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This book was written with love, and I was fortunate to write it from a loving home with the
encouragement of my wife, Isabelle (Za), and my children, Marguerite, Calypso, Amandine,
Viktor, and Ludo. Oh, and lots of animals.

My participation in the ISO C++ Standards Committee has allowed me to get a deeper understanding
of the workings of the amazing language that is C++. There are too many to thank for this, but I will
at least mention Michael Wong, who invited me to participate in this enlightening adventure; Jon
Kalb, who made it possible for me to meet these fine folks and gave me an opportunity to teach to a
wider audience; and, of course, Bjarne Stroustrup, who gave us this language, which has been my
primary tool for decades now. If you enjoy this book, know that they are indirectly responsible
for it too.

- Patrice Roy



Foreword

Back in 2014, when Patrice Roy first joined our Canadian C++ standardization delegation team, I
noticed something distinctive about his approach. He had this remarkable ability to untangle complex

technical concepts and present them with striking clarity - a skill that would serve him well in crafting
this book.

I've had the pleasure of collaborating with Patrice within the C++ standardization community since
2014, during which time he has contributed to ISO C++, CPPCON, and my SG14 group actively.
His expertise and ability to clearly articulate complex technical concepts are evident throughout this
work. This book isn’t merely a collection of rules; it’s an exploration of the core principles governing
how C++ interacts with memory. From the foundational definition of an “object” to the intricacies
of pointers and references, Patrice meticulously guides readers through the essential building blocks.
He tackles challenging topics such as object lifetime, memory alignment, and the potential pitfalls of
undefined behavior with clarity and precision.

Memory management lies at the core of modern C++ programming, yet it remains one of the most
challenging areas to master. When Patrice approached me about this book, I immediately knew he
was the perfect person to tackle such a vital topic. Having worked closely with Patrice for years, I've
witnessed his exceptional ability to distill complex ideas into accessible, actionable knowledge. His
technical expertise, coupled with his passion for teaching, sets him apart as a thought leader and
educator in the C++ world. He is also one of the most genuine, kind, and honest people I have ever met.

This book, C++ Memory Management, is a testament to Patrice’s passion for dissecting complex topics
and presenting them in an accessible way. It’s not just a dry recitation of rules and best practices; it’s a
journey into the very heart of how C++ interacts with memory. From the fundamental definition of
an “object” — a concept often taken for granted but surprisingly nuanced - to the often-misunderstood
relationship between pointers and references, Patrice guides you through the essential building blocks.
He doesn’t shy away from the tricky bits either, tackling the thorny issues of object lifetime, alignment,
padding, and the ever-present danger of memory leaks.

This book reflects Patrice’s gift for progressive enlightenment. He begins with fundamental concepts
— what exactly is an object in C++? How do pointers and references truly differ? These seemingly
basic questions have nuanced answers that impact how we write code. From there, he ventures into
trickier territory: object lifetime, alignment requirements, padding bytes, and the eternal challenge
of preventing memory leaks.



Having spent years working on C++ atomics and memory models, I especially appreciate how the
book builds understanding from first principles. Chapter 1 lays crucial groundwork for objects and
memory representation. Chapter 2 bravely tackles undefined behavior and other pitfalls that can trap
even experienced developers. This mirrors my own experience implementing transactional memory
in C++ - understanding edge cases is vital.

As someone who has spent over two decades working on C++ compilers, language design, safety, Al
and particularly parallel computing and memory models, I appreciate the careful balance this book
strikes between practical guidance and theoretical foundations. The progression from fundamental
concepts in Chapter 1 through increasingly sophisticated memory management techniques mirrors
the journey that many C++ developers must take.

I have had the privilege of working with Patrice for years, and I can confidently say that his approach
to teaching and writing reflects the traits of a seasoned expert who deeply understands both the
intricacies of C++ and the challenges faced by those who wield it. With his clear explanations and
practical insights, this book is not just about memory management - it’s about writing better, safer,
and more expressive C++ at every level of abstraction.

What sets this book apart is how it builds knowledge methodically, layer by layer, always connecting
low-level details to high-level design principles. The sections on casts and const-correctness in
Chapter 3 go far beyond syntax, illustrating how to express intent clearly in code and leverage the
type system as a safety net. Chapter 4 delves into destructors and the RAII idiom, showcasing why
C++ remains one of the most powerful tools for managing resources, allowing developers to write
code that is both robust and clean.

The book’s treatment of smart pointers and RAII in later chapters reflects modern C++ at its finest —
showing how we can harness the type system and object lifetime semantics to write code that is both
safer and more elegant. This exemplifies the philosophy that has guided my work chairing various
C++ standardization groups: that C++ should offer powerful abstractions while still giving developers
precise control when they need it.

As a long-time contributor to the evolution of C++ standards and a leader in the development of
parallel and heterogeneous programming models, my own journey has revolved around navigating
the delicate balance between high-level abstractions and low-level optimizations. Whether working
on high-performance computing (HPC) systems, pushing the boundaries of AI/ML frameworks, or
designing robust programming models for safety-critical systems, I've often found myself returning
to the fundamental questions: How do we manage resources efficiently? and How do we write code that
is both powerful and maintainable?

Whether you're a student learning C++, a professional developer looking to deepen your expertise, or
an experienced programmer wanting to better understand the language’s memory model, this book
is an invaluable resource. Patrice has created something special here — a thorough yet approachable
guide to one of C++’s most important topics.



This book is not just a technical manual - it is a conversation with a mentor. I consider Patrice to also
be my mentor. Patrice writes with the voice of someone who has navigated the sharp edges of C++
and emerged with a deep respect for its potential. His examples are not contrived; they are drawn
from the real world.

So, dive in. Embrace the journey. And let Patrice’s expertise guide you to new heights in your C++ mastery.

- Michael Wong

Distinguished Engineer, ISO C++ Standards Founding Directions Group Chair, C++ Foundation
Founding Director, Chair of SG14 (Games Dev/Low Latency/Financial, Embedded), SG19 (Machine
Learning), Editor Concurrency TS2, Transactional Memory TS1/TS2, Canada’s All Programming
Languages (SC22) and Automotive Functional Safety for self-driving cars (TC22/SC32) Chair
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Preface

Programs regularly have to allocate and manage memory, no matter what programming language
they are written in. Why and how we do this depends on the language and the application domain,
however: real-time systems, embedded systems, games, and conventional desktop applications all
have different needs and constraints, and there is no single, universal best approach to all problems.

This book shows how modern C++ lets programmers write simpler and safer programs, but also how
that language makes it possible to take control of memory allocation mechanisms and make sure
programs respect the constraints they face. Starting from the language’s basic concepts of objects’
lifetimes and memory organization, you will learn how to write your own containers and your own
allocators, and to adapt the very behavior of allocation operators to suit your needs. Depending on
your needs, you will be able to make programs that are smaller, faster, more predictable... and safer.

Who this book is for

This book is written for individuals who have some programming experience and who enjoy both
high-level and low-level programming. Having prior experience with generic programming and
concurrent programming will lead to a more pleasant reading experience.

More specifically, this book is written for you if (a) you think managing memory in C++ is difficult
but are willing to take a fresh look at it, (b) you want better control over the way your programs
manage memory, or (c) you want your programs to be smaller, faster, and safer. You might benefit
from this book if you come from a C++ background, of course, but also if you normally program in
other languages and would like to look at what C++ allows you to do. This book will be helpful to any
programmer, but you might find it particularly useful if you program in constrained environments
(such as embedded systems or game consoles) or in other application domains where you need tight
control over resource allocation mechanisms. Who knows, you might even enjoy it!

What this book covers

Chapter 1, Objects, Pointers, and References, discusses the basic concepts of the object model in the
C++ language, providing us with a common basic vocabulary.

Chapter 2, Things to Be Careful With, looks at some of the tricky aspects of C++, with a more specific
examination of low-level programming maneuvers that can lead us into trouble; we will examine what
kind of trouble these can lead us to.
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Chapter 3, Casts and cv-qualifications, examines the tools at our disposal to coerce the type system to
our needs and discusses how to use these sometimes sharp tools in reasonable ways.

Chapter 4, Using Destructors, looks at this important aspect of C++ that makes it possible to write
objects that are responsible for the management of resources in general and of memory in particular.

Chapter 5, Using Standard Smart Pointers, provides a look at how we can benefit from this important part
of contemporary C++ programming, which inscribes responsibility over memory into the type system.

Chapter 6, Writing Smart Pointers, looks at ways in which we write homemade versions of the standard
smart pointers as well as how we can design our own smart pointers to cover niches that are not yet
covered by those provided by the standard library.

Chapter 7, Overloading Memory Allocation Operators, shows some of the many ways in which we can
provide our own versions of memory allocation operators and explains why it can be a good idea to
do so.

Chapter 8, Writing a Naive Leak Detector, puts our new memory management skills to use to write a
working (if simple) tool to detect memory leaks in a way that is essentially transparent to user code.

Chapter 9, Atypical Allocation Mechanisms, takes a tour of some unusual applications (and overloads)
of the standard memory allocation operators, including non-throwing versions and others that handle
“exotic” memory.

Chapter 10, Arena-Based Memory Management and Other Optimizations, uses our memory management
skills to make programs execute more quickly and behave more deterministically, benefitting from
domain-specific or application-specific knowledge.

Chapter 11, Deferred Reclamation, explores ways in which we can write programs that automatically
reclaim dynamically allocated objects at chosen moments during program execution.

Chapter 12, Writing Generic Containers with Explicit Memory Management, explains how to write
two eflicient generic containers that manage memory themselves and discusses exception-safety and
complexity tradeoffs of this practice.

Chapter 13, Writing Generic Containers with Implicit Memory Management, revisits the containers
written in the previous chapter to see the impacts of moving from an explicit memory management
approach to an implicit one that relies on smart pointers.

Chapter 14, Writing Generic Containers with Allocator Support, revisits our homemade containers to
see how memory management can be customized through allocators, covering allocators from before
C++11 to contemporary allocators, as well as PMR allocators.

Chapter 15, Contemporary Issues, looks toward the near future and examines some recent (as of the
booK’s writing) features of C++ that pertain to memory management as well as some interesting
candidate additions to the language in C++26 and C++29.



Preface

Annexure: Things You Should Know, provides some technical background that can help you get the
most out of this book but that might not be common knowledge. Refer to it as needed, it’s there for you!

To get the most out of this book

You will need a contemporary C++ compiler, ideally one that supports at least C++20 and ideally C++23.
This book does not require other tools, but you are of course welcome to use your favorite code editor and
experiment with the examples you will meet as you progress.

Care was taken to keep to standard C++ from a portable and safe perspective. The few places where you
will meet examples that use non-portable code are identified as such.

Code examples have been tested on three distinct compilers and the samples on the book’s GitHub
repository all contain, in addition to the actual source code, links to online versions (in comments) that
compile and that you can modify and adapt as you wish.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

I hope you enjoy the experience and find the examples to be an interesting starting point for your

own explorations.

Download the example code files

You can download the example code files for this book from GitHub athttps://github.com/
PacktPublishing/C-Plus-Plus-Memory-Management. If there’s an update to the code,
it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at ht tps: //
github.com/PacktPublishing/. Check them out!

Conventions used

There are a number of text conventions used throughout this book.

Code in text:Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “The whole
body of £ () could legitimately be rewritten by your compiler as return g (*p) in this case, with
the return *p statement being turned into unreachable code”

xvii
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A block of code is set as follows:

int g(int) ;
int f(int *p)
if(p != nullptr)
return g(*p); // Ok, we know p is not null
return *p; // oops, if p == nullptr this is UB

}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

class X {

public:
// #0 delegates to #1 which delegates to #0 which...
X (float x) : X{ static_cast<int>(x) } { // #0

}

Any command-line input or output is written as follows:

Verbose (0)
Verbose (2)
Verbose (6)
Verbose (7)

Tips or important notes

Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercaree@
packtpub. com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www . packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors . packtpub. com.


mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
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Preface Xix

Share Your Thoughts

Once you've read C++ Memory Management, wed love to hear your thoughts! Please click here to go
straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.


https://packt.link/r/1805129805
https://packt.link/r/1805129805
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Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don't worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-80512-980-6

2. Submit your proof of purchase

3. That’s it! We'll send your free PDF and other benefits to your email directly
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Part 1:
Memory in C++

In this part, we will develop a common vocabulary on some key aspects of the object model in C++.
This includes a discussion of ideas such as what an object is, what a reference is, and how C++ represents
memory; a look at some of the risky or delicate maneuvers we sometimes need to do when writing
low-level code (and the consequences that stem from doing them inappropriately); and how to coerce
the type system to our needs in ways that do not come back to harm us. The knowledge gathered in
this part will serve as a basis from which later chapters will be built.

This part has the following chapters:
o Chapter 1, Objects, Pointers, and References

o Chapter 2, Things to Be Careful with

o Chapter 3, Casts and cv-qualifications







1

Objects, Pointers,
and References

Before we start discussing memory management in C++, let’s make sure we understand each other
and agree on a common vocabulary. If youre a long-time C++ programmer, you probably have your
own ideas about what pointers, objects, and references are. Your ideas will stem from a wealth of
experience. If you are coming to this book from another language, you might also have your own
ideas as to what these terms mean in C++ and how they relate to memory and memory management.

In this chapter, we are going to make sure we have a common understanding of some basic (but
profound) ideas so that we can build on this shared understanding for the rest of our adventure
together. Specifically, we will explore questions such as the following:

« How is memory represented in C++? What exactly is that thing we call memory, at least in the
context of the C++ language?

o What are objects, pointers, and references? What do we mean by those terms in C++? What
are the lifetime rules of objects? How do they relate to memory?

o What are arrays in C++? In this language, arrays are a low-level but highly efficient construct
represented in a way that directly impacts memory management.

Technical requirements

This book assumes that readers have some basic knowledge of C++ or of syntactically similar languages
such as C, Java, C#, or JavaScript. For this reason, we will not explain the basics of variable declarations,
loops, 1f statements, or functions.

We will, however, use some aspects of the C++ language in this chapter that some readers might be
less comfortable with. Please refer to Annexure: Things You Should Know, before reading this book.

Some of the examples use C++20 or C++23, so make sure that your compiler supports this version
of the standard to get the most out of them.



Obijects, Pointers, and References

The code for this chapter can be found here: https://github.com/PacktPublishing/C-
Plus-Plus-Memory-Management/tree/main/chapterl.

Representation of memory in C++

This is a book on memory management. You, readers, are trying to figure out what it means, and I,
as the author, am trying to convey what it means.

The way in which the standard describes memory can be seen in [wg21.1link/basic.memobj].
Essentially, memory in C++ is expressed as one or more sequences of contiguous bytes. This opens up
the possibility of memory expressed as a set of discontinuous blocks of contiguous memory because,
historically, C++ has supported memories made of various distinct segments. Every byte in a C++
program has a unique address.

Memory in a C++ program is populated with various entities such as objects, functions, references,
and so on. Managing memory efficiently requires grasping what these entities mean and how programs
can make use of them.

The meaning of the word byte is important in C++. As detailed in [wg21.1link/intro.memoryl],
bytes are the fundamental storage unit in C++. The number of bits in a byte is implementation-
defined in C++. The standard does state, however, that a byte has to be wide enough to contain both
the ordinary literal encoding of any element of the basic literal character set and the eight-bit code
units of the UTF-8 encoding form. It also states that a byte is made of a contiguous sequence of bits.

What often surprises people is that in C++, a byte is not necessarily an octet: a byte consists of at least
eight bits but could be made of more (something that’s useful on some exotic hardware). This might
change in the future, as the standard committee might constrain that definition someday, but this is
the situation at the time of the publication of this book. The key idea here is that a byte is the smallest
addressable unit of memory in a program.

Objects, pointers, and references

We tend to use words such as object, pointer, and reference informally, without thinking too much
about what they mean. In a language such as C++, these words have precise meanings that define and
delimit what we can do in practice.

Before we get our hands dirty, so to speak, let’s examine the formal meaning of these terms in C++.
Objects

If we polled programmers working with different languages and asked them how they would define
the term object, we could probably expect such answers as “something that groups together variables
and related functions” or “an instance of a class,” which correspond to traditional takes on that term
from the realm of object-oriented programming.


https://github.com/PacktPublishing/C-Plus-Plus-Memory-Management/tree/main/chapter1
https://github.com/PacktPublishing/C-Plus-Plus-Memory-Management/tree/main/chapter1
http://wg21.link/basic.memobj
http://wg21.link/intro.memory
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C++ as a language tries to provide homogeneous support for user-defined types such as structs or
classes. It also provides support for fundamental types such as int or £1oat. Thus, it probably should
not be surprising that, for C++, the definition of an object is expressed in terms of its properties,
not in terms of what the word means, and that this definition includes the most fundamental types.
The definition of an object in C++ is described in [wg21.1link/intro.object] and takes the
following factors into account:

« How the object is created explicitly, such as when defining the object or constructing it through
one of the many variations of operator new. The object may also be created implicitly such
as when creating a temporary object as the result of some expression or when changing the
active member of a union.

o The fact that an object is somewhere (it has an address) and occupies a region of storage of
non-zero size, from the start of its construction to the end of its destruction.

o Other properties of an object, including its name (if it has one), its type, and its storage duration
(automatic, static, thread local, andsoon.).

The C++ standard explicitly calls out functions as not being objects, even if a function has an address
and occupies storage.

From this, we can infer that even a humble int is an object, but a function is not. You can see already,
dear reader, that the book you’re reading will touch on fundamental topics, since lifetime and the
storage occupied by objects are part of the fundamental properties of these entities we use in our
programs every day. Such things as lifetime and storage are clearly part of what memory management
is about. You can convince yourself of that fact with this simple program:

#include <type traitss>
int main() {
static assert(std::is object v<ints);
static assert(!std::is object v<decltype (main)>) ;

}

What is an object? It's something that has a lifetime and occupies storage. Controlling these characteristics
is part of the reasons why this book exists.

Pointers

There are numerous (around 2,000) mentions of the word “pointer” in the text of the C++ standard,
but if you open an electronic copy of that document and search through it, you'll find that a formal
definition is surprisingly hard to come by. This can be surprising given the fact that people tend to
associate that idea with C and (by extension) C++.


http://wg21.link/intro.object
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Let us try to offer a useful yet informal definition, then: a pointer is a typed address. It associates a
type with what is found at some location in memory. For that reason, in code like the following, one
reads that nn is an int object and that p points to an int object that happens to be the address of
the n object:

int n = 3; // n is an int object
char c;
// int *p = &c; // no, illegal

int *p = &n;

It's important to understand here that p indeed points to an int, unless p is left uninitialized, p
points to nullptr, or programmers have played tricks with the type system and made p point to
something else deliberately. Of course, pointer p is an object, as it respects all the rules to that effect.

Much of the (syntactic) confusion about pointers probably comes from the contextual meaning of
the * and & symbols. The trick is to remember that they have different roles when they appear in the
introduction of a name and when they are used on an existing object:

int m = 4, n = 3;
int *p; // p declares (and defines) a pointer to an int
// (currently uninitialized), introducing a name
p = 0; // p is a null pointer (it does not necessarily
// point to address zero; 0 as used here is
// just a convention)
nullptr; // likewise, but clearer. Prefer nullptr to

o]
1]

// literal 0 whenever possible to describe
// a null pointer
p = &m; // p points to m (p contains the address of m)
assert (*p == 4); // p already exists; with *p we are
// accessing what p points to
p = &n; // p now points to n (p contains the address of n)
int *q = &n; // q declares (and defines) a pointer to an
// int and &n represents the address of n, the
// address of an int: g is a pointer to an int
assert (*qg == 3); // n holds 3 at this stage, and g points
// to n, so what g points to has value 3
assert (*p == 3); // the same holds for p
assert(p == q); // p and g point to the same int object
*q = 4; // q already exists, so *g means "whatever g
// points to"
assert(n == 4); // indeed, n now holds value 4 since we
// modified it indirectly through g
auto gg = &q; // qg is the address of g, and its type is
// "pointer to a pointer to an int", thus
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// int **_ .. But we will rarely - if ever -
// need this
int &r = n; // declaration of r as a reference to integer n
// (see below). Note that & is used in a
// declaration in this case

As you can see, when introducing an object, * means “pointer to” On an existing object, it means
“what that pointer points to” (the pointee). Similarly, when introducing a name, & means “reference
to” (something we will discuss imminently). On an existing object, it means “address of” and yields
a pointer.

Pointers allow us to do arithmetic, but that’s (legitimately) seen as a dangerous operation, as it can
take us to arbitrary locations in a program and can therefore lead to serious damage. Arithmetic on
a pointer depends on its type:

int *f () ;
char *g();
int danger () ({
auto p = £(); // p points to whatever f () returned
int *qg = p + 3; // g points to where p points to plus
// three times the size of an int. No
// clue where this is, but it's a bad,
// bad idea...
auto pc = g(); // pc points to whatever g() returned

char * gqc = pc + 3; // gc points to where pc points
// to plus three times the size
// of a char. Please don't make
// your pointers go to places you
// don't know about like this

}

Of course, accessing the contents of arbitrary addresses is just asking for trouble. This is because it
would mean invoking undefined behavior (described in Chapter 2), and if you do that, you’re on
your own. Please do not do such things in real code, as you could hurt programs - or worse, people.
C++ is powerful and flexible, but if you program in C++, you're expected to behave responsibly
and professionally.

C++ has four special types for pointer manipulation:

« void* means “address with no specific (type-related) semantics” A void* is an address
with no associated type. All pointers (if we discount the const and volatile qualifiers)
are implicitly convertible to void*; an informal way to read this is as “all pointers, regardless
of type, really are addresses.” The converse does not hold. For example, it’s not true that all
addresses are implicitly convertible to int pointers.
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o char* means “pointer to a byte” Due to the C language roots of C++, a char* can alias any
address in memory (the char type, regardless of its name, which evocates “character”, really
means “byte” in C and, by extension, in C++). There is an ongoing effort in C++ to give char
the meaning of “character;” but as of this writing, a char* can alias pretty much anything in
a program. This hampers some compiler optimization opportunities (it is hard to constrain or
reason about something that can lead to literally anything in memory).

o std: :bytex is the new “pointer to a byte,” at least since C++17. The (long-term) intent of
byte* is to replace char* in those functions that do byte-per-byte manipulation or addressing,
but since there’s so much code that uses char* to that effect, this will take time.

For an example of conversion from and to void¥, consider the following:

int n = 3;

int *p = &n; // fine so far

void *pv = p; // Ok, a pointer
// p = pv; // no, a void* does
// an int (Ok in C,

p = static cast<int *>(pv); //
//

//

is an address

not necessarily point to
not in C++)

but
if you're wrong you're on

fine, you asked for it,

your own

The following example, which is somewhat more elaborate, uses const char* (but could use
const byte* instead). It shows that one can compare the byte-per-byte representation of two
objects, at least in some circumstances, to see whether they are equivalent:

#include <iostream>
#include <type traitss>
using namespace std;

bool same bytes(const char *po0,

std::size t n)

for(std::size t i = 0; 1 !=

1f (*(p0 + 1)
return false;

1= *(pl +

return true;

}

template <class T,
bool same bytes(const T &a,

class U>

using namespace std;
static assert (sizeof a

const char *pl,

{
n; ++1i)

i))

const U &b) {

== gizeof b);

static assert (has unique object representations v<

T

>);

static_assert (has_unique object representations v<

o)
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>) ;
return same bytes (reinterpret cast<const char*s(&a),
reinterpret cast<const char*s(&b),

sizeof a);

}
struct X {

int x {2}, v{3};:
b
struct Y {

int x {2}, v{3};:
i

#include <casserts>

int main() {
constexpr X x;
constexpr Y y;
assert (same bytes(x, y));

}

Thehas unique object representations trait is true for types uniquely defined by their
values, that is, types exempt of padding bits.. That’s sometimes important as C++ does not say what
happens to padding bits in an object, and performing a bit-per-bit comparison of two objects might
yield surprising results. Note that objects of floating point types are not considered uniquely defined
by their values as there are many distinct values that qualify as NaN, or “not a number”.

References

The C++ language supports two related families of indirections: pointers and references. Like their
cousins, the pointers, references are often mentioned by the C++ standard (more than 1,800 times)
but it’s hard to find a formal definition for them.

We will try once again to provide an informal but operational definition: a reference can be seen as
an alias for an existing entity. We deliberately did not use object, since one could refer to a function
and we already know that a function is not an object.

Pointers are objects. As such, they occupy storage. References, on the other hand, are not objects
and use no storage of their own, even though an implementation could simulate their existence with
pointers. Compare std: :1s_object v<int*>withstd::is object v<inté&s:the former
is true, and the latter is false.

The sizeof operator, applied to a reference, will yield the size of what it refers to. Consequently,
taking the address of a reference yields the address of what it refers to.
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In C++, a reference is always bound to an object and remains bound to that object until the end of
the reference’s lifetime. A pointer, on the other hand, can point to numerous distinct objects during
its lifetime, as we have seen before:

// int &nope; // would not compile (what would nope
// refer to?)
int n = 3;
int &r = n; // r refers to n
++r; // n becomes 4
assert (&r == &n); // taking the address of r means taking
// the address of n

Another difference between pointers and references is that, contrary to the situation that prevails
with pointers, there is no such thing as reference arithmetic. This makes references somewhat safer
than pointers. There is room for both kinds of indirections in a program (and we will use them both
in this book!), but for everyday programming, a good rule of thumb is to use references if possible
and to use pointers if necessary.

Now that we have examined the representation of memory and taken a look at how C++ defines some
fundamental ideas such as a byte, an object, a pointer, or a reference, we can delve a little deeper into
some important defining properties of objects.

Understanding the fundamental properties of objects

We saw earlier that in C++, an object has a type and an address. It also occupies a region of storage
from the beginning of its construction to the end of its destruction. We will now examine these
fundamental properties in more detail in order to understand how these properties affect the ways
in which we write programs.

Object lifetime

One of C++7s strengths, but also one reason for its relative complexity, arises from the control one has
over the lifetime of objects. In C++, generally speaking, automatic objects are destructed at the end of
their scope in a well-defined order. Static (global) objects are destructed on program termination in a
somewhat well-defined order (in a given file, the order of destruction is clear, but it'’s more complicated
for static objects in different files). Dynamically allocated objects are destructed “when your program
says so~ (there are many nuances to this).

Let’s examine some aspects of object lifetime with the following (very) simple program:

#include <strings>
#include <iostream>
#include <formats>
struct X {
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std::string s;

X (std::string view s) : s{ s } {
std::cout << std::format ("X::X({})\n", s);
}
~X () {
std::cout << std::format ("~X::X() for {}\n", s);
}
¥
X glob { "glob" };
void g() {
X xg{ «g()» };
}
int main() {
X *p0 = new X{ "p0o" };
[ [maybe unused]] X *pl = new X{ "pl" }; // will leak
X xmain{ "main()" };
g();
delete pO0;
// oops, forgot delete pl
}
When executed, that program will print the following:
X::X (glob)
X::X(pO0)
X::X(pl)
X::X(main())
X::X(g())
~X::X() for g()
~X::X() for poO
~X::X() for main|()
~X::X() for glob

The fact that the number of constructors and destructors do not match is a sign that we did something
wrong. More specifically, in this example, we manually created an object (pointed to by p1) with
operator new but never manually destructed that object afterward.

One common source of confusion for programmers unfamiliar with C++ is the distinction between
pointer and pointee. In this program, p0 and p1 are both destructed when reaching the end of their
scope (by the closing brace of the main () function), just as xmain will be. However, since p0 and
p1l point to dynamically allocated objects, the pointees have to be explicitly destructed, something
we did for p0 but (deliberately, for the sake of the example) neglected to do for p1.
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What happens to p1’s pointee then? Well, it has been manually constructed and has not been manually
destructed. As such, it floats in memory where no one can access it anymore. This is what people often
call a memory leak: a chunk of memory your program allocated but never deallocated.

Worse than leaking the storage for the X object pointed to by p1, however, is the fact that the pointee’s
destructor will never be called, which can cause all sorts of resource leaks (files not closed, database
connections not closed, system handles not released, and so on). In Chapter 4, Using Destructors, we
will examine how it is possible to avoid such situations and write clean, simple code at the same time.

Object size, alignment, and padding

Since each object occupies storage, the space associated with an object is an important (if low-level)
property of C++ types. For example, look at the following code:

class B; // forward declaration: there will be a class B
// at some point in the future
void f£(B*); // fine, we know what B is, even if we don't
// know the details yet, and all object
// addresses are of the same size
// class D : B {}; // oops! To know what a D is, we have
// to know how big a B is and what a
// B object contains since a D is a B

In that example, trying to define the D class would not compile. This is because in order to create a
D object, the compiler needs to reserve enough space for a D object, but a D object is also a B object,
and as such we cannot know the size of a D object without knowing the size of a B object.

The size of an object or, equivalently, of a type can be obtained through the sizeof operator. This
operator yields a compile-time, non-zero unsigned integral value corresponding to the number of
bytes required to store an object:

char c;
// a char occupies precisely one byte of storage, per
// standard wording

static_assert(sizeof ¢ == 1); // for objects parentheses

// are not required
static_assert (sizeof(c) == 1); // ... but you can use them
static assert (sizeof (char) == 1); // for types, parentheses

// are required
struct Tiny {};
// all C++ types occupy non-zero bytes of storage by
// definition, even if they are "empty" like type Tiny
static assert (sizeof (Tiny) > 0);
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In the preceding example, the Tiny class is empty because it has no data member. A class could
have member functions and still be empty. Empty classes that expose member functions are very
commonly used in C++.

A C++ object always occupies at least one byte of storage, even in the case of empty classes such as
Tiny. That’s because if an object’s size was zero, that object could be at the same memory location as
its immediate neighbor, which would be somewhat hard to reason about.

C++ differs from many other languages in that it does not standardize the size of all fundamental types.
For example, sizeof (int) can yield different values depending on the compiler and platform.
Still, there are rules concerning the size of objects:

o The size reported by operator sizeof for objects of type signed char,unsigned char
and char is 1, and the same goes for sizeof (std: :byte) as each of these types can be
used to represent a single byte.

o Expressions sizeof (short) >=sizeof (char) and sizeof (int) >=sizeof (short)
will hold on all platforms, which means that there might be cases where sizeof (char) and
sizeof (int) are both 1. In terms of width (i.e., bits used in the value representation) of
fundamental types, the C++ standard limits itself to stating the minimum width for each type.
The list can be found at [wg21.1ink/tab:basic.fundamental .width].

o As we have already said, expression sizeof (T) >0 holds for any type T. In C++, there are
no zero-sized objects, not even objects of empty classes.

o The size occupied by an object of any struct or class cannot be less than the sum of the
size of its data members (but there are caveats).

This last rule deserves an explanation. Consider the following situation:

class X {};
class Y {
X x;
b5
int main() {
static assert(sizeof (X) > 0);
static_assert (sizeof (Y) == sizeof(X)); // <-- here

}

The line marked <- - here might be intriguing. Why would sizeof (Y) beequalto sizeof (X)
if every Y object contains an X object? Remember that sizeof (X) is greater than 0 even though
X is an empty class because every C++ object has to occupy at least one byte of storage. However, in
the case of Y, which is not an empty class, each Y object already occupies storage due to its x data
member. There’s no reason to somewhat artificially add storage space to objects of that type.


http://wg21.link/tab:basic.fundamental.width
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Now, consider this:

class X {

char c;
Ve
class Y {
X xX;
¥
int main()
static_assert (sizeof (X) == sizeof (char)); // <-- here
static_assert (sizeof (Y) == sizeof(X)); // <-- here too

}

The same reasoning applies again: an object of type X occupies the same amount of storage space as
its only data member (of type char), and an object of type Y occupies the same amount of storage
space as its only data member (of type X).

Continuing this exploration, consider this :

class X { };
class Y {
X X;
char c;
¥
int main()

static_ assert (sizeof (Y) >= sizeof (char) + sizeof(X));

}

This is the rule we mentioned earlier but expressed formally for a specific type. In this situation,
supposing that sizeof (X) being equal to 1 is highly probable, one could even reasonably expect
that sizeof (Y) would be equal to the sum of sizeof (char)and sizeof (X).

Finally, consider this:

class X { };

class Y : X { // <-- private inheritance
char c;

¥

int main()

static_assert (sizeof (Y) == sizeof (char)); // <-- here
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We moved from having an object of class X being a data member of Y to X being a base class of Y. This
has an interesting consequence: since the base class X is empty, and since we know from definition that
objects of the derived class Y will occupy at least one byte of storage, the base class can be flattened
into the derived class for Y objects. This is a useful optimization called the empty base optimization.
You can reasonably expect compilers to perform this optimization in practice, at least in the case of
single inheritance relationships.

Note that since the presence of an X in a Y is an implementation detail, not something that participates
in the interface of class Y, we used private inheritance in this example. The empty base optimization
would apply with public or protected inheritance too, but in this case, private inheritance preserves
the fact that the X part of a Y is something that only the Y knows about.

Since C++20, if you think composition would be more appropriate than inheritance to describe the
relation between two classes such as X and Y, you can mark a data member as [ [no_unique
address] ] to inform the compiler that this member, if it is an object of an empty class, does not
have to occupy storage within the enclosing object. Compilers are not forced to comply, since attributes
can be ignored, so make sure to verify that your chosen compilers implement this before writing code
that relies on this:

class X { };
class Y {
char c;
[[no_unique address]] X x;

bi
int main() {

static assert(sizeof (X) > 0);

static assert (sizeof (Y) == sizeof (char)); // <-- here
}

All of the examples so far have been very simple, using classes with zero, one, or two very small data
members. Code is rarely so simple. Consider the following program:

class X {

char c¢; // sizeof(char) == 1 by definition
short s;
int n;
b
int main() {
static_assert (sizeof (short) == 2); // we suppose this...
static assert (sizeof (int) == 4); // ... and this

static assert (
sizeof (X) >= sizeof (char) +sizeof (short) +sizeof (int)

) 8

15
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Supposing that the first two static assertions hold, which is probable but not guaranteed, we know
that sizeof (X) will be at least 7 (the sum of the sizes of its data members). In practice, however,
you will probably see that sizeof (X) is equal to 8. Now, this might seem surprising at first, but it’s
a logical consequence of something called alignment.

The alignment of an object (or of its type) tells us where that object can be placed in memory. The
char type has an alignment of 1, and as such one can place a char object literally anywhere (as long
as one can access that memory). For an alignment of 2 (which is likely for type short), objects can
only be placed at addresses that are a multiple of 2. More generally, if a type has an alignment of n,
then objects of that type must be placed at an address that is a multiple of n. Note that alignment has
to be a strictly positive power of 2; not respecting this rule incurs undefined behavior. Of course, your
compiler will not put you in that position, but you might put yourself in such trouble if you're not careful,
given some of the tricks we will be using in this book. With great control comes great responsibility.

The C++ language offers two operators related to alignment:

o The alignof operator, which yields the natural alignment of a type T or of an object of that type.

o The alignas operator, which lets programmers impose the alignment of an object. This is
often useful when playing tricks with memory (as we will) or when interfacing with exotic
hardware (the term “exotic” here can be taken in a very broad sense). Of course, alignas
can only reasonably increase the natural alignment of a type, not reduce it.

For some fundamental type T, one can expect the assertion that sizeof (T) is equalto alignof (T)
to hold, but that assertion does not generalize to composite types. For example, consider the following:

class X {

char c;
short s;
int n;

i s

int main()
static assert (sizeof (short) == alignof (short)) ;
static_ assert (sizeof (int) == alignof (int)) ;
static_assert (sizeof (X) == 8); // highly probable
static_assert (alignof (X) == alignof (int)); // likewise

}

Generally speaking, for a composite type, the alignment will correspond to the worst alignment of its
data members. Here, “worst” means “biggest” For class X, the worst-aligned data member is nn of type
int and as such, X objects will be aligned on boundaries of alignof (int) bytes.
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You might wonder now why we can expect the assertion that sizeof (X) is equal to 8 to hold if
sizeof (short)==2and sizeof (int) ==4. Lets look at the probable layout for objects of the

X type:

Figure 1.1 — Compact layout of an object of type X in memory

Each box in this figure is a byte in memory. As we can see, there’s a ? between ¢ and the first byte of
s. That comes from alignment. If alignof (short)==2and alignof (int) ==4, then the only
correct layout for an X object places its n member at a boundary of 4. This means that there will be
a padding byte (a byte that does not participate in the value representation of X) between c and s to
align s on a two-byte boundary and to align n on a four-byte boundary.

What might seem more surprising is that the order in which data members are laid out in a class
impacts the size of the objects of that class. For example, consider the following:

class X {

short s;
int n;
char c¢;
)5
int main() {
static assert (sizeof (short) == alignof (short)) ;
static assert (sizeof (int) == alignof (int)) ;
static_assert (alignof (X) == alignof (int));
static_assert (sizeof (X) == 12); // highly probable
}

That often surprises people, but it’s true, and something to think about. With this example, the probable
layout for an X object would be as follows:

Figure 1.2 - Less compact layout for an object of type X in memory

By now, the two ? “squares” between s and n are probably clear, but the three trailing ? “squares”

might seem surprising. After all, why add padding at the end of an object?

17
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The answer is because of arrays. As we will soon discuss, elements of an array are contiguous in memory,
and for that reason, it is important that each element of an array is properly aligned. In a case such as
this, the trailing padding bytes in an object of class X ensure that if an element in an array of X objects
is properly aligned, then the next element will be properly aligned too.

Now that you know about alignment, consider that just changing the order of elements from one
version of class X to another resulted in a memory consumption increase of 50% for each object of that
type. That hurts your program’s memory space consumption and its speed all at once. C++ compilers
cannot reorder your data members for you, as your code sees the addresses of objects. Changing the
relative position of data members could break users’ code, so it’s up to programmers to be careful
with their chosen layouts. Note that keeping objects small is not the only factor that can influence the
choice of layout in an object, especially in multithreaded code (where sometimes keeping two objects
at a distance from one another can lead to better cache usage), so one should remember that layout
is important, but not something to take on naively.

Copy and movement

At this point, we need to say a few words about copy and movement, two fundamental considerations
in a language such as C++ where there are actual objects.

The C++ language considers six member functions as special. These functions will be automatically
generated for your types unless you take steps to prevent it. These are as follows:

o The default constructor: It's probably the least special of all six, as it’s only implicitly generated
if you write no constructor of your own.

o The destructor: This is called at the end of an object’s lifetime.

+ The copy constructor: It is called when constructing an object with a single object of the same
type as argument.

« The copy assignment: It is called when replacing the contents of an existing object with a copy
of the contents of another object.

« The move constructor: It is called when constructing an object from a reference to an object
one can move from. Examples of movable-from objects include objects one could not refer to
anymore, such as the (anonymous) result of evaluating an expression or one being returned by a
function. The program can also explicitly make an object movable-from with std: :move ().

« The move assignment: It behaves like copy assignment but is applied when the argument
passed to the assignment operator is something one can move from.
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When a type does not explicitly manage any resources on its own, one can usually write none of these
special functions, as the ones generated by the compiler will be exactly what one wants. For example,
consider the following:

struct Point2D ({
float x{}, y{};

i

Here, type Point 2D represents a 2D coordinate that has no invariants (all values are fine for its x
and y data members). Since we used default initializers for x and y that set these data members to
0, a default Point 2D object will represent coordinate (0, 0) and the six special member functions
will behave as expected. The copy constructor will call the data members’ copy constructors, the copy
assignment will call their copy assignment operators, the destructor will be trivial, and move operations
will behave like copy operations since the data members are of fundamental types.

Should we decide to add a parametric constructor to explicitly let user code initialize the x and y
data members to other values than our chosen defaults, we can do so. However, this will cost us our
implicit default constructor:

struct Point2D ({
float x{}, v{};:
Point2D(float x, float y) : x{ x }, v{ v } {

}
b5
void oops () {

Point2D pt; // does not compile, pt has no default ctor
}

We can of course fix this. One way to do so is by writing the details of a default constructor explicitly:

struct Point2D ({
float x, y; // no need for default initializations
Point2D(float x, float y) : x{ x }, v{ v } {

}

Point2D() : x{ }, y{ } { // <-- here

b s
void oops () {
Point2D pt; // Ok
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Another approach is to delegate work from the default constructor to the parametric constructor:

struct Point2D {
float x, y; // no need for default initializations
Point2D(float x, float y) : x{ x }, v{ v } {

}
Point2D() : Point2D{ 0, 0 } { // <-- here
}
I8
void oops () {
Point2D pt; // Ok
}

Another even better approach is to inform the compiler that we want to retain the default behavior
even though we did something (writing another constructor) that would otherwise prevent it:

struct Point2D ({
float x{}, v{}:
Point2D(float x, float y) : x{ x }, v{ v } {

}

Point2D() = default; // <-- here

¥

void oops () {
Point2D pt; // Ok

}

The latter option will usually lead to the best generated code, as compilers are really good at getting
maximal results from minimal effort when they understand the programmer’s intent. In this case,
=default makes the intent very explicit: please do what you would have done normally if my code
had not interfered.

Vs

A note about these constructors

We added parametric constructors to Point 2D for the sake of this example, but it’s not necessary
in this case as Point 2D is an aggregate. These types have special initialization support, but
that’s beside the point for our illustration. Aggregate types are types that comply with several
restrictions (no user-declared or inherited constructors, no private non-static data members,
no virtual bases classes, and so on) and that usually have no invariants to maintain, but can be
initialized very efficiently by your compiler.
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When a class explicitly manages resources, the default-generated special functions rarely do what we
would want. Indeed, how could the compiler know about our intents in such a situation? Suppose
we make a naive st ring-like class of our own, starting with the following (incomplete) excerpt:

#include <cstring> // std::strlen()
#include <algorithm> // std::copy ()
class naive string { // too simple to be useful

char *p {}; // pointer to the elements (nullptr)
std::size t nelems {}; // number of elements (zero)

public:

¥

std::size t size() const {

return nelems;
}
bool empty () const {

return size() == 0;
}
naive string() = default; // empty string
naive_string(const char *s)

nelems{ std::strlen(s) } {

p = new char[size() + 1]; // leaving room for a

// (convenient) trailing O
std::copy (s, s + size(), p);
plsize()] = '\0';

}

// index-wise access to characters, const and non-const
// versions: the const version is useful for const

// naive string objects, whereas the non-const version
// lets user code modify elements

// precondition: n < size()

char operator[] (std::size t n) const { return plnl; }
char& operator([] (std::size t n) { return p(nl; }

// ... additional code (below) goes here

Naive as it is, this class clearly does explicit resource allocation by allocating a chunk of size () +1
bytes to hold a copy of the sequence of characters starting at p. For that reason, the compiler-provided
special member functions will not do the right thing for our class. For example, the default-generated
copy constructor will copy pointer p, but that means we will have two pointers (the original p and p
in the copy) sharing a common pointee, which is probably not what we want. The default-generated
destructor will destroy the pointer, but we also want to deallocate the pointee and avoid a memory
leak, and so on.
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In a case such as this, we want to implement the so-called rule of three and code the destructor as well
as the two copy operations (the copy constructor and the copy assignment). Before the arrival of move
semantics in C++11, that was sufficient to properly implement resource management for our types. It
technically still is today but considering move semantics too will help us get a more eflicient type in
many ways. In contemporary code, when discussing code that implements the two move operations
in addition to the rule of three, we typically speak of the rule of five.

Destruction

Asournaive string type does resource management with the dynamically allocated array
pointed to by p, the destructor for that class will be simple, as its role will be limited to deallocating
the chunk of memory pointed to by p:

//
~naive string() {
delete [] p;

!/

Note that there is no need to check that p is non-null (delete nullptr; does nothing in C++
and is inherently non-dangerous). Also note that we are using delete [], notdelete, as we
allocated the chunk of memory with new [], not new. The nuances between these operations will
be explained in Chapter 7.

Copy operations

The copy constructor is the function called when constructing an object of the naive string class
with an argument that is another object of that class. For example, consider the following:

//

void f (naive string); // pass-by-value

void copy construction examples () {
naive string s0{ "What a fine day" };
naive string sl = s0; // constructs sl so this is

// copy construction
naive_string s2(s0); // ...this too
naive string s3{ s0 }; // ...and so is this
f(s0); // likewise because of pass-by-value
sl = s0; // this is not a copy construction as sl
// already exists: this is a copy assignment
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For our naive string class, a correct copy constructor could be written as follows:

//

//

naive string(const naive string &other)

p{ new char[other.size() + 1] },

nelems{ other.size() } {
std: :copy (other.p, other.p + other.size(), p);
plsize()] = '\0';

Copy assignments could be written in numerous ways, but many of them are complicated or just
plain dangerous. For example, consider the following example...but do not write your assignment

operator like this!:

//

//

// bad copy assignment operator
naive string& operator=(const naive string &other) {

// first, release the memory held by *this

delete [] p;

// then, allocate a new chunk of memory

p = new char[other.size() + 1]; // <-- note this line
// copy the contents themselves

std: :copy (other.p, other.p + other.size(), p);

// adjust the size and add the trailing zero

nelems = other.size() ;

plsize()] = '"\0';

return *this;

Now, this might seem reasonable (if a bit long-winded), but if we look at the line where memory
allocation is performed, one has to wonder: what will happen if this fails? Indeed it could. For example,
it might fail if the process is running low on available memory and other.size () is too much for
whatever resources are left. In C++, by default, allocation with operator new throws an exception
on fajlure. This would complete the execution of our copy assignment function, leaving *this in
an incorrect (and dangerous!) state whereby p is non-null and nelems is non-zero but p points to
what most would call garbage: memory we do not own and whose contents would lead to undefined
behavior if used.
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We could claim that we can do better and write even more code trying to fix this bug. The recommendation
to avoid writing your copy assignment operators like this holds also in this case:

0] ao-c
// another bad copy assignment operator
naive string& operator=(const naive string &other) {
// first, allocate a new chunk of memory
char *q = new char[other.size() + 1];
// then release the memory held by *this and make
// p point to the new chunk
delete []1 p; // <-- pay attention to this line
p = d;
// copy the contents themselves

std: :copy (other.p, other.p + other.size(), p);
// adjust the size and add the trailing zero
nelems = other.size() ;

plsize()] = '\0';

return *this;

!/

This looks safer on the surface, as we do not try to clean up the existing state of *this until we are
sure that the allocation has worked. It might even pass most of your tests — until someone crafts the
following test:

void test self assignment () {
naive string s0 { "This is not going to end well..." };
s0 = s0; // oops!

}

With this use case, our copy assignment will behave very badly. After allocating a properly sized
chunk of memory pointed to by g, it will delete what p points to. Unfortunately, this also happens
to be what other . p points to, destroying the actual source data we are aiming to copy from. What
follows that step reads from memory we do not own anymore, and the program stops making sense.

We can still try to patch this, and even make it work, but beware:

I oo
// this works, but it's getting complicated and
// is a sign we're doing something wrong
naive string& operator=(const naive string &other) ({
// prevent self-assignment
if (this == &other) return *this;

// then, do that sequence of steps
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char *g = new char[other.size() + 1];
delete [] p; // <-- pay attention to this line

p = q;

std: :copy (other.p, other.p + other.size(), p);
nelems = other.size() ;

plsize()] = '\0';

return *this;

//

This fix is a pessimization, since we will be making every copy assignment call pay for that i f branch
that, in practice, should almost never be used. Brute-force problem-solving led us to complicated code
that works (though it’s not necessarily self-evident) and that will need to be reconsidered with every
resource-managing class we write.

( 1
About the word pessimization

The word pessimization is generally used as the opposite of optimization, referring to a
programming maneuver or technique that makes program behavior less efficient than it should
be. The preceding case is a well-known example of such a maneuver: everyone will pay for the
potential branch introduced by the if statement even though it’s only required for rare and
degenerate cases — things that should not happen.

When faced with a “pessimization” opportunity, it's often worth it to take a step back and
reconsider. Maybe we've been taking the wrong angle when approaching the problem.
- J

Luckily, there is a well-known idiom in C++ called the safe assignment idiom, colloquially known
as copy-and-swap. The trick is to recognize that the assignment is made of two parts: a destructive
part that cleans up the existing state owned by the destination object (the left side of the assignment)
and a constructive part that copies the state from a source object (right side of the assignment) to the
destination object. The destructive part is generally equivalent to the code found in the type’s destructor,
and the constructive part is generally equivalent to the code found in the type’s copy constructor.

The informal copy-and-swap name for that technique comes from the fact that it is usually implemented
through a combination of the type’s copy constructor, its destructor, and a swap () member function
that swaps member variables one by one:

//
void swap (naive string &other) noexcept {
using std::swap; // make the standard swap function
// available
swap (p, other.p); // swap data members
swap (nelems, other.nelems) ;
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// idiomatic copy assignment

naive string& operator=(const naive string &other) {
naive string { other }.swap(*this); // <-- here
return *this; // yes, that's it!

!/

That idiom is extremely useful to know and use as it’s exception-safe, simple, and works for almost
all types. The line that does all the work performs three steps:

o First, it constructs an anonymous copy of ot her using that type’s copy constructor. Now,
that might fail if an exception is thrown, but if it does, *this has not been modified and thus
remains uncorrupted.

» Second, it swaps that anonymous temporary’s contents (holding what we want to put in *this)
with the destination object’s contents (putting the now-unneeded state in that anonymous
temporary object).

« Finally, the anonymous temporary object is destroyed at the end of the expression (being
anonymous), leaving *this holding a copy of the state of other.

This idiom even works safely for self-assignment. It incurs an unneeded copy, but it trades an 1 £
branch that every call would have paid but almost none would have benefitted from for a copy that
will rarely be useless.

You might notice noexcept preceding the opening brace of the swap () member function. We will
return to this later, but for now, the important point is that we can claim that this function (swapping
objects of fundamental types as it does) will never throw an exception. This information will help us
achieve some precious optimizations later in this book.

Move operations

Ournaive string, which is augmented by its destructor, copy constructor, and copy assignment
member functions, now manages resources appropriately. It could, however, be made faster, and
sometimes even safer.

Consider the following non-member string concatenation operator that someone could want to add
to complement our class:

// returns the concatenation of s0 and sl
naive string operator+(naive string s0, naive string sl);
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An operation like this could be used in user code such as the following:

naive string make message (naive string name) {
naive string s0{ "Hello "},
Sl{ nwyn } ;
return s0 + name + sl; // <-- note this line

}

The expression that follows the return statement first performs a call to operator+ () and
creates an unnamed naive string object from the concatenation of s0 and name. Then, that
unnamed object is passed as the first argument to another call to operator+ () that yields another
unnamed object created from the concatenation of the first unnamed object and s1. With our current
implementation, each unnamed object incurs an allocation, a copy of the data held in its buffer, a
destruction, and more. It's more costly than it looks at first glance and is made even worse by the fact
that each allocation could throw an exception.

Still, it works.

Since C++11, we can make such code significantly more efficient through move semantics. In addition
to the traditional rule of three functions we just discussed, one can augment a class such as naive
string with a move constructor and a move assignment operator. These will kick in implicitly when
the compiler operates on objects it knows will not be used anymore. Consider the following:

//

return s0 + name + sl;

//

This translates to the following:

//
return (s0 + name) + sl1;
// AAAAAAAAAAS - - anonymous object (we cannot
/ refer to it afterward)
//

It then translates to the following:

//

((s0 + name) + s1);

// AAAAAAAAAAAAAAAAAAA

//

<-- anonymous object (idem)
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When one thinks about it, the reason for copy operations is to keep the source object intact in case
we need it later. Temporary objects that have no name do not need to be preserved from further
modifications as they cannot be referred to later. For that reason, we can be more aggressive with
these and essentially move their contents instead of copying them. The rule we are asked to follow
by the standard is to leave the moved-from object in a valid-yet-indeterminate state. Essentially,
the moved-from object has to be in such a state that it can be safely destroyed or assigned to, and
its invariants should still hold. In practice, that often amounts to leaving the moved-from object in
something equivalent to its default state.

For our naive string type, a move constructor could look like this:

//
naive string(naive string &&other) noexcept
: p{ std::move(other.p) },
nelems{ std::move (other.nelems) } {
other.p = nullptr;
other.nelems = 0;

//

The calls to std: :move () in this specific case could be avoided (moving objects of fundamental
types is equivalent to copying them), but it’s probably more hygienic to make sure that the intent to
move those objects is inscribed explicitly in the source code. We'll look cursorily at std: :move ()
later in this section, but the important thing to remember is that std: :move () does not move
anything. It marks an object as movable in the eyes of the compiler. In other words, it’s a cast.

The important things to note with our move constructor are as follows:

o The argument is of type naive stringé&&. This means it is a reference to an rvalue,
with rvalue itself informally meaning “something one could find on the right side of an
assignment operator.”

o Like swap (), it is marked noexcept to express the fact that no exception will be thrown
during its execution.

o It’s effectively transferring state from the source object, other, to the object under construction,
*this. After the completion of this transfer, we leave other in a valid state (equivalent to what
we would have with a default naive string object), respecting the standard’s recommendation.

One could write this function in a slightly terser manner with a small but quite useful function found in
the <utility> header and named std: : exchange (). Indeed, consider the following expression:

a = std::exchange (b, c);
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This expression means “assign to a the value of b but replace the value of b with the value of ¢ This
is a very common sequence of operations in real code. With this function, our move constructor
becomes the following:

//
naive_string(naive_string &&other) noexcept
p{ std::exchange (other.p, nullptr) },
nelems{ std::exchange (other.nelems, 0) } {

//

That form is idiomatic C++ and can lead to some interesting optimizations in some circumstances.

What about the move assignment? Well, we can take note of the idiomatic copy assignment we
discussed at some length earlier and express it as follows:

// idiomatic copy assignment

naive string& operator=(naive string &&other) noexcept {
naive string { std::move (other) }.swap(*this);
return *this;

}

Following the path set by our copy assignment operator, we expressed the move assignment operator
as a combination of swap (), a destructor, and a move constructor. The general logic behind both
idioms is the same.

Arrays

We have used arrays in our preceding examples, but we have not really provided a formal definition
for that useful-yet-low-level construct. Note that in this section, the term “array” refers to raw,
built-in arrays, not to other very useful but higher-level constructs such as std: : vector<T>
or std: :array<T,6 N>.

Quite simply, in C++, an array is a contiguous sequence of elements of the same type. Thus, in the
following excerpt, the a0 object occupies 10*sizeof (int) bytes in memory, whereas the al
object occupies 20*sizeof (std: :string) bytes:

int a0[10];
std::string al[20];

The number of bytes between elements at indices 1 and 1+1 in an array of some type T is precisely
equal to sizeof (T).

Consider the following expression, which would be used in C++, as in C, for some array arr:

arr[i]
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It evaluates to the same address as the following:

* (arr + 1)

Since pointer arithmetic is typed, the + i partin this expression means “plus i elements” or “plus i
times the size of an element in bytes.”

Array sizes are positive but cannot be 0 unless the array is dynamically allocated:

int a0[5]; // Ok

static assert(sizeof a0 == 5 * sizeof (int));

enum { N = sizeof a0 / sizeof aO[0] }; // N ==

// int al[0]; // not allowed: the array would be at the

// same address as the next object in memory!

int *p0 = new int[5]; // Ok, but you have to manage the
// pointee now

int *pl = new int[0]; // Ok, dynamically allocated; you
// still have to manage the pointee

//

delete [] pl; // good

delete [] pO0; // good; be responsible

Each call to operator new[] has to yield a different address, even if the array’s size is 0. Each call
technically returns the address of a different object.

Summary

In this chapter, we took a look at fundamental ideas of the C++ language such as: what is an object?
What are pointers and references? What do we mean when we talk about the size and alignment of
an object or of a type? Why are there no zero-size objects in C++? What are the special members
of a class and when do we need to write them explicitly? This non-exhaustive list of topics gave us a
common vocabulary from which to build what you, dear reader, will find in the chapters to come.

With this, we are ready to get our hands dirty, so to speak. We have given ourselves a set of low-level
tools and ideas from which to build higher-level abstractions, but we have to give ourselves some
measure of discipline.

The next chapter will discuss some things we need to avoid. Those include undefined behavior,
implementation-defined behavior (to a lesser extent), ill-formed no-diagnostic-required code, buffer
overflows, and other unrecommendable behaviors.

Then, we will follow with a chapter describing C++ casts, and how they can help us express clear ideas
even when we feel the need to eschew some of the rules set out for us by the language’s type system.

After that, we will start to build beautiful and powerful abstractions that will help us with our stated
goal of safely and efficiently managing resources in general and managing memory in particular.
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Things to Be Careful With

So, you decided to read a book about memory management in C++ and are as ready to look at the
high-level approaches and techniques as you are willing to “get your hands dirty”, so to speak, in order
to get fine-grained control over the memory management process. What an excellent plan!

Since you know that you are going to be writing very high-level code, but also very low-level code,
there are a few things we need to make sure you are aware of such that you do not get in trouble or
write code that seems to work but does not, at least not portably.

In this chapter, we will point out some aspects of C++ programming that will come into play throughout
this book, but that you should be careful with. This might look like a (very) small compendium of
bad practices or an encouragement to get in trouble, but please consider what follows as ways to
use somewhat dangerous or tricky features well. You’re using C++, you have significant freedom
of expression, and you get access to features that are useful if you know and understand them well.

We want code that’s clean and efficient, and we want responsible programmers. Let’s try to get
there together.

In this chapter, we will learn about the following:

o We will cover some of the ways in which one can get into trouble with C++ code. Indeed,
there are things a compiler cannot reliably diagnose, just as there are things for which the C++
standard does not say what will happen, and writing code that does such things is a recipe for
disaster - or at the very least surprising or non-portable behavior.

o In particular, we will explore how one can get in trouble with pointers. Since this book discusses
memory management, we will use pointers and pointer arithmetic quite often, and being able
to distinguish appropriate uses thereof from inappropriate ones will be valuable.

o Finally, we will discuss what kinds of type conversions we can do without resorting to type casts
(the main subject of Chapter 3), and how rarely that’s a good idea, contrary to popular belief.

Our overall goal will be to learn things we should not do (even though we will do some maneuvers that
resemble them, on occasion), and avoid them thereafter, hopefully understanding why we do so. With
that out of the way, we’ll have many chapters to look at things we should do, and how to do them well!



32

Things to Be Careful With

Different kinds of evil

Before delving into some actual practices that require care, it’s interesting to look at the main categories
of risks we could run into if our code does not respect the rules of the language. With each such
category comes a form of unpleasantness we should strive to avoid.

Ill-formed, no diagnostic required

Some constructs in C++ are said to be Ill-Formed, No Diagnostic Required (IFNDR). Indeed, you
will find quite a few occurrences in the standard of “if [...], the program is ill-formed, with no diagnostic
required.” When something is IFNDR, it means your program is broken. Bad things could happen,
but the compiler is not required to tell you about them (indeed, sometimes, the compiler does not
have sufficient information to diagnose the problematic situation).

One Definition Rule (ODR) violations, to which we will return in the The ODR section later in this
chapter, fall under IFNDR. However, there are other such cases, such as having a global object that
has different alignment requirements (through alignas) in different translation units (different
source files, essentially), or having a constructor that delegates to itself either directly or indirectly.
Here is an example:

class X {
public:
// #0 delegates to #1 which delegates to #0 which...
X (float x) : X{ static_cast<int>(x) } { // #0
}
X(int n) : X{ n + 0.5f } { // #1
}
¥
int main() {}

Note that your compiler might give a diagnostic; it’s just not required to do so. It’s not that compilers
are lazy - they might even be unable to provide a diagnostic in some cases! So, be careful not to write
code that leads to IFNDR situations.

Undefined behavior

We mentioned Undefined Behavior (UB) in Chapter 1. UB is often seen as a source of headaches
and pain for C++ programmers but it refers to any behavior for which the C++ standard imposes
no requirement. In practice, this means that if you write code that contains UB, you have no idea
what’s going to happen at runtime (at least if you're aiming for somewhat portable code). Canonical
examples of UB include dereferencing a null pointer or an uninitialized pointer: do that and you’ll
be in serious trouble.
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To compilers, UB is not supposed to happen (code that respects the rules of the language does not
contain UB, after all). For that reason, compilers “optimize around” code that contains UB, to sometimes
surprising effect: they might begin removing tests and branches, optimizing loops away, and so on.

The effects of UB tend to be local. For instance, in the following example, there is a test that ensures
that p is not null before using *p in one case, but there is at least one access to *p that is unchecked.
This code is broken (the unchecked access to *p is UB), so the compiler is allowed to rewrite it in
such a way that all tests to verify that p is not null are effectively removed. After all, the damage would
be done if p were nullptr, so the compiler is entitled to assume that the programmer passed a
non-null pointer to the function!

int g(int) ;
int f(int *p) {
if(p != nullptr)
return g(*p); // Ok, we know p is not null
return *p; // oops, if p == nullptr this is UB

}

The whole body of £ () could legitimately be rewritten by your compiler as return g (*p) in this
case, with the return *p statement being turned into unreachable code.

The potential for UB hides in various places in the language, including signed integer overflow,
accessing an array out of bounds, data races, and so on. There are ongoing efforts to reduce the number
of potential UB cases (there’s even a study group, SG12, dedicated to this effort), but UB will likely
remain part of the language for the foreseeable future, and we need to be aware of it.

Implementation-defined behavior

Some parts of the standard fall under the umbrella of implementation-defined behavior, or behavior
that you can count on with a specific platform. This is behavior that your platform of choice is supposed
to document, but that is not guaranteed to be portable to other platforms.

Implementation-defined behavior occurs in many situations and includes such things as implementation-
defined limits: the maximum number of nested parentheses; the maximum number of case labels in a
switch statement; the actual size of an object; the maximum number of recursive calls in a constexpr
function; the number of bits in a byte; and so on. Other well-known cases of implementation-defined
behavior include the number of bytes in an int object or whether the char type is a signed or an
unsigned integral type.

Implementation-defined behavior is not really a source of evil, but it can be problematic if one strives
for portable code but depends on some non-portable assumptions. It is sometimes useful to spell one’s
assumptions in code through static_assert when the assumption can be validated at compile-
time or some similar, potentially runtime mechanisms in order to realize—before it’s too late—that
these assumptions are broken for a given target platform.
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For example:

int main() {
// our code supposes int is four bytes wide, a non-
// portable assumption
static assert (sizeof (int)==4) ;
// only compiles if condition is true...

}

Unless you are convinced that your code will never need to be ported to another platform, strive
to rely as little as possible on implementation-defined behavior, and if you do, make sure that you
validate (through static_assert if possible, at runtime if there’s no other choice) and document
this situation. It might help you avoid some nasty surprises in the future.

Unspecified behavior (not documented)

Where implementation-defined behavior is non-portable but documented for a given platform,
unspecified behavior is a behavior that, even for a well-formed program given correct data, behaves
in a way that depends on the implementation but does not need to be documented.

Some cases of unspecified behavior include the state of a moved-from object (said to be valid but
unspecified, thus more of an unspecified state than an unspecified behavior), the order of evaluation
of subexpressions in a function call, that is, whether £ (g () ,h () ) will evaluate g () orh () first,
the values in a newly allocated chunk of memory, and so on. This latter example is interesting to our
study; a debug build might fill newly allocated chunks of memory with a recognizable bit pattern to
help in the debugging process, and an optimized build with the same toolset could leave the initial
bits of a newly allocated chunk of memory “uninitialized”, with the bits it held at the time when the
allocation was performed, to get speed improvements.

The ODR

The ODR, simply summarized, states that there shall be only one definition of each “thing” (function,
object in a scope, enumeration, template, and so on) in a translation unit, although there can be
multiple declarations of that thing. Consider the following example:

int f(int); // declaration

int f(int n); // Ok, declaration again

int f(int m) { return m; } // Ok, definition

// int f£(int) { return 3; } // not Ok (ODR violation)
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In C++, avoiding ODR violations is important, as these “evils” can escape the compiler’s scrutiny and
fall into the realm of IFNDR situations. For example, due to the separate compilation of source files,
a header file containing the definition of a non-inline function will lead to that definition being
replicated in each source file that includes that same header. Then, each compilation might succeed,
and the fact that there are multiple definitions of that function in the same build might be detected
later (at link time) or just left undetected and cause havoc.

Erroneous behavior

Ongoing security-related efforts in C++ have led to discussions on a new kind of “evil” tentatively
named erroneous behavior. This new category is meant to cover situations that could have been
UB in the past, but for which we could issue diagnostics and provide well-defined behavior. The
behavior would still be incorrect, but erroneous behavior would, in a way, provide boundaries to
the consequences. Note that work on erroneous behavior is ongoing as of this writing, and this new
wording feature might target C++26.

One use case envisioned for erroneous behavior is reading from an uninitialized variable, where the
implementation could (for safety reasons) provide a fixed value for the bits read, and the conceptual
error that stems from reading that variable would be something that implementations are encouraged to
diagnose. Another use case would be forgetting to return a value from a non-void assignment operator.

Now that we've looked at the large “families” of unpleasantness that might hit our programs if we
don’t behave, let’s delve into some of the main facilities that could get us in trouble and see what we
should avoid doing.

Pointers

Chapter 1 looked at pointers in C++ in the sense of what they represent and what they mean. It described
what pointer arithmetic is, and what it allows us to do. We will now examine practical uses of pointer
arithmetic, with both proper and improper uses of this low-level (but sometimes precious) tool.

Uses of pointer arithmetic within an array

Pointer arithmetic is a nice and useful tool, but it’s a sharp one that tends to be misused. With raw
arrays, the following two loops, labeled A and B, behave in exactly the same way:

void f (int) ;
int main() {
int vals([]{ 2,3,5,7,11 };
enum { N = sizeof vals / sizeof vals[0] };
for(int 1 = 0; 1 != N; ++i) // A
f(vals[i]) ;
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for(int *p = vals; p != vals + N; ++p) // B
f(*p);

}

You might wonder about the vals + N partin loop B, but it’s valid (and idiomatic) C++ code. You
can observe the pointer just past the end of an array, even though you’re not allowed to observe what
it points to; the standard guarantees that this specific one-past-the-end address is accessible to your
program. However, no such guarantee is provided for the following address, so be careful!

As long as you respect the rules, you can use pointers to jump back and forth within an array. If you
overreach and use a pointer to go further than one past-the-end, you will end up in UB territory; that
is, you might be trying to access an address that’s not in your process’ address space:

int arr[101{ }; // all elements initialized to zero

int *p = &arr[3];

p += 4; assert(p == &arr[7]);

==®3 assert (p == &arr([6]) ;

p += 4; // still Ok as long as you don't try to access *p
++p; // UB, not guaranteed to be valid

Pointer interconvertibility

The C++ standard defines what it means for an object to be pointer-interconvertible with another.
Pointer-interconvertibility means that one can use a pointer to one as a pointer to the other, normally
through reinterpret_cast (we will expand on this in Chapter 3), as they have the same address.
Broadly speaking, the following points hold true:

« An object is pointer-interconvertible with itself

o A union is pointer-interconvertible with its data members, as well as their first data member
if they are compound types

o With some restrictions, x and y are pointer-interconvertible with one another if one is an
object and the other one is of the same type as the first non-static data member of that object

Some examples are included here:

struct X { int n; };
struct Y : X {};
union U { X x; short s; };
int main() {
X x;
Y vy
U u;
// X 1s pointer-interconvertible with x
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// u is pointer-interconvertible with u.x
// u is pointer-interconvertible with u.s
// y 1is pointer-interconvertible with y.x

}

If you try to apply reinterpret cast in a way that does not respect pointer-interconvertibility
rules, your code is technically incorrect and is not guaranteed to work in practice. Don’t do that.

We will occasionally use the pointer-interconvertibility property in our code examples, including in
the next section.

Uses of pointer arithmetic within an object

Pointer arithmetic within an object is also allowed in C++, although one should be careful about how
this is handled (using the appropriate casts, which we will explore in Chapter 3, and ensuring that one
performs pointer arithmetic appropriately).

For example, the following code is correct, albeit not something one should seek to do (it makes no
sense, and it does things in unnecessarily complicated ways, but it’s legal and does no harm):

struct A {
int a;
short s;
b5
short * f£(A &a) {
// pointer interconvertibility in action!
int *p = reinterpret cast<int*>(&a);
P++;
return reinterpret_cast<short*>(p); // Ok, within the
// same object

}
int main() {

A a;

short *p = f(a);

*p = 3; // fine, technically
}

We will not abuse this aspect of the C++ language in this book, but we do need to be aware of it in
order to write correct, low-level code.
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( A
About the difference between pointer and address

In order to strengthen hardware and software security, there has been work on hardware
architectures that can provide a form of “pointer tagging”, which allows the hardware tracking
of pointer provenance, among other things. Two well-known examples are the CHERI
architecture (https://packt.link/cJdeLo) and Memory Tagging Extensions (MTEs)
(Linux: https://packt.link/KXeRn | Android: https://packt.link/JDfEo,
and https://packt.link/£QM2T| Windows: https://packt.link/DgSaH).

To benefit from such hardware, the language needs to distinguish between the low-level idea

of addresses and the high-level idea of pointers, as the latter could take into account the fact
that a pointer is more than just a memory location. If your code absolutely needs to compare
unrelated pointers for ordering, one thing you can do is cast the pointers to std: : intprt t
ortostd: :uintptr t and compare the (numeric) results instead of comparing the actual
pointers. Note that compiler support for those two types is optional, although all major compiler
vendors offer it.

. J

The null pointer

The idea of a null pointer as a recognizable value for pointers that lead to nowhere valid can be traced
back to C.A.R. Hoare (https://packt.link/ByfeX). In the C language, through the NULL
macro, it has been represented first as a char* of value 0, then as a void* of value 0, then in C++ as
value 0 simply since such things as int *p = NULL; with a typed NULL were legal C but not legal
C++. This is because the type system is stricter in C++. Note that a pointer with value 0 does not mean
“point to address zero” as this address is in itself perfectly valid and is used as such on many platforms.

In C++, the preferred way of expressing a null pointer isnullptr, an object of the std: :nullptr t
type that converts to pointers of any type and behaves as expected. This solves some longstanding
issues with literal 0 in C++, such as the following:

int f£(int); //#0
int £ (char*); // #1
int main()
int n = 3;
char c;
f(n); // calls #0
f(&c); // calls #1
£(0); // ambiguous before C++11l, calls #0 since
f (nullptr); // only since C++11l; unambiguously calls #1

}

Note that nullptr is not a pointer; it’s an object that implicitly converts to a pointer. For that
reason, the std: :is _pointer v<nullptrs traitis false, and C++ offers a distinct trait named
std::is null pointer<Ts to statically test whether Tisa std: :nullptr t or not (taking
const and volatile into account).
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Type punning

Dereferencing a null pointer is UB, just as dereferencing an uninitialized pointer is. The point of
using nullptr in your code is to make that state recognizable: nullptr is a distinguishable value,
whereas an uninitialized pointer could be anything.

In C++ (contrary to C), arithmetic on a null pointer is well-defined... as long as you add zero to the
null pointer. Or, to put it differently: if you add zero to a null pointer, the code remains well-defined,
but if you add anything else, you're on your own. There’s an explicit provision to that effect in wg21.
link/c++draft/expr.add#4 . 1. This means that the following is correct as in the case of an
empty Array, begin () yieldsnullptr and size () yields zero, so end () effectively computes
nullptr+0, which respects the rules:

template <class T> class Array ({
T *elems = nullptr; // pointer to the beginning
std::size t nelems = 0; // number of elements

public:
Array () = default; // =empty array
//
auto size() const noexcept { return nelems; }

// note: could return nullptr
auto begin() noexcept { return elems; }
auto end() noexcept { return begin() + size(); }

i

We will return to this Array example in more detail in Chapters 12, 13, and 14; it will help us discuss
several important aspects of efficient memory management techniques. For now, let’s look at another
source of risky programming maneuvers.

Type punning

Another area where a C++ programmer can get into trouble is type punning. By type punning, we
mean techniques that subvert the language’s type system somewhat. The consecrated tool to perform
type conversions is casts, as they are explicit in source code text and (apart from C-style casts) express
the intent for the conversion, but that topic deserves its own chapter (Chapter 3, if youre wondering).

In this section, we will examine other ways to achieve type punning, including both recommendable
ones and others that you should seek to avoid.

Type punning through members of a union

A union is a type for which the members are all at the same address. The size of a union is the size of
its largest member, and the alignment of a union is the strictest alignment of its members.
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Consider the following example:

struct X {

char c[5]; short s;
}ox;
// one byte of padding between x.c and X.s
static assert(sizeof x.s == 2 && sizeof x == 8);
static_assert (alignof (x) == alignof (short)) ;
union U {

int n; X x;

} u;

static assert(sizeof u == sizeof u.x);
static_assert (alignof (u) == alignof(u.n));
int main() {}

It’s tempting to think that one can use a union to implicitly convert such things as a four-byte floating
point number into a four-byte integral number, and in the C language (not C++), that is indeed possible.

Even though there is a widespread belief that this practice is legal in C++, the reality is that it is not
(with one special caveat, which we will explore shortly). Indeed, in C++, the last member of a union
one has written to is called the union’s active member, and that member is the only one your code is
allowed to read from. Thus, the following code is illegal since reading from a non-active member of
a union is UB, and UB is not allowed in a constexpr function:

union U {

float £;
int n;
¥
constexpr int £ () {
U u{ 1.5f };
return u.n; // UB (u.f is the active member)
}
int main()
// constexpr auto r0 = f£(); // would not compile
auto rl = £(); // compiles, as not a constexpr

// context, but still UB

}

As you might know, a constexpr function such as £ () in the preceding example cannot contain
code that is UB if it is called in a constexpr context. This sometimes makes it an interesting tool
to make a point.

There is a caveat with respect to conversions between union members, and that caveat is associated
with the common initial sequence.
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Common initial sequence

As explained at wg21.1link/class.mem.general#23, the common initial sequence of two
structs is made of the initial members of these two structs that have corresponding layout-compatible
types. For example, the common initial sequence of A and B is made of their first two members (int
is layout-compatible with const int and float is layout-compatible with volatile float):

struct A { int n; float f; char c; };
struct B{ const int b0; volatile float x; };

With a union, it is possible to read from a non-active member if the value read is part of both the
common initial sequence of that member and of the active member. Here’s an example:

struct A { int n0; char c0; };
struct B { int nl; char cl; float x; };
union U {

A a;
B b;
s
int £0) {
Uu{ {1, '2" } }; // initializes u.a
return u.b.nl; // not UB
}
int main() {
return £(); // Ok
}

Note that such type punning should be kept to a minimum, as it can make it harder to reason about
source code, but it can be quite useful. For example, it can be used to implement some interesting
underlying representations for classes that can have two distinct representations (classes such as
optional or string), making it easier to switch from one to the other. Some useful optimizations
can be built on this.

The intptr_t and uintptr_t types

As mentioned earlier in this chapter, one cannot directly compare pointers to arbitrary locations in
memory in a well-defined manner in C++. One can, however, compare the integral values associated
with pointers in a well-defined manner, such as here:

#include <iostream>
#include <cstdints>
int main() {
using namespace std;
int m,
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n;
// simply comparing &m with &n is not allowed
if (reinterpret cast<intptr t>(&m) <

reinterpret cast<intptr t>(&n))

cout << "m precedes n in address order\n";
else

cout << "n precedes m in address order\n";

}

The std: :intptr tand std::uintptr t types are aliases for integral types that are large
enough to hold an address. Use the signed type, intptr_t, for operations that could lead to negative
values (for example, subtraction).

The std::memcpy() function

For historical (and C compatibility) reasons, std: :memcpy () is special as it can start the lifetime
of an object if used appropriately. An incorrect use of std: :memcpy () for type punning would
be as follows:

// suppose this holds for this example
static assert (sizeof (int) == sizeof (float));
#include <cassert>
#include <cstdlib>
#include <cstring>
int main()
float £ = 1.5f;
void *p = malloc (sizeof f);
assert (p) ;
int *qg = std::memcpy(p, &f, sizeof £f);
int value = *qg; // UB
//
}

The reason why this is illegal is that the call to std: :memcpy () copies a £1loat object into the
storage pointed to by p, effectively starting the lifetime of a £1oat object in that storage. Since g is
an int*, dereferencing it is UB.

On the other hand, the following is legal and shows how std: :memcpy () can be used for type punning:

// suppose this holds for this example
static_assert (sizeof (int) == sizeof (float));
#include <cassert>

#include <cstring>

int main()
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float £ = 1.5f;
int value;
std: :memcpy (&value, &f, sizeof f); // Ok
//
}

Indeed, in this second example, using std: :memcpy () to copy the bits from £ to value starts the
lifetime of value. That object can be used as any other int from that point on.

The special cases of char*, unsigned char*, and std::byte*

The char*,unsigned char* (not signed char*),and std: :bytex* types have special status
in C++ as they can literally point anywhere and alias anything (wg21.1link/basic.lval#11).
For that reason, if you need to access the underlying bytes of the value representation of an object,
these types are an important tool in your toolbox.

We will, later in this book, occasionally resort to these types to perform low-level byte manipulation.
Note that such maneuvers are inherently fragile and non-portable, as such details as the order of bytes
in an integer can vary from platform to platform. Use such low-level facilities with care.

The std::start_lifetime_as<T>() function

One last set of facilities for this chapteris std: : start lifetime as<T>() and std::start_
lifetime_as_array<Ts> (). These functions have been discussed for years but came into their
own with C++23. Their role is to take as arguments something such as a buffer of raw memory bytes
and return a pointer to some T (pointing to that buffer) whose lifetime has started, such that the
pointee can be used as such from that point on:

static_assert (sizeof (short) == 2);
#include <memorys>

int main() {
char buf[]{ 0x00, 0x01, 0x02, 0x03 };
short* p = std::start lifetime as<shorts> (buf) ;

// use *p as a short

}

This is, again, a low-level feature to be used with care. The intent here is to be able to implement such
things as low-level file I/O and networking code (for example, receiving a UDP packet and treating
its value representation as if it were an existing object) in pure C++ without falling into a UB trap.
We will discuss these functions in more detail in Chapter 15.
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Summary

This chapter explored some low-level and sometimes unpleasant facilities that we will sometimes use,
in order to put up the proper “warning signs” and remind us that we have to be responsible and write
sensible and correct code even though our language of choice gives significant freedom.

When writing advanced memory management facilities in the later chapters of this book, these
dangerous facilities will sometimes be useful to us. Inspired by the contents of this chapter on things
to be careful with, we will resort to these facilities sparingly, carefully, and in ways that make them
hard to misuse.

In our next chapter, we will examine the key C++ casts put at our disposal; the intent is to make us
aware of what each cast does, as well as when (and to what end) it should be used, such that we can
thereafter build the powerful memory management abstractions we want to use.
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We are progressing. In Chapter 1, we looked at what memory, objects, and pointers are, as we know we
will need to understand these basic ideas if we are to take control of memory management mechanisms.
Then, in Chapter 2, we looked at some low-level constructs that could get us in trouble if misused are
essential to understand in certain situations to take control of how our programs manage memory.
That’s a somewhat dry way to start, but that also means the fun parts of our work are still to come. I
hope that’s encouraging!

At the end of Chapter 2, we examined approaches to type punning, a way to subvert the type system,
including some that are believed to work by some but actually do not. C++ offers a number of controlled
and explicit ways to interact with the type system, informing the compiler that it should see the type
of an expression as something different than what it can otherwise infer from the source code. These
tools, the type casts (or simply casts), are the subject of this chapter.

We will first examine what casts are in the general sense, distinguishing the various fundamental
reasons to perform casts and showing why C-style casts are mostly inappropriate (except for some
specific cases) in a C++ program. Then, we will take a quick look at a safety-related aspect of the C++
system, cv-qualifications, and discuss the role of cv-qualifiers in the hygiene and overall quality of
C++ code. After that, we will examine the six C++ casts at our disposal. Finally, we will return to the
C casts to show the limited situations in which they might still be appropriate.

In this chapter, we will learn the following:
o What casts are and what they mean in a program

o What cv-qualifications are and how they interact with casts

o What C++ casts are, including the C cast, and when they should be used

Technical requirements

You can find the code files for this chapter in the booK’s GitHub repository here: https://github.
com/PacktPublishing/C-Plus-Plus-Memory-Management/tree/main/chapters3.
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What is a cast?

You will use a cast to adjust the compiler’s view on the type of an expression. The thing is, the compiler
sees our source code and understands what we wrote and what other people’s code expresses. Most
of the time (hopefully), this code will make sense, and the compiler will translate your sources into
proper binaries without complaining.

Sometimes, of course, there will be (hopefully temporary) discrepancies between programmer intent
and code, as expressed through the sources seen by the compiler. Most of the time, the compiler
will be right, and the programmer will rewrite the source code, at least in part, in order to better
express the intent, inspired by the error or warning messages that revealed (in their own poetic way)
a problem. Sometimes, of course, the source code matches the programmer’s intent, but there are
still disagreements with the compiler and adjustments required to attain some agreement with it. For
example, suppose a programmer wants to allocate a buffer large enough to store 1ot s of integers
(Lots being a value that’s either too large to reasonably use the stack or one that’s not known at
compile time); one (low-level and error-prone but legal nonetheless) way to achieve this would be to
call the std: :malloc () function:

//
int *p = std::malloc(lots * sizeof (int)); // <-- HERE
if (p) {

// use p as an array of int objects

std: :free(p) ;

}
//

This code excerpt, as you might know, is not valid C++ - std: :malloc () returns void* (a pointer
to a chunk of raw memory of at least the requested size, or nullptr if the allocation failed), and
void* is not implicitly convertible to int * in C++ (the reverse is, of course, true —int * is indeed
implicitly convertible to void*).

Note that we could have replaced std: :malloc (lots*sizeof (int)) withnew int [lots]
in this (oversimplified) case, but things are not always so simple, and sometimes, we need to lie to the
type system, if only for a moment. And that’s where casts come in.

So, what are casts? Casts are a controlled way to guide the compiler’ type system in understanding
programmer intent. Casts also provide information in source code about the reasons behind such
temporary lies; they document what the programmer intended to do at the very moment when a lie
was required. The C++ casts are very clear in the intent they are conveying and very precise in their
effect; the C-style cast (also seen in other languages) is much more vague in matters of intent, as we
will see later in this chapter, and can perform inappropriate transformations in a language with such
a rich type system as C++.
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Safety in the type system - cv-qualifications

C++ provides two safety-related qualifiers in its type system. These are named const and volatile,
and they are related in many ways.

The const qualifier means the object thus qualified is considered immutable in the current scope,
such as the following:

const int N = 3; // global constant
class X {
int n; // note: not const

public:
X(int n) : n{ n } {
}
int g() { // note: not const
return n += N; // thus, n's state can be mutated
}

int £() const { // const applies to this, and
// transitively to its members
// return g(); // illegal as g() is not const

return n + 1;

¥
int f(const int &n) { // £() will not mutate argument n
return X{ n }.£() + 1; // X::X(int) takes its argument
// by value so n remains intact

1
int main() {

int a = 4;

a = f(a); // a is not const in main()
!

Marking an object as const means that in the context where it is marked as such, it cannot be mutated.
In the case of class members, the const guarantee is maintained transitively through const member
functions, in the sense that a const member function cannot modify the members of *this, and
nor can it call a non-const member function of the same object. In the preceding example, X : : £ is
const, and as such, it could not call X : : g, which does not offer that guarantee; allowing X : : £ to call
X : :g would effectively break the const guarantee, as X : : g can mutate *this but X: : £ cannot.

The const qualifier is well-known and well-documented in C++. Being “const-correct” is generally
seen as good code hygiene and is something you should strive to do in practice; using const wherever
it makes sense is one of the strongest assets of the C++ language, and many languages claiming to
be “type-safe” lack this essential feature, without which, correctness is so much harder to achieve.
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The volatile keyword is the counterpart to const; hence, the term cv-qualifier refers to both
these terms. Woefully underdefined in the standard, volatile has a few meanings.

When applied to a fundamental type (for example, volatile int), it means that the object it
qualifies could be accessed through ways unknown to the compiler and not necessarily visible from
the source code. As such, this term is mostly useful when writing device drivers where some action
external to the program itself (such as the physical pressure of a key) could change the memory
associated with the object, or when some hardware or software component external to the source
code could observe changes in that object’s state.

Informally, if the source code states, “Please read the value of that volatile object,” the code that will be
generated should read that value even if the program does not seem to modify it in any way; likewise,
if the source code states “Please write to that volatile object,” then a write to that memory location
should occur, even if nothing in the program seems to read from that memory location subsequently.
Thus, volatile can be seen as something that prevents optimizations that the compiler would
otherwise be allowed to perform.

In C++’s abstract machine, accessing a volatile-qualified object is the moral equivalent of an
I/O operation - it can change the state of the program. On an object of some class type, volatile
can be applied to a member function just as const can. Indeed, a non-static member function
can be qualified const, volatile, const volatile, or none of these (among other things).

The meaning of applying the const qualifier on a member function was described earlier with the
X: : £ member function - *this is const; its non-mutable, non-static data members are
const in that function, and the only non-stat ic member functions that can be called through
*this are those that are const-qualified. A non-static member function qualified as volatile
is, likewise, quite similar - *this is volatile during that function’s execution, and so are all of its
members, which impacts what operations you can perform with these objects. For example, taking the
addressof volatile int yieldsvolatile int¥*, which is notimplicitly convertible to int*,
since the conversion would drop some security guarantees. This is one of the reasons why we have casts.

The C++ casts

Traditionally, C++ has supported four ways to perform those explicit type conversions we call casts -
static cast,dynamic_cast,const cast,and reinterpret cast.C++11hasaddeda
fifth one, duration cast, which is tangentially related to this book but will sometimes show up in
examples, particularly when we measure the execution time of a function. Finally, C++20 introduced
a sixth case, bit cast, which is of interest to our work in this book.

The following sections give a brief overview of each C++ cast, along with a few examples of how and
when they can be useful.
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Your best friend (most of the time) — static_cast

The best, most eflicient tool in our type-casting toolset is static_cast. It's mostly safe, costs
essentially nothing in most cases, and can be used in a constexpr context, which makes it amenable
to compile-time maneuvers.

You can use static_cast in situations involving potential risks, such as converting an int to a
float or vice versa. In the latter case, it explicitly acknowledges the loss of the decimal part. You
can also use static_cast to cast a pointer or a reference from a derived class to one of its direct
or indirect bases (as long as there’s no ambiguity), which is totally safe and could be done implicitly,
as well as from a base to one of its derived classes. Casting from a base class to a derived class using
static cast is highly efficient but extremely risky if the cast is incorrect, as it does not perform
runtime checks.

Here are some examples:

struct B { virtual ~B() = default; /* ... */ };
struct DO : B { /* ... */ };
struct D1 : B { /* ... */ };

class X {
public:
X (int, double) ;
i
void f (D0&) ;
void £ (D1*);
int main() {
const float x = 3.14159f;
int n = static_cast<int>(x); // Ok, no warning
X x0{ 3, 3.5 }; // Ok
// compiles, probably warns (narrowing conversion)
X x1(3.5,0) ;
// does not compile, narrowing not allowed with braces
// X x2{ 3.5, 0 };
X x3{ static_cast<int>(x), 3 }; // Ok
DO do;
// illegal, no base-derived relationship with DO and D1
// D1* dl = static_cast<D1*>(&d0) ;
// Ok, static cast could be omitted
B *b = static_cast<B*>(&dO0) ;
// £(*b); // illegal
f (*static cast<DO*>(b)); // Ok
f (static_cast<D1l*>(b)); // compiles but very dangerous!
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Pay special attention to the last use of static cast of the preceding example - converting from a
base class to one of its derived classes is appropriately done with static cast. However, you must
ensure that the conversion leads to an object of the chosen type, as there is no runtime verification
made of the validity of that conversion; as the name implies, only compile-time checks are done with
this cast. If you're not sure of what you're doing with a downcast, this is not the tool for you.

static_cast does not only change the perspective of the compiler to the type of an expression;
it also can adjust the memory address being accessed to take into account the types involved in the
conversion. For example, when a D class has at least two non-empty base classes, BO and B1, these
two parts of the derived class are not at the same address within a D object (if they were, they would
overlap!), so static_cast from D* to one of its bases might yield a different address than that of
D itself. We will return to this when discussing reinterpret cast, for which the behavior is
different (and more dangerous).

A sign something’s wrong - dynamic_cast

There will be cases where you have a pointer or a reference to an object of some class type, and that
type happens to be different from (but related to) the type needed. This often happens - for example,
in game engines where most classes derive from some Component base and functions tend to take
Component * arguments but need to access members from an object of the derived class they expect.

The main problem here is, typically, that the function’s interface is wrong - it accepts arguments of
types that are insufficiently precise. Still, we all have software to deliver, and sometimes, we need to
make things work even though we made some choices along the way that we will probably want to
revisit later on.

The safe way to do such casts is dynamic_cast. This cast lets you convert a pointer or a reference
from one type to another, related type in a way that lets you test whether the conversion worked or
not; with pointers, an incorrect conversion yields nul 1ptr, whereas with references, an incorrect
conversion throws std: :bad_cast. The relatedness of types with dynamic cast is not limited
to base-derived relationships and includes casting from one base to another base in a multiple
inheritance design. However, note that, in most cases, dynamic_cast requires that the expression
that is cast to another type is of the polymorphic type, in the sense that it must have at least one
virtual member function.

Here are some examples:

struct BO {

virtual int £ () const = 0;

virtual ~BO() = default;
struct Bl {

virtual int g() const = 0;

virtual ~Bl() = default;
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s
class DO : public BO {
public: int £() const override { return 3; }
b5
class D1 : public Bl {
public: int g() const override { return 4; }
b5
class D : public DO, public D1 {};
int £(D *p) {
return p? p->f£() + p->g() : -1; // Ok
}
// g has the wrong interface: it accepts a DO0& but
// tries to use it as a D1&, which makes sense if
// the referred object is publicly DO and D1 (for
// example, class D
int g(D0 &do0)
D1 &dl = dynamic_cast<D1l&>(d0); // throws if wrong
return dl.g() ;

!
#include <iostream>
int main() {

D d;

f(&d); // Ok
g(d); // Ok, a D is a DO
DO do;
// calls f(nullptr) as &dJd0 does not point to a D
std::cout << f (dynamic cast<D*>(&d0)) << '\n'; // -1
try {
g(do); // compiles but will throw bad cast
} catch(std::bad cast&) {
std::cerr << "Nice try\n";

}

Note that even though this example displays a message when std: :bad_cast is thrown, this is in
no way what we could call exception handling; we did not solve the “problem,” and code execution
continues in a potentially corrupt state, which could make things worse in more serious code. In a toy
example such as this, just letting code fail and stop executing would also have been a reasonable choice.

In practice, the use of dynamic_cast should be rare, as it tends to be a sign that we chose our function
interfaces in a perfectible manner. Note that dynamic_cast requires binaries to be compiled with
runtime type information (RTTI) included, leading to larger binaries. Unsurprisingly, due to these
costs, some application domains will tend to avoid this cast, and so will we.
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Playing tricks with safety — const_cast

Neither static_cast nor dynamic_cast (nor reinterpret cast, for that matter) can
change the cv-qualifiers of an expression; to do this, you need const _cast. With const_cast,
you can add or remove the const or volatile qualifiers from an expression. As you might have
guessed, this only makes sense on a pointer or on a reference.

Why would you do something such as remove const-ness from an expression? Surprisingly, there
are many situations where this comes in handy, but a common one is allowing the use of a const-
correct type in a setting where const-ness was not used appropriately - for example, legacy code
that did not use const, such as the following:

#include <vectors
struct ResourceHandle { /* ... */ };
// this function observes a resource without modifying it,
// but the type system is not aware of that fact (the
// argument is not const)
void observe resource (ResourceHandle*) ;
class ResourceManager {
std: :vector<ResourceHandle *> resources;
//
public:
// note: const member function
void observe resources() const
// we want to observe each resource, for example
// to collect data
for (const ResourceHandle * h : resources) ({
// does not compile, h is const
// observe resource (h) ;
// temporarily dismiss constness
observe resource (const cast<ResourceHandle*>(h)) ;

}i

const_cast is a tool to play with the security of the type system; it should be used in specific,
controlled situations and not to do unreasonable things such as changing the value of a mathematical
constant, such as pi. If try something like that, you'll incur Undefined Behavior (UB) - and rightfully so.
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“Believe me, compiler” - reinterpret_cast

Sometimes, you just have to make the compiler believe you. For example, knowing sizeof (int)==4
on your platform, you might want to treat int as char [4] to interoperate with an existing API that
expects that type. Note that you should ensure that this property holds (maybe through static
assert), rather than relying on the belief that this property holds on all platforms (it does not).

That's what reinterpret cast gives you - the ability to cast a pointer of some type to a
pointer of an unrelated type. This can be used in situations where you seek to benefit from pointer-
interconvertibility, as we saw in Chapter 2, just as this can be used to lie to the type system in several
rather dangerous and non-portable ways.

Take the aforementioned conversion from an integer to an array of four bytes - if the aim is to
facilitate addressing individual bytes, you have to be aware that the endianness of integers depends
on the platform, as well as that the code written will probably be non-portable unless some careful
measures are taken.

Also, note that reinterpret_cast only changes the type associated with an expression - for
example, it does not perform the slight address adjustments that static_cast would make when
converting from a derived class to a base class in multiple inheritance situations.

The following example shows the difference between these two casts:

struct BO { int n = 3; };
struct Bl { float £ = 3.5f; };
// BO is the first base subobject of D
class D : public B0, public Bl { };
int main() {
D d;
// b0 and &d point to the same address
// bl and &d do not point to the same address
B0 *b0 = static_cast<B0*>(&d) ;
Bl *bl = static cast<Bl*>(&d) ;
int no bo->n; // Ok
float f0 = bl->f; // Ok
// r0 and &d point to the same address

// rl and &d also point to the same address... oops!
BO *r0 = reinterpret cast<B0*>(&d); // fragile

Bl *rl = reinterpret cast<Bl*>(&d); // bad idea

int nr0 = r0->n; // Ok but fragile

float fr0 = rl->f; // UB
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Use reinterpret cast sparingly. Relatively safe uses include converting a pointer to an integral
representation when given a sufficiently wide integral type (and vice versa), converting between null
pointers of different types, and converting between function pointer types — although in that case,
the results of calling the function through the resulting pointer are undefined. The complete list of
conversions that can be performed with this cast can be found at wg21 . link/expr.reinterpret.

cast if you want to know more.

| know the bits are right - bit_cast

C++20 introduced bit cast, a new cast that can be used to copy bits from one object to another of
the same width, starting the lifetime of the destination object (and the objects enclosed therein, if any)
along the way, as long as both the source and destination types are trivially copyable. This somewhat
magical library function can be found in the <bit > header and is constexpr.

Here’s an example:

#include <bit>

struct A { int a; double b; };

struct B { unsigned int c; double d4; };

int main()
constexpr A af{ 3, 3.5 }; // ok
constexpr B b = std::bit cast<B>(a); // Ok
static_assert(a.a == b.c && a.b == b.d); // Ok
static assert ((void*)&a != (void*)é&b); // Ok

}

As can be seen in this example, both A and B are constructed at compile time and are bitwise identical to
one another, but their addresses are different, as they are entirely different objects. Their data members
are partially of different types but are of the same sizes, in the same order, and are all trivially copyable.

Also, note the use of a C-style cast on the last line of this example. As we will soon discuss, this is
one of the few reasonable uses of C-style casts (we could have used static_cast here too and it
would have been just as efficient).

Somewhat unrelated, but still - duration_cast

We won't dwell too long on duration cast, as it is only tangentially related to our topic of interest,
but since it will be part of our toolset for micro-benchmarking in this book, it at least deserves a mention.

The duration_cast library function can be found in the <chrono> header and is part of the
std: : chrono namespace. It is constexpr and can be used to convert between expressions of
different measurement units.
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For example, suppose that we want to measure the time it took to execute some function, £ (), using
the system_clock provided by our library vendor. We can read that clock using its now () static
member function before and after calling £ (), which gives us two time point objects for that clock
(two moments in time), and then compute the difference between them to get a durat ion for that
clock. We do not know what measurement unit was used to represent that duration, but if we want
to use it expressed as, say, nicroseconds, we use duration_ cast to perform than conversion:

#include <chrono>
#include <iostream>
int £() { /* ... */ }
int main() {
using std::cout;
using namespace std::chrono;
auto pre = system clock::now() ;
int res = £();
auto post = system clock::now() ;
cout << "Computed " << res << " in "
<< duration cast<microsecondss> (post - pre);

}

We will systematize our benchmarking practices later in this book, showing a more formal way to
measure the execution time of functions or code blocks, but duration_cast will be our tool of
choice to ensure that the format in which we present the results is appropriate for our needs.

The reviled one - the C cast

You might be tempted to use C-style casts when type conversions are needed, as the C syntax appears
in other languages and tends to be short to express — (T) expr treats expression, expr, as being
of type T. That terseness is actually a downside, not an upside, as we will see. Limit C-style casts to a
minimum in C++ code:

o The C-style casts are harder to find when performing an automated search through source code
text, since they look like arguments in a function call. Since casts are ways through which we
lie to the type system, revisiting the decision to use them from time to time is worthwhile, so
being able to find them is valuable. In comparison, the C++ casts are keywords, which makes
them easier to find.

o A C-style cast does not convey information about why a conversion occurred. When writing
(T) expr, we are not saying whether we want to change cv-qualifiers, navigate a class hierarchy,
simply change to type of a pointer, and so on. In particular, when converting between pointers
to different types, a C-style cast will generally behave as reinterpret cast, which, as we
have seen, can lead to disastrous results in some circumstances.
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You will sometimes see C-style casts in C++ code, mostly for situations where the intent is absolutely
clear. We saw an example at the end of our bit_cast section. Another example would be to silence
compiler warnings — for example, when calling a function that’s [ [nodiscard] ] but still really
wanting to discard the results nonetheless for some reason.

In yet another example, consider the following generic function:

template <class ItA, class ItB>
bool all equal (ItA bA, ItA eA, ItB bB, ItB eB)
for(; bA != eA && bB != eB; ++bA, (void) ++bB)
if (*bA != DbB)
return false;

return true;

}

This function iterates through two sequences that are delimited, respectively, by [bA, eA) and

[bB, eB) (making sure to stop as soon as the shortest sequence has been processed), compares
the elements at the “same position” in these two sequences, and yields t rue only if all comparisons
between elements of those two sequences are equal.

Note that the cast to void uses a C-style cast between the increments of bA and bB in this code,
which cast the result of ++bB to void. This may look strange, but this is code that can be used in
many situations by pretty much anyone, including hostile (or distracted) users. Suppose someone
with a twisted mind had decided to overload the comma operator (yes, you can do that) between the
types of operator++ (ItA) and operator++ (ItB). That person could then essentially hijack
our function to run unexpected code. By casting one of the arguments to void, we ensure that this
is not possible.

Summary

That concludes our quick overview of casts and cv-qualifications in C++. Now that we've seen some
ways to trick the type system and get in trouble, as well as know why we should do these things carefully
(if at all), we can start building beautiful things with C++ and work toward safe, efficient abstractions
in our endeavor to write correct programs that control how we manage memory.

In the next chapter, we will start by using one of the language’s defining features, the destructor, to
automate the way our code handles resources, with an eye in particular on the way memory is handled.



Part 2:
Implicit Memory
Management Techniques

In this part, we will examine some well-known approaches to implicit resource management (including
memory management) in C++. These are all techniques you can use in your daily programming
practices that will lead to simpler and safer programs than what you would get if you wanted to manage
memory explicitly. You could say that the chapters in this part concern what people call “modern”
or “contemporary” C++.

This part has the following chapters:
o Chapter 4, Using Destructors

o Chapter 5, Using Standard Smart Pointers

o Chapter 6, Writing Smart Pointers
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Our journey to a better and deeper understanding of memory management in C++ now emerges
into the world of clean code and contemporary practices. In previous chapters we have explored
fundamental concepts of in-memory representation (what are objects, references, pointers, and so
on), what pitfalls await us if we stray from sound programming practices in inappropriate ways, and
how we can lie to the type system in a controlled and disciplined manner, all of which will be helpful
in the rest of this book. We will now discuss fundamental aspects of resource management in our
language; memory being a special kind of resource, the ideas and techniques found in this chapter
will help us write clean and robust code, including code that performs memory management tasks.

C++ is a programming language that supports (among other paradigms) object-oriented programming,
but with actual objects. This sounds like a jest of sorts, but it’s actually a true statement: many languages
only provide indirect access to objects (through pointers or references), which means that in these
languages the semantics of assignment are usually sharing the referred object (the pointee). There
are upsides to this, of course: for example, copying a reference typically cannot fail whereas copying
an object can fail if the copy constructor or copy assignment (depending on the situation) throws
an exception.

In C++, by default, programs use objects, copy objects, assign to objects, and so on, and indirect
access is opt-in, requiring additional syntax both for pointers and references. This requires C++
programmers to think about object lifetimes, what it means to copy an object, what it means to move
from an object... These can be deep topics depending on the types involved.

Note

See Chapter 1 for more information on objects and object lifetime, including the role of
constructors and destructors.

Even if having actual objects in your source code requires adjusting your mindset when programming,
it also provides a significant advantage: automatic objects are destroyed when they reach the end of
the scope in which they were declared (when they reach the closing brace of that scope) and when
an object gets destroyed a special function, the type’s destructor, gets called. This special moment
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allows us to execute arbitrary code at definite moments and is a part of a key C++ idiom named RAII,
an acronym we will explain in the The RAII idiom section later in this chapter. This has led some
luminaries to claim that the most beautiful instruction in C++ is }, the closing brace.

In this chapter, we will look at what destructors do, what they should not do, when they should be
written (and when we should stick to what the compiler does by default), as well as how our code can
use destructors effectively to manage resources in general... and memory more specifically. Then, we
will take a quick look at some key types from the standard library that use destructors to our advantage.

In more detail, in his chapter, we will:

 Provide a general overview of how resources can be managed safely in C++;

o Take a close look at the RAII idiom, a well-known idiomatic practice that uses an object’s
lifetime to ensure that resources managed by that object are properly released;

» Examine some pitfalls associated with automated resource management;

« Give a quick overview of some automated resource management tools provided by the
standard library.

By the end of this chapter, we will understand the most common ideas and practices one associates
with resource management in C++. This will allow us to build more powerful abstractions throughout
the remainder of the book.

Technical requirements

You can find the code files for this chapter in the book’s GitHub repository here: https://github.
com/PacktPublishing/C-Plus-Plus-Memory-Management /tree/main/chapter4.

On destructors: a short recap

This chapter aims to discuss the use of destructors to manage resources, in particular memory, but
since we discussed destructors a while ago (in Chapter I) we will allow ourselves a quick recap of the
basic idea behind this powerful idea:

o When an object reaches the end of its lifetime, a special member function called the destructor
is called. For some class X, that member function is named X : : ~X () . This function is an
occasion for type X to perform a few “last-minute” actions before concluding its lifetime. As
we will discuss in this chapter, one idiomatic use of the destructor is to release resources held
by the object being destroyed;

o Ina class hierarchy, when an object reaches the end of its lifetime, what happens is (a) the
destructor for that object gets called, then the same goes for (b) the destructor of each of its
non-static data member in order of declaration followed by (c) the destructor of each of
its base class sub-objects (its “parents”, informally) in order of declaration;
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o When explicitly destroying an object through the application of operator deleteona
pointer, the resulting process involves the destruction of the pointee followed by the deallocation
of the memory block where the object was located. Unsurprisingly, there are caveats to this as
we will see Chapter 7;

o In some situations, notably when some class X exposes at least one virtual member
function, this sends the message that an X* might in practice point to an object of a class Y
directly or indirectly derived from X. To ensure that the destructor of Y is actually called, not
the destructor of X, it is customary to also qualify X : : ~X () as virtual. Not doing so risks
not calling the correct destructor, leading to resource leaks.

For a small example, consider the following:

#include <iostream>
struct Base ({

~Base() { std::cout << "~Base()\n"; }
struct DerivedA : Base {

~DerivedA () { std::cout << "~DerivedaA()\n"; }
struct VirtBase ({

virtual ~VirtBase() {

std::cout << "~VirtBase()\n";

struct DerivedB : VirtBase ({
~DerivedB ()

std::cout << "~DerivedB()\n";
}
b
int main() {
{
Base base;
}
{
DerivedA derivedA;
}
std::cout << "----\n";

Base *pBase = new DerivedAa;

delete pBase; // bad

VirtBase *pVirtBase = new DerivedB;
delete pVirtBase; // Ok
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If you run that code, you will see one destructor called for base and two called for derivedA: the
derived class’ destructor followed by the base class’ destructor. This is as expected, and this part of
the code is correct.

The problematic case is pBase, a pointer of type Base* which points to an object of a class derived
from Base, as the destructor of Base is not virtual which indicates that trying to delete the
derived object through a pointer to the base class is probably a breach of intent: delete pBase
only calls Base: : ~Base (), never calling DerivedA: : ~DerivedA (). With pvirtBase this
problem is avoided as VirtBase: : ~VirtBase () isvirtual.

Of course, in C++, we have options because there are always surprising use-cases that come up, and
we will see one in Chapter 7 where we will delete a pointer-to-derived from a pointer-to-base without
the mediation of a virtual destructor for good (if specialized) reasons.

Note that virtual member functions are useful, but they have costs: a typical implementation will
make a table of function pointers per type with at least one virtual member function and store a
pointer to that table in each such object, which makes objects slightly bigger. As such, use virtual
destructors when you expect to use a pointer to a derived object from a pointer to one of its bases,
particularly when you expect the destructor to be called through a pointer to said base class.

With that being said, let's examine how all this relates to resource management.

Managing resources

Suppose you are writing a function that opens a file, reads from it, and closes it afterward. You are
developing on a procedural platform (like most operating system APIs are) offering a set of functions
to perform these tasks. Note that all “operating system” functions in this example are deliberately
fictional but resemble their real-world counterparts. The functions interesting to us in that API are:

// opens the file called "name", returns a pointer

// to a file descriptor for that file (nullptr on failure)
FILE *open file(const char *name) ;

// returns the number of bytes read from the file into

// buf. Preconditions: file is non-null and valid, buf

// points to a buffer of at least capacity bytes, and

// capacity >= 0

int read from(FILE *file, char *buf, int capacity);

// closes file. Precondition: file is non-null and valid,
void close file(FILE *file);

Suppose your code needs to process the data read from the file, but that this processing can throw an
exception. The reason for that exception is unimportant here: it can be corrupt data, failure to allocate
memory, calling some auxiliary function that throws, and so on. The key point is that there is a risk
that the function will throw.
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If we try to write code for that function naively, it might look like this:

void f (const char *name)

}

FILE *file = open file(name) ;
if(!file) return false; // failure
vector<char> v;
char buf[N]; // N is a positive integral constant
for(int n = read from(file, buf, N); n != 0;
n = read from(file, buf, N))

v.insert (end(v), buf + 0, buf + n);
process (v); // our processing function
close file(file);

That code works, and in the absence of exceptions does pretty much what we want. Now, suppose
process (v) throws an exception... What happens?

In this case, function £ () exits, failing to meet its postconditions. The call to process (v) never
concludes... and close file(file) ; never gets called. We have a leak. Not necessarily a memory
leak, but a leak nonetheless as £i1e never gets closed, since an exception thrown from process ()

but not caught in calling code £ () will conclude £ () and let the exception flow through to £ ()’s
caller (and so on, until caught or until the program crashes, whichever comes first).

There are ways around this situation. One is to proceed “manually” and add a try ... catch block
around the code that could throw:

void f (const char *name) {

FILE *file = open file(name) ;
if(!file) return; // failure
vector<char> v;
char buf[N]; // N is a positive integral constant
try {
for(int n = read from(file, buf, N); n != 0;
n = read from(file, buf, N))
v.insert (end(v), buf + 0, buf + n);
process (v); // our processing function
close file(file);
} catch(...) { // catch anything
close file(file);
throw; // re-throw what we caught
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I agree this is a bit “clunky”, with two occurrences of close file (file), one at the end of the
try block to close the file under normal occurrences, and another at the end of the catch block to
avoid leaking the file’s resources.

The manual approach can be made to work, but that is a brittle approach to the problem: in C++,
any function that is neither noexcept nor noexcept (true) could throw; this means that in
practice, almost any expression could throw.

( A

Catching anything

In C++, there’s no single, mandated base class for all exception types as one could see in
some other languages. Indeed, throw 3; is totally legal C++ code. On top of this, C++ has
extremely powerful generic programming mechanisms which makes generic code prevalent
in our language. Consequently, we often find ourselves calling functions that could throw but
for which we cannot really know what could be thrown. Know that catch (. . .) will catch
any C++ object used to represent an exception: you will not know what you caught, but you
will have caught it.

In such cases, we will typically want to intercept exceptions, probably to do some cleanup,
then let that exception continue on its way unchanged in order to let client code deal with it as
needed. The cleanup part is because we want our function to be exception-safe (no leaks, no
corrupted state, and so on.) as well as exception-neutral (do not hide the nature of the problem
from those who will want to handle it). To rethrow whatever exception object you have caught,
even froma catch (. . .) block, simply use throw; which is said to be the “re-throw”.

. J

Exception handling... or not?

This leads to another question: in a function such as £ () where we only aim to consume data and
process it for our purposes, should we really seek to handle exceptions? Think about it: the requirements
for throwing an exception are significantly different from those for handling an exception.

Indeed, we throw an exception from a function to signal that our function cannot achieve its
postconditions (it cannot do the task it was meant to do): maybe memory is insufficient, maybe the
file to read from does not exist, maybe performing that integral division you asked for would lead to
dividing by zero, therefore destroying the universe (and we don’t want that to happen), maybe one of
the functions called by our function cannot satisfy its own postconditions in ways we did not foresee
or did not want to handle... There are plenty of reasons for a function to fail. Many are the situations
where a function might find itself in a position where to proceed further would lead to severe problems,
and in some cases (constructors and overloaded operators come to mind) exceptions really are the
only sensible way to signal a problem to client code.

Handling an exception per se is a much rarer occurrence: to throw an exception, one has to recognize
a problem, but to handle an exception one needs an understanding of context. Indeed, the actions one
would perform in reaction to an exception in an interactive console application are different from
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those performed for an audio application when people are moving on the dance floor, or from those
required when facing a nuclear code meltdown.

Most functions need to be exception-safe to some extent (there are flavors to this) more than they
need to handle the problem. In our example, the difficulties stem from the manual closing of file
in the advent of an exception. The easiest way to avoid this manual resource handling is to automate
it, and what happens at the end of a function whether that function completes normally (reaching the
function’s closing brace, hitting a return statement, seeing an exception “fly by”) is better modelled
by a destructor. This practice has become so well ingrained in C++ programmers’ practices that it is
considered idiomatic and has been given a name: the RAII idiom.

The RAIl idiom

C++ programmers tend to use destructors to automate the releasing of resources, and this can truly
be said to be an idiomatic programming technique in our language, so much that we have given it
a name. Probably not the best of names, but a well-known name nonetheless: RAII, which stands
for Resource acquisition is initialization (some have also suggested Responsibility acquisition is
initialization, which also works and carries a similar meaning). The general idea is that objects tend to
acquire resources at construction time (or later), but (and more importantly!) that releasing resources
held by an object is something that usually should be done at the end of that objects lifetime. Thus,
RAII has more to do with destructors than with constructors, but as I said, we tend to be bad with
names and acronyms.

Revisiting our file reading and processing example from the Managing resources section, earlier in
this chapter, we can build an RAII resource handler to facilitate file closing regardless of how the
function concludes:

class FileCloser { // perfectible, as we will see
FILE * file;
public:
FileCloser (FILE *file) : file{ file } {
}
~FileCloser () {
close file(file);

};

void f (const char *name) {
FILE *file = open file(name) ;
if(!file) return; // failure
FileCloser fc{ file }; // <-- fc manages file now
vector<char> v;
char buf[N]; // N is a positive integral constant
for(int n = read from(file, buf, N); n != 0;
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n = read from(file, buf, N))
v.insert (end(v), buf + 0, buf + n);
process(v); // our processing function
} // implicit close file(file)

The details and granularity of what FileCloser does will vary with our perception of its role: does
this class just manage the closing of the file or does it actually represent the file with all of its services?
I went for the former in this case but both options are reasonable: it all depends on the semantics
you are seeking to implement. The key point is that by using a FileCloser object, we are relieving
client code of a responsibility, instead delegating the responsibility of closing a file to an object that
automates this task, simplifying our own code and reducing the risks of inadvertently leaving it open.

This FileCloser object is very specific to our task. We could generalize it in many ways, for example
through a generic object that performs a user-supplied set of actions when destroyed:

template <class F> class scoped finalizer { // simplified

F £;
public:
scoped finalizer(F £) : £{ £ } {
}
~scoped_finalizer() ({
£0);
}

IF
void f (const char *name) {
FILE *file = open file(name) ;
if (!file) return; // failure
auto sf = scoped finalizer{ [&file] {
close file(file);
} }; // <-- sf manages file now
vector<char> v;
char buf [N]; // N is a positive integral constant
for(int n = read from(file, buf, N); n != 0;
n = read from(file, buf, N))
v.insert (end(v), buf + 0, buf + n);
process (v); // our processing function
} // implicit close file(file) through sf's destructor

The RAII idiom is pretty much everywhere in C++; one could say it’s the language’s most pervasive
idiom, and one of its most recognizable and defining programming practice. Many languages offer
similar features today: C# has using blocks, Java has t ry-with blocks, Go has a defer keyword,
etc., but in C++ the possibility to use scope in order to automate actions, often related to resource
management, flows directly from the type system and makes objects, not user code, the ones that
idiomatically manage resources.
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RAIl and C++’s special member functions

Chapter 1 described the six special member functions (default constructor, destructor, copy constructor,
copy assignment, move constructor, and move assignment). When one implements these functions in
a class, it usually means that class is responsible for some resource. As mentioned in Chapter 1, when
a class does not explicitly manage resources, we can often leave those functions to the compiler and
the resulting default behavior will usually lead to simpler and more efficient code.

Consider now that the RAII idiom is mostly about resource management, as we associate the moment
of destruction for an object with the act of releasing previously acquired resources. Numerous RAII
objects (including classes FileCloser and scoped finalizer in the preceding examples) can
be said to be responsible for the resources we provide them with, which means that copying these
objects could induce bugs (who would be responsible for the resources, the original or the copy?).
Thus, consider deleting the copy operations for your RAII types unless you have a good reason to
implement them explicitly:

template <class F> class scoped finalizer {

F £;
public:
scoped finalizer (const scoped finalizer&) = delete;
scoped finalizer& operator=
(const scoped finalizer&) = delete;
scoped finalizer(F £) : £{ £ } {
}
~scoped finalizer() {
£();
}

bi

Like most idioms, RAII is a generally accepted good programming practice, but it's not a panacea
and the same goes for the use of destructors in general. We will look at some risks involved with
destructors, and how we can avoid getting in such trouble.

Some pitfalls

Destructors are wonderful. They allow us to automate tasks, they simplify code and they make it safer in
general. Still, there are some caveats, some aspects of using destructors that require particular attention.

Destructors should not throw

The title of this section says it quite simply: destructors should not throw. They can throw, but it’s a
bad idea to do so.
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That might seem surprising at first. After all, constructors can (and do!) throw exceptions. When a
constructor throws, it means that the constructor cannot satisfy its postconditions: the object under
construction was not constructed (the constructor did not complete!) so that object does not exist.
That’s a simple, working model.

If a destructor throws. .. well, it’s probably the end of your program. Indeed, destructors are implicitly
noexcept, which means that throwing from a destructor will call std: : terminate () and that
will be the end of your program.

Well, you might think, what if T explicitly mark my destructor as noexcept (false) then, thus
overriding the default behavior? Well, this can work, but be careful as if a destructor throws during
stack unwinding, such as what happens when an exception is already in flight, then this still calls
std: :terminate () and since you've been bad and have broken the rules, the compiler can optimize
some of your code away. For example, in the following program it’s quite possible that neither "A\n"
nor "B\n" will be printed even though the destructor of Evil has not been called at that point:

#include <iostream>
class Darn {};
void f£() { throw 3; }
struct Evil {
Evil() { std::cout << "Evil::Evil()\n"; }
~Evil () noexcept (false) ({
std::cout << "Evil::~Evil()\n";

throw Darn {};

¥
void g() {
std::cout << "A\n";
Evil e;
std::cout << "B\n";
£0);
std::cout << "C\n";
}
int main()
try {
g();
} catch(int) {
std::cerr << "catch(int)\n";
} catch(Darn) {
std::cerr << "darn...\n";
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A probable result from this code can simply be that the program will display nothing at all, and some
information to the effect that throwing Darn has led to calling std: : terminate () will be output.
Why is some of the code (notably the messages we tried to output) visibly removed by the compiler?
The answer is that an exception thrown but never caught enters implementation-defined behavior,
and the throwing of Darn in this case cannot be caught (it directly calls std: : terminate () as
it happens during stack unwinding) which lets the compiler optimize our code significantly.

Summarizing: don’t throw from a destructor unless you really know what youre doing, control the
context where it will be called, and have discussed it with others to make sure it’s reasonable even though
all evidence points to the contrary. Even then, it’s probably better to look for alternative approaches.

Know thy destruction order

The title of this section might seem like a funny admonition. Why is it important to know about the order
in which our objects will be destroyed? After all, the basic rule is simple: construction and destruction
of objects are symmetrical, thus objects are destroyed in reverse order of construction... right?

Well, that is the case for local, automatic objects. If you write the following:

void £() {
A a; // a's ctor
B b; // b's ctor
{
Cc; // c's ctor
} // c's dtor
D d; // d's ctor
} // d's dtor, b's dtor, a's dtor (in that order)

... then the order of construction and destruction will be as noted in the comments: automatic objects
in scope are destroyed in reverse order of construction, and nested scopes behave as expected.

The situation gets more complex if you add non-automatic objects to the mix. C++ lets one have
static objects declared within a function: these are constructed when the function is called for
the first time and stay alive from that point on until the end of the program’s execution. C++ lets one
have global variables (there are many nuances here with linkage specifications such as static or
extern) C++ lets one have stat ic data members in a class: these are essentially global variables
too. I won't even get to thread local variables here as they are out of scope for this book but
if you use them, know that they can be lazily initialized which adds to the complexity of the overall
picture. Global objects are destroyed in reverse order of construction, but that order of construction
is not always trivial to predict from our human perspective.
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Consider the following example, which uses Verbose objects that inform us of their moment of
construction as well as of their moment of destruction:

#include <iostream>
#include <formats>
struct Verbose ({
int n;
Verbose (int n) : n{ n } {
std::cout << std::format («Verbose ({})\n», n);
}
~Verbose () {
std::cout << std::format («~Verbose ({})\n», n);

}
b5
class X {
static inline Verbose v0 { 0 };
Verbose vi{ 1 };
b6
Verbose v2{ 2 };
static void £() {
static Verbose v3 { 3 };
Verbose v4{ 4 };
}
static void g() { // note : never called
static Verbose v5 { 5 };
}
int main() {
Verbose v6{ 6 };
{
Verbose v7{ 7 };
£0);
X x;
}
i () 5
X x;
}

Take a moment to let this example sink in and try to figure out what will be displayed. We have a global
object,a static and inline data member in a class, two stat ic objects local to functions as
well as some local automatic objects.
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So, what will be displayed if we run this program? If you try it, you should see:

Verbose (0)
Verbose (2)
Verbose (6)
Verbose (7)
Verbose (3)
Verbose (4)
~Verbose (4)
Verbose (1)
~Verbose (1)
~Verbose (7)
Verbose (4)
~Verbose (4)
Verbose (1)
~Verbose (1)
~Verbose (6)
~Verbose (3)
~Verbose (2)
~Verbose (0)

The first one to be constructed (and the last one to be destroyed) is v0, the static inline data
member. It also happens to be our first global object, followed by v2 (our second global object). We
then enter main () and create v6 which will be destroyed at the end of main ().

Now, if you look at the output for that program, you'll see that symmetry breaks down at this point
since after the construction of v6, we construct v7 (in an inner, narrower scope; v7 will be destructed
soon after) and then call £ () for the first time which constructs v3, but v3 is a global object and will
for that reason be destroyed after v6 and v7.

The overall process is mechanical and deterministic, but understanding it requires some thought and
analysis. If we use our objects’ destructors to release resources, failure to understand what happens
and when it happens can lead to our code trying to use resources that have already been freed.

For a concrete example involving a mix of automated and manual resource management, let’s look
at something the C++ standard knows nothing about: dynamically linked libraries (. d11 files). 'm
not going to get into details here, so know that if you are on a Linux machine (using shared objects,
. so files) or on a Mac (. dy1lib files), the general idea’s the same but the function names will differ.

71



72

Using Destructors

Our program will (a) load a dynamically linked library, (b) get the address of a function, (c) call this
function and (d) unload the library. Suppose the library is named Lib and the function we want
to call is named factory which returns a X* from which we want to call member function £ () :

#include "Lib.h"
#include <Windows.h> // LoadLibrary, GetProcAddress
int main()

using namespace std;

HMODULE hMod = LoadLibrary (L"Lib.d1l1l");

// suppose the signature of factory is in Lib.h

auto factory ptr = reinterpret castc<

decltype (&factory)

> (GetProcAddress (hMod, "factory"));

X *p = factory ptr();

p->£();

delete p;

FreeLibrary (hMod) ;

}

You might have noticed the manual memory management in there: we acquire a resource (a X*
pointing to something that’s at least an X) calling factory () through factory ptr, then we
use (call £ () on) and manually dispose of the pointee.

At this point, youre probably telling yourself that manual resource management’s not the best of ideas
(here: what happens to the resource if p->£ () throws?), so you look through the standard and find
that an object of type std: :unique ptr will take responsibility over the pointee and destroy it
when its destructor is reached. Beautiful, isn't it? And indeed it probably is, but consider the following
excerpt, rewritten to use a std: :unique_ptr and automate the resource management process:

#include "Lib.h"
#include <memory> // std::unique ptr
#include <Windows.h> // LoadLibrary, GetProcAddress
int main()
using namespace std;
HMODULE hMod = LoadLibrary (L"Lib.d1l1l");
// suppose the signature of factory is in Lib.h
auto factory ptr = reinterpret cast<
decltype (&factory)
> (GetProcAddress (hMod, "factory")) ;
std::unique ptr<X> p { factory ptr() };
p->£(0);
// delete p; // not needed anymore
FreeLibrary (hMod) ;
} // p is destroyed here... but is this good?
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At first glance, this new version seems safer since p is now an RAII object responsible for the
destruction of the pointee. Being destroyed at the closing brace of our main () function, we know
that the destructor of the pointee will be called even if p->£ () throws, so we consider ourselves more
exception-safe than before...

... except that this code crashes on that closing brace! If you investigate the source of the crash, you will
probably end up realizing that the crash happens at the point where the destructor of p calls operator
delete on the X* it has stored internally. Reading further, you will notice that the reason why this
crash happens is that the library the object came from has been freed (call to FreeLibrary ())
before the destructor ran.

Does that mean we cannot use an automated memory management tool here? Of course not, but we
need to be more careful with the way in which we put object lifetime to contribution. In this example,
we want to make sure that p is destroyed before the call to FreeLibrary () happens; this can be
achieved through the simple introduction of a scope in our function:

#include "Lib.h"
#include <memory> // std::unique ptr
#include <Windows.h> // LoadLibrary, GetProcAddress
int main() {
using namespace std;
HMODULE hMod = LoadLibrary (L"Lib.dl1l");
// suppose the signature of factory is in Lib.h
auto factory ptr = reinterpret castc
decltype (&factory)
> (GetProcAddress (hMod, "factory"));
{
std::unique ptr<X> p { factory ptr() };
p->£();
} // p is destroyed here
FreeLibrary (hMod) ;

}

In this specific example, we could find a simple solution; in other cases we might have to move some
declarations around to make sure the scopes in which our objects find themselves don’t alter the
intended semantics of our function. Understanding the order in which objects are destroyed is essential
to properly using this precious resource management facility that is the destructor.

Standard resource management automation tools

The standard library offers a significant number of classes that manage memory efficiently. One needs
only consider the standard containers to see shining examples of the sort. In this section, we will
take a quick look at a few examples of types useful for resource management. Far from providing an
exhaustive list, we'll try to show different ways to benefit from the RAII idiom.
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As mentioned before, when expressing a type that provides automated resource management, the key
aspects of that type’s behavior are expressed through its six special member functions. For that reason,
with each of the following types, we will take a brief look at what the semantics of these functions are.

unique_ptr<T> and shared_ptr<T>

This short section aims to provide a brief overview of the two main standard smart pointers types in
the C++ standard library: std: :unique ptr<T>and std: :shared ptr<Ts.Itis meantto
provide a broad overview of each type’s role; a more detailed examination of how these types can be
used appears in Chapter 5, and we will implement simplified versions of both types (as well as of a
few other smart pointer types) in Chapter 6.

We have seen an example using std: :unique ptr<Ts> earlier in this chapter. An object of this
type implements “single ownership of the resource” semantics: an object of type std: :unique
ptr<T> is uncopiable, and when provided with a T* to manage, it destroys the pointee at the end
of its lifetime. By default, this type will call delete on the pointer it manages, but it can be made to
use some other means of disposal if needed.

A default std: :unique ptr<Ts> represents an empty object and mostly behaves like a null
pointer. Since this type expresses exclusive ownership of a resource, it is uncopiable. Moving from
astd::unique_ ptr<Ts> transfers ownership of the resource, leaving the moved-from object
into an empty state conceptually analogous to a null pointer. The destructor of this type destroys the
resource managed by the object, if any.

Type std: : shared ptr<T>implements “shared ownership of the resource” semantics. With this
type, each std: : shared_ptr<T> object that co-owns a given pointer shares responsibilities with
respect to the pointee’s lifetime and the last co-owner of the resource is responsible for freeing it; as
is the case with most smart pointers, this responsibility falls on the object’s destructor. This type is
surprisingly complicated to write, even in a somewhat naive implementation like the one we will write
in Chapter 6, and is less frequently useful than some people think, as the main use case (expressing
ownership in the type system for cases where the last owner of the pointee is a priori unknown,
something most frequently seen in multithreaded code) is more specialized than many would believe,
but when one needs to fill this niche, it’s the kind of type that’s immensely useful.

A default std: : shared_ptr<Ts> also represents an empty object and mostly behaves like a null
pointer. Since this type expresses shared ownership of a resource, it is copyable but copying an object
means sharing the pointee; copy assignment releases the resource held by the object on the left hand
of the assignment and then shares the resource held by the object on the right side of the assignment
between both objects. Moving from a std: :unique ptr<Ts> transfers ownership of the resource,
leaving the moved-from object into an empty state. The destructor of this type releases ownership of the
shared resource, destroying the resource managed by the object if that object was the last owner thereof.
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What does the “shared” in shared_ptr mean?

There can be confusion with respect to what the word “shared” in the name of the std: : shared
ptr type actually means. For example, should we use that type whenever we want to share a
pointer between caller and callee? Should we use it when whenever client code makes a copy
of a pointer with the intent of sharing the pointee, such as when passing a pointer by value to
a function or sharing resources stored in a global manager object?

The short answer is that this is the wrong way to approach smart pointers. Sharing a dynamically
allocated resource does not mean co-owning that resource: only the latter is what std: : shared
ptr models, whereas the former can be done with much more lightweight types. We will
examine this idea in detail in Chapter 5 from a usage perspective, then reexamine it in Chapter 6
with our implementer eyes, hopefully building a more comprehensive understanding of these
deep and subtle issues.

~N

lock_guard and scoped_lock

Owning a resource is not limited to owning memory. Indeed, consider the following code excerpt and
suppose that string mutator is a class used to perform arbitrary transformations to characters
in a string, but is expected to be used in a multithreaded context in the sense that one needs to
synchronize accesses to that st ring object:

#include
#include
#include
#include
#include

<thread>
<mutex>
<string>
<algorithm>
<string view>

class string mutator {

std::string text;

mutable std::mutex m;

public:

// note: m in uncopiable so string mutator
// also is uncopiable

string mutator (std::string view src)

}

text{ src.begin(), src.end() } {

template <class F> void operator () (F £) {
m.lock() ;

std: :transform(text.begin (),

text.begin(), £f);

m.unlock () ;

}

std::string grab_ snapshot () const {
m.lock() ;

text.end (),

75



76

Using Destructors

std::string s = text;
m.unlock () ;
return s;

i

In this example, a string mutator object’s function call operator accepts an arbitrary function £
applicable to a char and that returns something that can be converted to a char, then applies £ to each
char in the sequence. For example, the following call would display "I LOVE MY INSTRUCTOR":

//
string mutator sm{ "I love my instructor" };
sm([] (char c) {

return static cast<chars>(std::toupper(c)) ;
) 5
std::cout << sm.grab snaphot () ;

//

Now, since string mutator: :operator () (F) accepts any function of the appropriate signature
as argument, it could among other things accept a function that could throw an exception. Looking
at the implementation of that operator, you will notice that with the current (naive) implementation,
this would lock m but never unlock it, a bad situation indeed.

There are languages that offer specialized language constructs to solve this problem. In C++, there’s
no need for such specialized support as robust code just flows from the fact that one could write an
object that locks a mutex at construction time and unlocks it when destroyed... and that’s pretty
much all we need. In C++, the simplest such type is std: : Lock_guard<Ms>, where a simple
implementation could look like:

template <class M>
class lock_guard { // simplified version

M &m;
public:
lock guard(M &m) : m { m } { m.lock(); }
~lock guard() { m.unlock(); }
lock_guard(const lock_guard&) = delete;
lock guard& operator=(const lock guard&) = delete;

b5

The simplest types are often the best. Indeed, applying this type to our string mutator example,
we end up with a simpler, yet much more robust implementation:

#include <threads>
#include <mutex>
#include <strings>
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#include <algorithm>
#include <string views>
class string mutator {
std: :string text;
mutable std::mutex m;
public:
// note: m in uncopiable so string mutator
// also is uncopiable
string mutator (std::string view src)
text{ src.begin(), src.end() } {
}
template <class F> void operator () (F £) {
std::lock _guard lck{ m };
std::transform(text.begin(), text.end(),
text.begin(), f);
} // implicit m.unlock
std::string grab_snapshot () const {
std::lock _guard lck{ m };
return text;
} // implicit m.unlock

b5

Clearly, using destructors to automate unlocking our mutex is advantageous for cases such as this: it
simplifies code and helps make it exception-safe.

stream objects

In C++, stream objects are also resource owners. Consider the following code example where we copy
each byte from file in. txt to the standard output stream:

#include <fstreams>
#include <iostream>
int main() {
std::ifstream in{ "in.txt" };
for (char c¢; in.get(c); )
std::cout << c;

}

You might notice a few interesting details in this code: we never call close (), there’s no try block
where we would be preparing ourselves for exception management, there’s no call to open () in order
to open the file, there’s no explicit check for some end-of-file state... yet, this code works correctly,
does what it’s supposed to do, and does not leak resources.
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How can such a simple program do all that? Through “the magic of destructors’, or (more precisely)
the magic of a good API. Think about it:

« The constructor’s role is to put the object in a correct initial state. Thus, we use it to open the file
as it would be both pointless and inefficient to default-construct the stream, then open it later.

+ Errors when reading from a stream are not exceptional at all... Think about it, how often do
we face errors when reading from a stream? In C++, reading from a stream (here: calling
in.get (c) ) returns a reference to the stream after reading from it, and that stream behaves
like a false Boolean value if the stream is in an error state.

o Finally, the destructor of a stream object closes whatever representation of a stream it is
responsible for. Calling close () on a stream in C++ is unnecessary most of the time; just
using the stream object in a limited scope generally suffices.

Destructors (and constructors!), when used appropriately, lead to more robust and simpler code.

vector<T> and other containers

We will not write a full-blown comparison of containers with raw arrays or other low-level constructs
such as linked lists with manually managed nodes or dynamic arrays maintained explicitly through
client code. We will however examine how one can write containers such as std: : vector or
std: :1ist in later chapters of this book (Chapters 12, 13, and 14) when we know a bit more on
memory management techniques.

Please note, still, that using std: : vector<T> (for example) is not only significantly simpler and
safer than managing a dynamically allocated array of T: in practice, it’s most probably significantly
faster, at least if used knowledgeably. As we will come to see, there’s no way users can invest the care
and attention that goes into memory management and object creation, destruction and copying or
movement that goes in a standard container when writing day-to-day code. The destructor of these
types, coupled with the way their other special member functions are implemented, make them almost
as easy to use as int objects, a worthy goal if there ever was one!

Summary

In this chapter, we have discussed some safety-related issues, with a focus on those involving exceptions.
We have seen that some standard library types offer specialized semantics with respect to resource
management, where “resource” includes but is not limited to memory. In Chapter 5, we will spend
some time examining how to use and benefit from standard smart pointer; then, in Chapter 6, we
will go further and look at some of the challenges behind writing your own versions of these smart
pointers, as well as some other smart pointer-inspired types with other semantics. Then, we will delve
into deeper memory management-related concerns.
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Using Standard Smart Pointers

C++ emphasizes programming with values. By default, your code uses objects, not indirections
(references and pointers) to objects. Indirect access to objects is, of course, allowed, and rare is the
program that never uses such semantics, but it is an opt-in and requires additional syntax. Chapter 4
explored the association of resource management with object lifetime through destructors and the
RAII idiom, demonstrating one of C++’s main strengths in that essentially all resources (including
memory) can be handled implicitly through the very mechanics of the language.

C++ allows the use of raw pointers in code but does not actively encourage it. Quite the contrary,
in fact - raw pointers are a low-level facility, extremely efficient but easy to misuse, and for which it
is not easy to infer responsibility about the pointee directly from the source code. Starting with the
(now-removed) auto_ptr<T> facility of decades past, there has been an effort in the C++ community
to define abstractions around lower-level facilities, such as raw pointers, through types that provide
clear, well-defined semantics and reduce the risk of programming errors. This effort has met with
significant success, in large part due to the expressiveness of the C++ language and its ability to create
powerful and efficient abstractions, without losing speed or using more memory at runtime. For this
reason, in contemporary C++, raw pointers are usually encapsulated underneath harder-to-misuse
abstractions, examples of which include standard containers and smart pointers, such as the ones we
will explore in this chapter; raw pointers that are not encapsulated are mostly used to mean “Here’s a
resource you can use but do not own?

This chapter will look at how to use the standard smart pointer types of C++. We will first look at
what they are, and then delve into ways to use the main smart pointer types efficiently. Finally, we will
look at those moments where we need to “get our hands dirty” (so to speak) and use raw pointers,
ideally (but not only) through the mediation of smart pointers. This should lead us to learn how to
choose standard smart pointers for a given use case, how to use them appropriately, and how to handle
resources that have to be freed through custom mechanisms. Throughout this journey, we will keep
in mind and explain the costs of the choices we make.
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In this chapter, we will do the following:

o Take a quick look at the general idea of standard smart pointers to develop an idea of their
reason for being

o Look more closely at std: :unique ptr, including how it can be used to handle scalars,
arrays, and release resources that are allocated in atypical ways

« Lookatstd: :shared ptr and the use cases for this essential but more costly type, in order
to grasp when alternatives should be preferred

o Takea quicklook at std: :weak ptr,acompanionto std: :shared ptr thatis useful
when there is a need to model temporary shared ownership

o Look at cases where raw pointers should be used, as they still have their place in the C++ ecosystem

Ready? Let’s dive in!

Technical requirements

You can find the code files for this chapter in the book’s GitHub repository here: https://github.
com/PacktPublishing/C-Plus-Plus-Memory-Management /tree/main/chapters.

The standard smart pointers

C++ has a relatively small zoo of smart pointers. Before looking at the set of options provided by the
standard, let’s take a moment to show the problem we are trying to solve. Consider the following
(deliberately incomplete) program. Do you see anything wrong with it?

class X {
/] ...
b 5
X *£();
void g(X *p);
void h() {
X *p = £();
g(p) i
delete p;


https://github.com/PacktPublishing/C-Plus-Plus-Memory-Management/tree/main/chapter5
https://github.com/PacktPublishing/C-Plus-Plus-Memory-Management/tree/main/chapter5

The standard smart pointers

This is code that is legal but not something you want to see in a contemporary program. There’s just so
much that can go wrong here, such as the following from a non-exhaustive list of potential problems:

o We don’t know whether g () will call delete p,leading to a second delete (on a destroyed
object!) in h () afterward

o We don't know whether g () might throw, in which case the delete p; instructioninh ()
will never be reached

o We don’t know whether h () should be assumed to own p, in the sense that we do not know
whether it should be responsible for calling operator delete () on p (maybe it's meant
to be the responsibility of g (), or some other function)

o We do not know whether what p points to has been allocated with new, new [1, or something else
(malloc (), some facility from another language, some custom utility in your code base, etc.)

o We don’t even know whether what p points to has been dynamically allocated at all; p could
point to a global or a static variable declared in £ (), for example (a bad idea, but some
people do that - for example, when implementing the singleton design pattern in a non-idiomatic
way for C++)

Compare, for example, two possible implementations of £ () (there are many, many more we could
consider, but these will suffice for now):

X *£() { // here’s one possibility
return new X;

}

X *f£() { // here’s another
static X x;

return &Xx;

}

In the first case, it might make sense to call delete on the returned pointer, but in the second case,
it would be disastrous to do so. Nothing in the function’s signature clearly informs the client code
whether we are facing one situation or the other, or even something else entirely.

As a “bonus” of sorts, what happens if someone calls £ () without using the returned value? If £ ()
is implemented as return new X; or something similar, then the code will leak - an unpleasant
perspective indeed. Note that since C++17, you can mitigate this specific problem by annotating
the return type of £ () with the [ [nodiscard]] attribute, but it’s still something you should be
aware of. Returning raw pointers from a function is something we mostly try to avoid, even though
we sometimes have to do so.
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There are other possible pitfalls here, and they all have a common theme - using raw pointers, we
traditionally cannot tell from the source code what the semantics are. More specifically, we cannot say
for sure who is responsible for both the pointer and what it points to. The fact that raw pointers do
not provide clear ownership information has been a recurring source of bugs in C++ over the years.

Now, for a different situation, consider the following code excerpt:

//
void £() {
X *p = new X;
thread tho{ [pl { /* use *p */ };

{

thread thl{ [p] { /* use *p */ };
tho.detach() ;

thl.detach() ;

}

In this case, £ () allocates an X object pointed to by p, after which two threads, tho and th1l, copy p
(thus sharing the X object that p points to). Finally, tho and th1 are detached, meaning that the threads
will run until completion, even after £ () is done. If we do not know in what order tho and th1 will
conclude, we cannot clearly state which one should be responsible for calling operator delete ()
on p. This is yet another issue of unclear responsibility over the pointee but of a different kind than
our first example, and as such, it needs a different solution.

For the cases where there is a clearly identified last owner of a pointed-to object, regardless of whether
the pointee is shared or not between pointers, you probably want to use std: :unique ptr.In
the (more niche, but very real and quite subtle) case where the pointed-to object is shared by at
least two “co-owners” and the order in which these owners will be destroyed is a priori unknown,
std: :shared_ptr is the tool of choice. The following sections go into the roles and meaning of
these types in more detail, hopefully helping you make an informed choice when choosing a smart
pointer type for a given use case.

On the exposition of intent through function signatures

Even though we have not looked in detail at the standard smart pointers yet, it might be appropriate to
offer a few words on what they mean, in particular for std: :unique ptrand std::shared ptr.
These two types convey ownership semantics — std: :unique_ ptr represents sole ownership of
the pointee, and std: : shared_ptr represents co-ownership (or shared ownership) of the pointee.

It's important to understand the difference between owning (in particular, co-owning) a pointee and
sharing a pointee. Consider the following example, which uses std: :unique ptr (even though
we have not covered it yet, but we're getting there) and raw pointers together in order to inscribe
ownership semantics in the type system:

#include <memory>
#include <iostream>
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// print pointee() shares a pointer with the caller
// but does not take ownership
template <class T> void print pointee(T *p) {
if (p) std::cout << *p << ‘\n’;
}
std::unique ptr<T> make one(const T &arg)
return std::make unique<Ts>(arg) ;
}
int main() {
auto p = make_one(3); // p is a std::unique_ptr<int>
print pointee(p.get()); // caller and callee share the
// pointer during this call

}

As mentioned when introducing this example, we used a std: :unique_ptr object to model
ownership - make one () constructs std: :unique ptr<T> and transfers ownership to the
caller; then, that caller keeps ownership of that object and shares the underlying pointer with others
(here, print_pointee () ) but does not relinquish ownership of the pointee. Using yet not owning
is modeled by a raw pointer. This shows us in a highly simplified setting that there is a difference
between owning and sharing a resource - p in main () owns the resource, yet it shares it with the
non-owner, p, in print_pointee (). This is all safe and idiomatic C++ code.

Knowing that the standard smart pointer types model represents ownership, we know that as long as
there is a single, clear last user of a resource, std: :unique_ ptr tends to be the type of choice; it
is much more lightweight than std: : shared ptr (as we will see), and it provides the appropriate
ownership semantics.

There are, of course, use cases where std: :unique_ptr is not a good choice. Consider this
simplified, not thread-safe, and incomplete code excerpt:

class entity ({

bool taken{ false };
public:

void take() { taken = true; }

void release() { taken = false; }

bool taken() const { return taken; }

//
b s
constexpr int N = ...;
// entities is where the entity objects live. We did
// not allocate them dynamically, but if we had we would
// have used unique ptr<entity> as this will be the
// single last point of use for these objects
array<entity,N> entities;
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class nothing left{};
// this function returns a non-owning pointer (Chapter 6
// will cover more ergonomic options than a raw pointer)

entity * borrow one() {
if (auto p = find if (begin(entities), end(entities),
[] (auto && e) { return !e.taken(); };
p != end(entities)) {
p->take () ;

return &(*p); // non-owning pointer

}

throw nothing left{};

}

Note that borrow_one () shares a pointer with the calling code but does not share ownership of
that pointer — the provider of the ent ity objects remains solely responsible for the lifetime of these
objects in this case. This would neither be a case for std: :unique_ ptr (the sole owner of the
resource) nor std: : shared ptr (the co-owner of the resource). There are alternatives to using
raw pointers to express a non-owning pointer, as we will see in Chapter 6.

The important point here is that function signatures convey meaning, and it’s important to use the
types that convey our intent. To do so, we have to understand that intent. Let’s keep that in mind as
we explore how to use the standard smart pointers to our advantage in the following sections.

Type unique_ptr

As its name suggests, a unique ptr<T> object represents sole (unique) ownership of a pointed-to
object. That happens to be a common case - maybe even the most common case - of ownership
semantics when dealing with dynamically allocated memory.

Consider our first (still deliberately incomplete) example in this chapter, where ownership of the pointee
was not something we could determine from the source code, and let’s rewrite it with unique ptr
objects instead of raw pointers:

#include <memory>
class X {
//
¥
std::unique ptr<X> f();
void g(std::unique ptr<X>&);
void h() {
// we could write std::unique ptr<X> instead of auto
auto p = £();
g(p) i
} // p implicitly releases the pointed-to X object here



Type unique_ptr 85

With this code, it’s clear that the object returned by £ () is responsible for the lifetime of the X object
it points to, and it’s also clear that g () uses the enclosed X* without becoming responsible for the
pointed-to X object. Add to this the fact that p is an object and, as such, will be destroyed if g ()
throws or if £ () is called in such a way that the calling code forgets to use the return value, and you
get an exception-safe program — one that’s shorter and simpler than the original one!

( 7

Murphy and Machiavelli

You might be thinking, “But I'm sure I could steal the pointer managed by the std: :unique_
ptring (), and you would be correct. Not only is it possible but also easy, as unique ptr
gives you direct access to the underlying pointer in more than one way. However, the type
system is designed to protect us from accidents and make reasonable well-written code work
well. It will protect you from Murphy, the accidents that happen, not from Machiavelli, the
deliberately hostile code.

If you write deliberately broken code, you will end up with a deliberately broken program. It’s
pretty much what you would expect.
. J

In terms of semantics, you could tell a story just with function signatures, using std: :unique ptr
objects. Note that in the following example, the functions have been left deliberately incomplete to
make it clear that we are concerned with their signatures only:

//

// dynamically create an X or something derived from

// X and return it without risk of a leak

unique ptr<X> factory(args):;

// pass-by-value which means in practice pass-by-movement
// since unique ptr is uncopiable

unique ptr<X> borrowing (unique ptr<X>);

// pass-by-reference to allow mutating the pointee. In
// practice, X* would be a better choice here

void possible mutation(unique ptr<X>&);

// pass by reference-to-const to consult the pointee but
// not mutate it. In practice, prefer const X* here
void consult(const unique ptr<X>&);

// sink () consumes the object passed as argument : gets
// in, never gets out. This could use pass-by-value but
// intent is probably clearer with a rvalue-reference
void sink(unique ptr<X> &&);

//

As we can see, function signatures talk to us. It’s better if we pay attention.
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Handling objects

The unique ptr type is a remarkable tool, one you should strive to get acquainted with if you
have not done so already. Here are some interesting facts about that type and how it can be used to
manage pointers to objects.

Aunique ptr<T> object is non-copyable, as its copy constructor and copy assignment member
functions are marked as deleted. That'’s why g () in the first example of the Type unique_ptr section
takes its argument by reference — g () shares the pointee with the caller but does not take ownership of
it. We could also have expressed g () as taking X* as an argument, with the contemporary acceptance
that function arguments that are raw pointers are meant to model using a pointer but without owning it:

#include <memory>
class X {
//
¥
std::unique ptr<X> £();
void g(X¥*);
void h() {
// we could write std::unique ptr<X> instead of auto
auto p = £();
g(p.get());
} // p implicitly releases the pointed-to X object here

unique ptr<Ts isalso movable - a moved-from unique ptr<T> behaves like a null pointer,
as the movement for this type semantically implements a transfer of ownership. This makes it simpler
to implement various types that need to manage resources indirectly.

Consider, for example, the following solar system class, which supposes a hypothetical Planet
type as well as a hypothetical implementation for create planet ():

#include “planet.h”
#include <memorys>
#include <string>
#include <vectors
std::unique ptr<Planets>
create planet (std::string view name) ;
class solar_ system {
std::vector<std::unique ptr<Planet>> planets {
create planet (“mercury.data”),
create planet (“venus.data”), // etc.
i
public:
// solar system is uncopyable by default
// solar system is movable by default
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// no need to write ~solar system as planets
// manages its resources implicitly

i

If we had decided to implement solar_ systemwith vector<Planet*> oras Planet* instead,
then the memory management of our type would have to be performed by solar systemitself,
adding to the complexity of that type. Since we used a vector<unique_ptr<Planet>>, everything
is implicitly correct by default. Of course, depending on what we are doing, vector<Planet >
might be even better, but let’s suppose we need pointers for the sake of the example.

Aunique_ ptr<T> offers most of the same operations as T*, including operator* () and
operator-> (), as well as the ability to compare them with == or ! = to see whether two unique
ptr<T> objects point to the same T object. The latter two might seem strange, as the type represents
sole ownership of the pointee, but you could use references to unique ptr<Ts>, in which case these
functions make sense:

#include <memorys>
template <class T>
bool point to same (const std::unique ptr<T> &pO,
const std::unique ptr<T> &pl) {
return p0 == pl;
}
template <class T>
bool have same_value (const std::unique ptr<T> &pO,
const std::unique ptr<T> &pl) {
return p0 && pl && *p0 == *pl;
}
#include <casserts>
int main() {
// two distinct pointers to objects with same value
std::unique ptr<int> a{ new int { 3 } };
std::unique ptr<int> b{ new int { 3 } };
assert (point to same(a, a) && have same value(a, a));
assert (!point_to same(a, b) && have same value(a, b)) ;

}

For good reasons, you cannot do pointer arithmetic on unique ptr<Ts>.If you need to do pointer
arithmetic (and we sometimes will - for example, when we write our own containers in Chapter 13),
it’s always possible to get to the raw pointer owned by a unique pointer<Ts> through its get ()

member function. This is often useful when interfacing with C libraries, making system calls, or calling
functions that use a raw pointer without taking ownership of it.
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Oh, and here’s a fun fact - sizeof (unique ptr<T>)==sizeof (T*) with a few exceptions that
will be discussed later in this chapter. This means that there’s generally no cost in terms of memory
space to using a smart pointer instead of a raw pointer. In other words, by default, the only state found
inaunique ptr<Ts> objectis T*.

Handling arrays
A nijce aspect of unique_ptr is that it offers a specialization to handle arrays. Consider the following:

void f (int n) {
// p points to an int of value 3
std::unique ptr<int> p{ new int{ 3 } };
// q points to an array of n int objects
// initialized to zero
std::unique ptr<int[l> g{ new int[n]l {} };
// example usage
std::cout << *p << ‘\n’; // displays 3
for(int i = 0; i != n; ++1i) {
// operator[] supported for unique ptr<TI[]>
qlil = 1i + 1;
}
//
} // the destructor of q calls delete [] on its pointee
// the destructor of p calls delete on its pointee

What, you might think, is the use case for this? Well, it all depends on your needs. For example, if
you require a variable-sized array of T that grows as needed, use vector<Tsx. It's a wonderful tool
and extremely efficient if used well.

If you want a fixed-sized array that’s small enough to fit on your execution stack where the number of
elements, N, is known at compile time, use a raw array of T or an object of type std: :array<T, N>.

If you want a fixed-sized array that’s either not small enough to fit on your execution stack or where
the number of elements, n, is known at runtime, you can use vector<T>, but you'll pay for facilities
you might not require (vector<T> remains an awesome choice, that being said), or you could use
unique ptr<T[]>. Note that if you go for this latter option, you will end up having to track the size
yourself, separately from the actual array, since unique ptr does no such tracking. Alternatively,
of course, you can wrap it in your own abstraction, such as fixed size array<T>, as follows:

#include <cstddef>
#include <memorys>
template <class T>
class fixed size array ({
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std::size t nelems{};
std::unique ptr<T[]> elems {};
public:

fixed size array() = default;

auto size() const { return nelems; }

bool empty () const { return size() =

fixed size array(std::size t n)
nelems { n }, elems{ new T[n] {} } {

}

T& operator[] (int n) { return elems[n]; }
const T& operator[] (int n) const { return elems[n] ; }
// etc.

}i

This is a naive implementation that brings together knowledge of the number of elements with implicit
ownership of the resource. Note that we don’t have to write the copy operations (unless we want to
implement them!), the move operations, or the destructor, as they all implicitly do something reasonable.
Also, this type will be relatively efficient if type T is trivially constructible but will (really) not be as
efficient as vector<T> for numerous use cases. Why is that? Well, it so happens that vector does
significantly better memory management than we do... but we'll get there.

Note that, as with scalar types, the fact that sizeof (unique ptr<T[]>) isequalto sizeof (T*)
is also true, which I'm sure we can all appreciate.

Custom deleters

You might think, “Well, in my code base, we don’t use delete to deallocate objects because [insert your
favorite reason here], so I cannot use unique_ ptr.” There are indeed many situations where applying
operator delete on a pointer to destroy the pointed-to object is not an option:

o Sometimes, T: : ~T () is private or protected, making it inaccessible to other classes
suchasunique ptr<Ts.

o Sometimes, the finalization semantics require doing something else than calling delete - for
example, calling a destroy () or release () member function

o Sometimes, the expectation is to call a free function that will perform auxiliary work in addition
to freeing a resource.
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No matter what the reasons are for freeing a resource in an unconventional manner, unique ptr<T>
can take a custom deleter that will perform those custom resource deallocation tasks. A custom
deleter can be a functor or a function that will be applied to the T* stored within unique ptr<T>
when the destructor of that smart pointer is called. Indeed, the actual signature of the unique ptr
template is as follows:

template<class T, class D = std::default delete<T>>
class unique ptr {
//
i

Here, default delete<Ts itself is essentially the following:

template<class T> struct default delete ({
constexpr default delete() noexcept = default;
//

constexpr void operator () (T *p) const { delete p; }

b

The presence of a default type for D is what usually allows us to write code that ignores that parameter.
The D parameter in the unique ptr<T, D> signature is expected to be stateless, as it’s not stored
within the unique ptr object but instantiated as needed, and then it’s used as a function that takes
the pointer and does whatever is required to finalize the pointee.

As such, imagine the following class with a private destructor, a common technique if you seek
to prevent instantiation through other means than dynamic allocation (you cannot use an automatic
or a static object of that type, since it cannot be implicitly destroyed):

#include <memory>
class requires dynamic alloc {
~requires dynamic_alloc() = default; // private
//
friend struct cleaner;
}i
//
struct cleaner {
template <class T>
void operator () (T *p) const { delete p; }
}i
int main()
using namespace std;
// requires dynamic alloc r0; // no
//auto p0 = unique ptr<requires dynamic_alloc>{
// new requires dynamic_alloc
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//}; // no, as delete not available to default deleter

auto pl = unique ptr<requires dynamic alloc, cleaner>{
new requires dynamic alloc

}; // ok, will use cleaner::operator() to delete pointee

}

Note that by making the cleaner functor its friend, the requires_dynamic_alloc class lets
cleaner specifically access both its protected and private members, which includes access
to its private destructor.

Imagine now that we are using an object through an interface that hides from client code information
on whether we are the sole owner of the pointed-to resource, or whether we share that resource with
others. Also, imagine that the potential sharing of that resource is done through intrusive means, as
is done on many platforms, such that the way to signal that we are disconnecting from that resource
is to call its release () member function, which will, in turn, either take into account that we
have disconnected or free the resource if we were its last users. To simplify client code, our code base
hasa release () free function that calls the release () member function on such a pointer if
it is non-null.

We can still use unique ptr for this, but note the syntax, which is slightly different, as we will
need to pass the function pointer as an argument to the constructor, since that pointer will be stored
within. Thus, this specialization of unique ptr with a function pointer as a deleter leads to a slight
size increase:

#include <memorys>
struct releasable ({
void release()
// overly simplified for the sake of this example
delete this;
}
protected:
~releasable () = default;
b5
class important resource : public releasable {
//
bi
void release (releasable *p) {
if (p) p->release();
}
int main() {
using namespace std;
auto p = unique ptr<important resource,
void (*) (releasable*) >{
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new important resource, release

}i // ok, will use release() to delete pointee

}

If the extra cost of a function pointer’s size (plus alignment) in the size of unique ptr is unacceptable
(for example, because you are on a resource-constrained platform or because you have a container
with many unique_ ptr objects, which makes the costs increase significantly faster), there’s a neat
trick you can play by pushing the runtime use of the deleter function into the wonderful world

of the type system:

#include <memory>
struct releasable (
void release() {

// overly simplified for the sake of this example

delete this;

}

protected:
~releasable() = default;

IF

class important resource : public releasable {
//

b 5
void release (releasable *p) {
if (p) p->release();
}
int main()
using namespace std;
auto p = unique ptr<important resource,
void(*) (releasable*) >{
new important resource, release

}i: // ok, will use release() to delete pointee

static assert(sizeof(p) > sizeof (void*));
auto g = unique ptr<
important resource,
decltype ([] (auto p) { release(p); })>{
new important resource
bi
static_assert(sizeof(q) == sizeof (void¥));

}

As you can see, in the case of p, we used a function pointer as a deleter, which requires storing the
address of the function, whereas with g, we replaced the function pointer with the type of a hypothetical
lambda, which will, when instantiated, call that function, passing the pointer as an argument. It’s

simple and can save space if used judiciously!
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make_unique

Since C++14, unique ptr<T> hasbeen accompanied by a factory function that perfectly forwards
its arguments to a constructor of T, allocates and constructs the T as well as unique ptr<T> to
hold it, and returns the resulting object. That function is std: :make unique<T> (args...),
and a naive implementation would be as follows:

template <class T, class ... Args>
std::unique ptr<T> make unique (Args &&... args) {
return std::unique ptr<T>{
new T (std::forward<Args>(args)...);

}

There are also variants to create a T [], of course. You might wonder what the point of such a function
is, and indeed, that function was not shipped along with unique ptr initially (unique ptris
a C++11 type), but consider the following (contrived) example:

template <class T»>

class pair with alloc {
T 90, “Plg

public:
pair with alloc(const T &val0O, const T &vall)

p0{ new T(valo) }, pl{ new T(vall) } {
}
~pair with alloc() {
delete pl; delete pO0;

}
// copy and move operations left to your imagination

I e

We can suppose from this example that this class is used when, for some reason, client code prefers
to dynamically allocate the T objects (in practice, using objects rather than pointers to objects makes
your life simpler). Knowing that subobjects in a C++ object are constructed in order of declaration,
we know that p0 will be constructed before p1:

// :
T *p0, *pl; // p0 declared before pl

public:

// below:

// - new T(val0) will occur before construction of po0
// - new T(vall) will occur before construction of pl
// - construction of p0 will precede construction of pl

pair with alloc(const T &valO, const T &vall)
po{ new T(valo) }, pl{ new T(vall) } {
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//

However, suppose that the order of operations isnew T (val0), the construction of p0, new T (vall),
and the construction of p1. What happens then if new T (vall) throws an exception, either because
new fails to allocate sufficient memory or because the constructor of T fails? You might be tempted
to think that the destructor of pair with alloc will clean up, but that will not be the case - for
a destructor to be called, the corresponding constructor must have completed first; otherwise, there
is no object to destroy!

There are ways around this ,of course. One of them might be to use unique ptr<Ts> instead
of T*, which would be wonderful, given that this is what we’re currently discussing! Let’s rewrite
pair with alloc that way:

#include <memorys>
template <class T>
class pair with alloc {
std::unique ptr<T> p0, pl;
public:
pair with alloc(const T &val0, const T &vall)
p0{ new T(valO) }, pl{ new T(vall) } {
}
// destructor implicitly correct
// copy and move operations implicitly work
// or are left to your imagination

b5

With this version, if the order of operations is new T (val0), the construction of p0,new T (vall),
the construction of p1, then if new T (vall) throws an exception, thepair with alloc object
will still not be destroyed (it has not been constructed). However, p0 itself has been constructed by
that point, and as such, it will be destroyed. Our code has suddenly become simpler and safer!

What then has that to do with make unique<Ts> () ? Well, there’s a hidden trap here. Let’s look
closer at the order of operations in our constructor:

// 5
std::unique ptr<T> p0, pl; // p0 declared before pl

public:

// below, suppose we identify the operations as follows:

// A: new T(valoO)

// B: construction of p0

// C: new T(vall)

// D: construction of pl

// We know that:

// - A precedes B
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// - C precedes D
// - B precedes D
pair with alloc(const T &val0O, const T &vall)

//

p0{ new T(valo) }, pl{ new T(vall) } {

If you look at the rules laid out in the comments, you will see that we could have the operations in
the following order, A>B->C->D, but we could also have them ordered as A>C>B->D or C>A->B-D,
in which case the two calls tonew T (.. .) would occur, followed by the two unique ptr<Ts>
constructors. If this happens, then an exception thrown by the second call to new or the associated
constructor of T would still lead to a resource leak.

Now, that’s a shame. But that’s also the point of make unique<Ts> () - with a factory function,
client code never finds itself with “floating results from calls to new”; it either has a complete

unique ptr<T> object or not:

#include
template
class

<memory>
<class T>
pair with alloc {

std::unique ptr<T> p0, pl;

public:

pair with alloc(const T &val0O, const T &vall)

}
//
//
//
b5
#include
#include
#include

p0{ std::make unique<T>(val0) },
pl{ std::make unique<T>(vall) } {

destructor implicitly correct
copy and move operations implicitly work
or are left to your imagination

<string>
<random>

<iostream>

class risky {

std::mt19937 prng{ std::random device{} () };
0

std::uniform int distribution<ints> penny{ 0,1 };
public:
risky () = default;

risky (const risky &) {

if (penny (prng)) throw 3; // throws 50% of the time

}

~risky () {

std::cout << “~risky()\n”;
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I
int main()
// the following objects do not leak even if
// an exception is thrown
if (std::string s0, sl; std::cin >> s0 >> sl)
try {
pair with alloc a{ s0, sl };
pair with alloc b{ risky{}, risky{} };
} catch(...) {
std::cerr << “Something was thrown...\n”;

}

As you can see, make unique<Ts> () isa security feature, mostly useful to avoid exposing ownerless
resources in client code. As a bonus, make unique<T> () allows us to limit how we repeat ourselves
in source code. Check the following:

unique ptr<some type> p0 { new some type{ args } };
auto pl = unique ptr<some type> { new some type{ args } };
auto p2 = make unique<some types>(args) ;

As you can see, p0 and p1 require you to spell the name of the pointed-to type twice whereas p2
only requires you to write it once. That’s always nice.

Types shared_ptr and weak_ptr

In most cases, unique ptr<T> will be your smart pointer of choice. It’s small, fast, and does what
most code requires. There are some specialized but important use cases where unique ptr<T> is
not what you need, and these have in common the following:

 The semantics being conveyed is the shared ownership of the resource

o The last owner of the resource is not known a priori (which mostly happens in concurrent code)

Note that if the execution is not concurrent, you will, in general, know who the last owner of the
resource is — it’s the last object to observe the resource that will be destroyed in the program. This is
an important point — you can have concurrent code that shares resources and still uses unique ptr
to manage the resource. Non-owning users of the resource, such as raw pointers, can access it without
taking ownership (more on that later in this chapter), and this approach is sufficient.

You can, of course, have non-concurrent code where the last owner of a resource is not known a
priori. An example might involve a protocol where the provider of the resource still holds on to it after
returning it to the client, but they might be asked to release it at a later point while client code retains
it, making the client the last owner from that point on, or they might never be asked to release it, in
which case the provider might be the last owner of the resource. Such situations are highly specific,
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obviously, but they show that there might be reasons to use shared ownership semantics as expressed
through std: : shared_ptr, even in non-concurrent code.

Since concurrent code remains the posterchild for situations where the last owner of a shared resource
is not known a priori, we will use this as a basis for our investigation. Remember this example from
the beginning of this chapter:

//

void £() {
X *p = new X;
thread tho{ [p] { /* use *p */ };
thread thi{ [p] { /* use *p */ };
th0.detach () ;
thl.detach() ;

}

Here,pin £ () does not own the X it points to, being a raw pointer, and both tho0 and th1 copy that
raw pointer, so neither is responsible for the pointee (at least on the basis of the rules enforced by the
type system; you could envision acrobatics to make this work, but it’s involved, tricky, and bug-prone).

This example can be amended to have clear ownership semantics by shifting p from X* to shared
ptr<X>.Indeed, let’s consider the following:

//

void £() {
std::shared ptr<X> p { new X };
thread tho{ [p] { /* use *p */ };
thread thi{ [p] { /* use *p */ };
tho.detach() ;
thl.detach() ;

}

In £ (), the p object is initially the sole owner of the X it points to. When p is copied, as it is in the
capture blocks of the lambdas executed by tho and th1l, the mechanics of shared ptr ensure
that p and its two copies share both X* and an integral counter, used to determine how many shared
owners there are for the resource.

The key functions of shared ptr are its copy constructor (shares the resource and increments the
counter), copy assignment (disconnects from the original resource, decrementing its counter, and then
connects to the new resource, incrementing its counter), and the destructor (decrements the counter
and destroys the resource if there’s no owner left). Each of these functions is subtle to implement; to
help understand what the stakes are, we will provide simplified implementation examples in Chapter 6.
Move semantics, unsurprisingly, implement transfer of ownership semantics for shared ptr.
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Note that shared ptr<Ts> implements extrusive (non-intrusive) shared ownership semantics. Type
T could be a fundamental type and does not need to implement a particular interface for this type
to work. This differs from the intrusive shared semantics that were mentioned earlier in this chapter,
with the releasable type an example.

Usefulness and costs

There are intrinsic costs to the shared ptr<T> model. The most obvious one is that sizeof (shared
ptr<T>) >sizeof (unique ptr<Ts>) for any type T, since shared ptr<Ts> needs to handle
both a pointer to the shared resource and a pointer to the shared counter.

Another cost is that copying a shared ptr<T> is not a cheap operation. Remember that shared
ptr<T> makes sense mostly in concurrent code, where you do not know a priori the last owner of a
resource. For that reason, the increments and decrements of the shared counter require synchronization,
meaning that the counter is typically an atomic integer, and mutating an atomic<int > object
(for example) costs more than mutating an int.

Another non-negligible cost is the following:

shared ptr<X> p{ new X };

An instruction such as this one will lead to two allocations, not one - there will be one for the X
object and another one (performed internally by the shared_ptr) for the counter. Since these two
allocations will be done separately, one by the client code and one by the constructor itself, the two
allocated objects might find themselves in distinct cache lines, potentially leading to a loss of efficiency
when accessing the shared ptr object.

make_shared()

There is a way to alleviate the latter cost, and that is to make the same entity perform both allocations,
instead of letting the client code do one and the constructor do the other. The standard tool to achieve
this is the std: :make shared<T> () factory function.

Compare the following two instructions:

shared ptr<X> p{ new X(args) };
auto g = make shared<Xs> (args) ;

When constructing p, shared ptr<Xs is provided an existing X* to manage, so it has no choice
but to perform a second, separate allocation for the shared counter. Conversely, the call expressed
asmake shared<Xs> (args) specifies the type X to construct along with the arguments args
to forward directly to the constructor. It falls upon that function to create shared ptr<Xs,X,
and the shared counter, which lets us put both X and the counter in the same contiguous space (the
control block), using mechanisms such as a union or the placement new mechanism, which will be
explored in Chapter 7.
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Clearly, given the same arguments used for construction, the preceding p and g will be equivalent
shared_ptr<Xs> objects, but in general, g will perform better than p, as its two key components
will be organized in a more cache-friendly manner.

What about weak_ptr?

If shared ptr<Ts isa type with a narrower (yet essential) niche than unique ptr<Ts>,weak
ptr<T> occupies an even narrower (but still essential) niche. The role of weak ptr<T> is to model
the temporary ownership of T. Type weak ptr<T> is meant to interact with shared ptr<T>in
a way that makes the continued existence of the pointee testable from client code.

A good example of weak ptr usage, inspired by the excellent cppreference website (https://
en.cppreference.com/w/cpp/memory/weak ptr),is as follows:

// inspired from a cppreference example
#include <iostream>
#include <memorys>
#include <formats>
void observe (std::weak ptr<int> w) {
if (std::shared ptr<int> sh = w.lock())
std::cout << std::format (“*sh == {}\n”, *sh);
else
std::cout << “w is expired\n”;
}
int main() {
std::weak ptr<int> w;
{
auto sh = std::make shared<int>(3);
w = sh; // weak ptr made from shared ptr
// w points to a live shared ptr<int> here
observe (w) ;
}
// w points to an expired shared ptr<int> here

observe (w) ;

}

As this example shows, you can make weak _ptr<T> from shared ptr<Ts>,butweak ptr
does not own the resource until you call 1ock () onit, yielding shared ptr<Ts>, from which you
can safely use the resource after having verified that it does not model an empty pointer.
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Another use case for std: :weak_ptr and std: :shared ptr would be a cache of resources
such that the following occurs:

« The data in a Resource object is sufficiently big or costly to duplicate that it’s preferable to
share it than to copy it

o A Cache object shares the objects it stores, but it needs to invalidate them before replacing
them when its capacity is reached

In such a situation, a Cache object could hold std: : shared ptr<Resourcex objects but
provide its client code, std: : weak ptr<Resources, on demand, such that the Resource
objects can be disposed of when the Cache needs to do so, but the client code needs to be able to
verify that the objects it points to have not yet been invalidated.

A tull (simplified) example would be the following (see the GitHub repository for this book to get
the full example):

//
template <auto Cap>
class Cache ({
using clock = std::chrono::system clock;
// a cache of capacity Cap that keeps the
// most recently used Resource objects
std: :vector<std: :pair<
decltype (clock: :now() ),
std: :shared ptr<Resource>
>> resources;
bool full() const { return resources.size() == Cap; }
// precondition: !resources.empty ()
void expunge one () {
auto p = std::min_element (
std: :begin(resources), std::end(resources),
[] (auto && a, auto && b)
return a.first < b.first;

) 8
assert (p != std::end(resources)) ;
p->second.reset(); // relinquish ownership
resources.erase (p) ;

}

public:

void add(Resource *p) {
const auto t = clock::now() ;
if (fFull () {

expunge one () ;



Types shared_ptr and weak_ptr

}

resources.emplace_back(
t, std::shared ptr<Resource>{ p }
)
}
std: :weak ptr<Resource> obtain (Resource::id type id) {
const auto t = clock::now() ;
auto p = std::find if(
std: :begin (resources) ,
std: :end (resources) ,
[id] (auto && p) {
return p.second->id() == id;

)i
if (p == std::end(resources))
return {};
p->first = t;
return p->second; // make weak ptr from shared ptr

5

int main()
Cache<5> cache;
for(int 1 = 0; 1 != 5; ++1)
cache.add (new Resource{ i + 1 });
// let’s take a pointer to resource 3
auto p = cache.obtain(3);
if (auto q = p.lock(); q)
std::cout << “Using resource “ << g->id() << ‘\n’;
// things happen, resources get added, used, etc.
for(int 1 = 6; 1 != 15; ++1)
cache.add (new Resource{ i + 1 });
if (auto q = p.lock(); q)
std::cout << “Using resource “ << g->id() << ‘\n’;
else
std::cout << “Resource not available ...\n”;

}

After a sufficient number of additions to the cache, the object pointed to by p in main () becomes
invalidated and erased from the set of resources, one of our requirements for this example (without that
requirement, we could have simply used std: : shared ptr objects in this case). Yet,main () can
test for the validity of the object pointed to by p through the construction of std: : shared ptr

from the std: :weak ptr it holds.
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In practice, weak_ptr is sometimes used to break cycles when shared ptr objects refer to each
other in some way. If you have two types whose objects mutually refer to one another (say, X and
Y) and do not know which one will be destroyed first, then consider making one of them the owner
(shared ptr) and the other one the non-owner in a verifiable manner (weak _ptr), which will
ensure that they will not keep each other alive forever. For example, this will conclude, but the X and
Y destructors will never be called:

#include <memory>
#include <iostream>
struct Y;
struct X {
std: :shared_ptr<Y¥> p;
~X() { std::cout << “~X()\n"; }
IF:
struct Y {
std: :shared ptr<X> p;
~Y() { std::cout << “~Y()\n"; }

}i

void oops () {
auto x = std::make shared<X>() ;
auto y = std::make_ shared<Y>() ;
X->p = Yi
Y->p = X;

}

int main()
oops () ;
std::cout << “Done\n”;

}

If you change either X: :por Y: :p to weak ptr, you will see both the X and Y destructors being called:

#include <memorys>
#include <iostream>
struct Y;
struct X {
std::weak ptr<¥> p;
~X() { std::cout << “~X()\n”; }
b5
struct Y {
std::shared ptr<X> p;
~Y() { std::cout << “~Y()\n”; }
}i
void oops () {
auto x = std::make shared<X>() ;
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auto y = std::make shared<Y¥>();

X->p = y;
y->p = X;
}
int main() {
oops () ;

std: :cout << “Done\n”;

}

Of course, the easiest way not to get to the point where you face a cycle of shared ptr<T> objects is
to not build such a cycle, but when faced with external libraries and third-party tools, that’s sometimes
easier said than done.

When to use raw pointers

We have seen that smart pointer types such as unique ptr<Ts>and shared ptr<Ts> shine
when there is a need to describe ownership of a type T resource through the type system. Does that
mean that T* has become useless?

No, of course not. The trick is to use it in controlled situations. The first is that for a function, being
passed a T* as an argument should mean the function is an observer, not an owner, of that T. If your
code base used raw pointers in that sense, you will most probably not run into trouble.

Secondly, you can use a raw pointer inside a class that implements your preferred ownership semantics.
It’s fine to implement a container that manipulates objects through raw pointers (for example, a tree-
like structure meant for various traversal orders), as long as that container implements clear copy and
move semantics. What you don’t want to do is expose pointers to the internal nodes of your container
to external code. Pay attention to the container’s interface.

Indeed, consider this single-linked list of (excerpt):

template <class T>
class single linked list {
struct node ({
T value;
node *next = nullptr;
node (const T &val) : value { val } {
b5
node *head = nullptr;
//
public:
//
~single linked list () ({
for(auto p = head; p;)
auto g = p->next;
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delete p;
p = g

i

We will explore this example in greater detail in Chapter 13. The destructor works fine and (supposing
the rest of the class is reasonably well-written) the class is usable and useful. Now, suppose we decide
touse unique ptr<nodes instead of node* as the head data member for single linked
list, and as a replacement for the next member of the node. This seems like a good idea, except
when you consider the consequences:

template <class T>
class single linked list {
struct node ({
T value;
unique ptr<node> next; // good idea?

node (const T &val) : value { val } {
¥
unique ptr<node> head; // good idea?
//
public:
//

~single linked list() = default;

bi

This seems like a good idea on the surface, but it does not convey the proper semantics - it’s not true
that a node owns and is responsible for the next node. We don’t want to make the removal of a node
destroy the node that follows (and so on, recursively) and if that looks like a simplification in the
destructor of single linked 1list, think about the consequences - this strategy leads to as
many destructors recursively called as there are nodes in the list, which is a very good way to achieve
a stack overflow!

Use a smart pointer when the use case matches the semantics it models. Of course, when the relationship
modeled by your pointers is neither unique ownership nor shared ownership, you probably do not
want smart pointer types that provide these semantics, resorting instead to either nonstandard and
non-owning smart pointers or, simply, raw pointers.



Summary

Finally, you often need raw pointers to use lower-level interfaces - for example, when performing
system calls. That does not disqualify higher-level abstractions, such as vector<T> or unique
ptr<T>, when writing system-level code - you can get access to the underlying array of vector<T>
through its data () member function, just as you can get access to the underlying raw pointer of
unique ptr<Ts> through its get () member function. As long as it makes sense, see the called
code as borrowing the pointer from the caller code for the duration of the call.

And if you have no other choice, use raw pointers. They exist, after all, and they work. Simply remember
to use higher-level abstractions wherever possible - it will make your code simpler, safer, and (more
often than you would think) faster. If you cannot define the higher-level semantics, maybe it’s still a
bit early to write that part of the code, and you’ll get better results if you spend more time thinking
about these semantics.

Summary

In this chapter, we saw how to use standard smart pointers. We discussed the ownership semantics
they implement (sole ownership, shared co-ownership, and temporary co-ownership), saw examples
of how they can be used, and discussed some ways in which they can be used while acknowledging
that other, more appropriate options exist.

In the next chapter, we'll take this a step further and write our own (usable, if naive) versions of
unique ptr<Ts>and shared ptr<Ts>,in order to get an intuitive grasp of what this entails, and
we will write some nonstandard but useful smart pointers too. This will help us build a nicer, more
interesting resource management toolset.
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In Chapter 5, we examined the standard smart pointers at our disposal, with emphasis on the most
important ones: unique ptr<T>and shared ptr<Ts. These types are precious and important
tools in every contemporary C++ programmer’s toolbox, and using them when appropriate leads to
programs that are smaller, faster, and simpler than they would be with most handwritten alternatives.

This book aims to discuss how to manage memory in a C++ program. For that reason, in this chapter,
we will write simple versions of both unique ptr<Ts> and shared ptr<T> to show ways in
which one could write naive-yet-workable versions of these types if needed. We strongly recommend
that you use the standard versions in practice, not those in this book (at least in production code):
standard versions have been thoroughly tested, optimized, and used by a multitude of programmers
to good effect. The reason we write “homemade” flavors here is simply to develop an intuition as to
how one could write such as type: there still exist companies using pre-C++11 compilers, sometimes
for reasonable reasons, and there might be reasons in some settings to write a smart pointer inspired
by the standard ones yet slightly different.

We will then examine some niches not covered by the standard smart pointers, either because they are
deemed simple enough that users can roll out their own, they are deemed specialized enough that they
should be covered through third-party libraries, or there is no clear path to standardizing them yet.

To summarize, in this chapter, we will do the following:

« Take a brieflook at ownership semantics, those of the standard smart pointers as well as others
that we could - and sometimes will - implement ourselves.

o Implement our own naive-yet-usable version of std: :unique ptr in order to grasp some
of the techniques this might entail.

o Implement our own naive-yet-usable version of std: : shared ptr. Note that by “usable”
here we mean usable in simple contexts, as a full implementation of something such as
std: :shared ptr is significantly more complex than what a book such as this one can
reasonably cover.
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o Implement a non-standard smart pointer with single ownership and duplication semantics,
showing different techniques to achieve this objective.

« Implement two distinct non-owning “smart” pointers that are very lightweight types yet help
write better and safer code.

After reading this chapter, we should have a better grasp of the techniques involved in writing types that
syntactically behave as pointers but provide (or simply clarify) ownership semantics. The techniques
used should be in large part reusable to other types of problems, memory-management related or not.

Does that sound like a plan? Let’s get to it then!

Technical requirements

You can find the code files for this chapter in the book’s GitHub repository here: https://github.
com/PacktPublishing/C-Plus-Plus-Memory-Management/tree/main/chapters.

Ownership semantics

Smart pointers are all about clarifying ownership over indirectly accessed resources. If we restrict
ourselves to the standard facilities, smart or not-so-smart, what we have is the following:

Type Niche

unique_ptr<T> | Ownership semantics: Single ownership.

Notable special member functions: Non-copyable. The destructor is
responsible for destroying the pointee.

shared_ptr<T> | Ownership semantics: Shared ownership.

Notable special member functions: Copying, assigning, and destroying
update a shared use count. The destructor of the last co-owner is
responsible for destroying both the pointee and the use count.

T Ownership semantics: No ownership is defined in the type system
(ownership rules have to be inscribed in user code).

Notable special member functions: Not applicable (this is a
fundamental type).

Table 6.1 - Usage category per pointer type
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It’s a small zoo, all things considered. What are the other kinds of semantics we could envision in
order to fill this table? Well, there could be the following:

o Anobserver ptr<Ts> type that behaves like T* but makes it more difficult to accidentally claim
ownership with such operations as applying delete on the pointer (accidents happen indeed)

« Anon null ptr<T> type that behaves like T* but for which a null pointer never occurs,
simplifying client code

e Aremote ptr<Ts> type that behaves like a proxy to remote pointees

e Adup ptr<Ts> type that implements single ownership of the pointee, as unique ptr<T>
does, but is copyable and duplicates the pointee when dup ptr<T> is copied, and so on

We will not implement all of these (the remote ptr<Ts> case in particular, interesting as it is, falls
outside the scope of this book, and there are numerous other exotic semantics we could entertain
that you are welcome to implement based on the ideas you will find in this chapter), but we will write
a few. The important aspect in each case is to define clearly what the intended semantics are, ensure
they are not already covered by an existing type, and make sure we implement them appropriately.

Let’s start with a simple implementation of what is perhaps the best-known standard smart
pointer: unique ptr.

Writing your own (naive) unique_ptr

We will first try a simple, homegrown version of std: :unique ptr<Ts>. As mentioned at the
beginning of this chapter, our goal is to develop an intuition for the kind of code required to write
such a type and not to encourage you to try to replace the standard facilities: they exist, they work,
they are tested, use them. Oh, and they use many cool tricks we cannot explore in this book as we
want to keep the booK’s size under control!

Type signature

As mentioned in Chapter 5, unique ptr<T> does not really exist as the type is, in fact, unique
ptr<T, D>, where D defaults to default deleter<Ts.

We will cover both forms (scalar and array) of unique ptr. The reason for these two specializations
is that for T [], we will want unique_ ptr to expose operator [] but we will not want to expose
this for a scalar T type.
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Let’s start with the basic deleter types we will offer. Note that users can supply other deleter types if
needed as long as they use the same signature for operator ():

namespace managing memory book {
// basic deleter types
template <class T»>
struct deleter pointer wrapper ({
void (*pf) (T*);
deleter pointer wrapper (void (*pf) (T*)) : pf{ pf } {
}
void operator () (T* p) const { pf(p); }
i
template <class T>
struct default deleter ({
void operator () (T* p) const { delete p; }
b s
template <class T»>
struct default deleter<T[]> {
void operator () (T* p) const { deletel] p; }
b5
//
}

What we have so far are three deleter types that are callable in the same way and that are all class types
(the reason for this will become evident soon but know that there’s sometimes value in uniformity).
The odd one is deleter pointer wrapper<Ts>, which wraps a copyable state (a function
pointer) but otherwise behaves like the other two: when called on T*, it applies some (user-supplied)
function to that pointer.

The next step will be to choose the form of unique ptr<T, D>. We will expect most deleters to
be stateless and use empty base optimization (EBO) to our advantage by deriving from our deleter
type. The one exception will be when the deleter is a function pointer, as we cannot use such a type
as a base class; in that case, we will instead derive from deleter pointer wrapper<Ts.To
choose between these two options, we will need to detect whether D is a function pointer or not, which
we will achieve using our own is_deleter function candidate<T> trait.

The part of our implementation that detects deleter function candidates is the following:

#include <type traits>
namespace managing memory book {
//
template <class T>
struct is deleter function candidate
std::false type {};
template <class T>
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}

struct is deleter function candidate<void (*) (T*)>
std: :true type {};
template <class T>
constexpr auto is deleter function candidate v =
is_deleter function_ candidate<T>::value;

!/

This bit is probably self-explanatory, but the idea is that most types are not candidates to be deleter
functions, but functions of the void (*) (T*) type are.

We then get to the general unique ptr<T> type, used for scalars. We will use our deleter function
detection trait to conditionally choose between D types and deleter pointer wrapper<Ts>
as the base class for our type, and cast this to a pointer to that base in order to release the resource
in our destructor:

namespace managing memory book {

//
// unique ptr general template
template <class T, class D = default deleter<T>>
class unique ptr : std::conditional t <
is deleter function candidate v<D>,
deleter pointer wrapper<T>, D
>
using deleter type = std::conditional t <
is deleter function candidate v<D>,
deleter pointer wrapper<Ts>,
D
>p
T* p = nullptr;
public:
unique ptr() = default;
unique ptr(T* p) : p{ p } {
}
unique ptr(T* p, void (*pf) (T*))
deleter type{ pf }, p{ p } {
}
~unique ptr() {
(*static cast<deleter type*>(this)) (p);
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The same approach, essentially, is taken for the T [] specialization of our type:

namespace managing memory book {
//
// unique ptr specialization for arrays
template <class T, class D>
class unique ptr<T[], D> : std::conditional t <
is _deleter function candidate v<D>,
deleter pointer wrapper<Ts>,
D
> {
using deleter type = std::conditional t <
is_deleter function candidate v<D>,
deleter pointer wrapper<Ts>,
D
>
T* p = nullptr;
public:
unique ptr() = default;
unique ptr(T* p) : p{ p } {
}
unique ptr(T* p, void (*pf) (T*))
deleter_type{ pf }, p{ p } {
}
~unique ptr() {
(*static cast<deleter type*>(this)) (p);

}i
}

Notice that a default unique_ptr will behave conceptually like a null pointer, something that
should be unsurprising to most. Now that we have the basic idea in place, let’s explore the semantics
specific to unique ptr.

Special member functions

The code for the special member functions will be the same for both the scalar and the array forms of
unique_ ptr. We have already looked at the destructor and the default constructor in the previous
section, so let’s look at the other four, in pairs:

o We want the type to be non-copyable, as it represents sole ownership of the pointee (if it was
copyable, would ownership of the pointee belong to the original or the copy?)

o We want move operations to implement the transfer of ownership
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The code for both the general case and its array specialization will be as follows (note that the code
uses std: :exchange () and std: : swap (), both found in the <utility> header):

//

//

unique ptr (const unique ptr&) = delete;
unique ptr& operator=(const unique ptr&) = delete;
void swap (unique ptr &other) noexcept
using std::swap;
swap (p, other.p);
}
unique ptr (unique ptr &&other) noexcept
p{ std::exchange(other.p, nullptr) } {
}
unique ptr& operator=(unique ptr &&other) noexcept {
unique ptr{ std::move (other) }.swap (*this);

return *this;

Most of this should be self-evident by this point. You might notice the use of std: : exchange (),
which has the effect of copying other.p to this->p and then copying nullptr to other.p,
implementing the transfer of ownership as expected. Note that move operations for our type are trivial
and never throw, both of which are highly desirable properties.

There are some operations that will be implemented in both the general case and the array case, namely,
operator bool (true only if the object does not model a null pointer), empty () (true only
if the object does model anull pointer), as well as operator== () and operator!= (). These
are essentially trivial to implement. The other member function we will want to expose is get () in
both its const and non-const versions in order to expose the underlying pointer for client code
that needs to interact with lower-level functions such as system calls:

//

bool empty() const noexcept { return !p; }
operator bool() const noexcept { return !empty(); }
bool operator==(const unique ptr &other)
const noexcept {
return p == other.p;
}
// inferred from operator==() since C++20
bool operator!=(const unique ptr &other)
const noexcept {
return ! (*this == other) ;
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T *get () noexcept { return p; }
const T *get () const noexcept { return p; }

//

As mentioned in the comments in the preceding code excerpt, one does not need to explicitly implement
operator!=() since C++20 aslong as operator== () offers the expected signature. The compiler
will synthesize operator!=() from operator== (), quite simply.

Now, let’s take a look at how the operator* (), operator->(),and operator[] () pointer-
like functions are implemented.

Pointer-like functions

The pointer-like functions are different for the scalar case and the array case. For pointer-to-scalar,
we will want to implement operator* () and operator-> ():

//
T& operator* () noexcept { return *p; }
const T& operator* () const noexcept { return *p; }
T* operator->() noexcept { return p; }
const T* operator->() const noexcept { return p; }
//

The operator-> () member function is a strange beast: when used on an object, it will be reinvoked
on the returned object (and again on that returned object, and so on) until something returns a raw
pointer, at which point the compiler will know what to do. It’s a very powerful mechanism.

For pointer-to-array (the unique ptr<T [] > specialization), we will want to implement operator [],
which will make more sense than either operator* () or operator->():

//
T& operator|[] (std::size t n) noexcept {
return pl[n];
}
const T& operator[] (std::size t n) const noexcept {
return pl[n];
}
//

You might notice the apparent duplication of these member functions as each one is exposed in both
a const and non-const form, a “trend” started by the get () member function a bit earlier. This
is a syntactic resemblance as they are semantically different: in particular, only the const form is
available through a const unique ptr<T> object.
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If you have a C++23 compiler, you can make it so the compiler will synthesize the forms you use in
practice given a properly written set of template member functions:

// the following is for both the array and non-array cases
template <class U>
decltype (auto) get (this U && self) noexcept {
return self.p;
}
// the following two are only for the non-array case
template <class U>
decltype (auto) operator* (this U && self) noexcept {
return *(self.p);
}
template <class U>
decltype (auto) operator->(this U && self) noexcept {
return self.p;
}
// the following is only for the array case
template <class U>
decltype (auto) operator|[] (this U && self,
std::size t n) noexcept ({
return self.pln];

}

This reduces the number of member functions we have to write by half. How does this work? Well,
C++23 introduces the “deduced this” mechanism that allows one to explicitly mark the first argument
of a member function with the this keyword. Doing so and combining it with a forwarding reference
(the U&& type) lets the compiler deduce the const-ness (or lack thereof) of this, in effect, expressing
both the const and non-const versions in a single function. Note the decltype (auto)

return types that accompany these functions, which infer both the cv-qualifications (discussed in
Chapter 3) and reference-ness of the return type based on the type of the expression evaluated in the
return statement.

And that’s it! We now have a simple, yet functional unique ptr<Ts> implementation that works
for most use cases.

Of course, as nice as it is, unique_ptr<T> is not a panacea and there are other needs to be covered
in real programs. Let’s move on to a simplified implementation of shared ptr<T=> to see how we
could implement shared ownership semantics.
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A simple program that uses our homemade unique ptr<T> with a default deleter would be as follows:

// ... (our own unique ptr<T> goes here...)
struct X {};
int main()
unique ptr<X> p{ new X };
} // X::~X() called here

Another that uses a custom deleter would be as follows:

// ... (our own unique ptr<T> goes here...)
class X {

~X () {}
public:

static void destroy (X *p) { delete p; }
¥
int main()

unique ptr<X, &X::destroy> p{ new X };
} // X::destroy(p.get()) called here

Writing your own (naive) shared_ptr

A shared ptr<T> type is a difficult beast to implement and a harder beast yet to optimize. The
invitation to use the standard version of existing smart pointers is stronger in this case than it was
forunique ptr<Ts>: this type is hard to get right, and the standard version benefits from years of
experience and testing. Only use the naive version in this section for experimentation (it works and
does the job for simple cases, but writing an industrial-strength implementation is major-league work).

The main difficulty when writing a shared_ptr is that it’s a type with two responsibilities: it co-owns
both the pointee and the usage counter, requiring some measure of care, especially with respect to
exception safety. The single responsibility principle of classical object-oriented programming is a
sound principle: a type with a single responsibility is exceedingly simpler to get right than a type with
two or more responsibilities.

To keep our proposition simple, we will eschew many details of the standard shared ptr contract,
limiting ourselves to managing a scalar T. Let’s take this type step by step:

#include <atomics

#include <utilitys>

namespace managing memory book {
// naive shared ptr
template <class T>
class shared ptr {
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T* p = nullptr;
std::atomic<long long> *ctr = nullptr;

//

As mentioned previously, shared_ptr<Ts> is responsible for T* and a pointer to a client counter,
both of which need to be managed and shared between co-owners. Note that our shared counter is a
pointer to an atomic integral since shared ptr<Ts> is particularly relevant in multithreaded cases
where one does not know which of the threads will be the last user of the object. For that reason,
operations such as incrementing and decrementing the counter require synchronization to avoid
incurring a data race.

( 7
Avoiding data races

If a program meets a situation where a given object is (a) accessed concurrently by at least two
threads, (b) at least one of these accesses is a write, and (c) there is no synchronization, then
that program has what we call a data race and we essentially lose the capacity to reason about
it from the source code. This is a really bad situation.

In our case, operations on the shared counter will most probably be done concurrently and,

as such, they have to be synchronized. This explains our use of the low-level synchronization
objects that are atomic integrals as counters.

. J

Constructing a shared_ptr<T> object can be tricky:

« By default, we will define shared_ptr<T> to be empty, thus conceptually equivalent to a
null pointer.

o The constructor of shared ptr<Ts> that takes T* as an argument represents the act of
taking ownership of the pointee. For that reason, if an exception is thrown when allocating the
counter, that pointee is destroyed.

« The copy constructor will represent sharing ownership of the pointee, making sure to consider
the case where the source object models a null pointer.

o The move constructor models the transfer of ownership. As is often the case for move operations,
it’s very fast and it shows highly predictable behavior.

As can be seen from the following code excerpt, with a type that has more than one responsibility,
even construction is a delicate endeavor. In the constructor that takes T*, we might need to allocate
the shared counter, which might throw, a situation we need to manage. In the copy constructor, we
need to take into account that the argument might model an empty shared ptr<Ts>, in which
case the shared counter would be null:

//
public:
shared ptr() = default;
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//

The empty () and operator bool () member functions have been included in that excerpt since
these functions directly tie into the way the default constructor (the empty state of this type) is expressed.

The assignment operator is unsurprising: copy assignment models the act of releasing control of the
currently held resource and sharing the resource of its argument, whereas move assignment models
the act of releasing control of the currently held resource and transferring control of the resource held

shared ptr(T* p) : p{ p } {
if (p) try {

ctr = new std::atomic<long long>{ 1LL };

} catch(...) {
delete p;
throw;

}

shared ptr (const shared ptr &other)
p{ other.p }, ctr{ other.ctr } {
if (ctr) ++(*ctr);
}
shared ptr(shared ptr &&other) noexcept
p{ std::exchange (other.p, nullptr) },
ctr{ std::exchange (other.ctr, nullptr)

}

bool empty() const noexcept { return !p; }

operator bool () const noexcept { return !empty(); }

by the argument to the assigned-to object:

//

void swap (shared ptr &other) noexcept ({
using std::swap;
swap (p, other.p);
swap (ctr, other.ctr);

}

A

shared ptr& operator=(const shared ptr &other)

shared ptr{ other }.swap (*this);
return *this;

}

shared ptré& operator=(shared ptr &&other) noexcept {

shared ptr{ std::move (other) }.swap(*this);

return *this;

{
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Destruction is probably the trickiest aspect of this type. We want to make sure that the last owner of
the pointee destroys it, to avoid immortal objects. The key point is that shared_ptr<T> should
only destroy the pointed-to T object if it was the last user of that object.

There are at least two “self-evident” naive algorithms that do not work. One is If ctr is not null, then
if *ctr==1, delete p and delete ctr. This algorithm allows the case where two threads enter the
destructor concurrently with * ct r==2. In that case, it is possible that neither thread sees *ctr==1,

and the pointees are never destroyed:

tho

Enters
~shared_ptr<T>()

th1

\

Sees ctr = nullptr

\

\

Evaluates *ctr,
sees 2

\

(*ctr)-- but
destroys neither
ctrnorp

\

{ Consequence: neither ctr nor p is destroyed JB
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~shared_ptr<T>()

\

Sees ctr = nullptr

\
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destroys neither
ctrnorp

\

Figure 6.1 — Race condition leading to an immortal object

The other is If ctr is not null, then decrement *ctrx. If *ctr==0, delete p and delete ctr. This
algorithm allows the case where two threads enter the destructor concurrently with *ctr==2, and
then both concurrently decrement * ctr leading to the possibility of both seeing *ct r==0, resulting

in a double deletion of the pointees:
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tho

Enters
~shared_ptr<T>()

th1

\

Sees ctr = nullptr

\

Enters
~shared_ptr<T>()

Sees ctr = nullptr

/

(*ctr)-- (*ctr)-
/guates *ctr, 4; but

sees 0, destroys destroys neither
ctrand p ctrnor p
// | —

{ Consequence: both ctr and p are destroyed twice }
Figure 6.2 — Race condition leading to double deletion of the object

Both cases are bad, albeit for different reasons, so we need to do better. The difficult part of the process
is ensuring that the executing thread can be made aware that it is the one that made it so *ctr became
zero. The general solution to such a problem requires enclosing two steps (changing the value of a
variable only if it had a known-beforehand value and being informed that this write did or did not
happen) in a single operation, something that must be supported by at least one hardware operation
on a multicore machine.

C++ offers abstractions over these essential hardware operations through atomics. One such atomic
operation is named compare exchange weak (), which takes the expected value (what is
believed to be in the variable) and the desired value (what one seeks to write to that variable, but
only if it holds expected), and returns t rue only if the write actually happened. For convenience,
expected is taken by reference and updated with the value actually held by the object at that time,
since this function is usually called in a loop until a successful write of desired actually occurs, which
involves re-reading expected every time to update the function’s view of the variable’s current state.
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.

A dance with pictures

This expected and desired dance can be seen as taking pictures. A thread wants to
decrement *ctr, but *ctr holds a mutable state and is accessed concurrently, which means
its value can change at any time. Thus, we take a picture (expected) in a local variable under
our control. We base the value we want to write (desired) on that local picture that we know
did not change. Then, we try to act based on that (potentially obsolete) knowledge and see
whether our assumption (that * ctr holds expected) is held. This lets us know that we were
the ones to write desiredin *ctr.

~N

With this knowledge, a possible implementation of the destructor would be the following:

//
~shared ptr() ({
if (ctr)
auto expected = ctr->load() ;
auto desired = expected - 1;
while (ctr->compare exchange weak (expected,
desired))
desired = expected - 1;
if (desired == 0) { // I was the last user of *p
delete p;
delete ctr;
}
}
}
//

After the loop, we know that we wrote desired when *ctr held expected, thus if desired
was 0 (implying expected was 1), we know we were the last user of that pointee. Yes, it’s subtle.

And this is only a toy version of shared_ ptr<Ts>. We could optimize it in many ways, but that

goes beyond the scope of this book.

r

A simpler solution

The solution shown here with compare exchange weak () is one of many options at
our disposal. It was preferred for this book because it’s an interesting approach for a general
solution to the concurrent update problem and opens up optimization opportunities if you are
comfortable with memory order constraints (which we will not go into here). In this specific
case, we could have replaced the loop with something like 1 £ ( (*ctr) -- == 1),asifone
decrements *ctr atomically and the value previously held was 1, then we know for a fact
that *ctx is now 0.
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The other important member functions of our shared ptr<T> implementation involve comparison
(operator==and operator!=), the get () member functions that let one obtain the underlying, raw
T~ for code that needs it, and the indirection operators that are operator* () and operator-> ():

//

bool operator==(const shared ptr &other)
const noexcept { return p == other.p; }

// inferred from operator==() since C++20

bool operator!=(const shared ptr &other)
const noexcept { return ! (*this == other); }
T *get () noexcept { return p; }
const T *get () const noexcept { return p; }
T& operator* () noexcept { return *p; }
const T& operator* () const noexcept { return *p; }
T* operator->() noexcept { return p; }
const T* operator->() const noexcept { return p; }
b
}

If you want to, feel free to apply the “deduced this” C++23 feature shown in the unique ptr
section earlier to simplify this code. Also remember that in C++20, operator!= () will be inferred
from operator== () and does not need to be written explicitly in the source code.

A very simple example of client code for this smart pointer would be the following:

#include <thread>
#include <chronos>
#include <random>
#include <iostream>
using namespace std::literals;
struct X {
int n;
X(int n) : n{ n } {}
~X() { std::cout << "X::~X()\n"; }
b6
int main()
using managing memory book::shared ptr;
std::mt19937 prng{ std::random device{} () };
std::uniform int distribution<ints> die{ 200, 300 };
shared ptr<X> p{ new X{ 3 } };
using std::chrono::milliseconds; // shortcut
std: :thread tho{ [p, dt = die(prng)] {
std::this thread::sleep for(milliseconds{dt}) ;
std::cout << "end of thO, p->n : " << p->n << '\n';
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Yot

std::thread thi{ [p, dt = die(prng)] {
std::this thread::sleep for (milliseconds{dt}) ;
std::cout << "end of thl, p->n : " << p->n << '\n';

Yo

thl.detach() ;

tho.detach() ;

std::this thread::sleep for (350ms) ;

std::cout << "end main()\n";

}

In this example, tho0 and th1l both sleep for a pseudorandom number of milliseconds, then display
something and conclude execution, so we cannot know in advance which of tho and th1 will conclude
first; both threads are detached, which means there is no later point at which we will call join () on
them, so we cannot suppose that main () is the last user of the shared resource.

The example is contrived to keep it simple, and it bears repeating that as shared ptr<Ts>is
significantly more costly to use than unique ptr<T> would be, one will generally prefer the latter
over the former when there is a clear last owner of the resource.

A few words on make_shared()

It is possible that when reading about C++ in general and shared_ptr<T> in particular, you might
have read that, whenever possible, it is recommended practice to replace this:

std: :shared ptr<X> p{ new X { /* ... args ... */ };

Replace it with the following:

auto p= std::make shared<X>( /* ... args ... */ );

If that is the case, you might be wondering (a) why this is recommended practice, and (b) why we have
not addressed it yet. The answer to (a) we can provide now, but the answer to (b) is that we will need
to wait until we reach Chapter 7 to have the tools and knowledge required to implement such a facility.

To understand why we recommend preferring the make shared<T> () factory function to a direct
call to the shared_ptr<Ts> constructor, the key idea is that with the shared ptr<T> constructor,
the T object is allocated by client code, and given to shared ptr<T> under construction, which
takes ownership of that pointer and allocates a shared counter separately. We then end up with two
allocations (the T object and the counter), probably on separate cache lines.

Now, if we go through make shared<T= (), this factory function is responsible for allocating
both the T object and the counter, perfectly forwarding the arguments received by the function to
the T constructor. Since the same function performs both allocations, it can fuse them in a single
allocation of a memory block that contains both the T object and the counter, putting them both on
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the same cache line. This can lead to enhanced performance characteristics if a single thread tends
to read from both pointers (T* and the counter) in a short time span, but (as can sometimes be the
case) can be hurtful if another thread observes frequent changes to the counter’s value. As is often
the case in optimization-related situations, measure and make sure what works well in general is also
good for your own, specific use cases.

Clearly, to achieve this optimization, we need to be able to create such a block (conceptually, a struct
containing T and an atomic integral) and make sure that shared_ptr<T> can contain either
representation (two separate pointers or a pointer to a block with two objects) while remaining usable
and efficient. Controlled use of the tricks seen in Chapter 2 and Chapter 3 will be helpful when we
get there.

Writing a policy-based duplicating pointer

Let’s leave aside the standard smart pointers for a moment. Suppose we seek to write a smart pointer
type whose semantics fit neither the sole ownership mold of std: :unique ptr<T> nor the
shared ownership mold of std: : shared ptr<Ts>. For the sake of this example, suppose more
specifically that we want single ownership semantics but, unlike std: :unique ptr<Ts>, which is
movable but non-copyable, we want duplication of the pointer to lead to duplication of the pointee.
What can we do?

Well, this is C++, so we can of course write our own. Let’s call this new smart pointer type of ours
dup ptr<Ts> (for “duplicating pointer”, or “pointer that duplicates the pointee”). Since we examined
how one could implement sole ownership through our homemade unique ptr<T> earlier in this
chapter, this section will mostly focus on the question of duplicating the pointee.

What do we mean by duplication? Well, there are two expected cases: copying an object of a
non-polymorphic type and copying an object of a polymorphic type, with polymorphic meaning
“with at least one virtual member function” for the sake of this example. Of course, programmers,
being highly inventive creatures, know that someone will end up with more exotic situations so we
will try to take care of the aforementioned “expected cases” and leave a door open for those with
unusual applications.

Why is there a difference between polymorphic and non-polymorphic types? Consider the
following program:

struct X { int n; };
struct B {

int n;
B(int n) : n{ n } {}
virtual ~B() = default;

¥
struct DO : B {
DO(int n) : B{ n } { /* ... */ }
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//
b5
struct D1 : B {
Di(int n) : B{ n } { /* ... */ }
//
b
// precondition: p != nullptr (to keep things simple)

X* duplicate (X *p) {
return new X{ *p }; // Ok

// precondition: p != nullptr (to keep things simple)
B* duplicate (B *p) {
return new B{ *p }; // Bad idea!

}
#include <memory>
int main() {
using std::unique ptr;
x x{3};
unique ptr<X> px { duplicate(&x) };
DO do{ 4 };

unique ptr<B> pb{ duplicate(&d0) }; // trouble ahead

}

We can suppose that the duplicate (X*) function can safely create an object of the X type since
X has no virtual member function and, as such, is probably not meant to serve as a public base
class. However, there is a high probability that duplicate (B*) does the wrong thing by calling
the constructor of B, as B* passed as an argument could be B or a pointer to an object of any class
derived from B (here, DO*). Hence, calling new B{ *p }; only constructs the base part, slicing
away any state from the pointed-to object and resulting in a probably incorrect program.

As is well known in object-oriented programming circles, the customary way to duplicate an object
of a polymorphic type is through subjective duplication, otherwise known as cloning. Expressed
informally, when one holds a pointer to an object with at least one virtual member function, the
only entity that can really claim to know the type of the pointee is... the pointee itself.

What dup_ptr<T> will do, then, is to pick a duplication policy based on the characteristics of T: by
default, if T is polymorphic, then we will duplicate through cloning; otherwise, we will duplicate through
copying. Of course, we will let the client code specify a custom duplication mechanism if needed.

We will explore three approaches to this selection of a default duplication policy: an intrusive approach
based on interfaces, a non-intrusive approach based on traits and compile-time detection of a cloning
member function using C++17 features, and another non-intrusive approach based on C++20 concepts.
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Detection through interfaces

One thing we could do in user code is impose that cloneable types implement a specific interface, as
in this example:

struct cloneable {
virtual cloneable * clone() const = 0;
virtual ~cloneable() = default;

Iz

Such a solution is probably not standardization-worthy: it is intrusive, imposes some overhead (we are
assuming that cloneable types will be polymorphic types, something that is likely but not mandatory),
and so on. It can be a solution for your own code base, of course. Applying this idea to a revisitation of
the example that mishandled duplication of a polymorphic type, earlier, we end up with the following:

// ... type cloneable
struct X { int n; };
struct B : cloneable { // every B is cloneable

int n;
B(int n) : n{ n } {}
virtual ~B() = default;

B * clone()
protected: // cloneable types are meaningfully copied
// in a subjective manner
B(const B&) = default;
¥

struct DO : B {

DO(int n) : B{ n } { /* ... */ }
DO* clone() const override { return new DO{ *this }; }
//

}i

struct D1 : B {
Dl(int n) : B{ n } { /* ... */ }
D1* clone() const override { return new D1{ *this }; }
//

}i

Now, suppose we want to develop a skeleton of dup ptr<T> that copies types that are not derived
from cloneable and clones types that are. To that effect, we can use the std: : conditional
type trait and choose between two function object types, a Copier type that copies and a Cloner
type that clones:

// ... type cloneable
struct Copier {
template <class T> T* operator() (const T *p) const {
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return new T{ *p };

struct Cloner {
template <class T> T* operator() (const T *p) const {
return p->clone();

}i
#include <type traits>
template <class T,
class Dup = std::conditional t<
std::is base of v<cloneable, T>,
Cloner, Copier
>>
class dup_ptr {
T *p{};
// use an object of type Dup when duplication is
// required: copy constructor and copy assignment
//
public:
dup ptr(const dup ptr &other)
p{ other.empty()? nullptr : Dup{}(other.p) } {

//
bi

This implementation supposes a stateless (no member variables) Dup type, which is highly probable
but should be documented in practice (if we accept stateful Dup types, we need to instantiate a Dup
object and write code to copy and move that object, leading to a much more involved implementation).
With this implementation, any type that derives from cloneable will be cloned and other types
will be copied, unless the user code supplies an exotic implementation of the Dup type.

Detection through traits

If we do not want to impose a base class to our cloneable types, we can use type traits to detect the
presence of a const-qualified clone () member function and suppose this is a reasonable claim
that cloning is a better choice than copying. Note that this non-intrusiveness supposes an unspoken
agreement on the meaning of clone ().

We can achieve this in many ways, but the cleanest and most general one probably uses Dr. Walter
Brown’s std: :void_t type, found in <type traitss since C++17:

// types Cloner and Copier (see above)
template <class, class = void>
struct has clone : std::false type { };
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template <class T>

struct has_clone <T, std::void t<

decltype (std: :declval<const T*>()->clone())

>> : std::true type { };:
template <class T>

constexpr bool has clone v = has clone<T>::value;
template <class T, class Dup = std::conditiomnal t<

has clone v<T>, Cloner, Copier

>> class dup ptr {

T *p{};
public:

//

dup ptr(const dup ptr &other)

p{ other.empty()? nullptr : Dup{}(other.p) } {

//
b

The std: :void_t type is a brilliant piece of work that lets knowledgeable people simulate, in a
limited manner but for general expressions, what requires has allowed since C++20. The way to
read this example is as follows:

o Ingeneral,has clone<T>::valueis false

« Forany T type for which p->clone () for some const T* objectp, has clone<T>::value
istrue

Once the Dup type has been chosen, normal operations continue. The advantage of this implementation
over the previous one is that this one checks for the existence of a suitably written clone () member
function, whereas the previous one checks for the existence of a specific base class. Implementing a
function is a lighter contract than deriving from a specific base class.

( N
A word on std::void_t

The std: :void_t type is a brilliant piece of work. Using it relies on substitution failure
is not an error (SFINAE) to choose between a basic, general implementation that says “no”
and a specialized version that says “yes” when some expression is well-formed. In our case,
has clone<Ts>is false for most types but is t rue when expression p- >clone () is
valid for some const T* object p. That we can easily test the validity of any expression even
before concepts came into their own is just beautiful, and we owe Dr. Walter Brown much for
this gem (among many other gems).
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Detection through concepts

Since C++20, tricks such as std: : void_t are less useful than they were since concepts are now
part of the language’s type system. Through concepts, we can define a cloneable type, T, to be
something for which a call to clone () is well-formed on const T* and yields something that is
convertible to T*.

With this, we have the following:

template <class T>
concept cloneable = requires(const T *p) {
{ p->clone() } -> std::convertible to<T*>;
}:
template <class T, class Dup = std::conditional t<
cloneable<T>, Cloner, Copier
>> class dup ptr {
T *p{};
public:
//
dup ptr(const dup ptr &other)
p{ other.empty()? nullptr : Dup{}(other.p) } {

//
b5

Concepts, like traits, are a non-intrusive solution to this problem. Where traits are a programming
technique, however, they are ingrained in the type system and we can (for example) write code that’s
specialized for cloneable<T> and code that is not. In our case, the fact that we want to leave the door
open for types that use neither the copy constructor nor a clone () member function suggests that
the current setup, which lets client code supply other duplication mechanisms, is probably preferable.

C++26

C++26 will contain two standard types named std: : indirect and std: :polymorphic
that will cover a niche close to the one described by this dup ptr. It was voted in on February
15 2025.
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Some not-so-smart yet useful smart pointers

So we have standard smart pointers, such as unique ptr<T> (single ownership) and shared
ptr<T> (shared ownership), and we can write our own for more exotic situations (we examined
dup_ptr<T> where we have single ownership but duplication of the pointee when the pointer is
duplicated). Are there other common semantics we might want to ensconce in the type system of
our program?

Well, there are at least two “easy” ones one could think of: implementing a “never null” semantic and
implementing an “only observing” semantic.

A non_null_ptr type
Let’s go back to an earlier example where we wrote the following:

//
// precondition: p != nullptr (to keep things simple)
X* duplicate (X *p)
return new X{ *p }; // Ok
}
//

Note the comment, which puts the burden of not supplying a null pointer on user code. We could
have approached this constraint in many other ways, including the following:

o Asserting !p
o Calling std: :abort () if Ip
o Calling std: :terminate() if Ip

o 'Throwing if ! p, and so on

The important thing is that if we care about pointers being non-null, and if we inject 1 £ (! p) tests
in our runtime code, we are probably doing something wrong as this could (or should?) be part of
the type system: this function only accepts non-null pointers. Code speaks louder than comments.

This idea appears in some commercial libraries (for example, gsl: :non null<T> from the
guideline support library offered by some major compiler vendors) and is easy to implement as long
as one has a clear way of signaling errors. For the sake of the example, we will suppose that this clear
way is throwing an exception:

class invalid pointer {};
template <class T>
class non_null ptr {
T *p;
public:
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non null ptr(T *p) : p{ p } {
if (!p) throw invalid pointer{};

}

T* get() const { return p; }

constexpr operator bool () const noexcept {
return true;

//

Using this type, any function that accepts anon_null ptr<T> argument knows that the T*
pointer therein will be non-null, relieving client code from the burden of validation. This makes
non null ptr<Ts> abeautiful type for the interface of functions that expect a non-null T*.

The rest of this class is mostly trivial to write at this point. The key peculiarity is that non_null
ptr<T> will not expose a default constructor, as that constructor would have to initialize the p data
member to some default value (probably nullptr) but the non null ptr<Ts> type modelsa
non-null pointer, which would lead to nonsensical code.

In terms of usage, take a look at this:

struct X { int n; };
class invalid {};
int extract value(const X *p) {
if (!p) throw invalid{};
return p->n;
}
#include <iostream>
int main() try {
X x{ 3 };
std::cout << extract value(&x) << '\n'
<< extract value (nullptr) << '\n'
} catch(invalid)
std: :cerr << "oops\n";

}

Now, compare it with this, supposing that non null ptr<Ts> throws when constructed with a
null pointer:

// definition of the non null ptr type (omitted)
struct X { int n; };
int extract value (const non null ptr<X> &p) {
return p->n; // no need for validation as it stems
// from the type system itself
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#include <iostream>
int main() try {
X x{ 3 };
std::cout << extract value(&x) << '\n'
<< extract value (nullptr) << '\n';
} catch(...) {
std::cerr << "oops\n";

}

The two main advantages of non_null ptr<Ts> over T* in this case are that the type system
documents the intent better with non_null ptr<T> (with T*, a null pointer might be fine, but with
non null ptr<Ts,itisclearly not) and that the called functions can proceed without validating,
the validation being (again) ingrained in the type system. Using a richer type than T* makes both
caller code and called code better.

What if the called function needs T*? This can happen, for example, in the case where it needs to
call a C function. Well, then, use the non _null ptr<Ts> object’s get () member function. C++
is nothing if not pragmatic.

An observer_ptr type

How about having a very dumb smart pointer type named observer ptr<T> that solely cares about
expressing the idea that that “smart” pointer is, indeed, not a pointer, in the sense that operations that
would apply to a raw pointer are restricted on that type. The canonical issue is that applying delete
on T* would work but applying delete on observer ptr<T> would not since observer
ptr<Ts> is... not a pointer. Indeed, consider the following:

class X { /* ... */ };
void £(X *p) {
// use *p
// we passed a raw pointer to f£(), so f() should

// observe it, not own it
delete p; // wait! You're not supposed to do that!

}

You might say, as the comment states, “But that function’s not supposed to do that! It does not own *p!”
but, well, mistakes happen, as do misunderstandings. In this case, the impact of misunderstandings is
made worse by the fact that nothing in the argument’s type states that applying operator delete
to p is incorrect!
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Now, let’s change the signature slightly:

class X { /* ... */ };
void f (observer ptr<X> p) {
// use *p

// delete p; // nope, does not compile

}

The “use *p” comment remains the same in both versions. The observer ptr<Ts> type offers
almost trivial versions of all reasonable operators and member functions (get (), operator* (),
operator-> (), empty (), and so on) so usage of T* and of observer ptr<T> should be
mostly equivalent in user code; the only difference is in misguided uses such as applying delete or
performing pointer arithmetic.

Sometimes, just clarifying intent in a function interface makes code better.

Summary

In Chapter 5, we spent some time on the proper usage of standard smart pointers. In the current
chapter, we “dirtied our hands,” so to speak, and we wrote homemade (and simplified) versions of
unique ptr<Ts>and shared ptr<T>. As mentioned more than once, this is meant as an
educational exploration, as your library vendor assuredly provides significantly better (more complete,
more performant, better tested, etc.) implementations in both cases.

In this chapter, we also explored the possibility of providing homemade smart pointer types, with
a policy-based dup ptr<T> based on three distinct approaches to the selection of a duplication
algorithm. The intent was to show that it can be done, how it can be done, and how we can provide
reasonable, usable defaults without blocking user code with more exotic requirements.

Toward the end of this chapter, we examined some relatively simple (but useful) smart (well, lightly
smart) pointers that can be used at the edges of functions (typically, as argument types) to make
semantic requirements implicit through the type system instead of forcing user code to enforce these
requirements explicitly... and sometimes fail to do so.

Unsurprisingly, memory management is not limited to smart pointers. In the next chapter, we will
explore how the new, new[], delete, and delete [] operators work, how we can implement
them ourselves, and why we sometimes want to do so.






Part 3:
Taking Control (of Memory
Management Mechanisms)

In this part, we will delve somewhat deeper and examine ways in which you can take over some of the
core memory allocation mechanisms in the C++ language and customize them to your needs. We will
see how you can control what operators such as new and delete do, how to use specialized knowledge
to obtain specific execution properties, and how these operators can be used in innovative ways. We
will also use this knowledge for a few real-life applications and to achieve fast, sometimes extremely
fast, memory management operations.

This part has the following chapters:

o Chapter 7, Overloading Memory Allocation Operators

o Chapter 8, Writing a Naive Leak Detector

o Chapter 9, Atypical Allocation Mechanisms

o Chapter 10, Arena-Based Memory Management and Other Optimizations

Chapter 11, Deferred Reclamation
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Allocation Operators

Enjoying yourself so far? I hope you are! We are at the point where we hold all the keys and can start
to do what this book advertises and look in more detail at how memory management works in C++.
It’s not a simple topic, nor is it something trivial, so we needed to make sure we were ready... but we
are now, so let’s do it!

Chapter 5 and Chapter 6 examined the standard tools one can use to ensconce responsibility over
dynamically allocated resources into the C++ type system through smart pointers, the ones provided
by the standard as well as those we could write to fill other niches. Using smart pointers instead of
raw pointers as data members and function return types tends to simplify (and clarify) a significant
proportion of memory management tasks in C++ programs.

Sometimes, we want to work at a lower level than this and take control over what happens when
someone writes new X. The reasons for wanting such control are numerous, and we will explore a
few in this book, but in this chapter, we will focus on the basics of memory management functions
and how to take control of these mechanisms in C++.

After these basics are covered, we will do the following:

« See how our knowledge of the memory allocation mechanisms of C++ lets us write a simple
(yet working) leak detector in Chapter 8

o Examine how one can manage atypical (persistent, shared, and so on) memory in C++ in
Chapter 9

o Write arena-based memory allocation in Chapter 10 to ensure deterministic time allocation
and deallocation, leading to blazingly fast implementations of new and delete when context
allows it
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Later chapters will use the knowledge acquired in this chapter and the ones that follow to write efficient
containers and deferred reclamation mechanisms that resemble a garbage collector. Past that point,
we will examine how containers can use these facilities, with and without allocators.

Why would one overload allocation functions?

Before we start discussing how to overload memory allocation mechanisms, let’s take a step back
and examine why one would want to do this. Indeed, most programmers (even experienced ones)
never end up doing anything of the sort, and we could wager that a majority of programmers never
thought they had a reason to do so. Yet, we will allocate (!) a few chapters to that very topic. There
has to be a reason...

The thing about memory allocation is that there’s no perfect solution to the problem in general; there
are many good solutions on average, and there are very good solutions to more specialized versions
of the problem. What constitutes a good solution for a given use case in programming language A
might be inappropriate for another use case or in programming language B.

Take, for example, languages where is it idiomatic to allocate dynamically large numbers of small objects,
something customary of Java or C#. In such a language, one could expect the allocation strategies to
be optimized for that usage pattern. In a language such as C, where one would tend to allocate when
faced with objects too large to put on the stack or when using node-based data structures for example,
the best dynamic memory allocation strategy could be quite different. In Chapter 10, we will see an
example where the allocation process benefits from the fact that the allocated objects are all of the
same size and alignment, another interesting use case.

C++ emphasizes control and provides sophisticated and versatile tools to programmers. When facing
a situation where we know the context in which allocations will be performed, we can sometimes use
these tools to do better (even much better, as we will see in Chapter 11!) than a default implementation
would, and for numerous metrics: better execution time, more deterministic execution time, reduced
memory fragmentation, and so on.

Brief overview of the C language allocation functions

Before we get to the memory allocation mechanisms of C++, let’s first take a brief look at the C family
of memory allocation functions through its most distinguished representatives: malloc () and
free (). There are, of course, many other memory-allocation-related functions such as calloc (),
realloc(),andaligned alloc (), not counting operating-system-specific services that perform
similar tasks for specialized use cases, but these will serve our discussion well.

Note that since this is a book on memory management with C++, I will use the C++ version of these
functions (from <cstdlibs> instead of <stdlib.hs>), which really changes nothing to the code
we will write except for the fact that in C++, these functions are located in the std namespace.
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The signatures for these two functions are as follows:

void* malloc(size t n);
void free (void *p) ;

The role of malloc (n) is to find a location where there are at least n consecutive bytes available,
potentially marking that location as “taken” and returning an abstract pointer (a void¥) to the
beginning of that block of memory. Note that the pointer returned has to be aligned for the worst
possible natural case in a given machine, which means that it has to suit the alignment requirements
of std: :max_align_t.On most machines, this type is an alias for double.

Interestingly, it is legal to callmalloc () with n==0, but the results of such a call are implementation-
defined: a call tomalloc (0) could return nullptr but it could also return a non-null pointer.
Note that the pointer returned by malloc (0) should not be dereferenced, regardless of whether
it is null or not.

Ifmalloc () fails to allocate memory, it returns nullptr since the C language does not support
exceptions in the C++ sense. In contemporary C (since C11),amalloc () implementation has to be
thread-safe and has to synchronize appropriately with other C allocation functions if they are called
concurrently, including with free ().

The role of free (p) is to ensure that the memory pointed to by p becomes available for further
allocation requests, as long as p points to a block that has been allocated through a memory allocation
function such asmalloc () and has not yet been freed. It is undefined behavior (UB) to try to
free () an address that has not been allocated through such an allocation function... Don’t do that!
Also, know that once the memory has been freed, it is no longer considered allocated, so code such
as the following leads to UB:

#include <cstdlib>
int main() {
using std::malloc, std::free;
int *p = static cast<int*>(malloc (sizeof (int))) ;
free(p); // fine since it comes from malloc ()
free(p); // NOOOOOO unless (stroke of luck?) p is null

}

As mentioned in the preceding example, free (nullptr) does nothing, and has been defined as
doing nothing for decades as of this writing. If there is code in your code base that verifies p ! =nullptr
before calling free () - for example, 1f (p) free (p) - you can safely get rid of that test.

We will sometimes (not always) use these C functions to implement our homemade C++ allocation
functions. They work, they are well understood, and they are low-level abstractions we can use to our
advantage when building higher-level ones.
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Overview of the C++ allocation operators

In C++, there are many (infinitely many!) flavors of memory allocation operators, but there are rules
to follow when writing your own. The current chapter is mostly about those rules; the chapters that
follow will explore ways to benefit from this freedom C++ gives us:

o C++ lets us overload the global versions of the memory allocation operators. If we do so, then
even things such as new int will use our homemade versions. One has to be careful here
since small mistakes can have a significant impact on code execution: if your implementation
of operator new () isslow, you will slow down most memory allocations in your program!
We will use this approach when writing a simple-yet-working leak detector in Chapter 8.

o C++ lets us overload member function versions of the memory allocation operators. If we
do, then the global versions (overloaded or not) apply in general, but the member function
versions apply for specific types. This can be useful when we have knowledge specific to the
usage pattern of some types but not to others. We will use that to our advantage in Chapter 10.

o C++ lets us overload versions with additional arguments of the memory allocation operators.
In the current chapter, we will examine some standard versions of these operators such as the
nothrow version and the (extremely important) placement new-related versions. We can
also use this feature to benefit from “exotic” memory such as shared memory or persistent
memory, as we will see in Chapter 9.

In each case, memory allocation functions come in groups of four: operator new (), operator
newl[] (),operator delete(),and operator delete[] (). There are some exceptions to
this rule, as we will see, but the rule generally holds. If we overload at least one of these functions, it’s
important that we overload all four to keep the behavior of our program consistent. When playing with
low-level facilities like this, mistakes tend to bite harder than they would otherwise, which explains
why we took so much care in Chapter 2 and Chapter 3 explaining ways we could get in trouble... and
how to play by the rules at the same time.

Memory allocation interacts closely with the object model (see Chapter 1 for the basics) and with
exception safety (a topic that’s pervasive throughout this book), so make sure to grasp these interactions
in the pages and chapters that follow. They will help you make the best of what you will read here.

( A

A word on Heap Allocation Optimization (HALO)

It’s important to know that there are benefits to not overloading memory allocation operators.
One of them is that your library vendor provides very good ones by default; another is that if
you do not overload the memory allocation operators, the compiler can assume that the number
of allocations you make is not observable. This means that it is allowed to replace # calls to
new with a single call that allocates everything at once, and then manages the results as if you
had performed many allocations. That can lead to some spectacular optimizations in practice,
including the removal of calls to new and delete altogether from the generated code even
when they appear in the source code! If in doubt, please make sure that your optimizations
provide measurable benefits before committing them and using them in production code.
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Note that for the allocation operator overloads we will see in this chapter, you will want to include
the <new> header as this is where std: :bad_alloc is declared, among other things, and this is
the type that allocation functions typically use to report failure to allocate.

Global allocation operators

Suppose we want to take control of the global versions of the allocation operators in C++. For the sake
of exposing how this can work, we will simply use them to delegate tomalloc () and free () for
now, and show a more elaborate example in Chapter 8.

If we stick to the basic forms of these operators, we will want to overload... well, four functions before
C++11 or six functions since then. Of course, this book supposes that we’re over a decade past C++14,
so we will proceed accordingly.

The signatures we want to overload are the following:

void *operator new(std::size t);

void *operator newl[] (std::size t);

void operator delete(void *) noexcept;

void operator delete[] (void *) noexcept;

// since C++14

void operator delete(void *, std::size t) noexcept;
void operator delete([] (void *, std::size t) noexcept;

That's a lot, I agree, but taking control of memory management facilities is specialized work. As soon
as you write one of these functions, you officially replace the ones provided by your standard library
for that program and that function becomes responsible for the allocation (or deallocation) requests
that come through that channel. Replacing an allocation function requires you to use the exact same
signature as the original.

The reason why it is important that you overload the whole set of functions if you overload at least
one of them is that these functions form a consistent whole. For example, if you change the way new
behaves but neglect to change the way the standard library-provided delete performs its task,
it’s essentially impossible to predict how much damage your program will incur. As a well-known
popular comic book hero stated many times, “with great power comes great responsibility.” Be careful,
be rigorous, and follow the rules.

Pay attention to the signatures of these functions as they provide interesting information...
On operators new and new[]

Functions operator new () and operator new[] () both take asingle std: :size t
object as an argument and both return void*. The argument is, in both cases, the minimal number
of contiguous bytes to allocate. As such, their signatures resemble that of std: :malloc (). That
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often surprises people; how can the new X expression create an X object if new is nota template
and does not know what to create?

That’s the thing: new does not create objects. What new does is find the location where an object
will be constructed. It’s the constructor that turns the raw memory found by new into an object. In
practice, you could write something such as the following:

X *p = new X{ /* ... args ... */ };

What you have written is a two-step operation:

// allocate enough space to put an X object

void * buf = operator new(sizeof (X)) ;

// construct an X object at that location

X *p = ... // apply X::X( /* ... args ... */ ) on buf

This means the constructor is like a coat of paint applied to a block of memory, turning that memory
into an object. This also means that an expression such as new X can fail either on operator
new (), if the allocation request could not succeed, or on X: : X (), because the constructor failed
somehow. Only if both steps succeed does client code become responsible for the pointed-to object.

( N
A note on calling these operators

You might have noticed in the preceding example that we sometimes write new X and we
sometimes write operator new (sizeof (X) ). The first form - the operator form — will
do the two-step process of allocation followed by construction, whereas the second form -
the function form - directly calls the allocation function without invoking a constructor. This
distinction also applies to operator delete().

. J

The situation is similar with operator new []: the number of bytes passed as argument to the
function is the total number of bytes for the array, so the allocation function itself knows neither the
type of object that will be created nor the number of elements or the individual size of the objects. A
call tonew X [N] will, in practice, call operator new[] (N*sizeof (X)) to find a place to put
the array that will be constructed, then call X : : X () on each of the N blocks of size sizeof (X) in
that array. Only when the entire sequence completes successfully does client code become responsible
for the resulting array.

Failure to allocate a scalar through operator new should result in something that matches
std: :bad_alloc being thrown. With operator new([] (), one can also throw std: :bad
array new_length (derived from std: :bad_alloc) if the requested size is problematic,
typically because it exceeds implementation-defined limits.
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On operators delete and delete[]

Like the C language’s free () function, operators delete () and delete[] () both takea void*
as argument. This means that they cannot destroy your object... When they are called, the object has
already been destroyed! Indeed, you could write the following:

delete p; // suppose that p is of type X*

This is, in practice, a two-step operation that is equivalent to the following:

p->~X(); // destroy the pointed-to object
operator delete(p); // free the associated memory

In C++, neither your destructors nor operator delete () should throw exceptions. If they
do, the program is pretty much terminated, for reasons that will become self-evident in Chapter 12.

The size-aware versions of operator delete () and operator delete[] () have been
introduced with C++14 and it is customary to implement them today, in addition to the classical
versions of these functions. The idea is that operator new () was informed of the size of the blocks
to allocate but operator delete () was not, which required unneeded acrobatics on the part of
implementations that sought to do size-related tasks, such as filling the block of memory with some
value in order to try to obscure what was stored at that location. Contemporary implementations of
these functions require us to write a version that accepts the size of the pointed-to objects in addition
to the classical version; if one’s implementation does not need that size, one can simply call the classical
version from the size-aware one and be done with it.

' N
A note on sized operator delete[]() overloads

If you trace the execution of your overloads, you might be surprised to see that the sized version
of operator delete[] () is not necessarily called for some types. Indeed, if you have
an array arr of objects of trivially destructible types, the standard leaves it unspecified as to
which one of the sized and the unsized versions of operator delete[] () will be used
when you write delete [] arr. Its not a bug, rest assured.

. J

A full, yet naive implementation of these functions that essentially delegate work to the C allocation
functions could be as follows:

#include <iostream>
#include <cstdlib>
#include <new>
void *operator new(std::size t n)
std::cout << "operator new(" << n << ")\n";
auto p = std::malloc(n);
if (!p) throw std::bad alloc{};
return p;
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}

void operator delete(void *p) noexcept {
std::cout << "operator delete(...)\n";
std::free(p) ;
}
void operator delete(void *p, std::size t n) noexcept {
std::cout << "operator delete(..., " << n << ")\n";
::operator delete(p) ;
}
void *operator newl[] (std::size t n) ({
std::cout << "operator new[] (" << n << ")\n";
auto p = std::malloc(n);
if (!p) throw std::bad alloc{};
return p;
}
void operator delete[] (void *p) noexcept {
std::cout << "operator delete[] (...)\n";
std: :free(p) ;
}
void operator deletel] (void *p, std::size t n) noexcept {
std::cout << "operator delete[] (..., " << n << ")\n";
: :operator deletel] (p);
}
int main()
auto p = new int{ 3 };
delete p;
p = new int[10];
delete [lp;

}

As is probably clear by now, the default behavior when operator new () and operator newl(]

() fail to achieve their postconditions and actually allocate the requested amount of memory is to throw
std: :bad_alloc or, when appropriate, std: :bad_array new_length. Since allocation is
followed by construction, client code might also face any exception thrown by the constructor. We
will look at ways to handle these situations when writing custom containers in Chapter 12.

There are application domains where exceptions are not an option. This can be due to memory
constraints; most exception handlers make programs slightly bigger, which can be unacceptable in
domains such as embedded systems. It can also be due to speed constraints; the code in t ry blocks
is usually fast as these blocks represent the “normal” execution paths, but code in catch blocks is
usually seen as the rare (“exceptional”) path and can be significantly slower to execute. Of course,
some will simply avoid exception usage for philosophical reasons, which is fine too.
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Luckily, there is a way to perform dynamic memory allocation without resorting to exceptions to
signal failure.

Non-throwing versions of the allocation operators

There are also versions of the allocation operators that do not throw upon failure to allocate. The
signatures for these functions are as follows:

void *operator new(std::size t, const std::nothrow t&);
void *operator newl[] (std::size t, const std::nothrow t&);
void operator delete(void *, const std::nothrow t&)
noexcept;
void operator delete[] (void *, const std::nothrow t&)
noexcept;
// since C++14
void operator delete
(void *, std::size t, const std::nothrow t&) noexcept;
void operator deletel[]
(void *, std::size t, const std::nothrow t&) noexcept;

You might be wondering why someone would want to explicitly request that failure to allocate returns
a null pointer instead of throwing an exception. It’s certainly more annoying to litter one’s code with
tests for nullptr than to just write it as if no failure occurred! The fact is that there are costs to
using exceptions in one’s programs: it can make binaries slightly bigger, and it can slow down code
execution, particularly when exceptions are caught (there are also issues of style involved; some people
would not use exceptions even if they led to faster code, and that’s just part of life). For that reason,
application domains such as games or embedded systems often shun exceptions and go to some lengths
to write code that does not depend on them. The non-throwing versions of the allocation functions
target these domains.

Type std: :nothrow_t is what is called a tag type: an empty class whose instances (here, the global
std: :nothrow object) can be used to guide the compiler when generating code. Note that these
function signatures require the std: :nothrow_t arguments to be passed by const reference,
not by value, so make sure you respect this signature if you seek to replace them.

An example usage of these functions would be as follows:

X *p = new (mothrow) X{ /* ... args ... */ };
if (p) |
// ... use *p

// note: this is not the nothrow version of delete
delete p; // would be Ok even if !p
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You might be surprised about the position of nothrow in the new expression, but if you think about
it, it’s essentially the only syntactic space for additional arguments passed to operator new (); the
first argument passed to the function is the number of contiguous bytes to allocate (here: sizeof (X)),
and in expressionnew X { ...args... }, what follows the type of object to construct is the
list of arguments passed to its constructor. Thus, the place to specify the additional arguments to
operator new () itselfis between new and the type of the object to construct, between parentheses.

( N
A word on the position of additional arguments to operator new()

To illustrate this better with an artificially crafted example, one could write the following
operator new () overload:

void* operator new(std::size t, int, double) ;
Then, a possible call to that hypothetical operator would be as follows:
X *p = new (3, 1.5) X{ /* ... */ };

Here, we can see how two additional arguments, an int argument and a double argument,
are passed by client code.
. J

Returning to the nothrow version of operator new () and operator new[] (), one thing that
is subtle and needs to be understood is why one needs to write overloads of operator delete ()
and operator delete[] (). After all, even with client code that uses the nothrow version of
new, as was the case in our example, it’s highly probable that the “normal” version of operator
delete () will be used to end the life of that object. Why, then, write a nothrow version of
operator delete()?

The reason is exception safety. But why worry about exceptions, you're surely thinking, when writing
a non-throwing version of operator new () ? Well, remember that memory allocation through
operator new () isa two-step operation: find the location to place the object, then construct the
object at that location. Thus, even if operator new () does not throw, we do not know whether
the constructor that will be called will throw. Our code will obtain the pointer only after both the
allocation and the construction that follows have successfully completed execution; as such, client
code cannot manage exceptions that occur after allocation succeeded but during the construction of
the object, at least not in such a way as to deallocate the memory... It’s difficult to deallocate a pointer
your code has not yet seen!

For that reason, it falls on the C++ runtime to perform the deallocation if an exception is thrown by
the constructor, and this is true for all versions of operator new (), not just the nothrow ones.
The algorithm (informally) is as follows:

// step 1, try to perform the allocation for some T object
p = operator new(n, ... maybe additional arguments ...)

// the following line is only for a nothrow new

if (!p) return p
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try {
// step 2, construct the object at address p
apply the constructor of T at address p // might throw
} catch(...) { // construction threw an exception
deallocate p // this is what concerns us here
re-throw the exception, whatever it was
}
return p // p points to a fully constructed object
// only after this point does client code see p

As this algorithm shows, the C++ runtime has to deallocate the memory for us when the constructor
throws an exception. But how does it do so? Well, it will use the operator delete () (or
operator delete[] ()) whose signature matches that of the version of new or new [] that was
used to perform the allocation. For example, if we use operator new(size t,int,double)
to allocate and the constructor fails, it will use operator delete (void*, int,double) to
perform the implicit deallocation.

That is the reason why, if we overload the nothrow versions of new and new [], we have to overload
the nothrow versions of delete and delete [] (they will be used for deallocation if a constructor
throws), and why we also have to overload the “normal” throwing versions of new, new [1, delete,
and delete []. Expressed informally, code that uses X *p = new (nothrow) X; will usually
calldelete p; to end the life of the pointee, and as such, the nothrow and throwing versions of
the allocation functions have to be coherent with one another.

Here is a full, yet naive implementation where the throwing versions delegate to the non-throwing
ones to reduce repetition:

#include <iostream>
#include <cstdlibs>
#include <new>
void* operator new(std::size t n, const std::nothrow t&) noexcept {
return std::malloc (n) ;
}
void* operator new(std::size t n) {
auto p = operator new(n, std::nothrow);
if (!p) throw std::bad alloc{};
return p;
}
void operator delete(void* p, const std::nothrow té&)
noexcept {
std: :free(p) ;
}
void operator delete(void* p) noexcept {
operator delete(p, std::nothrow) ;
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}

void operator delete(void* p, std::size t) noexcept {
operator delete (p, std::nothrow);
}
void* operator newl[] (std::size t n,
const std::nothrow t&) noexcept {
return std::malloc(n) ;
}
void* operator new[] (std::size t n) ({
auto p = operator new[] (n, std::nothrow) ;
if (!p) throw std::bad alloc{};
return p;
}
void operator deletel[] (void* p, const std::nothrow té&)
noexcept {
std: :free(p) ;
}
void operator delete[] (void* p) noexcept {
operator deletel] (p, std::nothrow) ;
}
void operator delete[] (void* p, std::size t) noexcept {
operator deletel] (p, std::nothrow) ;
}
int main()
using std::nothrow;
auto p = new (nothrow) int{ 3 };
delete p;
p = new (nothrow) int[10];
deletel[lp;

}

As you can see, there are quite a few functions to write to get a full, cohesive set of allocation operators
if we want to cover both the throwing and the non-throwing versions of this mechanism.

We still have a lot to cover. For example, we mentioned a few times already the idea of placing an
object at a specific memory location, in particular at the second of the two-step process modeled by
calls to new. Let’s see how this is done.

The most important operator new: placement new

The most important version of operator new () and friends is not one you can replace, but even
if you could... well, let’s just state that it would be difficult to achieve something more efficient:

// note: these exist, you can use them but you cannot
// replace them
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void *operator new(std::size t, void *p) { return p; }
void *operator newl[] (std::size t, void *p) { return p; }
void operator delete(void*, wvoid*) noexcept { }

void operator deletel] (void*, wvoid*) noexcept { }

We call these the placement allocation functions, mostly known as placement new by the
programming community.

What is the purpose of these functions? You might remember, at the beginning of our discussion of
the global versions of the allocation operators, that we stated: “What new does is find the location
where an object will be constructed”” This does not necessarily mean that new will allocate memory,
and indeed, placement new does not allocate; it simply yields back the address it has been given as
argument. This allows us to place an object wherever we want in memory... as long as we have the right
to write the memory at that location.

Placement new serves many purposes:

o If we have sufficient rights, it can let us map an object onto a piece of memory-mapped hardware,
giving us an extremely thin layer of abstraction over that device.

« Itenables us to decouple allocation from construction, leading to significant speed improvements
when writing containers.

o It opens up options to implement important facilities such as types optional<T> (that
might or might not store a T object) and variant<TO0, T1, . . ., Tn> (that stores an object
of one of types T0,T1,...,Tn), or even small object optimization (SOO)-enabled types such
as std: :stringand std: : function that sometimes allocate external memory, but
sometimes use their internal data structures and avoid allocation altogether. Placement new
is not the only way to do this, but it is one of the options in our toolbox.

One important benefit of placement new is most probably in the implementation of containers
and the interaction between containers and allocators, themes we will explore from Chapter 12 to
Chapter 14 of this book. For now, we will limit ourselves to a simple, artificial example that’s meant
as an illustration of how placement new works its magic, not as an example of something you should
do (indeed, you should not do what the following example does!).

Suppose that you want to compute the length of a null-delimited character string and cannot remember
the name of the C function that efficiently computes its length (better known as std: : strlen()).
One way to achieve similar results but much less efficiently would be to write the following:

auto string length(const char *p) {
return std::string{ p }.size(); // augh! But it works...
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That’s inefficient because the std: : string constructor might allocate memory. We just wanted to
count the characters until the first occurrence of a zero in the sequence, but it works (note: if you do
the same maneuver with a std: : string viewinstead of witha std: : string, its performance
will actually be quite reasonable!). Now, suppose you want to show off to your friends the fact that
you can place an object where you want in memory, and then use that object’s data members to do
what you set out to do. You can (but should not) write the following:

auto string length(const char *p) {
using std::string;
// A) make a local buffer of the right size and
// alignment for a string object
alignas (string) char buf[sizeof (string)];
// B) "paint" a string object in that buffer
// (note: that object might allocate its
// own data externally, but that's not
// our concern here)
string *s = new (static_cast<void*>(buf)) string{ p };
// C) use that object to compute the size
const auto sz = s->size();
// D) destroy the object without releasing the memory
// for the buffer (it's not dynamically allocated,
// it's just local storage)
s->~string(); // yes, you can do this

return sz;

}

What are the benefits of the complicated version in comparison to the simple one? None whatsoever,
but it shows the intricacies of doing this sort of low-level memory management maneuver. From the
comments in the code example, the steps work as follows:

o Step A) makes sure that the location where the object will be constructed is of the right size
and shape: it’s a buffer of bytes (type char), aligned in memory as a std: : string object
should be, and of sufficient size to hold a std: : string object.

o Step B) paintsa std: : string object in that buffer. That’s what a constructor does, really: it
(conceptually) transforms raw memory into an object and initializes the state of that object. If the
std: : string constructor throws an exception, then the object has never been constructed
and our string length () function concludes without satisfying its postconditions. There
is no memory allocation involved here unless the constructor itself allocates, but that’s fair (the
object does what it has to do).
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o Step C) uses the newly constructed object; in our case, it’s just a matter of querying the size of
that character string, but we could do whatever we want here. Do note, however, that (a) the
object’s lifetime is tied to the buffer in which it is located, and (b) since we explicitly called the
constructor, we will need to explicitly destroy it, which means that if an exception is thrown
when we use the object, we will need to make sure the object’s destructor is called somehow.

o Step D) destroys the object before we leave the function, as not doing so would lead to a possible
leak of resources. If the buffer’s lifetime ends at a point where the object is not yet destroyed,
things will be very wrong: either the destructor of the object we put in that buffer will never
be called and code will leak, or someone might try to use the object even though the storage
for that object is not ours anymore, leading to UB. Note the syntax, s->~string (), which
calls the destructor but does not deallocate the storage for *s.

This is a bad example of placement new usage, but it is explicit and (hopefully) instructive. We will
use this feature in much more reasonable ways in order to gain significant speed advantages when we
write containers with explicit memory management in Chapter 12.

A note on make_shared<T>(args...)

We mentioned in Chapter 6 that make_shared<T>(args. . .) usuallyleads to a better memory
layout than shared ptr<T>{ new T(args...) } would, atleast with respect to cache usage.
We can start to see why that is so.

Calling shared ptr<T>::shared ptr (T*) makes the object responsible for a preexisting
pointee, the one whose address is passed as argument. Since that object has been constructed, the
shared ptr<T> object has to allocate a reference counter separately, ending up with two separate
allocations, probably on different cache lines. In most programs, this worsened locality may induce
slowdowns at runtime.

On the other hand, calling make shared<T> (args. ..) makes this factory function responsible
for creating a block of memory whose layout accommodates the T object and the reference counter,
respecting the size and alignment constraints of both. There’s more than one way to do this, of course,
including (a) resorting to a union where “coexist” a pair of pointers and a single pointer to a block
that contains a counter and a T object, and (b) resorting to a byte buffer of appropriate size and
alignment, then performing placement new for both objects in the appropriate locations within that
buffer. In the latter case, we end up with a single allocation for a contiguous block of memory able to
host both objects and two placement new calls.

Member versions of the allocation operators

Sometimes, we have special knowledge of the needs and requirements of specific types with respect to
dynamic memory allocation. A full example that goes into detail about a real-life (but simplified) use
case of such type-specific knowledge is given in Chapter 10, where we discuss arena-based allocation.
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For now, we will limit ourselves to covering the syntax and the effect of a member function overload of
the allocation operators. In the example that follows, we suppose class X would somehow benefit from
a per-class specialization of these mechanisms, and show that client code will call these specializations
when we callnew X but not when we callnew int:

#include <iostream>
#include <new>
class X {
//
public:
X() { std::cout << "X::X()\n"; }
~X() { std::cout << "X::~X()\n"; }
void *operator new(std::size t);
void *operator new[] (std::size t);
void operator delete(void¥*);
void operator deletel[] (void*) ;
//
b5
//
void* X::operator new(std::size t n) {
std::cout << "Some X::operator new() magic\n";
return ::operator new(n) ;
}
void* X::operator newl[] (std::size t n) {
std::cout << "Some X::operator newl[] () magic\n";
return ::operator newl] (n) ;
}
void X::operator delete(void *p) {
std::cout << "Some X::operator delete() magic\n";
return ::operator delete(p) ;
}
void X::operator deletel] (void *p) {
std::cout << "Some X::operator deletel] () magic\n";
return ::operator deletel] (p);
}
int main() {
std::cout << "p = new int{3}\n";
int *p = new int{ 3 }; // global operator new
std::cout << "g = new X\n";
X *q = new X; // X::operator new
std::cout << "delete p\n";
delete p; // global operator delete
std::cout << "delete g\n";
delete q; // X::operator delete
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One important detail to mention is that these overloaded operators will be inherited by derived classes,
which means that if the implementation of these operators somehow depends on details specific to
that class - for example, its size of alignment or anything else that might be invalidated in derived
classes through such seemingly inconspicuous details as adding a data member - consider marking
the class that overloads these operators as final.

Alignment-aware versions of the allocation operators

When designing C++17, a fundamental problem with the memory allocation process was fixed with
respect to what we call overaligned types. The idea is that there are types for which we will want
alignment constraints that are stricter than the alignment of the strictest natural alignment on a
machine as modeled by type std: :max_align t.

There are many reasons for this, but a simple example would be when communicating with specialized
hardware with requirements that differ from the ones on our computer. Suppose the following Float4
type is such a type. Its size is 4 *sizeof (float), and we require a Float4 to be aligned on a
16-byte boundary:

struct alignas(16) Float4 { float vals[4]; };

In this example, if we remove alignas (16) from the type declaration, the natural alignment of
type Float4 would be alignof (float), which is probably 4 on most platforms.

The problem with such types before C++17 is that variables generated by the compiler would respect
our alignment requirements, but those located in dynamically allocated storage would, by default,
end up with an alignment of std: :max_align_t, which would be incorrect. That makes sense,
of course; functions such asmalloc () and operator new () will, by default, cover the “worst-
case scenario” of the platform, not knowing what will be constructed in the allocated storage, but they
cannot be assumed to implicitly cover even worse scenarios than this.

Since C++17, we can specify overaligned type requirements when calling either operator new()
or operator new[] () by passing an additional argument of type std: :align val t,an
integral type. This has to be done explicitly at the call site, as the following example shows:

#include <iostream>
#include <new>
#include <cstdlib>
#include <type traitss>
void* operator new(std::size t n, std::align val t al) {

std::cout << "new(" << n << ", align: "

<< static cast<std::underlying type t<
std::align val t
>>(al) << ")\n";
return std::aligned alloc(
static cast<std::size t>(al), n
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)i
}
// (others omitted for brevity)
struct alignas(16) Float4 { float vals[4]; };
int main()
auto p = new Float4; // calls operator new(size t)
// calls operator new(size_ t, align val t)
auto g = new(std::align val t{ 16 }) Float4;
// leaks, of course, but that's beside the point

}

The memory block allocated for p in this example will be aligned on a boundary of std: :max__
align_t, whereas the memory block allocated for g will be aligned on a 16-byte boundary. The
former might satisfy the requirements of our type if we're lucky and cause chaos otherwise; the latter
will respect our constraints if the allocation operator overload is implemented correctly.

Destroying delete

C++20 brings a novel and highly specialized feature called destroying delete. The use case targeted
here is a member function overload that benefits from specific knowledge of the type of object being
destroyed in order to better perform the destruction process. When that member function is defined
for some type T, it is preferred over other options when delete is invoked on a T*, even if T exposes
another overload of operator delete (). To use destroying delete for some type X, one must
implement the following member function:

class X {
//

public:
void operator delete(X*, std::destroying delete t);
//

}i

Here, std: :destroying delete_t isatagtypelike std: :nothrow_t, which we saw
earlier in this chapter. Note that the first argument of the destroying delete for class X is an X*,
not a void¥, as the destroying delete has the double role of destroying the object and deallocating
memory... hence its name!

How does that work, and why is that useful? Let’s look at a concrete example with the following
Wrapper class. In this example, an object of type Wrapper hides one of two implementations,
modeled by Wrapper: : ImplA and Wrapper : : ImplB. The implementation is selected at
construction time based on an enumerated value of type Wrapper : : Kind. The intent is to remove
the need for virtual functions from this class, replacing them with if statements based on the
kind of implementation that was chosen. Of course, in this (admittedly) small example, there’s still
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only one virtual function (Impl: : £ ()) as we aim to minimize the example’s complexity. There is
also a wish to keep the destructor of class Wrapper trivial, a property that can be useful on occasion.

We will look at this example step by step as it is a bit more elaborate than the previous ones. First,
let’s examine the basic structure of Wrapper including Wrapper: : Kind, Wrapper: : Impl,
and its derived classes:

#include <new>
#include <iostream>
class Wrapper {

public:
enum class Kind { A, B };
private:
struct Impl {
virtual int f£() const = 0;
¥
struct ImplA final : Impl ({
int £() const override { return 3; }

~ImplA() { std::cout << "Kind A\n"; }

}i

struct ImplB final : Impl ({

int £() const override { return 4; }
~ImplB() { std::cout << "Kind B\n"; }
b5
Impl *p;
Kind kind;
//

Visibly, Wrapper: : Impl does not have a virtual destructor, yet Wrapper keeps as a data member
an Impl* named p, which means that simply calling delete p might not call the appropriate
destructor for the pointed-to object.

The Wrapper class exposes a constructor that takes a Kind as argument, then calls
Wrapper: :create () to construct the appropriate implementation, modeled by a type derived
from Impl:

!/

static Impl *create(Kind kind)
switch (kind) {
using enum Kind;
case A: return new ImplA;
case B: return new ImplB;

}

throw 0;
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public:
Wrapper (Kind kind)
: p{ create(kind) }, kind{ kind } {
}
//

Now comes the destroying delete. Since we know by construction that the only possible implementations
would be Imp1A and ImplB, we test p- >kind to know which one was chosen for p, then directly
call the appropriate destructor. Once that is done, the Wrapper object itself is finalized and memory
is freed through a direct call to operator delete():

//
void operator delete (Wrapper *p,
std::destroying delete t) {
if (p->kind == Kind::a) {
delete static cast<ImplA*>(p->p);
} else {
delete static cast<ImplB*>(p->p);
}
p->~Wrapper () ;
: :operator delete(p):;

}

int f() const { return p->f(); }

}i
For client code, the fact that we decided to use a destroying delete is completely transparent:

int main()
using namespace std;
auto p = new Wrapper{ Wrapper::Kind::A };

cout << p->f() << endl;

delete p;

p = new Wrapper{ Wrapper::Kind::B };
cout << p->f() << endl;

deletel p;

}

The destroying delete is a recent C++ facility as of this writing, but it is a tool that can let us get
more control over the destruction process of our objects. Most of your types probably do not need
this feature, but it’s good to know it exists for those cases where you need that extra bit of control
over execution speed and program size. As always, measure the results of your efforts to ensure that
they bring the desired benefits.



Summary

Summary

Whew, that was quite the ride! Now that we have the basics of memory allocation operator overloading
handy, we will start to use them to our advantage. Our first application will be a leak detector
(Chapter 8) using the global forms of these operators, followed by simplified examples of exotic memory
management (Chapter 9) using specialized, custom forms of the global operators, and arena-based
memory management (Chapter 10) with member versions of the operators that will perform very
satisfying optimizations.
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Writing a Naive Leak Detector

In Chapter 7, we examined various ways to overload the memory allocation operators, which are
new,new[],delete, and delete [], in order to grasp the syntax involved in writing these
operators as well as how they can be used in client code. We discussed how these operators interact
with exceptions (even in the case of the nothrow versions) and saw why they should, in most cases,
be written in groups of four or multiples thereof. For example, code that calls the nothrow version
of operator new () to obtain some pointer, pV and later on calls delete p will quickly get in
trouble if one overloads the nothrow version but not the “regular” one, as both might then end up
not being compatible with one another.

What we have not really discussed is how our code could benefit from taking control of these operators.
There are indeed multiple uses for this: tracing how or where memory is allocated, measuring memory
fragmentation in a process, implementing a specialized strategy to control performance characteristics
of the allocation or deallocation process, and so on. Since this book has a finite size, we cannot hope
to cover examples of all possible options so we will pick one, hoping that this example is sufficiently
inspirational to let you explore other avenues on your own.

The example we will explore in this chapter is a simple yet functional memory leak detector. In more
detail, we will do the following:

1.  We will first detail the plan, giving an overview of how our leak detector will work and what
tricks we will use to meet our objectives.

2. 'Then, we will implement the first version of our tool, and that version will seem to work, at
least on the surface. We will walk through a call to operator new () and the corresponding
operator delete () to understand what happens in memory throughout this process.

3. At this point, we will use the knowledge acquired in previous chapters to identify the flaws in
our first solution as well as ways in which we can fix them.

4. Finally, we will revisit our initial implementation and end up with something that is simple
yet usable in real code.
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Since this will be a very concrete chapter, you can expect to develop (or refine) some useful skills as
we go:

o The first one is to plan before coding. We will be writing very low-level code in this chapter,
which makes it particularly important for us to have a clear direction in mind. After all, when
coding “close to the machine” and playing with raw memory, the compiler-provided safety net
that is the type system tends to be a bit thinner and it’s easier to make mistakes (costly ones at
that) if we’re not careful.

+ The second one is to safely use shared mutable resources. Our leak detector will use the global
versions of the memory allocation operators in order to cover allocation requests for all types,
at least unless users decide to use specialized versions of these operators, and as such, we will
need to manage the state that will be global to our program. In addition, we know that user
code might be multithreaded so our accounting of the allocated memory will require a form
of synchronization to avoid data races.

o The third one will be to acknowledge the impact of alignment when bypassing the type system.
As we will handle raw memory for the a priori unknown needs of client code, we will learn to
make choices that work for all “natural” (in the sense of “non-overaligned”) memory allocation
use cases.

« Finally, we will examine how to debug our code based on the contents of raw memory. Since we
aim to keep this book tooling-agnostic, we will apply a schematical approach to this problem,
but in practice, you should adapt what we do in this chapter to the metaphors of your favorite
debugging utility. All reasonable debuggers will let you examine the contents of a specific
memory address, something you will assuredly want to do on occasion.

Let’s dive in!

Technical requirements

You can find the code files for this chapter in the book’s GitHub repository here: https://github.
com/PacktPublishing/C-Plus-Plus-Memory-Management/tree/main/chapters.

The plan

We are planning to write a memory leak detector, a task that might seem strange and abstract at
first. How do we start? Well, one way to clarify what we need to do is to write a small test program,
showing at once how we expect our tool to be used and highlighting the key aspects of our tool from
the perspective of user code:

#include <iostream>
// this is incomplete (for now)
int main()

auto pre = // current amount of allocated memory


https://github.com/PacktPublishing/C-Plus-Plus-Memory-Management/tree/main/chapter8
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The plan

{ // BEGIN
int *p = new int{ 3 };
int *q = new int[10]{ }; // initialized to zero
delete p;
// oops! Forgot to deletel]l g
} // END
auto post = // current amount of allocated memory

// with this code, supposing sizeof (int)==4, we
// expect to see "Leaked 40 bytes" printed
if (post != pre)
std::cout << "Leaked " << (post - pre) << " bytes\n";

}

As you can see, this “deliberately leaky” program performs two allocations but only a single deallocation,
“forgetting” (conveniently for our purposes) to deallocate an array of ten int objects. Supposing
sizeof (int)==4, our leak detector should allow the program to report a leak of 40 bytes.

This program does not tell us how we will (portably) obtain the amount of dynamically allocated memory
at a given time (we will write this service in this chapter, after all), but it does show the allocations
and deallocations being located between a pair of braces (see BEGIN and END in the comments of
that example program). In C++, as you know, matching braces delimit a scope, and scope ensures the
destruction of automatic variables defined therein. The idea here is that we want to detect leaks even
in the presence of RAII objects (see Chapter 4) as they too could have bugs, so we want to make sure
they are destroyed before we try to issue a diagnostic.

As mentioned in this chapter’s introduction, we will implement our leak detector through the
overloading of the global forms of memory allocation operators. As you might have already guessed,
these operators will need to share some state: at the very least, they will need shared knowledge of the
amount of memory allocated at a given moment since the new and new [] operators will increment
that amount and the delete and delete [] operators will decrement it.

Note that for our leak detector, the array and non-array forms of these operators will be identical
but that is not always the case: one could envision different strategies to allocate scalars and arrays,
for example, just as one could want to track what these two forms do separately in a program. For
simplicity, in this chapter, we will often simply mention new to describe both new and new [] and
will use the same approach for delete.

Since these are free functions, not member functions of some object, we will need to resort to a global
variable for this state. I know global variables are often frowned upon, mostly for good reasons, but
they exist for cases such as this.
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( N

Global variables, oh my!

Reasons to dislike global variables abound: they make local reasoning difficult (who knows
where and when they are being accessed?), they tend to be bottlenecks for cache access and
slow programs down, they tend to require synchronization in contemporary (potentially
multithreaded) programs, and so on. We are resorting to this mechanism here because we need

to: C++ provides us with a wide variety of tools because it is a language that is used to solve a
wide variety of problems, so there’s no shame in using these tools when they are the right tools
for the task at hand. Just ensure you make informed choices that you can justify!

. J

To reduce (ever so slightly) the feeling of apparent revulsion that global variables provide to so many
of us, we will encapsulate that state in an object, but of course, this object will also be global.

We will apply the singleton design pattern (also reviled by programmers at large, I know) to that
end, a singleton being a class of which there is only one instance in a program. The benefit of this
approach will be that we will control the ways in which the global state will be accessed; hopefully,
it will also help clarify what we are doing. We will name our singleton class Accountant since its
responsibilities will be to help the memory allocation operators keep track of the number of bytes
allocated and deallocated during program execution.

( N
Singletons, oh my!

As far as design patterns go, the singleton is probably one of the least liked ones, for reasons
similar to those behind the dislike of global variables: difficult to test or mock, requires
synchronization, tends to become a performance bottleneck, and so on. The real culprit here to
be honest is shared mutable state, made worse by the fact that this state is globally accessible
throughout the program. As you might have guessed by now, since the shared mutable state is
exactly what we need to keep track of the amount of memory allocated at a given time, well...
this is what we will use!
- J

Now, for the actual implementation, we will need to develop a strategy to track the number of bytes
allocated and deallocated. The overall idea is that operator new () will tell the Accountant
object that bytes have been allocated, and that operator delete () will tell the Accountant
object that bytes have been deallocated. Now, for the purpose of this activity, we will use the traditional
(up to and including C++11) form of these operators. As you might remember from Chapter 7, their
signatures are as follows:

void *operator new(std::size t n);

void *operator new[] (std::size t n);
void operator delete (void*p) noexcept;
void operator delete[] (void*p) noexcept;

Since you are reading this book, you are assuredly a most astute reader, so you might have already
noticed a problem here: our allocation functions know from their argument the number of bytes to
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allocate, but our deallocation functions do not have that privilege, being only provided the address
where the block to deallocate begins. This means that we need a way to make the connection between
the address returned by operator new () and the size of the associated memory block.

That seems like an easy enough problem to solve: just allocate the moral equivalent of something like
std::vector<std: :pair<void*,std::size t>>orstd::map<void*,std::size t>
to make it easy to retrieve the std: : size_t associated with a given address, but such containers
need to allocate memory, and that would mean allocating memory in order to implement the way in
which we allocate memory. This could get problematic, to say the least, so we need another solution.

We will do what any sane programmer would do under similar circumstances: we will lie. Yes, we
willl Why do you think we took the time to look at tricky and dangerous code in those first chapters?

How will lying help us solve the problem, you say? Well, remember that writing the following code
leads to calling operator new () with sizeof (X) asan argument:

X *p = new X{ /* ... */ };

Let us name this argument n. This means that if the allocation and the ensuing construction both
succeed, from the perspective of client code, the situation will be as follows:

"

57
n bytes

Figure 8.1 — Allocated block of memory from the perspective of client code

In order for operator delete () to be able to find the value of n based on p, one strategy (and
the one we will adopt for this example) will be to hide the value of n just before p. The actual layout
in memory from our own code’s perspective would then be as follows:

%,

n

/ ke - J

P n bytes

Figure 8.2 — Allocated block of memory from the perspective of the allocation operators.
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Here, p would be the address as seen from the client code, but p' would be where the actually allocated
block of memory starts. Clearly, this is a lie: the address returned by the allocation function will be a
valid address where an object can be constructed, but it will not be the start of the memory block we
have actually allocated. As long as the space between p and p' is known to both operator new ()
and operator delete (), this can be made to work.

For obvious reasons, overloading operator new () to do this trickery means that we have to
overload operator delete () to do the reverse gymnastics: given some pointer p, go backward
in memory where p' was, find the value of n that was hidden there, and inform the Accountant
object of the fact that n bytes were released.

Now, let’s see how we will do this.

A first implementation (that almost works)

We now have a plan, so we are ready to start implementing the initial version of our leak detector. This
implementation will be slightly naive but will help us understand the general idea; we will examine
the more delicate aspects of the implementation once the basic infrastructure is in place. Do not use
this first version in production code as it will be (slightly yet dangerously) incorrect. We will provide a
correct version later in this chapter, of course.

As a suggestion, try to see if you can identify the “rough edges” of our implementation by yourself
before we cover them later in this chapter. There will be clues left here and there for you, and if you read
the chapters that preceded this one, you might already have an idea of what you should be looking for.

The Accountant singleton class

Our Accountant class will be a reification of the singleton design pattern whose role will be to
allow the global overloads of the memory allocation operators to keep track of the number of bytes
of dynamically allocated memory in a program. As previously mentioned, a singleton is an idea: a
class for which there is only one instance in a program. This idea can be reified in various languages
(at least those supporting some variant of the object-oriented paradigm) in ways that respect the
particularities of each language.

One key particularity of C++ is the presence of actual objects, not just references to objects, in user
code. This means that a C++ singleton will usually have the following characteristics:

o A private default constructor, since if that constructor was public, it could be called more
than once which would make the class a non-singleton.

« Deleted copy operations, as allowing copies of our object would make it a non-singleton.

o A way to ensure the singleton can be created and, of course, accessed. That mechanism has to
be such that it cannot be abused to create more than one object. Since our default constructor
will be private, this mechanism will either be a static member function (this will be our
choice) or a friend function.
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o Finally, the state used for the object’s representation and the services offered by the singleton,
if any.

An object of our Accountant class will expose three services: one to let the new and new [] operators
inform the Accountant object that memory has been taken, one to inform it that memory has been
given back, and one to let client code know how much memory is used at a given time.

An incomplete view of the Accountant class given what we have discussed so far would be as follows:

#ifndef LEAK DETECTOR H
#define LEAK DETECTOR H
#include <cstddefs>
#include <new>
class Accountant {
Accountant(); // note: private

/] ...
public:
// deleted copy operations
Accountant (const Accountant&) = delete;
Accountant& operator=(const Accountant&) = delete;

// to access the singleton object
static Accountanté& get();
// services offered by the object
// n bytes were allocated
void take(std::size t n);
// n bytes were deallocated
void give back(std::size t n);
// number of bytes currently allocated
std::size t how much() const;
b5
// allocation operators (free functions)
void *operator new(std::size t);
void *operator newl[] (std::size t);
void operator delete (void*) noexcept;
void operator delete[] (void*) noexcept;
#endif

With this, we can already complete the skeleton of our test program as presented earlier in this chapter:

#include "leak detector.h"
#include <iostream>
int main() {
auto pre = Accountant::get() .how much() ;
{ // BEGIN
int *p = new int{ 3 };
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int *g = new int[10]{ }; // initialized to zero

delete p;
// oops! Forgot to delete[] g
} // END
auto post = Accountant::get () .how much() ;
// with this code, supposing sizeof (int)==4, we
// expect to see "Leaked 40 bytes" printed
if (post != pre)

std::cout << "Leaked " << (post - pre) << " bytes\n";

}

Now, we need to examine the implementation of the Accountant class. The first thing we need to
decide is how and where the actual object will be created. It happens that there are surprisingly many
ways to do this, but in our case (where we are not concerned by execution speed), the simplest way
to correctly instantiate the object is what is called a Meyers Singleton, in honor of the now-retired
but always respected Scott Meyers, who suggested that technique as part of item 47 in his well-
known book, Effective C++: Specific Ways to Improve Your Programs and Designs (3rd Edition),
Addison-Wesley Professional.

( A

The Meyers Singleton technique

The Meyers Singleton technique aims to avoid something colloquially called the static
initialization order fiasco, an informal name given to the fact that in a C++ program made
of multiple translation units, one cannot know from the source code in which order the global
objects will be constructed (the problem also exists for the order of destruction, although the
Meyers technique is not helpful for this).

The trick is to declare the singleton object as a static local variable in the stat ic member
function that provides access to the object (here, the get () function): doing so ensures the
object will be created only once, the first time the function is called, and will keep its state
throughout the execution of the program. There is a slight but measurable cost to doing so as
there is a form of low-level implicit synchronization surrounding the object’s construction to
avoid the object being created more than once even in a multithreaded program.

This technique ensures all such singletons are created in the correct order (meaning that, if the
constructor of singleton A needs a service from singleton B, this will lead to singleton B being
constructed “just in time”) even if they are technically “global” variables, as long as there is no
cycle in the calls that create them of course.

. J

In terms of state, since take () and give back () both accept an argument of type std: :size t,
it would be tempting to represent the current amount of memory also as std: : size t,butallow
me to recommend something else. Indeed, std: : size t isan alias for an unsigned integral type,
which means that this representation would make it difficult to detect a case where there have been
more bytes deallocated than allocated, an unpleasant situation we would surely like to handle. For that
reason, we will use a (large) signed integral instead.
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Fine, you might think: we can use a long long representation then! However, remember that
memory allocation and deallocation mechanisms need to be thread-safe, so we need to ensure that
all accesses to that integral representation will be synchronized. There are many ways to do this, but
the simplest one is probably to use an atomic type, in our case, std: :atomic<long longs.
Note that atomic objects are uncopiable so our singleton would implicitly be uncopiable, but there’s
no harm in stating that fact explicitly as we did when deleting the copy operations.

A complete implementation of the Accountant class would be as follows:

#ifndef LEAK DETECTOR H
#define LEAK DETECTOR H
#include <cstddefs>
#include <atomic>
#include <new>
class Accountant {
std::atomic<long long> cur;
Accountant () : cur{ OLL } { // note: private

}
public:
// deleted copy operations
Accountant (const Accountant&) = delete;
Accountant& operator=(const Accountanté&) = delete;

// to access the singleton object
static auto& get() { // auto used for simplicity
static Accountant singleton; // here it is
return singleton;
}
// services offered by the object
// n bytes were allocated
void take(std::size t n) { cur += n; }
// n bytes were deallocated
void give back(std::size t n) { cur -= n; }
// number of bytes currently allocated
std::size t how much() const { return cur.load(); }
b5
// allocation operators (free functions)
void *operator new(std::size t);
void *operator newl[] (std::size t);
void operator delete (void*) noexcept;
void operator delete[] (void*) noexcept;
#endif
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The services are probably trivial to understand for the most part. Since cur is an atomic object,
operations such as += or -= modify cur in a synchronized manner, avoiding data races. Two subtle
aspects of how_much () deserve a short discussion:

o 'The first is that we are returning cur . load (), not cur, since we care about the value
represented by the atomic object, not the atomic object itself (which is a synchronization
mechanism, not an integral value, and is uncopiable as previously mentioned). It’s like taking
a picture of that value at a specific point in time, really.

o The second, a consequence of the first, is that by the time the client code gets the value returned
by that function, the actual value might have changed, so this function is inherently “racy”
if used in a multithreaded situation. It’s not a problem for our test code, of course, but it’s
something to be aware of.

Now that we have put in place a scaffolding for keeping track of the number of bytes allocated, we can
start to write the actual allocation and deallocation functions.

Implementing the new and new|[] operators

If you remember our plan, what we will do in our memory allocation operators is take the number of
bytes, n, requested by client code, then allocate slightly more because we will hide n just before the
beginning of the block of n bytes we will end up returning to our client. Minimally, we will need to
allocaten + sizeof n bytes to achieve this. In this example, we will use std: :malloc () and
std: :free () to perform the low-level allocation operations.

We will signal failure to allocate by throwing std: :bad_alloc as is customary in C++. If the
allocation succeeds, we will then inform the Accountant object that n bytes have been allocated,
even though we will have allocated a bit more. The fact that our strategy leads us to allocate more than
requested is an artifact that does not concern client code, and that might even be confusing when
trying to diagnose problems: a program that allocates a single byte and is informed that it leaked much
more than this would be somewhat awkward.

A complete but naive (and slightly incorrect, as announced) implementation would be as follows:

#include <cstdlib>

void *operator new(std::size t n) {
// allocate n bytes plus enough space to hide n
void *p = std::malloc(n + sizeof n); // to revisit
// signal failure to meet postconditions if needed
if (!p) throw std::bad alloc{};
// hide n at the beginning of the allocated block
auto g = static cast<std::size t*>(p);
*q = n; // to revisit
// inform the Accountant of the allocation
Accountant: :get () .take(n) ;
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// return the beginning of the requested block memory
return q + 1; // to revisit

}
void *operator newl[] (std::size t n) {
// exactly the same as operator new above

}

Remember that even though operator new() and operator new[] () areidentical in this
example, there is no obligation to make them the same in all situations. Also, note that some of the
lines in this excerpt have a comment stating “to revisit” as we will want to take a closer look at these
later in this chapter.

Implementing the delete and delete[] operators

Our deallocation operators will collaborate in the elaborate lie prepared by the allocation operators:
we know that the new and new [] operators return pointers to a block of n bytes, but that block is not

> e

what has really been allocated, it’s “just” the place where an object lived for a while. For that reason,
it's important that the delete and delete [] operators do the required address adjustment before
performing the actual deallocation.

The rules for a correct implementation of operator delete are as follows:
o Applying operator delete() oroperator deletel[] () onanull pointer is a no-op

o Deallocation functions should not throw

o The deallocation code should be coherent with the associated allocation function

Not all null pointers are the same

While it’s true that given some T* object named p, writing delete pordelete [] p
will be a no-op if p==nullptr. However, writing delete nullptr will fail to compile
asnullptr is an object of type std: :nullptr t,nota pointer.

Given the implementation of our allocation operators in the previous section, this means a mostly
adequate deallocation operator could be as follows:

void operator delete(void *p) noexcept
// delete on a null pointer is a no-op
if (!p) return;
// find the beginning of the block that was allocated
auto g = static cast<std::size t*>(p) - 1; // to revisit
// inform the Accountant of the deallocation
Accountant: :get () .give back(*q) ;
// free the memory
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std: :free(q) ;
}
void operator delete[] (void *p) noexcept {
// exactly the same as operator delete above

}

That completes the lie, or so to say, and it completes the leak detector, at least for this first (and
imperfect) implementation. If you run the test program with our implementation on a compiler
where sizeof (int) ==4, you can expect it to display that its execution leaked 40 bytes as expected.

Visualizing it all

When enjoying low-level programming such as this (taking over the memory allocation functions
of your program, manipulating raw memory blocks, hiding information, and playing tricks with
addresses), it can be hard to visualize what one is doing, and what the consequences are.

If your favorite debugger allows you to do so, you might want to try to go through the test program’s
execution step by step. Please make sure you work in so-called “debug” (unoptimized) mode to fully
benefit from the experience, as optimized code is often sufficiently transformed by the compiler to
make the association between source code and generated code difficult to make.

Let’s walk through a call to operator new () step by step. The first thing we do is ask Accountant
for the amount of dynamically allocated memory at the beginning of the main () function:

int main()
auto pre = Accountant::get() .how much() ;
{ // BEGIN
int *p = new int{ 3 };
int *q = new int[10]1{ }; // initialized to zero

delete p;

// oops! Forgot to delete[] g
} // END
auto post = Accountant::get () .how much() ;
if (post != pre)

std::cout << "Leaked " << (post - pre) << " bytes\n";

}

One can expect pre==0 at this point but there are situations, such as a global object calling new in its
constructor, that could lead to pre having other values. This is fine, as what we are monitoring with
this approach is whether there is a leak in between the braces marked with BEGIN and END, and this
should hold regardless of whether the amount of bytes allocated outside of those braces is zero or not.
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The next step is calling operator new () and requesting a memory block big enough to store an
int object:

int main() {
auto pre = Accountant::get() .how much() ;
{ // BEGIN
int *p = new int{ 3 };
int *g = new int[10]{ }; // initialized to zero
delete p;
// oops! Forgot to deletel[] g
} // END
auto post = Accountant::get () .how much();
if (post != pre)
std::cout << "Leaked " << (post - pre) << " bytes\n";

}

This leads us to our implementation of operator new () where n==sizeof (int). Supposing
sizeof (int)==4 and sizeof (std: :size_ t)==8 for the sake of this example, our call to
std::malloc () will request a block of at least 12 bytes:

void *operator new(std::size t n) {
void *p = std::malloc(n + sizeof n);
if (!p) throw std::bad alloc{};
auto g = static cast<std::size t*>(p);
*q = n;
Accountant: :get () .take(n) ;
return g + 1;

}

If you look at the memory pointed to by p with your debugger once the call to std: :malloc ()
completes, you might see something like the following (all numbers are expressed in hexadecimal form):

cd cd cd cd cd cd cd cd cd cd cd cd fd fd fd fd

Figure 8.3 — Possible initial state for the allocated block

Note that there is no guarantee that you will see these specific values as C++ does not impose any
requirement on the initialization of the memory block returned by std: :malloc (). These 0xcd
hexadecimal values (or similar recognizable patterns) are however probable when using a “debug
build” as libraries compiled for debugging will often place recognizable bit patterns in uninitialized
memory to help detect programming errors.
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You might also notice the trailing four bytes (each containing 0x£d), which are also suspiciously
recognizable, suggesting that the implementation of std: :malloc () I used allocated more than
what I requested and stored a marker just after the block my code requested, probably to help detect
buffer overruns. Our library has the same implementation freedom as we do, after all!

The first lie we did was the overallocation of memory with respect to the actual request we got. We
now commit a second lie about the very nature of the memory we are pointing to:

void *operator new(std::size t n) {
void *p = std::malloc(n + sizeof n);
if (1p) throw std::bad alloc{};
auto q = static cast<std::size t*>(p);
*q = n;
Accountant: :get () .take (n) ;
return g + 1;

}

Converting a pointer from or to void* can be done efliciently with static cast, as explained in
Chapter 3. We now have two perspectives on the same memory block with p claiming that the block
holds raw memory and g claiming (erroneously) that it holds at least one std: : size t:

q

cd cd cd cd cd cd cd cd cd cd cd cd fd fd fd fd

Figure 8.4 — Two perspectives on the same memory block

Through g, we hide the value of n at the beginning of the allocated memory block. Remember that
this is not what we will be returning to our caller, so this is done without the client code’s knowledge:

void *operator new(std::size t n) {
void *p = std::malloc(n + sizeof n);
if (!p) throw std::bad alloc{};
auto q = static cast<std::size t*>(p);
*q = n;
Accountant: :get () .take (n) ;
return g + 1;
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One possible view of the memory pointed to by both p and g would now be as follows:

g

Figure 8.5 — Possible state of the memory block after hiding the value of n

Again, your view might differ from this one: we wrote an eight-byte integral value, which explains the
number of consecutive bytes affected by this write, but the order of bytes in an integer depends on the
underlying hardware architecture: some architectures are big-endian and store the most significant
byte of an integer at its lowest memory address; others are little-endian and store the least significant
byte at the highest memory address. Within a program, you typically will not notice this unless you
serialize data to persistent storage or on a network. As such, on another machine, you could see the
value 4 closer to the right and of that eight-byte write instead of being on the left as it is in this example.

After informing Accountant that we allocated 4 bytes (not 12, remember), we reach the point where
we return to our caller the beginning of the 4-byte block that was actually requested:

void *operator new(std::size t n) {
void *p = std::malloc(n + sizeof n);
if (Ip) throw std::bad alloc{};
auto g = static cast<std::size t*>(p);
*q = n;
Accountant: :get () .take (n) ;
return q + 1;

}

Looking at our memory block, the situation is now as follows:

CI\
//, 4 a a a a a a

B/ cd cd od cd fd fd fd fd

returnad walue / L_ J

~
This is the four bytes
space provided to
client code

Figure 8.6 — State of the memory block at the point of return
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Returning to the caller, the constructor of the int object is applied to the block returned by operator
new():

int main()

auto pre = Accountant::get() .how much() ;

{ // BEGIN

int *p = new int{ 3 };
int *qg = new int[10]1{ }; // initialized to zero
delete p;
// oops! Forgot to deletel[]l g

} // END

auto post = Accountant::get().how much() ;

if (post != pre)

std::cout << "Leaked " << (post - pre) << " bytes\n";

}

After having applied the constructor on the memory pointed to by p in main (), our memory block
looks like the following:

Figure 8.7 — Possible state of the memory block after constructing *p

Voila! The beauty of all this is that client code (the main () function) has no idea that we played those
tricks and performed those lies, just as we really have no idea what other tricks std: :malloc ()

did for us (unless we can look at its source code, of course). Program execution continues normally
and *p can be used like any other int until we reach the point where we decide to deallocate it:

int main()

auto pre = Accountant::get () .how much() ;

{ // BEGIN
int *p = new int{ 3 };
int *g = new int[10]{ }; // initialized to zero
delete p;
// oops! Forgot to delete[] g

} // END

auto post = Accountant::get () .how much();
if (post != pre)
std::cout << "Leaked " << (post - pre) << " bytes\n";
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When entering operator delete (), you might notice that the memory pointed to by the p
argument begins with value 3 (the value of the int), not value 4. This makes sense as p points to the
memory block that was given to the client code, not to the beginning of the block we actually allocated:

/ 3 ] @ 2 fd fd fd fd

P
Figure 8.8 — State of the memory block prior to destruction (caller’s perspective)

Before continuing, it’s important to understand here that the reason why you probably see 3 here
is that int is a trivially destructible type so its destructor was essentially a no-op. Normally, at the
point where operator delete () begins its execution, the destructor for the pointed-to object
has already run and the memory block could contain pretty much anything.

Within operator delete (), our first task is to retrieve the location where we hid the value of
n during the corresponding call to operator new():

void operator delete(void *p) noexcept
if (!p) return;
auto g = static cast<std::size t*>(p) - 1;
Accountant::get () .give back(*q) ;
std: :free(q) ;

}

At this point, g is the location where the value of n was stored as well at the beginning of the memory
block that was allocated. We inform Accountant of the fact that n bytes were deallocated, and call
std: :free () to perform the actual deallocation.

If you are observing the memory pointed to by g when calling std: : free (), it is possible (but not
guaranteed) that you will see that memory being written to. It is also possible (but also not guaranteed)
that you will see memory written to before q as well as after the end of the bytes memory block you had
allocated. Remember that std: : free (), like std: :malloc (), can do whatever bookkeeping tasks
it requires just as it can overwrite memory blocks that have been freed, particularly in builds meant for
debugging; or, it can just leave the memory as it was, which is more probable with optimized builds.

That was fun, wasn’t it? It seems to work indeed, at least on some machines. Yet, as stated earlier,
this version of our leak detector has bugs, and these bugs can really hurt us. As a hint, know that
if we compile this leak detector on a compiler where std: : size_t is four bytes wide and try to
callnew double, we might get into very serious trouble. It is now time to take a closer look at our
implementation to grasp why this is so and fix the problems we caused.
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Identifying (and fixing) the problems

Our initial implementation has in fact one real problem, as well as something that works but could
be cleaner and deserves discussion.

The real problem is that we express our lies in dangerous ways and that we are not giving proper
consideration to alignment requirements. Indeed, look at our initial implementation of operator
new():

void *operator new(std::size t n) {
// allocate n bytes plus enough space to hide n
void *p = std::malloc(n + sizeof n); // to revisit
// signal failure to meet postconditions if needed
if (!p) throw std::bad alloc{};
// hide n at the beginning of the allocated block
auto g = static_cast<std::size_t*>(p);
*q = n; // to revisit
// inform the Accountant of the allocation
Accountant: :get () .take (n) ;
// return the beginning of the requested block memory
return q + 1; // to revisit

}

We know for a fact that the memory returned by std: :malloc () has to be aligned appropriately
for the strictest (meaning worst) natural alignment of our machine: indeed, since that function does
not know what object will be constructed once the allocation has completed, it has to make sure
that the memory block allocated will be properly aligned in all “natural” cases. C++ compilers offer
std::max_align_t asan alias for the type with the strictest natural alignment in a machine,
which is often, but not necessarily, type double in practice.

Now, we allocate a bit more than was requested, sizeof (std: :size_ t) more bytes to be precise.
That’s fine up to a point: we can assuredly store std: : size t at the beginning of the block returned
by std: :malloc () since that block is well aligned even in the worst case.

Then, we “jump over” std: :size_t and return an address that is sizeof (std::size_ t)
bytes more than the one we allocated. This can be fine if it still yields a correctly aligned address even
in the worst case, but that is only the case if std: : size t and std::max align_t areof the
same size, something that is not guaranteed (in practice, their sizes are often different).

What happens if these types are of different sizes and, consequently, the address returned by operator
new () does not match the alignment requirements of std: :max_align t? Well, it depends:

o It can work if we get “lucky” and the address returned is aligned correctly for the type we want
to construct. For example, suppose that alignof (int) ==4 and alignof (std: :max_
align t)==8,then callingnew int will work even if operator new returns an address
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that is a multiple of four but not of eight. However, it's probable that calling new double will
only lead to pain. This sort of “luck” can be a curse, hiding a latent, damaging bug for a while
and making for unpleasant surprises later.

You can end up with slow and dangerous code, as some hardware will support access to misaligned
objects. You don’t want to do that, however, as for the machine to achieve this, it needs to perform
acrobatics and transform a seemingly simple operation such as loading double in a register
into a sequence of operations (load the “low” bytes, load the “high” bytes, and make a double
out of these two parts through bitwise manipulations). This leads to code that is significantly
slower to execute, obviously, but also dangerous if you have a multithreaded program as one
thread could read a partially formed object (this is called a torn read) or write to a partially
formed object (a torn write). You really do not want to debug code where this happens.

Your code can simply crash, as will be the case on many embedded platforms (including quite
a few game consoles). It’s arguably the most reasonable outcome in such a situation.

To fix this problem, we need to ensure that the address returned from our overloaded operator
new () is properly aligned for std: :max_align_t,and that operator delete () isadjusted
accordingly. One way to do this would be to ensure that the size of the “hiding spot” for n is such that
jumping over that additional memory block still results in an address that is properly aligned for a
std::max_align_t object:

void *operator new(std::size t n) {

}

// allocate n bytes plus enough space to hide n,

// taking worst case natural alignment into account
void *p = std::malloc(sizeof(std::max align t) + n);
// signal failure to meet postconditions if needed
if (!p) throw std::bad alloc{};

// hide n at the beginning of the allocated block
*static cast<std::size t*>(p) = n; // to revisit

// inform the Accountant of the allocation
Accountant: :get () .take (n) ;

// return the beginning of the requested block memory
return static cast<std::max align t*>(p) + 1;

As you can see, this implementation allocates space for std: :max_align_t in addition to the
requested n bytes, then “jumps over” that additional storage to yield an address that is still properly aligned
for the worst case. This might mean wasting more space than in the initial (incorrect) implementation
if sizeof (std::size_ t) happensto be less than sizeof (std::max align t),butat
least we know that client code will be able to construct its object there.
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The corresponding operator delete () will do the same pointer gymnastics but in reverse,
going back sizeof (std::max_align t) bytesin memory:

void operator delete(void *p) noexcept {
// delete on a null pointer is a no-op
if (!p) return;
// f£ind the beginning of the block that was allocated
p = static cast<std::max align t*>(p) - 1;
// inform the Accountant of the deallocation
Accountant::get () .give back(

*static_cast<std::size t*>(p)

)i
// free the memory
std: :free(p) ;

}

Note that this implementation assigns std: :max_align t* to void* (pointer p), something
that is perfectly legal and does not require a cast.

The other issue we should discuss is not technically a problem in this implementation but is a problem
in general. Look at this excerpt from operator new():

void *operator new(std::size t n) {
void *p = std::malloc(n + sizeof (std::max align t));
if (!p) throw std::bad alloc{};
// hide n at the beginning of the allocated block
*static cast<std::size t*>(p) = n; // to revisit
Accountant: :get () .take (n) ;
return static cast<std::max align t*>(p) + 1;

}

Do you notice something strange? The highlighted line of code performs an assignment where p
points, but the assignment only makes sense on an existing object. Is there an object at location *p
at that moment?

The answer is... strange. To create an object, one has to call its constructor, but we never called the
constructor of std: : size t atlocation p in this code. This might make you wonder why our code
seems to work. It happens that the following is the case:

« Some types in C++ are said to be implicit lifetime types. These types include scalars (pointers,
pointer to members, arithmetic types, enumerations, std: :nullptr_t including their
cv-qualified counterparts) and implicit lifetime classes (aggregates with no user-provided
destructor, at least one eligible trivial constructor as well as a non-deleted trivial destructor).
You will notice that std: : size_t, being an alias for an unsigned integral type, falls under
the umbrella of implicit lifetime types. If you have a C++23 compiler, you can programmatically
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test if some type T qualifies as an implicit lifetime type through the std: :is_implicit
lifetime<T> trait.

o Some standard library functions implicitly start the lifetime of objects of implicit lifetime
types. These include some C functions, such as std: :memcpy (), std: :memmove (), and
std::malloc (),butalso std: :bit cast, some functions in allocators (see Chapter 14)
as well as two functions from C++23 respectively named std: : start lifetime as()
and std: :start _lifetime as array().

What makes this assignment operation work in this specific case is that we are writing to an object
of an implicit lifetime type in a block of memory that is properly aligned and has been allocated with
one of these special functions that have the property of implicitly starting the lifetime of objects. If
we had decided to store something more elaborate than an object of some implicit lifetime type, our
assignment would either fail at compile-time (if our compiler is nice enough to notice our mistake)
or risk causing damage at runtime.

A better, and in general, safer approach to the act of hiding the value of n in some uninitialized storage
is to use placement new, as seen in Chapter 7. The following implementation of operator
new () is thus preferable in general as it avoids an (often misguided) assignment to a non-object:

void *operator new(std::size t n) {
void *p = std::malloc(n + sizeof(std::max align t));
if (!p) throw std::bad alloc{};
// hide n at the beginning of the allocated block
new (p) std::size t{ n };
Accountant: :get () .take (n) ;
return static_cast<std::max align t*>(p) + 1;

}

Note that since std: : size_t has a trivial destructor, there is no need to call its destructor in
operator delete ();simply freeing its underlying storage is sufficient to end its lifetime. We
now have a correct, working leak detector!

Revisiting our implementation (and lessons learned)

We just overloaded memory allocation operators, blatantly lied our way through the protections
of the type system, performed potentially dangerous operations that risked leading to misaligned
objects, and saw how to avoid this pitfall. That was an interesting adventure indeed, but the astute
reader that you are is probably wondering about the cost of this trick, particularly in terms of how
much memory it consumes.

With our “allocate more than requested and hide n at the beginning” approach, each allocation
consumes sizeof (std::max_align t) bytes more than needed by client code. If our code
allocates large objects, that cost might be minor, but if we allocate smaller objects, this overhead can
be unreasonable and dominate the memory consumption of our entire program.
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Writing a Naive Leak Detector

Remember from Chapter 7 that C++14 made it possible to provide an overload of operator
delete () that accepts the size of the just-destroyed object as an argument. This makes the act
of hiding n during operator new () redundant, as we did so precisely in order to retrieve n in
operator delete (), something we no longer need to do.

Since we do not need to hide n, we can both simplify our implementation and significantly reduce
our memory consumption:

void *operator new(std::size t n) {
// allocate n bytes (no need for more!)
void *p = std::malloc(n);
// signal failure to meet postconditions if needed
if (!p) throw std::bad alloc{};
// inform the Accountant of the allocation
Accountant: :get () .take (n) ;
// return the beginning of the requested block memory
return p;

}

void *operator new[] (std::size t n) ({
// exactly the same as operator new above

}

void operator delete(void *p, std::size t n) noexcept ({
// delete on a null pointer is a no-op
if (!p) return;
// inform the Accountant of the deallocation
Accountant::get () .give back(n);
// free the memory
std::free(p) ;

}

void operator delete[] (void *p, std::size t n) noexcept {
// exactly the same as operator delete above

}

This leak detector still works and represents a strict upgrade when compared with the more naive
version that preceded it.



Summary

Summary

That was fun, wasn’t it? You can take this very simple tool and make it more interesting: for example,
you could use it to check for overflow and underflow of the allocated memory blocks by injecting
sentinel values before and after each block, or you could use it to make a sort of map of the way your
memory is being used.

This concludes our first foray into applications that benefit from taking charge of the memory allocation
facilities at our disposal. Our next step, and next chapter, will lead us to examine how a C++ program
can interact with atypical memory or deal with atypical allocation situations.

Of course, no programming language (even one as versatile and wide-ranging as C++) can profess to
cover all possible types of memory that an operating system could provide services for, nor should that
be the language’s role. Still, as we will see, C++ provides us with the kind of “syntactic glue” required
to build bridges between atypical needs and the rest of the program.
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Atypical Allocation Mechanisms

We are progressing in our exploration of memory management with C++. In Chapter 7, we explored the
various syntactic ways in which one can overload operator new () and operator delete ()

(as well as their array counterparts), and in Chapter 8, we wrote an actual, real-life example (a memory
leak detector) relying on the capacity to write such overloads. It’s a nice start, showing concretely
that this knowledge has practical uses, but you might (rightfully) wonder what else we can do when
controlling memory management facilities.

This chapter will be slightly different from the others. What we will do here is present a non-exhaustive
set of ways in which one can benefit from taking control of the memory allocation functions of C++.
More precisely, we will show the following:

o How placement new can let us drive memory-mapped hardware efficiently

o How one can simplify usage of error management with the nothrow version of operator
new ()

o How one can install and use std: :new_handler to make it easier to react to
out-of-memory situations

o How one can handle “exotic” memories such as shared memory or persistent memory through
the mediation of standard C++

At the end of this chapter, we will have a broader view of what opportunities the basic memory
allocation facilities of C++ provide us with. Later chapters will return to more focused topics such as
arena-based allocation (Chapter 10), deferred reclamation (Chapter 11), and, in later chapters, how
to control memory allocation with containers and allocators.
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Technical requirements

You can find the code files for this chapter in the book’s GitHub repository here: https://github.
com/PacktPublishing/C-Plus-Plus-Memory-Management/tree/main/chapter9.

Placement new and memory-mapped hardware

There are many uses for placement new (an important feature discussed in Chapter 7, as you might
remember) but one use that is particularly interesting is that it allows us to map software objects to
memory-mapped hardware, effectively allowing us to drive hardware as if it was software.

A working example of this feature would be tricky to write as we would find ourselves in “non-portable
code land,” using operating-system-specific features to get the address of a particular device and
discussing ways to get read and write privileges to memory locations normally accessed by software
drivers. For that reason, we will craft an artificial yet illustrative example and ask you, esteemed reader,
to imagine that the missing parts of this example exist.

First, suppose that we are developing a driver for a new video card, one that is so wonderful that its
codename is super video_card. For the sake of this illustration, we will model this through
the following class:

#include <cstdint>
class super video card {
//
public:
// super duper registers
volatile std::uint32 t ro{}, ri{}, r2{}, r3{};
static_assert (sizeof (float) == 4); // sanity check
volatile float fo{}, f£1{}, £2{}, £3{};
[/ etel.
// initialize the video card's state
super video card() = default;
super video card(const super video card&) = delete;
super video card&
operator=(const super video card&) = delete;
// could be used to reset the video card's state
~super video card() = default;
// various services (omitted for brevity)
}i
//

The important aspects of this class for our purpose are the following:

o Itis an uncopiable type, as it is meant to map to a specific zone of memory. Copying an object
of this type would be counterproductive, to say the least.
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Placement new and memory-mapped hardware

o Ithasbeen designed in such a way that its state can conceptually be superimposed on its hardware
equivalent. For example, given the preceding class declaration, starting at the beginning of
the hardware’s memory layout, we expect four 32-bit integral registers followed by four 32-bit
floating point registers. We used <cstdint > to get the aliases for fixed-width integral types
on our compiler.

o Asshould be the case under such circumstances, we express our expectations through static_
assert whenever possible. Also, since the state of the hardware registers can change through
other actions than that of our program, we qualified the register-equivalents as volatile such
that accesses to these member variables will be equivalent to I/O operations for the purpose
of C++’s abstract machine.

Why do we use volatile variables in this example?

If you are not used to volatile variables, you might be wondering why we used this
qualification on the data members of our memory-mapped hardware-representing class. The
reason why this is important is that we want to avoid our compiler optimizing code based on
the (wrong, in this case) assumption that if our code does not touch these variables, then they
do not change state or that if our writes to these variables are not followed by reads in our code,
then that can be assumed to have no effect. Through volatile-qualified variables, we are
effectively telling the compiler “There are things you do not know happening on these objects, so
please do not assume too much”
- J

For simplicity, we used a constructor that zeros out the data members and a trivial destructor, but
in practice, we could have used constructors (default or otherwise) to initialize the state of the
memory-mapped device to match our needs and the destructor to reset the state of that device to
some acceptable state.

Normally, for a program to access the memory-mapped hardware, we would probably communicate
with the operating system with services that accept as argument the required information to identify
the device whose address we seek. In our case, we will simply make it look like we can access a zone
of memory of the right size and alignment to which we can read and write. The memory address is
exposed as raw memory (of type void*), which is what we can realistically expect from an operating
system function under similar circumstances:

// somewhere in memory where we have read / write
// access privileges is a memory-mapped hardware
// that corresponds to the actual device
alignas (super video_card) char

mem mapped device [sizeof (super video card)];
void* get super card address() {

return mem mapped device;
}
//
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We then arrive at how one can use placement new to map an object to some memory-mapped hardware
location. Note that we need to include the <new> header as this is where placement new is defined.
The steps to meet our objective are as follows:

1.  First, obtain the address where we want to map our carefully crafted super video card object.

2. 'Then, through placement new at that address, construct a super_ video_card object such
that the data members of that object correspond to the address of the registers they represent.

3. For the duration of that object’s lifetime, use the object through the corresponding pointer (the
the card variable in the following code excerpt).

4. When we are done, the one thing we do not want to do is apply operator delete () on
the card as we never allocated the associated memory in the first place. We do want to
finalize the object through ~super video card (), however, to make sure the cleanup
or reset code (if any) for that object is run.

We thus end up with the following:
//

#include <new>
int main()
// map our object to the hardware
void* p = get super card address();
auto the card =
new(p) super video card{ /* args */ };
// through pointer the card, use the actual memory-
// mapped hardware
//

the card->~super video card();

}

If the explicit destructor call is a problem, such as in code where exceptions could be thrown along
the way, we can use a std: :unique_ptr object with a custom deleter (see Chapter 5) to finalize
the super video card object:

//

#include <new>

#include <memory>

int main()
// map our object to the hardware
void* p = get super card address() ;
std::unique ptr<

super video card,



Simplifying nothrow new usage

decltype([] (super video card #*p) {
p->~super_video _card(); // do not call delete p!
13)
> the card {
new(p) super video card{ /* args */ }
}:
// through pointer the card, use the actual memory-
// mapped hardware
//

// implicit call to the card->~super video card()

}

In this case, the std: :unique ptr object finalizes the pointee (the super video_ card object)
but does not free its memory storage, leading to more robust code in the presence of exceptions during
the lifetime of the the card variable.

Simplifying nothrow new usage

As mentioned in Chapter 7, the default behavior of operator new () when unable to perform
an allocation request is to throw an exception. This can result from such situations as running out
of memory or otherwise being unable to service the allocation request, in which case, one usually
throws std: :bad_alloc; from an incorrect array length (for example, a negative length of one
exceeding implementation-defined limits), usually leading to std: :bad_array new length
being thrown; or from failure to complete the subsequent construction of the object following the
completion of operator new (), in which case, the exception that will be thrown will be whatever
was thrown from the failing constructor.

Exceptions are the “normal” way for a C++ function to signal failure to meet the function’s postconditions.
In some cases, such as a constructor or an overloaded operator, it’s the only real, workable way to do
so: a constructor has no return value, and the signature of functions that overload operators generally
does not leave room for additional arguments or error-reporting return values, although one could
make a case for some types such as std: :optional or std: : expected as allowing an alternative
for some overloaded operator use cases.

Of course, some domains typically do not use exceptions: a significant number of video games are
compiled without exception support, for example, and the same goes for a lot of programs written for
embedded systems. Reasons invoked go from the technical (fear of overhead considered undesirable
in terms of memory space consumption, execution speed, or both) to the more philosophical (dislike
for what is seen as hidden control paths), but no matter what the reasons are, the fact is that C++ code
compiled without exception support exists and the nothrow version of operator new () is a reality.
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This does mean, of course, that even seemingly simple code such as the following can lead to undefined
behavior (UB):

#include <new>

#include <iostream>

struct X {
int n;
X(int n) : n {n} {}

b

int main()
auto p = new (std::nothrow) X{ 3 };
std::cout << p->n; // <-- HERE
delete p;

}

The reason for this potential UB is that if the nothrow version of operator new () fails (unlikely

but not impossible, especially in memory-constrained situations), then p will be null, and accessing
the n data member through p will be... a very bad idea.

Of course, the solution is simple, and being the astute reader that you are, you have probably noticed
it already: just test the pointer before using it! This works, of course, as shown here:

#include <new>
#include <iostream>
struct X {

int n;
X(int n) : n {n } { }
b
int main()
auto p = new (std::nothrow) XxX{ 3 };
if(p) {
std::cout << p->n; // ...use *p as needed...
}
delete p; // fine even in p is null

}

The problem with this approach is that code quickly becomes littered with tests, as there is rarely only
one pointer in a program, reminding us that the beauty of code using exceptions is that one does not
need to worry about those tests. With exceptions, either operator new () and the subsequent
construction both succeeded and one can use the resulting pointer confidently, or one of these steps
failed and code execution did not reach the point where one could get into trouble:

#include <new>
#include <iostream>
struct X {
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int n;
X(int n) : n {n } { }
)5
int main() {
auto p = new X{ 3 }; // throws if operator new() or
// X::X(int) fails
std::cout << p->n; // ...use *p as needed...
delete p;

}

Of course, one can get in trouble even with exceptions, for example, if there is an execution path that
lets p remain null or uninitialized and others where that cannot happen (you can usually avoid this by
initializing your objects on declaration, but that is not always possible); let us leave these code hygiene
considerations aside for now as they would deviate from our topic of interest.

An important consideration when facing a failure-to-allocate situation is what to do when it happens.
Whether our code base uses exceptions or not, we most probably do not want to let the execution of our
program continue and therefore incur UB through such things as the improper use of a null pointer.

A common way to stop execution at the point of failure-to-allocate is to wrap the tentative allocation
and construction operation, the subsequent test on the resulting pointer, and the action to take if the
pointer is null in some code construct. The code we want to wrap will be something like the following,
supposing we want to allocate-then-construct an int object:

//

int *p = new int{ 3 };

if (!p) std::abort(); // for example
return p;

//

This code used std: :abort () asa mechanism to end program execution; exceptions would provide
us with potentially recoverable errors, but without exceptions, most standard mechanisms at our
disposal will lead to program termination, and std: : abort () is a reasonable choice in this case.

( 7
Ways to conclude program execution

A C++ program can conclude in many different ways: reaching the end of the main () function
is the most obvious one, but other examples exist. For example, std: :exit () is used for
normal program termination accompanied by cleanup steps; std: :quick exit () is
used for program termination without cleanup steps. One can use std: :atexit () and
std::at_quick exit () to register some functions to be called before exiting, and
std: :abort () is used to signal abnormal program termination without cleanup steps.
The std: :terminate () function is used when some unpleasantness in a documented
list of situations occurs (this list includes such things as an exception being thrown from the
constructor of a static variable or from the body of a noexcept function). In our case,
the only mechanism that really fit was std: : abort ().
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One possible approach to solve this problem is to use a macro and an immediately-invoked function
expression (ITFE), which is the name given to an expression made from an anonymous lambda that
is at once created, executed, and discarded. To make our solution general, we need to be able to do
the following:

Specify the type of object to create

Make the macro variadic, as we need to be able to pass any number of arguments of any type
to the object’s constructor

A possible implementation of such a macro would be TRY NEW as follows:

#include <new>

#include <cstdlib>

#define TRY NEW(T,...) [&] { \

auto p = new (std::nothrow) T( VA ARGS ); \
if (!p) std::abort(); \

return p; \

10

struct dies when newed ({

Iz

void* operator new(std::size t, std::nothrow t) {

}

return {};

int main()

}

// PO is int*, points to an int{ 0 }

auto p0 = TRY NEW(int) ;

// pl is int*, points to an int{ 3 }

auto pl = TRY NEW(int, 3);

auto g = TRY NEW(dies when newed); // calls abort()

Not everyone is familiar with variadic macros, so let’s take it step by step:

The “signature” of our macro is TRY NEW (T, . . .), meaning T is mandatoryand . . . could
be any number of tokens (including none at all) separated by commas. Unsurprisingly, we will
use T for the type to construct and . . . for the arguments to pass to the constructor that will
be invoked.

Since we wrote the macro on more than one line (for readability), each line but the last terminates
with a space followed by a backslash to inform the preprocessor that it should continue parsing
on the next line.

The symbols on . . . are relayed through the special macro named VA ARGS__, which
expands to what . . . contained and can be empty if . . . itself is empty. This works in both C
and C++. Note that we use parentheses, not braces, in the constructor call as we want to avoid
unwittingly building an initializer list if all elements of VA ARGS__ are of the same type.
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o We test the p pointer resulting from the call to a std: : nothrow version of operator
new () and call std: :abort () if p is null.

« This entire sequence of operations is, as announced, wrapped in an ITFE and the newly allocated
pointer is returned. Note that we could also have returned a std: :unique ptr<T> object
from that lambda if we had wanted to do so. Also, note that this lambda expression uses a

[&] capture block to ensure the availability of tokensin VA ARGS__ within the scope of
the lambda.

A small but interesting side effect

Note that since we used parentheses (the same would hold for braces), an empty VAR ARGS
will lead this macro to zero-initialize fundamental types such as int instead of leaving them
uninitialized. You can compare: as of C++23, new int; yields a pointer to an uninitialized
int object, butnew int () ; andnew int{}; both initialize the allocated block with a
value of zero. There is an upside to this, as with this macro, we will not end up with a pointer
to an uninitialized object, even for trivial types. However, there is also a downside as we will
be paying for an initialization even in cases where it might not have been necessary.
. J

Another approach would be to use a variadic function template, which might lead to a better debugging
experience in practice. It has slightly different-looking client code but is otherwise similar in usage
and effect:

#include <new>

#include <cstdlibs>

#include <utility>

template <class T, class ... Args>

auto try new(Args &&... args) {
auto p =
new (std::nothrow) T(std::forward<Args>(args)...);

if (!p) std::abort();
return p;
}
struct dies when newed ({
void* operator new(std::size t, std::nothrow t) ({
return {};

}
¥
int main() {
// p0 is int*, points to an int{ 0 }
auto p0 = try new<int>();
// pl is int*, points to an int{ 3 }
auto pl = try new<int>(3);
auto g = try new<dies when newed>(); // calls abort()
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The call syntax for the variadic function version looks like a cast, and arguments passed to try new ()
are perfectly forwarded to the constructor of T to ensure that the expected constructor is called in the
end. As was the case with the macro, we could have chosen to return a std: :unique ptr<T»>
object instead of a T* object with this function.

Out-of-memory situations and new_handler

So far in this book, including this chapter, we have stated that operator new () and operator
new [] () typically throw std: :bad_alloc when failing to allocate memory. It’s true to a wide extent,
but there is a subtlety we have avoided so far and to which we will now give some time and attention.

Imagine a situation where user code has specialized the memory allocation functions to fetch memory
blocks from a pre-allocated data structure with interesting performance characteristics. Suppose that
this data structure initially allocates space for a small number of blocks and then goes on to allocate
more space once the user code exhausts the blocks from the initial allocation. Expressed otherwise: in
this situation, we have an initial, fast setting (let’s call that the “optimistic” state) and a secondary setting
(let’s call that the “second chance” state) that lets user code continue allocating once the “optimistic”
state’s resources have been consumed.

For a scenario such as this to be seamless, with a transparent change of allocation strategy achievable
without the explicit intervention of user code, explicitly throwing std: :bad alloc would be
insufficient. Throwing would complete the execution of operator new () and client code could
catch the exception and take action, of course, but in this (reasonable) scenario, we would like failure
to allocate to lead to some action being taken and operator new () to try again with the updated
state of things, if any.

In C++, scenarios such as this are handled through a std: :new_handler, which is an alias for a
function pointer of type void (*) (). What one needs to know is the following:

o 'Thereisaglobal std: :new_handler in a program, and by default, its value isnullptr.

« One can set the active std: :new_handler through the std: : set_new_handler ()
function, and one can get the active std: :new_handler through the std: :get _new_
handler () function. Note that as a convenience, std: : set_new_handler () returns
the std: :new_handler that is being replaced.

o When an allocation function such as operator new () fails, what it should do is first get
the active std: :new_handler. If that pointer is null, then the allocation function should
throw std: :bad_alloc as we have done so far; otherwise, it should call that std: :new
handler and try again under the new conditions that this call installed.

As could be expected, your standard library should already implement this algorithm, but our own
overloads of operator new () and operator new[] () have not done so, at least so far. To
show how to benefit from a std: :new_handler, we will now implement an artificial version of
the aforementioned two-step scenario.
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This toy implementation will use the member version of the allocation operators for some X type
and behave as if we initially had enough memory for 1 imit objects of that type (normally, we
would actually manage that memory, and you can see an example of such management in Chapter 10
where we will provide a more realistic example). We will install a std: :new_handler that, when
called, changes 1imit to a higher number, and then resets the active handler to nullptr such that
subsequent fajlures to allocate X objects will lead to throwing std: :bad_alloc:

#include <new>
#include <vectors
#include <iostreams>
struct X {
// toy example, not thread-safe
static inline int limit = 5;
void* operator new(std::size t n) {
std::cout << "X::operator new() called with "
<< limit << " blocks left\n";
while (limit <= 0) {
if (auto hdl = std::get new handler(); hdl)
hdl () ;
else
throw std::bad alloc{};
}
--limit;
return ::operator new(n);
}
void operator delete(void* p) {
std::cout << "X::operator delete()\n";
: :operator delete(p);
}
// same for the array versions
};
int main() {
std::set new handler(I[] () noexcept {
std::cout << "allocation failure, "
"fetching more memory\n";
X::1limit = 10;
std::set new handler(nullptr); // as per default
i
std: :vector<X*> v;
v.reserve (100) ;
try {
for (int 1 = 0; i != 10; ++1)
v.emplace back (new X) ;
} catch(...) {
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// this will never be reached with this program
std::cerr << "out of memory\n";

}

for (auto p : v) delete p;

}

Note the way that X : : operator new () handles failure: if it notices that it will not be able to meet
its postconditions, it gets the active std: :new_handler, and if it's non-null, calls it before trying
again. This means that the std: :new_handler, when called, has to either change the situation in
such a way that a subsequent tentative allocation could succeed or change the std: :new_handler
to nullptr such that failure will lead to an exception being thrown. Failure to respect these rules
could lead to an infinite loop and much sadness would ensue.

The handler installed inmain () for this toy example does this: when called, it changes the conditions
under which the allocations will be performed (it raises the value of X : : 1imit). It then calls
std::set_new handler () with nullptr as we have not planned for another approach after
the “optimistic” and “second chance” situations, so if we exhaust the second chance resources, we (as
they say) are toast.

( N
A lambda as new_handler?

You might have noticed that we described the std: :new_handler type as being an alias
for a function pointer of the void (*) () type, yet in our toy example, we installed a lambda.
Why does that work? Well, it happens that a stateless lambda—a lambda expression with an
empty capture block—is implicitly convertible to a function pointer with the same calling
signature. It’s a useful thing to know under many circumstances, such as when writing C++
code that interfaces with C code or operating system APIs.

- J

We are now about to enter a strange and quite technical part of this chapter, where we will see how
to leverage C++ to handle atypical memory.

Standard C++ and exotic memory

Our last example in this slightly strange chapter with examples of unusual memory management usage
is concerned with the ways in which we can write standard C++ programs that deal with “exotic”
memory. By “exotic,” we mean memory that requires explicit actions to “touch” (allocate, read from,
write to, deallocate, and so on) and that differs from a “normal” memory block under the control of our
program, such as the one used in the illustrative example of memory-mapped usage with placement
new earlier in this chapter. Examples of such memory include persistent (non-volatile) memory or
shared memory, but anything out of the ordinary will do, really.

Since we have to pick an example, we will write an example using a (fictional) shared memory block.



Standard C++ and exotic memory

-

A little white lie...

Its important to understand that we are describing a mechanism for memory that would
normally be shared between processes, but inter-process communication is the domain of the
operating system. Standard C++ only describes the rules for sharing data between threads in
a process; for that reason, we will tell a little white lie and write a multithreaded system, not a
multiple-process one, using that memory to share data. Our focus is on memory management
facilities, not inter-process communication, so that should not pose a problem.

~N

J

Following the same approach as we did in previous sections of this chapter, we will craft a portable
illustration of how to proceed in code that seeks to manage atypical memory, and let you map the
details to the services of your chosen platform. Our example code will take the following shape:

A shared memory block will be allocated. We will make it look like this memory is special in
the sense that one needs special operating system functions to create it, allocate it, or deallocate
it, but we will deliberately avoid using actual operating system functions. This means that if
you want to use the code in this section for a real application, you will need to adapt it to your
chosen platform’s API.

We will craft a “handmade” version of a toy program that uses this fictional API for shared
memory in order to illustrate what user code would look like under these circumstances.

Then, we will show how understanding the memory management facilities of C++ can help us
write more pleasant and “normal looking” user code that does the same thing as the “handmade”
one... or even better.

Fictional realism?

This entire section on C++ and exotic memory, which we cover next, will hopefully be interesting,
and the code we will write will strive to be realistic with respect to memory management. As
mentioned previously, since the C++ standard is mostly silent on the idea of multi-process
systems, we will try to make multithreaded code look kind of like multi-process code. I hope
you, astute reader, will accept this proposition.

Please note that there will be a small amount of low-level synchronization in user code for this
section, including some through atomic variables. I tried to keep it minimal yet reasonably
realistic and hope you will be able to accept it even though I will not explain it all in detail,
with this book’s focus being on memory management rather than on concurrent computing
(another fine topic, of course). Feel free to use your favorite concurrent programming resource
if you want to know more about such things as waiting on atomics or using thread fences.

.

Ready? Let’s do this!
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A fictional shared memory API

We will write an API that is fictional but inspired by what one finds in most operating systems, except
that we will report errors through exceptions to simplify user code. Operating systems mostly report
errors through error codes expressed from return values, but this leads to user code that is more
involved. I hope this seems like an acceptable compromise to you, dear reader.

As most operating systems do, we will abstract the actual resource through a form of handle, or key;
creating a “shared memory” segment of some size will yield a key (an integral identifier), after which,
accessing that memory will require that key, and so will destroying that memory. As can be expected
with a facility meant to be used to share data between processes, destroying the memory will not
finalize the objects therein, so user code will need to ensure that objects in the shared memory are
destroyed before releasing the shared memory segment.

The signatures and types for our API will be as follows:

//
#include <cstddef> // std::size_ t
#include <new> // std::bad _alloc
#include <utilitys> // std::pair
class invalid shared mem key {};
enum shared mem id : std::size t;
shared mem id create shared mem(std::size t size);
std::pair<void*, std::size_t>
get shared mem(shared mem id) ;
void destroy shared mem(shared mem id) ;

//

You might notice that we are using an enum type for shared_mem_id. The reason for this is that
enum types are distinct types in C++, not just aliases as one would get from using or typedef.
Having distinct types can be useful when overloading functions based on the types of their arguments.
It’s a useful trick to know: if we write two functions with the same name (one that takes an argument
of the shared mem_id type and another that takes an argument of the std: : size_ t type), these
will be distinct functions, even though the underlying type of shared mem_idisstd::size t.

Since we are building an artificial implementation of “shared memory” to show how memory allocation
functions can simplify user code, the implementation for the functions of our API will be written to
be simple, but let us write client code that behaves as if it were using shared memory. We will define a
shared memory segment as a shared_mem_block modeled by a pair made from an array of bytes
and a size in bytes. We will keep a std: : vector object of that type, using the indices in that array
as shared mem_1id. This means that when a shared mem_ block object is destroyed, we will
not reuse its index in the std: : vector (the container will eventually have “holes,” so to speak).
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Our implementation is as follows. Note that it is not thread-safe, but that does not impact our memory
management-related discourse:

//
#include <vector>
#include <memory>
#include <utilitys>
struct shared mem block {
std::unique ptr<char[]> mem;
std::size t size;
b s
std: :vector<shared mem block> shared mems;
std::pair<void*, std::size_t>
get shared mem(shared mem id id) {
if (id < std::size(shared mems))
return { shared mems [id] .mem.get (),
shared mems[id] .size };
return { nullptr, 0 };
}
shared mem id create shared mem(std::size t size)
auto p = std::make unique<char[]>(size) ;
shared mems.emplace back(std::move(p), size);
// note the parentheses
return shared mem id(std::size(shared mems) - 1);
}
// function for internal purposes only
bool is valid shared mem key (shared mem id id) {
return id < std::size(shared mems) &&
shared mems [id] .mem;
}
void destroy shared mem(shared mem id id) {
if (!is _valid shared mem key (id))
throw invalid shared mem key({};
shared mems [id] .mem.reset () ;

}

If you want to experiment, you can replace the implementation of these functions with equivalent
implementations that call the functions of your chosen operating system, adjusting the API if needed.

Equipped with this implementation, we can now compare a “handmade” example of shared memory-
using code with one that benefits from the facilities of C++. We will do this comparison with code
where one allocates some chunk of data from a shared memory segment and then launches two threads
(a writer and a reader). The writer will write to that shared data, and then (with minimal synchronization)
the reader will read from it. As mentioned previously, our code will use intra-process synchronization
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(C++ atomic variables), but in real code, you should use inter-process synchronization mechanisms
provided by the operating system.

e N
A note on lifetime

You might remember from Chapter I that each object has an associated lifetime, and that the
compiler keeps track of this fact in your programs. Our fictional multiple-process example is
really a single-process, multithreaded example, so the usual C++ lifetime rules apply.

If you want to take the code in this section and write a real multi-process system to run some
tests, you might want to consider using std: : start_lifetime as () from C++23 in those
processes that did not explicitly create the data object, and avoid detrimental optimizations from
happening based on the compiler’s reasoning that, in these processes, the objects have never been
constructed. In earlier compilers, one trick that generally works is calling std: : memcpy ()

of the not-officially-constructed object onto itself, effectively starting its lifetime.

. J

In both our “handmade” and our standard-looking implementations, we will be using a data object
made of an int value and a Boolean ready flag:

struct data ({
bool ready;

int value;

i

In a single-process implementation, a better choice for the completion flag would be an atomic<bool>
object as we want to make sure the write to the ready flag happens before the write to the value,
but since we want this example to look like we are using inter-process shared memory, we will limit
ourselves to a simple bool and ensure this synchronization through other means.

s N
A word on synchronization

In a contemporary program, optimizing compilers will often reorder operations that seem
independent to generate better code, and processors will do the same once the code has been
generated in order to maximize usage of the processor’s internal pipeline. Concurrent code
sometimes contains dependencies that are neither visible to the compiler nor to the processor.
In our examples, we will want the ready completion flag to become t rue only after the write
to value has been performed; this order is only important because the writes are performed
in one thread but another thread will look at ready to know whether value can be read.

Not enforcing the value-then-ready sequence of writes through some form of synchronization
would let either the compiler or the processor reorder these (seemingly independent) writes
and break our assumptions on the meaning of ready.
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A handmade user code example

We can, of course, write user code that uses our fictional API without resorting to specialized memory
management facilities of C++, simply relying on placement new usage as seen in Chapter 7. It might
be tempting to think of placement new as a specialized facility since you might have learned of it
from this book, but if that is your perspective, you are invited to reconsider: the placement new
mechanism is a fundamental memory management tool used in almost every program, whether user
code is aware of it or not.

As a reminder, our example program will do the following:

Create a shared memory segment of some size (we will allocate much more than we need in
this case).

Construct a data object at the beginning of that segment, obviously through placement new.

Start a thread that will wait for a signal on the go variable of type atomic<bool >, then
obtain access to the shared memory segment, write to the value data member and then only
signal that the write has occurred through the ready data member.

Start another thread that will obtain access to the shared memory segment, get a pointer to the
shared data object therein, and then do some (very ineflicient) busy waiting on the ready flag
to change state, after which value will be read and used. Once this has been done, completion
will be signaled through the done flag of type atomic<bools.

Our program will then read a key from the keyboard, signal the threads (the writer thread,
really) that it’s time to start working, and wait until they are done before freeing the shared
memory segment and concluding its work.

We thus end up with the following:

//

#include <thread>

#include <atomics>

#include <iostream>
int main() {

// we need a N-bytes shared memory block
constexpr std::size t N = 1'000'000;

auto key = create shared mem(N);

// map a data object in the shared memory block
auto [p, sz] = get shared mem(key) ;

if (!p) return -1;

// start the lifetime of a non-ready data object
auto p data = new (p) data{ false };
std::atomic<bool> go{ false };

std::atomic<bool> done{ false };
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std::jthread writer{ [key, &go] ({

go.wait (false) ;

auto [p, sz] = get shared mem(key) ;

if (p) {
auto p data = static cast<data*>(p):
p_data->value = 3;
std::atomic_thread fence(

std: :memory order release

)
p_data->ready = true;

}

Yo

std::jthread reader{ [key, &done] ({
auto [p, sz] = get shared mem(key);
if (p) {

auto p data = static cast<data*>(p):;
while (!p data->ready)
; // busy waiting, not cool
std::cout << "read value "
<< p_data->value << '\n';
}
done = true;
done.notify all();
} oY
if (char c; !std::cin.get(c)) exit(-1);
go = true;
go.notify all();
// writer and reader run to completion, then complete
done.wait (false) ;
p_data->~data();
destroy shared mem(key);

}

We made this work: we have an infrastructure of sorts to manage shared memory segments, we can
use these memory blocks to share data, and we can write code that reads from that shared data as
well as writes to it. Note that we captured the key in each thread in a key variable and then obtained
the memory block within each lambda through that key, but it would also be reasonable to simply
capture the p_data pointer and use it.

Notice, however, that we did not really manage that block: we created it and used a small chunk of
size sizeof (data) atthe beginning. Now, what if we had wanted to create multiple objects in that
zone? And what if we had wanted to write code that both creates and destroys objects, introducing
the need to manage what parts of that block are in use at a given time? With what we just wrote, that
would mean doing it all in user code, a somewhat burdensome endeavor.
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Keeping that in mind, we will now solve the same problem but with a different approach.

A standard-looking user code equivalent

So, what mechanism does C++ offer us if we want to use “exotic” memory in a more idiomatic manner?
Well, one way to do so is as follows:

o To write a manager class for the “exotic” memory, encapsulating the non-portable interface to
the operating system and exposing services that are closer to what C++ user code would expect

o To write overloads of the memory allocation operators (operator new (), operator
delete (), and so on) that take a reference to such a manager object as an additional argument

o To make these overloaded memory allocation operators bridge the gap between portable and
non-portable code through delegation on the memory manager object

This way, user code can be written essentially as “normal looking” code that calls new and delete
operators, except that these calls will use the same kind of extended notation seen in Chapter 7 for
such things as the nothrow or placement versions of operator new ().

Our shared mem_mgr class will use the fictional operating system API described earlier in this
section but, normally, one would write a class that encapsulates whatever operating system services
are required to access the atypical memory one aims to use in a program.

Being an example made for simplicity, mostly to show how the feature works and can be used, the
astute reader that you are will hopefully see much room for improvement and optimization... Indeed,
this manager is really slow and memory consuming, keepinga std: : vector<bool > object where
each bool value indicates whether a byte in the memory block is taken or not and performing a naive
linear search through that container whenever an allocation request is made (also, it’s not thread-safe,
which is bad!). We will examine some quality of implementation considerations in Chapter 10, but
nothing stops you from taking shared_mem_ mgr and making it significantly better in the meantime.

You will notice that shared_mem_mgr has been expressed as an RAII type: its constructor creates
a shared memory segment, its destructor frees that memory segment, and the shared mem mgr
type has been made uncopiable as is often the case for RAII types. The key member functions to look
at in the following code excerpt are allocate () and deallocate (); the former tries to allocate
a block from the shared memory segment and notes that this has been done, whereas the latter frees
the memory associated with an address within the block:

#include <algorithm>
#include <iterators>
#include <new>
class shared mem mgr {
shared mem id key;
std: :vector<bool> taken;
void *mem;
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auto find first free(std::size t from = 0) {
using namespace std;
auto p = find(begin(taken) + from, end(taken),
false) ;
return distance (begin(taken), p);
}
bool at least free from(std::size t from, int n) {
using namespace std;
return from + n < size(taken) &&
count (begin(taken) + from,
begin(taken) + from + n,
false) == n;
}
void take(std::size t from, std::size t to) {
using namespace std;
fill (begin(taken) + from, begin(taken) + to,
begin(taken) + from, true);
}
void free(std::size t from, std::size t to) ({
using namespace std;
fill (begin(taken) + from, begin(taken) + to,
begin(taken) + from, false);
}
public:
// create shared memory block
shared mem mgr(std::size t size)
key{ create shared mem(size) }, taken(size)
auto [p, sz] = get shared mem(key) ;
if (!p) throw invalid shared mem key{};
mem = p;
}
shared mem mgr (const shared mem mgr&) = delete;
shared mem mgr&
operator=(const shared mem mgr&) = delete;
void* allocate(std::size t n) {
using namespace std;
std::size t 1 = find first free();
// insanely inefficient

while (!at least free from(i, n) && i != size(taken))
i = find first free(i + 1);
if (i == size(taken)) throw bad alloc{};

take(i, 1 + n);
return static cast<char*s(mem) + i;
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}

void deallocate(void *p, std::size t n) ({
using namespace std;
auto i1 = distance(

static cast<char*>(mem), static cast<char*>(p)

) 8
take(i, 1 + n);

}

~shared mem mgr ()
destroy shared mem(key) ;

}

b5

As you can see, shared_mem_mgr really is a class that manages a chunk of memory, and there
is no magic involved. Should someone want to improve the memory management algorithms, one
could do so without touching the interface of this class, benefiting from the low coupling that stems
from encapsulation.

Vs

.

If you want to play...

One interesting way to refine shared_mem_mgr would be to first make this class responsible
for allocating and freeing the shared memory, as it already does, then write a different class to
manage the memory within that shared memory block, and finally, make them work together.
This way, one could use shared_mem_mgr with different memory management algorithms
and pick management strategies based on the needs of individual programs, or sections thereof.
Something to try if you want to have fun!

J

The next step is to implement the allocation operator overloads that take an argument of type
shared mem mgré&. This is essentially trivial since all these overloads need to do is delegate the
work to the manager:

void* operator new(std::size t n, shared mem mgr& mgr) {

return mgr.allocate(n) ;

}

void* operator newl[] (std::size t n, shared mem mgr& mgr) {

return mgr.allocate (n) ;

}

void operator delete(void *p, std::size t n,
shared mem mgr& mgr) {
mgr.deallocate (p, n);

}

void operator delete([] (void *p, std::size t n,
shared mem mgr& mgr) {

mgr.deallocate (p, n);

}
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Equipped with our manager and these overloads, we can write our test program that performs the same
task as the “handmade” one from the previous section. In this case, however, there are some differences:

« We do not need to manage the shared memory segment’s creation and destruction. These tasks
are handled by the shared mem_mgr object as part of its implementation of the RAII idiom.

o We do not need to manage the shared memory block at all, as this task is assigned to the
shared mem_mgr object. Finding a location in the block to put an object, tracking how the
block is being used for objects, ensuring that it’s possible to distinguish used areas from unused
ones, and so on are all part of that class’s responsibilities.

o Asa corollary, in the “handmade” version, we constructed an object at the beginning of the
shared memory block and stated that it would be a burden on user code to construct more
objects or manage the shared memory segment to take into account numerous calls to the new
and delete operators, but in this implementation, we can freely call new and delete as
much as we want since this memory management becomes transparent to client code.

The construction aspect of objects in atypical memory is rather easy: just pass the additional argument
in the call to the new and new [] operators. The finalization part of objects managed through a manager
such as this is slightly more complex though: we cannot write the equivalent of delete p on our
pointers as this would try to finalize the object and deallocate the memory through “normal” means.
Instead, we need to manually finalize the objects, and then manually call the appropriate version of
the operator delete () function in order to do the exotic memory cleanup tasks. Of course,
given what we have written in Chapter 6, you could encapsulate these tasks in a smart pointer of your
own to get simpler and safer user code.

We end up with the following example program:

int main() {
// we need a N-bytes shared memory block
constexpr std::size t N = 1'000'000;
// HERE
shared mem mgr mgr{ N };
// start the lifetime of a non-ready data object
auto p data = new (mgr) data{ false };
std::atomic<bool> go{ false };
std::atomic<bool> done{ false };
std::jthread writer{ [p_data, &gol ({
go.wait (false) ;
p_data->value = 3;
std::atomic_thread fence (std::memory order release);
p_data->ready = true;
} )i
std::jthread reader{ [p _data, &done] ({
while (!p data->ready)
; // busy waiting, not cool
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std::cout << "read value " << p data->value << '\n';
done = true;
done.notify all();
Yo}
if (char c; !std::cin.get(c)) exit(-1);
go = true;
go.notify all();
// writer and reader run to completion, then complete
done.wait (false) ;
p_data->~data() ;
operator delete(p data, sizeof(data), mgr);

}

This is still not a trivial example, but the memory management aspect is clearly simpler than in the
“handmade” version, and the compartmentalization of tasks makes it easier to optimize the way in
which memory is managed.

And... we're done. Whew! That was quite the ride, once more!

Summary

This chapter explored various ways in which one can use the C++ memory management facilities
in unusual ways: mapping objects onto memory-mapped hardware, integrating basic forms of error
handling with the nothrow version of operator new (), reacting to out-of-memory situations
witha std: :exception_handler, and accessing atypical memory with non-portable services
through a specialization of the “normal” allocation operator and a manager object. This gives us a broader
overview of memory management facilities in C++ and how one can use them to one’s advantage.

One thing we have mentioned but not yet discussed is optimization: how to make memory allocation
and memory allocation fast, blazingly fast even, and deterministic in terms of execution speed when
some conditions are met. This is what we will do in Chapter 10 when explaining how to write arena-
based allocation code.

Oh, and as a bonus, we will kill Orcs.

( 7
Orcs? What are you talking about?

Orecs are fictional creatures found in numerous works of fictional fantasy, usually mean beasts
used as foes and that have an unhealthy relation to Elves, another kind of fictional creature that
often has a better reputation. As your friendly author has worked a lot with game programmers
over the last few decades, Orcs tend to appear in his examples and will be central to the code
we write in Chapter 10.

. J

Sounds good? Then, on to the next chapter!
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Arena-Based Memory
Management and Other
Optimizations

Our memory-management toolbox is growing with every chapter. We now know how to overload
memory allocation operators (Chapter 7) and how to put this skill to work in ways that solve a variety
of concrete problems (Chapter 8 and Chapter 9 both give a few illustrative, real-world examples).

One important reason why one would want to take control of memory allocation mechanisms is
performance. Now, it would be presumptuous (and plain wrong!) to state that it’s trivial to beat the
implementation of these functions as provided by your library vendor, as these are good, often very
good, for the average case. The key element of the previous phrase, of course, is “for the average case”
When one’s use case has specificities that are known of beforehand, it is sometimes possible to benefit
from that information and carve an implementation that outperforms, maybe by a wide margin,
anything that could have been designed for excellent average performance.

This chapter is about using knowledge of the memory management problem we want to solve and
building a solution that excels for us. This can mean a solution that’s faster on average, that’s fast enough
even in the worst case, that shows deterministic execution times, that reduces memory fragmentation,
and so on. There are many different needs and constraints in real-world programs after all, and we
often have to make choices.

Once this chapter is over, our toolbox will be expanded to let us do the following:
o Write arena-based allocation strategy algorithms optimized to face a priori known constraints

o Write per-memory block-size allocation strategies

o Understand the benefits as well as the risks associated with such techniques
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The techniques covered in this chapter will lead us to explore use cases very close to those for which
memory allocation operators are overloaded in some specialized application domains. Thus, we will
initially apply them to a “real life” problem: the fight between Orcs and Elves in a medieval fantasy game.

Vs

-

On the (sometimes diminishing) returns of optimization

Since we will be discussing optimization techniques (among other things) in this chapter,
some words of warning are in order: optimization is a tricky thing, a moving target, and what
makes code better one day could pessimize it another day. Similarly, what can seem like a
good idea in theory can lead to slowdowns in practice once implemented and tested, and one
can sometimes spend a lot of time optimizing a piece of code that is rarely taken, effectively
wasting time and money.

Before trying to optimize parts of your program, it’s generally wise to measure, ideally with a
profiling tool, and identify the parts that might benefit from your efforts. Then, keep a simple
(but correct) version of your code close by and use it as a baseline. Whenever you try an
optimization, compare the results with the baseline code and run these tests regularly, particularly
when changing hardware, library, compiler, or version thereof. Sometimes, something such as
a compiler upgrade might induce a new optimization that “sees through” the simple baseline
code and makes it faster than your finely crafted alternative. Be humble, be reasonable, measure
early, and measure often.

~

Technical requirements

You can find the code files for this chapter in the book’s GitHub repository here: https://github.
com/PacktPublishing/C-Plus-Plus-Memory-Management/tree/main/chapterlo.

Arena-based memory management

The idea behind arena-based memory management is to allocate a chunk of memory at a known
moment in the program and manage it as a “small, personalized heap” based on a strategy that benefits
from knowledge of the situation or of the problem domain.

There are many variants on this general theme, including the following:

o Inagame, allocate and manage the memory by scene or by level, deallocating it as a single chunk
at the end of said scene or level. This can help reduce memory fragmentation in the program.

«  When the conditions in which allocations and deallocations are known to follow a given
pattern or have bounded memory requirements, specialize allocation functions to benefit

from this information.

o Express a form of ownership for a group of similar objects in such as way as to destroy them

all at a later point in the program instead of doing so one object at a time.


https://github.com/PacktPublishing/C-Plus-Plus-Memory-Management/tree/main/chapter10
https://github.com/PacktPublishing/C-Plus-Plus-Memory-Management/tree/main/chapter10

Arena-based memory management

The best way to explain how arena-based allocation works is probably to write an example program
that uses it and shows both what it does and what benefits this provides. We will write code in such
a way as to use the same test code with either the standard library-provided allocation functions or
our own specialized implementation, depending on the presence of a macro, and, of course, we will
measure the allocation and deallocation code to see whether there is a benefit to our efforts.

Specific example - size-based implementation

Suppose we are working on a video game where the action converges toward a stupendous finale
where Orcs and Elves meet in a grandiose battle. No one really remembers why these two groups hate
each other, but there is a suspicion that one day, one of the Elves said to one of the Orcs “You know,
you don’t smell all that bad today!” and this Orc was so insulted that it started a feud that still goes
on today. It's a rumor, anyway.

It so happens that, in this game, some things are known about the behavior of Orc-using code,
specifically, the following:

o There will never be more than a certain number of dynamically allocated Orc objects overall,
so we have an upper bound to the space required to store these beasties.

o The Orecs that die will not come back to life in that game, as there are no shamans to resurrect
them. Expressed otherwise, there is no need to implement a strategy that reuses the storage of
an Orc object once it has been destroyed.

These two properties open algorithmic options for us:

o If we have enough memory available, we could allocate upfront a single memory block large
enough to put all the Orc objects in the game as we know what the worst-case scenario is

« Since we know that we will not need to reuse the memory associated with individual Orc
objects, we can implement a simple (and very fast) strategy for allocation that does almost no
bookkeeping and, as we will see, lets us achieve deterministic, constant-time allocation for this type

For the sake of this example, the Orc class will be represented by three data members, name (a
char [4] as these beasties have a limited vocabulary), strength (of type int), and smell (of
the double type as these things have... a reputation), as follows:

class Orc {
char name[4]1{ 'U', 'R', 'G' };
int strength = 100;
double smell = 1000.0;
public:
static constexpr int NB MAX = 1'000'000;
//
b s

209



210

Arena-Based Memory Management and Other Optimizations

We will use arbitrary default values for our Orc objects as we are only concerned about allocation
and deallocation for this example. You can write more elaborate test code that uses non-default values
if you feel like it, of course, but that would not impact our discussion so we will target simplicity.

Since we are discussing the memory allocation of a large block upfront through our size-based arena,
we need to look at memory size consumption for Orc objects. Supposing sizeof (int) ==4 and
sizeof (double) ==8 and supposing that, being fundamental types, their alignment requirements
match their respective sizes, we can assume that sizeof (Orc) ==16 in this case. If we aim to
allocate enough space for all Orc objects at once, ensuring sizeof (Orc) remains reasonable for
the resources at our disposal is important. For example, defining the maximum number of Orc objects
in a program as Orc : : NB_MAX and the maximal amount of memory we can allocate at once for
Orc objects as some hypothetical constant named THRESHOLD, we could leave a static_assert
such as the following in our source code as a form of constraints-respected check:

static_assert (Orc::NB_MAX*sizeof (Orc) <= THRESHOLD) ;

This way, if we end up evolving the Orc class to the point where resources become an issue, the
code will stop compiling and we will be able to reevaluate the situation. In our case, with a memory
consumption of approximately 16 MB, we will suppose we are within budget and that we can proceed
with our arena.

We will want to compare our arena-based implementation with a baseline implementation, which, in
this case, will be the standard library-provided implementation of the memory allocation functions.
It’s important to note upfront that each standard library implementation provides its own version
of these functions, so you might want to run the code we will be writing here on more than one
implementation to get a better perspective on the impact of our techniques.

To write code that allows us to do a proper comparison, we will need two distinct executables as we
will be in an either/or situation (we either get the standard version or the “homemade” one we are
writing), so this is a good use case for macro-based conditional compilation. We will thus write a
single set of source files that will conditionally replace the standard library-provided versions of the
allocation operators with ours but will otherwise be essentially identical.

We will work from three files: Orc . h, which declares the Orc class and the conditionally defined
allocation operator overloads; Orc . cpp, which provides the implementation for these overloads
as well as the arena implementation itself; and a test program that allocates Orc : : NB_MAX objects
of type Orc then later destroys them and measures the time it takes to do these two operations. Of
course, as with most microbenchmarks, take these measurements with a grain of salt: the numbers
will not be the same in a real program where allocations are interspersed with other code, but at least
we will apply the same tests to both implementations of the allocation operators so the comparison
should be reasonably fair.
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Declaring the Orc class

First, let us examine Orc . h, which we have already seen in part when showing the data member
layout of the Orc class earlier:

#ifndef ORC_H

#define ORC_H

// #define HOMEMADE VERSION
#include <cstddef>

#include <new>

class Orc ({

char name[4]1{ 'U', 'R', 'G' };
int strength = 100;
double smell = 1000.0;

public:
static constexpr int NB MAX = 1'000'000;
#ifdef HOMEMADE VERSION
void * operator new(std::size t);
void * operator newl] (std::size t);
void operator delete(void *) noexcept;
void operator delete[] (void *) noexcept;
#endif
b5

#endif

The HOMEMADE VERSION macro can be uncommented to use our version of the allocation functions.
As can be expected, since we are applying a special strategy for the Orc class and its expected usage
patterns, we are using member-function overloads for the allocation operators. (We would not want
to treat int objects or — imagine! - Elves the same way we will treat Orcs, would we? I thought not.)

Defining the Orc class and implementing an arena

The essence of the memory management-related code will be in Orc . cpp. We will go through it in
two steps, the arena implementation and the allocation operator overloads, and analyze the different
important parts separately. The whole implementation found in this file will be conditionally compiled
based on the HOMEMADE VERSION macro.

We will name our arena class Tribe, and it will be a singleton. Yes, that reviled design pattern we
used in Chapter 8 again, but we really do want a single Tribe object in our program so that conveys
the intent well. The important parts of our implementation are as follows:

o The default (and only) constructor of the Tribe class allocates a single block of
Orc::NB MAX*sizeof (Orc) bytes. It is important to note right away that there are no
Orc objects in that chunk: this memory block is just the right size and shape to put all the Orc
objects we will need. A key idea for arena-based allocation is that, at least for this implementation,
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the arena manages raw memory, not objects: object construction and destruction are the province
of user code, and any object not properly destroyed at the end of the program is user code’s
fault, not the fault of the arena.

We validate at once that the allocation succeeded. I used an assert () in this case, as the rest of
the code depends on this success, but throwing std: :bad _alloc or calling std: :abort ()

would also have been reasonable options. A Tribe object keeps two pointers, p and cur, both
initially pointing at the beginning of the block. We will use p as the beginning of block marker,
and cur as the pointer to the next block to return; as such, p will remain stable throughout
program execution and cur will move forward by sizeof (Orc) bytes with each allocation.

Using char* or Orc*

This Tribe implementation uses char* for the p and cur pointers but Orc* would have
been a correct choice also. One simply needs to remember that, as far as the Tribe object
is concerned, there are no Orc objects in the arena and the use of type Orc* is simply a
convenient lie to simplify pointer arithmetic. The changes this would entail would be replacing
static_cast<char*> with static_ cast<Orc*s> in the constructor, and replacing
cur+=sizeof (Orc) with ++cur in the implementation of the allocate () member

function. It's mostly a matter of style and personal preference.

~N

J

The destructor frees the entire block of memory managed by the Tribe object. This is a very
efficient procedure: it’s quicker than separately freeing smaller blocks, and it leads to very little
memory fragmentation.

This first implementation uses the Meyers singleton technique seen in Chapter 8, but we will
use a different approach later in this chapter to compare the performance impacts of two
implementation strategies for the same design pattern... because there are such impacts, as
we will see.

The way our size-based arena implementation will benefit from our a priori knowledge of the expected
usage pattern is as follows:

Each allocation will return a sequentially “allocated” Orc-sized block, meaning that there is
no need to search for an appropriately sized block — we always know where it is.

There is no work to do when deallocating as we are not reusing the blocks once they have
been used. Note that, per standard rules, the allocation and deallocation functions have to be
thread-safe, which explains our use of std: : mutex in this implementation.
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The code follows:

#include "Orc.h"
#ifdef HOMEMADE VERSION
#include <casserts>
#include <cstdlib>
#include <mutex>
class Tribe ({
std: :mutex m;
char *p, *cur;
Tribe () : p{ static_cast<char#*>(
std::malloc (Orc::NB MAX * sizeof (Oxc))

) Ao

assert (p) ;
cur = p;
}
Tribe (const Tribe&) = delete;
Tribe& operator=(const Tribe&) = delete;
public:
~Tribe () {

std::free(p);

}

static auto &get ()
static Tribe singleton;
return singleton;

}

void * allocate() {
std::lock guard { m };
auto g = cur;
cur += sizeof (Orc);
return q;

}

void deallocate(void *) noexcept {
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As you might have guessed already, these allocation conditions are close to optimal, but they happen
more often than we would think in practice. A similarly efficient usage pattern would model a stack
(the last block allocated is the next block freed), and we write code that uses local variables every
day without necessarily realizing that we are using what is often an optimal usage pattern for the
underlying memory.

We then come to the overloaded allocation operators. To keep this implementation simple, we will
suppose there will be no array of Orc objects to allocate, but you can refine the implementation to
take arrays into account (it’s not a difficult task; it’s just more complicated to write relevant test code).
The role played by these functions is to delegate the work to the underlying arena, and they will only
be used for the Orc class (there is a caveat to this, which will be discussed in the When parameters
change section later in this chapter). As such, they are almost trivial:

//

void * Orc::operator new(std::size t) {
return Tribe::get () .allocate() ;

}

void * Orc::operator new[] (std::size t) {
assert (false) ;

}

void Orc::operator delete(void *p) noexcept (
Tribe::get () .deallocate (p) ;

}

void Orc::operator delete[] (void *) noexcept {
assert (false) ;

}

#endif // HOMEMADE VERSION

Testing our implementation

We then come to the test code implementation we will be using. This program will be made of a
microbenchmark function named test () and ofamain () function. We will examine both separately.

The test () function will take a non-void function, £ (), a variadic pack of arguments, args,
and call £ (args. . .) making sure to use perfect forwarding for the arguments in that call to make
sure the arguments are passed with the semantic intended in the original call. It reads a clock before
and after the call to £ () and returns a pair made of the result of executing £ (args. . .) and the
time elapsed during this call. T used high resolution clock in my code but there are valid
reasons to use either system clock or steady clock in this situation:

#include <chrono>
#include <utility>
template <class F, class ... Args>
auto test(F £, Args &&... args) ({
using namespace std;
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//

using namespace std::chrono;

auto pre = high resolution clock::now() ;
auto res = f(std::forward<Args>(args)...);
auto post = high resolution clock::now() ;
return pair{ res, post - pre };

You might wonder why we are requiring non-void functions and returning the result of calling
f (args...) evenif, in some cases, the return value might be a little artificial. The idea here is to
ensure that the compiler thinks the result of £ (args. . .) is useful and does not optimize it away.

Compilers are clever beasts indeed and can remove code that seems useless under what is colloquially
known as the “as-if rule” (simply put, if there is no visible effect to calling a function, just get rid of it!).

For the test program itself, pay attention to the following aspects:

First, we will use std: : vector<Orc* >, not std: : vector<Orcs>. This might seem strange
at first, but since we are testing the speed of Orc: : operator new () and Orc: :operator
delete (), we will want to actually call these operators! If we were using a container of Orc
objects, there would be no call to our operators whatsoever.

We call reserve () on that std: : vector object before running our tests, to allocate
the space to put the pointers to the Orc objects we will be constructing. That is an important
aspect of our measurements: calls to push back () and similar insertion functions in a
std: : vector object will need to reallocate if we try to add an element to a full container,
and this reallocation will add noise to our benchmarks, so ensuring the container will not need
to reallocate during the tests helps us focus on what we want to measure.

What we measure with our test () function (used many times already in this book) is a
sequence of Orc: :NB_MAX callsto Orc: :operator new (), eventually followed by the
same number of calls to Orc: :operator delete (). We suppose a carnage of sorts in
the time between the constructions and the destructions, but we are not showing this violence
out of respect for you, dear reader.

Once we reach the end, we print out the results of our measurements, using microseconds as
the measurement unit — our computers today are fast enough that milliseconds would probably
not be granular enough.

The code follows:

//

#include "Orc.h"

#include <prints>

#include <vector>

int main()
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using namespace std;
using namespace std::chrono;
#ifdef HOMEMADE VERSION
print ("HOMEMADE VERSION\n") ;
#telse
print ("STANDARD LIBRARY VERSION\n") ;
#endif
vector<Orc*> orcs;
auto [r0, dt0] = test([&orcs] {
for(int i = 0; i != Orc::NB MAX; ++i)
orcs.push back(new Orc) ;
return size (orcs) ;
1)
//
// CARNAGE (CENSORED)
//
auto [rl, dtl] = test([&orcs] {
for (auto p : orcs)
delete p;
return size (orcs) ;
) s
print ("Construction: {} orcs in {}\n",
size(orcs), duration cast<microseconds>(dt0)) ;
print ("Destruction: {} orcs in {}\n",
size(orcs), duration cast<microseconds>(dtl)) ;

}

At this point, you might wonder whether this is all worth the effort. After all, our standard libraries are
probably very efficient (and indeed, they are, on average, excellent!). The only way to know whether
the results will make us happy is to run the test code and see for ourselves.

Looking at the numbers

Using an online gec 15 compiler with the -O2 optimization level and running this code twice (once with
the standard library version and once with the homemade version using a Meyers singleton), I get the
following numbers for calls to the new and delete operators on Orc: :NB_MAX (here, 10°) objects:

Homemade
N=10¢ Standard library | Meyers singleton
operator new () 23433ps 17906s
operator delete () 7943us 638us

Table 10.1 - Speed comparison with Meyers singleton implementation
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Actual numbers will vary depending on a variety of factors, of course, but the interesting aspect of the
comparison is the ratio: our homemade operator new () only took 76.4% of the time consumed
by the standard library-provided version and our homemade operator delete () took... 8.03%
of the time required by our baseline.

Those are quite pleasant results, but they should not really surprise us: we perform constant-time
allocation and essentially “no time” deallocation. We do take the time to lock and unlock a std: :mutex
object on every allocation, but most standard libraries implement mutexes that expect low contention
and are very fast under those circumstances, and it so happens that our program does single-threaded
allocations and deallocations that lead to code that is clearly devoid of contention.

Now, your acute reasoning skills might lead you to be surprised that deallocation is not actually faster
than what we just measured. It’s an empty function we are calling, after all, so what’s consuming this
CPU time?

The answer is... our singleton, or more precisely, access to the static local variable used for the
Meyers implementation. Remember from Chapter 8 that this technique aims to ensure that a singleton
is created when needed, and stat ic local variables are constructed the first time their enclosing
function is called.

C++ implements “magic statics” where the call to the stat ic local object’s constructor is guarded
by synchronization mechanisms that ensure the object is constructed only once. As we can see, this
synchronization, efficient as it is, is not free. In our case, if we can guarantee that no other global object
will need to call Tribe: :get () beforemain () is called, we can replace the Meyers approach with
a more classical approach where the singleton is simply a stat ic data member of the Tribe class,
declared within the scope of that class and defined at global scope:

//
// "global" singleton implementation (the rest of
// the code remains unchanged)
class Tribe ({
std: :mutex m;
char *p, *cur;

Tribe () : p{ static_cast<char*>(
std::malloc (Orc::NB_MAX * sizeof (Orc))
) 1A
assert (p) ;
cur = p;
}
Tribe (const Tribe&) = delete;
Tribe& operator=(const Tribe&) = delete;
static Tribe singleton;
public:
~Tribe () {

std: :free (p) ;
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}

static auto &get() {
return singleton;

}
void * allocate() {
std::lock _guard { m };
auto g = cur;
cur += sizeof (Orc) ;
return g;
}
void deallocate (void *) noexcept {
}

I

// in a .cpp file somewhere, within a block surrounded
// with #ifdef HOMEMADE VERSION and #endif

Tribe Tribe::singleton;

//

Moving the definition of the singleton object away from within the function - placing it at global
scope — removes the need for synchronization around the call to its constructor. We can now compare
this implementation with our previous results to evaluate the costs involved, and the gains to be made
(if any).

With the same test setup as used previously, adding the “global” singleton to the set of implementations
under comparison, we get the following:

Homemade
N=10° Standard library | Meyers singleton | Global singleton
Operator new () 23433ps 17906ys 17573s
Operator delete() 7943ps 638us Ops

Table 10.2 — Speed comparison with Meyers and “global” singleton implementations

Now, this is more like it! The calls to operator new () are slightly faster than they were 74.99%
(of the time it took with the standard library version, and 98.14% of the time it took with the Meyers
singleton), but the calls to operator delete () have become no-ops. It’s hard to do better than this!

So, is it worth the effort? It depends on your needs, of course. Speed is a factor; in some programs,
the speed gain can be a necessity, but in others, it can be a non-factor or almost so. The reduction in
memory fragmentation can make a big difference in some programs too, and some will use arenas
precisely for that reason. The point is this: if you need to do this, now you know how.
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Generalizing to SizeBasedArena<T,N>

The Tribe class as written seems specific to the Orc class but, in practice, it really is specific to
Orc-sized objects as it never calls any function of the Orc class; it never constructs an Orc object,
nor does it ever destroy one. This means that we could turn that class into a generic class and reuse it
for other types that are expected to be used under similar constraints.

To achieve this, we would decouple the arena code from the Orc class and put it in a separate file,
maybe called SizeBasedArena. h, for example:

#ifndef SIZE BASED ARENA H
#define SIZE BASED ARENA H
#include <casserts>
#include <cstdlib>
#include <mutex>
template <class T, std::size_t N>
class SizeBasedArena {

std: :mutex m;

char *p, *cur;

SizeBasedArena () : p{ static cast<char*s(

std::malloc (N * sizeof (T))

) 1A

assert (p) ;
cur = p;
}
SizeBasedArena (const SizeBasedArena&) = delete;
SizeBasedArena&
operator= (const SizeBasedArena&) = delete;
public:
~SizeBasedArena ()

std: :free(p) ;

}

static auto &get ()
static SizeBasedArena singleton;
return singleton;

}

void * allocate ome() {
std::lock_guard _{ m };
auto g = cur;
cur += sizeof (T);
return q;

}

void * allocate n(std::size t n) {
std::lock guard _{ m };
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auto g = cur;
cur += n * sizeof (T);
return q;

}

void deallocate one(void *) noexcept {

}
void deallocate n(void *) noexcept {
}

%

#endif

It might be surprising that we used T and N as template parameters. Why type T instead of an integer
initialized with sizeof (T) if we do not use T in the arena? Well, if the E1 £ class (for example) used
a size-based arena too, and if we were unlucky enough that sizeof (Orc)==sizeof (E1f), then
basing ourselves on the sizes of the types rather than on the types themselves might, if the values for
their respective N parameters are the same, lead Orc and E1£ to use the same arena... and we do
not want that (nor do they!).

To simplify the initialization of the singleton in this generic example, we went back to the Meyers
technique. It's more difficult to guarantee the absence of interdependence at construction time for
global objects when writing generic code than it was writing the Orc-specific equivalent, as the move
to generic code just enlarged the potential user base significantly.

The implementation in Orc . cpp would now be as follows:

#include "Orc.h"

#ifdef HOMEMADE VERSION

#include "SizeBasedArena.h"

using Tribe = SizeBasedArena<Orc, Orc::NB MAX>;

void * Orc::operator new(std::size t) {
return Tribe::get () .allocate one();

}

void * Orc::operator new(] (std::size t n) {
return Tribe::get () .allocate n(n / sizeof (Orc));

}

void Orc::operator delete(void *p) noexcept
Tribe::get () .deallocate one(p):;

}

void Orc::operator deletel[] (void *p) noexcept {
Tribe::get () .deallocate n(p);

}

#endif



When parameters change

You might have noted that since SizeBasedArena<T, N> implements allocation functions for a
single object or an array of n objects, we have extended the Orc class’s member function allocation
operator overloads to cover operator new[] () and operator delete[] (). There’s really
no reason not to do so at this point.

When parameters change

Our size-based arena implementation is very specific: it supposes the possibility of sequential allocations
and the ability to dismiss the (generally important) question of reusing memory after it has been freed.

An important caveat to any size-based implementation is, obviously, that we are counting on a specific
size. Know, thus, that with this constraint, our current implementation is slightly dangerous. Indeed,
consider the following evolution of our program, where we envision tougher, meaner Orc subclasses
such as the following:

class MeanOrc : public Orc
float attackBonus; // oops!
//

b5

It might not be apparent at first, but we just might have broken something important with this new class,
as the member function allocation operators are inherited by derived classes. This means that the Tribe
class, also known under the somewhat noisier name of SizeBasedArena<Orc,Orc: :NB_MAX>,
would implement a strategy meant for blocks of sizeof (Orc) bytes but be used (accidentally) also
for objects of size MeanOrc. This can only lead to pain.

We can protect ourselves from this disastrous situation in two ways. For the Orc class, we could
disallow derived classes altogether by marking the class as f£inal:

class Orc finmal ({
//
iy

This removes the possibility of writing MeanOrc as a derived class of Orc; we can still write MeanOrc,
but through composition or other techniques, which would sidestep the inherited operators problem.

From the perspective of SizeBasedArena<T, N> itself, we can also decide to restrict our
implementation to £inal types, as in this example:

//

#include <type traits>

template <class T, std::size_t N>

class SizeBasedArena {
static_assert(std::is_final v<T>);
//

bi
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This last part might not be for everyone, however. There are lots of types (fundamental types, for
example) that are not £inal and that could reasonably be used in a size-based arena, so it’s up to
you to see whether this is a good idea or not for the kind of code you write. If it’s not good for you,
then these constraints could be expressed as prose rather than as code.

Size-based arenas are far from the only use case for memory arenas. We could envision many variations
on both the size-based theme and the allocation strategy.

For example, suppose we introduce shamans in our game and the need to reuse memory becomes a
reality. We could have a situation where there are, at most, Orc : : NB_MAX objects of the Orc type
in the program at once, but there might be more than that number overall during the entire program’s
execution. In such a situation, we need to consider the following things:

o If we allow arrays, we will have to deal with internal fragmentation within the arena, so we
might want to consider an implementation that allocates more than N*sizeof (T) bytes per
arena, but how much more?

o We will need a strategy to reuse memory. There are many approaches at our disposal, including
maintaining an ordered list of begin, end pairs to delimit the free blocks (and fuse them
more easily to reduce fragmentation) or keeping a stack (maybe a set of stacks based on block
size) of recently freed blocks to make it easier to reuse freed blocks quickly.

Answers to such questions as “What is the best approach for our code base?” are in part technical and
in part political: what makes allocation fast may slow down deallocation, what makes allocation speed
deterministic may cost more in memory space overhead, and so on. The question is to determine what
trade-offs work best in our situation and measure to ensure we reap the desired benefits. If we cannot
manage to do better than the standard library already does, then by all means, use the standard library!

Chunked pools

Our size-based arena example was optimized for a single block size and specific usage patterns, but
there are many other reasons to want to apply a specialized allocation strategy. In this section, we will
explore the idea of a “chunked pool,” or a pool of pre-allocated raw memory of selected block sizes.
This is meant as an academic example to build upon more than as something to use in production;
the code that follows will be reasonably fast and can be made to become very fast, but in this book,
we will focus on the general approach and leave you, dear reader, to enjoy optimizing it to your liking.

The idea in this example is that user code plans to allocate objects of similar (but not necessarily identical)
sizes and of various types and supposes an upper bound on the maximal number of objects. This gives us
additional knowledge; using that knowledge, we will write a ChunkSizedAllocator<N, Sz. . .>
type where N will be the number of objects of each “size category” and each integral value in Sz.. . .
will be a distinct size category.
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To give a clarifying example, a ChunkSizedAllocator<10,20,40,80, 160> object would
pre-allocate sufficient raw memory to hold 10 objects of size 20 bytes, 40 bytes, 80 bytes, and 160 bytes
each for a total of at least 3,000 bytes (the sum of the minimal size required for each size category
being 200 + 400 + 800 + 1600). We say “at least” in this case because to be useful, our class will need
to consider alignment and will generally need more than the minimal amount of memory if we are
to avoid allocating misaligned objects.

To understand what we are going to do, here are some pointers (pun intended):

« In the variadic sequence of integral values Sz . . . we will require the values to be sorted in
ascending order, as this will make further lookup faster (linear complexity rather than quadratic
complexity). Since these values are known at compile time, being part of the template parameters
of our type, this has no runtime costs and is more of a constraint imposed on the user. We will,
of course, validate this at compile time to avoid unpleasant mishaps.

o In C++, variadic packs can be empty, but in our case, an empty set of size categories would
make no sense so we will ensure that does not happen (at compile time, of course). Obviously,
N has to be more than zero for this class to be useful so we will validate this also.

«  What might not be self-evident is that values in Sz. . . have to be atleast sizeof (std: :max_
align_t) (we could have tested for alignof too but, for fundamental types, this is
redundant) and that, in practice, we will need to make the effective size categories powers of
two to make sure arbitrary types can be allocated. This latter part will be handled internally,
as it’s trickier to impose on user code.

Looking at the code, we can see these constraints expressed explicitly. Note that to make the “code
narrative” easier to follow, the code that follows is presented step by step, so make sure to look at the
complete example if you want to experiment with it:

#include <algorithm>

#include <vectors>

#include <utility>

#include <memory>

#include <cassert>

#include <conceptss>

#include <limitss>

#include <array>

#include <iterators>

#include <mutex>

// ... helper functions (shown below)...

template <int N, auto ... Sz>

class ChunkSizedAllocator

static assert (is_ sorted(make array(Sz...)));
static_ assert(sizeof...(Sz) > 0);
static_assert(
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((Sz >= sizeof(std::max align t)) && ...)

)i

static assert (N > 0);

static constexpr unsigned long long sizes[] ({
next power of two(Sz)...

}i

using raw_ptr = void*;

raw ptr blocks[sizeof...(8z)];

int curl[sizeof...(Sz)] {}; // initialized to zero

//

Note that we have two data members — namely, blocks, which will contain a pointer to a block
of raw memory for each size category, and cur, which will contain the index of the next allocation

within a block for each size category (initialized to zero by default, as we will start from the beginning
in each case).

The code for this class continues shortly. For now, you might notice some unexplained helper functions:

We use make array(Sz...),aconstexpr function that constructs an object of type
std: :array<T, N> from the values of Sz. . ., expecting all values to be of the same type
(the type of the first value of Sz . . .). We know N for the resulting std: :array<T, N> to
be a compile-time constant as it is computed from the number of values in Sz.. . ..

We usethe is_sorted () predicate on that std: :array<T, N> object to ensure, at compile
time, that the values are sorted in ascending order, as we expect them to be. Unsurprisingly,
this will simply call the std: :1s_sorted () algorithm, which is constexpr and thus
usable in this context.

The non-static member array named sizes will contain the next power of two for each
value in Sz. . ., including that value, of course: if the value is already a power of two, wonderful!
Thus, if Sz...is10,20, 32, then sizes will contain 16,32, 32.

Why powers of two?

In practice, blocks that are not powers of two will lead to misaligned objects after the first
allocation if we allocate them contiguously, and managing padding to avoid this is possible but
would complicate our implementation significantly. To make allocations quicker, we compute
the next power to two for each element of Sz . . . at compile time and store them in the
sizes array. This means we could have two size categories that end up being of the same size
(for example, 40 and 60 would both lead to 64 bytes blocks) but that’s a minor issue (as code
would still work) considering that this is a specialized facility designed for knowledgeable users.
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The code for these helper functions, in practice, defined before the declaration of the
ChunkSizedAllocator<N, Sz. . . > classis as follows:

//
template <class T, std::same as<T> ... Ts>
constexpr std::array<T, sizeof...(Ts)+1>
make array (T n, Ts ... ns) ({
return { n, ns... };

}

constexpr bool is power of two(std::integral auto n) ({
return n && ((n & (n - 1)) == 0);
}
class integral value too big {};
constexpr auto next power of two(std::integral auto n) ({
constexpr auto upper limit =
std::numeric_limits<decltype (n)>::max() ;
for(; n != upper limit && !is power of two(n); ++n)
if (!is_power of two(n)) throw integral value too big{};
return n;
}
template <class T>
constexpr bool is sorted(const T &c) {
return std::is sorted(std::begin(c), std::end(c));
}
//

Note that make array () uses concepts to constrain that all values are of the same type, and that
is_power of two(n) ensures that the proper bits of n are tested to make this test quick (it also
tests nn to ensure we do not report 0 as being a power of two). The next power of two () function
could probably be made much faster but that’s of little consequence here as it is only used at compile
time (we could enforce this by making it consteval instead of constexpr, but there might be
users that want to choose between run time and compile time usage so we'll give them that choice).

Returning to our ChunkSizedAllocator<N, Sz. . . > implementation after this short digression
on helper functions, we have a member function named within block (p, i) thatreturns true
only if pointer p is within blocks [1], which is the i-th pre-allocated block of memory of our
object. The logic for that function seems deceptively simple: one might simply want to test something
that looks like blocks [i] <=p&&p<blocks [1] +N but with the proper casts applied, as the
blocks [1] variable is of type void*, which precludes pointer arithmetic, but that happens to be
incorrect in C++ (remember our discussion of the intricacies of pointer arithmetic in Chapter 2). It
probably works in practice for compatibility with C code, but it’s not something you want to rely on.
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As of this writing, there are ongoing discussions to add a standard library function to test whether a
pointer is between two others, but until this happens, we can at least use the standard library-provided
std: : less functor to make the comparisons somewhat legal. This is unsatisfactory, I know, but it
will probably work on all compilers today... and by making this test local to a specialized function,
we will simplify source code updates once we have a real standard solution to this problem:

//
bool within block (void *p, int i) {
void* b = blocks[i];
void* e = static cast<char*>(b) + N * sizes[i];
return p == ||
(std::less{} (b, p) && std::less{}(p, e));
}
//

There’s no reason to make objects of ChunkSizedAllocator<N, Sz. . . > globally available:
this is a tool that could be instantiated many times in a program and used to solve various problems.
We do not want that type to be copyable, however (we could, but that would really complicate the
design for limited returns).

Through std: :malloc (), our constructor allocates the raw memory blocks for the various sizes
inSz. . ., oratleast the next power of two for each of these sizes, as explained earlier in this section,
ensuring afterward that all of the allocations succeeded. We used assert () for this, but one could
also throw std: :bad_alloc on failure as long as one carefully called std: : free () on the
memory blocks that were successfully allocated before doing so.

Our destructor, unsurprisingly, calls std: : free () on each memory block: as with the arena
implementation earlier in this chapter, a ChunkSizedAllocator<N, Sz. . . > object is responsible
for memory, not the objects put there by client code, so we have to suppose that client code destroyed
all objects stored within the memory blocks of a ChunkSizedAllocator object before that
object’s destructor is called.

Note the presence of a std: :mutex data member, as we will need this (or some other synchronization
tool) to ensure allocations and deallocations are thread-safe later:

//
std: :mutex m;
public:
ChunkSizedAllocator (const ChunkSizedAllocatoré&)
= delete;
ChunkSizedAllocator&
operator=(const ChunkSizedAllocator&) = delete;
ChunkSizedAllocator () {
int i = 0;
for (auto sz : sizes)
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blocks[i++] = std::malloc(N * sz);
assert (std: :none_of (
std: :begin(blocks), std::end(blocks),
[1 (auto p) { return !p; }
))
}

~ChunkSizedAllocator () {
for (auto p : blocks)
std::free(p);
}
//

Finally, we reach the crux of our effort with the allocate () and deallocate () member
functions. In allocate (n), we search for the smallest element, sizes [1i], for which the allocated
block size is sufficiently big to hold n bytes. Once one such block is found, we lock our std: :mutex
object to avoid race conditions and then look to see whether there is still at least one available block
in blocks [1]; this implementation takes them sequentially and does not reuse them, to keep the
discussion simple. If there is one, we take it, update cur [1], and return the appropriate address to
the user code.

Note that when we do not find a free block in our pre-allocated blocks, or when n is too large for
the blocks we allocated upfront, we delegate the allocation responsibility to : : operator new ()
such that the allocation request might still succeed. We could also have thrown std: :bad_alloc
in this case, depending on what the intent is: if it’s important to us that the allocation is made within
our blocks and nowhere else, throwing or otherwise failing is a better choice.

( 1

How could failing be a good thing?

Some applications, particularly in embedded systems of low-latency or real-time system domains,
are such that software that delivers the right answer or produces the right computation but not
in due time is as bad as software that produces a wrong answer. Think, for example, of a system
that controls the brakes of a car: a car that stops after colliding is of limited usefulness indeed.
Such systems are rigorously tested to catch failures before being released and will count on
specific runtime behavior; for that reason, when under development, they might prefer failing
(in a way that will be caught during their testing phase) rather than defaulting to a strategy that
might sometimes not meet their timing requirements. Of course, please do not ship critical
systems that stop working when used in real life: test them well and make sure users are kept
safe! But maybe you are developing a system where, if something bad happens, you will prefer
to print “Sorry, we messed up” somewhere and just restart the program, and that’s perfectly
fine too sometimes.
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The deallocate (p) deallocation function goes through each memory block to see whether p is
within that block. Remember that our within block () function would benefit from a pointer
comparison test that the standard does not yet provide as of this writing, so if you use this code in
practice, make sure you leave yourself a note to apply this new function as soon as it becomes available.
If p is in none of our blocks, then it was probably allocated through : : operator new () so we
make sure to free it through : : operator delete () as we should.

As stated previously, our implementation does not reuse memory once it has been freed, but the
location where that reuse should happen has been left in comments (along with code that locks the
mutex for that section) so feel free to implement memory block reuse logic there if you want to:

//
auto allocate(std::size t n) {
using std::size;
// use smallest block available
for(std::size t i = 0; i != size(sizes); ++1i) {
if(n < sizes[i]) {
std::lock _guard _{ m };
if (cur[i]l < N) {

void *p = static cast<char*s(blocks[i]) +
cur [i] * sizes[i];

++cur[i] ;

return p;

}

// either no block fits or no block left
return ::operator new(n) ;
}
void deallocate (void *p) {
using std::size;
for(std::size t i = 0; i != size(sizes); ++1) {
if (within block(p, 1)) {
//std::lock_guard { m };
// if you want to reuse the memory,
// it's in blocks[il
return;

}

// p is not in our blocks
::operator delete(p) ;
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Since this is a specialized form of allocation to be used by client code as needed, we will use specialized
overloads of the allocation operators. As can be expected, these overloads will be templates based on
the parameters of the ChunkSizedAllocator object to be used:

template <int N, auto ... Sz>
void *operator new(std::size t n, ChunkSizedAllocator<
N, Sz...
> &chunks) {
return chunks.allocate(n) ;
}
template <int N, auto ... Sz>
void operator delete (void *p, ChunkSizedAllocatorc<
N, Sz...
> &chunks)
return chunks.deallocate(p) ;

}

// new|[] and delete[] left as an exercise ;)

Now, we wrote these allocation facilities, but we need to test them, as we need to see whether there
are benefits to this approach.

Testing ChunkSizedAllocator

We will now write a simple test program that uses a ChunkSizedAllocator object with an
appropriate set of size categories, then allocate and deallocate objects with sizes that fit within these
categories in ways that should benefit our class. In so doing, we are supposing that users of this class
do so seeking to benefit from a priori known size categories. Other tests could be conducted to verify
the code’s behavior with inappropriate size requests or in the presence of throwing constructors, for
example, so feel free to write a more elaborate test harness than the one we will be providing for the
sake of our execution speed-related discussion.

The test () function used to test our size-based arena earlier in this chapter will be used here again.
See that section for an explanation of its workings.

It’s not trivial to write a good test program to validate the behavior of a program that allocates and
deallocates objects of various sizes. What we will do is use a dummy<N> type whose objects will each
occupy a space of N bytes in memory (as we will use char [N] data members to get this result, we
know that alignof (dummy<N>) ==1 for all valid values of N).

We will also write two distinct test _dummy<N> () functions. Each of these functions will allocate
and then construct the dummy<N> object and set up the associated destroy-then-deallocate code,
but one will use the standard library implementation of the allocation operators and the other will
use our overloads.
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You will note that both of our test dummy<N> () functions return a pair of values: one will be a
pointer to the allocated object and the other will be the code to destroy and deallocate that object. Since
we will store this information in client code, we need these pairs to be abstractions that share a common
type, which explains our use of void* for the address and std: : function<void (void*) >
for the destruction code. We need std: : function or something similar here: a function pointer
would not suffice as the destruction code can be stateful (we sometimes need to remember what object
was used to manage the allocation).

The code for these tools follows:

#include <chronos>
#include <utility>
#include <functionals>
template <class F, class ... Args>
auto test (F f, Args &&... args) {
using namespace std;
using namespace std::chrono;
auto pre = high resolution clock::now() ;
auto res = f(std::forward<Argss>(args)...);
auto post = high resolution clock::now() ;
return pair{ res, post - pre };
}
template <int N> struct dummy { char [N] {}; };
template <int N> auto test dummy () {
return std::pair<void *, std::function<void(void*)>> {
new dummy<N>{},
[1 (void *p) { delete static cast<dummy<N>*>(p); }
}:
}
template <int N, class T> auto test dummy (T &alloc) {
return std::pair<void *, std::function<void(void*)>> {
new (alloc) dummy<N>{},
[&alloc] (void *p) { ::operator delete(p, alloc); }
}:
}
//

Finally, we have to write the test program. We will discuss this program step by step to make sure we
grasp all the subtleties involved in the process.
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Our program first decides on a value of N for the ChunkSizedAllocator object as well as on size
categories Sz . . . for that memory manager to use (the value I picked for N is arbitrary). I deliberately
used one non-power-of-two size category to show that the values are “rounded up” to the next power
of two appropriately: the size request of 62 is translated into 64 when constructing the sizes data
member of our type. We then construct that object and name it chunks because... well, why not?

//
#include <prints>
#include <vectors
int main() {
using namespace std;
using namespace std::chrono;
constexpr int N = 100'000;
using Alloc = ChunkSizedAllocator<
N, 32, 62 /* 64 */, 128
>7
Alloc chunks; // construct the ChunkSizedAllocator
//

The tests that follow take the same form for the standard library and for our specialized facility. Let’s
look at them in detail:

1. Wecreatea std: : vector object of pairs named ptrs filled with default values (null pointers
and non-callable functions) for N objects in three size categories (because sizeof. .. (Sz) ==
in our example). This ensures that the allocation for the space used by the std: : vector
object is performed prior to our measurements (prior to the execution of the lambda expression
passed to test () ) and does not interfere with them later. Note that each tested lambda is
mutable as it needs to modify the captured ptrs object.

2. For each of the three size categories, we then allocate N objects of sizes that fit in that category
and remember through the returned pair both that object’s address and the code that will
correctly finalize it later.

3. 'Then, to end each test, we use the finalization code on each object and destroy and then
deallocate it.

It sounds worse than it is, happily for us. Once the tests have run to completion, we print out the
execution time of each test expressed as microseconds:

//
auto [r0, dt0] = test([ptrs = std::vector<
std: :pair<
void*, std::function<void (void*) >
>>(N * 3)] () mutable {
// allocation
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for(int i = 0; i != N * 3; i += 3) {
ptrs[i] = test dummy<30>();
ptrs[i + 1] = test dummy<60>();

ptrs[i + 2]

}

// cleanup

test dummy<100>() ;

for (auto & p : ptrs)
p.second(p.first) ;
return std::size(ptrs);
) g
auto [rl, dtl] = test([&chunks, ptrs = std::vector<
std: :pair<
void*, std::function<void (void*) >
>>(N * 3)] () mutable {
// allocation
for(int i = 0; i != N * 3; i += 3) {
ptrs[i] = test dummy<30>(chunks) ;
ptrs[i + 1] = test dummy<60>(chunks) ;
ptrs[i + 2] = test dummy<100>(chunks) ;
}
// cleanup
for (auto & p : ptrs)
p.second(p.first) ;
return std::size(ptrs);
) g
std: :print ("Standard version : {}\n",
duration cast<microseconds> (dt0)) ;
std: :print ("Chunked version : {}\n",
duration cast<microseconds> (dtl)) ;

}

Okay, so that was slightly intricate but hopefully instructive. Is it worth the trouble? Well, it depends
on your needs.

When I ran this code on the same online gcc 15 compiler with the -O2 optimization level as with the
size-based arena, the standard library version reported an execution time of 13,360, whereas the time
reported for the “chunked” version was 12,032, effectively 90.05% of the standard version’s execution
time. This kind of speedup can be lovely as long as we remember that the initial allocation done in
the constructor of our chunks object was not measured: the idea here is to show we can save time
when it’s important and choose to pay for it when we are not in a hurry.



Summary

Its important to remember that this implementation does not reuse memory, but the standard
version does so, which means our speedup might be counterbalanced by a loss of functionality (if
it’s a functionality you need, of course). In the tests I ran, locking the std: : mutex object or not
doing so had a significant impact on speedup, so (a) depending on your platform, there might be a
better choice of synchronization mechanism at your disposal, and (b) this implementation is probably
too naive to bring benefits as is if the deallocate () member function also needs to lock the
std: :mutex object.

Of course, one could optimize this (quite academic) version quite a bit, and I invite you dear readers
to do so (and test the results every step of the way!). The point of this section was more to show (a)
that chunk size-based allocation can be done, (b) how it can be done from an architectural standpoint,
and (c) point out some risks and potential pitfalls along the way.

That was fun, wasn’t it?

Summary

As a reminder, in this chapter, we examined arena-based allocation with a concrete example (a size-
based arena with a particular usage pattern) and saw we could get significant results from it, and
then saw another use case with pre-allocated memory blocks from which we picked chunks where
we placed objects, again seeing some benefits. These techniques showed new ways to control memory
management, but in no way are they meant to represent an exhaustive discussion on the subject. To
be honest, this entire book cannot be an exhaustive treatise on the subject, but it can hopefully give
us ideas!

The next step in our journey will be to expand the techniques seen in this chapter and write something
that is not really a garbage collector but is in some ways weaker and in some ways better: deferred
reclamation memory zones. This will be our last step before we start discussing memory management
in containers.
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In Chapter 9, we showed some examples of unusual memory allocation mechanisms and how they can
be used, including how to react to errors to give our programs a form of “second chance” to continue,
as well as how to use atypical or exotic memory through the mediation of the C++ language facilities.
Then, in Chapter 10, we examined arena-based allocation and some variants thereof with an eye on
issues of speed, determinism, and control over resource consumption.

What we will do in the current chapter is something that is not often done in C++ but that is common
practice in programs written in many other languages, particularly those with integrated garbage
collectors: we will write mechanisms that delay the destruction of dynamically allocated objects at
selected moments in the execution of a program.

We will not write a proper garbage collector, as that would involve deeper involvement in the inner
workings of the compiler and impact the programming model that makes C++ such a wonderful tool.
However, we will put together mechanisms for deferred reclamation, in the sense that selected objects
will deliberately be destroyed and see their underlying storage freed together at chosen moments, but
without necessarily guaranteeing a destruction order. We will, of course, not provide an exhaustive
overview of techniques to achieve this objective, but we will hopefully give you, dear reader, enough
“food for thought” to build your own deferred reclamation mechanisms should you need to.

The techniques in this chapter can be coupled with those seen in Chapter 10 to make programs faster
and reduce memory fragmentation, but we will cover deferred reclamation as a standalone topic to
make our discourse clearer. After reading this chapter, you will be able to do the following:

o Understand the trade-offs associated with deferred reclamation, as there are gains to be made
but there are also costs involved (this is not a panacea!)

o Implement an almost transparent external wrapper to track the memory that needs to be collected

o Implement an almost transparent external wrapper to help finalize the objects that are subjected
to deferred reclamation

o Implement a counting pointer akin to the reference counter of a std: : shared_ ptr object
in order to identify objects that can be reclaimed at the end of a chosen scope
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The first step we need to take is to try to understand some problem domains where deferred reclamation can
be helpful, including its relation to the (different but not entirely dissimilar) problem of garbage collection.

( N
Finalization? Reclamation?

You will notice that, in this chapter, we will often use the word finalization instead of the word
destruction, as we seek to emphasize the fact that the code executed at the end of an object’s
lifetime (its destructor) is distinct from the code that frees its underlying storage. As a bonus,
finalization is also more common in garbage-collected languages, and garbage collection is a
cousin of the techniques discussed in the sections that follow. Consider finalization (without
reclamation) as the equivalent of calling the destructor of an object (without deallocating the
underlying storage).

As stated earlier in this chapter, we will name reclamation the act of freeing the memory for
one or many objects at selected moments, for example, at the end of a scope or when reaching
the end of a program’s execution. Again, this term is more common in garbage-collected
languages than it is in C++, but the topic of this chapter is in some ways closer to what these
languages do so, hopefully, using similar terms will help develop a common understanding of
the ideas and techniques involved.

Technical requirements

You can find the code files for this chapter in the book’s GitHub repository here: https://github.
com/PacktPublishing/C-Plus-Plus-Memory-Management/tree/main/chapterll.

What do we mean by deferred reclamation?

Why would one want to resort to deferred reclamation? That’s a valid question indeed, so thanks
for asking!

The short answer is that it solves a real problem. Indeed, there are programs where it makes sense not
to collect objects right after they stop being referred to by client code, or where it’s unclear whether
they can be collected at all until we know for sure the code that could use them concludes. These
programs are somewhat rare in C++ because of the way we reason about code in our language, but
they are not rare when looking at the programming world in general.

For example, consider a function in which there are circular references between some of the locally
allocated objects, or one where there is a tree that one can navigate from the root node to its leaf
nodes, but in which the leaves of the tree also have a reference to its root node. Sometimes, we can
determine how to destroy the set of objects: for example, in the case of a tree, we could decide to start
at the root and go down the branches. In other situations, if we know that a group of objects will not
escape a given function, we can also use the knowledge that, at the end of that function, they all can
be reclaimed as a group.


https://github.com/PacktPublishing/C-Plus-Plus-Memory-Management/tree/main/chapter11
https://github.com/PacktPublishing/C-Plus-Plus-Memory-Management/tree/main/chapter11

What do we mean by deferred reclamation?

If you are familiar with garbage-collected languages, you probably know that in most of them, the
collector “reclaims the bytes,” freeing the underlying storage of the reclaimed objects (and sometimes
compacting the memory as it proceeds), but does not finalize the objects. One reason for this is
that it is difficult (in some cases, impossible) for an object in such a language to know which other
objects still exist in the program since there is no order-of-finalization guarantee... and how could
there be one if the garbage collector needs to deal with cycles of objects referring to each other? Not
knowing which other objects still exist when an object reaches the end of its lifetime severely limits
what finalization code can do.

The fact that reclamation does not mean finalization in many languages simplifies the task of
collecting the objects: one can conceptually call std: : free () or some equivalent function and
free memory without worrying about the objects therein. In languages that do guarantee finalization
before reclamation, one often finds a class hierarchy rooted in a single, common base class (often
called object or Object), which makes it possible to call the equivalent of a virtual destructor
on each object and polymorphically finalize it. Of course, what one can do when finalizing an object
under such circumstances is limited since the order in which objects are finalized is usually unknown.

What is more common in contemporary garbage-collected languages is to make finalization the
responsibility of client code and leave the collection to the language itself. Such languages often use a
special interface (IDisposable in C# and Closeable in Java come to mind) that is implemented
by classes for which finalization is important (typically, classes that manage external resources), and
client code will explicitly put in place the required mechanisms for the ordered finalization of objects.
This moves part of the responsibility over resource management from the object itself (as is customary
in C++ with the RAII idiom described in Chapter 4) to the code that uses it, which is a reminder that
garbage collectors tend to simplify memory management but, at the same time, tend to complicate
the management of other resources.

Examples of such client code-driven resource management include a t ry block accompanied by a
finally block, which serves as the locus of cleanup code applied regardless of whether the try
block concluded normally or some catch block was entered. There are also simplified syntaxes that
perform the same thing in a less burdensome manner for client code. For example, Java uses try-with
blocks and implicitly calls close () on selected Closeable objects at end of scope, and C# uses
using blocks likewise in order to implicitly call Dispose () on selected IDisposable objects.

C++ does not have £inally blocks, nor does it use intrusive techniques such as special interfaces
known to the language that receive special treatment or a common base class to all types. In C++,
objects are usually made responsible for the management of their resources through the RAII idiom;
this leads to a different mindset and different programming techniques when compared to other
popular languages.
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In this chapter, we will face a similar yet different situation to the one faced in garbage-collected
languages: if we want to use deferred reclamation of objects, we cannot guarantee that during destruction,
one of the reclaimed objects will be able to access other objects reclaimed in the same group, so one
should not try to do this. On the other hand, the fact that we will choose to apply deferred reclamation
to selected objects (instead of doing so for all objects) means that objects not part of this group and
known to survive that group’s reclamation can still be accessed during the finalization of reclaimed
objects. It’s a benefit of not having a one-size-fits-all solution, really: C++ is nothing if not versatile,
as you probably knew even before starting to read this book.

Not having a common base class to all types means that we will have to either forego finalization (and
this can work if we limit ourselves to allocating objects of trivially destructible types, something we
could validate at compile time) or that we will have to find some other way to remember the types of
the objects we allocated and call the appropriate destructor when the time comes. In this chapter, we
will show how one can implement both approaches.

Contrary to popular belief, some garbage collectors have been implemented for C++. One of the best-
known ones (the Boehm-Demers-Weiser collector made by Hans Boehm, Alan Demers, and Mark
Weiser) does not finalize objects in general but allows the registration of chosen finalizers from user
code. This is done through a facility named GC_register finalizer, but the authors warn
users of this facility that what such a finalizer can do is limited, as is the case in garbage-collected
languages (and discussed earlier in this section).

Further reading
To explore further, please check https://www.hboehm.info/gc/.

We will use other techniques in this chapter. As is always the case in this book, the intent is to present
ideas from which you can experiment and build the kind of solution your code needs. We will show
three different examples:

« Code that reclaims selected objects at the end of program execution but does not finalize them,
limiting deferred reclamation to trivially destructible objects

o Code that reclaims and finalizes selected objects at the end of program execution
o Code that reclaims and finalizes selected objects at the end of selected scopes
We will proceed differently in each case, to give you a broader perspective on what can be done. In

all three cases, we will store the pointers in a globally accessible object. Yes, a singleton, but that’s the
correct tool here as we are discussing a feature that impacts the whole program. Ready? Here we go!


https://www.hboehm.info/gc/

Reclamation (without finalization) at the end of the program

( 7
Things we sometimes do to make examples readable...

The code in the following sections can seem strange to some readers. In an effort to focus on
the deferred reclamation aspects of the code and keep the overall presentation readable, I chose
not to go into aspects of thread safety, although this is essential in contemporary code. In the
GitHub repository for this chapter, however, you will find both the code presented in this book
and the thread-safe equivalent for each example.

. J

Reclamation (without finalization) at the end of the
program

Our first implementation will provide reclamation but not finalization at the end of program execution.
For this reason, it will not accept managing objects of some type T if T is not trivially destructible
since objects of that type have a destructor that might have to be executed to avoid leaks or other
problems along the way.

With this example, as with the others in this chapter, we will start with our test code, and then go on
to see how the reclamation mechanics are implemented. Our test code will go as follows:

o We will declare two types, NamedThing and Identifier. The former will not be trivially
destructible as its destructor will contain user code that prints out debugging information, but
the latter will be, as it will only contain trivially destructible non-static data members and offer
no user-provided destructor.

o We will provide two g () functions. The first one will be commented out as it tries to allocate
NamedThing objects through our reclamation system, something that would not compile as
type NamedThing does not meet our requirement of trivial destructibility. The second one
will be used as the objects it allocates are of a type that meets those requirements.

o Thef(),g(),andmain () functions will construct objects at various levels in the call stack
of our program. However, the reclaimable objects will only be at the end of program execution.

The client code in this case would be as follows:

//
// note: not trivially destructible
struct NamedThing {
const char *name;
NamedThing (const char *name) : name{ name } {
std::print ("{} ctor\n", name);
}
~NamedThing () {
std::print ("{} dtor\n", name);
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struct Identifier {
int value;
b 5
// would not compile
/*
void g() {
[ [maybe unused]] auto p = gcnew<NamedThing>("hi") ;
[ [maybe unused]] auto g = gcnew<NamedThing> ("there") ;
}
*/
void g() {
[ [maybe unused]] auto p = gcnew<Identifier>(2);
[ [maybe unused]] auto g = gcnew<Identifier>(3);
}
auto h() {
struct X {
int m() const { return 123; }
}i
return gcnew<X> () ;
}
auto £() {
g();
return h();
}
int main()
std: :print ("Pre\n") ;
std::print ("{}\n", £()->m());
std: :print ("Post\n") ;

}

With this code and the (so far missing) deferred reclamation code, this program will print the following:

Pre
123
Post
~GC with 3 objects to deallocate

Note that £ () allocates and returns an object from which main () calls them () member function
without explicitly resorting to a smart pointer, yet this program does not leak memory. Objects
allocated through the gcnew<T> () function are registered in the GC object, and the destructor of
the GC object will ensure the registered memory blocks will be deallocated.



Reclamation (without finalization) at the end of the program

How does gcnew<T> () work, then, and why write such a function instead of simply overloading
operator new () ? Well, remember that operator new () intervenes in the overall allocation
process as an allocation function - one that trades in raw memory, not one that knows what the type
of object to create will be. In this example, we want (a) memory to be allocated for the new object,
(b) the object to be constructed (hence the need for the type and the arguments that will be passed to
the constructor), and (c) to reject types that are not trivially destructible. We need to know the type
of object to construct, something operator new () is not aware of.

To be able to reclaim the memory for these objects at the end of program execution, we will need a
form of globally available storage where we will put the pointers that have been allocated. We will call
such pointers root s and store them in a singleton of the GC type (inspired by the nickname typically
associated with garbage collectors, even though this is not exactly what we are implementing - that
name will convey the intent well, and it’s short enough not to get in the way).

The GC: :add_root<T> (args. ..) member function will ensure that T is a trivially destructible
type, allocate a chunk of sizeof (T) bytes, construct T (args. . .) at thatlocation, store an abstract
pointer (a void*) to that object in roots, and return a T* object to the newly created object. The
gcnew<T> () function will allow user code to interface with GC: :add_root<T> () in a simplified
manner; since we want user code to use gcnew<T> (), we will qualify GC: :add_root<Ts> () as
private and make gcnew<T> () a friend of the GC class.

Note that the GC class itself is not a generic class (it’s not a template). It exposes template member
functions, but structurally only stores raw addresses (void* objects), which makes this class mostly
type-agnostic. This all leads to the following code:

#include <vectors
#include <memorys>
#include <strings>
#include <prints>
#include <type traits>

class GC {
std: :vector<void*> roots;
GC() = default;

static auto &get ()
static GC gc;
return gc;
}
template <class T, class ... Args>
T *add _root (Args &&... args) {
// there will be no finalization
static assert(
std::is trivially destructible v<T>
)i

return static cast<T*>(
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roots.emplace back(
new T(std::forward<Args>(args)...)

)i
}
// provide access privileges to gcnew<T> ()
template <class T, class ... Args>
friend T* gcnew(Argsé&&...);
public:
~Gc() {
std: :print ("~GC with {} objects to deallocate",
std::size(roots)) ;
for (auto p : roots) std::free(p);

GC (const GC &) = delete;

GC& operator=(const GC &) = delete;
¥
template <class T, class ... Args>

T *gcnew (Args &&...args) {
return GC::get () .add root<T>(
std: : forward<Args> (args) ...
)i
}

As expected, GC: : ~GC () calls std: : free () but invokes no destructor, as this implementation
reclaims memory but does not finalize objects.

This example shows a way to group memory reclamation as a single block to be executed at the end
of a program. In code where there is more available memory than what the program requires, this
can lead to a more streamlined program execution, albeit at the cost of a slight slowdown at program
termination (of course, if you want to try this, please measure to see whether there are actual benefits
for your code base!). It can also help us write analysis tools that examine how memory has been
allocated throughout program execution and can be enhanced to collate additional information such
as memory block size and alignment: we simply would need to keep pairs - or tuples, depending on
the needs - instead of single void* objects in the roots container to aggregate the desired data.

Of course, not being able to finalize objects allocated through this mechanism can be a severe
limitation, as no non-trivially destructible type can benefit from our efforts. Let’s see how we could
add finalization support to our design.
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Reclamation and finalization at the end of the program

Our second implementation will not only free the underlying storage for the objects allocated through
our deferred reclamation system but will also finalize them by calling their destructors. To do so, we
will need to remember the type of each object that goes through our system. There are, of course,
many ways to achieve this, and we will see one of them.

By ensuring the finalization of reclaimed objects, we can get rid of the trivially destructible requirement
of our previous implementation. We still will not guarantee the order in which objects are finalized,
so it's important that reclaimed objects do not refer to each other during finalization if we are to have
sound programs, but that’s a constraint many other popular programming languages also share. This
implementation will, however, keep the singleton approach and finalize and then deallocate objects
and their underlying storage at the end of program execution.

As in the previous section, we will first look at client code. In this case, we will be using (and benefitting
from) non-trivially destructible objects and use them to print out information during finalization: this
will simplify the task of tracing program execution. Of course, we will also use trivially destructible
types (such as struct X, local to the h () function) as there is no reason not to support these too.
Note that, often (but not always), non-trivially destructible types will be RAII types (see Chapter 4)
whose objects need to free resources before their life ends, but we just want a simple example here
so doing anything non-trivial such as printing out some value (which is what we are doing with
NamedThing) will suffice in demonstrating that we handle non-trivially-destructible types correctly.

We will use nested function calls to highlight the local aspect of construction and allocation, as well
as the non-local aspect of object destruction and deallocation since these will happen at program
termination time. Our example code will be as follows:

//
// note: not trivially destructible
struct NamedThing {
const char *name;
NamedThing (const char *name) : name{ name } {
std::print ("{} ctor\n", name);
}
~NamedThing () {
std::print ("{} dtor\n", name);

}
b5
void g() {

[ [maybe unused]] auto p = gcnew<NamedThing>("hi") ;

[ [maybe unused]] auto g = gcnew<NamedThing> ("there") ;
}

auto h() {
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struct X {
int m() const { return 123; }
};
return gcnew<X> () ;
1
auto £() {
g();
return h();
}

int main()
std: :print ("Pre\n") ;
std::print ("{}\n", £(0)->m());
std: :print ("Post\n") ;

}

When executed, you should expect the following information to be printed on the screen:

Pre

hi ctor
there ctor
123

Post

hi dtor
there dtor

As can be seen, the constructors happen when invoked in the source code, but the destructors are
called at program termination (after the end of main () ) as we had announced we would do.

( A
On the importance of interfaces

You might notice that user code essentially did not change between the non-object-finalizing
implementation and this one. The beauty here is that our upgrade, or so to say, is completely
achieved in the implementation, leaving the interface stable and, as such, the differences
transparent to client code. Being able to change the implementation without impacting interfaces
is a sign of low coupling and is a noble objective for one to seek to attain.

. J

How did we get from a non-finalizing implementation to a finalizing one? Well, this implementation
will also use a singleton named GC where “object roots” will be stored. In this case, however, we
will store semantically enhanced objects, not just raw addresses (void* objects) as we did in the
previous implementation.
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We will achieve this objective through a set of old yet useful tricks:

o Our GC class will not be a generic class, as it would force us to write GC<T> instead of just GC
in our code, and find a way to have a distinct GC<T> object for each T type. What we want
is for a single GC object to store the required information for all objects that require deferred
reclamation, regardless of type.

o In GG, instead of storing objects of the void* type, we will store objects of the GC: : GcRoot *
type. These objects will not be generic either but will be polymorphic, exposing a destroy ()
service to destroy (call the destructor, then free the underlying storage) objects.

o There will be classes that derive from GC: : GcRoot. We will call such classes GC: : GcNode<T>
and there will be one for each type T in a program that is involved in our deferred reclamation
mechanism. These are where the type-specific code will be “hidden”

o By keeping GC: : GcRoot * objects as roots but storing GC: : GeNode<T>* in practice, we
will be able to deallocate and finalize the T object appropriately.

The code for this implementation follows:

#include <vector>
#include <memorys>
#include <prints>
class GC {
class GcRoot {
void *p;
public:
auto get() const noexcept { return p; }
GcRoot (void *p) : p{ p } {
}
GcRoot (const GcRoot &) = delete;
GcRoot& operator=(const GcRoot &) = delete;
virtual void destroy(void *) const noexcept = 0;
virtual ~GcRoot() = default;
}i
//

As can be seen, GC: : GcRoot is an abstraction that trades in raw pointers (objects of the void*
type) and contains no type-specific information, per se.

The type-specific information is held in derived classes of the GeNode<T > type:

//

template <class T> class GcNode : public GcRoot {
void destroy(void* q) const noexcept override {
delete static cast<T*>(q);
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}
public:
template <class ... Args>
GcNode (Args &&... args)
GcRoot (new T(std::forward<Args>(args)...)) {
}
~GcNode () {
destroy(get());
}
}:
//

As we can see, a GcNode<T> object can be constructed with any sequence of arguments suitable
for type T, perfectly forwarding them to the constructor of a T object. The actual (raw) pointers are
stored in the base class part of the object (the GcRoot but the destructor of a GeNode<T> invokes
destroy () on that raw pointer, which casts the void* to the appropriate T* type before invoking
operator delete().

Through the GcRoot abstraction, a GC object is kept apart from type-specific details of the objects it
needs to reclaim at a later point. This implementation can be seen as a form of external polymorphism,
where we use a polymorphic hierarchy “underneath the covers” to implement functionality in such
a way as to keep client code unaware.

Given what we have written so far, our work is almost done:

« Lifetime management can be delegated to smart pointers, as the finalization code is found in the
destructor of GcNode<T> objects. Here, we will be using std: :unique ptr<GcRoot>
objects (simple and efficient).

o Theadd root () function will create GcNode<T> objects, store them in the roots container
as pointers to their base class, GcRoot, and return the T* pointing to the newly constructed
object. Thus, it installs lifetime management mechanisms while exposing pointers in ways that
look natural to users of operator new ().

That part of the code follows:

//
std::vector<std::unique ptr<GcRoot>> roots;
GC() = default;

static auto &get ()
static GC gc;
return gc;

template <class T, class ... Args>
T *add root (Args &&... args) {
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return static cast<T*>(roots.emplace back(
std: :make unique<GcNode<T>> (

std: : forward<Args> (args) ...)
)->get());
}
template <class T, class ... Args>
friend T* gcnew (Argsé&&...);
public:
GC(const GC &) = delete;
GC& operator=(const GC &) = delete;
}i
template <class T, class ... Args>

T *gcnew (Args &&...args) {
return GC::get () .add root<T>(
std: :forward<Args> (args) . . .

) 8
//

So, there we have it: a way to create objects at selected points, and destroy and reclaim them all at
program termination, with the corresponding upsides and downsides, of course. These tools are
useful, but they are also niche tools that you should use (and customize to your needs) if there is
indeed a need to do so.

So far, we have seen deferred reclamation facilities that terminate (and finalize, depending on the tool)
at program termination. We still need a mechanism for reclamation at the end of selected scopes.

Reclamation and finalization at the end of the scope

Our third and last implementation for this chapter will ensure reclamation and finalization at the end
of the scope, but only on demand. By this, we mean that if a user wants to reclaim unused objects that
are subject to deferred reclamation at the end of a scope, it will be possible to do so. Objects subject
to deferred reclamation that are still considered in use will not be reclaimed, and objects that are not
in use will not be reclaimed if the user code does not ask for it. Of course, at program termination, all
remaining objects that are subject to deferred reclamation will be claimed, as we want to avoid leaks.

This implementation will be more subtle than the previous ones, as we will need to consider (a) whether
an object is still being referred to at a given point in program execution and (b) whether there is a
need to collect objects that are not being referred to at that time.

To get to that point, we will inspire ourselves from std: : shared ptr, a type we provided an
academic and simplified version of in Chapter 6, and will write a counting ptr<Ts> type that,
instead of destroying the pointee when its last client disconnects, will mark it as ready to be reclaimed.
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The client code for this example follows. Pay attention to the presence of objects of the scoped
collect type in some scopes. These represent requests made by client code to reclaim objects not
in use anymore at the end of that scope:

//
// note: not trivially destructible
struct NamedThing {
const char *name;
NamedThing (const char *name) : name{ name }
std::cout << name << " ctor" << std::endl;
}
~NamedThing () {
std::cout << name << " dtor" << std::endl;

¥
auto g() {
auto _ = scoped collect{};
[ [maybe unused]] auto p = gcnew<NamedThing>("hi") ;
auto q = gcnew<NamedThing> ("there") ;
return q;
} // a reclamation will occur here
auto h() {
struct X {
int m() const { return 123; }
b5
return gcnew<X> () ;
}
auto £() {
auto _ = scoped collect{};
auto p = g();
std::cout << '\"' << p->name << '\"' << std::endl;
} // a reclamation will occur here
int main()
using namespace std;
cout << "Pre" << endl;
£0);
cout << h()->m() << endl;
cout << "Post" << endl;
} // a reclamation will occur here (end of program)
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The end of a scope where a scoped _collect object lives will lead to the reclamation of all objects
allocated through gcnew<T> () that are not referenced anymore at that point; this holds regardless
of whether they were allocated in that scope or somewhere else in the program. The intent here is
that the end of such as scope is a point where we are willing to “pay” the time and effort required to
collect a group of objects. Do not use a scoped_collect object in a scope where either speed or
deterministic behavior is of the essence!

Executing this code, we end up with the following:

Pre

hi ctor
there ctor
hi dtor
"there"
there dtor
123

Post

As we can see, objects that are still being referred to remain available, and objects that are not being
referred to are collected either when the destructor of a scoped_collect object is called, or at
program termination if there are still some reclaimable objects in the program at that point.

The scoped_collect type itself is very simple, its main role being to interact with the GC global
object. It is simply a non-copiable, non-movable RAII object that invokes a reclamation at the end
of its lifetime:

//
struct scoped collect {
scoped collect () = default;
scoped_collect (const scoped collect &) = delete;
scoped collect (scoped collect &&) = delete;
scoped collecté&
operator=(const scoped collect &) = delete;
scoped collect &operator=(scoped collect &&) = delete;
~scoped collect() {
GC::get () .collect();

¥
//

How does this whole infrastructure work? Let’s take it step by step. We will inspire ourselves from the
previous sections of this chapter, where we initially collect all objects at the end of program execution,
and then add finalization for these objects. The novelty in this section is that we will add the possibility
of collecting objects at various times in program execution and implement the required code to track
references to objects.
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To track references to objects, we will use objects of the counting ptr<T> type:

#include <vectors>
#include <memorys>
#include <strings>
#include <iostream>
#include <atomics>
#include <functionals>
#include <utility>

As can be seen, we can (and do!) implement this type solely through standard tools. Note that the
count data member is a pointer as it might be shared between instances of counting ptr<Ts>:

template <class T>
class counting ptr {
using count type = std::atomic<int>;
T *p;
count type *count;
std: : function<void () > mark;
public:
template <class M>
constexpr counting ptr (T *p, M mark) try
p{ p }, mark{ mark } {
count = new count type{ 1 };

} catch(...) {
delete p;
throw;
}
T& operator* () noexcept

return *p;
const T& operator* () const noexcept {
return *p;
T* operator->() noexcept
return p;
const T* operator->() const noexcept {
return p;
constexpr bool
operator==(const counting ptr &other) const {
return p == other.p;

}

// operator!= can be omitted since C++20
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constexpr bool
operator!=(const counting ptr &other) const {
return ! (*this == other) ;
}
// we allow comparing counting ptr<T> objects
// to objects of type U* or counting ptr<U> to
// simplify the handling of types in a class
// hierarchy
template <class U>
constexpr bool
operator==(const counting ptr<Us> &other) const ({
return p == &*other;
}
template <class U>
constexpr bool
operator!=(const counting ptr<Us &other) const {
return ! (*this == other) ;
}
template <class U>
constexpr bool operator==(const U *g) const {
return p == q;
}
template <class U>
constexpr bool operator!=(const U *g) const {
return ! (*this == q);
}
//

Now that the relational operators are in place, we can implement copy and move semantics for our type:

//
void swap (counting ptr &other) {
using std::swap;
swap (p, other.p);
swap (count, other.count) ;
swap (mark, other.mark) ;
}
constexpr operator bool () const noexcept {
return p != nullptr;
}
counting ptr(counting ptr &&other) noexcept
p{ std::exchange (other.p, nullptr) },
count{ std::exchange (other.count, nullptr) }
mark{ other.mark } (



252 Deferred Reclamation

}
counting ptr &
operator= (counting ptr &&other) noexcept {
counting ptr{ std::move (other) }.swap(*this);
return *this;
}
counting ptr(const counting ptr &other)
p{ other.p }, count{ other.count },
mark{ other.mark } {
if (count) ++ (*count) ;
}
counting ptr &operator=(const counting ptr &other) {
counting ptr{ other }.swap(*this);
return *this;
}
~counting ptr() {
if (count) {
if ((*count)-- == 1) {
mark () ;
delete count;

b5
namespace std
template <class T, class M>
void swap (counting ptr<T> &a, counting ptr<Ts> &b) {
a.swap (b) ;

}
//

Instead of destroying the counter and the pointee like a shared ptr<T> would, counting
ptr<T> will delete the counter but “mark” the pointee, making it a candidate for ulterior reclamation.

The general GC, GC: : GcRoot, and GC: : GecNode<T> approach from the previous section remains,
but is enhanced as follows:

o The roots container couples a unique ptr<GcRoot > with a “mark” data member of
type bool

o Themake collectable (p) member function marks the root associated with the p
pointer as collectable

e The collect () member functions reclaim all the roots that are marked as collectable
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What this implementation does is (a) associate a Boolean mark (collect or do not collect) with each
reclaimable pointer, (b) use counting ptr<T> object with each T* to keep track of how each pointee
is being used, and (c) collect reclaimable pointees as a group whenever a collection request arrives.
The easiest way to request such a collection is to reach the destructor of a scoped_collect object.

The code for this somewhat more sophisticated version is as follows:

//
class GC {
class GcRoot {
void *p;
public:
auto get () const noexcept { return p; }
GcRoot (void *p) : p{ p } {
}
GcRoot (const GcRoot&) = delete;
GcRoot& operator=(const GcRoot&) = delete;
virtual void destroy(void*) const noexcept = 0;
virtual ~GcRoot () = default;
}i
template <class T> class GcNode : public GcRoot {
void destroy(void *g) const noexcept override {
delete static_cast<T*>(q);

}

public:
template <class ... Args>
GcNode (Args &&... args)
GcRoot (new T(std::forward<Argss>(args)...))
}
~GcNode ()

destroy (get ()) ;

¥
std: :vector<
std::pair<std::unique ptr<GcRoot>, bool>
> roots;
GC() = default;
static auto &get ()
static GC gc;
return gc;
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The collection functions in this case would be as follows:

void make collectable(void *p) {

for (auto &[qg, coll] : roots)

if (static_cast<GcRoot*>(p) == g.get())
coll = true;

}
void collect() {

for (auto p = std::begin(roots);

p != std::end(roots); ) {

if (auto &[ptr, collectible] = *p; collectible) ({

ptr = nullptr;
p = roots.erase(p);
} else {

+4p;

}

template <class T, class ... Args>
auto add_root (Args &&... args) {
auto g = static cast<T*>(roots.emplace back (
std: :make unique<GcNode<T>> (
std: : forward<Args> (args) . ..
), false
) . first->get()) ;
// the marking function is implemented as
// a lambda expression that iterates through
// the roots, then finds and marks for
// reclamation pointer g. It is overly
// simplified (linear search) and you are
// welcome to do something better!
return counting ptr{
a, [&,ql () {
for (auto &[p, coll] : roots)
if (static_cast<void*>(q) ==
p.get()->get()) {
coll = true;
return;



Summary

template <class T, class ... Args>
friend counting ptr<T> gcnew(Args&&...);
friend struct scoped collect;

public:
GC (const GC &) = delete;
GC& operator=(const GC &) = delete;

b5

//

template <class T, class ... Args>
counting ptr<T> gcnew (Args &&... args) {

return GC::get () .add root<T> (
std: : forward<Args> (args) . ..
) 5

//

As you can see, dear reader, this last example would benefit from several optimizations, but it works
and is meant to be simple enough to understand and improve.

We now know it is possible to reclaim objects in groups in C++, as it is in other popular languages. It
might not be idiomatic C++ code, but deferred reclamation can be achieved with reasonable effort,
on an opt-in basis. Not bad!

Summary

This chapter took us in the territory of deferred reclamation, a territory that’s unfamiliar to many C++
programmers. We saw ways in which we can reclaim objects in groups at specific points in a program,
discussed restrictions on what could be done when reclaiming such objects, and examined various
techniques to finalize objects before freeing their associated memory storage.

We are now ready to look at how memory management interacts with C++ containers, an important
topic that will occupy us in the next three chapters.

Indeed, we could write containers that handle memory explicitly, but in general, that would be
counterproductive (for example, if we tied std: : vector<T> to new and delete, how could
std: :vector<T> handle some type T for which allocation and deallocation have to be done
through other means?).

There are, of course, quite a few ways to get there. Want to know some of them? Let’s take a deep
breath and dive in...
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Part 4:
Writing Generic Containers
(and a Bit More)

In this part, we will focus on writing efficient generic containers, doing so through explicit memory
management, then through implicit memory management, and finally, through allocators, under the
various guises these types have held over the years. Leveraging our deeper understanding of memory
management techniques and facilities, we will express two types of containers (one that uses contiguous
memory and another that uses linked nodes) in ways that can sometimes be much more efficient than
a simpler, more naive implementation would be. We end this part with a look to the near future in
memory management with C++.

This part has the following chapters:

o Chapter 12, Writing Generic Containers with Explicit Memory Management
o Chapter 13, Writing Generic Containers with Implicit Memory Management
o Chapter 14, Writing Generic Containers with Allocator Support

o Chapter 15, Contemporary Issues
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Writing Generic Containers
with Explicit Memory
Management

We have come quite a long way since the beginning of our journey into the wonders of memory
management mechanisms and techniques in C++. From Chapter 4 to Chapter 7, we built an interesting
toolbox, one on which we can build and from which we can adapt to solve new problems we might
face in the future. This toolbox now contains, among other things, the following:

o Techniques through which an object implicitly manages its resources
o Types that behave like pointers but encode responsibility over the pointee in the type system

o Various ways in which we can take over the behavior of memory allocation mechanisms of
a program

One (important!) aspect of memory management we have not covered yet is how containers manage
memory. This is actually quite an interesting topic, one that we will address through three different
angles, in three different chapters.

The first angle is how to handle memory management explicitly yet efficiently in a container. This is
what the current chapter is about. In some application domains, it is customary to implement (or
maintain) one’s own containers instead of using those provided by the standard library. There can
be various reasons for this: for example, maybe your company has highly specialized needs. Maybe
your company has been unsatisfied with standard library containers’ performance in the past, perhaps
because the implementations were less efficient than they hoped back then, and developed its own
alternative containers in response. After years of writing code based on your own containers, moving
back to standard library containers might seem too costly.
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The second angle, which is somewhat shorter, is how to handle memory implicitly yet efficiently in
a container, and will be covered in Chapter 13 of this book, where we will revisit and simplify the
implementations seen in the current chapter.

The third angle, which is more complex and subtle, is how to handle memory through an allocator
in a container, and will form Chapter 14 of this book.

In the current chapter, we will write a (naive) std: : vector<T> lookalike named Vector<T>. We
will use that as an opportunity to discuss exception safety (an important issue, especially when writing
generic code). Then, we will notice that we have been very inefficient up to that point, in the sense that
std: :vector<T> will be significantly more efficient than our Vector<T> alternative, at least
for some types. Based on this realization, we will revisit our design with better memory management,
seeing important improvements in many aspects, and discuss some important low-level standard
facilities for memory management that can (and will) make our lives easier.

We will also write a homemade std: : forward 1ist<T> lookalike named ForwardList<T>,
as there are issues and considerations specific to node-based containers that a vector-like type does
not really allow us to discuss. This chapter will write a “vanilla” version of a forward list, and we will
revisit it briefly in Chapter 13, then in more detail in Chapter 14.

This means that after reading this chapter, you will be able to do the following:

« Write a correct and exception-safe container with naive memory management techniques
o Understand the problems associated with const or reference data members

o Use standard-provided low-level memory management algorithms

More generally, you will know why std: : vector<Ts is so fast, and why that type is so difficult to
beat at the resource management game. You will also get an idea of the challenges faced by node-based
containers such as std: : forward_1ist<Ts, although later chapters will delve more deeply into
this. That does not mean you should not write your own containers (for specific use cases, we can
often do better than a general solution), but it does mean that you will know better why (and when)
to do so, and how much effort you will need to invest.

( i
Exhaustiveness or representativeness

This book does not in general aim for exhaustive representations or implementations (there are
size limits to a physical object such as a book!), and this chapter will be no exception to that
rule... far from it! Implementing the full set of member functions provided for two container
types inspired by the standard library would require this book to grow immensely - and your
standard library implementation covers many more corner cases (and offers many more cool
optimizations) than a book such as this one could hope to present. For that reason, we will try
to expose a core set of member functions from which you can build instead of trying to write
every single one of them.




Technical requirements

Technical requirements

You can find the code files for this chapter in the booK’s GitHub repository here: https: //github.
com/PacktPublishing/C-Plus-Plus-Memory-Management /tree/main/chapterl2.

Writing your own vector<T> alternative

Suppose you get up one day and say: “Hey, I'm going to beat std: : vector at its own game” and
confidently start coding. Some words to the wise:

This seemingly simple task is astonishingly difficult to accomplish: for one thing, std: : vector
is a work of art, and then there’s the fact that your favorite standard library writers are spectacularly
skilled individuals.

You might still think you can do it, so it’s fine to try, but make sure you test your ideas with
both a type of element that is trivially constructible (for example, int or double) and one
that is not (for example, std: : string) and compare the results. For many, the former will
lead to stellar performance, but the latter might bring ...sadness.

The reason for this difference is that a container such as std: : vector is extremely efficient
at... managing memory (I know, reading this in this book must come as quite a shock!). It is
much better, in fact, than a homegrown alternative would be, unless you invest significant time
and effort and (most probably) have a specific use case in mind, one for which the homegrown
version would be optimized more specifically.

Your standard library vendor does invest such time and effort and does so for your very benefit, so it
is possible that learning how to use std: : vector optimally will end up being an avenue that brings
better results than trying to write your personal equivalent container. Of course, in the end, which
container to use is up to you, and you can often write code for custom situations that outperforms
general solutions the way standard containers do.

Vs

A general note on how we will write our containers

We will be writing (and using) containers in this chapter and the ones that follow, so a brief
explanation is needed if we want to have a common understanding of how we will proceed.
For one thing, we will use type aliases in our containers that match those used in standard
containers, as this helps toward a more fluid integration in other standard library tools, such
as the standard algorithms. Then, we will strive to use the same public names for our member
functions as those used in the standard library (for example, we will write empty () for the
predicate used to test whether a container is empty or not, matching existing practice in the
standard library, even though some might argue is_empty () would be preferable). Finally,
we will adopt a gradual refinement approach: our first versions will be simpler but less efficient
than later ones, so be patient, dear reader: we are following our own path to enlightenment!
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Representational choices for a container of contiguous elements

Informally, a std: : vector represents a dynamically allocated array that can grow as needed. As with
any array, a std: : vector<T> is a sequence of elements of type T arranged contiguously in memory.
We will name our homemade version Vector<T> to make it visibly distinct from std: : vector<Ts.

To get a reasonably performant implementation, the first key idea is to distinguish size from capacity. If
we do not do so, deciding to make size and capacity the same thing, our Vector<T> implementation
will always conceptually be full and will need to grow, which means allocating more memory, copying
the elements from the old storage to the new storage, getting rid of the old storage, and so on with
every insertion of even a single element. To say such an implementation would be painful seems like
a severe understatement.

There are two main approaches to the internal representation of a vector-like type. One is to keep
track of three pointers:

« One to the beginning of the allocated storage
« One to the end of the elements

o One to the end of the allocated storage (note that we are referring to half-open ranges here,
with the beginning included and the end excluded)

A simplified illustration would be as follows:

template <class T>
class Vector ({
T *elems;
T *end elems;
T *end storage;

//

Another is to keep a pointer to the beginning of the allocated storage as well as two integers (for the
container’s size and capacity, respectively). A simplified illustration in this case would be the following:

template <class T>
class Vector {
T *elems;
std:size t nelems; // number of elements
std::size t cap; // capacity
//

These are equivalent representations in the sense that they both allow us to write a correct container,
but they bring different trade-offs. For example, keeping three pointers makes computing the end ()
iterator fast but makes size () and capacity () require computing a pointer subtraction, whereas
keeping a pointer and two integers makes both size () and capacity () fast but requires computing
the addition of a pointer and an integer to get the end () iterator.
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As far as size goes, the three-pointer representation makes sizeof (Vector<Ts>) equal to
3xgizeof (void¥), thus probably 24 bytes on a 64-bit platform with an alignment of 8. The pointer
and two integers might be of the same size or might be slightly different depending on the integer types
used. For example, choosing 32-bit integers for the size and capacity on a 64-bit machine would lead
to a 16-byte representation and an alignment of 8. These details may make a difference on a resource-
constrained system, but as you have probably deduced already, the main memory consumption cost
of something such as Vector<T> comes from the memory allocated for the T objects.

Different implementations will make different representational choices due to size considerations,
estimates of which member functions will be called more often on average, and so on. We will need
to make a choice too; in this book, we will choose the “one pointer and two integers” approach, but
keep in mind it’s one of a few reasonable options (you can even play with the idea and implement
what follows through other representational choices and see where this leads you!).

The implementation of Vector<T>

We will walk through our initial (naive) Vector<T> implementation step by step, building a gradual
understanding of how this all works, and what makes us claim that this implementation is indeed naive.
Our initial step has mostly been covered already and consists of defining our abstractions through
standard library-conforming type aliases and choosing our internal representation:

#include <cstddefs>
#include <algorithm>
#include <utilitys>
#include <initializer list>
#include <iterators>
#include <type traits>
template <class T»>
class Vector ({
public:
using value type = T;
using size type = std::size t;
using pointer = T¥*;
using const pointer = const T*;
using reference = T&;
using const reference = const T&;
private:
pointer elems{};
size type nelems{},
cap{};
//
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You will notice that this implementation makes the choice of using non-static data member
initializers for the three data members of a Vector<T>, initializing them to their default values
(integers are 0, the pointer is null), which is suitable in our implementation as it represents an empty
container, which seems like a reasonable state for a default Vector<T>.

Some simple yet fundamental member functions follow:

//
public:

size type size() const { return nelems; }

size type capacity() const { return cap; }

bool empty() const { return size() == 0; }
private:

bool full() const { return size() == capacity(); }

//

Pay attention to the implementation of empty () and full (). Some people will prefer accessing
data members (here: using nelems and cap instead of size () and capacity ()) internally when
implementing member functions, but consider reusing your more fundamental member functions
to implement the more “synthetic” ones. This will make your code less sensitive to changes in the
implementation, and C++ compilers are very good at function inlining, particularly when these
functions are non-virtual.

At this point, the most useful set of members we could probably design is the iterator types and data
members of our class, as this will help us use standard algorithms to cleanly and efficiently implement
the rest of our member functions.

Iterators

C++ containers usually expose iterators as part of their interface, and ours will be no exception. We
will define type aliases for the const and non-const iterator types, as this makes it simpler to
implement alternatives such as bounds-checked iterators if we feel the need to do so, and implement
both const and non-const versions of the begin () and end () member functions:

//
public:
using iterator = pointer;
using const iterator = const pointer;
iterator begin() { return elems; }
const_iterator begin() const { return elems; }
iterator end() { return begin() + size(); }
const_iterator end() const {
return begin() + size();
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// for users' convenience

const_ iterator cend() const { return end(); }
const_iterator cbegin() const { return begin(); }
//

You might complain about the syntactic repetition that comes with writing a const and non-const
version for begin () and end (), as these are syntactically similar yet semantically distinct. If you have
a C++23 compiler at hand, you can simplify this somewhat through the handy “deduced this” feature:

// alternative approach (requires C++23)
template <class S»>
auto begin(this S && self) { return self.elems; }
template <class S>
auto end(this S && self) ({
return self.begin() + self.size();

}

This is a slightly more complicated way of expressing these functions, but it lets us coalesce both
versions of begin () and end () into one by leveraging the type deduction system through
forwarding references.

Constructors and other special member functions

We now get to our constructors. The first two we will look at are the default constructor and a
parametric constructor that takes as arguments a number of elements and an initial value, such
that Vector<chars> (3, 'a') yields a container with three elements of value 'a'. Note that
the default-ed default constructor (yes, I know) in this case is implicitly constexpr as all the
non-static member initializers can be resolved in a constexpr context:

//

Vector () = default;

Vector (size type n, const reference init)
elems{ new value typel[n] },
nelems{ n }, cap{ n } {

try {
std::£fill (begin(), end(), init);
} catch(...) {

delete [] elems;
throw;
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Pay attention to the exception-handling code in this constructor, as it will come back again and again.
We are writing a generic container, so we are using some type T we have no prior knowledge of. When
calling std: : £i111 (), which assigns the value of the init argument to each of the T objects in
the sequence, we are assigning a T value to a T object, but we do not know whether that assignment
operator can throw.

Our responsibility is to elems, a dynamically allocated array of T, so if one of the assignment operators
throws, we need to make sure that array is destroyed and deallocated before the Vector<T> constructor
fails; otherwise, we will leak the memory and (even worse) the objects we had constructed in that
array will not be finalized. The catch (. . .) block means “catch anything,” without really knowing
what you caught in this case, and the throw; expression means “re-throw whatever you had caught”
Indeed, we do not want to handle the exception in such a case (we do not have sufficient knowledge of
the execution context to do so: is this a console application? A graphical application? An embedded
system? Something else?); we just want to make sure our failure to construct the Vect or<T> object
did not leak resources and let user code know exactly why it is that our constructor failed to meet its
postconditions (failed to construct a valid object).

The copy constructor will follow a similar pattern, except that instead of filling the sequence with
copies of a single value, it copies values from a source sequence (other) to a destination sequence
(*this or elems depending on how you see it). The move constructor is, of course, quite different:

//
Vector (const Vector &other)
elems{ new value type[other.size()] },

nelems{ other.size() }, cap{ other.size() } {
try {
std: :copy (other.begin (), other.end(), begin());
} catch(...) {
delete [] elems;
throw;
}
}
//

Vector (Vector &&other) noexcept
elems{ std::exchange (other.elems, nullptr) },
nelems{ std::exchange (other.nelems, 0) },
cap{ std::exchange (other.cap, 0) } {

}

//

As you can see, the copy constructor is a costly beast for this type: an allocation for other.size ()
objects (with as many calls to the default constructor of type T accompanying this for non-trivially-
constructible objects), then other . size () assignments, and exception handling thrown in.
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The move constructor is simpler: it’s a constant-time, noexcept function. You don’t technically
need move operations in most classes (C++ got along fine for years without move operations, after
all), but when you can take advantage of them, you probably should do so. The speed improvements
can be stupendous, and execution speed becomes more predictable.

( 7
On values and salient properties

If you read the copy constructor’s code attentively, you might have noticed that *this did
not copy other . capacity (), instead deciding to make cap a copy of other.size ().
That’s actually the correct thing to do in such a case: the size () of a container is what is
called a salient property of the object, but capacity () is more of an artifact of that object’s
life, showing traces of how it has grown over time. What we want is that, after copying an
object, the original and the copy compare equal with respect to operator== and, of course,
capacity () does notintervene in that function: two arrays are generally considered equal
if they have the same number of elements and each of these elements has the same value when
compared to its counterpart in the other container. Copying the capacity would work in practice,
but it would be wasteful for most use cases.

. J

I added (for convenience) a constructor that accepts an initializer 1list<Ts>,argument to
allow for initializing a Vector<T> object with a sequence of values of type T. The destructor should
be self-explanatory:

//
Vector (std::initializer 1ist<T> src)
elems{ new value typel[src.size()] },

nelems {src.size() }, cap{ src.size() } {
try {
std: :copy (src.begin(), src.end(), begin()) ;
} catch(...) {
delete [] elems;
throw;
}
}
//

~Vector ()
delete [] elems;

}

Implementing the copy assignment operator from a source object (here: other) to a destination
object (*this) can be complicated if done in an... undisciplined manner, as it involves cleanup
code (for the before-assignment contents of *this), duplication of the state of the source object,
and ensuring we handle both self-assignment and potential exceptions thrown when duplicating the
source object’s state appropriately.

267



268

Writing Generic Containers with Explicit Memory Management

Luckily, there’s a neat trick suggested by Scott Meyers (and re-proposed by countless others!) who
noticed that copy assignment can be expressed as a combination of a copy constructor (the locus of
object duplication), the destructor (where cleanup happens) and a swap () member function: you
simply copy the argument into an anonymous object (to make its lifetime minimal), then swap the
states of that unnamed temporary with those of *this, leading to *this becoming a copy of other.
This programming idiom almost always works, which explains its success!

Move assignment can be expressed along the same lines as copy assignment, but replacing the copy
constructor with a move constructor in the implementation of the assignment operator:

//

void swap (Vector &other) noexcept
using std::swap;
swap (elems, other.elems) ;
swap (nelems, other.nelems) ;
swap (cap, other.cap) ;

}

Vectoré& operator=(const Vector &other) {
Vector{ other }.swap (*this);
return *this;

}

Vector& operator=(Vector &&other) {
Vector{ std::move (other) }.swap(*this);
return *this;

}

//

Basic services of a vector-like class

We have now implemented the special member functions that handle the internal representation of
a Vector<T> object, but there is more to writing a convenient dynamic array type. For example,
member functions that let you access the £irst () element, or the last (back () ) element, or that
let you access the element at a specific index in the array (using square brackets) are all to be expected:

//

reference operator[] (size type n) {
return elems [n] ;

}

const reference operator|[] (size type n) const ({
return elems [n];

}

// precondition: !empty ()

reference front () { return (*this) [0]; }

const_reference front() const { return (*this) [0]; }
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reference back() { return (*this) [size() - 1]; }
const_reference back() const {
return (*this) [size() - 11;
}
//

As can be expected, calling front () or back () on an empty Vector<Ts> is undefined behavior
(you could make these functions throw if you prefer, but then everyone would pay the price for those
few programs that are badly behaved maybe only in so-called debug mode?). Again, this set of six
member functions can be reduced to only three through C++23’ “deduced this” feature:
// alternative approach, (requires C++23)
//
template <class S»>
decltype (auto) operator[] (this S && self,
size type n) {
return self.elems[n];
}
// precondition: !empty ()
template <class S>
decltype (auto) front (this S &&self)
return self [0];
}
template <class S>
decltype (auto) back(this S &&self) {
return self [self.size()-1];

//

Some will want to add an at () member function in both const and non-const form that behaves
like operator [] but throws an exception if an attempt to access the underlying array is out of
bounds. Feel free to do so if you wish.

Comparing two Vector<T> objects for equivalence or lack thereof is a relatively easy matter if we
use algorithms since we implemented iterators for our type:

//
bool operator==(const Vector &other) const {
return size() == other.size() &&
std: :equal (begin(), end(), other.begin()) ;

}

// can be omitted since C++20 (synthesized by
// the compiler through operator==())
bool operator!=(const Vector &other) const {
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return ! (*this == other) ;

}
//

Finally, you might say, we reach the point that interests us the most in a book discussing memory
management: how to add elements to our container, and how the underlying memory is managed.
Without going through every mechanism client code could use to add elements to a Vector<T>
object, we will at least examine the push_back () and emplace back () member functions:

o In this version, there will be two push_back () member functions: one that takes const
T& as argument and one that instead takes a T&&. The one that takes a const T& argument
will copy that argument at the end of the container, and the one that takes a T&& will move it
at that location.

o Theemplace back () member function will take a variadic pack of arguments, then perfectly
forward them to the constructor of a T object that will be placed at the end of the container.

o A reference to the newly constructed object is returned by emplace back () for convenience,
in case user code would like to use it right away. This is not done by push_back (), which is
called with a fully constructed object to which user code already has access.

In all three functions, we first check whether the container is full, in which case we call grow (),
a private member function. The grow () function needs to allocate more memory than what the
container currently holds, something that can, of course, fail. Note that if grow () throws, the addition
of a new object never occurred and the container remains intact. Note that grow () takes into account
the possibility of a capacity () of value 0, in which case an arbitrary default capacity is chosen.

Once grow () has succeeded, we add the new element after the last object in the container’s storage.
Note that the value is added through assignment, which implies an object to the left side of the
assignment operation, meaning that grow () not only added storage but initialized it with (most
probably) default objects of type T. Thus, we can infer that with this implementation of Vector<T>,
type T needs to expose a default constructor:

!/
void push back (const reference val) {
if (full())
grow () ;
elems[size()] = val;
++nelems;
}
void push back (T &&val)
if (full())
grow () ;

elems[size ()] = std::move(val) ;
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++nelems;
}
template <class ... Args>
reference emplace back (Args &&...args) ({
if (full())
grow () ;

elems[size ()] =

value type (std::forward<Argss>(args)...);
++nelems;
return back () ;

}
private:
void grow() {
resize (capacity()? capacity() * 2 : 16);
}

!/

Note that the insertion code in push back () and emplace back () does, in both cases,
the following:

elems[size()] = // the object to insert
++nelems;

You might be tempted to combine the incrementation of the number of elements and the actual
insertion expression into one, as follows:

elems [nelems++] = // the object to insert

Do not do that, however. “Why are you stopping me?” you might ask. Well, this would lead to exception-
unsafe code! The reason for this is that the suffix version of operator++ () has a high (very high!)
priority, much higher than assignment does. This means that in the combined expression, nelems++
happens very early on (which might go unnoticed as that expression yields the old value of nelems),
and assignment follows later, but assignment can throw: we are assigning from an object of some type
T to another object of that same type, and we do not know whether T: : operator= (const T&)
will throw. Of course, if it does throw, the assignment will not have occurred, and no object will have
been added at the end of the containers; but the number of elements will have been incremented,
leading to an incoherent Vector<T> object.

There’s a general trick here: do not modify your object until you know you can do so safely. Try to do
the potentially throwing operations first, then do the operations that can mutate your object. You will
sleep better, and the risks of object corruption will be alleviated somewhat.
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Our grow () member function did its work by calling resize () and doubling the container’s capacity
(unless that capacity was 0, in which case it picked a default capacity). How does resize () work?
With our implementation, it’s a matter of allocating enough memory to cover the needs of the new
capacity, copying or moving the objects from the old memory block to the new one, then replacing
the old memory block with the new one and updating the capacity.

How do we know whether we should move or copy the objects? Well, since moving could destroy the
original objects, we only do so if T: : operator= (T&&) is explicitly noexcept. The std: :is_
nothrow move assignable<Ts> trait is our tool of choice to determine whether that is indeed the
case (if it is not, then we copy the objects, which is the safe option as it leaves the original objects intact):

//
public:
void resize(size type new cap) {
if (new cap <= capacity()) return;
auto p = new T[new capl];
if constexpr(std::is nothrow move assignable v<T>) {
std: :move (begin(), end(), p);
} else try f{
std: :copy (begin(), end(), p);

} catch (...) {
deletel[] p;
throw;

}

delete[] elems;
elems = p;
cap = new_cap;
}
//

There we go. It’s not exactly trivial code, I agree, but it’s not insurmountable either. Remember that
this is only our first draft, and that it will be much slower than std: : vector<T> for a wide array
of types.

One last aspect of this container we should address is how to insert () elements into it and how
to erase () elements from it. In industrial-strength containers such as those found in the standard
library, there is a wide array of functions to perform these two tasks, so we will limit ourselves to one
of each: inserting a sequence of values at a given location in the container and erasing an element at
a given location from the container.

Our insert () member function will be a template that takes a pair of source iterators named
first and last, as well asa const_iterator named pos representing a location within the
Vector<Ts> object. Making it a template means that we will be able to use pairs of iterators from
any container as a source of values to insert, a useful property indeed.
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Within the function, we will use a non-const equivalent of pos named pos_, but only because we
are writing a simplified and incomplete container where many member functions that would work
on const_iterator objects are missing.

To perform the insertion, we will compute remaining, the space we will have available in the
container (expressed as a number of objects), and n, which will be the number of objects to insert. If
the available space remaining is insufficient, we will allocate more through our resize () member
function. Of course, calling resize () will probably lead to pos_ becoming invalid (it pointed into
the old block of memory, which will be replaced by another block once resize () has completed
its task), so we take care of computing the relative index in the container before resizing, and
recomputing the equivalent of pos__ in the new memory block after resizing.

An interesting twist in the insertion process is that we will want to copy (or move, but we will keep
things simple here) the objects from pos_ to end () at the location ending at end () +n before
performing the insertion of n objects at the pos_ location, but that copy has to be made backward
(from the last to the first) if we are to avoid overwriting some of the objects we are trying to copy
along the way. The std: : copy backward () algorithm is expressed this way: the third argument
expressed where the destination of the copy stops, not where it begins.

Only then do we copy the sequence determined by first and last at position pos_, update the
number of elements in the Vector<T> object, and return what the standard requires (an iterator to
the first element inserted, or pos in the case where first==1ast, meaning that they determine
an empty sequence):

template <class It>

iterator insert (const iterator pos, It first, It last) {
iterator pos = const cast<iterators(pos);
// deliberate usage of unsigned integrals
const std::size t remaining = capacity() - size();
const std::size t n = std::distance(first, last);
if (remaining < n)

auto index = std::distance(begin(), pos );
resize (capacity() + n - remaining) ;
pos_ = std::next (begin(), index);

}

std::copy backward(pos , end(), end() + n);

std::copy (first, last, pos );
nelems += n;

return pos_;
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Our erase () member function will take a const _iterator argument named pos representing
the location of the element to erase from the Vector<T> object. We again resort to the trick of using
anon-const iterator named pos_ within the function. Erasing end () is a no-op (as it should);
otherwise, we perform a linear copy from next (pos_) to end () into the location starting at pos_,
effectively replacing each element from that point on with its immediate successor.

Finally, we replace the last element with some default value, something that might not seem necessary
but actually is since the T object at the end could have been holding some resource that needed to be
freed. For example, in a program where we use a Vector<Res> object and where Res is an RAII
type that releases a resource on destruction, not replacing the object “lying around just past the end”
might lead to the associated resource being closed only when the Vector object is destroyed, which
might occur later, maybe much later, than client code would expect it to be.

We then update the number of elements in the Vector<T> object. Once again, this implementation
means we are requiring that T exposes a default constructor, something that is not fundamentally
necessary (and a requirement that we will alleviate later in this chapter):

iterator erase(const iterator pos) {

iterator pos = const cast<iterators(pos) ;
if (pos_ == end()) return pos_;

std::copy (std: :next (pos ), end(), pos );
*std::prev(end()) = {};

--nelems;

return pos_;

}

I'm sure you're wondering how we could do better, but we will get back to this very soon. We will look
at how to implement a simple node-based container (a homemade std: : forward list<T>-like
type) in the meantime.

Writing your own forward_list<T> alternative

Writing a node-based container such as std: : 1ist, std: :unordered map, std:: map,and
so on is an interesting exercise, but in this chapter, the fact that it is interesting will not necessarily
“shine” right away. The points of interest for such classes will be more evident in Chapter 13 and
Chapter 14, but we will still write a basic, simplified version here to make the side-by-side evolution
of our container types clearer in the pages and chapters to come.

A forward list is an exercise in leanness. We want the type to be small and do what it does well. Some
forward lists occupy the size of a single pointer in memory (a pointer to the first node in the sequence);
in our implementation, we will pay the price for an additional integer (the number of elements) in
order to get a constant-time complexity guarantee for the size () member function.
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Representational choices for a node-based container

In our implementation, ForwardList<T> will hold nodes, and each node will hold a pair made
of a value (of type T) and a pointer to the next node in the sequence. The last node will have a null
pointer as the next node.

The representation of a ForwardList<T> object will thus be a Node * and an unsigned integral
(for the number of elements in the list). Our implementation will be very simple and will show a small
set of member functions. Feel free to enrich it as you want, as long as you limit yourself to functions
that can be written efficiently.

The implementation of ForwardList<T>

As we did for Vector<T>, we will walk through our initial (naive) ForwardList<T> implementation
in steps. Our initial step consists of defining our abstractions through standard library-conforming
type aliases and choosing our internal representation, as is usually the case with containers:

#include <cstddefs>
#include <algorithms>
#include <utilitys>
#include <iterator>
#include <initializer lists>
#include <conceptss>
template <class T»>
class ForwardList ({
public:
using value type = T;
using size type = std::size t;
using pointer = T*;
using const pointer = const T*;
using reference = T&;
using const_reference = const T&;

!/

As mentioned earlier, aForwardList<T>: : Node object will hold a value and a pointer to the next
node in the sequence. Initially, the next node will always be a null pointer; it is the list’s responsibility to
organize nodes, the nodes themselves being responsible for the ownership of the values stored therein:

//
private:
struct Node ({
value type value;
Node *next = nullptr;
Node (const_reference value) : value { value } ({
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}

Node (value type &&value)
value { std::move(value) } {

b s
Node *head {};
size type nelems {};

//

The default state of a ForwardList<T> object will be equivalent to that of an empty list (a null
pointer for head and no elements). That’s a reasonable default for most containers as an empty
container is usually what users expect in practice when asking for a default constructor.

The size () and empty () member functions are both trivial to write. I expressed empty () in terms
of a null head rather than as a zero size () since in some (reasonable) forward list implementations,
the size would be computed, not stored, which would make size () alinear complexity operation
instead of a constant-time one. In practice, exposing a constant-time size () member function is a
good idea as it matches most users’ expectations:

//

public:
size type size() const { return nelems; }
bool empty() const { return 'head; }

//

Iterators on a linked list cannot be raw pointers, as the elements it stores are not contiguous in memory.
We need a class whose instances can iterate over elements of the list, and that can take into account
the const-ness of the elements (or lack thereof).

Our (private) ForwardList<T>::Iterator class will be a template on some type,
U, where (in practice) U will be T for ForwardList<T>::iterator and const T
for ForwardList<T>: :const_iterator.

Standard iterators in C++ are expected to provide five aliases:

o value type: The type of the pointed-to value.
o reference: The type that represents a reference to a pointed-to value.
o pointer: The type that represents a pointer to a pointed-to value.

o difference_type: The type that represents the distance between two iterators of this type
(a signed integral).

o iterator category: There are six categories as of C++20, and they guide the code
generation by describing what an iterator can do. In our case, since we will provide ++ but
not - -, we will describe our iterators as being part of forward iterator category.
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An iterator is an object that describes how we can traverse a sequence of values, and
ForwardList<T>: : Iterator is no exception. The key operations exposed by an iterator are probably
operator++ () (advance one position in the sequence), operator!=() (compare two iterators to
know whether we have attained the end of a sequence), as well as operator* () and operator-> ()
(accessing the pointed-to element or its services). Note that we make ForwardList<T> our friend
as that class will be responsible for the organization of nodes, which is easier done when you have full
access privileges to private data members such as cur:

//
private:
template <class U> class Iterator {
public:
using value type =
typename ForwardList<Ts>::value type;
using pointer = typename ForwardList<T>::pointer;
using reference = typename ForwardList<T>::reference;
using difference type = std::ptrdiff t;
using iterator category =
std::forward iterator tag;
friend class ForwardList<T>;

private:
Node *cur {};
public:
Iterator () = default;
Iterator (Node *p) : cur { p } {
}
Iterator& operator++ () {
cur = cur->next;

return *this;

Iterator operator++ (int) {
auto temp = *this;
operator++ () ;
return temp;

bool operator==(const Iterator &other) const
return cur == other.cur;

// not needed since C++20

bool operator!=(const Iterator &other) const {
return ! (*this == other);

U& operator* () { return cur-svalue; }
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const U& operator* () const { return cur-s>value; }
U* operator->() { return cur-svalue; }
const U* operator->() const { return cur-s>value; }
b5
public:
using iterator = Iterator<Ts;

using const_ iterator = Iterator<const T>;

//

The preceding proposed implementation uses a template based on the type, U, of the elements
that an Tterator<Us> can traverse. We used U instead of T as T is the type of the values in a
ForwardList<T> object. In ForwardList<T>, we then make aliases for types Iterator<T>
and Iterator<const Ts>through iterator and const iterator, respectively. We could
also have written two distinct types had we preferred that approach, but a template seemed less verbose.

Thebegin () and end () set of member functions are essentially trivial; begin () yields an iterator
to the head of the list, and the conceptual just-after-the-end node returned by end () is a null pointer,
which is what the default constructor of our Iterator<Us gives us:

//

iterator begin() { return { head }; }
const_iterator begin() const { return { head }; }
const_iterator cbegin() const { return begin(); }

iterator end() { return {}; }
const_iterator end() const { return {}; }
const_iterator cend() const { return end(); }

//

We will sometimes need to clear () a ForwardList<T> object, which will lead us to destroy that
container’s content. In this implementation, for simplicity, I made the destructor call the clear ()
member function, but we could have spared a tiny bit of processing time (the reinitialization of
nelems, not needed in the destructor) by writing the destructor separately:

//
void clear () noexcept
for (auto p = head; p; ) {
auto g = p->next;
delete p;
p = q;
}
nelems = 0;
}
~ForwardList ()
clear () ;
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}
//

One thing that might seem tempting would be to write a Node destructor that applies delete to its
next data member; if we did so, clear () would simply be delete head; (which would call
delete head->next and continue from that point on, recursively) followed by nelems=0;.
However, I would not do that if I were you: on principle, the ForwardList<T> object should organize
the nodes in a ForwardList<T>, and this responsibility should not be given to the numerous
Node objects themselves. Then, there is a small technical problem: calling delete head; would
calldelete head->next;, which would then technically call delete on head-> next-»>
next ; and so on. This leads to a very concrete risk of stack overflow if the list is long enough,
something that a loop would avoid altogether.

There is a simple lesson here: life is easier when each class has a single responsibility. This is something
that’s been known for a while as the “single responsibility principle”. That principle is the ‘S’ in the
well-known SOLID principles of object-oriented programming. Let the container deal with the
organization of nodes in a node-based container and let the nodes store values.

As far as constructors go, we will implement a small set for this class:

o A default constructor that models an empty list

o A constructor that acceptsa std: :initializer 1ist<T> asargument
o A copy constructor that duplicates each node from the source list in order

« A move constructor

o A sequence constructor that accepts two objects of some type, It, that satisfies the std: : input
iterator concept (essentially: that lets you make at least a single pass through the sequence
and consume the elements, which is all we need to do the job)

It happens that this last constructor can be seen as a generalization of some of the others, and that
only the default constructor and the move constructor really benefit from being written separately (we
could technically compute the size of the sequence more efficiently if we did not delegate the work to
a general constructor, so if this makes a difference in your code base, feel free to do so):

//
ForwardList () = default;
template <std::input iterator It>
ForwardList (It b, It e) {
if (b == e) return;
try {
head = new Node{ *b };
auto g = head;
++nelems;
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for (++b; b != e; ++b) {
g->next = new Node{ *b };
g = g->next;

++nelems;

}

} catch (...) {
clear () ;
throw;

}

}
ForwardList (const ForwardList& other)
ForwardList (other.begin(), other.end()) {

}

ForwardList (std::initializer list<T> other)
ForwardList (other.begin(), other.end()) {

}

ForwardList (ForwardList&& other) noexcept
head{ std::exchange (other.head, nullptr) }
nelems{ std::exchange (other.nelems, 0) }

}

//

Unsurprisingly, assignment can be expressed through the safe assignment idiom that we applied in
the case of type Vector<T»> earlier:

//

void swap (ForwardList& other) noexcept {
using std::swap;
swap (head, other.head) ;
swap (nelems, other.nelems) ;

}

ForwardList& operator=(const ForwardList& other) ({
ForwardList{ other }.swap (*this);
return *this;

}

ForwardList& operator= (ForwardList&& other) {
ForwardList{ std::move (other) }.swap (*this);
return *this;
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Some of the remaining operations can reasonably be said to be trivial, for example, front (),
operator==(),and push front (). Asyou could reasonably assume for a forward list, we will
implement neither aback () norapush back () member function as there would not be an efficient
way to do so with our representational choices (the only reasonable algorithm would require looping
through the whole construct in order to find the last node, leading to a linear complexity algorithm):

//
// precondition: !empty ()
reference front () { return head->value; }
const_reference front() const { return head->value; }
bool operator==(const ForwardList &other) const {
return size() == other.size() &&
std: :equal (begin (), end(), other.begin()) ;
}
// can be omitted since C++20
bool operator!=(const ForwardList &other) const {
return ! (*this == other) ;
}
void push front (const reference val) ({
auto p = new Node{ val };
p->next = head;
head = p;
++nelems;
}
void push front (T&& val)
auto p = new Node{ std::move(val) };
p->next = head;
head = p;
++nelems;
}
//

As an example of value insertion into a container, consider the following insert after () member
function, which inserts a node with a value of value after the node pointed to by pos. With this
function, we could easily build more complex ones, such as one that inserts a sequence of values after
some position in the list (try it!):

!/
iterator insert after
(iterator pos, const reference value) ({
auto p = new Node{ value };
p->next = pos.cur->next;
pos.cur-s>next = p;
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++nelems;
return { p };

}
//

Offering the possibility of adding elements to a container is a useful feature indeed, and so is offering the
option of removing an element from a container. As an example, see the following erase after ()
member function implementation:

//
iterator erase after (iterator pos) {
if (pos == end() || std::next(pos) == end())
return end() ;
auto p = pos.cur->next->next;
delete pos.cur-s>next;
pos.cur->next = p;
return { p->next };

I

That should do the job for this class. For the rest of this chapter, there will be little room for improvement
for ForwardList<T>, but we will return to this class in Chapter 13, and more so in Chapter 14.

For Vector<T>, however, we can do significantly better than we have so far... at the cost of some
added complexity. But we are ready for this, are we not?

Better memory management

So, this humble writer claims our nice but simple Vector<T> type is no match for std: : vector<T>.
That may seem like a bold claim: after all, we seemed to do what was needed and, no less, we used
algorithms instead of raw loops; we caught exceptions as we wanted to be exception-safe but limited
ourselves to cleaning up the resources... What are we doing wrong?

If you run comparative benchmarks between a Vector<int > objectanda std: : vector<int>
object, in fact, you will probably not notice much of a difference in the respective numbers of both tests.
For example, try adding a million int objects (through push_back () ) to each of these containers
and you will think our container holds its own quite well. Cool! Now, change that to a comparative
test between Vector<std: : string>and std: :vector<std: : string> and you might be
saddened a bit, seeing that we're “left behind in the dust,” as they say.



Better memory management

( 7
A word about the small object optimization

This will show more if you add strings that are not too short (try at least 25 characters, say)

as with “short” strings (for some indeterminate value of “short”) most standard libraries will
perform what is called the Small String Optimization (SSO), a special case of the Small Object
Optimization (SOO). Through this optimization, when the data to store in an object is small
enough, the implementation will use the storage for the so-called “control block” (the data
members, really) of the object as raw storage, avoiding dynamic memory allocation altogether.
Because of this, “small” strings do not allocate and are very, very fast in practice.

. J

But why?

There is a clue in the type of element in both tests: int is a trivially constructible type, and std: : string
is not. This clue is an indication that std: : vector might be calling fewer constructors than we are,
essentially being more efficient than Vect or<T> in the way it handles memory and the objects therein.

What'’s the problem? Well, let’s look at one of the constructors of Vector<T> to get an appreciation
of the problem with our implementation. Any constructor but the default constructor (defaulted in
our implementation) and the move constructor would do, so let’s take the one that accepts a number
of elements and an initial value as arguments. Pay special attention to the highlighted code:

//
Vector (size type n, const reference init)
elems{ new value typeln] }, nelems{ n }, cap{ n } {

try {
std::fill (begin(), end(), init);
} catch(...) {
delete [] elems;
throw;
}
}
//

The construction of the elems data member allocates a block of memory big enough to hold n objects
of type T and calls the default constructor for each of these n elements. Obviously, if T is trivially
constructible, then these default constructors are not a big source of worries, but you could question
the virtue of so doing if T is not trivially constructible.

Still, you might want to argue that the objects need to be constructed, but then look ahead and you
will notice that std: : £111 () replaces each of these default T objects with a copy of init, showing
that the initial default construction of the objects was essentially a waste of time (we never used these
objects!). This is the sort of thing that std: : vector<T> does so much better than we do: it avoids
wasteful operations, restricting itself to what is necessary.
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We will now try to see how we could get closer in performance to what std: : vector<T> achieves
in practice.

A more efficient Vector<T>

The key to a more efficient Vector<T> is distinguishing allocation from construction, something
we have discussed many times in this book, and, well, lying to the type system in adequate ways and
in a controlled environment. Yes, those “evil” early chapters of this book will come in handy now.

We will not rewrite the entirety of Vector<T> in these pages, but we will look at selected member
functions to highlight what needs to be done (a full implementation is available in the GitHub repository
mentioned at the beginning of this chapter).

We could try to do this effort manually, using the language facilities we already know about, such
as std: :malloc (), to allocate a raw memory block and placement new to construct the objects
in that block. Taking the same constructor that takes a number of elements and an initial value as
arguments, we would then get the following:

//
Vector (size type n, const reference init)
// A
elems{ static cast<pointer>(
std::malloc(n * sizeof (value type)
) }, nelems{ n }, cap{ n } {
// B
auto p = begin(); // note: we know p is a T*
try {
// c
for(; p != end(); ++p)
new(static cast<void*>(p)) value type{ init };
} catch(...) {
// D
for(auto q = begin(); q != p; ++q)
g->~value type():;
std::free(elems) ;
throw;
}
}
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Now that’s... unpleasant. Pay attention to the sections marked with are A to D in this function:

o In A, we face our first lie as we allocate storage that can hold n objects of type T but limit ourselves
to raw memory allocation (the constructor of no T object is being called at this point), yet we
keep a T* to that block of memory for our own purposes. Our implementation needs to be
aware, internally, that the type of the elems pointer is incorrect at this stage.

o InB,wecallbegin () knowing that iterator is the same thing as T* in our implementation.
If our implementation used a class instead of a raw pointer to model an iterator, we would have
to do some work here to get the underlying pointer to the raw storage in order to implement
the rest of the function.

o Inc, we construct the T objects in place within the block of memory we allocated. Since there
are no objects there to replace, we construct these objects with the placement new, and use the
fact that we lied to the type system (in the sense that we used a T* even though we allocated
raw memory) to do the pointer arithmetic required to move from one object to another.

o In D, we handle potential exceptions thrown by the constructors of the T objects. Since we
are the only ones who know that there are T objects therein, just as we are the only ones who
know exactly where the first object that we failed to construct is, we need to destroy the objects
manually, then free the (now raw) memory block and re-throw the exception. As a bonus, this
implementation is not even standards-compliant; we should destroy the objects in reverse order
of construction, something this example does not do.

By the way, this example shows a clear example of the reasons why you cannot throw from a destructor:
if an exception is thrown during D, we cannot reasonably hope to recover (at least not without incurring
prohibitive costs).

You, dear reader, are probably thinking right now that this is unreasonably complicated and way too
error-prone for non-specialists to hope to be able to write a whole container that way. Indeed, this sort
of complexity would creep into a significant number of member functions, making quality control
much more difficult than you would hope.

But wait, there is hope! As you might imagine, your library vendors face the same challenges we do
(and more!), so the standard library provides low-level facilities that make handling raw memory in
homemade containers a reasonably achievable task as long as you know, well, what you have read in
this book so far.

Using low-level standard facilities

The <memory> standard library header is a treasure trove of useful facilities for those who dabble in
memory management. We have already discussed the standard smart pointers defined in that header
(see Chapter 5 for a reminder), but if you look a bit deeper, you will see some algorithms made to
operate on raw memory.

285



286

Writing Generic Containers with Explicit Memory Management

Keeping as an example the Vector<T> constructor that takes a number of elements and an initial
value as argument, we went from something rather simple that allocates an array of T objects and
replaces them through a call to std: : £111 () to something significantly more complicated. The
original version was both simple and inefficient (we constructed unneeded objects just to replace
them); the replacement was much more efficient (doing minimal work) but required much more
skill to write and maintain.

We will now examine the impact of these facilities on the implementation of our allocating member
functions. The first such functions we will pay attention to are the constructors, as they make a nice
starting point.

Impact on constructors

In practice, when you want to write a homemade container that manages memory explicitly, it’s better
to use the low-level facilities found in <memory>. Take the following example:

//
Vector (size type n, const reference init)
elems{ static_cast<pointers>(
std:malloc(n * sizeof (value type))
) }, nelems{ n }, cap{ n } {

try {
std::uninitialized fill(begin(), end(), init);
} catch(...) {
std::free(elems) ;
throw;
}
}
//

This is much nicer than the version we entirely wrote ourselves, is it not? The two highlights of this
version are as follows:

o Weallocate a properly sized block of raw memory instead of an array of T objects, thus avoiding
all of the unneeded default constructors the initial version had.

o Wereplaced the callto std: : £i11 () (found in <algorithms>), which uses
T::operator=(const T&) and thus supposes an existing object to the left side of the
assignment with a call to std: :uninitialized £ill (), which instead supposes that
it is iterating through raw memory and initializes the objects through the placement new.

The beauty of this algorithm (and others of this family) is that it is exception-safe. If one of the
constructors invoked by std: :uninitialized £ill () ends up throwing, then the objects it had
managed to create before the exception occurred will be destroyed (in reverse order of construction,
as they should) before the exception leaves the function.
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It's what we had written (clumsily) by hand, really. Apart from the fact that we now allocate and free
raw memory, the rest of the code is very similar to the original, simple version. This probably makes
you feel much better... and it should.

A similar approach can be taken with other constructors. Take, for example, the copy constructor:

//
Vector (const Vector& other)
elems{ static cast<pointers(
std::malloc(n * sizeof (value type))
)
nelems{ other.size() }, cap{ other.size() } {
try {
std::uninitialized copy(
other.begin(), other.end(), begin()
)

} catch (...) {
std::free(elems) ;
throw;

}

}
//

As you can see, with the proper algorithms, the fast implementations that work on raw memory are
very similar to the naive and slower versions.

The key point here is to understand the boundaries of the API. A function such as
std::uninitialized copy () takes three arguments: the beginning and end of a source
sequence (this sequence is presumed to contain objects) and the beginning of the destination sequence
(this sequence is presumed to be appropriately aligned and made of raw memory, not objects). If
the function concludes its execution because it met its postconditions and constructed the objects
in the destination sequence, then that destination sequence contains objects. On the other hand, if
the function fails to meet its postconditions, then there are no objects in the destination sequence as
whatever the function has constructed, it will also have destructed.

Similar maneuvers can be done with other constructors, keeping in mind that the default constructor
and the move constructor are implemented very differently and as such deserve a different treatment.

Impact on the destructor

The destructor in this implementation of Vector<T> is interesting: when the object reaches the
end of its lifetime, we cannot simply call delete [] on the elems data member as it has not been
allocated by new [] in the first place and it is made of a sequence of T objects, potentially followed
by a sequence of raw bytes. We would not want to call T: : ~T () on an arbitrary sequence of bytes
since this could cause quite a lot of damage in our program and incur UB.
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The only entity that knows how many objects there are in the container is the Vector<T> object
itself, which means that it will need to destroy () the remaining objects, and only then free () the
(now devoid of objects) memory block that remains. Applying the std: : destroy () algorithmona
sequence of T objects calls T: : ~T () on each of them, turning a sequence of objects into raw memory:

//

~Vector ()
std: :destroy(begin(), end());
std::free(elems) ;

}

//

These low-level memory management algorithms really help in clarifying the intent of the code we
write, as you can see.

Impact on per-element insertion functions

A similar situation happens in member functions push_back () and emplace back () where we
used to replace through an assignment some existing object at the end of our array; we now need to
construct an object at the end of the array since there is no object there anymore (we do not construct
objects needlessly; that’s the point of our efforts!).

We could use placement new to do this, obviously, but the standard library offers a moral equivalent
named std: :construct_at (). This makes our intent even clearer from the source code:

//
void push back (const reference val) ({
if (full())
grow () ;
std::construct_at(end(), val);
++nelems;
}
void push back (T&& val) {
if (full())
grow () ;
std::construct at(end(), std::move(val));
++nelems;
}
template <class ... Args>
reference emplace back (Args &&...args) {
if (full())
grow () ;
std::construct_at(
end (), std::forward<Args>(args)...
)i
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++nelems;
return back() ;

}

Impact on growth functions

The grow () function we had implemented initially called resize () on our Vector<Ts, but
resize () is meant to initialize the storage with objects. To make the allocated storage grow in
size without initializing it with objects, we need a different member function, namely reserve ().

( 7
On the differences between resize() and reserve()
Expressed simply, resize () potentially adds objects to the container, and as such it can
modify both size () and capacity (). On the other hand, reserve () adds no object
to the container, limiting itself to potentially increasing the storage space being used by the
container; in other words, reserve () can change capacity () but will not change size ().

. J

Following the example set by std: : vector<T>, our Vector<T> class will offer both resize ()
and reserve (). A version of resize () adapted to the new reality of our part-objects, part-raw-
memory container follows, accompanied by an implementation of reserve () that suits Vector<Ts>.
We will discuss reserve () and resize () separately:

//
private:
void grow() {
reserve (capacity()? capacity() * 2 : 16);
}
public:

void reserve (size type new cap) {
if (new cap <= capacity()) return;
auto p = static cast<pointers(
std::malloc (new cap * sizeof (T))
) ;

if constexpr (std::is nothrow move assignable v<T>) {

std::uninitialized move (begin(), end(), p);
} else try {

std::uninitialized copy(begin(), end(), p);
} catch (...) {

std: :free(p) ;

throw;
}
std: :destroy (begin(), end()) ;

std: :free(elems) ;
elems = p;
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cap = new_cap;
}
//

The reserve () member function first ensures that the requested new capacity is higher than the
existing one (otherwise there’s nothing to do). If that is so, it allocates a new memory block and either
moves or copies the existing elements of the Vector<T> object into that new memory (a copy will
be made if moving T objects can throw: it pays to make move operations noexcept, dear readers!)
using algorithms that construct objects into raw memory.

The T objects left in elems are then destroyed (even if they have been moved-from: they still need
to be finalized), and we ensure that cap is updated and elems points to the new block of storage.
Of course, size () does not change as no new object has been added to the container.

The procedure is similar for resize () (as follows), except that the locations in the memory block
starting at the size () index are initialized with a default T instead of being left in their raw memory
state. Consequently, size () is updated, leading to different semantics from those obtained following
acallto reserve ():

//
void resize(size type new cap) {
if (new_cap <= capacity()) return;
auto p = static cast<pointers(
std::malloc (new cap * sizeof (T))
) 8

if constexpr(std::is nothrow move assignable v<T>) {

std::uninitialized move (begin(), end(), p);
} else try f{

std::uninitialized copy(begin(), end(), p);
} catch (...) {

std: :free(p) ;
throw;
}
std::uninitialized £ill(
p + size(), p + capacity(), value type{}
)i
std: :destroy (begin(), end()) ;
std: :free (elems) ;
elems = p;
nelems = new_cap;
cap = new_cap;
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This more sophisticated structure we are implementing will obviously have an impact on the way we
insert () orerase () elements.

Impact on element insertion and erasure functions

As expected, member functions such as insert () and erase () have to be updated to take into
account the changes we have made to the internal organization of Vector<T> objects. That does
not have to be painful (and, indeed, required changes, if any, can be tiny) as long as the semantics of
every function are clear from the onset, but it does require care.

For example, using insert (pos, first, last) asan example, we are moving from the simple
model described in Figure 12.1:

_ pos +h begin()+
begin() pos : end() capacity{)

first Y last

Figure 12.1 — Example of the naive Vector<T> insertion model

Here, insertinga [first,last) sequence at position pos means copying (in reverse order) the
elementsin [pos,end () ) atposition pos + n,then overwriting the elements of [pos, pos+n)
with [first, last) to the more complex model described in Figure 12.2:

begin() pos I éndU ! begin(+

/____7 capacit\/()

%ﬁ "
first last

n

Figure 12.2 - Example of the current Vector<T> insertion model
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The idea is that we need to insert [first, last) at position pos, which means that the elements
in [pos, pos+n) have to be copied (or moved) to the right. This will require constructing some
objects in raw memory (the gray area in the preceding figure) and replacing some other objects
through copy (or move) assignment.

There are four steps to consider here:

o How many elements should be copied or moved from the [begin () ,end()) sequence to
the raw memory block at the end of the container, and where in that block should the resulting
objects be constructed.

o Ifthere are elements from the [first, last) sequence to insert in raw memory (there could
be none), how many should there be? If there are any such objects, they will be inserted at end () .

o Ifthere are elements to copy or move from the [pos, end () ) sequence to copy or move as a
replacement to existing objects in the container (there could be none), how many should there
be? The end of the destination range will be end () in this case.

« Finally, whatever remains to be inserted from the [first,last) sequence will be copied
in the container starting at pos.

A possible implementation would be the following:

//
template <class It>
iterator insert (const iterator pos, It first, It last) {
iterator pos = const cast<iterators(pos);
const auto remaining = capacity () - size();
const auto n = std::distance(first, last) ;
// we use cmp less() here as remaining is an unsigned
// integral but n is a signed integral
if (std::cmp less(remaining, n)) {
auto index = std::distance(begin(), pos_ ) ;
reserve (capacity () + n - remaining) ;
pos = std::next (begin(), index);
}
// objects to displace (move or copy) from the
// [begin(),end()) sequence into raw memory
const auto nb_to uninit displace =
std: :min<std: :ptrdiff t>(n, end() - pos );
auto where to uninit displace =
end() + n - nb to uninit displace;
if constexpr (std::is nothrow move constructible v<T>)
std::uninitialized move (
end() - nb to uninit displace, end(),
where to uninit displace
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)i
else
std::uninitialized copy (
end() - nb to uninit displace, end(),
where_to_uninit_displace
)i
// objects from [first,last) to insert into raw
// memory (note: there might be none)
const auto nb to uninit insert =
std: :max<std::ptrdiff t>(
0, n - nb to uninit displace
)i
auto where to uninit insert = end();
std::uninitialized copy (
last - nb to uninit insert, last,
where to uninit insert
)i
// objects to displace (copy or move) from the
// [pos,end()) sequence into that space (note:
// there might be none)
const auto nb_to backward displace =
std::max<std::ptrdiff t>(
0, end() - pos_ - nb to uninit displace
)i
// note : end of destination
auto where to backward displace = end() ;
if constexpr (std::is nothrow move assignable v<T>)
std: :move backward (
pos , pos_ + nb to backward displace,
where to backward displace
)i
else
std: :copy backward (
pos_, pos_ + nb to backward displace,
where to backward displace
)i
// objects to copy from [first,last) to pos
std: :copy (
first, first + n - nb to uninit insert, pos
)i
nelems += n;
return pos_;
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Make sure you do not move the elements in [first, last), however: that would be user-hostile
as it would potentially destroy the data in the source range!

As for the erase () member function that we had written in a more naive manner initially, the key
adjustment we will need to make is in the way we handle the removed element: you might remember
that in our naive version, we assigned a default T to the erased element at the end of the container,
and complained that this added the suspicious requirement of a default constructor in type T. In this
version, we will quite simply destroy this object, ending its lifetime and turning its underlying storage
back into raw memory:

iterator erase(const iterator pos) {

iterator pos = const cast<iterators>(pos);
if (pos_ == end()) return pos_;
std: :copy (std: :next (pos_ ), end(), pos_ );

std::destroy at(std::prev(end())):;
--nelems;

return pos_;

}

Hopefully, this gives you, dear reader, a better idea of what it takes to write a more serious implementation
of a homemade std: : vector-like type and a better appreciation for the craftsmanship of the
individuals behind your favorite standard library provider. Know that they do all this and more for
your programs to be the wonderfully efficient things they are!

Const or reference members and std::launder()

Before we conclude this chapter, we need to say a few words on those oddities that are containers
that hold objects of const types, as well as on containers whose elements are of a type with const
or reference members.

Consider this seemingly innocuous program:

//
int main()
Vector<const int> v;
for(int n : { 2, 3, 5, 7, 11 })
v.push back(n) ;

}

With the implementation we have, this will refuse to compile as our implementation calls a number
of low-level functions (std: : free (), std: :destroy_at (), std: :construct_at (), and
so on) that take a pointer to a non-const type as an argument.
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If we are to support such a program, it means we will have to “cast away” const-ness in some places
in our implementation. For example, replacing the following line

std: :free(elems); // illegal if elems points to const
with this:

using type = std::remove const t<value type>*;
std: :free(const cast<type>(elems)) ;

Likewise, if your container is to support insertion where there are already existing objects, assignment
such as what will be done with the std: : copy () or std: : copy backward () algorithms will
not work on const objects or objects with const data members. You can make it work by replacing
assignment with destruction followed by construction, but your code will be less exception-safe if the
construction fails just after the destruction of the object that had to be replaced.

Of course, casting away const-ness leads us into tricky territory as we are bordering the frightening
lands of undefined behavior. Standard library implementors can, of course, do what they want, having
the ears of the compiler implementors, but we mere mortals do not share this privilege and, for that
reason, must tread carefully.

A similar situation arises with composite objects that have data members of some reference type: you
cannot make a container of references as references are not objects, but you sure can make a container
of objects with reference-type data members. The problem, of course, is making sense of what happens
when an object with a reference data member is being replaced.

Let’s take a simpler example than Vector<T> to explain this situation. Suppose we have the following
class, made to hold a reference to some object of type T:

#include <type traits>

template <class T>

struct X {
static_assert(std::is_trivially destructible v<T>);
T &r;

public:
X(T &r) : r{ r } {
}
T& value() { return r; }
const T & value() const { return r; }
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As is, this class is simple enough and seems easy to reason about. Now, suppose we have the following
client code:

//
#include <iostream>
#include <new>
int main()
int n = 3;
X<int> h{ n };
h.value () ++;
std::cout << n << '\n'; // 4
std::cout << h.value() << '\n'; // 4
int m = -3;
// h = X<int>{ m }; // nope
X<int> *p = new (static cast<void#*>(&h)) X<int>{ m };
std::cout << p->value() << '\mn'; // -3
// UB (-3? 4? something else?)
std::cout << h.value() << '\n';
std::cout << std::launder (&h) ->value() << '\n'; // -3

}

Replacing an X<int > object through assignment is incorrect as having a reference data member
deletes your assignment operator, at least by default (the default meaning would be ambiguous: should
the reference be rebound to something else, or should the referred-to object be assigned to?).

One way to get around this problem is to destroy the original object and construct a new object in its
place. In our example, since we ensured (through static assert) that T was trivially destructible,
we just constructed a new object where the previous one stood (ending the previous object’s lifetime).
The bits are then all mapped properly to the new object... except that the compiler might not follow
our reasoning.

In practice, compilers track the lifetime of objects the best they can, but we placed ourselves in a
situation where the original X<int > object has never been explicitly destroyed. For that reason, this
original X<int > object could still be considered to be there by the compiler, but the bits of the original
object have been replaced by the new object placed at that specific address through very manual means.
There might be a discrepancy between what the bits say and what the compiler understands from the
source code, because (to be honest) we have been playing dirty tricks with the explicit construction
of an object at a specific address that happens to have been occupied by another object.

Accessing value () through p will definitely give you - 3 as it’s obvious that p points to an X<int>
object that holds a reference to m, and m has the value -3 at that point. Accessing value () through
h is undefined behavior (will the resulting code give you what the bits say or what the compiler thinks
that code is saying?).



Summary

This sort of evil-seeming situation, where the code logic as understood by the compiler might not match
the bits, happens with objects with const data members, objects with reference data members, and
some union types crafted in weird ways, but these are the tools we use for the low-level manipulation
of objects, and that can be found underneath std: :optional<T>, std: :vector<T>, and
others. It’s our fault, in the end, for using these weird types, but it’s part of life.

When the bits do not necessarily align with what the compiler can understand, we have
std: : launder (). Use this cautiously: it's an optimization barrier that states “just look at the bits,
compiler; forget what you know about source code when looking at this pointed-to object” Of course,
this is a very dangerous tool and should be used with a lot of care, but sometimes it’s just what is needed.

Summary

Whew, this was a long chapter! We implemented a naive vector-like container, then a naive
forward 1list-like container, and then took another look at the vector-like container (we will
return to the forward 1ist-like container in the next two chapters) to show how tighter control
over memory can lead to more efficient containers.

Our implementations in this chapter were “manual,” in the sense that we did the memory management
by hand. That involved writing a lot of code, something we will reconsider in Chapter 13. In Chapter 14,
we will examine how allocators interact with containers, and will use this opportunity to revisit our
forward 1list-like container as there will be interesting aspects to examine as we continue our
adventure through memory management in C++.
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Writing Generic Containers
with Implicit Memory
Management

In the previous chapter, we wrote a working (if simple) implementation of a std: : vector<T>-like
type in Vector<T>, as well as a working (if, again, simple) implementation ofa std: : forward
list<T>-like type in ForwardList<T>. Not bad!

In the case of our Vector<T> type, after an initial effort that led to a working but sometimes
inefficient implementation, we made the effort to separate allocation from construction, something
that reduced the amount of redundant effort required at runtime but came at the cost of a more subtle
implementation. In this more sophisticated implementation, we distinguished parts of the underlying
storage that are initialized from those that are not and, of course, operated on both parts appropriately
(treating objects as objects and raw memory as such). For example, we used assignment (and algorithms
that use the assignment operator) to replace the contents of existing objects but preferred placement
new (and algorithms that rely on this mechanism) to create objects in raw memory.

Our Vector<T> implementation from the previous chapter is a class expressed with a sizable amount
of source code. One of the reasons for this situation is the explicit memory management we have
been doing. Indeed, we have made a Vect or<T> object responsible for both the management of the
underlying memory block and the objects stored therein, and this double responsibility came with a
cost. In this chapter, we will revisit that design by making memory management implicit and we will
discuss the consequences of this new approach. Hopefully, dear reader, this will lead you toward a
possible simplification and refinement of your coding practices.
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In this chapter, our goals will be as follows:

o To adapt a hand-written container such as Vector<T> in such a way as to significantly simplify
its memory management responsibilities

« To understand the consequences of our design on source code complexity

« To understand the consequences of our design on exception safety

We will spend most of our energy on revisiting the Vector<T> container, but we will also revisit
ForwardList<T> to see if we can apply the same kind of reasoning to both container types. By
the end of this chapter, at least in the case of Vector<T>, we will still have a hand-written container
that manages memory efficiently and distinguishes raw memory from constructed objects, but our
implementation will be significantly simpler than the one we produced in Chapter 12.

Note that with respect to Vector<T >, this chapter will compare two versions. One will be named
the “naive version” and will be the initial implementation that uses objects of type T throughout the
underlying storage. The other will be named the “sophisticated version” and will be the implementation
that considers the underlying storage as being made of two (potentially empty) “sections,” with objects
of type T at the beginning and raw memory at the end.

Technical requirements

You can find the code files for this chapter in the book’s GitHub repository here: https://github.
com/PacktPublishing/C-Plus-Plus-Memory-Management/tree/main/chapterl3.

( R

Some words about the code excerpts in this chapter

This chapter will for the most part revisit and modify (hopefully simplifying!) the code examples
from Chapter 12, using ideas from previous chapters (notably Chapter 5 and Chapter 6) along
the way. Since a lot of the code used for Vector<T> and ForwardList<T> will not change,
we will not write the entire classes all over again to avoid undue repetition.

Instead, we will concentrate on the most meaningful modifications made to the previous versions
of those classes, sometimes comparing implementations “before” and “after” modifications
have been made. Of course, the code samples in the GitHub repository are complete and can
be used to “complete the picture”

Why explicit memory management complicates our
implementation

Let’s look for a moment at one of the constructors for Vector<T> as written in Chapter 12. For
simplicity, we will use the constructor that accepts a number of elements and an initial value for these
elements as arguments. If we limit ourselves to the naive version where elems points to a sequence of
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T objects and put aside for the moment the more sophisticated version where elems points to a block
of memory that holds T objects at the beginning and raw memory at the end, we have the following:

// naive version with elems of type T*
Vector (size type n, const reference init)
elems{ new value type([n] }, nelems{ n }, cap{ n } {
try {
std::fill (begin(), end(), init);
} catch (...) {
delete [] elems;
throw;

//

This constructor allocates an array of T objects, initializes them through a sequence of assignments,
“handles” exceptions, and so on. The try block and its corresponding catch block are part of our
implementation, but not because we want to handle exceptions raised by the constructors of T objects.
Indeed: how could we know what exceptions it could throw if we do not know what T is? We insert
these blocks because we need to explicitly deallocate and destroy the array if we are to avoid leaks. The
situation gets even more complicated if we look at the more sophisticated version that distinguishes
allocation from construction:

// sophisticated version with elems of type T*
Vector (size type n, const reference init)
elems{ static_ cast<pointers (
std::malloc(n * sizeof (value type))
) }, nelems{ n }, cap{ n } {

try {
std::uninitialized fill (begin(), end(), init);
} catch (...) {

std: :free(elems) ;
throw;

//

As we can see, we do this work because we decided that Vector<T> would be the owner of that
memory. And we are totally allowed to do so! But what if we made something else responsible for
our memory?
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Implicit memory management with a smart pointer

In C++, the simplest way to change our Vector<T> implementation from one that manually manages
memory to one that does so implicitly is through a smart pointer. The idea here is, essentially, to change
the type of the elems data member of Vector<T> from T* to std: :unique ptr<T[]>. We
will look at this from two angles:

« How does this change impact the naive version of Vector<T>? As a reminder, our naive
version from Chapter 12 did not distinguish between objects and raw memory in the underlying
storage, and thus only stored objects. This led to a simpler implementation, but also one
that needlessly constructed objects on many occasions and was much slower than the more
sophisticated implementation for non-trivially constructible types.

o How does this change impact the sophisticated version of Vector<T> that avoided the
performance trap of constructing unnecessary objects at the cost of a somewhat more
complicated implementation?

In both cases, we will examine selected member functions that are indicative of the impact of this change.
The full implementations of both the naive and the sophisticated implementations of Vector<T>
are available to peruse and use in the GitHub repository associated with this book.

Impact on the naive Vector<T> implementation

If we were basing our simplification effort on the initial, naive version of Chapter 12 where elems
simply pointed to a contiguous sequence of T objects, this would be rather simple, as we could change:

// naive implementation, explicit memory management
// declaration of the data members...

pointer elems{};

size type nelems{}, cap{};

.. to:

// naive implementation, implicit memory management
// declaration of the data members...

std::unique ptr<value typel]> elems;

size type nelems{}, cap{};

.. and then change the implementation of the begin () member functions from this:

// naive implementation, explicit memory management
iterator begin()
return elems; // raw pointer to the memory block

}

const iterator begin() const {
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return elems; // raw pointer to the memory block

}

... to this:

// naive implementation, implicit memory management
iterator begin() ({
return elems.get(); // raw pointer to the beginning
// of the underlying memory block
}
const_iterator begin() const {
return elems.get(); // likewise

}

Just doing this would be sufficient to significantly simplify the implementation of type Vector<T>
as deallocating memory would become implicit. For example, we could simplify each constructor by
removing the exception handling altogether, changing, for example, the following implementation:

// naive implementation, explicit memory management
Vector (size type n, const reference init)
elems{ new value type([n] }, nelems{ n }, cap{ n } {

try {

std:: £ill (begin(), end(), init);
} catch (...) {

delete [] elems;

throw;

//

... for this significantly simpler one:

// naive implementation, implicit memory management
Vector (size type n, const reference init)
elems{ new value type([n] }, nelems{ n }, cap{ n } {
std:: fill(begin(), end(), init);

//
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The reason for this simplification is the following:

If the Vector<T> object is responsible for the allocated memory, then deleting the array will
be done implicitly when the destructor is called, but for a destructor to be called, there needs
to be an object to destroy: a Vector<T> constructor needs to have succeeded! That explains
why we need to catch whatever exception was thrown, manually delete the array, and re-throw
whatever exception was thrown: until the closing brace of a destructor is reached, there is no
Vector<Tx> object to destruct and all resource management has to be done explicitly.

On the other hand, if el ems is a smart pointer, then it becomes responsible for the pointee as
soon as the smart pointer itself has been constructed, and this occurs before the opening brace
of the Vector<T> constructor. This means that once elems has been constructed, it will be
destructed if an exception leaves the constructor, freeing the Vector<T> object-to-be from the
task of destructing the array. To be clear: when we reach the opening brace of the constructor
of Vector<T», the data members of *this have been constructed, and for that reason, they
will be destructed if an exception is thrown, even if the construction of *thi s itself does not
conclude. The object model of C++ is truly wonderful in such situations.

The more astute among you, dear readers, will have noticed that even if one was writing code for a

company where exceptions are disallowed or frowned upon, the exception-safety we gained from
using a smart pointer remains. We have (discretely) written exception-safe code without writing the
words try or catch.

Other examples of simplification through the introduction of implicit memory management would

include move operations and the destructor of Vector<T>, which would change from this:

//

//

naive implementation, explicit memory management
Vector (Vector &&other)
elems{ std::exchange (other.elems, nullptr) }
nelems{ std::exchange (other.nelems, 0) },
cap{ std::exchange (other.cap, 0) } {
}
Vector& operator=(Vector &&other) {
Vector{ other }.swap(*this);
return *this;
}
~Vector ()
delete [] elems;
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. to simply this:

// naive implementation, implicit memory management

Vector (Vector&&) = default;
Vector& operator=(Vector&&) = default;
~Vector () = default;

//

Making move operations =default works because type std: :unique_ ptr does “the right thing”
when moving and transfers ownership of the pointee from the source to the destination.

r

.

Something to be aware of

By making the move operations =default, we induced a slight semantic change in our
Vector<T> implementation. The C++ standard recommends that a moved-from is in a valid
yet unspecified state but does not go into detail as to what “valid” means. Our hand-written
move operations restored the moved-from object to the equivalent of a default-constructed
Vector<T> object, but the “defaulted” one leaves the moved-from object with a null elems
but with potentially non-zero size and capacity. This still works in practice as long as user code
does not use the moved-from object unless it has first been reassigned to, but it is a semantic
change that deserves to be acknowledged.

J

Yet another interesting simplification would be the implementation of the resize () member
function. In the original, naive Vector<T> implementation, we had the following:

// naive implementation, explicit memory management
void resize(size type new cap)

if (new cap <= capacity()) return;

auto p = new T[new cap];

if constexpr (std::is nothrow move assignable v<T>) ({
std: :move (begin(), end(), p);

} else try {
std: :copy (begin(), end(), p);

} catch (...) {
delete[] p;
throw;

}

delete[] elems;
elems = p;
cap = new_cap;
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Here, again, we are faced with the possibility of an exception being thrown from the copy assignment
of a T object to a T object and need to handle exceptions in order to avoid leaking resources. Going
from explicit resource handling to implicit resource handling, we get the following:

// naive implementation, implicit memory management
void resize(size type new cap) {

if (new cap <= capacity()) return;

auto p = std::make unique<value typel]>(new cap) ;

if constexpr(std::is nothrow move assignable v<T>) {
std: :move (begin(), end (), p.get());

} else {
std: :copy (begin(), end (), p.get());

}

elems.reset (p.release()) ;

cap = new_cap;

}

As you can see, the entire exception handling code is gone. Object p owns the new array and will destroy
it when the function concludes execution. Once the copies (or the moves, depending on whether the
move assignment of type T is or is not marked as noexcept) are completed, elems lets go of the
previously owned array through reset () (destroying it at the same time) and “steals” ownership
of the array released by p through release (). Note that writing elems = std::move (p) ;
would have had a similar effect.

Applying this simplification process throughout Vect or<T>, source code gradually shrinks and, on
a container like the naive version of Vector<T> that only contains objects, no raw memory block at
the end of the underlying storage, we can save almost 25% of the number of source code lines (going
from roughly 180 lines to 140 lines for this academic implementation). Try it and see for yourself!

Impact on the sophisticated Vector<T> implementation

Applying the same technique to the more sophisticated Vector<T> will require a bit more work
as the default behavior of the destructor of an object of type std: :unique ptr<T[] > will beto
apply operator delete[] to the pointer it owns. As we know at this point, our sophisticated
implementation can be conceptualized as being made of two (potentially empty) “sections”: an initial
section made of T objects manually placed into raw memory followed by another section of uninitialized,
raw memory devoid of objects. As such, we need to handle each “section” in a different manner.

We will still use a std: :unique_ ptr<T[] > object to manage the memory, but we will need to
use a custom deleter object (something we discussed in Chapter 5 and in Chapter 6) to take
into account the specifics of our implementation. This object will need knowledge of the runtime
state of the Vector<T> object it will accompany since it will have to know where each “section” of
the underlying storage starts as well as where it ends, and that is something that changes as the code
is executing.
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The first important point of this implementation, and this is a point that has been recurring but that
we probably did not insist upon enough, is that we want our implementations to expose the same
interface to client code, regardless of implementation variations. This is sometimes impossible or
unreasonable to achieve, but it is nonetheless a meaningful and worthwhile target. This includes
our choice of internal public types: for example, the fact that we use a smart pointer to manage the
underlying memory does not change the fact that a pointer to an element is a T*:

//

template <class T>

class Vector ({

public:
using value type = T;
using size type = std::size t;
using pointer = T*;
using const pointer = const T*;
using reference = T&;
using const_reference = const T&;

//

Now, since we want to define elems as being a smart pointer that owns and manages the underlying
storage instead of being a raw pointer, we will need to define the custom deleter that will be used by
that smart pointer.

An important aspect of this problem is that the custom deleter will need to know the state of the
Vector<T> object to know what part of the underlying storage holds objects. For this reason, the custom
deleter of our std: :unique ptr<T [] > will be stateful and store a reference named source to the
Vector<Ts> object. Through source, The function call operator of the deleter object will have
access to the sequence of objects in the container (the half-open sequence from source .begin () to
source.end () ) and will be able to destroy () these objects before freeing the underlying storage:

//
private:
struct deleter {
Vector& source;
void operator () (value type* p) {
std: :destroy(std: :begin (source),
std: :end (source)) ;
std::free(static cast<void*>(p));

}:
std::unique ptr<value type[], deleter> elems;
size type nelems{},
cap{};
//
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The elems data member knows that the type of the custom deleter will be deleter, but the actual
object that will play the role of deleter will have to know what Vector<T> object it will interact
with. The constructors of a Vector<T> will be responsible for providing this information, and we
will need to be careful with the ways in which we implement our move operations in order to make
sure we do not transfer the deleter object’s state and make our code incoherent.

As mentioned with the naive version, we need to adapt the begin () member functions to take into
account the fact that elems is a smart pointer but that our i terator interface relies on raw pointers:

//

using iterator = pointer;

using const_iterator = const_pointer;

iterator begin() { return elems.get(); }
const_iterator begin() const { return elems.get(); }

//

Our constructors will need to adapt to the fact that we have a custom deleter that will clean up
if anything bad happens, or if the program concludes normally. Three examples of Vector<T>
constructors follow:

//
constexpr Vector ()
elems{ nullptr, deleter { *this } } {
}
Vector (size type n, const reference init)
elems{ static cast<pointers (
std::malloc(n * sizeof (value type))
), deleter{ *this }
b Ao
std::uninitialized fill (begin(), begin() + n, init);
nelems = cap = n;
}
Vector (Vector&& other) noexcept
elems{ std::exchange (
other.elems.release()), deleter{ *this }
b o
nelems{ std::exchange (other.nelems, 0) },
cap{ std::exchange (other.cap, 0) } {
}
//

Please note that we are not expressing the move constructor with =default in this case as we do
not want to transfer the custom deleter, our implementation having associated this object with a
specific Vector<T> object.
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A small note is in order here: we are passing *this to the constructor of the deleter object,
but we are doing so before the construction of *this has been completed, so anything done by
the deleter object before the construction of *this concludes (before the closing brace of its
constructor) deserves care and attention.

In our case, the deleter object will come into play if the destructor of elems comes into play,
which will happen if the constructor of an object of type T throws. We need to make sure that the
values of the data members of *this are coherent whenever there is a possibility that the deleter
object intervenes.

In our case, since the begin () and end () member functions return iterators that define a half-open
range of objects and, as we now know, std: :uninitialized £il1 () calls the constructors and
(if an exception is thrown) destroys the objects that have been constructed, we have to make sure that
nelems==0 until all of the objects have been constructed. Note that we defined the range to initialize
asbegin () and begin () +n, and waited until after the callto std: :uninitialized £i11()
to change nelems: this way, begin () ==end () if an exception is thrown, and the deleter object
will not try to destruct “non-objects”

Other constructors of class Vector<T> are likewise simplified; we will not show them here so
consider them as not-so-dreaded “exercises left to the reader”

The simplification of Vector<T> is made evident with some of the special member functions that
now require little or no effort on our part. Of note in this regard is the destructor, which can now be
defaulted; as mentioned with the move constructor earlier in this section, we do not default the move
assignment to avoid transferring the custom deleter’s internal state, as can be seen in the following
code excerpt:

//

~Vector () = default;

void swap (Vector& other) noexcept {
using std::swap;
swap (elems, other.elems) ;
swap (nelems, other.nelems) ;
swap (cap, other.cap) ;

}

Vector& operator=(const Vector& other) ({
Vector{ other }.swap (*this);
return *this;

}

Vector& operator=(Vector&s other) {
Vector{ std::move(other) }.swap(*this);
return *this;
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reference operator[] (size type n) { return elems[n]; }
const reference operator[] (size type n) const {
return elems[n];

}

Member functions swap () and operator [] have been shown to make it clear that std: :unique
ptr<T [] > behaves in many ways like a “regular” array of T objects. Many other member functions of
Vector<T> remain unchanged, such as front (),back (), operator== (), operator!=(),
grow (), push _back (), and emplace back (). Please refer to Chapter 12 for details on
these functions.

The reserve () and resize () functions can also be simplified through the use of smart
pointers, as we can get rid of explicit exception management and yet remain exception-safe since
std::unique ptr<T[] > isan RAII type and handles memory for us.

In the case of reserve (), we now use smart pointer p to hold the allocated memory, then either
move () or copy () the objects from elems to p. Once this is done, we destroy () the objects
left in elems, after which p relinquishes its pointer and transfers it to elems, and the only thing
left to do is to update the container’s capacity:

//
void reserve (size type new cap) {
if (new cap <= capacity()) return;
std: :unique ptr<value typell> p{
static cast<pointers(
std::malloc (new cap * sizeof (T))

5

if constexpr (std::is nothrow move assignable v<T>) {

std::uninitialized move (begin(), end(), p.get());
} else {

std::uninitialized copy (begin(), end(), p.get());
}
std: :destroy (begin (), end()) ;

elems.reset (p.release()) ;
cap = new_cap;



Consequences of this redesign

In the case of resize (), we now use smart pointer p to hold the allocated memory, then either
move () or copy () the objects from elems to p and construct default T objects in the remaining
part of the memory block. Once this is done, we destroy () the objects left in elems, after which
p relinquishes its pointer and transfers it to elems, and the only thing left to do is to update the
container’s capacity:

//
void resize(size type new cap)
if (new_cap <= capacity()) return;
std::unique ptr<value typell> p =
static cast<pointers (
std::malloc (new cap * sizeof (T))
)i

if constexpr (std::is nothrow move assignable v<T>) {

std::uninitialized move (begin(), end(), p.get());
} else {
std::uninitialized copy(begin(), end(), p.get());

}

std::uninitialized fill(

p.get() + size(), p.get() + new cap, value type{}
)
std: :destroy (begin(), end()) ;
elems.reset (p.release()) ;
nelems = cap = new_cap;
}
//

The magic of it all, or so to speak, is that our other member functions such as insert () and
erase () are built on top of basic abstractions such as reserve (), begin (), end (), and so
on, which means they do not have to be modified to take into account this representational change.

Consequences of this redesign

What are the consequences of this “redesign” of sorts? They have been mentioned along the way, but
let’s summarize:

« For user code, consequences are essentially none: an object of type Vector<T> occupies the
same space in memory with the implicit memory management implementation and almost the
same space with the explicit memory management implementation (where the custom deleter
is stateful), and each exposes the same public interface.
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o There are essentially no speed costs either, for reasons explained in Chapter 5: in code compiled
with optimization levels other than the basic, made-for-debugging ones, going through
std: :unique_ ptr<T> will, due to function call inlining, lead to code that is as efficient
as going through a T*.

o The implementation is made significantly simpler: fewer instructions, no explicit exception
handling code, more member functions that can be defaulted...

« Animportant aspect of this implicit memory management implementation is that it is exception-
safe even in the absence of explicit t ry and catch blocks. This can make a difference in many
situations: for example, you might be in a situation where exceptions are not allowed but find
yourself using a library where exceptions are a possibility... or can simply call operator
new () in a situation where memory is constrained. Our implementation with implicit memory
management would be safe under such circumstances, but an implementation taking a manual
memory management approach with no exception handling code would not be so “lucky”

The effort involved in implementing the custom deleter seems to be a sound investment with
Vector<T>. Now, you might wonder whether the situation is similar with node-based containers,
so we will explore this question by revisiting the naive ForwardList<T> implementation from
Chapter 12.

Generalizing to ForwardList<T>?

We now know that we can adapt the implementation of Vector<T>, transforming it from an explicit
memory management model to an implicit one, and that so doing has lots of advantages. It is tempting
to do the same with other containers, but before embarking on such an adventure, it might be wise
to analyze the problem a little.

We implemented a node-based container with explicit memory management named ForwardList<T>
in Chapter 12. What would be the impact of trying to change the implementation of this container
to make it more implicit?

Attempt - making each node responsible for its successor

In our exploration of ways in which we could try to make memory management in a node-based container
more implicit, one possible approach could be to change the definition of ForwardList<T>: :Node
such that the next data member becomes a std: :unique ptr<Nodes> instead of a Node*.

As a synopsis, we would get the following:

template <class T>
class ForwardList {
public:

//

private:
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struct Node ({
value type value;
std::unique ptr<Node> next; // <--

Node (const reference value) : value{ value } {

!

Node (value type&& value) : value{ std::move(value) }{
!

I
Node* head{};
size type nelems{};

//

This might seem like an improvement at first glance, since it would simplify the destructor of
ForwardList<T> down to the following:

//
~ForwardList ()
delete head; // <-- lots of work starts here!
!
//

This simplification would induce a kind of “domino effect” since the next data member of a node
becomes the owner of its successor node in the list, and since this is true for every node in the chain
(except for head itself), then destructing the first node ensures the destruction of its successor, and
of that successor’s successor, and so on.

This apparent simplification hides a tricky fact: when calling delete head; under this implementation,
we might be provoking a stack overflow. Indeed, we replaced a loop that applied delete on each node
in succession with something that’s essentially a recursive call, meaning that the impact on stack usage
changed from something that was fixed to something that is proportional to the number of nodes in
the list. That’s unpleasant news indeed!

At this point, dear reader, maybe you are thinking “Well, I was only going to use this ForwardList<T>
type for small lists anyway, so I'm not worried.” If that expresses your line of thinking, maybe we
should explore other implications of this implementation decision in our ForwardList<T> class.

One such implication is that iterators get a little bit more complicated: we do not want an iterator over
nodes to be the sole owner of the node it is traversing. That would be destructive indeed, as nodes
would be destroyed as we are iterating over the list. For this reason, ForwardList<T>: :Node<U>
(where U is either T or const T) would still have a T* data member, meaning that operator++ (),
for example, would need to obtain the underlying pointer of the std: :unique ptr<Ts> data
member in each node:

//

template <class U> class Iterator (

313



314 Writing Generic Containers with Implicit Memory Management

public:
//
private:
Node* cur{};
public:
//
Iterator& operator++ () {
cur = cur->next.get(); // <--
return *this;

//

That’s a slight complexity increase, but nothing that is impossible to manage.

In Chapter 12, we made most of our ForwardList<T> constructors converge towards the more
general sequence constructor that takes a pair of forward iterators of some type It as arguments. This
constructor would become in part more complex, as chaining nodes would now require knowledge
that we are using smart pointers inside each node, but cleanup in case an exception is thrown would
only require deleting the head node and letting the aforementioned “domino effect” take place:

//
template <std::forward iterator It>
ForwardList (It b, It e) {
try {
if (b == e) return;
head = new Node{ *b };
auto g = head;
++nelems;
for (++b; b != e; ++b) {

g->next = std::make unique<Node>(*b); // <--

q = g->next.get(); // <--
++nelems;
}
} catch (...) {
delete head; // <--
throw;



Generalizing to ForwardList<T>? 315

Most member functions of ForwardList<T> would remain unchanged. There would be slight
adjustments to such things as push_front (), for example:

//

void push front (const reference val) {

}

auto p = new Node{ val };

p->next = std::unique ptr<Node>{ head }; // <--
head = p;

++nelems;

void push front (T&& val)

}
!/

As can be

auto p = new Node{ std::move(val) };

p->next = std::unique ptr<Node>{ head }; // <--
head = p;

++nelems;

seen, we need to distinguish code that uses the head data member from code that uses the

other nodes in the chain. Similar adjustments would apply to any member function that modifies the
structure of the list, including, notably, insertions and suppressions.

A more interesting, and probably more enlightening, member function would be the insert
after () member function that inserts one element after a given iterator in the list. Let’s look at

this function in detail:

//

iterator
insert after (iterator pos, const reference value) {
auto p = std::make unique<Node>(value); // <-- A
p->next.reset (pos.cur->next.get()); // <-- B
pos.cur->next.release(); // <-- C
pos.cur->next.reset(p.get()); // <-- D
p.release(); // <-- E
++nelems;
return { pos.cur->next.get() }; // <-- F

}

//

Hum, that’s quite a lot of updated text! How did this function get so complicated? Looking at the

“lettered’

> comments, we have the following:

o Online A, we create a std: :unique_ptr<Node> object named p for the value to be
inserted. We know the newly created node will not be the first node in the list since the function

is

insert after (), and requires an iterator to an existing “before” node (named pos
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here), so that makes sense. For the same reason, we know that pos is not end (), which, by
definition, does not point to a valid node in our container.

On line B, we do what is required to make the successor of p the successor of pos. That requires
some care since pos . cur - >next is guaranteed to be a std: :unique_ ptr<Nodes> (it
obviously cannot be head as pos . cur is “before” pos . cur->next) and we made p a
std: :unique_ ptr<Nodes>. We are displacing responsibility over the successor node of
pos . cur to p->next, effectively inserting pos - >next after p (albeit in a complicated way).

On line C, we are ensuring that pos . cur relinquishes its responsibility over pos . cur->next.
This is important since, if we did not do so, then replacing that std: :unique ptr<Node>
would destroy the pointee. Line B ensured that pos . cur->next and p->next would
lead to the same object, which would have been disastrous had we stopped there (two objects
responsible for the same pointee is a semantic problem we do not need).

Once pos . cur - >next has been disconnected, we move to line D where we make it point to
the raw pointer underneath p. This would, again, lead to a shared responsibility over a Node,
so we continue with line E where we disconnect p from its underlying pointer.

Line F concludes the work in this function by returning the expected iterator to a raw (thus
non-owning) pointer.

That is... complicated. The main reason why this is complicated is that most of the effort in this function
is the transfer of ownership. A std: :unique ptr<Ts> object represents sole ownership over a
T*, after all, and in a linked list, each and every insertion or suppression requires moving pointers
around, thus transferring ownership between nodes. We simplified an occasional situation (deletion
of the nodes) by complicating most of the operations in our type. That’s... sad.

Vs

-

On meaning and responsibility semantics

Smart pointers are all about encoding meaning and responsibility in the type system. Simplifying user
code is important, but it’s not the main point of these types. In a ForwardList<T>object, the real
owner of the T objects is the ForwardList<T> object, and the ForwardList<T>: :Node<U>
objects are (from the ForwardList<T> object’s perspective) essentially a storage facility.
Trying to change this can be made to work, but the ensuing complexity is an indication that
something’s suspicious.

When writing a class, especially a container class, it’s essential that we have a clear view of
the role intended for each type. We know that iterators are non-owning by nature (we could,
however, envision shared ptr<T> objects that co-own the pointee in some use cases).
As far as containers and their underlying representation goes, the important point is that the
responsibilities of each type need to be clear if our design is going to be manageable.

J

Okay, so making a node responsible for its successor did not work. Would simply making the head
member of a ForwardList<T> object responsible for the other nodes in the list make our lives better?
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Attempt: making the head pointer responsible for the other
nodes

As seen in the previous section, making each node responsible for its successor is semantically incorrect.
It leads to complex, involved, and error-prone code, and the aspects of the implementation that are
simplified by this transformation are mostly outweighed by the added complexity in other places.

Maybe just making the head node a std: :unique ptr<Node> object with a custom deleter
responsible for deleting the entire list would be beneficial? Well, we can assuredly try this approach.

As a synopsis, we would now get the following:

template <class T>
class ForwardList {
//
struct Node ({
value type value;
Node* next = nullptr;
Node (const_reference value) : value{ value } ({
}
Node (value type&& value) : value{ std::move(value) }{
}
b5
struct deleter { // <--
void operator () (Node* p) comst {
while (p) {
Node* q = p->next;
delete p;
P = q;

std::unique ptr<Node, deleter> head;

//

We now have a ForwardList<T> type that, when an object of that type is destroyed, implicitly
ensures that the nodes in the list are destructed. The entire list remains built from raw pointers, such
that nodes are not responsible for memory management, which is probably an upgrade from the
previous attempt.
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With this implementation, we would get a defaulted ForwardList<T> destructor, which is a good
thing. There would be a tiny complexity increase in clear () where we need to distinguish the head
smart pointer from the underlying pointer:

//
void clear () noexcept
for (auto p = head.get(); p; ) { // <--
auto g = p->next;
delete p;
p = 4d;
}

nelems = 0;

}
//

The iterator interface needs to be adapted somewhat since head is not a Node* anymore, but iterators
trade in non-owning resources:

//
iterator begin() { return { head.get() }; } // <--
const_iterator begin() const {
return { head.get() }; // <--
}
//

The ForwardList<T> constructor that takes a pair of iterators and towards which most other
constructors converge requires slight modifications:

//
template <std::forward iterator It>
ForwardList (It b, It e) {
if (b == e) return;
head.reset (new Node{ *b }); // <--
auto q = head.get(); // <--
++nelems;
for(++b; b != e; ++b) {
g->next = new Node{ *b };
g = g->next;
++nelems;

//



Summary

The exception handling side of this member function is indeed simplified, being made implicit from
the fact that, should any constructor of a T object throw an exception, the previously created nodes
will be destroyed.

As in the previous version, our push_front () member functions will require some adjustment
as they interact with the head data member:

//

void push front (const reference val) ({
auto p = new Node{ val };
p->next = head.get(); // <--
head.release(); // <--
head.reset(p); // <--
++nelems;

}

void push front (T&& val)
auto p = new Node{ std::move(val) };
p->next = head.get(); // <--
head.release(); // <--
head.reset(p); // <--
++nelems;

}

//

On the upside, no member function that does not interact with the head data member requires
any modification.

Is this “implicitness” worth it? It probably depends on the way in which you approach writing code.
We did gain something of value in implicit exception safety. There is value in separating concerns,
and this implementation does free the container from the task of managing memory (for the most
part). It is up to you, dear reader, to determine whether the reduced complexity “here” outweighs the
added complexity “there”

Summary

In this chapter, we reexamined containers written in Chapter 12, seeking to use implicit memory
management tools in such a way as to make our implementations simpler and safer. We did reach an
improvement in Vector<T> but the results obtained with our node-based ForwardList<T>
container were... not absent, but arguably less conclusive depending on your perspective.

In the next chapter, we will introduce the idea of allocators, objects that inform containers as to how
memory should be obtained or liberated, and examine how they impact the ways in which we write code.
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We have come a long way since the beginning of this book. Recent chapters examined how one can
write memory-efficient containers, describing how to do so when memory management is done
explicitly (in Chapter 12) and when it is done implicitly, through smart pointers (in Chapter 13).
Choosing a memory management approach is not an either/or proposition; each one is useful in its
own way and solves real-life use cases depending on one’s application domain.

However, none of the approaches we have covered so far match what standard library containers
do. Indeed, standard library containers (as well as many other standard library types that can
dynamically allocate memory) are allocator-aware and delegate low-level memory management tasks
to specialized objects that can be supplied by client code. There is merit to this idea as it allows one to
pick a container based on the way it organizes objects in memory and couple said container with an
allocator, a “memory allocation specialist” This opens up a world of possibilities, some of them very
popular, such as using a std: : vector whose memory comes from an arena (see Chapter 10) or
from a fixed-capacity buffer on the stack.

Allocators officially came to the C++ language, along with the standard library containers, in C++98,
but they evolved and diversified themselves over time. Writing an allocator became significantly
simpler with C++11, and C++17 introduced an entirely new approach to memory allocation with
polymorphic memory resource (PMR) allocators and containers.

In this chapter, you will do the following:

o Understand and use traditional allocators

o Write a traditional allocator for a specialized application domain

o Learn how to manage the allocator lifetime when a container is moved or copied
o Clone an allocator’s type

« Understand and use PMR allocators and containers
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Equipped with a knowledge of allocators and how they interact with containers, this chapter will
enrich your memory management toolbox and open up new ways to combine data organization with
the way storage is obtained. Understanding allocators might even make writing new containers less
of a necessity; sometimes, instead of trying to create an entirely new container, the solution is just a
matter of combining the right data organization strategy with the right storage management approach.

Technical requirements

You can find the code files for this chapter in the book’s GitHub repository here: https://github.
com/PacktPublishing/C-Plus-Plus-Memory-Management/tree/main/chapterl4.

( R

A word about the examples in this chapter

As was the case with Chapter 13, this chapter will show incomplete examples to avoid redundancy
with the excerpts found earlier, particularly those in Chapter 12. Allocators change the way in
which containers interact with memory management facilities, but they do not require rewriting
containers entirely, so a lot of code written for a given container remains stable regardless of how
memory is managed. The code you will find in the GitHub repository is, of course, complete.

Also note that this chapter discusses allocators in the context of containers, but the idea can be
extended to many types that need to dynamically allocate memory. It is sometimes difficult to
do so; for example, support for allocators in std: : function was removed in C++17 as no
known standard library implementation had managed to make it work. Still, allocators can be
seen as a general idea, not something that is limited to containers, and you can envision using
allocators in other contexts.

Why allocators?

Allocators tend to scare people, including some experts, but you will not be scared as you are already in
possession of significant memory management knowledge and skills (and you are probably curious to
know more about the topic given the fact that you are reading this book). Knowing this, the first question
we need to address, before even expressing what an allocator is, is “Why do allocators exist?”. Why
would we concern ourselves with an additional layer of complexity in our memory management code?

Well, this is C++, and C++ is all about giving users control, so that’s where our explanation begins.
To make an analogy, think about iterators: why they are useful, and how they make your life as a
programmer better. They decouple iterating over elements of a sequence from how the elements are
organized in that sequence, such that you can write code that computes something such as the sum
of the values in std: :1list<int> or std: : vector<short > without having to know that in
the first case, you are navigating through nodes linked to one another by pointers and in the second
case, you are iterating through objects stored in contiguous memory.
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Traditional allocators

The beauty of iterators is this decoupling between iteration and data organization. Similarly, allocators
decouple data organization from the way the underlying storage is obtained or freed. This allows us to
reason about the properties of containers independently from the properties of memory management
and makes containers useful in even more situations than they would otherwise be.

( 7
A very, very thin layer...

To a container, an allocator (at least those in the “traditional” model that we are about to discuss)
represents a thin (very thin) layer of abstraction over the hardware. To a container, an allocator
expresses such things as “What is an address?”, “How does one put an object somewhere?”,
“How does one destroy an object at some location?”, and so on. In a way, for a container, the
allocator essentially is the hardware.

Traditional allocators

As mentioned already, allocators have been a mainstay of C++ for decades now, but they have existed
in a few different guises and shapes. In this chapter, we will adopt a sort of chronological approach,
starting from the earlier (and more complicated) allocator types and progressing toward the simpler
(and more versatile) ones.

To understand this chapter, one key idea to keep in mind is that a container type such as
std: :vector<Ts> does not really exist. What does exist is the std: : vector<T, A> type
where, by default, A is std: :allocator<Ts>, which allocates through : : operator new ()
and deallocates through : : operator delete (). By traditional allocator, we mean an allocator
type that is part of the type of a container (this is not the only possible approach to writing allocators
today, as we will see when we discuss PMR allocators later in this chapter).

We will first examine what was required to write an allocator before C++11, and how a container such
as std: :vector<T, A> could use an object of the A type to abstract away its memory allocation
tasks. Improvements to the way allocators are expressed will follow in later sections of this chapter.

Before C++11

Traditional allocators written before C++11 had to implement a wide array of members, which made
the task of writing allocators seem daunting to many. Consider what one had to write in those days,
and please note that not all of what follows remains true as of this writing since the API of allocators
has evolved over time.
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( N

On the difficulty of tracking an evolving API

What is required of allocators changed with every version of C++ since C++03, and these days,

it is not always easy (or relevant) to write examples that compile for C++11. For this reason,
the examples we will write in a detailed manner will use C++11 allocators, to show what that
actually meant, but will compile with the C++17 standard to make the code more pleasant to
read (and write).

. J

We will examine such an allocator, small allocator<Ts, and implement it in a way that resembles
std::allocator<Ts> in order to highlight what it meant to write an allocator in the C++11 era,
and then compare that with an equivalent expressed for a more recent version of the standard. We will
use C++17 features in our implementation as we do not want to introduce unnecessary complexity
in an already subtle topic.

After introducing small_allocator<Ts>, we will show how Vector<T> from Chapter 12 and
Chapter 13 can be enhanced and become Vector<T, A>,and how A canbe std: :allocator<Ts>,
small_allocator<Ts, or any other conforming allocator type.

Type aliases

An allocator of the T type had to expose type aliases for value type,size type,difference
type (the type one would get from subtracting two pointer objects), pointer, const_pointer,
reference, and const_reference. One way to think about this is that to a container, the
allocator represents the underlying memory and consequently defines the types that best describe these
low-level ideas. Containers could then map their own aliases to those of their allocator for conformity.

Inour small allocator<Ts> type, this would translate to the following:

template <class T>
struct small allocator {
using value type = T;
using pointer = T*;
using const pointer = const T*;
using reference = T&;
using const reference = const T&;
using size type = std::size t;
using difference type = std::ptrdiff t;
//

In practice, for an allocator of T, one could expect these type aliases to correspond to those shown
here for small allocator<T> in all but the strangest cases: aslong as value type is defined,
we can almost always infer the others.
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Member functions

An allocator of the T type had to expose a member function, max_size (), that was supposed to
return the size of the largest block that this allocator could actually allocate.

In practice, that often proved to be unimplementable as, with some operating systems, allocation
always succeeds (but usage of the allocated memory may fail if the program is over-allocated) so that
function usually turned out to be implemented on a best-effort basis on a given platform. A possible
implementation would be the following:

//
constexpr size type max _size() const {
return std::numeric limits<size type>::max(); // bah

}
//

An allocator of the T type also had to expose two overloads of a function that uses all the
words this author’s students “love” in a single signature (appreciate the irony!). Consider
pointer address (reference r) as well as the equivalent for const objects, which is
const pointer address(const reference r).The intent here is to abstract the ways
in which one would get the address of an object.

It would be tempting to implement each of these functions as return &r; but in practice, this is
perilous as users are allowed to overload the unary operator& () for their types, and this means
such an implementation would call arbitrary code, a scary prospect indeed... Avoid overloading
something as fundamental as “taking the address of an object” unless you really, really have a good
reason to do so, and even then, consider alternative approaches to solving your problem!

A better implementation technique is to express these functions through
return std::addressof (r); where std: :addressof () isa “magical” standard library
function from <memory> (that is, constexpr) and returns the address of an object without going
through an overloadable facility:

//

constexpr pointer address (reference r) const {
return std::addressof (r) ;

constexpr
const pointer address(const reference r) const {
return std::addressof (r) ;
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Obviously, an allocator needs to expose member functions to perform the actual memory allocation. The
signatures for these are allocate (size type n) and deallocate (pointer p, size
type n).A simple implementation of these two functions could be the following:

//

pointer allocate(size type n) {
auto p = static cast<pointers(

malloc(n * sizeof (value type))

) 8
if (!p) throw std::bad alloc{};
return p;

}

void deallocate (pointer p, size type)
free(p) ;

}
//

The allocate () member function used to take a second argument of the void* type named hint,
which was initialized to nullptr by default. This argument was meant to inform the allocator of a
location that could be used to provide storage, in case the container knew of such a location. That feature
seemed rarely (if ever) used in practice, and was deprecated in C++17 and then removed in C++20.

These two functions are the essence of why allocators exist: allocate () returns a chunk of
memory big enough to hold n contiguous elements of value_type, throwing bad_alloc on
failure, and deallocate () deallocates a chunk of memory big enough to hold n contiguous
elements of value type. When one writes an allocator, one usually seeks to provide an answer to
this specific problem.

( N
Bytes or objects

Interestingly, contrary to operator new (), which takes a number of bytes as argument,
allocate () and deallocate () both take as argument a number of objects. That is
because traditional allocators are type-aware (they are allocators of some type T after all),
whereas operator new () and friends are (mostly) type-agnostic. You will notice later in
this chapter that PMR allocators (which one might call “a step back”) use memory resources
that are type-agnostic such asmalloc () or operator new().

. J

Bothallocate () anddeallocate () deliberately lie to client code: they trade in raw memory
and neither create nor destroy objects of type T, yet allocate () returnsapointer (a T*,
essentially) and deallocate () accepts a pointer as argument even though all T objects are
assumed to have been destroyed beforehand.



Traditional allocators

The fact that these functions lie to the type system is a good thing in a way, as it relieves the container
from the task of doing so. Of course, the container has to be aware of what these functions do
and should not assume the presence of objects in memory returned by allocate () or passed
todeallocate ().

Finally, an allocator had to expose member functions to turn raw memory into objects and conversely.
The construct (pointer p,const reference r) and destroy (pointer p) functions
are respectively meant to construct a copy of r at location p (which is assumed to have been allocated
beforehand), and destroy the object at location p (without deallocating the underlying storage):

//

void construct (pointer p, const reference r) ({
new (static cast<void*>(p)) value type(r);

}

void destroy (const _pointer p) {
if (p) p->~value type();

}

//

template <class U>

struct rebind {
using other = small allocator<Us;

b 5

b5

One can expect that most implementations will do essentially what the preceding code does. There
are alternatives, but they are rarely met in practice.

Again, these functions lie to the type system: construct () takesapointer (a T*, in practice) as
argument but when the function is called, that pointer points to raw memory, not to an object of type T.

( R
What about rebind?

You will notice that we did not discuss the rebind public template type, but that is only
because the idea behind this type is easier to understand when facing the kind of problem it
is meant to solve. We will face such a situation when discussing allocator-aware node-based
containers through our ForwardList<T, A> class later in this chapter.

. J

Past this point, the requirement for an allocator is to define whether two allocator objects of different
types are equal or not. A possible implementation would be the following:

//

template <class T, class U>

constexpr bool operator==(const small allocator<T>&,
const small allocator<Us>&) {

return true;
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}

template <class T, class Us>
constexpr bool operator!=(const small allocator<T>&,
const small allocator<Us&)
return false;

}

Expressed otherwise, two small allocator specializations for distinct types describe the same
strategy and are thus considered equal. “But wait!” you say, “Where do you take into account the state
of the allocators in this computation?”. But here’s a revelation: pre-C++11 allocators were essentially
assumed to be stateless.

Well, they were not, but it was unclear what would happen to an allocator if it was associated with a
container object and that object was copied. You see, if an allocator has state, we have to know what
to do with that state when the allocator is copied. Is the state copied? Is it shared? In the pre-C++11
era, we did not know what to do in such a situation, so unless a container was used in a context where
it would not be copied, as in the case of a vector local to a function and associated with an allocator
that uses stack space as storage, most people avoided stateful allocators altogether.

( N
But what about stateful allocators?

As hinted, stateful allocators were a possibility back then (they existed, and they were used in
practice). How is one expected to define allocator equality for stateful allocators (and for allocators
in general)? The general idea is that two allocators should compare equally if memory allocated
from one can be deallocated from the other. With an allocator that delegates allocation tasks
to free functions such as std: :malloc () or : :operator new (), equality is trivially
true, but stateful allocators require us to think about how to define this relation.

- J

Before we look at how we could write allocator-aware containers, we will take a step back and see how
we could adapt some of the uninitialized memory algorithms used in Chapter 12 and Chapter 13 to
use the services of an allocator. This will reduce the refactoring effort required later in the process.

Some allocator-aware support algorithms

Since we are using allocators to bridge the gap between raw storage and objects, we will not be able to use
the raw memory algorithms seen in Chapter 12 and Chapter 13 in our allocator-aware implementations.

We have the option of writing our own versions of these algorithms in detail at each call site within
our containers, but that would be tedious (and bug-prone). Instead, we will write somewhat simplified
versions of these low-level memory management algorithms and make these simplified versions use
an allocator passed as an argument. In so doing, we will reduce the impact of making containers
allocator-aware on our implementation.
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The first three of these algorithms will be allocator-aware versions of algorithms that initialize a
range of values, as well as one that destroys such a range. To minimize the impact on the existing
implementations, we will essentially use the same signature as their non-allocator-aware counterpart,
but with an added argument that is a reference to the allocator. For the algorithm that fills a block of
raw memory with some value, we have the following:

template <class A, class IIt, class T>
void uninitialized £ill with allocator(
A& alloc, IIt bd, IIt ed, T init
) A
// bd: beginning of destination,
// ed: end of destination
auto p = bd;
try {
for (; p != ed; ++p)
alloc.construct(p, init);
} catch (...) {
for (auto g = bd; g != p; ++9)
alloc.destroy(q) ;
throw;

}

Then, for the algorithm that copies a sequence of values to a block of raw memory, we have the following:

template <class A, class IIt, class OIt>
void uninitialized copy with allocator (
A& alloc, IIt bs, IIt es, OIt bd
) A
// bs: beginning of source
// es: end of source
// bd: beginning of destination,
auto p = bd;

try {
for (auto g = bs; g != es; ++q) {
alloc.construct(p, *q);
++P;
}
} catch (...) {

for (auto g = bd; g != p; ++q)
alloc.destroy(q) ;
throw;
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For the algorithm that moves a sequence of values to a block of raw memory, we have the following:

template <class A, class IIt, class OIt>
void uninitialized move with allocator (
A& alloc, IIt bs, IIt es, OIt bd
) A
// bs: beginning of source
// es: end of source
// bd: beginning of destination,
auto p = bd;

try {
for (auto g = bs; g != es; ++q) {
alloc.construct(p, std::move(*q)) ;
++D;
}
} catch (...) {

for (auto g = bd; g != p; ++q)
alloc.destroy(q) ;
throw;

}

Finally, for the algorithm that transforms a sequence of objects into a block of raw memory, we have
the following:

template <class A, class It>
void destroy with allocator (A &alloc, It b, It e)
for (; b != e; ++b)
alloc.destroy(b) ;

}

Note that in each case, the implementation would be more conformant if, when an exception occurs,
objects were destroyed in reverse order of construction. Feel free to implement this slight adjustment;
it’s not difficult but it would introduce some noise in our example.

The other standard facility we will rewrite is cmp_less (), which allows comparing a signed value
with an unsigned value without getting caught by the integer promotion rules of the C language. It’s
not directly memory-related, but we need it in our Vector<T> implementation, and it’s a C++20
feature, which makes it unavailable when we compile for C++17:

template<class T, class U>
constexpr bool cmp less (T a, U b) noexcept {
if constexpr (std::is signed v<T> ==
std::is signed v<U>)
return a < b;
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else if constexpr (std::is signed v<T>)

return a < 0 || std::make unsigned t<T>(a) < b;
else

return b >= 0 && a < std::make unsigned t<Us>(b) ;

}

Both the std: :is_signed<T> trait as well as the std: :make unsigned<T» () function
can be found in header <type traitss.

( 7
Conditional compilation and feature test macros

As an aside, if you find yourself having to maintain code where a feature such as std: : cmp__
less () might or might not be available, such as a source file that is sometimes compiled for
C++20 and sometimes compiled for C++17, consider conditional inclusion of your “homemade
workaround” version by testing the associated feature test macro.

For this specific case, one could wrap the definition of our personal version of cmp_less ()
with #ifndef  cpp lib integer comparison functions to make sure it is
only provided if there is no version provided by one’s standard library implementation.

- J

Now, let’s see how these allocators and our support algorithms can be used by a container, first with
a container that uses contiguous storage (our Vector<T, A> class) and then with a node-based
container (our ForwardList<T, A> class).

An allocator-aware Vector<T,A> class

We are now ready to look at how introducing allocator awareness in a container that uses contiguous
memory (more specifically, our Vector<T> class) impacts the implementation of that container.
Note that we will use the explicit memory management approach from Chapter 12 as a baseline in
this case since we want to explore the impact of allocator awareness and this will help us make the
implementation changes more apparent. Feel free to adapt the code in this chapter with an implicit
approach to memory management if you are so inclined.

Starting with the template’s signature itself, we now have a two-type template with T being the type
of the elements and A being the type for the allocator, but with a reasonable default type for A such
that casual users will not need to worry about such technical details:

template <class T, class A = std::allocator<T>>
class Vector : A { // note: private inheritance
public:
using value type = typename A::value type;
using size type = typename A::size type;
using pointer = typename A::pointer;
using const_pointer = typename A::const pointer;
using reference = typename A::reference;
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using const reference = typename A::const reference;
private:

// deliberately self-exposing selected members

// of the private base class as our own

using A::allocate;

using A::deallocate;

using A::construct;

using A::destroy;

//
Note some techniques here:

» Since we expect A to be stateless, we used private inheritance and made A a base class of
Vector<T, A>, enabling the empty base optimization. Alternatively, we could also have
used a data member of type A inside each Vector<T, A> object (perhaps incurring a small
size penalty).

o We deduced the type aliases of the container from those of its allocator. This probably changes
nothing in practice with respect to the aliases we used in previous chapters, but A might be
doing some “fancy tricks” (one can never be too careful).

 Ina private section of our class, we expose some selected members of our base class as our own.
This will make the code less verbose later on, allowing us to write allocate (n) instead of
this->A::allocate (n), for example.

The non-allocating members of our class do not change, unsurprisingly. Data members stay the same,
and so do basic accessors such as size (), empty (),begin(),end (), front (), operator[],
and so on. Even the default constructor remains unchanged since it does not allocate memory and so
does not need to interact with its allocator.

There is a new constructor needed, one that accepts as argument an allocator. This one is particularly
useful in the case of stateful allocators:

//
Vector (A &alloc) : A{ alloc } {

}
//

Of course, when reaching the constructors that do need to allocate memory, the situation becomes
more interesting. Take, for example, the constructor that takes as argument a number of elements
and an initial value:

//

Vector (size type n, const reference init)
A{},elems{ allocate(n) },
nelems{ n }, cap{ n } {
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try {
uninitialized fill with allocator(
*static cast<A*>(this), begin(), end(), init
)i
} catch (...) {
deallocate(elems, capacity()):;
throw;
}
}
//

There is a lot to say here:

o The memory block that will serve as the underlying storage for our container is allocated through
a call to our base classs allocate () member function. Remember that even though this
yields a pointer (a T*), that is a lie and there are no T objects in the newly allocated block.

o We fill that uninitialized memory block with T objects through our homemade allocator-
aware version of std: :uninitialized £ill () (seethe with allocator suffix).
Note how we pass the allocator as an argument to the algorithm: the inheritance relationship
between Vector<T, A> and A is private, but the derived class is aware of it and can use
that information through static cast.

« If one of the constructors used in the process of initializing that memory block throws, the
algorithm destroys the objects it had created, as usual (no one else really could do it anyway),
after which we intercept that exception and deallocate the storage before re-throwing said
exception in the interest of exception neutrality.

Similar maneuvers are used in other allocating constructors, with different algorithms used to initialize
the allocated storage. The move constructor and the swap () member function do not allocate memory
and, for that reason, remain unchanged, and the same goes for the assignment operators: they are
built from other member functions and do not need to allocate or deallocate memory by themselves.

As you probably suspected already, the destructor of our container will use the allocator to destroy
the objects and deallocate the underlying storage:

//
~Vector () {
destroy with allocator (
*static_cast<A*>(this), begin(), end()
) B
deallocate(elems, capacity()):;
}
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The push_back () and emplace back () member functions do not allocate by themselves,
delegating to our private grow () member function, which, in turn, delegates to reserve () for
the allocation, but they do need to construct () an object at the end of the container:

//
void push back (const reference val) ({
if (full()) grow();
construct (end (), val);
++nelems;
}
void push back (T&& val)
if (full()) grow();
construct (end (), std::move(val));
++nelems;
}
template <class ... Args>
reference emplace back (Args &&...args) {
if (full()) grow();
construct (end (), std::forward<Args>(args)...);
++nelems;
return back() ;
}
//

The principal tools for memory allocation in our class are probably reserve () and resize ().In
both cases, the algorithm remains as it was, but the low-level memory management tasks are delegated
to the allocator. For reserve (), this leads us to the following:

//
void reserve (size type new cap) {
if (new cap <= capacity()) return;
auto p = allocate(new cap):;
if constexpr (std::is nothrow move assignable v<T>) {
uninitialized move with allocator (
*static cast<A*>(this), begin(), end(), p
) 8
} else {
auto src p = begin() ;
auto b = p, e = p + size();
try {
uninitialized copy with allocator (
*static cast<A*>(this), begin(), end(), p
)i
} catch (...) {
deallocate(p, new cap);
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throw;

}

deallocate(elems, capacity()):
elems = p;
cap = new_cap;

}

//

Whereas, for resize (), we now have the following:

//
void resize(size type new cap)
if (new cap <= capacity()) return;
auto p = allocate(new cap);
if constexpr (std::is nothrow move assignable v<T>) ({
uninitialized move with allocator (

*static cast<A*>(this), begin(), end(), p
) 8
} else {
uninitialized copy with allocator(
*static cast<A*>(this), begin(), end(), p

) 8
}

try {
uninitialized fill with allocator(

*static cast<A*>(this),
p + size(), p + new cap, value type{}
)i
destroy with allocator (
*static cast<A*>(this), begin(), end()
) 5
deallocate(elems, capacity());
elems = p;
nelems = cap = new_cap;
} catch(...) {
destroy with allocator(
*static cast<A*>(this), p, p + size()
)i
deallocate(p, new cap);
throw;
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In previous implementations of the Vector<T> class, we had implemented one version each of
insert () and erase (), as implementing the whole set of these functions would make this book
unreasonably large. Since both functions meddle with initialized and uninitialized memory, they need
to be adapted to use the services of the allocator rather than doing their own memory management.

In the case of insert (), the key aspects of the function that need to be adjusted are those that copy
or move objects into raw memory:

//

template <class It>
iterator insert (const_ iterator pos, It first, It last)

iterator pos = const cast<iterators>(pos);
const auto remaining = capacity () - size();
const auto n = std::distance(first, last);

if (std::cmp less(remaining, n)) { // needs C++20
if (cmp less(remaining, n)) {

auto index = std::distance(begin(), pos );

reserve (capacity () + n - remaining) ;

pos = std::next (begin(), index);
}
const auto nb_to uninit displace =

std: :min<std::ptrdiff t>(n, end() - pos );
auto where to uninit displace =

end() + n - nb to uninit displace;
if constexpr (

std::1s nothrow move constructible v<T>

uninitialized move with allocator (
*static cast<A*>(this),
end() - nb to uninit displace, end(),
where_to_uninit_displace
)i
else
uninitialized copy with allocator (
*static cast<A*>(this),
end() - nb to uninit displace, end(),
where to uninit displace
)i
// note : might be zero
const auto nb to uninit insert =
std: :max<std: :ptrdiff t>(
0, n - nb to uninit displace
)i

auto where to uninit insert = end();

{
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}
//

uninitialized copy with allocator (
*static_cast<A*>(this),
last - nb to uninit insert, last,
where to uninit insert
)
// note : might be zero
const auto nb_to backward displace =
std: :max<std::ptrdiff t>(
0, end() - pos_ - nb to uninit displace
Vi
auto where to backward displace = end() ;
if constexpr (std::is nothrow move assignable v<T>)
std: :move backward (
pos_, pos_ + nb to backward displace,
where to backward displace
)i
else
std: :copy backward (
pos_, pos_ + nb to backward displace,
where to backward displace
)i
std: :copy (
first, first + n - nb to uninit insert, pos_
)i
nelems += n;
return pos_;

In the case of erase (), what we do is copy all objects after the erased one “to the left” by one position;
the object at the end of the sequence after this copying has been performed has to be destroyed, and
for this, we need to use the allocator’s services. An example follows:

//

iterator erase(const_ iterator pos) {

iterator pos = const cast<iterators(pos);
if (pos_ == end()) return pos_;
std::copy (std: :next (pos ), end(), pos );
destroy (std: :prev(end())) ;

--nelems;

return pos_;
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As you have probably gathered at this point, we could optimize or simplify these functions in numerous
ways, such as the following:

 There is a common core functionality between reserve () and resize (), so we could
essentially claim that resize () isinlarge part like reserve () followed by an uninitialized
fill and express it as such.

o Inthecase of erase (), at compile time, we could test the value of the std: : is _nothrow

move assignable v<T> trait and, if that condition holds, replace the call to std: : copy ()
with a call to std: :move ().

+  We could make insert () and erase () more exception-safe than they are, although this
would make the code a bit long for a book such as this one.

At this point, we have an allocator-aware container that manages contiguous memory. It will now be
interesting to see what the impacts of allocator awareness will be on a node-based container, something
we will address through an allocator-aware version of the ForwardList<T> class.

An allocator-aware ForwardList<T,A> class

A funny thing happens when writing allocator-aware node-based containers. Pay attention to the
beginning of our ForwardList<T, A> class:

template <class T, class A = std::allocator<T>>
class ForwardList {
public:
using value type = typename A::value type;
// likewise for the other aliases
private:
struct Node {
value type value;
Node *next = nullptr;
Node (const_reference value) : value { value } {
}
Node (value type &&value)
value { std::move(value) } {

b s
Node *head {};
size type nelems {};

//

Did you notice something interesting about type A? Think about it...
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Yes, that’s it: A is the wrong type! A node-based container such as ForwardList<T, A> never
allocates objects of type T: it allocates nodes that (most probably) contain T objects and other things
such as, in this case, a pointer to the next Node in the sequence.

Knowing this, if we were supplied some allocator A that modeled a size-aware allocation strategy akin
to what we used in our arena for Orc objects in Chapter 10, making the allocator aware of T (and
thus, of sizeof (T) ) would lead to an arena that manages objects of the wrong size. This is not good!

We are faced with an interesting conundrum: user code provides us with an allocator because it wants
our container to put an allocation strategy to good use. That allocation strategy appears as a template
parameter of our container, which is why it is associated with the type of its elements (we do not
know what the nodes will be at this point in the definition of our container class). Only later, when
we have defined what a node will be for our container, are we really ready to say what will need to
be allocated, but then A already exists and is already associated to T, not to the type we really need,
which is ForwardList<T, A>: :Node.

Note that we have instantiated type A but have not constructed any object of that type. Lucky for us,
as that would have been wasteful (we would never use it!). What we do need is a type that is just like
A, but able to allocate objects of our Node type instead of objects of type T. We need a way to clone
the allocation strategy described by A and apply it to another type.

This is exactly what rebind is for. Remember that we mentioned this template type when writing
small allocator<Ts earlier but said we would return to it when we could put it to good use?
There we are, dear reader. As a reminder, in the context of an allocator, rebind presents itself as follows:

template <class T>
class small allocator { // for example
/7
template <class U>
struct rebind {
using other = small allocator<Us>;
}:
//
bi

You can see rebind as some kind of weird code poetry: it is a way for the allocator to say “If you
want the same type as myself but applied to some U type instead of T, here’s what that type would be”
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Returning to our ForwardList<T, A> class, now that we know what rebind is for, we can create
our own internal allocator type, Al1loc. This will be “like the allocator type A but applied to Node,
not to T” and create an object of that type (incidentally named alloc in our implementation), which
we will use to perform the memory management tasks in our container:

//

using Alloc = typename A::rebind<Node>::other;
Alloc alloc;
//

It’s a nice trick, isn't it? Remember that we cloned the strategy, the type, not an actual object so any
state some hypothetical A object would have had would not necessarily be part of our new Alloc
type (at least not without performing some non-trivial acrobatics). This is yet another reminder that
with traditional allocators as they were originally designed, copying and moving allocator state was
a complex problem.

As was the case for the transformation from Vector<T> to Vector<T, A>, a significant portion
of our List<T> implementation involved no memory allocation and thus needs not change with
List<T, A>. Thisincludes the size (), empty (),begin(),end (), swap (), front (), and
operator== () member functions, among others, as well as most of the List<T,A>: : Iterator<Us>
class definition. As our implementation of ForwardList<T, A> will need to access private data
member cur of its iterators on occasion, we give it friend privileges over Iterator<Us:

//

template <class U> class Iterator ({
//

private:
Node *cur {};
friend class ForwardList<T,A>;
//

b5

//

There are, of course, member functions of ForwardList<T, A> that use memory allocation
mechanisms. One of them is clear (), whose role is to destroy the nodes in the container. The
destruction and deallocation of Node objects have to be performed through the allocator, replacing
the call to operator delete () with a pair of function calls:

//
void clear () noexcept {
for (auto p = head; p; ) {
auto g = p->next;
alloc.destroy (p);
alloc.deallocate(p, 1);
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In ForwardList<T>, we made all of the allocating constructors converge toward a single sequence
constructor that accepted a pair of iterators (type It) as arguments. This localizes the changes required
for constructors in ForwardList<T, A> to that single function, something that simplifies our task.

In ForwardList<T>, we had constrained template parameter It by the std: : forward
iterator concept, but concepts are a C++20 feature and we are compiling this implementation in
C++17 so we will (sadly) let go of this constraint for the time being.

Having to perform allocation and construction in separate steps complicates our implementation a
little, but I think you esteemed readers, will not find this to be unsurmountable:

//
template <class It> // <std::forward iterator It>
ForwardList (It b, It e) {
if (b == e) return;
try {
head = alloc.allocate(1l);
alloc.construct (head, *Db);
auto g = head;
++nelems;
for(++b; b != e; ++b) {
auto ptr = alloc.allocate(1l);
alloc.construct (ptr, *b);
g->next = ptr;
q = g->next;
++nelems;
}
} catch (...) {
clear () ;
throw;

//
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We also had written insertion member functions for ForwardList<T>, so these will also need to
be adapted to use allocators in ForwardList<T, A>. We had two overloads of push_front ():

//

void push front (const reference val) {

}

auto p = alloc.allocate(l);
alloc.construct(p, val);
p->next = head;

head = p;

++nelems;

void push front (T&& val) {

}
//

auto p = alloc.allocate(1);
alloc.construct(p, std::move(val));
p->next = head;

head = p;

++nelems;

We also had two overloads of insert_after (), one that inserted a single value and one that inserted
the elements in a half-open range. In the latter case, we will need to put aside the std: : forward
iterator constraint on type It again as we are compiling for C++17:

//

iterator

}

insert after (iterator pos, const reference value) {
auto p = alloc.allocate(l);

alloc.construct (p, value);

p->next = pos.cur-snext;

pos.cur->next = p;

++nelems;

return { p };

template <class It> // <std::input iterator It>

//

iterator insert after(iterator pos, It b, It e) {
for(; b != e; ++b)
pos = insert after(pos, *b);
return pos;
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Our erase after () member function is similarly adjusted:

//
iterator erase after (iterator pos) {
if (pos == end() || std::next(pos) == end())
return end() ;
auto p = pos.cur-s>next->next;
alloc.destroy (pos.cur->next) ;
alloc.deallocate(pos.cur->next, 1);
--nelems;
pos.cur->next = p;
return { p->next };

bi

That concludes our transformation of ForwardList<T> into an allocator-aware ForwardList<T, A>
class. T hope, dear reader, that this was not as difficult as some might have feared: given our understanding
of the principles and fundamental techniques presented in this book, integrating allocator awareness
in a container should make some sort of sense to most of us at this point.

Now that we have seen how to write a “traditional” iterator as well as examples of how one can make
a container allocator-aware, you might be wondering about the benefits of using allocators. We know
that allocators give use code control over the ways in which containers manage memory, but what
can we gain from that control?

Example usage - a sequential buffer allocator

A classical example of allocator usage is one that, instead of allocating memory from the free store,
manages a pre-allocated chunk of memory. That memory does not have to come from the execution
stack of a thread, but that’s often what is done in practice, so that’s what our example code will do.

What you need to know before reading the following example is this:

« This sort of allocator is a specialized tool for specialized users. We expect users to know what
they are doing.

o The pre-allocated buffer that will be managed by the allocator in our example has to be properly
aligned for the objects that will be stored therein. If you want to adapt this example to handle
memory allocation for any naturally aligned object, some additional effort will be required
(you will want the allocator to yield addresses aligned on a std: :max_align_t boundary,
something our example allocator does not do).

o Some care will need to be taken if client code tries to “,over-allocate,” asking for more memory
than what the managed buffer could provide. In this example, we will throw std: :bad_alloc
as usual, but alternatives exist.
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Vs

-

When bad_alloc is not an option...

For some applications, throwing or otherwise failing to allocate is not an option. The fact that a
specialized allocator cannot meet an allocation request should not, for these applications, result
in throwing an exception as throwing means “I cannot meet the postconditions of this function”

One thing that some applications do when a sequential buffer allocator runs out of memory
is simply call : : operator new () and take the indeterministic allocation time “hit” but
leave a trace somewhere (a log, maybe) that this happened. This means the program will leak
memory, but for some applications (say, a stock market exchange program that is restarted
every day), one can expect those leaks to be relatively low in number, and the fact that there is
a trace that something leaked will let programmers look at the problem and (hopefully) fix it
before the next day. The “lesser of two evils,” as some might say.

Our sequential buffer allocator will look like this:

#include <cstdints>
template <class T>
struct seq buf allocator
using value type = T;
// pointer, reference and other aliases are as
// usual, and so is max_size()
private:
char *buf;
pointer cur;
size type cap;
public:
seq buf allocator(char *buf, size type cap) noexcept
buf{ buf }, cap{ cap } {
cur = reinterpret cast<pointer> (buf);
}
//

As you can see, the state for this allocator resembles what we did for the size-based arena in Chapter 10:

we know where the buffer to manage starts (buf), how big it is (cap), and where we are at in our

sequential allocation process (cur).

We make cur a pointer-type object to simplify computation later, in the allocate () member
function, but it’s a convenience, not a necessity.
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The allocate () member function is very simple in the sense that it performs a constant-time
computation, returning contiguously allocated objects from the underlying storage without even having
to reuse that memory after it has been deallocated. Part of the work done in allocate () requires
avoiding over-allocating, and to do this, we will compare pointers, but we might have to compare a
pointer within the allocated memory block with one that is not within that block (it all depends on the
value of our arguments). This would lead us into undefined behavior, something we need to avoid, so
we cast our pointers to std: : intptr t objects and compare the resulting integral values instead.

( 7
What if std::intptr_t is not offered on my platform?

Types std: :intptr tand std::uintptr_t are conditionally supported in C++, which
means that there might be vendors that do not offer these type aliases. If you find yourself in
this unlikely but not impossible situation, you can simply keep track of the number of objects
allocated and compare this with the cap data member to achieve the same effect.

- J

We end up with the following allocate () implementation, accompanied by the corresponding
deallocate () member function, which is, in this case, effectively a no-op:

//
// rebind, address(), construct() and destroy ()
// are all as usual
pointer allocate(size type n) {
auto
request = reinterpret cast<
std::intptr t
>(cur + n),
limit = reinterpret castc<
std::intptr t
> (buf + cap);
if (request >= limit)
throw std::bad alloc{};
auto g = cur;
cur += n;
return q;

}

void deallocate (pointer, size type) {
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As this allocator is stateful, we need to give some thought to allocator equality. What we will do in
this case is the following:

template <class T, class U>
constexpr bool operator==(const seq buf allocator<T> &a,
const seq buf allocator<Us &b) {
return a.cur == b.cur; // maybe?
}
template <class T, class U>
constexpr bool operator!=(const seq buf allocator<T> &a,
const seq buf allocator<Us &b) {
return ! (a == b);

}

These equality operators make sense at a specific moment in time only, but then this allocator type is
not really meant to be copied in practice; if you plan to use a buffer such as this and share its internal
state, you will need to give some thought to the way the original and the copy share their internal state
and remain coherent with one another - something we do not need to do in this case.

As you can see, we test for overflow on allocation and throw std: :bad_alloc if an allocation
request would lead to a buffer overflow, but that’s only one option among others, as we have discussed
earlier in this chapter:

#include <chrono>
#include <utility>
template <class F, class ... Args>
auto test(F f, Args &&... args) {
using namespace std;
using namespace std::chrono;
auto pre = high resolution clock::now() ;
auto res = f(std::forward<Argss>(args)...);
auto post = high resolution clock::now() ;
return pair{ res, post - pre };
}
#include <iostream>
#include <vectors>
struct Data { int n; };
int main() {
using namespace std::chrono;
enum { N = 500'000 };
{
std: :vector<Data> v;
auto [r, dt] = test([] (auto & v) {
v.reserve (N) ;
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for(int 1 = 0; i != N; ++1i)
v.push back({ i + 1 });
return v.back() ;
Yoov);
std::cout << "vector<Datas>:\n\t"
<< v.size()
<< " insertions in "
<< duration cast<microsecondss> (dt) .count ()
<< " us\n";

}
{
alignas (Data) char buf[N * sizeof (Data)l;
seq buf allocator<Data> alloc{ buf, sizeof buf };
std::vector<Data, seq buf allocator<Data>> v(alloc);
auto [r, dt] = test([] (auto & v) {
v.reserve (N) ;
for(int 1 = 0; 1 != N; ++1)
v.push back({ i + 1 });
return v.back() ;
boov)
std: :cout
<< "vector<Data, seqg buf allocator<Data>>:\n\t"
<< v.size ()
<< " insertions in "
<< duration cast<microsecondss> (dt) .count ()
<< " us\n";
}

// do the same replacing std::vector with Vector

}
Here are a few things you might want to note at this point:

o The test code is the same irrespective of the chosen allocator.

o When using a stateful allocator, we need to use a parametric constructor that accepts the
allocator as argument.

o The responsibility with respect to the size and alignment of the buffer used by the seq_buf
allocator<Ts> falls on the (metaphorical) shoulders of user code. Again, remember that
this is a specialized tool, so users are expected to know what they are doing.

o If you run this test on a conforming compiler, you might notice interesting performances
with the sequential buffer allocator, and you might notice that Vector<T, A> outperforms
std: :vector<T, A>, but Vector<T, A> is not as complete and rigorous as its std: :
counterpart. Prefer the standard facilities in practice.
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o 'There are limitations to the size of the buffer provided to a sequential buffer allocator as stack
space is a limited resource (often one or two megabytes overall, so we have less than this to
work with). Still, this technique is useful and used in practice in low-latency systems.

« Ifyou apply this sort of allocator with a node-based container list ForwardList<T, A>, remember
that there is a size overhead to each node so plan the size of the buffer to provide accordingly.

Of course, that was an implementation that respects C++17 standards. What has changed with respect
to allocators since then?

Traditional allocators with contemporary standards

As mentioned already, the traditional approach of ensconcing the allocator type in the associated
container type still exists as of this writing, but the way allocators themselves are expressed has changed
over time, and the allocators from the previous section, whether small allocator<Ts or seq
buf allocator<Ts, do not compile as written on a C++20 compiler. Before thinking this is sad,
know that we can still write these allocators, but we have to write them in a simpler manner. Whew!

Simplification and the advent of a traits-based implementation

The first step in a simplification effort of allocators was the recognition that in most cases, a significant
part of the code written in an allocator is what we call “boilerplate code,” code that is the same from
class to class and could be qualified as “noise”

To that effect, C++11 introduced std: :allocator traits<As. The idea is that given some
typename A::value type type, one can generate a reasonable and efficient default implementation
for most allocator services (including type aliases such as pointer or size type) aslongas one
provides implementations for allocate () and deallocate ().

Using small allocator<Ts> as an illustration, we would now be able to simply express that
entire allocator type with the following:

template <class T>
struct small allocator {
using value type = T;
T* allocate(std::size t n) ({
auto p = static_cast<T*>(
malloc(n * sizeof (value type))
)i
if (!p) throw std::bad alloc{};
return p;
}
void deallocate(T *p, std::size t) {
free(p) ;
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bi

// ... insert the equality operators here

As you can see, this is quite a simplification! This way, a container such as Vector<T, A> could now
use std::allocator traits<As instead of A directly when referring to some allocator 2’s
members. With traits being this very thin layer of abstraction that brings no runtime cost to speak of,
what they do for some member M is essentially “If A exposes member “M, then use A : : M; otherwise,
here is some reasonable default implementation instead.” Of course, there will be no branching here
in practice as everything is determined at compile time.

For example, based on our previous small allocator<Ts> type, given that small
allocator<T>::allocate () returns T*, then we can determine that std: :allocator
traits<small allocator<Ts>>::pointer will be equivalent to T*, and a container
such as Vector<T, A> will make its pointer type alias correspond to the type expressed
by std::allocator traits<As::pointer.

For another example, seq buf allocator<T> would now be expressed as follows:

template <class T>
struct seq buf allocator ({
using value type = T;
using pointer = T¥;
using size type = std::size t;
char* buf;
pointer cur;
size type cap;
seq buf allocator(char* buf, size type cap) noexcept
buf{ buf }, cap{ cap } {
cur = reinterpret cast<pointers (buf) ;
}
pointer allocate(size type n) {
auto request =
reinterpret cast<std::intptr t>(cur + n),
limit =
reinterpret cast<std::intptr t>(buf + cap);
if (request > limit) ({
throw std::bad alloc{};
}
auto g = cur;
cur += n;
return q;

}

void deallocate (pointer, size type) ({

}
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}i

// ... insert equality operators here

In this case, even though it was not necessary, type seq_buf allocator<Ts exposes the pointer
and size type aliases, which means that for this type, the std: :allocator_ traits will
use the allocator-provided versions instead of trying to synthesize an alternative. As you can see, the
contemporary traits-based approach to allocators is very convenient.

What services does type std: :allocator traits<As> provide exactly? Well, as could be expected,
this type exposes the usual type aliases of value type (itself being an alias for A: : value type),
pointer, const pointer, size type,and difference type. For convenience, it also
exposes aliases allocator type (equivalent to A): void pointerand const void pointer
(respectively equivalent to void* and const void* in most cases). Remember that traits can
be specialized, and for that reason, these seemingly evident type aliases could map to more exotic
constructs on occasion.

Type std: :allocator traits<As also exposes the traditional services of an allocator,
but in the form of static member functions that take the allocator as first argument, including
construct (),destroy(),allocate(),deallocate(),andmax_size ().C++23 adds
another static member function to this set: allocate at least (). This function returns
astd::allocation_result object made of the allocated pointer and the actual size of the
allocated chunk, expressed as a number of objects (even though, as usual, there is no object in that
memory block after allocation has completed).

The rebind mechanism is expressed through types std: : rebind alloc<A>and std::rebind
traits<T>. When cloning an allocation strategy (for node containers, mostly), the equivalent of
typename A::rebind<Ts: :other through these facilities is somewhat more verbose:

//
typename std::allocator traits<
A
>::template rebind alloc<Node>;
//

Note the presence of the template keyword required for grammatical disambiguation Yes, I know
what you are thinking now: what a complex language! But we rarely need to use that keyword in practice,
and only in those strange situations where the compiler would get confused looking at the following
< and not knowing whether it’s part of a template signature or whether it’s the less-than operator.
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There are also new facilities that come with std: :allocator traits<As and deal with allocator
lifetime management, something we learned to do over the years:

o Three type aliases that inform containers as to what should be done with the allocator at key
moments in the container’s life. These types are propagate on_container copy
assignment (also known as POCCA), propagate on container move assignment
(also known as POCMA), and propagate on container swap (also known as POCS).
All three can be instantiated and behave like constexpr functions that yield true or false
(they are equivalent to std: : false type by default as, by default, allocators are not meant
to be copied or moved). For example, if an allocator exposes type alias POCMA equivalent to
std: :true_type, then a container with that allocator should move the allocator along with
the allocated data. Note that in all three cases, this trait being equivalent to std: : true_ type
implies a noexcept copy, move, or swap (respectively) operation for the allocator.

o Typealiasis always equal; which means that allocators of that type will compare equally
irrespective of the type of object to allocate (this alleviates the need for operator== () and
operator!= (), which compare two allocators of the same template but different value
type aliases). Don’t spend too much time on this one though; it has been deprecated in C++23
and will most likely be removed in C++26.

o The select_on container copy construction () member function. Thisisa
static member function that takes an allocator and copies it if its allocator traits express
that this is the right thing to do, or returns the original allocator otherwise.

Okay, this allocator lifetime management is new and might be surprising. What do we do with
this information?

Managing traditional allocator lifetime

What should a container do with allocators within a move or a copy operation? Well, here are the details.

In a container’s copy constructor, the best thing to do is probably to use select _on container
copy_construction ().Itis that function’s purpose, after all. Please do not use that function
elsewhere: it is really meant for the copy constructor of a container. Once the container under
construction has obtained its allocator, this allocator can be used to perform the remainder of the
memory allocation tasks.

In a container’s move constructor, the thing to do is move construct the allocator and steal the resources
from the source container.
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In a container’s copy assignment operator, if type alias propagate on container copy
assignment is equivalent to std: : true_type and both allocators compare unequally, the
destination container first has to deallocate all memory (that might not be possible later on in the
process). Past this point, if propagate on container copy assignment is equivalent to
std::true_type, then the allocators should be copy-assigned. Only once this is all done should
the elements be copied.

The container’s move assignment operator is trickier (remember that move is an optimization, and
we want it to pay off!). The options we face are as follows:

o Typealiaspropagate on container move assignment isequivalentto std: :true
type. In this situation, the steps to perform are (a) ensure that the destination container
deallocates all memory under its responsibility (it might not be able to do so later on), (b)
move-assign the allocator, and then (c) transfer memory ownership from the source container
to the destination container.

o Typealiaspropagate on container move assignment isequivalentto std::false
type and the allocators compare equally. In this situation, you can do the same steps as in the
previous case but do not move the container.

o Typealias propagate on container move assignment isequivalentto std::false
type and the allocators compare unequally. In this case, ownership cannot really be transferred,
so the best one can do is move the objects themselves from the source container to the
destination container.

Luckily, all of these allocator properties can be tested at compile time so the decision-making process
does not need to incur any runtime cost.

( 1
Things we do for concision...

You will notice our Vector<T, A> and ForwardList<T, A> types do not do the entire
“allocator lifetime management dance” in order to keep our examples reasonably short, and
because the way in which we manage allocator copy and movement is an interesting design
aspect that would require adding at least one chapter to this already rather big book. Please
be tolerant, dear reader.

. J

Using traits-based allocators in allocator-aware containers

The remaining question with traditional allocators in a traits-based approach is: how do containers
use them?
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The first thing we will need to do is to adapt our allocator-aware adaptation of the standard uninitialized
memory algorithms. For example, our personal adaptation of std: :uninitialized copy ()
becomes the following:

template <class A, class IIt, class OIts>

void uninitialized copy with allocator
(A &a, IIt bs, IIt es, OIt bd) {
auto p = bd;

try {
for (auto g = bs; g != es; ++q) {
std::allocator traits<A>::construct(a, p, *q):;
++Pi
}
} catch (...) {

for (auto g = bd; g != p; ++q)
std::allocator traits<A>::destroy(a, q);
throw;

}

As you can see, we are now using std: :allocator_ traits<As instead of A directly, opening up
customization opportunities, and passing the allocator as first argument since the std: :allocator
traits<A> member functions are all static. The same adjustment can be applied to the other
allocator-aware versions of the algorithms we wrote, with the same calling pattern and passing the
allocator as first argument.

Then, we reach our Vector<T, A> type. How do we adjust its implementation to use the contemporary
traits-based allocators? The first thing to do is to adjust the source of the container’s type aliases:

template <class T, class A = std::allocator<Ts>>
class Vector : A { // note: private inheritance
public:
using value type =
typename std::allocator traits<A>::value type;
using size type =
typename std::allocator traits<A>::size type;
using pointer =
typename std::allocator traits<A>::pointer;
using const pointer =
typename std::allocator traits<A>::const pointer;
using reference = value type&;
using const reference = const value type&;

//
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You might be surprised that type aliases reference and const_reference are not taken from
std::allocator_traits<As,but there is a reason for this. In C++, as in this writing, we can
design types that behave like “smart pointers” (we have even done so in this book; see Chapter 6), so
an abstraction is useful in case the allocator provides pointers that are not raw pointers, but there is
no known way to write “smart references” (that would require being able to overload operator.
() and proposals to that effect have so far failed to be accepted).

The only reference type that behaves like a reference to T is... well, T&. For that reason, these type
aliases were deprecated in C++17 and removed in C++20. We can still provide them to clarify our
type’s member function signatures, but they are no longer required by the standard.

As far as the member functions of Vector<T, A> go, the general idea is that all calls to member functions
of A are replaced with calls to stat ic member functions of std: :allocator traits<As that
take a reference to the A object as argument (remember that in our Vector<T, A> implementation,
Aisaprivate base class of the container). Here is an example:

Vector (size type n, const reference init)

a{},
elems{ std::allocator traits<A>::allocate(
static cast<A&>(*this), n)

3
nelems{ n }, cap{ n } {
try {
uninitialized fill with allocator(
static cast<A&>(*this), begin(), end(), init
) B
} catch (...) {

std::allocator traits<A>::deallocate(
static cast<A&>(*this), elems, capacity ()
);

throw;

}

If you feel discomfort with the use of *this in the data member initializers, you can relax as we are
only using the A part of *this and that base class sub-object has been fully initialized at that point.
It’s a safe part of *this to use.

The same adjustment has to be applied throughout the container (in dozens of places) and obviously
makes the source code more verbose, but the good news is that this has gained us a zero-cost-at-
runtime layer of abstraction and helped everyone who actually writes allocators.
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For a node-based container such as ForwardList<T, A>, the situation is similar yet slightly
different. For one thing, the type aliases are tricky; some of them are meant for user code and should
be expressed with respect to the value type of the container, and others should be based on the
types of the allocator as expressed through its traits:

template <class T, class A = std::allocator<T>>
class ForwardList ({
public:
// note: these are the forward-facing types, expressed
// in terms where T is the value_ type
using value type = T;
using size type =
typename std::allocator traits<A>::size type;
using pointer = value type¥*;
using const pointer = const value type*;
using reference = value type&;
using const reference = const value typeg;

//
Within the container, we need to rebind A to an allocator of our internal Node type:

//
private:

struct Node ({
value type value;
Node *next = nullptr;
Node (const_reference value) : value { value }
}
Node (value type &&value) : value{ std::move(value) }{
}

b5

using Alloc = typename std::allocator traits<
A

>::template rebind alloc<Node>;

Alloc alloc;

//

Past this point, what we will do to perform memory management tasks is use static member
functions from the std: :allocator traits<Allocs type, passing the alloc data member
as argument, as in this example:

//
void clear () noexcept {
for(auto p = head; p; ) {
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auto q = p->next;
std::allocator traits<Alloc>::destroy(alloc, p):;
std::allocator traits<Alloc>::deallocate(

alloc, p, 1

);
b = 4g;
}
nelems = 0;
}
template <std::forward iterator Its>
ForwardList (It b, It e) {
if (b == e) return;
try {
head = std::allocator_ traits<
Alloc
>::allocate(alloc, 1);
std::allocator traits<Alloc>::construct (
alloc, head, *b
)i
auto g = head;

++nelems;
for (++b; b != e; ++b) {
auto ptr = std::allocator traits<
Alloc

::allocate(alloc, 1);
std::allocator traits<
Alloc
>::construct (alloc, ptr, *b);
g->next = ptr;
g = g->next;
++nelems;
}
} catch (...) {
clear () ;
throw;

//

The same technique needs to be applied throughout the container, of course, but the complexity
remains the same.
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Now that we have seen how traditional allocators, ensconced in the type of their container, have
evolved from their original (rather involved) contract to their contemporary traits-based and simplified
implementation (with somewhat more verbose containers), it’s tempting to think that we have reached
some form of optimality. This is both right and wrong.

Irritants with traditional allocators

The traditional approach to allocators is optimal at runtime in the sense that the services of such an
allocator can be called without any overhead, and if an allocator is stateless, the introduction of an
allocator in a container can be achieved without any costs in terms of space. Not bad!

Of course, the absence of runtime costs is not the absence of costs altogether:

o A container’s implementation can become somewhat complex due to the additional (compile-
time) layering, and there is a cost to writing, understanding, and maintaining source code.
This sort of expertise is not universal; you have it, of course, dear reader, but others do not
necessarily share that upside with you.

o Two containers that are identical in essentially every respect but differ in the way they manage
memory (two containers that use different allocators) will in practice be different types, which
might slow down compile times in programs that have multiple container-allocator combinations.

o Some operations that should probably be simple become more complicated. For example, if
one seeks to compare containers v0 and v1 for equality, and if v0 is a Vector<T, A0 > while
vlisaVector<T, Al>, then one needs to write an operator== () function that deals
with two different types... even though the allocator of a container is probably not one of its
salient properties and, as such, should not be a concern when comparing two containers with
respect to their sizes and values.

The same reasoning goes for many other container-related operations: an allocator is (traditionally)
part of its container’s type with the traditional approach, but many operations are value type-
related and have nothing to do with allocators. We are runtime optimal, but we have additional costs
with respect to code generation complexity (which might lead to bigger binaries, which might have
runtime speed impacts), and increasing the maintenance effort (including understanding code from
its source) has a price.

Even something as seemingly simple as making allocators type-aware (traditional allocators are
allocators of T for some type T after all) is sometimes controversial. Low-level memory allocation
functions such as std: :malloc () or : :operator new () deal in raw bytes after all, so isita
sign that our traditional allocator model is perfectible?
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Polymorphic memory resource allocators

With C++17, the C++ language added so-called PMR allocators. A PMR container stores allocator
information as a runtime value, not as a compile-time part of its type. In this model, a PMR container
holds a pointer to a PMR allocator, reducing the number of types required but adding virtual function
calls whenever using memory allocation services.

This is again not a no-cost decision, and there are trade-offs with the traditional model:

o This new allocator model supposes that containers store a pointer to an allocation strategy,
which generally (not always) makes PMR containers larger than their non-PMR counterparts.
Interestingly, it also means that a std: :pmr: : vector<Ts is a different container from a
std: :vector<Ts>, which sometimes causes very real annoyances. For example, there is
no implicit way to copy the contents of a std: :pmr: : stringintoa std: : string, but
luckily, writing such a function is very easy.

« Every allocation or deallocation service call incurs a polymorphic indirection cost. This will
be minor to unnoticeable in programs where the called function performs some significant
computation, but the same costs can be painful when the called function performs little computation.

o PMR containers are parameterized on memory resources, and PMR memory resources trade
in bytes, not in objects. It’s unclear whether this is a good thing or a bad thing (it’s probably a
matter of perspective), as both approaches work, but trading in bytes (the simplest common
denominator) makes it easier to reduce the number of types in a program.

There are also advantages to the PMR approach:

« The type of a container is not influenced by the type of its allocator. All PMR containers simply
hold a pointer to the base class of all PMR memory resources named std: : pmr: :memory
resource.

o The work required to implement a PMR allocator is very small as one only needs to override
three virtual member functions. This opens up avenues to express reusable allocator libraries,
for example.

Under the PMR model, a std: :pmr: :polymorphic_allocator<Tx> object uses a
std: :pmr::memory resource* to determine how memory is managed. In most cases, when
designing a memory allocation strategy, what one does is write a class that specializes std: :memory
resource and determines what it means to allocate or deallocate memory with that strategy.
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Let’s look at a simple example of a PMR container with a sequential buffer memory resource, as we

just impleme

#include
#include
#include
#include
int main
enum
align
std::

re

std::
v.res
for (

V.

for (

st

std::
for (

st

}

nted such a mechanism with traditional allocators:

<prints>
<vector>
<string>
<memory resource>
O A
{ N~ = 10'000 };
as (int) char buf[N * sizeof (int)1{};
pmr: :monotonic buffer resource
s{ std::begin(buf), std::size(buf) };
pmr::vector<int> v{ &res };
erve (N) ;
int i = 0; 1 != N; ++1)
emplace back (i + 1);
auto n : v)
d::print ("{} ", n);
print ("\n {}\n", std::string(70, '-'));
char * p = buf; p != buf + std::size(buf);
p += sizeof (int))
d::print ("{} ", *reinterpret cast<int*>(p));

That’s quite simple, isn’t it? You might want to pay attention to the following:

o This program aims to “allocate” objects in a byte buffer located on the thread’s execution stack.

With t

hese objects being of type int, we ensure that buffer buf is appropriately aligned and

is of sufficient size to hold the objects that are meant to be stored therein.

o Astd::pmr::monotonic buffer resource object named res knows where the

buffer

to manage starts and how big it is. It represents a perspective on contiguous memory.

o Thestd: :pmr::vector<ints> used in this program knows about res and uses that

resour

ce to allocate and deallocate memory.

That’s all there is to it. In practice, this program does not allocate even a single byte from the free
store in order to store the int objects. Compared to what we had to do to achieve similar effects in

the past, this

might seem rejoiceful somewhat. At the end of the program, iterating through the byte

buffer and iterating through the container yield the same results.

That works n

icely and requires very little coding effort, but what if we wanted to express something

like a vector of st ring objects but wanted both the vector and the st ring objects it stores to use

the same allo

cation strategy?
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Nested allocators

Well, it so happens that PMR allocators propagate allocation strategies by default. Consider the
following example:

#include <prints>
#include <vectors
#include <strings>
#include <memory resource>
int main() {
auto make str = [] (const char *p, int n) ->
std::pmr::string {
auto s = std::string{ p } + std::to string(nm);
return { std::begin(s), std::end(s) };
}:
enum { N = 2'000 };
alignas (std::pmr::string) char buf[N]{};
std: :pmr: :monotonic_buffer resource
res{ std::begin(buf), std::size(buf) };
std::pmr::vector<std::pmr::string> v{ &res };
for (int 1 = 0; 1 != 10; ++1i)
v.emplace back(make str("I love my instructor ", 1i));
for (const auto &s : V)
std::print("{} ", s);
std::print ("\n {}\n", std::string(70, '-'));
for (char c : buf)
std::print ("{} ", <c);

}

This example also uses a buffer on the stack, but that buffer is used both for the std: : pmr: : vector
object and its metadata and for the std: : string objects therein. Propagation of the allocation
strategy from the enclosing container to the enclosed containers is implicit.

Do note that the make str lambda expression in that program is used to convert std: : string
(formatted to end with an integer) to a std: : pmr: : string. As mentioned earlier, the integration
of types from namespace std and types from namespace std: : pmr sometimes requires a little
bit of effort, but the APIs of classes in these namespaces are sufficiently similar for this effort to
remain reasonable.
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If you use this program, you will notice that the std: : pmr: : string objects contain the expected
text, but you will also probably notice from the last loop that buffer buf contains (among other
things) the text in the strings. That’s because our strings are rather short and, in most standard library
implementations, the small object optimization will be applied, leading to the actual text being inscribed
within the individual std: : pmr: : string instead of being allocated separately. This shows clearly
that the same allocation strategy, represented by our object of type std: :pmr: :monotonic
buffer resource, has propagated from the std: :pmr: : vector object to the enclosed
std: :pmr: : string objects.

Scoped allocators and the traditional model

It is possible to use a scoped allocator system with the traditional allocator approach, even though
we did not do so in this book. If you are curious, feel free to explore type std: : scoped
allocator adapter for more information.

We will now look at one last example that uses allocators to track the memory allocation process.

Allocators and data collection

As we saw in Chapter 8 when we wrote our own humble yet functional leak detector, memory
management tools are often used to gather information. For a non-exhaustive list, know that some
companies use them to track memory fragmentation or otherwise assess where objects are placed in
memory, maybe in a quest to optimize cache usage. Others want to evaluate when and where allocations
occur in the course of program execution to know whether a reorganization of the code could lead to
better performances. Of course, detecting leaks is useful, but we already knew that.

As our third and last example of PMR allocation usage, we will implement a tracing resource, in the
sense that we will track allocation and deallocation requests from a container to understand some
implementation choices made by that container. For the sake of this example, we will use a standard
library’s std: : pmr: : vector and try to understand its approach to increasing its capacity when
trying to insert objects into a full container. Remember that the standard mandates an amortized
constant complexity for operations such as push_back (), meaning that capacity should grow
rarely and most insert-at-end operations should take constant time. However, it does not impose a
specific growth policy: for example, one implementation could grow by a factor of 2, another by a
factor of 1.5, and another could prefer 1.67. Other options exist; each one has trade-offs, and each
library makes its own choices.
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We will express this tool as class tracing resource, which derives from std: : pmr: :memory
resource as expected by std: : pmr containers. This lets us show how easy it is to add a memory
resource type to this framework:

The base class exposes three member functions that we need to override: do_allocate (), which
is meant to perform an allocation request, do_deallocate (), whose role is, unsurprisingly,
to deallocate memory that is presumed to have been allocated through do_allocate (), and
do_1is_equal (), which is meant to let user code test two memory resources for equality.
Note that “equality” in this sense means that memory allocated from one could be deallocated
from the other.

Since we want to trace allocation requests but do not want to implement an actual memory
allocation strategy ourselves, we will use an upstream resource that will do the allocation and
deallocation for us. In our test implementation, that resource will be a global resource obtained
from std: :pmr: :new_delete resource () thatcalls : :operator new () and
: :operator delete () toachieve this objective.

For this reason, our allocation functions will simply “log” (in our case, print) the requested
allocation and deallocation sizes, then delegate the allocation work to the upstream resource.

A complete implementation follows:

#include <prints>

#include <iostream>

#include <vectors>

#include <strings>

#include <memory resource>

class tracing resource : public std::pmr::memory resource {

void* do allocate(
std::size t bytes, std::size t alignment
) override {
std::print ("do_allocate of {} bytes\n", bytes);
return upstream->allocate (bytes, alignment) ;
}
void do deallocate(
void* p, std::size t bytes, std::size t alignment
) override {
std::print ("do deallocate of {} bytes\n", bytes);
return upstream->deallocate(p, bytes, alignment);
}
bool do_is equal (
const std::pmr::memory resource& other
) const noexcept override {
return upstream->is equal (other) ;
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std: :pmr: :memory resource *upstream;
public:
tracing resource(std::pmr::memory resource *upstream)
noexcept : upstream{ upstream } {

};
int main() {
enum { N = 100 };
tracing resource tracer{
std: :pmr::new delete resource()
}i
std::pmr::vector<int> v{ &tracer };
for (int 1 = 0; 1 != N; ++1)
v.emplace back(i + 1);
for (auto s : v)
std::print ("{} ", s);

}

If you run this very simple program, you will develop an intuition for the growth strategy of your
standard library std: : pmr: : vector implementation.

Upsides and costs

As we have seen, there’s a lot to love about the PMR model. It is simple to use, relatively simple
to understand, and easy to extend. In many application domains, it is fast enough to meet most
programmers’ needs.

There are, of course, also domains that need the increased control over execution time and runtime
behavior that the traditional allocator model allows: no indirection that stems from the model, no
overhead in terms of object size... Sometimes, you just need all the control you can get. This means
that both models work and have their own valid reasons for being.

One very real benefit of PMR allocators is that they make it easier to build allocator and resource
libraries that one can combine and build from. The standard library offers a few useful examples from
the <memory resources header:

o We have already seen function std: :pmr: :new_delete resource (), which
provides a system-wide resource where allocation and deallocation are implemented
through : :operator new() and : :operator delete (), justas we have seen class
std: :pmr: :monotonic_buffer resource, which formalizes the process of sequential
allocation within an existing buffer.
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o Thestd: :pmr: :synchronized pool resourceand std::pmr::unsynchronized
pool resource classes model the allocation of objects from pools of blocks of some sizes.
Use the synchronized one for multithreaded code, of course.

o Thereare std: :pmr: :get default resource() and std::pmr::set _default
resource () functions that respectively obtain or replace the default memory resource of a
program. The default memory resource is, as could be expected, the same as what is returned
by function std: :pmr: :new_delete_ resource ().

o 'There is also a function std: :pmr: :null memory resource () thatreturnsa
resource that never allocates (its do_allocate () member function, when called, throws
std: :bad_alloc). This is interesting as an “upstream” measure: consider a sequential buffer
allocator system implemented through std: :pmr: :monotonic buffer resource
in which a request for memory allocation leads to a possible buffer overflow. Since, by default,
the upstream of a memory resource uses another resource that calls : : operator new ()
and : :operator delete (), this potential overflow will lead to an actual allocation, which
could have an undesirable impact on performance. Choosing a std: :pmr: :null memory
resource for the upstream resource ensures no such allocation will occur.

As we have seen and done, it is simple to add to this small set of memory resources and customize
the behavior of your containers to suit your needs with the PMR model.

Summary

This has been an eventful chapter, has it not? After venturing into explicit and implicit memory
allocation implementations in Chapter 12 and Chapter 13, this chapter explored allocators and how
these facilities let us customize the behavior of memory allocation in containers to match our needs.

We saw how a traditional allocator, ensconced in the type of its enclosing container, can be implemented
and used. We did so with a container that trades in contiguous memory as well as with a node-based
container. We also looked at how the task of writing (and using) such allocators evolved through
the years to become the contemporary traits-based allocators that implicitly synthesize default
implementations for most allocator services.

We then looked at the more recent PMR allocator model that represents a different take on memory
allocation and discussed its upsides and downsides. Equipped with the knowledge in this chapter, you
should have ideas of ways in which containers can be customized to meet your needs.

We are nearing the end of our journey. In our next (and last) chapter, we will look at some contemporary
problems of memory allocation in C++ and start to think about what awaits us in the near future.
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We are reaching the end of our journey, dear reader. Over the course of this book, we have examined
fundamental aspects of the C++ object model and discussed dangerous aspects of low-level programming.
We have looked at the fundamentals of resource management in C++ through the RAII idiom, looked
at how smart pointers are used, and explored how to write such a type. We also took control of the
memory allocation functions at our disposal (and we did that in many ways!), and we wrote containers
that manage memory themselves as well as through other objects or types, including allocators.

That was quite an experience!

What do we still have to cover? Well, so much... but there’s a limit to what we can put in a single
book. So, to conclude our discussion of memory management in C++, I thought we might have a
chat (yes, dear reader, just you and I) about some of the interesting topics in contemporary memory
management in C++. Yes, things that were so recently standardized (as of this writing) that most, if not
all, libraries still do not implement them, and things the standards committee is actively working on.

It's important to look at C++ as it is today and how it might be in the near future because the language
continues to evolve, and at quite a quick pace: a new version of the C++ standard is issued every
three years, and this has been the case since 2011. The evolution of C++ is too slow for some and too
quick for others, but it is unrelenting (we call this publishing rhythm the “train model” to highlight
its sustained pace) and brings regular progress and innovation to this language that we love so much.

As of this writing, in the early weeks of 2025, C++23 is a freshly adopted standard, having been
officialized in November 2024 (yes, I know: the ISO process does take some time), and the committee
is discussing proposals meant for C++26 (yes, already!) and C++29.

The memory management-related topics we will discuss in this chapter are either aspects of the C++23
standard that we have not discussed in this book yet or are some that, as this chapter is being written,
are under discussion for upcoming standards. Be aware, dear reader, that what you will now read may
become reality in the form you will read about, but it might also come along in another form after
discussions and debates in the C++ standards committee... or it might, in the end, never come to be.
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Even if these topics do not end up entering the C++ standard in the form in which they were initially
discussed, you will know that they will have been discussed, along with the problems they were meant
to solve, and that these features might become part of the language at some point. Who knows; maybe
you will have an epiphany and find the words to turn one of these ideas into a proposal that the C++
standards committee will discuss, and then adopt.

In this chapter, we will cover the following topics:

« Explicitly starting the lifetime of one or many objects without resorting to their constructors
o Trivial relocation: what it means and in what ways the standards committee is trying to address it

o Type-aware allocation and deallocation functions: what they would do and how to benefit
from them

Our approach in this chapter will be to present these new features (or features-to-be) through the
perspective of the problems we are trying to solve. The intent behind this approach is to make it clear
that these features address actual issues and will help real programmers do their jobs better.

I hope this chapter will give you insights into an interesting (albeit non-exhaustive) set of contemporary
issues in memory management and associated facilities as they pertain to C++.

( A
A note on code examples for this chapter

If you try to compile the examples in this chapter, esteemed reader, you might find yourself
saddened by the fact that some will not compile yet and others might not compile for a while, or
ever. This situation is normal for a chapter such as this one: we will be discussing a combination
of features that have been very recently added to the C++ language (recently enough that they
have not yet been implemented at the time of authoring this book) and features that are under
discussion by the C++ standards committee. Take the examples as illustrations, then, and adjust
them as the features take a more formal shape.

Technical requirements
You can find the code files for this chapter in the book’s GitHub repository: https://github.com/

PacktPublishing/C-Plus-Plus-Memory-Management/tree/main/chapterls.

Starting object lifetime without constructors

Consider the case of a program that consumes serialized data from a stream and that seeks to make
objects from that data. Here’s an example:

#include <fstream>
#include <cstdints>
#include <array>


https://github.com/PacktPublishing/C-Plus-Plus-Memory-Management/tree/main/chapter15
https://github.com/PacktPublishing/C-Plus-Plus-Memory-Management/tree/main/chapter15

Starting object lifetime without constructors

#include <memorys>
#include <string views>
struct Point3D ({
float x{}, v{}., =z{};
Point3D() = default;
constexpr Point3D(float x, float y, float z)

x{x}.ovly} oz2{ 2z} {

b5
//
// reads at most N bytes from file named file name and
// writes these bytes into buf. Returns the number of
// bytes read (postcondition: return value <= N)
//
template <int N>
int read from stream(std::array<unsigned char, N> &buf,

std::string view file name) {
//

}
//

As you can see, in this example, we have the Point 3D class. An object of this type represents a set of
x, ),z coordinates. We also have a read from stream<Ns () function that consumes bytes from
a file. The function then stores at most N bytes into argument bu £, which is passed by reference and

returns the number of bytes read (which might be zero but will never be more than N).

For the sake of this example, we will suppose that the file from which we plan to read is known to
contain the binary form of serialized Point 3D objects, equivalent to objects of type £1oat serialized
in binary format by groups of three. Now, consider the following program, which consumes the byte

representation of at most four objects of type Point3D from a file named some_file.dat:

//
#include <prints>
#include <casserts>
using namespace std::literals;
int main() {
static constexpr int NB_PTS = 4;
static constexpr int NB BYTES =
NB PTS * sizeof (Point3D);
alignas (Point3D)
std::array<unsigned char, NB BYTES> buf{};
if (int n = read from_stream<NB BYTES> (
buf, "some file.dat"sv
); n 1= 0) {
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// print out the bytes: 0-filled left, 2
// characters-wide, hex format
for (int 1 = 0; 1 != n; ++1)

Std::print("{:0<2x} ", buf[i]);
std: :println() ;
// if we want to treat the bytes as Point3D objects,
// we need to start the lifetime of these Point3D
// objects. If we do not, we are in UB territory (it
// might work or it might not, and even if it works
// we cannot count on it)
const Point3D* pts =

std::start lifetime as array(buf.data(), n);
assert(n % 3 == 0);
for (std::size t i = 0;

i !=n / sizeof (Point3D); ++i)
std::print ("{} {} {}\n",
ptsli] .x, ptslil.y, ptsli].z);

}

This example program reads bytes from a file into a std: : array object big enough to contain
the bytes of four objects of type Point 3D, having first ensured that this array would be aligned
appropriately if it were to hold objects of that type. This alignment consideration is essential as we
plan to treat the bytes as objects of that type once those bytes have been read.

The point of this example is that once the bytes have been read, the programmer is confident (well, as
confident as one could be) that all the bytes are correct for some hypothetical Point 3D objects but
still cannot use these objects as their lifetime has not yet started.

This sort of situation traditionally makes many C programmers smile and some C++ programmers
cringe: the C++ object model imposes constraints on programs that make it UB (see Chapter 2) to
use objects outside of their lifetime, even if all the bytes are right and alignment constraints have been
respected, whereas C is less restrictive. To use the contents of the buffer we just used to read from that
file, our options are traditionally as follows:

« Toloop through the array of bytes, write appropriately-sized subsets of those bytes into objects of
type £1oat, then call the constructors of Point 3D objects and put them in another container.

o Toreinterpret cast thearray of bytes into an array of Point 3D objects and hope for the
best, leading to code that might or might not work and, being UB, would not be portable anyway
(not even between versions of a given compiler). With our Point 3D objects, it will probably
give the results one would hope for, but replace these with, say, std: : complex<float>
objects from the standard library (a type that probably has a similar inner structure as our
Point3D type) and... well, who knows what might happen?
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o Tostd: :memcpy () thearray of bytes into itself, casting the return value to type Point3D*
and using the resulting pointer as if it were an array of Point 3D objects. That’s actually valid
(the std: :memcpy () function is part of a select set of functions that are allowed to start the
lifetime of objects). There is, of course, the risk of creating an actual copy of the bytes (which
would be wasted execution time); some standard libraries are said to recognize that pattern
and just behave as if the call was a no-op, but a special kind of no-op that can start the lifetime
of objects.

None of these options seems truly satisfactory, however, so a cleaner solution that does not rely on
compiler-specific optimizations is needed. To that effect, the C++23 standard introduces a set of
constexpr functions (accompanied by a number of overloads) that are called std: : start
lifetime as _array<T>(p,n) and std::start lifetime as<T> (p).Both are portable
forms of magical no-op functions that inform the compiler that the bytes are OK and to consider the
lifetime of the pointees as having begun.

Of course, if for some reason the pointees have non-trivial destructors, you should make sure that
your code calls these destructors when appropriate. Expect this situation to be rare and unusual.
Since we consumed raw bytes from some source of data and turned these bytes into objects, the
probability that the resulting objects own resources is somewhat slim. Of course, these objects can
acquire resources once their lifetimes have begun. Let’s be honest, dear reader; C++ programmers
are nothing if not creative!

Thissetof std: :start lifetime ... functions is expected to be a boon to network programmers
everywhere, in particular. These individuals often receive data frames of well-formed byte sequences
that they need to turn into objects for the purpose of further processing. These functions are also
expected to be useful to programs that consume bytes from files in order to form aggregates. Many
programmers think that just reading bytes into an array of bytes and casting that array to an intended
type (or array thereof) suffices to get access to the (hypothetical) object (or objects) therein and are
surprised when their C++ code starts behaving unexpectedly. C++ is a systems programming language,
and the set made of these std: :start lifetime_ ... functions closes a gap where it could
be said to be underperforming.

Of course, these functions form a very sharp toolset due to the risks involved: non-trivially destructible
objects whose lifetime starts this way are especially suspicious, and you have to be highly trusting of
whatever facility provided the bytes in which an object’s lifetime is manually and explicitly started.
Thus, these facilities should be used with utmost care.

A note to complete this section: as of this writing, no major compiler yet implements these functions,
even though they have been standardized and are part of C++23. Maybe they will be implemented by
the time you get to read this, who knows?
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Trivial relocation

As you know, dear reader, C++ is known in the programming community as one of those languages
that we use when we need to get the most out of our computer or whatever hardware platform interests
us. Some of the language’s credos can be paraphrased as “you shall not pay for what you do not use”
and “there shall be no room for a lower-level language (except for the occasional bit of assembly code)”,
after all. The latter explains the importance of the std: : start lifetime ... functions of the
previous section.

That’s probably why, when it becomes evident that we could do even better than we are already doing
in terms of execution speed, that becomes a subject of interest to the C++ programmer community
in general, and more specifically to members of the C++ standards committee. We all take these core
credos of the language to heart.

One case where we could do better is when we encounter types for which moving a source object to
a destination object, followed by destroying the original object, could in practice be replaced by a call
to std: :memcpy () : directly copying an array of bytes is faster than performing a series of moves
and destructors (and if it isn’t, there’s probably some work required on your std: : memcpy ()
implementation), even though move assignments and destructors make for a fast combination.

It turns out that there are many types for which such an optimization could be considered, including
std::string, std: :any,and std: :optional<T> (depending on what type T is), classes such
as Point3D from the previous section, any type that does not define any of the six special member
functions seen in Chapter I (including fundamental types), and so on.

To understand the impact, consider the following resize () free function, which mimics a
C::resize () member function for some container, C, that manages contiguous memory such as
our Vector<T> type in the various incarnations seen in this book. This function resizes arr from
0ld_cap (the old capacity) to new_cap (the new capacity), filling the space at the end with default
T objects. The highlighted lines of the function are what interests us here:

//

// This is not a good function interface, but we want to

// keep the example relatively simple

//

template <class T>

void resize

(T *&arr, std::size t old cap, std::size t new cap) {
//
// we could deal with throwing a default constructor
// but it would complicate our code a bit and these
// added complexities, worthwhile as they are, are
// besides the point for what we are discussing here

//
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static_assert (
std::is_nothrow_default_contructible_v<T>
)i

//

// sometimes, there's just nothing to do

//

if (new _cap <= old cap) return arr;

//

// allocate a chunk of raw memory (no object created)
//

auto p = static cast<T*>(

std::malloc (new cap * sizeof (T))
)i
if (1p) throw std::bad alloc{};
//

At this point, we are ready to copy (or move) objects:

//
//
// 1f move assignment does not throw, be aggressive
//
if constexpr(std::is nothrow move assignable v<T>) {
std::uninitialized move(arr, arr + old cap, p):;
std::destroy(arr, arr + old cap);
} else {
//
// since move assignment could throw, let's be
// conservative and copy instead
//
try {
std::uninitialized copy(arr, arr + old cap, p);
std: :destroy (arr, arr + old cap) ;
} catch (...) {
std: :free(p) ;
throw;

}

//

// £ill the remaining space with default objects

// (remember: we statically asserted that T::T() is
// non-throwing)

//
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std::uninitialized default construct (
p + old cap, p + new_cap
) g
//
// replace the old memory block (now without objects)
// with the new one
//
std: :free (arr) ;
arr = p;

}

Looking at the highlighted lines of that function, even though the combination of
std::uninitialized move () followed by std: :destroy () makes for a fast path, we
could be even faster than this and replace a linear number of move assignment operators followed by
a linear number of destructor calls with a single call to std: :memcpy ().

How do we achieve this? Well, there are many competing proposals by Arthur O’Dwyer, Mingxin
Wang, Alisdair Meredith, and Mungo Gill, among others. Each of these proposals has merits, but
these proposals have in common the following factors:

o Providing a way to test a type for “trivial relocatability” at compile time, for example, a
std::is_trivially relocatable v<T> trait.

» Providing a function that actually relocates the objects, for example, std: : relocate () or
std::trivially relocate (), which take a source pointer and a destination pointer as
arguments and relocate the source object to the destination location, concluding the lifetime
of the original object and then starting the lifetime of the new one

« Providing a way to mark a type as being trivially relocatable, for example through a keyword
or an attribute

« Providing rules to deduce trivial relocatability for a type at compile time

The details can vary depending on the approach, but if we suppose these tools, the same
resize () function could benefit from trivial relocation by a slight adjustment to the previously
presented implementation:

template <class T>
void resize
(T * &arr, std::size t old cap, std::size t new cap) ({
static assert(
std::1s nothrow default contructible v<T>
)i
if (new_cap <= old cap) return arr;
auto p = static cast<T*>(
std::malloc (new cap * sizeof (T))
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) B
if (!p) throw std::bad alloc{};
//
// this is our ideal case
//
if constexpr (std::is trivially relocatable v<T>) {
// equivalent to memcpy() plus consider the
// lifetime of objects in [arr, arr + old cap)
// finished and the lifetime of objects in
// [p, p + old cap) started
//
// note: this supposes that the trait
// std::is trivially relocatable<T>
// implies std::is trivially destructible<T>
std::relocate(arr, arr + old cap, p):;
//
// 1f move assignment does not throw, be aggressive
//
} else if constexpr (
std::is nothrow move assignable v<T>
) {
std::uninitialized move(arr, arr + old cap, p);
std::destroy(arr, arr + old cap);
} else {
// ... see previous code example for the rest

}

This seemingly simple optimization has been reported to provide considerable benefits, with some
having claimed up to 30% speedup in common cases, but this is experimental work, and more
benchmarks are expected to come if proposals coalesce (as we expect them to) into something that
will be integrated into the C++ standard.

Such potential speedups are part of what the C++ language aims to make possible, so we can reasonably
expect trivial relocatability to become reality in the foreseeable future. The question is “how”: how
should compilers detect the trivial relocatability property? How should programmers be able to indicate
that property on their own types when the default trivial relocatability deduction rules are not met?

As of February 2025, the standard committee voted trivial relocation into what will become C++26
standard. This means we can expect that some programs that compiled with previous standards of
the C++ language and are recompiled with C++26 could just run faster without changing a single
line of source code.
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Type-aware allocation and deallocation functions

Our last topic for this chapter on new approaches to memory management and optimization
opportunities that pertain to object lifetime is type-aware allocation and deallocation functions. This
is a novel approach to allocation functions for cases where user code might want to somehow use
information with respect to what type is undergoing allocation (and eventual construction) to guide
the allocation process.

We saw one facet of such features in Chapter 9 when describing the destroying delete mechanism made
possible by C++20, where a member-function version of T: : operator delete () is passed T*
instead of the abstract void* as an argument, and is for that reason made responsible for both the
finalization of the object and the deallocation of its underlying storage. We saw that there are cases
where this reveals interesting optimization opportunities.

What is under discussion for C++26 is a new family of operator new () and operator delete ()
member functions, as well as free functions that take a std: : type identity<T> object as the
first argument for some type T, guiding the selected operator towards some specialized behavior for
that type T. Note that these type-aware allocation functions are really allocation functions: they do
not perform construction, nor does their deallocation counterpart perform finalization.

( A

What is the std::type_identity<T> trait?

The expression typename std::type identity<Ts>::type correspondsto T. OK,
that seems trivial enough. So, what role does this trait play in contemporary C++ programming?
It happens that trait std: : type identity<T>, introduced with C++20, is a tool that is
typically used to provide additional control over argument type deduction in generic functions.

For example, with the function signature template <class T> void £ (T, T),you
could call £ (3,3) as both arguments are of the same type, but not £ (3,3.0) as int and
double are distinct types. That being said, by replacing either argument type with std: : type
identity t<T>,youcouldcall f£(3,3.0),andsince T would be deduced with the other
argument (the one of type T), that type would be used for the other (the argument for which
the typeis std: :type identity t<Ts>). That would lead to both arguments being int
or double, depending on which argument is of type T.

The idea of using std: :type identity<Ts> (notstd::type identity t<T>)
instead of plain T as the type of the first argument in type-aware allocation functions is to
make it clear that we are using this specific specialized overload of operator new () and
that this is not an accident or a call to some other specialized form of this allocation function,
such as those described in Chapter 9.
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This means that you could provide specialized allocation functions for a specific class, X, through the
following function signatures:

#include <new>

#include <type traits>

void* operator new(std::type identity<X>, std::size t n);
void operator delete(std::type identity<X>, void* p);

In such cases, when calling new X, for example, the specialized form will be preferred to the usual
form of operator new () and operator delete (), beingassumed to be more appropriate
unless the programmer takes steps to prevent it.

It also means that, given a specialized allocation algorithm that applies to type T only if special
alloc_alg<Ts is satisfied, you could provide allocation functions that use this specialized algorithm
for type T through the following function signatures:

#include <new>
#include <type traits>
template <class T> requires special alloc alg<T>
void* operator new(std::type identity<T>, std::size t n);
template <class T> requires special alloc alg<T>
void operator delete(std::type identity<T>, void* p);

This provides new avenues for optimizations such as those described in Chapter 10, for example.
Consider this simple example where we have a cool allocation algorithm for types X and Y, but that
algorithm does not apply to other classes, such as Z:

#include <concepts>
#include <type traits>

class X { /* ... */ };
class Y { /* ... */ };
class z { /* ... */ };

template <class C>
concept cool alloc algorithm =
std::is_same v<C, X> || std::is_same v<C, Y>;
template <class T> requires cool alloc algorithm<T>
void* operator new(std::type identity<T>, std::size t n) {
// apply the cool allocation algorithm
}
template <class T> requires cool alloc algorithm<T>
void operator delete(std::type identity<T>, void+* p) {
// apply the cool deallocation algorithm
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#include <memory>
int main()
// uses the "cool" allocation algorithm
auto p = std::make unique<X>();
// uses the standard allocation algorithm
auto g = std::make unique<Z>();
} // uses the standard deallocation algorithm for gq
// uses the "cool" deallocation algorithm for p

The type-aware allocation functions can also be member function overloads, leading to algorithms
that apply to the class where these functions are defined, as well as to derived classes thereof.

Consider the following example, inspired by a more complex example found in the proposal for the
feature that is described at https://wg21.1ink/p2719:

class DO; // forward class declaration
struct B {
// 1)
template <class T>
void* operator new(std::type identity<T>, std::size t);
// ii)
void* operator new(std::type identity<D0>, std::size t);
b5
//

As expressed, i) applies to B and its derived classes, but 11) applies to the specific case of the forward-
declared class DO and will only be used if DO is indeed a derived class of B.

Continuing this example, we now add three classes that each derive from B, with D2 adding 1ii),
which is a non-type-aware member function overload of operator new():

//
struct DO : B
struct D1 : B { };
struct D2 B

// iii)

void *operator new(std::size t);
¥
//


https://wg21.link/p2719

Summary

Given these overloads, here are some examples of expressions calling overloads i), i1),and ii1i):

10 oo
void £() {

new B; // 1) where T is B

new DO; // ii)

new D1; // 1) where T is D1

new D2; // 1ii)

::new B; // uses appropriate global operator new
}

As you can see, dear reader, type-aware allocation functions will, if accepted into the C++ standard,
provide new ways to control what memory allocation algorithm will be used (depending on the
circumstances) while still leaving user code in control, leaving it able to defer to the global operator
new () function if that is the preferred option, as the last line of the £ () function in the previous
example shows.

Contrary to the destroying delete feature of C++20, which performs both the finalization of the object
and the deallocation of the underlying storage, the type-aware versions of operator new () and
operator delete () are only allocation functions, and as of this writing, there is no plan to
provide a type-aware version of destroying delete.

Summary

In this chapter, we have had a glimpse of the future with the std: : start lifetime ...

functions that are part of C++23 but, as of this writing, have not been implemented by any major
compiler. We have also looked at probable (but not yet official) parts of the future of C++ with the
potential support of trivial relocatability and the possibility of introducing type-aware versions of
operator new () and operator delete().

With every step, C++ becomes a richer and more versatile language with which we can do more
and express our ideas in more precise ways. C++ is a language that provides ever more significant
control over the behavior of our programs. As powerful as C++ is today, and as powerful as it makes
programmers like us, this chapter shows we can still continue to get better.

We are at the end of our journey, at least for now. I hope the trip was just eventful enough to be
pleasant and entertaining to you, esteemed reader, and that you have learned a thing or two along
the way. I also hope that some of the ideas discussed here will help you in your tasks and enrich your
perspective of C++ programming.

Thanks for accompanying me. I hope the journeys ahead for you will be enjoyable, just as I hope this
book will make your toolbox better and that you will continue exploring on your own. Safe travels.
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Annexure:
Things You Should Know

This book supposes readers possess some technical background that some might not consider to be
"common knowledge". In the following sections, you might find the complementary information that
will help you get the most out of this book. Refer to it as needed, and enjoy!

Feel free to skim through the following sections if you think you know their contents well and take
a closer look at those you're less comfortable with. You could even skip this entire section and come
back if you realize while reading this book that these topics are not things you know as well as you
thought you did.

The overall goal is to get the most out of this book after all!

struct and class

In C++, the words struct and class essentially mean the same thing, and code such as the
following is perfectly legal:

struct Drawable {
virtual void draw() = 0;
virtual ~Drawable () = default;

b5

class Painting : public Drawable {
void draw() override;

¥
Here are some details to note:

o C++hasno abstract keyword like some other languages do. An abstract member function
in C++is virtual and has =0 instead of a definition. The virtual keyword means can be
specialized by derived classes (the =0 part essentially means must be specialized...). We often
talk of overriding the function when specializing a virtual member function. Functions
that must be overridden are said to be pure virtual functions.
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Providing a default implementation for a pure virtual function

One can provide a definition for an abstract member function: it’s not typical, but it’s possible.
That can be useful in cases where the base class wants to provide a default implementation of
a service but requires that the derived classes at least consider providing their own. Here is

an example:

#include <iostream>

struct X { virtual int £() const = 0; };

int X::£() const { return 3; }

struct D : X { int £() const override ({

bi

return X::£() + 1; }

void g(X &x) { std::cout << x.f() << '\n'; }
int main() {

D d;
// X x; // illegal: X has a pure virtual member function
g(d);

J

C++ classes have destructors that handle what happens when an object reaches the end of its
lifetime. Contrary to many other popular languages, automatic and static objects in C++ have
deterministic lifetimes, and using destructors efficiently is idiomatic in that language. In a
polymorphic class (a class with at least one virtual member function), it is customary to
have a virtual destructor (here, virtual ~Drawable ()) to indicate that in a situation
such as the following, destroying an object used through an indirection such as p should
effectively destroy the pointed-to object (Painting), not the one denoted by the pointer’s
static type (Drawable):

//

// the following supposes that Painting is a public
// derived class of Drawable as suggested earlier in
// this section

//

Drawable *p = new Painting;

//
delete p; // <-- here

A class can derive from a struct justasa struct can derive from a class as both are
structurally equivalent. The main differences are that for a st ruct, inheritance is public
by default (but that can be changed using protected or private) and the same goes for
members, whereas for a class, inheritance and members are private by default (but again,
that can be changed).



std:size_t

Note, in passing, that it’s perfectly fine in C++ to have a member function with an access qualifier in
the base class (for example, Drawable: :draw (), which is public) and in a derived class (for
example, Painting: :draw (), which is private). Some other popular languages do not allow this.

std::size t

Type std: :size_t is an alias for some unsigned integral type, but the actual type can vary from
compiler to compiler (it could be unsigned int,unsigned long,unsigned long long,
and so on).

One frequently encounters type std: : size_t when discussing container sizes and the space
occupied in memory by an object as expressed by operator sizeof.

The sizeof operator

The sizeof operator yields the size in bytes of an object or a type. It is evaluated at compile time and
will be used extensively throughout this book as we will need that information to allocate properly
sized blocks of memory:

auto s0 = sizeof (int); // s0 is the number of bytes in an
// int (parentheses required)
int n;
auto sl = sizeof n; // sl is the number of bytes occupied
// by sl1, which is identical to sO.
// Note: for objects, parentheses are
// allowed but not mandated

Object size is one of the key components of memory management and influences the speed at which
programs will execute. For that reason, it is a recurring theme throughout this book.

Assertions

Assertions are statements of fact that programmers think should be upheld by code. Some are dynamic,
based on information known at runtime, for example, “The following pointer should not be null at this
point.” Others are static, based on information known at compile time, for example, “This program
has been written with the non-portable assumption that an int occupies four bytes of storage.” In the
latter case, we have a program that has been written based on a non-portable assumption and we have
to live with this choice, but we do not want our code to compile on platforms where that assumption
does not hold.
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For dynamic assertions, it is customary to use the assert () macro from the <cassert> header. That
macro takes as argument a boolean expression and halts program execution if it evaluates to false:

void f(int *p)
assert (p); // we hold p != nullptr to be true
// use *p

}

Note that many projects disable assert () from production code, something that can be done by
defining the NDEBUG macro before compilation. As such, make sure never to put expressions with
side effects in assert () as it might be removed by compiler options:

int *obtain buf (int) ;
void danger (int n)
int *p; // uninitialized
assert(p = obtain buf(n)); // dangerous!!!
// use *p, but p might be uninitialized if assert ()
// has been disabled. This is very bad

}

Contrary to assert (), which is alibrary macro, static_assert is a language feature that prevents
compilation if its condition is not met. Based on the example mentioned previously where a company
might have built software based on a non-portable assumption such as sizeof (int) ==4, we could
make sure that code does not compile (and do bad things) for platforms that are not really supported:

static_assert (sizeof (int)==4); // only compiles if the
// condition holds

Fixing bugs before shipping a software product is significantly better for developers and users alike
than fixing bugs after the software has been sent “in the wild” Consequently, static_assert can
be seen as a powerful tool for delivering higher-quality products.

In this book, we will use static_assert regularly: it has no runtime cost and documents our
assertions in a verifiable manner. It’s the sort of feature that essentially has no downsides.

Undefined behavior

Undefined behavior, often abbreviated to UB, results from a situation in which the standard does
not prescribe a specific behavior. In the C++ standard, UB is behavior for which no requirements
are imposed. It can lead to the problem being ignored, just as it can lead to a diagnostic or program
termination. The key idea is that if your program has undefined behavior, then it’s not playing by the
rules of the language and is broken; its behavior is not guaranteed on your platform, it’s not portable
between platforms or compilers, and it cannot be relied upon.



Type traits

A correctly written C++ program has no undefined behavior. When faced with a function that contains
undefined behavior, the compiler can do just about anything with the code in that function, which
makes reasoning from source code essentially impossible.

Undefined behavior is one of the preeminent “things to be careful with” listed in Chapter 2. Strive to
avoid undefined behavior: it always comes back to bite you if you leave it in.

Type traits

Over the years, C++ programmers have developed various techniques to reason about the properties
of their types, mostly at compile time. Inferring such things as “Is the T type const?” or “Is the T type
trivially copyable?” can be very useful, particularly in the context of generic code. The constructs resulting
from these techniques are called type traits, and many of those that came into common practice over
time (as well as some that require compiler support to be implemented) were standardized and can
be found in the <type traitss header.

The ways in which standard type traits are expressed have standardized over time, going from complex
beasts such as std: :numeric_limits<Ts>, which provide a lot of different services for type
T, to more specific services such as std: :is_const<T> (Is the type T actually const?) or
std: :remove const<Ts> (Please give me the type that’s like T but without the const qualification
if there was one), which yield either a single type or a single value. Practice has shown that small,
unitary type traits that yield either a type (named type) or a compile-time-known value (named
value) can be considered “best practices,” and most contemporary type traits (including standard
ones) are written this way.

Since C++14, the traits that yield types have aliases that end with _t (for example, instead of writing
the rather painful typename std::remove const<T>: :type incantation, one can now write
std::remove_ const_ t<Ts instead) and since C++17, the traits that yield values have aliases
that end with v (for example, instead of writing std: : is_const<T>: :value, one can now
write std: :is_const_ v<T»>).

( 1
What about concepts?

Type traits are a programming technique that’s been part of C++ for decades, but since C++20,
we have had concepts, and concepts are sort of like traits (often, they are expressed through
traits) but are stronger in the sense that they are part of the type system. This book does not
use concepts much, but you (as a programmer) really should get acquainted with them. They
are extremely powerful and extremely useful to contemporary C++ programming.
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The std::true_type and std::false_type traits

When expressing type traits, the standard library applies the common practice of using the names
type for types and value for values, as in this example:

// hand-made is const<T> and remove const<T> traits
// (please use the standard versions from <type traits>
// instead of writing your own!)
template <class> struct is const {
static constexpr bool wvalue = false; // general case
¥
// specialization for const types
template <class T> struct is const<const T> {
static constexpr bool value = true;
}i
// general case
template <class T> struct remove const {
using type = T;
b
// specialization for const T
template <class T> struct remove const<const T> {
using type = T;

he

It happens that many type traits have Boolean values. To simplify the task of writing such traits and
to ensure that the form of these traits is homogeneous, you will find types std: : true_type and
std::false typeinthe <type traitss header. These types can be seen as the type system
counterparts of constants t rue and false.

With these types, we can rewrite traits such as 1s_const as follows:

#include <type traits>
// hand-made is_const<T> (prefer the std:: versions...)
template <class> struct is const : std::false type
template <class T>

struct is const<const T> : std::true type

¥

These types are both a convenience and a way to express ideas more clearly.



The std::conditional<B,T,F> trait

The std::conditional<B,T,F> trait

It's sometimes useful to choose between two types based on a condition known at compile time.
Consider the following example where we seek to implement a comparison between two values of
some type T that behave differently for floating-point types and for “other” types such as int all
grouped together for simplicity:

#include <cmaths>
// we will allow comparisons between exact representations
// or floating point representations based on so-called tag
// types (empty classes used to distinguish function
// signatures)
struct floating {};
struct exact {};
// the three-argument versions are not meant to be called
// directly from user code
template <class T>
bool close enough(T a, T b, exact) {
return a == b; // fine for int, short, bool, etc.
}
template <class T»>
bool close enough(T a, T b, floating) {
// note: this could benefit from more rigor, but
// that's orthogonal to our discussion
return std::abs(a - b) < static cast<T>(0.000001) ;
}
// this two-argument version is the one user code is
// meant to call
template <class T>
bool close enough(T a, T b) ({
// OUR GOAL: call the "floating" version for types
// float, double and long double; call the "exact"
// version otherwise

}

You might notice that we did not name the arguments of type exact and floating in our
close_enough () functions. That’s fine as we are not using these objects at all; the reason for these
arguments is to ensure both functions have distinct signatures.
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Thereisastd: :is floating point<Ts> traitinthe <type traits> header with the value
of true for floating-point numbers, and false otherwise. If we did not have this trait, we could
write our own:

// we could write is floating point<T> as follows
// (but please use std::is floating point<T> instead!
template <class> struct is floating point
std::false type {}; // general case
// specializations
template <> struct is floating point<float>
std: :true type {};
template <> struct is floating point<doubles>
: std::true type {};
template <> struct is floating point<long double>
: std::true type {};
// convenience to simplify user code
template <class T>
constexpr bool is_floating point_v =
is floating point<T>::value;

We can use this to make our decision. However, we do not want to make a runtime decision here since
the nature of type T is fully known at compile time, and nobody wants to pay for a branch instruction
when comparing integers!

The std: :conditional<B, T, F> trait can be used to make such a decision. If we wrote our
own, it could look like this:

// example, home-made conditional<B,T,F> type trait
// (prefer the std:: version in <type traitss)
// general case (incomplete type)
template <bool, class T, class F> struct conditional;
// specializations
template < class T, class F>
struct conditional<true, T, F> ({
using type = T; // constant true, picks type T
b5
template < class T, class F>
struct conditional<false, T, F> {
using type = F; // constant true, picks type F
IF
// convenience to simplify user code
template <bool B, class T, class F>
using conditional t = typename conditional<B,T,F>::type;



Algorithms

Given this trait, we can choose, at compile time, one of two types based on a compile-time Boolean
value, which is exactly what we were trying to do:

//
// this version will be called from user code
template <class T»>
bool close enough(T a, T b) ({
return close_enough (
a, b, conditional t<
is floating point v<T>,
floating,
exact
> {}
) 5
}

The way to read this is that the third argument in the call to close_enough () (found within our
two-argument, user-facing close enough () function) will either be an object of type f1oat ing
or an object of type exact , but the exact type will be picked at compile time based on the value of
theis floating point v<T> compile-time constant. The end result is that we instantiate an
object of one of these two empty classes, call the appropriate algorithm, and let function inlining do
the rest and optimize the entire scaffolding away.

Algorithms

The C++ standard library contains, among other gems, a set of algorithms. Each of these functions
performs the tasks that a very well-written loop would do but with specific names, complexity
guarantees, and optimizations. As such, let’s say we write the following:

int vals([l{ 2,3,5,7,11 };

int dest[5];

for(int i = 0; 1 != 5; ++1i)
dest [i] = wvals|[i];

It is idiomatic in C++ to write the following instead:

int vals(1{ 2,3,5,7,11 };
int dest [5];
std: :copy(begin(vals), end(vals), begin(dest)):;

The important thing to know here is that C++ sequences are of the form [begin, end), meaning
that for all algorithms, the beginning iterator (here, begin (vals)) is included and the ending
iterator (here, end (vals) ) is excluded, making [begin, end) a half-open range. All algorithms
in <algorithm> and in its cousin header, <numeric >, follow that simple convention.
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( A
What about ranges?

The <ranges> library is a major addition to the C++ standard library since C++20 and can
sometimes be used to lead to even better code than the already tremendous <algorithm>
library. This book does not use ranges much, but that does not mean this library is not wonderful,
so please feel free to use it and investigate ways through which it can be used to make your
code better.

. J

Functors (function objects) and lambdas

It is customary in C++ to use functors, otherwise called function objects, to represent stateful
computations. Think, for example, of a program that would print integers to the standard output
using an algorithm:

#include <iostream>
#include <algorithm>
#include <iterators>
using namespace std;

void display(int n) { cout << n << ' '; }
int main()
int vals([l{ 2,3,5,7,11 };
for each(begin(vals), end(vals), display);

}

This small program works fine, but should we want to print elsewhere than on the standard output,
we would find ourselves in an unpleasant situation: the for_each () algorithm expects a unary
function in the sense of “function accepting a single argument” (here, the value to print), so there’s
no syntactic space to add an argument such as the output stream to use. We could “solve” this issue
through a global variable, or using a different function for every output stream, but that would fall
short of a reasonable design.

If we replace the display function with a class, which we’ll name Display to make them visually
distinct, we end up with the following:

#include <iostream>
#include <algorithm>
#include <iterators>
#include <fstream>
using namespace std;
class Display {
ostream &os;
public:
Display(ostream &os) : os{ os } {

}



Friends

}i

void operator() (int n) const { os << n << ' '; }

int main() {

}

int vals([]{ 2,3,5,7,11 };

// display on the standard output

for each(begin(vals), end(vals), Display{ cout });
ofstream out{"out.txt" };

// write to file out.txt

for each(begin(vals), end(vals), Display{ out });

This leads to nice, readable code with added flexibility. Note that, conceptually, lambda expressions
are functors (you can even use lambdas as base classes!), so the previous example can be rewritten
equivalently as follows:

#include <iostream>

#include <algorithm>

#include <iterator>

#include <fstream>

using namespace std;

int main() {

}

int vals[l{ 2,3,5,7,11 };

// display on the standard output

for each(begin(vals), end(vals), [](int n) {
cout << n << ' ';

B

ofstream out{"out.txt" };

// write to file out.txt

for each(begin(vals), end(vals), [&out] (int n) {
out << n << ' ';

b

Lambdas are thus essentially functors that limit themselves to a constructor and an operator ()
member function, and this combination represents the most common case by far for such objects.
You can, of course, still use full-blown, explicit functors if you want more than this.

Friends

C++ offers an access qualifier that’s not commonly found in other languages and is often misunderstood:
the friend qualifier. A class can specify another class or a function as one of its friends, giving said
friend qualifier full access to all of that class’s members, including those qualified as protected
or private.
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Some consider £riend to break encapsulation, and indeed it can do this if used recklessly, but
the intent here is to provide privileged access to specific entities rather than exposing them as
public or protected members that were not designed to that end, leading to an even wider
encapsulation breakage.

Consider, for example, the following classes, where thing is something that is meant to be built from
the contents of a file named name by a thing factory thats able to validate the file’s content
before constructing the thing:

class thing {
thing(string view); // note: private
// ... various interesting members
// thing factory can access private members of
// class thing
friend class thing factory;
¥
// in case we read an incorrect file
class invalid format({};
class thing factory {
// ... various interesting things here too
string read file(const string &name) const {
ifstream in{ name };
// consume the file in one fell swoop, returning
// the entire contents in a single string
return { istreambuf iterator<char>{ in },
istreambuf iterator<char>{ } };
}
bool is valid content (string view) const;
public:
thing create thing from(const string &name) const
auto contents = read file(name) ;
if (!is valid content (contents))
throw invalid format({};
// note: calls private thing constructor
return { contents };

}i

We do not want the whole world to be able to call the private-qualified thing constructor that takes
an arbitrary string view asan argument since that constructor is not meant to handle character
strings that have not been validated in the first place. For this reason, we only let thing factory
use it, thus strengthening encapsulation rather than weakening it.



Friends

It is customary to put a class and its friends together when shipping code as they go together: a friend
of a class, in essence, is an external addition to that class’s interface. Finally, note that restrictions
apply to friendship. Friendship is not reflexive; if A declares B to be its friend, it does not follow that
B declares A to be its friend:

class A {
int n = 3;
friend class B;
public:
void £ (B) ;
b5
class B {
int m = 4;
public:
void £ (A) ;
b5
void A::£(B b) {
// int val = b.m; // no, A is not a friend of B

}

void B::£f(A a) {
int val = a.n; // Ok, B is a friend of A

}

Friendship is not transitive; if A declares B to be its friend and B declares C to be its friend, it does not
follow that A declares C to be its friend:

class A {
int n = 3;
friend class B;
b5
class B {
friend class C;
public:
void f(aA a) {
int val = a.n; // Ok, B is a friend of A

}
¥
class C {
public:
void £(A a) {
// int val = a.n; // no, C is not a friend of A
}

391



392 Things You Should Know

Last but not least, friendship is not inherited; if A declares B to be its friend, it does not follow that if
C is a child class of B, A has declared C to be its friend:

class A {

int n = 3;

friend class B;
¥
class B {
public:

void f(A a) {

int val = a.n; // Ok, B is a friend of A

}
IF
class C : B {
public:
void f£(A a) {
// int val = a.n; // no, C is not a friend of A
}
i 6

Used judiciously, £riend solves encapsulation problems that would be difficult to deal with otherwise.

The decltype operator

The type system of C++ is powerful and nuanced, offering (among other things) a set of type deduction
facilities. The best-known type deduction tool is probably auto, used to infer the type of an expression
from the type of its initializer:

const int n = £();

auto m = n; // m is of type int

auto & r = m; // r is of type inté&

const auto & cr0 = m; // cr0 is of type const inté&
auto & crl = n; // crl is of type const inté&

As you might notice from the preceding example, by default, aut o makes copies (see the declaration
of variable m ), but you can qualify auto with &, &&, const, and so on if needed.

Sometimes, you want to deduce the type of an expression with more precision, keeping the various
qualifiers that accompany it. That might be useful when inferring the type of an arithmetic expression,
the type of a lambda, the return type of a complicated generic function, and so on. For this, you have
the decltype operator:

template <class T>
T& pass_thru(T &arg) {
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return arg;

}
int main() {
int n = 3;
auto m = pass_thru(n); // m is an int
++m;
cout << n << ' ' << m << '\n'; // 3 4

decltype(pass_thru(n)) r = pass_thru(n); // r is an int&
++T;
cout << n << ' ' << r << '\n'; // 4 4

}

The use of auto has become commonplace in C++ code since C++11, at least in some circles. The
decltype operator, also part of C++ since C++11, is a sharper tool, still widely used but for more
specialized use cases.

( 7
When the types get painful to spell

In the preceding decltype example, we spelled pass thru (n) twice: once in the
decltype operator and once in the actual function call. That’s not practical in general since

it duplicates the maintenance effort and... well, it’s just noise, really. Since C++14, one can use
decltype (auto) to express “the fully qualified type of the initializing expression.”

Thus, we would customarily write decltype (auto) r = pass_thru(n) ; to express
that r is to have the fully qualified type of the expression pass_thru(n) .

Perfect forwarding

The advent of variadic templates in C++11 has made it necessary to ensure there is a way for the
semantics at the call site of a function to be conveyed throughout the call chain. This might seem
abstract but it’s quite real and has implications on the effect of function calls.

Consider the following class:

#include <string>
struct X {
X (int, const std::string&); // A
X (int, std::string&&); // B
// ... other constructors and various members

b5
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This class exposes at least two constructors, one that takes an int and const stringé& asargument
and another that takes an int and a stringé&é& instead. To make the example more general, we'll
also suppose the existence of other X constructors that we might want to call while still focusing on
these two. If we called these two constructors explicitly, we could do so with the following:

X x0{ 3, "hello" }; // calls A

string s = "hil";

X x1{ 4, s }; // also calls A

X x2{ 5, string{ "there" } }; // calls B
X x3{ 5, "there too"s }; // also calls B

The constructor of x0 calls A, as "hello" isa const char (&) [6] (including the trailing
"\0'), nota string type, but the compiler’s allowed to synthesize a temporary st ring to pass as
aconst stringég in this case (it could not if the st ring& was non-const as it would require
referring to a modifiable object).

The constructor of x1 also calls A, as s is a named st ring type, which means it cannot be implicitly
passed by movement.

The constructors of x2 and x3 both call B, which takes a stringé&& as an argument, as they are
both passed temporary, anonymous string objects that can be implicitly passed by movement.

Now, suppose we want to write a factory of X objects that relays arguments to the appropriate X
constructor (one of the two we're looking at or any other X constructor) after having done some
preliminary work; for the sake of this example, we'll simply log the fact that we are constructing an X
object. Let’s say we wrote it this way:

template <class ... Args>
X makeX (Args ... args) {
clog << "Creating a X object\n";
return X(args...); // <-- HERE

}

In this case, arguments would all have names and be passed by value, so the constructor that takes a
stringé&& would never be chosen.

Now, let’s say we wrote it this way:

template <class ... Args>
X makeX (Args &... args) {
clog << "Creating a X object\n";
return X(args...); // <-- HERE



Perfect forwarding

In this case, arguments would all be passed by reference, and a call that passed a char array such as
"hello™" asan argument would not compile. What we need to do is write our factory function in
such a way that each argument keeps the semantics it had at the function’s call site, and is forwarded
by the function with the exact same semantics.

The way to express this in C++ involves forwarding references and a special library function called
std: :forward<Ts> () (from <utilitys>), which behaves as a cast. A forwarding reference
superficially and syntactically looks like the rvalue references used for move semantics, but their
impact on argument semantics is quite different. Consider the following example:

// v passed by movement (type vector<int> fully specified)
void fO0 (vector<ints> &&V) ;
// v passed by movement (type vector<T> fully specified
// for some type T)
template <class T>
void f1 (vector<Ts> &&V) ;
// v is a forwarding reference (type discovered by
// the compiler)
template <class T>
void £2 (T&& V) ;

With a forwarding reference, the argument semantics depend on the call site. For example, let’s say
we have the function £2 () :

// T is vector<int>&& (pass by movement)

£2 (vector<int>{ 2,3,5,7,11 });

vector<int> v0{ 2,3,5,7,11 };

f2(v0); // T is vector<int>& (pass by reference)

const vector<int> vi{ 2,3,5,7,11 };

f2(vl); // T is const vector<int>& (pass by ref-to-const)

Returning to our factory of X objects, in this case, the appropriate signature for makeX () would be
as follows:

template <class ... Args>
X makeX (Args &&... args) {
clog << "Creating a X object\n";
return X(args...); // <-- HERE (still incorrect)

}

This version of our function almost works. The signature of makeX () is correct as each argument will
be accepted with the type used at the call site, be it a reference, a reference to const, or an rvalue
reference. What’s missing is that the arguments we are receiving as rvalue references now have a
name within makeX () (they’re part of the pack named args!), so when calling the constructor of
X, there’s no implicit move involved anymore.
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What we need to do to complete our effort is to cast back each argument to the type it had at the call
site. That type is inscribed in Args, the type of our pack, and the way to perform that cast is to apply
std::forward<Ts> () to each argument in the pack. A correct makeX () function, at long last,
would be as follows:

template <class ... Args>
X makeX (Args &&... args) {
clog << "Creating a X object\n";
return X(std::forward<Args>(args)...); // <-- HERE

}

Whew! There are simpler syntaxes indeed, but we made it.

The singleton design pattern

There are many design patterns out there. Design patterns are a topic of their own, representing
well-known ways of solving problems that one can represent in the abstract, give a name to, explain
to others, and then reify within the constraints and idioms of one’s chosen programming language.

The singleton design pattern describes ways in which we can write a class that ensures it is instantiated
only once in a program.

Singleton is not a well-liked pattern: it makes testing difficult, introduces dependencies on global
state, represents a single point of failure in a program as well as a potential program-wide bottleneck,
complicates multithreading (if the singleton is mutable, then its state requires synchronization), and
so on, but it has its uses, is used in practice, and we use it on occasion in this book.

There are many ways to write a class that is instantiated only once in a program with the C++ language.
All of them share some key characteristics:

« The type’s copy operations have to be deleted. If one can copy a singleton, then there will be
more than one instance of that type, which leads to a contradiction.

o There should be no public constructor. If there were, the client code could call it and create
more than one instance.

o There should be no protected members. Objects of derived classes are also, conceptually,
objects of the base class, again leading to a contradiction (there would, in practice, be more
than one instance of the singleton!).

o Since there is no public constructor, there should be a private constructor (probably a
default constructor), and that one will only be accessible to the class itself or to its friends (if
any). For simplicity, we'll suppose that the way to access a singleton is to go through a static
(obviously) member function of the singleton.



The singleton design pattern

We'll look at ways to implement an overly simplistic singleton in C++. For the sake of this example, the
singleton will provide sequential integers on demand. The general idea for that class will be the following:

#include <atomic>

class SequentialldProvider ({

//

std::atomic<long long> cur; // state (synchronized)
// default constructor (private)
SequentialIdProvider () : cur{ OLL } {

}

public:

b5

// service offered by the singleton (synchronized)
auto next () { return cur++; }
// deleted copy operations
SequentialIdProvider (const SequentialIdProvideré&)

= delete;
SequentialIdProvideré&

operator=(const SequentialIdProvider&) = delete;

//

The following subsections show two different techniques to create and provide access to the singleton.

Instantiation at program startup

One way to instantiate a singleton is to create it before main () starts by actually makingita static
data member of its class. This requires declaring the singleton in the class and defining it in a separate
source file in order to avoid ODR problems.

ODR, you say?

The One Definition Rule (ODR) and associated issues are described in Chapter 2 of this book,
but the gist of it is that in C++, every object can have many declarations but only one definition.

A possible implementation would be as follows:

#include <atomic>

class SequentialIdProvider ({

// declaration (private)

static SequentialIdProvider singleton;
std::atomic<long long> cur; // state (synchronized)
// default constructor (private)
SequentialIdProvider() : cur{ OLL } {

}
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public:
// static member function providing access to the object
static auto & get() { return singleton; }
// service offered by the singleton (synchronized)
auto next () { return cur++; }
// deleted copy operations
SequentialIdProvider (const SequentialIdProvider&)
= delete;
SequentialIdProvideré&
operator=(const SequentialIdProvider&) = delete;
//
¥
// in a source file somewhere, say SequentialIdProvider.cpp
#include "SequentialIdProvider.h"
// definition (calls the default constructor)
SequentialIdProvider SequentialIdProvider::singleton;

This works fine and is efficient as long as there is no dependency between separate global
objects. For example, if another singleton in the same program needed access to the services of
SequentialIdProvider, we could run into trouble as C++ does not guarantee the order in
which global objects from multiple files are instantiated.

Possible client code for this implementation would be as follows:

auto & provider = SequentialIdProvider::get () ;
for(int 1 = 0; i != 5; ++1)

cout << provider.next () << ' ';

This would display monotonically increasing integers, maybe consecutively (as long as there is no
other thread concurrently calling the singleton’s services).

Instantiation of the first call

Another way to instantiate a singleton is to create it the first time its services are solicited by making
ita static variable of the function that provides access to the singleton. This way, as stat ic local
variables are created the first time the function is called and keep their state thereafter, a singleton
could provide services to other singletons as long as this does not create cycles.

A possible implementation would be the following:

#include <atomics>

class SequentialIdProvider ({
std::atomic<long long> cur; // state (synchronized)
// default constructor (private)
SequentialIdProvider () : cur{ OLL } f{
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}
public:
// static member function providing access to the object
static auto & get() {
static SequentialIdProvider singleton; // definition
return singleton;

}

// service offered by the singleton (synchronized)
auto next () { return cur++; }
// deleted copy operations
SequentialIdProvider (const SequentialIdProvideré&)

= delete;
SequentialIdProvideré&

operator= (const SequentialIdProvider&) = delete;
//

)5

Possible client code for this implementation would be as follows:

auto & provider = SequentialIdProvider::get () ;
for(int i = 0; i != 5; ++1i)
cout << provider.next () << ' ';

This would display monotonically increasing integers, maybe consecutively (as long as there is no
other thread concurrently calling the singleton’s services).

Note that this version has a hidden cost: static variables local to functions are called magic statics
in C++ as the language guarantees that they will be constructed only once, even if two or more
threads call the function concurrently. This property implies that access to that static variable
involves some synchronization and that this synchronization is paid on every call to that function.
The preceding client code alleviates that cost by calling SequentialIdProvider: :get () once,
then reusing the reference obtained through that call afterward; it’s the call to get () that introduces
the synchronization cost.

The std::exchange() function

There are (at least) two very useful and fundamental functions hidden in the <utility> header
file. One is well-known and has been there for a long time: std: : swap (), which is used for many
purposes throughout the standard library as well as throughout user code.

The other, more recent one is std: : exchange (). Where swap (a, b) swaps the values of objects
aand b, expressiona = exchange (b, c¢) changes the value of b with the value of ¢, returning the
old value of b (to assign it to a). This might look strange at first but it’s actually a very useful facility.
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Consider the move constructor for the following simplified fixed size array:

template <class T>
class fixed size array ({
T *elems{};
std::size t nelems{};
public:
!/
fixed size array(fixed size array &&other)
elems{ other.elems }, nelems{ other.nelems } {
other.elems = nullptr;
other.nelems = 0;

//
|¥

You might notice that this constructor does two things: it grabs the data members from other, and then
replaces the members of other with default values. That’s the posterchild for std: : exchange (),
so this constructor can be simplified as follows:

template <class T>
class fixed size array ({
T *elems({};
std::size t nelems{};
public:
//
fixed size array(fixed size array &&other)
elems{ std::exchange (other.elems, nullptr) },
nelems{ std::exchange(other.nelems, 0) } {

//
|¥

With std: : exchange (), this common two-step operation can be reduced to a function call,
simplifying code and making it more efficient (in this case, turning assignments into constructor calls).
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