
	Working with 64-Bit Literals (Constants)
	Accepting long long Input
	Formatting long long Numbers
	Example 17.2. Fibonacci: A 64-Bit Example
	How It Works
	Exercises
	Localizing Numbers
	Interlude Who Was Fibonacci?

	Range-Based “for” (For Each)
	Example 17.3. Setting an Array with Range-Based “for”
	How It Works
	Exercises

	The auto and decltype Keywords
	The nullptr Keyword
	Strongly Typed Enumerations
	enum Classes in C++11 Onward
	Extended enum Syntax: Controlling Storage

	Raw-String Literals
	Chapter 17 Summary

	Chapter 18 Operator Functions: Doing It with Class
	Introducing Operator Functions
	Operator Functions as Global Functions
	Improve Efficiency with References
	Example 18.1. Point Class Operators
	How It Works
	Exercises
	Example 18.2. Fraction Class Operators
	How It Works
	Optimizing the Code
	Exercises

	Working with Other Types
	The Class Assignment Function (=)
	The Test-for-Equality Function (==)
	A Class “Print” Function
	Example 18.3. The Completed Fraction Class
	How It Works
	Exercises

	A Really Final Word (about Ops)
	Chapter 18 Summary

	Appendix A: Operators
	The Scope (::) Operator
	The sizeof Operator
	Old- and New-Style Type Casts
	Integer versus Floating-Point Division
	Bitwise Operators (&, |, ^, ~, <<, and >>)
	Conditional Operator
	Assignment Operators
	Join (,) Operator

	Appendix B: Data Types
	Precision of Data Types
	Data Types of Numeric Literals
	String Literals and Escape Sequences
	Two’s-Complement Format for Signed Integers

	Appendix C: Syntax Summary
	Basic Expression Syntax
	Basic Statement Syntax
	Control Structures and Branch Statements
	The if-else Statement
	The while Statement
	The do-while Statement
	The for Statement
	The switch-case Statement
	The break Statement
	The continue Statement
	The goto Statement
	The return Statement
	The throw Statement
	Variable Declarations
	Function Declarations
	Class Declarations
	Enum Declarations

	Appendix D: Preprocessor Directives
	The #define Directive
	The ## Operator (Concatenation)
	The defined Function
	The #elif Directive
	The #endif Directive
	The #error Directive
	The #if Directive
	The #ifdef Directive
	The #ifndef Directive
	The #include Directive
	The #line Directive
	The #undef Directive
	Predefined Constants

	Appendix E: ASCII Codes
	Appendix F: Standard Library Functions
	String (C-String) Functions
	Data-Conversion Functions
	Single-Character Functions
	Math Functions
	Randomization Functions
	Time Functions
	Formats for the strftime Function

	Appendix G: I/O Stream Objects and Classes
	Console Stream Objects
	I/O Stream Manipulators
	Input Stream Functions
	Output Stream Functions
	File I/O Functions

	Appendix H: STL Classes and Objects
	The STL String Class
	The <bitset> Template
	The <list> Template
	The <vector> Template
	The <stack> Template

	Appendix I: Glossary of Terms
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

