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This section briefly introduces the authors, the coverage of this book, the technical skills you'll 
need to get started, and the hardware and software requirements required to complete all of 
the included activities and exercises.
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About the Book
C++ is a mature multi-paradigm programming language that enables you to write high-
level code with a high degree of control over the hardware. Today, significant parts of 
software infrastructure, including databases, browsers, multimedia frameworks, and 
GUI toolkits, are written in C++.

This book starts by introducing C++ data structures and how to store data using 
linked lists, arrays, stacks, and queues. In later chapters, the book explains the basic 
algorithm design paradigms, such as the greedy approach and the divide-and-conquer 
approach, which are used to solve a large variety of computational problems. Finally, 
you will learn the advanced technique of dynamic programming to develop optimized 
implementations of several algorithms discussed in the book.

By the end of this book, you will have learned how to implement standard data 
structures and algorithms in efficient and scalable C++ 14 code.

About the Authors

John Carey

A composer and pianist, John Carey's formal education is almost exclusively based 
within the musical realm. Having used computers and other forms of technology 
extensively in his artistic endeavors, he invested years of self-study in the subjects of 
programming and mathematics and now works professionally as a software engineer. 
He believes his unusual background provides him with a unique and relatively 
non-academic perspective on the topic of software development. He currently works 
for Hydratec Industries, a company that primarily develops CAD software for fire 
sprinkler system designers that is used to perform hydraulic calculations on proposed 
designs so as to determine their efficacy and legality.

Shreyans Doshi

Shreyans graduated with a Bachelor of Technology degree in Computer Engineering 
from Nirma University, Ahmedabad. After graduation, he joined the finance industry to 
work on ultra-low latency trading systems using cutting-edge C++ applications. For the 
past three years, he has been designing trading infrastructure in C++.

Payas Rajan

Payas graduated with a Bachelor of Technology degree in Computer Science from 
NIT Allahabad. Later, he joined Samsung Research India, where he helped develop the 
multimedia framework for Tizen devices. Currently working as a teaching and research 
assistant while pursuing a PhD specializing in geospatial databases and route planning 
algorithms at the University of California Riverside, he has been creating applications 
using C++ for a decade.
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Learning Objectives

By the end of this book, you will be able to:

•	 Build applications using hash tables, dictionaries, and sets

•	 Implement a URL shortening service using a bloom filter

•	 Apply common algorithms such as heapsort and merge-sort for string data types

•	 Use C++ template metaprogramming to write code libraries

•	 Explore how modern hardware affects the actual runtime performance of 
programs

•	 Use appropriate modern C++ idioms such as std::array, instead of C-style arrays

Audience

This book is intended for developers or students who want to revisit basic data 
structures and algorithm design techniques. Although no mathematical background is 
required, some basic knowledge of complexity classes and Big O notation, along with 
a qualification in an algorithms course, will help you get the most out of this book. 
Familiarity with the C++ 14 standard is assumed.

Approach

This book uses a practical and hands-on approach to explain various concepts. Through 
exercises, the book shows that different data structures that theoretically should 
perform similarly actually perform quite differently on modern computers. The book 
does not delve into any theoretical analyses and instead focuses on benchmarking and 
practical results.

Hardware Requirements

For the optimal student experience, we recommend the following hardware 
configuration:

•	 Any entry-level PC/Mac with Windows, Linux, or macOS is sufficient

•	 Processor: Intel Core 2 Duo, Athlon X2, or better

•	 Memory: 4 GB RAM

•	 Storage: 10 GB available space
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Software Requirements

You'll also need the following software installed in advance:

•	 Operating system: Windows 7 SP1 32/64-bit, Windows 8.1 32/64-bit, or Windows 
10 32/64-bit, Ubuntu 14.04 or later, or macOS Sierra or later

•	 Browser: Google Chrome or Mozilla Firefox

•	 Any modern compiler and IDE (optional) that supports the C++ 14 standard.

Installation and Setup

Before you embark on this book, install the following libraries used in this book. You will 
find the steps to install these here:

Installing Boost libraries:

Some exercises and activities in the book require the Boost C++ libraries. You can find 
the libraries, as well as the installation instructions, on the following links:

Windows: https://www.boost.org/doc/libs/1_71_0/more/getting_started/windows.
html

Linux/macOS: https://www.boost.org/doc/libs/1_71_0/more/getting_started/unix-
variants.html

Installing the Code Bundle

Copy the code bundle for the class to the C:/Code folder.

Additional Resources

The code bundle for this book is also hosted on GitHub at https://github.com/
TrainingByPackt/CPP-Data-Structures-and-Algorithm-Design-Principles.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

https://www.boost.org/doc/libs/1_71_0/more/getting_started/windows.html
https://www.boost.org/doc/libs/1_71_0/more/getting_started/windows.html
https://www.boost.org/doc/libs/1_71_0/more/getting_started/unix-variants.html
https://www.boost.org/doc/libs/1_71_0/more/getting_started/unix-variants.html
https://github.com/TrainingByPackt/CPP-Data-Structures-and-Algorithm-Design-Principles
https://github.com/TrainingByPackt/CPP-Data-Structures-and-Algorithm-Design-Principles
https://github.com/PacktPublishing/






Learning Objectives

By the end of this chapter, you will be able to:

•	 Describe the importance of using the right data structure in any application

•	 Implement various built-in data structures, depending on the problem, to make 
application development easier

•	 Implement a custom linear data structure suited for given situations if the ones provided 
by C++ are not good enough for the use case

•	 Analyze real-life problems where different types of linear data structures are helpful and 
decide which one will be the most suitable for a given use case

This chapter describes the importance of using the right data structures in any application. We 
will learn how to use some of the most common data structures in C++, as well as built-in and 
custom containers, using these structures.

Lists, Stacks, and 
Queues

1
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Introduction
The management of data is one of the most important considerations to bear in mind 
while designing any application. The purpose of any application is to get some data as 
input, process or operate on it, and then provide suitable data as output. For example, 
let's consider a hospital management system. Here, we could have data about different 
doctors, patients, and archival records, among other things. The hospital management 
system should allow us to perform various operations, such as admit patients, and 
update the joining and leaving of doctors of different specialties. While the user-
facing interface would present information in a format that is relevant to the hospital 
administrators, internally, the system would manage different records and lists of items.

A programmer has at their disposal several structures to hold any data in the memory. 
The choice of the right structure for holding data, also known as a data structure, is 
crucial for ensuring reliability, performance, and enabling the required functionalities 
in the application. Besides the right data structures, the right choice of algorithms 
to access and manipulate the data is also necessary for the optimal behavior of the 
application. This book shall equip you with the ability to implement the right data 
structures and algorithms for your application design, in order to enable you to develop 
well-optimized and scalable applications.

This chapter introduces basic and commonly used linear data structures provided in 
C++. We will look at their individual designs, pros, and cons. We will also implement said 
structures with the help of exercises. Understanding these data structures will help you 
to manage data in any application in a more performant, standardized, readable, and 
maintainable way.

Linear data structures can be broadly categorized as contiguous or linked structures. 
Let's understand the differences between the two.

Contiguous Versus Linked Data Structures
Before processing the data in any application, we must decide how we want to store 
data. The answer to that question depends on what kind of operations we want to 
perform on the data and the frequency of the operations. We should choose the 
implementation that gives us the best performance in terms of latency, memory, or any 
other parameter, without affecting the correctness of the application.

A useful metric for determining the type of data structure to be used is algorithmic 
complexity, also called time complexity. Time complexity indicates the relative amount 
of time required, in proportion to the size of the data, to perform a certain operation. 
Thus, time complexity shows how the time will vary if we change the size of the dataset. 
The time complexity of different operations on any data type is dependent on how the 
data is stored inside it.
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Data structures can be divided into two types: contiguous and linked data structures. 
We shall take a closer look at both of them in the following sections.

Contiguous Data Structures

As mentioned earlier, contiguous data structures store all the elements in a single 
chunk of memory. The following diagram shows how data is stored in contiguous data 
structures:

Figure 1.1: Diagrammatic representation of contiguous data structures

In the preceding diagram, consider the larger rectangle to be the single memory chunk 
in which all the elements are stored, while the smaller rectangles represent the memory 
allocated for each element. An important thing to note here is that all the elements 
are of the same type. Hence, all of them require the same amount of memory, which is 
indicated by sizeof(type). The address of the first element is also known as the Base 
Address (BA). Since all of them are of the same type, the next element is present in the 
BA + sizeof(type) location, and the one after that is present in BA + 2 * sizeof(type), 
and so on. Therefore, to access any element at index i, we can get it with the generic 
formula: BA + i * sizeof(type).

In this case, we can always access any element using the formula instantly, regardless of 
the size of the array. Hence, the access time is always constant. This is indicated by O(1) 
in the Big-O notation.

The two main types of arrays are static and dynamic. A static array has a lifetime 
only inside its declaration block, but a dynamic array provides better flexibility since 
the programmer can determine when it should be allocated and when it should be 
deallocated. We can choose either of them depending on the requirement. Both have 
the same performance for different operations. Since this array was introduced in C, it 
is also known as a C-style array. Here is how these arrays are declared:

•	 A static array is declared as int arr[size];.

•	 A dynamic array in C is declared as int* arr = (int*)malloc(size * 
sizeof(int));.

•	 A dynamic array is declared in C++ as int* arr = new int[size];.
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A static array is aggregated, which means that it is allocated on the stack, and hence 
gets deallocated when the flow goes out of the function. On the other hand, a dynamic 
array is allocated on a heap and stays there until the memory is freed manually.

Since all the elements are present next to each other, when one of the elements is 
accessed, a few elements next to it are also brought into the cache. Hence, if you want 
to access those elements, it is a very fast operation as the data is already present in 
the cache. This property is also known as cache locality. Although it doesn't affect the 
asymptotic time complexity of any operations, while traversing an array, it can give an 
impressive advantage for contiguous data in practice. Since traversing requires going 
through all the elements sequentially, after fetching the first element, the next few 
elements can be retrieved directly from the cache. Hence, the array is said to have good 
cache locality.

Linked Data Structures

Linked data structures hold the data in multiple chunks of memory, also known as 
nodes, which may be placed at different places in the memory. The following diagram 
shows how data is stored in linked data structures:

Figure 1.2: Linked data structures

In the basic structure of a linked list, each node contains the data to be stored in that 
node and a pointer to the next node. The last node contains a NULL pointer to indicate 
the end of the list. To reach any element, we must start from the beginning of the linked 
list, that is, the head, and then follow the next pointer until we reach the intended 
element. So, to reach the element present at index i, we need to traverse through 
the linked list and iterate i times. Hence, we can say that the complexity of accessing 
elements is O(n); that is, the time varies proportionally with the number of nodes.
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If we want to insert or delete any element, and if we have a pointer to that element, the 
operation is really small and quite fast for a linked list compared to arrays. Let's take 
a look at how the insertion of an element works in a linked list. The following diagram 
illustrates a case where we are inserting an element between two elements in a linked 
list:

Figure 1.3: Inserting an element into a linked list

For insertion, once we've constructed the new node to be inserted, we just need to 
rearrange the links so that the next pointer of the preceding element (i = 1) points to the 
new element (i = 2) instead of its current element (i = 3), and the next pointer of the new 
element (i = 2) points to the current element's next element (i = 3). In this way, the new 
node becomes part of the linked list.

Similarly, if we want to remove any element, we just need to rearrange the links so that 
the element to be deleted is no longer connected to any of the list elements. Then, we 
can deallocate that element or take any other appropriate action on it.

A linked list can't provide cache locality at all since the elements are not stored 
contiguously in memory. Hence, there's no way to bring the next element into the cache 
without actually visiting it with the pointer stored in the current element. So, although, 
in theory, it has the same time complexity for traversal as an array, in practice, it gives 
poor performance.
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The following section provides a summary of the comparison of contiguous and linked 
data structures.

Comparison

The following table briefly summarizes the important differences between linked and 
contiguous data structures in general:

Figure 1.4: Table comparing contiguous and linked data structures

The following table contains a summary of the performance of arrays and linked lists 
regarding various parameters:

Figure 1.5: Table showing time complexities of some operations for arrays and linked lists

For any application, we can choose either data structure or a combination of both, 
based on the requirements and the frequencies of the different operations.

Arrays and linked lists are very common and are extensively used in any application to 
store data. Hence, the implementation of these data structures must be as bug-free and 
as efficient as possible. To avoid reinventing the code, C++ provides various structures, 
such as std::array, std::vector, and std::list. We will see some of them in more detail 
in upcoming sections.
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Limitations of C-style Arrays

Though C-style arrays do the job, they are not commonly used. There are a number of 
limitations that indicate the necessity of better solutions. Some of the major limitations 
among those are as follows:

•	 Memory allocation and deallocation have to be handled manually. A failure to 
deallocate can cause a memory leak, which is when a memory address becomes 
inaccessible.

•	 The operator[] function does not check whether the argument is larger than the 
size of an array. This may lead to segmentation faults or memory corruption if 
used incorrectly.

•	 The syntax for nested arrays gets very complicated and leads to unreadable code.

•	 Deep copying is not available as a default function. It has to be implemented 
manually.

To avoid these issues, C++ provides a very thin wrapper over a C-style array called 
std::array.

std::array
std::array automates the allocation and deallocation of memory. std::array is a 
templatized class that takes two parameters – the type of the elements and the size of 
the array.

In the following example, we will declare std::array of int of size 10, set the value of 
any of the elements, and then print that value to make sure it works:

std::array<int, 10> arr;        // array of int of size 10

arr[0] = 1;                    // Sets the first element as 1

std::cout << "First element: " << arr[0] << std::endl;

std::array<int, 4> arr2 = {1, 2, 3, 4};

std::cout << "Elements in second array: ";

  for(int i = 0; i < arr.size(); i++)

    std::cout << arr2[i] << " ";
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This example would produce the following output:

First element: 1

Elements in second array: 1 2 3 4 

As we can see, std::array provides operator[], which is same as the C-style array, 
to avoid the cost of checking whether the index is less than the size of the array. 
Additionally, it also provides a function called at(index), which throws an exception if 
the argument is not valid. In this way, we can handle the exception in an appropriate 
manner. So, if we have a piece of code where we will be accessing an element with a bit 
of uncertainty, such as an array index being dependent on user input, we can always 
catch the error using exception handling, as demonstrated in the following example.

try

{

    std::cout << arr.at(4);    // No error

    std::cout << arr.at(5);    // Throws exception std::out_of_range

}

catch (const std::out_of_range& ex)

{

    std::cerr << ex.what();

}

Apart from that, passing std::array to another function is similar to passing any built-in 
data type. We can pass it by value or reference, with or without const. Additionally, 
the syntax doesn't involve any pointer-related operations or referencing and 
de-referencing operations. Hence, the readability is much better compared to C-style 
arrays, even for multidimensional arrays. The following example demonstrates how to 
pass an array by value:

void print(std::array<int, 5> arr)

{

    for(auto ele: arr)

    {

        std::cout << ele << ", ";

    }

}

std::array<int, 5> arr = {1, 2, 3, 4, 5};

print(arr);
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This example would produce the following output:

1, 2, 3, 4, 5

We can't pass an array of any other size for this function, because the size of the 
array is a part of the data type of the function parameter. So, for example, if we pass 
std::array<int, 10>, the compiler will return an error saying that it can't match the 
function parameter, nor can it convert from one to the other. However, if we want to 
have a generic function that can work with std::array of any size, we can make the size 
of the array templatized for that function, and it will generate code for all the required 
sizes of the array. So, the signature will look like the following:

template <size_t N>

void print(const std::array<int, N>& arr)

Apart from readability, while passing std::array, it copies all the elements into a new 
array by default. Hence, an automatic deep copy is performed. If we don't want that 
feature, we can always use other types, such as reference and const reference. Thus, it 
provides greater flexibility for programmers.

In practice, for most operations, std::array provides similar performance as a C-style 
array, since it is just a thin wrapper to reduce the effort of programmers and make 
the code safer. std::array provides two different functions to access array elements – 
operator[] and at(). operator[], is similar to C-style arrays, and doesn't perform any 
check on the index. However, the at() function provides a check on the index, and 
throws an exception if the index is out of range. Due to this, it is a bit slower in practice.

As mentioned earlier, iterating over an array is a very common operation. std::array 
provides a really nice interface with the help of a range for loops and iterators. So, the 
code for printing all the elements in an array looks like this:

std::array<int, 5> arr = {1, 2, 3, 4, 5};

for(auto element: arr)

{

    std::cout << element << ' ';

}

This example would show the following output:

1 2 3 4 5 

In the preceding example, when we demonstrated printing out all of the elements, we 
iterated using an index variable, where we had to make sure that it was correctly used 
according to the size of the array. Hence, it is more prone to human error compared to 
this example.
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The reason we can iterate over std::array using a range-based loop is due to iterators. 
std::array has member functions called begin() and end(), returning a way to access 
the first and last elements. To move from one element to the next element, it also 
provides arithmetic operators, such as the increment operator (++) and the addition 
operator (+). Hence, a range-based for loop starts at begin() and ends at end(), 
advancing step by step using the increment operator (++). The iterators provide 
a unified interface across all of the dynamically iterable STL containers, such as 
std::array, std::vector, std::map, std::set, and std::list. 

Apart from iterating, all the functions for which we need to specify a position inside the 
container are based on iterators; for example, insertion at a specific position, deletion 
of elements in a range or at a specific position, and other similar functions. This makes 
the code more reusable, maintainable, and readable.

Note

For all functions in C++ that specify a range with the help of iterators, the start() 
iterator is usually inclusive, and the end() iterator is usually exclusive, unless 
specified otherwise.

Hence, the array::begin() function returns an iterator that points to the first element, 
but array::end() returns an iterator just after the last element. So, a range-based loop 
can be written as follows:

for(auto it = arr.begin(); it != arr.end(); it++)

{

    auto element = (*it);

    std::cout << element << ' ';

}

There are some other forms of iterators, such as const_iterator and reverse_iterator, 
which are also quite useful. const_iterator is a const version of the normal iterator. If 
the array is declared to be a const, its functions that are related to iterators, such as 
begin() and end(), return const_iterator.

reverse_iterator allows us to traverse the array in the reverse direction. So, its 
functions, such as the increment operator (++) and advance, are inverses of such 
operations for normal iterators.
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Besides the operator[] and at() functions, std::array also provides other accessors, as 
shown in the following table:

Figure 1.6: Table showing some accessors for std::array

The following snippet demonstrates how these functions are used:

std::array<int, 5> arr = {1, 2, 3, 4, 5};

std::cout << arr.front() << std::endl;       // Prints 1

std::cout << arr.back() << std::endl;        // Prints 5

std::cout << *(arr.data() + 1) << std::endl; // Prints 2

Another useful functionality provided by std::array is the relational operator for deep 
comparison and the copy-assignment operator for deep copy. All size operators (<, 
>, <=, >=, ==, !=) are defined for std::array to compare two arrays, provided the same 
operators are also provided for the underlying type of std::array.

C-style arrays also support all the relational operators, but these operators don't 
actually compare the elements inside the array; in fact, they just compare the pointers. 
Therefore, just the address of the elements is compared as integers instead of a deep 
comparison of the arrays. This is also known as a shallow comparison, and it is not of 
much practical use. Similarly, assignment also doesn't create a copy of the assigned 
data. Instead, it just makes a new pointer that points to the same data.

Note

Relational operators work for std::array of the same size only. This is because 
the size of the array is a part of the data type itself, and it doesn't allow values of 
two different data types to be compared.
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In the following example, we shall see how to wrap a C-style array, whose size is defined 
by the user.

Exercise 1: Implementing a Dynamic Sized Array

Let's write a small application to manage the student records in a school. The number 
of students in a class and their details will be given as an input. Write an array-like 
container to manage the data, which can also support dynamic sizing. We'll also 
implement some utility functions to merge different classes.

Perform the following steps to complete the exercise:

1.	 First, include the required headers:

#include <iostream>
#include <sstream>
#include <algorithm>

2.	 Now, let's write a basic templated structure called dynamic_array, as well as 
primary data members:

template <typename T>
class dynamic_array
{
    T* data;
    size_t n;

3.	 Now, let's add a constructor that takes the size of the array and copies it:

public:
dynamic_array(int n)
{
    this->n = n;
    data = new T[n];
}

    dynamic_array(const dynamic_array<T>& other)
  {
    n = other.n;
    data = new T[n];

    for(int i = 0; i < n; i++)
    data[i] = other[i];
  }
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4.	 Now, let's add operator[] and function() in the public accessor to support the 
access of data directly, in a similar way to std::array:

T& operator[](int index)
{
    return data[index];
}

const T& operator[](int index) const
{
    return data[index];
}

T& at(int index)
{
    if(index < n)
    return data[index];
    throw "Index out of range";
}

5.	 Now, let's add a function called size() to return the size of the array, as well as a 
destructor to avoid memory leaks:

size_t size() const
{
    return n;
}

~dynamic_array()
{
    delete[] data;   // A destructor to prevent memory leak
}

6.	 Now, let's add iterator functions to support range-based loops to iterate over 
dynamic_array:

T* begin()
{
    return data;
}

const T* begin() const
{
    return data;
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}

T* end()
{
    return data + n;
}
const T* end() const
{
    return data + n;
}

7.	 Now, let's add a function to append one array to another using the + operator. 
Let's keep it as a friend function for better usability:

friend dynamic_array<T> operator+(const dynamic_array<T>& arr1, dynamic_
array<T>& arr2)
{
    dynamic_array<T> result(arr1.size() + arr2.size());
    std::copy(arr1.begin(), arr1.end(), result.begin());
    std::copy(arr2.begin(), arr2.end(), result.begin() + arr1.size());

    return result;
}

8.	 Now, let's add a to_string function that takes a separator as a parameter with the 
default value as ",":

std::string to_string(const std::string& sep = ", ")
{
  if(n == 0)
    return "";
  std::ostringstream os;
  os << data[0];

  for(int i = 1; i < n; i++)
    os << sep << data[i];

  return os.str();
}
};
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9.	 Now, let's add a struct for students. We'll just keep the name and the standard 
(that is, the grade/class in which the student is studying) for simplicity, and also 
add operator<< to print it properly:

struct student
{
    std::string name;
    int standard;
};

std::ostream& operator<<(std::ostream& os, const student& s)
{
    return (os << "[Name: " << s.name << ", Standard: " << s.standard << 
"]");
}

10.	 Now, let's add a main function to use this array:

int main()
{
    int nStudents;
    std::cout << "Enter number of students in class 1: ";
    std::cin >> nStudents;

dynamic_array<student> class1(nStudents);
for(int i = 0; i < nStudents; i++)
{
    std::cout << "Enter name and class of student " << i + 1 << ": ";
    std::string name;
    int standard;
    std::cin >> name >> standard;
    class1[i] = student{name, standard};
}

// Now, let's try to access the student out of range in the array
try
{
    class1[nStudents] = student{"John", 8};  // No exception, undefined 
behavior
    std::cout << "class1 student set out of range without exception" << 
std::endl;
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    class1.at(nStudents) = student{"John", 8};  // Will throw exception
}
catch(...)
{
std::cout << "Exception caught" << std::endl;
}

auto class2 = class1;  // Deep copy

    std::cout << "Second class after initialized using first array: " << 
class2.to_string() << std::endl;

    auto class3 = class1 + class2;
    // Combines both classes and creates a bigger one

    std::cout << "Combined class: ";
    std::cout << class3.to_string() << std::endl;

    return 0;
}

11.	 Execute the preceding code with three students – Raj(8), Rahul(10), and Viraj(6) 
as input. The output looks like the following in the console:

Enter number of students in class 1 : 3
Enter name and class of student 1: Raj 8
Enter name and class of student 2: Rahul 10
Enter name and class of student 3: Viraj 6
class1 student set out of range without exception
Exception caught
Second class after initialized using first array : [Name: Raj, Standard: 
8], [Name: Rahul, Standard: 10], [Name: Viraj, Standard: 6]
Combined class : [Name: Raj, Standard: 8], [Name: Rahul, Standard: 10], 
[Name: Viraj, Standard: 6], [Name: Raj, Standard: 8], [Name: Rahul, 
Standard: 10], [Name: Viraj, Standard: 6]

Most of the functions mentioned here have a similar implementation to that of 
std::array.

Now that we have seen various containers, we shall learn how to implement a container 
that can accept any kind of data and store it in a common form in the following 
exercise.
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Exercise 2: A General-Purpose and Fast Data Storage Container Builder

In this exercise, we will write a function that takes any number of elements of any type, 
which can, in turn, be converted into a common type. The function should also return a 
container having all the elements converted into that common type, and it should also 
be fast to traverse:

1.	 Let's begin by including the required libraries:

#include <iostream>
#include <array>
#include <type_traits>

2.	 First, we'll try to build the signature of the function. Since the return type is a 
container that is fast to traverse, we'll go ahead with std::array. To allow any 
number of parameters, we'll use variadic templates:

template<typename ... Args>
std::array<?,?> build_array(Args&&... args)

Considering the requirement that the container should be fast to traverse for the 
return type, we can choose an array or a vector. Since the number of elements is 
known at the compile time based on the number of parameters to the function, we 
can go ahead with std::array.

3.	 Now, we must provide the type of the elements and the number of elements for 
std::array. We can use the std::common_type template to find out what the type 
of elements inside std::array will be. Since this is dependent on arguments, we'll 
provide the return type of the function as a trailing type:

template<typename ... Args>
auto build_array(Args&&... args) -> std::array<typename std::common_
type<Args...>::type, ?>
{
    using commonType = typename std::common_type<Args...>::type;
    // Create array
}
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4.	 As shown in the preceding code, we now need to figure out two things – the 
number of elements, and how to create the array with commonType:

template< typename ... Args>
auto build_array(Args&&... args) -> std::array<typename std::common_
type<Args...>::type, sizeof...(args)>
{
    using commonType = typename std::common_type<Args...>::type;
    return {std::forward<commonType>(args)...};
}

5.	 Now, let's write the main function to see how our function works:

int main()
{
    auto data = build_array(1, 0u, 'a', 3.2f, false);
    for(auto i: data)
        std::cout << i << " ";
    std::cout << std::endl;
}

6.	 Running the code should give the following output:

1 0 97 3.2 0

As we can see, all final output is in the form of float, since everything can be 
converted to float.

7.	 To test this further, we can add the following inside the main function and test the 
output:

auto data2 = build_array(1, "Packt", 2.0);

With this modification, we should get an error saying that all the types can't 
be converted to a common type. The exact error message should mention that 
template deduction has failed. This is because there is no single type in which we 
can convert both the string and number.

Builder functions, such as the one we have created in this exercise, can be used when 
you are not sure about the type of data, yet you need to optimize efficiency.

There are a lot of useful features and utility functions that std::array doesn't provide. 
One major reason for this is to maintain similar or better performance and memory 
requirements compared to C-style arrays.

For more advanced features and flexibility, C++ provides another structure called 
std::vector. We will examine how this works in the next section.
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std::vector
As we saw earlier, std::array is a really good improvement over C-style arrays. But 
there are some limitations of std::array, where it lacks functions for some frequent use 
cases while writing applications. Here are some of the major drawbacks of std::array:

•	 The size of std::array must be constant and provided at compile time, and fixed. 
So, we can't change it at runtime.

•	 Due to size limitations, we can't insert or remove elements from the array.

•	 No custom allocation is possible for std::array. It always uses stack memory.

In the majority of real-life applications, data is quite dynamic and not a fixed size. For 
instance, in our earlier example of a hospital management system, we can have more 
doctors joining the hospital, we can have more patients in emergencies, and so on. 
Hence, knowing the size of the data in advance is not always possible. So, std::array is 
not always the best choice and we need something with dynamic size.

Now, we'll take a look at how std::vector provides a solution to these problems.

std::vector – Variable Length Array

As the title suggests, std::vector solves one of the most prominent problems of arrays 
– fixed size. std::vector does not require us to provide its length during initialization.

Here are some of the ways in which we can initialize a vector:

std::vector<int> vec;

// Declares vector of size 0

std::vector<int> vec = {1, 2, 3, 4, 5};

// Declares vector of size 5 with provided elements

std::vector<int> vec(10);

// Declares vector of size 10

std::vector<int> vec(10, 5);

// Declares vector of size 10 with each element's value = 5
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As we can see from the first initialization, providing the size is not mandatory. If we 
don't specify the size explicitly, and if we don't infer it by specifying its elements, 
the vector is initialized with the capacity of elements depending on the compiler 
implementation. The term "size" refers to the number of elements actually present in 
the vector, which may differ from its capacity. So, for the first initialization, the size will 
be zero, but the capacity could be some small number or zero.

We can insert elements inside the vector using the push_back or insert functions. push_
back will insert elements at the end. insert takes the iterator as the first parameter for 
the position, and it can be used to insert the element in any location. push_back is a very 
frequently used function for vectors because of its performance. The pseudocode of the 
algorithm for push_back would be as follows:

push_back(val):

    if size < capacity

    // If vector has enough space to accommodate this element

    - Set element after the current last element = val

    - Increment size

    - return; 

    if vector is already full

    - Allocate memory of size 2*size

    - Copy/Move elements to newly allocated memory

    - Make original data point to new memory

    - Insert the element at the end

The actual implementation might differ a bit, but the logic remains the same. As we 
can see, if there's enough space, it only takes O(1) time to insert something at the back. 
However, if there's not enough space, it will have to copy/move all the elements, which 
will take O(n) time. Most of the implementations double the size of the vector every 
time we run out of capacity. Hence, the O(n) time operation is done after n elements. 
So, on average, it just takes one extra step, making its average time complexity closer to 
O(1). This, in practice, provides pretty good performance, and, hence, it is a highly used 
container.

For the insert function, you don't have any option other than to shift the elements that 
come after the given iterator to the right. The insert function does that for us. It also 
takes care of reallocation whenever it is required. Due to the need to shift the elements, 
it takes O(n) time. The following examples demonstrate how to implement vector 
insertion functions.
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Consider a vector with the first five natural numbers:

std::vector<int> vec = {1, 2, 3, 4, 5};

Note

Vector doesn't have a push_front function. It has the generic insert function, 
which takes the iterator as an argument for the position.

The generic insert function can be used to insert an element at the front, as follows:

vec.insert(int.begin(), 0);

Let's take a look a few more examples of the push_back and insert functions:

std::vector<int> vec;

// Empty vector {}

vec.push_back(1);

// Vector has one element {1}

vec.push_back(2);

// Vector has 2 elements {1, 2}

vec.insert(vec.begin(), 0);

// Vector has 3 elements {0, 1, 2}

vec.insert(find(vec.begin(), vec.end(), 1), 4);

// Vector has 4 elements {0, 4, 1, 2}

As shown in the preceding code, push_back inserts an element at the end. Additionally, 
the insert function takes the insertion position as a parameter. It takes it in the form of 
an iterator. So, the begin() function allows us to insert an element at the beginning.
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Now that we have learned about the normal insertion functions, let's take a look at 
some better alternatives, available for vectors, compared to the push_back and insert 
functions. One of the drawbacks of push_back and insert is that they first construct 
the element, and then either copy or move the element to its new location inside the 
vector's buffer. This operation can be optimized by calling a constructor for the new 
element at the new location itself, which can be done by the emplace_back and emplace 
functions. It is recommended that you use these functions instead of normal insertion 
functions for better performance. Since we are constructing the element in place, we 
just need to pass the constructor parameters, instead of the constructed value itself. 
Then, the function will take care of forwarding the arguments to the constructor at the 
appropriate location.

std::vector also provides pop_back and erase functions to remove elements from it. 
pop_back removes the last element from the vector, effectively reducing the size by 
one. erase has two overloads – to remove the single element provided by the iterator 
pointing to it, and to remove a range of elements provided by the iterator, where the 
range is defined by defining the first element to be removed (inclusive) and the last 
element to be removed (exclusive). The C++ standard doesn't require these functions to 
reduce the capacity of the vector. It depends entirely on the compiler implementation. 
pop_back doesn't require any rearranging of elements, and hence can be completed very 
quickly. Its complexity is O(1). However, erase requires the shifting of the elements, and 
hence takes O(n) time. In the following exercise, we shall see how these functions are 
implemented.

Now, let's take a look at the example about removing elements from a vector in different 
ways:

Consider a vector with 10 elements – {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}:

vec.pop_back();

// Vector has now 9 elements {0, 1, 2, 3, 4, 5, 6, 7, 8}

vec.erase(vec.begin());

// vector has now 7 elements {1, 2, 3, 4, 5, 6, 7, 8}

vec.erase(vec.begin() + 1, vec.begin() + 4);

// Now, vector has 4 elements {1, 5, 6, 7, 8}
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Now, let's take a look at some other useful functions:

•	 clear(): This function simply empties the vector by removing all of the elements.

•	 reserve(capacity): This function is used to specify the capacity of the vector. 
If the value specified as the parameter is greater than the current capacity, it 
reallocates memory and the new capacity will be equal to the parameter. However, 
for all other cases, it will not affect the vector's capacity. This function doesn't 
modify the size of the vector.

•	 shrink_to_fit(): This function can be used to free up the extra space. After calling 
this function, size and capacity become equal. This function can be used when we 
are not expecting a further increase in the size of the vector. 

Allocators for std::vector

std::vector resolves the drawback of std::array regarding custom allocators by 
allowing us to pass an allocator as a template parameter after the type of data.

To use custom allocators, we follow certain concepts and interfaces. Since a vector 
uses allocator functions for most of its behaviors related to memory access, we need 
to provide those functions as part of the allocator – allocate, deallocate, construct, 
and destroy. This allocator will have to take care of memory allocation, deallocation, 
and handling so as not to corrupt any data. For advanced applications, where relying 
on automatic memory management, mechanisms can be too costly, and where the 
application has got its own memory pool or similar resource that must be used instead 
of default heap memory, a customer allocator is very handy.

Therefore, std::vector is a really good alternative to std::array and provides a lot more 
flexibility in terms of its size, growth, and other aspects. Asymptotically, all the similar 
functions of an array have the same time complexity as a vector. We usually pay extra 
performance cost only for the extra features, which is quite reasonable. For an average 
case, the performance of a vector is not very far from an array. Hence, in practice, 
std::vector is one of the most commonly used STL containers in C++ because of its 
flexibility and performance.
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std::forward_list
So far, we've only seen array-like structures, but, as we saw, insertion and deletion in 
the middle of the data structures are very inefficient operations for contiguous data 
structures. And that's where linked-list-like structures come into the picture. A lot of 
applications require frequent insertion and deletion in the middle of a data structure. 
For example, any browser with multiple tabs can have an extra tab added at any point in 
time and at any location. Similarly, any music player will have a list of songs that you can 
play in a loop, and you can also insert any songs in the middle. In such cases, we can use 
a linked-list structure for good performance. We'll see the use case of a music player in 
Activity 1, Implementing a Song Playlist. Now, let's explore what kind of containers C++ 
provides us with.

The basic structure of a linked list requires us to have a pointer and to manage memory 
allocation and deallocation manually using the new and delete operators. Although it is 
not difficult, it can lead to bugs that are difficult to trace. Hence, just like std::array 
provides a thin wrapper over C-style arrays, std::forward_list provides a thin wrapper 
over a basic linked list.

The purpose of std::forward_list is to provide some additional functionality without 
compromising performance compared to a basic linked list. To maintain performance, 
it doesn't provide functions to get the size of the list or to get any element but the first 
one directly. Hence, it has a function called front() to get the reference to the first 
element, but nothing like back() to access the last element. It does provide functions 
for common operations, such as insertion, deletion, reverse, and splice. These functions 
don't affect the memory requirements or performance over basic linked lists.

Additionally, just like std::vector, std::forward_list can also take a custom allocator 
as the second template parameter if required. Hence, we can easily use it for advanced 
applications that benefit from custom memory management.

Inserting and Deleting Elements in forward_list

std:: forward_list provides the push_front and insert_after functions, which can be 
used to insert an element in a linked list. Both of these are slightly different compared 
to insertion functions for vectors. push_front is useful for inserting an element at the 
front. Since forward_list doesn't have direct access to the last element, it doesn't 
provide a push_back function. For insertion at a specific location, we use insert_after 
instead of insert. This is because inserting an element in a linked list requires updating 
the next pointer of the element, after which we want to insert a new element. If we 
provide just the iterator, where we want to insert a new element, we can't get access to 
the previous element quickly, since traversing backward is not allowed in forward_list. 
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Since this is a pointer-based mechanism, we don't really need to shift the elements 
during insertion. Hence, both of the insertion functions are quite a bit faster compared 
to any array-based structures. Both the functions just modify the pointers to insert 
a new element at the intended position. This operation is not dependent on the size 
of the list and therefore has a time complexity of O(1). We shall take a look at the 
implementation of these functions in the following exercise.

Now, let's see how we can insert elements in a linked list:

std::forward_list<int> fwd_list = {1, 2, 3};

fwd_list.push_front(0);

// list becomes {0, 1, 2, 3}

auto it = fwd_list.begin();

fwd_list.insert_after(it, 5);

// list becomes {0, 5, 1, 2, 3}

fwd_list.insert_after(it, 6);

// list becomes {0, 6, 5, 1, 2, 3}

forward_list also provides emplace_front and emplace_after, which is similar to emplace 
for a vector. Both of these functions do the same thing as insertion functions, but more 
efficiently by avoiding extra copying and moving.

forward_list also has pop_front and erase_after functions for the deletion of elements. 
pop_front, as the name suggests, removes the first element. Since it doesn't require 
any shifting, the operation is quite fast in practice and has a time complexity of O(1). 
erase_after has two overloads – to remove a single element (by taking an iterator to 
its previous element), and to remove multiple elements in a range (by taking an iterator 
to the element before the first element of the range and another iterator to the last 
element).

The time complexity of the erase_after function is linear to the number of elements 
that are erased because the deletion of elements can't be done via deallocating just a 
single chunk of memory. Since all the nodes are scattered across random locations in 
memory, the function needs to deallocate each of them separately.
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Now, let's see how we can remove the elements from the list:

std::forward_list<int> fwd_list = {1, 2, 3, 4, 5};

fwd_list.pop_front();

// list becomes {2, 3, 4, 5}

auto it = fwd_list.begin();

fwd_list.erase_after(it);

// list becomes {2, 4, 5}

fwd_list.erase_after(it, fwd_list.end());

// list becomes {2}

Let's explore what other operations we can do with forward_list in the following 
section.

Other Operations on forward_list

Apart from the erase functions to delete elements based on its position determined 
by iterators, forward_list also provides the remove and remove_if functions to remove 
elements based on their values. The remove function takes a single parameter – the 
value of the elements to be removed. It removes all the elements that match the given 
element based on the equality operator defined for the type of the value. Without 
the equality operator, the compiler doesn't allow us to call that function and throws 
a compilation error. Since remove only deletes the elements based on the equality 
operator, it is not possible to use it for deletion based on other conditions, since we 
can't change the equality operator after defining it once. For a conditional removal, 
forward_list provides the remove_if function. It takes a predicate as a parameter, which 
is a function taking an element of the value type as a parameter, and a Boolean as the 
return value. So, all the elements for which the predicate returns true are removed from 
the list. With the latest C++ versions, we can easily specify the predicate with lambdas 
as well. The following exercise should help you to understand how to implement these 
functions.
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Exercise 3: Conditional Removal of Elements from a Linked List Using  

remove_if 

In this exercise, we'll use the sample information of a few Indian citizens during the 
elections and remove ineligible citizens, based on their age, from the electoral roll. For 
simplicity, we'll just store the names and ages of the citizens.

We shall store the data in a linked list and remove the required elements using  
remove_if, which provides a way to remove elements that meet a certain condition, 
instead of defining the positions of the elements to be removed:

1.	 Let's first include the required headers and add the struct citizen:

#include <iostream>
#include <forward_list>

struct citizen
{
    std::string name;
    int age;
};

std::ostream& operator<<(std::ostream& os, const citizen& c)
{
    return (os << "[Name: " << c.name << ", Age: " << c.age << "]");
}

2.	 Now, let's write a main function and initialize a few citizens in a std::forward_list. 
We'll also make a copy of it to avoid having to initialize it again:

int main()
{
  std::forward_list<citizen> citizens = {{"Raj", 22}, {"Rohit", 25}, 
{"Rohan", 17}, {"Sachin", 16}};

  auto citizens_copy = citizens;

  std::cout << "All the citizens: ";
  for (const auto &c : citizens)
      std::cout << c << " ";
  std::cout << std::endl;
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3.	 Now, let's remove all of the ineligible citizens from the list:

citizens.remove_if(
    [](const citizen& c)
    {
        return (c.age < 18);
    });

std::cout << "Eligible citizens for voting: ";
for(const auto& c: citizens)
    std::cout << c << " ";
std::cout << std::endl;

The remove_if function removes all the elements for which the given predicate is 
true. Here, we've provided a lambda since the condition is very simple. If it were 
a complicated condition, we could also write a normal function that takes one 
parameter of the underlying type of list and returns a Boolean value. 

4.	 Now, let's find out who'll be eligible for voting next year:

citizens_copy.remove_if(
    [](const citizen& c)
    {
    // Returns true if age is less than 18
        return (c.age != 17);
    });

std::cout << "Citizens that will be eligible for voting next year: ";
for(const auto& c: citizens_copy)
    std::cout << c << " ";
std::cout << std::endl;
}

As you can see, we are only keeping those citizens with an age of 17.

5.	 Run the exercise. You should get an output like this:

All the citizens: [Name: Raj, Age: 22] [Name: Rohit, Age: 25] [Name: 
Rohan, Age: 17] [Name: Sachin, Age: 16] 
Eligible citizens for voting: [Name: Raj, Age: 22] [Name: Rohit, Age: 25] 
Citizens that will be eligible for voting next year: [Name: Rohan, Age: 
17] 
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The remove_if function has a time complexity of O(n) since it simply traverses the list 
once while removing all the elements as required. If we want to remove the elements 
with specific values, we can use another version of remove, which simply takes one 
parameter of the object and removes all the objects from the list matching the given 
value. It also requires us to implement the == operator for the given type.

forward_list also provides a sort function to sort the data. All the array-related 
structures can be sorted by a generic function, std::sort(first iterator, last 
iterator). However, it can't be used by linked list-based structures because we can't 
access any data randomly. This also makes the iterators provided by forward_list 
different from the ones for an array or a vector. We'll take a look at this in more detail 
in the next section. The sort function that is provided as part of forward_list has two 
overloads – sort based on the less than operator (<), and sort based on a comparator 
provided as a parameter. The default sort function uses std::less<value_type> for 
comparison. It simply returns true if the first parameter is less than the second one, and 
hence, requires us to define the less than operator (<) for custom-defined types. 

In addition to this, if we want to compare it based on some other parameters, we can 
use the parametric overload, which takes a binary predicate. Both the overloads have a 
linearathmic time complexity – O(n × log n). The following example demonstrates both 
overloads of sort:

std::forward_list<int> list1 = {23, 0, 1, -3, 34, 32};

list1.sort();

// list becomes {-3, 0, 1, 23, 32, 34}

list1.sort(std::greater<int>());

// list becomes {34, 32, 23, 1, 0, -3}

Here, greater<int> is a predicate provided in the standard itself, which is a wrapper 
over the greater than operator (>) to sort the elements into descending order, as we can 
see from the values of the list..
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Other functions provided in forward_list are reverse and unique. The reverse 
function simply reverses the order of the elements, in a time duration that is linear 
to the number of elements present in the list, that is, with a time complexity of O(n). 
The unique function keeps only the unique elements in the list and removes all the 
repetitive valued functions except the first one. Since it is dependent on the equality 
of the elements, it has two overloads – the first takes no parameters and uses the 
equality operator for the value type, while the second takes a binary predicate with 
two parameters of the value type. The unique function was built to be linear in time 
complexity. Hence, it doesn't compare each element with every other element. Instead, 
it only compares consecutive elements for equality and removes the latter one if it is 
the same as the former one based on the default or custom binary predicate. Hence, to 
remove all of the unique elements from the list using the unique function, we need to 
sort the elements before calling the function. With the help of a given predicate, unique 
will compare all the elements with their neighboring elements and remove the latter 
elements if the predicate returns true.

Let's now see how we can use the reverse, sort, and unique functions for lists:

std::forward_list<int> list1 = {2, 53, 1, 0, 4, 10};

list1.reverse();

// list becomes {2, 53, 1, 0, 4, 10}

list1 = {0, 1, 0, 1, -1, 10, 5, 10, 5, 0};

list1.sort();

// list becomes {-1, 0, 0, 0, 1, 1, 5, 5, 10, 10}

list1.unique();

// list becomes {-1, 0, 1, 5, 10}

list1 = {0, 1, 0, 1, -1, 10, 5, 10, 5, 0};

list1.sort();

// list becomes {-1, 0, 0, 0, 1, 1, 5, 5, 10, 10}
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The following example will remove elements if they are not greater than the previously 
valid element by at least 2:

list1.unique([](int a, int b) { return (b - a) < 2; });

// list becomes {-1, 1, 5, 10}

Note

Before calling the unique function, the programmer must make sure that the 
data is already sorted. Hence, we are calling the sort function right before it. The 
unique function compares the element with the previous element that has already 
met the condition. Additionally, it always keeps the first element of the original list. 
Hence, there's always an element to compare with.

In the next section, we will take a look at how the forward_list iterator is different from 
the vector/array iterators.

Iterators
As you may have noticed in some of the examples for arrays and vectors, we add 
numbers to the iterators. Iterators are like pointers, but they also provide a common 
interface for STL containers. The operations on these iterators are strictly based on the 
type of iterators, which is dependent on the container. Iterators for vectors and arrays 
are the most flexible in terms of functionality. We can access any element from the 
container directly, based on its position, using operator[] because of the contiguous 
nature of the data. This iterator is also known as a random access iterator. However, 
for forward_list, there is no direct way to traverse back, or even go from one node to 
its preceding node, without starting from the beginning. Hence, the only arithmetic 
operator allowed for this is increment. This iterator is also known as a forward iterator.

There are other utility functions that we can use, such as advance, next, and prev, 
depending on the type of iterators. next and prev take an iterator and a distance value, 
and then return the iterator pointing to the element that is at the given distance from 
the given iterator. This works as expected provided that the given iterator supports the 
operation. For example, if we try to use the prev function with a forward iterator, it will 
throw a compilation error, since this iterator is a forward iterator and can only move 
forward. The time taken by these functions depends on the type of iterators used. All 
of them are constant time functions for random access iterators, since addition and 
subtraction are constant-time operations. For the rest of the iterators, all of them are 
linear to the distance that needs to be traversed forward or backward. We shall use 
these iterators in the following exercise.
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Exercise 4: Exploring Different Types of Iterators

Let's say that we have a list of the winners of the Singapore F1 Grand Prix from the last 
few years. With the help of vector iterators, we'll discover how we can retrieve useful 
information from this data. After that, we'll try to do the same thing with forward_list, 
and see how it differs from vector iterators:

1.	 Let's first include the headers:

#include <iostream>
#include <forward_list>
#include <vector>

int main()
{

2.	 Let's write a vector with a list of winners:

std::vector<std::string> vec = {"Lewis Hamilton", "Lewis Hamilton", "Nico 
Roseberg", "Sebastian Vettel", "Lewis Hamilton", "Sebastian Vettel", 
"Sebastian Vettel", "Sebastian Vettel", "Fernando Alonso"};

auto it = vec.begin();       // Constant time
std::cout << "Latest winner is: " << *it << std::endl;

it += 8;                    // Constant time
std::cout << "Winner before 8 years was: " << *it << std::endl;

advance(it, -3);            // Constant time
std::cout << "Winner before 3 years of that was: " << *it << std::endl;

3.	 Let's try the same with the forward_list iterators and see how they differ from 
vector iterators:

std::forward_list<std::string> fwd(vec.begin(), vec.end());

auto it1 = fwd.begin();
std::cout << "Latest winner is: " << *it << std::endl;

advance(it1, 5);   // Time taken is proportional to the number of elements

std::cout << "Winner before 5 years was: " << *it << std::endl;
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// Going back will result in compile time error as forward_list only 
allows us to move towards the end.

// advance(it1, -2);      // Compiler error
}

4.	 Running this exercise should produce the following output:

Latest winner is : Lewis Hamilton
Winner before 8 years was : Fernando Alonso
Winner before 3 years of that was : Sebastian Vettel
Latest winner is : Sebastian Vettel
Winner before 5 years was : Sebastian Vettel

5.	 Now, let's see what happens if we add a number to this iterator by putting the 
following line inside the main function at the end:

it1 += 2;

We'll get an error message similar to this:

no match for 'operator+=' (operand types are std::_Fwd_list_iterator<int>' 
and 'int')

The various iterators we have explored in this exercise are quite useful for easily 
fetching any data from your dataset.

As we have seen, std::array is a thin wrapper over a C-style array, and std::forward_
list is nothing but a thin wrapper over a singly linked list. It provides a simple and less 
error-prone interface without compromising on performance or memory.

Apart from that, since we can access any element immediately in the vector, the 
addition and subtraction operations on the vector iterator are O(1). On the other hand, 
forward_list only supports access to an element by traversing to it. Hence, its iterators' 
addition operation is O(n), where n is the number of steps we are advancing.

In the following exercise, we shall make a custom container that works in a similar way 
to std::forward_list, but with some improvements. We shall define many functions 
that are equivalent to forward_list functions. It should also help you understand how 
these functions work under the hood.
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Exercise 5: Building a Basic Custom Container

In this exercise, we're going to implement an std::forward_list equivalent container 
with some improvements. We'll start with a basic implementation called singly_ll, and 
gradually keep on improving:

1.	 Let's add the required headers and then start with the basic implementation of 
singly_ll with a single node:

#include <iostream>
#include <algorithm>

struct singly_ll_node
{
    int data;
    singly_ll_node* next;
};

2.	 Now, we'll implement the actual singly_ll class, which wraps the node around for 
better interfacing:

class singly_ll
{
public:
    using node = singly_ll_node;
    using node_ptr = node*;

private:
    node_ptr head;

3.	 Now, let's add push_front and pop_front, just like in forward_list:

public:
void push_front(int val)
{
    auto new_node = new node{val, NULL};
    if(head != NULL)
        new_node->next = head;
    head = new_node;
}

void pop_front()
{
    auto first = head;
    if(head)
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    {
        head = head->next;
        delete first;
    }
    else
        throw "Empty ";
}

4.	 Let's now implement a basic iterator for our singly_ll class, with constructors 
and accessors:

struct singly_ll_iterator
{
private:
    node_ptr ptr;
public:
    singly_ll_iterator(node_ptr p) : ptr(p)
    {
}

int& operator*()
{
    return ptr->data;
}

node_ptr get()
{
    return ptr;
}

5.	 Let's add the operator++ functions for pre- and post-increments:

singly_ll_iterator& operator++()     // pre-increment
{
        ptr = ptr->next;
        return *this;
}

singly_ll_iterator operator++(int)    // post-increment
{
    singly_ll_iterator result = *this;
++(*this);
return result;
}
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6.	 Let's add equality operations as friend functions:

    friend bool operator==(const singly_ll_iterator& left, const singly_
ll_iterator& right)
    {
        return left.ptr == right.ptr;
    }

    friend bool operator!=(const singly_ll_iterator& left, const singly_
ll_iterator& right)
    {
        return left.ptr != right.ptr;
    }
};

7.	 Let's jump back to our linked list class. Now that we've got our iterator class, let's 
implement the begin and end functions to ease the traversal. We'll also add const 
versions for both:

singly_ll_iterator begin()
{
    return singly_ll_iterator(head);
}

singly_ll_iterator end()
{
    return singly_ll_iterator(NULL);
}

singly_ll_iterator begin() const
{
    return singly_ll_iterator(head);
}

singly_ll_iterator end() const
{
    return singly_ll_iterator(NULL);
}



Iterators | 37

8.	 Let's implement a default constructor, a copy constructor for deep copying, and a 
constructor with initializer_list:

singly_ll() = default;

singly_ll(const singly_ll& other) : head(NULL)
{
    if(other.head)
        {
            head = new node;
            auto cur = head;
            auto it = other.begin();
            while(true)
            {
                cur->data = *it;

                auto tmp = it;
                ++tmp;
                if(tmp == other.end())
                    break;

                cur->next = new node;
                cur = cur->next;
                it = tmp;
            }
        }
}

singly_ll(const std::initializer_list<int>& ilist) : head(NULL)
{
    for(auto it = std::rbegin(ilist); it != std::rend(ilist); it++)
            push_front(*it);
}
};
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9.	 Let's write a main function to use the preceding functions:

int main()
{
    singly_ll sll = {1, 2, 3};
    sll.push_front(0);

    std::cout << "First list: ";
    for(auto i: sll)
        std::cout << i << " ";
    std::cout << std::endl;
    
    auto sll2 = sll;
    sll2.push_front(-1);
    std::cout << "Second list after copying from first list and inserting 
-1 in front: ";
    for(auto i: sll2)
        std::cout << i << ' ';  // Prints -1 0 1 2 3
    std::cout << std::endl;

    std::cout << "First list after copying - deep copy: ";
for(auto i: sll)
        std::cout << i << ' ';  // Prints 0 1 2 3
    std::cout << std::endl;
}

10.	 Running this exercise should produce the following output:

First list: 0 1 2 3
Second list after copying from first list and inserting -1 in front: -1 0 1 
2 3 
First list after copying - deep copy: 0 1 2 3

As we can see in the preceding example, we are able to initialize our list using 
std::initializer_list. We can call the push, pop_front, and back functions. As we can 
see, sll2.pop_back only removed the element from sll2, and not sll. sll is still intact 
with all five elements. Hence, we can perform a deep copy as well.
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Activity 1: Implementing a Song Playlist

In this activity, we'll look at some applications for which a doubly-linked list is not 
enough or not convenient. We will build a tweaked version that fits the application. We 
often encounter cases where we have to customize default implementations, such as 
when looping songs in a music player or in games where multiple players take a turn 
one by one in a circle.

These applications have one common property – we traverse the elements of the 
sequence in a circular fashion. Thus, the node after the last node will be the first node 
while traversing the list. This is called a circular linked list.

We'll take the use case of a music player. It should have following functions supported:

1.	 Create a playlist using multiple songs.

2.	 Add songs to the playlist.

3.	 Remove a song from the playlist.

4.	 Play songs in a loop (for this activity, we will print all the songs once). 

Note

You can refer to Exercise 5, Building a Basic Custom Container where we built a 
container from scratch supporting similar functions.

Here are the steps to solve the problem:

1.	 First, design a basic structure that supports circular data representation.

2.	 After that, implement the insert and erase functions in the structure to support 
various operations.

3.	 We have to write a custom iterator. This is a bit tricky. The important thing is 
to make sure that we are able to traverse the container using a range-based 
approach for a loop. Hence, begin() and end() should return different addresses, 
although the structure is circular.

4.	 After building the container, build a wrapper over it, which will store different 
songs in the playlist and perform relevant operations, such as next, previous, print 
all, insert, and remove.

Note

The solution to this activity can be found on page 476.
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std::forward_list has several limitations. std::list presents a much more flexible 
implementation of lists and helps overcome some of the shortcomings of forward_list.

std::list
As seen in the previous section, std::forward_list is just a nice and thin wrapper over 
the basic linked list. It doesn't provide functions to insert elements at the end, traverse 
backward, or get the size of the list, among other useful operations. The functionality 
is limited to save memory and to retain fast performance. Apart from that, the iterators 
of forward_list can support very few operations. In most practical situations in any 
application, functions such as those for inserting something at the end and getting the 
size of the container are very useful and frequently used. Hence, std::forward_list 
is not always the desired container, where fast insertion is required. To overcome 
these limitations of std::forward_list, C++ provides std::list, which has several 
additional features owing to the fact that it is a bidirectional linked list, also known as 
a doubly-linked list. However, note that this comes at the cost of additional memory 
requirements.

The plain version of a doubly-linked list looks something like this:

struct doubly_linked_list

{

    int data;

    doubly_linked_list *next, *prev;

};

As you can see, it has one extra pointer to point to the previous element. Thus, it 
provides us with a way in which to traverse backward, and we can also store the size 
and the last element to support fast push_back and size operations. Also, just like 
forward_list, it can also support customer allocator as a template parameter.

Common Functions for std::list

Most of the functions for std::list are either the same or similar to the functions of 
std::forward_list, with a few tweaks. One of the tweaks is that function names ending 
with _after have their equivalents without _after. Therefore, insert_after and emplace_
after become simply insert and emplace. This is because, with the std::list iterator, 
we can also traverse backward, and hence there's no need to provide the iterator of the 
previous element. Instead, we can provide the iterator of the exact element at which we 
want to perform the operation. Apart from that, std::list also provides fast operations 
for push_back, emplace_back, and pop_back. The following exercise demonstrates the use 
of insertion and deletion functions for std::list.
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Exercise 6: Insertion and Deletion Functions for std::list

In this exercise, we shall create a simple list of integers using std::list and explore 
various ways in which we can insert and delete elements from it:

1.	 First of all, let's include the required headers:

#include <iostream>
#include <list>

int main()
{

2.	 Then, initialize a list with a few elements and experiment on it with various 
insertion functions:

std::list<int> list1 = {1, 2, 3, 4, 5};

list1.push_back(6);
// list becomes {1, 2, 3, 4, 5, 6}

list1.insert(next(list1.begin()), 0);
// list becomes {1, 0, 2, 3, 4, 5, 6}

list1.insert(list1.end(), 7);
// list becomes {1, 0, 2, 3, 4, 5, 6, 7}

As you can see, the push_back function inserts an element at the end. The insert 
function inserts 0 after the first element, which is indicated by next(list1.
begin()). After that, we are inserting 7 after the last element, which is indicated by 
list1.end().

3.	 Now, let's take a look at the remove function, pop_back, which was not present in 
forward_list:

list1.pop_back();
// list becomes {1, 0, 2, 3, 4, 5, 6}

std::cout << "List after insertion & deletion functions: ";
for(auto i: list1)
    std::cout << i << " ";
}
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4.	 Running this exercise should give the following output:

List after insertion & deletion functions: 1 0 2 3 4 5 6

Here, we are removing the last element that we just inserted.

Note

Although push_front, insert, pop_front, and erase have the same time 
complexity as equivalent functions for forward_list, these are slightly more 
expensive for std::list. The reason for this is that there are two pointers in each 
node of a list instead of just one, as in the case of forward_list. So, we have 
to maintain the validity of the value of both the pointers. Hence, when we are 
repointing these variables, we need to make almost double the effort compared to 
singly linked lists.

Earlier, we saw an insertion for a singly-linked list. Let's now demonstrate what pointer 
manipulation looks like for a doubly-linked list in the following diagram:

Figure 1.7: Inserting an element in a doubly linked list

As you can see, the number of operations is constant even in the case of std::list; 
however, compared to forward_list, we have to fix both the prev and next pointers 
in order to maintain a doubly-linked list, and this costs us almost double in terms of 
memory and performance compared to forward_list. A similar idea applies to other 
functions as well.

Other functions such as remove, remove_if, sort, unique, and reverse provide similar 
functionalities as compared to their equivalent functions for std::forward_list.
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Bidirectional Iterators

In the Iterators section, we saw the difference between the flexibility of array-based 
random access iterators and forward_list-based forward iterators. The flexibility of 
std::list::iterator lies between both of them. It is more flexible compared to forward 
iterators, since it can allow us to traverse backward. Hence, std::list also supports 
functions for reverse traversal by exposing reverse iterators where the operations are 
inverted. Having said that, it is not as flexible as random access iterators. Although we 
can advance in either direction by any number of moves, since these moves have to be 
done by traversing the elements one by one instead of jumping directly to the desired 
element, the time complexity is still linear, and not a constant, as in the case of random 
access iterators. Since these iterators can move in either direction, they are known as 
bidirectional iterators.

Iterator Invalidation for Different Containers

So far, we've seen that iterators provide us with a uniform way of accessing, traversing, 
inserting, and deleting elements from any container. But there are some cases when 
iterators become invalid after modifying the container, because the iterators are 
implemented based on pointers, which are bound to memory addresses. So, if the 
memory address of any node or element changes because of modification in the 
container, it invalidates the iterator, and using it regardless can lead to undefined 
behavior.

For example, a very basic example would be vector::push_back, which simply adds a 
new element at the end. However, as we saw earlier, in some cases, it also requires 
the movement of all the elements to a new buffer. Hence, all iterators, pointers, and 
even the references to any of the existing elements will be invalidated. Similarly, if the 
vector::insert function leads to reallocation, all the elements will need to be moved. 
Hence, all the iterators, pointers, and references are invalidated. If not, the function 
will invalidate all the iterators pointing to the element that is on the right side of the 
insertion position, since these elements will be shifted during the process.

Unlike vectors, linked list-based iterators are safer for insertion and deletion operations 
because the elements will not be shifted or moved. Hence, none of the insertion 
functions for std::list or forward_list affect the validity of the iterators. An exception 
is that deletion-related operations invalidate iterators of the elements that are deleted, 
which is obvious and reasonable. It doesn't affect the validity of the iterators of the 
rest of the elements. The following example shows iterator invalidation for different 
iterators:

std::vector<int> vec = {1, 2, 3, 4, 5};

auto it4 = vec.begin() + 4;
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// it4 now points to vec[4]

vec.insert(vec.begin() + 2, 0);

// vec becomes {1, 2, 0, 3, 4, 5}

it4 is invalid now, since it comes after the insertion position. Accessing it will lead to 
undefined behavior:

std::list<int> lst = {1, 2, 3, 4, 5};

auto l_it4 = next(lst.begin(), 4);

lst.insert(next(lst.begin(), 2), 0);

// l_it4 remains valid

As we saw, std::list is much more flexible compared to std::forward_list. A lot of 
operations, such as size, push_back, and pop_back, are provided, which operate with 
a time complexity of O(1). Hence, std::list is used more frequently compared to 
std::forward_list. forward_list is a better alternative if we have very strict constraints 
of memory and performance, and if we are sure that we don't want to traverse 
backward. So, in most cases, std::list is a safer choice.

Activity 2: Simulating a Card Game

In this activity, we'll analyze a given situation and try to come up with the most suitable 
data structure to achieve the best performance.

We'll try to simulate a card game. There are 4 players in the game, and each starts with 
13 random cards. Then, we'll try to pick one card from each player's hand randomly. 
That way, we'll have 4 cards for comparison. After that, we'll remove the matching 
cards from those 4 cards. The remaining cards, if any, will be drawn back by the players 
who put them out. If there are multiple matching pairs out of which only one can be 
removed, we can choose either one. If there are no matching pairs, players can shuffle 
their own set of cards.

Now, we need to continue this process over and over until at least one of them is out of 
cards. The first one to get rid of all their cards wins the game. Then, we shall print the 
winner at the end.
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Perform the following steps to solve the activity:

1.	 First, determine which container would be the most suitable to store the cards of 
each player. We should have four containers that have a set of cards – one for each 
player.

2.	 Write a function to initialize and shuffle the cards.

3.	 Write a function to randomly deal all the cards among the four players.

4.	 Write a matching function. This function will pick a card from each player and 
compare it as required by the rules of the game. Then, it will remove the necessary 
cards. We have to choose the card wisely so that removing it would be faster. This 
parameter should also be considered while deciding on the container.

5.	 Now, let's write a function, to see whether we have a winner.

6.	 Finally, we'll write the core logic of the game. This will simply call the matching 
function until we have a winner based on the function written in the previous step.

Note

The solution to this activity can be found on page 482.

std::deque – Special Version of std::vector
So far, we have seen array-based and linked list-based containers. std::deque mixes 
both of them and combines each of their advantages to a certain extent. As we have 
seen, although vector is a variable-length array, some of its functions, such as push_
front and pop_front, are very costly operations. std::deque can help us overcome that. 
Deque is short for double-ended queue.

The Structure of Deque

The C++ standard only defines the behavior of the containers and not the 
implementation. The containers we have seen so far are simple enough for us to 
predict their implementation. However, deque is slightly more complicated than that. 
Therefore, we'll first take a look at its requirements, and then we will try to dive into a 
little bit of implementation.
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The C++ standard guarantees the following time complexities for different operations of 
deque:

•	 O(1) for push_front, pop_front, push_back, and pop_back

•	 O(1) for random access to all the elements

•	 Maximum of N/2 steps in the case of insertion or deletion in the middle, where N 
= the size of the deque

Looking at the requirements, we can say that the container should be able to grow in 
either direction very fast, and still be able to provide random access to all the elements. 
Thus, the structure has to be somewhat like a vector, but still expandable from the front 
as well as the back. The requirement for insertion and deletion gives a slight hint that 
we will be shifting the elements because we are only allowed to take up to N/2 steps. 
And that also validates our previous assumption regarding behavior that is similar to 
vector. Since the container can grow in either direction quickly, we don't necessarily 
have to shift the elements toward the right every time. Instead, we can shift the 
elements toward the nearest end. That will give us a time complexity of a maximum of 
N/2 steps, since the nearest end can't be more than N/2 nodes away from any insertion 
point inside the container.

Now, let's focus on random access and insertion at the front. The structure can't be 
stored in a single chunk of memory. Rather, we can have multiple chunks of memory 
of the same size. In this way, based on the index and size of the chunks (or the number 
of elements per chunk), we can decide which chunk's indexed element we want. That 
helps us to achieve random access in O(1) time only if we store pointers to all the 
memory chunks in a contiguous location. Hence, the structure can be assumed to be 
similar to a vector of arrays.

When we want to insert something at the front, and we don't have enough space in the 
first memory chunk, we have to allocate another chunk and insert its address in the 
vector of pointers at the front. That might require reallocation of the vector of pointers, 
but the actual data will not be moved. To optimize that reallocation, instead of starting 
from the first chunk, we can start the insertion from the middle chunk of the vector. In 
that way, we are safe up to a certain number of front insertions. We can follow the same 
while reallocating the vector of pointers.

Note

Since the deque is not as simple as the other containers discussed in this chapter, 
the actual implementation might differ or might have a lot more optimizations 
than we discussed, but the basic idea remains the same. And that is, we need 
multiple chunks of contiguous memory to implement such a container.
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The functions and operations supported by deque are more of a combination of 
functions supported by vectors and lists; hence, we have push_front, push_back, insert, 
emplace_front, emplace_back, emplace, pop_front, pop_back, and erase, among others. 
We also have the vector's functions, such as shrink_to_fit, to optimize the capacity, 
but we don't have a function called capacity since this is highly dependent on the 
implementation, and is, therefore, not expected to be exposed. And, as you might 
expect, it provides random access iterators just like a vector.

Let's take a look at how we can use different insertion and deletion operations on 
deque: 

std::deque<int> deq = {1, 2, 3, 4, 5};

deq.push_front(0);

// deque becomes {0, 1, 2, 3, 4, 5}

deq.push_back(6);

// deque becomes {0, 1, 2, 3, 4, 5, 6}

deq.insert(deq.begin() + 2, 10);

// deque becomes {0, 1, 10, 2, 3, 4, 5, 6}

deq.pop_back();

// deque becomes {0, 1, 10, 2, 3, 4, 5}

deq.pop_front();

// deque becomes {1, 10, 2, 3, 4, 5}

deq.erase(deq.begin() + 1);

// deque becomes {1, 2, 3, 4, 5}

deq.erase(deq.begin() + 3, deq.end());

// deque becomes {1, 2, 3}

Such a structure may be used in cases such as boarding queues for flights.
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The only thing that differs among the containers is the performance and memory 
requirements. Deque will provide very good performance for both insertion and 
deletion at the front as well as the end. Insertion and deletion in the middle is also a bit 
faster than for a vector on average, although, asymptotically, it is the same as that of a 
vector.

Apart from that, deque also allows us to have customer allocators just like a vector. We 
can specify it as a second template parameter while initializing it. One thing to note 
here is that the allocator is part of the type and not part of the object. This means we 
can't compare two objects of two deques or two vectors where each has a different kind 
of allocator. Similarly, we can't have other operations, such as an assignment or copy 
constructor, with objects of different types of allocators.

As we saw, std::deque has a slightly more complex structure compared to other 
containers we examined before that. It is, in fact, the only container that provides 
efficient random access along with fast push_front and push_back functions. Deque is 
used as an underlying container for others, as we'll see in the upcoming section.

Container Adaptors
The containers that we've seen until now are built from scratch. In this section, we'll 
look at the containers that are built on top of other containers. There are multiple 
reasons to provide a wrapper over existing containers, such as providing more semantic 
meaning to the code, restricting someone from accidentally using unintended functions 
just because they are available, and to provide specific interfaces.

One such specific use case is the stack data structure. The stack follows the LIFO (Last 
In First Out) structure for accessing and processing data. In terms of functions, it can 
insert and delete only at one end of the container and can't update or even access any 
element except at the mutating end. This end is called the top of the stack. We can 
easily use any other container, such as a vector or deque too, since it can meet these 
requirements by default. However, there are some fundamental problems in doing that.

The following example shows two implementations of the stack:

std::deque<int> stk;

stk.push_back(1);  // Pushes 1 on the stack = {1}

stk.push_back(2);  // Pushes 2 on the stack = {1, 2}
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stk.pop_back();    // Pops the top element off the stack = {1}

stk.push_front(0); // This operation should not be allowed for a stack

std::stack<int> stk;

stk.push(1);       // Pushes 1 on the stack = {1}

stk.push(2);       // Pushes 2 on the stack = {1, 2}

stk.pop();         // Pops the top element off the stack = {1}

stk.push_front(0); // Compilation error

As we can see in this example, the first block of the stack using deque provides a 
semantic meaning only by the name of the variable. The functions operating on the data 
still don't force the programmer to add code that shouldn't be allowed, such as push_
front. Also, the push_back and pop_back functions expose unnecessary details, which 
should be known by default since it is a stack.

In comparison to this, if we look at the second version, it looks much more accurate in 
indicating what it does. And, most importantly, it doesn't allow anyone to do anything 
that was unintended, even accidentally.

The second version of the stack is nothing but a wrapper over the previous container, 
deque, by providing a nice and restricted interface to the user. This is called a container 
adaptor. There are three container adaptors provided by C++: std::stack, std::queue, 
and std::priority_queue. Let's now take a brief look at each of them.

std::stack

As explained earlier, adaptors simply reuse other containers, such as deque, vector, 
or any other container for that matter. std::stack, by default, adapts std::deque as its 
underlying container. It provides an interface that is only relevant to the stack – empty, 
size, top, push, pop, and emplace. Here, push simply calls the push_back function for the 
underlying container, and pop simply calls the pop_back function. top calls the back 
function from the underlying container to get the last element, which is the top of the 
stack. Thus, it restricts the user operations to LIFO since it only allows us to update 
values at one end of the underlying container.
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Here, we are using deque as an underlying container, and not a vector. The reason 
behind it is that deque doesn't require you to shift all the elements during reallocation, 
unlike vector. Hence, it is more efficient to use deque compared to vector. However, if, 
for some scenario, any other container is more likely to give better performance, stack 
gives us the facility to provide a container as a template parameter. So, we can build a 
stack using a vector or list as well, as shown here:

std::stack<int, std::vector<int>> stk;

std::stack<int, std::list<int>> stk;

All the operations of a stack have a time complexity of O(1). There is usually no overhead 
of forwarding the call to the underlying container as everything can be inlined by the 
compiler with optimizations.

std::queue

Just like std::stack, we have another container adapter to deal with the frequent 
scenario of FIFO (First In First Out) in many applications, and this structure is provided 
by an adaptor called std::queue. It almost has the same set of functions as a stack, 
but the meaning and behavior are different in order to follow FIFO instead of LIFO. 
For std::queue, push means push_back, just like a stack, but pop is pop_front. Instead of 
pop, since queue should be exposing both the ends for reading, it has front and back 
functions.

Here's a small example of the usage of std::queue:

std::queue<int> q;

q.push(1);  // queue becomes {1}

q.push(2);  // queue becomes {1, 2}

q.push(3);  // queue becomes {1, 2, 3}

q.pop();    // queue becomes {2, 3}

q.push(4);  // queue becomes {2, 3, 4}

As shown in this example, first, we are inserting 1, 2, and 3 in that order. After that, we 
are popping one element off the queue. Since 1 was pushed first, it is removed from the 
queue first. Then, the next push inserts 4 at the back of the queue.



Benchmarking | 51

std::queue also uses std::deque as an underlying container for the same reason as 
stack, and it also has a time complexity of O(1) for all the methods shown here.

std::priority_queue

Priority queue provides a very useful structure called heap via its interface. A heap data 
structure is known for fast access to the minimum (or maximum) element from the 
container. Getting the min/max element is an operation with a time complexity of O(1). 
Insertion has O(log n) time complexity, while deletion can only be performed for the 
min/max element, which always stays on the top.

An important thing to note here is that we can only have either the min or max function 
made available quickly, and not both of them. This is decided by the comparator 
provided to the container. Unlike stack and queue, a priority queue is based on a 
vector by default, but we can change it if required. Also, by default, the comparator is 
std::less. Since this is a heap, the resultant container is a max heap. This means that 
the maximum element will be on top by default.

Here, since insertion needs to make sure that we can access the top element (min or 
max depending on the comparator) instantly, it is not simply forwarding the call to 
the underlying container. Instead, it is implementing the algorithm for heapifying the 
data by bubbling it up to the top as required using the comparator. This operation 
takes a time duration that is logarithmic in proportion to the size of the container, 
hence the time complexity of O(log n). The invariant also needs to be maintained while 
initializing it with multiple elements. Here, however, the priority_queue constructor 
does not simply call the insertion function for each element; instead, it applies different 
heapification algorithms to do it faster in O(n).

Iterators for Adaptors

All the adaptors that we have seen so far expose functionality only as required to 
fulfill its semantic meaning. Logically thinking, traversing through stack, queue, and 
priority queue doesn't make sense. At any point, we should only be able to see the front 
element. Hence, STL doesn't provide iterators for that.

Benchmarking
As we have seen that different containers have a variety of pros and cons, no one 
container is the perfect choice for every situation. Sometimes, multiple containers 
may give a similar performance on average for the given scenario. In such cases, 
benchmarking is our friend. This is a process of determining the better approach based 
on statistical data.
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Consider a scenario where we want to store data in contiguous memory, access it, and 
operate on it using various functions. We can say that we should either use std::vector 
or std::deque. But we are not sure which among these will be the best. At first glance, 
both of them seem to give good performance for the situation. Among different 
operations, such as access, insertion, push_back, and modifying a specific element, some 
are in favor of std::vector and some of are in favor of std::deque. So, how should we 
proceed?

The idea is to create a small prototype of the actual model and implement it using 
both std::vector and std::deque. And then, measure the performance of both over the 
prototype. Based on the result of the performance testing, we can choose the one that 
gives better results overall.

The simplest way to do that is to measure the time required to perform different 
operations for both and compare them. However, the same operation may take different 
amounts of time during different runs, since there are other factors that come into the 
picture, such as OS scheduling, cache, and interrupts, among others. These parameters 
can cause our results to deviate quite heavily, because, to perform any operation 
once, is a matter of a few hundred nanoseconds. To overcome that, we can perform 
the operation multiple times (by that, we mean a few million times) until we get a 
considerable time difference between both the measurements.

There are some benchmarking tools that we can use, such as quick-bench.com, 
which provide us with an easy way to run benchmarks. You can try running the 
operations mentioned earlier on vector and deque to quickly compare the performance 
differences.

Activity 3: Simulating a Queue for a Shared Printer in an Office

In this activity, we'll simulate a queue for a shared printer in an office. In any corporate 
office, usually, the printer is shared across the whole floor in the printer room. All the 
computers in this room are connected to the same printer. But a printer can do only 
one printing job at any point in time, and it also takes some time to complete any job. In 
the meantime, some other user can send another print request. In such a case, a printer 
needs to store all the pending jobs somewhere so that it can take them up once its 
current task is done.

Perform the following steps to solve the activity:

1.	 Create a class called Job (comprising an ID for the job, the name of the user who 
submitted it, and the number of pages).

2.	 Create a class called Printer. This will provide an interface to add new jobs and 
process all the jobs added so far.

http://k-bench.com
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3.	 To implement the printer class, it will need to store all the pending jobs. We'll 
implement a very basic strategy – first come, first served. Whoever submits the 
job first will be the first to get the job done.

4.	 Finally, simulate a scenario where multiple people are adding jobs to the printer, 
and the printer is processing them one by one.

Note

The solution to this activity can be found on page 487.

Summary
In this chapter, we learned how we should go about designing an application based on 
its requirements by choosing the way we want to store the data. We explained different 
types of operations that we can perform on data, which can be used as parameters 
for comparison between multiple data structures, based on the frequency of those 
operations. We learned that container adaptors provide a very useful way to indicate 
our intentions in the code. We saw that using more restrictive containers provided as 
adaptors, instead of using primary containers providing more functionality, is more 
effective in terms of maintainability, and also reduces human errors. We explained 
various data structures – std::array, std::vector, std::list, and std::forward_list, 
which are very frequent in any application development process, in detail and their 
interfaces provided by C++ by default. This helps us to write efficient code without 
reinventing the whole cycle and making the process a lot faster.

In this chapter, all the structures we saw are linear in a logical manner, that is, we can 
either go forward or backward from any element. In the next chapter, we'll explore 
problems that can't be solved easily with these structures and implement new types of 
structures to solve those problems.





Learning Objectives

By the end of this chapter, you will be able to:

•	 Analyze and identify where non-linear data structures can be used

•	 Implement and manipulate tree structures to represent data and solve problems

•	 Traverse a tree using various methods

•	 Implement a graph structure to represent data and solve problems

•	 Represent a graph using different methods based on a given scenario

In this chapter, we will look at two non-linear data structures, namely trees and graphs, and how 
they can be used to represent real-world scenarios and solve various problems.

Trees, Heaps, and 
Graphs

2
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Introduction
In the previous chapter, we implemented different types of linear data structures to 
store and manage data in a linear fashion. In linear structures, we can traverse in, at 
most, two directions – forward or backward. However, the scope of these structures 
is very limited, and they can't be used to solve advanced problems. In this chapter, 
we'll explore a more advanced class of problems. We will see that the solutions we 
implemented previously are not good enough to be used directly. Due to this, we'll 
expand upon those data structures to make more complex structures that can be used 
to represent non-linear data.

After looking at these problems, we'll discuss basic solutions using the tree data 
structure. We'll implement different types of trees to solve different kinds of problems. 
After that, we'll have a look at a special type of tree called a heap, as well as its possible 
implementation and applications. Following that, we'll look at another complex 
structure – graphs. We'll implement two different representations of a graph. These 
structures help translate real-world scenarios into a mathematical form. Then, we 
will apply our programming skills and techniques to solve problems related to those 
scenarios.

A strong understanding of trees and graphs serves as the basis for understanding even 
more advanced problems. Databases (B-trees), data encoding/compression (Huffman 
tree), graph coloring, assignment problems, minimum distance problems, and many 
more problems are solved using certain variants of trees and graphs.

Now, let's look at some examples of problems that cannot be represented by linear data 
structures.

Non-Linear Problems
Two main categories of situations that cannot be represented with the help of linear 
data structures are hierarchical problems and cyclic dependencies. Let's take a closer 
look at these cases.
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Hierarchical Problems

Let's look at a couple of examples that inherently have hierarchical properties. The 
following is the structure of an organization:

 

Figure 2.1: Organization structure

As we can see, the CEO is the head of the company and manages the Deputy Director. 
The Deputy Director leads three other officers, and so on.

The data is inherently hierarchical in nature. This type of data is difficult to manage 
using simple arrays, vectors, or linked lists. To solidify our understanding, let's look 
at another use case; that is, a university course's structure, as shown in the following 
figure:

Figure 2.2: Course hierarchy in a university course structure
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The preceding figure shows the course dependencies for some courses in a 
hypothetical university. As we can see, to learn Advanced Physics II, the student must 
have successfully completed the following courses: Advanced Physics and Advanced 
Mathematics. Similarly, many other courses have their own prerequisites.

Given such data, we can have different types of queries. For example, we may want 
to find out which courses need to be completed successfully so that we can learn 
Advanced Mathematics.

These kinds of problems can be solved using a data structure called a tree. All of the 
objects are known as the nodes of a tree, while the paths leading from one node to 
another are known as edges. We'll take a deeper look at this in the Graphs section, later 
in this chapter.

Cyclic Dependencies

Let's look at another complex real-world scenario that can be represented better with 
a non-linear structure. The following figure represents the friendship between a few 
people:

Figure 2.3: A network of friends

This structure is called a graph. The names of people, or the elements, are called 
nodes, and the relations between them are represented as edges. Such structures are 
commonly used by various social networks to represent their users and the connections 
between them. We can observe that Alice is friends with Charlie, who is friends with 
Eddard, who is friends with Grace, and so on. We can also infer that Alice, Bob, and 
Charlie know each other. We may also infer that Eddard is a first-level connection 
for Grace, Charlie is a second-level connection, and Alice and Bob are third-level 
connections.

Another area where graphs are useful is when we want to represent networks of roads 
between cities, as you will see in the Graphs section later in this chapter. 
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Tree – It's Upside Down!
As we discussed in the previous section, a tree is nothing but some objects or nodes 
connected to other nodes via a relationship that results in some sort of hierarchy. If 
we were to show this hierarchy in a graphical way, it would look like a tree, while the 
different edges would look like its branches. The main node, which is not dependent on 
any other node, is also known as a root node and is usually represented at the top. So, 
unlike an actual tree, this tree is upside down, with the root at its top!

Let's try to construct a structure for a very basic version of an organizational hierarchy.

Exercise 7: Creating an Organizational Structure

In this exercise, we will implement a basic version of the organizational tree we saw in 
the introduction to this chapter. Let's get started:

1.	 First, let's include the required headers:

#include <iostream>
#include <queue>

2.	 For simplicity, we'll assume that any person can have, at most, two subordinates. 
We'll see that this is not difficult to extend to resemble real-life situations. This 
kind of tree is also known as a binary tree. Let's write a basic structure for that:

struct node
{
    std::string position;
    node *first, *second;
};

As we can see, any node will have two links to other nodes – both of their 
subordinates. By doing this, we can show the recursive structure of the data. 
We are only storing the position at the moment, but we can easily extend this 
to include a name at that position or even a whole struct comprising all the 
information about the person in that position.

3.	 We don't want end users to deal with this kind of raw data structure. So, let's wrap 
this in a nice interface called org_tree:

struct org_tree
{
    node *root;
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4.	 Now, let's add a function to create the root, starting with the highest commanding 
officer of the company:

static org_tree create_org_structure(const std::string& pos)
{
    org_tree tree;
    tree.root = new node{pos, NULL, NULL};
    return tree;
}

This is a static function just to create the tree. Now, let's see how we can extend 
the tree.

5.	 Now, we want to add a subordinate of an employee. The function should take two 
parameters – the name of the already existing employee in the tree and the name 
of the new employee to be added as a subordinate. But before that, let's write 
another function that will help us find a particular node based on a value to make 
our insertion function easier:

static node* find(node* root, const std::string& value)
{
    if(root == NULL)
        return NULL;
    if(root->position == value)
        return root;
    auto firstFound = org_tree::find(root->first, value);
    if(firstFound != NULL)
        return firstFound;
    return org_tree::find(root->second, value);
}

While we are traversing the tree in search of an element, either the element will be 
the node we are at, or it will be in either of the right or left subtrees.

Hence, we need to check the root node first. If it is not the desired node, we'll try 
to find it in the left subtree. Finally, if we haven't succeeded in doing that, we'll 
look at the right subtree.

6.	 Now, let's implement the insertion function. We'll make use of the find function in 
order to reuse the code:

bool addSubordinate(const std::string& manager, const std::string& 
subordinate)
{
    auto managerNode = org_tree::find(root, manager);
    if(!managerNode)
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    {
        std::cout << "No position named " << manager << std::endl;
        return false;
    }
    if(managerNode->first && managerNode->second)
    {
        std::cout << manager << " already has 2 subordinates." << 
std::endl;
        return false;
    }
    if(!managerNode->first)
        managerNode->first = new node{subordinate, NULL, NULL};
    else
        managerNode->second = new node{subordinate, NULL, NULL};
    return true;
}
};

As we can see, the function returns a Boolean, indicating whether we can insert 
the node successfully or not.

7.	 Now, let's use this code to create a tree in the main function:

int main()
{
    auto tree = org_tree::create_org_structure("CEO");
    if(tree.addSubordinate("CEO", "Deputy Director"))
        std::cout << "Added Deputy Director in the tree." << std::endl;
    else
        std::cout << "Couldn't add Deputy Director in the tree" << 
std::endl;

    if(tree.addSubordinate("Deputy Director", "IT Head"))
        std::cout << "Added IT Head in the tree." << std::endl;
    else
        std::cout << "Couldn't add IT Head in the tree" << std::endl;
    if(tree.addSubordinate("Deputy Director", "Marketing Head"))
        std::cout << "Added Marketing Head in the tree." << std::endl;
    else
        std::cout << "Couldn't add Marketing Head in the tree" << 
std::endl;

    if(tree.addSubordinate("IT Head", "Security Head"))
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        std::cout << "Added Security Head in the tree." << std::endl;
    else
        std::cout << "Couldn't add Security Head in the tree" << 
std::endl;

    if(tree.addSubordinate("IT Head", "App Development Head"))
        std::cout << "Added App Development Head in the tree." << 
std::endl;
    else
        std::cout << "Couldn't add App Development Head in the tree" << 
std::endl;

if(tree.addSubordinate("Marketing Head", "Logistics Head"))
        std::cout << "Added Logistics Head in the tree." << std::endl;
    else
        std::cout << "Couldn't add Logistics Head in the tree" << 
std::endl;

    if(tree.addSubordinate("Marketing Head", "Public Relations Head"))
        std::cout << "Added Public Relations Head in the tree." << 
std::endl;
    else
        std::cout << "Couldn't add Public Relations Head in the tree" << 
std::endl;

    if(tree.addSubordinate("Deputy Director", "Finance Head"))
        std::cout << "Added Finance Head in the tree." << std::endl;
    else
        std::cout << "Couldn't add Finance Head in the tree" << std::endl;
}

You should get the following output upon executing the preceding code:

Added Deputy Director in the tree.
Added IT Head in the tree.
Added Marketing Head in the tree.
Added Security Head in the tree.
Added App Development Head in the tree.
Added Logistics Head in the tree.
Added Public Relations Head in the tree.
Deputy Director already has 2 subordinates.
Couldn't add Finance Head in the tree
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This output is illustrated in the following diagram:

Figure 2.4: Binary tree based on an organization's hierarchy

Up until now, we've just inserted elements. Now, we'll look at how we can traverse the 
tree. Although we've already seen how to traverse using the find function, that's just 
one of the ways we can do it. We can traverse a tree in many other ways, all of which 
we'll look at in the following section.

Traversing Trees

Once we have a tree, there are various ways we can traverse it and get to the node that 
we require. Let's take a brief look at the various traversal methods:

•	 Preorder traversal: In this method, we visit the current node first, followed by 
the left child of the current node, and then the right child of the current node in 
a recursive fashion. Here, the prefix "pre" indicates that the parent node is visited 
before its children. Traversing the tree shown in figure 2.4 using the preorder 
method goes like this:

CEO, Deputy Director, IT Head, Security Head, App Development Head, 
Marketing Head, Logistics Head, Public Relations Head,
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As we can see, we are always visiting the parent node, followed by the left child 
node, followed by the right child node. We do this not just for the root, but for 
any node with respect to its subtree. We implement preorder traversal using a 
function like this:

static void preOrder(node* start)
{
    if(!start)
        return;
    std::cout << start->position << ", ";
    preOrder(start->first);
    preOrder(start->second);
}

•	 In-order traversal: In this type of traversal, first we'll visit the left node, then the 
parent node, and finally the right node. Traversing the tree that's shown in figure 
2.4 goes like this:

Security Head, IT Head, App Development Head, Deputy Director, Logistics 
Head, Marketing Head, Public Relations Head, CEO, 

We can implement this in a function like so:

static void inOrder(node* start)
{
    if(!start)
        return;
    inOrder(start->first);
std::cout << start->position << ", ";
    inOrder(start->second);
}

•	 Post-order traversal: In this traversal, we first visit both the children, followed by 
the parent node. Traversing the tree that's shown in figure 2.4 goes like this:

Security Head, App Development Head, IT Head, Logistics Head, Public 
Relations Head, Marketing Head, Deputy Director, CEO, 
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We can implement this in a function like so:

static void postOrder(node* start)
{
    if(!start)
        return;
    postOrder(start->first);
    postOrder(start->second);
    std::cout << start->position << ", ";
}

•	 Level order traversal: This requires us to traverse the tree level by level, from top 
to bottom, and from left to right. This is similar to listing the elements at each 
level of the tree, starting from the root level. The results of such a traversal are 
usually represented as per the levels, as shown here:

CEO, 
Deputy Director, 
IT Head, Marketing Head, 
Security Head, App Development Head, Logistics Head, Public Relations 
Head, 

The implementation of this method of traversal is demonstrated in the following 
exercise.

Exercise 8: Demonstrating Level Order Traversal

In this exercise, we'll implement level order traversal in the organizational structure 
we created in Exercise 7, Creating an Organizational Structure. Unlike the previous 
traversal methods, here, we are not traversing to the nodes that are directly connected 
to the current node. This means that traversing is easier to achieve without recursion. 
We will extend the code that was shown in Exercise 7 to demonstrate this traversal. 
Let's get started:

1.	 First, we'll add the following function inside the org_tree structure from Exercise 7:

static void levelOrder(node* start)
{
    if(!start)
        return;
    std::queue<node*> q;
    q.push(start);
    while(!q.empty())
    {
        int size = q.size();
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        for(int i = 0; i < size; i++)
        {
            auto current = q.front();
            q.pop();
            std::cout << current->position << ", ";
            if(current->first)
                q.push(current->first);
            if(current->second)
                q.push(current->second);
        }
        std::cout << std::endl;
    }
}

As shown in the preceding code, first, we're traversing the root node, followed by 
its children. While visiting the children, we push their children in the queue to be 
processed after the current level is completed. The idea is to start the queue from 
the first level and add the nodes of the next level to the queue. We will continue 
doing this until the queue is empty – indicating there are no more nodes in the 
next level.

2.	 This is what our output should look like:

CEO, 
Deputy Director, 
IT Head, Marketing Head, 
Security Head, App Development Head, Logistics Head, Public Relations 
Head, 

Variants of Trees
In the previous exercises, we've mainly looked at the binary tree, which is one of the 
most common kinds of trees. In a binary tree, each node can have two child nodes at 
most. However, a plain binary tree doesn't always serve this purpose. Next, we'll look at 
a more specialized version of the binary tree, called a binary search tree.
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Binary Search Tree

A binary search tree (BST) is a popular version of the binary tree. BST is nothing but a 
binary tree with the following properties:

•	 Value of the parent node ≥ value of the left child

•	 Value of the parent node ≤ value of the right child

In short, left child ≤ parent ≤ right child.

This leads us to an interesting feature. At any point in time, we can always say that all 
the elements that are less than or equal to the parent node will be on the left side, while 
those greater than or equal to the parent node will be on the right side. So, the problem 
of searching an element keeps on reducing by half, in terms of search space, at each 
step.

If the BST is constructed in a way that all the elements except those at the last level 
have both children, the height of the tree will be log n, where n is the number of 
elements. Due to this, the searching and insertion will have a time complexity of O(log 
n). This type of binary tree is also known as a complete binary tree.

Searching in a BST

Let's look at how we can search, insert, and delete elements in a binary search tree. 
Consider a BST with unique positive integers, as shown in the following figure:

Figure 2.5: Searching for an element in a binary search tree

Let's say that we have to search for 7. As we can see from the steps represented by 
arrows in the preceding figure, we choose the side after comparing the value with the 
current node's data. As we've already mentioned, all the nodes on the left will always be 
less than the current node, and all the nodes on the right will always be greater than the 
current node. 
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Thus, we start by comparing the root node with 7. If it is greater than 7, we move to 
the left subtree, since all the elements there are smaller than the parent node, and vice 
versa. We compare each child node until we stumble upon 7, or a node less than 7 with 
no right node. In this case, coming to node 4 leads to our target, 7.

As we can see, we're not traversing the whole tree. Instead, we are reducing our scope 
by half every time the current node is not the desired one, which we do by choosing 
either the left or the right side. This works similar to a binary search for linear 
structures, which we will learn about in Chapter 4, Divide and Conquer.

Inserting a New Element into a BST

Now, let's look at how insertion works. The steps are shown in the following figure:

Figure 2.6: Inserting an element into a binary search tree

As you can see, first, we have to find the parent node where we want to insert the new 
value. Thus, we have to take a similar approach to the one we took for searching; that is, 
by going in the direction based on comparing each node with our new element, starting 
with the root node. At the last step, 18 is greater than 17, but 17 doesn't have a right 
child. Therefore, we insert 18 in that position.
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Deleting an Element from a BST

Now, let's look at how deletion works. Consider the following BST:

Figure 2.7: Binary search tree rooted at 12

We will delete the root node, 12, in the tree. Let's look at how we can delete any value. 
It's a bit trickier than insertion since we need to find the replacement of the deleted 
node so that the properties of the BST remain true.

The first step is to find the node to be deleted. After that, there are three possibilities:

•	 The node has no children: simply delete the node.

•	 The node has only one child: point the parent node's corresponding pointer to the 
only existing child.

•	 The node has two children: in this case, we replace the current node with its 
successor.

The successor is the next biggest number after the current node. Or, in other words, 
the successor is the smallest element among all the elements greater than the current 
one. Therefore, we'll first go to the right subtree, which contains all the elements 
greater than the current one, and find the smallest among them. Finding the smallest 
node means going to the left side of the subtree as much as we can because the left 
child node is always less than its parent. In the tree shown in figure 2.7, the right subtree 
of 12 starts at 18. So, we start looking from there, and then try to move down to the left 
child of 15. But 15 does not have a left child, and the other child, 16, is larger than 15. 
Hence, 15 should be the successor here.
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To replace 12 with 15, first, we will copy the value of the successor at the root while 
deleting 12, as shown in the following figure:

Figure 2.8: Successor copied to the root node

Next, we need to delete the successor, 15, from its old place in the right subtree, as 
shown in the following figure:

Figure 2.9: Successor deleted from its old place
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In the last step, we're deleting node 15. We use the same process for this deletion as 
well. Since 15 had just one child, we replace the left child of 18 with the child of 15. So, 
the whole subtree rooted at 16 becomes the left child of 18.

Note

The successor node can only have one child at most. If it had a left child, we would 
have picked that child and not the current node as the successor.

Time Complexities of Operations on a Tree

Now, let's look at the time complexity of these functions. Theoretically, we can say that 
we reduce the scope of the search by half each time. Hence, the time that's required 
to search for the BST with n nodes is T(n) = T(n / 2) + 1. This equation results in a time 
complexity of T(n) = O(log n).

But there's a catch to this. If we look at the insertion function closely, the order of 
insertion actually determines the shape of the tree. And it is not necessarily true 
that we'll always reduce the scope of the search by half, as described by T(n/2) in the 
previous formula. Therefore, the complexity O(log n) is not always accurate. We'll look 
at this problem and its solution in more depth in the Balanced Tree section, where we 
will see how we can calculate time complexity more accurately.

For now, let's implement the operations we just saw in C++.

Exercise 9: Implementing a Binary Search Tree

In this exercise, we will implement the BST shown in figure 2.7 and add a find function 
to search for elements. We will also try our hand at the insertion and deletion of 
elements, as explained in the previous subsections. Let's get started:

1.	 First, let's include the required headers:

#include <iostream>

2.	 Now, let's write a node. This will be similar to our previous exercise, except we'll 
have an integer instead of a string:

struct node
{
    int data;
    node *left, *right;
};
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3.	 Now, let's add a wrapper over the node to provide a clean interface:

struct bst
{
    node* root = nullptr;

4.	 Before writing the insertion function, we'll need to write the find function:

node* find(int value)
{
    return find_impl(root, value);
}

    private:
node* find_impl(node* current, int value)
{
    if(!current)
    {
        std::cout << std::endl;
        return NULL;
    }
    if(current->data == value)
    {
        std::cout << "Found " << value << std::endl;
        return current;
    }
    if(value < current->data)  // Value will be in the left subtree
    {
        std::cout << "Going left from " << current->data << ", ";
        return find_impl(current->left, value);
    }
    if(value > current->data) // Value will be in the right subtree
    {
        std::cout << "Going right from " << current->data << ", ";
        return find_impl(current->right, value);
    }
}

Since this is recursive, we have kept the implementation in a separate function and 
made it private so as to prevent someone from using it directly.
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5.	 Now, let's write an insert function. It will be similar to the find function, but with 
small tweaks. First, let's find the parent node, which is where we want to insert the 
new value:

public:
void insert(int value)
{
    if(!root)
        root = new node{value, NULL, NULL};
    else
        insert_impl(root, value);
}

private:
void insert_impl(node* current, int value)
{
    if(value < current->data)
    {
        if(!current->left)
            current->left = new node{value, NULL, NULL};
        else
            insert_impl(current->left, value);
    }
    else
    {
        if(!current->right)
            current->right = new node{value, NULL, NULL};
            else
                insert_impl(current->right, value);
    }
}

As we can see, we are checking whether the value should be inserted in the left 
or right subtree. If there's nothing on the desired side, we directly insert the node 
there; otherwise, we call the insert function for that side recursively.
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6.	 Now, let's write an inorder traversal function. In-order traversal provides an 
important advantage when applied to BST, as we will see in the output:

public:
void inorder()
{
    inorder_impl(root);
}

private:
void inorder_impl(node* start)
{
    if(!start)
        return;
    inorder_impl(start->left);        // Visit the left sub-tree
    std::cout << start->data << " ";  // Print out the current node
    inorder_impl(start->right);       // Visit the right sub-tree
}

7.	 Now, let's implement a utility function to get the successor:

public:
node* successor(node* start)
{
    auto current = start->right;
    while(current && current->left)
        current = current->left;
    return current;
}

This follows the logic we discussed in the Deleting an Element in BST subsection.

8.	 Now, let's look at the actual implementation of delete. Since deletion requires 
repointing the parent node, we'll do that by returning the new node every time. 
We'll hide this complexity by putting a better interface over it. We'll name the 
interface deleteValue since delete is a reserved keyword, as per the C++ standard:

void deleteValue(int value)
{
    root = delete_impl(root, value);
}

private:
node* delete_impl(node* start, int value)
{
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    if(!start)
        return NULL;
    if(value < start->data)
        start->left = delete_impl(start->left, value);
    else if(value > start->data)
        start->right = delete_impl(start->right, value);
    else
    {
        if(!start->left)  // Either both children are absent or only left 
child is absent
        {
            auto tmp = start->right;
            delete start;
            return tmp;
        }
        if(!start->right)  // Only right child is absent
        {
            auto tmp = start->left;
            delete start;
            return tmp;
        }

        auto succNode = successor(start);
        start->data = succNode->data;
        // Delete the successor from right subtree, since it will always 
be in the right subtree
        start->right = delete_impl(start->right, succNode->data);
    }
    return start;
}
};

9.	 Let's write the main function so that we can use the BST:

int main()
{
    bst tree;
    tree.insert(12);
    tree.insert(10);
    tree.insert(20);
    tree.insert(8);
    tree.insert(11);
    tree.insert(15);
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    tree.insert(28);
    tree.insert(4);
    tree.insert(2);

    std::cout << "Inorder: ";
    tree.inorder();  // This will print all the elements in ascending 
order
    std::cout << std::endl;

    tree.deleteValue(12);
    std::cout << "Inorder after deleting 12: ";
    tree.inorder();  // This will print all the elements in ascending 
order
    std::cout << std::endl;

    if(tree.find(12))
        std::cout << "Element 12 is present in the tree" << std::endl;
    else
        std::cout << "Element 12 is NOT present in the tree" << std::endl;
}

The output upon executing the preceding code should be as follows:

Inorder: 2 4 8 10 11 12 15 20 28 
Inorder after deleting 12: 2 4 8 10 11 15 20 28 
Going left from 15, Going right from 10, Going right from 11, 
Element 12 is NOT present in the tree

Observe the preceding results of in-order traversal for a BST. In-order will visit the left 
subtree first, then the current node, and then the right subtree, recursively, as shown 
in the comments in the code snippet. So, as per BST properties, we'll visit all the values 
smaller than the current one first, then the current one, and after that, we'll visit all the 
values greater than the current one. And since this happens recursively, we'll get our 
data sorted in ascending order.

Balanced Tree

Before we understand a balanced tree, let's start with an example of a BST for the 
following insertion order:

bst tree;

tree.insert(10);

tree.insert(9);

tree.insert(11);
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tree.insert(8);

tree.insert(7);

tree.insert(6);

tree.insert(5);

tree.insert(4);

This BST can be visualized with the help of the following figure:

Figure 2.10: Skewed binary search tree

As shown in the preceding figure, almost the whole tree is skewed to the left side. If we 
call the find function, that is, bst.find(4), the steps will look as follows:

Figure 2.11: Finding an element in a skewed binary search tree
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As we can see, the number of steps is almost equal to the number of elements. Now, 
let's try the same thing again with a different insertion order, as shown here:

bst tree;

tree.insert(7);

tree.insert(5);

tree.insert(9);

tree.insert(4);

tree.insert(6);

tree.insert(10);

tree.insert(11);

tree.insert(8);

The BST and the steps required to find element 4 will now look as follows:

Figure 2.12: Finding an element in a balanced tree

As we can see, the tree is not skewed anymore. Or, in other words, the tree is balanced. 
The steps to find 4 have been considerably reduced with this configuration. Thus, the 
time complexity of find is not just dependent on the number of elements, but also on 
their configuration in the tree. If we look at the steps closely, we are always going one 
step toward the bottom of the tree while searching for something. And at the end, 
we end up at the leaf nodes (nodes without any children). Here, we return either the 
desired node or NULL based on the availability of the element. So, we can say that the 
number of steps is always less than the maximum number of levels in the BST, also 
known as the height of the BST. So, the actual time complexity for finding an element is 
O(height).

In order to optimize the time complexity, we need to optimize the height of the tree. 
This is also called balancing a tree. The idea is to reorganize the nodes after insertion/
deletion to reduce the skewness of the tree. The resultant tree is called a height-
balanced BST.
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There are various ways in which we can do this and get different types of trees, such 
as an AVL tree, a Red-Black tree, and so on. The idea behind an AVL tree is to perform 
some rotations to balance the height of the tree, while still maintaining the BST 
properties. Consider the example that's shown in the following figure:

Figure 2.13: Rotating a tree

As we can see, the tree on the right is more balanced compared to the one on the left. 
Rotation is out of the scope of this book and so we will not venture into the details of 
this example.

N-ary Tree

Up until now, we've mainly seen binary trees or their variants. For an N-ary tree, each 
node can have N children. Since N is arbitrary here, we are going to store it in a vector. 
So, the final structure looks something like this:

struct nTree

{

    int data;

    std::vector<nTree*> children;

};

As we can see, there can be any number of children for each node. Hence, the whole 
tree is completely arbitrary. However, just like a plain binary tree, a plain N-ary tree 
also isn't very useful. Therefore, we have to build a different tree for different kinds of 
applications, where the hierarchy is of a higher degree than a binary tree. The example 
shown in figure 2.1, which represents an organization's hierarchy, is an N-ary tree.
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In the computer world, there are two really good, well-known implementations of 
N-ary trees, as follows:

•	 Filesystem structures in computers: Starting from root (/) in Linux or drives in 
Windows, we can have any number of files (terminal nodes) and any number of 
folders inside any folder. We'll look at this in greater detail in Activity 1, Creating a 
Data Structure for a Filesystem.

•	 Compilers: Most compilers build an Abstract Syntax Tree (AST) based on syntax 
defined by the standard that's used for the source code. Compilers generate 
lower-level code by parsing the AST.

Activity 4: Create a Data Structure for a Filesystem

Create a data structure using an N-ary tree for a filesystem that supports the following 
operations: go to directory, find file/directory, add file/directory, and list file/directory. 
Our tree will hold the information and folder hierarchy (path) of all the elements (files 
and folders) in the filesystem.

Perform the following steps to solve this activity:

1.	 Create an N-ary tree with two data elements in a node – the name of the 
directory/file and a flag indicating whether it's a directory or a file.

2.	 Add a data member to store the current directory.

3.	 Initialize the tree with a single directory root (/).

4.	 Add the find directory/file function, which takes a single parameter – path. The 
path can be either absolute (starting with /) or relative.

5.	 Add functions to add a file/directory and list files/directories located at a given 
path.

6.	 Similarly, add a function to change the current directory.

Note

The solution to this activity can be found on page 490.

We've printed directories with d in front to distinguish them from files, which are 
printed with a "–" (hyphen) in front. You can experiment by creating more directories 
and files with absolute or relative paths.
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So far, we haven't supported certain Linux conventions, such as addressing any 
directory with a single dot and addressing a parent directory with double dots. This can 
be done by extending our node to also hold a pointer to its parent node. This way, we 
can traverse in both directions very easily. There are various other extensions possible, 
such as the addition of symlinks, as well as globing operators to expand the names of 
the various files/directories using "*". This exercise provides us with a base so that we 
can build something on our own based on our requirements.

Heaps
In the previous chapter, we had a brief look at heaps and how C++ provides heaps via 
STL. In this chapter, we'll take a deeper look at heaps. Just to recap, the following are 
the intended time complexities:

•	 O(1): Immediate access to the max element

•	 O(log n): Insertion of any element

•	 O(log n): Deletion of the max element

To achieve O(log n) insertion/deletion, we'll use a tree to store data. But in this case, 
we'll 'use a complete tree. A complete tree is defined as a tree where nodes at all the 
levels except the last one have two children, and the last level has as many of the 
elements on the left side as possible. For example, consider the two trees shown in the 
following figure:

Figure 2.14: Complete versus non-complete tree
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Thus, a complete tree can be constructed by inserting elements in the last level, as long 
as there's enough space there. If not, we will insert them at the leftmost position on 
the new level. This gives us a very good opportunity to store this tree using an array, 
level by level. So, the root of the tree will be the first element of the array/vector, 
followed by its left child and then the right child, and so on. Unlike other trees, this is 
a very efficient memory structure because there is no extra memory required to store 
pointers. To go from a parent to its child node, we can easily use the index of the array. 
If the parent is the ith node, its children will always be 2*i + 1 and 2*i + 2 indices. And 
similarly, we can get the parent node for the ith child node by using (i – 1) / 2. We can 
also confirm this from the preceding figure.

Now, let's have a look at the invariants (or conditions) we need to maintain upon every 
insertion/deletion. The first requirement is instant access to the max element. For that, 
we need to fix its position so that it is accessible immediately every time. We'll always 
keep our max element at the top – the root position. Now, to maintain this, we also 
need to maintain another invariant – the parent node must be greater than both of its 
children. Such a heap is also known as a max heap.

As you can probably guess, the properties that are required for fast access to the 
maximum element can be easily inverted for fast access to the minimum element. All we 
need to do is invert our comparison function while performing heap operations. This 
kind of heap is known as a min heap.

Heap Operations

In this section, we will see how we can perform different operations on a heap.

Inserting an Element into a Heap

As the first step of insertion, we will preserve the most important invariant, which 
provides us with a way to represent this structure as an array – a complete tree. This 
can easily be done by inserting the new element at the end since it will represent the 
element in the last level, right after all the existing elements, or as the first element in a 
new level if the current last level is full.

Now, we need to preserve the other invariant – all the nodes must have a value greater 
than both of their children, if available. Assuming that our current tree is already 
following this invariant, after the insertion of the new element in the last position, the 
only element where the invariant may fail would be the last element. To resolve this, 
we swap the element with its parent if the parent is smaller than the element. Even if 
the parent already has another element, it will be smaller than the new element (new 
element > parent > child).
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Thus, the subtree that's created by considering the new element as the root satisfies 
all the invariants. However, the new element may still be greater than its new parent. 
Therefore, we need to keep on swapping the nodes until the invariant is satisfied for the 
whole tree. Since the height of a complete tree is O(log n) at most, the entire operation 
will take a maximum of O(log n) time. The following figure illustrates the operation of 
inserting elements into a tree:

Figure 2.15: Inserting an element into a heap with one node

As shown in the preceding figure, after inserting 11, the tree doesn't have the heap 
property anymore. Therefore, we'll swap 10 and 11 to make it a heap again. This concept 
is clearer with the following example, which has more levels:

Figure 2.16: Inserting an element into a heap with several nodes
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Deleting an Element from a Heap

The first thing to notice is that we can only delete the max element. We can't directly 
touch any other element. The max element is always present at the root. Hence, we'll 
remove the root element. But we also need to decide who'll take its position. For that, 
we first need to swap the root with the last element, and then remove the last element.
That way, our root will be deleted, but it will break the invariant of having each parent 
node greater than its children. To resolve this, we'll compare the root with its two 
children and swap it with the greater one. Now, the invariant is broken at one of the 
subtrees. We continue the swapping process recursively throughout the subtree. That 
way, the breaking point of the invariant is bubbled down the tree. Just like insertion, 
we follow this until we meet the invariant. The maximum number of steps required will 
be equal to the height of the tree, which is O(log n). The following figure illustrates this 
process:

Figure 2.17: Deleting an element in a heap

Initialization of a Heap

Now, let's look at one of the most important steps – the initialization of a heap. Unlike 
vectors, lists, deques, and so on, a heap is not simple to initialize because we need 
to maintain the invariants of the heap. One easy solution would be to insert all the 
elements starting from an empty heap, one by one. But the time required for this would 
be O(n * log(n)), which is not efficient.
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However, there's a heapification algorithm that can do this in O(n) time. The idea 
behind this is very simple: we keep on updating the tree to match the heap properties 
for smaller subtrees in a bottom-up manner. For starters, the last level already has the 
properties of a heap. Followed by that, we go level by level toward the root, making each 
subtree follow the heap properties one by one. This process only has a time complexity 
of O(n). And fortunately, the C++ standard already provides a function for this called 
std::make_heap, which can take any array or vector iterators and convert them into a 
heap.

Exercise 10: Streaming Median

In this exercise, we'll solve an interesting problem that frequently occurs in data 
analysis-related applications, including machine learning. Imagine that some source is 
giving us data one element at a time continuously (a stream of data). We need to find 
the median of the elements that have been received up until now after receiving each 
and every element. One simple way of doing this would be to sort the data every time 
a new element comes in and return the middle element. But this would have an O(n log 
n) time complexity because of sorting. Depending on the rate of incoming elements, 
this can be very resource-intensive. However, we'll optimize this with the help of heaps. 
Let's get started:

1.	 Let's include the required headers first:

#include <iostream>
#include <queue>
#include <vector>

2.	 Now, let's write a container to store the data we've received up until now. We'll 
store the data among two heaps – one min heap and one max heap. We'll store the 
smaller, first half of the elements in a max heap, and the larger, or the other half, 
in a min heap. So, at any point, the median can be calculated using only the top 
elements of the heaps, which are easily accessible:

struct median
{
    std::priority_queue<int> maxHeap;
    std::priority_queue<int, std::vector<int>, std::greater<int>> minHeap;
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3.	 Now, let's write an insert function so that we can insert the newly arrived data:

void insert(int data)
{
    // First element
    if(maxHeap.size() == 0)
    {
        maxHeap.push(data);
        return;
    }

    if(maxHeap.size() == minHeap.size())
    {
        if(data <= get())
            maxHeap.push(data);
        else
            minHeap.push(data);
        return;
    }
    if(maxHeap.size() < minHeap.size())
    {
        if(data > get())
        {
            maxHeap.push(minHeap.top());
            minHeap.pop();
            minHeap.push(data);
        }
        else
            maxHeap.push(data);
        return;
    }
    if(data < get())
    {
        minHeap.push(maxHeap.top());
        maxHeap.pop();
        maxHeap.push(data);
    }
    else
        minHeap.push(data);
}
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4.	 Now, let's write a get function so that we can get the median from the containers:

double get()
{
    if(maxHeap.size() == minHeap.size())
        return (maxHeap.top() + minHeap.top()) / 2.0;
    if(maxHeap.size() < minHeap.size())
        return minHeap.top();
    return maxHeap.top();
}
};

5.	 Now, let's write a main function so that we can use this class:

int main()
{
    median med;
    med.insert(1);
    std::cout << "Median after insert 1: " << med.get() << std::endl;

    med.insert(5);
    std::cout << "Median after insert 5: " << med.get() << std::endl;

    med.insert(2);
    std::cout << "Median after insert 2: " << med.get() << std::endl;

    med.insert(10);
    std::cout << "Median after insert 10: " << med.get() << std::endl;

    med.insert(40);
    std::cout << "Median after insert 40: " << med.get() << std::endl;

    return 0;
}

The output of the preceding program is as follows:

Median after insert 1: 1
Median after insert 5: 3
Median after insert 2: 2
Median after insert 10: 3.5
Median after insert 40: 5
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This way, we only need to insert any newly arriving elements, which only has a time 
complexity of O(log n), compared to the time complexity of O(n log n) if we were to sort 
the elements with each new element. 

Activity 5: K-Way Merge Using Heaps

Consider a biomedical application related to genetics being used for processing large 
datasets. It requires ranks of DNA in a sorted manner to calculate similarity. But 
since the dataset is huge, it can't fit on a single machine. Therefore, it processes and 
stores data in a distributed cluster, and each node has a set of sorted values. The main 
processing engine requires all of the data to be in a sorted fashion and in a single 
stream. So, basically, we need to merge multiple sorted arrays into a single sorted array. 
Simulate this situation with the help of vectors.

Perform the following steps to solve this activity:

1.	 The smallest number will be present in the first element of all the lists since all the 
lists have already been sorted individually. To get that minimum faster, we'll build a 
heap of those elements.

2.	 After getting the minimum element from the heap, we need to remove it and 
replace it with the next element from the same list it belongs to.

3.	 The heap node must contain information about the list so that it can find the next 
number from that list.

Note

The solution to this activity can be found on page 495.

Now, let's calculate the time complexity of the preceding algorithm. If there are k lists 
available, our heap size will be k, and all of our heap operations will be O(log k). Building 
heap will be O(k log k). After that, we'll have to perform a heap operation for each 
element in the result. The total elements are n × k. Therefore, the total complexity will 
be O(nk log k).
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The wonderful thing about this algorithm is that, considering the real-life scenario we 
described earlier, it doesn't actually need to store all the n × k elements at the same 
time; it only needs to store k elements at any point in time, where k is the number of 
lists or nodes in the cluster. Due to this, the value of k will never be too large. With the 
help of a heap, we can generate one number at a time and either process the number 
immediately or stream it elsewhere for processing without actually storing it.

Graphs
Although a tree is a pretty good way to represent hierarchical data, we can't represent 
circular or cyclic dependencies in a tree because we always have a single and unique 
path to go from one node to another. However, there are more complex scenarios that 
have a cyclic structure inherently. For example, consider a road network. There can be 
multiple ways to go from one place (places can be represented as nodes) to another. 
Such a set of scenarios can be better represented using graphs.

Unlike a tree, a graph has to store data for the nodes, as well as for the edges between 
the nodes. For example, in any road network, for each node (place), we have to store 
the information about which other nodes (places) it connects to. This way, we can 
form a graph with all the required nodes and edges. This is called an unweighted 
graph. We can add weights, or more information, to each of the edges. For our road 
network example, we can add the distance of each edge (path) from one node (place) 
to another. This representation, called a weighted graph, has all the information about 
a road network that's required to solve problems such as finding the path that has the 
minimum distance between one place and another.

There are two types of graphs – undirected and directed. An undirected graph 
indicates that the edges are bidirectional. Bidirectional indicates a bilateral or 
commutative property. For the road network example, a bidirectional edge between 
points A and B implies that we can go from A to B, as well as from B to A. But let's say 
we have some roads with a one-way restriction – we need to use a directed graph 
to represent that. In a direct graph, whenever we need to indicate that we can go in 
either direction, we use two edges – from point A to B, and B to A. We'll mainly focus 
on bidirectional graphs, but the things we'll learn here about structure and traversing 
methods hold true for directed graphs as well. The only change will be how we add 
edges to the graph.
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Since a graph can have cyclic edges and more than one way to go from one node to 
another, we need to identify each node uniquely. For that, we can assign an identifier 
to each node. To represent the graph's data, we don't really need to build a node-like 
structure programmatically, as we did in trees. In fact, we can store the whole graph by 
combining std containers.

Representing a Graph as an Adjacency Matrix

Here is one of the simplest ways to understand a graph – consider a set of nodes, where 
any node can connect to any other node among the set directly. This means that we can 
represent this using a 2D array that's N × N in size for a graph with N nodes. The value 
in each cell will indicate the weight of the edge between the corresponding nodes based 
on the indices of the cell. So, data[1][2] will indicate the weight of the edge between 
node 1 and node 2. This method is known as an adjacency matrix. We can indicate the 
absence of an edge using a weight of -1.

Consider the weighted graph shown in the following figure, which represents an 
aviation network between a few major international cities, with hypothetical distances:

Figure 2.18: Aviation network between some cities

As shown in the preceding figure, we can go from London to Dubai via Istanbul or 
directly. There are multiple ways to go from one place to another, which was not the 
case with trees. Also, we can traverse from one node to another and come back to the 
original node via some different edges, which was also not possible in a tree.

Let's implement the matrix representation method for the graph shown in the 
preceding figure.
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Exercise 11: Implementing a Graph and Representing it as an Adjacency 

Matrix

In this exercise, we will implement a graph representing the network of cities shown 
in the preceding figure, and demonstrate how it can be stored as an adjacency matrix. 
Let's get started:

1.	 First, let's include the required headers:

#include <iostream>
#include <vector>

2.	 Now, let's add an enum class so that we can store the names of the cities:

enum class city: int
{
    LONDON,
    MOSCOW,
    ISTANBUL,
    DUBAI,
    MUMBAI,
    SEATTLE,
    SINGAPORE
};

3.	 Let's also add a << operator for the city enum:

std::ostream& operator<<(std::ostream& os, const city c)
{
    switch(c)
    {
        case city::LONDON:
            os << "LONDON";
            return os;
        case city::MOSCOW:
            os << "MOSCOW";
            return os;
        case city::ISTANBUL:
            os << "ISTANBUL";
            return os;
        case city::DUBAI:
            os << "DUBAI";
            return os;
        case city::MUMBAI:
            os << "MUMBAI";
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            return os;
        case city::SEATTLE:
            os << "SEATTLE";
            return os;
        case city::SINGAPORE:
            os << "SINGAPORE";
            return os;
        default:
            return os;
    }
}

4.	 Let's write the struct graph, which will encapsulate our data:

struct graph
{
    std::vector<std::vector<int>> data;

5.	 Now, let's add a constructor that will create an empty graph (a graph without any 
edges) with a given number of nodes:

graph(int n)
{
    data.reserve(n);
    std::vector<int> row(n);
    std::fill(row.begin(), row.end(), -1);
    for(int i = 0; i < n; i++)
    {
        data.push_back(row);
    }
}

6.	 Now, let's add the most important function – addEdge. It will take three parameters 
– the two cities to be connected and the weight (distance) of the edge:

void addEdge(const city c1, const city c2, int dis)
{
    std::cout << "ADD: " << c1 << "-" << c2 << "=" << dis << std::endl;

    auto n1 = static_cast<int>(c1);
    auto n2 = static_cast<int>(c2);
    data[n1][n2] = dis;
    data[n2][n1] = dis;
}
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7.	 Now, let's add a function so that we can remove an edge from the graph:

void removeEdge(const city c1, const city c2)
{
    std::cout << "REMOVE: " << c1 << "-" << c2 << std::endl;

    auto n1 = static_cast<int>(c1);
    auto n2 = static_cast<int>(c2);
    data[n1][n2] = -1;
    data[n2][n1] = -1;
}
};

8.	 Now, let's write the main function so that we can use these functions:

int main()
{
    graph g(7);
    g.addEdge(city::LONDON, city::MOSCOW, 900);
    g.addEdge(city::LONDON, city::ISTANBUL, 500);
    g.addEdge(city::LONDON, city::DUBAI, 1000);
    g.addEdge(city::ISTANBUL, city::MOSCOW, 1000);
    g.addEdge(city::ISTANBUL, city::DUBAI, 500);
    g.addEdge(city::DUBAI, city::MUMBAI, 200);
    g.addEdge(city::ISTANBUL, city::SEATTLE, 1500);
    g.addEdge(city::DUBAI, city::SINGAPORE, 500);
    g.addEdge(city::MOSCOW, city::SEATTLE, 1000);
    g.addEdge(city::MUMBAI, city::SINGAPORE, 300);
    g.addEdge(city::SEATTLE, city::SINGAPORE, 700);

    g.addEdge(city::SEATTLE, city::LONDON, 1800);
    g.removeEdge(city::SEATTLE, city::LONDON);

    return 0;
}

9.	 Upon executing this program, we should get the following output:

ADD: LONDON-MOSCOW=900
ADD: LONDON-ISTANBUL=500
ADD: LONDON-DUBAI=1000
ADD: ISTANBUL-MOSCOW=1000
ADD: ISTANBUL-DUBAI=500
ADD: DUBAI-MUMBAI=200
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ADD: ISTANBUL-SEATTLE=1500
ADD: DUBAI-SINGAPORE=500
ADD: MOSCOW-SEATTLE=1000
ADD: MUMBAI-SINGAPORE=300
ADD: SEATTLE-SINGAPORE=700
ADD: SEATTLE-LONDON=1800
REMOVE: SEATTLE-LONDON

As we can see, we are storing the data in a vector of a vector, with both dimensions 
equal to the number of nodes. Hence, the total space required for this representation is 
proportional to V2, where V is the number of nodes.

Representing a Graph as an Adjacency List

A major problem with a matrix representation of a graph is that the amount of memory 
required is directly proportional to the number of nodes squared. As you might imagine, 
this adds up quickly with the number of nodes. Let's see how we can improve this so 
that we use less memory.

In any graph, we'll have a fixed number of nodes, and each node will have a fixed 
maximum number of connected nodes, which is equal to the total nodes. In a matrix, 
we have to store all the edges for all the nodes, even if two nodes are not directly 
connected to each other. Instead, we'll only store the IDs of the nodes in each row, 
indicating which nodes are directly connected to the current one. This representation 
is also called an adjacency list.

Let's see how the implementation differs compared to the previous exercise.

Exercise 12: Implementing a Graph and Representing it as an Adjacency List

In this exercise, we will implement a graph representing the network of cities shown in 
figure 2.18, and demonstrate how it can be stored as an adjacency list. Let's get started:

1.	 We'll implement an adjacency list representation in this exercise. Let's start with 
headers, as usual:

#include <iostream>
#include <vector>
#include <algorithm>

2.	 Now, let's add an enum class so that we can store the names of the cities:

enum class city: int
{
    MOSCOW,
    LONDON,
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    ISTANBUL,
    SEATTLE,
    DUBAI,
    MUMBAI,
    SINGAPORE
};

3.	 Let's also add the << operator for the city enum:

std::ostream& operator<<(std::ostream& os, const city c)
{
    switch(c)
    {
        case city::MOSCOW:
            os << "MOSCOW";
            return os;
        case city::LONDON:
            os << "LONDON";
            return os;
        case city::ISTANBUL:
            os << "ISTANBUL";
            return os;
        case city::SEATTLE:
            os << "SEATTLE";
            return os;
        case city::DUBAI:
            os << "DUBAI";
            return os;
        case city::MUMBAI:
            os << "MUMBAI";
            return os;
        case city::SINGAPORE:
            os << "SINGAPORE";
            return os;
        default:
            return os;
    }
}

4.	 Let's write the struct graph, which will encapsulate our data:

struct graph
{
    std::vector<std::vector<std::pair<int, int>>> data;



96 | Trees, Heaps, and Graphs

5.	 Let's see how our constructor defers from a matrix representation:

graph(int n)
{
    data = std::vector<std::vector<std::pair<int, int>>>(n, 
std::vector<std::pair<int, int>>());
}

As we can see, we are initializing the data with a 2D vector, but all the rows are 
initially empty because there are no edges present at the start.

6.	 Let's implement the addEdge function for this:

void addEdge(const city c1, const city c2, int dis)
{
    std::cout << "ADD: " << c1 << "-" << c2 << "=" << dis << std::endl;

    auto n1 = static_cast<int>(c1);
    auto n2 = static_cast<int>(c2);
    data[n1].push_back({n2, dis});
    data[n2].push_back({n1, dis});
}

7.	 Now, let's write removeEdge so that we can remove an edge from the graph:

void removeEdge(const city c1, const city c2)
{
    std::cout << "REMOVE: " << c1 << "-" << c2 << std::endl;

    auto n1 = static_cast<int>(c1);
    auto n2 = static_cast<int>(c2);
    std::remove_if(data[n1].begin(), data[n1].end(), [n2](const auto& 
pair)
        {
            return pair.first == n2;
        });
    std::remove_if(data[n2].begin(), data[n2].end(), [n1](const auto& 
pair)
        {
            return pair.first == n1;
        });

}
};
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8.	 Now, let's write the main function so that we can use these functions:

int main()
{
    graph g(7);
    g.addEdge(city::LONDON, city::MOSCOW, 900);
    g.addEdge(city::LONDON, city::ISTANBUL, 500);
    g.addEdge(city::LONDON, city::DUBAI, 1000);
    g.addEdge(city::ISTANBUL, city::MOSCOW, 1000);
    g.addEdge(city::ISTANBUL, city::DUBAI, 500);
    g.addEdge(city::DUBAI, city::MUMBAI, 200);
    g.addEdge(city::ISTANBUL, city::SEATTLE, 1500);
    g.addEdge(city::DUBAI, city::SINGAPORE, 500);
    g.addEdge(city::MOSCOW, city::SEATTLE, 1000);
    g.addEdge(city::MUMBAI, city::SINGAPORE, 300);
    g.addEdge(city::SEATTLE, city::SINGAPORE, 700);

    g.addEdge(city::SEATTLE, city::LONDON, 1800);
    g.removeEdge(city::SEATTLE, city::LONDON);

    return 0;
}

Upon executing this program, we should get the following output:

ADD: LONDON-MOSCOW=900
ADD: LONDON-ISTANBUL=500
ADD: LONDON-DUBAI=1000
ADD: ISTANBUL-MOSCOW=1000
ADD: ISTANBUL-DUBAI=500
ADD: DUBAI-MUMBAI=200
ADD: ISTANBUL-SEATTLE=1500
ADD: DUBAI-SINGAPORE=500
ADD: MOSCOW-SEATTLE=1000
ADD: MUMBAI-SINGAPORE=300
ADD: SEATTLE-SINGAPORE=700
ADD: SEATTLE-LONDON=1800
REMOVE: SEATTLE-LONDON
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Since we are storing a list of adjacent nodes for each node, this method is called an 
adjacency list. This method also uses a vector of a vector to store the data, just like the 
former method. But the dimension of the inner vector is not equal to the number of 
nodes; instead, it depends on the number of edges. For each edge in the graph, we'll 
have two entries, as per our addEdge function. The memory that's required for this type 
of representation would be proportional to E, where E is the number of edges.

Up until now, we've only seen how to build a graph. We need to traverse a graph to 
be able to perform any operations while using it. There are two widely used methods 
available – Breadth-First Search (BFS) and Depth-First Search (DFS), both of which we'll 
look at in Chapter 6, Graph Algorithms I.

Summary
In this chapter, we looked at a more advanced class of problems compared to the 
previous chapter, which helped us to describe a wider range of real-world scenarios. 
We looked at and implemented two major data structures – trees and graphs. We also 
looked at various types of trees that we can use in different situations. Then, we looked 
at different ways of representing data programmatically for these structures. With the 
help of this chapter, you should be able to apply these techniques to solve real-world 
problems of similar kinds.

Now that we've looked at linear and non-linear data structures, in the next chapter, 
we'll look at a very specific but widely used concept called lookup, where the goal is 
to store values in a container so that searching is super fast. We will also look at the 
fundamental idea behind hashing and how can we implement such a container.







Learning Objectives

By the end of this chapter, you will be able to:

•	 Identify lookup-related problems easily in any large-scale application

•	 Evaluate whether a problem is suited for a deterministic or non-deterministic lookup 
solution

•	 Implement an efficient lookup solution based on a scenario

•	 Implement generic solutions provided as part of C++ STL in large applications 

In this chapter, we'll look at the problem of fast lookup. We will learn about the various 
approaches to solving this problem and understand which one can be used for a given situation.

Hash Tables and 
Bloom Filters

3
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Introduction
Lookup is nothing but checking whether an element is present in a container or finding 
the corresponding value for a key in the container. In the student database system and 
the hospital management system examples that we mentioned in the previous chapters, 
a common operation is to fetch a particular record from the vast amount of data stored 
in the system. A similar problem also presents itself while getting the meaning of a word 
from a dictionary, checking whether a person is allowed to enter a certain facility based 
on a set of records (access control), and many more applications. 

For most of these scenarios, just going through all the elements linearly and matching 
the values would be extremely time-consuming, especially considering the vast 
amount of records that are stored. Let's take a simple example of looking up a word 
in a dictionary. There are roughly 170,000 words in the English dictionary. One of the 
simplest ways to do this is to traverse the dictionary linearly and compare the given 
word with all the words in the dictionary until we've found the word, or we reach the 
end of the dictionary. But this is too slow, and it will have a time complexity of O(n), 
where n is the number of words in the dictionary, which is not only huge but is also 
increasing day by day.

Hence, we need more efficient algorithms to allow for lookup that works much faster. 
We'll look at a couple of efficient structures in this chapter, that is, hash tables and 
bloom filters. We'll implement both of them and compare their pros and cons.

Hash Tables
Let's look at the very basic problem of searching in a dictionary. There are about 
170,000 words in the Oxford English Dictionary. As we mentioned in the Introduction, a 
linear search will take O(n) time, where n is the number of words. A better way to store 
the data is to store it in a height-balanced tree that has similar properties to a BST. 
This makes it much faster than linear search as it has a time complexity of only O(log 
n). But for applications that require tons of such queries, this is still not a good enough 
improvement. Think about the time it will take for data containing millions or billions 
of records, such as neuroscientific data or genetic data. It would take days to find 
something in the data. For these situations, we need something much faster, such as a 
hash table.

One of the integral parts of hash tables is hashing. The idea behind this is to represent 
each value with a possibly unique key and, later on, use the same key to check for the 
presence of the key or to retrieve a corresponding value, depending on the use case. 
The function that derives a unique key from the given data is called a hash function. 
Let's look at how we can store and retrieve data by looking at some examples, and let's 
learn why we need such a function.
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Hashing

Let's take one simple example before jumping into hashing. Let's say we have a 
container storing integers, and we want to know if a particular integer is part of the 
container or not as quickly as possible. The simplest way is to have a Boolean array 
with each bit representing a value that's the same as its index. When we want to insert 
an element, we'll set the Boolean value corresponding to that element to 0. To insert 
x, we simply set data[x] = true. Checking whether a particular integer, x, is inside 
the container is just as simple — we simply check whether data[x] is true. Thus, our 
insertion, deletion, and search functions become O(1). A simple hash table for storing 
integers numbered from 0 to 9 would look as follows:

Figure 3.1: A simple hash table

However, there are some problems with this approach:

•	 What if the data is floating-point numbers?

•	 What if the data is not just a number?

•	 What if the range of the data is too high? That is, if we have a billion numbers, then 
we need a Boolean array that's one billion in size, and that is not always feasible.

To resolve this problem, we can implement a function that will map any value of any 
data type to an integer in the desired range. We can choose the range so that its 
Boolean array will have a feasible size. This function is called a hash function, as we 
mentioned in the previous section. It will take one data element as input and provide a 
corresponding output integer within the provided range.

The simplest hashing function for integers in a large range is the modulo function 
(denoted by %), which divides the element by a specified integer (n) and returns the 
remainder. So, we'll simply have an array of size n.



104 | Hash Tables and Bloom Filters

If we want to insert a given value, x, we can apply the modulo function on it (x % n), and 
we will always get a value between 0 and (n – 1), both inclusive. Now, x can be inserted 
at position (x % n). Here, the number that's obtained by applying the hash function is 
called the hash value.

A major problem we may encounter with this is that two elements may have the same 
output from the modulo function. An example is (9 % 7) and (16 % 7), which both result 
in a hash value of 2. Thus, if the slot corresponding to 2 is TRUE (or 1 for Boolean), 
we would have no idea which of 2, 9, 16, or any other integer that returns x % 7 = 2 is 
present in our container. This problem is known as collision, because multiple keys have 
the same values instead of unique values after applying the hash function.

If we store the actual value instead of a Boolean integer in our hash table, we will know 
which value we have, but we still cannot store multiple values with the same hash value. 
We will look at how to deal with this in the following section. But first, let's look at the 
implementation of a basic dictionary for a bunch of integers in the following exercise.

Exercise 13: Basic Dictionary for Integers

In this exercise, we shall implement a basic version of a hash map for unsigned integers. 
Let's get started:

1.	 First, let's include the required headers:

#include <iostream>
#include <vector>

2.	 Now, let's add the hash_map class. We'll alias unsigned int to avoid writing a long 
name:

using uint = unsigned int;
class hash_map
{
    std::vector<int> data;

3.	 Now, let's add a constructor for this, which will take the size of the data or hash 
map:

public:
hash_map(size_t n)
{
    data = std::vector<int>(n, -1);
}

As shown here, we're using –1 to indicate the absence of an element. This is the 
only negative value we'll use as data.
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4.	 Let's add the insert function:

void insert(uint value)
{
    int n = data.size();
    data[value % n] = value;
    std::cout << "Inserted " << value << std::endl;
}

As we can see, we are not really checking whether there was a value already 
present with the same hash value. We're simply overwriting if any value is already 
present. So, for a given hash value, only the latest inserted value will be stored.

5.	 Let's write a lookup function to see whether an element is present in the map or 
not:

bool find(uint value)
{
    int n = data.size();
    return (data[value % n] == value);
}

We'll simply check whether the value is present at the index calculated based on 
the hash value.

6.	 Let's implement a remove function:

void erase(uint value)
{
    int n = data.size();
    if(data[value % n] == value)
    {
data[value % n] = -1;
        std::cout << "Removed " << value << std::endl;
}
}
};

7.	 Let's write a small lambda function in main to print the status of the lookup:

int main()
{
    hash_map map(7);

    auto print = [&](int value)
        {
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            if(map.find(value))
                std::cout << value << " found in the hash map";
            else
                std::cout << value << " NOT found in the hash map";
            std::cout << std::endl;
        };

8.	 Let's use the insert and erase functions on the map:

    map.insert(2);
    map.insert(25);
    map.insert(290);

    print(25);
    print(100);

    map.insert(100);
    print(100);
    map.erase(25);

}

9.	 Here's the output of the program:

Inserted 2
Inserted 25
Inserted 290
25 found in the hash map
100 NOT found in the hash map
Inserted 100
100 found in the hash map
Removed 25

As we can see, we are able to find most of the values we inserted earlier, as expected, 
except for the last case, where 100 is overwritten by 0 because they have the same hash 
value. This is called a collision, as we described previously. In the upcoming sections, 
we'll see how we can avoid this kind of problem to make our results more accurate.



Hash Tables | 107

The following figures, which demonstrate the different functions from the previous 
exercise, should make this clearer:

Figure 3.2: Basic operations in a hash table

Figure 3.3: Basic operations in a hash table (continued)
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As shown in the preceding figures, we can't insert two elements with the same hash 
value; we have to drop one of them.

Now, as we mentioned earlier, one major use of hash tables is to find a value 
corresponding to a key, and not just checking whether the key exists. This can be simply 
achieved by storing a key-value pair instead of just the key in the data. So, our insertion, 
deletion, and lookup functions will still calculate the hash value based on our key, but 
once we find the position in the array, we'll have our value as the second parameter of 
the pair.

Collisions in Hash Tables
In the previous sections, we took a look at how hash tables can help us store a lot 
of keys in a way that makes it easy to look up any required key. However, we also 
encountered a problem where multiple keys had the same hash value, also known as a 
collision. In Exercise 13, Basic Dictionary for Integers, we handled this issue by simply 
rewriting the key and retaining the latest key corresponding to a given hash value. 
However, this does not allow us to store all the keys. In the following subtopics, we shall 
take a look at a couple of approaches that help us overcome this problem and allow us 
to retain all of our key values in the hash table.

Close Addressing – Chaining

So far, we've only been storing a single element for any hash value. If we already have 
an element for a particular hash value, we have no option but to discard either the new 
value or the old value. The method of chaining is one way we can retain both values. In 
this method, instead of storing a single key in the hash table, we'll store a linked list for 
each index. So, whenever we have the problem of a collision, we'll simply insert the new 
key at the end of the list. Thus, essentially, instead of a single element, we can store as 
many elements as we want. The reason for choosing a linked list for each index instead 
of a vector (with push_back for new elements) is to enable the fast removal of elements 
from any position. Let's implement this in the following exercise.
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Exercise 14: Hash Table with Chaining

In this exercise, we shall implement a hash table and use chaining to handle collisions. 
Let's get started:

1.	 First, let's include the required headers:

#include <iostream>
#include <vector>
#include <list>
#include <algorithm>

2.	 Now, let's add the hash_map class. We'll alias unsigned int to avoid writing a long 
name:

using uint = unsigned int;
class hash_map
{
    std::vector<std::list<int>> data;

3.	 Now, let's add a constructor for hash_map that will take the size of the data or hash 
map:

public:
hash_map(size_t n)
{
    data.resize(n);
}

4.	 Let's add an insert function:

void insert(uint value)
{
    int n = data.size();
    data[value % n].push_back(value);
    std::cout << "Inserted " << value << std::endl;
}

As we can see, we are always inserting the value in the data. One alternative could 
be to search for the value and insert it only if the value is not present.
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5.	 Let's write the lookup function to see whether an element is present in the map:

bool find(uint value)
{
    int n = data.size();
    auto& entries = data[value % n];
    return std::find(entries.begin(), entries.end(), value) != entries.
end();
}

As we can see, our lookup seems faster than conventional methods, but not as fast 
as it was earlier. This is because now, it is also dependent on the data, as well as 
the value of n. We'll come back to this point again after this exercise.

6.	 Let's implement a function to remove elements:

void erase(uint value)
{
    int n = data.size();
    auto& entries = data[value % n];
    auto iter = std::find(entries.begin(), entries.end(), value);
    
    if(iter != entries.end())
    {
entries.erase(iter);
        std::cout << "Removed " << value << std::endl;
}
}
};

7.	 Let's write the same main function as in the previous exercise and look at the 
difference:

int main()
{
    hash_map map(7);

    auto print = [&](int value)
        {
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            if(map.find(value))
                std::cout << value << " found in the hash map";
            else
                std::cout << value << " NOT found in the hash map";
            std::cout << std::endl;
        };

8.	 Let's use the insert and erase functions on map:

    map.insert(2);
    map.insert(25);
    map.insert(290);

    map.insert(100);
    map.insert(55);

    print(100);
    map.erase(2);

}

Here's the output of our program:

Inserted 2
Inserted 25
Inserted 290
Inserted 100
Inserted 55
100 found in the hash map
Removed 2

As we can see, the values are not overwritten because we can store any number of 
values in the list. Hence, our output is completely accurate and reliable.
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The following images illustrate how different operations are performed on a dataset:

Figure 3.4: Basic operations on a hash table with chaining

Figure 3.5: Basic operations on a hash table with chaining (continued)
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As we can see, we are appending elements with the same hash value in a list placed in 
the node instead of a single element.

Now, let's consider the time complexity of these operations. As we saw, the insertion 
function is still O(1). Although push_back may be a bit slower than just setting a value, 
it is not significantly slower. Considering the problem that this approach solves, it is a 
small price to pay. But lookup and deletion may be significantly slower, depending on 
our hash table's size and dataset. For example, if all the keys have the same hash value, 
the time required for the search will be O(n), as it will simply become a linear search in a 
linked list.

If the hash table is very small compared to the number of keys to be stored, there will 
be a lot of collisions, and the lists will be longer on average. On the other hand, if we 
keep a very big hash table, we may end up having very sparse data and end up wasting 
memory. So, the hash table's size should be optimized based on the application's 
context and scenario. We can define these things mathematically as well.

The load factor indicates the average number of keys present per list in our hash table. 
It can be computed using the following formula:

Figure 3.6: Load factor

If the number of keys is equal to our hash table size, the load factor will be 1. This is 
an ideal scenario; we'll get close to O(1) for all the operations, and all the space will be 
utilized properly.

If the value is less than 1, this means that we are not storing even one key per list 
(assuming we want a list at every index) and essentially wasting some space.

If the value is more than 1, this implies that the average length of our lists is more than 1, 
and hence our find and removal functions will be a bit slower on average.

The value of the load factor can be computed in O(1) at any time. Some advanced hash 
table implementations make use of this value to modify the hash function (also known 
as rehashing) if the value crosses certain thresholds on either side of 1. The hash 
function is modified so that the load factor is moved closer to 1. Then, the size of the 
hash table can be updated according to our load factor and the values redistributed 
based on the updated hash function. Rehashing is an expensive operation, and hence 
should not be performed too frequently. But if it is applied with a proper strategy, we 
can achieve really good results in terms of average time complexity.
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However, the load factor is not the only factor determining the performance of this 
technique. Consider the following scenario: We have a hash table of size 7 and it has 
seven elements. However, all of them have the same hash value, and hence all of them 
are present in a single bucket. So, the search will always take O(n) instead of O(1) 
time. However, the load factor will be 1, which is an absolutely ideal value. Here, the 
actual problem is the hash function. The hash function should be designed in such 
a way that different keys are distributed as evenly as possible across all the possible 
indexes. Basically, the difference between the minimum bucket size and the maximum 
bucket size should not be very high (which is seven in this case). If the hash function 
is designed in a way that all seven elements get different hash values, then all the 
search function calls will result in O(1) complexity and instant results. This is because 
the difference between the min and max bucket size will be 0. However, this is usually 
not done in hash table implementation. It is supposed to be taken care of by the hash 
function itself because the hash table is not dependent on the implementation of the 
hash function.

Open Addressing

Another method for resolving collisions is open addressing. In this method, we store all 
the elements inside the hash table instead of chaining the elements to the hash table. 
Hence, to accommodate all the elements, the size of the hash table must be greater 
than the number of elements. The idea is to probe if a cell corresponding to a particular 
hash value is already occupied. There are multiple ways we can probe the value, as we 
shall see in the following subtopics.

Linear probing

This is a simple probing technique. If there is a collision at a particular hash value, we 
can simply look at the subsequent hash value for an empty cell and insert our element 
once we find room for it. If the cell at hash(x) is full, then we need to check whether the 
cell at hash(x + 1) is empty. If it is also full, look at hash(x + 2), and so on.
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The following figure illustrates how linear probing works:

Figure 3.7: Basic operations on a hash table with linear probing

Figure 3.8: Unable to insert elements after hash table fills up



116 | Hash Tables and Bloom Filters

As we can see, we are inserting an element in the next available slot if the position 
corresponding to its hash value is already occupied. After inserting the first three 
elements, we can see that they are clustered together. If more elements are inserted in 
the same range, all of them will go at the end of the cluster consecutively, thus making 
the cluster grow. Now, when we try to search for a value that is not present at the 
location first calculated by the hash function, but is present at the end of a big cluster, 
we have to search through all the keys in the cluster linearly. And therefore, the search 
becomes drastically slow.

Thus, we have a major problem if the data is densely clustered. We can say that the 
data is densely clustered if the data is distributed in such a way that there are some 
groups around which the frequency of values is very high. For example, let's say that if 
there are a lot of keys with a hash value of 3 to 7 in a hash table of 100. All the keys will 
be probed to some values consecutively after that, and it will slow down our searching 
drastically.

Quadratic probing

As we saw, the major problem with linear probing was clustering. The reason behind 
this was that we were going linearly in the case of collisions. This problem can be 
resolved to a large extent by using a quadratic equation instead of a linear one. And 
that's what quadratic probing provides.

First, we try to insert the value x at the position hash(x). If that position is already 
occupied, we go to the position hash(x + 12), and then hash(x + 22), and so on. So, we 
increase the offset in a quadratic fashion and thus decrease the probability of creating 
small clusters of data.

There is one more advantage of both probing techniques – the position of an element 
can be affected by other elements that don't have the same hash value. So, basically, 
even if there's just one key with a certain hash value, it can collide because of some 
other element is present in that location, which was not the case with chaining. For 
example, in linear probing, if we have two keys with a hash value of 4, one of them will 
be inserted at position 4 and the other will be inserted at position 5. Next, if we need to 
insert a key with a hash value of 5, it will need to be inserted at 6. This key was affected 
even though it did not have the same hash value as any other key.

Perfect Hashing – Cuckoo Hashing

As the heading suggests, cuckoo hashing is one of the perfect hashing techniques. The 
methods we mentioned previously don't provide a guarantee of O(1) time complexity in 
the worst case, but cuckoo hashing can achieve that if implemented properly.
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In cuckoo hashing, we keep two hash tables of the same size, each with their own 
unique hash function. Any element can be present in either of the hash tables, and its 
position is based on the corresponding hash function.

There are two main ways in which cuckoo hashing differs from our previous hashing 
techniques:

•	 Any element can be present in any of the two hash tables.

•	 Any element can be moved to another location in the future, even after insertion.

Earlier hashing techniques did not allow elements to be moved after insertion unless 
we did a complete rehashing, but this is not the case with cuckoo hashing because any 
element can have two possible locations. We can still increase the degree by increasing 
the number of possible locations for any element so that we gain better results and have 
less frequent rehashing. However, in this chapter, we'll only look at the version with two 
possible locations (hash tables) because it's easier to understand.

For lookup, we only need to look at two positions to determine whether the element is 
present or not. Hence, a lookup always requires O(1) time. 

However, an insertion function can take a longer time. An insertion function, in this 
case, first checks whether it is possible to insert the new element, let's say A, in the 
first hash table. If so, it inserts the element there, and we are done. But if that position 
is occupied by a preexisting element, let's say B, we still go ahead with inserting A 
and move B to the second hash table. If this new position in the second hash table is 
also occupied, let's say by element C, we again insert B there and move C to the first 
table. We can carry this on recursively until we are able to find empty slots for all the 
elements. This process is illustrated in the following figure:

Figure 3.9: Cuckoo hashing
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One major problem is that we could end up in a cycle and the recursion may lead to 
an infinite loop. For the example in the previous paragraph, consider that there is an 
element, D, where we wish to insert C, but if we try to move D, it goes to the location of 
A. Thus, we are in an infinite cycle. The following figure should help you visualize this:

Figure 3.10: A cycle formed during cuckoo hashing

To address this, once we've identified the cycle, we need to rehash everything with new 
hash functions. The hash tables that were created with new hash functions may still 
have the same problems, so we may have to rehash and try out different hash functions. 
However, with smart strategies and wisely chosen hash functions, we can achieve a 
performance of amortized O(1) with high probability.

Just like open addressing, we can't store more elements than the combined size of the 
hash tables. To ensure good performance, we should make sure that our load factor is 
less than 50%, that is, the number of elements should be less than half of the available 
capacity.

We'll take a look at the implementation of cuckoo hashing in the following exercise.

Exercise 15: Cuckoo Hashing

In this exercise, we'll implement cuckoo hashing to create a hash table and insert 
various elements in it. We shall also get a trace of how the operation proceeds, which 
will allow us to take a look at how insertion works. Let's get started:

1.	 Let's start by including the required headers, as usual:

#include <iostream>
#include <vector>

2.	 Let's add a class for the hash map. We'll also store size separately this time:

class hash_map
{
    std::vector<int> data1;
    std::vector<int> data2;
    int size;

As we can see, we use two tables.
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3.	 Now, let's add the corresponding hash functions:

int hash1(int key) const
{
    return key % size;
}

int hash2(int key) const
{
    return (key / size) % size;
}

Here, we have kept both functions very simple, but these functions can be adapted 
as per the requirements.

4.	 Now, let's add a constructor that will set our data for initialization:

public:
hash_map(int n) : size(n)
{
    data1 = std::vector<int>(size, -1);
    data2 = std::vector<int>(size, -1);
}

As we can see, we are simply initializing both the data tables as empty (indicated 
by –1).

5.	 Let's write a lookup function first:

std::vector<int>::iterator lookup(int key)
{
    auto hash_value1 = hash1(key);
    if(data1[hash_value1] == key)
    {
        std::cout << "Found " << key << " in first table" << std::endl;
        return data1.begin() + hash_value1;
    }

    auto hash_value2 = hash2(key);
    if(data2[hash_value2] == key)
    {
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        std::cout << "Found " << key << " in second table" << std::endl;
        return data2.begin() + hash_value2;
    }

    return data2.end();
}

We are trying to find the key in both tables and return the relevant iterator if one 
is found. We don't always need the iterator, but we'll use it in the deletion function 
to make things easier. We are returning the end of the data2 table if the element is 
not found. As we can see, the lookup will have a time complexity of O(1) and will be 
performed pretty quickly.

6.	 Let's implement a delete function:

void erase(int key)
{
    auto position = lookup(key);
    if(position != data2.end())
    {
        *position = -1;
        std::cout << "Removed the element " << key << std::endl;
    }
    else
    {
        std::cout << "Key " << key << " not found." << std::endl;
    }
}

As we can see, most of the job is done by calling the lookup function. We just need 
to validate the result and reset the value to remove it from the table.

7.	 For insertion, we shall implement the actual logic in a different function because it 
will be recursive. One more thing we want to do is avoid cycles. However, keeping 
a record of all the values that are visited can be costly. To avoid that, we will simply 
stop the function once it is called more than n times. Since the threshold of the 
recursion depth of n is dependent on our memory (or hash table size), this gives 
good performance:

void insert(int key)
{
    insert_impl(key, 0, 1);
}
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void insert_impl(int key, int cnt, int table)
{
    if(cnt >= size)
    {
        std::cout << "Cycle detected, while inserting " << key << ". 
Rehashing required." << std::endl;
        return;
    }

    if(table == 1)
    {
int hash = hash1(key);
        if(data1[hash] == -1)
        {
            std::cout << "Inserted key " << key << " in table " << table 
<< std::endl;
            data1[hash] = key;
        }
        else
        {
            int old = data1[hash];
            data1[hash] = key;
            std::cout << "Inserted key " << key << " in table " << table 
<< " by replacing " << old << std::endl;
            insert_impl(old, cnt + 1, 2);
        }
    }
    else
    {
int hash = hash2(key);
        if(data2[hash] == -1)
        {
            std::cout << "Inserted key " << key << " in table " << table 
<< std::endl;
            data2[hash] = key;
        }
        else
        {
            int old = data2[hash];
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            data2[hash] = key;
            std::cout << "Inserted key " << key << " in table " << table 
<< " by replacing " << old << std::endl;
            insert_impl(old, cnt + 1, 2);
        }
    }
}

As we can see, the implementation takes three parameters – the key, the table in 
which we want to insert the key, and the count of the recursion call stack to keep 
track of the number of elements we have changed the positions of.

8.	 Now, let's write a utility function to print the data inside the hash tables. Although 
this is not really necessary and shouldn't be exposed, we will do that so that we 
can get a better understanding of how our insert function is managing the data 
internally:

void print()
{
    std::cout << "Index: ";
    for(int i = 0; i < size; i++)
        std::cout << i << '\t';
    std::cout << std::endl;

    std::cout << "Data1: ";
    for(auto i: data1)
        std::cout << i << '\t';
    std::cout << std::endl;

    std::cout << "Data2: ";
    for(auto i: data2)
        std::cout << i << '\t';
    std::cout << std::endl;
}
};

9.	 Now, let's write the main function so that we can use this hash map:

int main()
{
    hash_map map(7);
    map.print();

    map.insert(10);
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    map.insert(20);
    map.insert(30);
    std::cout << std::endl;

    map.insert(104);
    map.insert(2);
    map.insert(70);
    map.insert(9);
    map.insert(90);
    map.insert(2);
    map.insert(7);

    std::cout << std::endl;

    map.print();

    std::cout << std::endl;

    map.insert(14);  // This will cause cycle.
}

10.	 You should see the following output:

Index: 0    1    2    3    4    5    6    
Data1: -1    -1    -1    -1    -1    -1    -1    
Data2: -1    -1    -1    -1    -1    -1    -1    
Inserted key 10 in table 1
Inserted key 20 in table 1
Inserted key 30 in table 1

Inserted key 104 in table 1 by replacing 20
Inserted key 20 in table 2
Inserted key 2 in table 1 by replacing 30
Inserted key 30 in table 2
Inserted key 70 in table 1
Inserted key 9 in table 1 by replacing 2
Inserted key 2 in table 2
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Inserted key 90 in table 1 by replacing 104
Inserted key 104 in table 2 by replacing 2
Inserted key 2 in table 1 by replacing 9
Inserted key 9 in table 2
Inserted key 2 in table 1 by replacing 2
Inserted key 2 in table 2 by replacing 104
Inserted key 104 in table 1 by replacing 90
Inserted key 90 in table 2
Inserted key 7 in table 1 by replacing 70
Inserted key 70 in table 2

Index: 0    1    2    3    4    5     6
Data1: 7   -1    2    10  -1   -1     104
Data2: 2    9    20   70   30   90   -1

Inserted key 14 in table 1 by replacing 7
Inserted key 7 in table 2 by replacing 9
Inserted key 9 in table 1 by replacing 2
Inserted key 2 in table 2 by replacing 2
Inserted key 2 in table 1 by replacing 9
Inserted key 9 in table 2 by replacing 7
Inserted key 7 in table 1 by replacing 14
Cycle detected, while inserting 14. Rehashing required.

As we can see, the output is showing the complete trace of how both the tables are 
maintained internally. We have printed the internal steps because some values are being 
moved around. The last insertion of 14 leads to a cycle, as we can see from the trace. 
The depth of insertion has gone beyond 7. Simultaneously, we can also see that both 
the tables are almost full. We've filled 11 elements out of 14, and hence the chance of 
replacing values is increasing at each step. We printed the table just before the cycle as 
well.

Also, the deletion of an element takes O(1) time here because it just uses the lookup 
function and deletes the element, if found. So, the only function that is costly is 
insertion. Hence, this is an ideal implementation if the number of insertions is quite a 
bit lower than the number of lookups in any application.
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Let's use the following visual aids so that we can understand this better:

Figure 3.11: Inserting elements in a hash table that uses cuckoo hashing

Figure 3.12: Handling collisions in a hash table using cuckoo hashing

Figure 3.13: Handling collisions in a hash table using cuckoo hashing (continued)
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Figure 3.14: Finding values in a hash table that uses cuckoo hashing

Figure 3.15: Erasing values in a hash table that uses cuckoo hashing

As we can see from the preceding series of figures, first, we try to insert elements in the 
first table. If there's already another element, we overwrite it and insert the preexisting 
element in the other table. We repeat this until it is safe to insert the last element.

C++ Hash Tables
As we mentioned previously, the lookup operation is quite frequent in most 
applications. However, we may not always encounter positive integers, which are 
quite easy to hash. You are likely to encounter strings most of the time. Consider the 
example of an English language dictionary that we considered earlier. We can store 
the dictionary data by using the words as keys and the word definitions as the values. 
Another example is the hospital records database we considered in Chapter 1, Lists, 
Stacks, and Queues, where the patients' names may be used as keys, and other related 
information could be stored as values.
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The simple modulo function we used earlier to calculate the hash values of integers 
does not work for strings. An easy option is to calculate the modulo of the sum of the 
ASCII values of all the characters. However, all the permutations of characters in a 
string would be quite vast, and this would create a lot of collisions.

C++ provides a function called std::hash<std::string>(std::string) that we can use 
to generate hash values of string. It has a built-in algorithm to take care of the hashing 
function. Similarly, C++ provides such functions for all the basic types of data.

Now, looking at the hash table we implemented in Exercise 14, Hash Table with Chaining, 
it seems obvious that we can simply templatize it based on the data type and make a 
generic solution to provide a hash function for any given type of data. STL provides 
a couple of solutions for this: std::unordered_set<Key> and std::unordered_map<Key, 
Value>. An unordered set can only store a set of keys, whereas an unordered map can 
store the keys and their values. So, each unique key will have a corresponding value in 
the container.

Both of these containers are implemented in the same way – using hash tables with 
chaining. Each row in the hash table is a vector that stores the keys (and the values for 
the map). The rows are known as buckets. So, after calculating the hash value for a key, 
it will be placed into one of the buckets. Each bucket is also a list to support chaining.

By default, these containers have a maximum load factor of 1. As soon as the number 
of elements exceeds the size of the hash table, the hash function will be changed, the 
hash values will be recalculated (rehashing), and a larger hash table will be rebuilt to 
bring down the load factor. We can also use the rehash function to do this manually. 
This default maximum limit of 1 for the load factor can be changed using the max_load_
factor(float) function. The values will be rehashed once the load factor exceeds the 
defined maximum limit.

These containers provide commonly useful functions such as find, insert, and erase. 
They also provide iterators to iterate over all the elements, as well as constructors to 
create an unordered set and map using other containers, such as vectors and arrays. An 
unordered map also provides operator[] so that it can return the value for a known key.

We'll look at the implementation of unordered sets and maps in the following exercise.



128 | Hash Tables and Bloom Filters

Exercise 16: Hash Tables Provided by STL

In this exercise, we shall implement unordered sets and maps and apply operations 
such as insertion, deletion, and find on these containers. Let's get started:

1.	 Include the required headers:

#include <iostream>
#include <unordered_map>
#include <unordered_set>

2.	 Now, let's write some simple print functions to make our main function more 
readable:

void print(const std::unordered_set<int>& container)
{
    for(const auto& element: container)
        std::cout << element << " ";
    std::cout << std::endl;
}

void print(const std::unordered_map<int, int>& container)
{
    for(const auto& element: container)
        std::cout << element.first << ": " << element.second << ", ";
    std::cout << std::endl;
}

3.	 Similarly, add wrappers over the find functions to keep the code neat:

void find(const std::unordered_set<int>& container, const auto& element)
{
    if(container.find(element) == container.end())
        std::cout << element << " not found" << std::endl;
    else
        std::cout << element << " found" << std::endl;
}

void find(const std::unordered_map<int, int>& container, const auto& 
element)
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{
    auto it = container.find(element);
    if(it == container.end())
        std::cout << element << " not found" << std::endl;
    else
        std::cout << element << " found with value=" << it->second << 
std::endl;
}

4.	 Now, write the main function so that we can use unordered_set and unordered_map, 

and then perform various operations on it. We shall find, insert, and erase the 
elements:

int main()
{
    std::cout << "Set example: " << std::endl;
    std::unordered_set<int> set1 = {1, 2, 3, 4, 5};
    std::cout << "Initial set1: ";
    print(set1);

    set1.insert(2);
    std::cout << "After inserting 2: ";
    print(set1);

    set1.insert(10);
    set1.insert(351);
    std::cout << "After inserting 10 and 351: ";
    print(set1);

    find(set1, 4);
    find(set1, 100);
    set1.erase(2);
    std::cout << "Erased 2 from set1" << std::endl;
    find(set1, 2);

    std::cout << "Map example: " << std::endl;
    std::unordered_map<int, int> squareMap;

    squareMap.insert({2, 4});
    squareMap[3] = 9;
    std::cout << "After inserting squares of 2 and 3: ";
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    print(squareMap);

    squareMap[30] = 900;
    squareMap[20] = 400;
    std::cout << "After inserting squares of 20 and 30: ";
    print(squareMap);

    find(squareMap, 10);
    find(squareMap, 20);
    std::cout << "Value of map[3]=" << squareMap[3] << std::endl;
    std::cout << "Value of map[100]=" << squareMap[100] << std::endl;
}

5.	 One of the possible outputs of this program is as follows. The order of elements in 
a set and a map can be different, and hence is called an unordered set/map:

Set example: 
Initial set1: 5 4 3 2 1 
After inserting 2: 5 4 3 2 1 
After inserting 10 and 351: 351 10 1 2 3 4 5 
4 found
100 not found
Erased 2 from set1
2 not found
Map example: 
After inserting squares of 2 and 3: 3: 9, 2: 4, 
After inserting squares of 20 and 30: 20: 400, 30: 900, 2: 4, 3: 9, 
10 not found
20 found with value=400
Value of map[3]=9
Value of map[100]=0

As we can see, we can insert, find, and erase elements from both containers. These 
operations are working as expected. If we benchmark these operations against other 
containers, such as vector, list, array, deque, and so on, performance will be much faster 
here.
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We can store key-value pairs and access the value for any given key using operator[], as 
shown in this exercise. It returns a reference and hence also allows us to set the value, 
and not just retrieve it.

Note

Since operator[] returns a reference, if the key is not found, it will add the default 
value to the entry.

In the last line, we are getting map[100] = 0, even if 100 was never inserted in the map. 
This is because operator[] is returning the default value.

If we want to keep track of the number of buckets as they change based on rehashing, 
we can do that using the bucket_count() function. There are other functions for getting 
details about other internal parameters as well, such as load_factor, max_bucket_count, 
and so on. We can also rehash manually using the rehash function.

Since these containers are implemented using chaining, they are actually storing the 
key/value pairs in different buckets. So, while searching the keys in any bucket, we 
need to compare them for equality. Hence, we need to define the equality operator for 
the key type. Alternatively, we can pass it as another template parameter.

As we can have seen in this exercise, unordered sets and maps do not allow duplicate 
keys. If we need to store duplicate values, we can use unordered_multiset or unordered_
multimap. To support multiple values, the insert function does not check whether the 
key already exists in the container. Also, it supports some extra functions to retrieve 
all the items with a particular key. We won't look at any more details regarding these 
containers as it is out of the scope of this book.

STL provides hash functions for all the basic data types supported by C++. So, if we want 
a custom class or struct as the key type for any of the aforementioned containers, we 
need to implement a hash function inside the std namespace. Alternatively, we can pass 
it as a template parameter. However, writing a hash function on our own every time 
is not a good idea because the performance heavily depends on it. Designing a hash 
function requires quite a bit of research and understanding of the problem at hand, as 
well as mathematical skills. Hence, we are leaving it out of the scope of this book. For 
our purposes, we can simply use the hash_combine function provided in the boost library, 
as shown in the following example:

#include <boost/functional/hash.hpp>

struct Car
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{

    std::string model;

    std::string brand;

    int buildYear;

};

struct CarHasher

{

    std::size_t operator()(const Car& car) const

    {

        std::size_t seed = 0;

        boost::hash_combine(seed, car.model);

        boost::hash_combine(seed, car.brand);

        return seed;

    }

};

struct CarComparator

{

    bool operator()(const Car& car1, const Car& car2) const

    {

    return (car1.model == car2.model) && (car1.brand == car2.brand);

    }

};

// We can use the hasher as follows:

std::unordered_set<Car, CarHasher, CarComparator> carSet;

std::unordered_map<Car, std::string, CarHasher, CarComparator> 
carDescriptionMap;
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As we can see, we've defined a hashing struct with operator(), which will be used by 
unordered containers. We have also defined the comparator struct with operator() to 
support relevant functions. We have passed these structs as template parameters. This 
also allows us to have different types of comparators and hashers for different objects.

Apart from simple hash functions such as modulo, there are some complex hash 
functions, known as cryptographic hash functions, such as MD5, SHA-1, and SHA-256. 
These algorithms are very complex, and they can take any kind of data — even a file 
— as the input value. An important characteristic of cryptographic functions is that it 
is very difficult to determine the actual data from a given hash value (also known as 
reverse hashing), and hence they are used in some of the most secure systems. For 
example, the Bitcoin blockchain uses the SHA-256 algorithm to store an important 
proof of authenticity of the transaction records. Each block in the blockchain contains 
an SHA-256 hash value of its previous linked block, and the current block's hash is 
included in the subsequent block. Illegally modifying any block invalidates the entire 
blockchain from that block onwards, since now the modified block's hash value will not 
match with the value that was stored in the next block. Even with some of the fastest 
supercomputers in the world, it would take hundreds of years to break this and create 
forged transaction records.

Activity 6: Mapping Long URLs to Short URLs

In this activity, we'll create a program to implement a service similar to https://tinyurl.
com/. It can take a very long URL and map it to a small URL that is easy and convenient 
to share. Whenever we enter the short URL, it should retrieve the original URL.

We want the following functionalities:

•	 Store the original and corresponding smaller URL provided by the user efficiently

•	 Retrieve the original URL based on the given smaller URL if found; otherwise, 
return an error

These high-level steps should help you solve this activity:

1.	 Create a class that contains unordered_map as the main data member.

2.	 Add a function to insert values. This function should take two parameters: the 
original URL and the smaller version of it.

3.	 Add a function to find the actual URL based on a given small URL if present.

Note

The solution to this activity can be found on page 498.

https://tinyurl.com/
https://tinyurl.com/
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Bloom Filters
Bloom filters are extremely space-efficient compared to hash tables, but at the cost of 
deterministic answers; that is, we get an answer that is unsure. It only guarantees that 
there won't be any false negatives, but there may be false positives. In other words, if 
we get a positive hit, the element may or may not be present; but if we get a negative, 
then the element is definitely not present.

Just like cuckoo hashing, we will use multiple hash functions here. However, we'll keep 
three functions, as two functions cannot achieve decent accuracy. The fundamental 
idea is that instead of storing the actual values, we store an array of Booleans indicating 
whether or not a value is (maybe) present.

To insert an element, we compute the value of all the hash functions and set the bits 
corresponding to all three hash values in the array to 1. For lookup, we compute the 
value of all the hash functions and check whether all the corresponding bits are set to 1. 
If so, we return true; otherwise, we return false (the element is not present).

The obvious question is – why is lookup indeterministic? The reason is that any bit can 
be set by multiple elements. So, there is a relatively significant probability that all the 
relevant bits for a particular value (call it x) are set to 1 because of some other elements 
that were inserted earlier, although x was not inserted at all. In that case, the lookup 
function will still return true. Hence, we can expect some false positives. The more 
elements we insert, the higher the chances of false positives. However, if one of the bits 
for x is not set, then we can say that the element is not present with confidence. So, 
false negatives cannot be a possibility.

The array will be saturated when all the bits in the Boolean array are set to 1. So, the 
lookup function will always return true, and the insertion function will not have any 
effect at all since all the bits are already set to 1.
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The following diagrams make this clearer:

Figure 3.16: Inserting elements in a bloom filter

Figure 3.17: Finding elements in a bloom filter
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Figure 3.18: Finding elements in a bloom filter (continued)

As shown in the preceding diagrams, we are setting the relevant bits based on the hash 
functions, and for insertion, we're doing a bitwise AND for lookup of the element, as we 
explained earlier.

We'll implement a Bloom filter in C++ in the following exercise.

Exercise 17: Creating Bloom Filters

In this exercise, we shall create a Bloom filter and try out some basic operations. We 
shall also test for false positives in lookup. Let's get started:

1.	 Let's include the required headers:

#include <iostream>
#include <vector>

2.	 Now, let's create a class for our Bloom filter and add the required data members:

class bloom_filter
{
    std::vector<bool> data;
    int nBits;
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3.	 Now, let's add the required hash functions. Again, we'll use very basic hash 
functions:

int hash(int num, int key)
{
    switch(num)
    {
    case 0:
        return key % nBits;
    case 1:
        return (key / 7) % nBits;
    case 2:
        return (key / 11) % nBits;
    }
    return 0;
}

As you can see, we're using single functions, with a parameter called num 
determining the hash function, to avoid unnecessary if-else blocks in other 
functions. This is also easy to expand; we just need to add a case for every hash 
function.

4.	 Let's add a constructor for the Bloom filter:

public:
bloom_filter(int n) : nBits(n)
{
    data = std::vector<bool>(nBits, false);
}

5.	 Now, let's add a lookup function:

void lookup(int key)
{
    bool result = data[hash(0, key)] & data[hash(1, key)] & data[hash(2, 
key)];
    if(result)
    {
        std::cout << key << " may be present." << std::endl;
    }
    else
    {
        std::cout << key << " is not present." << std::endl;
    }
}
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The lookup function is really simple, as expected. It checks whether all the 
required bits are set to 1. If there are a variable number of hash functions, we can 
always loop over all of them to check whether all the corresponding bits are set to 
1. To make our words more accurate, we are also saying that a key may be present 
due to the possibility of false positives. On the other hand, we are completely sure 
that a key is not present if lookup returns negative.

6.	 Even the insertion function is equally simple:

void insert(int key)
{
    data[hash(0, key)] = true;
    data[hash(1, key)] = true;
    data[hash(2, key)] = true;
    std::cout << key << " inserted." << std::endl;
}
};

7.	 Let's add the main function so that we can use this class:

int main()
{
bloom_filter bf(11);
bf.insert(100);
bf.insert(54);
bf.insert(82);
bf.lookup(5);
bf.lookup(50);
bf.lookup(2);
bf.lookup(100);
bf.lookup(8);
bf.lookup(65);
}

8.	 You should see the following output:

100 inserted.
54 inserted.
82 inserted.
5 may be present.
50 is not present.
2 is not present.
100 may be present.
8 is not present.
65 may be present.
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As we can see, there are a couple of false positives, but no false negatives.

Unlike the previous techniques, this structure only required 11 bits to store this 
information, as we can see from the constructor of the Bloom filter. Thus, we can easily 
increase the size of the filter and also update the hash functions accordingly to achieve 
much better results. For example, we can increase the size of the array to 1,000 (1,023 
is used frequently as it is a prime number), and we'll still be using less than 130 bytes, 
which is much less than most other techniques. With the increase in the size of the 
hash table, our hash functions will also become %1023 or similar and will provide better 
results and a better distribution of numbers.

One important point to note here is that since we are not storing the actual data in the 
container, we can use this as a heterogeneous structure; that is, as long as our hash 
functions are good enough, we can insert different types of data, such as integers, 
strings, and doubles, simultaneously in the same Bloom filter.

There are some really good use cases of this in real life, especially when the amount 
of data is too huge to search even with hash tables, and some false positives would be 
acceptable. For example, when creating a new email address with an email provider 
such as Gmail or Outlook, there is a check to see whether the email address already 
exists. There are billions of email addresses present in the database, and an accurate 
check for such a basic and frequent query would be very expensive. Fortunately, even 
if the email address is not already taken, it is okay to sometimes say that it is taken as it 
doesn't do any harm. The user will simply choose something else. In such cases, using 
a Bloom filter is a feasible option. We'll see this in action in Activity 7, Email Address 
Validator.

Another example is the recommendation algorithm for showing new ads that are used 
by services, such as Facebook ads. It will show you a new ad every time you check your 
feed. It can simply store the IDs of ads you have watched in a Bloom filter. Then, the ID 
of a particular ad can be checked against it before showing it on your feed. If the check 
returns that you have watched a particular ad even though you haven't (false positive), 
it will not show that ad. However, this is fine since you wouldn't know about it as you 
haven't seen that ad anyway. This way, you can get new ads every time with a very fast 
lookup.
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Activity 7: Email Address Validator

In this activity, we'll create a validator for emails, similar to what we find in a lot of email 
service provides (such as Gmail and Outlook) while signing up. We'll use a Bloom filter 
to check whether an email address has already been taken by someone else.

These high-level steps should help you complete this activity:

1.	 Create a BloomFilter class that can take a number of hash functions and the size of 
the Bloom.

2.	 For hashing, use the MD5 algorithm from the OpenSSL library to generate a hash 
value of a given email. MD5 is a 128-bit hashing algorithm. For multiple hash 
functions, we can use each byte as a separate hash value.

3.	 To add an email in the Bloom filter, we need to set all the bits to true that are 
coming from each byte of the hash value we calculated in step 2.

4.	 To find any email, we need to check whether all the relevant bits are true based on 
the hash value we calculated in step 2.

Note

The solution to this activity can be found on page 503.

Summary
As we mentioned in the introduction, the lookup problem is encountered in most 
applications in one way or the other. We can use deterministic as well as probabilistic 
solutions as per our needs. In this chapter, we implemented and saw how we can use 
both of them. In the end, we also looked at an example of built-in containers for hashing 
in C++. These containers are extremely useful while we're writing applications as we 
don't need to implement them ourselves every time and for every type. A simple rule of 
thumb is this: if we can see a lot of function calls to the find function for the container, 
we should go for a lookup-based solution.

So far, we've seen how we can store data in various types of data structures and 
perform some basic operations. In the upcoming chapters, we'll look at various types 
of algorithm design techniques so that we can optimize those operations, starting with 
divide and conquer.







Learning Objectives

By the end of this chapter, you will be able to:

•	 Describe the divide-and-conquer design paradigm

•	 Implement standard divide-and-conquer algorithms such as merge sort, quicksort, and 
linear time selection

•	 Solve problems using the MapReduce programming model

•	 Learn how to use a multithreaded C++ MapReduce implementation

In this chapter, we shall study the divide-and-conquer algorithm design paradigm and learn how 
to use it to solve computational problems.

Divide and Conquer

4
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Introduction
In the previous chapter, we studied some commonly used data structures. Data 
structures are organizations of data in different forms, and a data structure enables and 
controls the cost of access to the data stored inside it. However, what makes software 
useful is not just the ability to store and retrieve data in various formats, but the ability 
to make transformations on data in order to solve computational problems. For a given 
problem, the precise definition and order of transformations on data is determined by a 
sequence of instructions called an algorithm.

An algorithm takes in a set of inputs that define an instance of a problem, applies a 
series of transformations, and outputs a set of results. If these results are the correct 
solutions to the computational problem at hand, our algorithm is said to be correct. The 
goodness of an algorithm is determined by its efficiency, or how few instructions the 
algorithm needs to perform to produce correct results:

Figure 4.1: Scaling of steps taken by an algorithm with respect to the size of the input

The preceding diagram shows the growth in the number of steps required by an 
algorithm as a function of the size of the input. Algorithms that are more complex 
grow more quickly with the size of the input, and with sufficiently large inputs they 
can become infeasible to run, even on modern computer systems. For instance, let's 
assume that we have a computer that can perform a million operations per second. For 
an input of size 50, an algorithm that takes N log(N) steps will take 283 microseconds to 
complete; an algorithm that takes N2 steps will take 2.5 milliseconds; and an algorithm 
that takes N! (factorial of N) steps would take approximately 9,637,644,561,599,544,267,0
27,654,516,581,964,749,586,575,812,734.82 centuries to run!
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An algorithm is said to be efficient if, for the size of input N, it solves the problem in a 
number of steps that is a polynomial of N.

The problems that express polynomial-time algorithms as solutions are also said to 
belong to the class P (polynomial) of computational complexity. There are several other 
computational complexities that problems can be divided into, a few examples of which 
are given here:

•	 NP (Non-Deterministic Polynomial Time) problems have solutions that can be 
verified in polynomial time, but do not have any known polynomial-time solutions.

•	 EXPTIME (Exponential Time) problems have solutions that run in time 
exponential to the size of the input.

•	 PSPACE (Polynomial Space) problems require a polynomial amount of space. 

Finding out whether the set of problems in P is exactly the same as the set of problems 
in NP is the famous P = NP problem, which remains unsolved after decades of efforts 
and even carries a $1 million prize for anyone who can solve it. We shall take another 
look at P and NP-type problems in Chapter 9, Dynamic Programming II.

Algorithms have been studied as mathematical objects by computer scientists for 
several decades and a set of general approaches (or paradigms) to design efficient 
algorithms have been identified that can be used to solve a wide variety of problems. 
One of the most widely applicable algorithm design paradigms is called divide and 
conquer and shall be our subject of study in this chapter. 

A divide-and-conquer type algorithm breaks the given problem into smaller parts, tries 
to solve the problem for each part, and, finally, combines the solution for each part 
into the solution for the whole problem. Several widely used algorithms fall into this 
category, for example, binary search, quicksort, merge sort, matrix multiplication, Fast 
Fourier Transform, and the skyline algorithms. These algorithms appear in almost all 
the major applications that are used today, including databases, web browsers, and even 
language runtimes such as the Java Virtual Machine and the V8 JavaScript engine. 

In this chapter, we will show you what it means to solve problems using divide and 
conquer, and how you can identify whether your problem is amenable to such a 
solution. Next, we will practice thinking recursively and show you the tools that the 
modern C++ Standard Library gives you so that you can solve your problems using 
divide and conquer. We'll end this chapter by looking at MapReduce, including a 
discussion on why and how it scales, and how you can use the same paradigm to scale 
up your programs using both CPU-level and machine-level parallelization.

Let's dive into a basic algorithm that uses the divide-and-conquer approach – binary 
search.
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Binary Search
Let's start with the standard search problem: say we are given a sorted sequence of 
positive integers and are required to find out if a number, N, exists in the sequence. 
There are several places where the search problem shows up naturally; for example, 
a receptionist looking for a customer's file in a set of files that are kept ordered by 
customer IDs or a teacher looking for the marks obtained by a student in their register 
of students. They are both, in effect, solving the search problem. 

Now, we can approach the problem in two different ways. In the first approach, we 
iterate over the entire sequence, checking whether each element is equal to N. This is 
called a linear search and is shown in the following code:

bool linear_search(int N, std::vector<int>& sequence)

{

    for (auto i : sequence)

    {

        if (i == N)

            return true;      // Element found!

    }

    

    return false;

}

One benefit of this approach is that it works for all arrays, sorted or unsorted. However, 
it is inefficient and does not take into account that the given array is sorted. In terms of 
its algorithmic complexity, it is an O(N) algorithm.

An alternative solution that exploits the fact that the sequence is sorted is as follows:

1.	 Start with the whole sequence in range.

2.	 Compare the middle element of the current range with N. Let this middle element 
be M.

3.	 If M = N, we have found N in the sequence and, therefore, the search stops.

4.	 Otherwise, we modify the range according to two rules: 

–  If N < M, it means that if N were to be present in the range, it would be to the 
left of M and, therefore, we can safely remove all the elements to the right of M 
from the range. 

–  If N > M, the algorithm removes all the elements to the left of M from the range.
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5.	 If more than 1 element remains in the range, go to step 2. 

6.	 Otherwise, N does not exist in the sequence and the search stops.

To illustrate this algorithm, we'll show how binary search works where S is a sorted 
sequence of integers from 1 to 9 and N = 2:

1.	 The algorithm starts with putting all the elements of S in range. The middle 
element in this step is found to be 5. We compare N and 5:

Figure 4.2: Binary search algorithm – step 1

2.	 Since N < 5, if N was present in the sequence, it would have to be to the left of 5. 
Therefore, we can safely discard all the elements of the sequence lying toward the 
right of 5 from our search. Our range now has elements only between 1 and 5, and 
the middle element is now 3. We can now compare N and 3:

Figure 4.3: Binary search algorithm – step 2

3.	 We find that the current middle element, 3, is still greater than N, and the range 
can further be pruned to contain elements only between 1 and 3. The new middle 
element is now 2, which is equal to N, and the search terminates:

Figure 4.4: Binary search algorithm – step 3
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In the following exercise, we shall look at the implementation of the binary search 
algorithm.

Exercise 18: Binary Search Benchmarks

In this exercise, we will write and benchmark a binary search implementation. Follow 
these steps to complete this exercise:

1.	 Begin by adding the following headers:

#include <iostream>
#include <vector>
#include <chrono>
#include <random>
#include <algorithm>
#include <numeric>

2.	 Add the linear search code like so:

bool linear_search(int N, std::vector<int>& S)
{
        for (auto i : S)
        {
            if (i == N)
                return true;       // Element found!
        }
    
        return false;
}

3.	 Add the binary search code shown here:

bool binary_search(int N, std::vector<int>& S)
{
    auto first = S.begin();
    auto last = S.end();

    while (true)
    {
        // Get the middle element of current range
        auto range_length = std::distance(first, last);
        auto mid_element_index = first + std::floor(range_length / 2);
        auto mid_element = *(first + mid_element_index);

        // Compare the middle element of current range with N
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        if (mid_element == N)
            return true;
        else if (mid_element > N)
            std::advance(last, -mid_element_index);
        if (mid_element < N)
            std::advance(first, mid_element_index);

        // If only one element left in the current range
        if (range_length == 1)
            return false;
    }
}

4.	 To evaluate the performance of binary search, we will implement two functions. 
First, write the small test: 

void run_small_search_test()
{
    auto N = 2;
    std::vector<int> S{ 1, 3, 2, 4, 5, 7, 9, 8, 6 };

    std::sort(S.begin(), S.end());

    if (linear_search(N, S))
        std::cout << "Element found in set by linear search!" << 
std::endl;
    else
        std::cout << "Element not found." << std::endl;

    if (binary_search(N, S))
        std::cout << "Element found in set by binary search!" << 
std::endl;
    else
        std::cout << "Element not found." << std::endl;
}

5.	 Now, add the large test function, as follows:

void run_large_search_test(int size, int N)
{
    std::vector<int> S;
    std::random_device rd;
    std::mt19937 rand(rd());
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      // distribution in range [1, size]
    std::uniform_int_distribution<std::mt19937::result_type> uniform_
dist(1, size); 

    // Insert random elements
    for (auto i=0;i<size;i++)
        S.push_back(uniform_dist(rand));

    std::sort(S.begin(), S.end());

    // To measure the time taken, start the clock
    std::chrono::steady_clock::time_point begin = std::chrono::steady_
clock::now();
    

    bool search_result = binary_search(111, S);

    // Stop the clock
    std::chrono::steady_clock::time_point end = std::chrono::steady_
clock::now();
    
    std::cout << "Time taken by binary search = " << 
std::chrono::duration_cast<std::chrono::microseconds>
(end - begin).count() << std::endl;
    
    if (search_result)
        std::cout << "Element found in set!" << std::endl;
    else
        std::cout << "Element not found." << std::endl;
}

6.	 Lastly, add the following driver code, which searches for the number 36543 in 
randomly generated vectors of different sizes:

int main()
{
    run_small_search_test();

    run_large_search_test(100000, 36543);
    run_large_search_test(1000000, 36543);
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    run_large_search_test(10000000, 36543);

    return 0;
}

7.	 Compile the program in x64-Debug mode and run it. The output should look like 
the following:

Figure 4.5: Binary search with debugging enabled

Notice that each of the three input arrays are all 10 times bigger than the previous 
arrays, so the third array is a hundred times larger than the first array, which itself 
contains a hundred thousand elements. Still, the time taken to search in the arrays 
using binary search increases only by 10 microseconds.

In the previous test, we did not allow any compiler optimizations and ran with the 
debugger attached to the program. Now, let's see what happens when our compiler is 
allowed to optimize the C++ code with no debugger attached. Try compiling the code 
in Exercise 18, Binary Search Benchmarks, in x64-Release mode and run it. The output 
should look as follows:

Figure 4.6: Binary search with compiler optimizations turned on
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The binary search takes approximately equal time in all three cases, even with vastly 
different vector sizes! 

Note that our implementation of binary search uses iterators and the C++ Standard 
Library functions such as std::distance() and std::advance(). This is considered good 
practice in modern C++ since it helps keep our code agnostic of the underlying data 
type and safe from index out-of-bounds errors. 

Now, say we wanted to perform a search on a vector of floating-point numbers. How 
would we modify our functions in the previous exercise? The answer is exceedingly 
simple. We can modify the function signatures as follows:

bool linear_search(float N, std::vector<float>& S)

bool binary_search(float N, std::vector<float>& S)

The rest of the code inside of the search functions can still remain exactly the same 
since it is completely independent of the underlying datatype and depends only on the 
behavior of a container datatype. This separation of core algorithm logic from the 
underlying datatype on which the algorithm operates is a cornerstone of writing 
reusable code in modern C++. We shall see several examples of such separation in the 
duration of this book and dive into more functions that the Standard Library provides 
that can help us write reusable and robust code.

Activity 8: Vaccinations

Imagine that it is flu season and health department officials are planning to visit 
a school to ensure that all the enrolled children are administered their flu shot. 
However, there is a problem: a few children have already taken their flu shots but do 
not remember if they have been vaccinated against the specific category of flu that the 
health officials plan to vaccinate all the students against. Official records are sought out 
and the department is able to find a list of students that have already been administered 
the vaccine. A small excerpt of the list is shown here:

Figure 4.7: Excerpt of vaccination records
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Assume that all the names are positive integers and that the given list is sorted. Your 
task is to write a program that can look up the vaccination status of a given student 
in the list and outputs to the officials whether the student needs to be vaccinated. 
Students need to be vaccinated in case of two conditions:

•	 If they are not present in the list

•	 If they are present in the list but have not been administered a flu shot

Since the list can have a large number of students, your program should be as fast and 
efficient as possible. The final output of your program should look as follows:

Figure 4.8: Sample output of Activity 8

High-level Steps

The solution to this activity uses a slightly modified version of the binary search 
algorithm. Let's get started:

1.	 Represent each student as an object of the Student class, which can be defined as 
follows:

 class Student
{
    std::pair<int, int> name;

    bool vaccinated;
}

2.	 Overload the required operators for the Student class so that a vector of students 
can be sorted using the Standard Library's std::sort() function.

3.	 Use a binary search to see if the student is present on the list. 

4.	 If the student isn't present in the list, your function should return true since the 
student needs to be administered the vaccine.
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5.	 Otherwise, if the student is present in the list but has not been administered the 
vaccine, return true. 

6.	 Else, return false.

Note

The solution to this activity can be found on page 506.

Understanding the Divide-and-Conquer Approach
At the core of the divide-and-conquer approach is a simple and intuitive idea: if you 
don't know how to solve a large instance of a problem, find a small part of the problem 
that you can solve, and then solve it. Then, iterate for more such parts, and once you 
have solved all the parts, combine the results into a large coherent solution to the 
original problem. There are three steps to solving a problem using the divide-and-
conquer approach:

1.	 Divide: Take the original problem and divide it into parts so that the same problem 
needs to be solved for each part.

2.	 Conquer: Solve the problem for each part.

3.	 Combine: Take the solutions for the different parts and combine them into a 
solution for the original problem.

In the previous section, we looked at an example of using divide and conquer to 
search within a sequence. At each step, binary search tries to search in only a part of 
the sequence, which is marked as the range. The search terminates when either the 
element is found or there is no longer a way to further divide the range into smaller 
parts. However, the search problem differs from most divide-and-conquer algorithms 
in the following manner: in the search problem, if an element can be found in a smaller 
range of the sequence, then it also definitely exists in the complete sequence. In other 
words, the solution to the problem in a smaller part of the sequence gives us the 
solution to the whole problem. Therefore, the solution does not need to implement 
the combination step of the general divide-and-conquer approach. This property, 
unfortunately, is not exhibited by the vast majority of computational problems that can 
be solved using a divide-and-conquer approach. In the following section, we shall dive 
deeper and look at more examples of using the divide-and-conquer approach to solve 
problems.



Sorting Using Divide and Conquer | 155

Sorting Using Divide and Conquer
We shall now explore how to implement the divide-and-conquer approach when 
it comes to solving another standard problem – sorting. The importance of having 
an efficient sorting algorithm cannot be overstated. In the early days of computing 
in the 1960s, computer manufacturers estimated that 25% of all CPU cycles in their 
machines were spent sorting elements of arrays. Although the computing landscape 
has changed significantly over the years, sorting is still widely studied today and 
remains a fundamental operation in several applications. For instance, it is the key idea 
behind indexes in databases, which then allow quick access to the stored data using a 
logarithmic time search, which is similar to binary search.

The general requirements for an implementation of a sorting algorithm are as follows:

•	 The implementation should be able to work with any datatype. It should be able to 
sort integers, floating-point decimals, and even C++ structures or classes where an 
order among different elements can be defined.

•	 The sorting algorithm should be able to handle large amounts of data, that is, the 
same algorithm should work with sizes of data even greater than the main memory 
of a computer. 

•	 The sorting algorithm should be fast, both asymptotically and in practice.

While all three listed goals are desirable, in practice, it is hard to achieve the second and 
third objectives simultaneously. The second objective requires external sorting, that is, 
sorting data that does not reside on the main memory of a computer. External sorting 
algorithms can work while holding only a small subset of the whole data in memory at 
any point during execution. 

In this section, we will introduce two sorting algorithms: merge sort and quicksort. 
Merge sort is an external sorting algorithm and, therefore, achieves our second 
objective, while quicksort, as its name suggests, is one of the fastest known sorting 

algorithms in practice and appears as a part of the C++ Standard Library's std::sort() 
function.
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Merge Sort

Merge sort is one of the oldest known sorting algorithms and appeared in reports in 
the late 1940s. The computers of that time had a few hundred bytes of main memory 
and were often used for complex mathematical analyses. Therefore, it was crucial for 
sorting algorithms to be able to work, even when all the data to be operated upon could 
not be held in the main memory. Merge sort solved this problem by exploiting a simple 
idea – sorting a large set of elements is the same as sorting a small subset of elements, 
and then merging the sorted subsets so that the increasing or decreasing order of 
elements is maintained:

Figure 4.9: Merge sort

The preceding diagram shows an example of sorting an array of integers using merge 
sort. First, the algorithm divides the original array into subarrays until each subarray 
only consists of one element (steps 1 to 4). In all the subsequent steps, the algorithm 
merges elements into larger arrays, keeping elements in each subarray in increasing 
order.
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Exercise 19: Merge Sort

In this exercise, we shall implement the merge sort algorithm. The steps are as follows:

1.	 Import the following headers:

#include <iostream>
#include <vector>
#include <chrono>
#include <random>
#include <algorithm>
#include <numeric>

2.	 The C++ code for the merge operation on two vectors is as follows. Write the 
merge() function like so:

template <typename T>
std::vector<T> merge(std::vector<T>& arr1, std::vector<T>& arr2)
{
    std::vector<T> merged;

    auto iter1 = arr1.begin();
    auto iter2 = arr2.begin();

    while (iter1 != arr1.end() && iter2 != arr2.end())
    {
        if (*iter1 < *iter2)
        {
            merged.emplace_back(*iter1);
            iter1++;
        }
        else
        {
            merged.emplace_back(*iter2);
            iter2++;
        }
    }

    if (iter1 != arr1.end())
    {
        for (; iter1 != arr1.end(); iter1++)
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            merged.emplace_back(*iter1);
    }
    else
    {
        for (; iter2 != arr2.end(); iter2++)
            merged.emplace_back(*iter2);
    }

    return merged;
}

The templatized merge() function takes in references to two vectors of type T 
and returns a new vector containing the elements in input arrays, but sorted in 
increasing order.

3.	 We can now use the merge operation to write a recursive merge sort 
implementation, as shown here:

template <typename T>
std::vector<T> merge_sort(std::vector<T> arr)
{
    if (arr.size() > 1)
    {
        auto mid = size_t(arr.size() / 2);
        auto left_half = merge_sort<T>(std::vector<T>(arr.begin(), arr.
begin() + mid));
        auto right_half = merge_sort<T>(std::vector<T>(arr.begin() + mid, 
arr.end()));

        return merge<T>(left_half, right_half);
    }
    
    return arr;
}
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4.	 Add the following function to print the vector:

template <typename T>
void print_vector(std::vector<T> arr)

{
    for (auto i : arr)
        std::cout << i << " ";
    
    std::cout << std::endl;
}

5.	 The following function allows us to test our implementation of the merge sort 
algorithm:

void run_merge_sort_test()
{
    std::vector<int>    S1{ 45, 1, 3, 1, 2, 3, 45, 5, 1, 2, 44, 5, 7 };
    std::vector<float>  S2{ 45.6f, 1.0f, 3.8f, 1.01f, 2.2f, 3.9f, 45.3f, 
5.5f, 1.0f, 2.0f, 44.0f, 5.0f, 7.0f };
    std::vector<double> S3{ 45.6, 1.0, 3.8, 1.01, 2.2, 3.9, 45.3, 5.5, 
1.0, 2.0,  44.0, 5.0, 7.0 };
    std::vector<char>   C{ 'b','z','a','e','f','t','q','u','y' };

    std::cout << "Unsorted arrays:" << std::endl;
    print_vector<int>(S1);
    print_vector<float>(S2);
    print_vector<double>(S3);
    print_vector<char>(C);
    std::cout << std::endl;

    auto sorted_S1 = merge_sort<int>(S1);

    auto sorted_S2 = merge_sort<float>(S2);
    auto sorted_S3 = merge_sort<double>(S3);
    auto sorted_C = merge_sort<char>(C);

    std::cout << "Arrays sorted using merge sort:" 
                << std::endl;
    print_vector<int>(sorted_S1);
    print_vector<float>(sorted_S2);
    print_vector<double>(sorted_S3);
    print_vector<char>(sorted_C);



160 | Divide and Conquer

    std::cout << std::endl;
}

int main()
{
    run_merge_sort_test();
    return 0;
}

6.	 Compile and run the program. The output should look like the following:

Figure 4.10: Sorting by merge sort

Our implementation of merge sort in this exercise continues our theme of not tying 
implementations of algorithms to underlying datatypes and relying only on the 
functions exposed by the containers.

Quicksort

While the goal in the case of merge sort was to sort large amounts of data, quicksort 
tries to reduce the average-case running time. The underlying idea in quicksort is also 
the same as merge sort – divide the original input array into smaller subarrays, sort 
the subarrays, and merge the results to get the sorted array. However, the fundamental 
operation that quicksort uses is partition and not merge. 
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Working of the Partition Operation

Given an array and a pivot element, P, in the array, the partition operation does two 
things: 

1.	 It divides the original array into two subarrays, L and R, where L contains all the 
elements of the given array that are less than or equal to P, and R contains all 
elements of the given array that are greater than P.

2.	 It reorganizes the elements in the array in the order L, P, R.

The following diagram shows the result of a partition that was applied to an unsorted 
array, with the first element chosen as the pivot:

Figure 4.11: Selecting a pivot and partitioning the vector around it

A useful property of the partition operation is that after it is applied, the new position 
of the pivot, P, in the vector becomes the position that P would have if the vector were 
sorted. For example, the element 5 appears at the 5th position in the array after we apply 
the partition operation, which is the same position that element 5 would have been in if 
the array was sorted in increasing order. 

The preceding property is also the core idea behind the quicksort algorithm, which 
works as follows: 

1.	 If the input array, A, has more than 1 element in it, apply the partition operation on 
A. It results in subarrays L and R.

2.	 Use L as an input to step 1.

3.	 Use R as an input to step 1.
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Steps 2 and 3 are recursive calls to the partition operation on the arrays that are 
generated by the partition operation and applied to the original input array. This simple 
recursive application of the partition operation results in sorting elements in increasing 
order. Since the quicksort recursion trees can quickly become deep, the following 
diagram shows an example of applying quicksort on a small array of six elements, {5, 6, 
7, 3, 1, 9}:

Figure 4.12: Visualization of the quicksort algorithm

Each iteration of the algorithm shows the result of the partition operation being applied 
to the subarrays generated in the previous step using the highlighted pivots. It should 
be noted that our choice of the first element of the array as the pivot is arbitrary. Any 
element of the array can be chosen as the pivot without affecting the correctness of the 
quicksort algorithm. 

Exercise 20: Quicksort

In this exercise, we shall implement and test our implementation of quicksort. Let's get 
started:

1.	 Import the following headers:

#include <iostream>
#include <vector>
#include <chrono>
#include <random>
#include <algorithm>
#include <numeric>
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2.	 The C++ code for the partition operation is as follows. Write the partition() 
function as shown here:

template <typename T>
auto partition(typename std::vector<T>::iterator begin,
            typename std::vector<T>::iterator last)
{
      // Create 3 iterators, 

      // one pointing to the pivot, one to the first element and 
      // one to the last element of the vector.
    auto pivot_val = *begin;
    auto left_iter = begin+1;
    auto right_iter = last;

    while (true)
    {
        // Starting from the first element of vector, find an element that 
is greater than pivot.
        while (*left_iter <= pivot_val && 
                   std::distance(left_iter, right_iter) > 0)
            left_iter++;
        // Starting from the end of vector moving to the beginning, find an 
element that is lesser than the pivot.
        while (*right_iter > pivot_val && 
                   std::distance(left_iter, right_iter) > 0)
            right_iter--;

        // If left and right iterators meet, there are no elements left to 
swap. Else, swap the elements pointed to by the left and right iterators
        if (left_iter == right_iter)
            break;
        else

            std::iter_swap(left_iter, right_iter);
    }
    if (pivot_val > *right_iter)
        std::iter_swap(begin, right_iter);
    
    return right_iter;
}
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The implementation shown here takes in only the iterators over an underlying 
container object and returns another iterator that points to the index of the 
partition in the array. This means that all the elements of the vector are greater 
than the pivot in the right partition, and all the elements less than or equal to the 
pivot are in the left partition.

3.	 The quicksort algorithm uses the partition operation recursively, as shown in the 
following code:

template <typename T>
void quick_sort(typename std::vector<T>::iterator begin, 
        typename std::vector<T>::iterator last)
{
    // If there are more than 1 elements in the vector
    if (std::distance(begin, last) >= 1)
    {
        // Apply the partition operation
        auto partition_iter = partition<T>(begin, last);
        
        // Recursively sort the vectors created by the partition operation
        quick_sort<T>(begin, partition_iter-1);
        quick_sort<T>(partition_iter, last);
    }
}

4.	 print_vector() is used to print a vector to the console and is implemented as 
follows:

template <typename T>
void print_vector(std::vector<T> arr)
{
    for (auto i : arr)
        std::cout << i << " ";
    
    std::cout << std::endl;
}
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5.	 Adapt the driver code from Exercise 19, Merge Sort, as follows: 

void run_quick_sort_test()
{
    std::vector<int> S1{ 45, 1, 3, 1, 2, 3, 45, 5, 1, 2, 44, 5, 7 };
    std::vector<float>  S2{ 45.6f, 1.0f, 3.8f, 1.01f, 2.2f, 3.9f, 45.3f, 
5.5f, 1.0f, 2.0f, 44.0f, 5.0f, 7.0f };
    std::vector<double> S3{ 45.6, 1.0, 3.8, 1.01, 2.2, 3.9, 45.3, 5.5, 
1.0, 2.0,  44.0, 5.0, 7.0 };
    std::vector<char> C{ 'b','z','a','e','f','t','q','u','y'};

    std::cout << "Unsorted arrays:" << std::endl;
    print_vector<int>(S1);
    print_vector<float>(S2);
    print_vector<double>(S3);
    print_vector<char>(C);
    std::cout << std::endl;
    quick_sort<int>(S1.begin(), S1.end() - 1);
    quick_sort<float>(S2.begin(), S2.end() - 1);
    quick_sort<double>(S3.begin(), S3.end() - 1);
    quick_sort<char>(C.begin(), C.end() - 1);

    std::cout << "Arrays sorted using quick sort:" << std::endl;
    print_vector<int>(S1);
    print_vector<float>(S2);
    print_vector<double>(S3);
    print_vector<char>(C);
    std::cout << std::endl;
}

6.	 Write a main() function that calls run_quick_sort_test():

int main()
{
    run_quick_sort_test();
    return 0;
}
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7.	 Your final output should look as follows:

Figure 4.13: Sorting by quicksort

However, the runtime of quicksort does depend on how "good" our choice of pivot is. 
The best case for quicksort is when the pivot at any step is the median element of the 
current array; in such a case, quicksort is able to partition the elements into vectors of 
equal sizes at each step, and, therefore, the depth of the recursion tree is exactly log(n). 
If the medians are not chosen as pivots, it results in an imbalance in the partition sizes 
and, therefore, a deeper recursion tree and greater running time.

The asymptotic complexity of quicksort and merge sort is shown here:

Figure 4.14: Asymptotic complexity of quicksort and merge sort

Activity 9: Partial Sorting

In the last two exercises, we have implemented total sorting algorithms that order all 
the elements of a vector in an increasing (or decreasing) order. However, this can be 
overkill in several problem instances. For example, imagine that you are given a vector 
containing the ages of all humans on earth and are asked to find the median age of the 
oldest 10% of the population. 

A naïve solution to this problem is to sort the vector of ages, extract the ages of the 
oldest 10% people from the vector, and then find the median of the extracted vector. 
However, this solution is wasteful as it does far more than is strictly needed in order to 
compute the solution, that is, it sorts the entire array to ultimately use only 10% of the 
sorted array for the required solution.
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A better solution to such problems can be derived by specializing the total sorting 
algorithms such as merge sort and quicksort into partial sorting algorithms. A partial 
sorting algorithm sorts only a specified number of elements in a given vector and leaves 
the rest of the vector unsorted.

The partial quicksort is described as follows: 

1.	 Assume that we are given a vector, V, and we are required to create a sorted 

subvector of k elements.

2.	 Apply the partition operation on V, assuming the first element of V as the pivot 
(again, this choice is completely arbitrary). The result of the partition operation are 
two vectors, L and R, where L contains all the elements of V that are less than the 
pivot and R contains all the elements greater than the pivot. Also, the new position 
of the pivot is the "correct" position of the pivot in the sorted array.

3.	 Use L as input to step 1.

4.	 If the new position of pivot in step 2 is less than k, use R as input to step 1. 

Your task in this activity is to implement the partial quicksort algorithm that uses 
randomly generated arrays to test the output of the algorithm. The final output with a 
vector of size 100 and k = 100 should look as follows:

Figure 4.15: Sample output of Activity 9

Note

The solution to this activity can be found on page 510.
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Linear Time Selection

In the previous section, we looked at simple examples of algorithms that use the divide-
and-conquer paradigm and were introduced to the partition and merge operations. 
So far, our view of divide-and-conquer algorithms has been restricted to ones that 
recursively divide each intermediate step into exactly two subparts. However, there 
are certain problems where dividing each step into more subparts can yield substantial 
benefits. In the following section, we shall study one such problem – linear time 
selection.

Imagine that you are in charge of organizing a marching band parade for your school. 
To ensure that all the band members look uniform, it is important that the heights of 
students be the same. Moreover, students from all grades are required to participate. 
To solve these problems, you come up with the following solution – you will select only 
the 15th shortest student in every grade to participate in the parade. The problem can 
be formalized as follows: given a randomly ordered set of elements, S, you are asked to 
find the ith smallest element in S. A simple solution could be sorting the input and then 
selecting the ith element. However, the algorithmic complexity of this solution is O(n log 
n). In this section, we will work through a divide-and-conquer solution that solves the 
problem in O(n).

Our solution hinges on using the partition operation correctly. The partition operation 
we introduced in the previous subsection takes in a vector and a pivot, and then divides 
the vector into two parts, one containing all the elements less than the pivot and the 
other containing all the elements greater than the pivot. The final algorithm works as 
follows:

1.	 Assume that we are given an input vector, V, and we need to find the ith smallest 
element.

2.	 Divide the input vector, V, into vectors V1, V2, V3, … , Vn/5, each containing five 
elements (the last vector can have less than five elements, if necessary).

3.	 Next, we sort each Vi.
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4.	 For each Vi, find the median, mi, and collect all medians into a set, M, as shown 
here:

Figure 4.16: Finding the medians of each subvector

5.	 Find the median element, q, of M:

Figure 4.17: Finding the median of a set of medians
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6.	 Use the partition operation on V using q as the pivot to get two vectors, L and R:

Figure 4.18: Partitioning the whole vector

7.	 By the definition of the partition operation, L contains all the elements less than q 
and R contains all the elements greater than q. Let's say L has (k – 1) elements:

–  If i = k, then q is the ith element in V.

–  If i < k, set V = L and go to step 1.

–  If i > k, set V = R and i = i – k, and go to step 1.

The following exercise demonstrates the implementation of this algorithm in C++.

Exercise 21: Linear Time Selection

In this exercise, we shall implement the linear time selection algorithm. Let's get 
started:

1.	 Import the following headers:

#include <iostream>
#include <vector>
#include <chrono>
#include <random>
#include <algorithm>
#include <numeric>
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2.	 Write the helper function shown here:

template<typename T>
auto find_median(typename std::vector<T>::iterator begin, typename 
std::vector<T>::iterator last)
{
    // Sort the array
    quick_sort<T>(begin, last);
    
    // Return the middle element, i.e. median
    return begin + (std::distance(begin, last)/2); 
}

3.	 In Exercise 20, Quicksort, our partition function assumed that the first element in a 
given vector was always the pivot to be used. We now need a more general form of 
the partition operation that can work with any pivot element:

template <typename T>
auto partition_using_given_pivot(
typename std::vector<T>::iterator begin, 
typename std::vector<T>::iterator end, 
typename std::vector<T>::iterator pivot)
{
        // Since the pivot is already given,
        // Create two iterators pointing to the first and last element of 
the vector respectively

    auto left_iter = begin;
    auto right_iter = end;

    while (true)
    {
        // Starting from the first element of vector, find an element that 
is greater than pivot.
        while (*left_iter < *pivot && left_iter != right_iter)
            left_iter++;

        // Starting from the end of vector moving to the beginning, find an 
element that is lesser than the pivot.
        while (*right_iter >= *pivot && 
                  left_iter != right_iter)
            right_iter--;
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        // If left and right iterators meet, there are no elements left to 
swap. Else, swap the elements pointed to by the left and right iterators.
        if (left_iter == right_iter)
            break;
        else
            std::iter_swap(left_iter, right_iter);
    }
    if (*pivot > *right_iter)
        std::iter_swap(pivot, right_iter);

    return right_iter;
}

4.	 Use the following code to implement our linear time search algorithm:

// Finds ith smallest element in vector V
template<typename T>
typename std::vector<T>::iterator linear_time_select(
typename std::vector<T>::iterator begin,
typename std::vector<T>::iterator last, size_t i)
{
    auto size = std::distance(begin, last);

    if (size > 0 && i < size) {

        // Get the number of V_i groups of 5 elements each
        auto num_Vi = (size+4) / 5; 
        size_t j = 0;

        // For each V_i, find the median and store in vector M
        std::vector<T> M;
        for (; j < size/5; j++)
        {
            auto b = begin + (j * 5);
            auto l = begin + (j * 5) + 5;

            M.push_back(*find_median<T>(b, l));
        }
        if (j * 5 < size)
        {
            auto b = begin + (j * 5);
            auto l = begin + (j * 5) + (size % 5);
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            M.push_back(*find_median<T>(b, l));
        }

        // Find the middle element ('q' as discussed)
           auto median_of_medians = (M.size() == 1)? M.begin():
      linear_time_select<T>(M.begin(), 
                            M.end()-1, M.size() / 2);
        
         // Apply the partition operation and find correct position 'k' of 
pivot 'q'.

        auto partition_iter = partition_using_given_pivot<T>(begin, last, 
median_of_medians);
        auto k = std::distance(begin, partition_iter)+1;

        if (i == k)
            return partition_iter;
        else if (i < k)
            return linear_time_select<T>(begin, partition_iter - 1, i);
        else if (i > k)
            return linear_time_select<T>(partition_iter + 1, last, i-k);
    }
    else {
        return begin;
    }
}

5.	 Add the merge sort implementation shown in the following code. We shall use the 
sorting algorithm to demonstrate the correctness of our implementation:

template <typename T>
std::vector<T> merge(std::vector<T>& arr1, std::vector<T>& arr2)
{
    std::vector<T> merged;

    auto iter1 = arr1.begin();
    auto iter2 = arr2.begin();

    while (iter1 != arr1.end() && iter2 != arr2.end())
    {
        if (*iter1 < *iter2)
        {
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            merged.emplace_back(*iter1);
            iter1++;
        }
        else
        {
            merged.emplace_back(*iter2);
            iter2++;
        }
    }

    if (iter1 != arr1.end())
    {
        for (; iter1 != arr1.end(); iter1++)
            merged.emplace_back(*iter1);
    }
    else
    {
        for (; iter2 != arr2.end(); iter2++)
            merged.emplace_back(*iter2);
    }

    return merged;
}

template <typename T>
std::vector<T> merge_sort(std::vector<T> arr)
{
    if (arr.size() > 1)
    {
        auto mid = size_t(arr.size() / 2);
        auto left_half = merge_sort(std::vector<T>(arr.begin(),
            arr.begin() + mid));
        auto right_half = merge_sort(std::vector<T>(arr.begin() + mid,
            arr.end()));

        return merge<T>(left_half, right_half);
    }

    return arr;
}
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6.	 Lastly, add the following driver and test functions:

void run_linear_select_test()

{
    std::vector<int> S1{ 45, 1, 3, 1, 2, 3, 45, 5, 1, 2, 44, 5, 7 };
    std::cout << "Original vector:" << std::endl;
    print_vector<int> (S1);

    std::cout << "Sorted vector:" << std::endl;
    print_vector<int>(merge_sort<int>(S1));

    std::cout << "3rd element: " 
                 << *linear_time_select<int>(S1.begin(), S1.end() - 1, 3) 
<< std::endl;
    std::cout << "5th element: " 
                 << *linear_time_select<int>(S1.begin(), S1.end() - 1, 5) 
<< std::endl;
    std::cout << "11th element: " 
                 << *linear_time_select<int>(S1.begin(), S1.end() - 1, 11) 
<< std::endl;
}

int main()
{
    run_linear_select_test();
    return 0;
}

7.	 Compile and run the code. Your final output should look like this:

Figure 4.19: Finding the 3rd, 5th, and 11th elements using linear time selection
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While a detailed theoretical analysis of the given algorithm is beyond the scope of this 
chapter, the runtime of the algorithm merits some discussion. The basic idea why the 
preceding algorithm works is that every time linear_time_select() is called with an 
input, V, a partition operation is applied, and the function then recursively calls itself 
on only one of the partitions. At each recursion step, the size of the problem reduces 
by at least 30%. Since finding a median of five elements is a constant time operation, 
the recurrence equation that's obtained by the preceding algorithm can be then solved 
using induction to see that the runtime is indeed O(n).

Note

An interesting property of the linear time selection algorithm is that its well-known 
asymptotic complexity (linear) is achieved when V is divided into subvectors of 
five elements each. Finding a constant size of subvectors that results in better 
asymptotic complexity remains an open problem.

C++ Standard Library Tools for Divide and Conquer
In the previous section, we manually implemented the necessary functions for divide-
and-conquer algorithms. However, the C++ standard library comes bundled with a 
large set of predefined functions that can save us a lot of work when programming. 
The following table provides a handy list of the most commonly used functions that are 
used while implementing algorithms that use the divide-and-conquer paradigm. We 
are briefly describing these functions for reference, but the detailed implementation is 
left out of the scope of this chapter for brevity. Feel free to explore more about these 
functions; you should be able to understand them based on the concepts we've covered 
in this chapter:
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Figure 4.20: Some useful STL functions for algorithms

Dividing and Conquering at a Higher Abstraction Level – 
MapReduce
So far in this chapter, we have looked at divide and conquer as an algorithm design 
technique and used it to solve our problems using a predefined set of divide-conquer-
merge steps. In this section, we'll take a slight detour and see how the same principle 
of dividing a problem into smaller parts and solving each part separately can be 
particularly helpful when we need to scale software beyond the computational power of 
a single machine and use clusters of computers to solve problems.

The original MapReduce paper starts as follows:

"MapReduce is a programming model and an associated implementation for processing 
and generating large datasets. Users specify a map function that processes a key-value 
pair to generate a set of intermediate key/value pairs, and a reduce function that merges 
all the intermediate values associated with the same intermediate key."

Note

You can refer to the original research paper about the MapReduce model, which 
was published by Jeffrey Dean and Sanjay Ghemawat in 2004, here: https://static.
googleusercontent.com/media/research.google.com/en/us/archive/mapreduce-
osdi04.pdf.

https://static.googleusercontent.com/media/research.google.com/en/us/archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en/us/archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en/us/archive/mapreduce-osdi04.pdf
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Since the original paper first appeared, several open source implementations of the 
MapReduce programming model have appeared, the most notable of which is Hadoop. 
Hadoop provides a programming toolkit for the user to write map and reduce functions 
that can be applied to data stored in a distributed filesystem called the Hadoop 
Distributed File System (HDFS). Since HDFS can easily scale up to a cluster of several 
thousand machines connected over a network, MapReduce programs are therefore 
capable of scaling with the size of the cluster.

In this section, however, we are interested not in Hadoop, but in MapReduce as a 
programming paradigm, and its association with the topic at hand, that is, the divide-
and-conquer technique. Instead of Hadoop, we will stick to an open source single-
machine implementation of MapReduce that uses multithreading to emulate the 
original worker model for task parallelization. 

The Map and Reduce Abstractions

The terms map and reduce have their origins in functional programming languages such 
as Lisp. 

Map is an operation that takes in a container, C, and applies a given function, f(x), to 
each element of C. An example of using f(x) = x2 is shown in the following diagram:

 

Figure 4.21: Mapping the values of a container
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Reduce is an operation that aggregates values in a container, C, by applying a given 
function, f(acc, x), to each element, x, of C, and returning a single value. This is shown in 
the following diagram:

Figure 4.22: Reducing the values of a container

The C++ Standard Library contains map and reduce operations, that is, 
std::transform() and std::accumulate(), respectively (std::reduce() is also available in 
C++ 17).

Note

std::accumulate() is a restricted form of the reduce operation that uses only the 
addition function. The newer compilers also provide std::reduce(), which is more 
general and can be parallelized.

The following exercise demonstrates the implementation of MapReduce using the C++ 
Standard Library.

Exercise 22: Map and Reduce in the C++ Standard Library

In this exercise, we shall see how we can use these functions to further understand the 
map and reduce operations. Let's get started:

1.	 Import the following headers:

#include <iostream>
#include <vector>
#include <chrono>
#include <random>
#include <algorithm>
#include <numeric>
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2.	 Begin by creating an array with random elements:

void transform_test(size_t size)
{
    std::vector<int> S, Tr;
    std::random_device rd;
    std::mt19937 rand(rd());
    std::uniform_int_distribution<std::mt19937::result_type> uniform_
dist(1, size);

    // Insert random elements
    for (auto i = 0; i < size; i++)
        S.push_back(uniform_dist(rand));

    std::cout << "Original array, S: ";
    for (auto i : S)
        std::cout << i << " ";
    std::cout << std::endl;
    std::transform(S.begin(), S.end(), std::back_inserter(Tr), 
                      [](int x) {return std::pow(x, 2.0); });

    std::cout << "Transformed array, Tr: ";
    for (auto i : Tr)
        std::cout << i << " ";
    std::cout << std::endl;

    // For_each
    std::for_each(S.begin(), S.end(), [](int &x) {x = std::pow(x, 2.0); 
});

    std::cout << "After applying for_each to S: ";
    for (auto i : S)
            std::cout << i << " ";
    std::cout << std::endl;
}
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3.	 The transform_test() function randomly generates a vector of a given size and 
applies a transformation, f(x) = x2, to the vector.

Note 

std::transform() does not change the original vector and instead returns the 
result in a separate vector, while std::for_each() modifies the input vector. 
Another difference between the two is that std::transform() does not guarantee 
that the input function, f, will be applied from the first to the last element of the 
container; that is, the order of function application does not necessarily match the 
order of elements. Starting with C++ 17, std::transform() also supports native 
parallelization by accepting ExecutionPolicy as the first argument. 

The reduce operation is implemented in the C++ Standard Library as 
std::accumulate() and std::reduce() (available only in C++ 17 and later):

void reduce_test(size_t size)
{
    std::vector<int> S;
    std::random_device rd;
    std::mt19937 rand(rd());
    std::uniform_int_distribution<std::mt19937::result_type> uniform_
dist(1, size);

    // Insert random elements
    for (auto i = 0; i < size; i++)
        S.push_back(uniform_dist(rand));

    std::cout << std::endl << "Reduce test== " << std::endl << "Original 
array, S: ";
    for (auto i : S)
        std::cout << i << " ";
    std::cout << std::endl;
    // Accumulate
    std::cout<<"std::accumulate() = " << std::accumulate(S.begin(), 
S.end(), 0, [](int acc, int x) {return acc+x; });

    std::cout << std::endl;
}
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4.	 Add the following driver code:

int main() 
{
    transform_test(10);
    reduce_test(10);
    return 0;
}

5.	 Compile and run the code. Your output should look as follows:

Figure 4.23: Mapping and reducing an array

Integrating the Parts – Using a MapReduce Framework

To write a program using the MapReduce model, we must be able to express our 
desired computation in a series of two stages: Map (also referred to as Partition), where 
the program reads the input and creates a set of intermediate <key,value> pairs, and 
Reduce, where the intermediate <key,value> pairs are then combined in the required 
manner to generate the final result. The following diagram illustrates this idea:

Figure 4.24: Generalized MapReduce framework
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The main value that frameworks such as Hadoop add to the MapReduce programming 
model is that they make the map and reduce operations distributed and highly scalable 
so that the computation runs on a cluster of machines and the total time taken is 
reduced.

We shall use the MapReduce framework to execute a sample task in the following 
exercise.

Note

The following exercise and activity need the Boost C++ libraries to be installed on 
your system. Follow these links to get the Boost libraries:

Windows: https://www.boost.org/doc/libs/1_71_0/more/getting_started/windows.
html

Linux/macOS: https://www.boost.org/doc/libs/1_71_0/more/getting_started/unix-
variants.html

Exercise 23: Checking Primes Using MapReduce

Given a positive integer, N, we wish to find out the prime numbers between 1 and 
N. In this exercise, we shall see how we can implement this using the MapReduce 
programming model and solve the problem using multiple threads. Let's get started:

1.	 Let's begin by including the required libraries and defining a function to check 
whether a given number is prime using prime factorization:

#include <iostream>
#include "mapreduce.hpp"

namespace prime_calculator {

    bool const is_prime(long const number)
    {
        if (number > 2)
        {
            if (number % 2 == 0)
                return false;

            long const n = std::abs(number);

https://www.boost.org/doc/libs/1_71_0/more/getting_started/windows.html
https://www.boost.org/doc/libs/1_71_0/more/getting_started/windows.html
https://www.boost.org/doc/libs/1_71_0/more/getting_started/unix-variants.html
https://www.boost.org/doc/libs/1_71_0/more/getting_started/unix-variants.html
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            long const sqrt_number = static_cast<long>(std::sqrt(
static_cast<double>(n)));

            for (long i = 3; i <= sqrt_number; i += 2)
            {
                if (n % i == 0)
                    return false;
            }
        }
        else if (number == 0 || number == 1)
            return false;

        return true;
    }

2.	 The following class is used to generate a range of numbers with a given difference 
between consecutive numbers (also called the step size):

    template<typename MapTask>
    class number_source : mapreduce::detail::noncopyable
    {
    public:
        number_source(long first, long last, long step)
            : sequence_(0), first_(first), last_(last), step_(step)
        {
        }

        bool const setup_key(typename MapTask::key_type& key)
        {
            key = sequence_++;
            return (key * step_ <= last_);
        }

        bool const get_data(typename MapTask::key_type const& key, 
typename MapTask::value_type& value)
        {
            typename MapTask::value_type val;

            val.first = first_ + (key * step_);
            val.second = std::min(val.first + step_ - 1, last_);
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            std::swap(val, value);
            return true;
        }

    private:
        long sequence_;
        long const step_;
        long const last_;
        long const first_;
    };

3.	 The following function defines the steps to be performed in the map stage:

    struct map_task : public mapreduce::map_task<long, std::pair<long, 
long> >
    {
        template<typename Runtime>
        void operator()(Runtime& runtime, key_type const& key, 
value_type const& value) const
        {
            for (key_type loop = value.first; 
                loop <= value.second; loop++)
            runtime.emit_intermediate(is_prime(loop), loop);
        }
    };

4.	 Now, let's implement the reduce stage:

    struct reduce_task : public mapreduce::reduce_task<bool, long>
    {
        template<typename Runtime, typename It>
        void operator()(Runtime& runtime, key_type const& key, It it, It 
ite) const
        {
            if (key)
                std::for_each(it, ite, std::bind(&Runtime::emit, 
&runtime, true, std::placeholders::_1));
        }
    };

    typedef
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        mapreduce::job<
            prime_calculator::map_task,
            prime_calculator::reduce_task,
            mapreduce::null_combiner,
            prime_calculator::number_source<prime_calculator::map_task>> 
job;

} // namespace prime_calculator

The preceding namespace has three functions: first, it defines a function that 
checks whether a given number is prime; second, it defines a function that 
generates a range of numbers within given bounds; third, it defines the map and 
reduce tasks. The map function, as defined earlier, emits < k, v > pairs, where both 
k and v are of the long type, where k is 1 if v is a prime, and 0 if v is not a prime 
number. The reduce function then acts as a filter and outputs < k, v > pairs only 
where k = 1. 

5.	 The following driver code then sets the relevant parameters and starts the 
MapReduce computation:

int main()
{
    mapreduce::specification spec;

    int prime_limit = 1000;

    // Set number of threads to be used
    spec.map_tasks = std::max(1U, std::thread::hardware_concurrency());
    spec.reduce_tasks = std::max(1U, std::thread::hardware_concurrency());

    // Set the source of numbers in given range
    prime_calculator::job::datasource_type datasource(0, prime_limit, 
prime_limit / spec.reduce_tasks);

    std::cout << "\nCalculating Prime Numbers in the range 0 .. " << 
prime_limit << " ..." << std::endl;
    
std::cout << std::endl << "Using "
        << std::max(1U, std::thread::hardware_concurrency()) << " CPU 
cores";

    // Run mapreduce
    prime_calculator::job job(datasource, spec);
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    mapreduce::results result;

    job.run<mapreduce::schedule_policy::cpu_parallel<prime_
calculator::job> >(result);
    
    std::cout << "\nMapReduce finished in " 
<< result.job_runtime.count() << " with " 
<< std::distance(job.begin_results(), job.end_results()) 
<< " results" << std::endl;

    
// Print results
    for (auto it = job.begin_results(); it != job.end_results(); ++it)
        std::cout << it->second << " ";

    return 0;
}

The driver code sets the parameters that are required for the MapReduce 
framework, runs the computation, collects results from the reduce function, and, 
finally, outputs the results.

6.	 Compile and run the preceding code. Your output should look as follows:

Figure 4.25: Calculating prime numbers using the MapReduce framework

The main benefit of programming using the MapReduce model is that it results in 
software that is massively scalable. The MapReduce framework we used in this exercise 
was one that only used multithreading on a single machine to achieve parallelization. 
But had it been able to support distributed systems, the same code we wrote here could 
have run on a large cluster of servers, enabling the computation to scale to massive 
sizes. Porting the preceding code to systems such as Hadoop is a trivial exercise in Java, 
but beyond the scope of this book.
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Activity 10: Implementing WordCount in MapReduce 

In this chapter, we have seen how powerful the idea behind the divide-and-conquer 
technique can be as an exceedingly useful algorithm design technique, as well as in 
providing useful tools to handle large and complex computations. In this activity, we 
shall practice dividing a large problem into smaller parts, solving the smaller parts, and 
merging the subsequent results by using the MapReduce model that was presented in 
the preceding section. 

Our problem definition has been taken from the original MapReduce paper, and is 
given as follows: given a set of files containing text, find the frequency of each word 
that appears in the files. For example, let's say you are given two files with the following 
contents:

File 1:

The quick brown fox jumps over a rabbit

File 2: 

The quick marathon runner won the race

Considering the input files, our program should output the following result:

The         2

quick       2

a           1

brown       1

fox         1

jumps       1

marathon    1

over        1

rabbit      1

race        1

runner      1

the         1

won         1

Such problems often arise in indexing workloads, that is, when you are given a large 
corpus of text and are required to index the contents so that subsequent searches on 
the text can be made faster. Search engines such as Google and Bing heavily use such 
indexes.
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In this activity, you are required to implement the map and reduce stages of the word 
count problem. Since this involves a significant portion of code that is specific to our 
library, boilerplate code has been provided for you in mapreduce_wordcount_skeleton.
cpp.

Activity Guidelines:

1.	 Read through and understand the given code in mapreduce_wordcount_skeleton.
cpp. You will notice that we need to import the Boost libraries in the header. 
Another thing to note is that the map stage in the given code creates < k, v > 
pairs, where k is a string and v is set to 1. For example, say your set of input files 
contained a random combination of words, w1, w2, w3, …, wn. If so, the map stage 
should output < k, 1> pairs with k = {w1, w2, w3, …, wn}, as illustrated in the following 
diagram:

Figure 4.26: Mapping stage

2.	 The skeleton code for the map stage looks as follows:

struct map_task : public mapreduce::map_task<
    std::string,                            // MapKey (filename)
    std::pair<char const*, std::uintmax_t>> // MapValue (memory mapped file               
                                               // contents)
{
template<typename Runtime>
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    void operator()(Runtime& runtime, key_type const& key, 
                                         value_type& value) const
    {
        // Write your code here.
        // Use runtime.emit_intermediate() to emit <k,v> pairs
    }
};

3.	 Since the map stage of the problem generated < k, 1 > pairs, the reduce task of our 
program should now combine the pairs with matching values of k, as shown here:

Figure 4.27: Reducing stage

4.	 In the given code, the reduce task accepts two iterators, which can be used to 
iterate over the elements with the same key, that is, all the elements between 
it and ite are guaranteed to have the same key. Your reduce phase should then 
create a new < k, v > pair, with k set to the key of the input pairs and v equal to the 
number of input pairs:

template<typename KeyType>
struct reduce_task : public mapreduce::reduce_task<KeyType, unsigned>
{
    using typename mapreduce::reduce_task<KeyType, unsigned>::key_type;

    template<typename Runtime, typename It>
    void operator()(Runtime& runtime, key_type const& key, It it, It const 
ite) const
    {
        // Write your code here.
        // Use runtime.emit() to emit the resulting <k,v> pairs
    }
};
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5.	 You are given a set of test data in testdata/. Compile and run your code. The 
output should look as follows:

Figure 4.28: Getting the frequency of words in the given input files

Note

The solution to this activity can be found on page 514.
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Summary
In this chapter, we discussed divide and conquer in two different ways: first as an 
algorithm design paradigm, and then its use in designing other tools that help us in 
scaling our software. We covered some standard divide-and-conquer algorithms (merge 
sort and quicksort). We also saw how simple operations such as partition underlie the 
solutions to different problems such as partial sorting and linear time selection. 

An important idea to keep in mind while implementing these algorithms in practice 
is the separation of data structures that hold data from the implementation of the 
algorithm itself. Using C++ templates is often a good way to achieve this separation. We 
saw that the C++ Standard Library comes with a large set of primitives that can be used 
for implementing divide-and-conquer algorithms.

The simplicity of the underlying idea behind divide and conquer makes it an incredibly 
useful tool in solving problems and allows for the creation of parallelization frameworks 
such as MapReduce. We also saw an example of using the MapReduce programming 
model to find prime numbers in a given range.

In the next chapter, we shall cover the greedy algorithm design paradigm, which results 
in solutions such as Dijkstra's algorithm to find the shortest paths in graphs.





Learning Objectives

By the end of this chapter, you will be able to:

•	 Describe the greedy approach to algorithm design

•	 Identify the optimal substructure and greedy choice properties of a problem

•	 Implement greedy algorithms such as fractional knapsack and greedy graph coloring

•	 Implement Kruskal's Minimum Spanning Tree algorithm using a disjoint-set data structure

In this chapter, we will look at various 'greedy' approaches to algorithm design and see how they 
can be applied in order to solve real-world problems.

Greedy Algorithms

5
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Introduction
In the previous chapter, we discussed the divide-and-conquer algorithm design 
technique, which solves a given problem by dividing the input into smaller subproblems, 
solving each subproblem, and subsequently merging the results. Continuing our theme 
of algorithm design paradigms, we will now look at our next topic: the greedy approach.

On each iteration, a greedy algorithm is one that picks the 'seemingly best' alternative. 
In other words, a greedy solution to a problem composes a globally optimal solution to 
the given problem from a series of locally optimal solutions. For example, the following 
screenshot shows the shortest path that a car can take from Dulles International 
Airport in Washington DC to an office building in East Riverdale. Naturally, the path 
shown is also the shortest for any two points on the path that are not the starting and 
ending points:

Figure 5.1: A route from an airport to an office in Washington DC (Source: project-osrm.org)

Therefore, we can infer that the whole shortest path, P, is, in effect, a concatenation 
of several shortest paths between the vertices of the road network that lie along P. 
So, if we were asked to design a shortest path algorithm, one possible strategy would 
be as follows: start from the origin vertex and draw a path to the closest vertex that 
hasn't been explored yet, and then repeat until we reach the destination vertex. 
Congratulations – you have just solved the shortest path problem using Dijkstra's 
algorithm, which is the same one that powers commercial software such as Google 
Maps and Bing Maps!
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Expectedly, the simple approach taken by greedy algorithms makes them applicable 
only to a small subset of algorithmic problems. However, the simplicity of the greedy 
approach often makes it an excellent tool for 'first attack', by which we can understand 
the properties and behavior of the underlying problem, which can then be solved using 
other, more complex approaches.

In this chapter, we will study the conditions under which a given problem is suitable 
for a greedy solution – the optimal substructure and greedy choice properties. We will 
see that when a problem can be shown to have these two properties, a greedy solution 
is guaranteed to yield the correct results. We will also see a few examples of real-world 
problems for which greedy solutions are used in practice, and we will end this chapter 
with a discussion of the minimum spanning tree problem, which commonly arises in 
cases of telecommunication and water supply networks, electrical grids, and circuit 
design. But first, let's start by taking a look at some simpler problems that can be solved 
using greedy algorithms.

Basic Greedy Algorithms
In this section, we will study two standard problems that can be solved using the greedy 
approach: shortest-job-first scheduling and the fractional knapsack problem.

Shortest-Job-First Scheduling

Say you are standing in a queue at your bank. It's a busy day and there are N people 
in the queue, but the bank has only one counter open (it's also a really bad day!). Let's 
assume that it takes a person, pi, the amount of time of ai to get served at the counter. 
Since the people in the queue are quite rational, everyone agrees to reorder their places 
in the queue so that the average waiting time for everyone in the queue is minimized. 
You are tasked with finding a way of reordering the people in the queue. How would you 
solve this problem?

Figure 5.2: The original queue
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To take this problem apart further, let's look at an example. The preceding figure shows 
an example of the original queue, where Ai shows the service time and Wi shows the 
waiting time for the ith person. The person closest to the counter can start getting 
served immediately, so the waiting time for them is 0. The person who's second in the 
queue must wait until the first person is done, so they have to wait for a1 = 8 units of 
time before getting served. Continuing in a similar fashion, the ith person has a waiting 
time equal to the sum of the service times for all of the i – 1 people before them in the 
queue.

A clue to solving this problem is as follows: since we are looking to minimize the average 
waiting time, we must find a way to reduce the waiting time for the largest possible set 
of people, as much as possible. One way to reduce the waiting time for all people is the 
job that can be completed the quickest. By repeating this idea for all the people in the 
queue, our solution results in the following reordered queue:

Figure 5.3: The reordered queue with the minimum average waiting time

Notice that our reordered queue has an average waiting time of 8.87 units versus 15.25 
units for the original ordering, which is an improvement by a factor of approximately 2.

Exercise 24: Shortest-Job-First Scheduling

In this exercise, we will implement a shortest-job-first scheduling solution by taking a 
similar example to the one shown in the preceding figure. We will consider 10 people in 
a queue and try to minimize the average waiting time for all of them. Let's get started:

1.	 Begin by adding the required headers and creating functions for computing the 
waiting times and input/output:

#include <iostream>
#include <algorithm>
#include <vector>
#include <random>
#include <numeric>

// Given a set of service times, computes the service times for all users
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template<typename T>
auto compute_waiting_times(std::vector<T>& service_times)
{
    std::vector<T> W(service_times.size());
    W[0] = 0;
    
    for (auto i = 1; i < service_times.size(); i++)
        W[i] = W[i - 1] + service_times[i - 1];

    return W;
}

// Generic function to print a vector
template<typename T>
void print_vector(std::vector<T>& V)
{
    for (auto& i : V)
        std::cout << i << " ";
    std::cout << std::endl;
}

template<typename T>
void compute_and_print_waiting_times(std::vector<T>& service_times)
{
    auto waiting_times = compute_waiting_times<int>(service_times);
    
    std::cout << "Service times: " << std::endl;
    print_vector<T>(service_times);

    std::cout << "Waiting times: " << std::endl;
    print_vector<T>(waiting_times);

    std::cout << "Average waiting time = "
        << std::accumulate(waiting_times.begin(),  
           waiting_times.end(), 0.0) /
        waiting_times.size();

    std::cout<< std::endl;
}
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2.	 Add the main solver and driver code, as shown here:

void shortest_job_first(size_t size)
{
    std::vector<int> service_times;
    std::random_device rd;
    std::mt19937 rand(rd());
    std::uniform_int_distribution<std::mt19937::result_type> uniform_
dist(1, size);

    // Insert random elements as service times
    service_times.reserve(size);
    for (auto i = 0; i < size; i++)
        service_times.push_back(uniform_dist(rand));

    compute_and_print_waiting_times<int>(service_times);

    // Reorder the elements in the queue
    std::sort(service_times.begin(), service_times.end());

    compute_and_print_waiting_times<int>(service_times);
}

int main(int argc, char* argv[])
{
    shortest_job_first(10);
}

3.	 Compile and run the code! Your output should look as follows:

Figure 5.4: Output of the program to schedule the shortest job first
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The Knapsack Problem(s)
In this section, we will discuss the standard knapsack problem, also known as the 0-1 
knapsack problem, which is known to be NP-complete, and thereby does not allow us to 
have any polynomial-time solution. Then, we will turn our discussion toward a version 
of the knapsack problem called the fractional knapsack problem, which can be solved 
using a greedy approach. Our focus in this section is to demonstrate how even subtle 
differences between how a problem is defined can lead to large changes in the solution 
strategies.

The Knapsack Problem

Suppose you are given a set of objects, O = {O1, O2, …, On}, with each having a certain 
weight, Wi, and a value of Vi. You are also given a bag (or a knapsack) that can carry only 
a total weight of T units. Now, say you are tasked with finding out about a set of objects 
to keep in your bag so that the total weight is less than or equal to T, and the total value 
of the objects is the maximum it can possibly be.

A real-world example of this problem can be understood if you imagine a traveling 
trader who earns a fixed percentage profit on all their trades. They would want to carry 
the maximum value of goods to maximize their profit, but their vehicle (or knapsack) 
can hold only up to T units of weight. The trader knows the exact weight and value of 
each object. Which set of objects should they carry so that the total value of the objects 
carried for trade is the maximum possible?

Figure 5.5: The knapsack problem
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The problem that's presented in the preceding figure is the well-known knapsack 
problem and has been proven to be NP-complete. In other words, there is no known 
polynomial-time solution to this problem. As a result, we must look at all the possible 
combinations of the objects to find the combination that has the greatest value 
while having a total weight of only T units. The preceding diagram shows two ways 
a knapsack with a capacity of 8 units can be filled. The objects shown in grey are the 
ones that have been chosen to be put in the knapsack. We can see that the first set of 
objects has a total value of 40, the second set of objects has a total value of 37, and that 
the total weight in both cases is 8 units. Therefore, the second set of objects is a better 
choice than the first. To find the best possible set of objects, we must list all possible 
combinations and choose the one with the maximum value.

The Fractional Knapsack Problem

Now, we will make a small change to the knapsack problem that was given in the 
previous subsection: let's say we are now allowed to break each object into as many 
parts as we need, and then we can choose what fraction of each object we want to keep 
in the knapsack.

In terms of the real-world analogy, let's say that the trader in our previous analogy is 
trading items such as oil, grains, and flour. The trader may take any smaller measure of 
weight.

Contrary to the NP-completeness of the standard knapsack, the fractional knapsack 
problem has a simple solution: order the elements according to their value per weight 
ratio and 'greedily' choose as many objects as possible with the maximum ratio. 
The following figure shows the optimal selection of a given set of objects when the 
knapsack's capacity is set to 8 units. Notice that the chosen objects are the ones with 
the highest value per weight ratio:

Figure 5.6: The fractional knapsack problem

 We will implement this solution in the following exercise.
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Exercise 25: Fractional Knapsack Problem

In this exercise, we will consider 10 items and try to maximize the value in our 
knapsack, which can hold a maximum weight of 25 units. Let's get started:

1.	 First, we will begin by adding the required headers and defining an Object struct 
that will represent one object in our solution:

#include <iostream>
#include <algorithm>
#include <vector>
#include <random>
#include <numeric>

template <typename weight_type, 
    typename value_type, 
    typename fractional_type>
struct Object
{
    using Wtype = weight_type;
    using Vtype = value_type;
    using Ftype = fractional_type;

    Wtype weight;
    Vtype value;
    Ftype value_per_unit_weight;

    // NOTE: The following overloads are to be used for std::sort() and 
I/O
    inline bool operator< (const Object<Wtype,Vtype,Ftype>& obj) const
    {
        // An object is better or worse than another object only on the
        // basis of its value per unit weight
        return this->value_per_unit_weight < obj.value_per_unit_weight;
    }

    inline bool operator== (const Object<Wtype, Vtype, Ftype>& obj) const
    {
        // An object is equivalent to another object only if 
        // its value per unit weight is equal
        return this->value_per_unit_weight == obj.value_per_unit_weight;
    }



204 | Greedy Algorithms

    // Overloads the << operator so an object can be written directly to a 
stream
    // e.g. Can be used as std::cout << obj << std::endl;

    template <typename Wtype,
        typename Vtype,
        typename Ftype>
    friend std::ostream& operator<<(std::ostream& os, 
                         const Object<Wtype,Vtype,Ftype>& obj);
};

template <typename Wtype,
    typename Vtype,
    typename Ftype>
std::ostream& operator<<(std::ostream& os, const 
Object<Wtype,Vtype,Ftype>& obj)

{
    os << "Value: "<<obj.value 
    << "\t Weight: " << obj.weight
        <<"\t Value/Unit Weight: " << obj.value_per_unit_weight;
    return os;
}

Note that we have overloaded the < and == operators since we will use std::sort() 
over a vector of objects.

2.	 The code for the fractional knapsack solver is as follows:

template<typename weight_type, 
    typename value_type, 
    typename fractional_type>
auto fill_knapsack(std::vector<Object<weight_type, value_type,fractional_
type>>& objects, 
                    weight_type knapsack_capacity)
{
    
    std::vector<Object<weight_type, value_type, fractional_type>> 
knapsack_contents;
    knapsack_contents.reserve(objects.size());
    
    // Sort objects in the decreasing order
    std::sort(objects.begin(), objects.end());
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    std::reverse(objects.begin(), objects.end());

    // Add the 'best' objects to the knapsack
    auto current_object = objects.begin();
    weight_type current_total_weight = 0;
    while (current_total_weight <= knapsack_capacity && 
current_object != objects.end())
    {
        knapsack_contents.push_back(*current_object);
        
        current_total_weight += current_object->weight;
        current_object++;
    }

    // Since the last object overflows the knapsack, adjust weight
    auto weight_of_last_obj_to_remove = current_total_weight - knapsack_
capacity;

    knapsack_contents.back().weight -= weight_of_last_obj_to_remove;
    knapsack_contents.back().value -= knapsack_contents.back().value_per_
unit_weight * 
                        weight_of_last_obj_to_remove;

    return knapsack_contents;
}

The preceding function sorts the objects in decreasing order of their value/weight 
ratio and then picks all the fractions of objects that can fit in the knapsack until 
the knapsack is full.

3.	 Finally, to test our implementation, add the following test and driver code:

void test_fractional_knapsack(unsigned num_objects, unsigned knapsack_
capacity)
{
    using weight_type = unsigned;
    using value_type = double;
    using fractional_type = double;

    // Initialize the Random Number Generator
    std::random_device rd;
    std::mt19937 rand(rd());
    std::uniform_int_distribution<std::mt19937::result_type> 
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uniform_dist(1, num_objects);
    
    // Create a vector of objects
    std::vector<Object<weight_type, value_type, fractional_type>> objects;
    objects.reserve(num_objects);
    for (auto i = 0; i < num_objects; i++)
    {
        // Every object is initialized with a random weight and value
        auto weight = uniform_dist(rand);
        auto value = uniform_dist(rand);
        auto obj = Object<weight_type, value_type, fractional_type> { 
            static_cast<weight_type>(weight), 
            static_cast<value_type>(value), 
            static_cast<fractional_type>(value) / weight 
        };

        objects.push_back(obj);
    }

    // Display the set of objects
    std::cout << "Objects available: " << std::endl;
    for (auto& o : objects)
        std::cout << o << std::endl;
    std::cout << std::endl;

    // Arbitrarily assuming that the total knapsack capacity is 25 units
    auto solution = fill_knapsack(objects, knapsack_capacity);

    // Display items selected to be in the knapsack
    std::cout << "Objects selected to be in the knapsack (max capacity = "
        << knapsack_capacity<< "):" << std::endl;
    for (auto& o : solution)
        std::cout << o << std::endl;
    std::cout << std::endl;
}

int main(int argc, char* argv[])
{
    test_fractional_knapsack(10, 25);
}
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The preceding function creates objects and initializes them with random data 
from the STL random number generator. Next, it calls our implementation of the 
fractional knapsack solver and then displays the results.

4.	 Compile and run this code! Your output should look as follows:

Figure 5.7: Output of Exercise 25

Note how the solver took a fraction, that is, only 4 of the 5 units of the last object by 
weight. This is an example of how objects can be partitioned before being chosen to 
be kept in the knapsack, which differentiates the fractional knapsack from the 0-1 
(standard) knapsack problem.

Activity 11: The Interval Scheduling Problem

Imagine that you have a set of tasks on your to-do list (doing the dishes, going to 
the supermarket to buy groceries, working on a secret project for world domination, 
and other similar chores). Each task is identified by an ID and can be completed only 
between a particular start and end time. Let's say you wish to complete the maximum 
number of tasks. On what subset, and in what order, should you work on your tasks to 
achieve your objective? Assume that you can work on only one task at any point in time.
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As an example, consider the problem instance shown in the following figure. We have 
been given four different tasks that we could possibly spend our time working on (the 
rectangular boxes represent the time interval in which the task can be completed):

Figure 5.8: Given task schedules

The following figure shows the optimal scheduling of tasks, which maximizes the total 
number of tasks completed:

Figure 5.9: Optimal selection of tasks

Notice how not completing task 3 allows us to complete tasks 1 and 2 instead, 
increasing the total number of completed tasks. In this activity, you will need to 
implement this greedy interval scheduling solution.

The high-level steps for solving this activity are as follows:

1.	 Assume that each task has a start time, an end time, and an ID. Create a struct that 
describes a task. We will represent different tasks with different instances of this 
struct.

2.	 Implement a function that creates an std::list of N tasks, set their IDs 
sequentially from 1 to N, and use the values from a random number generator for 
the start and end times.
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3.	 Implement the scheduling function as follows:

a. Sort the list of tasks in increasing order of their ending times.

b. Greedily choose to complete the task with the earliest ending time.

c. Remove all the tasks that overlap with the currently chosen task (all the tasks 
that start before the current task ends). 

d. If tasks remain on the list, go to step b. Otherwise, return the chosen vector of 
tasks.

Your final output should look similar to the following:

Figure 5.10: Expected output of Activity 11

Note

The solution for this activity can be found on page 516.
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Requirements for Greedy Algorithms

In the previous section, we looked at examples of problems where the greedy approach 
gives optimal solutions. However, a problem can be optimally solved using the greedy 
approach if and only if it has two properties: the optimal substructure property and the 
greedy choice property. In this section, we will attempt to understand these properties 
and show you how to identify whether a problem exhibits them. 

Optimal substructure: When an optimal solution to a given problem, P, is composed of 
the optimal solutions to its subproblems, then P is said to have an optimal substructure.

Greedy choice: When an optimal solution to a given problem, P, can be reached by 
selecting the locally optimal solution on each iteration, P is said to have the greedy 
choice property.

To understand the optimal substructure and greedy choice properties, we will 
implement Kruskal's minimum spanning tree algorithm.

The Minimum Spanning Tree (MST) Problem

The minimum spanning tree problem can be stated as follows:

"Given a graph, G = < V, E >, where V is the set of vertices and E is the set of edges, each 
associated with an edge weight, find a tree, T, that spans all the vertices in V and has the 
minimum total weight."

A real-life application of the MST problem is the design of water supply and 
transportation networks since the designers typically wish to minimize the total 
length of the pipeline that's used or the roads that are created and still make sure that 
the services reach all designated users. Let's try to take the problem apart with the 
following example.

Let's say that you are given the locations of 12 villages on a map and are asked to find 
the minimum total length of road that would need to be built so that all the villages 
are reachable from one another, and that the roads do not form a cycle. Assume that 
each road can be traversed in either direction. A natural representation of villages 
in this problem is using a graph data structure. Let's assume that the vertices of the 
following graph, G represent the locations of the 12 given villages and that the edges of 
G represent the distances between the vertices:



The Knapsack Problem(s) | 211

Figure 5.11: Graph G representing the villages and distances between them

A simple greedy algorithm to construct the minimum spanning tree, T, could be as 
follows: 

1.	 Add all the edges of G in a min-heap, H.

2.	 From H, pop an edge, e. Naturally, e has the minimum cost among all edges in H.

3.	 If both vertices of e are already in T, this means that adding e would create a cycle 
in T. Therefore, discard e and go to step 2. Otherwise, proceed to the next step.

4.	 Insert e in the minimum spanning tree, T.
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Let's take a moment to think about why this strategy works. At each iteration of the 
loop in steps 2 and 3, we take the edge with the lowest cost and check whether it adds 
any vertex to our solution. This is stored in the minimum spanning tree, T. If it does, we 
add the edge to T; otherwise, we discard that edge and choose another edge with the 
minimum value. Our algorithm is greedy in the sense that at each iteration, it chooses 
the minimum edge weight to add to the solution. The preceding algorithm was invented 
in 1956 and is called Kruskal's minimum spanning tree algorithm. Applying this 
algorithm to the graph shown in figure 5.11 gives the following result:

Figure 5.12: Graph G showing the minimum spanning tree, T (with red edges)

The total weight of edges in the minimum spanning tree, T, is (2 × 1) + (3 × 2) + (2 × 3) = 14 
units. Therefore, the answer to our problem is that at least 12 units of road would need 
to be built.
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How do we know that our algorithm is indeed correct? We need to return to the 
definitions of optimal substructure and greedy choice and show that the MST problem 
exhibits these two properties. While a rigorous mathematical proof of the properties is 
beyond the ambit of this book, here are the intuitive ideas behind the proofs:

Optimal substructure: We will prove this by using contradiction. Let's assume that the 
MST problem does not exhibit an optimal substructure; that is, a minimum spanning 
tree was not composed of a set of smaller minimum spanning trees:

1.	 Let's say we are given a minimum spanning tree, T, over the vertices of graph G 
Let's remove any edge, e, from T. Removing e decomposes T into smaller trees, T1 
and T2.

2.	 Since we assumed that the MST problem does not exhibit optimal substructure, 
there must exist a spanning tree with a lesser total weight over the vertices of T1. 
Take this spanning tree and add the edges e and T2 to it. This new tree will be T'.

3.	 Now, since the total weight of T' is less than that of T, this contradicts our original 
assumption that T is an MST. Therefore, the MST problem must exhibit the 
optimal substructure property.

Greedy choice: If the MST problem exhibits greedy choice property, then for a vertex, 
v, the minimum weight edge connecting v to the rest of the graph, G, should always be 
a part of the minimum spanning tree, T. We can prove this hypothesis by contradiction, 
as follows:

1.	 Say an edge (u, v) is the minimum weight edge connecting v to any other vertex in 
G. Assume that (u, v) is not a part of T.

2.	 If (u, v) is not a part of T, then T must consist of some other edge connecting v to 
the rest of G. Let this edge be (x, v). Since (u, v) is the minimum weight edge, by 
definition, the weight of (x, v) is greater than the weight of (u, v).

3.	 A tree with a lesser total weight than T can be obtained if (x, v) is replaced with 
(u, v) in T. This contradicts our assumption that T is the minimum spanning tree. 
Therefore, the MST problem must exhibit the greedy choice property.

Note

As we mentioned earlier, we can also take a rigorous mathematical approach to 
show that the MST problem exhibits the optimal substructure property and is 
suitable for the greedy choice property. You can find it here: https://ocw.mit.edu/
courses/electrical-engineering-and-computer-science/6-046j-design-and-analysis-
of-algorithms-spring-2015/lecture-notes/MIT6_046JS15_lec12.pdf.

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-design-and-analysis-of-algorithms-spring-2015/lecture-notes/MIT6_046JS15_lec12.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-design-and-analysis-of-algorithms-spring-2015/lecture-notes/MIT6_046JS15_lec12.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-design-and-analysis-of-algorithms-spring-2015/lecture-notes/MIT6_046JS15_lec12.pdf
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Let's think about how to implement Kruskal's algorithm. We covered graph and heap 
data structures in Chapter 2, Trees, Heaps, and Graphs, so we know how to implement 
steps 1 and 2. Step 3 is somewhat more complicated. We need a data structure that 
stores the edges of the graph and tells us whether adding a new edge would create a 
cycle with any possible combination of the edges already stored in it. This problem can 
be solved using a disjoint-set data structure.

Disjoint-Set (or Union-Find) Data Structures

A disjoint-set data structure consists of a forest (a set of trees) of elements, where 
each element is represented by a numerical ID, has a 'rank,' and contains a pointer to its 
parent. When the data structure is initialized, it starts with N independent elements of 
rank 0, each of which is a part of a tree that contains only the element itself. The data 
structure supports two other operations:

•	 A find operation on a tree returns the root element of that tree

•	 A union operation applied on two trees merges the smaller trees into a larger tree, 
where the size of the tree is stored as the rank of its root. 

More precisely, the disjoint-set data structure supports the following operations:

•	 Make-Set: This initializes the data structure with N elements, setting the rank of 
each element to 0, and the parent pointer to itself. The following figure shows an 
example of a disjoint-set DS initialized with five elements. The digits inside the 
circles show the element IDs, the digit in parentheses shows the rank, and the 
arrows represent the pointer to the root element:

Figure 5.13: Initializing disjoint set with five elements

At this stage, the data structure consists of five trees, each consisting of one 
element.
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•	 Find: Starting from a given element, x, the find operation follows the parent 
pointers of elements until the root of the tree is reached. The parent of a root 
element is the root itself. In the example in the previous set, each element is the 
root of the tree, and hence this operation will return the lone element in the tree.

•	 Union: Given two elements, x and y, the union operation finds the roots of x and 
y. If the two roots are the same, this means that x and y belong to the same tree. 
Therefore, it does nothing. Otherwise, it sets the root with a higher rank as the 
parent of the root with a lower rank. The following figure shows the result of 
implementing the Union(1, 2) and Union(4, 5) operations on DS:

Figure 5.14: Merging 1,2 and 4,5

As subsequent union operations are applied, more trees merge into fewer (but 
larger) trees. The following figure shows the trees in DS after applying Union(2, 
3):

Figure 5.15: Merging 2,3
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The following diagram shows the trees in DS after applying Union(2, 4):

Figure 5.16: Merging 2,4

Now, let's understand how the disjoint-set data structure helps us implement Kruskal's 
algorithm. At the start of the algorithm, before step 1, we initialize a disjoint-set data 
structure with N equal to the number of vertices in our graph, G. Then, step 2 takes an 
edge from the min heap and step 3 checks whether the edge under consideration forms 
a cycle. Notice that this check for cycles can be implemented using the union operation 
on DS, which is applied to the two vertices of the edge. If the union operation succeeds 
in merging the two trees, then the edge is added to the MST; otherwise, the edge can 
safely be discarded as it would introduce a cycle in the MST. The following illustrated 
steps explain this logic:
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1.	 First, we begin by initializing a disjoint-set data structure, DS, containing all of the 
given vertices in the graph:

Figure 5.17: Step 1 of Kruskal's algorithm – initialization
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2.	 Let's proceed to add the edge with the lowest weight to our MST. As you can see 
from the following figure, as we add edge (2,4), we also apply Union(2,4) to the 
elements in DS:

Figure 5.18: Adding edge (2, 4) to the MST after applying Union (2, 4) to the disjoint-set
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3.	 As we proceed with adding edges as per the algorithm, we reach edge (1,5). As you 
can see, in DS, the corresponding elements are in the same tree. Hence, we cannot 
add that edge. As you can see from the following graph, adding that would have 
created a cycle:

Figure 5.19: Trying to add edge (1, 5) to MST fails because vertices 1 and 5 are in the same tree in DS

In the following exercise, we will implement Kruskal's minimum spanning tree algorithm 
using the disjoint-set data structure.
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Exercise 26: Kruskal's MST Algorithm

In this exercise, we will implement the disjoint-set data structure and Kruskal's 
algorithm to find an MST in the graph. Let's get started:

1.	 Begin by adding the following headers and declaring the Graph data structure:

#include<iostream>
#include<vector>
#include<algorithm>
#include<queue>
#include<map>
template <typename T> class Graph;

2.	 First, we will implement the disjoint set:

template<typename T>
class SimpleDisjointSet
{
private:
    struct Node
    {
        T data;

        Node(T _data) : data(_data)
        {}

        bool operator!=(const Node& n) const
        {
            return this->data != n.data;
        }
    };

    // Store the forest
    std::vector<Node> nodes;
    std::vector<size_t> parent;
    std::vector<size_t> rank;
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3.	 Add the constructor for the class and implement the Make-set and Find operations, 
as shown here:

public:
    SimpleDisjointSet(size_t N)
    {
        nodes.reserve(N);
        parent.reserve(N);
        rank.reserve(N);
    }

    void add_set(const T& x)
    {
        nodes.emplace_back(x);
        parent.emplace_back(nodes.size() - 1);    // the parent is the 
node itself
        rank.emplace_back(0);        // the initial rank for all nodes is 
0
    }

    auto find(T x)
    {
        // Find the node that contains element 'x'
        auto node_it = std::find_if(nodes.begin(), nodes.end(), 
            [x](auto n) 
            {return n.data == x; });
        auto node_idx = std::distance(nodes.begin(), node_it);
        auto parent_idx = parent[node_idx];

        // Traverse the tree till we reach the root
        while (parent_idx != node_idx)
        {
            node_idx = parent_idx;
            parent_idx = parent[node_idx];
        }

        return parent_idx;
    }
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4.	 Next, we will implement the Union operation between two trees in the disjoint-set, 
as shown here: 

    // Union the sets X and Y belong to
    void union_sets(T x, T y)
    {
        auto root_x = find(x);
        auto root_y = find(y);

        // If both X and Y are in the same set, do nothing and return
        if (root_x == root_y)
        {
            return;
        }
        // If X and Y are in different sets, merge the set with lower rank 
        // into the set with higher rank
        else if (rank[root_x] > rank[root_y]) 
        {
            parent[root_y] = parent[root_x];
            rank[root_x]++;
        }
        else 
        {
            parent[root_x] = parent[root_y];
            rank[root_y]++;
        }
    }
};

5.	 Now that our implementation of the disjoint set is complete, let's start 
implementing the graph. We will use an edge-list representation. The edge struct 
is defined as follows:

template<typename T>
struct Edge 
{
    size_t src;
    size_t dest;
    T weight;

    // To compare edges, only compare their weights,
    // and not the source/destination vertices
    inline bool operator< (const Edge<T>& e) const
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    {
        return this->weight < e.weight;
    }

    inline bool operator> (const Edge<T>& e) const
    {
        return this->weight > e.weight;
    }
};

Since our implementation of an edge is templatized, the edge weights are allowed 
to be of any datatype that implements the < and > operations.

6.	 The following function allows a graph to be serialized and output to streams:

template <typename T>
std::ostream& operator<<(std::ostream& os, const Graph<T>& G)
{
    for (auto i = 1; i < G.vertices(); i++)
    {
        os << i <<":\t";

        auto edges = G.edges(i);
        for (auto& e : edges)
            os << "{" << e.dest << ": " << e.weight << "}, ";
        
        os << std::endl;
    }
    
    return os;
}

7.	 The graph data structure can now be implemented with the following code:

template<typename T>
class Graph
{
public:
    // Initialize the graph with N vertices
    Graph(size_t N): V(N)
    {}

    // Return number of vertices in the graph
    auto vertices() const
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    {
        return V;
    }

    // Return all edges in the graph
    auto& edges() const
    {
        return edge_list;
    }

    void add_edge(Edge<T>&& e)
    {
        // Check if the source and destination vertices are within range
        if (e.src >= 1 && e.src <= V && e.dest >= 1 && e.dest <= V)
            edge_list.emplace_back(e);
        else
            std::cerr << "Vertex out of bounds" << std::endl;
    }

    // Returns all outgoing edges from vertex v
    auto edges(size_t v) const
    {
        std::vector<Edge<T>> edges_from_v;
        for(auto& e:edge_list)
        {
            if (e.src == v)
                edges_from_v.emplace_back(e);
        }
        return edges_from_v;
    }

    // Overloads the << operator so a graph be written directly to a 
stream
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    // Can be used as std::cout << obj << std::endl;

    template <typename T>
    friend std::ostream& operator<< <>(std::ostream& os, const Graph<T>& 
G);
private: 
    size_t V;        // Stores number of vertices in graph
    std::vector<Edge<T>> edge_list;
};

Note

Our implementation of the graph does not allow changing the number of vertices 
in the graph after it has been created. Also, although we can add as many edges 
as needed, the deletion of edges is not implemented since it is not needed in this 
exercise.

8.	 Now, we can implement Kruskal's algorithm like so:

// Since a tree is also a graph, we can reuse the Graph class
// However, the result graph should have no cycles

template<typename T>
Graph<T> minimum_spanning_tree(const Graph<T>& G)
{
    // Create a min-heap for the edges
    std::priority_queue<Edge<T>, 
        std::vector<Edge<T>>, 
        std::greater<Edge<T>>> edge_min_heap;

    // Add all edges in the min-heap
    for (auto& e : G.edges()) 
        edge_min_heap.push(e);

    // First step: add all elements to their own sets
    auto N = G.vertices();
    SimpleDisjointSet<size_t> dset(N);
    for (auto i = 0; i < N; i++)
        dset.add_set(i);
    
    // Second step: start merging sets
    Graph<T> MST(N);
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    while (!edge_min_heap.empty())
    {
        auto e = edge_min_heap.top();
        edge_min_heap.pop();

// Merge the two trees and add edge to the MST only if the two vertices of 
the edge belong to different trees in the MST

        if (dset.find(e.src) != dset.find(e.dest))
        {
            MST.add_edge(Edge <T>{e.src, e.dest, e.weight});
            dset.union_sets(e.src, e.dest); 
        }
    }

    return MST;
}

9.	 Lastly, add the driver code shown here:

 int main()
{
    using T = unsigned;

    Graph<T> G(9);

    std::map<unsigned, std::vector<std::pair<size_t, T>>> edges;
    edges[1] = { {2, 2}, {5, 3} };
    edges[2] = { {1, 2}, {5, 5}, {4, 1} };
    edges[3] = { {4, 2}, {7, 3} };
    edges[4] = { {2, 1}, {3, 2}, {5, 2}, {6, 4}, {8, 5} };
    edges[5] = { {1, 3}, {2, 5}, {4, 2}, {8, 3} };
    edges[6] = { {4, 4}, {7, 4}, {8, 1} };
    edges[7] = { {3, 3}, {6, 4} };
    edges[8] = { {4, 5}, {5, 3}, {6, 1} };
    
    for (auto& i : edges)
        for(auto& j: i.second)



The Knapsack Problem(s) | 227

            G.add_edge(Edge<T>{ i.first, j.first, j.second });
    
    std::cout << "Original Graph" << std::endl;
    std::cout << G;

    auto MST = minimum_spanning_tree(G);
    std::cout << std::endl << "Minimum Spanning Tree" << std::endl;
    std::cout << MST;

    return 0;
}

10.	 Finally, run the program! Your output should look as follows:

Figure 5.20: Getting an MST from a given graph

Verify that the output of our algorithm is indeed the MST that was shown in figure 5.12.

The complexity of Kruskal's algorithm without using the disjoint set is O(E log E), 
where E is the number of edges in the graph. With the disjoint set, however, the 
total complexity comes down to O(Eα(V)), where α(v) is the inverse of the Ackermann 
function. Since the inverse Ackermann function grows much slower than the logarithm 
function, the difference in the performance of the two implementations is small for 
graphs with a few vertices but can be notably large for larger graph instances.
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The Vertex Coloring Problem
The vertex coloring problem can be stated as follows:

"Given a graph, G, assign a color to each vertex of the graph so that no two adjacent 
vertices have the same color."

As an example, the following figure shows a valid coloring of the graph that was shown 
in figure 5.11:

Figure 5.21: Coloring an uncolored graph

Graph coloring has applications in solving a large variety of problems in the real world 
– making schedules for taxis, solving sudoku puzzles, and creating timetables for 
exams can all be mapped to finding a valid coloring of the problem, modeled as a graph. 
However, finding the minimum number of colors required to produce a valid vertex 
coloring (also called the chromatic number) is known to be an NP-complete problem. 
Thus, a minor change in the nature of the problem can make a massive difference to its 
complexity.

As an example of the applications of the graph coloring problem, let's consider the case 
of sudoku solvers. Sudoku is a number-placement puzzle where the objective is to fill 
a 9 × 9 box with numbers from 1 to 9 with no number being repeated in each row. Each 
column is a 3 × 3 block. An example of a sudoku puzzle is shown here:
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Figure 5.22: (Left) a sudoku puzzle, (Right) its solution

We can model an instance of the puzzle to the graph coloring problem as follows:

•	 Represent each cell in the puzzle by a vertex in graph G.

•	 Add edges between the vertices that are in the same column, row, or are in the 
same 3 × 3 block.

•	 A valid coloring of G then gives us a solution to the original sudoku puzzle.

We will take a look at the implementation of graph coloring in the following exercise.

Exercise 27: Greedy Graph Coloring

In this exercise, we will implement a greedy algorithm that produces a graph coloring 
for the graph shown in figure 5.21 when the maximum number of colors that can be 
used is six. Let's get started: 

1.	 Begin by including the required header files and declaring the Graph data 
structure, which we will implement later in this exercise:

#include <unordered_map>
#include <set>
#include <map>
#include <string>
#include <vector>
#include <iostream>

template <typename T> class Graph;
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2.	 The following struct implements an edge in our graph:

template<typename T>
struct Edge
{
    size_t src;
    size_t dest;
    T weight;

    // To compare edges, only compare their weights,
    // and not the source/destination vertices
    inline bool operator< (const Edge<T>& e) const
    {
        return this->weight < e.weight;
    }

    inline bool operator> (const Edge<T>& e) const
    {
        return this->weight > e.weight;
    }
};

3.	 The following function allows us to write the graph directly to the output stream:

template <typename T>
std::ostream& operator<<(std::ostream& os, const Graph<T>& G)
{
    for (auto i = 1; i < G.vertices(); i++)
    {
        os << i << ":\t";

        auto edges = G.outgoing_edges(i);
        for (auto& e : edges)
            os << "{" << e.dest << ": " << e.weight << "}, ";

        os << std::endl;
    }

    return os;
}
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4.	 Implement the graph as an edge list, as shown here:

template<typename T>
class Graph
{
public:
    // Initialize the graph with N vertices
    Graph(size_t N) : V(N)
    {}

    // Return number of vertices in the graph
    auto vertices() const
    {
        return V;
    }

    // Return all edges in the graph
    auto& edges() const
    {
        return edge_list;
    }

    void add_edge(Edge<T>&& e)
    {
        // Check if the source and destination vertices are within range
        if (e.src >= 1 && e.src <= V &&
            e.dest >= 1 && e.dest <= V)
            edge_list.emplace_back(e);
        else
            std::cerr << "Vertex out of bounds" << std::endl;
    }

    // Returns all outgoing edges from vertex v
    auto outgoing_edges(size_t v) const
    {
        std::vector<Edge<T>> edges_from_v;
        for (auto& e : edge_list)
        {
            if (e.src == v)
                edges_from_v.emplace_back(e);
        }
        return edges_from_v;
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    }

    // Overloads the << operator so a graph be written directly to a 
stream
    // Can be used as std::cout << obj << std::endl;
    template <typename T>
    friend std::ostream& operator<< <>(std::ostream& os, const Graph<T>& 
G);

private:
    size_t V;        // Stores number of vertices in graph
    std::vector<Edge<T>> edge_list;
};

5.	 The following hash map stores the list of colors that will be used by our coloring 
algorithm:

// Initialize the colors that will be used to color the vertices
std::unordered_map<size_t, std::string> color_map = {
    {1, "Red"},
    {2, "Blue"},
    {3, "Green"},
    {4, "Yellow"},
    {5, "Black"},
    {6, "White"}
};

6.	 Next, let's implement a helper function that prints the colors that have been 
assigned to each vertex:

void print_colors(std::vector<size_t>& colors)
{
    for (auto i=1; i<colors.size(); i++)
    {
        std::cout << i << ": " << color_map[colors[i]] << std::endl;
    }
}
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7.	 The following function implements our coloring algorithm:

template<typename T>
auto greedy_coloring(const Graph<T>& G)
{
    auto size = G.vertices();
    std::vector<size_t> assigned_colors(size);

    // Let us start coloring with vertex number 1. 
    // Note that this choice is arbirary.
    for (auto i = 1; i < size; i++)
    {
        auto outgoing_edges = G.outgoing_edges(i);
        std::set<size_t> neighbour_colors;

        for (auto e : outgoing_edges)
        {
            auto dest_color = assigned_colors[e.dest];
            neighbour_colors.insert(dest_color);
        }

        // Find the smallest unassigned color 
        // that is not currently used by any neighbor
        auto smallest_unassigned_color = 1;
        for (; 
            smallest_unassigned_color <= color_map.size();
            smallest_unassigned_color++)
        {
          if (neighbour_colors.find(smallest_unassigned_color) == 
              neighbour_colors.end())
              break;
        }

        assigned_colors[i] = smallest_unassigned_color;
    }

    return assigned_colors;
}
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8.	 Finally, add the driver code, as shown here:

int main()
{
    using T = size_t;

    Graph<T> G(9);

    std::map<unsigned, std::vector<std::pair<size_t, T>>> edges;
    edges[1] = { {2, 2}, {5, 3} };
    edges[2] = { {1, 2}, {5, 5}, {4, 1} };
    edges[3] = { {4, 2}, {7, 3} };
    edges[4] = { {2, 1}, {3, 2}, {5, 2}, {6, 4}, {8, 5} };
    edges[5] = { {1, 3}, {2, 5}, {4, 2}, {8, 3} };
    edges[6] = { {4, 4}, {7, 4}, {8, 1} };
    edges[7] = { {3, 3}, {6, 4} };
    edges[8] = { {4, 5}, {5, 3}, {6, 1} };

    for (auto& i : edges)
        for (auto& j : i.second)
            G.add_edge(Edge<T>{ i.first, j.first, j.second });

    std::cout << "Original Graph: " << std::endl;
    std::cout << G << std::endl;

    auto colors = greedy_coloring<T>(G);
    std::cout << "Vertex Colors: " << std::endl;
    print_colors(colors);

    return 0;
}
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9.	 Run the implementation! Your output should look as follows:

Figure 5.23: Output of the graph coloring implementation

Our implementation always starts coloring the vertices starting with vertex ID 1. 
However, this choice is arbitrary, and starting the greedy coloring algorithm with 
different vertices even on the same graph is very likely to result in different graph 
colorings that require a different number of colors. 

The quality of a graph coloring is usually measured by how few colors it uses to color 
the graph. While finding the optimal graph coloring that uses the least possible number 
of colors is NP-complete, greedy graph coloring often serves as a useful approximation. 
For example, when designing a compiler, graph coloring is used to allocate CPU 
registers to the variables of the program that's being compiled. The greedy coloring 
algorithm is used with a set of heuristics to arrive at a "good enough" solution to the 
problem, which is desirable in practice since we need compilers to be fast in order to be 
useful. 
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Activity 12: The Welsh-Powell Algorithm

An improvement to the simple approach of starting greedy coloring with a fixed vertex 
ID is to color the vertices in decreasing order of the number of edges incident on the 
vertices (or in decreasing order of the degree of vertices).

The algorithm works as follows:

1.	 Sort all the vertices in decreasing order of degree and store them in an array.

2.	 Take the first uncolored vertex in the sorted array and assign to it the first color 
that hasn't been assigned to any of its neighbors. Let this color be C.

3.	 Traverse the sorted array and assign the color C to each uncolored vertex that 
doesn't have any neighbors who have been assigned C.

4.	 If any uncolored vertices remain in the array, go to step 2. Else, end the program. 
The colors that have been assigned to the vertices so far is the final output.

The following is an illustrated example of the four iterations of the algorithm that are 
required to find a valid coloring of the graph shown in figure 5.21:

1.	 Here is the graph that we start with:

Figure 5.24: Starting with an uncolored graph
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2.	 Next, we sort by decreasing order of vertices, and start by coloring red:

Figure 5.25: Coloring red

3.	 In the next round, we start coloring blue:

Figure 5.26: Coloring blue
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4.	 In the last round, we color green:

Figure 5.27: Coloring green

The high-level steps to complete this activity are as follows:

1.	 Assume that each edge of the graph holds the source vertex ID, destination 
vertex ID, and the edge weight. Implement a struct that represents an edge of the 
graph. We will use instances of this struct to create different edges in our graph 
representation.

2.	 Implement a graph using the edge list representation.

3.	 Implement a function that implements the Welsh-Powell graph coloring and 
returns a vector of colors. The color at index i in the vector should be the one 
that's assigned to vertex ID i.

4.	 Add the driver and input/output code as required to create the graph shown in 
figure 5.24. It is okay to assume that the coloring always starts with vertex ID 1. 
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Your output should look as follows:

Figure 5.28: Expected output of Activity 12

Note

The solution for this activity can be found on page 518.
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Summary
The greedy approach is simple: at each iteration of the algorithm, pick the seemingly 
best alternative out of all the possible alternatives. In other words, greedy solutions to 
problems are applicable when choosing the locally 'best' alternative at each iteration 
leads to the globally optimal solution to the problem.

In this chapter, we looked at examples of problems where the greedy approach is 
optimal and leads to correct solutions to the given problem; that is, shortest-job-
first scheduling. We also discussed how slightly modified versions of NP-complete 
problems such as the 0-1 knapsack and the graph coloring problem can have simple 
greedy solutions. This makes the greedy approach an important algorithm design tool 
for difficult problems. For problems that have a greedy solution, it is likely to be the 
simplest way to solve them; and even for problems that do not have a greedy solution, it 
can often be used to solve relaxed versions of the problem that might be 'good enough' 
in practice (for example, greedy graph coloring is used while allocating registers to 
variables in programming language compilers). 

Next, we discussed the greedy choice and optimal substructure properties and looked 
at an example of proof that a given problem exhibits these properties. We concluded 
this chapter with two solutions to the minimum spanning tree problem: Kruskal's 
algorithm and the Welsh-Powell algorithm. Our discussion of Kruskal's algorithm also 
introduced the disjoint-set data structure.

In the next chapter, we will focus on graph algorithms, starting with breadth-first and 
depth-first search, and then move on to Dijkstra's shortest path algorithm. We will also 
look at another solution to the minimum spanning tree problem: Prim's algorithm.







Learning Objectives

By the end of this chapter, you will be able to:

•	 Describe the utility of graphs for solving various real-world problems

•	 Choose and implement the right traversal method to find an element in a graph

•	 Solve the minimum spanning tree (MST) problem using Prim's algorithm

•	 Identify when to use the Prim's and Kruskal's algorithms to solve the MST problem

•	 Find the shortest path between two vertices/nodes in a graph using Dijkstra's algorithm

In this chapter, we will study the basic and most commonly used algorithms for solving problems 
that can be represented in the form of graphs, which shall then be discussed further in the next 
chapter.

Graph Algorithms I

6
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Introduction
In the previous two chapters, we discussed two algorithm design paradigms: divide 
and conquer and the greedy approach, which led us to well-known solutions to widely 
used and important computational problems such as sorting, searching, and finding 
the minimum weight spanning tree on a graph. In this chapter, we shall discuss some 
algorithms that are specifically applicable to the graph data structure.

A graph is defined as a set of vertices and edges that connect a pair of vertices. 
Mathematically, this is often written as G = < V, E >, where V denotes the set of vertices 
and E denotes the set of edges that constitute a graph. Edges that point from one node 
to another are called directed, while edges that have no direction are called undirected. 
Edges may also be associated with a weight or be unweighted, as we saw in Chapter 2, 
Trees, Heaps, and Graphs.

Note

The terms "node" and "vertex" can be used interchangeably when we talk about 
graphs. In this chapter, we shall stick with "vertex."

Graphs are some of the most versatile data structures – so much so that other linked 
data structures such as trees and linked lists are known to be just special cases of 
graphs. What makes graphs useful is that they are the general representation of 
relationships (represented as edges) between objects (represented as nodes). Graphs 
can have multiple edges between the same pair of nodes, or even have multiple edge 
weights on a single edge, and nodes can also have edges from themselves to themselves 
(also known as self edges). The graph shown in the following diagram shows how these 
features can be present in a graph. Variants of graphs, called "hypergraphs," are also 
allowed to have edges that connect multiple nodes, and another set of variants called 
"mixed graphs" are also allowed to have both directed and undirected edges within the 
same graph:
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Figure 6.1: A graph with multiple edge weights, self edges (also called loops), and both directed and 
undirected edges

As a result of the high degree of generality that graphs offer, they find use in several 
applications. Theoretical computer scientists use graphs to model finite state machines 
and automata, artificial intelligence and machine learning experts use graphs to extract 
information from changes in the structure of different kinds of networks over time, and 
traffic engineers use graphs to study the flow of traffic through road networks. 

In this chapter, we shall restrict ourselves to studying algorithms that use weighted, 
directed graphs, and if needed, positive edge weights. We shall first study the graph 
traversal problem and cover two solutions to it: breadth-first search (BFS) and depth-
first search (DFS). Next, we shall revert to the minimum spanning tree problem we 
introduced in the previous chapter and provide a different solution to it called Prim's 
algorithm. Finally, we shall cover the single-source shortest path problem that powers 
navigation applications such as Google Maps and the OSRM route planner.

Let's begin by taking a look at the basic problem of traversing a graph.
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The Graph Traversal Problem
Imagine that you have recently moved into an apartment in a new neighborhood. As you 
meet your new neighbors and make new friends, people often recommend restaurants 
to dine at in the vicinity. You wish to visit all the recommended restaurants, so you pull 
out a map of the neighborhood and mark all the restaurants and your home on the map, 
which already has all the roads marked on it. If we represent each restaurant and your 
home as a vertex, and the roads connecting the restaurants as edges in a graph, the 
problem of visiting all the vertices in the graph, when starting from a given vertex, is 
called the graph traversal problem.

In the following figure, the numbers in blue are assumed vertex IDs. Vertex 1 is Home, 
and the restaurants are labeled from R1 to R7. None of the edges have arrows since the 
edges are assumed to be bidirectional, that is, you can travel on the roads in either 
direction:

Figure 6.2: Representing a neighborhood map as a graph

In mathematical notation, given a graph, G = < V, E >, the graph traversal problem is to 
visit all v ∈ V starting from a given vertex, s. The graph traversal problem is also called 
the graph search problem since it can be used to "find" a vertex in the graph. Different 
graph traversal algorithms give different orders for visiting the vertices in the graph.
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Breadth-First Search

A "breadth-first" search or breadth-first traversal of the graph starts by adding the 
starting vertex to a frontier that consists of the set of previously visited vertices and 

then iteratively exploring the vertices adjacent to the current frontier. The following 
illustrated steps should help you understand this idea:

1.	 First, the Home vertex, which is the starting point, is visited. R1 and R2 are the 
neighbors of the vertices in the current frontier, which is represented by a blue 
dotted line in the following figure:

Figure 6.3: Initialization of the BFS frontier
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2.	 The following figure shows BFS after visiting R1 and R1, either of which can be 
visited before the other. The order of visiting vertices that are at the same distance 
from the source vertex is irrelevant; however, the vertices with lower distance 
from the source are always visited first:

Figure 6.4: The BFS frontier after visiting the R1 and R2 vertices

3.	 The following figure shows the state of BFS after visiting R3, R5, and R6. This is 
essentially the penultimate stage before the entire graph is traversed:

Figure 6.5: The BFS frontier after visiting R3, R5, and R6
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A useful property of BFS is that for every vertex that is visited, all of its children vertices 
are visited before any grandchildren vertices. However, while implementing BFS, the 
frontier is typically not explicitly maintained in a separate data structure. Instead, a 
queue of vertex IDs is used to ensure that the vertices that are closer to the source 
vertex are always visited before the vertices that are farther away. In the following 
exercise, we shall implement BFS in C++.

Exercise 28: Implementing BFS

In this exercise, we shall implement the breadth-first search algorithm using an edge 
list representation of the graph. To do so, perform the following steps:

1.	 Add the required header files and declare the graph, as follows:

#include <string>
#include <vector>
#include <iostream>
#include <set>
#include <map>
#include <queue>

template<typename T> class Graph;

2.	 Write the following struct, which represents an edge in our graph:

template<typename T>
struct Edge
{
    size_t src;
    size_t dest;
    T weight;

    // To compare edges, only compare their weights,
    // and not the source/destination vertices
    inline bool operator< (const Edge<T>& e) const
    {
        return this->weight < e.weight;
    }

    inline bool operator> (const Edge<T>& e) const
    {
        return this->weight > e.weight;
    }
};
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Since our definition of an edge uses templates, the edges can be easily made to 
have an edge weight of any data type that's needed.

3.	 Next, overload the << operator for the Graph data type in order to display the 
contents of the graph:

template <typename T>
std::ostream& operator<<(std::ostream& os, const Graph<T>& G)
{
    for (auto i = 1; i < G.vertices(); i++)
    {
        os << i << ":\t";

        auto edges = G.outgoing_edges(i);
        for (auto& e : edges)
            os << "{" << e.dest << ": " << e.weight << "}, ";

        os << std::endl;
    }

    return os;
}

4.	 Write a class to define our graph data structure, as shown here:

template<typename T>
class Graph
{
public:
    // Initialize the graph with N vertices
    Graph(size_t N) : V(N)
    {}

    // Return number of vertices in the graph
    auto vertices() const
    {
        return V;
    }

    // Return all edges in the graph
    auto& edges() const
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    {
        return edge_list;
    }

    void add_edge(Edge<T>&& e)
    {
        // Check if the source and destination vertices are within range
        if (e.src >= 1 && e.src <= V &&
            e.dest >= 1 && e.dest <= V)
            edge_list.emplace_back(e);
        else
            std::cerr << "Vertex out of bounds" << std::endl;
    }

    // Returns all outgoing edges from vertex v
    auto outgoing_edges(size_t v) const
    {
        std::vector<Edge<T>> edges_from_v;
        for (auto& e : edge_list)
        {
            if (e.src == v)
                edges_from_v.emplace_back(e);
        }
        return edges_from_v;
    }

    // Overloads the << operator so a graph be written directly to a 
stream
    // Can be used as std::cout << obj << std::endl;
    template <typename T>
    friend std::ostream& operator<<(std::ostream& os, const Graph<T>& G);

private:
    size_t V;        // Stores number of vertices in graph
    std::vector<Edge<T>> edge_list;
};
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5.	 For this exercise, we shall test our implementation of BFS on the following graph:

Figure 6.6: Graph for implementing BFS traversal in Exercise 28

We need a function to create and return the required graph. Note that while edge 
weights are assigned to each edge in the graph, this is not necessary since the BFS 
algorithm does not need to use edge weights. Implement the function as follows:

template <typename T>
auto create_reference_graph()
{
    Graph<T> G(9);

    std::map<unsigned, std::vector<std::pair<size_t, T>>> edges;
    edges[1] = { {2, 2}, {5, 3} };
    edges[2] = { {1, 2}, {5, 5}, {4, 1} };
    edges[3] = { {4, 2}, {7, 3} };
    edges[4] = { {2, 1}, {3, 2}, {5, 2}, {6, 4}, {8, 5} };
    edges[5] = { {1, 3}, {2, 5}, {4, 2}, {8, 3} };
    edges[6] = { {4, 4}, {7, 4}, {8, 1} };
    edges[7] = { {3, 3}, {6, 4} };
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    edges[8] = { {4, 5}, {5, 3}, {6, 1} };

    for (auto& i : edges)
        for (auto& j : i.second)
            G.add_edge(Edge<T>{ i.first, j.first, j.second });

    return G;
}

6.	 Implement the breadth-first search like so:

template <typename T>
auto breadth_first_search(const Graph<T>& G, size_t dest)
{
    std::queue<size_t> queue;
    std::vector<size_t> visit_order;
    std::set<size_t> visited;
    queue.push(1); // Assume that BFS always starts from vertex ID 1

    while (!queue.empty())
    {
        auto current_vertex = queue.front();
        queue.pop();

        // If the current vertex hasn't been visited in the past
        if (visited.find(current_vertex) == visited.end())
        {
            visited.insert(current_vertex);
            visit_order.push_back(current_vertex);

            for (auto e : G.outgoing_edges(current_vertex))
                queue.push(e.dest);
        }
    }

    return visit_order;
}



254 | Graph Algorithms I

7.	 Add the following test and driver code that creates the reference graph, runs BFS 
starting from vertex 1, and outputs the results:

template <typename T>
void test_BFS()
{
    // Create an instance of and print the graph
    auto G = create_reference_graph<unsigned>();
    std::cout << G << std::endl;

    // Run BFS starting from vertex ID 1 and print the order
    // in which vertices are visited.
    std::cout << "BFS Order of vertices: " << std::endl;
    auto bfs_visit_order = breadth_first_search(G, 1);
    for (auto v : bfs_visit_order)
        std::cout << v << std::endl;
}

int main()
{
    using T = unsigned;
    test_BFS<T>();

    return 0;
}

8.	 Run the preceding code. Your output should look as follows:

Figure 6.7: Expected output of Exercise 28
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The following figure shows the order of vertices that our BFS implementation visits. 
Notice that the search starts from vertex 1 and then gradually visits vertices farther 
away from the source. In the following figure, the integers in red show the order, and 
the arrows show the direction in which our BFS implementation visits the vertices of 
the graph:

Figure 6.8: BFS implementation in Exercise 28

The time complexity of the BFS is O(V + E), where V is the number of vertices and E is 
the number of edges in the graph.
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Depth-First Search

While BFS starts from the source vertex and gradually expands the search outward to 
vertices farther away, DFS starts from the source vertex and iteratively visits vertices 
as far away as possible along a certain path, returning to earlier vertices to explore 
vertices along a different path in the graph. This method of searching the graph is also 
called backtracking. The following illustrated steps show the working of DFS:

1.	 Naturally, we begin our traversal by visiting the Home vertex, as shown in the 
following figure:

Figure 6.9: DFS initialization
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2.	 Next, we visit vertex R2. Note that R2 is chosen arbitrarily over R1 since both 
are adjacent to Home, and either could have been chosen without affecting the 
correctness of the algorithm:

Figure 6.10: DFS after visiting R2

3.	 Next, we visit vertex R3, as shown in the following figure. Again, either of R3 or R1 
could have been chosen arbitrarily, as both are adjacent to R2:

Figure 6.11: DFS after visiting R3
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4.	 The search continues by visiting an arbitrary unvisited neighbor vertex at each 
iteration. After R1 is visited, the search tries to look for the next unvisited vertex. 
Since there are none left, the search terminates:

Figure 6.12: DFS after visiting all the vertices in the graph

While implementing the BFS, we used a queue to keep track of unvisited vertices. Since 
a queue is a First-In, First-Out (FIFO) data structure where vertices are removed from 
the queue in the same order as they are added to the queue, it was used by the BFS 
algorithm to ensure that vertices closer to the starting vertex are visited before the 
vertices farther away. Implementing DFS is remarkably similar to implementing BFS, 
except for one difference: instead of using a queue as a container for the list of vertices 
to be visited, we can now use a stack, while the rest of the algorithm remains the same. 
This approach works because on each iteration, DFS visits an unvisited neighbor of the 
current vertex, which can easily be tracked using a stack, which is a Last-In, First-Out 
(LIFO) data structure.
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Exercise 29: Implementing DFS

In this exercise, we shall implement the DFS algorithm in C++ and test it on the graph 
shown in figure 6.2. The steps are as follows:

1.	 Include the required header files, as follows:

#include <string>
#include <vector>
#include <iostream>
#include <set>
#include <map>
#include <stack>

template<typename T> class Graph;

2.	 Write the following struct in order to implement an edge in our graph:

template<typename T>
struct Edge
{
    size_t src;
    size_t dest;
    T weight;

    // To compare edges, only compare their weights,
    // and not the source/destination vertices
    inline bool operator< (const Edge<T>& e) const
    {
        return this->weight < e.weight;
    }

    inline bool operator> (const Edge<T>& e) const
    {
        return this->weight > e.weight;
    }
};

Again, since our implementation uses a templatized version of the struct, it allows 
us to assign edge weights of any data type required. However, for the purposes of 
DFS, we shall use null values as placeholders for the edge weights.
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3.	 Next, overload the << operator for the graph so that it can be printed out using the 
following function:

 template <typename T>
std::ostream& operator<<(std::ostream& os, const Graph<T>& G)
{
    for (auto i = 1; i < G.vertices(); i++)
    {
        os << i << ":\t";

        auto edges = G.outgoing_edges(i);
        for (auto& e : edges)
            os << "{" << e.dest << ": " << e.weight << "}, ";

        os << std::endl;
    }

    return os;
}

4.	 Implement the graph data structure that uses an edge list representation as 
follows:

template<typename T>
class Graph
{
public:
    // Initialize the graph with N vertices
    Graph(size_t N) : V(N)
    {}

    // Return number of vertices in the graph
    auto vertices() const
    {
        return V;
    }

    // Return all edges in the graph
    auto& edges() const
    {
        return edge_list;
    }
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    void add_edge(Edge<T>&& e)
    {
        // Check if the source and destination vertices are within range
        if (e.src >= 1 && e.src <= V &&
            e.dest >= 1 && e.dest <= V)
            edge_list.emplace_back(e);
        else
            std::cerr << "Vertex out of bounds" << std::endl;
    }

    // Returns all outgoing edges from vertex v
    auto outgoing_edges(size_t v) const
    {
        std::vector<Edge<T>> edges_from_v;
        for (auto& e : edge_list)
        {
            if (e.src == v)
                edges_from_v.emplace_back(e);
        }
        return edges_from_v;
    }

    // Overloads the << operator so a graph be written directly to a 
stream
    // Can be used as std::cout << obj << std::endl;
    template <typename T>
    friend std::ostream& operator<< <>(std::ostream& os, const Graph<T>& 
G);

private:
    size_t V;        // Stores number of vertices in graph
    std::vector<Edge<T>> edge_list;
};
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5.	 Now, we need a function to perform DFS for our graph. Implement it as follows:

 template <typename T>
auto depth_first_search(const Graph<T>& G, size_t dest)
{
    std::stack<size_t> stack;
    std::vector<size_t> visit_order;
    std::set<size_t> visited;
    stack.push(1); // Assume that DFS always starts from vertex ID 1

    while (!stack.empty())
    {
        auto current_vertex = stack.top();
        stack.pop();

        // If the current vertex hasn't been visited in the past
        if (visited.find(current_vertex) == visited.end())
        {
            visited.insert(current_vertex);
            visit_order.push_back(current_vertex);

            for (auto e : G.outgoing_edges(current_vertex))
            {    
                // If the vertex hasn't been visited, insert it in the 
stack.
                if (visited.find(e.dest) == visited.end())
                {
                    stack.push(e.dest);
                }
            }
        }
    }

    return visit_order;
}
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6.	 We shall test our implementation of the DFS on the graph shown here:

Figure 6.13: Graph for implementing DFS traversal in Exercise 29

Use the following function to create and return the graph:

template <typename T>
auto create_reference_graph()
{
    Graph<T> G(9);

    std::map<unsigned, std::vector<std::pair<size_t, T>>> edges;
    edges[1] = { {2, 0}, {5, 0} };
    edges[2] = { {1, 0}, {5, 0}, {4, 0} };
    edges[3] = { {4, 0}, {7, 0} };
    edges[4] = { {2, 0}, {3, 0}, {5, 0}, {6, 0}, {8, 0} };
    edges[5] = { {1, 0}, {2, 0}, {4, 0}, {8, 0} };
    edges[6] = { {4, 0}, {7, 0}, {8, 0} };
    edges[7] = { {3, 0}, {6, 0} };
    edges[8] = { {4, 0}, {5, 0}, {6, 0} };

    for (auto& i : edges)
        for (auto& j : i.second)
            G.add_edge(Edge<T>{ i.first, j.first, j.second });

    return G;
}

Note the use of null values for edge weights since DFS does not require edge 
weights. A simpler implementation of the graph could have omitted the edge 
weights entirely without affecting the behavior of our DFS algorithm.



264 | Graph Algorithms I

7.	 Finally, add the following test and driver code, which runs our DFS implementation 
and prints the output:

template <typename T>
void test_DFS()
{
    // Create an instance of and print the graph
    auto G = create_reference_graph<unsigned>();
    std::cout << G << std::endl;

    // Run DFS starting from vertex ID 1 and print the order
    // in which vertices are visited.
    std::cout << "DFS Order of vertices: " << std::endl;
    auto dfs_visit_order = depth_first_search(G, 1);
    for (auto v : dfs_visit_order)
        std::cout << v << std::endl;
}

int main()
{
    using T = unsigned;
    test_DFS<T>();

    return 0;
}

8.	 Compile and run the preceding code. Your output should look as follows:

Figure 6.14: Expected output of Exercise 29
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The following figure shows the order in which the vertices were visited by our DFS 
implementation:

Figure 6.15: The order of vertices visited and the direction of DFS

The time complexity of both BFS and DFS is O(V + E). However, there are several 
important differences between the two algorithms. The following list summarizes the 
differences between the two and points out some cases where one should be preferred 
over the other:

•	 BFS is more suited to finding vertices that are closer to the source vertex, whereas 
DFS is often more suited to finding vertices that are farther away from the source. 

•	 Once a vertex is visited in BFS, the path that's found from the source to the vertex 
is guaranteed to be the shortest path, while no such guarantees exist for DFS. This 
is the reason why all single-source and multiple-source shortest path algorithms 
use some variant of BFS. This shall be explored in the upcoming sections of this 
chapter.

•	 As BFS visits all the vertices adjacent to the current frontier, the search trees that 
are created by BFS are short and wide, and require comparatively more memory, 
whereas the search trees that are created by DFS are long and narrow, and require 
comparatively less memory. 
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Activity 13: Finding out Whether a Graph is Bipartite Using DFS

A bipartite graph is one where the vertices can be divided into two sets so that any 
edges in the graph must connect a vertex from one set to a vertex from the other set. 

Bipartite graphs can be used to model several different practical use cases. For 
instance, if we are given a list of students and a list of classes, the relationship between 
students and classes can be modeled as a bipartite graph containing an edge between a 
student and a class if the student is enrolled in that class. As you would imagine, edges 
leading from one student to another, or from one subject to another, would not make 
sense. Therefore, such edges are not allowed in a bipartite graph. The following figure 
illustrates such a model:

Figure 6.16: A sample bipartite graph representing student enrollment in different classes

Once a model such as the one shown here has been prepared, it can be used to create a 
schedule of classes so that no two classes that have been enrolled by the same student 
overlap. For example, if Jolene is enrolled in Math and Computer Science, these two 
classes should not be scheduled at the same time to avoid a conflict. Minimizing such 
conflicts in timetables can be achieved through solving a maximum flow problem in 
graphs. Several standard algorithms are known for the maximum flow problem: Ford-
Fulkerson's, Dinic's, and the push-relabel algorithms are some examples. However, such 
algorithms are often complex and, therefore, beyond the scope of this book.
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Another use case of modeling relationships between entities using a bipartite graph 
is between the viewers and the list of movies maintained by large video streaming 
platforms such as Netflix and YouTube.

An interesting property of bipartite graphs is that some operations such as finding a 
maximum matching and vertex cover, which are NP-complete for general graphs, can 
be solved in polynomial time for bipartite graphs. Therefore, it is useful to determine 
whether a given graph is bipartite or not. In this activity, you are required to implement 
a C++ program that checks whether a given graph, G, is bipartite. 

The bipartite checking algorithm uses a slightly modified version of DFS and works as 
follows:

1.	 Assume that the DFS starts with vertex 1. Add the vertex ID, 1, to the stack.

2.	 If unvisited vertices remain on the stack, pop a vertex from the stack and set it as 
the current vertex.

3.	 If the color that was assigned to the parent vertex was blue, assign the current 
vertex red; otherwise, assign the current vertex blue.

4.	 Add all the unvisited adjacent vertices of the current vertex to the stack and mark 
the current vertex as visited.

5.	 Repeat steps 2, 3, and 4 until all the vertices have been assigned a color. If all the 
vertices are colored when the algorithm terminates, the given graph is bipartite.

6.	 If, while running step 2, the search encounters a vertex that has already been 
visited and assigned a color that is different from the color that it would have 
been assigned in step 3 (the inverse of the color assigned to its parent vertex in 
the search tree), the algorithm terminates immediately and the given graph is not 
bipartite.
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The following figures illustrate the working of the preceding algorithm:

Figure 6.17: Initialization

Figure 6.18: Since vertex 1 was assigned blue, we color vertex 2 red
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Figure 6.19: Since vertex 2 was colored red, we color vertex 8 blue.

As can be observed from the preceding set of figures, the algorithm zigzags through the 
graph, assigning alternate colors to each vertex that's visited. If all the vertices can be 
colored this way, the graph is bipartite. If DFS reaches two vertices that have already 
been assigned the same color, the graph can be safely declared to be not bipartite.
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Using the graph in figure 6.17 as input, your final output should look as follows:

Figure 6.20: Expected output of Activity 13

Note

The solution to this activity can be found on page 524.

Prim's MST Algorithm
The MST problem was introduced in Chapter 5, Greedy Algorithms, and is defined as 
follows:

"Given a graph, G = < V, E >, where V is the set of vertices and E is the set of edges, each 
associated with an edge weight, find a tree, T, that spans all vertices in V and has the 
minimum total weight."

In Chapter 5, Greedy Algorithm, we discussed the practical applications of the MST 
problem and Kruskal's algorithm, which finds an MST in a given graph. Kruskal's 
algorithm adds all the edges of the graph to a min-heap and greedily adds minimum-
cost edges to MST, checking that no cycles are formed in the tree on each addition. 

The idea behind Prim's algorithm (also known as Jarvik's algorithm) is similar to that of 
BFS. The algorithm starts by adding the starting vertex to a frontier, which consists of 
the set of previously visited vertices and then iteratively explores the vertices adjacent 
to the current frontier. However, while choosing the vertex to be visited on each 
iteration, the vertex with the lowest cost edge from the frontier is picked.
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While implementing Prim's algorithm, we attach a label to each vertex of the graph, 
which stores its distance from the starting vertex. The algorithm works as follows:

1.	 First, it initializes the labels on all the vertices and sets all the distances to infinity. 
Since the distance from the starting vertex to itself is 0, it sets the label of the 
starting vertex to 0. Then, it adds all the labels to a min-heap, H.

In the following figure, the numbers shown in red represent the estimated 
distance from the starting vertex, which is assumed to be vertex 1; the numbers 
shown in black represent edge weights:

Figure 6.21: Initializing Prim's MST algorithm

2.	 Next, it pops a vertex, U, from H. Naturally, U is the vertex with a minimum 
distance from the starting vertex. 
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3.	 For all vertices, V, adjacent to U, if the label of V > edge weight of (U, V), set the 
label of V = edge weight of (U, V). This step is called settling or visiting vertex U:

Figure 6.22: The status of the graph after visiting vertex 1

4.	 While unvisited vertices remain in the graph, go to step 2. The following figure 
shows the state of the graph after visiting vertex 2, where the edge shown in green 
is the sole edge in our MST so far:

Figure 6.23: The status of the graph after visiting vertex 2
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5.	 The final MST after all vertices have been settled is shown here:

Figure 6.24: MST for our graph

Exercise 30: Prim's Algorithm

In this exercise, we shall implement Prim's algorithm to find the MST in the graph 
shown in figure 6.22. Follow these steps to complete this exercise:

1.	 Add the required header files, as shown here:

#include <set>
#include <map>
#include <queue>
#include <limits>
#include <string>
#include <vector>
#include <iostream>
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2.	 Implement an edge in the graph by using the following struct: 

template<typename T> class Graph;

template<typename T>
struct Edge
{
    size_t src;
    size_t dest;
    T weight;

    // To compare edges, only compare their weights,
    // and not the source/destination vertices
    inline bool operator< (const Edge<T>& e) const
    {
        return this->weight < e.weight;
    }

    inline bool operator> (const Edge<T>& e) const
    {
        return this->weight > e.weight;
    }
};

3.	 Use the following function to overload the << operator for the Graph class so that 
we can output the graph to C++ streams:

 template <typename T>
std::ostream& operator<<(std::ostream& os, const Graph<T>& G)
{
    for (auto i = 1; i < G.vertices(); i++)
    {
        os << i << ":\t";

        auto edges = G.outgoing_edges(i);
        for (auto& e : edges)
            os << "{" << e.dest << ": " << e.weight << "}, ";

        os << std::endl;
    }

    return os;
}
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4.	 Add an edge list-based graph implementation, as shown here:

template<typename T>
class Graph
{
public:
    // Initialize the graph with N vertices
    Graph(size_t N) : V(N)
    {}

    // Return number of vertices in the graph
    auto vertices() const
    {
        return V;
    }

    // Return all edges in the graph
    auto& edges() const
    {
        return edge_list;
    }

    void add_edge(Edge<T>&& e)
    {
        // Check if the source and destination vertices are within range
        if (e.src >= 1 && e.src <= V &&
            e.dest >= 1 && e.dest <= V)
            edge_list.emplace_back(e);
        else
            std::cerr << "Vertex out of bounds" << std::endl;
    }

    // Returns all outgoing edges from vertex v
    auto outgoing_edges(size_t v) const
    {
        std::vector<Edge<T>> edges_from_v;
        for (auto& e : edge_list)
        {
            if (e.src == v)
                edges_from_v.emplace_back(e);
        }
        return edges_from_v;
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    }

    // Overloads the << operator so a graph be written directly to a 
stream
    // Can be used as std::cout << obj << std::endl;
    template <typename T>
    friend std::ostream& operator<< <>(std::ostream& os, const Graph<T>& 
G);

private:
    size_t V;        // Stores number of vertices in graph
    std::vector<Edge<T>> edge_list;
};

5.	 Make a function to create and return the graph shown in figure 6.22 by using the 
following code:

 template <typename T>
auto create_reference_graph()
{
    Graph<T> G(9);

    std::map<unsigned, std::vector<std::pair<size_t, T>>> edges;
    edges[1] = { {2, 2}, {5, 3} };
    edges[2] = { {1, 2}, {5, 5}, {4, 1} };
    edges[3] = { {4, 2}, {7, 3} };
    edges[4] = { {2, 1}, {3, 2}, {5, 2}, {6, 4}, {8, 5} };
    edges[5] = { {1, 3}, {2, 5}, {4, 2}, {8, 3} };
    edges[6] = { {4, 4}, {7, 4}, {8, 1} };
    edges[7] = { {3, 3}, {6, 4} };
    edges[8] = { {4, 5}, {5, 3}, {6, 1} };

    for (auto& i : edges)
        for (auto& j : i.second)
            G.add_edge(Edge<T>{ i.first, j.first, j.second });

    return G;
}



Prim's MST Algorithm | 277

6.	 Next, we shall implement the Label structure, an instance of which is assigned to 
each vertex in the graph in order to store its distance from the frontier. Use the 
following code to do so:

template<typename T>
struct Label
{
    size_t vertex_ID;
    T distance_from_frontier;

    Label(size_t _id, T _distance) :
        vertex_ID(_id),
        distance_from_frontier(_distance)
    {}

    // To compare labels, only compare their distances from source
    inline bool operator< (const Label<T>& l) const
    {
        return this->distance_from_frontier < l.distance_from_frontier;
    }

    inline bool operator> (const Label<T>& l) const

    {
        return this->distance_from_frontier > l.distance_from_frontier;
    }

    inline bool operator() (const Label<T>& l) const
    {
        return this > l;
    }
};

7.	 Write a function to implement Prim's MST algorithm, as shown here:

template <typename T>
auto prim_MST(const Graph<T>& G, size_t src)
{
    std::priority_queue<Label<T>, std::vector<Label<T>>, 
std::greater<Label<T>>> heap;
    std::set<int> visited;

    std::vector<T> distance(G.vertices(), std::numeric_limits<T>::max());
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    std::vector<size_t> MST;

    heap.emplace(src, 0);

    // Search for the destination vertex in the graph
    while (!heap.empty())
    {
        auto current_vertex = heap.top();
        heap.pop();

        // If the current vertex hasn't been visited in the past
        if (visited.find(current_vertex.vertex_ID) == visited.end())
        {
            std::cout << "Settling vertex ID " 
<< current_vertex.vertex_ID << std::endl;
            MST.push_back(current_vertex.vertex_ID);

        // For each outgoing edge from the current vertex, 
        // create a label for the destination vertex and add it to the 
heap
            for (auto e : G.outgoing_edges(current_vertex.vertex_ID))
            {
                auto neighbor_vertex_ID = e.dest;
                auto new_distance_to_frontier = e.weight;

        // Check if the new path to the vertex is shorter
        // than the previously known best path. 
        // If yes, update the distance 
                if (new_distance_to_frontier < distance[neighbor_vertex_
ID])
                {
heap.emplace(neighbor_vertex_ID,  new_distance_to_frontier);
                    distance[e.dest] = new_distance_to_frontier;
                }
            }

            visited.insert(current_vertex.vertex_ID);
        }
    }

    return MST;
}



Prim's MST Algorithm | 279

8.	 Finally, add the following code, which runs our implementation of Prim's algorithm 
and outputs the results:

template<typename T>
void test_prim_MST()
{
    auto G = create_reference_graph<T>();
    std::cout << G << std::endl;

    auto MST = prim_MST<T>(G, 1);

    std::cout << "Minimum Spanning Tree:" << std::endl;
    for (auto v : MST)
        std::cout << v << std::endl;
    std::cout << std::endl;
}

int main()
{
    using T = unsigned;
    test_prim_MST<T>();

    return 0;
}

9.	 Run the program. Your output should look as follows:

Figure 6.25: Output of Exercise 30
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The time complexity of Prim's algorithm is O(E log V) when using a binary min-heap and 
an adjacency list for storing the MST, which can be improved to O(E + V log V) when 
using a type of heap called the "Fibonacci min-heap."

While both Prim's and Kruskal's are examples of greedy algorithms, they differ in 
important ways, some of which are summarized here:

Figure 6.26: Table comparing Kruskal's and Prim's algorithms

Dijkstra's Shortest Path Algorithm
The single-source shortest path problem on a graph is solved every time a user 
requests a route on a route planning application such as Google Maps or in the 
navigation software built into cars. The problem is defined as follows:

"Given a directed graph, G - < V, E > where V is the set of vertices and E is the set of edges, 
each of which is associated with an edge weight, a source vertex, and a destination vertex, 
find a minimum-cost path from a source to a destination."

Dijkstra's algorithm works for graphs with non-negative edge weights and is only a 
slight modification of Prim's MST algorithm, with two major changes:

•	 Instead of setting labels on every vertex equal to the minimum distance from the 
frontier, Dijkstra's algorithm sets the labels on each vertex with the distance equal 
to the total distance of the vertex from the source.

•	 Dijkstra's algorithm terminates if the destination vertex is popped from the heap, 
whereas Prim's algorithm terminates only when there are no more vertices left to 
be settled on the heap.
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The working of the algorithm is illustrated in the following steps:

1.	 First, it initializes the labels on all the vertices and sets all the distances to infinity. 
Since the distance from the starting vertex to itself is 0, it sets the label of the 
starting vertex to 0. Then, it adds all the labels to a min-heap, H.

In the following diagram, the numbers shown in red represent the current best-
known distances from the source (vertex 2) and the destination (vertex 6):

Figure 6.27: Initializing Dijkstra's algorithm

2.	 Then, it pops a vertex, U, from H. Naturally, U is the vertex with the minimum 
distance from the starting vertex. If U is the required destination, we have found 
our shortest path and the algorithm terminates.
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3.	 For all vertices, V, adjacent to U, if the label of V > (label of U + edge weight of 
(U, V)), we have found a path to V that is shorter than the previously known 
minimum-cost path. Therefore, set the label of V to (label of U + edge weight of (U, 
V)). This step is called settling or visiting the vertex U:

Figure 6.28: The state of the algorithm after settling vertex 1

4.	 While unvisited vertices remain in the graph, go to step 2. The following figure 
shows the state of the graph after settling vertex 2:

Figure 6.29: The state of the algorithm after settling vertex 2
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5.	 The algorithm terminates when the destination vertex (vertex ID 6) is popped 
from H. The shortest path that's found by the algorithm from 1 to 6 is shown in 
the following figure. Also, the labels on other settled vertices show the shortest 
distance from 1 to that vertex:

Figure 6.30: The shortest path from 1 to 6

Exercise 31: Implementing Dijkstra's Algorithm

In this exercise, we shall implement Dijkstra's algorithm to find the shortest path in the 
graph shown in figure 6.28. Follow these steps to complete this exercise:

1.	 Include the required header files and declare the graph data structure, as shown 
here:

#include <string>
#include <vector>
#include <iostream>
#include <set>
#include <map>
#include <limits>
#include <queue>

template<typename T> class Graph;
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2.	 Write the following struct to implement an edge in our graph implementation:

template<typename T>
struct Edge
{
    size_t src;
    size_t dest;
    T weight;

    // To compare edges, only compare their weights,
    // and not the source/destination vertices
    inline bool operator< (const Edge<T>& e) const
    {
        return this->weight < e.weight;
    }

    inline bool operator> (const Edge<T>& e) const
    {
        return this->weight > e.weight;
    }
};

3.	 Overload the << operator for the Graph class so that it can be output using streams, 
as shown here:

 template <typename T>
std::ostream& operator<<(std::ostream& os, const Graph<T>& G)
{
    for (auto i = 1; i < G.vertices(); i++)
    {
        os << i << ":\t";

        auto edges = G.outgoing_edges(i);
        for (auto& e : edges)
            os << "{" << e.dest << ": " << e.weight << "}, ";

        os << std::endl;
    }

    return os;
}
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4.	 Implement the graph, as shown here:

template<typename T>
class Graph
{
public:
    // Initialize the graph with N vertices
    Graph(size_t N) : V(N)
    {}

    // Return number of vertices in the graph
    auto vertices() const
    {
        return V;
    }

    // Return all edges in the graph
    auto& edges() const
    {
        return edge_list;
    }

    void add_edge(Edge<T>&& e)
    {
        // Check if the source and destination vertices are within range
        if (e.src >= 1 && e.src <= V &&
            e.dest >= 1 && e.dest <= V)
            edge_list.emplace_back(e);
        else
            std::cerr << "Vertex out of bounds" << std::endl;
    }

    // Returns all outgoing edges from vertex v
    auto outgoing_edges(size_t v) const
    {
        std::vector<Edge<T>> edges_from_v;
        for (auto& e : edge_list)
        {
            if (e.src == v)
                edges_from_v.emplace_back(e);
        }
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        return edges_from_v;
    }

    // Overloads the << operator so a graph be written directly to a 
stream
    // Can be used as std::cout << obj << std::endl;
    template <typename T>
    friend std::ostream& operator<< <>(std::ostream& os, const Graph<T>& 
G);

private:
    size_t V;        // Stores number of vertices in graph
    std::vector<Edge<T>> edge_list;
};

5.	 Write a function to create the reference graph shown in figure 6.28 using the Graph 
class, as shown here:

template <typename T>
auto create_reference_graph()
{
    Graph<T> G(9);

    std::map<unsigned, std::vector<std::pair<size_t, T>>> edges;
    edges[1] = { {2, 2}, {5, 3} };
    edges[2] = { {1, 2}, {5, 5}, {4, 1} };
    edges[3] = { {4, 2}, {7, 3} };
    edges[4] = { {2, 1}, {3, 2}, {5, 2}, {6, 4}, {8, 5} };
    edges[5] = { {1, 3}, {2, 5}, {4, 2}, {8, 3} };
    edges[6] = { {4, 4}, {7, 4}, {8, 1} };
    edges[7] = { {3, 3}, {6, 4} };
    edges[8] = { {4, 5}, {5, 3}, {6, 1} };

    for (auto& i : edges)
        for (auto& j : i.second)
            G.add_edge(Edge<T>{ i.first, j.first, j.second });

    return G;
}
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6.	 Implement Dijkstra's algorithm, as shown here:

template <typename T>
auto dijkstra_shortest_path(const Graph<T>& G, size_t src, size_t dest)
{
    std::priority_queue<Label<T>, std::vector<Label<T>>, 
std::greater<Label<T>>> heap;
    std::set<int> visited;
    std::vector<size_t> parent(G.vertices());
    std::vector<T> distance(G.vertices(), std::numeric_limits<T>::max());
    std::vector<size_t> shortest_path;

    heap.emplace(src, 0);
    parent[src] = src;

    // Search for the destination vertex in the graph
    while (!heap.empty()) {
        auto current_vertex = heap.top();
        heap.pop();

        // If the search has reached the destination vertex
        if (current_vertex.vertex_ID == dest) {
            std::cout << "Destination " << 
current_vertex.vertex_ID << " reached." << std::endl;
            break;
        }
        if (visited.find(current_vertex.vertex_ID) == visited.end()) {
            std::cout << "Settling vertex " << 
current_vertex.vertex_ID << std::endl;
            // For each outgoing edge from the current vertex, 
            // create a label for the destination vertex and add it to the 
heap
            for (auto e : G.outgoing_edges(current_vertex.vertex_ID)) {
                auto neighbor_vertex_ID = e.dest;
                auto new_distance_to_dest=current_vertex.distance_from_
source 
+ e.weight;

                // Check if the new path to the destination vertex 
// has a lower cost than any previous paths found to it, if // yes, then 
this path should be preferred 
                if (new_distance_to_dest < distance[neighbor_vertex_ID]) {
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                    heap.emplace(neighbor_vertex_ID, new_distance_to_
dest);
                    parent[e.dest] = current_vertex.vertex_ID;
                    distance[e.dest] = new_distance_to_dest;
                }
            }
            visited.insert(current_vertex.vertex_ID);
        }
    }
    // Construct the path from source to the destination by backtracking 
    // using the parent indexes
    auto current_vertex = dest;
    while (current_vertex != src) {
        shortest_path.push_back(current_vertex);
        current_vertex = parent[current_vertex];
    }
    shortest_path.push_back(src);
    std::reverse(shortest_path.begin(), shortest_path.end());
    return shortest_path;
}

Our implementation works in two phases – it searches for the destination vertex 
starting from the source and uses the backtracking phase, where the shortest path 
is found by following the parent pointers from the destination back to the source.

7.	 Finally, add the following code to test our implementation of Dijkstra's algorithm 
by finding the shortest path between vertices 1 and 6 in the graph:

 template<typename T>
void test_dijkstra()
{
    auto G = create_reference_graph<T>();
    std::cout << "Reference graph:" << std::endl;
    std::cout << G << std::endl;

    auto shortest_path = dijkstra_shortest_path<T>(G, 1, 6);

    std::cout << "The shortest path between 1 and 6 is:" << std::endl;
    for (auto v : shortest_path)
        std::cout << v << " ";
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    std::cout << std::endl;
}

int main()
{
    using T = unsigned;
    test_dijkstra<T>();

    return 0;
}

8.	 Run the program. Your output should look as follows:

Figure 6.31: Output of Exercise 31

As you can see in the preceding output, our program traces the vertices along the 
shortest path between vertices 1 and 6. The best known running time of Dijkstra's 
algorithm is O(E + V log V) when Fibonacci min-heaps are used.
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Activity 14: Shortest Path in New York

In this activity, you are required to implement Dijkstra's algorithm in C++ so that it 
can be used to find the shortest path in the given road network of New York. Our road 
graph consists of 264,326 vertices and 733,846 directed edges, and the edge weight is 
the Euclidean distance between the vertices. The steps for this activity are as follows:

1.	 Download the road graph file from the following link: https://raw.
githubusercontent.com/TrainingByPackt/CPP-Data-Structures-and-Algorithm-
Design-Principles/master/Lesson6/Activity14/USA-road-d.NY.gr.

Note

If the file is not automatically downloaded, and instead is opened in your browser, 
download it by right-clicking on any blank space and selecting "Save as…"

2.	 If you're running Windows, move the downloaded file to <project directory>/out/
x86-Debug/Chapter6.

If you're running Linux, move the downloaded file to <project directory>/build/
Chapter6.

Note

The directory structure may vary based on your IDE. The file needs to be placed 
in the same directory as your compiled binary. Alternatively, you may tweak the 
implementation to accept a path to the file.

3.	 The road graph is a text file with three different kinds of rows:

Figure 6.32: Table describing the road graph file for New York

https://raw.githubusercontent.com/TrainingByPackt/CPP-Data-Structures-and-Algorithm-Design-Principles/master/Lesson6/Activity14/USA-road-d.NY.gr
https://raw.githubusercontent.com/TrainingByPackt/CPP-Data-Structures-and-Algorithm-Design-Principles/master/Lesson6/Activity14/USA-road-d.NY.gr
https://raw.githubusercontent.com/TrainingByPackt/CPP-Data-Structures-and-Algorithm-Design-Principles/master/Lesson6/Activity14/USA-road-d.NY.gr
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4.	 Implement a weighted edge graph. It is okay to assume that once the graph is 
created, no vertices can be added or deleted from the graph.

5.	 Implement a function to parse the road graph file and populate the graph.

6.	 Implement Dijkstra's algorithm and test your implementation by finding the 
shortest path between vertices 913 and 542. Your output should look as follows:

Figure 6.33: Expected output of Activity 14

Note

The solution to this activity can be found on page 530.

Summary
We covered three major graph problems in this chapter: first, the graph traversal 
problem for which two solutions were introduced, breadth-first search (BFS) and 
depth-first search (DFS). Second, we revisited the minimum spanning tree (MST) 
problem and solved it using Prim's algorithm. We also compared it with Kruskal's 
algorithm and discussed the conditions under which one should be preferred over the 
other. Finally, we introduced the single-source shortest path problem, which finds a 
minimum-cost shortest path in graphs, and covered Dijkstra's shortest path algorithm.

However, Dijkstra's algorithm only works for graphs with positive edge weights. In 
the next chapter, we shall seek to relax this constraint and introduce a shortest path 
algorithm that can handle negative edge weights. We shall also generalize the shortest 
path problem to find the shortest paths between all the pairs of vertices in graphs.





Learning Objectives

By the end of this chapter, you will be able to:

•	 Describe the inherent problems of Dijkstra's algorithm and demonstrate how it can be 
modified and/or combined with other algorithms to circumvent those issues

•	 Find the shortest path in a graph using the Bellman-Ford and Johnson's algorithms

•	 Describe the significance of strongly connected components in a garaph

•	 Use Kosaraju's algorithm to find strongly connected components in a graph

•	 Describe the difference between connectivity in directed and undirected graphs

•	 Implement depth-first search for complicated problems

•	 Evaluate negative weight cycles in a graph

This chapter builds upon the previous chapter by introducing some more advanced algorithms 
for graphs. You will also learn how to deal with negative weights and handle the exceptions of 
negative weight cycles.

Graph Algorithms II

7
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Introduction
So far, we have explored a variety of common programming structures and paradigms. 
Now, we are going to delve into several techniques that expand on the topics we 
discussed previously, beginning with an assortment of advanced graph problems, and 
then shifting focus toward the expansive subject of dynamic programming.

In this chapter, we will discuss three well-known algorithms, namely the Bellman-
Ford algorithm, Johnson's algorithm, and Kosaraju's algorithm. All of these algorithms 
share clear similarities with ones we have already covered in this book but extend and 
combine them in various ways to solve potentially complex problems with much greater 
efficiency than suboptimal implementations would allow. In addition to learning these 
specific techniques, this chapter should also increase your general familiarity with the 
use of fundamental graph-related techniques and provide greater insight into how 
those fundamentals can be applied to a diverse range of different problems.

Revisiting the Shortest Path Problem
We previously discussed several ways to find the shortest path between two nodes in 
a graph. We began by exploring the most standard forms of graph traversal, namely 
depth-first search and breadth-first search, and eventually discussed how to approach 
the more problematic case of graphs containing weighted edges. We demonstrated how 
Dijkstra's algorithm could be used to efficiently find the shortest distances in weighted 
graphs by greedily prioritizing each step in the traversal according to the best option 
immediately available. However, despite the improvement in performance that Dijkstra's 
algorithm provides, it is not applicable to every situation.

Consider a Wi-Fi signal that is being broadcast through a network; as it travels beyond 
the point at which it is originally transmitted, its strength is likely to be affected by 
numerous factors, such as the distance it travels and the number of walls and other 
obstacles it must pass through. If you wanted to determine the path that the signal 
will take to each destination that will minimize its deterioration, you could create a 
weighted graph with each point in the network represented by a node and the degree 
of signal loss between any two points represented by weighted edges. You could then 
calculate the shortest distances in the graph using Dijkstra's algorithm to determine the 
least costly paths in the network. 

Now, suppose that a repeater/booster is installed in the network to increase the 
strength of the signal at a particular point – how might this addition be represented 
in your graph? The most obvious approach would be to set the outgoing edge weights 
from the booster's node to negative values (equivalent to the degree by which it 
increases the signal strength), which would decrease the total distance/deterioration 
of any path passing through it. How might this affect our results if we used Dijkstra's 
algorithm on the network's graph?
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As we discussed in the previous chapter, Dijkstra's algorithm takes a greedy approach 
in terms of how it selects each vertex in the traversal. At every step, it finds the closest 
unvisited vertex and adds it to the visited set, excluding it from further consideration. 
The assumption that's being made by Dijkstra's algorithm is that the shortest path to 
every vertex that's been considered so far has already been found, so searching for 
better alternatives would be pointless. However, in graphs containing negative edge 
weights, this approach would not explore the possibilities that lead to the optimal 
solution if they produced a higher sum in the early stages of the traversal.

Consider a graph with a negative edge weight, as shown in the following figure:

Figure 7.1: Applying Dijkstra's algorithm to a graph with a negative weight

In the preceding figure, the path that's traversed by Dijkstra's algorithm is indicated in 
red. Assuming we start at vertex A, there will be two potential options after the first 
move from node A to node B: B —> C, which has an edge weight of 5, and B —> D, which 
has an edge weight of 10. Because of Dijkstra's greedy approach, C will be chosen as the 
next node in the shortest path, but we can clearly see that the other option (B —> D —> 
C = 10 + –7 = 3) is actually the optimal choice.

When faced with negative edge weights, the inherent optimizations in Dijkstra's 
algorithm that enable its high level of efficiency ultimately lead to its downfall. 
Thankfully, for such graphs, we can employ an alternative approach that is quite similar 
to Dijkstra's algorithm and arguably simpler to implement.
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The Bellman-Ford Algorithm
We can use the Bellman-Ford algorithm to handle graphs with negative weights. It 
replaces Dijkstra's method of greedy selection with an alternative approach of iterating 
across every edge in the graph V – 1 times (where V is equal to the total number of 
vertices) and finding progressively optimal distance values from the source node across 
each iteration. Naturally, this gives it a higher asymptotic complexity than Dijkstra's 
algorithm, but it also allows it to produce correct results for graphs that Dijkstra's 
algorithm would misinterpret. The following exercise shows how to implement the 
Bellman-Ford algorithm.

Exercise 32: Implementing the Bellman-Ford Algorithm (Part I)

In this exercise, we will work with the basic Bellman-Ford algorithm to find the shortest 
distance in a graph with negative weights. Let's get started:

1.	 First, set up your code by including the necessary libraries (as well as the 
namespace std for convenience):

#include <iostream>
#include <vector>
#include <climits>

using namespace std;

2.	 Let's begin by defining a representation of the edges in our graph, which will 
require three variables: the source node's index, the destination node's index, and 
the cost of traversing between them:

struct Edge
{
    int start;    // The starting vertex
    int end;      // The destination vertex
    int weight;   // The edge weight

    // Constructor
    Edge(int s, int e, int w) : start(s), end(e), weight(w) {}
};
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3.	 To implement the Bellman-Ford algorithm, we will need to have some 
representation of our graph. For the sake of simplicity, let's assume that our graph 
can be represented by an integer, V, the total number of vertices in the graph, and 
a vector, edges (a collection of pointers to 'edge' objects that define the graph's 
adjacencies). Let's also define an integer constant, UNKNOWN, which we can set to 
some arbitrary high value that will always be greater than the sum of any subset of 
edge weights in the graph (the INT_MAX constant defined in climits works well for 
this purpose):

const int UNKNOWN = INT_MAX;

vector<Edge*> edges;   // Collection of edge pointers
int V;                 // Total number of vertices in the graph
int E;                 // Total number of edges in the graph

4.	 Let's also write some code for collecting the graph's data as user input:

int main()
{
    cin >> V >> E;

    for(int i = 0; i < E; i++)
    {
        int node_a, node_b, weight;
        cin >> node_a >> node_b >> weight;

        // Add a new edge using the defined constructor
        edges.push_back(new Edge(node_a, node_b, weight));
    }

    // Choose a starting node

    int start;
    cin >> start;

    // Run the Bellman-Ford algorithm on the graph for 
    // the chosen starting vertex 

    BellmanFord(start);

    return 0;
}
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5.	 Now, we can start implementing the Bellman-Ford algorithm itself. For our 
purposes, let's create a function called BellmanFord() that takes one argument 
– start (the starting node from which we want to find the shortest paths in the 
graph) – and returns void. Then, we will define a distance array of size V, with 
every element initialized to UNKNOWN except for the starting node, whose index is 
initialized to 0:

    void BellmanFord(int start)
    {
        vector<int> distance(V, UNKNOWN);

        distance[start] = 0;

6.	 The bulk of the work is done in the next step, where we define a loop that lasts for 
V – 1 iterations and iterates through the entire set of edges on every repetition. 
For each edge, we check to see whether its source node's current distance value 
is not equal to UNKNOWN (which, in the first iteration, only applies to the starting 
node). Assuming this is true, we then compare the current distance value of its 
destination node to the sum of the source node's distance with the weight of the 
edge. If the result of adding the edge weight to the current node's distance is 
less than the stored distance of the destination node, we replace its value in the 
distance array with the new sum:

// Perform V - 1 iterations
for(int i = 0; i < V; i++)
{
    // Iterate over entire set of edges
    for(auto edge : edges)
    {
        int u = edge->start;
        int v = edge->end;
        int w = edge->weight;

        // Skip nodes which have not yet been considered
        if(distance[u] == UNKNOWN)
        {
            continue;
        }

        // If the current distance value for the destination
        // node is greater than the sum of the source node's
        // distance and the edge's weight, change its distance
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        // to the lesser value.

        if(distance[u] + w < distance[v])
        {
            distance[v] = distance[u] + w;
        }
    }
}

7.	 At the end of our function, we can now iterate through the distance array and 
output the shortest distances from the source to every other node in the graph:

cout << "DISTANCE FROM VERTEX " << start << ":\n"

for(int i = 0; i < V; i++)
{
    cout << "\t" << i << ": ";

    if(distance[i] == UNKNOWN)
    {
        cout << "Unvisited" << endl;

        continue;
    }

    cout << distance[i] << endl;
}

8.	 Now, we can return to our main() method and make a call to our newly 
implemented BellmanFord() function. Let's test our implementation on the 
example graph from figure 7.1. To do so, we should run our code and enter the 
following input:

5 5
0 1 3
1 2 5
1 3 10
3 2 -7
2 4 2
0
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9.	 Our program should output the following:

DISTANCE FROM VERTEX 0:
    0: 0
    1: 3
    2: 6
    3: 13
    4: 8

As we can see, Bellman-Ford avoids the trap that would lead Dijkstra's algorithm to 
evaluate the shortest paths incorrectly. However, there is still another significant 
problem to contend with, which we will discuss in the next section.

The Bellman-Ford Algorithm (Part II) – Negative Weight Cycles
Consider the graph shown in the following figure:

Figure 7.2: Graph with a negative weight cycle

The edges highlighted in red indicate a negative weight cycle or a cycle in the graph 
where the combined edge weights produce a negative sum. In such a situation, this 
cycle would be considered repeatedly, and the final results would be skewed. 

For the sake of comparison, consider a graph with only positive edge weights. A cycle in 
such a graph would never be considered in the solution because the shortest distance 
to the first node in the cycle would have been found already. To demonstrate this, 
imagine that the edge weight between nodes B and D in the preceding figure is positive. 
Starting from node A, the first iteration through the edges would determine that the 
shortest distance to node B is equal to 3. After two more iterations, we would also know 
the shortest distance from A to C (A —> B —> D —> C), which is equal to 14 (3 + 8 + 3). 
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Obviously, no positive number can be added to 14 that will produce a sum of less than 
3. As there can be at most | V – 1 | steps in any graph traversal where each node is 
visited only once, we can be certain that | V – 1 | iterations through the graph's edges 
are sufficient to determine every possible shortest distance. By extension, we can 
conclude that the only way an even shorter path can exist after | V – 1 | iterations is if a 
node is revisited and the edge weight leading to it is negative. Thus, the final step of the 
Bellman-Ford algorithm consists of performing one more iteration through the edges to 
check for the existence of such cycles.

We can accomplish this with the same logic we used to find the shortest paths: by 
checking whether the sum of each edge's weight with the distance value of its source 
node is less than the currently stored distance to its destination node. If a shorter path 
is found during this step, we terminate the algorithm and report the existence of a 
negative cycle.

We will explore this implementation of the algorithm in the following exercise.

Exercise 33: Implementing the Bellman-Ford Algorithm (Part II)

In this exercise, we will modify the implementation in Exercise 32, Implementing the 
Bellman-Ford Algorithm (Part I), to deal with a graph with negative weight cycles. Let's 
get started:

1.	 We can essentially copy our code from the previous step verbatim. However, this 
time, we will replace the code under the condition that determines whether a 
shorter path has been found with some sort of output indicating that the graph 
contains a negative cycle, thus rendering it invalid:

    // Iterate through edges one last time
    for(auto edge : edges)
    {
        int u = edge->start;
        int v = edge->end;
        int w = edge->weight;
        
        if(distance[u] == UNKNOWN)
        {
            continue;
        }
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2.	 If we can still find a path shorter than the one we have already found, the graph 
must contain a negative cycle. Let's check for a negative weight cycle with the 
following if statement:

        if(distance[u] + w < distance[v])
        {
            cout << "NEGATIVE CYCLE FOUND" << endl;
            return;
        }
    }

3.	 Now, let's insert this block of code in-between the end of the first for loop and the 
first output line:

void BellmanFord(int start)
{
    vector<int> distance(V, UNKNOWN);

    distance[start] = 0;

    for(int i = 1; i < V; i++)
    {
        for(auto edge : edges)
        {
            int u = edge->start;
            int v = edge->end;
            int w = edge->weight;

            if(distance[u] == UNKNOWN)
            {
                continue;
            } 

            if(distance[u] + w < distance[v])
            {
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                distance[v] = distance[u] + w;
            }
        }
    }
    for(auto edge : edges)
    {
        int u = edge->start;
        int v = edge->end;
        int w = edge->weight;

        if(distance[u] == UNKNOWN)
        {
            continue;
        }

        if(distance[u] + w < distance[v])
        {
            cout << "NEGATIVE CYCLE FOUND" << endl;
            return;
        }
    }

    cout << "DISTANCE FROM VERTEX " << start << ":\n";

    for(int i = 0; i < V; i++)
    {
        cout << "\t" << i << ": ";

        if(distance[i] == UNKNOWN)
        {
            cout << "Unvisited" << endl;
            continue;
        }
        cout << distance[i] << endl;
    }
}
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4.	 To test the logic we've added, let's run the algorithm on the following input:

6 8
0 1 3
1 3 -8
2 1 3
2 5 5
3 2 3
2 4 2
4 5 -1
5 1 8
0

5.	 Our program should output the following:

NEGATIVE CYCLE FOUND

Activity 15: Greedy Robot

You are developing a pathfinding robot that must find the most efficient path through 
an obstacle course. For testing purposes, you have designed several courses, each in 
the shape of a square grid. Your robot is able to traverse any obstacle it encounters, 
but this also requires a greater expenditure of power. Assuming your robot starts in the 
top-left corner of the grid and can move in any of the four cardinal directions (north, 
south, east, and west), you must implement an algorithm that determines the maximum 
amount of energy your robot can finish the course with.

Since the amount of energy that's required to perform this traversal can be high, 
you have interspersed power stations throughout the grid, which your robot has the 
capability of using to recharge itself. Unfortunately, it appears that your robot is quite 
greedy in terms of energy consumption – if it can reach an energy station multiple 
times without having to backtrack, it will continually return to the same location until it 
inevitably overcharges and explodes! Because of this, you will need to predict whether 
your robot will end up revisiting a power station and abort the traversal attempt before 
disaster ensues.



The Bellman-Ford Algorithm (Part II) – Negative Weight Cycles | 305

Input

•	 The first line contains a single integer, N, which is the height and width of the 
course.

•	 The next N2 - 1 lines each contain the directions string and an integer called 
power. Each set of N lines corresponds to a single row, beginning from the top of 
the grid, where each cell's data is defined from left to right (for example, in a 3 x 3 
grid, 0 —> [0, 0], 1 —> [0, 1], 2 —> [0, 2], 3 —> [1, 0], 4 —> [1, 1], and so on).

•	 directions contains 0-3 characters from the set { 'N', 'S', 'E', 'W' }, which represent 
the cells that your robot can visit from each point. Thus, if the directions string is 
SW, then the robot can move south or west from that point. power represents the 
energy expenditure required to cross the cell. Positive values for power indicate 
that a charging station is located within the cell.

Output

•	 If traversing the course causes the robot to explode, print a single line – TRAVERSAL 
ABORTED.

•	 Otherwise, print the maximum amount of energy your robot can have upon 
reaching the bottom-right cell of the course, relative to the amount of energy it 
started with. For example, if the robot can finish the maze with 10 more units of 
energy than it started with, print 10; if it finishes the maze with 10 fewer units of 
energy than it started with, print -10.

Example

Let's say we had the following input:
3
SE -10
SE -8
S -6
S 7
E -10
S 20
E -1
NE 5
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The grid's layout would look like this:

Figure 7.3: Grid for the robot's traversal

The path that reaches the bottom-right cell with the most energy is as follows:
0 —> 3 (-10)
3 —> 6 (+7)
6 —> 7 (-1)
7 —> 4 (+5)
4 —> 5 (-10)
5 —> 8 (+20)

(-10) + 7 + (-1) + 5 + (-10) + 20 
= 11 more units of energy

Therefore, your program should output 11.
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Test Cases

The following test cases should help you understand this problem better:

Figure 7.4: Test case 1 for Activity 15

Figure 7.5: Test case 2 for Activity 15
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Figure 7.6: Test case 3 for Activity 15
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Figure 7.7: Test case 4 for Activity 15
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Figure 7.8: Test case 5 for Activity 15
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Activity Guidelines

•	 No algorithms beyond what was covered in Exercise 33, Implementing the Bellman-
Ford Algorithm (Part II), are required.

•	 You may need to reinterpret some of the input so that it corresponds to the actual 
problem you are trying to solve.

•	 There is no need to represent the grid as two-dimensional.

Note

The solution to this activity can be found on page 537.

We have now established that Bellman-Ford is more versatile than Dijkstra's algorithm 
since it possesses the capability to produce correct solutions in cases where Dijkstra's 
algorithm would yield incorrect results. However, if the graph we are considering 
does not contain any negative edge weights, Dijkstra's algorithm is the obvious choice 
between the two due to the potentially significant efficiency advantages afforded by its 
greedy approach. Now, we will explore how Bellman-Ford can be used in conjunction 
with Dijkstra's algorithm so that it can be used for graphs with negative weights.

Johnson's Algorithm
Having compared the relative merits and disadvantages of the Bellman-Ford algorithm 
and Dijkstra's algorithm, we will now discuss an algorithm that combines both of them 
to retrieve the shortest paths between every pair of vertices in a graph. Johnson's 
algorithm provides us with the advantage of being able to utilize the efficiency of 
Dijkstra's algorithm while still producing correct results for graphs with negative edge 
weights. 

The concept behind Johnson's algorithm is quite novel – to contend with Dijkstra's 
limitations when dealing with negative weights, Johnson's algorithm simply reweights 
the edges in the graph so they are uniformly non-negative. This is accomplished with 
the rather creative use of Bellman-Ford combined with some particularly elegant 
mathematical logic.

The first step in Johnson's algorithm is to add a new 'dummy' vertex to the graph, which 
is subsequently connected to every other vertex by zero-weighted edges. Bellman-Ford 
is then used to find the shortest paths between the new vertex and the rest, and the 
distances are stored for later use.
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Consider the implications of the addition of this new vertex: because it has a 
0-weighted edge connecting it to every other node in the graph, none of its shortest 
path distances will ever be positive. Furthermore, its connectivity to every node in 
the graph ensures that its distance values maintain a constant relation across all the 
potential traversal paths, which causes the sum that's formed by these values and their 
corresponding edge weights to 'telescope', in other words, subsequent terms in the 
sequence cancel each other out, making the summation equivalent to the difference of 
the first and last terms. Take a look at the following figure:

Figure 7.9: Applying Johnson's algorithm on a graph with negative weights

In the preceding graph, the diamond-shaped node labeled S represents the dummy 
vertex, the black parenthesized numbers represent edge weights, the red text 
represents the shortest paths from S to each node, the orange arrows represent the 
optimal paths traversed from S, and the blue arrows represent 0-weighted edges 
branching from S that are not included in any of S's shortest paths.
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Let's take the new distance values and arrange them in a sequence according to their 
appearance in this traversal of the graph – A --> B --> C --> A --> D --> E:

Figure 7.10: Distance for traversing at each node

If we insert the original edge weights in-between the distance values of the nodes they 
connect to, the sequence will be as follows:

Figure 7.11: Calculating the distance that's been traversed 

Now, let's apply the following formula to the edge values:

W(uv) = w(uv) + d[s, u] - d[s, v]

Here, w(uv) represents the original edge weight between nodes u and v, d[s, u] and 
d[s, v] represent the shortest path distances between S and u/v, and W(uv) represents 
the transformed edge weight values. Applying this formula yields the following result:

AB —> (-7) +   0  – (-7) = 0

BC —> (-2) + (-7) – (-9) = 0

CA —>  10  + (-9) –   0  = 1

AD —> (-5) +   0  – (-5) = 0

DE —>   4  + (-5) – (-1) = 0

Notice how the third term in the expression is always canceled out by the middle term 
in subsequent iterations; this demonstrates the "telescoping" property of the formula. 
Because of this property, the following two expressions representing the distance 
between node A and E are equivalent:

(w(AB) + d[s, A] - d[s, B]) + (w(BC) + d[s, B] - d[s, C]) + … + (w(DE) + 
d[s, D] - d[s, E])

(w(AB) + w(BC) + w(CA) + w(AD) + w(DE)) + d[s, A] - d[s, E]
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This implies that the amount of weight being added to any path in the graph is equal to 
the amount of weight being added to its subpaths. We know that the results of adding 
these values will always be non-negative because the distance array that's returned by 
Bellman-Ford ensures that we have d[s, u] + weight(u, v) >= d[s, v] for any pair, 
u,v. Thus, the value of w(u, v) + d[s, u] - d[s, v] can never be less than 0.

As a result of the applied transformation, each edge that will be traversed in 
any shortest path in the graph will be reweighted to zero, which leaves us with 
non-negative weight values that, quite remarkably, have still retained their original 
shortest path orderings! We can now perform Dijkstra's algorithm on the graph using 
these new weight values to efficiently retrieve the shortest paths for every pair of 
nodes.

We will explore the implementation of Johnson's algorithm in the following exercise.

Exercise 34: Implementing Johnson's Algorithm

In this exercise, we will implement Johnson's algorithm to find the shortest distance 
from each node to every other node in a graph with negative weights. Let's get started:

1.	 We can reuse most of our code from the previous exercise, including our Edge 
structure, UNKNOWN constant, and graph data:

#include <iostream>
#include <vector>
#include <climits>

using namespace std;

struct Edge
{
    int start;
    int end;   
    int weight;

    Edge(int s, int e, int w) : start(s), end(e), weight(w) {}
};

const int UNKNOWN = INT_MAX;

vector<Edge*> edges;
int V;             
int E;             
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2.	 We should modify our function declaration for Bellman-Ford so that it accepts 
two arguments (an integer, V, and a vector or Edge pointers, edges) and returns an 
integer vector. We can also remove the start parameter:

vector<int> BellmanFord(int V, vector<Edge*> edges)

3.	 We will begin by adding the dummy vertex, S, to the graph. Because S essentially 
has no influence on the rest of the graph, this is as simple as increasing the 
distance array's size to | V + 1 | and adding an edge between S and every other 
node:

vector<int> distance(V + 1, UNKNOWN);

int s = V;

for(int i = 0; i < V; i++)
{
    edges.push_back(new Edge(s, i, 0));
}

distance[s] = 0;

4.	 We proceed to apply the standard implementation of Bellman-Ford to the 
modified graph, using S as the source node:

for(int i = 1; i < V; i++)
{
    for(auto edge : edges)
    {
        int u = edge->start;
        int v = edge->end;
        int w = edge->weight;

        if(distance[u] == UNKNOWN)
        {
            continue;
        }
        if(distance[u] + w < distance[v])
        {
            distance[v] = distance[u] + w;
        }
    }
}
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5.	 This time, let's move the final check for negative cycles into its own function:

bool HasNegativeCycle(vector<int> distance, vector<Edge*> edges)
{
    for(auto edge : edges)
    {
        int u = edge->start;
        int v = edge->end;
        int w = edge->weight;

        if(distance[u] == UNKNOWN) continue;

        if(distance[u] + w < distance[v])
        {
            return true;
        }
    }
    return false;
}

6.	 Now, we can call it at the end of the original function and return an empty array if 
a negative cycle is found:

if(HasNegativeCycle(distance, edges))
{
    cout << "NEGATIVE CYCLE FOUND" << endl;

    return {};
}

7.	 After ensuring that the graph has no negative cycles, we can return the resultant 
set of distance values to the calling function and apply the reweighting formula to 
every edge in the graph. But first, let's implement Dijkstra's algorithm:

vector<int> Dijkstra(int V, int start, vector<Edge*> edges)
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8.	 Now, let's declare an integer vector, distance, and a Boolean vector, visited. As 
usual, every index of distance will be initialized to UNKNOWN (except for the starting 
vertex), and every index of visited will be initialized to false:

vector<int> distance(V, UNKNOWN);
vector<bool> visited(V, false);

distance[start] = 0;

9.	 Our implementation of Dijkstra's algorithm will utilize a simple iterative approach 
using a for loop. As you may recall from earlier chapters, Dijkstra's algorithm 
needs to find the node with the minimum distance value at each step in the 
traversal. While this is often done via a priority queue, we will accomplish this by 
coding another short function, GetMinDistance(), which will take the distance and 
visited arrays as arguments and return the index of the node with the shortest 
path value:

// Find vertex with shortest distance from current position and
// return its index

int GetMinDistance(vector<int> &distance, vector<bool> &visited)
{
    int minDistance = UNKNOWN;
    int result;

    for(int v = 0; v < distance.size(); v++)
    {            
        if(!visited[v] && distance[v] <= minDistance)
        {
            minDistance = distance[v];
            result = v;
        }
    }
    return result;
}

10.	 We can now finish implementing Dijkstra's algorithm:

for(int i = 0; i < V - 1; i++)
{
    // Find index of unvisited node with shortest distance
    int curr = GetMinDistance(distance, visited);
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    visited[curr] = true;

    // Iterate through edges
    for(auto edge : edges)
    {
        // Only consider neighboring nodes
        if(edge->start != curr) continue;

        // Disregard if already visited
        if(visited[edge->end]) continue;

        if(distance[curr] != UNKNOWN && distance[curr] + edge->weight < 
distance[edge->end])
        {
        distance[edge->end] = distance[curr] + edge->weight;
        }
    }
}

return distance;

11.	 We now have everything we need to perform Johnson's algorithm. Let's declare a 
new function, Johnson(), which also takes V and edges as arguments:

void Johnson(int V, vector<Edge*> edges)

12.	 We start by creating an integer vector, h, and setting it to the output of 
BellmanFord():

// Get distance array from modified graph
vector<int> h = BellmanFord(V, edges);

13.	 We check whether h is empty. If it is, we terminate the function:

if(h.empty()) return; 

14.	 Otherwise, we apply the reweighting formula:

for(int i = 0; i < edges.size(); i++)
{
    edges[i]->weight += (h[edges[i]->start] - h[edges[i]->end]);
}
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15.	 To store the shortest path distances for every pair of nodes, we initialize a matrix 
with V rows (so that each pair of two-dimensional indices, [i, j], represents the 
shortest path between vertex i and vertex j). We then perform V calls to Dijkstra's 
algorithm, which returns the distance array for each starting node:

// Create a matrix for storing distance values
vector<vector<int>> shortest(V);

// Retrieve shortest distances for each vertex
for(int i = 0; i < V; i++)
{
    shortest[i] = Dijkstra(V, i, edges);
}

16.	 Unsurprisingly, the results we have accumulated in this step are quite inaccurate. 
Every distance value is now positive as a result of our reweighting operation. 
However, this can be rectified quite simply by applying the same formula to each 
result in reverse:

// Reweight again in reverse to get original values
for(int i = 0; i < V; i++)
{
    cout << i << ":\n";

    for(int j = 0; j < V; j++)
    {
        if(shortest[i][j] != UNKNOWN)
        {
            shortest[i][j] += h[j] - h[i];

            cout << "\t" << j << ": " << shortest[i][j] << endl;
        }
    }
}

17.	 Now, let's return to our main() function and implement the code for handling 
input. After we have collected the edges of the input graph, we simply need to 
perform a single call to Johnson() and our work is done:

int main()
{
    int V, E;
    cin >> V >> E;
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    vector<Edge*> edges;

    for(int i = 0; i < E; i++)
    {
        int node_a, node_b, weight;
        cin >> node_a >> node_b >> weight;

        edges.push_back(new Edge(node_a, node_b, weight));
    }

    Johnson(V, edges);

    return 0;
}

18.	 Let's test our algorithm using the following input:

7 9
0 1 3
1 2 5
1 3 10
1 5 -4
2 4 2
3 2 -7
4 1 -3
5 6 -8
6 0 12

19.	 The output should be as follows:

0:
    0: 0
    1: 3
    2: 6
    3: 13
    4: 8
    5: -1
    6: -9
1:
    0: 0
    1: 0
    2: 3
    3: 10
    4: 5
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    5: -4
    6: -12
2:
    0: -1
    1: -1
    2: 0
    3: 9
    4: 2
    5: -5
    6: -13
4:
    0: -3
    1: -3
    2: 0
    3: 7
    4: 0
    5: -7
    6: -15
5:
    0: 4
    1: 7
    2: 10
    3: 17
    4: 12
    5: 0
    6: -8
6:
    0: 12
    1: 15
    2: 18
    3: 25
    4: 20
    5: 11
    6: 0

As you can see from the preceding output, we have successfully printed the 
shortest distance from each node to every other node.
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Activity 16: Randomized Graph Statistics

You are a developer at a well-known software company that receives a high volume 
of new job applicants every year. As such, it is a requirement for every employee 
to participate in the process of conducting technical interviews. Before every 
interview, you are given a set of three programming problems, each containing a short 
description, and two to three test cases of increasing difficulty. 

It was recently brought to your attention that a number of interviewees managed to 
acquire the test cases for certain interview questions in advance. As a result, the powers 
that be have called on you to create new sets of test cases every couple of weeks. 
Producing decent test cases for most problems is not particularly challenging, except 
for questions concerning graph theory. You have noticed that the process of designing 
a graph that is both valid and relevant to the problem can be a bit time-consuming, so 
you have become determined to automate the process.

The most common graph-related interview question your company uses is the all-pairs 
shortest path problem, which requires the interviewee to find the shortest distances 
between every pair of vertices in a directed graph with weighted edges. Because of 
the nature of this problem, you want the graphs that are produced by your generator 
utility to be useful in assessing the interviewees' understanding of the problem. You've 
decided that a graph will be useful for technical interviews if it meets the following 
criteria:

•	 It is a directed graph that can contain both positive and negative edge weights.

•	 There should only be one edge between any pair of nodes, and no node should 
have an edge to itself.

•	 Every node should have at least one incoming or outgoing edge.

•	 The absolute value of any edge weight should be less than 100.

The utility should take the following inputs:

•	 seed: A seed value for random number generation

•	 iterations: The number of graphs to generate

•	 V: The number of vertices

•	 E: The number of edges 
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The utility should handle the generation of every edge using calls to std::rand(). In 
the event that it attempts to create a second edge between the same pair of nodes, it 
should stop generating new edges until a valid pair is found.

Graph generation should be done as follows:

1.  Receive input (seed, iterations, V, and E)

2.  Set the random number generator's seed value

3  For each iteration, do the following:

•	 Set i = 0

- Attempt to create an edge by performing three calls to rand() in order to 
generate the values for the source node, destination node, and edge weight (in 
that order).

- Check whether the next value that's generated by rand() is evenly divisible by 3; 
if so, make the edge weight negative.

•	 If an edge between the source and destination nodes already exists, try again:

- Add edge(source, destination, weight) to the set of edges and increment i.

- If after E edges have been created there is a node that is not part of an edge, the 
graph is considered invalid.

If the generated graph is valid, you should find the shortest paths between every pair of 
nodes in the graph, as we would be expected to do during an interview. For each node 
in the graph, you want to find the average shortest distance across all of its paths (that 
is, the sum of distance values divided by the number of reachable nodes). The average 
distance of the graph will be defined as the average of these values.

You are also interested in which sets of values tend to produce the greatest number of 
"interesting" graphs. You consider graphs to be interesting when the average distance 
of the graph is less than half of that of the highest-valued edge weight. Your algorithm 
should, therefore, output the ratio of interesting graphs to the total number of valid 
graphs as a percentage (rounded to two decimal places). Note that for this particular 
purpose, you consider a connected graph with negative weight cycles to be valid but 
not interesting.
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Input Format

One line containing four integers; that is, seed, iterations, V, and E, respectively.

Output Format

Two lines, the first containing the INVALID:  string, followed by the number of invalid 
graphs, and the second containing the PERCENT INTERESTING:  string, followed by the 
ratio of interesting to valid graphs, displayed as a percentage rounded to two decimal 
places.

Activity Guidelines

Calls to std::rand() will not necessarily produce the same value in every environment. 
To ensure consistency, you can copy/paste the following code into your program (taken 
from the C standard):

static unsigned long int randNext = 1;

int rand(void) // RAND_MAX assumed to be 32767

{

    randNext = randNext * 1103515245 + 12345;

    return (unsigned int)(randNext/65536) % 32768

}

void srand(unsigned int seed)

{

    randNext = seed;

}

When implementing the graph generation utility, make sure that the steps are followed 
in the exact order described in the problem description.
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Test Cases

Here are some sample inputs and outputs that should help you understand the problem 
better:

Figure 7.12: Test cases for Activity 16

Note

The solution to this activity can be found on page 541.

Strongly Connected Components
In the previous chapters, we discussed several classifications of graphs. Among the 
most common ways of describing the characteristics of a graph is stating whether it is 
directed or undirected. The latter defines graphs in which the edges are bidirectional 
by default (if node A has an edge connecting to node B, then node B has an edge 
connecting to node A), while the former describes graphs with edges oriented toward 
specific 'directions'.
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Imagine you are an employee for a video hosting website and are tasked with producing 
statistics about commonalities between subscribers to various channels. Your company 
is particularly interested in discovering patterns between the individuals who subscribe 
to certain channels and the subscriptions of the channels' respective owners, hoping to 
gain greater insight into how their targeted advertising service should be directed. The 
service your company provides has become rather expansive recently, so you need a 
method of organizing the relevant data in a way that is clear enough to produce useful 
statistical information.

Let's visualize the channels of every user of the site as nodes in a directed graph, with 
the adjacencies between them representing the other channel's respective owner 
that they're subscribed to. We would likely notice that even among large groups of 
users that share subscriptions to the same channels, the amount of diversity in all 
of their individual sets of subscriptions would greatly complicate our ability to find 
any distinguishing similarities between them. Ideally, we would want to untangle the 
massive jumble of connections in our graph and place the data into distinct groups in 
which every user's subscriptions are somehow related to the other users'.

We can unravel the complexity of this particular problem by observing certain 
characteristics that are common to directed graphs. Because the edges of a directed 
graph are not guaranteed to be bidirectional, we can logically conclude that access to 
certain parts of the graph could potentially be restricted depending on which node you 
start traversing from. If you were to divide a graph into distinct sets so that any pair 
of vertices in the same set has a connective path between them, the resulting groups 
would represent the graph's strongly connected components.

Connectivity in Directed and Undirected Graphs

An undirected graph's connected components can be described as the set of maximum-
sized subgraphs comprising the primary graph in which every node within the same 
group is 'connected' to the others (that is, access between any two nodes in a single 
component is unrestricted). In a connected graph, every node can be reached, 
regardless of where a traversal begins, so we can deduce that such graphs consist 
of a single connected component (the entire graph). Conversely, any graph that has 
restricted access from one point to another is described as disconnected.

So-called 'strong' connectivity, on the other hand, is a characteristic that's exclusive to 
directed graphs. To comparatively understand the difference in terms of how 'strong 
connectivity' is defined, observe the following example of an undirected graph:
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Figure 7.13: Graph with different connected components

The three colored subgraphs each represent a separate connected component. As we 
stated previously, their connectivity is defined by the fact that every vertex has a path 
connecting it to the others within the same group. Furthermore, no vertex from one 
component has a path that connects it to a different component. From the preceding 
figure, we can see that the connected components of an undirected graph are divided 
into distinctly separate groups, where the sets of nodes and edges of any component 
are cut off completely from the others.

Strongly connected components, by contrast, don't need to be completely isolated from 
the other components in the graph – that is to say, paths can exist that overlap between 
components:

Figure 7.14: Graph with different strongly connected components
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In the preceding figure, we can see that there are four strongly connected components: 
A, B, CEFG, and DHI. Notice that nodes A and B are the only members in their respective 
sets. By investigating node A further, we can see that though A has a path to every node 
in the DHI set, none of the nodes in set DHI have any path leading to node A.

Returning to our video hosting website example, we could define the network graph's 
strongly connected components as groups in which every channel can be found by 
navigating through the 'path' of subscriptions associated with other users' channels 
within the same group. Breaking apart the potentially vast amount of data in this way 
could potentially help in isolating relevant sets of graph relations from those that have 
no distinguishing similarities:

Figure 7.15: Example dataset represented as a graph with different strongly connected components
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Kosaraju's Algorithm
One of the most common and conceptually easy to grasp methods of finding the 
strongly connected components of a graph is Kosaraju's algorithm. Kosaraju's algorithm 
works by performing two independent sets of DFS traversals, first exploring the graph 
in its original form, and then doing the same with its transpose.

Note

Though DFS is the type of traversal typically used in Kosaraju's algorithm, BFS is 
also a viable option. For the explanations and exercises included in this chapter, 
however, we will stick with the traditional DFS-based approach.

The transpose of a graph is essentially identical to the original graph, except that the 
source/destination vertices in each of its edges are swapped (that is, if there is an edge 
from node A to node B in the original graph, the transposed graph will have an edge 
from node B to node A):

Figure 7.16: Transpose of a graph

The first step of the algorithm (after initialization) is to iterate through the vertices of 
the graph and perform a DFS traversal, starting from each node that has not yet been 
visited in a previous traversal. At the beginning of each point in the DFS, the current 
node is marked as visited, and then all of its unvisited neighbors are explored. After 
each current node's adjacencies have been investigated, it is added to the top of a stack 
before the current recursive subtree is terminated.



330 | Graph Algorithms II

After exploring every vertex in the original graph, the same is done with its transpose, 
starting from each unvisited node, which is popped from the top of the stack. At this 
point, the set of nodes that are encountered during each subsequent DFS traversal with 
a unique starting point represents a strongly connected component of the graph. 

Kosaraju's algorithm is quite effective in terms of how it intuitively simplifies a 
potentially complex problem, reducing it into something rather straightforward 
to implement. Additionally, assuming that the input graph has an adjacency list 
representation, it is also quite efficient since it has a linear asymptotic complexity of 
O(V + E).

Note

The use of adjacency matrices with this algorithm is not recommended due to the 
significant amount of additional iterations required to find the neighbors of each 
vertex in the traversal.

We will take a look at the implementation of Kosarju's algorithm in the following 
exercise.

Exercise 35: Implementing Kosaraju's Algorithm

In this exercise, we will find the strongly connected components in a graph using 
Kosaraju's algorithm. Let's get started:

1.	 For our implementation of Kosaraju's algorithm, we will need to include the 
following headers:

#include <iostream>
#include <vector>
#include <stack>

2.	 Let's define a function called Kosaraju() that takes two arguments – an integer, 
V, (the number of vertices) and a vector of integer vectors, adj (an adjacency list 
representation of the graph) – and returns a vector of integer vectors representing 
the set of node indices in each strongly connected component of the input graph:

vector<vector<int>> Kosaraju(int V, vector<vector<int>> adj)
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3.	 Our first step is to declare our stack container and visited array (with every index 
initialized to false). We then iterate through each node of the graph, beginning 
our DFS traversals at every index that has not yet been marked as visited:

vector<bool> visited(V, false);
stack<int> stack;

for(int i = 0; i < V; i++)
{
    if(!visited[i])    
    {
        FillStack(i, visited, adj, stack);
    }
}

4.	 Our first DFS function, FillStack(), takes four arguments: an integer node (the 
index of the vertex at the current point in the traversal), a Boolean vector called 
visited (the set of nodes that were previously traversed), and two integer vectors, 
adj (the graph's adjacency list) and stack (a list of visited node indices, ordered 
according to when they were explored). The last three arguments will be passed by 
reference from the calling function. The DFS is implemented in the standard way, 
except with an additional step in which the current node's index is pushed to the 
stack at the end of each function call:

void FillStack(int node, vector<bool> &visited,
vector<vector<int>> &adj, stack<int> &stack)
{
    visited[node] = true;

    for(auto next : adj[node])
    {
        if(!visited[next])
        {
            FillStack(next, visited, adj, stack);
        }
    }
    stack.push(node);
}
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5.	 Now, let's define another function, Transpose(), which takes the parameters of the 
original graph as arguments and returns an adjacency list of its transpose:

vector<vector<int>> Transpose(int V, vector<vector<int>> adj)
{
    vector<vector<int>> transpose(V);

    for(int i = 0; i < V; i++)
    {
        for(auto next : adj[i])
        {
            transpose[next].push_back(i);
        }
    }
    return transpose;
}

6.	 In preparation for the next set of traversals, we declare the adjacency list 
transpose (initialized to the output of our Transpose() function) and reinitialize 
our visited array to false:

    vector<vector<int>> transpose = Transpose(V, adj);
    
    fill(visited.begin(), visited.end(), false);

7.	 For the second half of our algorithm, we will need to define our second DFS 
function, CollectConnectedComponents(), which takes the same arguments as 
FillStack(), except the fourth parameter is now replaced with a reference to an 
integer vector component. This vector component is where we will store the node 
indices of each strongly connected component in the graph. The implementation 
of the traversal is also almost identical to the FillStack() function, except we 
remove the line that pushes nodes to the stack. Instead, we include a line at the 
beginning of the function that collects the traversed nodes in the component 
vector:

void CollectConnectedComponents(int node, vector<bool> &visited,
vector<vector<int>> &adj, vector<int> &component)
{
    visited[node] = true;
    component.push_back(node);

    for(auto next : adj[node])
    {
        if(!visited[next])



Kosaraju's Algorithm | 333

        {
            CollectConnectedComponents(next, visited, adj, component);
        }
    }
}

8.	 Returning to our Kosaraju() function, we define a vector of integer vectors called 
connectedComponents, which is where we will store the result of each traversal 
we perform on the transpose. We then iteratively pop elements from the stack 
in a while loop, once again beginning each DFS traversal exclusively from 
unvisited nodes. Before each call to the DFS function, we declare the component 
vector that is referenced by CollectConnectedComponents() and then push it to 
connectedComponents upon completion of the traversal. The algorithm is complete 
when the stack is empty, after which we return connectedComponents:

vector<vector<int>> connectedComponents;

while(!stack.empty())
{
    int node = stack.top();

    stack.pop();

    if(!visited[node])
    {
        vector<int> component;

        CollectConnectedComponents(node, visited, transpose, component);
        connectedComponents.push_back(component);
    }
}

return connectedComponents;
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9.	 From our main() function, we can now output the results of each strongly 
connected component by printing the values of each vector on a separate line:

int main()
{
    int V;
    vector<vector<int>> adj;

    auto connectedComponents = Kosaraju(V, adj);

    cout << "Graph contains " << connectedComponents.size() << " strongly 
connected components." << endl;

    for(auto component : connectedComponents)
    {
        cout << "\t";

        for(auto node : component)
        {
            cout << node << " ";
        }
        cout << endl;
    }
}

10.	 To test the functionality of our newly implemented algorithm, let's create an 
adjacency list representation based on the following graph:

Figure 7.17: Graphical representation of sample input data
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11.	 In main(), V and adj would be defined as follows:

int V = 9;

vector<vector<int>> adj =
{
    { 1, 3 },
    { 2, 4 },
    { 3, 5 },
    { 7 },
    { 2 },
    { 4, 6 },
    { 7, 2 },
    { 8 },
    { 3 } 
};

12.	 Upon executing our program, the following output should be displayed:

Graph contains 4 strongly connected components.
    0 
    1 
    2 4 5 6 
    3 8 7

Activity 17: Maze-Teleportation Game

You are designing a game where multiple players are placed randomly in a maze of 
rooms. Each room contains one or more teleportation devices that the players can use 
to travel between different parts of the maze. Every teleporter has a value associated 
with it, which is added to any player's score who uses it. Players alternately take turns 
traversing the maze until every room has been visited at least once, at which point the 
round ends and the player with the lowest score is the winner.

You have implemented a system that procedurally generates a new maze at the 
beginning of every game. Unfortunately, you recently discovered that some of the 
generated mazes contained loops that a player could use to endlessly reduce their 
score. You also noticed that players frequently had an unfair advantage, depending on 
the room they started in. Worst of all, the teleporters are often dispersed in such a way 
that a player can end up being cut off from the rest of the maze for the duration of the 
round.
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You want to implement a testing procedure to make sure that the generated maze is fair 
and properly balanced. Your test should first determine whether the maze contains a 
path that can be used to endlessly lower a player's score. If so, it should output INVALID 
MAZE. If the maze is valid, you should find the lowest scores that can be achieved from 
each starting point and report them (or DEAD END, in the case of a room that has no 
teleporter).

Additionally, you would like to prevent the possibility of getting stuck in a particular 
section of the maze, and so your test should also output any groups of rooms from 
which players are unable to access other portions of the maze.

Expected Input

Each test should receive the following input: 

•	 The number of rooms in the maze

•	 The number of teleporters in the maze

•	 The source room, destination room, and the number of points associated with 
each teleporter

Expected Output

For each test, the program should first determine whether there are any paths in the 
maze that can be used to infinitely reduce a player's score. If so, it should print a single 
line: INVALID MAZE.

If the maze is valid, your program should output the lowest score that can be achieved, 
starting from each room (or DEAD END, if the room does not have a teleporter), assuming 
that at least one move is made and that the entire maze can only be traversed once. 
Finally, your program should list any groups of rooms in which players can get 'stuck' 
(that is, they are completely restricted from accessing other parts of the maze); for 
every such group, your program should print the indices of all the rooms within each 
one on a separate line.
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Sample Input and Output

Here are a few sample inputs that should help you understand this problem better:

Figure 7.18: Test case 1 for Activity 17

Figure 7.19: Test case 2 for Activity 17
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Figure 7.20: Test case 3 for Activity 17
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Figure 7.21: Test case 4 for Activity 17
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Figure 7.22: Test case 5 for Activity 17
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Figure 7.23: Test case 6 for Activity 17
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Figure 7.24: Test case 7 for Activity 17
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Activity Guidelines

•	 Do not get distracted by irrelevant information. Ask yourself what specifically 
needs to be accomplished.

•	 The first condition of the problem (determining whether or not the maze contains 
a path that can infinitely reduce our score) can also be expressed as follows: 
if the maze is represented as a weighted graph, does a cycle exist on any path 
that produces a negative sum? Clearly, this is a problem we are well-equipped 
to handle! You probably also recognize that the second condition (finding the 
minimum scores that can be acquired by a player starting at a given point) is 
closely related to the first.

•	 The last condition is a bit more challenging. Consider how you might redefine 
being "stuck" in a section of the maze according to the graph terminology we have 
discussed in this chapter. What might a maze with this property look like?

•	 Consider drawing one or several of the input graphs on paper. What characterizes 
the groups of rooms in which a player can get stuck?

Note

The solution to this activity can be found on page 550.

Choosing the Right Approach
By now, it is probably apparent that there is rarely a single 'perfect' approach to 
implementing graph structures. The characteristics of the data we are representing, 
combined with the details of the problem we are trying to solve, can make certain 
approaches unreasonably inefficient, despite the fact that they may be perfectly 
acceptable under different sets of conditions.

Whenever you are trying to determine whether to use adjacency lists versus matrices, 
classes/structs versus simple arrays, Bellman-Ford versus Johnson's algorithm, BFS 
versus DFS, and so on, the final decision should be primarily dependent upon the 
specifics of the data and how you intend to use it. For example, if you want to find the 
shortest distances between every pair of nodes in a graph, Johnson's algorithm would 
be an excellent choice. However, if you only need to sporadically find the shortest 
distances for a single starting node, Johnson's algorithm would perform quite a bit of 
unnecessary work, whereas a single call to Bellman-Ford would be sufficient.
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It is a beneficial exercise to try writing each of the algorithms we've discussed in this 
chapter using different forms of graph representations. For example, Bellman-Ford 
can be just as easily implemented by replacing the vector of Edge pointers that we 
used in the first exercise with an adjacency list and a two-dimensional matrix of edge 
weights. In some cases, the efficiency potential that's offered by one implementation 
may only be marginally better than another; at other times, the difference can be 
quite significant. And then, sometimes, the value of a certain approach has more to 
do with simplicity and readability than any measurable performance benchmark. 
Comparing how the performance of various algorithms scales across different data sets 
and scenarios can be very informative and is often an essential practice in real-world 
development.

In your endeavors to develop a better understanding of graph theory and 
implementation, we offer the following recommendations:

•	 Resist the urge to use the 'copy-paste' approach to implementing a new algorithm. 
If you do not understand the underlying principles behind why an algorithm 
works, you will have a very high likelihood of using it incorrectly. Furthermore, 
even if it functions the way you want it to, it is important to remember that graph 
implementations are highly specific to the context. Blindly using any algorithm 
means you will lack the understanding that's necessary to extend the functionality 
of the solution across different sets of parameters.

•	 When putting new concepts into practice, avoid relying entirely on abstract, 
non-contextual implementations. After using a certain algorithm on purely 
theoretical data, try to modify it to fit some sort of actual data model (even if that 
data itself is hypothetical). Imagining real scenarios in which you can use your 
newly acquired algorithmic knowledge will increase the probability that you will 
know when and how to use it on the job.

Avoid implementing your graph before you have really considered the following:

•	 Its fundamental purpose(s) and the essential functionality required to accomplish 
that purpose (that is, the data it describes, the types of queries it needs to 
perform, how dynamic it needs to be, and so on)

•	 The most basic components it needs to represent the relevant information about 
the problem

Failure to evaluate these key ideas could lead to cluttered and overly verbose code, 
packed with unnecessary data and functions that essentially contribute nothing of 
value to the actual solution. Planning out the necessary components of your graph 
prior to writing any code will potentially save you quite a bit of confusion and tedious 
refactoring.
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Ultimately, developing a comprehensive understanding of graph programming is a skill 
that extends far beyond the scope of simply learning all the right algorithms. A simple 
web search related to any non-trivial graphing problem will lead to a plethora of deeply 
analytical research articles, a comparative evaluation of different approaches, and 
conjectured solutions for which a reasonable implementation has yet to be discovered. 
As always, consistent practice is the best method for mastering any programming 
skillset; and graph theory, being a vast and dynamic subject of study, is certainly no 
exception!

Summary
So far, we have covered graphs in fairly comprehensive detail. You should now have a 
solid understanding of some of the basic uses of graph theory in software development, 
as well as an appreciation for how graph-based solutions can be used to encapsulate 
complex data in a way that allows us to query and manipulate it with relative ease. 
Having learned the fundamentals of graph structures and traversals in Chapter 6, Graph 
Algorithms I, and then extended them to solve more advanced problems in this chapter, 
you should now be well-equipped to explore much deeper graph implementations in 
the future since these basic concepts are at the core of all of them.

Though this chapter does not completely conclude our discussion of graph algorithms 
for this book, we will now take a break from graphs to explore one of the most powerful 
and challenging programming techniques in the modern developer's repertoire. Like 
graph algorithms, the subject we will cover next is so expansive and conceptually 
abstract that it will span two separate chapters. However, because of its usefulness (and 
its difficulty), it is a favorite of many software companies during technical interviews.







Learning Objectives

By the end of this chapter, you will be able to:

•	 Analyze whether the dynamic programming approach can be applied to a given problem

•	 Compare and choose the right approach between memoization and tabulation

•	 Choose an appropriate caching solution using memoization

•	 Analyze a problem using a naive brute-force approach

•	 Develop a dynamic programming solution by implementing progressively optimized 
algorithms

In this chapter, you will be introduced to the dynamic programming approach. This chapter 
will guide you through implementing this approach for solving some well-known problems in 
computer science.

Dynamic 
Programming I

8



350 | Dynamic Programming I

Introduction
Loved and feared in equal measure by many programmers, dynamic programming 
(DP) is a conceptual extension of the divide-and-conquer paradigm that pertains 
to a specific class of problems. The difficulties involved in dynamic programming 
problems are multi-faceted and often require creativity, patience, and the ability to 
visualize abstract concepts. However, the challenges these problems pose frequently 
have elegant and surprisingly simple solutions, which can provide a programmer with 
insights that reach far beyond the scope of the immediate task. 

In the previous chapter, we discussed several techniques, such as the divide-and-
conquer and the greedy approach. These approaches, though quite effective in the right 
circumstances, will not produce optimal results in certain situations. For example, in 
the previous chapter, we discussed how Dijkstra's algorithm does not produce optimal 
results for graphs with negative edge weights, whereas the Bellman-Ford algorithm 
does. For problems that can be solved recursively, but cannot be solved using the 
aforementioned techniques, a DP solution may often be the best approach.

DP problems are also encountered in a wide variety of situations. Here are just a few 
broad examples: 

•	 Combinatorics (counting the number of combinations/permutations of a sequence 
matching certain criteria)

•	 Strings/arrays (edit distance, longest common subsequence, longest increasing 
subsequence, and so on)

•	 Graphs (shortest path problem)

•	 Machine learning (speech/face recognition)

Let's begin by understanding the basic idea of dynamic programming.

What Is Dynamic Programming?
The best way to answer this question is by example. To illustrate the purpose of 
dynamic programming, let's consider the Fibonacci sequence:

{ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, … }
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By observing the preceding sequence, we can see that, beginning with the third 
element, each term is equal to the sum of the two preceding terms. This can be simply 
expressed with the following formula:

F(0) = 0

F(1) = 1

…

F(n) = F(n-1) + F(n-2)

As we can clearly see, the terms of this sequence have a recursive relationship – the 
current term, F(n), is based on the results of previous terms, F(n-1) and F(n-2), and thus 
the preceding equation, that is, F(n) = F(n-1) + F(n-2), is described as the recurrence 
relation of the sequence. The initial terms, F(0) and F(1), are described as the base cases, 
or the points in which a solution is produced without the need to recurse further. These 
operations are shown in the following figure:

Figure 8.1: Computing the nth term in the Fibonacci sequence

Describing the preceding figure in English might look like this:

F5 is equal to: 

    F4 + F3, where F4 is equal to:

    .    F3 + F2, where F3 is equal to:

    .    .    F2 + F1, where F2 is equal to:

    .    .    .    F1 + F0, where F1 = 1 and F0 = 0.
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    .    .    …and F1 = 1.

    .    …and F2 is equal to:

    .        F1 + F0, where F1 = 1 and F0 = 0.

    …and F3 is equal to:

        F2 + F1, where F2 is equal to:

        .    F1 + F0, where F1 = 1 and F0 = 0

        …and F1 = 1.

We describe the preceding approach as a top-down solution because it begins at the 
top of the recursion tree (that is, the solution) and traverses down its branches until 
it reaches the base cases. In C++, this could be written using the following recursive 
function:

    int Fibonacci(int n)

    {

        if(n < 2)

        {

            return n;

        }

        return Fibonacci(n – 1) + Fibonacci(n – 2);

    }

By observing the tree further, we can see that several subproblems, or intermediate 
problems that must be solved to find the ultimate solution, must be solved more than 
once. For example, the solution for F(2) must be found to get the solution for F(4) [F(3) 
+ F(2)] and F(3) [F(2) + F(1)]. Thus, the Fibonacci sequence is said to exhibit a property 
known as overlapping subproblems. This is one of the defining characteristics that 
separate a standard divide-and-conquer problem from a dynamic programming 
problem; in the former, subproblems tend to be unique, whereas in the latter, the same 
subproblems must be solved repeatedly.

We can also see that several of the solution branches are completely identical to each 
other. For example, finding the solution for F(2) is going to require the same set of 
calculations, regardless of whether you need it to solve F(4) or F(3). This demonstrates 
the second defining characteristic of dynamic programming problems, which is known 
as the optimal substructure. A problem is said to exhibit an optimal substructure when 
the optimal solution to the overall problem can be formed through some combination 
of the optimal solutions of its subproblems.
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For a problem to be solvable using dynamic programming, it must possess these two 
properties. Because of the overlapping subproblems property, the complexity of these 
problems tends to increase exponentially as the input increases; however, exploiting the 
optimal substructure property makes it possible to reduce the complexity significantly. 
So, in essence, the purpose of DP is to devise a method of caching previous solutions as 
a means to avoid the repeated calculation of previously solved subproblems.

Memoization – The Top-Down Approach
No, this is not "memorization," though that would also describe this technique quite 
accurately. Using memoization, we can reformulate the top-down solution we 
described previously to make use of the optimal substructure property exhibited by 
the Fibonacci sequence. Our program logic will essentially be the same as it was before, 
only now, after having found the solution at every step, we will cache the results in an 
array, indexed according to the current value of n (in this problem, n represents the 
state or set of parameters defining the current recursive branch). At the very beginning 
of each function call, we will check to see whether we have a solution available in the 
cache for state F(n). If so, we will simply return the cached value:

const int UNKNOWN = -1;

const int MAX_SIZE = 100000;

vector<int> memo(MAX_SIZE, UNKNOWN);

int Fibonacci(int n)

{

    if(n < 2)

    {

        return n;

    }

    if(memo[n] != UNKNOWN)

    {

        return memo[n];

    }
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    int result = Fibonacci(n - 1) + Fibonacci(n - 2);

    memo[n] = result;

    return result;

}

The recursion tree now looks like this:

Figure 8.2: Computing the nth term in the Fibonacci sequence using cached solutions

By doing this, we have eliminated quite a bit of redundant work. This technique of 
recursively caching solutions in a top-down manner is known as memoization, and can 
essentially be employed for any DP problem, assuming the following are true:

1.	 You can devise a caching scheme that exploits the similarity of different states 
while preserving their uniqueness.

2.	 You can accumulate the solutions for the requisite subproblems before exceeding 
the available stack space.
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The first point means that the method of indexing results for later use should be both 
valid and useful. In order for a caching scheme to be valid, it must only be considered 
a match for states whose solutions are derived from the same series of subproblems; 
in order for it to be useful, it must not be so state-specific that it cannot be effectively 
used (for example, if every subproblem is assigned a unique index in the cache, the 
conditional "if(memo[KEY] != UNKNOWN)" will never be true).

The second point refers to the possibility of causing a stack overflow error, which is a 
fundamental limitation of any top-down approach if the number of recursive calls is 
likely to be very high. A stack overflow occurs when a program exceeds the allotted 
amount of memory that's available on the call stack. Depending on the nature of a 
given problem, it is possible that the depth of recursion that's required may prevent 
memoization from being a viable option; as always, it is quite beneficial to assess the 
potential complexity of the task at hand before choosing an approach.

Memoization is frequently a decent optimization method for DP problems. However, in 
many cases, a better option is available, which we will study in the following section.

Tabulation – the Bottom-Up Approach
The heart of dynamic programming is tabulation, which is the inverse approach to 
memoization. In fact, though the term dynamic programming is sometimes applied to 
both memoization and tabulation, its use is generally assumed to refer specifically to 
the latter.

The standard implementation of tabulation consists of storing the solutions for the base 
cases and then iteratively filling a table with the solutions for every subproblem, which 
can then be reused to find the solutions for other subproblems. Tabulated solutions are 
generally considered to be a bit harder to conceptualize than memoized ones because 
the state of each subproblem must be represented in a way that can be expressed 
iteratively.

A tabulated solution to computing the Fibonacci sequence would look like this:

int Fibonacci(int n)

{

        vector<int> DP(n + 1, 0);

        DP[1] = 1;

        for(int i = 2; i <= n; i++)

        {
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            DP[i] = DP[i-1] + DP[i-2];

        }

        return DP[n];

} 

In the Fibonacci example, the state is quite simple since it's one-dimensional and 
unconditional — the formula always holds that, for any n greater than 1, F(n) = F(n-1) 
+ F(n-2). However, DP problems often contain several dimensions that define a given 
state and may have multiple conditions that affect how states transition between each 
other. In such cases, determining how to represent the current state may require a fair 
amount of creativity, in addition to a comprehensive understanding of the problem.

The advantages of tabulation, however, are significant. In addition to the fact that 
tabulated solutions frequently tend to be much more efficient in terms of memory, they 
also produce a complete lookup table encompassing every given state. Therefore, if you 
are likely to receive queries about any state of the problem, tabulation is likely to be 
your best option.

Interestingly, any problem that can be solved with memoization can theoretically be 
reformulated into a tabulated solution, and vice versa. Using the former can often 
provide immense insight into how to approach the latter. Over the next few sections, 
we will explore several classical examples of dynamic programming problems and 
demonstrate how employing multiple approaches (beginning with naive brute force) 
can lead you to the level of understanding that's required for the tabulated solution.

Subset Sum Problem
Imagine that you are implementing the logic for a digital cash register. Whenever a 
customer needs change, you would like to display a message that tells the cashier 
whether or not the money currently in the register can be combined in some way so 
that its sum is equal to the amount of change required. For example, if a product costs 
$7.50 and the customer pays $10.00, the message would report whether the money in 
the register can be used to produce exactly $2.50 in change. 

Let's say that the register currently contains ten quarters (10 x $0.25), four dimes (4 x 
$0.10), and six nickels (6 x $0.05). We can easily conclude that the target sum of $2.50 
can be formed in the following ways:

10 quarters                    -> $2.50

9 quarters, 2 dimes, 1 nickel  -> $2.25 + $0.20 + $0.05

9 quarters, 1 dime,  3 nickels -> $2.25 + $0.10 + $0.15
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9 quarters, 5 nickels          -> $2.25 + $0.25

8 quarters, 4 dimes, 2 nickels -> $2.00 + $0.40 + $0.10

8 quarters, 3 dimes, 4 nickels -> $2.00 + $0.30 + $0.20

8 quarters, 2 dimes, 6 nickels -> $2.00 + $0.20 + $0.30

With these parameters, the problem is rather straightforward and can be solved by 
simply trying all the available combinations of money until a sum matching $2.50 is 
found. But what if the change that's required is $337.81, and the register contains 100 
banknotes/coins divided into denominations of $20.00, $10.00, $5.00, $1.00, $0.25, 
$0.10, $0.05, and $0.01? We can clearly see that trying every possible sum becomes quite 
impractical as the complexity increases. This is an example of a classic problem known 
as the subset sum problem. 

In its most basic form, the subset sum problem asks the following question: given a set 
of non-negative integers, S, and an integer, x, is there a subset of S's elements whose 
sum is equal to x? Take a look at the following example:

S = { 13, 79, 45, 29 }

x = 42 —> True (13 + 29)

x = 25 —> False 

Using the preceding set as an example, we can find the following 16 subsets:

{ }

{ 13 }

{ 79 }

{ 45 }

{ 29 }

{ 13, 79 }

{ 13, 45 }

{ 13, 29 }

{ 79, 45 }

{ 79, 29 }

{ 45, 29 }
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{ 13, 79, 45 }

{ 13, 79, 29 }

{ 13, 45, 29 }

{ 79, 45, 29 }

{ 13, 79, 45, 29 }

By listing the total amount of subsets that can be produced for sets of different sizes, 
we get the following numbers:

0: 1

1: 2

2: 4

3: 8

4: 16

5: 32

6: 64

7: 128

…

From this list, we can deduce that the total number of subsets that can be formed from 
a set of size n is equal to 2n, which demonstrates that the number of subsets to consider 
increases exponentially with the size of n. Assuming the number of elements in S is 
small, say 10 elements or less, a brute-force approach to this problem could find the 
solution rather quickly; but if we reconsider the example of a cash register containing 
100 different banknotes/coins, the size of S would be equal to 100, which would require 
exploring 1,267,650,600,228,229,401,496,703,205,376 subsets!

Solving the Subset Sum Problem – Step 1: Evaluating the Need for DP

Our first step when faced with a problem like this is to determine whether it can (and/
or should) be solved with DP. To reiterate, a problem is solvable with DP if it has the 
following properties:

•	 Overlapping subproblems: Like the standard divide-and-conquer approach, the 
final solution can be derived by combining the solutions of smaller subproblems in 
some way; in contrast to divide and conquer, however, certain subproblems will be 
encountered multiple times.

•	 Optimal substructure: The optimal solution for a given problem can be produced 
by the optimal solutions of its subproblems.
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Let's analyze the preceding example in terms of whether or not it possesses these 
characteristics:

'

Figure 8.3: Optimal substructure and overlapping subproblems

Reformatting the collection of subsets as shown clearly illustrates how each new subset 
of size n is formed by appending a single new element to a subset of size n - 1. This is 
the optimal approach for constructing a new subset and holds true for every subset of 
size greater than 0. Thus, the subset sum problem has an optimal substructure. We 
can also see that several subsets are derived from the same "subsubset" (for example, 
both { 13 79 45 } and { 13 79 29 } are based on { 13 79 }). Therefore, the problem also has 
overlapping subproblems.

Having satisfied both of our criteria, we can conclude that this problem can be solved 
with dynamic programming.
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Step 2 – Defining the States and the Base Cases

Having determined that this is a DP problem, we now must determine what constitutes 
a state within the context of this problem. In other words, in terms of the question that 
we are trying to answer, what makes one possible solution different from another? 

Though it is generally advisable to consider these aspects of the problem early in the 
process, it is often quite difficult to define the states of a DP problem without having 
a clear understanding of how the ultimate result is formed, and thus it is often quite 
helpful to start by implementing a solution in the most straightforward way possible. 
Therefore, we will develop our understanding of the subset sum problem's base case(s) 
and states by solving it in two different ways that are much simpler to implement. 

Throughout our exploration of dynamic programming, we will consider a total of four 
different approaches to each problem: brute force, backtracking, memoization, and 
tabulation. As with any DP problem, all of these approaches are capable of producing 
the correct result, but the first three quickly demonstrate their limitations as the size 
of the input increases. Nevertheless, implementing progressively optimized solutions in 
this way can be used to great effect when tackling any dynamic programming problem. 

Step 2.a: Brute Force

Despite its inefficiency, a brute-force solution can be quite informative in developing an 
understanding of the problem at hand. Implementing brute-force approaches can be an 
essential step in the process of forming a DP solution for several reasons:

•	 Simplicity: The simplicity of writing a solution without any consideration of its 
efficiency can be an excellent way to develop an understanding of the fundamental 
aspects of the problem; it can also lead to insights about the problem's nature 
that may otherwise be missed in the act of trying to comprehend its complexity 
without sufficient context. 

•	 The certainty of solution correctness: Oftentimes, a particularly complex DP 
solution will require quite a bit of redesign as the problem is better understood. 
Because of this, it is essential to have a way to compare your solution's output to 
the correct answer.

•	 Ability to visualize the subproblems: A brute-force solution will generate every 
potential solution and then choose the ones that meet the criteria of the problem. 
This provides an effective means for visualizing how a correct solution is formed, 
which can then be inspected for essential patterns that can be used in later 
approaches.
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The following exercise demonstrates the implementation of the brute-force approach.

Exercise 36: Solving the Subset Sum Problem by Using the Brute-Force 

Approach

In this exercise, we shall find a solution to the subset sum problem using the  
brute-force approach. Let's get started:

1.	 Let's begin by including the following headers (and the std namespace for 
convenience):

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

2.	 Additionally, let's define a preprocessor constant called DEBUG and a macro called 
PRINT, which will print to stderr only if DEBUG is not zero:

#define DEBUG 0

#if DEBUG
#define PRINT(x) cerr << x
#else
#define PRINT(x) 
#endif

3.	 We will now declare a new function, SubsetSum_BruteForce(), that takes two 
arguments — an array of integers, set, and an integer, sum — and returns a Boolean:

bool SubsetSum_BruteForce(vector<int> set, int sum)
{
    ……
}

4.	 Now, let's declare another function, GetAllSubsets(), which takes four arguments 
— two integer vectors, set and subset; an integer; index; and a three-dimensional 
vector of integers called allSubsets (passed by reference). We will use this 
function to generate all subsets of S recursively:

void GetAllSubsets(vector<int> set, vector<int> subset, int index, 
vector<vector<vector<int>>> &allSubsets)
{    
    // Terminate if the end of the set is reached
    if(index == set.size()) 



362 | Dynamic Programming I

    {
        // Add the accumulated subset to the results, indexed by size
        allSubsets[subset.size()].push_back(subset);

        return;
    }

    // Continue without adding element to subset
    GetAllSubsets(set, subset, index + 1, allSubsets);

    // Add element to subset
    subset.push_back(set[index]);
    GetAllSubsets(set, subset, index + 1, allSubsets);
}

5.	 Returning to our SubsetSum_BruteForce() function, we can now declare allSubsets 
and call the function:

bool SubsetSum_BruteForce(vector<int> set, int target)
{
    vector<vector<vector<int>>> allSubsets(set.size() + 1);
    
    GetAllSubsets(set, {}, 0, allSubsets);
    
    ……

6.	 Now, we can iterate through each subset and compare its sum to target, returning 
true if a match is found:

for(int size = 0; size <= set.size(); size++)
{
    PRINT("SIZE = " << size << endl);

    for(auto subset : allSubsets[size])
    {
        int sum = 0;

        PRINT("\t{ ");

        for(auto number : subset)
        {
                PRINT(number << " ");

                sum += number;
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        }
        PRINT("} = " << sum << endl);

        if(sum == target) return true;
    }
}

7.	 If a matching sum is not found after checking every subset, we return false:

    ……

    return false;
}

8.	 Now, in the main() function, let's define our set and target as follows:

int main()
{
    vector<int> set = { 13, 79, 45, 29 };
    int target = 58;

    ……
}

9.	 We can now call SubsetSum_BruteForce() with these inputs like so:

bool found = SubsetSum_BruteForce(set, target);

if(found)
{
    cout << "Subset with sum " << target << " was found in the set." << 
endl;
}
else 
{
    cout << "Subset with sum " << target << " was not found in the set." 
<< endl;
}

10.	 Upon running the preceding code, you should see the following output:

Subset with sum 58 was found in the set.

11.	 Now, let's set target to a sum that is not found in the set:

int target = 1000000;
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12.	 Running the program again should produce the following output:

Subset with sum 1000000 was not found in the set.

13.	 Finally, let's redefine our DEBUG constant to 1:

#define DEBUG 1

14.	 Running the program now will produce the following output:

SIZE = 0
    { } = 0
SIZE = 1
    { 29 } = 29
    { 45 } = 45
    { 79 } = 79
    { 13 } = 13
SIZE = 2
    { 45 29 } = 74
    { 79 29 } = 108
    { 79 45 } = 124
    { 13 29 } = 42
    { 13 45 } = 58
    { 13 79 } = 92
SIZE = 3
    { 79 45 29 } = 153
    { 13 45 29 } = 87
    { 13 79 29 } = 121
    { 13 79 45 } = 137
SIZE = 4
    { 13 79 45 29 } = 166
Subset with sum 1000000 was not found in the set.

Thus, we are able to find the required subset using the brute-force approach. Note that 
we are basically trying out every possibility in order to find the solution. In the following 
section, we shall apply one layer of optimization over it.

Step 2.b: Optimizing Our Approach – Backtracking

Clearly, the brute-force approach leaves a lot to be desired. In terms of performance, 
it is about as inefficient as it possibly could be. By indiscriminately checking every 
possible subset, we consider options long after the point where we could determine 
that they will never lead to a solution (for example, subsets with sums exceeding 
the target). To improve our algorithm, we can utilize backtracking to exclude all the 
branches of subproblems that are guaranteed to be invalid.
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The main advantage of implementing a backtracking solution before attempting to 
use DP is that it requires us to determine the base case(s) and intermediate recursive 
states of the problem. As we defined earlier in this chapter, a base case is a condition in 
a recursive function that does not rely on further recursion to produce an answer. For 
further clarification, consider the problem of calculating the factorial of a number (the 
factorial of a number, n, is equivalent to n * (n-1) * (n-2) * (n-3) … * 1). We could code a 
C++ function that accomplishes this as follows:

int Factorial(int n)

{

    // Base case — stop recursing

    if(n == 1)

    {

        return 1;

    }

    // Recurse until base case is reached

    return n * Factorial(n - 1);

}

The structure of this recursive function can be illustrated like so:

Figure 8.4: Recursively calculating the Nth factorial

The n = 1 condition is the base case because that is the point at which the solution can 
be returned without recursing further.
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In the subset sum problem, one way to define our base cases would be as follows:

If sum of a given subset is equal to target : TRUE

    

Otherwise:

    — If sum is greater than target : FALSE

    — If end of set is reached : FALSE

Now that we have established base cases, we need to define our intermediate states. 
Using our brute-force algorithm's output as a reference, we can analyze how subsets of 
each size group are formed to plot out our state transitions:

Base case —> { } [SUM = 0]

{ } —> { 13 } [0 + 13 = 13]

       { 79 } [0 + 79 = 79]

       { 45 } [0 + 45 = 45]

       { 29 } [0 + 29 = 29]

Of course, the size 0 and size 1 states are the simplest to understand. We begin with an 
empty set and we can add any of the elements to it in order to create all subsets of size 
1.

{ 13 } —> { 13 79 } [13 + 79 = 92]

          { 13 45 } [13 + 45 = 58]

          { 13 29 } [13 + 29 = 42]

{ 79 } —> { 79 45 } [79 + 45 = 124]

          { 79 29 } [79 + 29 = 108]

{ 45 } —> { 45 29 } [45 + 29 = 74]
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We can follow the same line of logic for size 2 subsets. Simply take each subset of size 
1 and append every element whose index is greater than the highest-indexed element 
already in the subset. This is essentially the approach we took in our brute-force 
implementation; however, this time, we will consider the sum of each subset as we 
process them, and terminating them when the current sum exceeds the target:

Figure 8.5: Eliminating values that exceed the target
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When target is equal to 58, we can see that none of the subsets of size 3 or 4 need to be 
considered. Thus, we can describe our intermediate state transition as follows:

for element of set at index i and subset ss:

    If sum of ss with set[i] is less than or equal to target: 

        1) Append set[i] to ss

        2) Increment i 

        Next state —> (i = i + 1, ss = ss ∪ set[i])

    In any case: 

        1) Do not append set[i] to ss

        2) Increment i

        Next state —> (i = i + 1, ss = ss)

Now, we should ask the following questions: 

•	 What is the minimal amount of data needed to represent this state? 

•	 How can we reformulate the preceding logic to remove unnecessary information?

Consider the specific problem we are trying to solve: finding whether a subset of 
elements exists within the set whose sum is equal to the target. According to the 
problem description, our task does not require that we produce the actual subsets, but 
only their sums. So, our pseudocode could be more succinctly expressed as follows:

for element of set at index i and its sum as sum:

    If sum plus set[i] is less than or equal to target: 

        1) Add value of set[i] to sum

        2) Increment i 
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        Next state —> (i = i + 1, sum = sum + set[i])

    In any case: 

        1) Do not add value of set[i] to sum

        2) Increment i

        Next state —> (i = i + 1, sum = sum)

Using this new approach, we can essentially represent each state transition with only 
two integers, sum and i, eliminating the need to store 2n subset arrays in the worst case. 
Furthermore, we can remove the need to keep track of the target value by inverting 
the problem (that is, starting at target and subtracting set[i] at each step). As a 
final optimization, we can sort the set before calling the function, which allows us to 
determine that there are no other valid possibilities as soon as the sum exceeds the 
target. We'll implement this in C++ in the following exercise.

Exercise 37: Solving the Subset Sum Problem by Using Backtracking

In this exercise, we shall solve a problem similar to the one demonstrated in  
Exercise 36, Solving the Subset Sum Problem by Using the Brute-Force Approach, but 
using a backtracking approach and a more complex input to highlight the differences. 
Let's get started:

1.	 To implement the backtracking solution for the subset sum problem, we define a 
function called SubsetSum_Backtracking(), as follows:

bool SubsetSum_Backtracking(vector<int> &set, int sum, int i) 
{
    ……
}

2.	 As is often the case in recursive functions, we define our base cases at the very 
beginning:

// The sum has been found
if(sum == 0)
{
    return true;
}

// End of set is reached, or sum would be exceeded beyond this point
if(i == set.size() || set[i] > sum)
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{
    return false;
}

3.	 At each step, our options are to add the current element's value to the sum, or to 
keep the sum as-is. We can condense this logic into one line like so:

// Case 1: Add to sum
// Case 2: Leave as-is 

return SubsetSum_Backtracking(set, sum – set[i], i + 1) 
    || SubsetSum_Backtracking(set, sum, i + 1); 

4.	 Returning to main, let's sort the set and add our call to SubsetSum_Backtracking() 
underneath the call to SubsetSum_BruteForce():

sort(set.begin(), set.end());

bool found;
    
found = SubsetSum_BruteForce(set, target);
found = SubsetSum_Backtracking(set, target, 0); 

5.	 For the sake of testing, we will implement a function that will display the time each 
approach takes to find the solution. First, we will need to include the <time.h> and 
<iomanip> headers:

#include <iostream>
#include <vector>
#include <algorithm> 
#include <time.h>
#include <iomanip>

6.	 We will also define an array of strings called types, which we will use to label the 
results of each approach: 

vector<string> types = 
{
    "BRUTE FORCE",
    "BACKTRACKING",
    "MEMOIZATION",
    "TABULATION"
};

const int UNKNOWN = INT_MAX;
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7.	 Now, we will write another function, GetTime(), that takes a reference to a clock_t 
object called timer and a string type, and then returns void:

void GetTime(clock_t &timer, string type)
{
    // Subtract timer value from current time to get time elapsed
    timer = clock() - timer;

    // Display seconds elapsed
    cout << "TIME TAKEN USING " << type << ": " << fixed << setprecision(5) 
<< (float)timer / CLOCKS_PER_SEC << endl; 
    
    timer = clock(); // Reset timer 
}

8.	 Now, let's rewrite the main() function so that we can perform each function call 
sequentially and compare the time taken by each approach:

int main()
{
    vector<int> set = { 13, 79, 45, 29 };
    int target = 58;
    int tests = 2;

    clock timer = clock();

    sort(set.begin(), set.end());

    for(int i = 0; i < tests; i++)
    {
        bool found;

        switch(i)
        {
            case 0: found = SubsetSum_BruteForce(set, target); break;
            case 1: found = SubsetSum_Backtracking(set, target, 0); break;
        }

        if(found)
        {
            cout << "Subset with sum " << target << " was found in the 
set." << endl;
        }
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        else 
        {
            cout << "Subset with sum " << target << " was not found in the 
set." << endl;
        }    
        GetTime(timer, types[i]);
        cout << endl;
    }
    return 0;
}

9.	 Finally, let's redefine our input to highlight the difference in efficiency between 
the two approaches:

vector<int> set = { 16, 1058, 22, 13, 46, 55, 3, 92, 47, 7, 98, 367, 807, 
106, 333, 85, 577, 9, 3059 };

int target = 6076;

10.	 Your output will produce something along the lines of the following:

Subset with sum 6076 was found in the set.
TIME TAKEN USING BRUTE FORCE: 0.89987

Subset with sum 6076 was found in the set.
TIME TAKEN USING BACKTRACKING: 0.00078

Note

The actual values for the time taken would vary depending on your system. Please 
note the difference in the values.

As you can see, in this particular case, the answer was found over 1,000 times faster 
using the backtracking approach. In the following section, we shall optimize this 
solution further by making use of caching.
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Step 3: Memoization

Though significantly better than brute force, the backtracking solution is still far from 
ideal. Consider a case where the target sum is high and not in the set — if the target is 
greater than or equal to the sum of every element in the set, we could easily determine 
the result by calculating the total in advance and checking that the target is within the 
valid range. However, if the target sum is just slightly under this amount, our algorithm 
will still be forced to explore practically every possibility before finishing. 

To demonstrate this difference, try running your code from the previous exercise using 
6799 as the target (exactly 1 less than the total sum of all the elements of the set). On 
the author's machine, the backtracking solution took about 0.268 seconds on average 
to produce the result – nearly 350 times longer than the average time taken with the 
target value used in the exercise.

Thankfully, we already have all the information we need to devise a top-down solution 
while utilizing memoization. Even better, we hardly have to modify our previous 
approach at all to implement it!

Devising a Caching Scheme

The most important aspect of using memoization is to define a caching scheme. 
Caching results for memoized solutions can be done in a number of ways, but the most 
common are as follows:

•	 Simple arrays, with states represented by numerical indices

•	 Hash tables/maps, with states represented by descriptive strings that are hashed 
using built-in language features

•	 Hash tables/maps, with states represented by hash values that are created using 
an original hashing formula

The choice to make here is largely context-dependent, but here are some general 
guidelines:

•	 Arrays/vectors that are accessed by a numerical index tend to be much faster 
than maps, which must locate a given key in the map in order to determine 
whether or not it has already been cached.

•	 Even when states can be represented as integers, if the cache keys are quite large, 
the memory requirements of an array large enough to encompass them may be 
unreasonable. In this case, maps are a better option.
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•	 Hash tables (for example, std::unordered_map) tend to be much faster than 
standard map/dictionary structures for locating and retrieving keys (but are still 
slower than arrays).

•	 std::map is much more versatile than std::unordered_map in terms of what types 
of data can be used as keys. Although std::unordered_map can technically offer 
the same functionality, it requires the programmer to create their own hashing 
function for data types it is not equipped to store as keys by default.

As you may recall from the introduction to this chapter, a caching scheme should be as 
follows:

•	 Valid: Cache keys must be represented in a way that avoids collisions between 
different states that are not used to solve the same set of subproblems.

•	 Worthwhile/useful: If your caching scheme is so specific that it never actually 
produces any "hits", then it essentially accomplishes nothing.

In the subset sum problem, we may mistakenly come to believe that failing to find the 
target from a state with a given sum value means that it would be impossible to get a 
true result from any other state with the same sum. Therefore, we may decide to cache 
every solution based solely on the value of sum (that is, if(memo[sum] != UNKNOWN) return 
memo[sum];). This is an example of an invalid caching scheme because it fails to take into 
account the fact that there may be multiple ways to reach the same sum within the 
same set, as shown here:

{ 1 5 6 2 3 9 } 

Sum of { 1 5 } = 6

Sum of { 6 } = 6

Sum of { 1 2 3 } = 6

Suppose the target value is 8 in the preceding example. If the third case is encountered 
first, memo[6] would be set to false, which is obviously incorrect since the target can be 
reached from both of the other cases by including the 4th element (2).

An example of a useless memoization scheme would be one where the keys are equal to 
the indices of the subset because every possible state will contain a completely unique 
key; as a result, states that are formed from the same set of subproblems will not trigger 
a cache hit.
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If you are unsure about the efficacy of your caching scheme, it can be useful to store a 
counter that increments on every cache hit. If the final value of this counter is equal to 
0, or is very low relative to the number of states you have to consider, you can conclude 
that your caching scheme needs revision.

We shall explore the implementation of memoization with the use of a vector for 
caching.

Exercise 38: Solving the Subset Sum Problem by Using Memoization

In this exercise, we shall try to implement the same solution that we implemented in 
Exercise 37, Solving the Subset Sum Problem by Using Backtracking, but with the addition 
of memoization. Let's get started:

1.	 We will now create another function called SubsetSum_Memoization(). The 
definition for this function will be identical to SubsetSub_Backtracking(), except 
that it will include a reference to a two-dimensional integer vector called memo:

bool SubsetSum_Memoization(vector<int> &set, int sum, int         i, 
vector<vector<int>> &memo)
{
    ……
}

2.	 Much of our code for this function will look quite similar to the backtracking 
approach. For example, our base cases will be defined exactly like they were 
previously:

if(sum == 0)
{
    return true;
}

if(i == set.size() || set[i] > sum)
{
    return false;
}
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3.	 Now, the pivotal difference is that after the base cases, rather than immediately 
investigating the next two states, we check the memo table for cached results:

// Is this state's solution cached?
if(memo[i][sum] == UNKNOWN)
{
    // If not, find the solution for this state and cache it

    bool append = SubsetSum_Memoization(set, sum - set[i], i + 1, memo);
    bool ignore = SubsetSum_Memoization(set, sum, i + 1, memo);

    memo[i][sum] = append || ignore;
}
// Return cached value
return memo[i][sum];

4.	 Now, we should insert a call to SubsetSum_Memoization() in the main() function:

int tests = 3;

for(int i = 0; i < tests; i++)
{
    bool found;

    switch(i)
    {
        case 0: found = SubsetSum_BruteForce(set, target); break;

        case 1: found = SubsetSum_Backtracking(set, target, 0); break;

        case 2:
        {
            // Initialize memoization table
            vector<vector<int>> memo(set.size(), vector<int>(7000, 
UNKNOWN));

            found = SubsetSum_Memoization(set, target, 0, memo);
            break;
        }
    }
    
    if(found)
    {
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        cout << "Subset with sum " << target << " was found in the set." 
<< endl;
    }
    else
    {
        cout << "Subset with sum " << target << " was not found in the 
set." << endl;
    }
    GetTime(timer, types[i]);
    cout << endl;
}

5.	 Now, let's define target as 6799 and run our code. You should see an output similar 
to this:

Subset with sum 6799 was not found in the set.
TIME TAKEN USING BRUTE FORCE: 1.00100

Subset with sum 6799 was not found in the set.
TIME TAKEN USING BACKTRACKING: 0.26454

Subset with sum 6799 was not found in the set.
TIME TAKEN USING MEMOIZATION: 0.00127

Note

The actual values for time taken would vary depending on your system. Please 
note the difference in the values.

We can see from the output that caching has optimized our problem by an exponential 
factor.

Step 4: Tabulation

So far, we have implemented three different algorithmic approaches to solving the 
subset sum problem, each of which has a significant improvement over the one 
preceding it. However, let's say that we wanted a list of every possible subset sum in a 
given set. We would have to run our algorithm repeatedly for each sum, from 1 to the 
total sum of the entire set. For situations such as these, tabulation is often the only 
efficient option.
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Implementing an iterative tabulated solution to a problem like this is often rather hard 
to conceptualize. Whereas recursive formulations of a problem lend themselves well to 
multidimensional states and branching conditions, a tabulated solution has to somehow 
condense the layers of complexity into a simple set of iterations using the standard 
for/while loops:

Figure 8.6: Depiction of how the complexity of the subset sum problem's recursive structure is reduced 
in the tabulated DP solution

There are several methods for tackling this reduction, but ultimately it tends to come 
down to whether or not you understand the problem well enough to make the correct 
generalizations.

Like memoization, the first goal after defining the base case(s) and states of the problem 
is to develop a scheme for storing the solutions for different states. Typically, tabulated 
approaches use simple arrays/vectors for this purpose. We have already looked at an 
example of a very simple DP table in the calculation of the Fibonacci sequence:

F[n] = F[n – 1] + F[n – 2];

Earlier in this chapter, we also discussed how to calculate factorials recursively. A 
bottom-up approach to filling the table for that problem would look like this:

factorial[n] = factorial[n – 1] * n;

These are very simple examples because they only contain a single dimension and no 
conditional logic. Each state has a consistent, predictable formula from beginning to 
end. 
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The primary difference between those examples and the subset sum problem is that the 
minimal way to represent each state uniquely in the latter requires two dimensions — 
the index in the set and the current sum.

Let's consider some of the insights we have gained about this problem in greater depth:

•	 Each possible subset of size k can be formed by taking new elements and 
appending them onto every subset of size k – 1.

•	 If a solution has been found at index i with a sum value of x, then any sequence of 
state transitions that eventually lead to that same set of conditions will produce an 
identical result:

Figure 8.7: Multiple paths with the same sum value on the same index value

Both of these recursive paths have a sum value equal to 8 and an index value equal to 
3 at the states indicated in red which, due the optimal substructure of the subset sum 
problem, means that the solution for that state only needs to be found once — its result 
will be the same any time those conditions are arrived at, regardless of what occurred 
before.

With these facts in mind, we can essentially invert our top-down approach to develop 
the bottom-up approach.

Top-down logic:

1.	 Start at the target sum and the first index of the set.

2.	 Iterate through the set:

   - If the sum is reduced to zero, the result is TRUE.

   - If the end of the set is reached or the target is exceeded, the result is FALSE.

   - Otherwise, you can either subtract the current value from the sum or ignore it.

3.	 If the target can be found from state S, where the sum is equal to x and the index is 
equal to i, then the target can also be found from any earlier state that eventually 
leads to the state S.
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Bottom-up logic:

1.	 Start with sum and index values equal to 0.

2.	 Iterate through the set:

   - If a sum equal to x can be found between indices 0 and i, then a sum equal to x 
can also be found between indices 0 and i+1.

   - If a sum equal to x can be found between indices 0 and i, then a sum equal to x 
+ set[i] can be found between indices 0 and i+1.

In terms of how the table is filled, the top-down approach can be described as 
follows:

If the sum equals x and index equals i at state S1, the value of memo(i, x) = true if 
either of the following occurs: 

   - The target can be found from state S2 (where the sum equals x – set[i] and 
index equals i + 1), OR… 

   - The target can be found from state S3 (where the sum equals x and index 
equals i + 1)

           - Otherwise, memo(i, x) = false.

The bottom-up version of this logic would be as follows:

If the sum equals x and index equals i, the value of DP(i, x) = true if either of the 
following occurs:

   - x is less than the value of set[i] and DP(i-1, x) = true

   - x is greater than, or equal to, the value of set[i] and DP(i-1, sum) = true OR 
DP(i-1, sum – set[i]) = true

       - Otherwise, DP(i, x) = false.

In other words, if we have already determined that a sum, x, can be formed between 
indices 0 and i (inclusive), then clearly, a sum equal to both x and x + set[i] can be 
formed between indices 0 and i + 1. We'll take a look at the implementation of this in 
the following exercise.
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Exercise 39: Solving the Subset Sum Problem by Using Tabulation

In this exercise, we shall modify the solution for Exercise 38, Solving the Subset Sum 
Problem by Using Memoization, so that we can use tabulation by converting the logic 
from top-down to bottom-up. Let's get started:

1.	 We will define a new function called — you guessed it — SubsetSum_Tabulation() 
that takes an integer vector called set as an argument and returns a 
two-dimensional Boolean vector:

vector<vector<bool>> SubsetSum_Tabulation(vector<int> set)
{
    ……
}

2.	 We declare a two-dimensional Boolean vector called DP. The first dimension's 
size should be equal to the length of set, and the second dimension's size should 
be equal to the highest possible subset sum in the set (that is, the total sum of all 
elements) plus one. Every value of DP should be initialized to false, except for the 
base cases (that is, the sum is equal to zero):

int maxSum = 0;

for(auto num : set) 
{
    maxSum += num;
}

vector<vector<bool>> DP(set.size() + 1, vector<bool>(maxSum + 1, false));

for(int i = 0; i < set.size(); i++)
{
    // Base case — a subset sum of 0 can be found at any index

    DP[i][0] = true;
}
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3.	 Now, we iterate across two nested for loops, corresponding to the first and 
second dimensions of the DP table:

for(int i = 1; i <= set.size(); i++)
{
    for(int sum = 1; sum <= maxSum; sum++)
    {
        ……
    }
}

4.	 Now, to fill the table, use the following code:

for(int i = 1; i <= set.size(); i++)
{
    for(int sum = 1; sum <= maxSum; sum++)
    {
        if(sum < set[i-1])
        {
            DP[i][sum] = DP[i-1][sum];
        }
        else
        {
            DP[i][sum] = DP[i-1][sum]
                    || DP[i-1][sum – set[i-1]];
        }
    }
}
return DP;

5.	 Now, we once again modify the main() function to include our tabulated solution:

int main()
{
    vector<int> set = { 16, 1058, 22, 13, 46, 55, 3, 92, 47, 7, 98, 367, 
807, 106, 333, 85, 577, 9, 3059 };

    int target = 6076
    int tests = 4;

    clock_t timer = clock();
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    sort(set.begin(), set.end());

    for(int i = 0; i < tests; i++)
    {
        bool found;

        switch(i)
        {
            ……
            case 3:
            {
                vector<vector<bool>> DP = SubsetSum_Tabulation(set);
                found = DP[set.size()][target];
                break;
            }
        }
    }
    ……
}

6.	 You should see an output something like the one shown here:

Subset with sum 6076 was found in the set.
TIME TAKEN USING BRUTE FORCE: 0.95602

Subset with sum 6076 was found in the set.
TIME TAKEN USING BACKTRACKING: 0.00082

Subset with sum 6076 was found in the set.
TIME TAKEN USING MEMOIZATION: 0.00058

Subset with sum 6076 was found in the set.
TIME TAKEN USING TABULATION: 0.00605

Note

The actual values for the time taken will vary depending on your system. Please 
note the difference in the values.
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7.	 As we can see, the time taken by the tabulated solution is longer than both the 
memoization and backtracking solutions. However, using the DP table returned 
by SubsetSum_Tabulation(), we can use the following code to find every possible 
subset sum:

int total = 0;

for(auto num : set) 
{
    total += num;
}

vector<vector<bool>> DP = SubsetSum_Tabulation(set);

vector<int> subsetSums;

for(int sum = 1; sum <= total; sum++)
{
    if(DP[set.size()][sum])
    {
        subsetSums.push_back(sum);
    }
}
cout << "The set contains the following " << subsetSums.size() << " subset 
sums: ";

for(auto sum : subsetSums) 
{
    cout << sum << " ";
}
cout << endl; 

8.	 The output of this should begin and end like this:

The set contains the following 6760 subset sums: 3 7 9 10 12 13 16 19 20 
22 …… 6790 6791 6793 6797 6800

Thus, we have optimized the solution and also obtained the sum values of all the states.
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Throughout this chapter, we've explored a variety of ways of solving the subset 
sum problem, which, in turn, demonstrated the clear superiority of the dynamic 
programming approach; however, despite the comparative advantages that DP solutions 
have over the alternatives, we also demonstrated how the naive and relatively inefficient 
approaches can help us better understand the problem, which greatly simplifies the 
process of devising a solution using DP.

Some of the logic that's required by dynamic programming solutions may initially 
appear to be quite complex and difficult to grasp. It is highly recommended that you 
fully understand each solution approach we discussed in this section before proceeding 
further, since this is a process that can be accelerated by using different input 
parameters and comparing the results. Additionally, drawing diagrams of how different 
solutions are formed from given inputs can be particularly helpful.

Activity 18: Travel Itinerary

You are designing a web application for a travel agency that wants to help clients plan 
their holiday itineraries. A major aspect of this software concerns route planning, which 
allows users to specify multiple locations they would like to visit and then view a list of 
cities they would have to pass through en route to their final destination.

Your agency has contracts with specific transportation companies in every major city, 
and each transportation company has set limits on how far they can travel. Whereas 
a plane or train can traverse multiple cities and even entire countries, a bus or taxi 
service may only be willing to travel one or two cities beyond their initial location. 
When your software produces the list of possible intermediate stops, it also displays 
the maximum number of cities the transportation company at that location is willing to 
travel so that clients can plot their course accordingly. 

You recently realized that your application needs some method of allowing clients to 
filter the number of options presented to them since many popular tourist locations 
are separated by dense clusters of towns. To do this, you want to determine the 
total number of possible ways to reach the ultimate destination from a given starting 
location so that you can reduce the amount of information that's displayed when it 
becomes excessive.

Your application already has the capability to calculate the list of locations on the ideal 
route between a departure point and destination. From this, you have derived the 
following data:

•	 N: An integer representing the number of cities between the source and the 
destination

•	 distance: An array of integers representing the maximum number of cities the 
transportation company at each location is willing to traverse
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Your task is to implement an algorithm that will calculate the total number of 
possible ways that the destination can be reached by traveling through a sequence of 
intermediate locations.

Input

The first line contains a single integer, N, the number of cities between the starting 
point, and the destination.

The second line contains N space-separated integers, where each integer, di, represents 
the maximum distance that can be traveled starting from the city at index i.

Output

Your program should output a single integer and the total number of ways to traverse 
the cities beginning at index 0 and ending at index N. Because the values get quite large 
as N increases, output each result as modulo 1000000007.

Example

Suppose you were given the following input:

6

1 2 3 2 2 1

This means there are a total of six cities between the source and target locations. From 
a given city at index i, you have the option of traveling to any other city within the 
range of i + 1 to i + distance[i] (inclusive). If we were to think of the sequence of 
cities as a graph, the adjacencies for the preceding example would be as follows:

[0]: { 1 }

[1]: { 2, 3 }

[2]: { 3, 4, 5 }

[3]: { 4, 5 }

[4]: { 5, 6 }

[5]: { 6 }  
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Observe the following figure for further clarification:

Figure 8.8: Example of city adjacencies

In the preceding example, the destination can be reached in the following ways (with E 
representing the end point):

0 > 1 > 2 > 3 > 4 > 5 > E

0 > 1 > 2 > 3 > 4 > E

0 > 1 > 2 > 3 > 5 > E

0 > 1 > 2 > 4 > 5 > E

0 > 1 > 3 > 4 > 5 > E

0 > 1 > 2 > 4 > E

0 > 1 > 2 > 5 > E

0 > 1 > 3 > 4 > E

0 > 1 > 3 > 5 > E

This gives us an answer of 9.

In general, the traversal always starts at index 0 and ends at index N. It is guaranteed 
that the sum of a city's index i with distance[i] will never be greater than N, and that 
every city will have a corresponding distance value of at least 1.
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Test Cases

The following test cases should help you to understand this problem better:

Figure 8.9: Activity 18 simple test cases

Here are some more complex test cases:

Figure 8.10: Activity 18 complex test cases
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Extra Credit

Assuming you have found an approach that passes the preceding test cases within 
reasonable time limits, you can truly test the efficiency of your algorithm with one 
final test case, with N equal to 10000000. Because the number of values would take 
too much space to print, you can use the following code to generate the array values 
programmatically:

vector<int> Generate(int n)

{

    vector<int> A(n);

    

    ULL val = 1;

    

    for(int i = 0; i < n; i++)

    {

        val = (val * 1103515245 + 12345) / 65536;

        val %= 32768;

        

        A[i] = ((val % 10000) % (n – i)) + 1;

    }

    return A;

}

Your program should print 318948158 as the result of this test case. An optimal 
algorithm should be able to find the result in under one second.

Activity Guidelines

•	 An optimal approach will run in O(n) time and require exactly n iterations.

•	 If you are completely unsure as to how to formulate the DP solution, use the 
incremental approach that was described in this chapter, that is, by using brute 
force first and then progressively optimizing the solution. 

•	 For insights into how the problem's states are formed, consider the recurrence 
relation exhibited by the Fibonacci sequence.

Note

The solution to this activity can be found on page 556.
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Dynamic Programming on Strings and Sequences
So far, our exploration of dynamic programming has primarily focused on combinatorial 
problems and calculating terms of integer sequences with defined formulae. Now, we 
will consider another one of DP's most common uses, that is, working with patterns in 
sequences of data. The most typical scenarios in which a programmer would use DP for 
this purpose generally concern searching, comparing, and constructing strings. 

As software developers, we often work collaboratively with several individuals who all 
have the ability to make contributions and modifications to the same project. Since 
the possibility always exists that a programmer may inadvertently introduce a bug into 
the code, or that the team may try a different approach for a given feature and then 
decide to return to their original method, it becomes extremely important to have 
some system of version control. In the event that a feature that was working recently 
mysteriously develops a glitch, it is essential to have the ability to see the changes that 
were made to the code, particularly in terms of how they differ from an earlier version. 
All version control systems therefore have a "diff" feature that analyzes the similarity 
between two versions of the same code and then displays this in some way to the user.

For example, say you had added the following code to the repository:

bool doSomething = true;

void DoStuff()

{

    DoSomething();

    DoSomethingElse();

    DoAnotherThing();

}

On the following day, you made some changes:

bool doSomething = false;

void DoStuff()

{

    if(doSomething == true)

    { 

        DoSomething();

    }
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    else 

    {

        DoSomethingElse();

    }

}

A diff utility would then display something similar to the following:

Figure 8.11: Diff utility output

To accomplish this, the utility needs to compute the similarity of the two code files by 
taking into account the fact that the sequence of text that is common to both versions 
may not necessarily be contiguous in the string. Additionally, parts of the original text 
may have been removed or appear in additional locations in the new version. This 
demonstrates the need for approximate (or "fuzzy") string matching, a technique that 
frequently makes use of dynamic programming.

The Longest Common Subsequence Problem

The longest common subsequence problem (commonly abbreviated as LCS) is one of 
the most famous classical examples of dynamic programming. It answers the following 
question: given two sequences of data, what is the longest subsequence common to 
both of them?

As an example, consider two strings, A and B:

Figure 8.12: Two given strings for finding the longest common subsequence
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The longest common subsequence would be "LONGEST":

Figure 8.13: Longest common subsequence in the given strings

Equipped with the insights that we've gained from the series of approaches we 
implemented for the subset sum problem, let's be a bit smarter about how we attack 
this one. We will start by formulating some ideas about the structure of the problem in 
advance, starting with the base cases. 

Since it tends to be quite difficult to understand the nature of a DP problem for large 
inputs without first having considered the trivial ones, let's create some examples of 
different scenarios using small input strings and try to find the length of the longest 
common subsequence (LCS):

Case 1): A or B is empty

A   = ""

B   = ""

LCS = 0

A   = "A"

B   = ""

LCS = 0

A   = ""

B   = "PNEUMONOULTRAMICROSCOPICSILICOVOLCANOCONIOSIS"

LCS = 0

In the case where either or both strings are empty, it should be fairly obvious that the 
length of the longest common subsequence will always be equal to zero:

Case 2) Both A and B contain a single character

A   = "A"

B   = "A"
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LCS = 1

A   = "A"

B   = "B"

LCS = 0

Case 3) A has one character, B has two characters

A   = "A"

B   = "AB"

LCS = 1

A   = "A"

B   = "BB"

LCS = 0

These two cases have a simple binary definition – either they have a common character, 
or they do not:

Case 4) Both A and B contain two characters

A:  = "AA"

B:  = "AA"

LCS = 2

A   = "BA"

B   = "AB"

LCS = 1

A   = "AA"

B   = "BB"

LCS = 0
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Things become a bit more interesting with strings of length 2, but the logic is still quite 
trivial. Given two strings of length 2, they either are identical, have one character in 
common, or have no characters in common:

Case 5) A and B both contain 3 characters

A   = "ABA"

B   = "AAB"

LCS = 2    

A   = "ABC"

B   = "BZC"

LCS = 2

Now, the complexity of the problem is beginning to emerge. This case demonstrates 
that the comparisons progressively become much less straightforward:

Case 6: A and B both contain 4 characters

A   = AAAB

B   = AAAA

{ "AAA_", "AAA_" }

{ "AAA_", "AA_A" }

{ "AAA_", "A_AA" }

{ "AAA_", "_AAA" }

LCS = 3

A   = AZYB

B   = YZBA    



Dynamic Programming on Strings and Sequences | 395

{ "_Z_B", "_ZB_" }

{ "__YB", "Y_B_" }

LCS = 2

By now, it should be fairly obvious that the LCS problem does indeed contain 
overlapping subproblems. Similar to the previous problem, we can observe that there 
are 2n possible subsets of a given string, with n being equal to the string's length, except 
now we have two sequences to contend with. Even worse is the fact that we are not 
simply considering the subsets of each sequence independently, but must also make 
comparisons between them:

Figure 8.14: All possible character subsequences of two strings, ABCX and ACY
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The fact that we are not merely looking for consecutive groups of characters has 
several implications: firstly, the same sequence of characters can occur multiple 
times throughout the string and can be spaced across either string in any possible 
arrangement, assuming the order of the characters is the same. Secondly, there can be 
many common subsequences beginning from any given index.

Before implementing our brute-force approach, let's also define what constitutes a 
state for this problem. Let's assume that we are maintaining two pointers, i and j, 
which represent character indices in A and B, respectively, as well as a record of the 
subsequence of common characters we have found:

if i exceeds length of A, or j exceeds length of B:

— Terminate recursion and return length of subsequence

If we have reached the end of either string, there is nothing else to compare because 
the indices of subsequences are ordered:

if A[i] = B[j]:

— Increase length of subsequence by 1

— Increment both i and j by 1 

If the characters are equal, there is no advantage in not including it in our found 
subsequence. We increment both pointers because any given character can only be 
considered once per subsequence:

Otherwise:

    Option 1) Explore further possibilities with i + 1, and j

    Option 2) Explore further possibilities with i, and j + 1

    LCS from this state is equal to maximum value of Option 1 and Option 2

If we have not found a match, we have the choice to either explore the next subset 
of A's characters, or the next subset of B's characters. We do not include the case 
of incrementing both indices simultaneously from this state because it would be 
redundant. That case will be explored by the next function call. Outlining the structure 
of this recurrence would look like this:
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Figure 8.15: Subproblem tree for the longest subsequence problem

In the preceding figure, the overlapping subproblems have been color coded. The 
optimal substructure of this problem is still not quite clear yet, but we can still make 
some basic generalizations:

•	 We only need to compare subsets of equal length.

•	 From a given state, the possibilities for the next state can be explored by 
incrementing i, j, or both.

•	 Our search always ends when the end of either string is reached.

Hopefully, our preliminary brute-force implementation can provide additional insights. 
Let's get right to it in the following exercise.
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Exercise 40: Finding the Longest Common Subsequence by Using the Brute-

Force Approach

In this exercise, we shall use the brute-force approach to solve this problem, just like 
we did for the subset sum problem in Exercise 36, Solving the Subset Sum Problem by 
Using the Brute-Force Approach. Let's get started:

1.	 Begin by including the following headers and defining the DEBUG and PRINT macros 
that we used in the previous chapter:

#include <iostream>
#include <time.h>
#include <iomanip>
#include <algorithm>
#include <utility>
#include <vector>
#include <strings.h>

#define DEBUG 1

#if DEBUG
#define PRINT(x) cerr << x
#else 
#define PRINT(x)
#endif

using namespace std;

2.	 Define a function called LCS_BruteForce() that takes the following arguments 
– two strings, A and B, two integers, i and j, and a vector of integer pairs, 
subsequence – and returns an integer. Above this function, we will also declare a 
two-dimensional vector of integer pairs with a global scope, that is, found:

vector<vector<pair<int, int>>> found;

int LCS_BruteForce(string A, string B, int i, int j, vector<pair<int, 
int>> subsequence)
{
    ……
}
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3.	 A and B are, of course, the strings we are comparing, i and j represent our current 
positions in A and B, respectively, and subsequence is the collection of index pairs 
that form each common subsequence, which will be collected in found for output.

Since we already have pseudocode to work with, we can implement our function 
with relative ease by simply inserting each line of pseudocode into our function as 
comments and translating it into C++ code underneath:

// If i exceeds length of A, or j exceeds length of B:
if(i >= A.size() || j >= B.size())
{
    found.push_back(subsequence);

    //Terminate recursion and return length of subsequence
    return subsequence.size();
}

// if A[i] = B[j]:
if(A[i] == B[j])
{
    // Increase length of subsequence by 1
    subsequence.push_back({ i, j });

    // Increment both i and j by 1 
    return LCS_BruteForce(A, B, i + 1, j + 1, subsequence);
}    
/*
    Option 1) Explore further possibilities with i + 1, and j        
    Option 2) Explore further possibilities with i, and j + 1

    LCS from this state is equal to maximum value of Option 1 and Option 2
*/

return max(LCS_BruteForce(A, B, i + 1, j, subsequence),
         LCS_BruteForce(A, B, i, j + 1, subsequence));
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4.	 In main(), we'll receive input in the form of two strings, and then call our function 
on it:

int main() 
{
    string A, B;
    cin >> A >> B;

    int LCS = LCS_BruteForce(A, B, 0, 0, {}); 

    cout << "Length of the longest common subsequence of " << A << " and " 
<< B << " is: " << LCS << endl;

    …    
}

5.	 Like we did in the previous chapter, we will also output the subsequences found to 
stderr if DEBUG is not set to 0. However, because of the greater complexity of this 
problem, we will put this output in a separate function, PrintSubsequences():

void PrintSubsequences(string A, string B)
{
    // Lambda function for custom sorting logic
    sort(found.begin(), found.end(), [](auto a, auto b)
    {
        // First sort subsequences by length
        if(a.size() != b.size())
        {
            return a.size() < b.size();
        }

        // Sort subsequences of same size by lexicographical order of 
index
        return a < b;
    });

    // Remove duplicates 
    found.erase(unique(found.begin(), found.end()), found.end());

    int previousSize = 0;
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    for(auto subsequence : found)
    {
        if(subsequence.size() != previousSize)
        {
            previousSize = subsequence.size();
            PRINT("SIZE = " << previousSize << endl);
        }
        // Fill with underscores as placeholder characters
        string a_seq(A.size(), '_');
        string b_seq(B.size(), '_');

        for(auto pair : subsequence)
        {
            // Fill in the blanks with the characters of each string that 
are part of the subsequence

            a_seq[pair.first] = A[pair.first];
            b_seq[pair.second] = B[pair.second];
        }
        PRINT("\t" << a_seq << " | " << b_seq << endl);
    }
}

6.	 We can then call this function in main(), specifying that it should be ignored unless 
DEBUG is set:

int main()
{
    ……

#if DEBUG
    PrintSubsequences();
#endif

    return 0;
}
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7.	 Setting DEBUG to 1 and using ABCX and ACYXB as input should produce the following 
output:

Length of the longest common subsequence of ABCX and ACYXB is: 3
SIZE = 1
    A___ A____
SIZE = 2
    AB__ A___B
    A_C_ AC___
    A__X A__X_
SIZE = 3
    A_CX AC_X_

This output shows us all the possible combinations of subsequence pairs. Let's analyze 
this output in the following section and work toward optimizing our solution.

First Steps Toward Optimization – Finding the Optimal Substructure

Let's revisit the logic of our previous approach again to see how it may be optimized. 
Using the input strings from the previous exercise, ABCX and ACYXB, if our current state 
has i = 0 and j = 0, we can clearly see that the only possibility for our next state is as 
follows:

LCS(A, B, 0, 0) = 1 + LCS(A, B, 1, 1)

As you may recall, one of our initial insights is that the LCS is equal to 0 if either or both 
strings are empty. We can also generalize that the LCS of a given prefix of A and a given 
prefix of B is equal to the maximum LCS of A's prefix reduced by one character with B, 
and B's prefix reduced by one character with A:

A = "ABC"

B = "AXB"

LCS of "ABC", "AXB" 

= max(LCS of "AB" and "AXB", LCS of "ABC" and "AX") 

= LCS of "AB" and "AXB"

= "AB"
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Using this concept of the LCS for two strings being based on the LCS of their prefixes, 
we can redefine our logic as follows:

If prefix for either string is empty:

   LCS = 0

Otherwise:

   If character in last position of A's prefix is equal to character in last 
position of B's prefix:

         LCS is equal to 1 + LCS of prefix of A with last character removed 
and prefix of B with last character removed

   Otherwise:

          LCS is equal to maximum of:

            1) LCS of A's current prefix and B's prefix with last character 
removed 

            2) LCS of B's current prefix and A's prefix with last character 
removed 

Using memoization, we can store our results at every step in a two-dimensional table, 
with the first dimension equal to the size of A and the second dimension equal to the 
size of B. Assuming we have not reached the base case, we can check whether we have 
a cached result stored in memo[i - 1][j - 1]. If we do, we return the result; if not, 
we recursively explore possibilities in the same way as before and store the results 
accordingly. We'll implement this in the following activity.

Activity 19: Finding the Longest Common Subsequence by Using Memoization

In solving the subset sum problem, we implemented various approaches, namely 
brute force, backtracking, memoization, and tabulation. In this activity, your task is 
to independently implement a solution to the longest common subsequence problem 
using memoization. 

Input

Two strings, A and B, respectively.

Output

The length of the longest common subsequence of A and B.
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Test Cases

The following test cases should help you to understand this problem better:

Figure 8.16: Activity 19 test cases

Activity Guidelines:

•	 You can represent the state in two dimensions, with the first dimension bound by 
the length of A, and the second bound by the length of B.

•	 Very little must be changed to convert the brute-force algorithm into a memoized 
one.

•	 Make sure your approach has a way to differentiate between subproblems that 
have already been cached versus those that have not.

Note

The solution to this activity can be found on page 563.
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From Top-Down to Bottom-Up – Converting the Memoized Approach into a 

Tabulated Approach

If we were to print out the values of the memo table for the pair of strings ABCABDBEFBA 
and ABCBEFBEAB, it would look like this (note that values of -1 are unknown):

Figure 8.17: Memo table for ABCABDBEFBA and ABCBEFBE

Looking up any of the row/column combinations where the characters are equal (say 
the 7th row and 7th column), we notice a pattern: the value at memo[i][j] is equal to 
memo[i - 1][j - 1] + 1.

Now, let's look at the other case (that is, the characters are not equal); the pattern we 
see is that memo[i][j] is equal to the maximum of memo[i - 1][j] and memo[i][j - 1].

Assuming that we have found the optimal substructure of a problem, it is often quite a 
simple task to form a solution using tabulation by merely taking the table produced by a 
memoized solution and devising a scheme to build it from the bottom up. We will need 
to formulate some of our logic a bit differently, but the general ideas will essentially be 
the same. The first difference to contend with is the fact that the memo table's values 
are initialized to UNKNOWN (-1). Remember that a tabulated solution will fill the entire 
table with the appropriate results, and so nothing should be unknown by the time the 
algorithm has finished. 
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Let's take the unknown value in the second row and third column; what should this be 
equal to? Assuming the prefixes we are considering at that point are AB_________ and 
ABC_______, it should be fairly clear that the LCS at this point is equal to 2. Now, let's 
consider the unknown value in the 10th row and the 9th column: the prefixes we are 
considering at this point are ABCABDBEFB_ and ABCBEFBEA_, and the LCS that's found at 
this point is ABC_B__EFB_ —> ABCBEFB___, which is seven characters long. We can logically 
deduce that the LCS value at a given state is either equal to the previously found LCS, 
or one greater than the previously found LCS if the characters are equal. The lowest 
possible LCS value, of course, should be equal to 0. So, our logic for filling a DP table 
iteratively would look something like this:

If i = 0 or j = 0 (empty prefix):

  LCS(i, j) = 0

Otherwise:

  If the last characters of both prefixes are equal:

    LCS(i, j) = LCS(i - 1, j - 1) + 1

  Otherwise:

    LCS(i, j) = Maximum of:

        LCS(i - 1, j)  LCS for A's current prefix and B's prefix with the 
last character removed 

        LCS(i, j - 1)  LCS for B's current prefix and A's prefix with the 
last character removed

Our logic is essentially identical to what it was for the memoized solution, except that 
rather than recursively finding the values of unexplored states to fill the current state's 
value in the table, we fill the values for those states first and then simply reuse them as 
needed. We'll put this logic into code in the following activity.
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Activity 20: Finding the Longest Common Subsequence Using Tabulation

In this activity, your task is to implement a bottom-up solution to the longest common 
subsequence problem using tabulation. 

Input

Two strings, A and B, respectively.

Output

The length of the longest common subsequence of A and B.

Extra Credit

In addition to the length of the LCS, also output the actual characters it contains.

Test Cases

The following test cases should help you to understand this problem better:

Figure 8.18: Activity 20 test cases



408 | Dynamic Programming I

Activity Guidelines

•	 Like the subset sum problem, the tabulated solution requires iterating over two 
nested for loops.

•	 For a given state, LCS(I, j), there are three possibilities that need to be handled 
– either the string's prefix is empty, the last characters of  A's and B's prefixes are 
equal, or the last characters of A's and B's prefixes are not equal.

•	 Finding the characters of the LCS can be done by backtracking through the DP 
table.

Note

The solution to this activity can be found on page 568.

Activity 21: Melodic Permutations

Note

This activity is based around the traditional Western 8-note equal temperament 
scale, although students do not need to know anything about music theory to 
perform this activity. All the necessary information about the musical aspect is 
provided here.

Musical set theory is a form of categorization for musical harmonies and melodies 
according to the intervallic relations of their notes. In musical terminology, an interval 
can be defined as the distance between two notes in terms of their relative positions 
when written in musical notation:

Figure 8.19: Musical notations
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The following figure demonstrates the distance between different musical notes when 
represented as musical notations:

Figure 8.20: Musical intervals

You are a music theorist who is curious about how many times a permutation of a 
particular note set appears within the melodies of various composers. Given the notes 
of a complete melody and a set of notes, count the number of times any permutation 
of the note set appears within the melody. For any valid permutation, notes can be 
repeated any amount of times and can occur in any order:

               0    1    2    3    4    5   6

Melody:     { "A", "B", "C", "C", "E", "C, "A" }

Note set:     { "A", "C", "E" }

Subsets:

    { 0, 2, 4 }    —>    { "A", "C", "E" }

    { 0, 3, 4 }    —>    { "A", "C", "E" }

    { 0, 4, 5 }    —>    { "A", "E", "C" }

    { 2, 4, 6 }    —>    { "C", "E", "A" }

    { 3, 4, 6 }    —>    { "C", "E", "A" }

    { 4, 5, 6 }    —>    { "E", "C", "A" }

    

    { 0, 2, 3, 4 }    —>    { "A", "C", "C", "E" }

http://www.apple.com
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    { 0, 2, 4, 5 }    —>    { "A", "C", "E", "C" }

    { 0, 2, 4, 6 }    —>    { "A", "C", "E", "A" }

    { 0, 3, 4, 5 }    —>    { "A", "C", "E", "C" }

    { 0, 3, 4, 6 }    —>    { "A", "C", "E", "A" }

    { 0, 4, 5, 6 }    —>    { "A", "E", "C", "A" }  

    { 2, 3, 4, 6 }    —>    { "C", "C", "E", "A" }

    { 2, 4, 5, 6 }    —>    { "C", "E", "C", "A" }

    { 3, 4, 5, 6 }    —>    { "C", "E", "C", "A" }

    { 0, 2, 3, 4, 5 }       —>    { "A", "C", "C", "E", "C" }

    { 0, 2, 3, 4, 6 }       —>    { "A", "C", "C", "E", "A" }

    { 0, 2, 4, 5, 6 }       —>    { "A", "C", "E", "C", "A" }

    { 0, 3, 4, 5, 6 }       —>    { "A", "C", "E", "C", "A" }

    { 2, 3, 4, 5, 6 }       —>    { "C", "C", "E", "C", "A" }

    

    { 0, 2, 3, 4, 5, 6 }    —>    { "A", "C", "C", "E", "C", "A" }

Total Permutations = 21

The following notes are described as enharmonically equivalent and should be 
considered identical:

C  — B# (B# is pronounced as "B sharp")

C# — Db (Db is pronounced as "D flat")

D# — Eb

E  — Fb

E# — F

F# — Gb

G# — Ab

A# — Bb

B  — Cb
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The following diagram illustrates this equivalence on a piano:

Figure 8.21: Enharmonically equivalent notes represented on a section of a piano

Thus, the following combinations of notes would be considered equivalent:

{ A#, B#, C# }   = { Bb, C, Db },

{ Fb, Db, Eb }   = { E, C#, D# },

{ C, B#, E#, F } = { C, C, F, F }

And so on…

The following are a few sample inputs and corresponding outputs:

Input: 

Melody:    { "A", "B", "C", "C", "E", "C, "A" }

Note Set:    { "A", "C", "E" }

Output: 21 

Input:

Melody:    { "A", "B", "D", "C#", "E", "A", "F#", "B", "C", "C#", "D", "E" }

Note Set:    { "B", "D", "F#", "E" }
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Output: 27

Input:

Melody:    { "Bb", "Db", "Ab", "G", "Fb", "Eb", "G", "G", "Ab", "A", "Bb", 
"Cb", "Gb", "G", "E", "A", "G#" }

Note Set:    { "Ab", "E", "G" }

Output: 315

Input:

Melody:    { "C", "C#", "D", "Bb", "E#", "F#", "D", "C#", "A#", "B#", "C#", 
"Eb", "Gb", "A", "A#", "Db", "B", "D#" }

Note Set:    { "Bb", "C#", "D#", "B#" }

Output: 945

Input:

Melody:    { "A#", "B", "D#", "F#", "Bb", "A", "C", "C#", "Db", "Fb", "G#", 
"D", "Gb", "B", "Ab", "G", "C", "Ab", "F", "F#", "E#", "G", "Db" }

Note Set:    { "A", "Db", "Gb", "A#", "B", "F#", "E#" }

Output: 1323

The guidelines for this activity are as follows:

•	 You do not actually have to know anything about music theory to solve this 
problem beyond what is explained in the description. 

•	 Is there a better way to represent the notes? Could they be converted into a 
format that would be more amenable to a tabulated DP solution?

•	 What is the total count of subsets for n elements? Could this bit of information be 
useful in solving this problem?

Note

The solution to this activity can be found on page 574.
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Summary
In this chapter, we have analyzed and implemented two archetypal examples of dynamic 
programming and learned several methods by which different DP problems may be 
approached. We have also learned how to identify the characteristics of problems that 
can be solved with DP, how DP algorithms should be considered conceptually, and how 
the concepts of states, base cases, and recurrence relations can be used to break a 
complex problem down into much simpler components.

We have just barely scratched the surface of the dynamic programming technique. 
Indeed, the two problems we explored in depth are actually quite similar, both 
conceptually and in terms of how their solutions are implemented. However, many of 
these similarities serve to demonstrate several commonalities that are encountered in 
nearly every DP problem, and, as such, they serve as an excellent introduction to a topic 
that is admittedly quite complex and difficult to master.

Using dynamic programming is a skill that you are unlikely to improve at merely 
through the act of reading or observing. The only way to truly get better with this 
technique is through solving as many problems with it as possible, preferably without 
guidance. At first, certain difficult DP problems may necessitate many attempts before 
the optimal solution is found, but the experience that you garner through this often 
arduous process is arguably much greater than what you are likely to gain through 
simply studying the solutions of any number of DP problems.

The progressive approach to solving DP problems that was demonstrated in this 
chapter can serve you well in the future, but it is by no means the only way to arrive 
at the ultimate solution. After having solved a number of DP problems, you will 
undoubtedly begin to notice certain patterns that will make it possible to devise 
tabulated solutions from the start. However, these patterns are not likely to be 
discovered until you have encountered a range of different DP problems. Keep in mind 
the fact that with DP, just like any challenging skill, continuous practice will make it 
easier, and, before long, what originally appeared extremely daunting will eventually 
seem thoroughly manageable, and even quite fun!

In the final chapter, we will learn how to apply dynamic programming to more advanced 
situations and develop a deeper understanding of how DP problems that appear quite 
different from one another at first glance are often just variations on the same set 
of concepts. Finally, we will conclude this book by revisiting the topic of graphs to 
demonstrate how the DP paradigm can be effectively applied to the shortest path 
problem.





Learning Objectives

By the end of this chapter, you will be able to:

•	 Describe how problems can be solved in polynomial versus non-deterministic polynomial 
time and the effect this has on our ability to develop efficient algorithms

•	 Implement solutions for both the 0-1 and unbounded variants of the knapsack problem

•	 Apply the concept of state space reduction to dynamic programming problems

•	 Determine every shortest path in a weighted graph using approaches that have been 
optimized by the dynamic programming paradigm

In this chapter, we will build upon our understanding of the dynamic programming approach 
and examine how it can be used to optimize the problems we discussed in the previous chapter.

Dynamic 
Programming II

9
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Introduction
From the previous chapter, you should have a basic understanding of dynamic 
programming, as well as an effective set of strategies for finding a dynamic 
programming (DP) solution for an unfamiliar problem. In this chapter, we will develop 
this understanding further by exploring relationships between problems, particularly in 
terms of how the basic DP logic for one problem can be modified to find the approach 
to another. We will also discuss the concept of state space reduction, which allows us 
to exploit certain aspects of a problem to further optimize a working DP solution by 
decreasing the number of dimensions and/or operations required to find the result. We 
will conclude this chapter by revisiting the topic of graphs to demonstrate how the DP 
approach can be applied to the shortest-path problem.

An Overview of P versus NP
In Chapter 8, Dynamic Programming I, we demonstrated the significant gains in 
efficiency that dynamic programming can offer over other approaches, but it may not 
yet be clear how dramatic the difference can be. It is important to appreciate the extent 
to which the complexity of certain problems will scale as the input bounds increase 
because then we can understand the situations in which DP is not just preferable, but 
necessary. 

Consider the following problem:

"Given the terms and operators of a Boolean formula, determine whether or not it 
evaluates to TRUE."

Take a look at the following example:

(0 OR 1)  —> TRUE

(1 AND 0) —> FALSE

(1 NOT 1) —> FALSE

(1 NOT 0) AND (0 NOT 1) —> TRUE

This problem is conceptually very simple to solve. All that is required to get the correct 
result is a linear evaluation of the given formula. However, imagine that, instead, the 
problem was stated this way:

"Given the variables and operators of a Boolean formula, determine whether there exists 
an assignment of TRUE/FALSE to each variable so that the formula will evaluate to TRUE."
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Take a look at the following example:

(a1 OR a2) —> TRUE 

        (0 ∨ 0) = FALSE

        (0 ∨ 1) = TRUE

        (1 ∨ 0) = TRUE

        (1 ∨ 1) = TRUE

(a1 AND a2) —> TRUE

        (0 ∧ 0) = FALSE

        (0 ∧ 1) = FALSE

        (1 ∧ 0) = FALSE

        (1 ∧ 1) = TRUE

(a1 NOT a1) —> FALSE 

        (0 ¬ 0) = FALSE

        (1 ¬ 1) = FALSE

(a1 NOT a2) AND (a1 AND a2) —> FALSE 

        (0 ¬ 0) ∧ (0 ∧ 0) = FALSE

        (0 ¬ 1) ∧ (0 ∧ 1) = FALSE

        (1 ¬ 0) ∧ (1 ∧ 0) = FALSE

        (1 ¬ 1) ∧ (1 ∧ 1) = FALSE

Note:

If you are unfamiliar with logic symbols, ¬ denotes NOT, hence (1 ¬ 1) = FALSE, 
and (1 ¬ 0) = TRUE. Also, ∧ denotes AND, while ∨ denotes OR.
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The basic underlying concept remains the same, but the difference between these two 
problems is immense. In the original problem, the complexity of finding the result was 
dependent only on one factor—the length of the formula—but stated this way, there 
seems to be no obvious approach to solving it that does not require searching every 
possible binary subset of variable assignments until a solution is found. 

Now, let's consider another problem:

"Given a graph where every vertex is assigned one of three possible colors, determine 
whether no two adjacent vertices are the same color."

Like our first example, this is quite simple to implement—traverse every vertex of the 
graph, compare its color to each of its neighbors, and return false only if a matching 
pair of adjacent colors is found. But now, imagine that the problem is as follows:

"Given a graph where every vertex is assigned one of three possible colors, determine 
whether it is possible to color its vertices so that no two neighbors share the same color."

Again, this is a very different scenario.

The first versions of these problems are commonly classified as P, which simply means 
that there's a way to solve them in polynomial time. When we describe a problem 
as having a time complexity of O(n), O(n2), O(log n), and so on, we are describing a 
problem within the P class. However, the restated forms—at least as far as anyone has 
currently been able to prove—have no existing methods for finding a solution that are 
not essentially exponential in their worst-case complexity. Therefore, we classify their 
complexity as NP, or non-deterministic polynomial time.

The relationship between these classes of problems is a subject of considerable debate. 
The particular matter of interest is that the complexity of computation that's required 
to verify their solutions is "easy," whereas the complexity of producing solutions is 
"hard". This demonstrates one of the most widely discussed unsolved problems in 
programming: does the fact that the verification of solutions is in class P imply that 
there is also an approach for producing solutions in polynomial time? In other words, 
does P = NP? While the generally postulated answer to this question is no (P ≠ NP), this 
has yet to be proven, and doing so (regardless of what the answer actually is) would be a 
truly revolutionary advance in the study of algorithms and computation.
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Arguably the most interesting group of problems in NP are known as NP-complete 
because they share a remarkable trait: should a solution be discovered that solves any 
one of these problems efficiently (that is, in polynomial time), that solution can, in fact, 
be modified to solve all of the other problems in NP efficiently. In other words, if a 
polynomial solution for the first example (known as the Boolean satisfiability problem, 
or SAT) was found, some variant of the same logic could also be used to solve the 
second example (known as the graph-coloring problem), and vice versa.

Keep in mind that not every exponentially complex problem fits into this classification. 
Consider the problem of determining the next best move in a chess game. You may 
describe the recursive logic as follows:

    For each piece, a, belonging to the current player:

        Consider every possible move, m_a, that a can make:

            

            For each piece, b, belonging to the opponent:

                Consider each possible move m_b that b can make

                in response to m_a.

                    for each piece, a, belonging to the 

                    current player…

                    (etc.)

        Count number of ways player_1 can win after this move

Next best move is the one where the probability that player_1 wins is 
maximized.
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The complexity of finding solutions is unquestionably exponential. However, this 
problem does not meet the criteria of NP-completeness because the basic act of 
verifying whether a certain move is the best requires the same degree of complexity.

Compare this example to the problem of solving a Sudoku puzzle:

Figure 9.1: A solved Sudoku puzzle

Verification requires scanning each row and column of the matrix and determining 
that each of the nine outlined 3 x 3 squares contains every digit from 1 – 9, and that 
no row or column contains the same number more than once. A straightforward 
implementation of this could use three collections of nine sets, each containing { 1, 2, 
3, 4, 5, 6, 7, 8, 9 }, the first of these collections representing the numbers in each 
row, the second representing the numbers in each column, and the third representing 
the numbers in each 3 x 3 square. As each cell is scanned, we would check that the 
number it contains is in each set that corresponds to that cell; if it is, it is removed 
from the set. Otherwise, the result is FALSE. Once every cell has been considered, 
the result equals TRUE if every set is empty. Since this approach only requires us to 
iterate through the matrix once, we can conclude that it can be solved in polynomial 
time. However, assuming the puzzle that's provided is incomplete and the task is to 
determine whether a solution exists, we would have to recursively consider each 
combination of digits for each cell until a valid solution is found, leading to a worst-case 
complexity of O(9n), with n equal to the number of empty squares in the original grid; 
thus, we can conclude that solving a Sudoku puzzle is in NP.
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Reconsidering the Subset Sum Problem
In the previous chapter, we discussed the subset sum problem, which we saw possessed 
exponential complexity in the worst cases. Let's consider the two ways this problem can 
be expressed – in terms of the relative difficulty of finding a solution and verifying the 
validity of a solution.

Let's consider the problem of verifying the validity of a solution:

Set    —> { 2 6 4 15 3 9 }

Target —> 24

Subset —> { 2 6 4 }

Sum = 2 + 6 + 4 = 12 

FALSE

Subset —> { 2 6 15 3 }

Sum = 2 + 6 + 15 + 3 = 24

TRUE

Subset —> { 15 9 }

Sum = 15 + 9 = 24

TRUE

Subset —> { 6 4 3 9 }

Sum = 6 + 4 + 3 + 9 = 22

FALSE
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There's no question that the complexity of verification is linear regarding the length of 
each subset—add up all the numbers and compare the sum to the target—which puts 
it squarely in the P class. We found some seemingly efficient methods for handling 
the complexity of finding solutions that we may assume to have a polynomial-time 
complexity of O(N × M), where N is the size of the set and M is the target sum. This 
would appear to disqualify this problem as being NP-complete. However, this is actually 
not the case because M is not the size of the input, but rather its magnitude. Remember 
that computers represent integers in binary, and integers requiring a greater number of 
bits to represent them will also require a greater amount of time to process. Thus, every 
time the maximum value of M is doubled, it will essentially require twice the amount of 
time to compute.

So, unfortunately, our DP solution does not qualify as having polynomial complexity. 
We, therefore, define our approach to this problem as running in pseudo-polynomial 
time, and we can conclude that the subset sum problem is in fact NP-complete.

The Knapsack Problem
Now, let's reconsider the knapsack problem we looked at in Chapter 5, Greedy 
Algorithms, which we could describe as the subset sum problem's "big brother." It asks 
the following:

"Given a knapsack of limited capacity and a collection of weighted items of different 
values, what set of items can be contained within the knapsack that produces the greatest 
combined value without exceeding the capacity?"

This problem is also a characteristic example of NP-completeness, and as such, it 
shares many close ties to the other problems in this class.

Consider the following example:

Capacity —> 10 

Number of items —> 5

Weights —> { 2, 3, 1, 4, 6 } 

Values —>  { 4, 2, 7, 3, 9 }
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With this data, we can produce the following subsets: 

Figure 9.2: All possible subsets for the given 0-1 knapsack problem

This definitely appears to be familiar territory. Could this require little more than a 
slight modification to the subset sum algorithm?
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0-1 Knapsack – Extending the Subset Sum Algorithm

You may recall from our discussions in Chapter 6, Graph Algorithms I, that the previous 
example is that of the 0-1 knapsack problem. Here, we noticed another clear parallel 
between the current algorithm and the state logic we used to solve the subset sum 
problem.

In the subset sum problem, we concluded that for every element, x, at index i in set, we 
can do the following:

1.	 Add the value of x to a previously found subset sum.

2.	 Leave the subset sum as is.

This implies that a DP table entry for a new sum, y, at index i + 1 can be marked TRUE if 
it is as follows:

1.	 An existing sum, x, in the previous row of the table, that is, DP(i, x)

2.	 The combined sum of x with the current element at set[i], that is, DP(i, x + 
set[i])

In other words, whether or not a sum could be formed with a subset spanning the first 
i elements in the set was dependent on whether it had already been found earlier, 
or whether it could be found by adding the value of the current element to another 
previously found sum. 

In the current problem, we can observe that for every item, x, at index i in set with 
weight w, we can do either of the following:

1.	 Add the value of x to a previously found subset sum of the item values, as long as 
the combined total of the corresponding items' weights with w is less than or equal 
to the maximum capacity.

2.	 Leave the subset sum as is.

This, in turn, implies that the maximum value sum, y, that can be found at index i + 1 of 
the set of items with a combined weight W can be either of the following:

1.	 An existing maximum value sum, x, that had been found within the previous i 
items and had a combined weight of w

2.	 The combined sum of x with the value of the item at index i, assuming the weight 
of the item does not exceed capacity when added to w
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Stated differently, the maximum value sum that can be formed with a subset of items 
spanning the first i items and having a combined weight of w is either equal to the 
maximum sum corresponding to weight w for the previous i – 1 items or the sum 
produced by adding the current item's value to the total value of a previously found 
subset.

In pseudocode, we expressed the table-filling scheme for the subset sum problem as 
follows:

for sum (1 <= sum <= max_sum) found at index i of the set: 

   if sum < set[i-1]: 

    DP(i, sum) = DP(i-1, sum)

   if sum >= set[i-1]:

    DP(i, sum) = DP(i-1, sum) OR DP(i-1, sum - set[i-1])

The equivalent logic for the 0-1 knapsack problem would be as follows:

for total_weight (1 <= total_weight <= max_capacity) found at index i of the 
set:

  if total_weight < weight[i]:

     maximum_value(i, total_weight) = maximum_value(i-1, total_weight)

  if total_weight >= weight[i]:

     maximum_value(i, total_weight) = maximum of:

        1) maximum_value(i-1, total_weight)

        2) maximum_value(i-1, total_weight – weight[i]) + value[i]

Here, we can see that the general algorithmic concepts are practically identical: we 
are traversing a two-dimensional search space bounded by the size of the set and the 
maximum sum of the set's elements and determining whether new subset sums can 
be found. The difference is that we are not merely recording whether or not a certain 
subset sum exists, but rather, we are collecting the maximum corresponding value 
sums associated with each subset of items and organizing them according to their total 
combined weights. We'll take a look at its implementation in the following exercise.
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Exercise 41: 0-1 Knapsack Problem

We will now implement the preceding logic using the tabulated bottom-up approach. 
Let's get started:

1.	 We will begin by including the following headers:

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

2.	 Our first step will be to handle the input. We will need to declare two integers, 
items and capacity, which represent the total number of items to choose from and 
the weight limit of the knapsack. We will also need two arrays, value and weight, 
where we will store the data corresponding to each item:

int main()
{
    int items, capacity;

    cin >> items >> capacity;

    vector<int> values(items), weight(items);

    for(auto &v : values) cin >> v;
    for(auto &w : weight) cin >> w;

    ……
}

3.	 Now, we will define the function Knapsack_01(), which has parameters 
corresponding to the input and returns an integer:

int Knapsack_01(int items, int capacity, vector<int> value, vector<int> 
weight)
{
    ……
}
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4.	 Our DP table will be two-dimensional and will correspond quite closely to the 
table we used in the subset sum problem. In the subset sum table, the first 
dimension's size was initialized to one greater than the length of the set, while 
the second dimension's size was initialized to one greater than the maximum sum 
of all the elements in the set. Here, our first dimension's size will equivalently be 
initialized to items + 1; likewise, the second dimension's size will be initialized to 
capacity + 1:

vector<vector<int>> DP(items + 1, vector<int>(capacity + 1, 0));

5.	 We will need to iterate across the length of both dimensions starting from 1. At 
the beginning of each iteration of the outer loop, we will define two variables, 
currentWeight and currentValue, that correspond to the elements in weight[i-1] 
and values[i-1], respectively:

for(int i = 1; i <= items; i++)
{
    int currentWeight = weight[i-1];
    int currentValue = values[i-1];

    for(int totalWeight = 1; totalWeight <= capacity; totalWeight++)
    {
        ……
    }
}

6.	 Now, we will implement our tabulation scheme:

if(totalWeight < currentWeight)
{
    DP[i][totalWeight] = DP[i-1][totalWeight];
}
else 
{
    DP[i][totalWeight] = max(DP[i-1][totalWeight], DP[i-1][totalWeight - 
currentWeight] + currentValue);
}

7.	 At the end of our function, we return the final element of the table:

return DP[items][capacity];
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8.	 Now, we add a call to main() and print the output:

int result = Knapsack_01(items, capacity, values, weight);

cout << "The highest-valued subset of items that can fit in the knapsack 
is: " << result << endl;

return 0;

9.	 Let's try running our program using the following input:

8 66
20 4 89 12 5 50 8 13
5 23 9 72 16 14 32 4

The output should be as follows:

The highest-valued subset of items that can fit in the knapsack is: 180

As we can see, a relatively efficient DP solution to the knapsack problem is little more 
than a slight modification of the same algorithm we used to solve the subset sum 
problem. 

Unbounded Knapsack

The implementation we explored regarding the knapsack problem is the most 
traditional version, but as we mentioned earlier in this chapter, there are actually many 
varieties of this problem that can apply to different scenarios. We will now consider the 
case where we have unlimited amounts of each item in the set.

Let's consider an example where we find the solution by brute force:

Capacity = 25

Values —> { 5, 13, 4, 3, 8  }

Weight —> { 9, 12, 3, 7, 19 }

{ 0 } —> Weight = 9, Value = 5

{ 1 } —> Weight = 12, Value = 13

{ 2 } —> Weight = 3, Value = 4

{ 3 } —> Weight = 7, Value = 3
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{ 4 } —> Weight = 32, Value = 8

{ 0, 0 } —> Weight = 18, Value = 10

{ 0, 1 } —> Weight = 21, Value = 18

{ 0, 2 } —> Weight = 12, Value = 9

{ 0, 3 } —> Weight = 16, Value = 8

{ 0, 4 } —> Weight = 28, Value = 13

{ 1, 1 } —> Weight = 24, Value = 26

{ 1, 2 } —> Weight = 15, Value = 17

{ 1, 3 } —> Weight = 19, Value = 16

{ 1, 4 } —> Weight = 31, Value = 21

{ 2, 2 } —> Weight = 6, Value = 8

{ 2, 3 } —> Weight = 10, Value = 7

{ 2, 4 } —> Weight = 22, Value = 12

{ 3, 3 } —> Weight = 14, Value = 6

{ 3, 4 } —> Weight = 26, Value = 11

{ 4, 4 } —> Weight = 38, Value = 16

{ 0, 0, 0 } —> Weight = 27, Value = 15

{ 0, 0, 1 } —> Weight = 30, Value = 26

{ 0, 0, 2 } —> Weight = 21, Value = 14

{ 0, 0, 3 } —> Weight = 25, Value = 13

{ 0, 0, 4 } —> Weight = 37, Value = 18

{ 0, 1, 1 } —> Weight = 33, Value = 31

……

From a brute-force perspective, this problem seems to be significantly more complex. 
Let's restate our pseudocode logic from the 0-1 knapsack implementation to handle this 
extra stipulation.
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The maximum value sum, y, that can be found at index i of the set of items with a 
combined weight total_weight can be either of the following:

1.	 An existing maximum value sum, x, that had been found within the previous i - 1 
items and also had a combined weight equal to total_weight

2.	 Assuming total_weight can be formed by adding current_weight to some other 
subset's total weight found within the previous i – 1 items:

a) The sum of the current item's value with the maximum value sum for subsets 
spanning the previous i - 1 items and having a combined weight of total_weight 
– current_weight 

b) The sum of the current item's value with some previous y found in the recent 
iteration having a combined weight of total_weight – current_weight

In terms of the DP table, we can represent the new logic as follows:

for total_weight (1 <= total_weight <= max_capacity) found at index i of the 
set:

    if total_weight < set[i-1]:

      maximum_value(i, total_weight) = maximum_value(i-1, total_weight)

    

    if total_weight >= set[i-1]:

      maximum_value(i, total_weight) = maximum of:

        1) maximum_value(i-1, total_weight)

        2) maximum_value(i-1, total_weight - current_weight) + current_value

        3) maximum_value(i, total_weight - current_weight) + current_value

We can implement this like so:

auto max = [](int a, int b, int c) { return std::max(a, std::max(b, c)); };

for(int i = 1; i <= items; i++)

{

    int current_weight = weight[i—1];
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    int value = values[i-1];

    for(int total_weight = 0; total_weight <= capacity; w++)

    {

        if(total_weight < current_weight)

        {

            DP[i][total_weight] = DP[i-1][total_weight];

        }

        else 

        {

            DP[i][total_weight] = max

            (

                DP[i-1][total_weight], 

                DP[i-1][total_weight – current_weight] + value, 

                DP[i][total_weight – current_weight] + value

            );

        }

    }

}

Logically, this approach will work, but it turns out that this is actually not the most 
efficient implementation. Let's understand its limitations and how to overcome them in 
the following section.

State Space Reduction

One rather tricky aspect of using DP effectively is the concept of state space reduction, 
which is the act of reformulating a working DP algorithm to use the minimal amount of 
space required to represent a state. This often comes down to exploiting some pattern 
or symmetry inherent to the nature of the problem. 
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To demonstrate this concept, let's consider the problem of finding the value in the nth 
row and mth column of Pascal's triangle, which can be represented as follows:

Figure 9.3: Pascal's triangle

Pascal's triangle is built according to the following logic:

For m <= n:

        Base case:

            m = 1, m = n —> triangle(n, m) = 1

        Recurrence: 

            triangle(n, m) = triangle(n-1, m-1) + triangle(n-1, m)

In other words, the first value in every row is 1, and each subsequent column value is 
equal to the sum of the current and previous columns of the previous row. As you can 
see from the following figure, in the second column of the second row, we get 2 by 
adding the elements in the second (1) and the first column (1) from the previous row:

Figure 9.4: Getting the next values in Pascal's triangle
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Solving the problem of finding the value in the nth row and mth column using tabulation 
could be done as follows:

vector<vector<int>> DP(N + 1, vector<int>(N + 1, 0));

DP[1][1] = 1;

for(int row = 2; row <= N; row++)

{

    for(int col = 1; col <= row; col++)

    {

        DP[row][col] = DP[row-1][col-1] + DP[row-1][col];

    }

}

The DP table that was built in the preceding code would look like this for N = 7:

Figure 9.5: Pascal's triangle represented as an N × N DP table
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As we can see, this algorithm is quite wasteful both in terms of memory usage and 
redundant calculations. The immediately apparent problem is the fact that the table has 
N + 1 columns, despite the fact that only one row ever contains that many values. We 
could easily reduce space complexity by initializing each row as needed, sized according 
to the number of elements it requires, which reduces the space required by the table 
from N2 to N × (N + 1) / 2. Let's modify our implementation as follows:

vector<vector<int>> DP(N + 1);

DP[1] = { 0, 1 };

for(int row = 2; row <= N; row++)

{

    DP[row].resize(row + 1);

    for(int col = 1; col <= row; col++)

    {            

        int a = DP[row-1][col-1];

        int b = DP[row-1][min(col, DP[row-1].size()-1)];

        DP[row][col] = a + b;

    }

}

We may further observe that there is a symmetrical relationship between the first and 
second half of each row, which means that we really only need to calculate the values 
for the first (n/2) columns. Therefore, we have the following:

DP(7, 7) ≡ DP(7, 1)
DP(7, 6) ≡ DP(7, 2)
DP(7, 5) ≡ DP(7, 3)

We could state this in a generalized way like so:

DP(N, M) ≡ DP(N, N - M + 1)
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Considering this, we could modify our implementation as follows:

vector<vector<int>> DP(N + 1);

DP[0] = { 0, 1 };

for(int row = 1; row <= N; row++)

{

    int width = (row / 2) + (row % 2);

    DP[row].resize(width + 2);

    for(int col = 1; col <= width; col++)

    {

        DP[row][col] = DP[row-1][col-1] + DP[row-1][col];

    }

    if(row % 2 == 0) 

    {

        DP[row][width+1] = DP[row][width];

    }

}

……

for(int i = 0; i < queries; i++)

{

    int N, M;

    cin >> N >> M;
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    if(M * 2 > N)

    {

        M = N - M + 1;

    } 

    cout << DP[N][M] << endl;

}

Finally, assuming we were able to receive input queries in advance and precompute the 
results, we could abandon storing the full table entirely since only the previous row 
is needed to produce results for the current row. Hence, we could further modify our 
implementation as follows:

map<pair<int, int>, int> results;

vector<pair<int, int>> queries;

int q;

cin >> q;

int maxRow = 0;

for(int i = 0; i < q; i++)

{

    int N, M;

    cin >> N >> M;

    queries.push_back({N, M});

        

    if(M * 2 > N) M = N - M + 1;

    results[{N, M}] = -1; 

    maxRow = max(maxRow, N);

}

vector<int> prev = { 0, 1 };
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for(int row = 1; row <= maxRow; row++)

{

    int width = (row / 2) + (row % 2);

    vector<int> curr(width + 2);

    for(int col = 1; col <= width; col++)

    {

        curr[col] = prev[col-1] + prev[col];

        if(results.find({row, col}) != results.end())

        {

            queries[{row, col}] = curr[col];

        }

    }

    if(row % 2 == 0)

    {

        curr[width + 1] = curr[width];

    }

    prev = move(curr);

}

for(auto query : queries)

{

    int N = query.first, M = query.second;

    if(M * 2 > N) M = N - M + 1;

    

    cout << results[{N, M}] << endl;

}
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Now, let's get back to the unbounded knapsack problem:

Capacity     —>   12

Values       —> { 5, 1, 6, 3, 4 }

Weight       —> { 3, 2, 4, 5, 2 }

The DP table that was constructed by our proposed solution in the previous section 
would look like this:

Figure 9.6: Two-dimensional DP table constructed by the proposed algorithm

The logic that we used to produce the preceding table was based on the approach we 
used to solve the 0-1 form of the knapsack problem, and thus, we assumed that the 
maximum value sum for a given weight and i types of items, that is, DP(i, weight), 
could be as follows:

1.	 The maximum value sum for the same weight and i - 1 types of items, without 
including the current item, that is, DP(i - 1, weight)
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2.	 The sum of the current item's value with the maximum sum for i - 1 types of 
items, that is, DP(i - 1, weight - w) + value

3.	 The sum of the current item's value with the maximum sum for i types of items if 
the item is to be included more than once, that is, DP(i, weight - w) + value

The first two conditions correspond to the logic of the 0-1 knapsack problem. However, 
considering them within the context of the unbounded knapsack and checking them 
against the table that was produced by our algorithm, we can actually conclude that the 
first two conditions are essentially irrelevant. 

In the original problem, we were concerned about the values for i - 1 items because 
we needed to decide whether to include or exclude item i, but in this problem, we 
have no reason to exclude any of the items as long as their weight doesn't exceed the 
knapsack's capacity. In other words, the conditions dictating each state transition are 
bounded only by the weight and are therefore representable in one dimension!

This leads to an important distinction that must be made: the dimensions required to 
simulate a state are not necessarily the same as the dimensions required to describe a 
state. Until now, every DP problem we have examined, when cached, results in a form 
that was essentially equivalent to the state itself. However, in the unbounded knapsack 
problem, we can describe each state as follows:

"For each item of weight w and value v, the maximum value of a knapsack of capacity C is 
equal to v plus the maximum value of a knapsack of capacity C – w."

Consider the following input data:

Capacity —> 12

Values   —> { 5, 1, 6, 3, 4 }

Weight   —> { 3, 2, 4, 5, 2 }
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In the following table, each row represents a weight, w, from 0 to the maximum 
capacity, and each column represents the index, i, of an item. The number in every cell 
represents the maximum value sum for each weight after the item at index i has been 
considered:

Figure 9.7: Subproblem results for each weight-index pair 



The Knapsack Problem | 441

As demonstrated in the preceding table, the allowance of duplicates means that no 
item needs to be excluded as long as its inclusion fits within the maximum capacity. 
Therefore, whether or not the weight sum could be found at index 0 or index 1,000 
of the collection is irrelevant because we are never going to leave a previously found 
subset sum as is unless adding to it exceeds the defined bounds of the knapsack. This 
means that there is no advantage to maintaining a record of the item's index, which 
allows us to cache our subproblems in a single dimension – the combined weight of any 
number of items encountered. We'll look at its implementation in the following exercise.

Exercise 42: Unbounded Knapsack

In this exercise, we shall apply the concept of state space reduction to the unbounded 
knapsack problem by representing our DP table in one dimension. Let's get started:

1.	 Let's use the same headers and input that we used in the previous exercise:

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

……

int main()
{
    int items, capacity;

    cin >> items >> capacity;

    vector<int> values(items), weight(items);

    for(auto &v : values) cin >> v;
    for(auto &w : weight) cin >> w;

    ……
}
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2.	 Now, we will implement a function called UnboundedKnapsack() that returns an 
integer. Its parameters will be identical to the input:

int UnboundedKnapsack(int items, int capacity, vector<int> values, 
vector<int> weight)
{
    ……
}

3.	 Our DP table will be represented as an integer vector with size equal to capacity + 
1, with each index initialized to 0:

vector<int> DP(capacity + 1, 0);

4.	 Like the 0-1 knapsack problem, our state logic will be contained in two nested 
loops; however, in this variation of the problem, we will invert the nesting of the 
loops so that the outer loop iterates from 0 to capacity (inclusive), and the inner 
loop iterates through the item indices:

for(int w = 0; w <= capacity; w++)
{
    for(int i = 0; i < items; i++)
    {
        ……
    }
} 

5.	 Now, we must decide on how to cache our states. Our only concern is that the 
capacity is not exceeded by the weights of the chosen items. Since our table is 
only large enough to represent weight values from 0 to capacity, we only need to 
make sure that the difference between w and weight[i] is non-negative. Thus, all 
of the assignment logic can be contained within a single if statement:

for(int w = 0; w <= capacity; w++)
{
    for(int i = 0; i < items; i++)
    {
        if(weight[i] <= w)
        {
            DP[w] = max(DP[w], DP[w - weight[i]] + values[i]);
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        }
    }
}

return DP[capacity];

6.	 Now, let's return to main(), add a call to UnboundedKnapsack(), and output the 
results:

int main()
{
        ……

    int result = UnboundedKnapsack(items, capacity, values, weight);

    cout << "Maximum value of items that can be contained in the knapsack: 
" << result << endl;

    return 0;
}

7.	 Try running your program with the following input:

30 335
91 81 86 64 24 61 13 57 60 25 94 54 39 62 5 34 95 12 53 33 53 3 42 75 56 1 
84 38 46 62 
40 13 4 17 16 35 5 33 35 16 25 29 6 28 12 37 26 27 32 27 7 24 5 28 39 15 
38 37 15 40 

Your output should be as follows:

Maximum value of items that can be contained in the knapsack: 7138

As demonstrated by the preceding implementation, it is often worth it to consider 
less costly ways to cache solutions in a DP algorithm. Problems that seem to require 
complex state representations can often be simplified significantly after closer 
examination.
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Activity 22: Maximizing Profit

You are working for a large chain of department stores. Like any retail business, your 
company purchases items from wholesale distributors in large quantities and then 
sells them at a higher price to gain profit. Certain types of products that are being sold 
in your store can be purchased from multiple different distributors, but the quality 
and price of the products can vary considerably, which naturally has an effect on its 
corresponding retail value. Once factors such as exchange rates and public demand 
are taken into account, products from certain distributors can often be bought at a 
much lower price per unit than what they can ultimately be sold for. You have been 
tasked with designing a system that calculates the maximum profit you can gain with an 
allotted budget.

You have been provided with a catalog of similar products. Each listed product has the 
following information:

•	 The wholesale price of the product

•	 The amount of profit that can be made by selling the same product after markup

•	 The quantity of the product sold per unit by the distributor

Given that the distributor will only sell the product in the exact quantity specified, your 
task is to determine the maximum amount of money that can be made by purchasing 
some subset of the listed products. To ensure that the store offers a variety of choices, 
each item that's listed can only be purchased once.

Since you only have a limited amount of warehouse space and don't want to overstock 
a particular type of item, you are also given a restriction on the maximum number of 
individual units that can be purchased. Therefore, your program should also ensure that 
the combined number of products that are bought does not exceed this limit.

Example

Say five items are listed in the catalog with the following information:

Figure 9.8: Sample values for profit optimization
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You have a budget of $100 and a warehouse capacity of 20 units. The following sets of 
purchases would be valid:

{ A B }    Cost: 30     | Quantity: 15    | Value: 70

{ A D }    Cost: 70     | Quantity: 13    | Value: 110

{ A E }    Cost: 60     | Quantity: 14    | Value: 130

{ B C }    Cost: 25     | Quantity: 17    | Value: 40

{ C D }    Cost: 65     | Quantity: 15    | Value: 80

{ C E }    Cost: 55     | Quantity: 16    | Value: 100

{ D E }    Cost: 90     | Quantity: 7     | Value: 140

{ A B D }  Cost: 80     | Quantity: 18    | Value: 130

{ A B E }  Cost: 70     | Quantity: 19    | Value: 150

{ B C D }  Cost: 75     | Quantity: 20    | Value: 100

{ B D E }  Cost: 100    | Quantity: 12    | Value: 160

Thus, the program should output 160.

Input

The first line contains three integers, N as the number of distributors, budget as the 
maximum amount of money that can be spent, and capacity as the maximum number of 
units that can be purchased.

The next N lines should contain three space-separated integers:

•	 quantity: The quantity per unit offered by the distributor

•	 cost: The price of the item

•	 value: The amount of profit that can be gained after selling the product

Output

A single integer representing the maximum amount of profit that can be made by 
choosing some subset of items from the catalog.
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Test cases

The following set of test cases should help you understand this problem better:

Figure 9.9: Activity 22 test case 1

Figure 9.10: Activity 22 test case 2

Figure 9.11: Activity 22 test case 3
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Figure 9.12: Activity 22 test case 4

Activity Guidelines

•	 The implementation that's required is very similar to the 0-1 knapsack problem.

•	 Since there are two constraints (capacity and budget), the DP table will require 
three dimensions. 

Note

The solution to this activity can be found on page 581.

Graphs and Dynamic Programming
In this section, we have discussed advanced graph algorithms and DP as distinctly 
different topics, but as is often the case, they can be used concurrently depending 
on the type of problem we are trying to solve and the nature of the graph. Several 
problems commonly associated with graphs are identified as NP-complete (graph 
coloring and the vertex cover problem, to name two examples) and can, under the right 
circumstances, be solved with dynamic programming. However, most of these topics 
are outside the scope of this book (and are actually worthy of having entire books 
dedicated specifically to their analysis).
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However, one problem in graph theory is particularly well suited to the DP approach, 
and fortunately, it is one we are already very familiar with: the  
shortest-path problem. In fact, in Chapter 7, Graph Algorithms II, we actually discussed 
an algorithm that's commonly categorized under the DP umbrella, despite the fact that 
we never identified it as such.

Reconsidering the Bellman-Ford Algorithm

In our exploration of the Bellman-Ford algorithm, we were viewing it in light of our 
previous discussions of Dijkstra's algorithm, with which it certainly shares some 
similarities. But now that we have a solid grasp of the concepts underlying the 
dynamic programming paradigm, let's reconsider Bellman-Ford according to our new 
understanding.

In brief, the approach that's used by Bellman-Ford can be described as follows:

Given a source node called start, the number of vertices, V, and the edges, E, of a graph, 
do the following:

1.	 Mark distances of each node from 0 to V – 1 (inclusive) as UNKNOWN, except for 
start, which is 0.

2.	 Iterate from 1 to V – 1 (inclusive).

3.	 On each iteration, consider every edge in E and check to see whether the source 
node's respective distance value is UNKNOWN. If not, then compare the neighboring 
node's currently stored distance to the sum of the source node's distance with the 
edge weight between them.

4.	 If the sum of the source node's distance with the edge weight is less than the 
destination node's distance, update the destination node's distance to the lesser 
value.

5.	 After V – 1 iterations, either the shortest path has been found or the graph has 
a negative weight cycle, which can be determined with an additional iteration 
through the edges.
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The success of this algorithm is clearly dependent on the fact that the problem exhibits 
an optimal substructure. We can illustrate the recursive logic behind this concept as 
follows:

Figure 9.13: Visualizing the Bellman-Ford algorithm

Expressing this as pseudocode would look something like the following:

Source —> A

Destination —> E

The shortest path from A to E is equal to:

    …the edge weight from A to B (4), plus…

        …the shortest path from B to E, which is:

            …the edge weight from B to C (3), plus:

                …the edge weight from C to E (2).

            …or the edge weight from B to E (9).

    …or the edge weight from A to D (3), plus:

        …the shortest path from D to E, which is:

            …the edge weight from D to B (8), plus:

                …the shortest path from B to E (9), which is:
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                    …the edge weight from B to C (3), plus:

                        …the edge weight from C to E (2).

                    …or the edge weight from B to E (9).

            …the edge weight from D to C (3), plus:

                …the edge weight from C to E (2).

            …or the edge weight from D to E (7).

Clearly, the shortest-path problem also possesses the overlapping subproblems 
property. Bellman-Ford effectively avoids recomputation due to two key observations:

•	 The maximum number of moves that can be made in a non-cyclic traversal 
between any two nodes in a graph is | V – 1 | (that is, every node in the graph 
minus the starting node).

•	 The shortest path between a source node and every reachable node after N 
iterations is equivalent to the shortest paths to every node that's reachable after | 
N – 1 | iterations, plus the edge weights to each of their neighbors.

The following set of figures should help you better visualize the steps in the Bellman-
Ford algorithm:

Figure 9.14: Bellman-Ford Step 1
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Figure 9.15: Bellman-Ford Step 2

Figure 9.16: Bellman-Ford Step 3

The specific problem that Bellman-Ford is said to solve is known as the single-source 
shortest path problem because it is used to find the shortest paths for a single node. 
In Chapter 7, Graph Algorithms II, we discussed Johnson's algorithm, which solves what 
is known as the all-pairs shortest path problem because it finds the shortest paths 
between every pair of vertices in the graph. 

Johnson's algorithm combined the DP approach seen in the Bellman-Ford algorithm 
with the greedy approach seen in Dijkstra's. In this section, we will explore a complete 
DP implementation of the all-pairs shortest path problem. However, let's consider the 
nature of the problem a bit deeper by implementing a top-down solution.
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Approaching the Shortest Path Problem as a DP Problem

One way to better understand the logic behind Bellman-Ford is to transform it into a 
top-down solution. To do this, let's start by considering our base cases.

Bellman-Ford performs V – 1 iterations through the edges of the graph, typically by 
way of a for loop. Since our previous implementations have iterated from 1 to V – 1 
inclusive, let's have our top-down solution begin at V – 1 and decrement to 0. In terms 
of our recurrence structure, let's say that every state can be described as follows:

ShortestPath(node, depth)

node —> the node being considered

depth —> the current iteration in the traversal

Therefore, our first base case can be defined as follows:

if depth = 0:

        ShortestPath(node, depth) —> UNKNOWN

In other words, if depth has been decremented to 0, we can conclude that no path exists 
and terminate our search. 

The second base case we need to handle is, of course, the point where we find a path 
from the source to the target. In this case, the depth of the search is irrelevant; the 
shortest distance from the target to itself will always be 0: 

if node = target: 

        

        ShortestPath(node, depth) —> 0

Now, let's define our intermediate states. Let's review what the iterative approach that's 
used by Bellman-Ford looks like:

for i = 1 to V - 1:

        for each edge in graph:

            edge —> u, v, weight 



Graphs and Dynamic Programming | 453

            if distance(u) is not UNKNOWN and distance(u) + weight < 
distance(v):

                distance(v) = distance(u) + weight

In terms of a recursive traversal, this can be restated as follows:

for each edge adjacent to node:

    

        edge —> neighbor, weight

    if ShortestPath(neighbor, depth - 1) + weight < ShortestPath(node, 
depth):

            ShortestPath(node, depth) = ShortestPath(neighbor, depth - 1) + 
weight

Since every state can be uniquely described according to these two dimensions and the 
possible existence of cycles means that we are likely to encounter the same states more 
than once, we can conclude that caching according to node-depth pairs is both valid 
and useful for memoization purposes:

Depth = 7:

    SP(0, 7): 0

    SP(1, 7): 6

    SP(2, 7): UNKNOWN

    SP(3, 7): 12

    SP(4, 7): UNKNOWN

    SP(5, 7): UNKNOWN

    SP(6, 7): 13

    SP(7, 7): UNKNOWN

Depth = 6:

    SP(0, 6): 0

    SP(1, 6): 6

    SP(2, 6): 14

    SP(3, 6): 12
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    SP(4, 6): UNKNOWN

    SP(5, 6): UNKNOWN

    SP(6, 6): 12

    SP(7, 6): 15

Depth = 5:

    SP(0, 5): 0

    SP(1, 5): 6

    SP(2, 5): 14

These states are illustrated in the following figure:

Figure 9.17: All the states for the shortest-path problem 

We'll look at the implementation of this approach in the following exercise.
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Exercise 43: Single-Source Shortest Paths (Memoization)

In this exercise, we shall take the top-down DP approach to finding a solution to the 
single-source shortest path problem. Let's get started:

1.	 Let's begin by including the following headers and the std namespace, as well as 
defining an UNKNOWN constant:

#include <iostream>
#include <vector>
#include <utility>
#include <map>
using namespace std;

const int UNKNOWN = 1e9;

2.	 Let's also declare V and E (the number of vertices and the number of edges, 
respectively), as well as two two-dimensional integer vectors, adj (an adjacency 
list of our graph) and weight (a matrix of edge weight values). Finally, we will define 
a memoization table called memo. This time, we will use std::map to simplify the 
differentiation between checking whether a key exists in the cache versus whether 
its value is unknown:

int V, E;

vector<vector<int>> adj;
vector<vector<int>> weight;

map<pair<int, int>, int> memo;

3.	 In the main() function, we should handle input so that we receive the graph we 
wish to apply the algorithm to. The first line of input will contain V and E, and the 
following E lines will contain three integers: u, v, and w (the source, destination, and 
weight of each edge, respectively):

int main()
{
        int V, E;
        cin >> V >> E;

        weight.resize(V, vector<int>(V, UNKNOWN));
        adj.resize(V);

        for(int i = 0; i < E; i++)
        {
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            int u, v, w;
            cin >> u >> v >> w;

            adj[u].push_back(v);
            weight[u][v] = w;
        }
        …
}

4.	 We will now define a function called SingleSourceShortestPaths() that will take 
one argument—source, which is the index of the source vertex—and will return an 
integer vector:

vector<int> SingleSourceShortestPaths(int source)
{
        ……
}

5.	 Now we will need to make some preliminary modifications to our graph. As 
opposed to traversing from the source node to all the other nodes in the graph, we 
will instead begin each traversal from the other nodes and calculate the shortest 
path from the source in reverse. Since our graph is directed, we will have to use its 
transpose to accomplish this:

// Clear table

vector<vector<int>> adj_t(V);
vector<vector<int>> weight_t(V, vector<int>(V, UNKNOWN));

for(int i = 0; i < V; i++)
{
        // Create transpose of graph
        for(auto j : adj[i])
        {
            adj_t[j].push_back(i);
            weight_t[j][i] = weight[i][j];
        }

        // Base case — shortest distance from source to itself is zero at 
any depth
        memo[{source, i}] = 0;
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        if(i != source) 
        {
            // If any node other than the source has been reached 
            // after V - 1 iterations, no path exists.

            memo[{i, 0}] = UNKNOWN;
        }
}

Here, we defined two new two-dimensional integer vectors, adj_t and weight_t, 
which will correspond to the adjacency list and weight matrix for the transpose 
graph. We then used a nested loop to create our modified graph, as well as 
initialized the values in our memo table.

6.	 We should now define the ShortestPath_Memoization() function with four 
parameters: two integers, depth and node, and adj and weight (which, in this case, 
will be references to the transpose graph):

    int ShortestPath_Memoization(int depth, int node, vector<vector<int>> 
&adj, vector<vector<int>> &weight)
{
        ……
    }

7.	 Our algorithm will essentially be a standard depth-first search, except we will 
cache the results for each { node, depth } pair at the end of each function call. At 
the top of the function, we will check for a cached result and return it if the key 
exists in the map:

// Check if key exists in map
if(memo.find({node, depth}) != memo.end())
{
    return memo[{node, depth}];
}

memo[{node, depth}] = UNKNOWN;

// Iterate through adjacent edges
for(auto next : adj[node])
{
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    int w = weight[node][next];
    int dist = ShortestPath_Memoization(depth - 1, next, adj, weight) + w;

    memo[{node, depth}] = min(memo[{node, depth}], dist);
}

return memo[{node, depth}];

8.	 Back in the SingleSourceShortestPaths() function, we will define an integer 
vector called distance of size V and fill it through successive calls to ShortestPath_
Memoization():

vector<int> distance;
 
for(int i = 0; i < V; i++)
{
    distance[i] = ShortestPath_Memoization(V - 1, i, adj_t, weight_t);
}

return distance;

9.	 Back in main(), we will define a two-dimensional integer matrix called paths, which 
will store the distances returned from SingleSourceShortestPaths() for each node 
index from 0 to V:

vector<vector<int>> paths(V);

for(int i = 0; i < V; i++)
{
    paths[i] = SingleSourceShortestPaths(i);
}

10.	 We can now use the paths table to print the distance values for every pair of nodes 
in the graph:

cout << "The shortest distances between each pair of vertices are:" << 
endl;

for(int i = 0; i < V; i++)
{
        for(int j = 0; j < V; j++)
        {
          cout << "\t" << j << ": ";
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          (paths[i][j] == UNKNOWN) ? cout << "- ";
                                   : cout << paths[i][j] << " ";

        }
        cout << endl;
}

11.	 Now, run your code with the following input:

8 20
0 1 387
0 3 38
0 5 471
1 0 183
1 4 796
2 5 715
3 0 902
3 1 712
3 2 154
3 6 425
4 3 834
4 6 214
5 0 537
5 3 926
5 4 125
5 6 297
6 1 863
6 7 248
7 0 73
7 3 874

The output should be as follows:

The shortest distances between each pair of vertices are:
0: 0 387 192 38 596 471 463 711 
1: 183 0 375 221 779 654 646 894 
2: 1252 1639 0 1290 840 715 1012 1260 
3: 746 712 154 0 994 869 425 673 
4: 535 922 727 573 0 1006 214 462 
5: 537 924 729 575 125 0 297 545 
6: 321 708 513 359 917 792 0 248 
7: 73 460 265 111 669 544 536 0  
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Unsurprisingly, this is not the preferred way of handling this particular problem, 
but as with the previous exercises, we can learn quite a bit about how the optimal 
substructure is formed by implementing recursive solutions like this one. With these 
insights, we are now equipped to fully understand how the shortest distances between 
every pair of nodes can be found simultaneously using tabulation.

All-Pairs Shortest Path

Our program from the previous exercise does print the shortest paths for every vertex 
pair, but its efficiency is roughly equivalent to performing V calls to Bellman-Ford, with 
the added memory-related disadvantages associated with recursive algorithms. 

Thankfully, there is a very useful bottom-up algorithm for this problem that is equipped 
to handle everything that the others can in O(V3) time and O(V2) space. It is also quite 
intuitive, particularly after having implemented the other shortest path algorithms in 
this book.

The Floyd-Warshall Algorithm

By now, we should have a fairly clear grasp of how the Bellman-Ford algorithm 
exploits the optimal substructure that's exhibited in the shortest path problem. The 
key takeaway is that any shortest path between two graph vertices is going to be a 
combination of some other shortest path beginning from the source and the edge 
connecting the path's endpoint to the destination vertex.

The Floyd-Warshall algorithm uses this same concept to great effect by making an 
even broader generalization:

"If the shortest distance between Node A and Node B is AB, and the shortest distance 
between Node B and Node C is BC, then the shortest distance between Node A and Node C 
is AB + BC."

This logic certainly isn't groundbreaking in and of itself; however, combined with the 
insight demonstrated by Bellman-Ford—that V iterations across the edges of a graph is 
sufficient to determine the shortest path from a source node and every other node in a 
graph—we can use this idea to successively generate the shortest paths between pairs 
of nodes with Node A as the source, and then use those results to generate potential 
shortest paths for Node B, C, D, and so on.
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Floyd-Warshall accomplishes this by performing V3 iterations across the vertices. The 
first dimension represents a potential midpoint, B, between every possible pair of 
vertices A and C. The algorithm then checks whether the currently known distance 
value from A to C is greater than the sum of the shortest known distances from A to B 
and B to C. If so, it determines that that sum is at least closer to the optimal shortest 
distance value for A and C, and caches it in a table. Floyd-Warshall makes these sets of 
comparisons using every node in the graph as a midpoint, continuously improving the 
accuracy of its results. After every possible start and end point pair has been tested 
against every possible midpoint, the results in the table contain the correct shortest 
distance values for every pair of vertices.

Just like any graph-related algorithm, Floyd-Warshall is not guaranteed to be the best 
choice in every given circumstance, and comparative complexity between Floyd-
Warshall and other alternatives should always be considered. A good rule of thumb is 
to use Floyd-Warshall for dense graphs (that is, graphs containing a large number of 
edges). Imagine, for example, that you have a graph with 100 vertices and 500 edges. 
Running the Bellman-Ford algorithm (with a worst-case complexity of O(V×E)) on each 
starting vertex successively could potentially lead to a total complexity of 500×100×100 
(or 5,000,000) operations, whereas Floyd-Warshall would require 100×100×100 (or 
1,000,000) operations. Dijkstra's algorithm is usually more efficient than Bellman-Ford 
and may also be a viable alternative. Nevertheless, one distinct advantage of Floyd-
Warshall is the fact that the overall complexity of the algorithm is always exactly O(V3), 
regardless of the other properties of the input graph. So, we do not need to know any 
details about the graph we are using other than the number of vertices to be able to 
determine exactly how efficient (or inefficient) Floyd-Warshall will be.

A final point to consider is the fact that, like Bellman-Ford (and unlike Dijkstra's 
algorithm), Floyd-Warshall is equipped to handle graphs with negative edge weights but 
will also be thwarted by negative edge weight cycles without explicit handling.

We'll implement the Floyd-Warshall algorithm in the following exercise.
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Exercise 44: Implementing the Floyd-Warshall Algorithm

In this exercise, we shall find the shortest distance between every pair of vertices using 
the Floyd-Warshall algorithm. Let's get started:

1.	 We will begin by including the following headers and defining an UNKNOWN constant:

#include <iostream>
#include <vector>
using namespace std;

const int UNKNOWN = 1e9;

2.	 Let's begin by handling the input almost exactly like we did in the previous 
exercise. This time, however, we have no need for an adjacency list representation 
of the graph:

int main()
{
        int V, E;
        cin >> V >> E;

        vector<vector<int>> weight(V, vector<int>(V, UNKNOWN));

        for(int i = 0; i < E; i++)
        {
            int u, v, w;
            cin >> u >> v >> w;

            weight[u][v] = w;
        }
        ……

        return 0;
}

3.	 Our FloydWarshall() function will take two arguments—V and weight—and will 
return a two-dimensional integer vector of shortest-path distances:

vector<vector<int>> FloydWarshall(int V, vector<vector<int>> weight)
{
        ……
}
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4.	 Let's define a two-dimensional DP table with the name distance and with every 
value initialized to UNKNOWN. Then, we need to assign the initially known shortest 
distance "estimates" for each pair of nodes (that is, the values in the weight matrix), 
as well as the base case values (that is, the shortest distance from every node to 
itself, 0):

    vector<vector<int>> distance(V, vector<int>(V, UNKNOWN));

for(int i = 0; i < V; i++)
{
    for(int j = 0; j < V; j++)
    {
        distance[i][j] = weight[i][j];
    }
    distance[i][i] = 0;
}

5.	 We will now perform three nested for loops from 0 to V – 1 (inclusive), with the 
outer loop representing the current intermediate vertex, mid, the middle loop 
representing the source vertex, start, and the innermost loop representing 
the destination vertex, end.  We will then compare distance values between 
every combination of vertices and reassign the distance value from start to end 
whenever a shorter path is found: 

for(int mid = 0; mid < V; mid++)
{
    for(int start = 0; start < V; start++)
    {
        for(int end = 0; end < V; end++)
        {
            if(distance[start][mid] + distance[mid][end] < distance[start]
[end])
            {
                distance[start][end] = distance[start][mid] + 
distance[mid][end];
            }
        }
    }
}
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6.	 Similar to Bellman-Ford, we will need to check for negative cycles if our input is 
expected to contain negative edge weights. Thankfully, this can be accomplished 
with great ease using the distance table.

Consider the fact that a graph cycle is a path that has a length greater than zero 
and is where the start and end vertices are the same. In a table representing 
distances between each pair of nodes, the shortest path between a node and itself 
will be contained in distance[node][node]. In a graph containing only positive 
edge weights, the value contained in distance[node][node] can clearly only ever be 
equal to 0; however, if the graph contains a negative weight cycle, distance[node]
[node] will be negative. Thus, we can test for negative cycles like so:

for(int i = 0; i < V; i++)
{
        // If distance from a node to itself is negative, there must be a 
negative cycle

        if(distance[i][i] < 0)
        {
            return {};
        }
} 

return distance;

7.	 Now that we have finished writing the algorithm, we can perform a call to 
FloydWarshall() in main() and output the results:

int main()
{
    ……

    vector<vector<int>> distance = FloydWarshall(V, weight);

    // Graphs with negative cycles will return an empty vector
    if(distance.empty())
    {
        cout << "NEGATIVE CYCLE FOUND" << endl;
        return 0;
    }

    for(int i = 0; i < V; i++)
    {
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        cout << i << endl;

        for(int j = 0; j < V; j++)
        {
            cout << "\t" << j << ": ";
                
            (distance[i][j] == UNKNOWN) 
                ? cout << "_" << endl 
                : cout << distance[i][j] << endl;
        }
    }
    return 0;
}

8.	 Let's run our program on the following set of input:

Input:

7 9
0 1 3
1 2 5
1 3 10
1 5 -4
2 4 2
3 2 -7
4 1 -3
5 6 -8
6 0 12

Output:

0:
        0: 0
        1: 3
        2: 6
        3: 13
        4: 8
        5: -1
        6: -9
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1:
        0: 0
        1: 0
        2: 3
        3: 10
        4: 5
        5: -4
        6: -12
2:
        0: -1
        1: -1
        2: 0
        3: 9
        4: 2
        5: -5
        6: -13
3:
        0: -8
        1: -8
        2: -7
        3: 0
        4: -5
        5: -12
        6: -20
4:
        0: -3
        1: -3
        2: 0
        3: 7
        4: 0
        5: -7
        6: -15
5:
        0: 4
        1: 7
        2: 10
        3: 17
        4: 12
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        5: 0
        6: -8
6:
        0: 12
        1: 15
        2: 18
        3: 25
        4: 20
        5: 11
        6: 0

9.	 Now, let's try another set of input:

Input:

6 8
0 1 3
1 3 -8
2 1 3
2 4 2
2 5 5
3 2 3
4 5 -1
5 1 8

Output:

NEGATIVE CYCLE FOUND

As you can see, Floyd-Warshall is an incredibly useful algorithm that is not only effective 
but quite easy to implement. In terms of efficiency, whether we should choose Floyd-
Warshall or Johnson's algorithm depends entirely on the structure of the graph. But 
strictly in terms of ease of implementation, Floyd-Warshall is the clear winner.
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Activity 23: Residential Roads

You are the head of a real estate development project that is planning on constructing a 
number of high-end residential communities. You've been given a variety of information 
about the various properties where developments will be built and are currently tasked 
with designing a system of roads as cheaply as possible.

Many of the communities are set to be built in areas replete with lakes, forests, 
and mountains. In these areas, the terrain is often quite rugged, which can make 
construction much more complicated. You have been warned that the cost of building 
increases based on the ruggedness of the terrain. For your first drafts, you are told 
to consider the increase in cost linearly, relative to the ruggedness value of each 
coordinate where a road may be built.

You've been given the following information:

•	 Maps of the properties 

•	 The coordinates where properties can be built

•	 The ruggedness of the terrain at each coordinate

You have also been given the following guidelines for determining how roads should be 
built:

•	 Points on the map where a road may be built will be marked with "." characters.

•	 Roads may only be built between two houses that have a direct vertical, horizontal, 
or diagonal path between them. 

•	 All the houses in the community should be reachable from every other house.

•	 Roads may not be built across bodies of water, mountains, forests, and so on.

•	 The cost of building a road between two houses is equal to the sum of ruggedness 
values on the path between them.

•	 A road between two houses should be built only if it is on the path with the lowest 
possible cost to the designated entry point of the property.

•	 The entrance point is always the highest indexed house in the input.
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Once the positions of the houses and roads have been determined, you should produce 
a new version of the original map according to the following legend:

•	 Houses should be labeled with uppercase letters corresponding to the order they 
were given in input (that is, 0 = A, 1 = B, 2 = C and so on).

•	 Roads should be indicated with the characters |, -, \, and /, depending on their 
orientation. If two roads with different orientations intersect, this should be 
indicated with the + character.

•	 Everything else on the map should be displayed as it was originally given in the 
input.

Input Format

The program should take an input in the following format:

•	 The first line contains two space-separated integers, H and W, representing the 
height and width of the map.

•	 The second contains a single integer, N, which is the number of houses to be built.

•	 The next H lines each contain a string of length W, representing a row on the grid. 
Valid locations for building roads will be marked with the "." character.

•	 The next N lines contain two integers, x and y, which are the coordinates of the 
houses. The final index (that is, N - 1) always represents the entry point to the 
community.

Output Format

The program should output the same map given in the input, with the following 
additions:

•	 The positions of each house should be labeled with uppercase letters 
corresponding to their zero-based index, with the origin on the top left, relative to 
N (that is, 0 = A, 1 = B, 2 = C, and so on).

•	 The roads connecting each pair of houses should be indicated as follows:

- if the road's orientation is horizontal

| if the road's orientation is vertical

/ or \ if the road's orientation is diagonal

+ if any number of roads with different orientations intersect at the same point
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Hints/Guidelines

•	 To produce the final result, a number of distinct steps are required. It is 
recommended that you outline the necessary steps prior to their implementation. 

•	 It may be quite helpful to devise some scheme for debugging and producing test 
output for each individual part of the program. A mistake early on in the process is 
likely to cause subsequent steps to fail.

•	 Study the simpler input and output samples if you are having trouble 
understanding what needs to be done.

•	 Start by implementing the algorithms you know you will need, particularly 
the ones we discussed in the previous chapter. There may be multiple ways to 
accomplish each part of this task—be creative!

Test Cases

These test cases should help you understand how you need to proceed. Let's begin by 
taking a simple example:

Figure 9.18: Activity 23, test cases 1 (left) and 2 (right)
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Let's consider the sample output on the right side of the previous figure. In that 
example, a path from E(0,4) to C(5,4) cannot be built as impassable obstacles, #, exist. 
Let's consider a few more samples with more complexity:

Figure 9.19: Activity 23, test cases 3 (left) and 4 (right)
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Note that the different symbols are used to represent different types of obstacles. 
Though the effect of any obstacle is the same, we cannot build a road there. Finally, let's 
step up the complexity in the following example:

Figure 9.20: Activity 23, test case 5

Note

The solution to this activity can be found on page 585.
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Summary
Now that you have completed this chapter, you should have a fairly high appreciation 
for the value of dynamic programming. If you initially found this topic to be somewhat 
anxiety-provoking, you have hopefully come to realize that it is not as complicated as it 
may have first appeared. Viewing familiar problems through the dynamic programming 
lens, as we did in this chapter, can certainly help us understand the core ideas that are 
needed to arrive at a working DP solution. To that end, we encourage you to investigate 
other variants of the knapsack problem and attempt to implement them using the 
strategies provided.

And with that, your tour through the vast world of algorithms and data structures 
in C++ has reached its conclusion. Having arrived at the end of this book, you should 
have a markedly deepened understanding of how and when to use some of the most 
useful tools of our trade. Hopefully, you have developed a better sense of the practical 
applications of the structures and techniques that were covered in this book, as well as 
an expanded knowledge of the C++ language and its vast collection of features. 

It should be noted that the appropriate occasions to use many of these techniques in 
practice are not necessarily obvious, which is why it is immensely beneficial to apply 
what you have learned to a range of different contexts. We have endeavored to provide 
a variety of interesting activities for practicing the concepts in this book, but it is 
highly recommended that you also try to use these skills in other situations. There are 
a plethora of online resources offering unique and engaging programming challenges 
for developers of all levels, which can be invaluable if you wish to train yourself to 
recognize how certain techniques can be utilized in a variety of circumstances. 

Certainly, every topic that we've discussed in this book deserves much deeper study 
than what can be covered in any single book, and we hope that the information we have 
provided has made these topics accessible enough to encourage you to explore them 
deeper. Regardless of whether you are a student, looking for a development job, or 
already working in the field professionally, you are likely to encounter a use for at least 
one (and likely many) of the subjects that were covered in this book; and with any luck, 
you will know exactly what to do when that time comes!





About

This section is included to assist the students to perform the activities in the book.  
It includes detailed steps that are to be performed by the students to achieve the objectives of 
the activities.

Appendix

>



476 | Appendix

Chapter 1: Lists, Stacks, and Queues

Activity 1: Implementing a Song Playlist

In this activity, we will implement a tweaked version of a doubly linked list which can be 
used to store a song playlist and supports the necessary functions. Follow these steps 
to complete the activity:

1.	 Let's first include the header and write the node structure with the required data 
members:

#include <iostream>

template <typename T>
struct cir_list_node
{
    T* data;
    cir_list_node *next, *prev;
    
~cir_list_node()
    {
        delete data;
    }
};

template <typename T>
struct cir_list
{
    public:
        using node = cir_list_node<T>;
        using node_ptr = node*;
    private:
        node_ptr head;
        size_t n;

2.	 Now, let's write a basic constructor and size function:

public:
cir_list(): n(0)
{
    head = new node{NULL, NULL, NULL};  // Dummy node – having NULL data
    head->next = head;
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    head->prev = head;
}

size_t size() const
{
    return n;
}

We'll discuss why we need a dummy node between the first and the last node later 
on, in the case of iterating using iterators.

3.	 Now, let's write the insert and erase functions. Both will take one value to be 
inserted or deleted:

void insert(const T& value)
{
    node_ptr newNode = new node{new T(value), NULL, NULL};
    n++;
auto dummy = head->prev;
dummy->next = newNode;
newNode->prev = dummy;
    if(head == dummy)
    {
        dummy->prev = newNode;
        newNode->next = dummy;
        head = newNode;
        return;
    }
    newNode->next = head;
    head->prev = newNode;
    head = newNode;
}

void erase(const T& value)
{
    auto cur = head, dummy = head->prev;
    while(cur != dummy)
    {
        if(*(cur->data) == value)
        {
            cur->prev->next = cur->next;
            cur->next->prev = cur->prev;
            if(cur == head)
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                head = head->next;
            delete cur;
            n--;
            return;
        }
        cur = cur->next;
    }
}

4.	 Now, let's write a basic structure for the required iterator and add members to 
access the actual data:

struct cir_list_it
{
private:
    node_ptr ptr;
public:
    cir_list_it(node_ptr p) : ptr(p)
    {}
    
    T& operator*()
    {
        return *(ptr->data);
    }

    node_ptr get()
    {
        return ptr;
    }

5.	 Now, let's implement the core functions of an iterator – pre- and post-increments:

cir_list_it& operator++()
{
    ptr = ptr->next;
    return *this;
}

cir_list_it operator++(int)
{
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    cir_list_it it = *this;
    ++(*this);
    return it;    
}

6.	 Let's add the decrement-related operations to make it bidirectional:

cir_list_it& operator--()
{
    ptr = ptr->prev;
    return *this;
}

cir_list_it operator--(int)
{
    cir_list_it it = *this;
    --(*this);
    return it;
}

7.	 Let's implement equality-related operators for the iterator, which are essential for 
range-based loops:

friend bool operator==(const cir_list_it& it1, const cir_list_it& it2)
{
    return it1.ptr == it2.ptr;
}

friend bool operator!=(const cir_list_it& it1, const cir_list_it& it2)
{
    return it1.ptr != it2.ptr;
}
};

8.	 Now, let's write the begin and end functions with their const versions as well:

cir_list_it begin()
{
    return cir_list_it{head};
}

cir_list_it begin() const
{
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    return cir_list_it{head};
}

cir_list_it end()
{
    return cir_list_it{head->prev};
}

cir_list_it end() const
{
    return cir_list_it{head->prev};
}

9.	 Let's write a copy constructor, initializer list constructor, and destructor:

cir_list(const cir_list<T>& other): cir_list()
{

// Although, the following will insert the elements in a reverse order, it 
won't matter in a logical sense since this is a circular list.
    for(const auto& i: other)
        insert(i);
}

cir_list(const std::initializer_list<T>& il): head(NULL), n(0)
{
 
// Although, the following will insert the elements in a reverse order, it 
won't matter in a logical sense since this is a circular list.
    for(const auto& i: il)
        insert(i);
}

~cir_list()
{
    while(size())
    {
        erase(head->data);
    }
}
};
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10.	 Now, let's add a class for the music player's playlist for our actual application. 
Instead of storing the songs, we'll just go ahead and store integers indicating the 
ID of the song for ease of understanding:

struct playlist
{
    cir_list<int> list;

11.	 Let's now implement functions to add and delete songs:

void insert(int song)
{
    list.insert(song);
}

void erase(int song)
{
    list.erase(song);
}

12.	 Now, let's implement functions to print all the songs:

void loopOnce()
{
    for(auto& song: list)
        std::cout << song << " ";
    std::cout << std::endl;
}
};

13.	 Let's write a  main function to use the playlist of our music player:

int main()
{
    playlist pl;
    pl.insert(1);
    pl.insert(2);
    std::cout << "Playlist: ";
    pl.loopOnce();

    playlist pl2 = pl;
    pl2.erase(2);
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    pl2.insert(3);
    std::cout << "Second playlist: ";
    pl2.loopOnce();
}

14.	 Upon executing this, you should get output like this:

Playlist: 2 1 
Second playlist: 3 1

Activity 2: Simulating a Card Game

In this activity, we will simulate a card game and implement an efficient data structure 
to store the information about each player's cards. Follow these steps to complete the 
activity:

1.	 First, let's include the necessary headers:

#include <iostream>
#include <vector>
#include <array>
#include <sstream>
#include <algorithm>
#include <random>
#include <chrono>

2.	 Now, let's create a class to store the cards and a utility method to print them 
properly:

struct card
{
    int number;
    enum suit
    {
        HEART,
        SPADE,
        CLUB,
        DIAMOND
    } suit;

    std::string to_string() const
    {
        std::ostringstream os;
        if(number > 0 && number <= 10)
            os << number;
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        else
{
switch(number)
{
case 1:
    os << "Ace";
    break;
    case 11:
        os << "Jack";
        break;
    case 12:
        os << "Queen";
        break;
    case 13:
        os << "King";
        break;
    default:
        return "Invalid card";
}
        }
        os << " of ";
        switch(suit)
        {
            case HEART:
                os << "hearts";
                break;
            case SPADE:
                os << "spades";
                break;
            case CLUB:
                os << "clubs";
                break;
            case DIAMOND:
                os << "diamonds";
                break;            
        }
        return os.str();
    }
};
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3.	 Now, we can create a deck of cards and shuffle the deck to randomly distribute 
the cards to each of the four players. We'll write this logic inside a game class and 
call the functions later on in the main function:

struct game
{
    std::array<card, 52> deck;
    std::vector<card> player1, player2, player3, player4;
    void buildDeck()
    {
        for(int i = 0; i < 13; i++)
            deck[i] = card{i + 1, card::HEART};
        for(int i = 0; i < 13; i++)
            deck[i + 13] = card{i + 1, card::SPADE};
        for(int i = 0; i < 13; i++)
            deck[i + 26] = card{i + 1, card::CLUB};
        for(int i = 0; i < 13; i++)
            deck[i + 39] = card{i + 1, card::DIAMOND};
    }

    void dealCards()
    {
        unsigned seed = std::chrono::system_clock::now().time_since_
epoch().count();
        std::shuffle(deck.begin(), deck.end(), std::default_random_
engine(seed));
        player1 = {deck.begin(), deck.begin() + 13};
player2 = {deck.begin() + 13, deck.begin() + 26};
player3 = {deck.begin() + 26, deck.begin() + 39};
player4 = {deck.begin() + 39, deck.end()};
    }

4.	 Let's write the core logic to play one round. To avoid duplicating the code, we 
will write a utility function that will compare two players' hands and remove both 
cards if required:

bool compareAndRemove(std::vector<card>& p1, std::vector<card>& p2)
{
    if(p1.back().number == p2.back().number)
    {
        p1.pop_back();
        p2.pop_back();
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        return true;
    }
    return false;
}

void playOneRound()
{
        if(compareAndRemove(player1, player2))
        {
            compareAndRemove(player3, player4);
            return;
        }
        else if(compareAndRemove(player1, player3))
        {
            compareAndRemove(player2, player4);
            return;
        }
        else if(compareAndRemove(player1, player4))
        {
            compareAndRemove(player2, player3);
            return;
        }
        else if(compareAndRemove(player2, player3))
        {
            return;
        }
        else if(compareAndRemove(player2, player4))
        {
            return;
        }
        else if(compareAndRemove(player3, player4))
        {
return;
        }
        unsigned seed = std::chrono::system_clock::now().time_since_
epoch().count();
        std::shuffle(player1.begin(), player1.end(), std::default_random_
engine(seed));
        std::shuffle(player2.begin(), player2.end(), std::default_random_
engine(seed));
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        std::shuffle(player3.begin(), player3.end(), std::default_random_
engine(seed));
        std::shuffle(player4.begin(), player4.end(), std::default_random_
engine(seed));
}

5.	 Now, let's write the main logic to find out who's the winner. We'll call the preced-
ing function in a loop until one of the players can get rid of all their cards. To make 
the code more readable, we will write another utility function to check whether 
the game has been completed:

bool isGameComplete() const
{
    return player1.empty() || player2.empty() || player3.empty() || 
player4.empty();
}

void playGame()
{
        while(not isGameComplete())
        {
            playOneRound();    
        }
}

6.	 To find out who's the winner, let's write a utility function before starting the main 
function:

int getWinner() const
{
    if(player1.empty())
        return 1;
    if(player2.empty())
        return 2;
    if(player3.empty())
        return 3;
    if(player4.empty())
        return 4;
}
};
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7.	 Finally, let's write the main function to execute the game:

int main()
{
    game newGame;
    newGame.buildDeck();
    newGame.dealCards();
    newGame.playGame();
    auto winner = newGame.getWinner();
    std::cout << "Player " << winner << " won the game." << std::endl;
}

8.	 One of the possible outputs could be as follows:

Player 4 won the game.

Note

The winner could be any player from 1 to 4. Since the game is based on random-
ness seeded by the time during execution, any of the players can win. Running the 
code multiple times may yield a different output every time.

Activity 3: Simulating a Queue for a Shared Printer in an Office

In this activity, we shall implement a queue for handling print requests to a shared 
printer in an office. Follow these steps to complete the activity:

1.	 Let's include the required headers:

#include <iostream>
#include <queue>

2.	 Let's implement a Job class:

class Job
{
    int id;
    std::string user;
    int time;
    static int count;
public:
    Job(const std::string& u, int t) : user(u), time(t), id(++count)
    {}
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    friend std::ostream& operator<<(std::ostream& os, const Job& j)
     {
    os << "id: " << id << ", user: " << user << ", time: " << time << " 
seconds" << std::endl; 
    return os;
     }
};
int Job::count = 0;

3.	 Now, let's implement the Printer class. We'll use std::queue to have a first come, 
first served policy for jobs. We'll keep the class templated based on the maximum 
number of jobs it can store in memory:

template <size_t N>
class Printer
{
    std::queue<Job> jobs;
public:
    bool addNewJob(const Job& job)
    {
        if(jobs.size() == N)
            return false;
        std::cout << "Added job in the queue: " << job;
        jobs.push(job);
        return true;
    }

4.	 Now, let's implement another major functionality – printing jobs:

    void startPrinting()
    {
        while(not jobs.empty())
        {
            std::cout << "Processing job: " << jobs.front();
            jobs.pop();
        }
    }
};

5.	 Now, let's use these classes to simulate the scenario:

int main()
{
    Printer<5> printer;
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    Job j1("John", 10);
    Job j2("Jerry", 4);
    Job j3("Jimmy", 5);
    Job j4("George", 7);
    Job j5("Bill", 8);
    Job j6("Kenny", 10);
    printer.addNewJob(j1);
    printer.addNewJob(j2);
    printer.addNewJob(j3);
    printer.addNewJob(j4);
    printer.addNewJob(j5);

    if(not printer.addNewJob(j6))  // Can't add as queue is full.
    {
        std::cout << "Couldn't add 6th job" << std::endl;
    }

    printer.startPrinting();
    
    printer.addNewJob(j6);  // Can add now, as queue got emptied
    printer.startPrinting();
}

6.	 Here is the output of the preceding code:

Added job in the queue: id: 1, user: John, time: 10 seconds
Added job in the queue: id: 2, user: Jerry, time: 4 seconds
Added job in the queue: id: 3, user: Jimmy, time: 5 seconds
Added job in the queue: id: 4, user: George, time: 7 seconds
Added job in the queue: id: 5, user: Bill, time: 8 seconds
Couldn't add 6th job
Processing job: id: 1, user: John, time: 10 seconds
Processing job: id: 2, user: Jerry, time: 4 seconds
Processing job: id: 3, user: Jimmy, time: 5 seconds
Processing job: id: 4, user: George, time: 7 seconds
Processing job: id: 5, user: Bill, time: 8 seconds
Added job in the queue: id: 6, user: Kenny, time: 10 seconds
Processing job: id: 6, user: Kenny, time: 10 seconds
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Chapter 2: Trees, Heaps, and Graphs

Activity 4: Create a Data Structure for a Filesystem

In this activity, we will create a data structure using N-ary tree for a file system. Follow 
these steps to complete the activity:

1.	 First, let's include the required headers:

#include <iostream>
#include <vector>
#include <algorithm>

2.	 Now, let's write a node to store the data of a directory/file:

struct n_ary_node
{
    std::string name;
    bool is_dir;

    std::vector<n_ary_node*> children;
};

3.	 Now, let's wrap this node in a tree structure for a good interface, and also add a 
static member so that we can store the current directory:

struct file_system
{
    using node = n_ary_node;
    using node_ptr = node*;
private:
    node_ptr root;
    node_ptr cwd;

4.	 Now, let's add a constructor so that we can create a tree with a root directory:

public:
    file_system()
    {
        root = new node{"/", true, {}};
        cwd = root;  // We'll keep the current directory as root in the 
beginning
    }
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5.	 Now, let's add a function to find the directory/file:

node_ptr find(const std::string& path)
{
    if(path[0] == '/')  // Absolute path
    {
        return find_impl(root, path.substr(1));
    }
    else
    {
        return find_impl(cwd, path);
    }
}

private:
node_ptr find_impl(node_ptr directory, const std::string& path)
{
    if(path.empty())
        return directory;
    auto sep = path.find('/');
    std::string current_path = sep == std::string::npos ? path : path.
substr(0, sep);
    std::string rest_path = sep == std::string::npos ? "" : path.
substr(sep + 1);
    auto found = std::find_if(directory->children.begin(), directory-
>children.end(), [&](const node_ptr child)
{
    return child->name == current_path;
});
        if(found != directory->children.end())
        {
            return find_impl(*found, rest_path);
        }
    return NULL;
}

6.	 Now, let's add a function to add a directory:

public:
bool add(const std::string& path, bool is_dir)
{
    if(path[0] == '/')
    {
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        return add_impl(root, path.substr(1), is_dir);
    }
    else
    {
        return add_impl(cwd, path, is_dir);
    }
}

private:
bool add_impl(node_ptr directory, const std::string& path, bool is_dir)
{
    if(not directory->is_dir)
    {
        std::cout << directory->name << " is a file." << std::endl;
        return false;
    }
    
auto sep = path.find('/');

// This is the last part of the path for adding directory. It's a base 
condition of the recursion
    if(sep == std::string::npos)
    {
        auto found = std::find_if(directory->children.begin(), directory-
>children.end(), [&](const node_ptr child)
{
    return child->name == path;
});
if(found != directory->children.end())
{
    std::cout << "There's already a file/directory named " << path << " 
inside " << directory->name << "." << std::endl;
    return false;
}

directory->children.push_back(new node{path, is_dir, {}});
return true;
    }
    
    // If the next segment of the path is still a directory
    std::string next_dir = path.substr(0, sep);
    auto found = std::find_if(directory->children.begin(), directory-
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>children.end(), [&](const node_ptr child)
{
    return child->name == next_dir && child->is_dir;
});
        if(found != directory->children.end())
        {
            return add_impl(*found, path.substr(sep + 1), is_dir);
        }
        
std::cout << "There's no directory named " << next_dir << " inside " << 
directory->name << "." << std::endl;
    return false;
}

7.	 Now, let's add a function to change the current directory. This will be very simple 
since we already have a function to find the path:

public:
bool change_dir(const std::string& path)
{
    auto found = find(path);
    if(found && found->is_dir)
    {
        cwd = found;
        std::cout << "Current working directory changed to " << cwd->name 
<< "." << std::endl;
        return true;
    }

    std::cout << "Path not found." << std::endl;
    return false;
}

8.	 Now, let's add a function to print a directory or a file. For a file, we'll just print the 
name of the file. For a directory, we'll print all of its children's names, just like the 
ls command in Linux:

public:
void show_path(const std::string& path)
{
    auto found = find(path);
    if(not found)
    {
        std::cout << "No such path: " << path << "." << std::endl;
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        return;
    }

    if(found->is_dir)
    {
        for(auto child: found->children)
        {
std::cout << (child->is_dir ? "d " : "- ") << child->name << std::endl; 
}
    }
    else
    {
        std::cout << "- " << found->name << std::endl;
    }
}
};

9.	 Let's write a main function so that we can use the aforementioned functions:

int main()
{
    file_system fs;
    fs.add("usr", true);  // Add directory usr in "/"
    fs.add("etc", true);  // Add directory etc in "/"
    fs.add("var", true);  // Add directory var in "/"
    fs.add("tmp_file", false);  // Add file tmp_file in "/"

    std::cout << "Files/Directories under \"/\"" << std::endl;
    fs.show_path("/");  // List files/directories in "/"

    std::cout << std::endl;
    fs.change_dir("usr");
    fs.add("Packt", true);
    fs.add("Packt/Downloads", true);
    fs.add("Packt/Downloads/newFile.cpp", false);

    std::cout << "Let's see the contents of dir usr: " << std::endl;
    fs.show_path("usr");  // This will not print the path successfully, 
since we're already inside the dir usr. And there's no directory named usr 
inside it.
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    std::cout << "Let's see the contents of \"/usr\"" << std::endl;
    fs.show_path("/usr");

    std::cout << "Let's see the contents of \"/usr/Packt/Downloads\"" << 
std::endl;
    fs.show_path("/usr/Packt/Downloads");
    
}

The output of the preceding code is as follows:

Files/Directories under "/"
d usr
d etc
d var
- tmp_file
Current working directory changed to usr.
Let's try to print the contents of usr: 
No such path: usr.
Let's see the contents of "/usr"
d Packt
Contents of "/usr/Packt/Downloads"
- newFile.cpp

Activity 5: K-Way Merge Using Heaps

In this activity, we will merge multiple sorted arrays into a single sorted array. These 
steps will help you complete the activity:

1.	 Start with the required headers:

#include <iostream>
#include <algorithm>
#include <vector>

2.	 Now, implement the main algorithm for merging. It will take a vector of a vector 
of int as input and will contain the vector of all the sorted vectors. Then, it will 
return the merged vector of int. First, let's build the heap node:

struct node
{
    int data;
    int listPosition;
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    int dataPosition;
};

std::vector<int> merge(const std::vector<std::vector<int>>& input)
{
    auto comparator = [] (const node& left, const node& right)
        {
            if(left.data == right.data)
                return left.listPosition > right.listPosition;
            return left.data > right.data;
        };

As we can see, the heap node will contain three things – data, the position of the 
list in the input, and the position of the data item inside that list.

3.	 Let's build the heap. The idea is to have a min heap with the smallest element from 
all the lists. So, when we pop from the heap, we are guaranteed to get the smallest 
element. After removing that element, we need to insert the next element from 
the same list, if it's available:

std::vector<node> heap;
for(int i = 0; i < input.size(); i++)
{
    heap.push_back({input[i][0], i, 0});
    std::push_heap(heap.begin(), heap.end(), comparator);
}

4.	 Now, we'll build the resultant vector. We'll simply remove the elements from the 
heap until it is empty and replace it with the next element from the same list it 
belongs to, if available:

std::vector<int> result;
while(!heap.empty())
{
    std::pop_heap(heap.begin(), heap.end(), comparator);
    auto min = heap.back();
    heap.pop_back();

    result.push_back(min.data);
    int nextIndex = min.dataPosition + 1;
    if(nextIndex < input[min.listPosition].size())
    {
        heap.push_back({input[min.listPosition][nextIndex], min.
listPosition, nextIndex});
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        std::push_heap(heap.begin(), heap.end(), comparator);
    }
}

return result;
}

5.	 Let's write a main function so that we can use the preceding function:

int main()
{
    std::vector<int> v1 = {1, 3, 8, 15, 105};
    std::vector<int> v2 = {2, 3, 10, 11, 16, 20, 25};
    std::vector<int> v3 = {-2, 100, 1000};
    std::vector<int> v4 = {-1, 0, 14, 18};
    auto result = merge({v1, v2, v3, v4});
    for(auto i: result)
    std::cout << i << ' ';
    return 0;
}

You should see the following output:

-2 -1 0 1 2 3 3 8 10 11 14 15 16 18 20 25 100 105 1000 
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Chapter 3: Hash Tables and Bloom Filters

Activity 6: Mapping Long URLs to Short URLs

In this activity, we will create a program to map shorter URLs to corresponding longer 
URLs. Follow these steps to complete the activity:

1.	 Let's include the required headers:

#include <iostream>
#include <unordered_map>

2.	 Let's write a struct called URLService that will provide the interface for the 
required services:

struct URLService
{
    using ActualURL = std::string;
    using TinyURL = std::string;

private:
    std::unordered_map<TinyURL, ActualURL> data;

As we can see, we've created a map from the small URL to the original URL. This 
is because we use the small URL for the lookup. We want to convert it into the 
original URL. As we saw earlier, a map can do fast lookups based on a key. So, we 
have kept the smaller URL as the key of the map and the original URL as the value 
of the map. We have created aliases to avoid confusion regarding which string we 
are talking about.

3.	 Let's add a lookup function:

public:

    std::pair<bool, ActualURL> lookup(const TinyURL& url) const
    {
        auto it = data.find(url);
        if(it == data.end())  // If small URL is not registered.
        {
            return std::make_pair(false, std::string());
        }
        else
        {
            return std::make_pair(true, it->second);
        }
    }
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4.	 Now, let's write a function to register the smaller URL for the given actual URL:

bool registerURL(const ActualURL& actualURL, const TinyURL& tinyURL)
{
    auto found = lookup(tinyURL).first;
    if(found)
    {
        return false;
    }

    data[tinyURL] = actualURL;
    return true;
}

The registerURL function returns if there is already an existing entry in the data. If 
so, it will not touch the entry. Otherwise, it will register the entry and return true 
to indicate that.

5.	 Now, let's write a function to delete the entry:

bool deregisterURL(const TinyURL& tinyURL)
{
    auto found = lookup(tinyURL).first;
    if(found)
    {
        data.erase(tinyURL);
        return true;
    }

    return false;
}

As we can see, we are using the lookup function instead of rewriting the find logic 
again. This function is much more readable now.
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6.	 Now, let's write a function to print all the mappings for logging:

void printURLs() const
{
    for(const auto& entry: data)
    {
        std::cout << entry.first << " -> " << entry.second << std::endl;

    }
    std::cout << std::endl;
}
};

7.	 Now, write the main function so that we can use this service:

int main()
{
    URLService service;

    if(service.registerURL("https://www.packtpub.com/eu/big-data-and-
business-intelligence/machine-learning-r-third-edition", "https://ml-r-
v3"))
    {
        std::cout << "Registered https://ml-r-v3" << std::endl;
    }
    else
    {
        std::cout << "Couldn't register https://ml-r-v3" << std::endl;
    }

    if(service.registerURL("https://www.packtpub.com/eu/virtualization-
and-cloud/hands-aws-penetration-testing-kali-linux", "https://aws-test-
kali"))
    {
        std::cout << "Registered https://aws-test-kali" << std::endl;
    }
    else
    {
        std::cout << "Couldn't register https://aws-test-kali" << 
std::endl;
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    }

    if(service.registerURL("https://www.packtpub.com/eu/application-
development/hands-qt-python-developers", "https://qt-python"))
    {
        std::cout << "Registered https://qt-python" << std::endl;
    }
    else
    {
        std::cout << "Couldn't register https://qt-python" << std::endl;
    }

    
    auto findMLBook = service.lookup("https://ml-r-v3");
    if(findMLBook.first)
    {
        std::cout << "Actual URL: " << findMLBook.second << std::endl;
    }
    else
    {
        std::cout << "Couldn't find URL for book for ML." << std::endl;
    }

    auto findReactBook = service.lookup("https://react-cookbook");
    if(findReactBook.first)
    {
        std::cout << "Actual URL: " << findReactBook.second << std::endl;
    }
    else
    {
        std::cout << "Couldn't find URL for book for React." << std::endl;
    }

    if(service.deregisterURL("https://qt-python"))
    {
        std::cout << "Deregistered qt python link" << std::endl;
    }
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    else
    {
        std::cout << "Couldn't deregister qt python link" << std::endl;
    }

    auto findQtBook = service.lookup("https://qt-python");
    if(findQtBook.first)
    {
        std::cout << "Actual URL: " << findQtBook.second << std::endl;
    }
    else
    {
        std::cout << "Couldn't find Qt Python book" << std::endl;
    }

    std::cout << "List of registered URLs: " << std::endl;
    service.printURLs();

}

8.	 Let's look at the output of the preceding code:

Registered https://ml-r-v3
Registered https://aws-test-kali
Registered https://qt-python
Actual URL: https://www.packtpub.com/eu/big-data-and-business-
intelligence/machine-learning-r-third-edition
Couldn't find URL for book for React.
Deregistered qt python link
Couldn't find Qt Python book
List of registered URLs: 
https://ml-r-v3 -> https://www.packtpub.com/eu/big-data-and-business-
intelligence/machine-learning-r-third-edition
https://aws-test-kali -> https://www.packtpub.com/eu/virtualization-and-
cloud/hands-aws-penetration-testing-kali-linux

As we can see, we are getting both the valid URLs at the end, and not the one we 
deregistered successfully.
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Activity 7: Email Address Validator

In this activity, we will create a validator to check if an email address requested by a 
user is already taken. Complete the activity using these steps:

1.	 Let's include the required headers:

#include <iostream>
#include <vector>

#include <openssl/md5.h>

2.	 Let's add a class for the Bloom filter:

class BloomFilter
{
    int nHashes;
    std::vector<bool> bits;

    static constexpr int hashSize = 128/8;

    unsigned char hashValue[hashSize];

3.	 Let's add a constructor for this:

BloomFilter(int size, int hashes) : bits(size), nHashes(hashes)
{
    if(nHashes > hashSize)
    {
        throw ("Number of hash functions too high");
    }
    if(size > 255)
    {
        throw ("Size of bloom filter can't be >255");
    }
}

Since we're going to use each byte in the hash value buffer as a different hash 
function value, and the size of the hash value buffer is 16 bytes (128 bits), we 
can't have more hash functions than that. Since each hash value is just 1 byte, its 
possible values are 0 to 255. So, the size of the Bloom filter can't exceed 255. Hence, 
we're throwing an error in the constructor itself.
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4.	 Now, let's write a hash function. It simply uses the MD5 function to calculate the 
hash:

void hash(const std::string& key)
{
    MD5(reinterpret_cast<const unsigned char*>(key.data()), key.length(), 
hashValue);
}

5.	 Let's add the function so that we can insert an email:

void add(const std::string& key)
{
    hash(key);
    for(auto it = &hashValue[0]; it < &hashValue[nHashes]; it++)
    {
        bits[*it] = true;
    }
    std::cout << key << " added in bloom filter." << std::endl;

}

As we can see, we are iterating from the the bytes 0 to nHashes in the hash value 
buffer and setting each bit to 1.

6.	 Similarly, let's add a function to find an email address:

bool mayContain(const std::string &key)
    {
        hash(key);
        for (auto it = &hashValue[0]; it < &hashValue[nHashes]; it++)
        {
            if (!bits[*it])
            {
                std::cout << key << " email can by used." << std::endl;
                return false;
            }
        }

        std::cout << key << " email is used by someone else." << 
std::endl;
        return true;
    }
};
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7.	 Let's add the main function:

int main()
{
    BloomFilter bloom(10, 15);

    bloom.add("abc@packt.com");
    bloom.add("xyz@packt.com");

    bloom.mayContain("abc");
    bloom.mayContain("xyz@packt.com");
    bloom.mayContain("xyz");

    bloom.add("abcd@packt.com");
    bloom.add("ab@packt.com");

    bloom.mayContain("abc");
    bloom.mayContain("ab@packt.com");
}

The following is one of the possible outputs of the preceding code:

abc@packt.com added in bloom filter.
xyz@packt.com added in bloom filter.
abc email can by used.
xyz@packt.com email is used by someone else.
xyz email can by used.
abcd@packt.com added in bloom filter.
ab@packt.com added in bloom filter.
abcd email can by used.
ab@packt.com email is used by someone else.

This is one of the possible outputs because MD5 is a randomized algorithm. If we 
choose the number of functions and the size of the Bloom filter in a thoughtful way, we 
should get really good accuracy with the MD5 algorithm.
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Chapter 4: Divide and Conquer

Activity 8: Vaccinations

In this activity, we will store and lookup the vaccination status of students to determine 
if they need to be vaccinated. These steps should help you complete the activity:

1.	 Begin by including the following headers:

#include <iostream>
#include <vector>
#include <chrono>
#include <random>
#include <algorithm>
#include <numeric>

2.	 Define the Student class as follows:

class Student
{
private:
    std::pair<int, int> name;
    bool vaccinated;

public:
    // Constructor
    Student(std::pair<int, int> n, bool v) :
        name(n), vaccinated(v)
    {}

    // Getters
    auto get_name() { return name; }
    auto is_vaccinated() { return vaccinated; }

    // Two people are same if they have the same name
    bool operator ==(const Student& p) const
    {
        return this->name == p.name;
    }

    // The ordering of a set of people is defined by their name
    bool operator< (const Student& p) const
    {
        return this->name < p.name;
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    }

    bool operator> (const Student& p) const
    {
        return this->name > p.name;
    }
};

3.	 The following function lets us generate a student from random data:

auto generate_random_Student(int max)
{
    std::random_device rd;
    std::mt19937 rand(rd());

    // the IDs of Student should be in range [1, max]
    std::uniform_int_distribution<std::mt19937::result_type> uniform_
dist(1, max);

    // Generate random credentials
    auto random_name = std::make_pair(uniform_dist(rand), uniform_
dist(rand));
    bool is_vaccinated = uniform_dist(rand) % 2 ? true : false;

    return Student(random_name, is_vaccinated);
}

4.	 The following code is used to run and test the output of our implementation:

 void search_test(int size, Student p)
{
    std::vector<Student> people;

    // Create a list of random people
    for (auto i = 0; i < size; i++)
        people.push_back(generate_random_Student(size));

    std::sort(people.begin(), people.end());

    // To measure the time taken, start the clock
    std::chrono::steady_clock::time_point begin = std::chrono::steady_
clock::now();
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    bool search_result = needs_vaccination(p, people);

    // Stop the clock
    std::chrono::steady_clock::time_point end = std::chrono::steady_
clock::now();

    std::cout << "Time taken to search = " <<
        std::chrono::duration_cast<std::chrono::microseconds>
        (end - begin).count() << " microseconds" << std::endl;

    if (search_result)
        std::cout << "Student (" << p.get_name().first 
<< " " << p.get_name().second << ") "
            << "needs vaccination." << std::endl;
    else
        std::cout << "Student (" << p.get_name().first 
<< " " << p.get_name().second << ") "
            << "does not need vaccination." << std::endl;
}

5.	 The following function implements our logic for whether a vaccination is needed:

bool needs_vaccination(Student P, std::vector<Student>& people)
{
    auto first = people.begin();
    auto last = people.end();

    while (true)
    {
        auto range_length = std::distance(first, last);
        auto mid_element_index = std::floor(range_length / 2);
        auto mid_element = *(first + mid_element_index);

        // Return true if the Student is found in the sequence and 
// he/she's not vaccinated 
        if (mid_element == P && mid_element.is_vaccinated() == false)
            return true;
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        else if (mid_element == P && mid_element.is_vaccinated() == true)
            return false;
        else if (mid_element > P)
            std::advance(last, -mid_element_index);
        if (mid_element < P)
            std::advance(first, mid_element_index);

        // Student not found in the sequence and therefore should be 
vaccinated
        if (range_length == 1)
            return true;
    }
}

6.	 Finally, the driver code is implemented as follows:

int main()
{
    // Generate a Student to search
    auto p = generate_random_Student(1000);

    search_test(1000, p);
    search_test(10000, p);
    search_test(100000, p);

    return 0;
}

Note

Since we are randomizing values in step 3, your output may vary from the expected 
output shown for this activity.
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Activity 9: Partial Sorting

The partial quicksort is only a slight modification of the original quicksort algorithm 
that was demonstrated in Exercise 20, Quicksort. Compared to that exercise, only step 4 
is different. The following is a reference implementation:

1.	 Add the following header files:

#include <iostream>
#include <vector>
#include <chrono>
#include <random>
#include <algorithm>

2.	 Next, we shall implement the partition operation, as follows:

 template <typename T>
auto partition(typename std::vector<T>::iterator begin,
    typename std::vector<T>::iterator end)
{
    auto pivot_val = *begin;
    auto left_iter = begin + 1;
    auto right_iter = end;

    while (true)
    {
        // Starting from the first element of vector, 
        // find an element that is greater than pivot.
        while (*left_iter <= pivot_val && std::distance(left_iter, right_
iter) > 0)
            left_iter++;

        // Starting from the end of vector moving to the beginning, 
        // find an element that is lesser than the pivot.
        while (*right_iter > pivot_val && std::distance(left_iter, right_
iter) > 0)
            right_iter--;

        // If left and right iterators meet, there are no elements left to 
swap. 
        // Else, swap the elements pointed to by the left and right 
iterators



Chapter 4: Divide and Conquer | 511

        if (left_iter == right_iter)
            break;
        else
            std::iter_swap(left_iter, right_iter);
    }
    if (pivot_val > *right_iter)
        std::iter_swap(begin, right_iter);

    return right_iter;
}

3.	 Since the desired output also needs an implementation of the quicksort algorithm, 
we'll implement one as follows:

 template <typename T>
void quick_sort(typename std::vector<T>::iterator begin,
    typename std::vector<T>::iterator last)
{
    // If there are more than 1 elements in the vector
    if (std::distance(begin, last) >= 1)
    {
        // Apply the partition operation
        auto partition_iter = partition<T>(begin, last);

        // Recursively sort the vectors created by the partition operation
        quick_sort<T>(begin, partition_iter-1);
        quick_sort<T>(partition_iter, last);
    }
}

4.	 Implement the partial quicksort function as follows:

 template <typename T>
void partial_quick_sort(typename std::vector<T>::iterator begin,
    typename std::vector<T>::iterator last,
    size_t k)
{
    // If there are more than 1 elements in the vector
    if (std::distance(begin, last) >= 1)
    {
        // Apply the partition operation
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        auto partition_iter = partition<T>(begin, last);

        // Recursively sort the vectors created by the partition operation
        partial_quick_sort<T>(begin, partition_iter-1, k);
        
        // Sort the right subvector only if the final position of pivot < k 
        if(std::distance(begin, partition_iter) < k)
            partial_quick_sort<T>(partition_iter, last, k);
    }
}

5.	 The following helper functions can be then used to print the contents of a vector 
and to generate a random vector:

 template <typename T>
void print_vector(std::vector<T> arr)
{
    for (auto i : arr)
        std::cout << i << " ";

    std::cout << std::endl;
}

// Generates random vector of a given size with integers [1, size]
template <typename T>
auto generate_random_vector(T size)
{
    std::vector<T> V;
    V.reserve(size);

    std::random_device rd;
    std::mt19937 rand(rd());

    // the IDs of Student should be in range [1, max]
    std::uniform_int_distribution<std::mt19937::result_type> uniform_
dist(1, size);

    for (T i = 0; i < size; i++)
        V.push_back(uniform_dist(rand));

    return std::move(V);
}
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6.	 The following function implements the testing logic for our sorting functions:

// Sort the first K elements of a random vector of a given 'size'
template <typename T>
void test_partial_quicksort(size_t size, size_t k)
{
        // Create two copies of a random vector to use for the two 
algorithms
        auto random_vec = generate_random_vector<T>(size);
        auto random_vec_copy(random_vec);

        std::cout << "Original vector: "<<std::endl;
        print_vector<T>(random_vec); 
            
        // Measure the time taken by partial quick sort
        std::chrono::steady_clock::time_point 
begin_qsort = std::chrono::steady_clock::now();
        partial_quick_sort<T>(random_vec.begin(), random_vec.end()-1, k);
        std::chrono::steady_clock::time_point 
end_qsort = std::chrono::steady_clock::now();
    
        std::cout << std::endl << "Time taken by partial quick sort = " 
            << 'std::chrono::duration_cast<std::chrono::microseconds>
            (end_qsort - begin_qsort).count() 
            << " microseconds" << std::endl;
    
        std::cout << "Partially sorted vector (only first "<< k <<" 
elements):";
        print_vector<T>(random_vec);

        // Measure the time taken by partial quick sort
        begin_qsort = std::chrono::steady_clock::now();
        quick_sort<T>(random_vec_copy.begin(), random_vec_copy.end()-1);
        end_qsort = std::chrono::steady_clock::now();

        std::cout << std::endl <<"Time taken by full quick sort = " 
            << std::chrono::duration_cast<std::chrono::microseconds>
            (end_qsort - begin_qsort).count() 
            << " microseconds" << std::endl;
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        std::cout << "Fully sorted vector: ";
        print_vector<T>(random_vec_copy);
}

7.	 Finally, add the driver code, as follows:

 int main()
{
    test_partial_quicksort<unsigned>(100, 10);
    return 0;
}

Activity 10: Implementing WordCount in MapReduce

In this activity, we will implement the MapReduce model to solve the WordCount 
problem. The following is the solution to this activity:

1.	 Implement the map task as follows:

struct map_task : public mapreduce::map_task<
    std::string,                             // MapKey (filename)
    std::pair<char const*, std::uintmax_t>>  // MapValue (memory mapped 
file contents)
{
    template<typename Runtime>
    void operator()(Runtime& runtime, key_type const& key, value_type& 
value) const
    {
        bool in_word = false;
        char const* ptr = value.first;
        char const* end = ptr + value.second;
        char const* word = ptr;
        // Iterate over the contents of the file, extract words and emit a 
<word,1> pair.
        for (; ptr != end; ++ptr)
        {
            // Convert the character to upper case.
            char const ch = std::toupper(*ptr, std::locale::classic());
            if (in_word)
            {
                if ((ch < 'A' || ch > 'Z') && ch != '\'')
                {
runtime.emit_intermediate(std::pair<char const*,
              std::uintmax_t> (word, ptr - word), 1);
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                    in_word = false;
                }
            }
            else if (ch >= 'A' && ch <= 'Z')
            {
                word = ptr;
                in_word = true;
            }
        }

        // Handle the last word.
        if (in_word)
        {
            assert(ptr > word);
            runtime.emit_intermediate(std::pair<char const*,
                          std::uintmax_t>(word, ptr - word), 1);
        }
    }
};

The preceding map function is applied separately to each file in the input 
directory. The contents of the input file are accepted as the * character in value. 
The inner loop then iterates over the contents of the file, extracting different 
words and emitting < key, value > pairs, where key is a word and value is set to 1.

2.	 Implement the reduce task as follows:

template<typename KeyType>
struct reduce_task : public mapreduce::reduce_task<KeyType, unsigned>
{
    using typename mapreduce::reduce_task<KeyType, unsigned>::key_type;

    template<typename Runtime, typename It>
    void operator()(Runtime& runtime, key_type const& key, It it, It const 
ite) const
    {
        runtime.emit(key, std::accumulate(it, ite, 0));    
}
}; 

The reduce operation can then be applied to all < key, value > pairs that are 
emitted by the map function. Since the value was set to 1 in the previous step, we 
can now use std::accumulate() to get the total number of times a key appears 
among the input pairs of the reduce operation.
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Chapter 5: Greedy Algorithms

Activity 11: The Interval Scheduling Problem

In this activity, we will find the optimal scheduling of tasks to maximize the number of 
tasks that can be completed. Follow these steps to complete the activity:

1.	 Add the required header files and define the Task struct as follows:

#include <list>
#include <algorithm>
#include <iostream>
#include <random>

// Every task is represented as a pair <start_time, end_time>
struct Task
{
    unsigned ID;
    unsigned start_time;
    unsigned end_time;
};

2.	 The following function can be used to generate a list of N tasks with random data:

auto initialize_tasks(size_t num_tasks)
{
    std::random_device rd;
    std::mt19937 rand(rd());
    std::uniform_int_distribution<std::mt19937::result_type> 
uniform_dist(1, num_tasks);

    // Create and initialize a set of tasks
    std::list<Task> tasks;

    for (unsigned i = 1; i <= num_tasks; i++)
    {
        auto start_time = uniform_dist(rand);
        auto duration = uniform_dist(rand);

        tasks.push_back({i, start_time, start_time + duration });
    }

    return tasks;
}
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3.	 Implement the scheduling algorithm as follows:

auto schedule(std::list<Task> tasks)
{
    // Sort the list of tasks by their end times
    tasks.sort([](const auto& lhs, const auto& rhs)
        { return lhs.end_time < rhs.end_time; });

    // Remove the tasks that interfere with one another
    for (auto curr_task = tasks.begin(); curr_task != tasks.end(); curr_
task++)
    {
        // Point to the next task
        auto next_task = std::next(curr_task, 1);

        // While subsequent tasks interfere with the current task in iter
        while (next_task != tasks.end() &&
            next_task->start_time < curr_task->end_time)
        {
            next_task = tasks.erase(next_task);
        }
    }

    return tasks;
}

4.	 The following utility functions are used to print the list of tasks, test our imple-
mentation, and include the driver code for the program:

void print(std::list<Task>& tasks)
{
    std::cout << "Task ID \t Starting Time \t End time" << std::endl;

    for (auto t : tasks)
        std::cout << t.ID << "\t\t" << t.start_time << "\t\t" << t.end_
time << std::endl;
}

void test_interval_scheduling(unsigned num_tasks)
{
    auto tasks = initialize_tasks(num_tasks);

    std::cout << "Original list of tasks: " << std::endl;
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    print(tasks);

    std::cout << "Scheduled tasks: " << std::endl;
    auto scheduled_tasks = schedule(tasks);
    print(scheduled_tasks);
}

int main()
{
    test_interval_scheduling(20);
    return 0;
}

Activity 12: The Welsh-Powell Algorithm

We will implement the Welsh-Powell algorithm on the graph in this activity. A reference 
implementation is given here:

1.	 Add the required header files and declare the graph that will be implemented later:

#include <unordered_map>
#include <set>
#include <map>
#include <string>
#include <vector>
#include <algorithm>
#include <iostream>

template <typename T> class Graph;

2.	 Implement the struct, representing edges like so:

template<typename T>
struct Edge
{
    size_t src;
    size_t dest;
    T weight;

    // To compare edges, only compare their weights,
    // and not the source/destination vertices
    inline bool operator< (const Edge<T>& e) const
    {
        return this->weight < e.weight;
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    }

    inline bool operator> (const Edge<T>& e) const
    {
        return this->weight > e.weight;
    }
};

3.	 The following function allows us to serialize and print graphs by overloading the << 
operator for the graph datatype:

template <typename T>
std::ostream& operator<<(std::ostream& os, const Graph<T>& G)
{
    for (auto i = 1; i < G.vertices(); i++)
    {
        os << i << ":\t";

        auto edges = G.outgoing_edges(i);
        for (auto& e : edges)
            os << "{" << e.dest << ": " << e.weight << "}, ";

        os << std::endl;
    }

    return os;
}

4.	 Implement the graph with the edge list representation, as shown here:

template<typename T>
class Graph
{
public:
    // Initialize the graph with N vertices
    Graph(size_t N) : V(N)
    {}

    // Return number of vertices in the graph
    auto vertices() const
    {
        return V;
    }
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    // Return all edges in the graph
    auto& edges() const
    {
        return edge_list;
    }

    void add_edge(Edge<T>&& e)
    {
        // Check if the source and destination vertices are within range
        if (e.src >= 1 && e.src <= V &&
            e.dest >= 1 && e.dest <= V)
            edge_list.emplace_back(e);
        else
            std::cerr << "Vertex out of bounds" << std::endl;
    }

    // Returns all outgoing edges from vertex v
    auto outgoing_edges(size_t v) const
    {
        std::vector<Edge<T>> edges_from_v;
        for (auto& e : edge_list)
        {
            if (e.src == v)
                edges_from_v.emplace_back(e);
        }
        return edges_from_v;
    }

    // Overloads the << operator so a graph be written directly to a 
stream
    // Can be used as std::cout << obj << std::endl;
    template <typename T>
    friend std::ostream& operator<< <>(std::ostream& os, const Graph<T>& 
G);

private:
    size_t V;        // Stores number of vertices in graph
    std::vector<Edge<T>> edge_list;
};
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5.	 Initialize the set of colors that we will use in our implementation of the 
Welsh-Powell algorithm. Let this number of colors be 6, as implemented in the 
following unordered_map:

// Initialize the colors that will be used to color the vertices
std::unordered_map<size_t, std::string> color_map = {
    {1, "Red"},
    {2, "Blue"},
    {3, "Green"},
    {4, "Yellow"},
    {5, "Black"},
    {6, "White"}
};

6.	 Implement the Welsh-Powell graph coloring algorithm like so:

template<typename T>
auto welsh_powell_coloring(const Graph<T>& G)
{
    auto size = G.vertices();
    std::vector<std::pair<size_t, size_t>> degrees;

    // Collect the degrees of vertices as <vertex_ID, degree> pairs
    for (auto i = 1; i < size; i++)
        degrees.push_back(std::make_pair(i, G.outgoing_edges(i).size()));

    // Sort the vertices in decreasing order of degree
    std::sort(degrees.begin(),
        degrees.end(),
        [](const auto& a, const auto& b)
        { return a.second > b.second; });

    std::cout << "The vertices will be colored in the following order: " 
<< std::endl;
    std::cout << "Vertex ID \t Degree" << std::endl;
    for (auto const i : degrees)
        std::cout << i.first << "\t\t" << i.second << std::endl;

    std::vector<size_t> assigned_colors(size);
    auto color_to_be_assigned = 1;

    while (true)
    {
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        for (auto const i : degrees)
        {
            if (assigned_colors[i.first] != 0)
                continue;

            auto outgoing_edges = G.outgoing_edges(i.first);
            std::set<size_t> neighbour_colors;

            // We assume that the graph is bidirectional
            for (auto e : outgoing_edges)
            {
                auto dest_color = assigned_colors[e.dest];
                neighbour_colors.insert(dest_color);
            }

if (neighbour_colors.find(color_to_be_assigned) == neighbour_colors.end())
                assigned_colors[i.first] = color_to_be_assigned;
        }

        color_to_be_assigned++;

        // If there are no uncolored vertices left, exit
        if (std::find(assigned_colors.begin() + 1, assigned_colors.end(), 
0) ==
            assigned_colors.end())
            break;
    }

    return assigned_colors;
}

7.	 The following function outputs the vector of colors:

void print_colors(std::vector<size_t>& colors)
{
    for (auto i = 1; i < colors.size(); i++)
    {
        std::cout << i << ": " << color_map[colors[i]] << std::endl;
    }
}
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8.	 Finally, the following driver code creates the required graph, runs the vertex 
coloring algorithm, and outputs the results:

int main()
{
    using T = unsigned;

    Graph<T> G(9);

    std::map<unsigned, std::vector<std::pair<size_t, T>>> edges;
    edges[1] = { {2, 2}, {5, 3} };
    edges[2] = { {1, 2}, {5, 5}, {4, 1} };
    edges[3] = { {4, 2}, {7, 3} };
    edges[4] = { {2, 1}, {3, 2}, {5, 2}, {6, 4}, {8, 5} };
    edges[5] = { {1, 3}, {2, 5}, {4, 2}, {8, 3} };
    edges[6] = { {4, 4}, {7, 4}, {8, 1} };
    edges[7] = { {3, 3}, {6, 4} };
    edges[8] = { {4, 5}, {5, 3}, {6, 1} };

    for (auto& i : edges)
        for (auto& j : i.second)
            G.add_edge(Edge<T>{ i.first, j.first, j.second });
    std::cout << "Original Graph" << std::endl;
    std::cout << G;

    auto colors = welsh_powell_coloring<T>(G);
    std::cout << "Vertex Colors: " << std::endl;
    print_colors(colors);
    return 0;
}
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Chapter 6: Graph Algorithms I

Activity 13: Finding out Whether a Graph is Bipartite Using DFS

In this activity, we will check whether a graph is bipartite using depth-first search 
traversal. Follow these steps to complete the activity:

1.	 Add the required header files and declare the graph to be used:

#include <string>
#include <vector>
#include <iostream>
#include <set>
#include <map>
#include <stack>

template<typename T> class Graph;

2.	 Write the following struct to define an edge in our graph:

template<typename T>
struct Edge
{
    size_t src;
    size_t dest;
    T weight;

    // To compare edges, only compare their weights,
    // and not the source/destination vertices
    inline bool operator< (const Edge<T>& e) const
    {
        return this->weight < e.weight;
    }

    inline bool operator> (const Edge<T>& e) const
    {
        return this->weight > e.weight;
    }
};
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3.	 Use the following function to overload the << operator for the graph so that it can 
be written to standard output:

template <typename T>
std::ostream& operator<<(std::ostream& os, const Graph<T>& G)
{
    for (auto i = 1; i < G.vertices(); i++)
    {
        os << i << ":\t";

        auto edges = G.outgoing_edges(i);
        for (auto& e : edges)
            os << "{" << e.dest << ": " << e.weight << "}, ";

        os << std::endl;
    }

    return os;
}

4.	 Implement the edge list graph as follows:

template<typename T>
class Graph
{
public:
    // Initialize the graph with N vertices
    Graph(size_t N) : V(N)
    {}

    // Return number of vertices in the graph
    auto vertices() const
    {
        return V;
    }
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    // Return all edges in the graph
    auto& edges() const
    {
        return edge_list;
    }

    void add_edge(Edge<T>&& e)
    {
        // Check if the source and destination vertices are within range
        if (e.src >= 1 && e.src <= V &&
            e.dest >= 1 && e.dest <= V)
            edge_list.emplace_back(e);
        else
            std::cerr << "Vertex out of bounds" << std::endl;
    }

    // Returns all outgoing edges from vertex v
    auto outgoing_edges(size_t v) const
    {
        std::vector<Edge<T>> edges_from_v;
        for (auto& e : edge_list)
        {
            if (e.src == v)
                edges_from_v.emplace_back(e);
        }
        return edges_from_v;
    }

    // Overloads the << operator so a graph be written directly to a 
stream
    // Can be used as std::cout << obj << std::endl;
    template <typename T>
    friend std::ostream& operator<< <>(std::ostream& os, const Graph<T>& 
G);

private:
    size_t V;        // Stores number of vertices in graph
    std::vector<Edge<T>> edge_list;
};
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5.	 Create the graph shown in figure 6.17, as shown here:

template <typename T>
auto create_bipartite_reference_graph()
{
    Graph<T> G(10);

    std::map<unsigned, std::vector<std::pair<size_t, T>>> edges;
    edges[1] = { {2, 0} };
    edges[2] = { {1, 0}, {3, 0} , {8, 0} };
    edges[3] = { {2, 0}, {4, 0} };
    edges[4] = { {3, 0}, {6, 0} };
    edges[5] = { {7, 0}, {9, 0} };
    edges[6] = { {1, 0}, {4, 0} };
    edges[7] = { {5, 0} };
    edges[8] = { {2,0}, {9, 0} };
    edges[9] = { {5, 0} };

    for (auto& i : edges)
        for (auto& j : i.second)
            G.add_edge(Edge<T>{ i.first, j.first, j.second });

    return G;
}

6.	 Now, we need a function so that we can implement our algorithm and check 
whether the graph is bipartite. Write the function like so:

template <typename T>
auto bipartite_check(const Graph<T>& G)
{
    std::stack<size_t> stack;
    std::set<size_t> visited;
    stack.push(1); // Assume that BFS always starts from vertex ID 1

    enum class colors {NONE, RED, BLUE};
    colors current_color{colors::BLUE}; // This variable tracks the color 
to be assigned to the next vertex that is visited.
    std::vector<colors> vertex_colors(G.vertices(), colors::NONE);
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    while (!stack.empty())
    {
        auto current_vertex = stack.top();
        stack.pop();

        // If the current vertex hasn't been visited in the past
        if (visited.find(current_vertex) == visited.end())
        {
            visited.insert(current_vertex);
            vertex_colors[current_vertex] = current_color;
            if (current_color == colors::RED)
            {
std::cout << "Coloring vertex "  
<< current_vertex << " RED" << std::endl;
                current_color = colors::BLUE;
            }
            else
            {
                std::cout << "Coloring vertex " 
<< current_vertex << " BLUE" << std::endl;
                current_color = colors::RED;
            }

            // Add unvisited adjacent vertices to the stack.
            for (auto e : G.outgoing_edges(current_vertex))
                if (visited.find(e.dest) == visited.end())
                    stack.push(e.dest);
        }
        // If the found vertex is already colored and 
        // has a color same as its parent's color, the graph is not 
bipartite
        else if (visited.find(current_vertex) != visited.end() && 
            ((vertex_colors[current_vertex] == colors::BLUE && 
                current_color == colors::RED) ||
            (vertex_colors[current_vertex] == colors::RED && 
                current_color == colors::BLUE)))
            return false;
    }

    // If all vertices have been colored, the graph is bipartite
    return true;
}
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7.	 Use the following functions to implement the test and driver code that tests our 
implementation of the bipartite checking algorithm:

template <typename T>
void test_bipartite()
{
    // Create an instance of and print the graph
    auto BG = create_bipartite_reference_graph<T>();
    std::cout << BG << std::endl;

    if (bipartite_check<T>(BG))
        std::cout << "The graph is bipartite" << std::endl;
    else
        std::cout << "The graph is not bipartite" << std::endl;
}

int main()
{
    using T = unsigned;
    test_bipartite<T>();

    return 0;
}

8.	 Run the program. You should see the following output:

Figure 6.34: Output of Activity 13
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Activity 14: Shortest Path in New York

In this activity, we will use the graph of various locations in New York City and find the 
shortest distance between the two given vertices. Follow these steps to complete the 
activity:

1.	 Add the required header files and declare the graph, as shown here:

#include <string>
#include <vector>
#include <iostream>
#include <set>
#include <map>
#include <limits>
#include <queue>
#include <fstream>
#include <sstream>

template<typename T> class Graph;

2.	 Implement the weighted edge that will be used in the graph:

template<typename T>
struct Edge
{
    size_t src;
    size_t dest;
    T weight;

    // To compare edges, only compare their weights,
    // and not the source/destination vertices
    inline bool operator< (const Edge<T>& e) const
    {
        return this->weight < e.weight;
    }

    inline bool operator> (const Edge<T>& e) const
    {
        return this->weight > e.weight;
    }
};
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3.	 Overload the << operator for the Graph class so that it can be output to the C++ 
streams:

template <typename T>
std::ostream& operator<<(std::ostream& os, const Graph<T>& G)
{
    for (auto i = 1; i < G.vertices(); i++)
    {
        os << i << ":\t";

        auto edges = G.outgoing_edges(i);
        for (auto& e : edges)
            os << "{" << e.dest << ": " << e.weight << "}, ";

        os << std::endl;
    }

    return os;
}

4.	 Implement an edge list graph, as shown here:

template<typename T>
class Graph
{
public:
    // Initialize the graph with N vertices
    Graph(size_t N) : V(N)
    {}

    // Return number of vertices in the graph
    auto vertices() const
    {
        return V;
    }

    // Return all edges in the graph
    auto& edges() const
    {
        return edge_list;
    }

    void add_edge(Edge<T>&& e)
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    {
        // Check if the source and destination vertices are within range
        if (e.src >= 1 && e.src <= V &&
            e.dest >= 1 && e.dest <= V)
            edge_list.emplace_back(e);
        else
            std::cerr << "Vertex out of bounds" << std::endl;
    }

    // Returns all outgoing edges from vertex v
    auto outgoing_edges(size_t v) const
    {
        std::vector<Edge<T>> edges_from_v;
        for (auto& e : edge_list)
        {
            if (e.src == v)
                edges_from_v.emplace_back(e);
        }
        return edges_from_v;
    }

    // Overloads the << operator so a graph be written directly to a 
stream
    // Can be used as std::cout << obj << std::endl;
    template <typename T>
    friend std::ostream& operator<< <>(std::ostream& os, const Graph<T>& 
G);

private:
    size_t V;        // Stores number of vertices in graph
    std::vector<Edge<T>> edge_list;
};

5.	 Write the following function so that you can parse the graph file and prepare the 
graph:

template <typename T>
auto read_graph_from_file()
{
    std::ifstream infile("USA-road-d.NY.gr");
    size_t num_vertices, num_edges;
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    std::string line;
    
    // Read the problem description line that starts with 'p' and looks 
like:
    // p <num_vertices> <num_edges>
    while (std::getline(infile, line))
    {
        if (line[0] == 'p')
        {
            std::istringstream iss(line);
            char p;
            std::string sp;
            iss >> p >>sp >> num_vertices >> num_edges; 
            std::cout << "Num vertices: " << num_vertices 
<< " Num edges: " << num_edges <<std::endl;
            break;
        }
    }

    Graph<T> G(num_vertices + 1);

    // Read the edges and edge weights, which look like:
    // a <source_vertex> <destination_vertex> <weight>
    while (std::getline(infile, line))
    {
        if (line[0] == 'a')
        {
            std::istringstream iss(line);
            char p;
            size_t source_vertex, dest_vertex;
            T weight;
            iss >> p >> source_vertex >> dest_vertex >> weight;

            G.add_edge(Edge<T>{source_vertex, dest_vertex, weight});
        }
    }

    infile.close();
    return G;
}
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6.	 Now, we need a struct that implements a Label struct that will be assigned to each 
vertex as Dijkstra's algorithm runs. Implement it as follows:

template<typename T>
struct Label
{
    size_t vertex_ID;
    T distance_from_source;

    Label(size_t _id, T _distance) :
        vertex_ID(_id),
        distance_from_source(_distance)
    {}

    // To compare labels, only compare their distances from source
    inline bool operator< (const Label<T>& l) const
    {
        return this->distance_from_source < l.distance_from_source;
    }

    inline bool operator> (const Label<T>& l) const
    {
        return this->distance_from_source > l.distance_from_source;
    }

    inline bool operator() (const Label<T>& l) const
    {
        return this > l;
    }
};

7.	 Dijkstra's algorithm can be implemented as follows:

template <typename T>
auto dijkstra_shortest_path(const Graph<T>& G, size_t src, size_t dest)
{
    std::priority_queue<Label<T>, std::vector<Label<T>>, 
std::greater<Label<T>>> heap;
    std::set<int> visited;
    std::vector<size_t> parent(G.vertices());
    std::vector<T> distance(G.vertices(), std::numeric_limits<T>::max());
    std::vector<size_t> shortest_path;
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    heap.emplace(src, 0);
    parent[src] = src;

    // Search for the destination vertex in the graph
    while (!heap.empty()) {
        auto current_vertex = heap.top();
        heap.pop();

        // If the search has reached the destination vertex
        if (current_vertex.vertex_ID == dest) {
            std::cout << "Destination " << 
current_vertex.vertex_ID << " reached." << std::endl;
            break;
        }
        if (visited.find(current_vertex.vertex_ID) == visited.end()) {
            std::cout << "Settling vertex " << 
current_vertex.vertex_ID << std::endl;
            // For each outgoing edge from the current vertex, 
            // create a label for the destination vertex and add it to the 
heap
            for (auto e : G.outgoing_edges(current_vertex.vertex_ID)) {
                auto neighbor_vertex_ID = e.dest;
                auto new_distance_to_dest=current_vertex.distance_from_
source 
+ e.weight;

                // Check if the new path to the destination vertex 
// has a lower cost than any previous paths found to it, if // yes, then 
this path should be preferred 
                if (new_distance_to_dest < distance[neighbor_vertex_ID]) {
                    heap.emplace(neighbor_vertex_ID, new_distance_to_
dest);
                    parent[e.dest] = current_vertex.vertex_ID;
                    distance[e.dest] = new_distance_to_dest;
                }
            }
            visited.insert(current_vertex.vertex_ID);
        }
    }
    // Construct the path from source to the destination by backtracking 
    // using the parent indexes
    auto current_vertex = dest;
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    while (current_vertex != src) {
        shortest_path.push_back(current_vertex);
        current_vertex = parent[current_vertex];
    }
    shortest_path.push_back(src);
    std::reverse(shortest_path.begin(), shortest_path.end());
    return shortest_path;
}

8.	 Finally, implement the test and driver code, as shown here:

template<typename T>
void test_dijkstra()
{
    auto G = read_graph_from_file<T>();
    //std::cout << G << std::endl;
    auto shortest_path = dijkstra_shortest_path<T>(G, 913, 542);

    std::cout << "The shortest path between 913 and 542 is:" << std::endl;
    for (auto v : shortest_path)
        std::cout << v << " ";
    std::cout << std::endl;
}

int main()
{
    using T = unsigned;
    test_dijkstra<T>();

    return 0;
}

9.	 Run the program. Your output should look as follows:

Figure 6.35: Output of Activity 14
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Chapter 7: Graph Algorithms II

Activity 15: Greedy Robot

We can solve this activity using the exact algorithm from Exercise 33, Implementing 
the Bellman-Ford Algorithm (Part II). The potential pitfalls here are related to correctly 
interpreting the required task and representing the graph within the context of the 
problem you are actually trying to solve. Let's get started:

1.	 The first step will be identical to the exercise. We will include the same headers 
and define an Edge struct and an UNKNOWN constant:

#include <iostream>
#include <vector>
#include <climits>

using namespace std;

struct Edge
{
        int start;
        int end;   
        int weight;

        Edge(int s, int e, int w) : start(s), end(e), weight(w) {}
};

const int UNKNOWN = INT_MAX;
vector<Edge*> edges;

2.	 In main(), we will declare an integer, N, which determines the height/width of the 
grid. We will then iterate from 0 to N * N - 1 in a for loop and read the adjacency 
data given in the input:

int main()
{
    int N;
    cin >> N;

    for(int i = 0; i < N * N - 1; i++)
    {
        string directions;
        int power;
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        cin >> directions >> power;
        
        ……
    }
    return 0;
}

3.	 Now, we must face the first potential problem – accurately representing the adja-
cencies. Typically, we would be inclined to think of a grid in two dimensions, and 
while it would certainly be possible to solve the problem this way, it would not 
be the optimal approach for this particular problem. To reinterpret the grid and 
adjacencies in one dimension, we must simply observe the following relationships 
between the one-dimensional index, i, and the corresponding two-dimensional 
grid coordinates:

CURRENT CELL: (x, y) —> i
NORTH: (x, y - 1) —> i - N
SOUTH: (x, y + 1) —> i + N
EAST: (x + 1, y) —> i + 1
WEST: (x - 1, y) —> i - 1 

4.	 We can handle these relationships by iterating through the characters of direc-
tions and containing the logic within a switch statement:

for(int i = 0; i < N * N - 1; i++)
{
    string directions;
    int power;
    cin >> directions >> power;

    int next;

    for(auto d : directions)
    {
        switch(d)
        {
            case 'N': next = i - N; break;
            case 'S': next = i + N; break;
            case 'E': next = i + 1; break;
            case 'W': next = i - 1; break;
        }
        ……
    }
}
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5.	 This leads to the second problematic aspect of this activity; that is, the  
interpretation of the power values. These, of course, will be the values that define 
the edge weights between adjacent cells, but within the context of this problem, 
the inputs can be rather misleading. According to the problem's description, we 
want to find the path that reaches the end with the maximum amount of energy 
compared to the baseline. A careless reading of the problem statement may lead 
us to conclude that the power values correspond exactly to the edge weights, but 
this would actually produce the opposite of what we intend to achieve. "Maximiz-
ing energy" can be viewed as the equivalent to "minimizing energy loss," and since 
the negative values actually represent the energy expenditure for each cell and the 
positive values represent energy gained, we must reverse the sign of each power 
value:

for(auto d : directions)
{
    switch(d)
    {
        ……
    }
    // Add edge with power variable's sign reversed 
    edges.push_back(new Edge(i, next, -power));
}

6.	 Now, we can implement BellmanFord(). This time, our function will take N and 
edges as arguments and return an integer equal to the maximum relative energy. 
To simplify our code, we will pass N as the total number of cells in the grid (that is, 
N * N):

int BellmanFord(int N, vector<Edge*> edges)
{
    vector<int> distance(N, UNKNOWN);
    
    // Starting node is always index 0
    distance[0] = 0;

    for(int i = 0; i < N - 1; i++)
    {
        for(auto edge : edges)
        {
            if(distance[edge->start] == UNKNOWN)
            {
                continue;
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            }

            if(distance[edge->start] + edge->weight < distance[edge->end])
            {
                distance[edge->end] = distance[edge->start] + edge-
>weight;
            }
        }
    }
    ……
}

7.	 As per the standard implementation, we will also perform a check for  
negative cycles to handle the condition related to the robot's greedy energy 
consumption. In the case that a negative cycle is found, we will return UNKNOWN:

// Check for negative cycles
for(auto edge : edges)
{
    if(distance[edge->start] == UNKNOWN)
    {
        continue;
    }
    if(distance[edge->start] + edge->weight < distance[edge->end])
    {
        return UNKNOWN;
    }
}
return distance[N];

8.	 Now, we can perform a call to BellmanFord() in main() and handle the output 
accordingly:

int result = BellmanFord(N * N, edges);

(result == UNKNOWN) ? cout << "ABORT TRAVERSAL" << endl 
               : cout << -1 * result << endl;

return 0;
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Activity 16: Randomized Graph Statistics

In this activity, we will generate randomized graphs for interview tests as described in 
the activity brief. Follow these steps to complete the activity:

1.	 Begin by including the following headers, as well as defining the UNKNOWN constant 
and the Edge struct:

#include <iostream>
#include <vector>
#include <iomanip>
#include <algorithm>
#include <queue>
#include <utility>

using namespace std;

const int UNKNOWN = 1e9;

struct Edge 
{
    int u;
    int v;
    int w;

    Edge(int u, int v, int w) 
        : u(u), v(v), w(w) {}
};

2.	 Our first task is to handle the generation of each graph. For this activity, we will 
encapsulate our graph data within a struct:

struct Graph
{
    int V, E;
    int maxWeight = -1e9;

    vector<Edge> edges;
    vector<vector<int>> adj;
    vector<vector<int>> weight;
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    Graph(int v, int e) : V(v), E(e) 
    {
        ...
    }
};

3.	 To make sure that the generated edges and the resulting graph are valid, we will 
create an adjacency matrix and check it during every attempt to create another 
edge. If an edge between the same two nodes already exists, we will begin another 
iteration. To make sure that every node has at least one  
incoming or outgoing edge, we will also set the diagonal cells in the matrix to true 
for each node that is part of an edge. If any of the diagonal cells are false after E 
edges are created, the graph will be invalid. We can indicate a graph as invalid by 
setting V to -1:

Graph(int v, int e) : V(v), E(e)
{
    vector<vector<bool>> used(V, vector<bool>(V, false));

    adj.resize(V);
    weight.resize(V, vector<int>(V, UNKNOWN));

    while(e)
    {
        // Generate edge values
        int u = rand() % V;
        int v = rand() % V;
        int w = rand() % 100;

        if(rand() % 3 == 0)
        {
            w = -w;
        }

        // Check if the edge is valid
        if(u == v || used[u][v])
        {
            continue;
        }

        // Add to edges and mark as used
        edges.push_back(Edge(u, v, w));
        adj[u].push_back(v);
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        weight[u][v] = w;
        maxWeight = max(maxWeight, w);

        used[u][u] = used[v][v] = used[u][v] = used[v][u] = true;
        e--;
    }
    for(int i = 0; i < V; i++)
    {
        // Set V to -1 to indicate the graph is invalid
        if(!used[i][i])
        {
            V = -1;
            break;
        }
    }
}

4.	 Let's also define an enum called RESULT with the corresponding values for each 
type of graph we need to consider:

enum RESULT
{
    VALID,
    INVALID,
    INTERESTING
};

5.	 In main(), we will receive the input, as well as declare the counters for each type 
of graph. We will then loop through the given number of iterations, create a 
new graph, and call a TestGraph() function that takes a Graph object as input and 
returns RESULT. Depending on the value that's returned, we will increment each 
counter accordingly:

int main()
{
    unsigned int seed;
    int iterations, V, E;
    
    cin >> seed;
    cin >> iterations;
    cin >> V >> E;

    int invalid = 0;
    int valid = 0;
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    int interesting = 0;

    srand(seed);

    while(iterations--)
    {
        Graph G(V, E);
        
        switch(TestGraph(G))
        {
            case INVALID: invalid++; break;
            case VALID: valid++; break;
            case INTERESTING: 
            {
                valid++;
                interesting++;
                break;
            }
        }
    }
    
    return 0;
}

6.	 TestGraph() will first check whether the value of V for each graph is equal to -1 and 
return INVALID if so. Otherwise, it will perform Johnson's algorithm  
to retrieve the shortest distances. The first step will be to retrieve the reweighting 
array using the Bellman-Ford algorithm:

RESULT TestGraph(Graph G)
{
    if(G.V == -1)
    {
        return INVALID;
    }
    
    vector<int> distance = BellmanFord(G);

    ……
}
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7.	 The implementation of Bellman-Ford that's used in this solution corresponds 
exactly to the one from the exercise, except that it receives a single Graph struc-
ture as an argument:

vector<int> BellmanFord(Graph G)
{
    vector<int> distance(G.V + 1, UNKNOWN);

    int s = G.V;

    for(int i = 0; i < G.V; i++)
    {
        G.edges.push_back(Edge(s, i, 0));
    }
    
    distance[s] = 0;

    for(int i = 0; i < G.V; i++)
    {
        for(auto edge : G.edges)
        {
            if(distance[edge.u] == UNKNOWN)
            {
                continue;
            }

            if(distance[edge.u] + edge.w < distance[edge.v])
            {
                distance[edge.v] = distance[edge.u] + edge.w;
            }
        }
    }

    for(auto edge : G.edges)
    {
        if(distance[edge.u] == UNKNOWN)
        {
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            continue;
        }

        if(distance[edge.u] + edge.w < distance[edge.v])
        {
            return {};
        }
    }
return distance;
}

8.	 As we did in the exercise, we will check whether the vector that's returned  
by BellmanFord() is empty. If so, we return VALID (the graph is valid but  
uninteresting). Otherwise, we will follow through with the rest of Johnson's algo-
rithm by reweighting the edges and performing a call to Dijkstra's  
algorithm for each vertex:

RESULT TestGraph(Graph G)
{
    if(G.V == -1)
    {
        return INVALID;
    }
    
    vector<int> distance = BellmanFord(G);

    if(distance.empty())
    {
        return VALID;
    }

    for(auto edge : G.edges)
    {
        G.weight[edge.u][edge.v] += (distance[edge.u] – distance[edge.v]);
    }

    double result = 0;

    for(int i = 0; i < G.V; i++)
    {
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        vector<int> shortest = Dijkstra(i, G);

    }
}

9.	 For this solution, let's use a more efficient form of Dijkstra's algorithm, which uses 
a min-priority queue to determine traversal order. To do this, each value that's 
added to the queue must consist of two values: the node's index and its distance 
value. We will do this using std::pair<int, int>, which has been redefined here 
as State. When pushing elements to the queue, the first value must correspond 
to the distance since this is going to be the first value that's considered by the 
priority queue's internal ordering logic. All of this can be handled by std::prior-
ity_queue, but we will need to provide three template parameters corresponding 
to the data type, container, and comparison  
predicate, respectively:

vector<int> Dijkstra(int source, Graph G)
{
    typedef pair<int, int> State;

    priority_queue<State, vector<State>, greater<State>> Q;
    vector<bool> visited(G.V, false);
    vector<int> distance(G.V, UNKNOWN);

    Q.push({0, source});
    distance[source] = 0;

    while(!Q.empty())
    {
        State top = Q.top();
        Q.pop();

        int node = top.second;
        int dist = top.first;

        visited[node] = true;

        for(auto next : G.adj[node])
        {
            if(visited[next])
            {
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                continue;
            }

            if(dist != UNKNOWN && distance[next] > dist + G.weight[node]
[next])
            {
                distance[next] = distance[node] + G.weight[node][next];
                
                Q.push({distance[next], next});
            }
            
        }
    }
    return distance;
}

10.	 Now, we will calculate the averages in TestGraph() for each set of paths. We do 
this by iterating through the array returned by Dijkstra() and keeping a sum of 
distances for which the index is not equal to the starting node's index. The corre-
sponding value is not equal to UNKNOWN. Every time a valid distance is found, a 
counter is also incremented so that we can get the final average by dividing the 
sum by the count. Each one of these averages is then added to the total result, 
which is divided by the total number of vertices in the graph. Remember that we 
must reweight the distances again to get the correct values:

double result = 0;

for(int i = 0; i < G.V; i++)
{
    vector<int> shortest = Dijkstra(i, G);

    double average = 0;
    int count = 0;

    for(int j = 0; j < G.V; j++)
    {
        if(i == j || shortest[j] == UNKNOWN)
        {
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            continue;
        }
        shortest[j] += (distance[j] – distance[i]);
        average += shortest[j];
        count++;
    }
    average = average / count;
    result += average;
}
result = result / G.V;

11.	 The last step is to calculate the ratio between the result and the maximum weight 
in the graph. If the value is less than 0.5, we return INTERESTING;  
otherwise, we return VALID:

double ratio = result / G.maxWeight;

return (ratio < 0.5) ? INTERESTING : VALID;

12.	 We can now return to main() and print the output. The first line will be equal to 
the value of invalid. The second line will be equal to interesting / valid, multi-
plied by 100, so that it will be displayed as a percentage. Depending on how you 
do this, you may have to cast your variables as floating points to prevent the value 
from being rounded to an integer. When printing the output, you can easily make 
sure it is rounded to two decimal places by using cout << fixed << setpreci-
sion(2):

double percentInteresting = (double)interesting / valid * 100;

cout << "INVALID GRAPHS: " << invalid << endl;
cout << "PERCENT INTERESTING: " << fixed << setprecision(2) << 
percentInteresting << endl;

return 0;
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Activity 17: Maze-Teleportation Game

The entire activity conforms fairly closely to the standard implementations of the 
algorithms we've discussed in this chapter, but with a few slight modifications. 

The terms that were used in the problem description, that is, maze, rooms, teleporters, 
and points could, of course, just as easily have been called graph, vertices, edges, and 
edge weights. The condition in which a player is able to infinitely reduce their score can 
be redefined as a negative weight cycle. Follow these steps to complete the activity:

1.	 Let's begin by including the necessary headers and setting up the variables and 
input for the activity:

#include <iostream>
#include <vector>
#include <stack>
#include <climits>

struct Edge
{
    int start;
    int end;
    int weight;

    Edge(int s, int e, int w) : start(s), end(e), weight(w) {}
}

const int UNKNOWN = INT_MAX;
vector<Edge*> edges; // Collection of edge pointers

2.	 We will receive input in the same form as our original Bellman-Ford  
implementation, but we will also build an adjacency list for our graph  
(represented here as a vector of integer vectors, adj):

int main()
{
    int V, E;
    cin >> V >> E;

    vector<Edge*> edges;
    vector<vector<int>> adj(V + 1);

    for(int i = 0; i < E; i++)
    {
        int u, v, w;
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        cin >> u >> v >> w;

        edges.push_back(new Edge(u, v, w));
        adj[u].push_back(v);
    }

    vector<int> results;

3.	 The first portion of the problem can be solved by using Bellman-Ford in an identi-
cal fashion to what was outlined in Exercise 32, Implementing the  
Bellman-Ford Algorithm (Part I). However, instead of printing all the values in 
the distance array, we will set its return type to int and include a few extra lines 
of code so that it returns only the shortest distance from the source vertex (or 
UNKNOWN if a negative cycle is detected):

int BellmanFord(int V, int start, vector<Edge*> edges)
{
    // Standard Bellman-Ford implementation

    vector<int> distance(V, UNKNOWN);
    
    distance[start] = 0;

    for(int i = 0; i < V - 1; i++)
    {
        for(auto edge : edges)
        {
            if(distance[edge->start] == UNKNOWN)
            {
                continue;
            }
            if(distance[edge->start] + edge->weight < distance[edge->end])
            {
                distance[edge->end] = distance[edge->start] + edge-
>weight;
            }
        }
    }

    // Return UNKNOWN if a negative cycle is found

    if(HasNegativeCycle(distance, edges))
    {
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        return UNKNOWN;
    }

    int result = UNKNOWN;

    for(int i = 0; i < V; i++)
    {
        if(i == start) continue;

        result = min(result, distance[i]);
    }
    return result;
}

4.	 We can now call this function in main() and populate a results vector for output. If 
BellmanFord() happens to return UNKNOWN, we output INVALID MAZE and terminate 
the program (as per the first condition). If a certain starting node has no outgo-
ing edges, we can skip the call to BellmanFord entirely and simply append UNKNOWN 
to the vector. If we make it through every vertex, we can output the values in the 
results (or DEAD END if the value is UNKNOWN):

vector<int> results;

for(int i = 0; i < V; i++)
{
    if(adj[i].empty())
    {
        results.push_back(UNKNOWN);
        continue;
    }
    int shortest = BellmanFord(V, i, edges);

    if(shortest == UNKNOWN)
    {
        cout << "INVALID MAZE" << endl;
        return 0;
    }
    results.push_back(shortest);
}
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for(int i = 0; i < V; i++)
{
    cout << i << ": ";

    (results[i] == INVALID) ? cout << "DEAD END" << endl : cout << 
results[i] << endl;
}

5.	 Now, we've come to the final condition – finding rooms in which players can get 
"stuck." Considering this case in terms of graph connectivity, we can  
redefine it as follows: find the strongly connected components that have no 
outgoing edges to other components. There are many simple ways to do this once 
all the strongly connected components have been acquired, but let's try to maxi-
mize our program's efficiency and add the necessary logic directly into our exist-
ing Kosaraju implementation.

To accomplish this, we will declare two new vectors: one of type bool, named 
isStuck and another of type int, named inComponent. inComponent will store the 
index of the component each node belongs to, while isStuck will tell us whether or 
not the component with index i is cut off from the rest of the graph.

For the sake of simplicity, let's declare the new variables globally:

vector<bool> isStuck;
vector<int> inComponent;
int componentIndex;

Here, we can really begin to appreciate the benefits of encapsulation and object-
oriented implementations of graph structures. Having to pass such a large amount 
of data between our functions is not only difficult to keep track of mentally, but 
it greatly complicates any kind of modifications we may want to make in the 
future (to say nothing about the headache-inducing appearance of a function call 
such as GetComponent(node, adj, visited, component, isStuck, inComponent, 
componentIndex). For the sake of example and readability, we opt to declare this 
data globally, but this sort of approach is highly recommended against within the 
context of an actual full-scale application.

6.	 Within our Kosaraju function, we initialize the new data as follows:

isStuck.resize(V, true);
inComponent.resize(V, UNKNOWN);
componentIndex = 0;
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7.	 Now, we will begin our while loop, incrementing componentIndex by following each 
DFS traversal that's performed on the stack:

while(!stack.empty())
{
    int node = stack.top();
    stack.pop();

    if(!visited[node])
    {
        vector<int> component;

        GetComponent(node, transpose, visited, component);

        components.push_back(component);
        componentIndex++;
    }
}

8.	 Now, we can write the logic in GetComponent(), which will handle this case. We will 
begin by setting the value of each node's index in inComponent to componentIndex. 
Now, as we iterate through each node's neighbors, we will include another condi-
tion that occurs when the nodes have already been visited:

component.push_back(node);
visited[node] = true;

inComponent[node] = componentIndex;

for(auto next : adj[node])
{
    if(!visited[next])
    {
        GetComponent(next, visited, adj, component);
    }
    else if(inComponent[node] != inComponent[next])
    {
        isStuck[inComponent[next]] = false;
    }
}
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Essentially, we are checking to see whether each previously visited neighbor's 
component matches the current node's component. If their respective component 
IDs are different, we can conclude that the neighbor's component has a path that 
extends to other parts of the graph. 

You may be wondering why, in a directed graph, the existence of an edge from the 
current node indicates that the neighboring node has an outgoing path outside 
of its own component. The reason this logic seems 'backward' is because it is. 
Remember that we are traversing the transform of the original graph, so the 
directions between adjacencies are all reversed!

9.	 Upon finishing the DFS traversals, we can now return the components vector and 
print the results:

auto components = Kosaraju(V, adj);

for(int i = 0; i < components.size(); i++)
{
    if(isStuck[i])
    {
        for(auto node : components[i])
        {
            cout << node << " ";
        }
        cout << endl;
    }
}

return 0;
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Chapter 8: Dynamic Programming I

Activity 18: Travel Itinerary

Let's begin by considering the base case and recurrence relation for this problem. 
Unlike some of the other examples we have discussed in this chapter, this particular 
problem has just one base case – the point at which the destination has been reached. 
The intermediate states are also quite simple: given a location at index i that has 
a distance limit of x, we can travel to any location between indices i + 1 and i + x 
(inclusive). For example, let's consider the following two cities:

•	 City 1: distance[1] = 2

•	 City 2: distance[2] = 1

Let's say we wanted to calculate the number of ways to reach the city at index 3. 
Because we can reach city 3 from both city 1 and city 2, the number of ways to reach 
city 3 is equivalent to the sum of the number of ways to reach city 1 and the number of 
ways to reach city 2. This recurrence is quite similar to the Fibonacci series, except that 
the number of previous states from which the current state's substructure is formed is 
variable according to the values of distance.

So, let's say we have the following four cities:
[1]: distance = 5
[2]: distance = 3
[3]: distance = 1
[4]: distance = 2

From this, we want to calculate the number of ways to travel to city 5. To do this, we 
can formulate the substructure as follows:

Cities reachable from index [1] -> { 2 3 4 5 6 }
Cities reachable from index [2] -> { 3 4 5 }
Cities reachable from index [3] -> { 4 }
Cities reachable from index [4] -> { 5 6 }

We can now invert this logic to find the cities from which we can travel through to 
reach a given location:

Cities that connect to index [1] -> START
Cities that connect to index [2] -> { 1 }
Cities that connect to index [3] -> { 1 2 }
Cities that connect to index [4] -> { 1 2 3 }
Cities that connect to index [5] -> { 1 2 }
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Taking this a step further, we can now devise an outline of the state logic:
Ways to reach City 1 = 1 (START)

Ways to reach City 2 = 1 
    1 " 2

Ways to reach City 3 = 2
    1 " 2 " 3
    1 " 3

Ways to reach City 4 = 4
    1 " 2 " 3 " 4
    1 " 2 " 4
    1 " 3 " 4
    1 " 4

Ways to reach City 5 = 6
    1 " 2 " 3 " 4 " 5
    1 " 2 " 4 " 5
    1 " 2 " 5
    1 " 3 " 4 " 5
    1 " 4 " 5
    1 " 5

Thus, we can define the recurrence as follows:

•	 Base case: 

F(1) = 1 (We have reached the destination)

•	 Recurrence:

Figure 8.22: Formula for defining recurrence
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In other words, the number of ways to reach a given location is equal to the sum of the 
number of ways to reach each location that connects to it. Using this logic, a recursive 
function for solving this problem might look like this:

F(n) -> number of ways to reach n'th location

F(i) = 

    if i = N: 

         return 1 

        Otherwise:

            result = 0

            for j = 1 to distance[i]:

                result = result + F(i + j)

            return result

Now that we have a functional definition of the problem's states, let's begin 
implementing it in code. 

1.	 For this problem, we will include the following headers and the std namespace:

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

2.	 Because the outputs of this problem require the computation of numbers that 
exceed 32 bits, we will use long long int for the result. To avoid having to write 
this repeatedly, we will use a typedef statement to abbreviate it:

typedef long long LL;

3.	 Finally, we will define the modulus value for outputting the results:

const LL MOD = 1000000007;
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Handling the input and output in this problem can be implemented very simply:

int main()
{
    int n;
    cin >> n;
    
vector<int> distance(n);

    for(int i = 0; i < n; i++)
    {
        cin >> distance[i];
    }

    LL result = TravelItinerary(n, distance);

    cout << result << endl;

    return 0;
}

4.	 We will now define a function called TravelItinerary() that takes n and distance 
as arguments and returns a long integer:

LL TravelItinerary(int n, vector<int> distance)
{
    ...
}

5.	 Now, we must convert the recursive algorithm we presented earlier into a 
bottom-up approach. In pseudocode, this might appear as follows:

DP -> Array of size N + 1

DP[0] = 1 (There is one way to reach the starting location)

for i = 0 to N-1:

    for j = 1 to distance[i]: 
        
        DP[i + j] += DP[i]

return DP[N]
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6.	 To code this in C++, we will first declare a one-dimensional DP table of size n + 
1 and initialize all of its elements to 0. Then, we will set its first element to 1 to 
represent the base case:

vector<LL> DP(n + 1, 0);

DP[0] = 1;

7.	 To implement the recurrence we described previously, we will first reverse the 
distance array so that we are essentially beginning our calculations from the 
destination index. There are several reasons for this, but the primary reason is so 
that our algorithm processes the current state by combining the results of earlier 
states, as opposed to calculating future states from the results of the current state. 
Though the logic described in the pseudocode will produce the correct result, it is 
generally preferable to formulate bottom-up logic in terms of how the solutions of 
the previous states form the result of the immediate state:

reverse(distance.begin(), distance.end());

DP[0] = 1;

for(int i = 1; i <= n; i++)
{
    int dist = distance[i-1];

    for(int j = 1; j <= dist; j++)
    {
        DP[i] = (DP[i] + DP[i – j]) % MOD;
    }
}
return DP[n];

This is certainly a viable solution to the problem that will be completely 
satisfactory in the vast majority of cases. However, since dynamic programming 
is first and foremost an optimization technique, we should still ask ourselves if a 
better approach exists.
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Handling the Extra Credit Test Case

As both n and the maximum distance value increase, even the preceding algorithm 
will eventually prove to be rather inefficient. If n = 10000000 and the distance values 
can vary between 1 and 10000, then the inner for loop would have to perform nearly 
100000000000 iterations in the worst case. Thankfully, there is a very simple technique 
that will allow us to completely remove the inner loop, which means we will have to 
perform exactly n iterations for any input.

To handle this reduction, we will create a prefix sum array, which will allow us to 
calculate the range sums we previously handled by the inner loop in constant time. If 
you are unfamiliar with this technique, the basic concept is as follows:

•	 Create an array called sums that has a length equal to the total number of values to 
sum plus one, with all the elements initialized to 0.

•	 For each index i from 0 to n, use sum[i + 1] = sum[i] + distance[i].

•	 After the sums have been calculated, the sum of all elements in any range [L, R] 
will be equal to sum[R+1] – sum[L].

Take a look at the following example:

        0 1  2  3  4

A    =   { 3 1 10  2  5 } 

           0 1 2  3  4  5

sums  =  { 0 3 4 14 16 21 }

range(1, 3) = A[1] + A[2] + A[3]

         = 1 + 10 + 2

         = 13
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sums[4]  – sums[1] = 13

range(3, 4) = A[3] + A[4]

        = 2 + 5

        = 7

sums[5] – sums[3] = 7

8.	 We can implement this approach in our function as follows:

LL TravelItinerary(int n, vector<int> distance)
{
    vector<LL> DP(n + 1, 0);
    vector<LL> sums(n + 2, 0);

    DP[0] = sums[1] = 1;

    reverse(distance.begin(), distance.end());

    for(int i = 1; i <= n; i++)
    {
        int dist = distance[i-1];
        LL sum = sums[i] – sums[i – dist];

        DP[i] = (DP[i] + sum) % MOD;
        sums[i + 1] = (sums[i] + DP[i]) % MOD;
    }
    return DP[n];
}

9.	 Now, there is still one more problem that you are likely to encounter, and that is 
that the result returned by the preceding function will be negative. This is due to 
the fact that the modulo operations are causing higher-indexed values in sums to 
be less than lower-indexed values, which leads to a negative result when subtract-
ing. This sort of issue can be very common in problems requiring frequent modulo 
operations on very large numbers, but can be easily fixed by modifying the return 
statement slightly:

return (DP[n] < 0) ? DP[n] + MOD : DP[n];
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With these slight modifications, we now have an elegant and efficient solution to the 
problem that can handle massive input arrays in a fraction of a second!

Activity 19: Finding the Longest Common Subsequence by Using  

Memoization

1.	 As we did with the subset sum problem, we will include each new approach within 
the same code file so that we can compare their relative performance. To that end, 
let's define our GetTime() function in the same way as before:

vector<string> types =
{
    "BRUTE FORCE",
    "MEMOIZATION",
    "TABULATION"
};

const int UNKNOWN = INT_MAX;

void GetTime(clock_t &timer, string type)
{
    timer = clock() - timer;

    cout << "TIME TAKEN USING " << type << ": " << fixed << setprecision(5) 
<< (float)timer / CLOCKS_PER_SEC << " SECONDS" << endl;

    timer = clock();
}

2.	 Now, let's define our new function, LCS_Memoization(), which will take the same 
arguments as LCS_BruteForce(), except that subsequence will instead be replaced 
by a reference to a two-dimensional integer vector, memo:

int LCS_Memoization(string A, string B, int i, int j, vector<vector<int>> 
&memo)
{
    ……
}
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3.	 Our code for this function will also be quite similar to LCS_BruteForce(), except 
we will invert the logic by recursively traversing the prefixes of the two strings 
(beginning with the complete strings) and storing the results in our memo table at 
each step:

// Base case — LCS is always zero for empty strings
if(i == 0 || j == 0)
{
    return 0;
}

// Have we found a result for the prefixes of the two strings?
if(memo[i - 1][j - 1] != UNKNOWN)
{
    // If so, return it
    return memo[i - 1][j - 1];
}

// Are the last characters of A's prefix and B's prefix equal?
if(A[i-1] == B[j-1])
{
    // LCS for this state is equal to 1 plus the LCS of the prefixes of A 
and B, both reduced by one character
    memo[i-1][j-1] = 1 + LCS_Memoization(A, B, i-1, j-1, memo);

    // Return the cached result
    return memo[i-1][j-1];
}

// If the last characters are not equal, LCS for this state is equal to 
the maximum LCS of A's prefix reduced by one character and B's prefix, and 
B's prefix reduced by one character and A's prefix

memo[i-1][j-1] = max(LCS_Memoization(A, B, i-1, j, memo), 
                 LCS_Memoization(A, B, i, j-1, memo));

return memo[i-1][j-1];
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4.	 Now, let's redefine our main() function to perform both approaches and display 
the time taken by each:

int main()
{
    string A, B;
    cin >> A >> B;

    int tests = 2;

    clock_t timer = clock();

    for(int i = 0; i < tests; i++)
    {
        int LCS;

        switch(i)
        {
            case 0:
            {
                LCS = LCS_BruteForce(A, B, 0, 0, {});

            #if DEBUG
                PrintSubsequences(A, B);
            #endif
                break;
            }
            case 1:
            {
                vector<vector<int>> memo(A.size(), vector<int>(B.size(), 
UNKNOWN));
                LCS = LCS_Memoization(A, B, A.size(), B.size(), memo);
                break;
            }

        }
        cout << "Length of the longest common subsequence of " << A << " 
and " << B << " is: " << LCS << ends;
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        GetTime(timer, types[i]);

        cout << endl;
    }
    return 0;
}

5.	 Now, let's try performing our two algorithms on two new strings, ABCABDBEFBA and 
ABCBEFBEAB. Your program's output should be similar to the following:

SIZE = 3
    ABC________ ABC_______
SIZE = 4
    ABC_B______ ABCB______
    ABC_B______ ABC___B___
    ABC_B______ ABC______B
    ABC___B____ ABC______B
    ABC____E___ ABC____E__
    ABC______B_ ABC___B___
    ABC______B_ ABC______B
    ABC_______A ABC_____A_
SIZE = 5
    ABCAB______ ABC_____AB
    ABC_B_B____ ABCB_____B
    ABC_B__E___ ABCB___E__
    ABC_B____B_ ABCB__B___
    ABC_B____B_ ABCB_____B
    ABC_B_____A ABCB____A_
    ABC_B_B____ ABC___B__B
    ABC_B__E___ ABC___BE__
    ABC_B____B_ ABC___B__B
    ABC_B_____A ABC___B_A_
    ABC___BE___ ABC___BE__
    ABC____E_B_ ABC____E_B
    ABC____E__A ABC____EA_
    ABC_____FB_ ABC__FB___
    ABC______BA ABC___B_A_
SIZE = 6
    ABC_B_BE___ ABCB__BE__
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    ABC_B__E_B_ ABCB___E_B
    ABC_B__E__A ABCB___EA_
    ABC_B___FB_ ABCB_FB___
    ABC_B____BA ABCB__B_A_
    ABC_B__E_B_ ABC___BE_B
    ABC_B__E__A ABC___BEA_
    ABC___BE_B_ ABC___BE_B
    ABC___BE__A ABC___BEA_
    ABC____EFB_ ABC_EFB___
    ABC_____FBA ABC__FB_A_
SIZE = 7
    ABC_B_BE_B_ ABCB__BE_B
    ABC_B_BE__A ABCB__BEA_
    ABC_B__EFB_ ABCBEFB___
    ABC_B___FBA ABCB_FB_A_
    ABC____EFBA ABC_EFB_A_
SIZE = 8
    ABC_B__EFBA ABCBEFB_A_
Length of the longest common subsequence of ABCABDBEFBA and ABCBEFBEAB is: 
8
TIME TAKEN USING BRUTE FORCE: 0.00242 SECONDS

Length of the longest common subsequence of ABCABDBEFBA and ABCBEFBEAB is: 
8
TIME TAKEN USING MEMOIZATION: 0.00003 SECONDS

6.	 Of course, the time taken by the brute-force approach is going to be affected by 
the additional step of printing out the subsequences. By running our code again 
after setting the DEBUG constant to 0, the output is now as follows:

Length of the longest common subsequence of ABCABDBEFBA and ABCBEFBEAB is: 
8
TIME TAKEN USING BRUTE FORCE: 0.00055 SECONDS

Length of the longest common subsequence of ABCABDBEFBA and ABCBEFBEAB is: 
8
TIME TAKEN USING MEMOIZATION: 0.00002 SECONDS



568 | Appendix

7.	 Now, let's try pushing the limits of our algorithm using two much larger strings, 
ABZCYDABAZADAEA and YABAZADBBEAAECYACAZ. You should get an output something 
like this:

Length of the longest common subsequence of ABZCYDABAZADAEA and 
YABAZADBBEAAECYACAZ is: 10
TIME TAKEN USING BRUTE FORCE: 8.47842 SECONDS

Length of the longest common subsequence of ABZCYDABAZADAEA and 
YABAZADBBEAAECYACAZ is: 10
TIME TAKEN USING MEMOIZATION: 0.00008 SECONDS

Note

The actual values for the time taken will vary depending on your system. Please 
note the difference in the values.

As we can clearly see, the gains in performance provided by memoization are quite 
significant!

Activity 20: Finding the Longest Common Subsequence Using Tabulation

As we did previously, we will add a new function, LCS_Tabulation(), to the same code 
file that contains our brute-force and memoized solutions.

1.	 Our LCS_Tabulation() function receives two arguments— strings A and B — and 
returns a string:

string LCS_Tabulation(string A, string B)
{
    ……
} 

2.	 Our first step is to define our DP table, which we will represent as a two-dimen-
sional vector of integers, with the first dimension's size equal to one greater than 
the size of string A, and the second dimension's size equal to one greater than the 
size of string B:

vector<vector<int>> DP(A.size() + 1, vector<int>(B.size() + 1));
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3.	 Like the subset sum problem, all of our algorithm's logic can be contained within 
two nested loops, with the first one iterating from 0 to the size of A, and the 
second iterating from 0 to the size of B:

for(int i = 0; i <= A.size(); i++)
{
    for(int j = 0; j <= B.size(); j++)
    {
        ……
    }
}

4.	 Unlike the subset sum problem, our base case will not be handled prior to the 
execution of the loops, but rather at the beginning of each loop. This is because 
our base case will occur any time the prefix of A or B is empty (that is, i = 0 or j = 
0). This is represented in our code as follows:

if(i == 0 || j == 0)
{
    DP[i][j] = 0;
}

5.	 Now, we must handle the case where the characters at the end of A's prefix and B's 
prefix are equal. Remember that the LCS value for this state is always equal to 1, 
plus the LCS value of the state where both prefixes are one character smaller than 
they are currently. This can be represented as follows:

else if(A[i-1] == B[j-1])
{
    DP[i][j] = DP[i-1][j-1] + 1;
}

6.	 For the final case, the end characters are not equal. For this state, we know that 
the LCS is equal to the maximum of the LCS of A's previous prefix and B's current 
prefix, and the LCS of B's previous prefix and A's current prefix. In terms of our 
table's structure, this is equivalent to saying that the LCS is equal to the maximum 
of the value contained in the same column and previous row of the table, and the 
value contained in the same row and previous column:

else
{
    DP[i][j] = max(DP[i-1][j], DP[i][j-1]);
}
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7.	 When we are done, the length of the longest common subsequence will be 
contained in DP[A.size()][B.size()] – the value of the LCS when the prefixes of 
both A and B are equal to the entire strings. Therefore, our complete DP logic is 
written as follows: 

string LCS_Tabulation(string A, string B)
{
    vector<vector<int>> DP(A.size() + 1, vector<int>(B.size() + 1));

    for(int i = 0; i <= A.size(); i++)
    {
        for(int j = 0; j <= B.size(); j++)
        {
            if(i == 0 || j == 0)
            {
                DP[i][j] = 0;
            }
            else if(A[i-1] == B[j-1])
            {
                DP[i][j] = DP[i-1][j-1] + 1;
            }
            else
            {
                DP[i][j] = max(DP[i-1][j], DP[i][j-1]);
            }
        }
    }

    int length = DP[A.size()][B.size()];
    ……
}

At this point, we have discussed several ways to find the length of the longest 
common subsequence, but what if we also want to output its actual characters? 
Of course, our brute-force solution does this, but very inefficiently; however, 
using the results contained in the preceding DP table, we can use backtracking to 
reconstruct the LCS quite easily. Let's highlight the path we would need to follow 
in the table to accomplish this:
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Figure 8.23: Activity 20 DP table

By collecting the characters associated with each column in the path where the 
value increases, we get the LCS ABCBEFBA.

8.	 Let's define a function called ReconstructLCS() that takes A, B, i, j, and DP as argu-
ments. Our backtracking logic can be defined as follows:

if i = 0 or j = 0:
    Return an empty string

If the characters at the end of A's prefix and B's prefix are equal:
    Return the LCS of the next smaller prefix of both A and B, plus the 
equal character

Otherwise:
    If the value of DP(i - 1, j) is greater than the value of DP(i, j - 
1):
      – Return the LCS of A's next smaller prefix with B's current prefix
      – Otherwise:
          Return the LCS of B's next smaller prefix with A's current prefix
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In C++, this can be coded as follows:

string ReconstructLCS(vector<vector<int>> &DP, string &A, string &B, int 
i, int j)
{
    if(i == 0 || j == 0)
    {
        return "";
    }

    if(A[i-1] == B[j-1])
    {
        return ReconstructLCS(DP, A, B, i-1, j-1) + A[i-1];
    }
    else if(DP[i-1][j] > DP[i][j-1])
    {
        return ReconstructLCS(DP, A, B, i-1, j);
    }
    else
    {
        return ReconstructLCS(DP, A, B, i, j-1);
    }
}

9.	 Now, we can return the result of ReconstructLCS() in the final line of LCS_Tabula-
tion():

string LCS_Tabulation(string A, string B)
{
    ……

    string lcs = ReconstructLCS(DP, A, B, A.size(), B.size());

    return lcs; 
}

10.	 Our code in main() should now be modified to accommodate the addition of LCS_
Tabulation():

int main()
{
    string A, B;
    cin >> A >> B;
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    int tests = 3;

    clock_t timer = clock();

    for(int i = 0; i < tests; i++)
    {
        int LCS;

        switch(i)
        {
            ……

            case 2:
            {
                string lcs = LCS_Tabulation(A, B);

                LCS = lcs.size();

                cout << "The longest common subsequence of " << A << " and 
" << B << " is: " << lcs << endl;

                break; 
            }
        }
        cout << "Length of the longest common subsequence of " << A << " 
and " << B << " is: " << LCS << endl;

        GetTime(timer, types[i]);
    }
    return 0;
}

11.	 Using the strings ABCABDBEFBA and ABCBEFBEAB, your program's output should be 
similar to this:

Length of the longest common subsequence of ABCABDBEFBA and ABCBEFBEAB is: 
8
TIME TAKEN USING BRUTE FORCE: 0.00060 SECONDS

Length of the longest common subsequence of ABCABDBEFBA and ABCBEFBEAB is: 
8
TIME TAKEN USING MEMOIZATION: 0.00005 SECONDS
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The longest common subsequence of ABCABDBEFBA and ABCBEFBEAB is: ABCBEFBA
Length of the longest common subsequence of ABCABDBEFBA and ABCBEFBEAB is: 
8
TIME TAKEN USING TABULATION: 0.00009 SECONDS

Note

The actual values for the time taken will vary depending on your system. Please 
note the difference in the values.

Now, we have looked at another detailed example of how the same logic can be applied 
to the same problem using different techniques and the corresponding effect this has 
on the execution time of the algorithm. 

Activity 21: Melodic Permutations

The first question to ask ourselves is: what constitutes a single state in this problem?

Base case --> Empty set:

1.	 Consider each note in the melody.

2.	 For each subset of notes that was previously encountered, either append the 
current note or do nothing.

3.	 If the subset matches the target, add it to the solutions.

Given that our options are to either append a note to a previous subset or leave it as-is, 
we could restate the logic as follows:

For a given note in the melody, the count of subsets of size | n | containing the 
note is equal to the total count of all subsets of size | n - 1 | that did not contain the 
note.

So, each state can be expressed in two dimensions:  

•	 Dimension 1: The length of the melody considered so far.

•	 Dimension 2: The resulting subset formed by taking a previously found subset 
and either appending the note located at index [length - 1] of the melody to it or 
doing nothing.
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In pseudocode, the logic could be expressed as follows:

for i = 1 to length of melody (inclusive):

    for each subset previously found:

    DP(i, subset) = DP(i, subset) + DP(i - 1, subset)

    DP(i, subset ∪ melody[i - 1]) = DP(i, subset ∪ melody[i - 1]) + DP(i - 
1, subset)

So, the primary question now is, how can we represent these states?

Remember that for an n-element collection, there are a total of 2n subsets comprising it 
— for example, a set of 4 elements can be divided into a total of 24 (or 16) subsets:

S = { A, B, C, D }

{ }            —>        { _ _ _ _ }

{ A }          —>        { # _ _ _ }

{ B }          —>        { _ # _ _ }

{ C }          —>        { _ _ #_  }

{ D }          —>        { _ _ _ # }

{ A, B }       —>        { # # _ _ }

{ A, C }       —>        { # _ #_  }

{ A, D }       —>        { # _ _ # }

{ B, C }       —>        { _ # #_  }

{ B, D }       —>        { _ # _ # }

{ C, D }       —>        { _ _ # # }

{ A, B, C }    —>        { # # # _ }

{ A, B, D }    —>        { # # _ # }

{ A, C, D }    —>        { # _ # # }

{ B, C, D }    —>        { _ # # # }

{ A, B, C, D } —>        { # # # # }
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If we iterate from 0 to (24 - 1) inclusive in binary, we get the following numbers:

0     —>    0000    —>    { _ _ _ _ }

1     —>    0001    —>    { # _ _ _ }

2     —>    0010    —>    { _ # _ _ }

3     —>    0011    —>    { # # _ _ }

4     —>    0100    —>    { _ _ # _ }

5     —>    0101    —>    { # _ # _ }

6     —>    0110    —>    { _ # # _ }

7     —>    0111    —>    { # # # _ }

8     —>    1000    —>    { _ _ _ # }

9     —>    1001    —>    { # _ _ # }

10    —>    1010    —>    { _ # _ # }

11    —>    1011    —>    { # # _ # }

12    —>    1100    —>    { _ _ # # }

13    —>    1101    —>    { # _ # # }

14    —>    1110    —>    { _ # # # }

15    —>    1111    —>    { # # # # }

As we can see, the digits of each binary number from 0 to 2n correspond exactly to the 
indices of one possible subset of n elements. Since there are 12 notes in the scale, this 
means there is a total of 212 (or 4,096) possible subsets of notes. By mapping each note 
in the scale to a power of 2, we can use bitwise arithmetic to represent the subsets 
encountered across each state. 

The following are the steps to solve this activity:

1.	 Moving on to the code, we should begin by including the following headers:

#include <iostream>
#include <vector>
#include <string>
#include <map>

using namespace std;
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2.	 Let's start by handling the input in our main() function:

int main()
{
    int melodyLength;
    int setLength;

    cin >> melodyLength;

    vector<string> melody(melodyLength);

    for(int i = 0; i < melodyLength; i++)
    {
        cin >> melody[i];
    }

    cin >> setLength;

    vector<string> set(setLength);

    for(int i = 0; i < setLength; i++)
    {
        cin >> set[i];
    }

    ……
}

3.	 Now, let's write a function called ConvertNotes(),that receives a vector of note 
strings as input and returns a vector of their corresponding integer values. Each of 
the 12 total notes in the scale will need to be mapped to a particular bit (beginning 
with A), with enharmonically equivalent notes assigned to identical values. We will 
use std::map to handle the conversions:

vector<int> ConvertNotes(vector<string> notes)
{
    map<string, int> M = 
    {
        { "A",  0 }, 
        { "A#", 1 },
        { "Bb", 1 },
        { "B",  2 },
        { "Cb", 2 },
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        { "B#", 3 },
        { "C",  3 },
        { "C#", 4 },
        { "Db", 4 },
        { "D",  5 },
        { "D#", 6 },
        { "Eb", 6 },
        { "E",  7 },
        { "Fb", 7 },
        { "E#", 8 },
        { "F",  8 },
        { "F#", 9 },
        { "Gb", 9 },
        { "G",  10 },
        { "G#", 11 },
        { "Ab", 11 }
    };

    vector<int> converted;

    for(auto note : notes)
    {
        // Map to powers of 2
        converted.push_back(1 << M[note]); 
    }
    return converted;
}

4.	 Now, we will define a function called CountMelodicPermutations() that takes two 
integer vectors, melody and set, as arguments and returns an integer:

int CountMelodicPermutations(vector<int> melody, vector<int> set)
{
    ……
}
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5.	 Our first step is to define our target subset. We will do this using the bitwise or 
operator:

unsigned int target = 0;

for(auto note : set)
{
    target |= note;
}

6.	 As an example, if our target set is { C, F#, A }, the mapping would look like this:

C  = 3
F# = 9
A  = 0

converted = { 23, 29, 20 } = { 8, 512, 1 }

target = (8 | 512 | 1) = 521

    0000001000
  + 0000000001
  + 1000000000
  = 1000001001

7.	 We will now define a two-dimensional DP table, with the first dimension initialized 
to melodyLength + 1, and the second dimension initialized to one greater than the 
maximum subset value (that is, 111111111111 = 212 - 1, so the second dimension 
will contain 212, or 4,096, elements):

vector<vector<int>> DP(melody.size() + 1, vector<int>(4096, 0));

8.	 Our DP formula can be defined as follows: 

Base case:

    DP(0, 0) —> 1 

Recurrence:

    DP(i, subset) —> DP(i, subset) + DP(i - 1, subset)
    DP(i, subset ∪ note[i-1]) —> DP(i, subset ∪ note[i]) + DP(i - 1, 
subset)
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Here, i ranges from 1 to the length of the melody. We can write the preceding 
logic in C++ like this:

// Base case —> empty set
DP[0][0] = 1;

for(int i = 1; i <= melody.size(); i++)
{
    for(unsigned int subset = 0; subset < 4096; subset++)
    {
        // Keep results for previous values of i
        DP[i][subset] += DP[i-1][subset];

        // Add results for union of subset with melody[i-1]
        DP[i][subset | melody[i-1]] += DP[i-1][subset];
    }
}

// Solution
return DP[melody.size()][target];

9.	 Now, we can finish our main() function by calling CountMelodicPermutations and 
outputting the result:

int count = CountMelodicPermutations(ConvertNotes(melody), 
ConvertNotes(set));

cout << count << endl;
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Chapter 9: Dynamic Programming II

Activity 22: Maximizing Profit

In this activity, we will optimize our inventory for sale to maximize our profits. Follow 
these steps to complete the activity:

1.	 Let's begin by including the following headers:

#include <iostream>
#include <vector>
using namespace std;

2.	 First, we will define a structure, Product, that encapsulates the data associated 
with each item:

struct Product 
{
    int quantity;
    int price;
    int value;

    Product(int q, int p, int v) 
        : quantity(q), price(p), value(v) {}
};

3.	 Next, we will handle the input in the main() function and populate an array of the 
Product type:

int main()
{
    int N, budget, capacity;
    cin >> N >> budget >> capacity;

    vector<Product> products;

    for(int i = 0; i < N; i++)
    {
        int quantity, cost, value;
        cin >> quantity >> cost >> value;
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        products.push_back(Product(quantity, cost, value));
    }
...

return 0;
}

4.	 As with any DP algorithm, we must now define the states and base cases. We know 
that the subset of items that form the final result must match the following crite-
ria:

    –  The sum of the cost of all the products in the subset must not exceed budget.

    –  The sum of the quantity of all the products in the subset must not exceed 
capacity. 

    –  The sum of the value of all the products in the subset must be maximized.

Given these criteria, we can see that each state can be defined by the following 
parameters:

    –  The current item being considered

    –  The number of units previously purchased

    –  The total cost of the purchased items

    –  The total profit gained after selling the products at retail value

We can also conclude that a search will terminate when:

    –  All the items have been considered

    –  The total cost exceeds the budget

    –  The total number of units exceeds the capacity

Like the traditional 0-1 knapsack problem, we will consider each item from 0 to 
N-1 linearly. For each item at index i, our states can transition in one of two ways: 
by either including the current item or leaving it. Writing the recursive logic in 
pseudocode may look like this:

F(i, count, cost, total): 

I        –> The index of the current item 
Cost     –> The total money spent 
count    –> The number of units purchased
total    –> The total profit value of the chosen items
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Base cases: 

    if i = N: return total
    if cost > budget: return 0
    if count > capacity: return 0

Recurrence:

F(i, count, cost, total) = maximum of:

F(i + 1, count + quantity[i], cost + price[i], 
      total + value[i]) – Include the item

        AND

    F(i + 1, count, cost, total) – Leave as-is

As shown in the preceding code, the recurrence relation is defined according 
to the values of i, count, cost, and total. Converting this logic from top down to 
bottom up can be done like so:

Base case:

    DP(0, 0, 0) = 0 [Nothing has been chosen yet]

For i = 1 to N:

    Product -> quantity, price, value

    For cost = 0 to budget:

        For count = 0 to capacity:

            If price is greater than cost OR 
           quantity is greater than count:

                DP(i, cost, count) = DP(i-1, cost, count)

            Otherwise:
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                DP(i, cost, count) = maximum of:

                    DP(i-1, cost, count)
                        AND
                    DP(i-1, cost – price, count – quantity) + value

In other words, each state is described according to the current index, total cost, 
and total count. For each pair of valid cost and count values, the current result 
for an item at index i will be equal either to the maximum subset sum that was 
found for the same values of cost and count at index i – 1 (that is, DP[i – 1][cost]
[count]) or the sum of the current item's value with the maximum sum at index i 
– 1 with cost and count equal to what they would have been prior to including the 
item (that is, DP[i - 1][cost – price][count – quantity] + value). 

5.	 We can code the preceding logic as follows:

vector<vector<vector<int>>> DP(N + 1, vector<vector<int>>(budget + 1, 
vector<int>(capacity + 1, 0)));

for(int i = 1; i <= N; i++)
{
    Product product = products[i-1];
    
for(int cost = 0; cost <= budget; cost++)
{
        for(int count = 0; count <= capacity; count++)
        {
            if(cost < product.price || count < product.quantity)
            {
                DP[i][cost][count] = DP[i-1][cost][count];
            }
            else
            {
                DP[i][cost][count] = max
                (
                    DP[i-1][cost][count],
                    DP[i-1][cost – product.price][count – product.
quantity] + product.value
                );
            }
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        }
}
cout << DP[N][budget][capacity] << endl;
}  

As you can see, the implementation is equivalent to the 0-1 knapsack solution with an 
additional dimension.

Activity 23: Residential Roads

This activity has quite a few potential pitfalls if you do not approach it with some 
forethought. The most difficult aspect of it is the fact that it requires a number of 
distinct steps, and a careless mistake at any point can cause the entire program to 
fail. Therefore, it is recommended to approach the implementation step by step. The 
primary steps that are required are as follows:

1.	 Handling the input

2.	 Building the graph (finding adjacencies and weight values)

3.	 Finding the shortest distances between graph nodes

4.	 Reconstructing the edges in the shortest paths

5.	 Redrawing the input grid

Since this is considerably lengthier than the other activities in this chapter, let's attack 
each of these steps individually.

Step 0: Preliminary Setup

Before we write any code related to input, we should decide how we want to represent 
our data in advance. The input we will receive is as follows:

•	 Two integers, H and W, representing the height and width of the grid. 

•	 An integer, N, representing the number of houses contained on the property.

•	 H strings of width W representing the map of the property. We can store this data 
as an H-element vector of strings.

•	 H rows of W integers representing the ruggedness of the terrain. We can store these 
values in an integer matrix.

•	 N lines containing two integers, x and y, representing the coordinates of each 
house. For this, we can create a simple structure called Point containing two inte-
gers, x and y.
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Now, let's look at the implementation:

1.	 Include the required headers and define some global constants and variables that 
we will need later in this problem. We will declare most of our data  
globally for the sake of convenience, but it is worth reiterating the point that this 
is generally considered bad practice within the context of a full-scale application:

#include <iostream>
#include <vector>
using namespace std;

const int UNKNOWN = 1e9;
const char EMPTY_SPACE = '.';
const string roads = "-|/\\";

struct Point
{
    int x;
    int y;

    Point(){}
    Point(int x, int y) : x(x), y(y) {}
};

int N;
int H, W;

vector<string> grid;
vector<vector<int>> terrain;
vector<vector<int>> cost;
vector<Point> houses;

Step 1: Handling the Input

2.	 Since there is a fair amount of input required for this problem, let's contain it all in 
its own function, Input(), which will return void:

void Input()
{
    cin >> H >> W;
    cin >> N;

    grid.resize(H);
    houses.resize(N);
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    terrain.resize(H, vector<int>(W, UNKNOWN));    cost.resize(H, 
vector<int>(W, UNKNOWN));

    // Map of property
    for(auto &row : grid) cin >> row;

    // Terrain ruggedness
    for(int I = 0; i < H; i++)
    {
        for(int j = 0; j < W; j++)
        {
            cin >> terrain[i][j];
        }
    }

    // House coordinates
    for(int i = 0; i < N; i++)
    {
        cin >> houses[i].x >> house[i].y;

        // Set house labels in grid
        grid[houses[i].y][houses[i].x] = char(i + 'A');
    }
}

Step 2: Building the Graph

The problem description states the following:

•	 A road can be built between two houses if and only if there is a direct  
horizontal, vertical, or diagonal path between them.

•	 Roads may not be built across bodies of water, mountains, forests, and so on.

•	 The cost of building a road between two houses is equal to the sum of  
ruggedness values on the path between them.

To test the first condition, we simply need to compare the coordinates of two points 
and determine whether any of the following three conditions are true:

•	 A.x = B.x (there is a horizontal line between them)

•	 A.y = B.y (there is a vertical line between them)

•	 | A.x – B.x | = | A.y – B.y | (there is a diagonal line between them)
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Now, let's get back to our code.

3.	 To do this, let's write a function DirectLine(), that takes two points, a and b, as 
arguments and returns a Boolean:

bool DirectLine(Point a, Point b)
{
    return a.x == b.x || a.y == b.y || abs(a.x – b.x) == abs(a.y – b.y);
}

4.	 To handle the second and third cases, we can simply perform a linear traversal 
from point a to point b in the grid. As we consider each point in the grid, we can 
accumulate the sum of values contained in the terrain matrix. As we do this, 
we can simultaneously check the character in grid[a.y][a.x], terminating it as 
soon as we encounter a character that is not equal to EMPTY_SPACE (that is, '.'). If 
at the end of the traversal point a is equal to point b, we will store the sum we 
acquired in the cost matrix; otherwise, we have determined that there is no adja-
cency between a and b, in which case we return UNKNOWN. We can do this using the 
GetCost() function, which takes two integers, start and end, as arguments. These 
represent the indices of a and b, respectively, and return an integer:

int GetCost(int start, int end)
{
    Point a = houses[start];
    Point b = houses[end];

    // The values by which the coordinates change on each iteration
    int x_dir = 0;
    int y_dir = 0;

    if(a.x != b.x)
    {
        x_dir = (a.x < b.x) ? 1 : -1;
    }
    if(a.y != b.y)
    {
        y_dir = (a.y < b.y) ? 1 : -1;
    }
    int cost = 0;
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    do
    {
        a.x += x_dir;
        a.y += y_dir;

        cost += terrain[a.y][a.x];
    }
    while(grid[a.y][a.x] == '.');

    return (a != b) ? UNKNOWN : res;
}

5.	 The final line requires that we define operator != in our Point struct:

struct Point
{
    ......

    bool operator !=(const Point &other) const { return x != other.x || y 
!= other.y; }
}

6.	 Now, let's create the following GetAdjacencies() function:

void GetAdjacencies()
{
    for(int i = 0; i < N; i++)
    {
        for(int j = 0; j < N; j++)
        {
            if(DirectLine(houses[i], houses[j])
            {
                cost[i][j] = cost[j][i] = GetCost(i, j);
            }
        }
    }
}
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Step 3: Finding the Shortest Distances between Nodes

The problem states that two houses should be connected by a road that is on the path 
that minimizes the cost of reaching the exit point. For this implementation, we will use 
the Floyd-Warshall algorithm. Let's get back to our code:

7.	 Let's define a function, GetShortestPaths(), that will handle both the implemen-
tation of Floyd-Warshall as well as the path's reconstruction. To handle the latter 
case, we will maintain a N x N integer matrix called next that will store the index of 
the next point on the shortest path from nodes a and b. Initially, its values will be 
set to the existing edges in the graph:

void GetShortestPaths()
{
    vector<vector<int>> dist(N, vector<int>(N, UNKNOWN));
    vector<vector<int>> next(N, vector<int>(N, UNKNOWN));

for(int i = 0; i < N; i++)
{
    for(int j = 0; j < N; j++)
    {
        dist[i][j] = cost[i][j]

        if(dist[i][j] != UNKNOWN)
        {
            next[i][j] = j;
        }
    }
    dist[i][j] = 0;
    next[i][i] = i;
}
...
}

8.	 We will then perform the standard implementation of Floyd-Warshall, with one 
additional line in the innermost loop setting next[start][end] to next[start][mid] 
every time we find a shorter distance between start and end:

for(int mid = 0; mid < N; mid++)
{
    for(int start = 0; start < N; start++)
    {
        for(int end = 0; end < N; end++)
        {
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            if(dist[start][end] > dist[start][mid] + dist[mid][end])
            {
                dist[start][end] = dist[start][mid] + dist[mid][end];
                next[start][end] = next[start][mid];
            }
        }
    }
}

Step 4: Reconstructing the Path

With the data that we obtained in the next matrix, we can easily reconstruct the points 
on each path in a similar way to the reconstruction approaches for the LCS or 0-1 
Knapsack problems. For this purpose, we will define another function, GetPath(), that 
has three parameters—two integers, start and end, and a reference to the next matrix — 
and returns an integer vector containing the node indices of the path:

vector<int> GetPath(int start, int end, vector<vector<int>> &next)
{
    vector<int> path = { start };

    do
    {
        start = next[start][end];

        path.push_back(start);
    }
    while(next[start][end] != end);

    return path;
}

9.	 Returning to GetShortestPaths(), we will now add a loop underneath our imple-
mentation of Floyd-Warshall that calls GetPath() and then draws lines in the grid 
corresponding to each pair of points in the path:

for(int i = 0; i < N; i++)
{
    auto path = GetPath(i, N – 1, next);
    
    int curr = i;

    for(auto neighbor : path)
    {
        DrawPath(curr, neighbor);
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        curr = neighbor;
    }
}

Step 5: Redrawing the Grid

10.	 Now, we must draw the roads in the grid. We will do this in another function, Draw-
Path(), which has the start and end parameters:

void DrawPath(int start, int end)
{
    Point a = houses[start];
    Point b = houses[end];

    int x_dir = 0;
    int y_dir = 0;

    if(a.x != b.x)
    {
        x_dir = (a.x < b.x) 1 : -1;
    }
    if(a.y != b.y)
    {
        y_dir = (a.y < b.y) 1 : -1;
    }
    
    ……
}

11.	 We will need to choose the correct character corresponding to the orientation of 
each road. To do this, we will define a function, GetDirection(), that returns an 
integer corresponding to an index in the roads string we defined at the beginning 
("-|/\"):

int GetDirection(int x_dir, int y_dir)
{
    if(y_dir == 0) return 0;
    if(x_dir == 0) return 1;
    if(x_dir == -1)
    {
        return (y_dir == 1) ? 2 : 3;
    }
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    return (y_dir == 1) ? 3 : 2;
}

void DrawPath(int start, int end)
{
    ……

    int direction = GetDirection(x_dir, y_dir);

    char mark = roads[direction];

        ……
}

12.	 We can now perform a linear traversal from a to b, setting each cell in the grid to 
mark if its value is EMPTY_SPACE. Otherwise, we must check to see whether the char-
acter in the cell is a road character of a different orientation, in which case we set 
it to +:

do
{
    a.x += x_dir;
    a.y += y_dir;
        
    if(grid[a.y][a.x] == EMPTY_SPACE)
    {
        grid[a.y][a.x] = mark;
    }
    else if(!isalpha(grid[a.y][a.x]))
    {
            // If two roads of differing orientations intersect, replace 
symbol with '+'

            grid[a.y][a.x] = (mark != grid[a.y][a.x]) ? '+' : mark;
    }
}
while(a != b);
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13.	 All that is left is to call our functions in main() and print the output:

int main()
{
        Input();
        BuildGraph();
        GetShortestPaths();
        
        for(auto it : grid)
        {
            cout << it << endl;
        }
        return 0;
}
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