Quick answers to common problems

C++ Game Development
Cookbook

Over 90 recipes to get you creating modern, fast, and
high-quality games with C++

Druhin Mukherjee | SECeeEs

C++ Game Development
Cookbook

Over 90 recipes to get you creating modern, fast,
and high-quality games with C++

Druhin Mukherjee

open source

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI

C++ Game Development Cookbhook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: May 2016
Production reference: 1250516

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78588-272-2

www . packtpub.com

[FM-2]

www.packtpub.com

Credits

Author Project Coordinator

Druhin Mukherjee Judie Jose
Reviewer Proofreader

Gonzalo Peces Nicolas Safis Editing
Acquisition Editor Indexer

Kirk D'costa Monica Ajmera Mehta
Content Development Editor Graphics

Rashmi Suvarna Disha Haria
Technical Editor Production Coordinator

Anushree Arun Tendulkar Arvindkumar Gupta
Copy Editor Cover Work

Safis Editing Arvindkumar Gupta

[FM-3]

About the Author

Druhin Mukherjee is currently the co-founder and technical Director at GodSpeed Games.
He has, over the years, worked with clients such as Lightning Fish Games, Chromativity,
Rockstar North, Tag Games, BBC, Dynamo Games, and Codemasters.

Druhin has been balancing making games and teaching video game programming to
enthusiastic students. He spent 3 years in Auckland, New Zealand as a Senior Lecturer
in the Games department at Media Design School.

As a passionate games developer, Druhin has been sharing his knowledge on the Internet as
blogs and websites. His recently started website for solving game development puzzles has
over thousand subscribers.

Druhin has collaborated with other writers and published many journals and papers; however,
this is his first official effort to write a book.

I would like to thank my wife, Anushree, for putting up with my late night
writing sessions. | also give deep thanks and gratitude to Rashmi Suvarna,
without whose efforts this book quite possibly would not have happened.

I would also like to thank all of the mentors that I've had over the years.
Without learning from these teachers, there is not a chance | could be doing
what | do today, and it is because of them and others that | feel compelled
to pass my knowledge on to those willing to learn.

[FM-4]

About the Reviewer

Gonzalo Peces Nicolas is a Senior Game Developer based in Hong Kong. Gonzalo
received his Bachelor's Degree in Computer Science in 2005 in Spain and his Master's
Degree in Computer Games Development in 2011 in Scotland. Currently, he is working as
Senior Software Engineer in one of the major Game Mobile publishers in Asia. He has, over
the years, been involved in numerous games in some of the most prolific international game
companies in Europe and Asia, developing on multiple platforms, such as PC, Mac, mobile,
and console.

Furthermore, he has over a decade of professional development in several industries, which
includes not only game development but also telecommunications and cryptography.

[FM-5]

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.comand as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?

» Fully searchable across every book published by Packt
» Copy and paste, print, and bookmark content
» Ondemand and accessible via a web browser

[FM-6]

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Table of Contents

Preface v
Chapter 1: Game Development Basics 1
Introduction 1
Installing an IDE on Windows 2
Choosing the right source control tool 5
Using call stacks for memory storage 7
Using recursions cautiously 9
Using pointers to store memory addresses 11
Casting between different datatypes 14
Managing memory more effectively using dynamic allocation 16
Using bitwise operations for advanced checks and optimization 21
Chapter 2: Object-Oriented Approach and Design in Games 25
Introduction 25
Using classes for data encapsulation and abstraction 26
Using polymorphism to reuse code 30
Using copy constructors 34
Use operator overloading to reuse operators 36
Use function overloading to reuse functions 45
Using files for input and output 48
Creating your first simple game 52
Templates - when to use them 55
Chapter 3: Data Structures in Game Development 59
Introduction 59
Using more advanced data structures 60
Using linked lists to store data 70
Using stacks to store data 72
Using queues to store data 75
Using trees to store data 77

[_ﬂ

Table of Contents

Using graphs to store data 81
Using STL lists to store data 83
Using STL maps to store data 85
Using STL hash tables to store data 86
Chapter 4: Algorithms for Game Development 89
Introduction 89
Using sorting techniques to arrange items 90
Using searching techniques to look for an item 93
Finding the complexity of an algorithm 95
Finding the endian-ness of a device 97
Using dynamic programming to break down a complex problem 99
Using greedy algorithms to solve problems 101
Using divide and conquer algorithms to solve problems 102
Chapter 5: Event-Driven Programming - Making Your First 2D Game 107
Introduction 107
Starting to make a Windows game 108
Using Windows classes and handles 109
Creating your first window 114
Adding keyboard and mouse controls with text output 118
Using Windows resources with GDI 126
Using dialogs and controls 131
Using sprites 136
Using animated sprites 155
Chapter 6: Design Patterns for Game Development 159
Introduction 159
Using the singleton design pattern 160
Using the factory method 162
Using the abstract factory method 165
Using the observer pattern 170
Using the flyweight pattern 174
Using the strategy pattern 179
Using the command design pattern 184
Creating an advanced game using design patterns 187
Chapter 7: Organizing and Backing Up 191
Introduction 191
Versions of source control 192
Installing a versioning client 192
Selecting a host to save your data 193
Adding source control - committing and updating your code 195

Table of Contents

Resolving conflicts 197
Creating a branch 198
Chapter 8: Al in Game Development 201
Introduction 201
Adding artificial intelligence to a game 202
Using heuristics in a game 203
Using a Binary Space Partition Tree 205
Creating a decision making Al 208
Adding behavioral movements 219
Using neural network 222
Using genetic algorithms 227
Using other waypoint systems 231
Chapter 9: Physics in Game Development 233
Introduction 233
Using physics rules in your game 234
Making things collide 239
Installing and integrating Box2D 245
Making a basic 2D game 246
Making a 3D game 250
Creating a particle system 252
Using ragdoll in your game 254
Chapter 10: Multithreading in Game Development 263
Introduction 263
Concurrency in games - creating a thread 264
Joining and detaching a thread 265
Passing arguments to a thread 266
Avoiding deadlocks 268
Data race and mutex 269
Writing a thread-safe class 271
Chapter 11: Networking in Game Development 275
Introduction 276
Understanding the different layers 276
Selecting the appropriate protocol 278
Serializing the packets 281
Using socket programming in games 286
Sending the data 289
Receiving the data 294
Dealing with lag 297

Using synchronized simulation 299

Table of Contents

Using area of interest filtering 301
Using local perception filter 302
Chapter 12: Audio in Game Development 305
Introduction 305
Installing FMOD 306
Adding background music 306
Adding sound effects 308
Creating a sound effect manager 309
Dealing with multiple sound file names 312
Chapter 13: Tips and Tricks 315
Introduction 315
Effectively commenting your code 315
Using bit fields in a struct 317
Writing a sound technical design document 319
Using the const keyword to optimize your code 320
Using bit shift operators in an enum 322
Using the new lambda function of C++ 11 323
Index 325

Preface

This book provides a detailed look at some of the aspects of C++ which could be used for
games development.

What this book covers

Chapter 1, Game Development Basics, explains the basics of C++ programming, writing small
programs to be used in games, and how to handle memory in games.

Chapter 2, Object-Oriented Approach and Design in Games, explains the use OOP concepts in
games, and you will make a small prototype text-based game.

Chapter 3, Data Structures in Game Development, introduces all the simple and complex data
structures in C++ and shows how to use them effectively in games.

Chapter 4, Algorithms for Game Development, explains various algorithms that can be used in
games. It also covers means to measure the efficiency of an algorithm.

Chapter 5, Event-Driven Programming — Making Your First 2D Game, introduces Windows
programming, creating sprites, and animation.

Chapter 6, Design Patterns for Game Development, explains how to use well-known design
patterns in game development and when not to use them.

Chapter 7, Organizing and Backing Up, explains the importance of backing up data and the
importance of sharing data across a team.

Chapter 8, Al in Game Development, explains how to approach writing artificial intelligence
in games.

Chapter 9, Physics in Game Development, explains how to make bodies collide and how to
use third-party physics libraries, such as Box2D, to make games.

(v -

Preface

Chapter 10, Multithreading in Game Development, explains how to use the thread
architecture of C++11 to make games.

Chapter 11, Networking in Game Development, explains the fundamentals of writing a
multiplayer game.

Chapter 12, Audio in Game Development, explains how to add sound and music effects to
games, and avoiding memory leaks while playing sounds.

Chapter 13, Tips and Tricks, has some neat tips and tricks of using C++ to make games.

What you need for this book

For this book you would require a Windows machine and a working copy of Visual Studio 2015
Community Edition.

Who this book is for

This book should be primarily used by college students wanting to enter the games industry
or enthusiastic school students who want to get their hands dirty early and understand the
fundamentals of game programming. This book also has some very technical chapters which
will be very useful for industry professionals for reference or to keep by the side while solving
complex problems.

In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready

This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

Preface

How to do it...

This section contains the steps required to follow the recipe.

This section usually consists of a detailed explanation of what happened in the previous section.

There's more...

This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

This section provides helpful links to other useful information for the recipe.

In this book, you will find a hnumber of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "If you have a
file called main. cpp, it will generate an object code called main.o."

A block of code is set as follows:

#include <iostream>
#include <conio.h>

using namespace std;

int countTotalBullets (int iGunlAmmo, int iGun2Ammo)

{
}

return iGunlAmmo + iGun2Ammo;

Preface

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Click on Download Visual
Studio Community."

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:
1. Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

2
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

» WInRAR / 7-Zip for Windows
» Zipeg/ iZip / UnRarX for Mac
» 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/C++Game-Development - Cookbook. We also have other code
bundles from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

https://github.com/PacktPublishing/C++Game-Development-Cookbook
https://github.com/PacktPublishing/C++Game-Development-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

Please contact us at copyrighte@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

If you have a problem with any aspect of this book, you can contact us at questionse
packtpub.com, and we will do our best to address the problem.

Game Development
Basics

In this chapter, the following recipes will be covered:

» Installing an IDE on Windows

» Choosing the right source control tool

» Using call stacks for memory storage

» Using recursions cautiously

» Using pointers to store memory addresses

» Casting between various datatypes

» Managing memory more effectively using dynamic allocation

» Using bitwise operations for advanced checks and optimization

Introduction

In this chapter, we will cover the basic concepts that you need to know to kick-start your
career in game development.

The first step before a person starts coding is to install an integrated development
environment (IDE). Nowadays, there are a few online IDEs that are available, but we are going
to use an offline standalone IDE, Visual Studio. The next most important thing that many
programmers do not start using at an early stage is revision control software.

Game Development Basics

Revision control software helps to back up the code in one central location; it has a historical
overview of the changes that are made, which you can access and revert to if needed,

and it also helps to resolve conflicts between files that have been worked on by different
programmers at the same time.

The most useful feature of C++, in my opinion, is memory handling. It gives the developers
a lot of control over how memory must be assigned depending on the current usage and
needs of the program. As a result of this, we can allocate memory when there is a need and
deallocate it accordingly.

If we do not de-allocate memory, we might run out of memory very soon, especially if we

are using recursion. Sometimes there is a need to convert from one datatype to another to
prevent loss of data, to pass the correct datatype in a function, and so on. C++ provides us a
few ways by which we can do those castings.

The recipes in this chapter will primarily focus on these topics and deal with practical ways to
implement them.

Installing an IDE on Windows

In this recipe, we will find out how easy it is to install Visual Studio on your Windows machine.

Getting ready

To go through this recipe, you will need a machine running Windows. No other prerequisites
are required.

How to do it...

Visual Studio is a powerful IDE in which most professional software is written. It has loads of
features and plugins to help us write better code:

1. Gotohttps://www.visualstudio.com.

https://www.visualstudio.com

Chapter 1

2. Click on Download Visual Studio Community.

Dd Visual Studio

A rich, integrated development environment for
creating stunning applications for Windows,
Android, and 105, as well as modern web

applications and cloud services.

Learn more >

Download Visual Studio Community

Compare Visual Studio 2015 editions »

Download Visual Studio Community

This should download an . exe file.

After it downloads, double-click on the setup file to start the installation.
Make sure you have all the updates necessary on your Windows machine.
You can also download any version of Visual Studio or Visual C++ Express.

N o oW

If the application asks for starting environment settings, select C++ from the
available options.

A few things to note are listed here:
» You need a Microsoft account to install it.
4 » There are other free IDEs for C++, such as NetBeans, Eclipse,

% and Code::Blocks.

» While Visual Studio works only for Windows, Code::Blocks and
other such IDEs are cross-platform and can work on Mac and
Linux as well.

For the remainder of this chapter, all code examples and snippets will be provided using
Visual Studio.

Game Development Basics

An IDE is a programming environment. An IDE consists of various functionalities that can vary
from one IDE to another. However, the most basic functionalities that are present in all IDEs
are a code editor, a compiler, a debugger, a linker, and a GUI builder.

A code editor, or a source code editor as they are otherwise known, is useful for editing code
written by programmers. They provide features such as auto-correct, syntax highlighting,
bracket completion and indentation, and so on. An example snapshot of the Visual Studio
code editor is shown here:

91 case WM_COMMAND:

92 {

a3 WORD hi = HIWORD(wParam);

94 WORD lo = LOWORD(wParam);

95

96 if(hi == ®@ || hi == 1)

a7 OnMenuItemClicked(lo);

98 }

a9 break;

160 1

181

182 return ::DefWindowProc(hWnd, message, wParam, lParam);
103 |}

led

185 HWindow* WindowFromHandler(HWND const hiind)

106 |{

187 auto result = g wndMap.find(hind);

188 return result == g wndMap.end() ? nullptr : result-»second;
19 |}

11@

111 EILRESULT CALLBACK CallWinProc(HWND hknd, UINT message, WPARAM wParam, LPARAM 1Param)
112 [{

113 aute wnd = WindowFromHandler(hund);

114 if(wnd == nullptr || (HWND)wnd == nullptr)

115 return ::DefWindowProc(hind, message, wParam, lParam);
16

117 return wnd->WndProc(message, wParam, lParam);

118 |}

A compiler is a computer program that converts your C++ code to object code. This is
necessary in order to create an executable. If you have a file called main. cpp, it will
generate an object code called main. o.

Chapter 1

A linker is a computer program that converts the object code generated by the compiler to an
executable or a library file:

Source | | Ohject
File 1 File —‘
)
Source Compiler Ohject Linker
File] 7 File
Source || L+ Ohject J
File " File
Libraries
Final
Fraogram

Compiler and linker
A debugger is a computer program that helps to test and debug computer programs.

A GUI builder helps the designer and programmer to create GUI content or widgets easily.
It uses a drag and drop WYSIWYG tool editor.

Choosing the right source control tool

In this recipe, we will see how easy it is to take a backup of our code using the right version
control. The advantages of having a backup to a central server is that you will never lose work,
can download the code on any machine, and can also go back to any of your changes from
the past. Imagine it is like a checkpoint that we have in games, and you can go back to that
checkpoint if you face problems.

Getting ready

To go through this recipe, you will need a machine running Windows. No other prerequisites
are required.

Game Development Basics

How to do it...

Choosing a correct version tool is very important as it will save a lot of time organizing data.
There are a few versioning tools that are available, so it is very important that we should be
informed about all of them so that we can use the correct one based on our needs.

First analyze the choices that are available to you. The choices primarily include Concurrent
Versions System (CVS), Apache Subversion (SVN), Mercurial, and GIT.

CVS has been around for a long time, so there is tons of documentation and help available.
However, a lack of atomic operations often leads to source corruption and it is not well cut out
for long-term branching operations.

SVN was made as an improvement to CVS and it does fix many of its issues relating to atomic
operations and source corruption. It is free and open source. It has lots of plugins for different
IDEs. However, one of the major drawbacks of this tool is that it is comparatively very slow in
its operations.

GIT was made primarily for Linux but it improves operation speed a lot. It works on UNIX
systems as well. It has cheap branch operations but it is not totally optimized for a single
developer and its Windows support is limited compared to Linux. However, GIT is extremely
popular and many prefer GIT to SVN or CVS.

Mercurial came into existence shortly after GIT. It has node-based operations but does not
allow the merging of two parent branches.

So to sum up, use SVN if you want a central repository that others can push and pull. Although
it has its limitations, it's easy to learn. Use Mercurial or GIT if you want a distributed model.

In this case, there is a repository on every computer, and generally, one of them is regarded
as the official one. Mercurial is often preferred if it is a relatively small team, and it's easier to
learn than GIT.

We will look into these in more detail in a separate chapter.

Detailed steps to download the code bundle are mentioned in the Preface
of this book. Please have a look.

github.com/PacktPublishing/C++Game-Development -
Cookbook. We also have other code bundles from our rich catalog
of books and videos available at https://github.com/
PacktPublishing/. Check them out!

N\IQ The code bundle for the book is also hosted on GitHub at https://

https://github.com/PacktPublishing/C++Game-Development-Cookbook
https://github.com/PacktPublishing/C++Game-Development-Cookbook
https://github.com/PacktPublishing/C++Game-Development-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Chapter 1

Using call stacks for memory storage

The main reason why C++ is still the preferred language for most game developers is that

you handle memory yourself and control the allocation and de-allocation of memory to a
great extent. For that reason, we need to understand the different memory spaces that are
provided to us. When data is "pushed" onto the stack, the stack grows. As data is "popped" off
the stack, the stack shrinks. It is not possible to pop a particular piece of data off the stack
without first popping off all data placed on top of it. Think of this as a series of compartments
aligned top to bottom. The top of the stack is whatever compartment the stack pointer
happens to point to (this is a register).

Each compartment has a sequential address. One of those addresses is kept in the stack
pointer. Everything below that magic address, known as the top of the stack, is considered

to be on the stack. Everything above the top of the stack is considered to be off the stack.
When data is pushed onto the stack, it is placed into a compartment above the stack pointer,
and then the stack pointer is moved to the new data. When data is popped off the stack, the
address of the stack pointer is changed by moving it down the stack.

Getting ready

You need to have a working copy of Visual Studio installed on your Windows machine.

How to do it...

C++ is probably one of the best programming languages out there and one of the main
reasons for that is that it is also a low level language, because we can manipulate memory. To
understand memory handling, it is very important to understand how memory stacks work:

1. Open Visual Studio.
Create a new C++ project.
Select Win32 Console Application.

Add a source file called main. cpp or anything that you want to name the source file.

ok w0

Add the following lines of code:

#include <iostream>
#include <conio.h>

using namespace std;

int countTotalBullets (int iGunlAmmo, int iGun2Ammo)

{

Game Development Basics

return iGunlAmmo + iGun2Ammo;

}

int main()

{

int iGunlAmmo 3;

int iGun2Ammo = 2;

int iTotalAmmo = CountTotalBullets (iGunlAmmo,
1Gun2Ammo) ;

cout << "Total ammunition currently with you
is"<<iTotalAmmo;

_getch () ;

}

When you call the function CountTotalBullets, the code branches to the called function.
The parameters are passed in and the body of the function is executed. When the function
completes, a value is returned and the control returns to the calling function.

But how does it really work from a compiler's point of view? When you begin your program, the
compiler creates a stack. The stack is a special area of memory allocated for your program in
order to hold the data for each function in your program. A stack is a Last In First Out (LIFO)
data structure. Imagine a deck of cards; the last card put on the pile will be the first card
taken out.

When your program calls CountTotalBullets, a stack frame is established. A stack frame
is an area of the stack set aside to manage that function. This is very complex and different
on different platforms, but these are the essential steps:

1. The return address of CountTotalBullets is put on the stack. When the function
returns, it will resume executing at this address.

Room is made on the stack for the return type you have declared.

All arguments to the function are placed on the stack.

The program branches to your function.

IS

Local variables are pushed onto the stack as they are defined.

Chapter 1

Using recursions cautiously

Recursions are a form of programming design in which the function calls itself multiple times
to solve a problem by breaking down a large solutions set into multiple small solution sets.
The code size definitely shortens. However, if not used properly, recursions can fill up the call
stack really fast and you can run out of memory.

Getting ready

To get started with this recipe, you should have some prior knowledge of call stacks and how
memory is assigned during a function call. You need a Windows machine with a working copy
of Visual Studio.

How to do it...

In this recipe, you will see how easy it is to use recursions. Recursions are very smart to code
but also can lead to some serious problems:

1. Open Visual Studio.
Create a new C++ project.
Select Win32 Console Application.

Add a source file called main. cpp or anything that you want to name the source file.

ok w0

Add the following lines of code:

#include <iostream>
#include <conio.h>

using namespace std;
int RecursiveFactorial (int number) ;
int Factorial (int number) ;
int main()
long iNumber;

cout << "Enter the number whose factorial you want
to find";
cin >> iNumber;

cout << RecursiveFactorial (iNumber) << endl;

Game Development Basics

int

int

cout << Factorial (iNumber) ;

_getch();
return O;

Factorial (int number)

int iCounter = 1;
if (number < 2)

{
}

else

{

return 1;

while (number>0)

{

iCounter = iCounter*number;
number -= 1;

}

return iCounter;

RecursiveFactorial (int number)

if (number < 2)

{
}

else

{

return 1;

while (number>0)

return number*Factorial (number

Chapter 1

As you can see from the preceding code, both the functions find the factorial of a number.
However, when using recursion, the stack size will grow immensely with each function call; the
stack pointer has to be updated every call and data pushed onto the stack. With recursion,

as the function calls itself, every time a function is called from within itself the stack size will
keep on rising until it runs out of memory and creates a deadlock or crashes.

Imagine finding the factorial of 2000. The function will be called within itself a very large
number of times. This is a recipe for certain disaster and we should avoid such coding
practices to a great extent.

You can use a larger datatype than int if you are finding the factorial of a number greater than
15, as the resulting factorial will be too large to be stored in int.

Using pointers to store memory addresses

In the previous two recipes, we have seen how not having sufficient memory can be a problem
to us. However, until now, we have had no control over how much memory is assigned and
what is assigned to each memory address. Using pointers, we can address this issue. In my
opinion, pointers are the single most important topic in C++. If your concept of C++ has to

be clear, and if you are to become a good developer in C++, you must be good with pointers.
Pointers can seem very daunting at first, but once you get the hang of it, pointers are pretty
easy to use.

Getting ready

For this recipe, you will need a Windows machine with a working copy of Visual Studio.

How to do it...

In this recipe, we will see how easy it is to work with pointers. Once you are comfortable using
pointers, we can manipulate memory and store references in memory quite easily:

1. Open Visual Studio.

2. Create a new C++ project.

3. Select Win32 Console Application.

4. Add a source file called main. cpp or anything that you want to name the source file.

7]

Game Development Basics

5. Add the following lines of code:

#include <iostream>
#include <conio.h>

using namespace std;

int main()

{

float fCurrentHealth = 10.0f;

cout << "Address where the float value is stored: "
<< &fCurrentHealth << endl;

cout << "Value at that address: "
<< * (&fCurrentHealth) << endl;

float* pfLocalCurrentHealth = &fCurrentHealth;

cout << "Value at Local pointer variable:
"<<pflLocalCurrentHealth << endl;

cout << "Address of the Local pointer variable:
"<<&pflocalCurrentHealth << endl;

cout << "Value at the address of the Local pointer
variable: "<<*pflLocalCurrentHealth << endl;

_getch();
return 0O;

One of the most powerful tools of a C++ programmer is to manipulate computer memory
directly. A pointer is a variable that holds a memory address. Each variable and object used

in a C++ program is stored in a specific place in memory. Each memory location has a unique
address. Memory addresses will vary depending on the operating system used. The amount of
bytes taken up depends on the variable type: float = 4 bytes, short = 2 bytes:

Chapter 1

Addresses
........................... . int a = 1;
© O012FF88 i ————» | 4 7
, 0012FF84 2
 h s e e . \. int b = 2;

Pointers and memory storage

Each location in the memory is 1 byte. The pointer pfLocalCurrentHealth holds

the address of the memory location that has stored fCurrentHealth. Hence, when

we display the contents of the pointer, we get the same address as that of the address
containing the fCurrentHealth variable. We use the & operator to get the address of the
pfLocalCurrentHealth variable. When we reference the pointer using the * operator, we
get the value stored at the address. Since the stored address is same as the address storing
fCurrentHealth, we get the value 10.

There's more...

Let us consider the following declarations:

» const float* pfNumberl

» float* const pfNumber2

» const float* const pfNumber3
All of these declarations are valid. But what do they mean? The first declaration states that
pfNumberl is a pointer to a constant float. The second declaration states that pfNumber2
is a constant pointer to a float. The third declaration states that pfNumber3 is a constant
pointer to a constant integer. The key differences between references and these three types of
const pointers are listed here:

» const pointers can be NULL

» Areference does not have its own address, whereas a pointer does

The address of a reference is the actual object's address

» A pointer has its own address and it holds as its value the address of the value it
points to

Game Development Basics

For more information on pointers and references, go to the following link:
http://stackoverflow.com/questions/57483/what-are-
A

the-differences-between-a-pointer-variable-and-a-
reference-variable-in/57492#57492

Casting between different datatypes

Casting is a conversion process of changing some data into a different type of data. We

can convert between built-in types or our own datatypes. Some of the conversions are

done automatically by the compiler, and the programmer does not have to intervene. Such
conversions are called implicit conversions. Other conversions, which have to be directly
specified by the programmer, are called explicit conversion. Sometimes we may get warnings
about loss of data. We should pay heed to these warnings and think about how this might
adversely affect our code. Casting is commonly used when the interface expects a particular
type, but we want to feed it data of a different type. With C, we can cast anything to everything.
However, C++ provides us with finer controls.

Getting ready

For this recipe, you will need a Windows machine with a working copy of Visual Studio.

How to do it...

In this recipe, we will see how we can easily cast or convert between various datatypes.
Usually, a programmer uses C-style casting even in C++, but this is not recommended.
C++ provides us with its own style of casting for different situations which we should use:

1. Open Visual Studio.

2. Create a new C++ project.

3. Select Win32 Console Application.

4. Add a source file called main. cpp or anything that you want to name the source file.

http://stackoverflow.com/questions/57483/what-are-the-differences-between-a-pointer-variable-and-a-reference-variable-in/57492#57492
http://stackoverflow.com/questions/57483/what-are-the-differences-between-a-pointer-variable-and-a-reference-variable-in/57492#57492
http://stackoverflow.com/questions/57483/what-are-the-differences-between-a-pointer-variable-and-a-reference-variable-in/57492#57492

Chapter 1

5. Add the following lines of code:

#include <iostream>
#include <conio.h>

using namespace std;

int main()
int iNumber = 5;
int iOurNumber;
float fNumber;

//No casting. C++ implicitly converts the result
into an int and saves

//into a float
fNumber = iNumber/2;
cout << "Number is "

<< fNumber<<endl;

//C-style casting. Not recommended as this is not type safe
fNumber = (float)iNumber / 2;

cout << "Number is "

//C++ style casting.
casting a safe one

<< fNumber<<endl;

This has valid constructors to make the

iOurNumber = static_cast<ints> (fNumber) ;

cout << "Number is "

_getch();
return 0O;

<< iOurNumber << endl;

There are four types of casting operators in C++, depending on what we are casting:
static_cast, const cast, reinterpret cast, and dynamic_cast. Now, we are
going to look at static_cast. We will look at the remaining three casting technique after
we discuss dynamic memory and classes. Converting from a smaller datatype to a larger
type is called promotion and is guaranteed to have no data loss. However, conversion from a
larger datatype to a smaller one is called demotion and may lead to data loss. Compilers will
generally give you a warning when this happens, and you should pay heed to this.

7]

Game Development Basics

Let us look at the previous example. We have initialized an integer with the value 5. Next, we
have initialized a floating point variable and stored the result of 5 divided by 2, which is 2. 5.
However, when we display the variable fNumber, we see that the displayed value is 2. The
reason is the C++ compiler implicitly casts the result of 5/2 and stores it as an integer. So it
is evaluating something similar to int (5/2) which is int (2. 5), evaluating to 2. So to achieve
our desired result, we have two options. The first method is a C-style explicit cast, which is not
recommended at all because it does not have a type safe check. The format for the C-style
castis (resultant data_type) (expression), which in this case is something like float
(5/2). We are explicitly telling the compiler to store the result of the expression as a floating
point number. The second method, and a more C++ style way of doing the cast, is by using the
static_cast operation. This has suitable constructors to dictate that the conversion is type
safe. The format for a static cast operation is static cast<resultant data_ types
(expression). The compiler checks if the casting conversion is safe and then executes the
type casting operation.

Managing memory more effectively using

dynamic allocation

Programmers generally deal with five areas of memory: global namespace, registers, code
space, stack, and the free store. When an array is initialized, the number of elements has to
be defined. This leads to lots of memory problems. Most of the time, not all elements that we
allocated are used, and sometimes we need more elements. To help overcome this problem,
C++ facilitates memory allocation while an . exe file is running by using the free store.

The free store is a large area of memory that can be used to store data, and is sometimes
referred to as the heap. We can request some space on the free store, and it will give us an
address that we can use to store data. We need to keep that address in a pointer. The free
store is not cleaned up until your program ends. It is the programmer's responsibility to free
any free store memory used by their program.

The advantage of the free store is that there is no need to preallocate all variables. We can
decide at runtime when more memory is needed. The memory is reserved and remains
available until it is explicitly freed. If memory is reserved while in a function, it is still available
when control returns from that function. This is a much better way of coding than global
variables. Only functions that have access to the pointer can access the data stored in
memory, and it provides a tightly controlled interface to that data.

Getting ready

For this recipe, you will need a Windows machine with a working copy of Visual Studio.

Chapter 1

How to do it...

In this recipe, we will see how easy it is to use dynamic allocation. In games, most of the
memory is allocated dynamically at runtime as we are never sure how much memory we
should assign. Assigning an arbitrary amount of memory may result in less memory or
memory wastage:

1. Open Visual Studio.

2.
3.

Create a new C++ project.
Add a source file called main. cpp or anything that you want to name the source file.

Add the following lines of code:
#include <iostream>
#include <conio.h>
#include <string>

using namespace std;

int main{()

int iNumberofGuns, iCounter;

string * sNameOfGuns;

cout << "How many guns would you like to purchase? ";
cin >> iNumberofGuns;

sNameOfGuns = new string[iNumberofGuns] ;

if (sNameOfGuns == nullptr)
cout << "Error: memory could not be allocated";
else
for (iCounter = 0; iCounter<iNumberofGuns; iCounter++)

{

cout << "Enter name of the gun: ";
cin >> sNameOfGuns [iCounter] ;

}

cout << "You have purchased: ";

for (iCounter = 0; iCounter<iNumberofGuns; iCounter++)
cout << sNameOfGuns [iCounter] << ", ";

delete[] sNameOfGuns;

_getch();
return 0O;

[}

Game Development Basics

You can allocate memory to the free store using the new keyword; new is followed by the type
of the variable you want to allocate. This allows the compiler to know how much memory will
need to be allocated. In our example, we have used string. The new keyword returns a memory
address. This memory address is assigned to a pointer, sNameOfGuns. We must assign

the address to a pointer, otherwise the address will be lost. The format for using the new
operator is datatype * pointer = new datatype.So in our example, we have used
sNameOfGuns = new string[iNumberofGuns]. If the new allocation fails, it will return
a null pointer. We should always check whether the pointer allocation has been successful;
otherwise we will try to access a part of the memory that has not been allocated and we may
get an error from the compiler, as shown in the following screenshot, and your application
will crash:

Unhandled exception at 0xDDMECEE in DynamicMemory.exe: (eC00000035: Access
violation reading location OxCCCCCCED.

[]Break when this exception type is thrown
Open Exception Settings

Continue gno

When you are finished with the memory, you must call delete on the pointer. Delete returns
the memory to the free store. Remember that the pointer is a local variable. Where the
function that the pointer is declared in goes out of scope, the memory on the free store is not
automatically deallocated. The main difference between static and dynamic memory is that
the creation/deletion of static memory is handled automatically, whereas dynamic memory
must be created and destroyed by the programmer.

Chapter 1

The delete [] operator signals to the compiler that it needs to free an array. If you leave

the brackets off, only the first element in the array will be deleted. This will create a memory
leak. Memory leaks are really bad as it means there are memory spaces that have not been
deallocated. Remember, memory is a finite space, so eventually you are going to run into trouble.

When we use delete [], how does the compiler know that it has to free n number of strings
from the memory? The runtime system stores the number of items somewhere it can be
retrieved only if you know the pointer sNameOfGuns. There are two popular techniques that
do this. Both of these are used by commercial compilers, both have tradeoffs, and neither
are perfect:

» Technique 1:

Over-allocate the array and put the number of items just to the left of the first
element. This is the faster of the two techniques, but is more sensitive to the
problem of the programmer saying delete sNameOfGuns, instead of delete[]
sNameOfGuns.

» Technique 2:

Use an associative array with the pointer as a key and the number of items as
the value. This is the slower of the two techniques, but is less sensitive to the
problem of the programmer saying delete sNameOfGuns, instead of delete[]
sNameOfGuns.

There's more...

We can also use a tool called VLD to check for memory leaks.

[Download VLD from https://v1d.codeplex.com/.]

https://vld.codeplex.com/

Game Development Basics

After the setup has downloaded, install VLD on your system. This may or may not set up
the VC++ directories correctly. If it doesn't, do it manually by right-clicking on the project
page and adding the directory of VLD to the field called Include Directories, as shown
in the following figure:

DynamicMemory Property Pages ?
Configuration: | Active(Release) v | Platform: | Active(Win32) v Configuration Manager...
I Commeon Properties 4 General
4 Configuration Properties S(VC_ExecutablePath_x86):5(Windows5SDK_ExecutablePi v
General Include Directories S(VC_IncludePath); S(Windows5DK_IncludePath);
Debugging Reference Directories S(VC_ReferencesPath_x36);
VC++ Directories Library Directories S(VC_LibraryPath_x@6);3(WindowsSDK_LibraryPath_xB6);
b G/ Library WinRT Directories S(WindowsSDK_MetadataPath);
b Umier Source Directories S(VC_ScurcePath);
[gidante=aiool Exclude Directories $(VC_IncludePath):S(WindowsSDK_IncludePath):$ (MSBuild
I XML Document Generator
I Browse Information
I Build Events
b Custem Build Step
I Code Analysis
Executable Directories
Path to use when searching for executable files while building a VC++ project. Corresponds te
< » environment variable PATH.

After setting up the directories, add the header file <v1d.h> in your source file. After you
execute your application and exit it, your output window will now show whether there are
any memory leaks in your application.

Understanding the error messages
When using the debug build, you may notice the following values in memory during debugging:
» 0xCCcccccec: This refers to values being allocated on the stack, but not yet
initialized.
» 0xCDCDCDCD: This means memory has been allocated in the heap, but it is not yet
initialized (clean memory).
» 0xDDDDDDDD: This means memory has been released from the heap (dead memory).
» OxFEEEFEEE: This refers to values being deallocated from the free store.

» OxFDFDFDFD: "No man's land" fences, which are placed at the boundary of heap
memory in debug mode. These should never be overwritten, and if they are, it
probably means the program is trying to access memory at an index outside of an
array's max size.

[

Chapter 1

Using bitwise operations for advanced

checks and optimization

In most cases, a programmer will not need to worry too much about bits unless there is a
need to write some compression algorithms, and when we are making a game, we never know
when a situation such as that arises. In order to encode and decode files compressed in this
manner, you need to actually extract data at the bit level. Finally, you can use bit operations to
speed up your program or perform neat tricks. However, this is not always recommended.

Getting ready

For this recipe, you will need a Windows machine with a working copy of Visual Studio.

How to do it...

In this recipe, we will see how easy it is to use bitwise operations to perform operations by
manipulating memory. Bitwise operations are also a great way to optimize code by directly
interacting with memory:

1. Open Visual Studio.

2. Create a new C++ project.

3. Add a source file called main. cpp or anything that you want to name the source file.
4

Add the following lines of code:

#include <iostream>
#include <conio.h>

using namespace std;

void Multi By Power 2 (int iNumber, int iPower) ;
void BitwiseAnd (int iNumber, int iNumber2) ;
void BitwiseOr (int iNumber, int iNumber2) ;

void Complement (int iNumber4) ;

void BitwiseXOR (int iNumber, int iNumber2) ;

int main()

int iNumber = 4, iNumber2 = 3;
int iPower = 2;
unsigned int iNumber4 = 8§;

Multi By Power 2 (iNumber, iPower) ;

Game Development Basics

BitwiseAnd (iNumber, iNumber2) ;
BitwiseOr (iNumber, iNumber2) ;
BitwiseXOR (iNumber, iNumber2) ;
Complement (iNumber4) ;

_getch();
return O;

void Multi By Power 2 (int iNumber, int iPower)

{

cout << "Result is :" << (iNumber << iPower)<<endl;

}

void BitwiseAnd (int iNumber, int iNumber?2)

{

cout << "Result is :" << (iNumber & iNumber2) << endl;

}

void BitwiseOr (int iNumber, int iNumber2)

{

cout << "Result is :" << (iNumber | iNumber2) << endl;

}

void Complement (int iNumber4)

{

cout << "Result is :" << ~iNumber4 << endl;

}

void BitwiseXOR (int iNumber, int iNumber2)

{

cout << "Result is :" << (iNumber”iNumber2) << endl;

}

The left shift operator is the equivalent of moving all the bits of a number a specified number
of places to the left. In our example, the numbers we are sending to the function Multi By
Power 2 is 4 and 3. The binary representation of 4 is 100, so if we shift the most significant
bit, which is 1, three places to the left, we get 10000, which is the binary of 16. Hence, left
shift is equivalent to integer division by 2*shift arg, thatis, 4*2"3, which is again 16.
Similarly, the right shift operation is equivalent to integer division by 2*shift arg.

Now let us consider we want to pack data so that the data is compressed. Consider the
following example:

int totalammo, type, rounds;

=

Chapter 1

We are storing the total bullets in a gun; the type of gun, but it can only be a rifle or pistol;
and the total bullets per round it can fire. Currently we are using three integer values to store
the data. However, we can compress all the preceding data into one single integer and hence
compress the data:

int packaged data;
packaged data = (totalammo << 8) | (type << 7) | rounds;

If we assume the following notations:

» TotalAmmon: A
» Type:T
» Rounds: R

The final representation in the data would be something like this:

AAAAAAATRRRRRRR

Object-Oriented
Approach and
Design in Games

In this chapter, we will cover the following recipes:

» Using classes for data encapsulation and abstraction
» Using polymorphism to reuse code

» Using copy constructors

» Using operator overloading to reuse operators

» Using function overloading to reuse functions

» Using files for input and output

» Creating your first simple text-based game

» Templates - when to use them

Introduction

The following diagram shows the main concepts of OOP (Object-oriented programming).

Let us consider that we need to make a car racing game. So, a car is made up of an engine,
wheels, chassis, and so on. All these parts can be considered as individual components,
which can be used for other cars as well. Similarly, every car's engine can be different and so
we can add different functionalities, states, and properties to each individual component.

=]

Object-Oriented Approach and Design in Games

All this can be achieved through object-oriented programming;:

Encapsulation

i

PolyMorphism <= Ba(l)S(i)cPssof)

'

Abstraction

We need to use an object-oriented system in any design that consists of states and

behaviors. Let us consider a game like Space Invaders. The game consists of two main
characters, the player ship and the enemy. There is also a boss, but that is just an advanced
version of the enemy. The player ship can have different states such as alive, idle, moving,
attack, and dead. It also has a few behaviors, such as left/right movement, single shoot/burst
shoot/missile. Similarly, the enemy has states and behaviors. This is an ideal condition to use
an object-oriented design. The boss is just an advanced form of the enemy, so we can use the
concepts of polymorphism and inheritance to achieve the result.

Using classes for data encapsulation and

abstraction

A class is used to organize information into meaningful states and behaviors. In games, we
deal with so many different types of weapon, player, enemy, and terrain, each with its own
type of state and behavior, so an object-oriented design with classes is a must.

Getting ready

To work through this recipe, you will need a machine running Windows. You need to have
a working copy of Visual Studio installed on your Windows machine. No other prerequisites
are required.

=]

Chapter 2

How to do it...

In this recipe, we will see how easy it is to create a game framework using object-oriented
programming in C++:

1.

ok DN

Open Visual

Studio.

Create a new C++ project.

Select Win32 Console Application.

Add source files called Source. cpp, CEnemy . h, and CEnemy . cpp.

Add the following lines of code to Souce. cpp:

#include
#include
#include
#include
#include

"CEnemy.h"

<iostream>
<string>
<conio.h>

"v1ld.h"

using namespace std;

int main/(

{

)

CEnemy* pEnemy = new CEnemy(10,100,"DrEvil", "GOLD") ;
int iAge;

int iHealth;

string sName;

string sArmour;

iAge = pEnemy->GetAge () ;

iHealth = pEnemy->TotalHealth() ;

sArmour = pEnemy->GetArmourName () ;

sName = pEnemy->GetName () ;

cout <<

cout <<
endl;

cout <<

cout <<

"Name of the enemy is :" << sName << endl;

"Name of " << sName << "'s armour is :" << SArmour <<
"Health of " << gName << " is :" << iHealth << endl;
sName << "'s age is :" << iAge;

delete pEnemy;

_getch(

}

)i

(77}

Object-Oriented Approach and Design in Games

6. Add the following lines of code to CEnemy . h:

#ifndef CENEMY H
#define _CENEMY H

#include <strings>
using namespace std;

class CEnemy
{
public:
string GetName () const;
int GetAge ()const;
string GetArmourName () const;
int TotalHealth()const;

//ctors

CEnemy (int, int, string, string) ;
//dtors

~CEnemy () ;
private:

int m_iAge;

int m_iHealth;

string m_sName;

string m_sArmour;

}i
#endif

7. Add the following lines of code to CEnemy . cpp:

#include <iostream>
#include <strings>
#include "CEnemy.h"

using namespace std;

CEnemy: : CEnemy (int Age, int Health, int Armour, int Name)

{
m_iAge = Age;
m_iHealth = Health;
m_SArmour = Armour;
m_sName = Name;

}

int CEnemy: :GetAge () const

[

Chapter 2

{

return m_iAge;

}

int CEnemy::TotalHealth()const

{

return m_iHealth;

}

string CEnemy: :GetArmourName () const

{

return m_sArmour;

}

string CEnemy: :GetName () const

{

return m_sName;

}

To create an object-oriented program, we need to create classes and objects. Although we
can write the definition and declaration of a class in the same file, it is advisable to have two
separate files for definition and declaration. A declaration class file is called a header file,
whereas a definition class file is called a source file.

In the CEnemy header file, we define the member variables and the functions that we need.
In a class, we have the option to separate out the variables as public, protected, or private.

A public state indicates that they are accessible from outside the class, a protected state
indicates that only the child class that inherits from the current base class has access to it,
whereas a private state indicates that they are accessible by any instance of the class. By
default, everything in a C++ class is private. Hence, we have created all the member functions
as public so that we can access them from the driver program, which in this example is
Source. cpp. The member variables in the header file are all private, as they should not be
directly accessible from outside the class. This is what we call abstraction. We define a string
type variable for name and armor, and an integer type for health and age. It is also advisable
to create a constructor and destructor, even if we do not have any functionality for them at
present. It is also good to use a copy constructor. The reason for this is explained later on in
the chapter.

Object-Oriented Approach and Design in Games

In the CEnemy source file, we have the initialization of the member variables and also the
declarations of the functions. We have used the const keyword at the end of each function
because we do not want the function to change the contents of the member variables. We
just want them to return the values that are already assigned. As a rule of thumb, we should
always use it unless it's necessary not to use it. It makes the code more secure, organized,
and readable. We have initialized the variables in the constructor; we could have also
created parameterized constructors and assigned values to them from the driver program.
Alternatively, we can also have set functions to assign values.

From the driver program, we create a pointer object of the type CEnemy. When the object is
initialized, it calls its appropriate constructors and the values are assigned to them. Then we
call the functions by dereferencing the pointer using the - > operator. So when we call the
p-> function, it is the same as (*p).function. As we are dynamically allocating memory, we
should also delete the object or else we will get a memory leak. We have used v1d to check
for memory leaks. This program does not have any, as we have used the delete keyword.
Just comment out the line delete pEnemy; and you will notice that the program has few
memory leaks on exiting.

Using polymorphism to reuse code

Polymorphism means having several forms. Typically, we use polymorphism when there is
a hierarchy of classes and they are related in some way. We generally achieve this level of
relation by using inheritance.

Getting ready

You need to have a working copy of Visual Studio installed on your Windows machine.

How to do it...

In this recipe, we will see how we can use the same function and override it with different
functionalities based on our needs. Also, we will see how we can share values across base
and derived classes:

1. Open Visual Studio.

2. Create a new C++ project.

3. Select Win32 Console Application.

4

Add a source file called Source.cpp and three header files called Enemy . h,
Dragon.h, and Soldier.h.

Chapter 2

Add the following lines of code to Enemy . h:

#ifndef ENEMY H
#define _ENEMY H

#include <iostream>
using namespace std;

class CEnemy {

protected:

int m_ihealth,m iarmourValue;
public:

CEnemy (int ihealth, int iarmourValue) : m ihealth(ihealth), m_
iarmourValue (iarmourvalue) {}

virtual int TotalHP(void) = 0;

void PrintHealth ()

{

cout << "Total health is " << this->TotalHP() << '\n';

#tendif

Add the following lines of code to Dragon. h:

#ifndef DRAGON H
#define _DRAGON_H

#include "Enemy.h"
#include <iostream>

using namespace std;

class CDragon : public CEnemy {
public:

CDragon (int m_ihealth, int m iarmourValue) : CEnemy(m ihealth,
m_iarmourValue)

int TotalHP()
cout << "Dragon's ";
return m ihealth*2+3*m_iarmourValue;

}

EnS

Object-Oriented Approach and Design in Games

Vi
#endif

Add the following lines of code to Soldier.h:

#ifndef SOLDIER_H
#define SOLDIER_H

#include "Enemy.h"
#include <iostream>

using namespace std;

class CSoldier : public CEnemy {
public:
CSoldier (int m ihealth, int m_iarmourValue)
m_iarmourValue) {}
int TotalHP()
{
cout << "Soldier's ";
return m_ihealth+m iarmourValue;

}
Vi

#endif

Add the following lines of code to Source. cpp:

// dynamic allocation and polymorphism
#include <iostream>

#include <conio.h>

#include "vld.h"

#include "Enemy.h"

#include "Dragon.h"

#include "Soldier.h"

int main ()

{
CEnemy* penemyl = new CDragon (100, 50);
CEnemy* penemy2 = new CSoldier (100, 100);

penemyl->PrintHealth() ;

CEnemy (m_ihealth,

=

Chapter 2

penemy2->PrintHealth() ;

delete penemyl;
delete penemy?2;

_getch();
return O;

}

Polymorphism is the ability to have different forms. So in this example, we have an Enemy
interface that does not have any functionality for calculating total health. However, we know
that all types of enemy should have a function to calculate total health. So we have made the
function in the base class as a pure virtual function by assigning it to 0.

This enables, or rather forces, all the child classes to have their own implementation

for calculating total health. So the CSoldier class and CDragon class have their own
implementation of TotalHP. The advantage of such a structure is that we can create a
pointer object of the child from the base and when it resolves, it calls the correct function of
the child class.

If we do not create a virtual function, then the functions in the child classes would have
hidden the function of the base class. With a pure virtual function, however, this is not true
as this would create a compiler error. The way the compiler resolves the functions at run time
is by a technique called dynamic dispatch. Most languages use dynamic dispatch. C++ uses
single-cast dynamic dispatch. It does so with the help of virtual tables. When the CEnemy
class defines the virtual function TotalHP, the compiler adds a hidden member variable

to the class which points an array of pointers to functions called the virtual method table
(VMT or Vtable). At runtime, these pointers will be set to point to the right function, because
at compile time, it is not yet known if the base function is to be called or a derived one
implemented by CDhragon and CSoldier.

The member variables in the base class are protected. This means that the derived class also
has access to the member variables. From the driver program, because we have allocated
memory dynamically, we should also delete, or else we will have memory leaks. When the
destructor is marked as virtual, we ensure that the right destructor is called.

Object-Oriented Approach and Design in Games

Using copy constructors

Copy constructors are used to copy one object to another. C++ provides us with a default copy
constructor, but it is not recommended. We should write our own copy constructor for better
coding and organizing practices. It also minimizes crashes and bugs that may arise if we use
the default copy constructor provided by C++.

Getting ready

You need to have a working copy of Visual Studio installed on your Windows machine.

How to do it...

In this recipe, we will see how easy it is to write a copy constructor:

1. Open Visual Studio.
Create a new C++ project.
Select Win32 Console Application.

Add source files called Source.cpp and Terrain.h.

ok w0

Add the following lines of code to Terrain.h:

#fpragma once
#include <iostream>

using namespace std;

class CTerrain

public:
CTerrainCTerrain () ;
~CTerrain() ;

CTerrain (const CTerrain &T)

{

cout << "\n Copy Constructor";

}

CTerrain& operator =(const CTerrain &T)

{

cout << "\n Assignment Operator";
return *this;

Chapter 2

6. Add the following lines of code to Source. cpp:

#include <conio.h>
#include "Terrain.h"

using namespace std;

int main()

{

CTerrain Terrainl, Terrain2;
Terrainl = Terrain2;
CTerrain Terrain3 = Terrainl;

_getch();
return 0O;

}

In this example, we have created our own copy constructor and an assignment operator. When
we assign two objects that are already initialized, then the assignment operator is called.
When we initialize an object and set it to the other object, a copy constructor is called. If we do
not create our own copy constructor, the newly created object just holds a shallow reference
of the object it is being assigned to. If the object gets destroyed, then the shallow object
becomes lost as the memory is also lost. If we create our own copy constructor, a deep copy is
created and even if the first object is deleted, the second object stills holds the information in
a different memory location.

Free Store

Terraini Terrain2

Some Data Some Data

Object-Oriented Approach and Design in Games

So in effect, a shallow copy (or member-wise copy) copies the exact values of one object's
member variables into another object. Pointers in both objects end up pointing to the same
memory. A deep copy copies the values allocated on the free store to newly allocated memory.
So in shallow deleting, the object in the shallow copy is disastrous:

Free Store

S

TexaiAl Terrain2

ome Data Some Data

However, a deep copy solves this problem for us:

Free Store

PN

Telgaini Terrain2

/" some Data \| Some Data

Use operator overloading to reuse operators

There are lots of operators that are provided for us by C++. However, sometimes we need
to overload these operators so that we can use them on data structures that we create
ourselves. Of course, we can overload the operators to change the meaning as well. For
example, we can change + (plus) to behave like - (minus), but this is not recommended as
this usually does not serve any purpose or help us in any way. Also, it may confuse other
programmers who are using the same code base.

Getting ready

You need to have a working copy of Visual Studio installed on your Windows machine.

SE)

Chapter 2

How to do it...

In this recipe, we will see how we can overload an operator and which operators are allowed
to be overloaded in C++.
1. Open Visual Studio.
Create a new C++ project.
Select Win32 Console Application.
Add a source file called Source. cpp, vector3.h, and vector3.cpp.

ok wnN

Add the following lines of code to Source. cpp:

#include "vector3.h"
#include <conio.h>
#include "vld.h"

int main ()

{
// Vector tests:
// Create two vectors.
CVector3 a(1.0f, 2.0f, 3.0f);
CVector3 b(1.0f, 2.0f, 3.0f);

CVector3 c;

// Zero Vector.
c.Zero() ;

// Addition.
CVector3 d = a + b;

// Subtraction.
CVector3 e = a - b;

//Scalar Multiplication.
CVector3 f1 = a * 10;

//Scalar Multiplication.
CVector3 f2 = 10 * a;

//Scalar Division.

7]

Object-Oriented Approach and Design in Games

CVector3 g = a / 10;

// Unary minus.
CVector3 h = -a;

// Relational Operators.
bool bAEqualsB = (a == Db);
bool bANotEqualsB = (a != b);

// Combined operations +=.
c = aj;
c += a;

// Combined operations -=.
c = aj;
c -= a;

// Combined operations /=.
c = aj;
c /= 10;

// Combined operations *=.
c = aj;
c *= 10;

// Normalization.
c.Normalize () ;

// Dot Product.
float fADotB = a * b;

// Magnitude.
float fMagl = CVector3::Magnitude (a) ;

float fMag2 = CVector3::Magnitude (c) ;

// Cross product.
CVector3 crossProduct = CVector3::CrossProduct(a, c);

// Distance.
float distance = CVector3::Distance(a, c);

_getch();

SED

}

return (0);

6. Add the following lines of code to vector3 .h:

#ifndef _ VECTOR3 H__
#define _ VECTOR3 H__

#include <cmaths>

class CVector3

{

public:

// Public representation: Not many options here.

float x;
float y;
float z;

CVector3 () ;
CVector3 (const CVector3& kr);

CVector3 (float fx, float fy, float

// Assignment operator.

CVector3& operator =(const CVector3&

// Relational operators.
bool operator ==(const CVector3& _kr)
bool operator !=(const CVector3& _kr)

// Vector operations
void Zero() ;

CVector3 operator -() const;

_fz);

kr) ;

const;
const;

CVector3 operator +(const CVector3& kr) const;

CVector3 operator - (const CVector3& kr) const;

// Multiplication and division by scalar.

CVector3 operator *(float f) const;
CVector3 operator /(float _f) const;

Chapter 2

// Combined assignment operators to conform to C notation
convention.

e

Object-Oriented Approach and Design in Games

const CVector3& kr);

CVector3& operator +=(

-=(const CVector3& _kr);
(
(

CVector3& operator -=
CVector3& operator *=(float f);

CVector3& operator /=(float f);

// Normalize the vector

void Normalize () ;

// Vector dot product.

// We overload the standard multiplication symbol to do this.

float operator *(const CVector3& kr) const;
// Static member functions.

// Compute the magnitude of a vector.
static inline float Magnitude (const CVector3& _kr)

{

return (sqgrt(_kr.x * kr.x + kr.y * kr.y + kr.z * kr.z));

// Compute the cross product of two vectors.
static inline CVector3 CrossProduct (const CVector3& _krA,
const CVector3& _krB)

{

return
(
CVector3(_krA.y * krB.z - _krA.z * krB.y,
_krAa.z * krB.x - krA.x * KkrB.z,

_krA.x * krB.y - krA.y * krB.x)
)i

// Compute the distance between two points.

static inline float Distance (const CVector3& _krA, const
CVector3& krB)

{

float fdx = _krA.x - _krB.x;
float fdy = krA.y - _krB.y;
float fdz = krA.z - krB.z;

return sqgrt (fdx * fdx + fdy * fdy + fdz * fdz);
}
}i

// Scalar on the left multiplication, for symmetry.

-]

inline CVector3 operator *(float £, const CVector3& _kr)

{

return (CVector3(_ f * kr.x, £ * kr.y, £ * kr.z));

#endif // _ VECTOR3 H

Add the following lines of code to vector3. cpp:

#include "vector3.h"

Chapter 2

// Default constructor leaves vector in an indeterminate state.

CVector3: :CVector3 ()

{

// Copy constructor.
CVector3::CVector3 (const CVector3& _kr)

x(_kr.x)
, vy kr.y)
, z(kr.z)

{

// Construct given three values.

CVector3::CVector3 (float _fx, float _fy, float _fz)
x(_fx)

. v(_fy)

, z(_fz)

{

// Assignment operator, we adhere to C convention and return
reference to the lvalue.

CVector3&
CVector3::operator =(const CVector3& _kr)

{

x = kr.x;
y = _kr.y;
z = kr.z;

return (*this);

@

Object-Oriented Approach and Design in Games

}

// Equality operator.

bool
CVector3::operator ==(const CVector3& kr) const
return (x == kr.x && y == _kr.y && z == _kr.z);

// Inequality operator.

bool
CVector3::operator !=(const CVector3& _kr) const
return (x != kr.x || y != kr.y || z != kr.z);

}

// Set the vector to zero.
void
CVector3: :Zero ()

{

x = 0.0f;
y = 0.0f;
z = 0.0f;

// Unary minus returns the negative of the vector.
CVector3
CVector3: :operator -() const

{

return (CVector3(-x, -y, -2));

// Binary +, add vectors.
CVector3
CVector3::operator +(const CVector3& kr) const

{

return (CVector3(x + kr.x, y + _kr.y, z + _kr.z));

// Binary -, subtract vectors.
CVector3
CVector3::operator - (const CVector3& kr) const

{

=

Chapter 2

return (CVector3(x - kr.x, y - kr.y, z - kr.z));

// Multiplication by scalar.
CVector3
CVector3::operator *(float f) const

{

return (CVector3(x * f, y * £, z *x f));

// Division by scalar.

// Precondition: _f must not be zero.

CVector3

CVector3::operator /(float _f) const

{
// Warning: no check for divide by zero here.
ASSERT (float fOneOverA = 1.0f / f);

return (CVector3 (x * fOneOverA, y * fOneOverA, z * fOneOverd)) ;

CVector3&
CVector3::operator +=(const CVector3& _kr)

{

X += _kr.x;
y += _kr.y;
z += _kr.z;

return (*this);

CVector3&
CVector3::operator -=(const CVector3& kr)

{

x -= kr.x;

y -= kr.y;
z -= kr.z;

return (*this);

CVector3&
CVector3::operator *=(float f)

{

@]

Object-Oriented Approach and Design in Games

x *= f;
*= f;
z *= f;

return (*this);

CVector3&
CVector3::operator /=(float _f)

{

float fOneOverA = ASSERT(1.0f / f);

x *= fOneOverA;
y *= fOneOverA;
z *= fOneOverA;

return (*this);

void
CVector3: :Normalize ()

{

float fMagSqg = x * X + y * y + z * z;

if (fMagSqg > 0.0f)
{
// Check for divide-by-zero.
float fOneOverMag = 1.0f / sqgrt (fMagSq) ;

x *= fOneOverMag;
y *= fOneOverMag;
z *= fOneOverMag;

// Vector dot product.

// We overload the standard multiplication symbol to do this.
float

CVector3::operator * (const CVector3& kr) const

{

return (x * kr.x + y * kr.y + z * kr.z);

-

Chapter 2

C++ has built-in types: int, char, and float. Each of these types has a number of built-in
operators, such as addition (+) and multiplication (*). C++ allows you to add these operators

to your own classes as well. Operators on built-in types (int, float) cannot be overloaded. The
precedence order cannot be changed. There are many reasons for proceeding with caution when
overloading an operator. The goal is to increase usability and understanding. In our example,

we have overloaded the basic multiplication operators so that we can add, subtract, and so on
our vector3 objects that we create. This is extremely handy, as we can find the distance of

an object in our game if we know the position vectors of the two objects. We have used const
functions as much as possible. The compiler will enforce the promise to not modify the object.
This can be a great way to make sure that your code has no unanticipated side effects.

All functions that accept vectors accept a constant reference to a vector. We have to
remember that passing an argument by value to a function invokes a constructor. Inheritance
will not be very useful to the vector class, as we know Cvector3 is speed critical. The V-table
adds 25% to the class size, so it is not advisable.

Also, data hiding does not make too much sense, as we need the values of the vector class.
Some operators can be overloaded in C++. The operators that C++ does not allow us to
overload are:

(Member Access or Dot operator),?: (Ternary or Conditional
Operator),:: (Scope Resolution Operator),.* (Pointer-to-member
Operator) ,sizeof (Object size Operator) and typeid (Object type
Operator)

Use function overloading to reuse functions

Function overloading is an important concept in C++. Sometimes, we want to use the same
function name but have different functions to work on different data types or a different
number of types. This is useful as the client can choose the correct function based on its
needs. C++ allows us to do this by using function overloading.

Getting ready

For this recipe, you will need a Windows machine with a working copy of Visual Studio.

Object-Oriented Approach and Design in Games

How to do it...

In this recipe, we will learn how to overload a function:

1. Open Visual Studio.

Create a new C++ project.

Select a Win32 Console Application.

Add source files called main. cpp, Cspeed.h, and Cspeed. cpp.

IS

Add the following lines of code to main. cpp:
#include <iostream>

#include <conio.h>
#include "CSpeed.h"

using namespace std;

//This is not overloading as the function differs only
//in return type
/*int Add(float x, float y)

{

return x + y;

b/

int main()

{

CSpeed speed;

cout<<speed.AddSpeed (2.4f, 7.9f)<<endl;
cout << speed.AddSpeed (4, 5)<<endl;
cout << speed.AddSpeed(4, 9, 12)<<endl;

_getch();
return 0O;

Ea

6. Add the following lines of code to CSpeed. cpp:
#include "CSpeed.h"

CSpeed: : CSpeed ()

{

CSpeed: : ~CSpeed ()

{
}

int CSpeed::AddSpeed(int x, int y, int z)

{

return x + y + z;

}

int CSpeed: :AddSpeed(int x, int y)

{

return x + Vy;

}

float CSpeed::AddSpeed(float x, float y)

{

return x + Vy;

}

7. Add the following lines of code to CSpeed.h:

#ifndef VELOCITY H
#define VELOCITY H

class CSpeed

{

public:
int AddSpeed(int x, int y, int z);
int AddSpeed(int x, int y);
float AddSpeed(float x, float y);

CSpeed () ;
~CSpeed () ;

Chapter 2

[T}

Object-Oriented Approach and Design in Games

private:

Vi

#endif

Overloading a function is a type of functional polymorphism. A function can be overloaded
only by the number of parameters in the argument list and the type of parameter. A function
cannot be overloaded only by the return type.

We have created a class to calculate the sum of speeds. We can use the function to add

two speeds, three speeds, or speeds of different data types. The compiler will resolve which
function to call based on the signature. One might argue that we could create different
objects with different speeds and then add them using operator overloading, or use templates
and write one template function. However, we have to remember that in simple templates

the implementation will remain the same, but in function overloading we can change the
implementation of each function as well.

Using files for input and output

Files are really useful for saving data locally, so we can retrieve it the next time the program is
run or analyze the data after the program exits. For all data structures that we create in code
and populate with values, the values will get lost after the application quits unless we save
them locally or to the server/cloud. Files serve the purpose of containing the saved data. We
can create text files, binary files, or even a file with our own encryption. Files are very handy
when we want to log errors or generate a crash report.

Getting ready

For this recipe, you will need a Windows machine with a working copy of Visual Studio.

How to do it...

In this recipe, we will find out how to use file handling operations in C++ to write or read from
a text file. We can even use C++ operations to create binary files.

1. Open Visual Studio.
2. Create a new C++ project.
3. Select Win32 Console Application.

S Ea

Chapter 2

Add source files called Source.cpp, File.h,and File. cpp.

5. Add the following lines of code to Source. cpp:

#include <conio.h>
#include "File.h"

int main() {
CFile file;

file.WriteNewFile ("Example.txt") ;
file.WriteNewFile ("Example.txt", "Logging textl");
file.AppendFile ("Example.txt", "Logging text2");
file.ReadFile ("Example.txt") ;

_getch();
return 0O;

}

6. Add the following lines of code to File. cpp:

#include "File.h"
#include <strings>
#include <fstream>
#include <iostream>

using namespace std;

CFile::CFile()

{
Text = "This is the initial data";
!
CFile::~CFile ()
{
!

void CFile::WriteNewFile (string Filename) const

{
ofstream myfile (Filename) ;
if (myfile.is open())
{

myfile << Text;

myfile.close();

}

@]

Object-Oriented Approach and Design in Games

else cout << "Unable to open file";

}

void CFile::WriteNewFile (string Filename, string Text)const

{

ofstream myfile (Filename) ;
if (myfile.is openf())

{

myfile << Text;

myfile.close() ;

}

else cout << "Unable to open file";

void CFile: :AppendFile (string Filename, string Text)const

{

ofstream outfile;

outfile.open(Filename, ios base::app) ;
outfile << Text;
outfile.close() ;

}

void CFile::ReadFile(string Filename) const

{
string line;
ifstream myfile (Filename) ;
if (myfile.is open())

{

while (getline(myfile, line))

{

cout << line << '\n';

}

myfile.close() ;

}

else cout << "Unable to open file";

}

7. Add the following lines of code to File . h:

#ifndef FILE H
#define FILE H

#include <iostreams>

[

Chapter 2

#include <string.h>
using namespace std;

class CFile

{

public:
CFile();
~CFile() ;

void WriteNewFile (string Filename) const;
void WriteNewFile (string Filename, string Text)const;
void AppendFile(string Filename, string Text)const;
void ReadFile(string Filename) const;

private:

string Text;

Vi

#endif

We use file handling for a variety of reasons. Some of the most important reasons are to log
data while the game is running, to load data from a text file to be used in the game, or to
encrypt the save data or load data of a game.

We have created a class called CFile. This class helps us to write data to a new file, to
append to a file, and to read from a file. We use the fstream header file to load all the file
handling operations.

Everything in a file is written and read in terms of streams. While doing C++ programming, we
must write information to a file from our program using the stream insertion operator (<<), just
as we use that operator to output information to the screen. The only difference is that you
use an of stream or fstream object, instead of the cout object.

We have created a constructor to contain initial data if a file is created without any data in it. If
we just create or write to a file, each time a new file will be created with the new data. This is
sometimes useful if we just want to write the most recently updated or latest data. However, if
we want to add data to an existing file, we can use the append function. The append function
starts writing to an existing file from the last file-position pointer position.

The read function starts reading data from the file until it reaches the last line of written data.
We can display the result to the screen or, if needed, we could then write the contents to
another file. We also must remember to close the file after each operation, or it might lead

to ambiguity in the code. We can also use the seekp and seekg functions to reposition the
file-position pointer.

1]

Object-Oriented Approach and Design in Games

Creating your first simple game

Creating a simple text-based game is really easy. All we need to do is to create some rules
and logic and we will have ourselves a game. Of course, as the game gets more complex
we need to add more functions. When the game reaches a point where there are multiple
behaviors and states of objects and enemies, we should use classes and inheritance to
achieve the desired result.

Getting ready

To work through this recipe, you will need a machine running Windows. You also need to have
a working copy of Visual Studio installed on your Windows machine. No other prerequisites
are required.

How to do it...

In this recipe, we will learn how to create a simple luck-based lottery game:

1. Open Visual Studio.

Create a new C++ project.

Select Win32 Console Application.
Add a Source. cpp file.

ok w0

Add the following lines of code to it:

#include <iostream>
#include <cstdlib>
#include <ctimes>

int main(void) ({
srand (time (NULL)); // To not have the same numbers over and over
again.

while (true) { // Main loop.
// Initialize and allocate.
int inumber = rand() % 100 + 1 // System number is stored in
here.
int iguess; // User guess is stored in here.
int itries = 0; // Number of tries is stored here.
char canswer; // User answer to question is stored here.

while (true) { // Get user number loop.

// Get number.

std::cout << "Enter a number between 1 and 100 ("

itries << " tries left): ";
std::cin >> iguess;
std::cin.ignore () ;

// Check is tries are taken up.
if (itries >= 20) {
break;

// Check number.
if (iguess > inumber) {

std::cout << "Too high! Try again.\n";
}
else if (iguess < inumber) {

std::cout << "Too low! Try again.\n";
}
else {

break;

// I1If not number, increment tries.

itries++;

// Check for tries.
if (itries >= 20) {
std::cout << "You ran out of tries!\n\n";
}
else {
// Or, user won.

std::cout << "Congratulations!! " << std::endl;

Chapter 2

<< 20 -

std::cout << "You got the right number in " << itries << "

tries!\n";

}

while (true) { // Loop to ask user is he/she would like to

play again.
// Get user response.
std: :cout << "Would you like to play again
std::cin >> canswer;

(Y/N)?

7

5]

Object-Oriented Approach and Design in Games

std::cin.ignore () ;

// Check if proper response.

if (canswer == 'n' || canswer == 'N' || canswer == 'y' ||
canswer == 'Y') {
break;
else {
std::cout << "Please enter \'Y\' or \'N\'...\n";

}
}

// Check user's input and run again or exit;

if (canswer == 'n' || canswer == 'N') ({
std: :cout << "Thank you for playing!";
break;

}

else {

std::cout << "\n\n\n";
}
}

// Safely exit.

std::cout << "\n\nEnter anything to exit. . . ";
std::cin.ignore () ;

return 0;

}

The game works by creating a random number from 1 to 100 and asks the user to guess that
number. Hints are provided as to whether the number guessed is higher or lower than the
actual number. The user is given just 20 tries to guess the number. We first need a pseudo
seeder, based on which we are going to generate a random number. The pseudo seeder in
this case is srand. We have chosen TIME as a value to generate our random range.

We need to execute the program in an infinite loop so that the program breaks only when all
tries are used up or when the user correctly guesses the number. We can set a variable for

tries and increment for every guess a user takes. The random number is generated by the rand
function. We use rand%100+1 so that the random number is in the range 1 to 100. We ask the
user to input the guessed number and then we check whether that number is less than, greater
than, or equal to the randomly generated number. We then display the correct message. If the
user has guessed correctly, or all tries have been used, the program should break out of the
main loop. At this point, we ask the user whether they want to play the game again.

=]

Chapter 2

Then, depending on the answer, we go back into the main loop and start the process of
selecting a random number.

Templates - when to use them

Templates are a C++ programming way to lay the foundations for writing a generic program.
Using templates, we can write code in such a way that it is independent of any particular data
type. We can use function templates or class templates.

Getting ready

For this recipe, you will need a Windows machine with a working copy of Visual Studio.

How to do it...

In this recipe, we will find out the importance of templates, how to use them, and the
advantages that using them provides us.

1. Open Visual Studio.

2. Create a new C++ project.

3. Add source files called Source.cpp and Stack.h.
4

Add the following lines of code to Source. cpp:
#include <iostream>

#include <conio.h>

#include <strings>

#include "Stack.h"

using namespace std;

template<class T>
void Print (T arrayl[]l, int array size)

{

for (int nIndex = 0; nIndex < array size; ++nIndex)

{

cout << array[nIndex] << "\t";

}

cout << endl;

}

int main()

{

int iArray([5] = { 4, 5, 6, 6, 7 };

Object-Oriented Approach and Design in Games

char cArray[3] = { 's', 's', 'b' };
string sArray[3] = { "Kratos", "Dr.Evil", "Mario" };

//Printing any type of elements

Print (iArray, sizeof (iArray) / sizeof (*iArray)) ;
Print (cArray, sizeof (cArray) / sizeof (*cArray)) ;
Print (sArray, sizeof (sArray) / sizeof (*sArray)) ;

Stack<int> iStack;

//Pushes an element to the bottom of the stack
iStack.push(7) ;

cout << iStack.top() << endl;
for (int 1 = 0; 1 < 10; 1i++)

{

iStack.push (i) ;

//Removes an element from the top of the stack
iStack.pop () ;

//Prints the top of stack
cout << iStack.top() << endl;

_getch();

}

Add the following lines of code to Stack.h:

#include <vectors

using namespace std;

template <class T>
class Stack {

private:
vector<T> elements; // elements
public:
void push(T const&); // push element
void pop () ; // pop element

[

Chapter 2

T top() const; // return top element
bool empty () const({ // return true if empty.
return elements.empty() ;
}
Vi

template <class T>
void Stack<T>::push(T consté& elem)
{
// append copy of passed element
elements.push back (elem) ;

}

template <class T>
void Stack<T>: :pop ()
{
if (elements.empty()) {
throw out of range("Stack<>::pop(): empty stack");
}
// remove last element
elements.pop back() ;

template <class T>
T Stack<T>::top() const
{
if (elements.empty()) {
throw out of range("Stack<>::top(): empty stack");
}
// return copy of last element
return elements.back() ;

}

Templates are the foundation of generic programming in C++. If the implementation of a
function or a class is the same but we need them to operate on different data types, it is
advisable to use templates instead of writing a new class or function. One can argue that we
can overload a function to achieve the same thing, but keep in mind that while overloading a
function, we can change the implementation based on the data type and we are still writing a
new function. With templates, the implementation has to be the same for all data types. This
is the advantage of templates: writing one function is enough. With advanced templates and
C++11 features, we can even change the implementation, but we will reserve that discussion

7]

Object-Oriented Approach and Design in Games

We have used function templates and class templates in this example. The function template
is defined in Source. cpp itself. On top of the print function, we have added the line
template <class T>. The keyword class could be replaced by typename as well. The
reason for two keywords is a historic one and we do not need to discuss it here. The remaining
part of the function definition is normal, except instead of using a particular data type, we
have used T. So when we call the function from main, T gets replaced with the correct data
type. In this way, by just using one function, we can print all data types. We can even create
our own data type and pass it to the function.

Stack.h is an example of a class template, as the data type that the class uses is a generic
one. We have selected a stack as it is a very popular data structure in games programming.
It's a LIFO (Last In First Out) structure, so we can display the latest content from the stack
as per our requirements. The push function pushes an element onto the stack, whereas a
pop removes an element from the stack. The top function displays the top-most element of
the stack and the empty function empties the stack. By using this generic stack class, we can
store and display the data type of our choice.

One thing to be kept in mind while using templates is that the compiler must know at compile
time the correct implementation of the template, so generally template definition and
declaration are both done in the header file. However, if you want to separate out the two, you
can do so with two popular methods. One method is to have another header file and list the
implementation at the end of it. The other implementation is to create an . ipp or . tpp file
extension and have the implementation in those files.

Data Structures in
Game Development

In chapter, the following recipes will be covered:

» Using more advanced data structures
» Using linked lists to store data

» Using stacks to store data

» Using queues to store data

» Using trees to store data

» Using graphs to store data

» Using STL lists to store data

» Using STL maps to store data

» Using STL hash tables to store data

Introduction

Data structures are used in the video games industry to organize code into more cleaner and
more manageable. An average video game will have about 20,000 lines of code at least. If we
do not use an effective storage system and structure to manage that code, it will become very
difficult to debug. Also, we may end up writing the same code multiple times.

Data structures are also very useful for searching elements if we have a large data set. Let us
consider that we are making a MMO. From the thousands of players online playing the game,
we need to isolate a player who has the most points on a certain day. If we have not organized
the user data into some meaningful data structure, this might take a long time. On the other
hand, using a suitable data structure can help us achieve this within seconds.

5]

Data Structures in Game Development

Using more advanced data structures

In this recipe, we will see how to use advanced data structures. The main task of a
programmer is to choose the correct data structure based on the need, so that the time taken
to store and parse the data is minimized. Sometimes the choice of a correct data structure is
more important than selecting a suitable algorithm to solve a problem.

Getting ready

To work through this recipe, you will need a machine running Windows. You also need to have
a working copy of Visual Studio installed on your Windows machine. No other prerequisites
are required.

How to do it...

In this recipe, we will see how easy it is to use advanced data structures and why we should
use them. If we organize data into suitable structures, it becomes faster to access data and
easier to apply complex algorithms to it.

1. Open Visual Studio.

2. Create a new C++ project.

3. Select Win32 Console Application.
4

Add source files called Source.cpp, LinkedList .h/ LinkedList .cpp and
HashTables.h/ HashTables. cpp.

5. Add the following lines of code to Source. cpp:

#include "HashTable.h"
#include <conio.h>

int main()

{

// Create 26 Items to store in the Hash Table.
Item * A = new Item{ "Enemyl", NULL };
"Enemy2", NULL

7

Item * B = new Item

{ }
Item * C = new Item{ "Enemy3", NULL };
Item * D = new Item{ "Enemy4", NULL };
Item * E = new Item{ "Enemy5", NULL };
Item * F = new Item{ "Enemy6", NULL };
Item * G = new Item{ "Enemy7", NULL };
Item * H = new Item{ "Enemy8", NULL };
Item * I = new Item{ "Enemy9", NULL };
Item * J = new Item{ "EnemylO", NULL };

Item
Item
Item
Item
Item
Item
Item
Item
Item
Item
Item
Item
Item
Item
Item
Item

// Create a Hash Table of 13 Linked List elements.

N <K MX=2T<dAdH®nh®™WOoO Yoz 2w
It

HashTable table;

= new Ite
= new Ite
= new Ite
= new Ite
= new Ite
new Ite
= new Ite
= new Ite
= new Ite
= new Ite
= new Ite

= new Item
= new Item

= new Item
= new Item
= new Item

"Enemyl1l",
"Enemyl2",
"Enemyl13",
"Enemyl4",
"Enemyl5",
"Enemyl6",
"Enemyl7",
"Enemyl18",
"Enemyl19",
"Enemy20",
"Enemy21",
"Enemy22",
"Enemy23",
"Enemy24",
"Enemy25",
"Enemy26",

// Add 3 Items to Hash Table.

table.
table.
table.

table

insertItem(A) ;

insertItem(B
insertItem

.printTable

(B
(c
0

)i
)i

i

NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

// Remove one item from Hash Table.

table.removeItem ("Enemy3") ;

table.printTable () ;

// Add 23 items to Hash Table.

table.
table.
table.
table.
table.
table.
table.
table.
table.
table.

insertItem(D
insertItem
insertItem
insertItem
insertItem
insertItem
insertItem
insertItem
insertItem
insertItem

(D

(E
(F
(G
(H
(1
(g
(K
(L
(M

)
)
)
)
)
)
)
)
)
)

i

i

i

i

i

i

i

i

i

i

Chapter 3

&1

Data Structures in Game Development

[z

table.insertItem (N

table.insertItem ;

7

7

table.insertItem

7

table.insertItem

7

table.insertItem

7

)
0)
P)
Q)
R)

table.insertItem(S)

T) ;

)

)

)

)

)

)

table.insertItem

7

U
table.insertItem(V

table.insertItem

7

7

table.insertItem

7

table.insertItem

7

table.insertItem

7

table.insertItem
table.printTable

’

(
(
(
(
(
(
(
(
(
(W
(X
(Y
(Z
()

// Look up an item in the hash table

Item * result = table.getItemByKey ("Enemy4") ;

if (result!=nullptr)

cout << endl<<"The next key is "<<result->next-skey << endl;

_getch();
return O;

}

Add the following lines of code to LinkedList .h:

#ifndef LinkedList h
#define LinkedList_h

#include <iostream>
#include <string>
using namespace std;

//**
*

// List items are keys with pointers to the next item.
//**
*

struct Item

{

string key;

Chapter 3

Item * next;

Vi

//**

*

// Linked lists store a variable number of items.
//**

*

class LinkedList

private:
// Head is a reference to a list of data nodes.
Item * head;

// Length is the number of data nodes.
int length;

public:
// Constructs the empty linked list object.
// Creates the head node and sets length to zero.
LinkedList () ;

// Inserts an item at the end of the list.
void insertItem(Item * newlItem) ;

// Removes an item from the list by item key.
// Returns true if the operation is successful.
bool removeltem(string itemKey) ;

// Searches for an item by its key.

// Returns a reference to first match.

// Returns a NULL pointer if no match is found.
Item * getItem(string itemKey) ;

// Displays list contents to the console window.
void printList () ;

// Returns the length of the list.
int getLength() ;

// De-allocates list memory when the program terminates.
~LinkedList () ;

Vi
#endif

&5}

Data Structures in Game Development

7. Add the following lines of code to LinkedList . cpp:
#include "LinkedList.h"

// Constructs the empty linked list object.
// Creates the head node and sets length to zero.
LinkedList: :LinkedList ()
{
head = new Item;
head->next = NULL;
length = 0;

// Inserts an item at the end of the list.
void LinkedList::insertItem(Item * newlItem)
if (!head->next)
head->next = newltem;
newltem->next=NULL;
length++;
return;
//Can be reduced to fewer lines of codes.
//Using 2 variables p and g to make it more clear
Item * p = head->next;
Item * g = p->next;

while (q)
{
p = d4d;
g = p->next;

}

p->next = newltem;
newltem->next = NULL;
length++;

// Removes an item from the list by item key.
// Returns true if the operation is successful.
bool LinkedList::removeltem(string itemKey)
{

if (!'head->next) return false;

Item * p = head;

Item * g = head->next;

while (q)

&)

Chapter 3

if (g->key == itemKey)
{
p->next = g->next;
delete qg;
length--;

return true;

p =4
g = p->next;
}

return false;

// Searches for an item by its key.

// Returns a reference to first match.

// Returns a NULL pointer if no match is found.
Item * LinkedList::getItem(string itemKey)

{

Item * p = head;
Item * g = p->next;
while (q)
{

if (g->key == itemKey))
{

return p;
}

p =4

g = p->next;

return NULL;

// Displays list contents to the console window.
void LinkedList::printList ()
{
if (length == 0)
{
cout << "\n{ }\n";
return;

}

Item * p = head;

(&)

Data Structures in Game Development

Item * g = p->next;
cout << "\n{ ";
while (q)
{

p =4

if (p != head)

cout << p->key;
if (g->next) cout << ", ";
else cout << " ";

}
g = p->next;

}

cout << "}\n";

// Returns the length of the list.
int LinkedList::getLength ()

{

return length;

// De-allocates list memory when the program terminates.
LinkedList::~LinkedList ()

{

Item * p head;

head;

Item * g

while (q)

{
p =4
a p->next;
if (q)

}

delete p;

}

8. Add the following lines of code to HashTable. cpp:
#include "HashTable.h"

// Constructs the empty Hash Table object.
// Array length is set to 13 by default.
HashTable: :HashTable (int tableLength)

{

if (tableLength <= 0) tableLength = 13;

55

Chapter 3

array = new LinkedList [tableLength];
length = tableLength;

// Returns an array location for a given item key.
int HashTable::hash(string itemKey)
{
int value = 0;
for (int i = 0; 1 < itemKey.length(); i++)
value += itemKey[i];
return (value * itemKey.length()) % length;

// Adds an item to the Hash Table.
void HashTable::insertItem(Item * newItem)

{

If (newItem)
int index = hash (newItem->key) ;
array[index] .insertItem(newItem) ;

// Deletes an Item by key from the Hash Table.
// Returns true if the operation is successful.
bool HashTable::removeltem(string itemKey)

int index = hash (itemKey) ;

return array[index] .removeltem (itemKey) ;

// Returns an item from the Hash Table by key.
// If the item isn't found, a null pointer is returned.
Item * HashTable::getItemByKey (string itemKey)

int index = hash (itemKey) ;

return array[index] .getItem(itemKey) ;

// Display the contents of the Hash Table to console window.
void HashTable: :printTable ()

{

cout << "\n\nHash Table:\n";
for (int i = 0; 1 < length; i++)

i

Data Structures in Game Development

{

cout << "Bucket " << i + 1 << ": ";
array[i] .printList () ;

// Returns the number of locations in the Hash Table.
int HashTable: :getLength ()

{

return length;

// Returns the number of Items in the Hash Table.
int HashTable: :getNumberOfItems ()

{

int itemCount = 0;
for (int i = 0; 1 < length; i++)

{

itemCount += array[i] .getLength() ;

}

return itemCount;

// De-allocates all memory used for the Hash Table.
HashTable: : ~HashTable ()

{
}

Add the following lines of code to HashTables.h:

#ifndef HashTable h
#define HashTable h

delete[] array;

#include "LinkedList.h"

//**
*

// Hash Table objects store a fixed number of Linked Lists.
//**

*
class HashTable

{

&5

private:

// Array is a reference to an array of Linked Lists.
LinkedList * array;

// Length is the size of the Hash Table array.
int length;

// Returns an array location for a given item key.
int hash(string itemKey) ;

public:

Vi

// Constructs the empty Hash Table object.
// Array length is set to 13 by default.
HashTable (int tableLength = 13);

// Adds an item to the Hash Table.
void insertItem(Item * newlItem) ;

// Deletes an Item by key from the Hash Table.
// Returns true if the operation is successful.
bool removeltem(string itemKey) ;

// Returns an item from the Hash Table by key.
// If the item isn't found, a null pointer is returned.
Item * getItemByKey(string itemKey) ;

Chapter 3

// Display the contents of the Hash Table to console window.

void printTable () ;

// Returns the number of locations in the Hash Table.
int getLength() ;

// Returns the number of Items in the Hash Table.
int getNumberOfItems() ;

// De-allocates all memory used for the Hash Table.
~HashTable () ;

#endif

(e}

Data Structures in Game Development

We have created this class to store different enemies using a hash table and then search for
a particular enemy from the hash table using a key. The hash table in turn is created using a
linked list.

In the LINKEDLIST file, we have defined a struct to store a key and a pointer to the next
value in the hash table. The main class contains a pointer reference of the struct called ITEM.
Apart from that, the class contains length of the data and member functions to insert an item,
remove an item, find an element, display the entire list, and find the length of the list.

In the HASHTABLE file, a hash table is created using a linked list. A reference of the linked
list is created along with the length of the hash table array and a private function to return
an array location of a particular item in the hash table array. Apart from that, the hash table
has similar functionalities to the linked list, such as inserting an item, removing an item, and
displaying the hash table.

From the driver program, an object of the struct is created to initialize the items to be pushed
into the hash table. Then an object of the hash table is created and the items are pushed to
the table and displayed. An item is also deleted from the table. Finally, a particular item called
Enemy4 is searched and the next key is displayed.

Using linked lists to store data

In this recipe, we will see how we can use linked lists to store and organize data. The main
advantage of a linked list in the games industry is that it is a dynamic data structure. However,
it is bad for searching and inserting elements, as you need to find the information. The search
is O(n). This means we can assigh memory to this data structure at runtime. In games, most
things are created, destroyed, and updated at runtime, so using a linked list is very suitable.
Linked lists can also be used to create linear data structures such as stacks and queues,
which are equally important in game programming.

Getting ready

You need to have a working copy of Visual Studio installed on your Windows machine.

Chapter 3

How to do it...

In this recipe, we will see how easy it is to use linked lists. Linked lists are a great way to store
data and are used as base mechanics for other data structures:

1.

IS

Open Visual Studio.

Create a new C++ project.

Select Win32 Console Application.
Add a source file called Source. cpp.
Add the following lines of code to it:

#include <iostream>
#include <conio.h>

using namespace std;

typedef struct LinkedList
int LevelNumber;
LinkedList * next;

} LinkedList;

int main() {
LinkedList * head = NULL;
int 1i;
for (1 = 1; i <= 10; i++) {

LinkedList * currentNode = new LinkedList;
currentNode->LevelNumber = 1i;
currentNode->next = head;
head = currentNode;

}

while (head) ({
cout << head->LevelNumber << " ";
head = head->next;

}

delete head;
_getch();
return 0O;

7]

Data Structures in Game Development

A linked list is used to create a data structure that stores data, and a field that contains the
address of the next node. A linked list is made up of nodes.

data data data data
20 10 50 40 NULL

Linked list

In our example, we have created a linked list using struct and used an iteration to populate
the linked list. The main concept of a linked list, as explained before, is that it contains data
of some kind and contains the address information of the next node. In our example, we have
created a linked list to store the current level number and the address of the next level to be
loaded. This kind of structure is really important in order to store the levels we want to load.
Just by traversing the linked list, we can load the levels in the correct order. Even checkpoints
in the game can be programmed in a similar manner.

Using stacks to store data

Stacks are an example of a linear data structure in C++. In this type of data structure, the
order in which the data is entered into the data structure is very important. The last piece of
data to be entered is the first piece of data to be deleted. That is why this is sometimes also
referred to as the last in first out (LIFO) data structure. The process for entering data into a
stack is called push, and the process of deleting data is called pop. Sometimes we just want
to print the value at the top of the stack, without deleting or popping. The stack is used in a
variety of areas in the games industry, but especially when creating a Ul system for a game.

Getting ready

You need to have a working copy of Visual Studio installed on your Windows machine.

How to do it...

In this recipe, we will find out how easy it is to use the stack data structure. A stack is one of
the easiest data structures to implement and is used in multiple areas:

1. Open Visual Studio.

2. Create a new C++ project.

3. Select Win32 Console Application.

[

Add a source file called Source. cpp.
Add the following lines of code to it:
#include <iostream>

#include <conio.h>
#include <strings>

using namespace std;

class Stack

{

private:
string UI Elements[10];
int top;

public:
Stack ()

{

top = -1;

void Push(string element)

{

if (top >= 10)

{

cout << "Some error occurred";

}

UI Elements[++top] = element;

}

string Pop ()

{

if (top == -1)

{

cout << "Some error occurred";

}

return UI_Elements[top--];

}

string Top ()

{

Chapter 3

(73]

Data Structures in Game Development

return UI_Elements[top];

}

int Size()

{

return top + 1;

bool isEmpty ()

{

return (top == -1) ? true : false;

Vi

int main ()

{

Stack _stack;

if (_stack.isEmpty())
{

cout << "Stack is empty" <<
}
// Push elements
_stack.Push("UI Elementl");
_stack.Push("UI Element2");
// Size of stack
cout << "Size of stack = " <<
// Top element
cout << _stack.Top() << endl;
// Pop element
cout << _stack.Pop() << endl;
// Top element
cout << _stack.Top() << endl;

_getch();
return O;

endl;

_stack.Size()

<<

endl;

Sz

Chapter 3

In this example, we have used the STACK data structure to push the various Ul elements into
the stack. The STACK itself is created with the help of an array. While pushing an element,
we need to check whether the stack is empty or already has some elements present. While
popping elements, we need to delete the element that is at the top of the stack and change
the pointer address accordingly. While printing the Ul elements of the stack, we traverse the
entire stack and display them from the top. Let us consider a game with the following levels:
Main Menu, Chapter Select, Level Select, and Play Game. When we want to quit the game,
we want the user to select the levels in reverse order. So the first level should be Play Game
(Pause State), followed by Level Select, Chapter Select, and finally Main Menu. This can be
easily achieved with a stack as explained in the previous example.

Using queues to store data

A queue is an example of a dynamic data structure. This means the size of the queue can

be changed at runtime. This is a huge advantage when it comes to programming in games.
Queues are engeued/inserted from the rear of the data structure and dequeued/deleted/
pushed out from the front of the data structure. This makes it a first in first out (FIFO) data
structure. Imagine, in a game, we have an inventory but we want to make the player use the
first item he has picked up unless he manually changes to a different item. This can be easily
achieved by a queue. If we want to design it so that the current item switches to the most
powerful item in the inventory, we can use a priority queue for that purpose.

Getting ready

For this recipe, you will need a Windows machine with a working copy of Visual Studio.

How to do it...

In this recipe, we will implement the queue data structure using a linked list. It is very easy to
implement a queue and it is a very robust data structure to use:
1. Open Visual Studio.
Create a new C++ project.
Select Win32 Console Application.

Add a source file called Source. cpp.

ok 0N

Add the following lines of code to it:

#include <iostream>
#include <queues>
#include <string>

Data Structures in Game Development

#include <conio.h>

using namespace std;

int main ()

{

queue <string> gunInventory;

gunInventory.push ("AK-47") ;

gunInventory.push ("BullPup") ;

gunInventory.push ("Carbine") ;

cout
cout

<<

<< "This is your weapons inventory" << endl << endl;
<< "The first gun that you are using is "
gunInventory.front () << endl << endl;

gunInventory.pop () ;

cout << "There are currently " << gunInventory.size()
<< " more guns in your inventory. " << endl << endl
<< "The next gun in the inventory is "
<< gunInventory.front () << "." << endl << endl
<< gunInventory.back() << " is the last gun in the inventory."
<< endl;
_getch();
return 0;

}

We have used an STL queue to create the queue structure, or rather use the queue structure.
The queue structure, as we know, is important when we need to use the FIFO data structure.
As in a First Person Shooter, we may want the user to use the first gun he picks up and the
remaining guns be put in the inventory. This is an ideal case for a queue, as explained in the
example. The front of the queue structure holds the first gun picked up, or the current gun,
and the remaining guns are stored in the inventory in the order in which they were picked up.
Sometimes, we do want in our game that if we pick up a gun that is more powerful than the
one we are using, it should automatically swap to that. In such a case, we can use a more
specialized form of queue called a priority queue, where we need to use the same queue
structure but just specify by what parameters the queue is to be sorted.

[

Chapter 3

Using trees to store data

A tree is an example of a non-linear data structure, unlike arrays and linked lists which are
linear. A tree is often used in games that require hierarchy. Imagine a car with many parts and
all the parts are functional, upgradable, and can be interacted with. In this case, we will create
the entire class for the car using a tree data structure. A tree uses a parent-child relationship
to traverse between all the nodes.

Getting ready

For this recipe, you will need a Windows machine with a working copy of Visual Studio.

How to do it...

In this recipe, we will be implementing a binary tree. There are many variations of the binary
tree. We will be creating the most basic binary tree. It is very easy to add new logic to a binary
tree to implement a balanced binary, or AVL tree, and so on:

1. Open Visual Studio.
Create a new C++ project.
Select Win32 Console Application.

Add a source file called CTree . cpp.

ok w0

Add the following lines of code to it:

// Initialize the node with a value and pointers
// to left child
// and right child
struct node
{
string data_value;
node *left;
node *right;

bi

class Binary Tree
{
public:
Binary Tree();
~Binary Tree() ;

void insert (string key) ;
node *search(string key) ;

Data Structures in Game Development

void destroy tree();

private:
void destroy tree(node *leaf);
void insert (string key, node *leaf);
node *search(string key, node *leaf) ;

node *root;

Vi

Binary Tree::Binary Tree()

{

root = NULL;

Binary Tree::~Binary Tree()

{

destroy tree () ;

}

void Binary Tree::destroy tree(node *leaf)
{
if (leaf != NULL)
{
destroy tree(leaf->left);
destroy tree(leaf->right);
delete leaf;

void Binary Tree::insert (string key, node *leaf)

{

if (key< leaf->key value)
{
if (leaf->left != NULL)
insert (key, leaf->left);
else
{
leaf->left = new node;
leaf->left->key value = key;
leaf->left->1left = NULL;
leaf->left->right = NULL;

[

Chapter 3

else if (key >= leaf-skey value)
{
if (leaf->right != NULL)
insert (key, leaf->right);
else
{
leaf->right = new node;
leaf->right->key value = key;
leaf->right->left = NULL;
leaf->right->right = NULL;

node *Binary Tree::search(string key, node *leaf)
{
if (leaf != NULL)
{
if (key == leaf->key value)
return leaf;
if (key<leaf-skey value)
return search(key, leaf-sleft);
else
return search (key, leaf->right);

}

else return NULL;

void Binary Tree::insert (string key)
if (root != NULL)
insert (key, root) ;
else
root = new node;
root->key value = key;
root->left = NULL;
root->right = NULL;

}

node *Binary Tree::search(string key)

{

7]

Data Structures in Game Development

return search(key, root);

}

void Binary Tree::destroy tree()

{

destroy tree(root) ;

}

We use a struct to store the value and a pointer to the left child and the right child. There is
no particular rule as to which elements should be your left child and which elements should
be the right child. We can decide, if we want, that all elements lower than the root element
should be on the left and all elements greater that the root are on the right.

Both insertion and deletion in the tree data structure are done in a recursive way. To insert
elements, we traverse the tree and check if it is empty. If it is empty, we create a new node
and add all the corresponding nodes recursively, by checking whether the new node's value
is greater than or less than the root node. Searching for an element is done in a similar way.
If the element to be searched has a value lower than the root node, we can ignore the entire
right-hand section of the tree, as we can see in our search function, and keep searching
recursively. This reduces the search space considerably and optimizes our algorithm. This
means searching for an item at runtime will be faster. Let us say we are creating a game
where we need to implement procedural terrain. After the scene is loaded, we can use a
binary tree to divide the entire level into sections based on whether they appear on the left or
the right. If this information is correctly stored in the tree, then the game camera can use this
information to decide which section is rendered and which is not. This also creates a great
level of culling optimization. If the parent does not get rendered, we can neglect checking the
remainder of the tree for rendering.

Chapter 3

Using graphs to store data

In this recipe, we will see how easy it is to store data using the graph data structure. The
graph data structure is extremely useful if we have to create a system like Facebook to sell
and share our game with friends, and friends of friends. A graph can be implemented in a few
ways. The most commonly used method is by using edges and nodes.

Getting ready

To work through this recipe, you will need a machine running Windows. You also need to have
a working copy of Visual Studio installed on your Windows machine. No other prerequisites
are required.

How to do it...

In this recipe, we will see how we can implement graphs. Graphs are a very good data
structure for interconnecting various states and data together with edge conditions. Any social
networking algorithm uses the graph data structure in one way or another:

1. Open Visual Studio.
Create a new C++ project.
Select Win32 Console Application.
Add the CGraph.h/CGraph. cpp files.

ok W

Add the following lines of code to CGraph.h:

#include <iostream>
#include <vectors>
#include <map>
#include <string>

using namespace std;

struct vertex
typedef pair<int, vertex*s> ve;
vector<ve> adj; //cost of edge, destination vertex
string name;
vertex (string s)

{

name = s;

Data Structures in Game Development

}
Vi

class graph
{
public:
typedef map<string, vertex *> vmap;
vmap work;
void addvertex(const stringé&) ;
void addedge (const string& from, const string& to, double cost);

Vi

6. Add the following lines of code to CGraph. cpp:

void graph::addvertex(const string &name)
{

vmap: :iterator itr = work.begin() ;

itr = work.find (name) ;

if (itr == work.end())

{

vertex *v;

Vv = new vertex(name) ;
work [name] = v;
return;

}

cout << "\nVertex already exists!";

void graph::addedge (const string& from, const string& to, double

cost)

{
vertex *f = (work.find(from)->second) ;
vertex *t = (work.find(to)->second) ;

pair<int, vertex *> edge = make pair(cost, t);
f->adj.push back(edge) ;

[

Chapter 3

A graph comprises of edges and nodes. So, the first thing to do while implementing a graph
data structure is to create a struct to store the node and vertex information. The following
diagram has six nodes and seven edges. To implement a graph, we need to understand the
cost of each edge to go from one node to another. These are called adjacency costs. To insert
a node, we create a node. To add an edge to the node, we need to supply the information
about the two nodes that need to be connected and the cost of the edge.

After we get that information, we create a pair using the cost of the edge and one of the nodes
and push that edge information to the other node:

Using STL lists to store data

STL is a standard template library that contains a lot of implementations of the basic data
structures, which means we can directly use them for our purpose. The list is internally
implemented as a doubly linked list, which means insertion and deletion can happen at
both ends.

Getting ready

For this recipe, you will need a Windows machine with a working copy of Visual Studio.

[E5]-

Data Structures in Game Development

How to do it...

In this recipe, we will see how we can easily use the inbuilt template library provided for us by
C++ to create complex data structures. After the complex data structure has been created, we
can easily use it to store data and access it:

1. Open Visual Studio.

2. Create a new C++ project.

3. Add a source file called Source. cpp.
4. Add the following lines of code to it:

#include <iostream>
#include <list>
#include <conio.h>

using namespace std;

int main{()

{
list<int> possible paths;
possible paths.push back
possible paths.push back
possible paths.push back
possible paths.push back

possible paths.push back

possible paths.push back

(1)
(1)
(8);
(9);
possible paths.push back(7) ;
(8);
(2);
possible paths.push back(3) ;
possible paths.push back(3) ;

possible paths.sort () ;
possible paths.unique() ;

for (list<ints>::iterator list iter = possible paths.begin() ;
list iter != possible paths.end(); list iter++)

cout << *list iter << endl;

_getch();
return 0O;

)

Chapter 3

We have used the list to push back the values of possible path costs for a certain Al player to
reach a destination. We have used an STL list, which comes with a few functions built in that
we can apply on the container. We use the sort function to sort the list in ascending order.
We also have the unique function to delete all duplicate values from the list. After sorting
the list, we have the least path cost, and accordingly we can apply that path to the Al player.
Although the code size is reduced immensely and it is much easier to write, we should use
STL with caution as we are never sure about the algorithm behind the inbuilt functions. For
example, the sort function most likely uses QuickSort but we don't know.

Using STL maps to store data

A map is one of the associative containers of STL and stores elements formed by a
combination of a key value and a mapped value, following a specific order. Maps are
a part of the STL provided for us by C++.

Getting ready

For this recipe, you will need a Windows machine with a working copy of Visual Studio.

How to do it...

In this recipe, we will see how we can easily use the inbuilt template library provided by C++ to
create complex data structures. After the complex data structure is created, we can easily use
it to store data and access it:

1. Open Visual Studio.

2. Create a new C++ project.

3. Add a source file called Source. cpp.

4. Add the following lines of code to it:

#include <iostream>
#include <map>
#include <conio.h>

using namespace std;
int main{()

map <string, int> score list;

score list["John"] = 242;

Data Structures in Game Development

score list["Tim"] = 768;
score list["Sam"] = 34;
if (score list.find("Samuel") == score list.end())

{

cout << "Samuel is not in the map!" << endl;

}

cout << score list.begin()->second << endl;

_getch();
return O;

}

We have used the STL map to create a key/value pair to store the names of the players
playing our game, along with their high scores. We can use any data type in a map. In our
example, we have used a string and an int. After creating the data structure, it is very easy to
find whether a player exists in the database, and we can also sort the map and display the
score associated with the player. The second field gives us the values, whereas the first field
gives us the key.

Using STL hash tables to store data

The biggest difference between a map and a hash table is that while the map data structure
is ordered, a hash table is unordered. Both use the same principle of key/value pairs. The
worst case search complexity for an unordered map is O(N), as it is not ordered like a map,
which has a complexity of O(log N).

Getting ready

For this recipe, you will need a Windows machine with a working copy of Visual Studio.

(55

Chapter 3

How to do it...

In this recipe, we will see how we can easily use the inbuilt template library provided for us by
C++ to create complex data structures. After the complex data structure has been created, we
can easily use it to store data and access it:

1. Open Visual Studio.

2. Create a new C++ project.

3. Add a source file called Source. cpp.

4. Add the following lines of code to it:

#include <unordered map>
#include <string>
#include <iostream>
#include <conio.h>

using namespace std;

int main()

{

unordered map<string, string> hashtable;

hashtable.emplace ("Alexander", "23ms") ;

hashtable.emplace ("Christopher", "21ms") ;

hashtable.emplace ("Steve", "55ms") ;

hashtable.emplace ("Amy", "17ms") ;

hashtable.emplace ("Declan", "999ms") ;

cout << "Ping time in milliseconds: " << hashtable["Amy"] <<
endl<<endl;

COUL << Mmmmmmm e e e e " << endl << endl;

hashtable.insert (make pair("Fawad", "67ms"));

cout << endl<<"Ping time of all player is the server" << endl;
COUL << Mommmmmm o " << endl << endl;
for (auto &itr : hashtable)

{

cout << itr.first << ": " << itr.second << endl;

_getch();
return 0O;

[e7]-

Data Structures in Game Development

The program calculates the ping time of all players who are currently playing our game on the
server. We create a hash table and store all their names and ping times using the emplace
keyword. We can also insert a new player later with their ping time by using the make pair
keyword. After the hash table has been created, we can easily display the ping time of a
particular player, or the ping time of all players in the server. We use an iterator to iterate
through the hash table. The first parameter gives us the key and the second parameter gives
us the value.

Algorithms for Game
Development

In this chapter, the following recipes will be covered:

» Using sorting techniques to arrange items

» Using searching techniques to look for an item

» Finding the complexity of an algorithm

» Finding the endian-ness of a device

» Using dynamic programming to break down a complex problem
» Using greedy algorithms to solve problems

» Using divide and conquer algorithms to solve problems

Introduction

An algorithm refers to a list of steps that should be applied to perform a task. Searching

and sorting algorithms are techniques with which we can search or sort elements in a
container. A container, by itself, will have no advantage unless we can search items within that
container. Based on certain containers, certain algorithms become more powerful for some
containers than others. As an algorithm will run slower on a slower system and faster on a
superior system, computation time is not an effective way to measure the effectiveness of an
algorithm. Algorithms are rather measured as steps. Games are real-time applications, so the
algorithms that will be applied have to be effective for games to be executed at least at 30
frames per second. The ideal frame rate is 60 frames per second.

Algorithms for Game Development

Using sorting techniques to arrange items

Sorting is a way to arrange items in a container. We can arrange them in ascending or
descending order. If we have to implement the high score system and leader board of a game,
sorting becomes necessary. In the game, the moment a user achieves a score higher than his
previous highest score, we should update that value as the current highest score and push

it to a local or online leader board. If it's local, we should arrange all the user's previous high
scores in descending order and display the top 10 scores. If it is an online leader board, we
need to sort all the users' latest high scores and display the result.

Getting ready

To work through this recipe, you will need a machine running Windows. You also need to have
a working copy of Visual Studio installed on your Windows machine. No other prerequisites
are required.

How to do it...

In this recipe, we will find out how easy it is to arrange items in a container using different
sorting techniques:
1. Open Visual Studio.
Create a new C++ project.
Select Win32 Console Application.
Add a header file called Sorting.h.

ok w0

Add the following lines of code to it:

// Bubble Sort
template <class T>
void bubble sort(T al], int n)

{

T temp;
for (int 1 = 0; i<n; i++)
{
for (int j = 0; j<n - 1 - 1; j++)

{
if (aljlsalj + 11)
{
temp = alj]l;
aljl = alj + 11;
alj + 1] = temp;
}
}

59

//Insertion Sort
template <class T>
void insertion sort (T all, int n)
{
T key;
for (int 1 = 1; i<n; i++)
{
key = alil;
int j =1 - 1;
while (j >= 0 && aljl>key)
{
alj + 11 = aljl;
j=3-1;
}

alj + 1] = key;

//Selection Sort
template <class T>
int minimum element (T a, int low,
{
int min = low;
while (low<up)
{
if (al[low]<a[min])
min = low;
low++;

}

return min;

template <class T>

void selection sort (T al], int n)
int 1 = 0;
int loc = 0;
T temp;
for (i = 0; i<n; i++)

{

int up)

Chapter 4

o7

Algorithms for Game Development

loc = minimum element(a, i, n);
temp = alloc];

alloc]l = alil;

ali] = temp;

//Quick Sort
template <class T>
int partition(T al[l]l, int p, int r)
{
T xX;
int i;
x = alr];
i=p-1;
for (int j = p; j <=1 - 1; j++)
{
if (aljl <= x)
{
i =1+ 1;
swap (ali]l, aljl);

}
swap(ali + 1], alrl);
return 1 + 1;
}
template <class T>
void quick_sort (T all, int p, int r)
{
int q;
if (p<r)
{
g = partition(a, p, r);
quick sort(a, p, g - 1);
quick sort(a, g + 1, r)

7

}

In this example four sorting techniques have been used. The four techniques are bubble sort,
selection sort, insertion sort, and quick sort.

[z

Chapter 4

Bubble sort is a sorting algorithm that works by continuously traversing the container to be
sorted, comparing each pair of adjacent items and swapping them if they are in the wrong
order. The process is continued until no more swaps are required. The average, best, and
worst case scenarios have the order of O(n"2).

Insertion sort is a simple sorting algorithm, a comparison sort in which the sorted container
is built one entry at a time. It is a very simple algorithm to implement. However, it is not so
effective on large sets of data. The worst and average case scenarios have an order of O(n"2)
and the best case scenario, when the container is sorted, has an order of O(n).

Selection sort is an algorithm that attempts to place an item in its correct position in the
sorted list at every pass. The best, worst, and average case scenarios have an order of O(n"2).

Quick sort is an algorithm that creates a pivot and then sorts the container based on the
pivot. Then the pivot is shifted and the process continues. Quick sort is a very effective
algorithm and works on almost all real-world data and most modern architectures. It makes
excellent use of memory hierarchy. Even the inbuilt standard template library uses a modified
version of quick sort for its sorting algorithm. The best and average case scenarios for this
algorithm are O(n*log n) and the worst case is O(n"2).

Using searching techniques to look for an

item

Searching techniques are a group of algorithms that involve the process of looking for an

item in a container. Searching and sorting go hand in hand. A sorted container will be easier
to search. After a container is sorted or ordered, we can apply an appropriate searching
algorithm to find an element. Suppose we need to find the names of the guns that have been
used to kill more than 25 enemies. If the container stores the values of the name of the

gun and total kills associated with that gun, all we need to do is to first sort that container in
ascending number of kills made by the guns. Then we can do a linear search in which we find
the first gun that has more than 25 kills. Correspondingly, the next items in the container after
that will have more than 25 kills, as the container is sorted. However, we can apply better
searching techniques.

Getting ready

You need to have a working copy of Visual Studio installed on your Windows machine.

Algorithms for Game Development

How to do it...

In this recipe, we will find out how we can easily apply searching algorithms to our program:

1. Open Visual Studio.
Create a new C++ project.
Select Win32 Console Application.

Add a source file called Source. cpp.

IS

Add the following lines of code to it:

#include <iostream>
#include <conio.h>

using namespace std;

bool Linear Search(int list[], int size, int key)
{

// Basic sequential search

bool found = false;

int 1i;

for (i = 0; 1 < size; i++)
{
if (key == list[i])
found = true;
break;

return found;

}
bool Binary Search(int *1list, int size, int key)
{

// Binary search

bool found = false;

int low = 0, high = size - 1;

while (high >= low)
{
int mid = (low + high) / 2;
if (key < list[mid])
high = mid - 1;
else if (key > list[mid])
low = mid + 1;

=]

Chapter 4

else

{
found = true;
break;

}

return found;

}

Searching for items in a container can be done in many ways. However, it matters a lot
whether the container has been sorted or not. Let us assume that the container is sorted.

The worst way to search for an item is to traverse the whole container and search for the

item. This will take a lot of time for large data sets and is absolutely not advisable in games
programming. A better way to search for an item is by using binary searching. Binary searching
works by dividing the container into two halves. It checks at the midpoint if the value to be
searched is less than or greater than the midpoint value. If it is greater, we can ignore the first
half of the container and continue searching only in the second half. Again repeat the process
for the second half, by further dividing into two halves. Consequently, by doing this we can
reduce the search space of the algorithm immensely. The order of this algorithm is O(log n).

Finding the complexity of an algorithm

We need an effective way to measure algorithms. That way we will find out whether our
algorithm is effective or not. An algorithm will work more slowly on slower machines and

more quickly on faster machines, so computation time is not an effective way to measure
algorithms. Algorithms should rather be measured as a number of steps. We call that the
order of the algorithm. We also need to find out the best case, worst case, and average case
scenarios for the order of the algorithm. This will give us a clearer picture of how our algorithm
will be applied to small sets of data and larger sets of data. Complex algorithms or algorithms
of a higher order should be avoided, as these will increase the number of steps that the
device will need to do to perform the task, and hence will slow down the application. Also,
debugging becomes difficult with such algorithms.

Getting ready

You need to have a working copy of Visual Studio installed on your Windows machine.

Algorithms for Game Development

How to do it...

In this recipe, we will find out how easy it is to find the complexity of an algorithm.

1. Open Visual Studio.

Create a new C++ project.

Select Win32 Console Application.
Add a source file called Source. cpp.

ok wnN

Add the following lines of code to it:

#include <iostream>
#include <conio.h>

using namespace std;

void Cubic_ Order ()
{
int n = 100;
for (int 1 = 0; 1 < n; i++)
{
for (int j=0; j < n; J++)
{
for (int k = 0; k < n; k++)
{
//Some implementation
}
}
}
}
void Sgaure Order ()
{
int n = 100;
for (int 1 = 0; 1 < n; i++)
{
for (int j = 0; j < n; j++)

{

}
}
}

//Some implementation

int main ()

{

58]

Chapter 4

Cubic Order () ;
Sqgaure Order () ;

return O;

}

In this example, we can see how the order of an algorithm, or the "Big O" notation, varies with
implementation. If we take the first function, Cubic_Order, the innermost implementation will
take n*n*n steps to find the answer. So it has an order of n-cubed, O(n”3). This is really bad.
Imagine if n is a really large data set, for example let's say n =1000, it will take 1,000,000,000
steps to find the solution. Avoid cubic order algorithms whenever you can. The second function,
square_order, has a square order. The innermost implementation will take n*n steps to find a
solution, so the order of that algorithm is O(n~2). This is, again, bad practice.

We should attempt to achieve at least O(log N) complexity. We can achieve log N complexity
if we continuously decrease the search space by half, for example, by using binary searching.
There are order algorithms that achieve O (log N), which is greatly optimized.

As a general rule, all algorithms following divide and conquer will have O (log N) complexity.

Finding the endian-ness of a device

The endian-ness of a platform refers to the way the most significant byte is stored on that
device. This information is highly important as many algorithms can be optimized based on this
information. Notably, the two most popular rendering SDKs, DirectX and OpenGL, differ in their
endian-ness. The two different types of endian-ness are called big endian and little endian.

Getting ready

For this recipe, you will need a Windows machine with a working copy of Visual Studio.

How to do it...

In this recipe, we will find out how easy it is to find the endian-ness of a device.

1. Open Visual Studio.

2. Create a new C++ project.

3. Select Win32 Console Application.
4

Add a source file called Source. cpp.

o7}

Algorithms for Game Development

5. Add the following lines of code to it:

Source.cpp

#include <stdio.h>

#include <iostream>

#include <conio.h>

using namespace std;

bool isBigEndian ()

{

}

unsigned int i = 1;
char *c = (char*)&i;
if (*c)

return false;
else
return true;

int main()

{

}

if (isBigEndian())

{

cout << "This is a Big Endian machine" << endl;

}

else

{

cout << "This is a Little Endian machine" << endl;

_getch();

return 0O;

Little and big endian are two different ways in which multibyte data types are stored on
different machines. In little endian machines, the least significant byte of the multibyte data
type is stored first. On the other hand, in big endian machines, the most significant byte of
binary representation of the multibyte data type is stored first.

In the preceding program, a character pointer c is pointing to an integer i. Since the size of
character is 1 byte when the character pointer is dereferenced, it will contain only the first
byte of the integer. If the machine is little endian, then *c will be 1 (because the last byte is
stored first), and if the machine is big endian then *c will be 0.

55

Chapter 4

Suppose the integer is stored as 4 bytes; then, a variable x with value 0x01234567 will be
stored as follows:

0x100 Ox101 0x102 0x103
| JorfJzsfasfer] [|

Big Endian

0x100 Ox101 0Ox102 0x103
L[[mevijrastjresifroas| [|

Little Endian

Most of the time, a compiler takes care of endian-ness; however, endian-ness becomes an
issue in network programming if we are sending data from a little endian machine to a big
endian machine. Also, it becomes an issue if we switch our rendering pipeline from DirectX
to OpenGL.

Using dynamic programming to break down

a complex problem

Dynamic programming is a very modern way to solve problems. The process involves
breaking a big problem into smaller chunks of problems, finding solutions for those chunks
and repeating the process to solve the entire complex problem. It is a bit difficult to grasp
this technique at first, but with sufficient practice any problem can be solved using dynamic
programming. Most of the problems we will encounter while programming a video game will
be complex. Hence, mastering this technique will be really useful.

Getting ready

For this recipe, you will need a Windows machine with a working copy of Visual Studio.

How to do it...

In this recipe, we will find out how easy it is to use dynamic programming to solve a problem:

1. Open Visual Studio.
2. Create a new C++ project.

Algorithms for Game Development

3. Select Win32 Console Application.
4. Add a source file called Source. cpp.
5. Add the following lines of code to it:

#include<iostream>
#include <conio.h>

using namespace std;

int max(int a, int b) { return (a > b) ? a : b; }

int knapSack (int TotalWeight, int individual weight[],
individual_value[], int size)

{

if (size == || TotalWeight == 0)
return 0O;
if (individual weight[size - 1] > TotalWeight)

int

return knapSack (TotalWeight, individual weight, individual

value, size - 1);
else return max(individual value[size - 1] +
knapSack (TotalWeight - individual weight[size - 1], individual
weight, individual value, size - 1),
knapSack (TotalWeight, individual weight, individual value,
size - 1)
) ;
}
int main()

{
int individual valuel[] = { 60, 100, 120 };
int individual weight[] = { 10, 25, 40 };
int TotalWeight = 60;

int size = sizeof (individual value) / sizeof (individual

weight [0]) ;

cout << "Total value of sack "<<knapSack (TotalWeight,
individual weight, individual value, size);

_getch();
return 0O;

100

Chapter 4

This is an example of the classical knapsack problem. This can be applied to many scenarios
in game programming, especially for Al resource management. Let us consider that the total
weight (sack) that the Al can carry is a constant. In our example, this is the total weight of
the knapsack. Every item that the Al collects in the game has a weight and a value. The Al
now needs to decide how to fill up his inventory/sack so that he can sell the total sack for
maximum value and get coins.

We solve the problem by recursion by solving for every small combination of items (weight
and value) and checking for the maximum value of the two combinations, and repeating the
process until the total weight of the knapsack is reached.

Using greedy algorithms to solve problems

A greedy algorithm works by finding the optimal solution at every stage. So before processing
the next step, it will decide its next step based on the previous outcome and the current needs
of the application. In this way, it is better than dynamic programming. However, we cannot
apply this principle to all problems, hence a greedy algorithm cannot be used for all situations.

Getting ready

To go through this recipe, you will need a machine running Windows. You also need to have
a working copy of Visual Studio installed on your Windows machine. No other prerequisites
are required.

How to do it...

In this recipe, we will find out how easy it is to use greedy algorithm to solve a problem:

1. Open Visual Studio.

Create a new C++ project.

Select Win32 Console Application.
Add the Source. cpp files.

IS

Add the following lines of code to it:

#include <iostream>
#include <conio.h>

using namespace std;

101

Algorithms for Game Development

void printMaxActivities(int start Time[], int finish Time[], int
n)

int i, J;

i=0;

cout << 1ij;

for (3 = 1; j < n; j++)

if (start_Time[j] >= finish Time[i])
cout << j;

i=73;

int main()
int start Time[] = { 0, 2, 4, 7, 8, 11 };
int finish Timel[] = { 2, 4, 6, 8, 9, 15 };
int n = sizeof (start Time) / sizeof (start Time[0]) ;
printMaxActivities(start Time, finish Time, n);

_getch();
return 0;

}

In this example, we have a set of start times and finish times for different activities. We need
to find out which activities can be performed by a single person. We can assume that the
container is already sorted based on the finish time. So at every pass, we check whether the
current start time is greater than or equal to the previous finish time. Only then can we take
up the task. We traverse the container and keep checking the same condition. Because we
are checking at every step, this algorithm is pretty well optimized.

Using divide and conquer algorithms to

solve problems

In general, divide and conquer is based on the following idea. The whole problem we want to
solve may be too big to understand or solve at once. We break it up into smaller pieces, solve
the pieces separately, and combine the separate pieces.

102

Getting ready

For this recipe, you will need a Windows machine with a working copy of Visual Studio.

How to do it...

Chapter 4

In this recipe, we will find out how easy it is to use a greedy algorithm to solve a problem:

1.

2.
3.
4

Open Visual Studio.
Create a new C++ project.

Add a source file called Source. cpp.

Add the following lines of code to it:

#include <iostream>
#include <conio.h>

using namespace std;
const int MAX = 10;

class rray
{
private:
int arr [MAX];
int count;
public:
array () ;
void add(int num) ;
void makeheap (int) ;
void heapsort () ;
void display() ;
Vi
array ::array()
{
count = 0;
for (int i = 0; 1 < MAX;
arr [MAX] = 0;
}
void array ::add(int num)
{

if (count < MAX)

{

arr [count] = num;

103

Algorithms for Game Development

count++;

}

else

cout << "\nArray is full" << endl;

}

void array ::makeheap(int c)

{

for (int 1 = 1; 1 < ¢; i++)

{

int val = arr[i];
int s = 1i;
int £ = (s - 1) / 2;

while (s > 0 && arr|[f]

{

arr[s] = arr[f];
s = f;
f=1(s-1) / 2;
}
arr[s] = val;

}

void array ::heapsort ()
{
for (int 1 = count - 1;
{
int ivalue = arrl[il];
arr[i] = arr[0];
arr[0] = ivalue;
makeheap (1) ;

}

void array ::display ()

{

< val)

for (int 1 = 0; 1 < count; i++)

cout << arr[i] << "\t";

cout << endl;

}

void main ()
{
array a;

a.add(11) ;

104

Chapter 4

.add(2) ;
.add (9) ;
.add (13
.add (57
.add (25
.add (17
.add (1) ;

.add (90) ;

.add (3) ;

.makeheap (10) ;

7

7

)
)
)
) .

7

Q9 9 9 9 9 9 9 O O O

cout << "\nHeap Sort.\n";

cout << "\nBefore Sorting:\n";
a.display() ;

a.heapsort () ;

cout << "\nAfter Sorting:\n";
a.display() ;

_getch();

}

A heap sorting algorithm works by first organizing the data to be sorted into a special
type of binary tree called a heap. The heap itself has, by definition, the largest value at the
top of the tree, so the heap sorting algorithm must also reverse the order. It does this with
the following steps:

1. Remove the topmost item (the largest) and replace it with the rightmost leaf. The
topmost item is stored in an array.
Re-establish the heap.

Repeat steps 1 and 2 until there are no more items left in the heap. The sorted
elements are now stored in an array.

105

Event-Driven
Programming - Making
Your First 2D Game

In this chapter, the following recipes will be covered:

» Starting to make a Windows game

» Using Windows classes and handles

» Creating your first window

» Adding keyboard and mouse controls with text output
» Using Windows resources with GDI

» Using dialogs and controls

» Using sprites

» Using animated sprites

Introduction

Windows programming is the start of creating proper applications. We need to know how to
package our game into one executable file so that all our resources, such as images, models,
and sounds, are encrypted properly and packaged into one file. By doing this, we make sure
that the files are safe and cannot be illegally copied on distribution. The application, however,
still makes use of these files at runtime.

107

Event-Driven Programming - Making Your First 2D Game

Windows programming also marks the start of understanding the Windows Message Pump.
This system is very important to understand, as all major programming paradigms depend on
this principle, especially when we are doing event-driven programming.

The main principle of event driven programming is that, based on events, we should process
something. The concept to be understood here is how often we check for events and how
often we should process them.

Starting to make a Windows game

The first thing to understand before we start making a Windows game is how a window or a
message box is drawn. We need to be aware of the numerous inbuilt functions that Windows
provides us with and the different callback functions that we can use.

Getting ready
To work through this recipe, you will need a machine running Windows. You also need to

have a working copy of Visual Studio installed on your Windows machine. There are no
other prerequisites.

How to do it...

In this recipe, we will see how easy it is to create a message box in Windows. There are
different types of message box we can create, and it is only a matter of a few lines of code.
Follow these steps:

1. Open Visual Studio.
Create a new C++ project.
Select a Win32 Windows application.

Add a source file called Source. cpp.

ok 0N

Add the following lines of code to Source. cpp:
#define WIN32 LEAN AND MEAN

#include <windows.h>
#include <windowsx.h>

int WINAPI WinMain (HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR _1pCmdLine,
int iCmdShow)

{

108

Chapter 5

MessageBox (NULL, L"My first message",
L"My first Windows Program",
MB OK | MB_ICONEXCLAMATION) ;

return (0);

}

WINMAIN () is the entry point of a Windows program. In this example, we have used the
inbuilt function to create a message box. windows . h contains all the necessary files that we
need to call the inbuilt functions present in the Windows API. A message box is typically used
to display something. We can also associate message boxes with default Windows sounds.
The display of the message box can also be controlled to a great extent. We need to use the
right type of parameter to achieve this.

There are other types of message box that we can use as well:

» MB_OK: One button, with the OK message

» MB_OKCANCEL: Two buttons, with the OK, Cancel message

» MB_RETRYCANCEL: Two buttons, with the Retry, Cancel message

» MB_YESNO: Two buttons, with the Yes, No message

» MB_YESNOCANCEL: Three buttons, with the Yes, No, Cancel message

» MB_ABORTRETRYIGNORE: Three buttons, with the Abort, Retry, Ignore message
» MB_ICONEXCLAIMATION: An exclamation point icon appears

» MB_ICONINFORMATION: An information icon appears

» MB_ICONQUESTION: A question mark icon appears

» MB_ICONSTOP: A stop sign icon appears

Like all good Win32 or Win64 API functions, MessageBox returns a value to let us know
what happened.

Using Windows classes and handles

To write games, we do not need to know a lot about Windows programming. What we need
to know is how to open a window, how to process messages, and how to call the main game
loop. The first task of a Windows application is to create a window. After the windows is
created, we can do various other things, such as processing events and handling callbacks.
These events are finally used by the game framework to display sprites on the screen and
make them movable and interactive so that we can play a game.

109

Event-Driven Programming - Making Your First 2D Game

Getting ready

You need to have a working copy of Visual Studio installed on your Windows machine.

How to do it...

In this recipe, we will find out how easy it is to use Windows classes and handles.

1. Open Visual Studio.

Create a new C++ project.

Select a Win32 Windows application.
Add a source file called Source. cpp.

ok wNn

Add the following lines of code to it:

// This only adds the necessary windows files and not all of
them
#define WIN32 LEAN AND MEAN

#include <windows.h> // Include all the windows headers.
#include <windowsx.h> // Include useful macros.

#define WINDOW CLASS NAME L"WINCLASS1"

void GameLoop ()

{

//One frame of game logic occurs here...

LRESULT CALLBACK WindowProc (HWND _hwnd,
UINT _msg,
WPARAM _wparam,
LPARAM _lparam)
{
// This is the main message handler of the system.
PAINTSTRUCT ps; // Used in WM_PAINT.
HDC hdc; // Handle to a device context.

// What is the message?
switch (msg)

{

110

Chapter 5

case WM_CREATE:

{

// Do initialization stuff here.

// Return Success.
return (0);

break;
case WM_PAINT:

{

// Simply validate the window.
hdc = BeginPaint (_hwnd, &ps);

// You would do all your painting here...
EndPaint (_hwnd, &ps);

// Return Success.
return (0);

break;
case WM_DESTROY:

{

// Kill the application, this sends a WM QUIT

message.
PostQuitMessage (0) ;
// Return success.
return (0);
break;

default :break;
} // End switch.

// Process any messages that we did not take care of...

return (DefWindowProc(hwnd, _msg, _wparam, _lparam)) ;

int WINAPI WinMain (HINSTANCE hInstance,
HINSTANCE _hPrevInstance,

111

Event-Driven Programming - Making Your First 2D Game

LPSTR _1pCmdLine,
int _nCmdShow)

WNDCLASSEX winclass; // This will hold the class we create.
HWND hwnd; // Generic window handle.
MSG msg; // Generic message.

// First fill in the window class structure.
winclass.cbSize = sizeof (WNDCLASSEX) ;

winclass.style = CS DBLCLKS | CS _OWNDC | CS HREDRAW | CS_
VREDRAW;

winclass.lpfnWndProc = WindowProc;

winclass.cbClsExtra = 0;
winclass.cbWndExtra = 0;
winclass.hInstance = hInstance;

winclass.hIcon = LoadIcon (NULL, IDI APPLICATION) ;
winclass.hCursor = LoadCursor (NULL, IDC ARROW) ;
winclass.hbrBackground =

static_cast<HBRUSH> (GetStockObject (WHITE_BRUSH)) ;
winclass.lpszMenuName = NULL;
winclass.lpszClassName = WINDOW CLASS NAME;
winclass.hIconSm = LoadIcon (NULL, IDI APPLICATION) ;

// register the window class
if (!RegisterClassEx(&winclass))

{

return (0);

// create the window
hwnd = CreateWindowEx (NULL, // Extended style.

WINDOW CLASS NAME, // Class.
L"My first Window", // Title.
WS _OVERLAPPEDWINDOW | WS _VISIBLE,
0, O, // Initial x,y.
400, 400, // Initial width, height.
NULL, // Handle to parent.
NULL, // Handle to menu.
_hInstance, // Instance of this application.
NULL) ; // Extra creation parameters.
if (! (hwnd))

{

return (0);

112

// Enter main event loop

while (true)

{

// Test if there is a message in queue,

if (PeekMessage (&msg, NULL, 0, 0, PM REMOVE))

{

// Test if this is a quit.
if (msg.message == WM_QUIT)

{

break;

// Translate any accelerator keys.
TranslateMessage (&msg) ;

// Send the message to the window proc.
DispatchMessage (&msg) ;

// Main game processing goes here.

GameLoop () ; //One frame of game logic occurs here...

// Return to Windows like this...
return (static_cast<ints>(msg.wParam)) ;

}

The entire typedef struct WNDCLASSEX is defined as follows:

{

UINT cbSize;

UINT style;

WNDPROC lpfnWndProc;
int cbClsExtra;

int cbWndExtra;
HANDLE hInstance;
HICON hIcon;
HCURSOR hCursor;

HBRUSH hbrBackground;

//
//
//
//
//
//
//
//
//

Size of this structure.
Style flags.

Function pointer to handler.
Extra class info.

Extra window info.

The instance of the app.

The main icon.

The cursor for the window.

if so get it.

Chapter 5

The Background brush to paint the window.

113

Event-Driven Programming - Making Your First 2D Game

LPCTSTR lpszMenuName; // The name of the menu to attach.
LPCTSTR lpszClassName;// The name of the class itself.
HICON hIconSm; // The handle of the small icon.

} WNDCLASSEX;

The Windows API provides us with multiple API callbacks. We need to decide which message
to intercept and what information to process in that message pump. For example, WM_CREATE
is a Windows create function. We should perform most of our initializations here. Similarly,
WM_DESTROY is where we need to destroy our created objects. We need to use GDI objects to
paint boxes and other things on the window. We can also display our own cursors and icons
on the window.

Creating your first window

Creating a window is the first step in Windows programming. All our sprites and other
objects will be drawn on top of this window. There is a standard way of drawing a window.
So this part of the code will be repeated in all programs that use Windows programming to
draw something.

Getting ready

You need to have a working copy of Visual Studio installed on your Windows machine.

How to do it...

In this recipe, we will find out how easy it is to create a window:

1. Open Visual Studio.

2. Create a new C++ project.

3. Select a Win32 Windows application.

4. Add a source file called Source. cpp.

5. Add the following lines of code to it:
#define WIN32 LEAN AND MEAN
#include <windows.h> // Include all the windows headers.
#include <windowsx.h> // Include useful macros.

#include "resource.h"

#define WINDOW CLASS NAME L"WINCLASS1"

void GameLoop ()

114

Chapter 5

//One frame of game logic occurs here...

LRESULT CALLBACK WindowProc (HWND _hwnd,
UINT _msg,
WPARAM _wparam,
LPARAM _lparam)

// This is the main message handler of the system.
PAINTSTRUCT ps; // Used in WM_PAINT.
HDC hdc; // Handle to a device context.

// What is the message?
switch (msg)

{

case WM_CREATE:

{

// Do initialization stuff here.

// Return Success.
return (0);

break;

case WM_PAINT:

{
// Simply validate the window.
hdc = BeginPaint (_hwnd, &ps);

// You would do all your painting here...
EndPaint (_hwnd, &ps);

// Return Success.
return (0);

break;

case WM_DESTROY:

{

// Kill the application, this sends a WM QUIT
message.

115

Event-Driven Programming - Making Your First 2D Game

116

PostQuitMessage (0) ;

// Return success.

return (0);

break;

default :break;

} // End switch.

// Process any messages that we did not take care of...

return (DefWindowProc(hwnd, _msg, _wparam, _lparam)) ;

int WINAPI WinMain (HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR _1lpCmdLine,

int _nCmdShow)

WNDCLASSEX winclass; // This will hold the class we create.

HWND hwnd;
MSG msg;

// Generic window handle.
// Generic message.

HCURSOR hCrosshair = LoadCursor (hInstance, MAKEINTRESOURCE (IDC

CURSOR2)) ;

// First fill in the window class structure.

winclass.cbSize
winclass.style

= sizeof (WNDCLASSEX) ;
= CS_DBLCLKS | CS_OWNDC | CS_HREDRAW | CS_

VREDRAW;
winclass.lpfnWndProc = WindowProc;
winclass.cbClsExtra = 0;
winclass.cbWndExtra = 0;
winclass.hInstance = hInstance;

winclass.hIcon

= LoadIcon (NULL, IDI APPLICATION) ;

winclass.hCursor = LoadCursor(hInstance, MAKEINTRESOURCE (IDC_

CURSOR2)) ;

winclass.hbrBackground =

static_cast<HBRUSH> (GetStockObject (WHITE_BRUSH)) ;
winclass.lpszMenuName = NULL;
winclass.lpszClassName = WINDOW CLASS NAME;

winclass.hIconSm = LoadIcon (NULL, IDI APPLICATION) ;

// register the window class
if (!RegisterClassEx(&winclass))

{

return (0);

// create the window
hwnd = CreateWindowEx (NULL, // Extended style.

Chapter 5

WINDOW CLASS NAME, // Class.
L"Packt Publishing", // Title.
WS _OVERLAPPEDWINDOW | WS _VISIBLE,
0, 0, // Initial x,vy.
400, 400, // Initial width, height.
NULL, // Handle to parent.
NULL, // Handle to menu.
_hInstance, // Instance of this application.
NULL) ; // Extra creation parameters.
if (! (hwnd))

{

return (0);

// Enter main event loop
while (true)
{
// Test if there is a message in queue, if so get it.
if (PeekMessage (&msg, NULL, 0, 0, PM REMOVE))
{
// Test if this is a quit.
if (msg.message == WM_QUIT)
{

break;

// Translate any accelerator keys.
TranslateMessage (&msg) ;

// Send the message to the window proc.
DispatchMessage (&msg) ;

// Main game processing goes here.

117

Event-Driven Programming - Making Your First 2D Game

GameLoop () ; //One frame of game logic occurs here...

}

// Return to Windows like this...
return (static_cast<ints>(msg.wParam)) ;

}

In this example, we have used the standard Windows API callback. We query on the message
parameter that is passed and, based on that, we intercept and perform suitable actions. We
have used the WM_PAINT message to paint the window for us and the WM_DESTROY message
to destroy the current window. To paint the window, we need a handle to the device context
and then we can use BeginPaint and EndPaint appropriately. In the main structure, we
need to fill up the Windows structures and specify the current cursor and icons that need to
be loaded. Here, we can specify what color brush we are going to use to paint the window.
Finally, the size of the window is specified and registered. After that, we need to continuously
peek messages, translate them, and finally dispatch them to the Windows procedure.

Adding keyboard and mouse controls with

text output

One of the most important things that we require in a video game is a human interface
to interact with. The most common interface devices are the keyboard and the mouse.
Therefore, it is very important to understand how they work and how we can detect key
presses and movements. It is equally important to know how to display specific text on
the screen; this can be really useful for debugging and for HUD implementation.

Getting ready

For this recipe, you will need a Windows machine with a working copy of Visual Studio.

How to do it...

In this recipe, we will find out how easy it is to detect keyboard and mouse events:

1. Open Visual Studio.

2. Create a new C++ project.

3. Select a Win32 Windows application.
4. Add a source file called Source. cpp.

Chapter 5

Add the following lines of code to it:

#define WIN32 LEAN AND MEAN

#include <windows.h> //Include all the Windows headers.
#include <windowsx.h> //Include useful macros.

#include <strstreams>

#include <strings>

#include <cmaths>

#include "resource.h"
#include "mmsystem.h"
//also uses winmm.lib

using namespace std;

#define WINDOW CLASS NAME "WINCLASS1"
HINSTANCE g hInstance;

//RECT g_rect;

const RECT* g prect;

POINT g pos;

int g iMouseX;
int g iMouseY;

bool IS _LEFT PRESSED =
bool IS RIGHT PRESSED =
bool IS UP_PRESSED =
bool IS DOWN PRESSED =

O O O O

bool IS LMB PRESSED 0;
bool IS RMB PRESSED 0;
bool IS MMB PRESSED 0;

int LAST KEYPRESS ASCII = 0;
float ang = 0.0f;

template<typename T>
std::string ToString(const T& value)

{

std::strstream theStream;

119

Event-Driven Programming - Making Your First 2D Game

120

theStream << value << std::ends;
return (theStream.str());

/ /GameLoop
void GameLoop ()
{
ang += 0.0005f;
//One frame of game logic goes here

//Event handling (window handle, message handle --
LRESULT CALLBACK WindowProc (HWND hwnd, UINT msg, WPARAM
LPARAM _lparam) - -
{
//This is the main message handler of the system.
PAINTSTRUCT ps; //Used in WM_PAINT

HDC hdc; // Handle to a device context.
if ((GetAsyncKeyState (VK LEFT) & 0x8000) == 0x8000)
{

IS _LEFT PRESSED

}

else

{

IS LEFT PRESSED = FALSE;

TRUE;

if ((GetAsyncKeyState (VK RIGHT) & 0x8000) == 0x8000)

IS RIGHT PRESSED

}

else

{

IS RIGHT PRESSED = FALSE;

TRUE;

if ((GetAsyncKeyState (VK UP) & 0x8000) == 0x8000)

IS UP_PRESSED = TRUE;

}

else

_wparam,

IS UP_PRESSED = FALSE;

if ((GetAsyncKeyState (VK DOWN) & 0x8000)

IS DOWN_PRESSED

}

else

{

IS DOWN_ PRESSED = FALSE;

TRUE;

//What is the message?
switch(_msg)

{

case WM_CREATE:

{

}

//Do initialisation stuff here.
//Return success.
return (0) ;

break;

case WM_PAINT:

{

////Simply validate the window.
hdec = BeginPaint (_hwnd, &ps);

InvalidateRect (_hwnd,

g_prect,
FALSE) ;

string temp;

int iYDrawPos = 15;

COLORREF red = RGB(255,0,0);
SetTextColor (hdc, red);

temp = "MOUSE X: ";

temp += ToString((g pos.x));
while (temp.size() < 14)

Chapter 5

121

Event-Driven Programming - Making Your First 2D Game

{

temp += " ";

TextOut (hdc, 30, iYDrawPos, temp.c_str (), static_
cast<int> (temp.size()));

iYDrawPos+= 13;

temp = "MOUSE Y: ";
temp += ToString((g pos.y));
while (temp.size() < 14)

{

temp += " ";

TextOut (hdc, 30, iYDrawPos, temp.c_str (), static_
cast<int> (temp.size()));

iYDrawPos+= 13;

if (IS _LEFT PRESSED == TRUE)

{

TextOut (hdc, 30, iYDrawPos, "LEFT IS PRESSED", 24);

}

else

{

TextOut (hdc, 30, iYDrawPos, "LEFT IS NOT PRESSED ", 20);

}

iYDrawPos+= 13;
if (IS _RIGHT PRESSED == TRUE)

{

TextOut (hdc, 30, iYDrawPos, "RIGHT IS PRESSED", 25);

}

else

{

TextOut (hdc, 30, i1YDrawPos, "RIGHT IS NOT PRESSED ", 21);

}

iYDrawPos+= 13;
if (IS _DOWN PRESSED == TRUE)

{

TextOut (hdc, 30, iYDrawPos, "DOWN IS PRESSED", 24);

}

else

122

Chapter 5

TextOut (hdc, 30, iYDrawPos, "DOWN IS NOT PRESSED", 20);

}

iYDrawPos+= 13;
if (IS _UP PRESSED == TRUE)

{

TextOut (hdc, 30, 1YDrawPos, "UP IS PRESSED", 22);

}

else
{
TextOut (hdc, 30, 1YDrawPos, "UP IS NOT PRESSED ", 18);
}
// TextOut (hdc, static cast<int> (200 +(sin(ang)*200)),
static_cast<int>(200 +(sin(ang)*200))) , "O", 1);

EndPaint (_hwnd, &ps) ;

//Return success.
return (0) ;

}

break;

case WM_DESTROY:
{
//Kill the application, this sends a WM_QUIT message.
PostQuitMessage (0) ;

//Return Sucess.
return(0) ;

}

break;

case WM_MOUSEMOVE:
{
GetCursorPos (&g pos) ;
// here is your coordinates
//int x=pos.x;
//int y=pos.y;
return (0) ;

123

Event-Driven Programming - Making Your First 2D Game

124

break;

case WM_COMMAND :

{

default :break;
} // End switch.

//Process any messages we didn't take care of...

return (DefWindowProc (_hwnd, msg, _wparam, _lparam));

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR _1pCmdLine, int _nCmdShow)

WNDCLASSEX winclass; ///This will hold the class we create

HWND hwnd; //Generic window handle.

MSG msg; //Generic message.

g _hInstance = _hInstance;
//First fill in the window class structure

sizeof (WNDCLASSEX) ;
CS_DBLCLKS | CS_OWNDC | CS_HREDRAW |

winclass.cbSize

winclass.style

CS_VREDRAW;
winclass.lpfnWndProc = WindowProc;
winclass.cbClsExtra = 0;
winclass.cbWndExtra = 0;

winclass.hInstance

_hInstance;

winclass.hIcon
MAKEINTRESOURCE (IDI_ICON1)) ;

winclass.hCursor NULL;

winclass.hbrBackground = static cast<HBRUSH> (GetStockObject (WHI
TE_BRUSH)) ;

winclass.lpszMenuName

LoadIcon(g_hInstance,

MAKEINTRESOURCE (IDR_MENU1) ;
WINDOW CLASS NAME;
LoadIcon(g_hInstance,

winclass.lpszClassName

winclass.hIconSm
MAKEINTRESOURCE (IDI_ICON1)) ;

//Register the window class

Chapter 5

if (!RegisterClassEx(&winclass))
{ //perhaps use log manager here
return(0) ;

//Create the window

if (! (hwnd = CreateWindowEx (NULL, //Extended style.
WINDOW CLASS_NAME, //Class
"Recipe4", //Title
WS _OVERLAPPEDWINDOW | WS _VISIBLE,
400,300, //Initial X, Y
400,400, //Initial width, height.
NULL, //handle to parent.
NULL, //handle to menu
_hInstance, //Instance of this application
NULL))) //Extra creation parameters

return (0);

RECT rect;
rect.left = 0;
rect.right = 400;
rect.top = 0;
rect.bottom = 400;
g prect = ▭

//Enter main event loop
while (TRUE)
{
//Test if there is a message in queue, if so get it.
if (PeekMessage (&msg, NULL, 0, 0, PM REMOVE))
{
//Test if this is a quit
if (msg.message == WM_QUIT)
{

break;

//Translate any accelerator keys
TranslateMessage (&msg) ;
//Send the message to the window proc.

125

Event-Driven Programming - Making Your First 2D Game

DispatchMessage (&msg) ;

}

//Main game processing goes here.

GameLoop () ; //One frame of game logic goes here...
//Return to Windows like this...
return(static_ cast<ints>(msg.wParam)) ;

}

The main window is created and registered. In the callback function, we use a function called
GetAsyncKeyState (VK_KEYNAME) to detect which key was pressed. After that, we perform a
bitwise AND operation to check whether the last key press was also the same key and whether it
has actually been pressed. We then have different Boolean parameters to detect the state of the
key press and store them. The code could be structured in a better way, but this is the easiest
way to understand how to detect key presses. To detect the mouse movement coordinates, we
use a function called GetCursorPos inside WM_MOUSEMOVE and accordingly get the x and y
coordinates on screen. Finally, we need to display all this information on the screen. To do this,
we create a rectangle on screen. In that rectangle, we need to use a function called TextOut to
display that information. The Textout function uses the handle to the device context, the x and
y coordinates, and the message to be displayed.

Using Windows resources with GDI

Graphics Device Interface (GDI) allows us to do interesting things using bitmaps, icons
cursors, and so on. GDI is used as a rendering alternative if we are not implementing any
other rendering alternatives such as OpenGL or DirectX.

Getting ready

For this recipe, you will need a Windows machine with a working copy of Visual Studio.

How to do it...

In this recipe, we will find out how easy it is to load resources using the Windows GDI:

1. Open Visual Studio.
2. Create a new C++ project.
3. Select a Win32 Windows application.

Chapter 5

4. Right-click on Resource files and add a new cursor from the Add Resource subsection.
5. A resource.h file will automatically be created for you.

6. Add a source file called Source. cpp and add the following code to it:
#define WIN32 LEAN AND MEAN

#include <windows.h> // Include all the windows headers.
#include <windowsx.h> // Include useful macros.
#include "resource.h"

#define WINDOW CLASS NAME L"WINCLASS1"

void GameLoop ()

{

//One frame of game logic occurs here...

LRESULT CALLBACK WindowProc (HWND _hwnd,
UINT msg,
WPARAM _wparam,
LPARAM _lparam)
{
// This is the main message handler of the system.
PAINTSTRUCT ps; // Used in WM_PAINT.
HDC hdc; // Handle to a device context.

// What is the message?
switch (msg)

{

case WM_CREATE:

{

// Do initialization stuff here.

// Return Success.
return (0) ;

break;
case WM_PAINT:

{

// Simply validate the window.

127

Event-Driven Programming - Making Your First 2D Game

hdc = BeginPaint (_hwnd, &ps);
// You would do all your painting here. ..
EndPaint (_hwnd, &ps);

// Return Success.
return (0);

break;
case WM_DESTROY:

{

// Kill the application, this sends a WM QUIT

message.
PostQuitMessage (0) ;
// Return success.
return (0);
break;

default :break;
} // End switch.

// Process any messages that we did not take care of...
return (DefWindowProc(hwnd, _msg, _wparam, _lparam)) ;
int WINAPI WinMain (HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR _1pCmdLine,
int _nCmdShow)
WNDCLASSEX winclass; // This will hold the class we create.
HWND hwnd; // Generic window handle.

MSG msg; // Generic message.
g

HCURSOR hCrosshair = LoadCursor (_hInstance, MAKEINTRESOURCE (IDC
CURSOR2)) ;

// First fill in the window class structure.

128

Chapter 5

winclass.cbSize = sizeof (WNDCLASSEX) ;
winclass.style = CS DBLCLKS | CS _OWNDC | CS HREDRAW | CS_

VREDRAW;
winclass.lpfnWndProc = WindowProc;
winclass.cbClsExtra = 0;
winclass.cbWndExtra = 0;
winclass.hInstance = hInstance;

winclass.hIcon = LoadIcon(NULL, IDI APPLICATION) ;

winclass.hCursor = LoadCursor(hInstance, MAKEINTRESOURCE (IDC_
CURSOR2)) ;

winclass.hbrBackground =

static_cast<HBRUSH> (GetStockObject (WHITE BRUSH)) ;
winclass.lpszMenuName = NULL;
winclass.lpszClassName = WINDOW CLASS NAME;
winclass.hIconSm = LoadIcon (NULL, IDI APPLICATION) ;

// register the window class

if (!RegisterClassEx(&winclass))

{

return (0);

// create the window

hwnd = CreateWindowEx (NULL, // Extended style.
WINDOW CLASS NAME, // Class.
L"PacktUp Publishing", // Title.
WS _OVERLAPPEDWINDOW | WS _VISIBLE,
0, O, // Initial x,vy.
400, 400, // Initial width, height.
NULL, // Handle to parent.
NULL, // Handle to menu.
_hInstance, // Instance of this application.
NULL) ; // Extra creation parameters.
if (! (hwnd))

{

return (0);

// Enter main event loop

while

{

(true)

// Test if there is a message in queue, if so get it.
if (PeekMessage (&msg, NULL, 0, 0, PM REMOVE))

129

Event-Driven Programming - Making Your First 2D Game

{
// Test if this is a quit.
if (msg.message == WM_QUIT)
{

break;

// Translate any accelerator keys.
TranslateMessage (&msg) ;

// Send the message to the window proc.
DispatchMessage (&msg) ;

// Main game processing goes here.
GameLoop () ; //One frame of game logic occurs here...

}

// Return to Windows like this...
return (static_cast<ints>(msg.wParam)) ;

}

Loading up the new cursor is the easiest task to achieve. We need to modify the following line:

winclass.hCursor = LoadCursor(hInstance, MAKEINTRESOURCE (IDC_
CURSOR2))

If we specify null here, the default windows cursor will be loaded. Instead, we can load the
cursor that we just created. Make sure the reference name of the cursor in resource.h

is specified as IDC_CURSOR2. We can name it anything we want, but we need to call the
appropriate reference from the LoadCursor function. MAKEINTRESOURCE enables us to
relate to the resource file from the source code. Similarly, we can load multiple cursors and
switch them at runtime if we so desire. The same process is used for loading other resources,
such as icons and other bitmaps. When we modify a resource file, the corresponding
resource.h file must be closed or it will not allow us to edit it. Similarly, if we want to
manually edit the source . h file, we need to close the corresponding . rc or resource file.

130

Chapter 5

Using dialogs and controls

Dialogs are one of the mandatory features of Windows programming, If we are creating a
complete application, there will be a stage when we will require dialogs in some form. Dialogs
could be in the form of edit boxes, radio buttons, check boxes, and so on. Dialogs come in two
forms: modal and modeless. Modal dialog boxes require an immediate response, whereas
modeless dialog boxes are more like floating boxes and do not require an immediate response.

Getting ready

To work through this recipe, you will need a machine running Windows. You also need to have
a working copy of Visual Studio installed on your Windows machine. No other prerequisites
are required.

How to do it...

In this recipe, we will find out how easy it is to create dialog boxes.

1. Open Visual Studio.

Create a new C++ project.

Select a Win32 windows application.
Create a new resource file.

Select dialog as the type of resource.
Edit the box in whatever way you desire.

A corresponding resource. h file will be created.

® NP oA w N

Add the following code to Source. cpp file:
#define WIN32 LEAN AND MEAN

#include <windows.h> // Include all the windows headers.
#include <windowsx.h> // Include useful macros.

#include "resource.h"

#define WINDOW CLASS NAME L"WINCLASS1"

void GameLoop ()

{

//One frame of game logic occurs here...

}

BOOL CALLBACK AboutDlgProc (HWND hDlg, UINT msg, WPARAM wparam,
LPARAM lparam)

131

Event-Driven Programming - Making Your First 2D Game

{
switch (msg)
{
case WM_INITDIALOG:
break;
case WM_COMMAND :
switch (LOWORD (wparam))

{

case IDOK:
EndDialog (
hDlg, //Handle to the dialog to end.
0); //Return code.
break;
case IDCANCEL:
EndDialog (
hDlg, //Handle to the dialog to end.
0); //Return code.
break;
default:
break;

return true;

LRESULT CALLBACK WindowProc (HWND _hwnd,
UINT _msg,
WPARAM _wparam,
LPARAM _lparam)

// This is the main message handler of the system.
PAINTSTRUCT ps; // Used in WM_PAINT.
HDC hdc; // Handle to a device context.

// What is the message?
switch (msg)

{

case WM_CREATE:

// Do initialization stuff here.

// Return Success.

132

Chapter 5

return (0);
break;
case WM_PAINT:
{
// Simply validate the window.
hdc = BeginPaint (_hwnd, &ps);
// You would do all your painting here...

EndPaint (_hwnd, &ps);

// Return Success.
return (0);

break;
case WM_DESTROY:

{

// Kill the application, this sends a WM QUIT

message.
PostQuitMessage (0) ;
// Return success.
return (0);
break;

default :break;
} // End switch.

// Process any messages that we did not take care of...

return (DefWindowProc(hwnd, _msg, _wparam, _lparam)) ;
int WINAPI WinMain (HINSTANCE hInstance,

HINSTANCE hPrevInstance,

LPSTR _1pCmdLine,

int _nCmdShow)

WNDCLASSEX winclass; // This will hold the class we create.
HWND hwnd; // Generic window handle.

133

Event-Driven Programming - Making Your First 2D Game

MSG msg; // Generic message.

// First fill in the window class structure.
winclass.cbSize = sizeof (WNDCLASSEX) ;

winclass.style = CS DBLCLKS | CS _OWNDC | CS HREDRAW | CS_
VREDRAW ;

winclass.lpfnWndProc = WindowProc;

winclass.cbClsExtra = 0;
winclass.cbWndExtra = 0;
winclass.hInstance = hInstance;

winclass.hIcon = LoadIcon(NULL, IDI APPLICATION) ;
winclass.hCursor = LoadCursor (NULL, IDC ARROW) ;
winclass.hbrBackground =

static_cast<HBRUSH> (GetStockObject (BLACK BRUSH)) ;
winclass.lpszMenuName = NULL;
winclass.lpszClassName = WINDOW CLASS NAME;
winclass.hIconSm = LoadIcon (NULL, IDI APPLICATION) ;

// register the window class
if (!RegisterClassEx(&winclass))

{

return (0);

// create the window
hwnd = CreateWindowEx (NULL, // Extended style.

WINDOW CLASS NAME, // Class.
L"My first Window", // Title.
WS _OVERLAPPEDWINDOW | WS _VISIBLE,
0, O, // Initial x,vy.
1024, 980, // Initial width, height.
NULL, // Handle to parent.
NULL, // Handle to menu.
_hInstance, // Instance of this application.
NULL) ; // Extra creation parameters.
if (! (hwnd))

{

return (0);

DialogBox(hInstance, MAKEINTRESOURCE (IDD DIALOG1l), hwnd,
AboutDlgProc) ;

// Enter main event loop

134

Chapter 5

while (true)
{
// Test if there is a message in queue, if so get it.
if (PeekMessage (&msg, NULL, 0, 0, PM REMOVE))
{
// Test if this is a quit.
if (msg.message == WM_QUIT)
{

break;

// Translate any accelerator keys.
TranslateMessage (&msg) ;

// Send the message to the window proc.
DispatchMessage (&msg) ;

// Main game processing goes here.
GameLoop () ; //One frame of game logic occurs here...

}

// Return to Windows like this...
return (static_cast<ints>(msg.wParam)) ;

After the resource. h file is automatically created for us, we can manually edit it to name the
dialog appropriately. After the main window is created, we need to get a handle to the window
and then call the dialog box function like this:

DialogBox(hInstance, MAKEINTRESOURCE (IDD DIALOG1l), hwnd,
AboutDlgProc)

Very much like the main window callback, the dialog box has its own callback. We need

to intercept the messages accordingly and perform our actions. BOOL CALLBACK
AboutDlgProc is the callback that we have at our disposal. We have a similar initialize
message. For our dialog boxes, most of the intercepts will take place in wM_COMMAND. Based
on the wparam parameter, we need to switch, so that know whether we have clicked the OK
button or the CANCEL button and can take the appropriate steps.

135

Event-Driven Programming - Making Your First 2D Game

Using sprites

To develop any 2D game, we need sprites. Sprites are elements of computer graphics that can
stay on screen, be manipulated, and be animated. GDI allows us to use sprites to create our
game. Probably all the assets in the game will be sprites, from the Ul to the main characters,
and so on.

Getting ready

For this recipe, you will need a Windows machine with a working copy of Visual Studio.

How to do it...

In this recipe, we will find out how to use sprites in our game:

1. Open Visual Studio.
Create a new C++ project.
Create a new resource type.

Select the Sprite option as the new resource type.

ok w0

Add the following source files: backbuffer.h/cpp, Clock.h/cpp, Game.h/ . cpp,
sprite.h/cpp,and Utilities.h

6. Add the following lines of code to backbuffer.h:

#pragma once

#if !defined(BACKBUFFER H)
#define BACKBUFFER H

// Library Includes
#include <Windows.h>

// Local Includes
// Types
// Constants

// Prototypes
class CBackBuffer

{

// Member Functions
public:

136

7.

Chapter 5

CBackBuffer() ;
~CBackBuffer () ;

bool Initialise (HWND _hWnd, int _iWidth, int iHeight);
HDC GetBFDC() const;

int GetHeight () const;
int GetWidth() const;

void Clear() ;
void Present () ;

protected:

private:
CBackBuffer (const CBackBuffer& kr);
CBackBuffer& operator= (const CBackBuffer& kr);

// Member Variables
public:

protected:
HWND m_hWnd;
HDC m_hDC;
HBITMAP m_hSurface;
HBITMAP m_hOldObject;
int m_iwidth;
int m_iHeight;

private:
i

#endif // __ BACKBUFFER H__

Add the following lines of code to backbuffer. cpp:
// Library Includes

// Local Includes

// This include

137

Event-Driven Programming - Making Your First 2D Game

#include "BackBuffer.h"

// Static Variables

// Static Function Prototypes
// Implementation

CBackBuffer: :CBackBuffer ()
m_hwWnd (0)

, m_hDC(0)

, m_hSurface (0)

, m_hOldObject (0)

, m_iwidth(0)

, m_iHeight (0)

CBackBuffer: :~CBackBuffer ()

{

SelectObject (m_hDC, m hOldObject) ;

DeleteObject (m_hSurface) ;
DeleteObject (m_hDC) ;

}

bool
CBackBuffer::Initialise (HWND _hWnd, int _iWidth, int iHeight)

{

m_hWnd = hWnd;

m_iWidth = _iwWidth;
m_iHeight = _iHeight;
HDC hWindowDC = ::GetDC(m_hWnd) ;

m_hDC = CreateCompatibleDC (hWindowDC) ;

m_hSurface = CreateCompatibleBitmap (hWindowDC, m_iWidth, m_
iHeight) ;

ReleaseDC (m_hWnd, hWindowDC) ;

m_hOldObject = static_cast<HBITMAP> (SelectObject (m_hDC, m_

138

Chapter 5

hSurface)) ;

HBRUSH brushWhite = static_ cast<HBRUSH> (GetStockObject (LTGRAY
BRUSH)) ;

HBRUSH oldBrush = static_cast<HBRUSH> (SelectObject (m_hDC,
brushwWhite)) ;

Rectangle (m_hDC, 0, 0, m_iWidth, m iHeight) ;
SelectObject (m_hDC, oldBrush) ;
return (true);

void

CBackBuffer: :Clear ()

{
HBRUSH hOldBrush = static cast<HBRUSH> (SelectObject (GetBFDC(),
GetStockObject (LTGRAY BRUSH))) ;

Rectangle (GetBFDC(), 0, 0, GetWidth(), GetHeight()) ;
SelectObject (GetBFDC(), hOldBrush) ;

}

HDC

CBackBuffer: :GetBFDC() const

{

return (m_hDC) ;

int
CBackBuffer: :GetWidth() const

{

return (m_iWidth) ;

}

int
CBackBuffer: :GetHeight () const

{

return (m_iHeight) ;

}

void

139

Event-Driven Programming - Making Your First 2D Game

8. Add the following lines of code to Clock. h:

140

CBackBuffer: :Present ()

{

HDC hWndDC = ::GetDC(m_hWnd) ;

BitBlt (hWndDC, 0, 0, m_iWidth, m iHeight, m_hDC,

ReleaseDC(m_hWnd, hWndDC) ;
}
#pragma once

#if !defined(_CLOCK H)
#define ~ CLOCK H

// Library Includes
// Local Includes
// Types

// Constants

// Prototypes
class CClock

{

// Member Functions
public:

CClock () ;

~CClock () ;

bool Initialise();

void Process() ;

float GetDeltaTick() ;
protected:
private:

CClock (const CClock& kr);

CClocké& operator= (const CClocké&

// Member Variables

0,

0,

SRCCOPY) ;

Chapter 5

public:

protected:
float m_fTimeElapsed;
float m_fDeltaTime;
float m fLastTime;
float m_fCurrentTime;

private:

Vi
#endif // __CLOCK H

Add the following lines of code to Clock. cpp:

// Library Includes
#include <windows.h>

// Local Includes
#include "Clock.h"

// Static Variables
// Static Function Prototypes
// Implementation

CClock::CClock ()
m_fTimeElapsed(0.0f)

, m_fDeltaTime (0.0f)

, m_fLastTime(0.0f)

, m_fCurrentTime (0.0f)

CClock: :~CClock ()

{

bool
CClock::Initialise()

{

141

Event-Driven Programming - Making Your First 2D Game

return (true);

void
CClock: : Process ()

m_fLastTime = m_fCurrentTime;

m_fCurrentTime = static cast<float>(timeGetTime()) ;

if (m_fLastTime == 0.0f)

{
}

m_fLastTime = m_fCurrentTime;

m_fDeltaTime = m_fCurrentTime - m fLastTime;

m_fTimeElapsed += m_fDeltaTime;

}

float
CClock: :GetDeltaTick ()

{

return (m_fDeltaTime / 1000.0f);

}

10. Add the following lines of code to Game . h:

#pragma once

#if !defined(GAME H)
#define = GAME H

// Library Includes
#include <windows.h>

// Local Includes
#include "clock.h"

// Types
// Constants

// Prototypes

142

class CBackBuffer;

class CGame

{

// Member Functions
public:

~CGame () ;

bool Initialise (HINSTANCE _hInstance, HWND
int iHeight);

void Draw() ;
void Process (float fDeltaTick) ;

void ExecuteOneFrame () ;

CBackBuffer* GetBackBuffer() ;
HINSTANCE GetAppInstance() ;
HWND GetWindow () ;

// Singleton Methods
static CGame& GetInstance() ;
static void DestroyInstance() ;

protected:
private:
CGame () ;
CGame (const CGame& _kr) ;

CGame& operator= (const CGame& _kr);

// Member Variables
public:

protected:
CClock* m_pClock;

CBackBuffer* m pBackBuffer;
//Application data
HINSTANCE m_hApplicationInstance;

HWND m_hMainWindow;

// Singleton Instance

Chapter 5

_hWnd, int _iwidth,

143

Event-Driven Programming - Making Your First 2D Game

static CGame* s _pGame;

private:

Vi
#endif // __GAME H

11. Add the following lines of code to Game . cpp:
// Library Includes

// Local Includes
#include "Clock.h"
#include "BackBuffer.h"
#include "Utilities.h"

// This Include
#include "Game.h"

// Static Variables
CGame* CGame::s_pGame = 0;

// Static Function Prototypes
// Implementation

CGame: : CGame ()
m_pClock (0)
, m_hApplicationInstance(0)
, m_hMainWindow (0)
, m_pBackBuffer(0)

CGame: : ~CGame ()

{

delete m_pBackBuffer;
m_pBackBuffer = 0;

delete m_pClock;

144

Chapter 5

m_pClock = 0;

}

bool
CGame: :Initialise (HINSTANCE _hInstance, HWND _hWnd, int _iWidth,
int _iHeight)

{

m_hApplicationInstance = hInstance;
m_hMainWindow = _hWnd;

m_pClock = new CClock() ;
VALIDATE (m_pClock->Initialise()) ;
m_pClock->Process () ;

m_pBackBuffer = new CBackBuffer();
VALIDATE (m_pBackBuffer->Initialise(hWnd, _iwWidth, iHeight));

ShowCursor (false) ;

return (true);

void
CGame: :Draw ()

{

m_pBackBuffer->Clear () ;
// Do all the game's drawing here...

m_pBackBuffer->Present () ;

}

void
CGame: : Process (float _fDeltaTick)

{

// Process all the game's logic here.

void
CGame: : ExecuteOneFrame ()

{

float fDT = m pClock->GetDeltaTick() ;

Process (£DT) ;

145

Event-Driven Programming - Making Your First 2D Game

Draw () ;

m_pClock->Process () ;

Sleep (1) ;

CGameé&
CGame: :GetInstance ()

{

if (s_pGame == 0)

{
}

s _pGame = new CGame () ;

return (*s_pGame) ;

void
CGame: :DestroyInstance ()

{

delete s_pGame;
s _pGame = 0;

}

CBackBuffer*
CGame: :GetBackBuffer ()

{

return (m_pBackBuffer) ;

HINSTANCE
CGame: :GetAppInstance ()

{

return (m _hApplicationInstance) ;

}

HWND
CGame: :GetWindow ()

{

return (m_hMainWindow) ;

}

146

Chapter 5

12. Add the following lines of code to sprite.h:

#fpragma once

#if !defined(_ SPRITE H)
#define _ SPRITE H

// Library Includes
#include "windows.h"

// Local Includes

// Types
// Constants

// Prototypes
class CSprite
{
// Member Functions
public:
CSprite() ;
~CSprite() ;

bool Initialise(int _iResourceID, int _iMaskResourcelID) ;

void Draw() ;
void Process (float fDeltaTick) ;

int GetWidth() const;
int GetHeight () const;

int GetX () const;
int GetY () const;
void SetX(int _1i);
void SetY(int _1i);

void TranslateRelative(int _iX, int _iY);
void TranslateAbsolute(int iX, int 1iY);

protected:

private:
CSprite(const CSprite& kr);

147

Event-Driven Programming - Making Your First 2D Game

CSprite& operator= (const CSprite& _kr);

// Member Variables
public:

protected:
//Center handle
int m_iX;
int m_iY;

HBITMAP m hSprite;
HBITMAP m_ hMask;

BITMAP m_bitmapSprite;
BITMAP m_bitmapMask;

static HDC s_hSharedSpriteDC;
static int s iRefCount;

private:

Vi
#endif // __ SPRITE H

13. Add the following lines of code to sprite. cpp:
// Library Includes

// Local Includes
#include "resource.h"
#include "Game.h"
#include "BackBuffer.h"
#include "Utilities.h"

// This include
#include "Sprite.h"

// Static Variables
HDC CSprite::s_hSharedSpriteDC = 0;

int CSprite::s_iRefCount = 0;

// Static Function Prototypes

148

Chapter 5
// Implementation
CSprite: :CSprite()

m_iX (0)

, m_iY(0)

{
}

++s_1iRefCount;

CSprite::~CSprite ()

{
DeleteObject (m_hSprite) ;
DeleteObject (m_hMask) ;

--s_iRefCount;

if (s_iRefCount == 0)

{
DeleteDC (s_hSharedSpriteDC) ;
s_hSharedSpriteDC = 0;

}

bool
CSprite::Initialise(int _iSpriteResourceID, int _iMaskResourcelID)

{

HINSTANCE hInstance = CGame::GetInstance () .GetAppInstance() ;

if (!s_hSharedSpriteDC)
{
s _hSharedSpriteDC = CreateCompatibleDC (NULL) ;

}

m_hSprite = LoadBitmap (hInstance, MAKEINTRESOURCE (
iSpriteResourcelD)) ;

VALIDATE (m_hSprite) ;

m_hMask = LoadBitmap (hInstance, MAKEINTRESOURCE (
iMaskResourcelID)) ;

VALIDATE (m_hMask) ;

GetObject (m_hSprite, sizeof (BITMAP), &m bitmapSprite) ;
GetObject (m_hMask, sizeof (BITMAP), &m bitmapMask) ;

return (true);

149

Event-Driven Programming - Making Your First 2D Game

}

void
CSprite: :Draw ()

{
int iW = GetWidth() ;
int iH = GetHeight () ;

int iX = m_iX - (iw / 2);
int iY = m_iY - (iH / 2);

CBackBuffer* pBackBuffer = CGame::GetInstance () .GetBackBuffer();
HGDIOBJ hOldObj = SelectObject (s_hSharedSpriteDC, m_hMask) ;

BitBlt (pBackBuffer->GetBFDC(), iX, iY, iw, iH, s_
hSharedSpriteDC, 0, 0, SRCAND) ;

SelectObject (s_hSharedSpriteDC, m hSprite) ;

BitBlt (pBackBuffer->GetBFDC(), iX, iY, iw, iH, s_
hSharedSpriteDC, 0, 0, SRCPAINT) ;

SelectObject (s_hSharedSpriteDC, hO0ldObj) ;

}

void
CSprite::Process (float _fDeltaTick)

{

int
CSprite: :GetWidth() const

{

return (m bitmapSprite.bmWidth) ;

}

int
CSprite: :GetHeight () const

{

150

return (m bitmapSprite.bmHeight) ;

}

int
CSprite::GetX () const

{
}

return (m_iX) ;

int
CSprite::GetY () const

{
}

return (m_1iY);

void
CSprite::SetX(int _1i)

{

m iX = i;

void
CSprite::Set¥(int _1i)

{

m iy = i;

void
CSprite::TranslateRelative (int _iX, int

{

m iX += _iX;
m iY += _1iY;
void

CSprite::TranslateAbsolute (int _iX, int

m iX = iX;
m iY = iY;

}

i)

i)

Chapter 5

151

Event-Driven Programming - Making Your First 2D Game

14. Add the following lines of code to Utilities.h:

152

// Library Includes

// Local Includes
#include "resource.h"
#include "Game.h"
#include "BackBuffer.h"
#include "Utilities.h"

// This include
#include "Sprite.h"

// Static Variables
HDC CSprite::s_hSharedSpriteDC = 0;
int CSprite::s_iRefCount = 0;

// Static Function Prototypes
// Implementation

CSprite: :CSprite ()
m_iX (0)
, m_1Y(0)

{

++s_iRefCount;

}

CSprite::~CSprite ()

{
DeleteObject (m_hSprite) ;
DeleteObject (m_hMask) ;

--s_1iRefCount;

if (s_iRefCount == 0)

{

DeleteDC (s_hSharedSpriteDC) ;
s _hSharedSpriteDC = 0;

}

bool
CSprite::Initialise(int _iSpriteResourceID, int

{

_iMaskResourcelID)

Chapter 5

HINSTANCE hInstance = CGame::GetInstance () .GetAppInstance() ;

if (!s_hSharedSpriteDC)
{

s _hSharedSpriteDC = CreateCompatibleDC (NULL) ;

}

m_hSprite = LoadBitmap (hInstance, MAKEINTRESOURCE (
iSpriteResourcelD)) ;

VALIDATE (m_hSprite) ;

m_hMask = LoadBitmap (hInstance, MAKEINTRESOURCE (
iMa;kResourceID));

VALIDATE (m_hMask) ;

GetObject (m_hSprite, sizeof (BITMAP), &m bitmapSprite) ;
GetObject (m_hMask, sizeof (BITMAP), &m bitmapMask) ;

return (true);
void

CSprite: :Draw ()

{
int iW = GetWidth() ;
int iH = GetHeight () ;

int iX = m_iX - (iw / 2);
int 1Y = m_iY - (iH / 2);

CBackBuffer* pBackBuffer = CGame::GetInstance () .GetBackBuffer();
HGDIOBJ hOldObj = SelectObject (s_hSharedSpriteDC, m_hMask) ;

BitBlt (pBackBuffer->GetBFDC(), iX, iY, iw, iH, s_
hSharedSpriteDC, 0, 0, SRCAND) ;

SelectObject (s_hSharedSpriteDC, m hSprite) ;

BitBlt (pBackBuffer->GetBFDC(), iX, iY, iw, iH, s_
hSharedSpriteDC, 0, 0, SRCPAINT) ;

SelectObject (s_hSharedSpriteDC, hO0ldObj) ;

}

void

153

Event-Driven Programming - Making Your First 2D Game

154

CSprite::

{

int
CSprite::
{

return

int
CSprite:

{

return

int
CSprite:

{

return

int
CSprite:

{

return

void
CSprite::

{

m iX =

void
CSprite::

{

m iY =

void
CSprite::

{

Process (float fDeltaTick)

GetWidth () const

(m_bitmapSprite.bmWidth) ;

:GetHeight () const

(m_bitmapSprite.bmHeight) ;

:GetX () const

(m_1iX) ;

:GetY () const

(m_1Y) ;

SetX (int i)

_i;

SetY (int i)
i;

TranslateRelative (int _iX, int

i)

Chapter 5

m iX += _iX;
m iY += _1iY;
void

CSprite::TranslateAbsolute (int _iX, int _iY)

{

m_iX

_iX;
_iy;

m iy

}

As we know, the backbuffer is used to draw the image first and then we swap the buffer

to present it to the screen. This process is also called presenting. We create a generic
backbuffer class that helps us to swap the buffer. The sprite class is used to load the
sprites and push them on to the back buffer, where they can be processed and finally drawn on
the screen. The sprite class is also provided with some basic utility functions that help us to get
the width and height of the sprite. Most of the functions are just a wrapper on top of Windows'
own API functions and callbacks. We have also created a clock class, which helps us to keep
track of time, as each time point should be implemented as a function of delta time. If we do
not do this, then the game might run with fluctuating behavior, based on the machine that is
executing it. The game class is used to put all of it together. It has an instance of backbuffer,
which is a singleton class and handles the context of the window and other resources.

Using animated sprites

Using animated sprites is an important part of games programming. Unless some kind of
animation is applied to the sprites, it will not appear realistic enough and the whole mood of
immersion in the game will be lost. Although animations can be achieved in a variety of ways,
we will only look at sprite strip animation, as it is the most commonly used form of animation
for 2D games.

Getting ready

To work through this recipe, you will need a machine running Windows. You also need to have
a working copy of Visual Studio installed on your Windows machine. No other prerequisites
are required.

155

Event-Driven Programming - Making Your First 2D Game

How to do it...

In this recipe, we will find out how easy it is to create dialog boxes.

1.

ok 0N

156

Open Visual Studio.

Create a new C++ project.

Select a Win32 Windows application.

Add a AnimatedSprite.cpp file.

Add the following lines of code to Source. cpp:

// This include
#include "AnimatedSprite.h"

// Static Variables
// Static Function Prototypes
// Implementation

CAnimatedSprite: :CAnimatedSprite ()
m_fFrameSpeed(0.0f)

, m_fTimeElapsed(0.0f)

, m_iCurrentSprite(0)

{

CAnimatedSprite::~CAnimatedSprite ()

{

Deinitialise() ;

bool
CAnimatedSprite: :Deinitialise ()

{

return (CSprite::Deinitialise());

bool

CAnimatedSprite::Initialise(int _iSpriteResourcelD,
iMaskResourcelD)

{

return (CSprite::Initialise(iSpriteResourcelD,
iMaskResourcelID)) ;

int

Chapter 5

void
CAnimatedSprite: :Draw ()

{

int iTopLeftX

m_vectorFrames [m_iCurrentSprite];

int iTopLeftY = 0;

int iW = GetFrameWidth() ;
int iH = GetHeight () ;

int iX = m_iX - (iw / 2);
int iY = m_iY - (iH / 2);

HDC hSpriteDC = hSharedSpriteDC;
HGDIOBJ hOldObj = SelectObject (hSpriteDC, m_ hMask) ;

BitBlt (CGame: :GetInstance () .GetBackBuffer () ->GetBFDC(), iX, 1iY,
iW, 1iH, hSpriteDC, iTopLeftX, iTopLeftY, SRCAND) ;

SelectObject (hSpriteDC, m hSprite);

BitBlt (CGame: :GetInstance () .GetBackBuffer () ->GetBFDC(), iX, 1iY,
iW, 1iH, hSpriteDC, iTopLeftX, iTopLeftY, SRCPAINT) ;

SelectObject (hSpriteDC, h01dObj) ;

void
CAnimatedSprite: :Process (float fDeltaTick)

{

m_fTimeElapsed += _fDeltaTick;

if (m_fTimeElapsed >= m_fFrameSpeed &&
m_fFrameSpeed != 0.0f)

{

m_fTimeElapsed = 0.0f;
++m_iCurrentSprite;

if (m_iCurrentSprite >= m_vectorFrames.size())

{
}

m_iCurrentSprite = 0;

157

Event-Driven Programming - Making Your First 2D Game

}

CSprite::Process(fDeltaTick) ;

}

void
CAnimatedSprite: :AddFrame (int _iX)

{
}

m_vectorFrames.push back (_iX) ;

void
CAnimatedSprite::SetSpeed(float fSpeed)

{
}

m_fFrameSpeed = _fSpeed;

void
CAnimatedSprite::SetWidth(int _iW)

{
}

m_iFrameWidth = _iWw;

int
CAnimatedSprite: :GetFrameWidth ()

{
}

For the animation to work, we need to load in a sequence of images as sprite strips. The
higher the number of images, the smoother the animation will be. For the equivalent number
of sprites, we need to load in their masks as well, so that they can be blitted together. We
need to store all the images in a vector list. For the animation to work properly, all the images
must be equally spaced out. After we have stored them correctly, we can run the animations
as rapidly or slowly as we want, by controlling how many frames/sprites we want to draw in a
certain amount of time. The remaining process of drawing the sprite on the screen remains
the same.

return (m_iFrameWidth) ;

158

Design Patterns for
Game Development

In this chapter, the following recipes will be covered:

» Using the singleton design pattern
» Using the factory method

» Using the abstract factory method
» Using the observer pattern

» Using the flyweight pattern

» Using the strategy pattern

» Using the command design pattern

» Creating an advanced game using design patterns

Introduction

Let us consider that we are faced with a certain problem. After some time, we find a solution
to that problem. Now, if the problem reoccurs, or a similar pattern to the problem reoccurs,
we will know how to solve the problem by applying the same principle that solved the previous
problem. Design patterns are similar to this. There are already 23 such solutions documented,
which provide subtle solutions for dealing with problems that have a similar pattern to the
ones that are documented. They are described by the authors more commonly referred to

as the Gang of Four. They are not complete solutions, but rather templates or frameworks
that can be applied to similar situations. One of the biggest drawbacks of design patterns,
however, is that if they are not applied correctly, they can prove to be disastrous. Design
patterns can be classified as structural, behavioral, or creational. We will be looking at only a
few of them, which are used often in games development.

159

Design Patterns for Game Development

Using the singleton design pattern

The singleton design pattern is the most commonly used design pattern for games.
Unfortunately, it is also the most overused and most incorrectly applied design pattern for
games. There are a few advantages of the singleton design pattern, which we will discuss.
However, it has a lot of serious consequences as well.

Getting ready

To work through this recipe, you will need a machine running Windows. You also need to have
a working copy of Visual Studio installed on your Windows machine. No other prerequisites
are required.

How to do it...

In this recipe, we will see how easy it is to create a singleton design pattern. We will also see
the common pitfalls of this design pattern:
1. Open Visual Studio.
Create a new C++ project.
Select a Win32 console application.

Add a source file called Source. cpp.

ok w0

Add the following lines of code to it:

#include <iostream>
#include <conio.h>

using namespace std;

class PhysicsManager

private:
static bool bCheckFlag;
static PhysicsManager *s_singleInstance;
PhysicsManager ()

{

//private constructor

public:
static PhysicsManager* getInstance() ;
void GetCurrentGravity () const;

~PhysicsManager ()

160

Chapter 6

bCheckFlag = false;

}
Vi

bool PhysicsManager: :bCheckFlag = false;
PhysicsManager* PhysicsManager::s_ singleInstance = NULL;

PhysicsManager* PhysicsManager::getInstance ()

{

if (!bCheckFlag)

{
s_singleInstance = new PhysicsManager () ;
bCheckFlag = true;
return s_singleInstance;

}

else

{

return s_singleInstance;

}

void PhysicsManager: :GetCurrentGravity () const
{
//Some calculations for finding the current gravity
//Probably a base variable which constantly gets updated with
value
//based on the environment
cout << "Current gravity of the system is: " <<9.8<< endl;

int main ()

{
PhysicsManager *scl, *sc2;
scl = PhysicsManager::getInstance() ;
scl->GetCurrentGravity () ;
sc2 = PhysicsManager::getInstance() ;
sc2->GetCurrentGravity () ;

_getch();
return O;

161

Design Patterns for Game Development

The main reason why developers want to use a singleton class is when they want to restrict

to just one instance of the class. In our example, we have taken the PhysicsManager class.
We make the constructor private and then assign a static function to get the handle to the
instance of the class and hence its methods. We also use a Boolean to check if an instance is
already created. If it is, we do not assign a new instance. If it is not, we assign a new instance
and call the corresponding methods.

As intelligent as it may seem, this design pattern has many flaws and hence should be
avoided as much as possible in game design. First, it's a global variable. This in itself is bad.
A global variable is saved on the global pool and can be accessed from everywhere. Second,
this encourages bad coupling, which may appear in the code. Third, it is not concurrent
friendly. Imagine there are multiple threads, and each thread can access this global variable.
This is a recipe for disaster, as deadlock will happen. Finally, one of the most common
mistakes made by new programmers is to create managers for everything, and then make the
manager a singleton. The fact is that we can get away without creating a manager by using
OOPS and references in an effective manner.

The preceding code shows a lazy value of initializing a singleton and hence can be improved.
However, all the fundamental problems described in this recipe will still remain.

Using the factory method

A factory is essentially a warehouse for creating objects of other types. In a factory method
design pattern, the creation of a new type of object, such as an enemy or a building, happens
from an interface and the subclass decides which class it needs to instantiate. This is also a
commonly used pattern in games and can be quite useful.

Getting ready

You need to have a working copy of Visual Studio installed on your Windows machine.

How to do it...

In this recipe, we will find out how easy it is to write a factory method design pattern:

1. Open Visual Studio.

2. Create a new C++ project.

3. Select a Win32 console application.
4. Add a source file called Source. cpp.

Chapter 6

5. Add the following lines of code to it:

#include <iostream>
#include <conio.h>
#include <vector>

using namespace std;

class IBuilding
{
public:
virtual void TotalHealth() = 0;

bi

class Barracks : public IBuilding
{
public:
void TotalHealth()
{
cout << "Health of Barrack is :" << 100;
}
}i
class Temple : public IBuilding
{
public:
void TotalHealth()
{
cout << "Health of Temple is :" << 75;
}
}i
class Farmhouse : public IBuilding
{
public:
void TotalHealth()
{
cout << "Health of Farmhouse is :" << 50;
}
}i

int main()

{

vector<IBuilding*> BuildingTypes;

163

Design Patterns for Game Development

int choice;

cout << "Specify the different building types in your village"
<< endl;
while (true)

{

cout << "Barracks(l) Temple(2) Farmhouse(3) Go(0): ";
cin >> choice;
if (choice == 0)
break;
else if (choice == 1)
BuildingTypes.push back (new Barracks) ;

else if (choice == 2)
BuildingTypes.push back (new Temple) ;
else

BuildingTypes.push back (new Farmhouse) ;

}

cout << endl;

cout << "There are total " << BuildingTypes.size() << "
buildings" << endl;
for (int i = 0; 1 < BuildingTypes.size(); i++)

{

BuildingTypes[i] ->TotalHealth() ;
cout << endl;

for (int i = 0; 1 < BuildingTypes.size(); i++)
delete BuildingTypes[il];

_getch();

}

164

Chapter 6

In this example, we have created a Building interface, which has a pure virtual function
for TotalHealth. This means all the derived classes must override this function. Therefore,
we can guarantee that all our buildings will have this property. We can keep adding to

this structure by having more properties, such as hit points, total storage capacity, rate of
production of villagers, and so on, based on the nature and design of the game. The derived
classes have their own implementation of TotalHealth. They are also hamed to reflect the
type of building they are. The biggest advantage of this design pattern is that all we need

on the client side is a reference to the base interface. After that, we can create the type of
building we need at runtime. We store these building types in a vector list and finally use a
loop to display the contents. Since we have the reference IBuilding*, we can assign any
new derived class we want at runtime. There is no need to create references for all derived
classes, such as Temple* and so on. The following screenshot shows the output we are likely
to get for a user-defined village:

Land: Marzel
Land: Cocumbi

Air: Bungindi
Air: Zyhgry

Water: Pokili
Water: Manama

Using the abstract factory method

An abstract factory is a part of the creational design pattern. It is one of the best ways to
create an object and is a commonly repeated design pattern in games. It is like a factory

of factories. It uses an interface to create a factory. The factory is responsible for creating
objects without specifying their class type. The factory generates these objects based on the
factory method design pattern. However, some argue that the abstract factory method can
also be implemented using the prototype design pattern.

165

Design Patterns for Game Development

Getting ready

You need to have a working copy of Visual Studio installed on your Windows machine.

How to do it...

In this recipe, we will find out how easy it is to implement the abstract factory pattern:

1. Open Visual Studio.
Create a new C++ project.
Select a Win32 console application.

Add a source file called Source. cpp.

ok wNn

Add the following lines of code to it:

#include <iostream>
#include <conio.h>
#include <string>

using namespace std;

//IFast interface
class IFast
public:
virtual std::string Name() = 0;

Vi

//ISlow interface
class ISlow
{
public:

virtual std::string Name() = 0;
Vi
class Rapter : public ISlow
{
public:

std: :string Name ()

{

return "Rapter";

}

Vi

class Cocumbi : public IFast

166

Chapter 6

{
public:
std: :string Name ()
{
return "Cocumbi";
}
i

.// Similar classes can be written here

class AEnemyFactory

public:
enum Enemy Factories

{

Land,

Air,

Water
virtual IFast* GetFast() = 0;
virtual ISlow* GetSlow() = 0;

static AEnemyFactory* CreateFactory (Enemy Factories factory);

Vi

class LandFactory : public AEnemyFactory

{

public:
IFast* GetFast ()

{

return new Cocumbi () ;

ISlow* GetSlow()

{

}
Vi

return new Marzel () ;

class AirFactory : public AEnemyFactory

{

public:
IFast* GetFast ()

{

return new Zybgry () ;

167

Design Patterns for Game Development

}

ISlow* GetSlow()

{

}
Vi

return new Bungindi () ;

class WaterFactory : public AEnemyFactory

{

public:
IFast* GetFast ()

{

return new Manama () ;

ISlow* GetSlow()

{

}
Vi

return new Pokili () ;

//CPP File
AEnemyFactory* AEnemyFactory::CreateFactory(Enemy Factories
factory)

if (factory == Enemy Factories::Land)

{
}

else if (factory == Enemy Factories::Air)

{
}

else if (factory == Enemy Factories::Water)

{

return new LandFactory () ;

return new AirFactory () ;

return new WaterFactory () ;

int main(int argc, char* argv([])

{

AEnemyFactory *factory = AEnemyFactory::CreateFactory

168

Chapter 6

(AEnemyFactory: :Enemy Factories::Land) ;

cout << "Slow enemy of Land: " << factory->GetSlow()->Name() <<
ll\nll;

delete factory->GetSlow() ;

cout << "Fast enemy of Land: " << factory->GetFast ()->Name () <<
ll\nll;

delete factory->GetFast() ;
delete factory;
getchar () ;

factory = AEnemyFactory::CreateFactory (AEnemyFactory: :Enemy
Factories::Air) ;

cout << "Slow enemy of Air: " << factory->GetSlow()->Name() <<
ll\nll;

delete factory->GetSlow() ;

cout << "Fast enemy of Air: " << factory->GetFast ()->Name() <<
ll\nll;

delete factory->GetFast() ;
delete factory;
getchar () ;

factory = AEnemyFactory::CreateFactory (AEnemyFactory: :Enemy
Factories: :Water) ;

cout << "Slow enemy of Water: " << factory->GetSlow()->Name() <<
ll\nll;

delete factory->GetSlow() ;

cout << "Fast enemy of Water: " << factory->GetFast ()->Name() <<
ll\nll;

delete factory->GetFast() ;

getchar() ;

return 0;

In this example, we have created two interfaces, namely IFast and IS1ow. After that we
have created several enemies and decided whether they are fast or slow. Finally, we created
an abstract class with two virtual functions to get the fast enemy and the slow enemy. This
means all the derived classes must override and have their own implementation of these
functions. So in effect we have created a factory of factories. The land, air, and water enemy
factories that we have created from the abstract class have references to two interfaces for
slow and fast. Hence the land, water, and air serve as factories themselves too.

169

Design Patterns for Game Development

So from the client side, we can request a fast land enemy or a slow water enemy and we can
get the appropriate enemy displayed to us. As the following screenshot shows, we can get the
output as displayed:

ChUsers\Druhin\Desktoph\Book\C++Boolk\ C++forGameDevelopment\Book\ Chapterf\5ou... — d x

Bpecify the different building types in vour village
Barracks<l>» Temple<2) Farmhouse<3> Go<{@):
Barracks<{1l) Temple<2) Farmhouse<{3} Go<{B):

2
Barracks<{1l) Temple<2) Farmhouse{(3}> Go<B)>: 3
Barracks<{1l) Temple<2) Farmhouse{(3}> Go<{B): 2
Barracks{1) Temple{2) Farmhouse{(3} Go<Ad: 3
Barracks(1) Temple(2) Farmhouse(3d> Go{@l»: 1
Barracks(1) Temple(2) Farmhouse{(3> Go{H>»: A

There are total 6 buildings
Health of Barrack is :188
Health Temple iz =75
Health Farmhouse is :58
Health Temple is =75
Health Farmhouse iz :58
Health Barrack iz -188

Using the observer pattern

The observer design pattern is one which is not commonly used in games, but it should be
used more often by game developers as it is a very smart way to handle notifications. In

the observer design pattern, a component maintains a one-to-many relationship with other
components. This means when the main component changes, all the dependent components
also update. Imagine a physics system. We want enemy1 and enemy?2 to update as soon as
the physics system updates, so we should use this pattern.

Getting ready

For this recipe, you will need a Windows machine with a working copy of Visual Studio.

How to do it...

In this recipe, we will find out how easy it is to implement the observer pattern:

1. Open Visual Studio.
2. Create a new C++ project.

3. Select a Win32 Windows application.

170

Add a source file called Source. cpp.
Add the following lines of code to it:

#include <iostream>
#include <vector>
#include <conio.h>

using namespace std;
class PhysicsSystem {

vector < class Observer * > views;
int value;
public:
void attach (Observer *obs) {
views.push back (obs) ;
}
void setval (int val)
value = val;
notify () ;
}
int getval() {
return value;
}
void notify () ;

}i
class Observer {

PhysicsSystem * attribute;
int iScalarMultiplier;
public:
Observer (PhysicsSystem *attribute,

{

If (attribute)

_attribute = attribute;

}

iScalarMultiplier = value;

_attribute-sattach(this);

}

virtual void update() = 0;

int wvalue)

Chapter 6

171

Design Patterns for Game Development

172

protected:
PhysicsSystem *getPhysicsSystem()
return _attribute;

}

int getvalue ()

{
return iScalarMultiplier;

}

Vi

void PhysicsSystem::notify() ({

for (int 1 = 0; 1 < views.size(); 1i++)

views [i] ->update () ;

class PlayerObserver : public Observer {
public:

PlayerObserver (PhysicsSystem *attribute, int value)
Observer (attribute, wvalue) {}

void update () {

int v = getPhysicsSystem()->getVal(), d = getvalue();

cout << "Player is dependent on the Physics system" << endl;

cout << "Player new impulse value is " << v / d << endl <<
endl;

}
Vi

class AIObserver : public Observer ({
public:

AIObserver (PhysicsSystem *attribute, int value)
Observer (attribute, value) {}

void update () {

int v = getPhysicsSystem()->getVal(), d = getvalue();

cout << "AI is dependent on the Physics system" << endl;

cout << "AI new impulse value is " << v % d << endl << endl;
int main() {

PhysicsSystem subj;

PlayerObserver valueObsl (&subj, 4);

Chapter 6

AIObserver attributeObs3 (&subj, 3);
subj.setVal(100) ;

_getch();

}

In this example, we have created a physics system that continuously updates its value. Other
components that are dependent on the physics system must attach themselves to it, so that
they are notified as soon as the physics system is updated.

The physics system that we have created holds a vector list of all the components that are
being observing from it. In addition to this, it contains methods to get the current value or set
a values for it. It also contains a method to notify all the dependent components once a value
has been changed in the physics system. The Observer class contains a reference to the
physics system, as well as a pure virtual function for updates, which the derived class must
override. The PlayerObserver and AIObserver classes can derive from this class and
have their own implementation of impulse based on the changes in the physics system. Both
the Al and player systems will continuously receive updates from the physics system unless
they detach themselves from it.

This is a very useful pattern and has loads of implementation in games. The following
screenshot shows what a typical output would look like:

Ch\Users\Druhin\Desktop\Book\ C++Book\C+ +forGameDevelopment\Book\Chapterf\5cu.. — O et

NMENIMNMNENNTENMNDN

173

Design Patterns for Game Development

Using the flyweight pattern

The flyweight design pattern is mostly used when we want to reduce the amount of memory
that is used to create the objects. This pattern is often used when we want to create
something hundreds or thousands of times. Games with a forest structure often use this
design pattern. This design pattern falls under the structural design category. In this pattern,
the object, let's say the tree object, is divided into two parts, one that is dependent on

the state of the object and one that is independent. The independent part is stored in the
flyweight object, whereas the dependent part is handled by the client and sent to the flyweight
object as and when invoked.

Getting ready

For this recipe, you will need a Windows machine with a working copy of Visual Studio.

How to do it...

In this recipe, we will find out how easy it is to implement the flyweight pattern:

1. Open Visual Studio.
Create a new C++ project.
Select a Win32 console application.

Add a source file called Source. cpp.

ok w0

Add the following lines of code to it:

#include <iostream>
#include <string>
#include <map>
#include <conio.h>

using namespace std;

class TreeType
{
public:
virtual void Display(int size) = 0;

protected:
//Some Model we need to assign. For relevance we are
substituting this with a character symbol

char symbol ;

174

int width ;
int height_;
float color ;

int Size_;

class TreeTypeA : public TreeType
{
public:
TreeTypeA ()
{
symbol = 'A';
width = 94;
height = 135;
color = 0;

Size = 0;

}

void Display (int size)

{

Size = size;

Chapter 6

cout << "Size of " << symbol << " is :" << Size << endl;

}
Vi

class TreeTypeB : public TreeType
{
public:
TreeTypeB ()
{
symbol = 'B';
width = 70;
height = 25;
color = 0;

Size = 0;

}

void Display(int size)

{

Size = size;

175

Design Patterns for Game Development

cout << "Size of " << symbol_ << " is

}
Vi

class TreeTypeZ public TreeType

{
public:
TreeTypeZ()
{
symbol = 'Z';
width = 20;
height = 40;
color = 1;

Size = 0;

}

void Display (int size)

{

Size = size;
cout <<"Size of " << symbol << " is
// The 'FlyweightFactory' class

class TreeTypeFactory
public:
virtual ~TreeTypeFactory ()

{

while
map<char,
delete it->second;
TreeTypes_.erase (it);

}

(! TreeTypes .empty())

}

TreeType* GetTreeType (char key)

{

TreeType* TreeType =
if (TreeTypes_.find(key)

{

TreeType =

}

else

NULL;

TreeTypes_ [key];

TreeType*>::iterator it =

:" << Size << endl;

:" << 8ize << endl;

TreeTypes_.begin() ;

!= TreeTypes_.end())

176

switch (key)

{

case 'A':
TreeType = new TreeTypeA() ;
break;

case 'B':
TreeType = new TreeTypeB() ;

break;
[/
case 'Z':

TreeType = new TreeTypeZ() ;
break;
default:
cout << "Not Implemented" << endl;
throw ("Not Implemented") ;

}

TreeTypes_ [key] = TreeType;

}

return TreeType;

}

private:
map<char, TreeType*> TreeTypes_;

Vi

//The Main method
int main ()

{

string forestType

"WZAZZBAZZBZZAZZ" ;
const char* chars = forestType.c str();

TreeTypeFactory* factory = new TreeTypeFactory;

// extrinsic state
int size = 10;

// For each TreeType use a flyweight object
for (size t i = 0; 1 < forestType.length(); i++)
{

size++;

TreeType* TreeType = factory->GetTreeType (chars[i]);

Chapter 6

177

Design Patterns for Game Development

TreeType->Display (size) ;

}

//Clean memory
delete factory;

_getch();
return O;

}

In this example, we have created a forest. The basic principle of the flyweight pattern is
applied, whereby part of the structure is shared across all trees and part is dictated by the
client. In this example, apart from the size (this could be anything, size is just chosen to be an
example), every other attribute is chosen to be shared. We create a tree-type interface which
contains all the attributes. We then have derived classes that have their attributes overridden
and a method to set the size attribute. We can have multiple such trees. Generally, the
greater the variety of trees, the more detailed the forest will look. Let us say that we have 10
different types of tree, so we need to have 10 different classes that derive from the interface
and have a method to assign the size attribute from the client size.

Finally, we have the tree factory, which assigns each tree at runtime. We create a reference
to the interface as we do with any factory pattern. However, instead of directly instantiating a
new object, we first check the map to see whether the tree's attributes are already present.
If they are not, we assign a new object and push the attributes to the map. So the next time
a request comes for a similar tree structure to one that has already been assigned, we can
share the attributes from the map. Finally, from the client, we create a forest-type document
which we feed to the factory, and it generates the forest for us using the trees listed in the
document. As the majority of the attributes are shared, the memory footprint is very low. The
following screenshot shows us how the forest is created:

178

Chapter 6

Ch\Users\Druhin'Desktop\Book\C+ + Book\C+ +forGameDevelopment\Book\ Chapterf\Sou.. — d =

pecify the different building types in your village
racks{(1l) Temple<{2) Farmhouse(3d> Go(B): 1
Temple(2) Farmhouze(3>
Temple(2> Farmhouse(3>
Temple(2> Farmhouse(3>
Temple(2> Farmhouse(3>
Temple<2?» Farmhouse(3>
Temple<2) Farmhouse(3>» Go(@):

total 6 buildings
Barrack iz =168
Temple is
Farmhouse

Temple is
Farmhouse iz :58
Barrack iz -188

Using the strategy pattern

The strategy design pattern is a very smart way of designing code. In games, this is mostly
used for the Al component. In this pattern, we define a large number of algorithms and have
all of them from a common interface signature. Then at runtime, we can change the clients of
the algorithms. So in effect, the algorithms are independent of the clients.

Getting ready

To work through this recipe, you will need a machine running Windows. You also need to have
a working copy of Visual Studio installed on your Windows machine. No other prerequisites
are required.

How to do it...

In this recipe, we will find out how easy it is to implement the strategy pattern:

1. Open Visual Studio.

2. Create a new C++ project.

3. Select a Win32 console application.
4. Adda Source.cpp file.

179

Design Patterns for Game Development

5.

180

Add the following lines of code to it:

#include <iostream>
#include <conio.h>

using namespace std;

class SpecialPower
{
public:
virtual void power() = 0;

bi

class Fire : public SpecialPower
{
public:
void power ()
{
cout << "My power is fire" << endl;
}
bi

class Invisibility : public SpecialPower

{
public:
void power ()

{

cout << "My power is invisibility" << endl;

class FlyBehaviour

{
public:
virtual void fly() = 0;

bi

class FlyWithWings : public FlyBehaviour

{

public:
void fly ()

cout << "I can fly" << endl;

}
Vi

class FlyNoWay : public FlyBehaviour

{

public:
void fly ()

{

}
Vi

cout << "I can't fly!" << endl;

class FlyWithRocket : public FlyBehaviour

{

public:
void fly ()

{

cout << "I have a jetpack" << endl;

class Enemy

{
public:

SpecialPower *specialPower;
FlyBehaviour *flyBehaviour;

void performPower ()

{

specialPower->power () ;

void setSpecialPower (SpecialPower *gb)

{

cout << "Changing special power..." << endl;

Chapter 6

181

Design Patterns for Game Development

specialPower = gb;

void performFly ()

{

flyBehaviour->fly () ;

void setFlyBehaviour (FlyBehaviour *fb)

{

cout << "Changing fly behaviour..." << endl;
flyBehaviour = fb;

void floatAround ()

{

cout << "I can float." << endl;

virtual void display() = 0; // Make this an abstract class by
having a pure virtual function

Vi

class Dragon : public Enemy
{
public:
Dragon ()
{
specialPower
flyBehaviour = new FlyWithWings () ;

new Fire() ;

void display ()

{

cout << "I'm a dragon" << endl;
class Soldier : public Enemy

{

public:

182

Chapter 6

Soldier ()

{

specialPower = new Invisibility();
flyBehaviour = new FlyNoWay () ;

void display ()

{

cout << "I'm a soldier" << endl;

int main ()

{

Enemy *dragon = new Dragon() ;
dragon->display () ;
dragon->floatAround() ;
dragon-s>performFly () ;
dragon->performPower () ;

cout << endl << endl;

Enemy *soldier = new Soldier();
soldier->display() ;

soldier->floatAround () ;
soldier-sperformFly () ;
soldier->getFlyBehaviour (new FlyWithRocket) ;
soldier-sperformFly () ;
soldier-s>performPower () ;
soldier->setSpecialPower (new Fire) ;
soldier-s>performPower () ;

_getch();
return O;

183

Design Patterns for Game Development

In this example, we have created different interfaces for different properties that the enemy
may have. So, since we know that special power is a property every enemy type will have, we
have created an interface called SpecialPower and then derived two classes from it called
Fire and Invisibility. We can add as many special powers as we want, we just need to
create a new class and derive from the special power interface. Similarly, all the enemy types
should have a property for flying. Either they fly, or don't fly, or fly with the help of jetpacks.

So we have created a FlyBehaviour interface and have the different flying-type classes
derive from it. After that, we have created an abstract class for the enemy type which contains
both the interfaces as references. Hence any derived class can decide what flying type and
what special power it needs. This also gives us the flexibility to change special powers and
flying ability at runtime. The screenshot below shows a brief example of this design pattern:

Land: Marzel
Land: Cocumbi

Air: Bungindi
Air: Zyhgry

Water: Pokili
Water: Manama

Using the command design pattern

The command design pattern generally involves encapsulating a command as an object. This
is highly used in networking for games, in which player movements are sent across as objects
that are run as commands. The four main points to remember in a command design pattern
are the client, invoker, receiver, and command. The command object has knowledge of the
receiver object. The receiver does the work after it receives a command. The invoker performs
the command, without having any knowledge of who has sent the command. The client
controls the invoker and decides which commands are to be performed at which stage.

184

Chapter 6

Getting ready

For this recipe, you will need a Windows machine with a working copy of Visual Studio.

How to do it...

In this recipe, we will find out how easy it is to implement the command pattern:

1. Open Visual Studio.
2. Create a new C++ project console application.
3. Add the following lines of code:

#include <iostream>
#include <conio.h>

using namespace std;
class NetworkProtocolCommand
public:

virtual void PerformAction() = 0;
class ServerReceiver
public:

void Action()

{

cout << "Network Protocol Command received" <<endl;

}
Vi

class ClientInvoker

{

NetworkProtocolCommand *m NetworkProtocolCommand;

public:
ClientInvoker (NetworkProtocolCommand *cmd = 0) : m
NetworkProtocolCommand (cmd)

{
}

void SetCommad (NetworkProtocolCommand *cmd)

{

m_NetworkProtocolCommand = cmd;

185

Design Patterns for Game Development

186

}

void Invoke ()

{

if (0 != m NetworkProtocolCommand)

m_NetworkProtocolCommand->PerformAction() ;

class MyNetworkProtocolCommand : public NetworkProtocolCommand

{

ServerReceiver *m_ServerReceiver;

public:
MyNetworkProtocolCommand (ServerReceiver *rcv = 0) : m_
ServerReceiver (rcv)

{
}

void SetServerReceiver (ServerReceiver *rcv)

{

m_ServerReceiver = rcv;

}

virtual void PerformAction ()

{

if (0 != m_ServerReceiver)

{

}
}
Vi

m_ServerReceiver->Action() ;

int main()
ServerReceiver r;
MyNetworkProtocolCommand cmd (&r) ;
ClientInvoker caller (&cmd) ;

caller.Invoke() ;

_getch();
return 0O;

Chapter 6

As we can see in this example, we have set up an interface to send information via the
network protocol command. From that interface, we can derive multiple child instances

to be used on the client side. We then need to create a server receiver, which will receive
commands sent from the client. We also need to create a client invoker, which will invoke

the command. A reference to the network protocol command should also be present in this
class. Finally, from the client side, we need to create an instance of the server and attach the
instance to the object of the network protocol command's child that we created. We then use
the client invoker to invoke the command and send it via the network protocol command to
the receiver. This ensures that an abstraction is maintained and the entire message is send
via packets. The following screenshot shows a part of the process:

Ch\Users\Druhin\Desktop\Book\ C++Book\C+ +forGameDevelopment\Book\Chapterf\5cu.. — O et

Player is dependant on the Physics system
layer new impulse value is 25

Al is dependant on the Physics system
Al new impulse value is 1

Creating an advanced game using design
patterns

After understanding the basic design patterns, it's important to combine them to create a
good game. It takes years of practice to finally understand what architecture will suit the game
structure. More often than not, we have to use a few design patterns in conjunction to come
up with clean code that can be applied to the game. The factory pattern will probably be your
most used design pattern, but that is purely an anecdotal reference from my experience.

Getting ready

For this recipe, you will need a Windows machine with a working copy of Visual Studio.

187

Design Patterns for Game Development

How to do it...

In this recipe we will find out how easy it is to combine design patterns to create a game:

1. Open Visual Studio.
2. Create a new C++ project console application.
3. Add the following lines of code:

#ifndef ISPEED H
#define SPEED H

class ISpeed

{

public:
virtual void speed() = 0;

Vi

#end

#ifndef ISPECIALPOWER
#define ISPECIALPOWER
class ISpecialPower

{

public:
virtual void power() = 0;

Vi

#endif
#ifndef TIENEMY H
#define TENEMY H

#include "ISpecialPower.h"
#include "ISpeed.h"

class IEnemy

{

public:

ISpecialPower *specialPower;

188

Chapter 6

ISpeed *speed;

void performPower ()

{

specialPower->power () ;

void setSpecialPower (ISpecialPower *gb)

{

Vi

#endif

#include <iostream>
#include "ISpeed.h"

#pragma once
class HighSpeed :public ISpeed

{

public:
HighSpeed () ;
~HighSpeed() ;

}i
#include "IEnemy.h"

class Invisibility;
class HighSpeed;

class Soldier : public IEnemy

{

public:
Soldier ()

{

189

Design Patterns for Game Development

The previous code is just a small section of the code. Let us assume that we need to make a
game where there are different classes of enemies and there are different types of powers,
as well as some special boosts or power-ups. One approach to this is to think of all the powers
and special boosts as individual classes that derive from an interface. So we need to create
an interface for speed, which can be derived from the HighSpeed class and so on. Similarly,
we can create a SpecialPower interface, which can be derived by the Fire class and so
on. We need to create interfaces for all the groups of properties that our characters can

have. Finally, we need to create an interface for the characters (IEnemy) that is derived by
the Soldier, Archer, and Grenadier class, and so on. The IEnemy interface should also
hold a reference to all the other interfaces, such as ISpecialPower and ISpeed. In this
way, the child classes of ITEnemy can decide what power and speed they want to have. This

is similar to the strategy design pattern. We can further improve this structure if we want to
group the enemies into types, let's say land enemies and air enemies. In that case, either

we create an interface for IType and have Land and Air classes derive from it, or we could
create a factory that creates enemy types for us depending on the type the client requests.
Each enemy type created will also be a derived class from IEnemy, so that it will also have the
references to the previous interfaces. As the complexity of the game increases, we can add
more design patterns to aid us.

190

Organizing and
Backing Up

In this chapter, the following recipes will be covered:

» Versions of source control

» Installing a versioning client

» Selecting a host to save your data

» Adding source control to your code - committing and updating your code
» Resolving conflicts

» Creating a branch

Introduction

Let us consider that we need to work on a project that has many developers. If every
developer is working on different source files, one (rather horrible) way to work is to get the
newly updated source file in an e-mail or an FTP client and replace it in your project. Now what
if the developers, including yourself, are working on the same source file. We can still follow
this horrible way and add the parts that we have worked on to the file we received via FTP, but
very soon this is going to become very cumbersome and make it almost impossible to work.
So we have a system of saving the files to some central repository or distributed repository,
and then have the means to update and send the code so that every developer is working
with the latest copy. There are various ways to perform this and it is commonly referred to as
versioning the code.

191

Organizing and Backing Up

Versions of source control

Revision control is a very effective way to share files across developers. There are various
version control systems and each has its own merits and drawbacks. We will be looking at the
three most popular version control systems out there.

Getting ready

To work through this recipe, you will need a machine running Windows. No other prerequisites
are required.

How to do it...

In this recipe, we will see the different types of source control available to us:
1. Go to this link and download for an SVN client: http://tortoisesvn.net/
downloads.html
2. Go to this link and download for a GIT client: https://desktop.github.com

3. Go to this link and download for a Mercurial client: http://tortoisehg.
bitbucket.org/download/index.html

There are various types of SVN clients available to us. Each has its own merits and drawbacks.

SVN has a lot of features that fix issues relating to atomic operations and source corruption.
It is free and open source. It has lots of plugins for different IDEs. However, one of the major
drawbacks of this tool is that is comparatively very slow in its operations.

GIT was made primarily for Linux but it improves the operation speed a lot. It does work on
UNIX systems as well. It has cheap branch operations but it is not totally optimized for a single
developer and its Windows support is limited compared to Linux. However, GIT is extremely
popular and many prefer GIT over SVN.

Installing a versioning client

There are plenty of versioning clients. However, we are going to look at an SVN client. Tortoise
SVN is by far the most popular among SVN users. Although GIT is another system that is
immensely popular, we will look at Tortoise SVN for this recipe. Tortoise SVN provides a very
friendly and intuitive interface, so it is very easy for beginners to grasp as well. Within a few
hours, a total newbie can understand the basics of using Tortoise SVN.

192

http://tortoisesvn.net/downloads.html
http://tortoisesvn.net/downloads.html
https://desktop.github.com
http://tortoisehg.bitbucket.org/download/index.html
http://tortoisehg.bitbucket.org/download/index.html

Chapter 7

Getting ready

You need a Windows machine. No other prerequisite is needed.

How to do it...

In this recipe, we will find out how easy it is to install and use Tortoise SVN:

1. Gotothislink: http://tortoisesvn.net/downloads.html

2. Download and install the correct version, based on whether you are using a 32-bit or
a 64-bit Windows machine.

3. Create a new folder on your computer.
4. Right-click on the folder.
5. Check that a new command called SVN Checkout... is how available for use.

After we go the download site and install the package, it gets installed on the system and also
lots of shell and kernel commands are added. So when we right-click on the folder, the SVN
Checkout... command is now added as a property for any new folder. There is also another
command called Tortoise SVN available to us, which has even more commands. After we
check out a project, the SVN Checkout... gets replaced with SVN Update or SVN Commit. We
just need to make sure that we have added the correct installer to the machine, based on the
OS version we are using.

Selecting a host to save your data

Before we can start versioning our code, we need to decide where we need to save our code
files to. There are quite a few ways to do this, but we will discuss the two most popular ways.
The first way is to save the files locally and treat your personal computer as a server to host
data. The second method is to use a cloud service to host the data files for us.

Getting ready

You need to have a working Windows machine.

193

http://tortoisesvn.net/downloads.html

Organizing and Backing Up

How to do it...

In this recipe, we will find out how easy it is to host the files locally or on the cloud.

For the files saved on the cloud follow these steps:

Go to the following link: https://xp-dev.com.

Go to Plans and select a plan most suitable to your needs. There is also a free plan
for 10 MB.

After selecting a plan, you will be redirected to create a name for the current project.

The new project will now show up on the dashboard. You can create multiple projects
based on your plan.

Click on a project. This should open up more tabs. The most important ones
currently are:

o Repository

a Project Tracking
a Activity

o Settings

Click on Repository to create a new repository.
The link generated can now be used to version our files in the project.
To add users to the project, click on Settings and invite users to the project.

For the files saved on the local server:

o o~ w bR

194

Save the new project or an empty project on your computer.

Download Visual SVN Server from here: https://www.visualsvn.com/server/.
Install the software.

Then create a project from the existing project.

Your project is now ready to be version controlled.

To add users, click on Users and add a username and password.

https://xp-dev.com
https://www.visualsvn.com/server/

Chapter 7

When we create a project on xp-dev, what actually happens is that xp-dev creates a cloud
space for us on their server, based on whatever plan we have chosen. After that, for each
iteration of the file, it saves a copy on the server. On the dashboard, once we create one
repository, we can create a new repository and the URL generated will now be the URL of the
project. In that way, we can revert back to any iteration or restore a file if we mistakenly delete
it. When we commit a file, a new copy of the file is now saved on the server. When we update
the project, the latest version on the server is now pushed to your local machine. In this way,
xp-dev saves the entire history of activities for all updates and commits. The drawback of
the system is that if the xp-dev client is down, then all the cloud services will also be down.
Hence, the project will suffer due to you not being able to do any updates or commits.

The other way to host is to use your own local machine. Visual SVN Server basically turns your
computer into a server. After that, the process is pretty similar to how xp-dev handles all
updates and commits.

What we could also do is take some space from Amazon or Azure and use that space as a
server. In that case, the steps are pretty similar to the second method (local server). After
logging in to Amazon space or Azure space, treat that as your machine and then repeat the
steps for the local server.

Adding source control - committing and

updating your code

One of the most important things that you can do to files when working on a collaborative
project or individually is to add source control. The biggest advantage of doing so is that the
files are always backed up and versioned. Let's say that you made some local changes and
there are lots of crashes. As a result of those crashes, what will you do? One option is to
retrace your steps and change them back to what they were before. This is a time-wasting
process and there is also risk involved. If your files are backed up, all you need to do is a
revert operation to a particular revision and the code is restored to that point. Similarly, if we
delete a file by mistake, we can always update the project and it will pull the most current file
from the server.

Getting ready

For this recipe, you will need a Windows machine and an installed version of an SVN client.
A data hosting service should already be integrated by now and you should have a URL. No
other prerequisites are required.

195

Organizing and Backing Up

How to do it...

In this recipe, we will find out how easy it is to add source control:

1. Create a new folder on the machine.

2. Rename it to whatever you want to call it.

3. Right-click and check whether the SVN command is showing up as one of the options.

4. Click on SVN Checkout. Use the URL you received from xp-dewv or your local server
or cloud server.

5. Add afile into the new folder. It can be in any format.

6. Right-click on the file and select Tortoise SVN | Add.

7. Go to the root folder and select SVN | Commit.

8. Delete the file.

9. Goto SVN | Update.

10. Make some changes to the file.
11. Select SVN | Commit.
12. Then select Tortoise SVN and then Revert to this revision (revision 1).

After the SVN checkout is successful, the project is either copied from the local machine to
the server or copied from the server to the local machine, based on which is the most up to
date. Once we add the file into the folder, we have to remember that the file is still local. Only
we can see it and have access to it. Others who are working on that project will have no idea
about it. Now, one of the common mistakes that a new programmer may make at this stage
is to forget to add the file to the SVN. When you commit the project, that file will not show

up. There is a checkbox in the commit section for Show unversioned files. However, | will
not recommend that approach, as all temporary files will also be shown in this case. A better
approach is to right-click on the file and go to Tortoise SVN | Add. This will add the file for
revisioning. Now we can do an SVN commit and the file will be stored on the server.

When we delete the file, we again have to remember that we have just deleted the file locally.
The instance of it still exists on the server. So when we perform an SVN update, the file will
again be restored. We have to be careful not to do a Tortoise SVN | Delete and Commit.
This will remove it from the server for that revision. Now if we make some changes to the file,
we can SVN Commit it. We no longer need to select Tortoise SVN | Add. This creates a new
version of the file on the server. Both versions of the file are now present. We can have as
many versions as we need. To access any revision, we need to select either the root folder or
any particular file and perform a Revert to this revision (number). The server then looks up
the version that we requested and pushes the correct copy to us.

196

Chapter 7

Resolving conflicts

Let us consider a single source file that has been worked on by multiple programmers. You
might have some local changes. When you try to update, it may happen that the SVN client is
smart enough to merge the files together. However, in most cases it will not be able to merge
properly and we need to resolve conflicts effectively. The SVN client, however, will show the
files that are in conflict.

Getting ready

For this recipe, you will need a Windows machine and an installed version of an SVN client. A
versioned project is also necessary.

How to do it...

In this recipe, we will find out how easy it is to resolve conflicts:

1. Take a project that is already versioned and committed to SVN.
2. Open afile in an editor and make changes to the file.

3. Perform the SVN Update operation.

4. The files now show a conflict.
5

See the differences between the two files using the Diff tool or Win Merge (you may
need to install Win Merge separately).

6. Generally, the left-hand side will be the local revision and the right-hand side will be
the version on the server. However, these could be swapped as well.

7. After looking at the differences, you may resolve the conflicts in two ways:

o Select the portions that you want from the server and the portions that you
want from the local changes.

o Select Resolve conflict using "mine" or select Resolve conflict using
"theirs".

197

Organizing and Backing Up

What happens in a conflict is that the client on its own cannot make a decision on whether
the local copy or the server copy should be treated as the correct working version. Most good
clients will show this as an error once we do an update. Other clients will insert both sections
in the code, generally with an r>>>>> or an m>>>> notation, to denote which section is the
server and which section is ours. On the Tortoise SVN, if we choose to ignore conflicts, then
these notations may be displayed as separate files or included in the file. A better approach is
to always resolve conflicts. If we use a tool such as Win Merge, it will show us the two revisions
side by side and we can compare and choose the sections we need, or the whole file. After
that, once we have taken the changes and committed them, that file will become the updated
version on the server. So others updating their code will also get the changes we made.

Creating a branch

Let us consider that we are making a game which is due for release at the end of the year.
However, we also need to showcase a polished version of the game for GDC or E3. At that
point, the producer might ask us to make a build specific to E3 or GDC. This GDC or E3 build
can be polished and made stable, whereas the main build may continue to be experimented
with by adding new features.

Getting ready

To work through this recipe, you will need a machine running Windows with an installed version
of an SVN client. A versioned project is also required. No other prerequisites are needed.

How to do it...

In this recipe, we will find out how easy it is to create a branch:

1. Right-click on the versioned project.

Go to the repo browser.

Select the root folder from which you want to create the branch.
Select the destination.

A branch is now created.

o ok~ w D

Check out the created branch onto the machine by using the URL.

198

Chapter 7

When we create a branch from a root folder, a mirror copy of that folder and consequent
subfolders is created. From then on, the two can work independently. The main root has a
URL, and the branch also has its own URL. We can update and commit to the branch as we
would for the root folder. Also, all other functionalities are available for the branch as usual.
Sometimes, after we make changes to the branch, we might need to push them back to the
root. Although the SVN client, Tortoise SVN, provides us with a tool to merge the branches, it is
rarely successful and more often than not we need to do the merge manually.

199

Al in Game
Development

In this chapter, the following recipes will be covered:

» Adding artificial intelligence to a game
» Using heuristics in a game

» Using a Binary Space Partition Tree

» Creating a decision making Al

» Adding behavioral movements

» Using neural network

» Using genetic algorithms

» Using other waypoint systems

Introduction

Artificial intelligence (Al) can be defined in many ways. Artificial intelligence deals with
finding similarities in different situations and differences in similar situations. Al can help to
bring realism to a game. The user playing the game should feel that that entity that they are
competing against is another human. Achieving this is extremely difficult and can consume

a lot of processing cycles. In fact, there is a turing test held every year to determine whether
an Al can fool other humans into believing that it is human. Now, if we use a lot of processing
cycles for the Al, then executing the game at above 40 FPS can become extremely difficult.
Hence we need to write efficient algorithms to achieve this.

201

Al in Game Development

Adding artificial intelligence to a game

Adding artificial intelligence to a game may be easy or extremely difficult, based on the level
of realism or complexity we are trying to achieve. In this recipe, we will start with the basics of
adding artificial intelligence.

Getting ready

To work through this recipe, you will need a machine running Windows and a version of Visual
Studio. No other prerequisites are required.

How to do it...

In this recipe, we will see how easy it is to add a basic artificial intelligence to the game. Add a
source file called Source. cpp. Add the following code to it:

// Basic AI : Keyword identification

#include <iostream>
#include <string>
#include <string.hs>

std::string arr[] = { "Hello, what is your name ?", "My name is Siri"

bi

int main()

{

std: :string UserResponse;

std::cout << "Enter your question? ";
std::cin >> UserResponse;

if (UserResponse == "Hi")

{

std::cout << arr[0] << std::endl;
std::cout << arrl[l];

}

int a;
std::cin >> a;
return 0O;

202

Chapter 8

In the previous example, we are using a string array to store a response. The idea of the
software is to create an intelligent chat bot that can reply to questions asked by users

and interact with them as if it were human. Hence the first task was to create an array of
responses. The next thing to do is to ask the user for the question. In this example, we are
searching for a basic keyword called Hi and, based on that, we are displaying the appropriate
answer. Of course, this is a very basic implementation. Ideally we would have a list of
keywords and responses when either of the keywords is triggered. We can even personalize
this by asking the user for their name and then appending it to the answer every time.

The user may also ask to search for something. That is actually quite an easy thing to do. If we
have detected the word that the user is longing to search for correctly, we just need to enter
that into the search engine. Whatever result the page displays, we can report it back to the
user. We can also use voice commands to enter the questions and give the responses. In this
case, we would also need to implement some kind of NLP (Natural Language Processing).
After the voice command is correctly identified, all the other processes are exactly the same.

Using heuristics in a game

Adding heuristics in a game means to define rules. We need to define a set of rules for the Al
agent so that it can move to its destination in the best possible way. For example, if we want
to write a pathfinding algorithm, and define only its start and end positions, it may get there in
many different ways. However, if we want the agent to reach the goal in a particular way, we
need to establish a heuristic function for it.

Getting ready

You need a Windows machine and a working copy of Visual Studio. No other prerequisites
are required.

How to do it...

In this recipe, we will find out how easy it is to add a heuristic function to our game for
pathfinding. Add a source file called Source. cpp and add the following code to it:

for (auto next : graph.neighbors (current)) {
int new cost = cost_so far[current] + graph.cost(current, next);
if (!cost_so far.count (next) || new cost < cost_so far[next]) {
cost so far[next] = new cost;

int priority = new cost + heuristic(next, goal);
frontier.put (next, priority);
came from[next] = current;

203

Al in Game Development

There are many ways to define what a heuristic is. However, the simplest way to think about

it is that it is a function that provides hints and directions for the Al to reach a specified goal.
Let us say that our Al needs to go from point A to point D. Now, there are also points B and C
somewhere on the map. How should the Al decide which path to take? This is what is provided
by a heuristic function. In this example, we have used a heuristic in a pathfinding algorithm
called A*. In special cases where the heuristic function is 0, we get an algorithm called
Dijkstra's.

Let us consider Dijkstra's first. It will be easier to understand A* later.

i 1 x
10 2
w
' 4 k
'. —

5
y

2

()

Let us consider we need to find the shortest path between s and x, traversing all nodes

at least once. s, t, y, X, and z are the different nodes or the different subdestinations. The
number from one node to another node is the cost of going from one node to the other. The
algorithm states that we start from s with a 0 value and consider all other nodes to be infinite.
The next thing to consider is the nodes adjacent to s. The nodes adjacentto s are tandy.
The cost of reaching them is 5 and 10 respectively. We note that and then replace the infinity
value at those nodes with 5 and 10. Now let us consider the node y. The adjacent nodes are
t, x, and z. The cost to reach x is 5 (its current node value) plus 9 (path cost value) equals 14.
Similarly, the costto reach zis 5 + 2 = 7. So we replace the infinity values of x and z with 14
and 7 respectively. Now, the cost to reach tis 5 + 3 = 8. However, it already has a node value.
Its value is 10. Since 8<10, we will replace t with 8. We keep on doing this for all the nodes.
After that we will get the minimum cost to traverse all the nodes.

204

Chapter 8

A* has two cost functions:

» g (x):Thisis the same as Dijkstra. It is the real cost to reach node x.

» h(x): This is the approximate cost from node x to the goal node. It is a heuristic
function. This heuristic function should never overestimate the cost. That means the
real cost to reach goal node from node x should be greater than or equal to h (x) . It
is called an admissible heuristic.

The total cost of each node is calculated using f(x) = g(x)+h(x).

In A*, we do not need to traverse all nodes, we just need to find the minimum path from start
to the destination. An A* search only expands a node if it seems promising. It only focuses

on reaching the goal node from the current node, not reaching every other node. It is optimal
if the heuristic function is admissible. So writing the heuristic function is the key to checking
whether to expand to a node or not. In the previous example, we used neighboring nodes and
formed a priority list to decide that.

Using a Binary Space Partition Tree

Sometimes in games we work with a lot of geometry and huge 3D worlds. If our game camera
was to render all of it all the time, then it would be extremely expensive and the game

would not be able to run smoothly at higher frame rates. Hence we need to write intelligent
algorithms so that the world is divided into more manageable chunks that can be traversed
easily using a tree structure.

Getting ready

You need to have a working Windows machine and a working copy of Visual Studio.

How to do it...

Add a source file called Source. cpp. Then add the following code to it:

sNode (elemVec& toProcess, const T treeAdaptoré& adap)
: m_pFront (NULL)
, m_pBack (NULL)
{
// Setup
elemVec frontVec, backVec;
frontVec.reserve (toProcess.size()) ;
backVec.reserve (toProcess.size()) ;

// Choose which node we're going to use.

205

Al in Game Development

adap.ChooseHyperplane (toProcess, &m_hp) ;

// Iterate across the rest of the polygons
elemVec: :iterator iter = toProcess.begin() ;
for (; iter != toProcess.end(); ++iter)
T element front, back;
switch (adap.Classify(m hp, *iter))
case BSP_RELAT IN FRONT:
frontVec.push back(*iter) ;
break;

<. o>

// Now recurse if necessary
if (!frontVec.empty())

m_pFront = new sNode (frontVec, adap) ;
if (!backVec.empty())

m_pBack = new sNode (backVec, adap);

sNode (std: :istream& in)
{
// First char is the child state
// (0x1 means front child, 0x2 means back child)
int childState;
in >> childState;

// Next is the hyperplane for the node
in >> m_hp;

// Next is the number of elements in the node
unsigned int nElem;
in >> nElem;

m_contents.reserve (nElem) ;

while (nElem--)

{

T element elem;
in >> elem;

206

Chapter 8

}

m_contents.push back(elem) ;

}

// recurse if we have children.

if (childState & 0x1)
m_pFront = new sNode (in) ;
else
m_pFront = NULL;
if (childState & 0x2)
m_pBack = new sNode (in) ;
else
m_pBack

NULL;

A Binary Space Partition (BSP) tree, as the name implies, is a tree structure within which a
geometrical space is partitioned. To be more precise, in BSP a plane is portioned into more
hyperplanes. A plane is such that it has one dimension less than the ambient space from
which it was created. So a 3D plane would have 2D hyperplanes and a 2D plane would have
1D lines. The idea behind this is once we have divided the planes into these hyperplanes in
a logical manner, we can save the formation into a tree structure. Finally, we can traverse the
tree structure in real time to provide better frame rates for the game overall.

Let us consider an example in which the world looks like the following diagram. The camera
must decide which areas it should render and which it should not. Hence, dividing them using
a logical algorithm is necessary:

|2 mI=|

After we apply the algorithm, the tree structure should look like the following:

207

Al in Game Development

Finally, we traverse this algorithm as with any other tree structure, using the concept of parent
and child, and we get the desired sections that the camera should render.

Creating a decision making Al

A decision tree is one of the most useful things to have in machine learning for Al. Given a
large number of scenarios, based on certain parameters, decision making is essential. If we
can write a system that can make these decisions well, then we can not only have a well-
written algorithm but also have a lot of unpredictability in terms of gameplay. This will add a
lot of variation to the game and will help the replayability of the overall game.

Getting ready

For this recipe, you will need a Windows machine and Visual Studio. No other prerequisites
are required.

How to do it...

In this recipe, we will find out how easy it is to add source control:

/* Decision Making AI*/

#include <iostream>
#include <ctimes>

using namespace std;
class TreeNodes
{
public:
//tree node functions
TreeNodes (int nodeID/*, string QA*/);
TreeNodes () ;
virtual ~TreeNodes() ;

int m NodeID;

TreeNodes* PrimaryBranch;

208

Chapter 8

TreeNodes* SecondaryBranch;

Vi

//constructor

TreeNodes: : TreeNodes ()
PrimaryBranch = NULL;
SecondaryBranch = NULL;

m_NodeID = 0;

}

//deconstructor
TreeNodes: : ~TreeNodes ()

{}

//Step 3! Also step 7 hah!
TreeNodes: : TreeNodes (int nodelID/*, string NQA*/)
//create tree node with a specific node ID

m_NodeID = nodelD;

//reset nodes/make sure! that they are null. I wont have any funny
business #s -_-

PrimaryBranch = NULL;

SecondaryBranch = NULL;

//the decision tree class
class DecisionTree
{
public:
//functions
void RemoveNode (TreeNodes* node) ;
void DisplayTree (TreeNodes* CurrentNode) ;
void Output () ;
void Query() ;
void QueryTree (TreeNodes* rootNode) ;
void PrimaryNode (int ExistingNodeID, int NewNodelD) ;
void SecondaryNode (int ExistingNodeID, int NewNodeID) ;
void CreateRootNode (int NodelID) ;

209

Al in Game Development

void MakeDecision (TreeNodes* node) ;

bool SearchPrimaryNode (TreeNodes* CurrentNode, int ExistingNodelD,
int NewNodeID) ;

bool SearchSecondaryNode (TreeNodes* CurrentNode, int ExistingNodelID,
int NewNodeID) ;

TreeNodes* m_RootNode;
DecisionTree () ;

virtual ~DecisionTree() ;

int random(int upperLimit) ;

//for random variables that will effect decisions/node values/weights
int random(int upperLimit)

int randNum = rand() % upperLimit;

return randNum;

//constructor

//Step 1!

DecisionTree: :DecisionTree ()

{
//set root node to null on tree creation
//beginning of tree creation
m_RootNode = NULL;

}

//destructor
//Final Step in a sense
DecisionTree: :~DecisionTree ()

{

RemoveNode (m_RootNode) ;

//Step 2!
void DecisionTree: :CreateRootNode (int NodeID)

{

//create root node with specific ID

210

Chapter 8

// In MO, you may want to use thestatic creation of IDs like with
entities. depends on how many nodes you plan to have

//or have instantaneously created nodes/changing nodes
m_RootNode = new TreeNodes (NodelD) ;

}

//Step 5.1!~
void DecisionTree: :PrimaryNode (int ExistingNodeID, int NewNodeID)

{

//check to make sure you have a root node. can't add another node
without a root node

if (m_RootNode == NULL)
cout << "ERROR - No Root Node'";
return;

if (SearchPrimaryNode (m_RootNode, ExistingNodeID, NewNodelD))

cout << "Added Node Typel With ID " << NewNodeID << " onto Branch
Level " << ExistingNodeID << endl;

}

else
//check
cout << "Node: " << ExistingNodeID << " Not Found.";

//Step 6.1!~ search and add new node to current node

bool DecisionTree: :SearchPrimaryNode (TreeNodes *CurrentNode, int
ExistingNodeID, int NewNodeID)

{

//if there is a node
if (CurrentNode->m NodeID == ExistingNodelID)

{

//create the node
if (CurrentNode->PrimaryBranch == NULL)

{

CurrentNode->PrimaryBranch = new TreeNodes (NewNodelD) ;

}

else

{

CurrentNode->PrimaryBranch = new TreeNodes (NewNodelD) ;

211

Al in Game Development

return true;

}

else

{
//try branch if it exists
//for a third, add another one of these too!
if (CurrentNode->PrimaryBranch != NULL)

if (SearchPrimaryNode (CurrentNode->PrimaryBranch,
ExistingNodeID, NewNodeID))

{

return true;

}

else

{

//try second branch if it exists
if (CurrentNode->SecondaryBranch != NULL)

return (SearchSecondaryNode (CurrentNode->SecondaryBranch,
ExistingNodeID, NewNodeID)) ;

}

else

{

return false;

}

return false;

//Step 5.2!~ does same thing as node 1. if you wanted to have more
decisions,

//create a node 3 which would be the same as this maybe with small
differences

void DecisionTree: :SecondaryNode (int ExistingNodeID, int NewNodelID)

{

if (m_RootNode == NULL)

{

cout << "ERROR - No Root Node'";

if (SearchSecondaryNode (m_RootNode, ExistingNodeID, NewNodelID))

{

212

Chapter 8

cout << "Added Node Type2 With ID " << NewNodeID << " onto Branch
Level " << ExistingNodeID << endl;

}

else

{

cout << "Node: " << ExistingNodeID << " Not Found.";

//Step 6.2!~ search and add new node to current node

//as stated earlier, make one for 3rd node if there was meant to be
one

bool DecisionTree: :SearchSecondaryNode (TreeNodes *CurrentNode, int
ExistingNodeID, int NewNodeID)

{

if (CurrentNode->m NodeID == ExistingNodelID)

{

//create the node
if (CurrentNode->SecondaryBranch == NULL)

{
}

else

{
}

return true;

CurrentNode->SecondaryBranch new TreeNodes (NewNodelD) ;

CurrentNode->SecondaryBranch new TreeNodes (NewNodelD) ;

}

else
//try branch if it exists
if (CurrentNode->PrimaryBranch != NULL)

if (SearchSecondaryNode (CurrentNode->PrimaryBranch,
ExistingNodeID, NewNodeID))

{

return true;

}

else

{

//try second branch if it exists
if (CurrentNode->SecondaryBranch != NULL)

return (SearchSecondaryNode (CurrentNode->SecondaryBranch,
ExistingNodeID, NewNodeID)) ;

213

Al in Game Development

}

else

{

return false;

}
}
}

return false;

//Step 11
void DecisionTree: :QueryTree (TreeNodes* CurrentNode)

{

if (CurrentNode->PrimaryBranch == NULL)

{

//if both branches are null, tree is at a decision outcome state
if (CurrentNode->SecondaryBranch == NULL)

{

//output decision 'question'

L1777 17077 7777777777 777
[1717777777777777777777
}

else

{
}

return;

cout << "Missing Branch 1";

if (CurrentNode->SecondaryBranch == NULL)

{

cout << "Missing Branch 2";

return;

//otherwise test decisions at current node
MakeDecision (CurrentNode) ;

//Step 10
void DecisionTree: :Query ()

{

214

QueryTree (m_RootNode) ;

}

L1777 707777777077 777777777777777777777777777777777777777

//debate decisions create new function for decision logic
// cout << node-s>stringforquestion;

//Step 12
void DecisionTree: :MakeDecision (TreeNodes *node)
{
//should I declare variables here or inside of decisions.h
int PHealth;
int MHealth;
int PStrength;
int MStrength;
int DistanceFBase;
int DistanceFMonster;

////sets random!
srand (time (NULL)) ;

Chapter 8

//randomly create the numbers for health, strength and distance for

each variable
PHealth = random(60) ;
MHealth = random(60) ;
PStrength = random(50) ;
MStrength = random(50) ;
DistanceFBase = random(75) ;
DistanceFMonster = random(75) ;

//the decision to be made string example: Player health: Monster

Health: player health is lower/higher

cout << "Player Health: " << PHealth << endl;

cout << "Monster Health: " << MHealth << endl;

cout << "Player Strength: " << PStrength << endl;

cout << "Monster Strength: " << MStrength << endl;

cout << "Distance Player is From Base: " << DistanceFBase << endl;

cout << "Distance Player is From Monster: " << DistanceFMonster <<
endl;

if (PHealth > MHealth)

{

215

Al in Game Development

std::cout << "Player health is greater than monster health";
//Do some logic here

}

else

{

std::cout << "Monster health is greater than player health";
//Do some logic here

if (PStrength > MStrength)

{
}

else

{
}

//Do some logic here

//recursive question for next branch. Player distance from base/
monster.
if (DistanceFBase > DistanceFMonster)

void DecisionTree: :Output ()
//take respective node
DisplayTree (m_RootNode) ;

}

//Step 9

void DecisionTree: :DisplayTree (TreeNodes* CurrentNode)
//if it doesn't exist, don't display of course
if (CurrentNode == NULL)

{

216

Chapter 8

return;

L1117 17707 77777777777 77777 77777777777 7777777777777777777777777777777
L1177 1777777717777777777777777

//need to make a string to display for each branch

cout << "Node ID " << CurrentNode->m NodeID << "Decision Display:
<< endl;

//go down branch 1
DisplayTree (CurrentNode->PrimaryBranch) ;

//go down branch 2
DisplayTree (CurrentNode->SecondaryBranch) ;

}

void DecisionTree: :RemoveNode (TreeNodes *node)

{

if (node != NULL)

{

if (node->PrimaryBranch != NULL)

{

RemoveNode (node->PrimaryBranch) ;

}

if (node->SecondaryBranch != NULL)

{

RemoveNode (node->SecondaryBranch) ;

}

cout << "Deleting Node" << node->m NodeID << endl;

//delete node from memory
delete node;
//reset node
node = NULL;

int main ()

{

217

Al in Game Development

//create the new decision tree object
DecisionTree* NewTree = new DecisionTree() ;

//add root node the very first 'Question' or decision to be made
//is monster health greater than player health?
NewTree->CreateRootNode (1) ;

//add nodes depending on decisions

//2nd decision to be made

//is monster strength greater than player strength?
NewTree->PrimaryNode (1, 2);

//3rd decision
//is the monster closer than home base?
NewTree->SecondaryNode (1, 3);

//depending on the weights of all three decisions, will return
certain node result

//results!

//Run, Attack,

NewTree->PrimaryNode (2, 4);

NewTree->SecondaryNode (2, 5);

NewTree->PrimaryNode (3, 6);

NewTree->SecondaryNode (3, 7);

NewTree->Output () ;

//ask/answer question decision making process
NewTree->Query () ;

cout << "Decision Made. Press Any Key To Quit." << endl;

int aj;

cin >> a;

//release memory!
delete NewTree;

//return random value
//return 1;

218

Chapter 8

As the name suggests, a decision tree is a subset of the tree data structure. Therefore, there
is a root node and two child nodes. The root hode denotes a condition and the child nodes
will have the probable solutions. On the next level, those solution nodes will become part of
the condition, which will lead to two more solution nodes. Hence, as the preceding example
shows, the entire structure is modeled on the basis of a tree structure. We have a root node
and then primary and secondary nodes. We need to traverse the tree to continuously find the
answers to a situation based on the root nodes and the child nodes.

We have also written a Query function that will query the tree structure to find out what the
most probable scenario is for the situation. That in turn will get the help of a decision function,
which will add its own level of heuristics, combined with the result of the query, and generate
the output for the solution.

Decision trees are extremely fast, because for every scenario we are checking only half the
tree. So in effect we have reduced the search space by half. The tree structure also makes it
robust, so that we can add and remove nodes on the fly as well. This gives us a lot of flexibility
and the overall architecture of the game is improved.

Adding behavioral movements

When we talk about Al in games, after pathfinding the next most important thing to consider
is movement. When does an Al decide that it has to walk, run, jump, or slide? The ability to
make these decisions quickly and correctly will make the Al really competitive in games and
extremely difficult to beat. We can do all this with the help of behavioral movements.

Getting ready

For this recipe, you will need a Windows machine and Visual Studio. No other prerequisites
are required.

How to do it...

In this example, you will find out how easy it is to create a decision tree. Add a source file
called source. cpp and add the following code to it:

/* Adding Behavorial Movements*/

#include <iostream>
using namespace std;
class Machine

{

219

Al in Game Development

class State *current;
public:

Machine () ;

void setCurrent (State *s)

{

current = s;

}

void Run() ;
void Walk() ;

Vi

class State

{
public:
virtual void Run (Machine *m)

{

cout << " Already Running\n";

}

virtual void Walk (Machine *m)

{

cout << " Already Walking\n";

}
Vi

void Machine: :Run/()

{

current->Run (this) ;

void Machine: :Walk ()

{

current->Walk (this) ;

class RUN : public State

{

public:
RUN ()
{
cout << " RUN-ctor ";
Vi
~RUN ()
{
cout << " dtor-RUN\n";

220

Chapter 8

Vi

void Walk (Machine *m) ;

Vi

class WALK : public State

{

public:
WALK ()
{ cout << " WALK-ctor ";
ETZIALK ()
{ cout << " dtor-WALK\n";

void Run (Machine *m)
cout << " Changing behaviour from WALK to RUN";
m->setCurrent (new RUN()) ;
delete this;

void RUN: :Walk (Machine *m)
cout << " Changing behaviour RUN to WALK";
m->setCurrent (new WALK()) ;
delete this;

Machine: :Machine ()
current = new WALK() ;
cout << '\n';

int main ()
{
Machine m;
m.Run () ;
m.Walk () ;
m.Walk ()

I
int a;

221

Al in Game Development

cin >> a;

return O;

}

In this example, we have implemented a simple state machine. The state machine is created
with the state-machine design pattern in mind. So the states in this case are walk and run.
The objective is that if the Al is walking and then needs to switch to running, it can do so at
runtime. Similarly, if it is running, it can switch to walking at runtime. However, if it is already
walking, and a request comes to walk, it should notify itself that there is no need to change
the state.

All these change of states are handled by a class called machine, hence the name
state-machine pattern. The reason why this structure is preferred by many over the traditional
state machine design is that all the states need not be defined in one class and then a
switch case statement can be used to change states. Although this method is correct, every
additional step that is added to the game would require changing and adding to the same
class structure. This is a recipe for bugs and possible disasters in the future. Instead, we are
going for a more object-oriented approach where every state is a class in itself.

The machine class holds a pointer to the StateTo class and then pushes the request to
the appropriate child class of the state. If we need to add the jump state, we do not need to
change much in the code. We need to write a new jump class and add the corresponding
functionalities. Because the machine has a pointer to the base class (state), it will
correspondingly push the request for jump to the correct derived class.

Using neural network

Artificial neural networks (ANNs) are an advanced form of Al used in some games. They
may not be directly used in-game; however, they may be used during the production phase to
train the Al agents. Neural nets are mostly used as predictive algorithms. Based on certain
parameters, and historical data, they calculate the most likely decision or attribute that the Al
agent will distribute. ANNs are not restricted to games; they are used across multiple diverse
domains to predict possible outcomes.

Getting ready

To work through this recipe, you will need a machine running Windows and Visual Studio.

222

Chapter 8

How to do it...

Take a look at the following code snippet:

class neuralNetworkTrainer

{

private:

//network to be trained
neuralNetwork* NN;

//learning parameters

double learningRate; // adjusts the step size of the weight
update
double momentum; // improves performance of stochastic

learning (don't use for batch)

//epoch counter
long epoch;
long maxEpochs;

//accuracy/MSE required
double desiredAccuracy;

//change to weights
double** deltaInputHidden;
double** deltaHiddenOutput;

//error gradients
double* hiddenErrorGradients;
double* outputErrorGradients;

//accuracy stats per epoch
double trainingSetAccuracy;
double validationSetAccuracy;
double generalizationSetAccuracy;
double trainingSetMSE;

double validationSetMSE;

double generalizationSetMSE;

//batch learning flag

223

Al in Game Development

bool useBatch;

//log file handle
bool loggingEnabled;
std::fstream logFile;
int logResolution;
int lastEpochLogged;

public:

neuralNetworkTrainer (neuralNetwork* untrainedNetwork) ;

void setTrainingParameters(double 1R, double m, bool batch);
void setStoppingConditions(int mEpochs, double dAccuracy) ;
void useBatchlLearning(bool flag){ useBatch = flag; }

void enablelLogging(const char* filename, int resolution);

void trainNetwork(trainingDataSet* tSet);

private:
inline double getOutputErrorGradient (double desiredvValue, double
outputValue) ;
double getHiddenErrorGradient (int j);
void runTrainingEpoch(std::vector<dataEntry*> trainingSet);
void backpropagate (double* desiredOutputs) ;
void updateWeights() ;

Vi

class neuralNetwork

{

private:

//number of neurons
int nInput, nHidden, nOutput;

//neurons

double* inputNeurons;
double* hiddenNeurons;
double* outputNeurons;

//weights
double** wInputHidden;

224

Chapter 8

double** wHiddenOutput;
friend neuralNetworkTrainer;

public:

//constructor & destructor
neuralNetwork (int numInput, int numHidden, int numOutput) ;

~neuralNetwork () ;

//weight operations

bool loadWeights (char* inputFilename) ;

bool saveWeights (char* outputFilename) ;

int* feedForwardPattern(double* pattern);

double getSetAccuracy(std::vector<dataEntry*>& set);
double getSetMSE(std::vector<dataEntry*>& set);

private:

void initializeWeights() ;

inline double activationFunction(double x);
inline int clampOutput (double x);

void feedForward(double* pattern);

In this example snippet, we have created the backbone to write a neural network that can
predict a letter which is drawn on the screen. Many devices and touch screen tablets have this
ability to detect a letter that you draw on screen. Let us take this and think in terms of game
design. If we want to create a game in which we draw shapes, and the corresponding weapon
will be given to us, which we can then use in battle, we can use this as a template to train the
agents to identify a shape before the game is released onto the market. Generally, games like
these only detect basic shapes. These can be easily detected and do not require neural nets
to train agents.

225

Al in Game Development

In games, ANNs will mostly be used to create good Al behavior. However, it is not wise to use
ANNSs while the game is being played, as they are expensive and take a long time to train
agents. Let us look at the following example:

Class type Speed HP

Melee Speed (4) 25 (HP)
Archer Speed (7) 22 (HP)
Magic Speed (6.4) 20 (HP)
? Speed (6.6) 21 (HP)

Given the data, what is the most likely class of the unknown? The number of parameters
(Class type, Speed, and HP) is only three, but in reality it will be over 10. It will be difficult

to predict the class by just looking at those numbers. That's where an ANN comes in. It can
predict any of the missing column data based on other columns' data and previous historical
data. This becomes a very handy tool for the designer to use to balance the game.

A few concepts of the ANN which we have implemented is necessary to understand.
An ANN is typically defined by three types of parameters:

» The interconnection pattern between the different layers of neurons.
» The learning process for updating the weights of the interconnections.

» The activation function that converts a neuron's weighted input to its output activation.

226

Chapter 8

Let's take a look at the following diagram explaining the layers:

Input Hidden Output

Layer Layer Layer

Input 1

Input 2

Input 3 Output

Input 4

Input 5

Input Layer is the layer in which we supply all the column data that is known, both

historical and new. The process first involves supplying data whose output we already know.
This phase is known as the learning phase. There are two types of learning algorithms,
supervised and non-supervised. The explanation for these is out of the scope of this book.
After that, there is a training algorithm that is applied to minimize the errors in the desired
output. Back-propagation is one such technique, in which the weights that calculate the
neural network function are adjusted till we get close to the desired result. After the network is
set and is giving correct results for already known outputs, we can then supply new data and
find the results for the unknown column data.

Using genetic algorithms

A genetic algorithm (GA) is a method of evolutionary algorithm (EA). They are particularly
useful when we want to write predictive algorithms in which only the strongest is selected
and the rest are rejected. This is how it gets its name. So at every iteration it mutates, does a
cross-over, and only the best is selected for the next iteration of population. The idea behind
genetic algorithms is that after multiple iterations only the best possible candidates are left.

227

Al in Game Development

Getting ready

To work through this recipe, you will need a machine running Windows with an installed
version of Visual Studio.

How to do it...

In this recipe, we will find out how easy it is to write a genetic algorithm:

void crossover (int &seed) ;

void elitist () ;

void evaluate() ;

int i4_uniform_ab(int a, int b, int &seed);
void initialize(string filename, int &seed) ;
void keep the best();

void mutate (int &seed) ;

double r8 uniform ab(double a, double b, int &seed);
void report (int generation) ;

void selector(int &seed) ;

void timestamp () ;

void Xover (int one, int two, int &seed) ;

GA may seem extremely difficult to understand or make sense of at first. However, GAs are
extremely simple. Let us think of a situation in which we have a land that is filled with dragons
with different attributes. The objective or goal of the dragon is to defeat a human player who
has some attributes.

Dragon(Al)
Attribute 1 Attribute 2 Attribute 3
Dragon 1 Run -Defend- Attack
Dragon 2 R -Defeng- Attack
Dragon 3 R Defend Attack-
Human(Player)
Attribute 1 Attribute 2 Attribute 3
Player Run Defend Attack

228

Chapter 8

So for the Dragon to be competitive against the Human, it must learn how to run, defend, and
attack. Let us see how GA helps us to do this:

Step 1 (Initial Population)
Dragon(Al):

This is our initial population. Each has its own set of properties. We are just considering three
dragons. In practice, there will be more than that.

Attribute 1 Attribute 2 Attribute 3
Dragon 1 Run -Defend- Attaek-
Dragon 2 Rt -Befend- Attack
Dragon 3 Rt Defend Attack-

Step 2 (Fitness function)

The fitness function (%) determines how fit a particular dragon is from the population. 100% is
perfect fitness.

Fitness Dragon Attribute 1 Attribute 2 Attribute 3
60% Dragon 1 Run Befend- Attack
75% Dragon 2 R Befend- Attack
20% Dragon 3 R Defend Attachk

Step 3 Cross-over

Based on the fitness function and the attributes that are missing, there will be a cross-over or
reproduction phase to create a new dragon with both properties:

Table 1
Fitness Dragon Attribute 1 Attribute 2 Attribute 3
60% Dragon 1 Run Defend Attack
75% Dragon 2 Run Defend Attack
20% Dragon 3 Run Defend Attack

229

Al in Game Development

Table 2
Fitness Dragon Attribute 1 Attribute 2 Attribute 3
60% Dragon 1 Run Befend- Attack
75% Dragon 2 R Befend- Attack
20% Dragon 3 R Defend Attachk

The dragon with the least fitness function will be removed from the population. (Survival

of the fittest).
Fitness Dragon Attribute 1 Attribute 2 Attribute 3
60% Dragon 1 Run Defend Attack
75% Dragon 2 Rt ~Defend Attack
—20%— Drager3— R -Defend— Attack—

Step 4 Mutate

So we have now got a new dragon that can run as well as attack and has a fitness function
of 67%:

Attribute 3
Attack

Attribute 2
Defend

Fitness Dragon Attribute 1
67% Dragon 4 Run

We must now repeat the process (new generation) with other dragons in the population
until we are satisfied with the result. The ideal population will be when all dragons have the
following capabilities:

Attribute 3
Attack

Attribute 1
Dragon 4 Run

Attribute 2
Defend

Fitness
100%

Dragon

However, this may not always be possible. We need to be satisfied it is closer to the goal. All
the stages described here are implemented as functions, and could be expanded upon based
on the requirements of the Al agent.

Now you could ask, why don't we create dragons with all the properties in the first place?
That's where adaptive Al comes into play. If we define all the properties in the dragons before
the user plays the game, it may be very easy to defeat the dragons as the game progresses.
However, if the Al dragons can adapt based on how the player defeats them, it may get
progressively more difficult to beat the Al. As the player defeats the Al, we need to record the
parameters and add that parameter as a goal attribute for the dragon, which it can achieve
after a few cross-overs and mutations.

230

Chapter 8

Using other waypoint systems

Waypoints are a way of writing pathfinding algorithms. They are extremely easy to write.
However, if not thought out properly, they can be extremely buggy and the Al can look
extremely stupid. Many older games often had this sort of bug, which resulted in a revolution
in the implementation of waypoint systems.

Getting ready

To work through this recipe, you will need a machine running Windows with an installed
version of Visual Studio. No other prerequisites are required.

How to do it...

In this recipe, we will find out how easy it is to create waypoint systems:

#include <iostream>
using namespace std;

int main()

{

float positionA = 4.0f; float positionB = 2.0f; float positionC =
-1.0f; float positionD = 10.0f; float positionE = 0.0f;

//Sort the points according to Djisktra's

//A* can be used on top of this to minimise the points for traversal
//Transform the objects over these new points.

return 0O;

231

Al in Game Development

In this example, we will just discuss a basic implementation of the waypoint system. As
the name suggests, waypoints are just 2D/3D points in world space that we want the Al
agent to follow. All the agent has to do is move from point A to point B. However, this has
complications. For example, let us consider the following diagram:

¢ 8, 8, 8 ¢

To get from A to B is easy. Now, to get from B to C it has to follow a pathfinding algorithm
such as A* or Djikstra's algorithm. In that case, it will avoid the obstacle in the center and
move towards C. Now let's say it has suddenly seen the user at point A, part way through the
journey. How should it react? If we just provide waypoints, it will look at its dictionary of points
that it is allowed to move to and which is closest to it. The answer will be A. However, if it
starts going towards A, it will be blocked by the wall and it may get stuck in a loop, hitting the
wall continuously. You may have seen this behavior a lot in older games. In this case, the Al
must make a decision to go back to B and then to A. So we can't use a waypoint algorithm on
its own. For better performance and efficiency, we need to write a decision-making algorithm
and a pathfinding algorithm along with it. This is what is used in most modern games, along
with techniques such as NavMesh and so on.

232

Physics in Game
Development

In this chapter, the following recipes will be covered:

» Using physics rules in your game
» Making things collide

» Installing and integrating Box2D
» Making a basic 2D game

» Making a 3D game

» Creating a particle system

» Using ragdoll in your game

Introduction

In modern games, and games of the past, some type of physics has always been added

to increase the sense of realism. Although most physics in games is an approximation or
optimization of actual physics rules, it does a good job of achieving the desired results.
Physics in games is basically a rough implementation of the Newtonian laws of motion, mixed
with the basic fundamentals of collision detection.

The trick for a games developer is to write the code in such a way that it does not bottleneck
the CPU and the game still runs at a desired framework. We will discuss some basic concepts
that we require to introduce physics into our game. For the sake of simplicity, we have
integrated Box2D into our engine and, along with a renderer (OpenGL), we will output some
physics interaction between objects. For 3D physics, we will get help from the Bullet Physics
SDK and display the desired result.

233

Physics in Game Development

Using physics rules in your game

The first step to have physics in the game is to have the environment ready so that proper
calculations can be applied to the bodies, and the physics simulation can work on them.

Getting ready

To work through this recipe, you will need a machine running Windows and Visual Studio. No
other prerequisites are required.

How to do it...

In this

No ok wN

Take a

recipe, we will see how easy it is to add physics rules to our game:

First, set up all the objects in the game scene.

Give them properties so that they have vector points and velocities.

Assign bounding boxes or bounding circles, depending on the shape of the object.
Apply forces on each of the bodies.

Detect collisions between them based on the shape.

Solve for the constraints.

Output the result.

look at the following code snippet:

#include <Box2D/Collision/b2Collision.h>
#include <Box2D/Collision/Shapes/b2CircleShape.h>
#include <Box2D/Collision/Shapes/b2PolygonShape.h>

void b2CollideCircles(

234

b2Manifold* manifold,
const b2CircleShape* circleA, const b2Transform& xfA,
const b2CircleShape* circleB, const b2Transform& xfB)

manifold-s>pointCount = 0;

b2vVec2 pA
b2Vec2 pB

b2Mul (xfA, circleA->m p);
b2Mul (xfB, circleB->m p) ;

b2Vec2 d = pB - pA;

float32 distSqr = b2Dot(d, 4);

float32 rA = circleA->m radius, rB = circleB->m radius;
float32 radius = rA + rB;

Chapter 9

if (distSgr > radius * radius)

{

return;

manifold->type = b2Manifold::e circles;
manifold->localPoint = circleA->m p;
manifold->localNormal.SetZero () ;
manifold->pointCount = 1;

manifold-s>points[0] .localPoint = circleB->m p;
manifold->points[0].id.key = 0;

void b2CollidePolygonAndCircle (
b2Manifold* manifold,
const b2PolygonShape* polygonA, const b2Transform& xfA,
const b2CircleShape* circleB, const b2Transform& xfB)

manifold->pointCount = 0;

// Compute circle position in the frame of the polygon.
b2Vec2 ¢ = b2Mul (xfB, circleB->m p);
b2Vec2 cLocal = b2MulT(xfA, c);

// Find the min separating edge.

int32 normalIndex = 0;

float32 separation = -b2 maxFloat;

float32 radius = polygonA->m radius + circleB->m radius;
int32 vertexCount = polygonA->m count;

const b2Vec2* vertices = polygonA->m vertices;

const b2Vec2* normals = polygonA->m normals;

for (int32 1 = 0; 1 < vertexCount; ++1)

{

float32 s = b2Dot (normals[i], cLocal - vertices[i]) ;
if (s > radius)

{

// Early out.
return;

if (s > separation)

235

Physics in Game Development

separation = s;
normalIndex = i;

// Vertices that subtend the incident face.

int32 vertIndexl = normalIndex;

int32 vertIndex2 = vertIndexl + 1 < vertexCount ? vertIndexl + 1
0;

b2Vec2 vl = vertices[vertIndexl];

b2Vec2 v2 = vertices[vertIndex2];

// If the center is inside the polygon

if (separation < b2 epsilon)

{
manifold->pointCount = 1;
manifold->type = b2Manifold::e faceA;
manifold->localNormal = normals [normalIndex] ;
manifold->localPoint = 0.5f * (vl + v2);
manifold-s>points[0].localPoint = circleB->m p;
manifold->points[0].id.key = 0;
return;

// Compute barycentric coordinates
float32 ul = b2Dot (cLocal - vl1, v2 - vl1);
float32 u2 = b2Dot (cLocal - v2, vl - v2);
if (ul <= 0.0f)

{

if (b2DistanceSquared(cLocal, vl1l) > radius * radius)

{

return;

manifold->pointCount = 1;

manifold->type = b2Manifold::e faceA;
manifold->localNormal = cLocal - vl1;
manifold->localNormal .Normalize () ;
manifold->localPoint = vl;

manifold->points[0] .localPoint = circleB->m p;
manifold->points[0].id.key = 0;

236

Chapter 9

else if (u2 <= 0.0f)

{

if (b2DistanceSquared(cLocal, v2) > radius * radius)

{

return;

manifold->pointCount = 1;
manifold->type = b2Manifold::e faceA;
manifold->localNormal = cLocal - v2;
manifold->localNormal .Normalize () ;
manifold->localPoint = v2;
manifold-s>points[0] .localPoint = circleB->m p;
manifold->points[0].id.key = 0;

}

else

{
b2vVec2 faceCenter = 0.5f * (vl + v2);
float32 separation = b2Dot (cLocal - faceCenter,

normals [vertIndexl1]) ;

if (separation > radius)

{

return;

manifold->pointCount = 1;

manifold->type = b2Manifold::e faceA;
manifold->localNormal = normals [vertIndexl] ;
manifold->localPoint = faceCenter;
manifold->points[0] .localPoint = circleB->m p;
manifold->points[0].id.key = 0;

237

Physics in Game Development

The first step for a body to exhibit physics properties is for it to be a rigid body. This is however
not true if your body is supposed to have some kind of fluid physics, as is the case for a plastic
or any other soft body. In that case, we will have to set up the world differently, as it is a far more
complex problem. A rigid body, in short, is any object in world space that will not deform, even

if external sources are applied to it. Even in game engines such as Unity or UE4, if you assign a
body as a rigid body, it will automatically react, based on the physics simulation property of the
engine. After the rigid body is set up, we need to determine if the body is static or dynamic. This
step is important as we can greatly reduce the number of calculations if we know that the body
is static. A dynamic body must be assigned velocities as well as vector positions.

After the previous step is complete, the next step is to add colliders or bounding objects.
These will actually be used for the calculation of collision points. For example, if we have a 3D
model of a human, it is sometimes not very wise to use the exact body mesh for collisions.
Instead, we could use a capsule, which is a cylinder with two half spheres on either end for
the body and a similar structure for the hands. In the case of a 2D object, we make a choice
between a circular bounding object or a box bounding object. The following diagram shows the
object in black and the bounding box in red. We can now apply force or impulse to the objects:

The next step in the pipeline is to actually detect when two objects have collided. We will
discuss this further in the next recipe. But let's say we have to detect whether circle A

has collided with circle B;in most cases we just need information on whether they

have collided, rather than the exact point of contact. In this case, we need to write some
mathematical functions to detect that. We then return the output and, based on that, we write
our logic for collision and finally display the result.

In the preceding example, there is a function called b2CollidePolygonAndCircle which
is used to calculate the collision between a polygon and a circle. We define the two shapes
and then try to calculate various details that determine whether the points of the polygon and
the circle intersect. We need to find the edge list point and then calculate whether the points
lie inside the other shape, and so on.

238

Chapter 9

Making things collide

A huge part of the physics system is making things collide. We need to figure out whether
the objects have collided and pass on the relevant information. In this recipe, we will look at
different techniques to do this.

Getting ready

You need a Windows machine and a working copy of Visual Studio. No other prerequisites
are required.

How to do it...

In this recipe, we will find out how easy it is to detect collisions:

#include <Box2D/Collision/b2Collision.h>
#include <Box2D/Collision/Shapes/b2PolygonShape.h>

// Find the max separation between polyl and poly2 using edge normals
from polyl.

static float32 b2FindMaxSeparation (int32* edgelndex,
const b2PolygonShape* polyl, const b2Transform& xf1l,
const b2PolygonShape* poly2, const b2Transform& xf2)

int32 countl = polyl->m count;

int32 count2 = poly2->m count;

const b2Vec2* nls = polyl->m normals;
const b2Vec2* vls = polyl->m vertices;
const b2Vec2* v2s = poly2->m vertices;
b2Transform xf = b2MulT (xf2, xf1l);

int32 bestIndex = 0;

float32 maxSeparation = -b2 maxFloat;

for (int32 1 = 0; 1 < countl; ++i)

{
// Get polyl normal in frame2.
b2Vec2 n = b2Mul (xf.q, nls[i]);
b2vVec2 vl = b2Mul (xf, vils[i]);

// Find deepest point for normal i.
float32 si = b2 maxFloat;
for (int32 j = 0; j < count2; ++3j)

{

239

Physics in Game Development

float32 sij = b2Dot (n, v2s[j] - v1);
if (sij < si)
{

si = gij;

if (si > maxSeparation)

{

maxSeparation = sij;
bestIndex = 1i;

*edgeIndex = bestIndex;
return maxSeparation;

static void b2FindIncidentEdge (b2ClipVertex c[2],

const b2PolygonShape* polyl, const b2Transform& xf1l,

edgel,

240

const b2PolygonShape* poly2, const b2Transform& xf2)

const b2Vec2* normalsl = polyl->m normals;
int32 count2 = poly2->m _count;

const b2Vec2* vertices2 = poly2->m vertices;
const b2Vec2* normals2 = poly2->m normals;

b2Assert (0 <= edgel && edgel < polyl->m count) ;

// Get the normal of the reference edge in poly2's frame.

b2Vec2 normall = b2MulT(xf2.q, b2Mul (xfl.q, normalsl[edgel])) ;

// Find the incident edge on poly2.
int32 index = 0;
float32 minDot = b2 maxFloat;
for (int32 1 = 0; 1 < count2; ++1i)
{
float32 dot = b2Dot (normall, normals2[i]) ;
if (dot < minDot)
{
minDot = dot;

index = 1i;

int32

Chapter 9

// Build the clip vertices for the incident edge.
int32 il = index;

int32 12 il + 1 < count2 ? 11 + 1 : 0;

c[0].v = b2Mul (xf2, vertices2[il]);
c[0].id.cf.indexA = (uint8)edgel;

c[0] .id.cf.indexB = (uint8)il;

c[0] .id.cf.typeA = b2ContactFeature::e face;
c[0] .id.cf.typeB = b2ContactFeature::e vertex;

cl[1l].v = b2Mul (xf2, vertices2[i2]);

c[1l] .id.cf.indexA = (uint8)edgel;

c[1] .id.cf.indexB = (uint8)i2;

c[1l] .id.cf.typeA = b2ContactFeature::e face;
c[1l] .id.cf.typeB = b2ContactFeature::e vertex;

// Find edge normal of max separation on A - return if separating axis
is found

// Find edge normal of max separation on B - return if separation axis
is found

// Choose reference edge as min (minA, minB)

// Find incident edge

// Clip

// The normal points from 1 to 2

void b2CollidePolygons (b2Manifold* manifold,
const b2PolygonShape* polyA, const b2Transform& xfA,
const b2PolygonShape* polyB, const b2Transform& x£fB)

manifold->pointCount = 0;
float32 totalRadius = polyA->m radius + polyB->m radius;

int32 edgeA = 0;

float32 separationA = b2FindMaxSeparation (&edgeA, polyA, xfA, polyB,
xfB) ;

if (separationA > totalRadius)

return;

int32 edgeB = 0;

241

Physics in Game Development

float32 separationB = b2FindMaxSeparation (&edgeB, polyB, xfB, polya,
xfA) ;

if (separationB > totalRadius)
return;

const b2PolygonShape* polyl; // reference polygon
const b2PolygonShape* poly2; // incident polygon
b2Transform xfl1, xf2;

int32 edgel; // reference edge

uint8 flip;

const float32 k tol = 0.1f * b2 linearSlop;

if (separationB > separationA + k_tol)
{
polyl = polyB;
poly2 = polyA;
xfl = x£fB;
xf2 = xfA;
edgel = edgeB;
manifold->type = b2Manifold::e faceB;
flip = 1;
}
else
{
polyl = polyA;
poly2 = polyB;
xfl = xfA;
xf2 = x£fB;
edgel = edgeA;
manifold->type = b2Manifold::e faceA;
flip = 0;

b2ClipVertex incidentEdge[2];
b2FindIncidentEdge (incidentEdge, polyl, xfl, edgel, poly2, xf2);

int32 countl = polyl->m count;
const b2Vec2* verticesl = polyl->m vertices;

int32 ivl
int32 iv2

edgel;

edgel + 1 < countl ? edgel + 1 : 0;

b2Vec2 v1l = verticesl[ivl];

242

Chapter 9

b2Vec2 v12 = verticesl[iv2];

b2Vec2 localTangent = v12 - v1l;
localTangent .Normalize () ;

b2Vec2 localNormal = b2Cross(localTangent, 1.0f);
b2Vec2 planePoint = 0.5f * (v11l + v12);

b2Vec2 tangent = b2Mul (xfl.q, localTangent) ;
b2Vec2 normal = b2Cross(tangent, 1.0f);

v1ll = b2Mul (xf1, v11);
v1i2 b2Mul (xf1, v12);

// Face offset.
float32 frontOffset = b2Dot (normal, v11l);

// Side offsets, extended by polytope skin thickness.
float32 sideOffsetl = -b2Dot (tangent, v11l) + totalRadius;
float32 sideOffset2 = b2Dot (tangent, v12) + totalRadius;

// Clip incident edge against extruded edgel side edges.
b2ClipVertex clipPointsl[2];

b2ClipVertex clipPoints2[2];

int np;

// Clip to box side 1

np = b2ClipSegmentToLine (clipPointsl, incidentEdge, -tangent,
sideOffsetl, ivl);

if (np < 2)

return;

// Clip to negative box side 1

np = b2ClipSegmentToLine (clipPoints2, clipPointsl, tangent,
sideOffset2, iv2);

if (np < 2)

{

return;

// Now clipPoints2 contains the clipped points.

243

Physics in Game Development

manifold->localNormal = localNormal;
manifold->localPoint = planePoint;

int32 pointCount = 0;
for (int32 i = 0; i < b2 maxManifoldPoints; ++1i)

{

float32 separation = b2Dot (normal, clipPoints2[i].v) -
frontOffset;

if (separation <= totalRadius)
{
b2ManifoldPoint* cp = manifold-s>points + pointCount;
cp->localPoint = b2MulT(xf2, clipPoints2[i].v);
cp->id = clipPoints2[i].id;
if (flip)
{
// Swap features
b2ContactFeature cf = cp->id.cf;
cp->id.cf.indexA = cf.indexB;
cp->id.cf.indexB = cf.indexA;
cp->id.cf.typeA = cf.typeB;
cp->id.cf.typeB = cf.typeA;
}

++pointCount;

manifold->pointCount = pointCount;

}

Assuming the objects in the scene are already set up as rigid body, and the proper impulses
are added to each, the next step is to detect collisions. An impulse is a force that acts on a
body. The force acts briefly on the body and results in some change of momentum.

244

Chapter 9

In games, collision detection usually happens in two phases. The first phase is called the
broad-phase collision and the next phase is called the narrow-phase collision. The broad
phase is less expensive, as it deals with the concept of which bodies are most likely to collide.
The narrow phase is more expensive because it actually compares each body for collisions. In
a games environment, it is not feasible to have everything in the narrow phase. Hence, most of
the work is done in the broad phase. Broad phase algorithms work with sweep and prune (sort
and prune) or Space partition trees. In the sweep and prune technique, all the lower ends and
upper ends of the bounding boxes of a solid are sorted and checked for intersections. After
that, it is sent to a more detailed check in the narrow phase. So in this method, we need to
update the bounding box of the solid every time it changes its orientation. The other technique
used is BSP. We have already discussed BSP in previous chapters. We need to partition the
scene in such a way that in each subdivision, only a certain number of objects can collide. In
the narrow phase collision, a more pixel-perfect collision detection algorithm is applied.

There are various ways to check for collisions. It entirely depends on the shape that is acting
as the bounding box. Also, it is important to understand how the bounding box is aligned. In a
normal scenario, a bounding box would be axes-aligned and would be referred to as AABB. To
detect whether two Box2D bounding boxes have collided, we would have to do the following:

bool BoxesIntersect (const Box2D &a, const Box2D &b)

{

if (a.max.x < b.min.x) return false; // a is left of b
if (a.min.xXx > b.max.x) return false; // a is right of b
if (a.max.y < b.min.y) return false; // a is above b
if (a.min.y > b.max.y) return false; // a is below b

/

return true; // boxes overlap

}

We can then extend this to detect more complex shapes for rectangles, circles, lines, and
other polygons. If we are writing our own 2D physics engine, then we would have to write a
function for each combination of shapes intersecting with one another. If we use a physics
engine such as Box2D or PhysX, these functions would already be written for us and we would
have to just use them properly and consistently.

Installing and integrating Box2D

To be able to work with 2D physics, one great open source physics engine is Box2D. This
comes with lots of functions that are common for any 2D game built in, so we do not have to
reinvent the wheel and write them again.

245

Physics in Game Development

Getting ready

You need to have a working Windows machine.

How to do it...

Go through the following steps:

Goto http://box2d.org/.
Browse to http://box2d.org/downloads/.
Download or clone the latest copy from GitHub.

PN PR

Build the solution in your version of Visual Studio. Some projects may not work, as
they were built in different versions of Visual Studio.

o

If this throws an error, clean the solution, delete the bin folder, and rebuild it.
6. After the solution rebuilds successfully, run the TestBed projects.
7. If you can run the application successfully, Box2D has been integrated.

Box2D is a physics engine built entirely in C++. As it has given us access to the source code,
it means we can build it from scratch as well, and check for ourselves how each function is
written. As the project is hosted on GitHub, every time a new development is made, we can
clone it and be updated with all the latest code.

In the solution, Box2D already has a project called TestBed, which has loads of sample
applications that can be run. It is actually a collection of loads of different types of application.
Test Entries is the entry point of all the applications. It is a long array of the different
applications that we want rendered in the TestBed project. The array contains the name of
the application and the static function to initialize the world.

Finally, the output of the physics simulation is fed to the renderer, which in this case is
OpenGL, and it draws the scene for us.

Making a basic 2D game

Every 2D game is different. However, we can generalize the physics functions that are going to
be used in most 2D games. In this recipe, we will create a basic scene using Box2D's built-in
functions and the TestBed project. The scene will mimic one of the most popular 2D games
of our times, Angry BirdsTM.

246

http://box2d.org/
http://box2d.org/downloads/

Chapter 9

Getting ready

For this recipe, you will need a Windows machine and an installed version of Visual Studio. No
other prerequisites are required.

How to do it...

In this recipe, we will find out how easy it is to add a barebones architecture for a 2D game
using Box2D:

class Tiles : public Test

{

public:

enum

{

e count = 10

Vi

Tiles()

{

m_fixtureCount = 0;

b2Timer timer;

#if 1

float32 a = 1.0f;

b2BodyDef bd;

bd.position.y = -a;

b2Body* ground = m_world->CreateBody (&bd) ;

int32 N 200;
int32 M 10;
b2Vec2 position;

position.y = 0.0f;
for (int32 j = 0; j < M; ++3)
{
position.x = -N * a;
for (int32 1 = 0; i < N; ++1)
{
b2PolygonShape shape;
shape.SetAsBox(a, a, position, 0.0f);
ground->CreateFixture (&shape, 0.0f);
++m_fixtureCount;

247

Physics in Game Development

position.x += 2.0f * a;

}
position.y -= 2.0f * a;
}
#else
int32 N = 200;
int32 M = 10;
b2Vec2 position;
position.x = -N * a;
for (int32 1 = 0; i < N; ++1)
{
position.y = 0.0f;
for (int32 j = 0; j < M; ++3)
{
b2PolygonShape shape;
shape.SetAsBox(a, a, position, 0.0f);
ground->CreateFixture (&shape, 0.0f);
position.y -= 2.0f * a;
}
position.x += 2.0f * a;
}
#tendif
}
{

float32 a = 1.0f;
b2PolygonShape shape;
shape.SetAsBox (a, a);

b2vVec2 x(-7.0f, 0.75f);
b2Vec2 y;

b2vVec2 deltaX(1.125f, 2.5f);
b2vec2 deltay(2.25f, 0.0f);

for (int32 i = 0; i < e count; ++i)
Y = X;
for (int32 j = i; j < e_count; ++j)

b2BodyDef bd;
bd.type = b2 dynamicBody;

248

Chapter 9

bd.position = y;

b2Body* body = m world->CreateBody (&bd) ;
body->CreateFixture (&shape, 5.0f);
++m_fixtureCount;

y += deltay;

x += deltaX;

m_createTime = timer.GetMilliseconds () ;

}

void Step(Settings* settings)
const b2ContactManager& cm = m_world->GetContactManager () ;
int32 height = cm.m broadPhase.GetTreeHeight () ;
int32 leafCount = cm.m broadPhase.GetProxyCount () ;
int32 minimumNodeCount = 2 * leafCount - 1;

float32 minimumHeight = ceilf (logf (float32 (minimumNodeCount)) /
logf (2.0f)) ;

g debugDraw.DrawString (5, m_textLine, "dynamic tree height = %d,
min = %d", height, int32 (minimumHeight)) ;

m_textLine += DRAW STRING NEW LINE;

Test::Step(settings) ;

g debugDraw.DrawString (5, m_textLine, "create time = %6.2f ms,
fixture count = %d",

m_createTime, m_ fixtureCount) ;
m_textLine += DRAW STRING NEW LINE;

static Test* Create()

{

249

Physics in Game Development

return new Tiles;

}

int32 m_fixtureCount;
float32 m_createTime;

Vi

#endif

In this example, we are using the Box2D engine to calculate the physics. The main class

of Test Entries, as described previously, is used to store the name of the application
and the static create method. In this case, the name of the application is Tiles. In the tiles
application, we have created a physics world using Box2D shapes and functions. The pyramid
of tiles is created with the help of boxes. These boxes are dynamic in nature, which means
they will react and move based on the forces applied to them. The base or the ground is also
made of tiles. However, those tiles are stationary and do not move. We assign a position

and velocity for all the tiles that make up the ground and the pyramid. It is not practical to
individually assign a position and velocity to each tile, so we do this with an iteration loop.

After the scene is built, we can interact with the pyramid using a mouse click. From the GUI,
other properties can also be switched on or off. Pressing the Space bar also triggers a ball at
a random position which will destroy the formation of the tiles, much like Angry Birds. We can
also write logic to make all the tiles that collide with the ground disappear and add points to
the score every time that happens, and then we have ourselves a small 2D Angry Birds clone.

Making a 3D game

Not much changes when we shift our focus from physics in 2D to physics in 3D. We now

need to worry about another dimension. As mentioned in the previous recipes, we still need
to maintain the environment so that it follows Newtonian rules and solves constraints. There
are a lot of things that can go wrong while rotating the body in 3D space. In this recipe, we will
look at a very basic implementation of 3D physics using the Bullet Engine SDK.

Getting ready

For this recipe, you will need a Windows machine and an installed version of Visual Studio.

How to do it...

In this recipe, we will see how easy it is to write a physics world in 3D.

Chapter 9

For broad-phase collision take a look at the following snippet:

Fo

r

void b3DynamicBvhBroadphase: :getAabb (int objectId,b3Vector3& aabbMin,
b3Vector3& aabbMax) const

{
const b3DbvtProxy* proxy=&m proxies[objectId];
aabbMin = proxy->m_ aabbMin;
aabbMax = proxy->m aabbMax;

narrow-phase collision, see the following code:

void b3CpuNarrowPhase: :computeContacts (b3AlignedObjectArray<b3Int4>&
pairs, b3AlignedObjectArray<b3Aabb>& aabbsWorldSpace, b3AlignedObjectA
rray<b3RigidBodyData>& bodies)

{
int nPairs = pairs.size();
int numContacts = 0;
int maxContactCapacity = m_data->m config.m maxContactCapacity;
m_data->m_contacts.resize (maxContactCapacity) ;

for (int 1=0;i<nPairs;i++)
{
int bodyIndexA = pairs[i].x;
int bodyIndexB = pairs[i].y;
int collidableIndexA = bodies[bodyIndexA] .m collidableIdx;
int collidableIndexB = bodies[bodyIndexB] .m collidableIdx;

if (m_data->m collidablesCPU[collidableIndexA] .m shapeType ==
SHAPE SPHERE &&

m_data->m collidablesCPU[collidableIndexB] .m_shapeType == SHAPE
CONVEX_HULL)
{
// computeContactSphereConvex (i, bodyIndexA, bodyIndexB, collidablel
ndexA, collidableIndexB, &bodies [0],
// &m_data->m collidablesCPU[0], &hostConvexData[0],

&hostVertices [0], &hostIndices [0], &hostFaces[0], &hostContacts[0],
nContacts, maxContactCapacity) ;

}

if (m_data->m collidablesCPU[collidableIndexA] .m shapeType ==
SHAPE

m_data->m_contacts.resize (numContacts) ;

<. More code to follow>

251

Physics in Game Development

As we can see from the example above, even in 3D the physics collision system has to be
divided into phases: the broad phase and the narrow phase. In a broad-phase collision, we
now take into account Vector3, instead of just two float points, as we now have three axes

(%, y, and z). We need to enter the object ID and then check within the bounds of the bounding
boxes. Similarly, for a narrow-phase collision, our problem domain and calculations remain
the same. We now change it to support 3D. The previous example shows a part of a problem
that would arise if we need to find the contact points in a narrow phase collision. We create
an array and, based on the collision callbacks, we save out all the points that are in contact.
Later on, we can write other methods to check whether the points are overlapping or not.

Creating a particle system

Particle systems are quite important in games in order to add to the visual representation
of the whole feel of the game. Particle systems are quite easy to write and are merely

a collection of one or more particles. So we need to create a single particle with some
properties and then let the particle system decide how many particles it wants.

Getting ready

For this recipe, you will need a Windows machine and an installed version of Visual Studio.

How to do it...

Add a source file called Source. cpp. Then add the following code to it:

class Particle

Vector3 location;
Vector3 velocity;
Vector3 acceleration;
float lifespan;

Particle (Vector3 vec)

{

acceleration = new Vector3 (.05, 0.05);
velocity = new Vector3(random (-3, 3), random(-4, 0));
location = vec.get();

252

Vi

lifespan = 125.0;

void run/()

{

update () ;
display () ;

}
void update ()

location.add (velocity) ;

{

velocity.add (acceleration) ;
(
2

lifespan -= 2.0;

void display ()

{
stroke (0, lifespan);
£il11 (0, lifespan);

trapezoid(location.x, location.y,

boolean isDead ()

{
if (lifespan < 0.0) {
return true;

}

else {
return false;

}

Particle p;

void setup ()

{

}

size (800, 600);

p = new Particle (new Vector3 (width / 2,

void draw ()

10));

Chapter 9

253

Physics in Game Development

{

for (int i = 0; i < particles.size(); i++) {
Particle p = particles.get(i);
p.run() ;

if (p.isDead()) {
particles.remove (i) ;

}
}

As we can see in the example, our first task is to create a particle class. The particle
class will have properties such as velocity, acceleration, position, and 1ifespan.
Because we are making the particle in 3D space, we are using Vector3 to denote the particle's
properties. If we were to create the particle in 2D space, we would have used Vector2 to do
this. In the constructor, we assign the starting values of the attributes. We then have two
main functions, update and display. The update function updates the velocity and
position every frame, and also reduces the lifespan so that it disappears when its lifespan
is over. In the display function, we need to specify how we want the particle to be viewed:
whether it should have stroke or fill, and so on. Here we also have to specify the shape of the
particle. The most common shape is a sphere or a cone. We have used a trapezoid just to
denote that we can specify any shape. Finally, from the client program, we need to call this
object and then access the various functions to display the particle.

However, all this will do is display just one particle on the screen. Of course, we can create an
array of 100 objects and that would display 100 particles on the screen. A better approach is to
create a particle system, which creates an array of particles. The number of particles that will
be drawn is specified by the client program. Based on the request, the particle system draws
the required number of particles. Also, there must be a function to determine which particles
are to be removed from the screen. This is dependent on the lifespan of each particle.

Using ragdoll in your game

Ragdoll physics is a special kind of procedural animation that is often used as a replacement
for traditional static death animations in games. The whole idea of ragdoll animation is that
after death a character falls as if the bones of the body are behaving like a ragdoll. Hence the
name. It has nothing to do with realism, but adds a special fun element to the game.

254

Chapter 9

Getting ready

For this recipe, you will need a Windows machine and an installed version of Visual Studio.
The DirectX SDK is also required; preferably use the DirectX June 2010 edition.

How to do it...

Let us take a look at the following code:

#include "RagDoll.h"
#include "C3DETransform.h"
#include "PhysicsFactory.h"
#include "Physics.h"
#include "DebugMemory.h"

RagDoll: :RagDoll (C3DESkinnedMesh * a skinnedMesh,
C3DESkinnedMeshContainer * a skinnedMeshContainer, int totalParts, int
totalConstraints)
{

m_skinnedMesh = a_skinnedMesh;

m_skinnedMeshContainer = a_skinnedMeshContainer;

m_totalParts = totalParts;

m_totalConstraints = totalConstraints;

m_ragdollBodies = (btRigidBody**)malloc (sizeof (btRigidBody) *
totalParts) ;

m_ragdollShapes = (btCollisionShape**)
malloc (sizeof (btCollisionShape) * totalParts) ;

m_ragdollConstraints = (btTypedConstraint**)malloc (sizeof (btTypedCon

straint) * totalConstraints);

m_boneIndicesToFollow = (int*) malloc(sizeof (int) * m_skinnedMesh-
>GetTotalBones ()) ;

m_totalBones = m_skinnedMesh->GetTotalBones () ;

m_bonesCurrentWorldPosition = (D3DXMATRIX**)
malloc (sizeof (D3DXMATRIX) * m_totalBones) ;

m_boneToPartTransforms = (D3DXMATRIX**)malloc (sizeof (D3DXMATRIX) *
m_totalBones) ;

for(int 1 = 0; i1 < totalConstraints; i++)

255

Physics in Game Development

{

m_ragdollConstraints[i] = NULL;

}

for(int 1 = 0; 1 < totalParts; i++)

{

m_ragdollBodies[i] = NULL;
m_ragdollShapes[i] = NULL;

}

for(int 1 = 0; 1 < m _totalBones; i++)

{

m_boneToPartTransforms [i] NULL;
m_boneToPartTransforms [i] = new D3DXMATRIX() ;

NULL;
new D3DXMATRIX() ;

m_bonesCurrentWorldPosition[i]

m_bonesCurrentWorldPosition[i]

}

m_constraintCount = 0;

RagDoll: :~RagDoll ()

{

free (m_ragdollConstraints) ;
free(m_ragdollBodies) ;
free (m_ragdollShapes) ;

for(int 1 = 0; 1 < m _totalBones; i++)

{

delete m_boneToPartTransforms[i];
m_boneToPartTransforms[i] = NULL;

delete m bonesCurrentWorldPosition([i];
m_bonesCurrentWorldPosition[i] = NULL;

}

free (m_bonesCurrentWorldPosition) ;
free (m_boneToPartTransforms) ;

256

Chapter 9

free (m_boneIndicesToFollow) ;

int RagDoll::GetTotalParts ()

{

return m_totalParts;

int RagDoll::GetTotalConstraints ()

{

return m_totalConstraints;

C3DESkinnedMesh *RagDoll: :GetSkinnedMesh ()

{

return m_skinnedMesh;

//sets up a part of the ragdoll

//int index = the index number of the part

//int setMeshBoneTransformIndex = the bone index that this part is
linked to,

//float offsetX, float offsetY, float offsetZ = translatin offset for
the part in bone local space

//float mass = part's mass,

//btCollisionShape * a_shape = part's collision shape

void RagDoll::SetPart (int index, int setMeshBoneTransformIndex, float
offsetX, float offsetY, float offsetZ,float mass, btCollisionShape *
a_shape)

{

m_boneIndicesToFollow[setMeshBoneTransformIndex] = index;

//we set the parts position according to the skinned mesh current
position

D3DXMATRIX t poseMatrix = m_skinnedMeshContainer->GetPoseMatrix ()
[setMeshBoneTransformIndex] ;
D3DXMATRIX *t_ boneWorldRestMatrix = m_skinnedMesh->GetBoneWorldRestM

atrix (setMeshBoneTransformIndex) ;

D3DXMATRIX t_boneWorldPosition;

257

Physics in Game Development

D3DXMatrixMultiply (&t boneWorldPosition, t boneWorldRestMatrix, &t
poseMatrix) ;

D3DXVECTOR3 * t_head = m_skinnedMesh->GetBoneHead (setMeshBoneTransf
ormIndex) ;

D3DXVECTOR3 * t tail
ormIndex) ;

m_skinnedMesh->GetBoneTail (setMeshBoneTransf

float tx = t_tail->x - t_head->x;
float ty t_tail->y - t_head->y;
float tz = t_tail->z - t_head->z;

//part's world matrix
D3DXMATRIX *t partMatrix = new D3DXMATRIX() ;
*t partMatrix = t_boneWorldPosition;

D3DXMATRIX *t centerOffset = new D3DXMATRIX () ;

D3DXMatrixIdentity (t_centerOffset) ;

D3DXMatrixTranslation(t centerOffset, (tx / 2.0f) + offsetX, (ty /
2.0f) + offsetY, (tz/2.0f) + offsetZ);

D3DXMatrixMultiply (t partMatrix, t partMatrix, t centerOffset);

D3DXVECTOR3 t_pos;
D3DXVECTOR3 t_scale;
D3DXQUATERNION t_rot;

D3DXMatrixDecompose (&t scale, &t _rot, &t pos, t_ partMatrix);

btRigidBody* body = PhysicsFactory::GetInstance () -
>CreateRigidBody (mass,t pos.x, t pos.y, t pos.z, t rot.x, t_rot.y,
t_rot.z, t_rot.w, a_shape);

D3DXMATRIX t_partInverse;
D3DXMatrixInverse (&t _partInverse, NULL, t partMatrix) ;

//puts the bone's matrix in part's local space, and store it in m_
boneToPartTransforms

D3DXMatrixMultiply (m _boneToPartTransforms [setMeshBoneTransformInd
ex], &t boneWorldPosition, &t partInverse);

m_ragdollBodies [index] = body;

delete t_partMatrix;

258

Chapter 9

t partMatrix = NULL;

delete t_centerOffset;
t centerOffset = NULL;

//when a bone is not going to have a part directly linked to it, it
needs to follow a bone that has
//a part linked to
//int realBoneIndex = the bone that has no part linked
//int followBoneIndex = the bone that has a part linked
void RagDoll::SetBoneRelation (int realBoneIndex, int followBoneIndex)
{

//it is going to the same thing the setPart method does, but the
bone it is going to take

//as a reference is the one passed as followBoneIndex and the the
part's matrix is below

//by calling GetPartForBoneIndex. Still there is going to be a new
entry in m boneToPartTransforms

//which is the bone transform in the part's local space

int partToFollowIndex = GetPartForBoneIndex (followBoneIndex) ;

m_boneIndicesToFollow[realBoneIndex] = partToFollowIndex;

D3DXMATRIX t poseMatrix = m_skinnedMeshContainer->GetPoseMatrix ()
[realBoneIndex] ;

D3DXMATRIX *t boneWorldRestMatrix = m_skinnedMesh->GetBoneWorldRestM
atrix (realBonelIndex) ;

D3DXMATRIX t_boneWorldPosition;
D3DXMatrixMultiply (&t boneWorldPosition, t boneWorldRestMatrix, &t
poseMatrix) ;

D3DXMATRIX *t partMatrix = new D3DXMATRIX() ;

btTransform t partTransform = m ragdollBodies [partToFollowIndex] -
>getWorldTransform() ;

*t partMatrix = BT2DX MATRIX (t_partTransform) ;

D3DXMATRIX t_partInverse;
D3DXMatrixInverse (&t _partInverse, NULL, t partMatrix);

D3DXMatrixMultiply (m boneToPartTransforms [realBoneIndex], &t
boneWorldPosition, &t partInverse);

delete t_partMatrix;
259

Physics in Game Development

t partMatrix = NULL;

btRigidBody ** RagDoll::GetRadollParts ()

{

return m_ragdollBodies;

btTypedConstraint **RagDoll::GetConstraints ()

{

return m_ragdollConstraints;

void RagDoll::AddConstraint (btTypedConstraint *a constraint)
m_ragdollConstraints[m constraintCount] = a constraint;
m_constraintCount++;

}

//This method will return the world position that the given bone
should have
D3DXMATRIX * RagDoll::GetBoneWorldTransform(int boneIndex)
{

//the part world matrix is fetched, and then we apply the bone
transform offset to obtain

//the bone's world position

int t partIndex = GetPartForBoneIndex (bonelIndex) ;

btTransform t_transform = m ragdollBodies[t_partIndex] -
>getWorldTransform() ;
D3DXMATRIX t_partMatrix = BT2DX MATRIX (t_transform) ;

D3DXMatrixIdentity (m bonesCurrentWorldPosition [boneIndex]) ;
D3DXMatrixMultiply (m bonesCurrentWorldPosition [boneIndex], m boneToP
artTransforms [boneIndex], &t partMatrix);

return m_bonesCurrentWorldPosition [boneIndex] ;

int RagDoll: :GetPartForBoneIndex (int boneIndex)

{

for(int 1 = 0; 1 < m _totalBones;i ++)

{

260

Chapter 9

if (1 == boneIndex)
{
return m boneIndicesToFollow[i];
}
}

return -1;

}

As you can see from the example above, for this example you require a skinned mesh model.
The mesh model can either be downloaded from some royalty-free website, or made via
Blender or any other 3D software package, such as Maya or Max. As the whole concept of a
ragdoll is based on the bones of the mesh, we have to make sure that the 3D model has the
bones set up correctly.

After that, there are lots of small parts in the code. The first part of the problem is to write a
bone container class, which stores all the bone information. Next, we need to use the bone
container class and by using the Bullet physics SDK, assign a rigid body to each of the bones.
After the rigid body has been set up, we need to traverse through the bones once again and
create a relationship between each bone, so that when one bone moves, the neighboring
bones move as well. Finally, we also need to add constraints so that when the physics engine
simulates the ragdoll, it can solve the constraints properly and output the result to the bones.

261

10

Multithreading in
Game Development

In this chapter, the following recipes will be covered:

» Concurrency in games - creating a thread
» Joining and detaching a thread

» Passing arguments to a thread

» Avoiding deadlocks

» Data race and mutex

» Writing a thread-safe class

Introduction

To understand multithreading, let us first understand the meaning of threads. A thread is
a concurrent unit of execution. It has its own call stack for methods being invoked, their
arguments, and local variables. Each application has at least one thread running when it
is started, the main thread. When we talk about multithreading, it means one process has
many threads running independently and concurrently, but with shared memory. Often,
multithreading is confused with multi-processing. A multiprocessor has multiple processes
running, each with its own thread.

263

Multithreading in Game Development

Although multithreaded applications may be complex to write, they are lightweight. However,
a multithreaded architecture is not well suited for a distributed application. In games, we
may have one or more threads running. The golden question is when and why should we use
multithreading. Although this is quite subjective, you would use multithreading if you want
multiple tasks to happen concurrently. So if you do not want your physics code, or audio code
in the game, to wait for the main loop to finish processing, you would multithread the physics
and the audio loop.

Concurrency in games - creating a thread

The first step of writing multithreaded code is to spawn a thread. At this point, we must note
that the application is already running an active thread, the main thread. So when we spawn
a thread, there will be two active threads in the application.

Getting ready

To work through this recipe, you will need a machine running Windows and Visual Studio. No
other prerequisites are required.

How to do it...

In this recipe, we will see how easy it is to spawn a thread. Add a source file called Source.
cpp and add the following code to it:

int ThreadOne ()

{

std::cout << "I am thread 1" << std::endl;

return 0O;

}

int main()

{

std::thread T1 (ThreadOne) ;

if (Tl.joinable()) // Check if can be joined to the main thread
Tl.join() ; // Main thread waits for this to finish

_getch();

return 0O;

}

264

Chapter 10

The first step is to include the header file, thread. h. This gives us access to all the inbuilt
libraries that we may need to create our multithreaded application. The next step is to create
the task or the function that we need to thread. In this example, we have created a function
called ThreadoOne. This function represents any function that we can use to multithread. This
could be a physics function, or audio, or anything that we may desire. For simplicity, we have
used a function that prints a message. The next step is to spawn a thread. We simply need to
write the keyword thread, assign a hame to the thread (T1) and then write the function/task
that we want to thread. In this case, it is ThreadOne.

This spawns a thread and will not execute independently of the main thread.

Joining and detaching a thread

After a thread is spawned, it starts executing as a new task, separate from the main thread.
However, there may be situations in which we want the task to rejoin the main thread. This is
possible. We may also want that the thread always stays apart from the main thread. That is
also possible. However, there are a few precautions that we must take when attaching to and
detaching from the main thread.

Getting ready

You need to have a working Windows machine and Visual Studio.

How to do it...

In this recipe we will see how easy it is to join and detach threads. Add a source file called
Source . cpp. Add the following code to it:

int ThreadOne ()

{

std::cout << "I am thread 1" << std::endl;
return 0O;

}

int ThreadTwo ()

{

std::cout << "I am thread 2" << std::endl;
return 0O;

}

int main{()

265

Multithreading in Game Development

{

std: :thread T1 (ThreadOne) ;
std: :thread T2 (ThreadTwo) ;

if (Tl.joinable()) // Check if can be joined to the main thread
Tl.join() ; // Main thread waits for this to finish

T2.detach() ; //Detached from main thread

_getch();

return O;

}

In the preceding example, at first two threads are spawned. The two threads are T1 and T2.
When the threads are spawned, they act independently and concurrently. However, when
there is a need for any thread to be joined back to the main thread, we can do that as well.
First, we need to check whether the thread can be joined to the main thread. We accomplish
this with the joinable function. If the function returns true, the thread can join to the main
thread. We can join to the main thread with the join function. If we directly join, without first
checking whether the thread can join to the main thread, it may cause issues with the main
thread failing to accept the thread. After the thread joins to the main thread, the main thread
waits for that thread to finish.

If we want to detach a thread from the main thread, we can use the detach function.
However, after we detach it from the main thread, it is detached forever.

Passing arguments to a thread

Like in functions, we may also want to send parameters and arguments to the thread.

As threads are just tasks, and tasks are just a collection of functions, it is necessary to
understand how to send arguments to a thread. If we can send arguments to a thread at
runtime, then the thread can perform all the operations dynamically. In most cases, we
would thread the physics, Al, or audio sections of the code. All these sections would require
functions that take in arguments.

Getting ready

You need a Windows machine and a working copy of Visual Studio. No other prerequisites
are required.

266

Chapter 10

How to do it...

In this recipe, we will find out how easy it is to add a heuristic function to our game for
pathfinding. Add a source file called Source. cpp. Add the following code to it:

class Wrapper

{

public:

void operator () (std::string& msg)

{

msg = " I am from T1";
std::cout << "T1l thread initiated" << msg << std::endl;

}

i

int main ()

{
std::string s = "This is a message";
std::cout << std::this thread::get_id() << std::endl;
std: :thread T1((Wrapper()), std::move(s));
std::cout << Tl.get id() << std::endl;
std: :thread T2 = std::move(T1);
T2.join() ;
_getch();

}

The best way to do pass arguments is to write a Wrapper class and overload the () operator.
After we overload the () operator, we can send arguments to the thread. To do this, we create
a string and store the string in a variable. Then we need to spawn a thread as usual; however,
instead of just passing in the function name, we pass in the class name and the string. In
threads, we need to pass the arguments by reference, so we could use the ref function.
However, a better way to do this is by using the move function, where we note the memory
location itself and pass it to the argument. The operator function accepts the string and
prints the message.

267

Multithreading in Game Development

If we want to create a new thread and make it the same as the first thread, we can again
use the move function to do this. In addition to this, we can get the thread's ID by using the
get_id function.

Avoiding deadlocks

When two or more tasks want to use the same resource, we have a race condition. Until one
task finishes using the resource, the other task cannot get access to it. This is known as a
deadlock, and we must avoid deadlocks at all costs. For example, resource Collision and
resource Audio are used by process Locomotion and process Bullet:

» Locomotion startstouse Collision

» Locomotion and Bullet try to start using Audio

» Bullet "wins" and gets Audio first

» NowBullet needstouse Collision

» Collisionislocked by Locomotion, which is waiting for Bullet

Getting ready

For this recipe, you will need a Windows machine and an installed copy of Visual Studio.

How to do it...

In this recipe, we will find out how easy it is to avoid deadlocks:

#include <thread>
#include <strings>
#include <iostream>

using namespace std;

void Physics()

{

for (int 1 = 0; i > -100; i--)
cout << "From Thread 1: " << i << endl;
int main()

{

std: :thread tl(Physics);
for (int 1 = 0; 1 < 100; i++)

268

Chapter 10

cout << "From main: " << i << endl;
tl.join() ;

int aj;
cin >> a;
return 0;

}

In the preceding example, we have spawned a thread, t1, which starts a function to print
numbers from 0 to -100, decreasing by 1. There is also a main thread, which starts to print
numbers from 0 to 100, increasing by 1. Again, we have chosen these functions for simplicity
of understanding. These could easily be replaced by an A* algorithm and a search algorithm,
or anything we want.

If we look at the console output, we notice that it is quite messy. The reason for that is the
cout object is being used by both the main thread and t 1. Hence there is a data race
condition taking place. Whoever is winning at each turn is getting to display the number. We
must avoid this kind of programming structure at all costs. More often than not, it will cause a
deadlock and disruption.

Data race and mutex

Data race conditions are very common in multithreaded applications, but we must avoid such
a scenario so that deadlocks do not happen. A mutex helps us to overcome deadlocks. A
mutex is a program object that allows multiple program threads to share the same resource,
such as file access, but not simultaneously. When a program is started, a mutex is created
with a unique name.

Getting ready

For this recipe, you will need a Windows machine and an installed version of Visual Studio.

How to do it...

In this recipe, we will see how easy it is to understand data races and mutexes. Add a source
file called Source. cpp and add the following code to it:

#include <threads>
#include <string>
#include <mutex>

269

Multithreading in Game Development

#include <iostream>
using namespace std;
std: :mutex MU;

void Locomotion(string msg, int id)

{
std::lock guard<std::mutex> guard (MU) ;
//MU.lock () ;
cout << mgg << id << endl;
//MU.unlock () ;

}

void InterfaceFunction/|()

for (int 1 = 0; 1 > -100; 1i--)
Locomotion (string ("From Thread 1: "),

int main ()

{

//RAII

i);

std::thread FirstThread (InterfaceFunction) ;

for (int 1 = 0; 1 < 100; i++)
Locomotion (string ("From Main: "), 1i);

FirstThread.join() ;
int aj;

cin >> a;
return 0;

}

In this example, both the main thread and t1 want to display some numbers. However,

as both of them want to use the cout object, it creates a data race situation. To avoid this,
one approach is to use mutex locks. So before executing the print statement, we have
mutex.lock, and after the print statement, we have mutex .unlock. This will work, and
prevent the data race condition, as mutex will allow one thread to use the resource and make
the other thread wait for it. However, this program is not yet thread safe. This is because if the
cout statement throws an error or exception, the mutex will never get unlocked and the other

threads will always be in a wait state.

270

Chapter 10

To prevent this, we will use the Resource Acquisition is Initialization technique (RAII) of
C++. We add an inbuilt lock guard to the function. This code is exception-safe because C++
guarantees that all stack objects are destroyed at the end of the enclosing scope, known as
stack unwinding. The destructors of both the lock and file objects are therefore guaranteed
to be called when returning from the function, whether an exception has been thrown or not.
Therefore, it will not stop other threads from waiting eternally if an exception has occurred.
Despite doing this, this application is not thread safe. This is because the cout object is

a global object, so other parts of the program can access it as well. Therefore, we need to
encapsulate this even further. This we will see later.

Writing a thread-safe class

When dealing with multiple threads, writing a thread-safe class becomes an absolute must.
If we do not write classes that are thread safe, there are many complications that may arise,
such as deadlocks. We must also keep in mind that when we write a thread-safe class, there
is no potential danger from data races and mutex.

Getting ready

For this recipe, you will need a Windows machine and an installed version Visual Studio.

How to do it...

In this recipe, we will see how easy it is to write a thread safe class in C++. Add a source file
called source. cpp and add the following code to it:

#include <threads>
#include <strings>
#include <mutex>
#include <iostream>
#include <fstream>

using namespace std;

class DebugLogger
{
std: :mutex MU;
ofstream £f;
public:
DebugLogger ()

{

f.open("log.txt") ;

}

271

Multithreading in Game Development

void ResourceSharingFunction(string id, int wvalue)
std::lock guard<std::mutex> guard(MU); //RAII
f << "From" << id << ":" << value << endl;

void InterfaceFunction (DebuglLogger& log)
{
for (int 1 = 0; 1 > -100; 1i--)
log.ResourceSharingFunction (string ("Thread 1: "), 1i);

int main ()
{
DebuglLogger log;
std: :thread FirstThread(InterfaceFunction,std::ref (log)) ;
for (int 1 = 0; 1 < 100; i++)
log.ResourceSharingFunction (string ("Main: "), 1i);

FirstThread.join() ;

int aj;
cin >> a;
return 0;

}

In the previous recipe, we saw how, despite writing a mutex and locks, our code was not
thread safe. This is because we were using a global object, cout, which could be accessed
from other parts of the code as well and so was not thread safe. So we have avoided doing
this by adding one more layer of abstraction and outputting the result to a log file.

We have created a class called Logfile. Inside this class, we have created a lock guard

and a mutex. On top of that, we have also created a stream object called £. Using this, we
output the contents to a text file. The threads that need access to this functionality will need
to create an object of the LogFile and then use the function appropriately. We are using the
lock guard in the RAIl system. Because of this layer of abstraction, there is no chance that the
functionality can be used externally and it is quite safe.

272

Chapter 10

However, even in this program, we need to take certain precautions. The first precaution that
we should take is that we should not return £ from any function. Also, we have to be careful
that £ should not be directly available from any other class or external function. If we do either
of the above, the resource £ will again be available to external sections of the program, will
not be protected, and will therefore no longer be thread safe.

273

11

Networking in Game
Development

In this chapter, the following recipes will be covered:

» Understanding the different layers

» Selecting the appropriate protocol

» Serializing the packets

» Using socket programming in games
» Sending the data

» Receiving the data

» Dealing with lag

» Using synchronized simulation

» Using area of interest filtering

» Using local perception filtering

275

Networking in Game Development

Introduction

In the modern era of video gaming, networking plays a huge role in the overall playability of

a game. A single player game offers an average of about 15-20 hours of gameplay. However,
with the multiplayer (networked) feature, the gameplay time increases exponentially, as now
the users have to play against other human opponents and improve their tactics. Whether it is
a PC game, console or mobile, having multiplayer capabilities has become a common feature
these days. From a freemium model for games, where the monetization and revenue model
is based around in-app purchases and ads, it is necessary for the game to have thousands

or millions or active users per day. That is the only way the game will make money. When we
speak about multiplayer, we should not fool ourselves by thinking that this is restricted to PvP
(player versus player) in real time. It can also be asynchronous multiplayer, where the player
competes with the data from an active player's deck but not with the player themselves. It
gives the illusion that the player is competing against a real player. Also, with the advent of
social media, networking also plays a role in helping you compete against your friends. For
example, in Candy Crush, after you finish a level, you are shown how your friends fared in the
same level and who the next friend to beat is. All this adds to the hype around the game and
compels you to keep playing it.

Understanding the different layers

From a technical point of view, the entire networking model is divided into multiple layers. This
model is also referred to as the 0SI (Open Systems Interconnection) model. Each layer has

a special significance and must be understood properly to be able to interact with other layers
of the topology.

Getting ready

To work through this recipe, you will need a machine running Windows.

Chapter 11

How to do it...

In this recipe, we will see how easy it is to understand the different layers of the networking
topology. Look at the following diagram:

Host A Host B

Peer-to-Peer Protocol

Peer-to-Peer Protocol

To understand the OSI model, we have to look at the model from the bottom of the stack to
the top. The layers of the OSI model are:

» Physical layer: This establishes the actual physical connection to the network. This
is defined by whether we are using copper wire or fiber optics. It defines the network
topology that is used, ring or bus, and so on. It also defines the transmission mode:
whether it is simplex, half duplex, or full duplex.

» Data link layer: This provides the actual link between two connected nodes.
The data link layer has two sublayers: the MAC layer (Media Access Control)
and the LLC layer (Logical Link Control).

» Network layer: This layers provides the functional means of transfer of variable
length data called datagrams. The transfer happens from one connected node to
another on the same network. This forms the IP.

277

Networking in Game Development

» Transport layer: This layer also provides the functional means of transferring data.
The data is transferred from a source to a destination, travelling via one or more
networks. Some of the protocols used here are TCP and UDP. TCP is the transfer
control protocol and is a secured connection. UDP is the user datagram protocol
and is the less secure one. In video games, we use both TCP and UDP protocols.
When there is a situation where the user has to log in to the server, we use TCP as
it is more secure, because the next information from the client is not sent unless
there is an acknowledgement from the server concerning the previous data. It can
be slow, however, so if security is more important than speed, we use TCP. After the
user logs in, the game starts after other players have joined. Now we use UDP for the
majority of situations, as speed is more important than security and a few dropped
packets could have a huge impact. UDP packets are not always received as there is
no acknowledgement.

» Session layer: This layer controls the connections between the network and
the remote computer. This layer is responsible for establishing, managing, and
terminating a connection.

» Presentation layer: This layer controls the different semantics that need to be
established between the connections. All the encryption logic is written in this layer.

» Application layer: This layer deals with the communication with the software
application itself. This is the closest layer from the end user's point of view.

Selecting the appropriate protocol

In games, most of the time there is an important decision that must be made: whether to use
TCP or UDP. The decision often ends up in favor of UDP, but still it is important to understand
the difference between the two.

Getting ready

You need a Windows machine. No other prerequisites are required.

How to do it...

In this recipe, we will find out how easy it is to make a decision on whether to use TCP or UDP.
Ask the following questions:

» Does the system require guaranteed delivery?

» Is there a requirement for retransmission?

Chapter 11

» Does the system require any handshaking mechanism?
» What kind of congestion control does it need?
» Is speed a consideration in the system?

TCP and UDP are built on top of the IP layer:

Application Layer

--oo--c.oo-o--u@--o-qcuv---c-o---

Transport Layer

279

Networking in Game Development

A TCP connection is considered reliable because there is a two-way handshake system
enabled. Once the message is delivered to the endpoint, an acknowledgement message

is sent out. It supports various other services as well, such as congestion control and
multiplexing. The fact that TCP is also full duplex makes it quite a potent connection to use.
The way it handles the reliable transfer of data is through byte sequence numbers. It sets a
timeout function and, based on timeouts, it can decide whether a package has been delivered
or not. The following diagram shows how the handshaking protocol is established:

(Active) (Passive) (Active) (Passive)
Client Server Clien Server
sy —__Fi
Syn + Ack‘ (Data +) Ack.]
—___Ack Fin
——Ack
Connection Setup Connection Close/Teardown
3-way handshake 2 x 2-way handshake

Another mechanism for TCP is the sliding window mechanism, which guarantees the reliable
delivery of data. It ensures that the data packets are delivered in a sequential manner and a
flow control between the sender and receiver is established.

UDP is used when we are not too concerned about the data packets being delivered out of
order. The main concern is how fast the packets are delivered. There is no reliability and no
guarantee that the packets will be delivered.

Applications that require ordered delivery must restore datagram ordering themselves.
Datagrams can be written to a target address without knowing if it exists or is listening.
Messages can also be broadcast to all hosts on a particular subnet. DOOM did this.
Sometimes, if we require minimal reliability, UDP is open to adding that functionality.
At that point it is also referred to as reliable UDP.

280

Chapter 11

Serializing the packets

Serialization is a key feature to have in a networking system. The process of serialization
involves converting a message or data to a format that can be transmitted over the network,
and then decoding it. There are a variety of ways to serialize and deserialize data, and it
comes down to a matter of personal choice.

Getting ready

You need to have a working Windows machine and Visual Studio. No other requirements
are needed.

How to do it...

In this recipe, we will see how easy it is to serialize data. Create a source file and derive it from
the serializer class:

using namespace xmls;

class LastUsedDocument: public Serializable
{
public:

LastUsedDocument () ;

xString Name;

xString Path;

xInt Size;

bi

class DatabaselLogin: public Serializable
{
public:

DatabaseLogin () ;

xString HostName;

xInt Port;

xString User;

xString Password;

bi

class SerialisationData: public Serializable

{

281

Networking in Game Development

public:

Vi

SerialisationData () ;

xString Datal;

xString Data2;

xString Data3;

xInt Data4;

xInt Datab;

xBool Dataé;

xBool Data7;

DatabaselLogin Login;
Collection<LastUsedDocument> LastUsedDocuments;

LastUsedDocument : : LastUsedDocument ()

{

Vi

setClassName ("LastUsedDocument") ;
Register ("Name", &Name) ;
Register ("Path", &Path);
Register ("Size", &Size);

DatabaselLogin: :DatabaseLogin ()

{

Vi

setClassName ("DatabaseLogin") ;
Register ("HostName", &HostName) ;
Register ("Port", &Port);
Register ("User", &User);
Register ("Password", &Password) ;

SerialisationData::SerialisationData ()

{

282

setClassName ("SerialisationData") ;
Register ("Datal", &Datal);

Register ("Data2", &Data2
Register ("Data3", &Data3
"Data4", &Data4
Register ("Data5", &Datas
Register ("Dataé6", &Dataé
Register ("Data7", &Data7

Register i

7

7

()
()
()
()
()
()

7

Chapter 11

Vi

Register ("Login", &Login) ;
Register ("LastUsedDocuments", &LastUsedDocuments) ;
setVersion("2.1") ;

int main ()

{

// Creating the Datas object

cout << "Creating object..." << endl;
SerialisationData *Datas=new SerialisationData;
Datas->Datal="This is the first string";
Datas->Data2="This is the second random data";
Datas->Data3="3rd data";

Datas->Datad4=1234;

Datas->Data5=5678;

Datas->Dataé6=false;

Datas->Data7=true;
Datas->Login.HostName="aws.localserver.something";
Datas->Login.Port=2000;
Datas->Login.User="packt.pub";
Datas->Login.Password="PacktPassword";

for (int docNum=1l; docNum<=10; docNum++)

{
LastUsedDocument *doc = Datas->LastUsedDocuments.newElement () ;
std: :stringstream docName;
docName << "Document #" << docNum;
doc->Name = docName.str () ;
doc->Path = "{FILEPATH}"; // Set Placeholder for search/replace
doc->setVersion("1.1") ;

cout << "OK" << endl;

// Serialize the Datas object

cout << "Serializing object... " << endl;
string xmlData = Datas->toXML() ;

cout << "OK" << endl << endl;

cout << "Result:" << endl;

cout << xmlData << endl << endl;

cout << "Login, URL:" << endl;

283

Networking in Game Development

cout << "Hostname: " << Datas->Login.HostName.value() ;
cout << ":" << Datas->Login.Port.toString() << endl << endl;
cout << "Show all collection items" << endl;
for (size t i=0; i<Datas->LastUsedDocuments.size(); i++)
{
LastUsedDocument* doc = Datas->LastUsedDocuments.getItem(i) ;
cout << "Item " << 1 << ": " << doc->Name.value() << endl;

}

cout << endl;

cout << "Deserialization:" << endl;

cout << "Class version: " << Serializable::IdentifyClassVersion (xml
Data) << endl;

cout << "Performing deserialization..." << endl;

// Deserialize the XML text
SerialisationData* dser Datas=new SerialisationData;
if (Serializable::fromXML (xmlData, dser Datas))

{

cout << "OK" << endl << endl;

// compare both objects
cout << "Compareing objects: ";
if (dser Datas->Compare (Datas))
cout << "equal" << endl << endl;
else
cout << "net equal" << endl << endl;

// now set value

cout << "Set new value for field spassword<..." << endl;
dser Datas->Login.Password = "newPassword";

cout << "OK" << endl << endl;

cout << "compare objects again: ";

if (dser Datas->Compare (Datas))
cout << "equal" << endl << endl; else
cout << "net equal" << endl << endl;

cout << "search and replace placeholders: ";
dser Datas->Replace ("{FILEPATH}", "c:\\temp\\");

284

Chapter 11

cout << "OK" << endl << endl;

//output xml-data
cout << "Serialize and output xml data: " << endl;
cout << dser Datas->toXML() << endl << endl;

cout << "Clone object:" << endl;
SerialisationData *clonel (new SerialisationData) ;
Serializable::Clone (dser Datas, clonel) ;
cout << "Serialize and output clone: " << endl;
cout << clonel->toXML() << endl << endl;
delete (clonel);

}

delete (Datas) ;

delete (dser_ Datas) ;

getchar () ;

return 0;

}

As mentioned before, to serialize is to convert the data to a format that can be transferred.
We can do this by using the Google API, or using the JSON format or YAML. In this example,
we have used an XML serializer originally written by Lothar Perr. The original source can be
found at http://www.codeproject.com/Tips/725375/Tiny-XML-Serialization-
for-Cplusplus. The whole idea behind the program is that we convert the data to an
XML format. In the class serializable data, we publicly derive it from the serializable class.
We create a constructor to register all the data elements and we create the different data
elements that we want to be serialized. The data elements are of the type xString class.
In the constructor, we register each of the data elements. Finally, from the client side,

we assign the correct data to be sent and, using the XML serializer class and tinyxml, we
generate the required XML. Finally, this XML will be sent across the network and on receipt,
it will be decoded using the same logic. XML can sometimes be considered quite heavy and
cumbersome for games.

285

http://www.codeproject.com/Tips/725375/Tiny-XML-Serialization-for-Cplusplus
http://www.codeproject.com/Tips/725375/Tiny-XML-Serialization-for-Cplusplus

Networking in Game Development

In these situations, it is advisable to use JSON. Some modern engines, such as Unity3D and
Unreal Engine, already have an inbuilt JSON parser which could be used to serialize the data.
However, XML still continues to be an important format. An example of a possible output from
our code is shown here:

Using socket programming in games

Socket programming is one of the earliest mechanisms for transferring data between
end-to-end connections. Even now, if you are comfortable writing socket programming,
it is a much better option for a relatively small game than using third party solutions,
as they add a lot of extra space.

Getting ready

For this recipe, you will need a Windows machine and an installed version of Visual Studio.

286

Chapter 11

How to do it...

In this recipe, we will find out how easy it is to write sockets:

struct sockaddr in

{

short sin family;
u_short sin port;
struct in addr sin addr;
char sin zero[8];

Vi

int PASCAL connect (SOCKET, const struct sockaddr*,int) ;
target.sin family = AF INET; // address family Internet
target.sin port = htons (PortNo); //Port to connect on
target.sin addr.s _addr = inet addr (IPAddress); //Target IP

s = socket (AF_INET, SOCK STREAM, IPPROTO TCP); //Create socket
if (s == INVALID SOCKET)

return false; //Couldn't create the socket

When two applications are communicating with each other on different machines, one
end of that communication channel is often described as the socket. It is a combination of
an IP address and a port. As we use signals or pipes to communicate in an inter-process
communication environment on different machines, there is a need for sockets.

Berkley Sockets (BSD) was the first internet socket API developed. Developed at the
University of Berkley, California, and given freely to all Berkley System distributions of UNIX,
it is present on all modern operating systems, which are UNIX variants, including OS X and
Linux. Windows Sockets is based on BSD sockets and provides additional functionality to
comply with the regular Windows programming model. Winsock2 is the newest API.

Common domains are:

» AF UNIX: This address format is UNIX pathname
» AF INET: This address format is host and port number

287

Networking in Game Development
The various protocols can be used in the following ways:

» TCP/IP (virtual circuits): SOCK_STREAM
» UDP (datagram): SOCK_DGRAM

These are the steps to set up a simple socket connection:

1. Create a socket.

Bind the socket to an address.

Wait for input/output to be ready on the socket.
Read and write to/from the socket.

Repeat from step 3 until you are done.

o o M wDd

Close the socket.
These steps are explained here with examples:

» int socket (domain, type, protocol):

The parameter domain should be set to PF_INET (protocol family) and the type

is the connection type that it should be using. Use SOCK_STREAM for a byte stream
socket, whereas SOCK_DGRAM is used for a datagram (packet) socket. protocol is
the Internet protocol that is in use. SOCK_STREAM would normally give IPPROTO__
TCP, and SOCK_DGRAM would normally give IPPROTO_UDP.

» int sockfd;
sockfd = socket (PF_INET, SOCK STREAM, O0):
The socket () function returns a socket descriptor for use in later system calls or
-1. When the protocol is set to 0, the socket chooses the correct protocol based on
the type specified.

» int bind(int Socket, struct sockaddr *myAddress, int AddressLen)

The function bind () ties the socket to a local address. Socket is the socket
descriptor. myAddress is the local IP address and port. The AddressSize
parameter gives the size (in bytes) of the address and bind () returns -1 on error.

» struct sockaddr_in ({

short int sin family; // set to AF_INET
unsigned short int sin port; // Port number
struct in_addr sin addr; // Internet address
unsigned char sin zero[8]; //set to all zeros

}

struct sockaddr_inis a parallel structure which makes it easy to reference
elements of the socket address. sin_port and sin_addr must be in Network
Byte Order.

288

Chapter 11

Sending the data

After we have correctly set up the sockets, the next step is to create the correct server and
client architecture. Sending data is pretty simple and just involves a few lines of code.

Getting ready

To work through this recipe, you will need a machine running Windows with Visual Studio
installed.

How to do it...

In this recipe, we will see how easy it is to send data:

// Using the SendTo Function
#ifndef UNICODE

#define UNICODE

#endif

#define WIN32 LEAN AND MEAN
#include <winsock2.h>
#include <Ws2tcpip.h>
#include <stdio.h>

#include <conio.h>

// Link with ws2 32.1ib
#pragma comment (1lib, "Ws2 32.1ib")

int main()

{

int iResult;
WSADATA wsaData;

SOCKET SenderSocket = INVALID SOCKET;
sockaddr in ReceiverAddress;

unsigned short Port = 27015;

char SendBuf [1024] ;

289

Networking in Game Development

int BufLen = 1024;

// Initialize Winsock

iResult = WSAStartup (MAKEWORD (2, 2), &wsaData);

if (iResult != NO_ERROR) {
wprintf (L"WSAStartup failed with error: %d\n", iResult);
return 1;

// Create a socket for sending data
SenderSocket = socket (AF INET, SOCK DGRAM, IPPROTO UDP) ;

if (SenderSocket == INVALID SOCKET) {
wprintf (L"socket failed with error: %1d\n", WSAGetLastError());
WSACleanup () ;
return 1;

}

e

// Set up the ReceiverAddress structure with the IP address of
// the receiver (in this example case "192.168.1.1")

// and the specified port number.

ReceiverAddress.sin_ family = AF_INET;

ReceiverAddress.sin port = htons (Port) ;
ReceiverAddress.sin_addr.s_addr = inet_addr("192.168.1.1");

// Send a datagram to the receiver
wprintf (L"Sending a datagram to the receiver...\n");
iResult = sendto (SenderSocket,

SendBuf, BufLen, 0, (SOCKADDR *)& ReceiverAddress,

sizeof (ReceiverAddress)) ;

290

if (iResult == SOCKET ERROR) {
wprintf (L"sendto failed with error: %d\n", WSAGetLastError());
closesocket (SenderSocket) ;
WSACleanup () ;
return 1;

// When the application is finished sending, close the socket.
wprintf (L"Finished sending. Closing socket.\n") ;
iResult = closesocket (SenderSocket) ;

$d\n",

if (iResult == SOCKET ERROR) {
wprintf (L"closesocket failed with error:
WSAGetLastError()) ;
WSACleanup () ;
return 1;
}
[/ == m oo

// Clean up and quit.
wprintf (L"Exiting.\n") ;
WSACleanup () ;

getch() ;
return 0;

//Using the Send Function
#ifndef UNICODE
#define UNICODE

#endif

#define WIN32 LEAN AND MEAN

#include <winsock2.h>
#include <Ws2tcpip.h>
#include <stdio.h>

// Link
#pragma

#define
#define

with ws2_32.1ib
comment (1lib, "Ws2 32.1ib")

DEFAULT BUFLEN 512
DEFAULT PORT 27015

int main() {

// Declare and initialize variables.

int iResult;
WSADATA wsaData;

SOCKET ConnectSocket = INVALID SOCKET;
struct sockaddr in clientService;

int recvbuflen = DEFAULT BUFLEN;

Chapter 11

291

Networking in Game Development

char *sendbuf = "Client: sending data test";
char recvbuf [DEFAULT BUFLEN] = "";

// Initialize Winsock

iResult = WSAStartup (MAKEWORD (2, 2), &wsaData);

if (iResult != NO_ERROR) {
wprintf (L"WSAStartup failed with error: %d\n", iResult);
return 1;

// Create a SOCKET for connecting to server
ConnectSocket = socket (AF_INET, SOCK STREAM, IPPROTO_TCP) ;

if (ConnectSocket == INVALID SOCKET) {
wprintf (L"socket failed with error: %1d\n", WSAGetLastError()) ;
WSACleanup () ;
return 1;

}

e EEEEEEE

// The sockaddr in structure specifies the address family,
// IP address, and port of the server to be connected to.
clientService.sin family = AF_INET;

clientService.sin addr.s_addr = inet_addr("127.0.0.1");
clientService.sin port = htons (DEFAULT PORT) ;

// Connect to server.
iResult = connect (ConnectSocket, (SOCKADDR*)&clientService,
sizeof (clientService)) ;
if (iResult == SOCKET ERROR) {
wprintf (L"connect failed with error: %d\n", WSAGetLastError());
closesocket (ConnectSocket) ;
WSACleanup () ;
return 1;

// Send an initial buffer
iResult = send(ConnectSocket, sendbuf, (int)strlen(sendbuf), 0);
if (iResult == SOCKET ERROR) {
wprintf (L"send failed with error: %d\n", WSAGetLastError()) ;
closesocket (ConnectSocket) ;

292

Chapter 11

WSACleanup () ;
return 1;

printf ("Bytes Sent: %d\n", iResult) ;

// shutdown the connection since no more data will be sent
iResult = shutdown (ConnectSocket, SD SEND) ;
if (iResult == SOCKET ERROR) {
wprintf (L"shutdown failed with error: %d\n", WSAGetLastError());
closesocket (ConnectSocket) ;
WSACleanup () ;
return 1;

// Receive until the peer closes the connection
do {

iResult = recv (ConnectSocket, recvbuf, recvbuflen, 0);
if (iResult > 0)
wprintf (L"Bytes received: %d\n", iResult);
else if (iResult == 0)
wprintf (L"Connection closed\n") ;
else
wprintf (L"recv failed with error: %d\n", WSAGetLastError()) ;

} while (iResult > 0);

// close the socket

iResult = closesocket (ConnectSocket) ;

if (iResult == SOCKET ERROR) {
wprintf (L"close failed with error: %d\n", WSAGetLastError());
WSACleanup () ;
return 1;

WSACleanup () ;
return O;

293

Networking in Game Development

The function that is used to communicate over the network is called sendto. This is declared
as int sendto (int sockfd, const void *msg, int len, int flags) ;.

sockfd is the socket descriptor you want to send data to (returned by socket () or got from
accept ()), whereas msg is a pointer to the data you want to send. 1en is the length of that
data in bytes. For simplicity, we can set that £1ag to 0 for now. sendto () returns the number
of bytes actually sent (it may be less than the number you told it to send) or -1 on error. By

using just this function, you are able to send messages or data from one connection point to
the other. This function can be used to send data across the network using the inbuilt Winsock
functionality. The send function is used for streams of data and hence used for TCP. If we are to
use datagrams and connectionless protocols, then we need to use the sendto function.

Receiving the data

After we have correctly set up the sockets and sent the data, the next step is to receive the
data. Receiving data is pretty simple and just involves a few lines of code.

Getting ready

To work through this recipe, you will need a machine running Windows and Visual Studio.

How to do it...

In this recipe, we will see how easy it is to receive data over the network. There are two ways
to do it, either by using the recv function or by using the recvfrom function:

#define WIN32 LEAN AND MEAN
#include <winsock2.h>
#include <Ws2tcpip.h>

#include <stdio.h>

// Link with ws2 32.1ib
#pragma comment (1lib, "Ws2 32.1ib")

#define DEFAULT BUFLEN 512
#define DEFAULT PORT "27015"

int _ cdecl main() {

294

Chapter 11

// Declare and initialize variables.
WSADATA wsaData;
int iResult;

SOCKET ConnectSocket = INVALID SOCKET;
struct sockaddr in clientService;

char *sendbuf = "this is a test";
char recvbuf [DEFAULT BUFLEN] ;
int recvbuflen = DEFAULT BUFLEN;

// Initialize Winsock
iResult = WSAStartup (MAKEWORD (2, 2), &wsaData);

if (iResult != NO_ERROR) {
printf ("WSAStartup failed: %d\n", iResult) ;
return 1;

}

e EREEEEEEEE TR

// Create a SOCKET for connecting to server
ConnectSocket = socket (AF_INET, SOCK STREAM, IPPROTO_TCP) ;

if (ConnectSocket == INVALID SOCKET) {
printf ("Error at socket(): %1d\n", WSAGetLastError());
WSACleanup () ;
return 1;

}

/)=

// The sockaddr in structure specifies the address family,
// IP address, and port of the server to be connected to.
clientService.sin family = AF_INET;

clientService.sin _addr.s_addr = inet_addr("127.0.0.1");
clientService.sin port = htons(27015) ;

// Connect to server.
iResult = connect (ConnectSocket, (SOCKADDR*)&clientService,
sizeof (clientService)) ;

if (iResult == SOCKET ERROR) {
closesocket (ConnectSocket) ;
printf ("Unable to connect to server: %1d\n", WSAGetLastError());
WSACleanup () ;
return 1;

295

Networking in Game Development

296

}

// Send an initial buffer
iResult = send(ConnectSocket, sendbuf, (int)strlen (sendbuf),
if (iResult == SOCKET ERROR) {
printf ("send failed: %d\n", WSAGetLastError());
closesocket (ConnectSocket) ;
WSACleanup () ;
return 1;

printf ("Bytes Sent: %1d\n", iResult);

// shutdown the connection since no more data will be sent
iResult = shutdown (ConnectSocket, SD SEND) ;
if (iResult == SOCKET ERROR) {
printf ("shutdown failed: %d\n", WSAGetLastError()) ;
closesocket (ConnectSocket) ;
WSACleanup () ;
return 1;

// Receive until the peer closes the connection
do {

iResult = recv (ConnectSocket, recvbuf, recvbuflen, 0);
if (iResult > 0)
printf ("Bytes received: %d\n", iResult);
else if (iResult == 0)
printf ("Connection closed\n") ;
else
printf ("recv failed: %d\n", WSAGetLastError());

} while (iResult > 0);
// cleanup
closesocket (ConnectSocket) ;

WSACleanup () ;

return O;

0);

Chapter 11

Just like the send function, only one function is used to receive the data over the network,
which can be declared as follows:

int recv(int sockfd, void *buf, int len, int flags);

sockfd is the socket descriptor to read from. The next parameter, buf, is the buffer to read
the information into, whereas len is the maximum length of the buffer. The next parameter,
recv (), returns the number of bytes actually read into the buffer or -1 on error. If recv ()
returns 0, the remote side has closed the connection on you.

Using this line of code, we can receive data over the network. If the data is serialized while
sending, we have to then take the data and deserialize the data at this point. This process will
vary based on the method used to serialize the data.

Dealing with lag

One of the major problems that occurs in a networked game is latency or lag. When two
players are playing against each other, and one is on a high-speed network and the other

is on a very low-speed network, how do we update the data? We need to update it in such a
way that it looks normal to both players. No player should get an undue advantage because of
this situation.

Getting ready

To work through this recipe, you will need a machine running Windows and Visual Studio.

How to do it...

In this recipe, you will see a few techniques for countering lag.

Generally, a networked game will have the following update loop. We need to figure out, from
the loop structure, what is the best way to counter lag:

read network messages ()
read local input ()
update world()
send network updates ()
render world()

297

Networking in Game Development

In most computer games, when networking is implemented, a specific type of client-server
architecture is chosen. Often, an authoritative server is chosen. This means the server
dictates the time, results, and other factors. The client is basically dumb and all it does is a
simulation based on data from the server. Now let us consider that two players are playing a
multiplayer FPS game. One of them is on a high-speed connection and the other connection
is very slow. So, if the client is dependent on the server for its updates, it will be very difficult
to accurately render the positions of the players on the client side. Let's say UserA is on a
high-speed connection whereas UserB is on a low-speed one. UserA fires a bullet at UserB.
Note Usera and UserB are also moving in the world space. How do we calculate the position
of the bullet and the position of each individual player? If we render exactly the information
that is coming from the server, it will not be accurate as UserA would have already moved to
a new position by the time UserB gets an update. To counter this, there are two commonly
used solution. One is called client-side prediction. The other method is further divided into
two more techniques: interpolation and extrapolation. Note that the round-trip time will be
quite acceptable if the computers are connected over LAN. All the problems that are being
discussed focus on networking over the Internet.

In client-side prediction, the dumb factor is taken out of the client and the client starts
predicting, based on previous movement inputs, what the next position and animation states
will be. Finally, when it gets an update from the server, the server will correct the mistakes and
the position will be transformed to the currently received one. There are loads of problems
with this system. If the prediction is wrong, there will be a big jitter as the position is changed
to the right one. Also, let us consider sound and VFX effects. If the client at Usera predicted
that UserB was walking and the footsteps sound was played, and later the server informed it
that UserB was actually in water, how do we suddenly rectify that mistake? The same goes for
VEX effects and states. This system was used in a lot of the Quake worlds.

The second system has two parts: extrapolation and interpolation. In extrapolation, we render
ahead of time. This is in some way similar to prediction. It takes the last known update from
the server and then simulates forward in time. Thus, if you are lagging 500 milliseconds
behind, and the last update you received was that the other player was running 300 units per
second perpendicular to your view, then the client could assume that in real time the player
has moved 150 units straight ahead from their last known position. The client could then just
draw the player at that extrapolated position and the local player could still more or less aim
right at the other player. However, the problem with this system is that it will rarely happen like
that. The movement of the player may changg, the state may change and hence this system
should be avoided in most cases.

298

Chapter 11

In interpolation, we always render objects in the past. For instance, if the server is sending
25 updates per second (exactly) of the world state, then we might impose 40 milliseconds of
interpolation delay in our rendering. Then, as we render frames, we interpolate the position

of the object between the last updated position and the position one update over that 40
milliseconds. Interpolation can be done by using the inbuilt lerp function in C++. As the object
gets to the last updated position, we receive a new update from the server (since 25 updates
per second means that the updates come in every 40 milliseconds) and we can start moving
toward this new position over the next 40 milliseconds. The following picture shows the
difference in positions of the hitbox from the server and the client side.

If the packet does not arrive after 40 milliseconds, that is, there is a packet drop, then we
have two options. The first option is to extrapolate using the method described above. The
other option is to make the player go to an idle state till the next packet is received from
the server.

Using synchronized simulation

In a multiplayer game, there may be hundreds or thousands of computers connected at the
same time. All of the computers will have different configurations. Speed will vary on all these
computers. So the questions is, how do we synchronize the clock over all these systems so
that they are all in sync?

299

Networking in Game Development

Getting ready

To work through this recipe, you will need a machine running Windows and Visual Studio.

How to do it...

In this recipe, we will look at, from a theoretical perspective, the two ways to synchronize clocks.
Take a look at the following pseudocode:

» Method 1
1. Send a message to UserA. Note the time till he receives the message.
2. Send a message to UserB. Note the time again.

3. Calculate the median based on the values to decide an update time for
updating the clock for both computers.

» Method 2
1. Letthe server do most of the calculations.
2. Letthe client do some local calculations.

3. When the client receives the update from the server, then either correct its
mistakes or interpolate based on the results.

When we are trying to synchronize the clock, there are two methods. One method is that the
server tries to find a median time to synchronize all the clocks. To do this, we can include

the mechanics in the game design itself. The server needs to find out the response time

of each client machine, so it has to send out messages. These messages can be to press

R when ready, or a map is loaded on the client machine and the server takes a note of the
time. Finally, when it has got a time from all the machines, it calculates a median and then
updates the clock for all the machines at that time. The more messages the server sends out
to the machines to calculate this median, the more accurate it will be. However, this in no way
guarantees synchronization.

Therefore, a better method is that the server does all the calculations and the client does
some local calculations as well, using techniques described in previous recipes. Finally, when
the server sends an update to the client, the client can correct itself or interpolate to get the
desired result. This is a much better result and a much better system to have.

300

Chapter 11

Using area of interest filtering

When we are writing a networking algorithm, we need to decide on the various objects or
states that need updating to or from the server. The higher the number of objects, the more
time it will take to serialize and send the data across. Therefore, there is a need to prioritize
what needs to be updated every frame and which objects can wait for a few more cycles to
be updated.

Getting ready

To work through this recipe, you will need a machine running Windows.

How to do it...

In this recipe, we will see how easy it is to create area of interest filtering:

1. Create a list of all objects in the scene.
2. Add a parameter to each object denoting their priority.

3. Based on that priority number, pass it on to the update logic of the game.

In a game, we need to define the objects in a certain priority order. The priority order
determines whether they should be updated now or at a later time. The objects that require
prioritization depend a lot on the game design and a bit of research. For example, in an FPS
game, the objects with high priority would be the person that the user is currently shooting at,
the ammunition lying nearby, and of course the enemies in close proximity and their positions.
This may be different in the case of an RPG or an RTS, so it definitely varies from one game

to another.

After we have tagged each object with a priority number, we can tell the update loop to just
use the objects that are priority level 1 and 2 for per-frame updates, and use objects that are
priority level 3 and 4 for late updates. This structure can also be modified by creating some
sort of priority queue. From the queue, objects are popped out based on different update
logic. The lower priority objects are also synced but at a later time, not in the current frame.

301

Networking in Game Development

Using local perception filter

This is yet another method to combat lag in networked games. This entire concept is
mathematically based on the concept of perception. The basis of it is that if objects update
and render correctly locally to a player, then we can create an illusion of realism, hence the
name local perception filter.

Getting ready

To work through this recipe, you will need a machine running Windows.

How to do it...

In this recipe, we will understand the theoretical concept of how easy it is to implement bullet
time. Take a look at the following pseudocode:

1. Calculate the velocity local to the player.
Accelerate the bullet when it starts and slow it down as it reaches the remote player.

3. From the remote player's point of view, the bullet should appear to have been shot at
a higher speed than normal speed and then slow down to normal.

Local perception filters are also called bullet time, and were used for the first time in the
movie The Matrix. Since then, they have been used in a wide range of games. It is quite

easy to do in single player mode; however, in multiplayer it gets a bit more complex as it
involves slowing down the rendering. Essentially, the process is to increase and reduce the
speed of passive entities when they are near local and remote players. It is a method used

to hide communication delays in networked virtual environments and was introduced in A
local perception filter for distributed virtual environments, P.M. Sharkey, (page 242-249). For
simplicity, we will call local players p, remote players r, and passive entities, such as bullets, e.
Let us say that d(i,j) is delay, delta(i,j) is distance, and we get the following equations:

N if 4(p, e)
d(p.e) = { d(p,rv), if 6(r.€)

0,
0.

302

Chapter 11

In a graphical format, this can be explained by looking at the following graph. So with respect
to p, it goes slow uphill and then fast downhill. With respect to r, it is faster at the top.

One major limitation of the method is that this cannot be
s used for insta-hit weapons.
|
|
dip,r)+
-
X
L |
dir,p) T -
I
I
I
]
I
\
| -
P r X

The problem is that when e reaches r, p's view of e is not there yet, but e will speed up
anyway in p's view. To tackle this, we introduce a shadow r, which buffers p's view of the
speedup process.

303

Networking in Game Development

After adding the buffer, we will get the following revised graphs:

d(p,r)

3(p,r) 3(p.r) B.d(p.r)

dir,p) i dir,p)

=Y

S.(d(r, p))

=y

So at the top, won't speed up until r is reached, and at the bottom it starts to
show e at postion p. This can also be viewed as a demo at the following URL:
http://mikolalysenko.github.io/local-perception-filter-demo/.

304

http://mikolalysenko.github.io/local-perception-filter-demo/

12

Audio in Game
Development

In this chapter, the following recipes are covered:

» Installing FMOD

» Adding background music

» Adding sound effects

» Creating a sound effect manager

» Dealing with multiple sound file names

Introduction

One of the most important aspects in games development is audio programming. However,

it is, strangely, one of the most neglected and underrated sections of games development as
well. To understand the impact of audio in games, try playing a game such as Counter-Strike or
Quake with sounds and then try playing the games without sound. It has a huge impact. Audio
programming, if not done correctly, can lead to games crashing and lots of other problems.

Therefore, it is very important to learn the correct way to do audio programming. Most engines
will have a built-in sound component. For others, we need to add the audio component. In this
chapter, we will have a look at one of the most popular sound engines. We will also have a
look at how to integrate SDL into our C++ code, in order to play audio and sound effects.

305

Audio in Game Development

Installing FMOD

The first thing to get started with is to install FMOD. This is one of the most popular audio
engines and used in almost all modern game engines. It can also be added to any game
engine of your choice. The other popular audio engine is called Wwise. This is used to
integrate the audio for console programming, such as on the PS4.

Getting ready

To work through this recipe, you will need a machine running Windows.

How to do it...

In this recipe, we will see the different types of source control available to us:

1. Gotohttp://www.fmod.org/.
2. To download FMOD, go to http://www.fmod.org/download/.

There is one authoring tool to edit the audio files.However, we should be downloading
the FMOD Studio Programmer APl and the Low Level Programmer API.

It also has plugins for all modern engine such as Cocos2d-x, Unreal Engine,
and Unity3D.

FMOD is a low-level API, so it provides callbacks that help us to use the interface of FMOD to
play sounds, pause sounds, and do a whole lot of other things. Because we have the source
files, we can build the libraries and also use it in our own engine. FMOD also provides an API
for Unity3D, which means that the code is also exposed to C#, making it easier to work with
in Unity3D.

Adding background music

Any game would be incomplete if it did not have any background music. So it is very important
that we integrate a way to play music into our C++ engine. There are various ways to do this.
We are going to use SDL to play music in our game.

Getting ready

You need a Windows machine and a working copy of Visual Studio. The SDL library is
also required.

http://www.fmod.org/
http://www.fmod.org/download/

Chapter 12

How to do it...

In this recipe, we will find out how easy it is to play background music:

1. Add a source file called Source. cpp.
2. Add the following code to it:

#include <iostream>
#include "../AudioDataHandler.h"

#include "../1lib/SDL2/include/SDL2/SDL.h"

#include "iaudiodevice.hpp"
#include "iaudiocontext.hpp"
#include "audioobject.hpp"

#include "sdl/sdlaudiodevice.hpp"
#include "sdl/sdlaudiocontext.hpp"

#define FILE PATH "./res/audio/testClip.wav"

int main(int argc, char** argv)

{

SDL_Tnit (SDI,_INIT AUDIO) ;

IAudioDevice* device = new SDLAudioDevice() ;
IAudioContext* context = new SDLAudioContext () ;

IAudioData* data = device->CreateAudioFromFile (FILE PATH) ;

SampleInfo info;
info.volume = 1.0;
info.pitch = 0.7298149802137;

AudioObject sound(info, data);
sound.SetPos (0.0) ;

char in = 0;
while(in != 'q'")
{
std::cin >> in;
switch (in)

{

case 'a':

307

Audio in Game Development

context->PlayAudio (sound) ;
break;

case 's':
context->PauseAudio (sound) ;
break;

case 'd':
context->StopAudio (sound) ;
break;

device->ReleaseAudio (data) ;
delete context;
delete device;

SDL_Quit () ;
return O;

int main ()
AudioDataHandler _audioData;
cout<<_audioData.GetAudio (AudioDataHandler: : BACKGROUND) ;

}

In this example, we are playing background music for our game. We need to create an
interface as a wrapper to the existing SDL audio library. Interfaces are also good at

providing a skeleton architecture that a base class can derive from in the future. We require
SDhLAudioDevice, Which is the main handler object for playing the music. On top of that, we
create a pointer to an audio data object, which creates audio from the file path provided. The
device handler object has a built-in function called CreateAudioFromFile to help us with
this process. Finally, we have an audio context class, which has functions to play, pause, and
stop the audio. Each of the functions takes an audio object as a reference, which is used to
perform the action on our audio file.

Adding sound effects

Sound effects are a neat way of adding some sense of tension or achievement to the game.
Playing, pausing, and stopping sound effects all work in the same way that we used for
background music, which we saw in the previous recipe. However, we can add some

variety to the sound files by controlling their position, volume, and pitch.

308

Chapter 12

Getting ready

You need to have a working Windows machine.

How to do it...

Add a source file called Source. cpp and add the following code to it:

struct SampleInfo
{
double volume;
double pitch;

Vi

SampleInfo info;
info.volume = 1.0;
info.pitch = 0.7298149802137;

AudioObject sound(info, data);
sound.SetPos (0.0) ;

In this example, we are only looking at that part of the game that involves modifying the
pitch, volume, and position of the sound file. These three things can be considered to be

the attributes of the sound file, but there are other attributes as well. Therefore, the first
thing to do would be to create a structure. The structure is used to store all the attributes

of the sound. All we need to do is populate the structure with values as and when we want
them. Finally, we create an audio object and pass in the SampleInfo struct as one of the
parameters of the object. The constructor then initializes the sound to have these properties.
Because we attached the properties to the object, it means we can also manipulate them at
runtime and lower the volume dynamically if required. The pitch and other properties could
also be manipulated in the same way.

Creating a sound effect manager

Although not one of the best practices out there, one of the most common methods for
handling audio is to create a manager class. The manager class should ensure that there is
only one audio component in the whole game, which controls which sound is to be played,
paused, looped, and so on. Although there are other ways of writing the manager class, this is
the most standard practice.

309

Audio in Game Development

Getting ready

For this recipe, you will need a Windows machine and Visual Studio.

How to do it...

In this recipe, we will find out how easy it is to add sound effect manager using the
following snippet:

#pragma once
#include <iostream>
#include "../1lib/SDL2/include/SDL2/SDL.h"

#include "iaudiodevice.hpp"
#include "iaudiocontext.hpp"
#include "audioobject.hpp"

#include "sdl/sdlaudiodevice.hpp"
#include "sdl/sdlaudiocontext.hpp"

#define FILE PATH "./res/audio/testClip.wav"

class GlobalAudioClass

{

private:

AudioObject* audObj;
IAudioDevice* device = new SDLAudioDevice() ;
TIAudioContext* context = new SDLAudioContext () ;

IAudioData* data = device->CreateAudioFromFile (FILE PATH) ;

SampleInfo info;

static GlobalAudioClass *s_instance;

GlobalAudioClass ()

{

info.volume = 1.0;
info.pitch = 0.7298149802137;
_audObj = new AudioObject (info,data) ;

}

310

Chapter 12

~GlobalAudioClass ()

{

//Delete all the pointers here
}
public:
AudioObject* get value()

{

return _audObj;

}

void set value (AudioObject* obj)
{
_audObj = obj;
}
static GlobalAudioClass *instance ()
{
if (!s_instance)
s_instance = new GlobalAudioClass () ;
return s_instance;
}
}i

// Allocating and initializing GlobalAudioClass's
// static data member. The pointer is being

// allocated - not the object inself.
GlobalAudioClass *GlobalAudioClass::s_instance = 0;

In this example, we have written a singleton class to implement the audio manager. The
singleton class has all the necessary sd1 headers and other device and context objects
required to play the sounds. All these are private, so they cannot be accessed from other
classes. We also made a static pointer to the class and made the constructor private as well.
If we need an instance of this audio manager, we have to use the static GlobalAudioClass
*instance () function. This function automatically checks whether there is an instance
already created, then it returns that instance, or it creates a new one. Hence, only one
instance of the manager class exists at all times. We can also use the manager to set and get
data for the sound file, for example by setting the path of the sound file.

311

Audio in Game Development

Dealing with multiple sound file names

In games, there will not be one sound file, but multiple sound files that we will have to deal
with. Each will have a different name, type, and location. So it is not a wise move to define
all of them separately. It will work, but it will be very messy coding if we have over 20 sound
effects in our game, so there is a need for a slight improvement to the code.

Getting ready

For this recipe, you will need a Windows machine and an installed version of an SVN client. A
versioned project is also necessary.

How to do it...

In this recipe, you will see how easy it is to deal with multiple sound file names. All you have to
do is add a source file called Source . cpp. Add the following code to it:

#fpragma once

#include <string>
using namespace std;

class AudioDataHandler

{

public:
AudioDataHandler () ;
~AudioDataHandler () ;

string GetAudio (int data) // Set one of the enum values here from
the driver program

{

return Files[datal;

enum AUDIO
NONE=0,
BACKGROUND,
BATTLE,
UI
private:
string Files|[] =

{

312

Chapter 12

nn

"Hello.wav",
"Battlenn.wav",
"Click.wav"

Vi

int main ()
AudioDataHandler audioData;
cout<<_audioData.GetAudio (AudioDataHandler: : BACKGROUND) ;

}

In this example, we have created an audio data handler class. The class has enum, which
stores all the logical names of the sounds, for example battle music, background music,
and so on. We also have a string array, which stores the actual names of the sound files. The
order is important and it has to match the order in which we have written enum. Now that this
enum is created, we can create an object of this class and set and get the audio filename. The
enum is stored as integers and starts at 0 by default, and the names serve as an index for the
string array. So Files [AudioDataHandler: : Background] is actually Files [1], which is
Hello.wav, and so the correct file will be played. This is a very neat way of organizing audio
data files. The other way to handle audio in games is to have the names of the audio files and
the attributes of their location in an XML or JSON file, and have a reader which parses this
information and then fills up the array in the same way as we are doing. That way, the code is
extremely data driven because the designer or the audio engineer can just change the values
of the XML or the JSON file, without having to make any changes to the code.

313

13

Tips and Tricks

In this chapter, the following recipes will be covered:

» Effectively commenting your code

» Using bit fields in a struct

» Writing a sound technical design document

» Using the const keyword to optimize your code
» Using bit shift operators in an enum

» Using the new lambda feature in C++11

Introduction

C++ is a vast ocean. There are many concepts and techniques that are required to master
C++. On top of that, there are also a few little tricks that a programmer can learn from time to
time to help develop better software. In this chapter, we will look at some of the techniques
that a programmer can learn to write better code.

Effectively commenting your code

Very often, a programmer is so engrossed in solving a problem that they forget to comment their
code. Although this may not be a problem when they are working on it, if there are other team
members involved who have to utilize that same section of code, it may become very difficult to
fathom. Therefore, it is essential to comment code from an early stage of development.

315

Tips and Tricks

Getting ready

To work through this recipe, you will need a machine running Windows and Visual Studio. No
other prerequisites are required.

How to do it...

In this recipe, we will see how easy it is to comment code. Let's add a source file called
Source. cpp. Add the following code to the file:

//Header files
#include <iostream>

class Game

{

//Member variables (Already known)
public:
private:
protected:

Vi

//Adding 2 numbers
int Add(int a=4,int b=5)

{

return a + b;

}

void Logic (int a,int b)

{

if (a > 10 ? std::cout << a : std::cout << Db);

}

int main ()

{

std: :cout<<Add () <<std::endl;
Logic(5,8) ;

int a;
std::cin >> a;

316

Chapter 13

Comments are supposed to be written on any section, to help fellow developers understand
what is going on. To comment a code, we use the // double backslash symbols. Whatever we
write within that will not be compiled and will be ignored by the compiler. As a result, we can
use it to make notes on different aspects in the code. We can also use the /* and */ symbol
to comment multiple lines. Anything that is within a pair of /* and */ symbols will be ignored
by the compiler. This technique becomes useful if we need to debug an application. We first
comment out a large section of the code that we think is the culprit. The code should now build.
Then we start uncommenting the code till we reach a point where the code breaks again.

Sometimes programmers tend to over-comment. For example, there is no need to write
//Addition on top of an addition function, as we can clearly see that two numbers are
being added. Similarly, we should not under-comment. As there are no comments on top
of the Logic function, we have no clue as to why we are using that function and what that
function does. So we must remember to comment just enough. This will only happen with
practice and by working in a team environment.

Using bit fields in a struct

In structures, we can use bit fields to denote what size we want the structure to be. As well as
this, it is also important to understand what size a struct actually takes.

Getting ready

You need a Windows machine and a working copy of Visual Studio. No other prerequisites
are required.

How to do it...

In this recipe, we will find out how easy it is to use bit fields to find the size of a struct. Add a
source file called Source. cpp. Then add the following code to it:

#include <iostream>

struct Type

{
int a;
unsigned char c[9];
unsigned b;

317

Tips and Tricks

float d;

Vi

struct Type2
int a : 2;
int b : 2;
int main ()
std::cout << gizeof (Type)<<std::endl;
std: :cout << sizeof (Type2);

int a;
std::cin >> a;

}

As you can see, in the example we have assigned a struct of int, a char array, an undefined
unsigned variable, and a float. When we execute the program, the output should be the size of
both the structures in bytes. Assuming we are running this program on a 64-bit machine, int

is 4 bytes, unsigned char array is 9 bytes, unsigned by default is 4 bytes, and float is 4 bytes.
If we add them up, the total is 21 bytes. But if we print it out, we will notice that the output is
24 bytes. The reason for this is called padding. C++ always fetches data in chunks of 4 bytes.
Hence it will always pad with extra bytes till the size is a multiple of 4. Because the size of the
struct came out at 21, the nearest multiple of 4 is 24, so we get that answer. Padding is not
done to the structure as a whole, but per declaration, for example:

struct structA
char a;
char b;
char c;
int d;

struct structB

{

char a;
int d;
char b;

318

Chapter 13

char c;

Vi

Sizeof structA
Sizeof structb

2 bytes
3 bytes

Looking at the second struct, what we have done is assigned a bit field. Although an int is

4 bytes, we can instruct it to just have 2 bytes. The syntax for doing it is adding a : symbol
followed by the byte value. So for the second struct, if we find the value, it is going to output it
as 4 instead of 8.

Writing a sound technical design document

When we start a project, there are two documents that we generally rely on. The first
document is a game design document, and the second is a technical design document. The
technical design document should list the key features and high-level architecture of the key
features. This system is changing rapidly though, with the advent of indie games. However, in
a large-scale gaming studio, this process is still valid.

Getting ready

You need to have a working Windows machine.

How to do it...

In this recipe, we will see how easy it is to create a technical design document:

1. Open an editor of your choice, preferably Microsoft Word.
2. List the key technical components of the game.

3. Create a data flow diagram to represent the flow of data between various
components of the engine.

4. Create a flowchart to explain the logic of a certain complex section.
5. Write pseudocode for the sections that are key to the development of the game.

319

Tips and Tricks

Once the key components are listed, the project manager can automatically assess the risk
and complexity of each task. The developer will also understand what the key components of
the engine or game are. This will help the developer plan their actions as well. When the data
flow diagram is made, it will be easy to understand which component is dependent on which
other component. As a result, the developer will know they have to implement A before they
start coding B. A flow chart is also a great way to understand the flow of logic and sometimes
helps to solve ambiguity that could occur in the future. Finally, pseudocode is essential for
explaining to the developer how they must implement the code, or rather what is an advisable
approach. As pseudocode is language independent, the same pseudocode could be used to
write a game even in other languages apart from C++.

Using the const keyword to optimize your

code

We have already seen in previous recipes that a const keyword is used to make data or a
pointer constant so that we cannot change the value or address, respectively. There is one
more advantage of using the const keyword. This is particularly useful in the object-oriented
paradigm.

Getting ready

For this recipe, you will need a Windows machine and an installed version of Visual Studio.

How to do it...

In this recipe, we will find out how easy it is to use the const keyword effectively:

#include <iostream>

class A

{

public:

void Calc () const

{
Add(a, b);
//a = 9; // Not Allowed

A()

{

320

Chapter 13

}

private:

int a, b;
void Add(int a, int b)const

{

std::cout << a + b << std::endl;
}
Vi

int main ()

{

A _a;
_a.Calc();

int a;
std::cin >> a;

return O;

}

In this example, we are writing a simple application to add two numbers. The first function

is a public function. This mean that it is exposed to other classes. Whenever we write public
functions, we must ensure that they are not harming any private data of that class. As an
example, if the public function was to return the values of the member variables or change
the values, then this public function is very risky. Therefore, we must ensure that the function
cannot modify any member variables by adding the const keyword at the end of the function.
This ensures that the function is not allowed to change any member variables. If we try to
assign a different value to the member, we will get a compiler error:

error C3490: 'a' cannot be modified because it is being accessed
through a const object.

So this makes the code more secure. However, there is another problem. This public function
internally calls another private function. What if this private function modifies the values of the
member variables? Again, we will be at the same risk. As a result, C++ does not allow us to
call that function unless it has the same signature of const at the end of the function. This is
to ensure that the function cannot change the values of the member variables.

321

Tips and Tricks

Using bit shift operators in an enum

As we have seen before in previous recipes, an enum is used to represent a collection of
states. All the states are given an integer value by default, starting at 0. However, we could
specify a different integer value as well. More interestingly, we could use bit shift operators to
club some of the states, easily set them to be active or inactive, and do other tricks with them.

Getting ready

To work through this recipe, you will need a machine running Windows with an installed
Visual Studio.

How to do it...

In this recipe, we will see how easy it is to write bit shift operators in an enum:

#include <iostream>

enum Flags

{

FLAG1 = (1 << 0),
FLAG2 = (1 << 1),
FLAG3 = (1 << 2)
}i
int main()

{

int flags = FLAGLl | FLAG2;

if (flags&FLAGL)

{

//Do Something

}

if (flags&FLAG2)

{

//Do Something

}

return 0O;

322

Chapter 13

In the above example, we have three flag states in the enum. They are represented by the

bit shift operator. So in memory, the first state is represented as 0000, the second as 0001,
and the third as 0010. We can now combine the states by using the OR operator (|). We can
have a state called JUMP and another state called SHOOT. If we want the character to now
JUMP and SHOOT together, we can combine these states. We can use the & operator to check
whether a state is active or not. Similarly, if we have to remove a state from a combination, we
can use the XOR operator (*). We can disable a state by using the ~ operator.

Using the new lambda function of C++ 11

Lambda functions are the new addition to the C++ family. They can be described as
anonymous functions.

Getting ready

To work through this recipe, you will need a machine running Windows and Visual Studio.

How to do it...

To understand a lambda function let's have a look at the following code:

#include <iostream>
#include <algorithms>
#include <vectors>

using namespace std;

int main{()
{

vector<int> numbers{ 4,8,9,9,77,8,11,2,7 };

int b = 10;

for each(numbers.begin(), numbers.end(), [=] (int y) mutable->void {
if (y>b) cout<< y<<endl; });

int a;

cin >> a;

323

Tips and Tricks

Lambda functions are a new addition to the C++11 family. They are anonymous functions
and can be very handy. They are generally passed as arguments to a function. The syntax
of a lambda function is as follows:

» [capture-list] (params) mutable(optional) exception
attribute -> ret { body }

The mutable keyword is optional and is used to modify the parameters and call their
non-const functions. The attribute provides the specification of the closure type. The
capture list is optional and has a list of allowed types:

» [a,&bl:Here ais captured by value and b is captured by reference

» [this]: This captures the this pointer by value

» [&]:This captures all automatic variables used in the body of the lambda by
reference

» [=]:This captures all automatic variables used in the body of the lambda by value
» []:This captures nothing
Params are lists of parameters, as in named functions, except that default arguments are

not allowed (up to C++14). If auto is used as a type of a parameter, the lambda is a generic
lambda (since C++14). ret is the return type of the function. If no type is provided, then ret

tries to auto-inject a return type or void if it is not returning anything. Finally, we have the body

of the function, which is used to write the logic of the function.

In this example, we store a vector list of numbers. After that, we traverse the list and use a
lambda function. The lambda function stores all the numbers that are greater than 10 and
displays the number. Lambda functions can be difficult to start off with but, with practice,
they are very easy to grasp.

324

Symbols

2D game

creating 246-250
3D game

creating 250-252

A

abstract factory method

using 165-169
algorithm

about 89

complexity, finding 95-97
Apache Subversion (SVN) 6
application layer, 0S|I model 278
area of interest filtering

using 301
arguments

passing, to thread 266, 267
Artificial intelligence (Al)

about 201

adding, to game 202, 203
artificial neural networks (ANN)

using 222-227

background music
adding 306-308
behavioral movements
adding 219-222
Berkley Sockets (BSD) 287
Binary Space Partition (BSP) Tree
using 205-208
bit fields
using, in struct 317-319

Index

bit shift operators
using, in enum 322
bitwise operations
used, for advanced checks 21
used, for optimization 21, 22
Box2D
about 233
installing 245, 246
integrating 245, 246
URL 246
branch
creating 198
broad-phase collision 245
BSP 245
bubble sort 92, 93
Bullet Physics SDK 233

C

C++
lambda function, using 323, 324
call stacks
using, for memory storage 7, 8
classes
used, for data abstraction 26-30
used, for data encapsulation 26-30
code
commenting 315-317
optimizing, const keyword used 320, 321
reusing, polymorphism used 30-33
collide 239, 244
command design pattern
using 184-187
compiler 4
complex program
breaking down, dynamic
programming used 99-101

325

Concurrent Versions System (CVS) 6
conflicts

resolving 197
const keyword

using, to optimize code 320, 321
controls

using 131-135
control tool

right source control tool, selecting 5, 6
copy constructors

using 34-36

D

data
receiving 294-297
saving, by selecting host 193-195
sending 289-294
storing, graphs used 81, 82
storing, linked lists used 70-72
storing, queues used 75, 76
storing, stacks used 72-75
storing, STL hash tables used 86-88
storing, STL lists used 83-85
storing, STL maps used 85, 86
storing, trees used 77-80
data abstraction
classes, using 26-30
data encapsulation
classes, using 26-30
datagrams 277
data link layer, OSI model 277
data race 269-271
data structures
about 59
advanced data structures, using 60-70
datatypes
casting between 14-16
deadlocks
avoiding 268, 269
debugger 5
decision making Al
creating 208, 219
decision tree 208, 219

326

design patterns
abstract factory method, using 165-169
command design pattern, using 184-187
flyweight pattern, using 174-178
factory method, using 162-165
observer pattern, using 170
singleton design pattern, using 160-162
strategy pattern, using 179-184
using 187-190
device
endian-ness, finding 97-99
dialogs
using 131-135
Diff tool 197
Dijkstra's 204
divide and conquer algorithms
used, for solving problems 102-105
dynamic allocation
used, for managing memory 16-19
dynamic programming
used, for breaking down complex
program 99-101

endian-ness

finding, for device 97-99
enum

bit shift operators used 322, 323
evolutionary algorithm (EA) 227

F

factory method
using 162-165
files
used, for input and output 48-51
flyweight pattern
using 174-178
FMOD
installing 306
URL 306
function
reusing, function overloading used 45-48

function overloading
used, for reusing functions 45-48

G

game
advanced game, design patterns
used 187-190
Artificial intelligence (Al), adding 202, 203
concurrency 264, 265
creating 52-54
heuristics, using 203-205
physics rule, using 234-238
ragdoll, using 254, 261
socket programming, using 286-288
Genetic algorithms (GA)
cross-over 229
fitness function 229
initial population 229
mutate 230
using 227-229
GIT 6
Graphics device interface (GDI)
Windows resources, using with 126-130
graphs
used, for storing data 81-83
greedy algorithms
used, for solving problems 101, 102
GUI interface builder 5

H

handles
using 109-114
heap sorting algorithm 105
heuristics
using, in game 203-205
host
selecting, to save data 193-195

implicit conversions 14

input layer 227

insertion sort 92, 93

integrated development environment (IDE)
installing, on Windows 2-5

items
arranging, sorting techniques used 90-93

looking for, searching techniques used 93-95

K

keyboard
adding, with text output 118, 126

L

lag

dealing with 297-299
lambda function

of C++, using 323, 324
Last In First Out (LIFO) data

structure 8, 58, 72

linked lists

used, for storing data 70-72
linker 5
LLC layer (Logical Link Control) 277
local perception filter

URL 304

using 302, 303

MAC layer (Media Access Control) 277
memory

error messages 20

managing, dynamic allocation used 16-20
memory addresses

storing, pointers used 11-13
memory handling 2
memory storage

call stacks used 7,8
Mercurial 6
mouse controls

adding, with text output 118, 126
multiple sound file names

dealing with 312, 313
mutex 269-271

narrow-phase collision 245
network layer, 0S| model 277
NLP (Natural Language Processing) 203

321

0

observer pattern
using 170-173
OOP (Object-oriented programming) 25, 26
OpenGL 233
operator overloading
used, for reusing operators 36-45
operators
reusing, operator overloading
used 36-45
0SI (Open Systems Interconnection) model,
layers
about 276, 277
application layer 278
data link layer 277
network layer 277
physical layer 277
presentation layer 278
session layer 278
transport layer 278

P

packets

serializing 281-285
particle system

creating 252-254
physical layer, 0SI model 277
physics rule

using, in game 234-238
pointers

URL 14

used, for storing memory addresses 11-13
polymorphism

used, for reusing code 30-33
presentation layer, 0S| model 278
problems

solving, divide and conquer algorithms

used 102-105

solving, greedy algorithms used 101, 102
protocol

selecting 278-280
PvP (player versus player) 276

328

Q

queues
used, for storing data 75, 76
quick sort 92,93

ragdoll
using, in game 254, 261
Ragdoll physics 254
recursions
using, cautiously 9, 11
references
URL 14
Resource Acquisition is Initialization
technique (RAII) 271
revision control software 1

S

searching techniques
used, to look for item 93-95
selection sort 92, 93
session layer, OSI model 278
singleton design pattern
using 160-162
sorting techniques
used, for arranging items 90-93
sound effects
adding 308, 309
manager, creating 309-311
source control
adding 195, 197
code, committing 195-197
code, updating 195, 196
types, URL 192
URL, for GIT client 192
URL, for Mercurial client 192
URL, for SVN client 192
versions 192
sprites
animated sprites, using 155-158
using 136-155

stack frame 8
stacks

about 8

used, for storing data 72, 75
stack unwinding 271
state-machine design pattern 222
STL hash tables

used, for storing data 86-88
STL lists

used, for storing data 83-85
STL maps

used, for storing data 85, 86
strategy pattern

using 179-184
struct

bit fields, using 317-319
synchronized simulation

using 299, 300

T

technical design document
writing 319, 320
templates 55-57
text output
keyboard, adding 118-126
mouse controls, adding 118-126
thread
arguments, passing 266, 267
creating 264, 265
detaching 265, 266
joining 265, 266
thread-safe class
writing 271-273
Tortoise SVN
about 192
URL 193

transfer control protocol (TCP) 278

transport layer, 0S| model 278
trees
used, for storing data 77-80

U

user datagram protocol (UDP) 278

\'}

versioning client
installing 192, 193
virtual method table (VMT or Vtable) 33
Visual Studio 1
Visual SVN Server
URL 194
VLD
URL 19

w

waypoint systems
using 231, 232
window
first window, creating 114-118
IDE, installing 2-5
Windows classes
using 109-113
Windows game
creating 108, 109
message box, types 109
Windows resources
using, with Graphics device
interface (GDI) 126-130
Win Merge 197
Wwise 306
WYSIWYG tool editor 5

X

XML serializer
URL 285

329

