Best Practices for Modern C++ vv

++

CORE GUIDELINES
EXPLAINED

RAINER GRIMM

C++ Core Guidelines
Explained

This page intentionally left blank

C++ Core Guidelines
Explained

Best Practices for Modern C++

Rainer Grimm

vvAddison-Wesley

Boston ¢ Columbus * New York ¢ San Francisco * Amsterdam ¢ Cape Town
Dubai * London * Madrid * Milan * Munich ¢ Paris * Montreal * Toronto * Delhi « Mexico City
S0 Paulo ¢ Sydney * Hong Kong ¢ Seoul * Singapore * Taipei * Tokyo

Cover image: SVPanteon/Shutterstock

Author photo on page xxix: © Karin Ruider

Cippi illustrations on pages 3, 7, 15, 27, 53, 131, 139, 165, 213, 231, 279, 293, 301, 375, 383, 397: © Beatrix Jaud-Grimm

Figure 5.2: © Howard Hinnant

Figure 9.7: © Matt Godbolt

Figures 4.2, 4.3, 8.11, 9.11, 10.13, 10.16, 12.1, 16.9, A.1-A.4: © Microsoft Corporation 2021

Figures 3.1,4.3-4.8,5.2-5.20,6.1,7.1-7.4,7.6,7.7,8.1-8.9, 8.11-8.14,9.1-9.5, 10.5-10.11, 10.13, 10.14, 10.16, 10.17, 13.1-13.11,
13.13-13.17,13.24-13.27, 14.1-14.4, 15.1-15.4, 16.1-16.8, 18.1, 18.2, A.5, A.6: Screenshot of Konsole © KDE

Figures 10.2, 10.3: Screenshot of ThreadSanitizer © Google LLC

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic
versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intles@pearson.com.

Visit us on the Web: informit.com

Library of Congress Control Number: 2022930162

Copyright © 2022 Pearson Education, Inc.

The C++ Core Guidelines are copyright © Standard C++ Foundation and its contributors.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate contacts
within the Pearson Education Global Rights & Permissions Department, please visit www.pearson.com/permissions/.

ISBN-13: 978-0-13-687567-3
ISBN-10: 0-13-687567-X

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com
http://www.pearson.com/permissions/
https://github.com/isocpp/CppCoreGuidelines/graphs/contributors
https://howardhinnant.github.io/
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual

Pearson’s Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all
learners. We embrace the many dimensions of diversity, including but not limited to
race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and
religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the poten-
tial to deliver opportunities that improve lives and enable economic mobility. As we
work with authors to create content for every product and service, we acknowledge
our responsibility to demonstrate inclusivity and incorporate diverse scholarship so
that everyone can achieve their potential through learning. As the world’s leading
learning company, we have a duty to help drive change and live up to our purpose to
help more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

e Everyone has an equitable and lifelong opportunity to succeed through
learning.

e Our educational products and services are inclusive and represent the rich
diversity of learners.

¢ Our educational content accurately reflects the histories and experiences of the
learners we serve.

¢ Our educational content prompts deeper discussions with learners and moti-
vates them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about
any concerns or needs with this Pearson product so that we can investigate and
address them.

e Please contact us with concerns about any potential bias at https://
www.pearson.com/report-bias.html.

http://www.pearson.com/report-bias.html
http://www.pearson.com/report-bias.html

This page intentionally left blank

Contents

List of selected C++ Core Guidelinesccviuriinnrennnnnn. xiii
List Of figures .. ovvvtin ittt ittt inneeneenennennennas xxiii
Listoftables .. .vvviiiiii ittt ettt ittt XXVii
Foreword ...ttt ittt i i ettt i i e e XXIX
Preface .o e e e e e e xxxi
Acknowledgmentsitiiiiiiiii it XXXVil
Abouttheauthorttt iinnnnnneeeenns XXXIX

PartI: The Guidelinescoviiiiiniininnenneene. 1

Chapter 1: Introductionouitinrnenenernrnenreneneneannns 3
Target readershipo 3

Al e 4

NON-QIMS vt ettt e e e e et et e 4
Enforcementt 4

SEIUCTULE .ttt et e e e e e e e 4

Major SECtIONS .« vttt et S

Chapter 2: Philosophyiiiii ittt i i i it eeeneannn 7
Chapter 3: Interfacesvvvvnvnenenennrnenreneneneneanenenens 15
The curse of non-const global variables 16
Dependency injection @S a CUTE .o v vt vteve e eieeeenenenanns 18

Making good interfaces 20

Related rules 25

Chapter 4: FUNCHONS + vt v vittnienientnneenenneenenneanennennas 27
Function definitions 28

Good NAMES .+ .ottt 28

Parameter passing: in and oUt it 32

Parameter passing: ownership semantics 38

vii

viil

CONTENTS

Chapter 5:

Chapter 6:

Chapter 7:

Chapter 8:

Value return SEmManticsuvueeent e enenn e, 42
When to return a pointer (T*) or an lvalue reference (T&) 42
Other functionst e e i 46
Lambdas 46
Relatedrules 52
Classes and Class Hierarchiescccvivnen... 53
Summary rules 54
CONCIELE TYPES « v v v vt e et ettt et e e et e e et 58
Constructors, assignments, and destructors 59
Default operations i 60
CONSLIUCLOr . vttt ettt et et 66
Copy and MOVE ..ottt 78
Destructors e 83
Other default operationscccviiiiinnon... 88
Class hierarchiesiiiiin i 98
Generalrules 99
Designing classescoiiiiniiini, 102
Accessing objects ... 114
Overloading and overloaded operators 117
Conventional Usagecvuiinininnnnennnn.. 118
UNIONS ottt e e e e e 126
Relatedrules 129
Enumerationscciiiuiiiiiiiiiiinnneennnens 131
Generalrules 131
Relatedrules 137
Resource Managementccciiiiiiiineeenn. 139
Generalrules i e 140
Allocation and deallocation oo, 145
SMAart POINTErS ... v ittt e e 150
Basicusaget 150
Function parametersot 156
Relatedruleso i 164
Expressions and Statementscoeeueeueenennennn 165
General ... 166
Declarationsiuiiti e 168
Names ..ottt e 168

Variables and their initialization 175

CONTENTS

Macros ..o 184
EXpressionsiuii i 186
Complicated eXpressionsueeeenereunenennnnn. 186
Pointers e 191
Orderof evaluationo, 194
CONVEISIONS vttt ittt e e e e 197
STAtEMENES .« v ittt e 199
[teration Statementsveue et e ennennennennn. 199
Selection StAtEMENTS .« v v v vt e ettt ie e e 201
Arithmetic . ..ot 204
Arithmetic with signed/unsigned integers 204
Typical arithmetic errorsovvvin ... 208
Relatedrules 210
Chapter 9: Performanceccitiitennennennenneanennann 213
Wrong OptimMIZationsv vttt vttt eneaeenenne. 214
Wrong assumptions .. .vvu e vt ettt it eaanene. 214
Enable optimization i 218
Relatedrules i 230
Chapter 10: CONCUITENCY « v vt v vt v vt e eeeeeeeneeneeneeneenennens 231
General guidelines 232
CONCUITEINCY .« v vttt ettt et e ettt ettt e e e s 245
LOoCKS © ot 246
Threads ..ot 250
Condition variables oL 254
Datasharingo, 257
Resourceso 261
Overlookeddanger, 264
Parallelism 266
Message PasSINg .« oottt e 269
Sending a value, or an exception 270
Sending a notification ool 272
Lock-free programmingoeuiiuernrnennnnnn.. 273
Relatedrules 277
Chapter 11: ErrorHandling0itiitiininnennennnnn 279
DesIgn e 281
CommUNICAtION . .ttt ettt ettt e e 281

Invariantst e 282

X

CONTENTS

Chapter 12:

Chapter 13:

Chapter 14:

Chapter 15:

Chapter 16:

Implementation i 283
DO7S o e 283
Dom’ts . e 286

If youcan’tthrow i 288

Relatedrules i 292

Constants and Immutability 293

USE CONSt .ottt e e 294

USE CONSEEXPI vttt et ettt et e ettt 298

Templates and Generic Programming 301

USE o e e 302

INterfaces . .vviii et 305
Advantages of functionobjects 307

Definitiont e 320
Alternative implementations with specializations 325

Hierarchies i 330

Variadic templates ...t 332
Perfect forwarding i 333
Variadic templatesc.. i 335

Metaprogrammingeoue vttt et et 336
Template metaprogrammingc.vveuenennnn.. 337
Type-traits library 345
Constant eXpressionsvuvue v vt eneen oo, 356

Otherrules i e 362

Relatedrules i 372

C-Style Programmingccoueenenneenennennn 375

Entire source code available 376

Entire source code not available 378

SourceFiles ittt it e 383

Interface and implementation files 384

NamMeSPaACES .« vt v it e 391

The Standard Libraryccititininenennnnnn. 397

CONTAINEIS ottt ettt ettt et e et ettt e ee s 398

Xt ettt e 404

Input and OULPUL « v v vttt e e e e 411

Relatedrules i e 419

CONTENTS

Part II: Supporting Sectionscovveeeee.n. 421
Chapter 17: Architectural Ideasccoiiuiiiiiennennnn. 423
Chapter 18: Nonrulesand Myths, 427
Chapter 19: Profilesciitiitinininiinernneeneenennnns 437
Pro.typeTypesafety ...t 438
Pro.boundsBoundssafety, 439
Pro.lifetimeLifetime safety 439

Chapter 20: Guidelines Support Librarycccivuvnen.... 441
VWS ottt e 441

Ownership pointersuiiein i 442

ASSCITIONS .« v vttt ettt e e e ettt 443

Utilities ..o e 443

Part III: Appendixescuovtiiinneernnnneeennnnn 445
Appendix A: Enforcing the C++ Core Guidelines 447
Visual Studioo 448

clang-tidy 450

Appendix B: Concepts .« vvvveenrntnenererneneeneneneaenannens 453
Appendix C: CONITACES + v vt vt v eeneeneeneeneeneeneeneenennens 457

X1

This page intentionally left blank

List of selected C++ Core
Guidelines

P1
P2
P3
P4
PS5
P6

P7
P8
P9
P10
P11

P12
P13
1.2
I.3
I.13
1.27
F4

k6
ES8
E15
E16

Expressideas directlyincode i 8
Write in ISO Standard C++ ... o 8
EXPress INTENT ..o ovt ittt e e 9
Ideally, a program should be statically typesafe 10
Prefer compile-time checking to run-time checking 10
What cannot be checked at compile-time should be checkable

ACTUN-TIMIE ottt et ettt et e et e e et e et e 11
Catchrun-timeerrorsearly i 11
Don’tleak any resourceso 1
Don’t waste time OF SPACE + v v v v v vttt et et ee et e e en e 11
Prefer immutable data to mutabledata, 12

Encapsulate messy constructs, rather than spreading through

thecode ..ot 12
Use supporting tools as appropriatecoeuiuiinenan... 13
Use support libraries as appropriatevvuiiinieneenaon.. 13
Avoid non-const global variables 16
Avoid singletons 17
Do not pass an array as a single pointercoooiiinon... 22
For stable library ABI, consider the Pimplidiom 23
If a function may have to be evaluated at compile-time,

declare it CONSteXPr .« .\ttt 29
If your function may not throw, declare it noexcept 30
Prefer pure functionst 31
Prefer simple and conventional ways of passing information 32

For “in” parameters, pass cheaply-copied types by value and

others by referencetoconst i e 34

xiii

Xiv List OF SELECTED C++ CORE GUIDELINES

E19

E17
E20
E21
F42
E44

E45
F48
EF46
E50

E52

ES3

ES1

ESS

C.1

C.2

C.J3

C4

C.5

Cc.7

C.8

C.9

C.10

C.11

C.20

C.21

C.22

For “forward” parameters, pass by TP&& and only std: : forward

the parameterttt e
For “in-out” parameters, pass by reference to non-const
For “out” output values, prefer return values to output parameters
To return multiple “out” values, prefer returning a struct or tuple
Return a T* to indicate a position (only)ccooin...
Return a T& when copy is undesirable and “returning no object”
isn’tneeded ...
Don’treturn @ T&& oo v vttt e e
Don’treturn std::move(local)uitetnnin i
int is the return type formain()ooiiiiiiiin
Use a lambda when a function won’t do (to capture local variables,
ortowritealocal function)
Prefer capturing by reference in lambdas that will be used locally,
including passed to algorithms,
Avoid capturing by reference in lambdas that will be used nonlocally,
including returned, stored on the heap, or passed to another thread
Where there is a choice, prefer default arguments over overloading
Don’t use va_arg argumentsev e e ettt
Organize related data into structures (structs or classes)
Use class if the class has an invariant; use struct if the data

members can vary independently oo L,
Represent the distinction between an interface and an

implementation usinga classiiriiiiiii i
Make a function a member only if it needs direct access to the
representation of aclass i i
Place helper functions in the same namespace as the class

they SUPPOTT .ot
Don’t define a class or enum and declare a variable of its type

in the SAME STATEMENT . ot vttt ettt et e e e et
Use class rather than struct if any member is non-public
Minimize exposure of members L i i i
Prefer concrete types over class hierarchies
Make concrete types regular
If you can avoid defining any default operations,do
If you define or =delete any default operation, define or
=deletethemall

Make default operations consistentc.oooeuieniinaen...

C.41
C.42

C.43
C.45

C.46
C.47

C.48

C.49
C.51

C.52

C.67
C.30

C.31

C.32

C.33
C.35

C.80

C.81

C.82
C.86

C.87
C.120

C.121

List OF SELECTED C++ CORE GUIDELINES

A constructor should create a fully initialized object 67
If a constructor cannot construct a valid object, throw

AN EXCEPLION + vt e e et e e et e et e e e e e e 68
Ensure that a copyable (value type) class has a default constructor 69
Don’t define a default constructor that only initializes

data members; use member initializersinstead 69
By default, declare single-argument constructors explicit 72
Define and initialize member variables in the order of

member declaration 74
Prefer in-class initializers to member initializers in constructors

for constant initializers 75
Prefer initialization to assignment in CONStrUCLOrSvvvvvvnennn... 76
Use delegating constructors to represent common actions for all
constructors of aclass e 76
Use inheriting constructors to import constructors into a derived

class that does not need further explicit initialization 77
A polymorphic class should suppress copying 81
Define a destructor if a class needs an explicit action at

object destruction 84
All resources acquired by a class must be released by the

class’s destructor ... 84
If a class has a raw pointer (T*) or reference (T&), consider

whether it might beowning i 85
If a class has an owning pointer member, define a destructor 85
A base class destructor should be either public and virtual,

or protected and non-virtual i 86
Use =default if you have to be explicit about using the

default semantics e 89
Use =delete when you want to disable default behavior

(without wanting an alternative)ccvirernrnenenn... 90
Don’t call virtual functions in constructors and destructors 91
Make == symmetric with respect to operand types

AN NOEXCEPE ottt ettt et 95
Beware of ==on baseclasses i i 97
Use class hierarchies to represent concepts with inherent hierarchical
structure (ONly) .. u e e 99

If a base class is used as an interface, make it an abstractclass 101

XV

xvi

List OF SELECTED C++ CORE GUIDELINES

C.122

C.126
C.128

C.130

C.132
C.131
C.133
C.134
C.129

C.135
C.138

C.140

C.146

C.147

C.148

C.152

C.167
C.161
C.164
C.162
C.163
C.168
C.180
C.181
C.182
Enum.1
Enum.2
Enum.3

Enum.5

Use abstract classes as interfaces when complete separation of interface

and implementationisneeded
An abstract class typically doesn’t need a constructor
Virtual functions should specify exactly one of virtual,
override,or final i e e
For making deep copies of polymorphic classes prefer a virtual
clone function instead of copy construction/assignment
Don’t make a function virtual without reason
Avoid trivial getters and setters i
Avoid protecteddataiii
Ensure all non-const data members have the same access level
When designing a class hierarchy, distinguish between
implementation inheritance and interface inheritance
Use multiple inheritance to represent multiple distinct interfaces
Create an overload set for a derived class and its bases
WItD USING ot
Do not provide different default arguments for a virtual function
andanoverrider
Use dynamic_cast where class hierarchy navigation is
unavoidable
Use dynamic_cast to a reference type when failure to find
the required class is considered anerror
Use dynamic_cast to a pointer type when failure to find the
required class is considered a valid alternative
Never assign a pointer to an array of derived class objects to a
pointertoitsbase ...
Use an operator for an operation with its conventional meaning
Use nonmember functions for symmetric operators
Avoid implicit conversion Operatorsc..euueuienn...
Overload operations that are roughly equivalent
Overload only for operations that are roughly equivalent
Define overloaded operators in the namespace of their operands
Use UNions to Save MEMOTY . v v v v vttt i e e e eeenens
Avoid “naked” unions
Use anonymous unions to implement tagged unions
Prefer enumerations OVEr Macros .«vuv e enennennennnn.
Use enumerations to represent sets of related named constants
Prefer enum classes over “plain” enums,

Don’t use ALL_CAPS fOor eNUMEratorsoueuueennnn.

111

113

115

115

115

Enum.6

Enum.7

Enum.8
R.1

R.3
R.4
R.S
R.10
R.11
R.12

R.13

R.20
R.21

R.22
R.23
R.24
R.30

R.37

ES.1

ES.2
ES.S
ES.6

ES.7

ES.8
ES.9
ES.10
ES.11
ES.12
ES.20

List OF SELECTED C++ CORE GUIDELINES

Avoid unnamed enumerations oLl i 134
Specify the underlying type of an enumeration only

When NECESSary .. vttt e e 135
Specify enumerator values only when necessary 136

Manage resources automatically using resource handles and

RAII (Resource Acquisition Is Initialization) 140
A raw pointer (a T*) IS NON-OWNING .« ¢t vttt vttt eneaeeenenenn 143
A raw reference (a T&) iS NON-OWNING ... vtvvi v e, 143
Prefer scoped objects, don’t heap-allocate unnecessarily 143
Avoidmalloc() and free()viuiriinin i 145
Avoid calling new and delete explicitly 146

Immediately give the result of an explicit resource allocation to a
manager Objectt e 147
Perform at most one explicit resource allocation in a single

EXPresSSION STATEIMENT « v vt vttt ettt e et e e eeaee e 148
Use unique_ptr or shared_ptr to represent ownership 150

Prefer unique_ptr over shared_ptr unless you need to

shareownership i 151
Use make_shared() to make shared_ptrs 153
Use make_unique() to make unique_ptrsoon.n. 153
Use std: :weak_ptr to break cycles of shared_ptrs 154

Take smart pointers as parameters only to explicitly express
lifetime SemManticsc.uuu e e 157
Do not pass a pointer or reference obtained from an aliased
SIMATT POINTEL « v vt e vt e et et ettt et e e e e e e e enes 162

Prefer the standard library to other libraries and to

“handcrafted code” 166
Prefer suitable abstractions to direct use of language features 167
Keepscopessmall i 168
Declare names in for-statement initializers and conditions

to lIMIt SCOPE .ottt 168
Keep common and local names short, and keep uncommon

and nonlocal nameslonger 169
Avoid similar-lookingnames i 170
AVOId ALL_CAPS NAMES .+ . vttt ettt et e e 170
Declare one name (only) per declaration 171
Use auto to avoid redundant repetition of type names 171
Do not reuse names in nested SCOPES .+ v v v v v e e 172

Always initialize anobject i 175

xvii

List OF SELECTED C++ CORE GUIDELINES

ES.21 Don’t introduce a variable (or constant) before you need to use it . ..

ES.22 Don’t declare a variable until you have a value to initialize it with ...

ES.23 Prefer the {}-initializer syntaxcoiiirirninenen...

ES.26
ES.28

ES.40
ES.41
ES.42
ES.45
ES.5S
ES.47
ES.61
ES.65
ES.43
ES.44
ES.48
ES.49
ES.50
ES.78
ES.79
ES.100
ES.101
ES.102
ES.106
ES.103
ES.104
ES.105
Per.7
Per.10
Per.11
Per.19
CP1

CP2
CP3
CP4

Don’t use a variable for two unrelated purposes
Use lambdas for complex initialization, especially of const

variables ...
Avoid complicated expressionsl i
If in doubt about operator precedence, parenthesize
Keep use of pointers simple and straightforward
Avoid “magic constants”; use symbolic constants
Avoid the need for range checking
Use nullptr rather than @ or NULLottt
Delete arrays using delete[] and non-arrays using delete
Don’t dereference an invalid pointer
Avoid expressions with undefined order of evaluation
Don’t depend on order of evaluation of function arguments
AVOId Casts vt e
If you must use a cast, use anamed cast,
Don’t cast away CONSt .ottt
Don’t rely on implicit fallthrough in switch statements
Use default to handle common cases (only)
Don’t mix signed and unsigned arithmetic
Use unsigned types for bit manipulation
Use signed types for arithmetic,
Don’t try to avoid negative values by using unsigned
Don’toverflow
Don’tunderflowo i
Don’tdividebyzero
Design to enable optimization i,
Rely on the static type system ov it en it iiieeanns
Move computation from run time to compile-time
Access memory predictably L i
Assume that your code will run as part of a multi-threaded

PIOGIAIML & ettt ettt ettt e e e e e e e e et e e e
Avoid dataraceso.iiii i e
Minimize explicit sharing of writabledata
Think in terms of tasks, rather thanthreads

CPS8
CP9
CP.20
CP21

CP22
CP.23
CP.24
CP25
CP.26
CP42
CP.31

CP.32
CP40
CP41
CP43
CP.44
CP.100
CP.101
CP.102
E.3
E.14

E.15
E.13
E.30
E.31
Con.1
Con.2
Con.3
Con.4

Con.5
T.1
T2

T.3

List OF SELECTED C++ CORE GUIDELINES

Don’t try to use volatile for synchronization 238
Whenever feasible use tools to validate your concurrent code 238
Use RAII, never plain 1ock()/unlock() «ovvveneninnenennnnnn. 246
Use std: :lock() or std: :scoped_lock to acquire

multiple MUEEXES .ot i e 247
Never call unknown code while holding a lock (e.g., a callback) 249
Think of a joining thread as a scoped container 250
Think of a thread as a global container 250
Prefer std::jthread over std::threadccovuion.. 251
Don’tdetach() athread 0ot iiiiinnnon.. 253
Don’twait withoutacondition oiiuininan... 254

Pass small amounts of data between threads by value, rather

than by reference or pointer i 257
To share ownership between unrelated threads use shared_ptr 258
Minimize context switchingcciitiiniienenenan.. 261
Minimize thread creation and destruction 261
Minimize time spent in a critical section oo 264
Remember to name your lock_guards and unique_locks 264
Don’t use lock-free programming unless you absolutely haveto 273
Distrust your hardware/compiler combination 274
Carefully study the literature i, 276
Use exceptions for error handlingonly 283

Use purpose-designed user-defined types as exceptions

(not built-in types) ... i i e 283
Catch exceptions from a hierarchy by reference 285
Never throw while being the direct owner of an object 286
Don’t use exception Specificationsvuererernenenennennn.s 287
Properly order your catch-clauses L. 288
By default, make objects immutable L 294
By default, make member functionsconst 294
By default, pass pointers and references to consts 297

Use const to define objects with values that do not change after

CONSEIUCTION .+t vttt ettt et 297
Use constexpr for values that can be computed at compile-time 298
Use templates to raise the level of abstractionof code 302

Use templates to express algorithms that apply to many
ATGUMENT EYPES + « v vt et et e et e e e et e e et e e s 304

Use templates to express containers and ranges 305

X1X

XX

T.40
T.42

T43
T44

T.46

T.47

T.48

T.60
T6l
T.62

T.80
T.83
T.140
T.141

T.143
T.144
CPL.1
CPL.2

CPL.3

SE1

SE.2

SES

SE.8

SE9

SE.10
SE11

List OF SELECTED C++ CORE GUIDELINES

Use function objects to pass operations to algorithms
Use template aliases to simplify notation and hide implementation
details

Prefer using over typedef for defining aliases

Use function templates to deduce class template argument types

(where feasible) o
Require template arguments to be at least Regular or

SeMiRegUILAr . . e e e
Avoid highly visible unconstrained templates with

COMIMON NAITIES « « ¢ttt e et ettt e e et e e et e e e et e e e e

If your compiler does not support concepts, fake them with

enable_if

Minimize a template’s context dependencies
Do not over-parameterize members

Place non-dependent class template members in a non-templated

base class

Do not naively templatize a class hierarchy
Do not declare a member function template virtual

Name all operations with potential forreuse
Use an unnamed lambda if you need a simple function object
in one place only

Don’t write unintentionally nongenericcode
Don’t specialize function templates
Prefer C++to C
If you must use C, use the common subset of C and C++, and

compile the C code as C++

If you must use C for interfaces, use C++ in the calling code

using such interfaces

Use a . cpp suffix for code files and . h for interface files if

your project doesn’t already follow another convention

A .h file may not contain object definitions or non-inline function

definitions

A .cpp file must include the .h file(s) that defines its interface

Use #include guards for all . h files

Avoid cyclic dependencies among source files

Avoid dependencies on implicitly #included names

Header files should be self-contained

SE6

SE7

SE.20
SE21
SE22

SL.con.1
SL.con.2

SL.con.3
SL.str.1
SL.str.2
SL.str.4
SL.str.5

SL.str.12

SL.io.1
SL.io.2
SL.io.3
SL.i0.10

SL.i0.50
Al
A2
A4

NR.1

NR.2

NR.3
NR.4

NR.5
NR.6

NR.7

List OF SELECTED C++ CORE GUIDELINES

Use using namespace directives for transition, for foundation

libraries (such as std), or within a local scope (only) 391
Don’t write using namespace at global scope in a header file 393
Use namespaces to express logical structure 394
Don’t use an unnamed (anonymous) namespace in a header 394

Use an unnamed (anonymous) namespace for all
internal/nonexported entitiesiiiiiiiiii 394
Prefer using STL array or vector instead of a C-array 398

Prefer using STL vector by default unless you have a reason

to use a different container il i i 402
Avoid boundserrors 403
Use std: :string to own character sequences 405
Use std: :string_view to refer to character sequences 407
Use char* to refer to a single character 409

Use std: :byte to refer to byte values that do not necessarily
represent characters i 409

Use the s suffix for string literals meant to be standard-library

SE T ANgS ottt et e e 410
Use character-level input only when you haveto 411
When reading, always consider ill-formed input 411
Preferiostreams for /O i 413
Unless you use printf-family functions call
ios_base::sync_with_stdio(false)iuueuniuennn. 414
Avoidendl ..o o e 415
Separate stable code from less stablecode 423
Express potentially reusable parts as alibrary 424
There should be no cycles among libraries 425
Don’t insist that all declarations should be at the top of a

fUNCEION ottt e e e e e 427
Don’t insist to have only a single return-statement in a

fUNCHION ot e 428
Don’t avoid eXCEPHiONS . v vv vttt e 429
Don’t insist on placing each class declaration in its own

source file ... 431
Don’t use two-phase initialization 431

Don’t place all cleanup actions at the end of a function and
GOLO BXAT. o ittt 433
Don’t make all data members protected 436

xXx1

This page intentionally left blank

List of figures

3.1
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
5.9
5.10
511
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
6.1

Dependency injectiono ettt 20
Assembler instructions to the program constexpr.cpp 30
Returninga std::pairo i e 38
The five ownership semanticsc.oiiiiii ... 41
Displaying arbitrary characters, 44
Causinga core dump ... vttt e e 44
Returning a reference to a temporaryueuenennenenen... 45
Summation withva_arg i 51
Summation with fold expressions 52
Automatically generated special member functions 61
Double free detected with AddressSanitizer 63
OUtPUL Of SEFANGE.CPP + vt vt ettt ettt et e e eaeens 66
Directly initializing intheclass 71
Converting CONSIIUCTOT . vt vttt ettt e et et et e e 73
Wrong initialization order of member variables, 75
S CIn g © et e 83
Aclass witha std::unique_ptr ...t 86
delete the destructoro.iiunin it 91
Calling a virtual function in the constructor 92
A virtual clone member function, 105
A virtual clone member function without covariant return type 105
Shadowing of member functions 112
Different default arguments for virtual functions 114
dynamic_cast causes a std: :bad_cast exception 116
Missing overload for int and MyInt 119
Using an explicit CONStIUCTOr « .ttt it vttt it e 121
Implicit operator B0l ...\ttt ittt 124
Explicit operator booliiiinin i 124
Undefined behavior with a “naked” union 128
The enumerators are too big for the underlying type 136

xx1ii

XX1V

LIST OF FIGURES

7.1
7.2
7.3
7.4
7.5
7.6
7.7
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
10.1
10.2
10.3
10.4
10.5
10.6

Resource Acquisition Is Initialization 142
Undefined behavior causes a coredump oo, 146
Two owners with std::unique_ptrouiiuiineineenn.n.. 148
Moving a std: iunique_ptrt e 153
Cycles of smart pointersouueinee .. 154
Cycles of SMart pOINtersuuuun e ie e eeennnn. 156
Lifetime semantics of smart pointersc.c.eueenenan.. 159
Reusing names in nested SCOPES .. oot v e e 173
Hiding member functionsof abase 174
Change visibility with a using declaration 175
The MOSt VEXING PALSE « v vttt e et e e 180
Narrowing CONVErsioOnevuue e ettt nnenaeenaneenn. 181
Narrowing conversiondetectedt .. 182
Usage of the function-like macromax 185
The null pointers @, NULL, and nullptrc.ccvuruunennn.. 193
Unspecified behavior 196
Wrong casts with the Visual Studio compiler 197
Wrong casts with the GCC or Clang compiler 198
Modulo versus overflow with unsigneds and signeds 208
Detecting narrowing CONVErsiOnuvuenenennenenenenn .. 208
Underflow and overflow of a C-arrayccoviininninn.. 209
Performance of the Meyers singleton 217
Performance of the singleton based on acquire-release semantics 218
Performance of the singleton in the single-threaded case 218
Move semantics on a copy-only type 221
Invoking gcd at compile time and run time L 225
The relevant assembler instructions to the algorithmged 225
St idegUE .t e e 226
STt laSt et e 226
std::forward_1ist 226
Memory access for sequence containers on Windows 229
Four categories of variables i i 235
Data race detection with ThreadSanitizer 241
Overview of CppMemttt 242
Adatarace in CppMem . ..ot ittt 245
A deadlock due to multiple locked mutexes 248
Forgottojoinathread i, 252

10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17
12.1
13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11
13.12
13.13
13.14
13.15
13.16
13.17
13.18
13.19
13.20
13.21
13.22
13.23
13.24
13.25

LIST OF FIGURES

A condition variableinaction L i i 255
A condition variable without a predicate 257
Shared ownership using a pointerc..veeneneunennn.. 259
Shared ownership using a smart pointercooua... 261
Thread creationon Linuxot 263
Thread creation on Windows oo i, 263
Using a temporary lock std::lock_guardcocuon.. 266
Using a named temporary std::lock_guard 266
Usage of std::transform_exclusive scan 269
A value and an exception as MESSAZE .« . v v v e v v ne e 271
Notifications withatask 273
Amutablevariable 296
A function, a function object, and a lambda as sorting criteria 307
A function object withstate i 309
Alambda withstate 310
Template argument deduction 313
A reference is not SeMiReQULAT . ..o\t ii it i et 315
Surprise with argument-dependent lookup 317
Surprises with argument-dependent lookup solved 319
stdiienable_if 320
Comparing tWo ACCOUNTS . v v v vt e et e e et ettt eeee e 326
Comparing two accounts with a binary predicate 330
Compiler error with a virtual member function 332
Calculating primes at compiletimeccoviiiinon... 338
Calculating the factorial of 5 at compiletime 340
Calculating at run time and compile time 343
power as function and metafunction, 345
Type COMPATISONS v vttt et et e e e et e 350
Correctness with the type-traits functions 354
Function versus template argumentsc..eunvenenen... 359
Modification versus new value i i, 359
Recursion versus loop .. .o 360
Template specialization for conditional execution 360
Update versusnew value i 361
Simulatingareturnvalue i 361
Case-insensitive search ina structc.oiiininenn .. 363

Iterating through a few containers 366

XXV

XXV1

LIST OF FIGURES

13.26
13.27
14.1
14.2
14.3
14.4
15.1
15.2

15.3

15.4
16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
18.1
18.2
Al
A2
A3
A4
AS
A6

Specialization and overloading of function templates 370
Specialization of function templates 372
Warnings witha Ccompiler, 376
Errors witha C++compiler i 377
Different size of a char with a C++ compiler 377
Functionoverloading i 379
Multiple definitions of a function 386
Linker error because of mismatch between function

declaration and definition i i 387
Compiler error because of a mismatch between function

declaration and definition i 387
Cyclic dependencies among source files 389
Automatic management of memory, 400
sizeof a C-array, a C++-array, and a std::ivector 402
Accessing a nonexisting element of a std::string 404
Undefined behavior witha C-string 406
No memory allocation with std: :string_view 408
Undefined behavior with printf 414
Performance with/without flushingon Linux 418
Performance with/without flush on Windows 418
Different return types ina functioncoviiiiiin.... 429
Automatic managingof adevice 435
Enable code analysis o i 448
Configure the appliedrules 449
Automatic managingof adevice 449
SUPPIess Warningsoueuintnninineninn ... 450
Check the C++ Core Guidelines exclusively 451
Check the C++ Core Guidelines with clang-tidy 452

List of tables

4.1 Normal parameter passinguutuenennnenenen e, 32
4.2 Advanced parameter passingo.veunein et 33
4.3 Ownership semantics of parameter passingooveun... 38
7.1 Smart pointers as function parametersueuenon... 156
10.1 Typical threadsizeo e 262
10.2 Algorithms of the STL for which parallel versions are available
(the std namespace is omitted). i 267
10.3 Condition variables versus tasks o i 272
10.4 Operation reordering on various platforms. 276
13.1 Comparing two aCCOUNTS. « « . v vttt e it e et et e, 330
13.2 ComposSIte tyPe CALEZOIICS . « v o v vt vt et e e et et et e e e eeeaen 348
13.3 Template metaprogramming versus constexpr functions. 358
13.4 Tterator CAtEZOIICS . . v v v v it et e e e e e et e ettt 366
14.1 Namemanglingo.vtuinn ittt i 380
16.1 Variouskinds of teXto vttt 405
16.2 Stateof thestreamottt e 412

XXVii

This page intentionally left blank

Foreword

C++ is a very rich, very expressive language with lots of features. It has to be because
a successful general-purpose programming language must have more facilities than
any one developer needs, and a living and evolving language will accumulate alterna-
tive idioms for expressing an idea. That can lead to choice overload. So, what does a
developer choose for programming style and mastery? How does a developer avoid
getting stuck with outdated and ineffective techniques and programming styles?

The C++ Core Guidelines (https://github.com/isocpp/CppCoreGuidelines/blob/
master/CppCoreGuidelines.md) are an ongoing open-source project to address such
issues by gathering widely recognized modern C++ best practices together in one
place. The Core Guidelines rely on decades of experience and earlier sets of coding
rules. They share a conceptual framework with C++ itself, with a focus on type
safety, resource safety, and the elimination of avoidable complexities and inefficien-
cies. The Core Guidelines are organized to address known problem areas and partly
phrased to enable enforcement by a static analyzer.

The Core Guidelines are organized as a reference work to make it easy to look up
and share specific topics, not as a tutorial to be read sequentially to learn themes for
using modern C++ well. We are therefore very pleased to see Rainer Grimm apply-
ing his teaching skills and industrial background to tackle the hard and necessary
task of making the rules accessible to more people. We hope that you find learning
the Core Guidelines stimulating and, especially, that applying them to your real-
world problems will make your work significantly more effective and more
enjoyable.

Bjarne Stroustrup

Herb Sutter

XXIX

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

This page intentionally left blank

Preface

This preface serves one purpose: to give you, dear reader, the necessary background
to get the most out of this book. This background includes technical details about
me, my writing style, my motivation for writing this book, and the challenges of
writing such a book. If you want to skip this section, fine, but at least read the
Acknowledgments section.

Conventions
I promise, only a few conventions.

Rules versus guidelines

The authors of the C++ Core Guidelines often refer to them as rules. So do I. In the
context of this book, I use both terms interchangeably.

Special fonts

Bold Sometimes I use bold font to emphasize important terms.
Italic Italics designate hyperlinks (eBook only).

Monospace Code, instructions, keywords, names of types, variables, functions, and
classes are displayed in monospace font.

Boxes

I use boxes with a bullet list for the information concluding each chapter.

Related rules

Often rules are related to other rules. I provide this valuable information at the end
of the chapter if necessary.

Distilled

Important

Get the essential information at the end of each chapter.

xxXX1

XXXil

PREFACE

Source code

I dislike using directives and declarations because they hide the origin of the library
functions. Due to the limited length of a page, I have to use them from time to time. [use
them in such a way that the origin can always be deduced from the using directive (using
namespace std;) or the using declaration (using std: :cout;). Not all headers are dis-
played in the code snippets. Boolean values are displayed with true or false. The neces-
sary I/O manipulator std: :boolalpha is mostly not part of the code snippets.

Three dots (. . .) in the code snippets stand for missing code.

When I present a complete program as a code example, you will find the name of
the source file in the first line of the code. I assume that you use a C++14 compiler. If
the example needs C++17 or C++20 support, [mention the required C++ standard
after the name.

I often use markers such as // (1) in the source file to ease my explanations. If
possible, I write the marker in the cited line or, if not, one line before. The markers are
not part of the more than 100 source files that are part of the book (available from
https://github.com/RainerGrimm/CppCoreGuidelines). For layout reasons, I often
adjusted the source code in this book.

When I use examples from the C++ Core Guidelines, I often rewrite them for
readability by adding namespace std if it is missing, or unify the layout.

Why guidelines?

This subjective observation is mainly based on my more than 15 years of experience
as a trainer for C++, Python, and software development in general. In the last few
years, | was responsible for the team and the software deployed on defibrillators. My
responsibility included regulatory affairs for our devices. Writing software for a defi-
brillator is extremely challenging because they can cause death or serious injury for
the patient and the operator.

I have a question in mind that we should answer as a C++ community. This ques-
tion is: Why do we need guidelines for modern C++? Here are my thoughts, which
consist for simplicity reasons of three observations.

Complex for novices

C++ is, in particular for beginners, an inherently complex language. This is mainly
because the problems we want to solve are inherently complicated and often complex

https://github.com/RainerGrimm/CppCoreGuidelines

PREFACE

as well. When you teach C++, you should provide a set of rules that work for your
participants in at least 95% of all use cases. I think about rules such as

e Let the compiler deduce your types.
e Initialize with curly braces.
e Prefer tasks over threads.

e Use smart pointers instead of raw pointers.

I teach rules such as the ones mentioned in my seminars. We need a canon of best
practices or rules in C++. These rules should be formulated positively and not nega-
tively. They should declare how you should write code and not what should be
avoided.

Challenging for professionals

I’m not worried about the sheer amount of new features that we get with each new
C++ standard every three years. ’m worried about the new ideas that modern C++
supports. Think about event-driven programming with coroutines, lazy evaluation,
infinite data streams, or function composition with the ranges library. Think about
concepts, which introduce semantic categories to template parameters. It can be
quite challenging to teach C programmers object-oriented ideas. When you shift,
therefore, to these new paradigms, you have to rethink and presumably change the
way you solve your programming challenges. [assume that this plethora of new ideas
will, in particular, overwhelm professional programmers. They are the ones who are
used to solving the problems with their classical techniques. With high probability,
they fall into the hammer-nail trap.

Used in safety-critical software

In the end, I have a strong concern. In safety-critical software development, you often
have to stick to guidelines. The most prominent are MISRA C++. The current
MISRA C++:2008 guidelines were published by the Motor Industry Software Relia-
bility Association. They are based on the MISRA C guidelines from the year 1998.
Initially designed for the automotive industry, they became the de facto standard for
the implementation of safety-critical software in the aviation, military, and medical
sectors. As MISRA C, MISRA C++ describes guidelines for a safe subset of C++.
But there is a conceptual problem. MISRA C++ is not state of the art for modern

XXX1i1

https://www.misra.org.uk/Activities/tabid/56/Default.aspx
https://www.misra.org.uk/Activities/tabid/56/Default.aspx
https://de.wikipedia.org/wiki/MISRA-C
https://en.wiktionary.org/wiki/if_all_you_have_is_a_hammer,_everything_looks_like_a_nail
https://de.wikipedia.org/wiki/MISRA-C
https://en.wikipedia.org/wiki/Short-circuit_evaluation
https://en.cppreference.com/w/cpp/language/coroutines

XXX1V

PREFACE

software development in C++. It’s four standards behind! Here is an example:
MISRA C++ doesn’t allow operator overloading. 1 teach in my seminars that you
should use user-defined literals to implement type-safe arithmetic: auto constexpr
dist = 4 * 5_m + 16_cm - 3_dm. To implement such type-safe arithmetic, you have
to overload the arithmetic operators and the literal operators for the suffixes. To be
honest, I don’t believe that MISRA C++ will ever evolve in lockstep with the current
C++ standard. Only community-driven guidelines such as the C++ Core Guidelines
can face this challenge.

MISRA C++ integrates AUTOSAR C++14

However, there is hope. MISRA C++ integrates AUTOSAR C++14. AUTOSAR
C++14 is based on C++14 and should become an extension of the MISRA C++
standard. ’'m highly skeptical that organization-driven guidelines can keep in
lockstep with the dynamics of modern C++.

My challenge

Let me share the essential lines of my e-mail discussion in May 2019 with Bjarne
Stroustrup and Herb Sutter telling them that I wanted to write a book about the
C++ Core Guidelines: “I’'m an absolute fan of the value which is inside the C++
Core Guidelines because my strong belief is that we need guidelines for the correct/
safe usage of modern C++. I often use examples or ideas from the C++ Core Guide-
lines in my C++ classes. The format reminds me of the MISRA C++ or AUTOSAR
C++14 rules which is presumably intentional, but this is not the ideal format for a
big audience. I think that more people would read and reason about the guidelines if
we had a second document which describes the general ideas of the guidelines.”

I want to add a few remarks to these previous conversations. In the last few years,
[wrote on my German and English blogs more than a hundred posts about the C++
Core Guidelines. Additionally, I write for the German Linux-Magazin a series on the
C++ Core Guidelines. I do this for two reasons: First, the C++ Core Guidelines
should become better known, and second, I want to present them in a readable form,
extended with background information if necessary.

Here is my challenge: The C++ Core Guidelines consist of over five hundred
guidelines, most of the time just called rules. These rules are designed with static
analysis in mind. Many of the rules are lifesaving for a professional C++ software
developer, but also many of the rules are quite special, often incomplete or
redundant, and sometimes the rules even contradict. My challenge is to boil these
valuable rules down to a readable, even entertaining, story, removing the esoteric
stuff and filling the gaps if necessary. In the end, the book should contain the rules
that are mandatory for a professional software developer in C++.

http://bit.ly/31udh7J
http://bit.ly/31udh7J
http://bit.ly/31udh7J
http://bit.ly/31udh7J
http://bit.ly/31udh7J
https://www.linux-magazin.de/

PREFACE XXXV

Panta rbei

Panta rhei, or “everything flows,” from the Greek philosopher Heraclitus stands for
the challenge ’'m faced with while writing this book. The C++ Core Guidelines are a
GitHub-hosted project with more than 200 contributors. While I was writing this
book, the source I was basing my writing on may have changed.

C++98 . C++11 .C++14. C++17 .C++20

[1ess 2011 2014 2017 2020 >
Templates Move semantic Reader-writer locks Fold expressions Corputings
Unified initialization Genernc lambda constexpr if Modules
STL with containers auco and decltype functions Structured binding Concepts
and algorithms Lambda functions Generalized Ranges library
Stnngs COnITexXpI COnSTexpr atd: jatring_view
IO Streams functions Parallel algonthms of the STL

Multithreading and the
memory model

Filesystem library
std:rany, stdiioptional
and stdi:variant

Ragular expressions
Smart pointers
Hash tables
acd:rarray

- o=

The guidelines already include C++ features, which may become part of an
upcoming standard, such as contracts in C++23. To reflect this challenge, I made a
few decisions.

1. I provide links in the electronic version of this book to the mentioned C++
Core Guidelines so you can quite easily refer to their origins.

2. My focus is on the C++17 standard. If appropriate, I include guidelines target-
ing the C++20 standard, such as concepts.

3. The C++ Core Guidelines evolve constantly, in particular as new C++
standards are published. So will this book. My plan is to update this book
accordingly.

How to read this book

The structure of this book represents the structure of the C++ Core Guidelines. It
has the corresponding major sections and parts of the supporting sections. In addi-
tion to the C++ Core Guidelines, I included appendixes, which provide concise over-
views of missing topics, including C++20 or even C++23 features.

https://en.wikipedia.org/wiki/Heraclitus
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines/graphs/contributors

XXXVi

PREFACE

I still have not answered one question: how to read this book. Of course, you
should start with the major sections, best from top to toe. The supporting sections
provide additional information and introduce, in particular, the Guidelines Support
Library. Use the appendixes as a kind of reference to get the necessary background
information to understand the major sections. Without this additional information,
this book would not be complete.

Register your copy of C++ Core Guidelines Explained on the InformIT site
for convenient access to updates and/or corrections as they become available.
To start the registration process, go to informit.com/register and log in or cre-
ate an account. Enter the product ISBN (9780136875673) and click Submit.
Look on the Registered Products tab for an Access Bonus Content link next to
this product, and follow that link to access any available bonus materials. If
you would like to be notified of exclusive offers on new editions and updates,
please check the box to receive email from us.

http://informit.com/register

Acknowledgments

First of all, I have to thank all contributors to the C++ Core Guidelines. The Core
Guidelines are the work of about 250 contributors; the most prolific so far have
been Herb Sutter, Bjarne Stroustrup, Gabriel Dos Reis, Sergey Zubkov, Jonathan
Wakely, and Neil Maclntosh (Guidelines Support Library). If you want to know
all other contributors, go to https://github.com/isocpp/CppCoreGuidelines/graphs/
contributors.

Second, I want to thank my proofreaders very much. Without their help, the book
would not have the quality it has now. Here are their names in alphabetic order: Yaser
Afshar, Nicola Bombace, Sylvain Dupont, Fabio Fracassi, Juliette Grimm, Michael
Mollney, Mateusz Nowak, Arthur O’Dwyer, and Moritz Striibe.

Third, many thanks to my wife, Beatrix Jaud-Grimm, for drawing the illustra-
tions for this book.

XXXVil

https://github.com/isocpp/CppCoreGuidelines/graphs/contributors
https://github.com/isocpp/CppCoreGuidelines/graphs/contributors
https://github.com/isocpp/CppCoreGuidelines/graphs/contributors
https://github.com/isocpp/CppCoreGuidelines/graphs/contributors
https://github.com/isocpp/CppCoreGuidelines/graphs/contributors

This page intentionally left blank

About the author

I have worked as a software architect, team lead, and instructor since 1999. In 2002, 1
created a continuing education program at my company. I have given seminars since
2002. My first seminars were about proprietary management software, but seminars
for Python and C++ followed immediately. In my spare time, I like to write articles
about C++, Python, and Haskell. I also like to speak at conferences. I publish weekly
in English and German on my blog Modernes Cpp, hosted by Heise Developer.

Since 2016, I have been an independent instructor giving seminars about modern
C++ and Python. I have published several books in various languages about modern
C++ and concurrency, in particular. Due to my profession, I always search for the
best way to teach modern C++.

XXXIX

https://www.modernescpp.com/

This page intentionally left blank

PART I

The Guidelines

Chapter 1: Introductiono vviiiieennnnn. 3
Chapter 2: Philosophyccciiien... 7
Chapter 3: Interfacesccvvviieeennnnn. 15
Chapter 4: Functionsccovviueeeennnnnn 27
Chapter 5: Classes and Class Hierarchies 53
Chapter 6: Enumerationsc...... 131
Chapter 7: Resource Management 139
Chapter 8: Expressions and Statements 165
Chapter 9: Performancecccevenn... 213
Chapter 10: Concurrency.oovvueeeenn.. 231
Chapter 11: Error Handling 279

Chapter 12: Constants and Immutability 293

PART I THE GUIDELINES

Chapter 13: Templates and Generic

Programming 301
Chapter 14: C-Style Programming 375
Chapter 15: Source Files. 383

Chapter 16: The Standard Library 397

Chapter 1

Introduction

Cippi learns the basics.

Before I dive into the details of the C++ Core Guidelines in the next chapters, I want
to provide a short introduction.

Target readership

The target readership for the C++ Core Guidelines is all C++ programmers, includ-
ing programmers who might consider C.

PART I THE GUIDELINES

Aim

The rules of the guidelines promote modern C++ and aim to achieve a more uniform
style. Of course, not all rules can be applied to legacy code in particular. This means
you should apply these rules to new code but also to legacy code that is broken or has
to be refactored. The focus is on type safety and resource safety. The rules are not just

about “don’t do that”; they are prescriptive and often checkable. Their design allows
gradual adoption.

Non-aims

Now we know what the aim of the rules is. The non-aims are also interesting. The
guidelines are not meant to be read serially or be a replacement for a tutorial. Addi-
tionally, they provide no recipes to convert old C++ to modern C++, nor are they so
precise that you can follow them blindly, nor are they a safe subset of C++.

Enforcement

Without enforcement, the guidelines are not manageable in large code bases. For this
reason, each rule has an enforcement section. The enforcement can be a code review,
dynamic or static code analysis. Related rules are grouped into profiles. The C++
Core Guidelines define profiles to protect from type violations, bounds violations,
and lifetime violations.

Structure

The rules follow a typical structure:

e Reason: rationale for the rule

e Example: code snippet, which shows good or bad code regarding the rule
e Alternative: alternative for a “don’t do this” rule

e Exception: reasons to not apply the rule

¢ Enforcement: how the rule can be checked

e See also: references to other rules

¢ Note: additional notes to a rule

¢ Discussion: references to additional rationales or examples

CHAPTER 1 INTRODUCTION

Major sections

The C++ Core Guidelines consist of 16 major sections. I listed them for a short
overview.

¢ Introduction

e Philosophy

e Interfaces

e Functions

e Classes and class hierarchies
e Enumerations

¢ Resource management

e Expressions and statements
e Performance

e Concurrency

e Error handling

¢ Constants and immutability
e Templates and generic programming
e C-style programming

e Source files

e The Standard Library

Distilled

Important

® The target readership is all C++ programmers.

¢ The aim of the C++ Core Guidelines is to adopt more modern C++ and
to achieve a universal style.

e The rules are neither a tutorial nor precise enough to follow them blindly.

e Each rule has an enforcement section.

This page intentionally left blank

Chapter 2

Philosophy

Cippi thinks deeply.

The philosophical rules have a general focus and are, therefore, not checkable. The
philosophical rules provide the rationale for the following concrete rules. Due to
the fact that there are only 13 philosophical rules, I can cover all of them in this
chapter.

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-philosophy
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-philosophy
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-philosophy

PART I THE GUIDELINES

Express ideas directly in code

A programmer should express their ideas directly in code because code can be
checked by compilers and tools. The two following methods make this rule
obvious.

class Date {

// ...

public:
Month month() const; // do
int month(); // don't
// ...

}i

The second member function month() expresses neither that it is constant nor that it
returns a month. The same argument typically holds for loops such as for or while
compared to the algorithms of the Standard Template Library (STL). The next code
snippet makes my point.

int index = -1; // bad
for (int i = 0; i < v.size(); ++i) {
if (v[i] == val) {
index = i;
break;

auto it = std::find(begin(v), end(v), val); // better

A professional C++ developer should know the algorithms of the STL. By using
them, you avoid the usage of explicit loops, and your code becomes easier to
understand, easier to maintain, and therefore, less error prone. There is a prov-
erb in modern C++: “When you use explicit loops, you don’t know the algo-
rithms of the STL.”

Write in ISO Standard C++

https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/algorithm

CHAPTER 2 PHILOSOPHY

Okay, this rule is a no-brainer. To get a portable C++ program, the rule is quite easy
to understand. Use a current C++ standard without compiler extension. Addition-
ally, be aware of undefined or implementation-defined behavior.

¢ Undefined behavior: All bets are off. Your program can produce the correct
result or the wrong result, crashes during run time, or may not even compile.
That behavior might change when porting to a new platform, when upgrading
to a new compiler, or as a result of an unrelated code change.

¢ Implementation-defined behavior: The behavior of your program may vary
between various implementations. The implementation must document each
behavior.

When you have to use extensions that are not written in ISO Standard, encapsulate
them in a stable interface.

Catch-fire semantics

There is a proverb in the C++ community describing undefined behavior. When
your program has undefined behavior, your program has catch-fire semantics.
This means your computer can catch fire.

Express intent

What intent can you derive from the following implicit and explicit loops?

for (const auto& v: vec) { ... } // (1)
for (auto& v: vec) { ... } // (2)
std::for_each(std::execution::par, vec, []J(auto v) { ... }); // (3)

Loop (1) does not modify the elements of the container vec. This does not hold for
the range-based for loop (2). The algorithm std: : for_each (3) performs its job in
parallel (std::execution::par). This means that we don’t care in which order the
elements are processed.

Expressing intent is also an important guideline for good documentation of your
code. Documentation should state what should be done and not how it should be
done.

10

PART I THE GUIDELINES

Ideally, a program should be statically type safe

C++ is a statically typed language. Statically typed means that the type of the data is
known to the compiler. Statically type safe additionally states that the compiler
detects type errors. Due to existing problematic areas, this goal cannot always be
achieved, but there is a cure for unions, casts, array decays, range errors, or narrow-
ing conversions:

e With C++17,you canuse std: :variant as a type-safe replacement for a union.

¢ Generic code based on templates reduces the need for casting and, therefore,
for type errors.

e Array decay happens when you invoke a function with a C-array. The function
takes the array via a pointer to its first element and its length. This means you
start with a type-rich data structure C-array and end with a type-poor pointer
to its first element. The cure is part of C++20: std: :span. std: :span auto-
matically deduces the size of a C-array and also protects you from range errors.
If you don’t have C++20, use the implementation provided by the Guidelines
Support Library.

e Narrowing conversion is an implicit conversion of arithmetic values including
a loss of accuracy.

int i1(3.14);

int i2 = 3.14;

The compiler detects narrowing conversion if you use the { }-initializer syntax.
int 11{3.14};

int i2 = {3.14};

Prefer compile-time checking to run-time checking

What can be checked at compile time should be checked at compile time. This
is idiomatic for C++. Since C++11, the language has supported static_assert.
Thanks to static_assert, the compiler evaluates an expression such as static_
assert(size(int) >= 4) and produces, eventually, a compiler error. Additionally, the
type-traits library allows you to formulate powerful conditions: static_
assert(std::is_integral<T>::value). When the expression in the static_assert
call evaluates to false, the compiler writes a human-readable error message.

https://en.cppreference.com/w/cpp/utility/variant
https://en.cppreference.com/w/cpp/container/span
https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/types/decay

CHAPTER 2 PHILOSOPHY

What cannot be checked at compile-time should be
checkable at run-time

Thanks to the dynamic_cast, you can safely convert pointers and references to
classes up, down, and sideways along the inheritance hierarchy. If the casting fails,
you get back a nullptr in case of a pointer and a std: :bad_cast exception in case of
a reference. Read more details in the section dynamic_cast in Chapter 5.

P.7 Catch run-time errors early

Many countermeasures can be taken to get rid of run-time errors. As a programmer,
you should take care of pointers and C-arrays by checking their range. Of course, the
same holds for conversions, which should be avoided if possible, and of course, for
narrowing conversions. Checking input also falls into this category.

Don't leak any resources

Resource leaks are, in particular, critical for long-running programs. A resource may
be memory but also file handles or sockets. The idiomatic way to deal with resources
is RAIL. RAII stands for Resource Acquisition Is Initialization and means, essentially,
that you acquire the resource in the constructor and release the resource in the
destructor of a user-defined type. By making the object a scoped object, the C++ run
time automatically takes care of the lifetime of the resource. C++ uses RAII heavily:
Locks take care of mutexes, smart pointers take care of raw memory, or containers
of the STL take care of the underlying elements.

Don’t waste time or space

Saving time or space is a virtue. The reasoning is quite concise: This is C++. Do you
spot the issues in the following loop?

void lower(std::string s) {
for (unsigned int i = 0; i <= std::strlen(s.data()); ++i) {
s[i] = std::tolower(s[i]);

11

12

PART I THE GUIDELINES

Using the algorithm std: : transform from the STL makes a one-liner out of the
previous function.

std::transform(s.begin(), s.end(), s.begin(),
[l(char c) { return std::tolower(c); });

In contrast to the function lower, the algorithm std::transform automatically
determines the size of its string. Consequently, you don’t have to specify the length of
the string using std: :strlen.

Here is another typical example, often found in production code. Declaring copy
semantics (copy constructor and copy-assignment operator) for a user-defined
data type suppresses the automatically defined move semantics (move constructor
and move-assignment operator). Ultimately, the compiler can never use cheap move
semantics if applicable but always relies on expensive copy semantics.

struct S {
std::string s_;
S(std::string s): s_(s) {}
S(const S& rhs): s_(rhs.s_) {}
S& operator = (const S& rhs) { s_ = rhs.s_; return *this; }

}i

S s1;
S s2 = std::move(sl); // makes a copy instead of moving from sil.s_

If these examples scare you, read more in the section Default Operations in
Chapter S.

Prefer immutable data to mutable data

There are many reasons to use immutable data. First, it is easier to verify your code
when you use constants. Constants also have higher optimization potential. But first
and foremost, constants provide a big advantage in concurrent programs. Constant
data is data-race free by design because mutation is a necessary condition for a data

race.

Encapsulate messy constructs, rather than spreading
through the code

https://en.cppreference.com/w/cpp/algorithm/transform
https://en.cppreference.com/w/cpp/algorithm/transform
https://en.cppreference.com/w/cpp/algorithm/transform
https://en.cppreference.com/w/cpp/utility/move

CHAPTER 2 PHILOSOPHY

Messy code is often low-level code, which hides bugs and is, therefore, error prone. If
possible, replace your messy code with a high-level construct from the STL such as a
container or algorithms of the STL. If this is not possible, encapsulate the messy
code in a user-defined type or a function.

Use supporting tools as appropriate

Computers are better than humans at doing boring and repetitive tasks. That means that
you should use static analysis tools, concurrency tools, and testing tools to automate
these verifying steps. Compiling your code with more than one C++ compiler is often
the easiest way to verify your code. An undefined behavior that may not be detected by
one compiler may cause another compiler to emit a warning or produce an error.

Use support libraries as appropriate

That is quite easy to explain. You should go for well-designed, well-documented, and
well-supported libraries. You will get a well-tested and nearly error-free library and
highly optimized algorithms from the domain experts. Outstanding examples are the
C++ standard library, the Guidelines Support Library, and the Boost libraries.

Distilled

Important

e The philosophical rules (or meta-rules) provide rationales for the concrete
rules. Ideally, the concrete rules can be derived from the philosophical
rules.

e Express intent and ideas directly in code.

e Write in ISO Standard C++ and use support libraries and supporting
tools.

e A program should be statically type safe and should, therefore, be check-
able at compile time. When this is not possible, catch run-time errors early.

e Don’t waste resources such as space or time.

e Encapsulate messy constructs behind a stable interface.

13

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-philosophy
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-philosophy
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-philosophy
https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/algorithm

This page intentionally left blank

Chapter 3

Interfaces

Cippi assembles components.

An interface is a contract between a service provider and a service user. Interfaces
are, according to the C++ Core Guidelines, “probably the most important single
aspect of code organization.” The section on interfaces has about twenty rules. Four
of the rules are related to contracts, which didn’t make it into the C++20 standard.
A few rules related to interfaces involve contracts, which may be part of C++23.
A contract specifies preconditions, postconditions, and invariants for functions that

15

16

PART I THE GUIDELINES

can be checked at run time. Due to the uncertainty of the future, I ignore these rules.
The appendix provides a short introduction to contracts.
Let me end this introduction with my favorite quote from Scott Meyers:

Make interfaces easy to use correctly and hard to use incorrectly.

Avoid non-const global variables

Of course, you should avoid non-const global variables. But why? Why is a global
variable, in particular when it is non-constant, bad? A global injects a hidden depend-
ency into the function, which is not part of the interface. The following code snippet
makes my point:

int glob{2011};

int multiply(int fac) {
glob *= glob;
return glob * fac;

3

The execution of the function multiply changes, as a side effect, the value of the
global variable glob. Therefore, you cannot test the function or reason about the
function in isolation. When more threads use multiply concurrently, you have to
protect the variable glob. There are more drawbacks to non-const global variables.
If the function multiply had no side effects, you could have stored the previous result
and reused the cached value for performance reasons.

The curse of non-const global variables

Using non-const globals has many drawbacks. First and foremost, non-const globals
break encapsulation. This breaking of encapsulation makes it impossible to think
about your functions/classes (entities) in isolation. The following bullet points enu-
merate the main drawbacks of non-const global variables.

¢ Testability: You cannot test your entities in isolation. There are no units, and
therefore, there is no unit testing. You can only perform system testing. The
effect of your entities depends on the state of the entire system.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/System_testing
https://en.wikipedia.org/wiki/Scott_Meyers

CHAPTER 3 INTERFACES 17

¢ Refactoring: It is quite challenging to refactor your code because you cannot
reason about your code in isolation.

e Optimization: You cannot easily rearrange the function invocations or per-
form the function invocations on different threads because there may be hid-
den dependencies. It’s also extremely dangerous to cache previous results of
function calls.

e Concurrency: The necessary condition for having a data race is a shared,
mutable state. Non-const global variables are shared and mutable.

Avoid singletons

Sometimes, global variables are very well disguised.

// singleton.cpp
class MySingleton {

public:
MySingleton(const MySingleton&)= delete;
MySingleton& operator = (const MySingleton&)= delete;

static MySingleton* getInstance() {
if (!'instance){
instance= new MySingleton();

}

return instance;

private:
static MySingleton* instance;
MySingleton()= default;
~MySingleton()= default;

Y

MySingleton* MySingleton::instance= nullptr;

int main() {

std::cout << MySingleton::getInstance() << "\n";

http://www.modernescpp.com/index.php/race-condition-versus-data-race

18

PART I THE GUIDELINES

std::cout << MySingleton::getInstance() << "\n";

A singleton is just a global, and you should, therefore, avoid singletons, if possible. A
singleton gives the straightforward guarantee that only one instance of a class exists.
As a global, a singleton injects a dependency, which ignores the interface of a func-
tion. This is due to the fact that singletons as static variables are typically invoked
directly: Singleton::getInstance() as shown in the two lines of the main function.
The direct invocation of the singleton has a few serious consequences. You cannot
unit test a function having a singleton because there is no unit. Additionally, you can-
not fake your singleton and replace it during run time because the singleton is not
part of the function interface. To make it short: Singletons break the testability of
your code.

Implementing a singleton seems like a piece of cake but is not. You are faced with
a few challenges:

e Who is responsible for destroying the singleton?
e Should it be possible to derive from the singleton?
¢ How can you initialize a singleton in a thread-safe way?

e In which sequence are singletons initialized when they depend on each other
and are in different translation units? This is to scare you. This challenge is
called the static initialization order problem.

The bad reputation of the singleton is, in particular, due to an additional fact. Sin-
gletons were heavily overused. I see programs that consist entirely of singletons.
There are no objects because the developer wants to prove that they apply design
patterns.

Dependency injection as a cure

When an object uses a singleton, it injects a hidden dependency into the object.
Thanks to dependency injection, this dependency is part of the interface, and the
service is injected from the outside. Consequently, there is no dependency between
the client and the injected service. Typical ways to inject dependencies are construc-
tors, setter members, or template parameters.

The following program shows how you can replace a logger using dependency
injection.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-singleton
https://en.wikipedia.org/wiki/Unit_testing
https://isocpp.org/wiki/faq/ctors#static-init-order
https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns

CHAPTER 3 INTERFACES

// dependencyInjection.cpp

#include <chrono>
#include <iostream>
#include <memory>

class Logger {

public:
virtual void write(const std::string&) = 0;
virtual ~Logger() = default;

}

class SimplelLogger: public Logger {
void write(const std::string& mess) override {
std::cout << mess << std::endl;

3

class TimelLogger: public Logger {

using MySecondTick = std::chrono::duration<long double>;

long double timeSinceEpoch() {
auto timeNow = std::chrono::system_clock: :now();
auto duration = timeNow.time_since_epoch();
MySecondTick sec(duration);
return sec.count();

}

void write(const std::string& mess) override {
std::cout << std::fixed;
std::cout << "Time since epoch: " << timeSinceEpoch()

3

class Client {
public:
Client(std::shared_ptr<Logger> log): logger(log) {}
void doSomething() {
logger->write("Message");
}
void setLogger(std::shared_ptr<Logger> log) {
logger = log;

19

https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/header/iostream

20

PART I THE GUIDELINES

private:
std::shared_ptr<Logger> logger;
}

int main() {
std::cout << '\n';

Client cl(std::make_shared<SimpleLogger>()); // (1)
cl.doSomething();
cl.setLogger(std: :make_shared<TimeLogger>()); /7 (2)
cl.doSomething();
cl.doSomething();

std::cout << '\n';

}

The client c1 supports the constructor (1) and the member function setLogger (2) to
inject the logger service. In contrast to the SimpleLogger, the TimeLogger includes
the time since epoch in its message (see Figure 3.1).

File Edit View Bookmarks Settings Help
rainer@seminar:~> dependendyInjection
Message

Time since epoch: 1588108879.042703: Message
Time since epoch: 1588108879.042741: Message

rainer@seminar:~> [] i

Figure 3.1 Dependency injection

Making good interfaces

Functions should not communicate via global variables but through interfaces. Now
we are in the core of this chapter. According to the C++ Core Guidelines, here are
the recommendations for interfaces. Interfaces should follow these rules:

e Make interfaces explicit (I.1).

e Make interfaces precise and strongly typed (1.4).

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
https://en.cppreference.com/w/cpp/memory/shared_ptr

CHAPTER 3 INTERFACES

¢ Keep the number of function arguments low (1.23).

¢ Avoid adjacent unrelated parameters of the same type (1.24).

The first function showRectangle breaks all mentioned rules for interfaces:

void showRectangle(double a, double b, double c, double d) {
floor(a);
ceil(b);

T @
1

void showRectangle(Point top_left, Point bottom_right);

Although the first function showRectangle should show only a rectangle, it modifies
its arguments. Essentially, it has two purposes and has, as a consequence, a mislead-
ing name (I.1). Additionally, the function signature does not provide any information
about what the arguments should be, nor in which sequence the arguments must be
given (.23 and [.24). Furthermore, the arguments are doubles without a constraint
value range. This constraint must, therefore, be established in the function body
(I.4). In contrast, the second function showRectangle takes two concrete points.
Checking to see if a Point has valid value is the job of the constructor of Point. This
responsibility should not be the job of the function.

[want to elaborate more on the rules .23 and [.24 and the function std::transform_
reduce from the Standard Template Library (STL). First, I need to define the term
callable. A callable is something that behaves like a function. This can be a function
but also a function object, or a lambda expression. If a callable accepts one argu-
ment, it is called a unary callable; if it takes two arguments, it is called a binary
callable.

std::transform_reduce first applies a unary callable to one range or a binary
callable to two ranges and then a binary callable to the resulting range. When you
use std: : transform_reduce with a unary lambda expression, the call is easy to use
correctly:

std::vector<std::string> strVec{"Only", "for", "testing", "purpose"};

std::size_t res = std::transform_reduce(
std: :execution::par,
strVec.begin(), strVec.end(),
0,
[J(std::size_t a, std::size_t b) { return a + b; },

21

https://en.cppreference.com/w/cpp/algorithm/transform
https://en.cppreference.com/w/cpp/algorithm/transform
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
https://en.cppreference.com/w/cpp/algorithm/transform
https://en.cppreference.com/w/cpp/algorithm/transform_reduce
https://en.cppreference.com/w/cpp/algorithm/transform_reduce
https://en.cppreference.com/w/cpp/utility/functional

22

PART I THE GUIDELINES

[1(std::string s) { return s.size(); }

);

The function std::transform_reduce transforms each string onto its length ([]
(const std::string s) { return s.size(); }) and applies the binary callable ([]
(std::size_t a, std::size_t b) { return a + b; }) to the resulting range. The
initial value for the summation is 0. The whole calculation is performed in parallel:
std::execution: :par.

When you use the overload, which accepts two binary callables, the declaration of
the function becomes quite complicated and error prone. Consequently, it breaks the
rules [.23 and 1.24.

template<class ExecutionPolicy,
class ForwardItl, class ForwardIt2, class T,
class BinaryOpl, class BinaryOp2>
T transform_reduce(ExecutionPolicy&& policy,
ForwardItl firstl, ForwardItl lastil,
ForwardIt2 first2,
T init, BinaryOpl binary_opl, BinaryOp2 binary_op2);

Calling this overload would require six template arguments and seven function argu-
ments. Using the binary callables in the correct sequence may also be a challenge.
transform | reduce

The main reason for the complicated function std: :transform_reduce is that two
functions are combined into one. Defining two separate functions transform and
reduce and supporting function composition via the pipe operator would be a better
choice: transform | reduce.

Do not pass an array as a single pointer

The guideline that you should not pass an array as a single pointer is special. I can
tell you from experience that this rule is a common cause of undefined behavior. For
instance, the function copy_n is quite error prone.

template <typename T>
void copy_n(const T* p, T* q, int n); // copy from [p:p+n) to [q:qg+n)

https://en.cppreference.com/w/cpp/algorithm/transform_reduce
https://en.cppreference.com/w/cpp/algorithm/transform_reduce

CHAPTER 3 INTERFACES

int a[100] {0, 3},
int b[100] = {0, };

copy_n(a, b, 101);

Maybe you had an exhausting day and you miscounted by one. The result is an off-
by-one error and, therefore, undefined behavior. The cure is simple. Use a container
from the STL such as std: :vector and check the size of the container in the function
body. C++20 offers std: : span, which solves this issue more elegantly. A std: :span
is an object that can refer to a contiguous sequence of objects. A std: :span is never
an owner. This contiguous memory can be an array, a pointer with a size, or a
std::vector.

template <typename T>
void copy(std::span<const T> src, std::span<T> des);

int arri[] = {1, 2, 3};
{3, 4, 5};

int arr2[]

copy(arrl, arr2);

copy doesn’t need the number of elements. Hence, a common cause of errors is elim-
inated with std: : span<T>.

.27 For stable library ABI, consider the Pimpl idiom

An application binary interface (ABI) is the interface between two binary programs.

Thanks to the PImpl idiom, you can isolate the users of a class from its implemen-
tation and, therefore, avoid recompilation. PImpl stands for pointer to implementa-
tion and is a programming technique in C++ that removes implementation details
from a class by placing them in a separate class. This separate class is accessed by a
pointer. This is done because private data members participate in class layout and
private member functions participate in overload resolution. These dependencies
mean that changes to those implementation details require recompilation of all users
of a class. A class holding a pointer to implementation (PImpl) can isolate the users
of a class from changes in its implementation at the cost of an indirection.

23

https://en.cppreference.com/w/cpp/container/span
https://en.cppreference.com/w/cpp/container/span
https://en.cppreference.com/w/cpp/container/span
https://en.cppreference.com/w/cpp/language/pimpl

PART I THE GUIDELINES

The C++ Core Guidelines show a typical implementation.

o Interface: widget.h

class Widget {
class impl;
std::unique_ptr<impl> pimpl;
public:
void draw(); // public API that will be forwarded
// to the implementation
widget(int); // defined in the implementation file
~Widget(); // defined in the implementation file,
// where impl is a complete type
widget(wWidget&&) = default;
widget(const Widget&) = delete;
widget& operator = (Widget&&); // defined in the
// implementation file
widget& operator = (const Widget&) = delete;

}i

¢ Implementation: widget.cpp

class Widget::impl {
int n; // private data
public:
void draw(const widget& w) { /* ... */ }
impl(int n) : n(n) {3}
}
void Widget::draw() { pimpl->draw(*this); 3}
wWidget::wWidget(int n) : pimpl{std::make_unique<impl>(n)} {}
widget::~Widget() = default;
widget& Widget::operator = (Widget&&) = default;

cppreference.com provides more information about the PImpl idiom. Additionally,
the rule “C.129: When designing a class hierarchy, distinguish between implementa-
tion inheritance and interface inheritance” shows how to apply the PImpl idiom to
dual inheritance.

http://cppreference.com
https://en.cppreference.com/w/cpp/language/pimpl
https://en.cppreference.com/w/cpp/language/pimpl
https://en.cppreference.com/w/cpp/memory/unique_ptr

CHAPTER 3 INTERFACES 25

Related rules

I present the rule “I.10: Use exceptions to signal a failure to perform a required task”
in Chapter 11, Error Handling, the rule “I.11: Never transfer ownership by a raw
pointer (T*) or reference (T&)” in Chapter 4, Functions, the rule “1.22: Avoid complex
initialization of global objects” in Chapter 8, Expressions and Statements, and the
rule “I.25: Prefer abstract classes as interfaces to class hierarchies” in Chapter 5,
Classes and Class Hierarchies.

Distilled

Important

e Don’t use global variables. They introduce hidden dependencies.
e Singletons are global variables in disguise.
e Interfaces and in particular functions should express their intent.

e Interfaces should be strongly typed and have few arguments that cannot be
easily confused.

e Don’t take a C-array by pointer but use a std: : span.

e If you want to separate the users of a class from its implementation, use
the PImpl idiom.

https://en.cppreference.com/w/cpp/container/span
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-except
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-raw
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-raw
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-global-init
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-global-init
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-abstract
https://en.cppreference.com/w/cpp/language/pimpl

This page intentionally left blank

Chapter 4

Functions

Cippi uses functions to solve the challenge.

Software developers master complexity by dividing complex tasks into smaller units.
After the small units are addressed, they put the smaller units together to master the
complex task. A function is a typical unit and, therefore, the basic building block for
a program. Functions are “the most critical part in most interfaces . . .” (C++ Core

Guidelines about functions).

27

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-functions
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-functions

28

PART I THE GUIDELINES

The C++ Core Guidelines have about forty rules for functions. They provide
valuable information on the definition of functions, how you should pass the argu-
ments (e.g., by copy or by reference), and what that means for the ownership seman-
tics. They also state rules about the semantics of the return value and other functions
such as lambdas. Let’s dive into them.

Function definitions

Presumably, the most important principle for good software is good names. This
principle is often ignored and holds true in particular for functions.

Good names

The C++ Core Guidelines dedicate the first three rules to good names: “F.1: ‘Package’
meaningful operations as carefully named functions,” “E2: A function should per-
form a single logical operation,” and “E.3: Keep functions short and simple.”

Let me start with a short anecdote. A few years ago, a software developer asked
me, “How should I call my function?” I told him to give the function a name such as
verbobject. In case of a member function, a verb may be fine because the function
already operates on an object. The verb stands for the operation that is performed
on the object. The software developer replied that this is not possible; the function
must be called getTimeAndAddToPhonebook or just processData because the func-
tions perform more than one job (single-responsibility principle). When you don’t
find a meaningful name for your function (E1), that’s a strong indication that your
function does more than one logical operation (F.2) and that your function isn’t short
and simple (E3). A function is too long if it does not fit on a screen. A screen means
roughly 60 lines by 140 characters, but your measure may differ. Now you should
identify the operations of the function and package these operations into carefully
named functions.

The guidelines present an example of a bad function:

void read_and_print() { // bad
int x;
std::cin >> x;
// check for errors
std::cout << x << '\n';

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-package
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-package
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-logical
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-logical
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-single
https://en.wikipedia.org/wiki/Single-responsibility_principle
https://en.cppreference.com/w/cpp/io/cin
https://en.cppreference.com/w/cpp/io/cout

CHAPTER 4 FUNCTIONS

The function read_and_print is bad for many reasons. The function is tied to a
specific input and output and cannot be used in a different context. Refactoring the
function into two functions solves these issues and makes it easier to test and to

maintain:

int read(std::istream& is) { // better
int x;
is >> x;
// check for errors
return x;

void print(std::ostream& os, int x) {
0s << X << '\n';

If a function may have to be evaluated at compile-time,
declare it constexpr

A constexpr function is a function that has the potential to run at compile time.
When you invoke a constexpr function within a constant expression, or you take the
result of a constexpr with a constexpr variable, it runs at compile time. You can
invoke a constexpr function with arguments that can be evaluated only at run time,
too. constexpr functions are implicit inline.

The result of constexpr evaluated at compile time is stored in the ROM (read-
only memory). Performance is, therefore, the first big benefit of a constexpr func-
tion. The second is that constexpr functions evaluated at compile time are const
and, therefore, thread safe.

Finally, a result of the calculation is made available at run time as a constant in
ROM.

// constexpr.cpp

constexpr auto gcd(int a, int b) {
while (b !'= 0) {

auto t = b;
b =a%b;
a=t;

}

return a;

29

30 PART I THE GUIDELINES

int main() {

constexpr int i = gcd(11, 121); // (1)

int a = 11;
int b = 121;
int j = gcd(a, b); /7 (2)

Figure 4.1 shows the output of Compiler Explorer and depicts the assembly code
generated by the compiler for this function. I used the Microsoft Visual Studio Com-
piler 19.22 without optimization.

32 malin FROC

33 $LNZ

3 sub rsp, 56 ; BEEEEOSSH
mov DWORD PTR i%$[rsp], 11
mov WORD PTR a${rsp]. 11

3 mov DWORD PTR b$[rspl, 121 . 00BE8079H

38 mov edx, Dw PTR b%[rsp]

39 mov ecx, DWORD PTR a$[rsp]

40 call int ged(int,int) ; gcd

41 mov DWORD PTR j%$[rsp]l., eax

42 xXor eax, sax

43 add rsp, S6 ; BEOERO3BH

44 ret @

45 main ENDF

Figure 4.1 Assembler instructions to the program constexpr.cpp

Based on the colors, you can see that (1) in the source code corresponds to line 35 in
the assembler instructions and (2) in the source code corresponds to lines 38—41 in
the assembler instructions. The call constexpr int i = gecd(11, 121); boils down
to the value 11, but the call int j = gcd(a, b); resultsin a function call.

If your function may not throw, declare it noexcept

By declaring a function as noexcept, you reduce the number of alternative control
paths; therefore, noexcept is a valuable hint to the optimizer. Even if your function can

https://godbolt.org/
https://visualstudio.microsoft.com/

CHAPTER 4 FUNCTIONS

throw, noexcept often makes much sense. noexcept means in this case: I don’t care.
The reason may be that you have no way to react to an exception. Therefore, the only
way to deal with exceptions is to invoke std: : terminate(). This noexcept declaration
is also a piece of valuable information for the reader of your code.

The next function just crashes if it runs out of memory.

std::vector<std::string> collect(std::istream& is) noexcept {
std::vector<std::string> res;
for (std::string s; is >> s;) {
res.push_back(s);

}

return res;

The following types of functions should never throw: destructors (see the section
Failing Destructor in Chapter 5), swap functions, move operations, and default
constructors.

Prefer pure functions

Pure functions are functions that always return the same result when given the same
arguments. This property is also called referential transparency. Pure functions
behave like infinite big lookup tables.

The function template square is a pure function:

template<class T>
auto square(T t) {
return t * t;

Conversely, impure functions are functions such as random() or time(), which can
return a different result from call to call. To put it another way, functions that inter-
act with state outside the function body are impure.

Pure functions have a few very interesting properties. You should, therefore, pre-
fer pure functions, if possible.

Pure functions can

e Be tested in isolation

e Be verified or refactorized in isolation

31

https://en.wikipedia.org/wiki/Referential_transparency
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-pure
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-pure
https://en.cppreference.com/w/cpp/error/terminate

32

PART I THE GUIDELINES

e Cache their result

e Automatically be reordered or be executed on other threads

Pure functions are also often called mathematical functions. Functions in C++ are
by default not pure such as in the pure functional programming language Haskell.
Using pure functions is based on the discipline of the programmer. constexpr func-
tions are pure when evaluated at compile time. Template metaprogramming is a pure
functional language embedded in the imperative language C++.

Chapter 13, Templates and Generic Programming, gives a concise introduction to
programming at compile time, including template metaprogramming.

Parameter passing: in and out

The C++ Core Guidelines have a few rules to express various ways to pass parameters
in and out of functions.

Prefer simple and conventional ways of passing
information

The first rule presents the big picture. First, it provides an overview of the various
ways to pass information in and out of a function (see Table 4.1).

Table 4.1 Normal parameter passing

Cheap to move or

Cheap to copy or moderate cost to move

impossible to copy | or don’t know Expensive to move
In

func(X) func(const X&)

In & retain “copy”
In/Out func (X&)
Out X func() | func (X&)

The table is very concise: The headings describe the characteristics of the data
regarding the cost of copying and moving. The rows indicate the direction of param-
eter passing.

e Kind of data

* Cheap to copy or impossible to copy: int or std: :unique_ptr

https://www.haskell.org/
https://en.cppreference.com/w/cpp/memory/unique_ptr

CHAPTER 4 FUNCTIONS

° Cheap to move: std: :vector<T>or std::string

* Moderate cost to move: std::array<std::vector> or BigPob (POD
stands for Plain Old Data—that is, a class without constructors, destruc-

tors, and virtual member functions.)

* Don’t know: template

* Expensive to move: BigPOD[] or std: :array<BigPOD>

e Direction of parameter passing

* In:input parameter

* In & retain “copy”: caller retains its copy

® QOut: output parameter

In/Out: parameter that is modified

A cheap operation is an operation with a few ints; moderate cost is about one thou-

sand bytes without memory allocation.

These normal parameter passing rules should be your first choice. However, there

are also advanced parameter passing rules (see Table 4.2). Essentially, the case with

the “in & move from” semantics was added.

Table 4.2 Advanced parameter passing

Cheap to copy or
impossible to copy

Cheap to move or

or don’t know

moderate cost to move

Expensive to move

In func(X) func(constX&)

In & retain “copy”

In & move from func(X&&)

In/Out func (X&)

Out X func() | func (X&)

After the “in & move from” call, the argument is in the so-called moved-from state.

Moved-from means that it is in a valid but not nearer specified state. Essentially, you

have to initialize the moved-from object before using it again.

33

34

PART I THE GUIDELINES

The remaining rules to parameter passing provide the necessary background
information for these tables.

For “in” parameters, pass cheaply-copied types by value
and others by reference to const

The rule is straightforward to follow. Input values should be copied by default if pos-
sible. When they cannot be cheaply copied, take them by const reference. The C++
Core Guidelines give a rule of thumb to the question, Which objects are cheap to
copy or expensive to copy?

* You should pass a parameter par by value if sizeof (par) < 3 * sizeof(void*).

* You should pass a parameter par by const reference if sizeof(par) > 3 *
sizeof(void*).

void fi(const std::string& s); // OK: pass by reference to const;
// always cheap

void f2(std::string s); // bad: potentially expensive
void f3(int x); // OK: unbeatable
void f4(const int& x); // bad: overhead on access in f4()

For “forward” parameters, pass by TP&& and only
std: : forward the parameter

This rule stands for a special input value. Sometimes you want to forward the param-
eter par. This means an Ivalue is copied and an rvalue is moved. Therefore, the const-
ness of an lvalue is ignored and the rvalueness of an rvalue is preserved.

The typical use case for forwarding parameters is a factory function that creates
an arbitrary object by invoking its constructor. You do not know if the arguments are
rvalues nor do you know how many arguments the constructor needs.

// forwarding.cpp

#include <string>

#include <utility>

template <typename T, typename ... T1>
T create(T1&& ... t1) {
return T(std::forward<T1>(t1)...);

struct MyType {
MyType(int, double, bool) {}
}

int main() {
// lvalue
int five=5;

int myFive= create<int>(five);

// rvalues
int myFive2= create<int>(5);

// no arguments
int myZero= create<int>();

/7 (1)

// three arguments; (lvalue, rvalue, rvalue)
MyType myType = create<MyType>(myZero, 5.5, true);

CHAPTER 4 FUNCTIONS

The three dots (ellipsis) in the function create (1) denote a parameter pack. We call

a template using a parameter pack a variadic template.

Packing and unpacking of the parameter pack

When the ellipsis is on the left of the type parameter T1, the parameter pack

is packed; when on the right, it is unpacked. This unpacking in the return

statement T(std: : forward<T1>(t1)...) essentially means that the expression

std::forward<T1>(t1) is repeated until all arguments of the parameter pack

are consumed and a comma is put between each subexpression. For the curi-

ous, C++ Insights shows this unpacking process.

35

https://cppinsights.io/s/ad5b8b5d

36

PART I THE GUIDELINES

The combination of forwarding together with variadic templates is the typical cre-
ation pattern in C++. Here is a possible implementation of std: :make_unique<T>.

template<typename T, typename... Args>
std::unique_ptr<T> make_unique(Args&&... args) {
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));

}

std: :make_unique<T> creates a std::unique_ptr for T

F.17 For “in-out” parameters, pass by reference to non-const

The rule communicates its intention to the caller: This function modifies its
argument.

std::vector<int> myVec{1, 2, 3, 4, 5};

void modifyVector(std::vector<int>& vec) {
vec.push_back(6);
vec.insert(vec.end(), {7, 8, 9, 10});

For “out” output values, prefer return values to output
parameters

The rule is straightforward. Just return the value, but don’t use a const value because
it has no added value and interferes with move semantics. Maybe you think that cop-
ying a value is an expensive operation. Yes and no. Yes, you are right, but no, the
compiler applies RVO (Return Value Optimization) or NRVO (Named Return Value
Optimization). RVO means that the compiler is allowed to remove unnecessary copy
operations. What was a possible optimization step becomes in C++17 a guarantee.

MyType func() {
return MyType{}; // no copy with C++17

}
MyType myType = func(); // no copy with C++17

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr

CHAPTER 4 FUNCTIONS

Two unnecessary copy operations can happen in these few lines, the first in the
return call and the second in the function call. With C++17, no copy operation
takes place. If the return value has a name, we call it NRVO. Maybe you guessed that.

MyType func() {
MyType myValue;
return myvalue; // one copy allowed

}
MyType myType = func(); // no copy with C++17

The subtle difference is that the compiler can still copy the value myvalue in the
return statement according to C++17. But no copy will take place in the function
call.

Often, a function has to return more than one value. Here, the rule F21 kicks in.

To return multiple “out” values, prefer returning a struct or
tuple

When you insert a value into a std: : set, overloads of the member function insert
return a std: :pair of an iterator to the inserted element and a bool set to true if the
insertion was successful. std::tie with C++11 or structured binding with C++17 are
two elegant ways to bind both values to a variable.

// returnPair.cpp; C++17
#include <iostream>
#include <set>
#include <tuple>
int main() {
std::cout << '"\n';
std::set<int> mySet;
std::set<int>::iterator iter;
bool inserted = false;
std::tie(iter, inserted) = mySet.insert(2011); // (1)

if (inserted) std::cout << "2011 was inserted successfully\n";

auto [iter2, inserted2] = mySet.insert(2017); // (2)

37

https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/language/structured_binding
https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/io/cout
https://en.cppreference.com/w/cpp/utility/tuple/tie

38

PART I THE GUIDELINES

if (inserted2) std::cout << "2017 was inserted successfully\n";

std::cout << '\n';

Line (1) uses std: : tie to unpack the return value of insert into iter and inserted.
Line (2) uses structured binding to unpack the return value of insert into iter2 and
inserted2. std::tie needs, in contrast to structured binding, a predeclared varia-

ble. See Figure 4.2.

B x64 Native Tools Command Prompt for VS 2019

C:\Users\rainer>returnPair.exe

2011 was inserted suc
2017 was inserted succe

C:\Users\rainer>

fully
fully

Figure 4.2 Returning a std: :pair

Parameter passing: ownership semantics

The last section was about the flow of parameters: which parameters are input,
input/output, or output values. But there is more to arguments than the direction of
the flow. Passing parameters is about ownership semantics. This section presents five
typical ways to pass parameters: by copy, by pointer, by reference, by std: :unique_
ptr, or by std: :shared_ptr. Only the rules to smart pointers are inside this section.
The rule to pass by copy is part of the previous section Parameter Passing: In and

Out, and the rules to pointers and references are part of Chapter 3, Interfaces.

Table 4.3 provides the first overview.

Table 4.3 Ownership semantics of parameter passing

Example Ownership Rule
func(value) func is a single owner of the resource. F16
func(pointer®) func has borrowed the resource. I.11and E7

func(reference&)

func has borrowed the resource.

I.11and E7

func(std: :unique_ptr)

func is a single owner of the resource.

F.26

func(std: :shared_ptr)

func is a shared owner of the resource.

E27

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/language/structured_binding
https://en.cppreference.com/w/cpp/language/structured_binding
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie

CHAPTER 4 FUNCTIONS

Here are more details:

® func(value): The function func has its own copy of the value and is its owner.

func automatically releases the resource.

func (pointer+): func has borrowed the resource and is, therefore, not author-
ized to delete the resource. func has to check before each usage that the pointer
is not a null pointer.

func (references&): func has borrowed the resource. In contrast to the pointer,
the reference always has a valid value.

func(std::unique_ptr): func is the new owner of the resource. The caller of
the func has explicitly transferred the ownership of the resource to the callee.
func automatically releases the resource.

func(std: :shared_ptr): func is an additional owner of the resource. func
extends the lifetime of the resource. At the end of func, func ends its ownership of
the resource. This end causes the release of the resource if func was the last owner.

Who is the owner?

It’s very important to indicate ownership clearly. Just imagine that your
program is written in legacy C++, and you have only a raw pointer at your
disposal to express the four kinds of ownership by pointer, by reference, by
std: :unique_ptr, or by std: :shared_ptr. The key question in legacy C++ is,
Who is the owner?

The following code snippet makes my point:

void func(double* ptr) {

double* ptr = new double[];
func(ptr);

The critical question is, Who is the owner of the resource? The callee of func
that uses the array, or the caller of the func that created the array? If func is the
owner, it has to release the resource. If not, func is not allowed to release the
resource. This condition is not satisfactory. If func does not release the
resource, a memory leak may happen. If func does release the resource, unde-
fined behavior may be the result.

39

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr

40 PART I THE GUIDELINES

In consequence, ownership needs to be documented. Defining the contract
using the type system in modern C++ is a big step in the right direction to
eliminate this ambiguity in documentation.

Using std: :move on application level is not about moving. Using std: :move
on application level is about the transfer of ownership—for example, apply-
ing std: :move to a std: :unique_ptr transfers the ownership of the memory
to another std: :unique_ptr. The smart pointer uniquePtri is the original
owner, but uniquePtr2 becomes the new owner.

auto uniquePtrl = std::make_unique<int>(2011);
std::unique_ptr<int> uniquePtr2{ std::move(uniquePtril) };

Here are five variants of ownership semantics in practice.

1 // ownershipSemantic.cpp
2

3 #include <iostream>

4 #include <memory>

5 #include <utility>

class MyInt {
public:

© 00 N O

explicit MyInt(int val): myInt(val) {}
10 ~MyInt() noexcept {

11 std::cout << myInt << '\n';

12 3

13 private:

14 int myInt;

15 };

16

17 void funcCopy(MyInt myInt) {3}

18 void funcPtr(MyInt* myInt) {}

19 void funcRef(MyInt& myInt) {}

20 void funcUniqPtr(std::unique_ptr<MyInt> myInt) {}
21 void funcSharedPtr(std::shared_ptr<MyInt> myInt) {}
22

23 int main() {

24

25 std::cout << '\n';

26

27 std::cout << "=== Begin" << '\n';

28

29 MyInt myInt{19983};

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie

CHAPTER 4 FUNCTIONS

30 MyInt* myIntPtr = &myInt;

31 MyInt& myIntRef = myInt;

32 auto unigPtr = std::make_unique<MyInt>(2011);
33 auto sharedPtr = std::make_shared<MyInt>(2014);
34

35 funcCopy(myInt);
36 funcPtr(myIntPtr);

37 funcRef(myIntRef);

38 funcUnigPtr(std: :move(uniqgPtr));
39 funcSharedPtr (sharedPtr);

40

41 std::cout << "==== End" << '\n';
42

43 std::cout << '\n';

44

45 }

The type MyInt displays in its destructor (lines 10-12) the value of myInt (line 14).
The five functions in the lines 17-21 implement each of the ownership semantics.
The lines 2933 have the corresponding values. See Figure 4.3.

rainer : bash — Ko

File Edit View Bookmarks Settings Help
rainer@seminar:~> ownershipSemantic o

=== Begin
1998

2011

=== End

2014
1998
rainer@seminar:~> [J

[>] rainer : bash

Figure 4.3 The five ownership semantics

The screenshot shows that two destructors are called before and two destructors are
called at the end of the main function. The destructors of the copied myInt (line 35)
and the moved uniquePtr (line 38) are called before the end of main. In both cases,
funcCopy or funcUnigPtr becomes the owner of the resource. The lifetime of the
functions ends before the lifetime of main. This end of the lifetime does not hold for
the original myInt (line 29) and the sharedPtr (line 33). Their lifetime ends with
main, and therefore, the destructor is called at the end of the main function.

141

https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie

42

PART I THE GUIDELINES

Value return semantics

The seven rules in this section are in accordance with the previously mentioned rule
“F.20: For ‘out’ output values, prefer return values to output parameters.” The rules
of this section are, in particular, about special use cases and don’ts.

When to return a pointer (T*) or an lvalue reference (T&)

As we know from the last section (Parameter Passing: Ownership Semantics),
a pointer or a reference should never transfer ownership.

Return a T* to indicate a position (only)

A pointer should indicate only a position. This is exactly what the function find
does.

Node* find(Node* t, const string& s) {
if (!t || t->name == s) return t;
if ((auto p = find(t->left, s))) return p;
if ((auto p = find(t->right, s))) return p;
return nullptr;

The pointer indicates that the Node is holding the position of s.

Return a T& when copy is undesirable and “returning no
object” isn't needed

When return no object is not an option, using a reference instead of a pointer comes
into play.

Sometimes you want to chain operations without unnecessary copying and
destruction of temporaries. Typical use cases are input and output streams or assign-
ment operators (“F47: Return T& from assignment operators”). What is the subtle
difference between returning by T& or returning by T in the following code snippet?

A& operator = (const A& rhs) { ... };
A operator = (const A& rhs) { ... };

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-assignment-op

CHAPTER 4 FUNCTIONS

A = al, a2, a3;
al = a2 = a3;

The copy assignment operator returning a copy (A) triggers the creation of two addi-
tional temporary objects of type A.

A reference to a local
Returning a reference (pointer) to a local is undefined behavior.

Undefined behavior essentially means this: Don’t make any assumptions about
your program. Fix undefined behavior. The program lambdaFunctionCapture.cpp
returns a reference to a local.

// lambdaFunctionCapture.cpp

#include <functional>
#include <iostream>
#include <string>

auto makeLambda() {
const std::string val = "on stack created";
return [&val]{return val;}; // (2)

int main() {

auto bad = makeLambda(); // (1)
std::cout << bad(); // (3)

The main function calls the function makeLambda() (1). The function returns a
lambda expression, which has a reference to the local variable val (2).

The call bad() (3) causes the undefined behavior because the lambda expression
uses a reference to the local val. As local, its lifetime ends with the scope of
makeLambda().

Executing the program gives unpredictable results. Sometimes I get the entire
string, sometimes a part of the string, or sometimes just the value 0. As an example,
here are two runs of the program.

In the first run, arbitrary characters are displayed until the string terminating
symbol (\0) ends it (see Figure 4.4).

43

https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/utility/tuple/tie

44

PART I THE GUIDELINES

@e

0kBEx66006 1696

60@pHHH;S 56" W%O)"BOPOBOPWYG
[T A Dx86_64

Figure 4.4 Displaying arbitrary characters

In the second run, the program causes a core dump (see Figure 4.5).

File Edit View Bookmarks Settings Help
; tation f 1‘“1'"1". dusped)
&) n fau core
ratnerglinus: Af-- r\d‘eﬁnmhav;elut
Segrentation fault (core durpe
Fainerglinuxi=> undef inedBehaviour
ar in "undef tnedBehaviour' s freel): Lavalid pointer: BxBOBOTIfcSE114108 »o+
BacKErace: semssssss
.rl\bbcl.fltk.w,&b‘iﬂk”ih?fﬂ“fcmﬂ
/Lib64/Tibe 50, 61 +0xTO846] [BxTfE1EIFCB0LE]
/11b64/11bc, 50,61 +0x7a393 1 [Bx7 18163129393]
fusr/1ib64/1ibstde++. 50.6(_ZNSsD2Ev+ax3e | [0x71B1648eT06e]
undef inedBehaviour [Bxatabds
/1ib68/ibe 50,81 _1ibc_start mainedxfS|[ex7fa163f61725]
undef {nedBehay tour [Bxdpaofa]
S Ilenry up [.
800 r-xp GROBOGOD BS113 G987 Jhome/ rainer/undef inedBahaviour
mmu mzm re-p BBOA106 85:13 6947 home/ rainerfundef inedBehaviour
0468 2800 - DGO 3000 BBOE20A 6813 6987 /hone/ ratner fundet {nedBehaviour
80162080061 40008 rv-p BEOGGESD -6 B [heap]
7£315c000000-7F815C021008 rw-p 0086080 80:00 B
7£815c821000-712150000000 ---p ORGABOBE B8:8 &
718163141B08-7181640ea008 r-xp BOGABOBE 88:27 1415842 F1ib64s1(be-2,22. 50
7fA164BeB08-7 18164220000 ———p DAIILORE 80:27 1415842 /1ib64/1ibc-2,22.50
7f8164200008- 718164200000 r--p BO19LOSS 08:27 1415842 Alibbd/1ibc-2.22. 50
7181642e000- 118164210068 rw-p SH1S1088 88:27 mmz JUibbas1ibc-2.22.50
718164210808- 718154214008 rw-p GB0B6088 80:00 B
71316821 7000-7216430000 r-xp 00608088 §0:27 1359149 /lib64/1ibgec_s.50,1
3164300808 -7E164504008 ---p 00017008 88:27 1355145 Flibbds1ibgec_s5.50.1
7£8164500806-71516450c008 r--p BBO1086 88:27 1359149 FUibbas1 ibgee_s. 5.1
718164500000 78164501080 rw-p OBO17688 80:27 1359149 /1641 bgec 5. 50,1
71816450 1000-718164600000 r-xp DOGB00A8 89:27 1815850 J1ib6a/1iba-2,22, 50
7f8164600000-718164500000 ---p BOETLOA0 88117 1415358 Alibbd/libn-2,22. 50
718164B0800- 718164800000 r--p BB6TLOBE 88:27 1415858 /1ib64/1ibn-2,22 30
71816480b806-7 1816480008 rw-p DOGTCHRE 69:27 1415850 /Uib6d/1ibn-2,22 .50
77516460 1000-778164080000 r-xp BROARORE §9:27 1359277 Jusr/Lib64/Libstdces. 50.6.8.25
1fa164 TfaL64 ==<p BA1ThOGE 80127 1359277 Fusr/1ibb4/1ibstdoss. 50.6.0.2! S
164b8aB08-718164b54000 r--p SRITHOAN 88:27 1358277 Jusr/Lib64/Libsticrs. s0.6.8.2
718164b94806-718164b96000 rw-p BB1ASA8R 89:27 1359277 Just/Lib64/Libstice+.50.6.8. 25
7fi 78164 rv-p GA0GB0GA §0:00 B
7fa164bafean-Tfa164bcB008 r-xp GEDAGA0 BH:2T 1415834 libsds14-2.22.50
18 B00- 71164051008 rw-p OBBORGRE 888 8
718164d0e008-7A1540c060 rw-p DBGSBBS 80:06 B
7Fa164000000-718154dc 1000 r—-p ORO21000 §0:27 1415834 /lib64/18-2.22.50
1181640c 1800-7181640c 2008 rw-p 8622006 86:27 1413834 JUib64718-2.32.50
7181644 2808-T18164dc 4008 rw-p ORGANORS B8 B
718164dc4008-781540c 5000 rw-p 08008080 80:86 §
7ffcsGef7o00-7ffc56T 16000 rw-p DO0G00SE 80:00 § [stack]
Hf:”fh)”&-?fr:!ﬁhm n-y BBOBEGAN B0:80 [wvar]
x) HOBIBON B6:80 § [vdsa]
f\‘(f!h‘lf\‘m \‘ﬂﬂ\‘lfﬂ GO10E8 r-xp DEGBE0SE B0:00 B [vsyscall]
k= teore dumped)
rainarlimuxi-= ||
] raine ; bash
Figure 4.5 Causing a core dump
J.
Don't return a T&&
and
. L)
Don't return std: :move(local)

Both rules are very rigorous.

CHAPTER 4 FUNCTIONS

T&&
You should not use a T&& as a return type. Here is a small example to demonstrate the
issue.

// returnRvalueReference.cpp

int&& returnRvalueReference() {
return int{};

int main() {

auto myInt = returnRvalueReference();

When compiled, the GCCcompiler complains immediately about a reference to a
temporary (see Figure 4.6). To be precise, the lifetime of the temporary ends with the
end of the full expression auto myInt = returnRvalueReference();.

File Edit View Bookmarks Settings Help

rainer@linux:~> g++-6 -std=c++14 returnRvalueReference.cpp -o returnRvalueReference

returnRvalueReference.cpp: In function ‘int&& returnRvalueReference()’:

returnRvalueReference.cpp:4:16: warning: returning reference to temporary [-Wreturn-local-addr]
return int{};

3

ratner@linux:~> J§

. rainer : bash

Figure 4.6 Returning a reference to a temporary

std: :move(local)

Thanks to copy elision with RVO and NRVO, using return std: :move(local) is not an
optimization but a pessimization. Pessimization means that your program may become
slower.

int is the return type for main()

According to the C++ standard, there are two variations of the main function:

int main() { ... }
int main(int argc, char** argv) { ... }

45

https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/utility/move

46

PART I THE GUIDELINES

The second version is equivalent to int main(int argc, char* argv[]) { ... }.

The main function does not need a return statement. If control reaches the end
of the main function without encountering a return statement, the effect is that of
executing return 0;. return 0 stands for the successful execution of the program.

Other functions

The rules in this section advise on when to use lambdas and compare va_arg with
fold expressions.

Lambdas

Use a lambda when a function won’t do (to capture local
variables, or to write a local function)

This rule states the use case for lambdas. This immediately raises the question, When
do you have to use a lambda or a function? Here are two obvious reasons.

1. If your callable has to capture local variables or is declared in a local scope, you
have to use a lambda function.

2. If your callable should support overloading, use a function.

Now I want to present my crucial arguments for lambdas that are often ignored.

Expressiveness

“Explicit is better than implicit.” This meta-rule from Python (PEP 20—The Zen of
Python) also applies to C++. It means that your code should explicitly express its
intent (see rule “P.1: Express ideas directly in code”). Of course, this holds true in
particular for lambdas.

std::vector<std::string> myStrVec = {"523345", "4336893456", "7234",
"564", "199", "433", "2435345"};

std::sort(myStrVvec.begin(), myStrVec.end(),

[J(const std::string& f, const std::string& s) {
return f.size() < s.size();

)i

https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.modernescpp.com/index.php/fold-expressions

CHAPTER 4 FUNCTIONS 47

Compare this lambda with the function lessLength, which is subsequently used.

std::vector<std::string> myStrVec = {"523345", "4336893456", "7234",
"564", "199", "433", "2435345"};

bool lessLength(const std::string& f, const std::string& s) {
return f.size() < s.size();

std::sort(myStrVec.begin(), myStrVec.end(), lessLength);

Both the lambda and the function provide the same order predicate for the sort algo-
rithm. Imagine that your coworker named the function foo. This means you have no
idea what the function is supposed to do. As a consequence, you have to document
the function.

// sorts the vector ascending, based on the length of its strings
std::sort(myStrVec.begin(), myStrVec.end(), foo);

Further, you have to hope that your coworker did it right. If you don’t trust them, you
have to analyze the implementation. Maybe that’s not possible because you have the
declaration of the function. With a lambda, your coworker cannot fool you. The
code is the truth. Let me put it more provocatively: Your code should be so expressive
that it does not require documentation.

Expressiveness versus don’t repeat yourself (DRY)

The design rule to write expressive code with lambdas often contradicts
another important design rule: Don’t repeat yourself (DRY). DRY means that
you should not write the same code more than once. Making a reusable unit
such as a function and giving it a self-explanatory name is the appropriate cure
for DRY. In the end, you have to decide in the concrete case if you rate expres-
siveness higher than DRY.

Prefer capturing by reference in lambdas that will be used
locally, including passed to algorithms

and

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

48

PART I THE GUIDELINES

Avoid capturing by reference in lambdas that will be used
nonlocally, including returned, stored on the heap, or
passed to another thread

Both rules are strongly related, and they boil down to the following observation: A

lambda should operate only on valid data. When the lambda captures the data by copy,

the data is by definition valid. When the lambda captures data by reference, the lifetime

of the data must outlive the lifetime of the lambda. The previous example with a

reference to a local showed different results of a lambda referring to invalid data.
Sometimes the issue is not so easy to catch.

int main() {
std::string str{"C++11"};

std::thread thr([&str]{ std::cout << str << '\n'; });
thr.detach();

}

Okay, I hear you say, “That is easy.” The lambda expression used in the created thread
thr captures the variable str by reference. Afterward, thr is detached from the life-
time of its creator, which is the main thread. Therefore, there is no guarantee that the
created thread thr uses a valid string str because the lifetime of str is bound to the
lifetime of the main thread. Here is a straightforward way to fix the issue. Capture
str by copy:

int main() {
std::string str{"C++11"};

std::thread thr([str]{ std::cout << str << '\n'; });
thr.detach();

}

Problem solved? No! The crucial question is, Who is the owner of std::cout?
std::cout’s lifetime is bound to the lifetime of the process. This means that the
thread thr may be gone before std: :cout prints C++11 onscreen. The way to fix this

https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie

CHAPTER 4 FUNCTIONS

problem is to join the thread thr. In this case, the creator waits until the created is
done, and therefore, capturing by reference is also fine.

int main() {
std::string str{"C++11"};

std::thread thr([&str]{ std::cout << str << '\n'; });
thr.join();

Where there is a choice, prefer default arguments over
overloading

If you need to invoke a function with a different number of arguments, prefer default
arguments over overloading if possible. Therefore, you follow the DRY principle
(don’t repeat yourself).

void print(const string& s, format f = {});
The equivalent functionality with overloading requires two functions:

void print(const string& s); // use default format
void print(const string& s, format f);

Don't use va_arg arguments

The title of this rule is too short. Use variadic templates instead of va_arg argu-
ments when your function should accept an arbitrary number of arguments.
Variadic functions are functions such as std: :printf that can take an arbitrary
number of arguments. The issue is that you have to assume that the correct types
were passed. Of course, this assumption is very error prone and relies on the disci-
pline of the programmer.
To understand the implicit danger of variadic functions, here is a small example.

49

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.cppreference.com/w/cpp/utility/tuple/tie

50

PART

I THE GUIDELINES

// vararg.cpp

#include <iostream>
#include <cstdarg>

int sum(int num, ...) {

int

sum = 0;

va_list argPointer;

va_start(argPointer, num);
for(int 1 = 0; 1 < num; i++)

sum += va_arg(argPointer, int);

va_end(argPointer);

return sum;

int main() {

std:
std:
std:

std:

rcout <<
rcout <<
rcout <<
<<
rcout <<
<<

"sum(1, 5): " << sum(1, 5) << '\n';

"sum(3, 1, 2, 3): " << sum(3, 1, 2, 3) << '\n';
"sum(3, 1, 2, 3, 4): "

sum(3, 1, 2, 3, 4) << '\n'; // (1)

"sum(3, 1, 2, 3.5): "

sum(3, 1, 2, 3.5) << '\n'; /7 (2)

sum is a variadic function. Its first argument is the number of arguments that should

be summed up. The following background information about va_arg macros helps

with understanding the code.

va_list: holds the necessary information for the following macros

va_start: enables access to the variadic function arguments

va_arg: accesses the next variadic function argument

va_end: ends the access of the variadic function arguments

For more information, read cppreference.com about variadic functions.

In (1) and (2), I had a bad day. First, the number of the arguments num is wrong;
second, I provided a double instead of an int. The output shows both issues. The
last element in (1) is missing, and the double is interpreted as int (2). See Figure 4.7.

http://cppreference.com
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie

CHAPTER 4 FUNCTIONS

rainer: bash — Konsole v

File Edit View Bookmarks >
rainer@seminar:~> vararg ~
sum(l; 5): 5

sum{3, 1, 2, 3): 6

sum(3, 1, 2, 3, 4): 6
sum(3, 1, 2, 3.5): 539767595
rainer@seminar:~> |

B rainer: bash

Figure 4.7 Summation with va_arg

These issues can be easily overcome with fold expressions in C++17. In contrast
to va_args, fold expressions automatically deduce the number and the type of their
arguments.

// foldExpressions.cpp

#include <iostream>

template<class ... Args>
auto sum(Args ... args) {

return (... + args);
}

int main() {

std::cout << "sum(5): " << sum(5) << '\n';

std::cout << "sum(1, 2, 3): " << sum(1, 2, 3) << '\n’';
std::cout << "sum(1, 2, 3, 4): " << sum(1, 2, 3, 4) << '\n';
std::cout << "sum(1, 2, 3.5): " << sum(1, 2, 3.5) << '\n';

The function sum may look scary to you. It requires at least one argument and uses
C++11 variadic templates. These are templates that can accept an arbitrary number
of arguments. The arbitrary number is held by a so-called parameter pack denoted
by an ellipsis (. . .). Additionally, with C++17, you can directly reduce a parameter
pack with a binary operator. This addition, based on variadic templates, is called
fold expressions. In the case of the sum function, the binary + operator (. ..+ args)
is applied. If you want to know more about fold expressions in C++17, details are at
hetps://www.modernescpp.com/index.php/fold-expressions.

https://www.modernescpp.com/index.php/fold-expressions
https://www.modernescpp.com/index.php/fold-expressions
https://www.modernescpp.com/index.php/fold-expressions
https://www.modernescpp.com/index.php/fold-expressions
https://www.modernescpp.com/index.php/fold-expressions
https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie

52

PART I THE GUIDELINES

The output of the program is as expected (see Figure 4.8).

File Edit View Bookmarks Settings Help
rainer@seminar:~> foldExpressions A
sum(5): 5

sum(1l, 2, 3): 6

sum(1l, 2, 3, 4): 10

sum(1l, 2, 3.5): 6.5

rainer@seminar:~> [[

rainer : bash — Konsole

rainer : bash

Figure 4.8 Summation with fold expressions

Related rules

An additional rule to lambdas is in Chapter 8, Expressions and Statements: “ES.28:

Use lambdas for complex initialization, especially of const variables.”

I skipped the C++20 feature std: : span in this chapter and provided basic infor-

mation on std: :span in Chapter 7, Resource Management.

Distilled

Important

A function should perform one operation, be short and simple, and have a
carefully chosen name.

Make functions that could run at compile-time constexpr.
Make your functions pure if possible.

Distinguish between the in, in/out, and out parameters of a function. Use
passing by value or by const reference for in, use passing by reference for
in/out, and use passing by value for the out parameter.

Passing parameters to functions is a question of ownership semantics.
Passing by value makes the function an independent owner of the resource.
Passing by pointer or reference means the function only borrows the
resource. A std::unique_ptr transfers the ownership to the function.
std: :shared_ptr makes the function a shared owner.

Use variadic templates instead of va_arg arguments when your function
should accept an arbitrary number of arguments.

https://en.cppreference.com/w/cpp/container/span
https://en.cppreference.com/w/cpp/container/span
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-lambda-init
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-lambda-init
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr

Chapter 5

Classes and Class Hierarchies

Cippi reasons about the rule of zero, five, or six.

A class is a user-defined type for which the programmer can specify the representa-
tion, the operations, and the interface. Class hierarchies are used to organize related
structures.

The C++ Core Guidelines have about a hundred rules for user-defined types.

53

54

PART I THE GUIDELINES

The guidelines start with summary rules before they dive into the special rules for

e Concrete types

¢ Constructors, assignments, and destructors
e (lass hierarchies

¢ Overloading and overloaded operators

e Unions

The eight summary rules provide the background for the special rules.

Summary rules

The summary rules are quite short and don’t go into much detail. They provide
broad but valuable insight into classes.

Syntactic differences between class and struct

This section often refers to the semantic differences between classes and
structs. First of all: What are the syntactic differences? The differences are min-
imal but important: In a struct, all members are public by default; in a class,
all members are private by default. The same holds for inheritance. The base
classes of a struct are public by default; the base classes of a class are pri-
vate by default.

Organize related data into structures (structs or
classes)

C.1

How can draw’s interface be improved?

void draw(int fromX, fromY, int toX, int toY);

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

It is not obvious what the ints stand for. Consequently, you may invoke the function
with a wrong sequence of arguments. Compare the previous function draw with the
new one:

void draw(Point from, Point to);

By putting related elements together into a structure, the function signature becomes
self-documenting and is, therefore, less error prone than the previous one.

Use class if the class has an invariant; use struct if the
data members can vary independently

C.2

A class invariant is an invariant used for constraining instances of a class. Member
functions have to preserve this invariant. The invariant constrains the possible values
for the instances of a class.

This is a common question in C++: When do I have to use a class or a struct?
The C++ Core Guidelines give the following recommendation. Use a class if the
class has an invariant. A class invariant can be that (y, m, d) together represent a valid
calendar date.

struct Pair { // the members can vary independently
string name;
int volume;

}i

class Date {
public:
// validate that {yy, mm, dd} is a valid date and initialize
Date(int yy, Month mm, char dd);
/7 ...
private:
int y;
Month m;
char d; // day
¥

The class invariant is initialized and checked in the constructor. The data type Pair
has no invariant because all values for name and volume are valid. Pair is a simple data
holder and needs no explicitly provided constructor.

55

56

PART I THE GUIDELINES

Represent the distinction between an interface and an
implementation using a class

C.3

The public member functions of a class are the interface of a class, and the private
part is the implementation.

class Date {

public:
Date();
// validate that {yy, mm, dd} is a valid date and initialize
Date(int yy, Month mm, char dd);

int day() const;
Month month() const;
/7 ...
private:
// ... some representation

3

From a maintainability perspective, the implementation of the class Date can be
changed without affecting the user of the class.

Make a function a member only if it needs direct access to
the representation of a class

Cc4

If a function needs no access to the internals of the class, it should not be a member.
Hence, you get loose coupling, and a change of the internals of the class will not
affect the helper functions.

class Date {
// ... relatively small interface ...

};
// helper functions:
Date next_weekday(Date);

bool operator == (Date, Date);

The operators =, (), [], and -> have to be members.

https://en.wikipedia.org/wiki/Loose_coupling

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

C.5 Place helper functions in the same namespace as the
: class they support

A helper function should be in the namespace of the class because it is part of the
interface to the class. In contrast to a member function, a helper function does not
need direct access to the representation of the class.

namespace Chrono { // here we keep time-related services
class Date { /* ... */ };

// helper functions:

bool operator == (Date, Date);
Date next_weekday(Date);
/7 ...
}
if (datel == date2) { ... // (1)

Thanks to argument-dependent lookup (ADL), the comparison datel == date2 will
additionally look for the equality operator in the Chrono namespace. ADL is, in par-
ticular, important for overloaded operators such as the output operator: <<.

C.7 Don't define a class or enum and declare a variable of its
. type in the same statement

Defining a class and declaring a variable of its type in the same statement confuses
and should, therefore, be avoided.

// bad
struct Data { /*...*/ } data { /*...*/ };

// good
struct Data { /*...*/ };
Data data{ /*...*/ };

57

https://en.cppreference.com/w/cpp/language/adl

58

PART I THE GUIDELINES

C.8 Use class rather than struct if any member is
. non-public

When your user-defined type has nonpublic members, you probably want to protect
their invariants from the outside. It is the job of the constructor to establish the
invariants. Accordingly, you should use a class instead of a struct.

C.9 Minimize exposure of members

Data hiding and encapsulation is one of the cornerstones of object-oriented class
design. You encapsulate the members in the class and allow access only via public
member functions. You should think about two interfaces to your class: a public
interface for the outside in general and a protected interface for derived classes. The
remaining members should be private.

Concrete types

This section has only two rules but introduces the terms concrete and regular type.
A concrete type is “the simplest kind of a class” according to the C++ Core
Guidelines. It is often called a value type and is not part of a type hierarchy.
A regular type is a type that “behaves like an int” and has, therefore, to sup-
port copy and assignment, equality, and order. To be more formal, a regular type X
behaves like an int and supports the following operations:

o Default constructor: X()

¢ Copy constructor: X(const X&)

e Copy assignment: operator = (const X&)
e Move constructor: X (X&&)

e Move assignment: operator = (X&&)

e Destructor: ~(X)

e Swap operator: swap(X&, X&)

¢ Equality operator: operator == (const X&, const X&)

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

C.10 Prefer concrete types over class hierarchies

If you do not have a use case for a class hierarchy, use a concrete type. A concrete type
is way easier to implement, smaller, and faster. You do not have to worry about
inheritance, virtuality, references, or pointers including memory allocation and deal-
location. There is no virtual dispatch and, therefore, no run-time overhead.

To make a long story short: Apply the KISS principle (keep it simple, stupid).
Your type behaves like a value.

C.1 Make concrete types regular

Regular types (ints) are easier to understand. They are per se intuitive. This means
that if you have a concrete type, think about upgrading it to a regular type.
The built-in types such as int or double are regular but so are the user-defined types
such as std: :string or containers such as std: : vector or std: :unordered_map.
C++20 supports the concept of regular.

Constructors, assignments, and destructors

This section about constructors, assignments, and destructors has by far the most
rules to classes and class hierarchies. They control the life cycle of objects: creation,
copy, move, and destruction. In short, we call them the big six. Here are the six spe-
cial member functions:

o Default constructor: X()

¢ Copy constructor: X(const X&)

¢ Copy assignment: operator = (const X&)
e Move constructor: X(X&&)

e Move assignment: operator = (X&&)

e Destructor: ~(X)

59

https://en.wikipedia.org/wiki/KISS_principle

60

PART I THE GUIDELINES

The compiler can generate default implementations for the big six. The section starts
with rules regarding default operations; continues with rules about constructors,
copy and move operations, and destructors; and ends with rules for the other default
operations that do not fall into the previous four categories.

Based on the declaration of the default constructor, you may have the impression
that the default constructor takes no arguments. This is wrong. A default construc-
tor can be invoked without argument, but it may have default arguments for each
parameter.

Default operations

By default, the compiler can generate the big six if needed. You can define the six
special member functions but can also explicitly ask the compiler to provide them
with = default or delete them with = delete.

C.20 If you can avoid defining any default operations, do

This rule is also known as “the rule of zero.” That means that you can avoid writing
any custom constructors, copy/move constructors, assignment operators, or destruc-
tors by using types that support the appropriate copy/move semantics. This applies
to the regular types such as the built-in types bool or double but also the containers
of the Standard Template Library (STL) such as std: :vector or std: :string.

class Named_map {
public:

// ... no default operations declared ...
private:

std::string name;

std::map<int, int> rep;

}i

Named_map nm; // default construct
Named_map nm2 {nm}; // copy construct

The default construction and the copy construction work because they are already
defined for std: :string and std: :map. When the compiler auto-generates the copy
constructor for a class, it invokes the copy constructor for all members and all bases
of the class.

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

If you define or =delete any default operation, define or
C.21 _
=delete them all

The big six are closely related. Due to this relationship, you have to define or =delete
all six. Consequently, this rule is called “the rule of six.” Sometimes you hear “the
rule of five” because the default constructor is special and, therefore, sometimes
excluded.

Dependencies between the special member functions

Howard Hinnant developed in his talk at the ACCU 2014 conference an over-
view of the automatically generated special member functions (see Figure 5.1).
Howard’s table demands a deep explanation.

compiler implicitly declares

copy copy move move
constructor | assignment | constructor | assignment
defaulted defaulted
defaulted
defaulted defaulted (]
not not I
declared declared
not ot
declared eclared
not not
declared eclared
user not I
declared | declared I
not user
declared declared

Figure 5.1 Automatically generated special member functions

(]
o
=
[8)
[0}
©
S
D
(2]
=}

First of all, user declared means for one of these six special member func-
tions that you define it explicitly or auto request it from the compiler with
=default. Deletion of the special member function with =delete is also
regarded as defined. Essentially, when you just use the name, such as the name
of the default constructor, it counts as user declared.

61

https://howardhinnant.github.io/
https://accu.org/index.php/conferences/accu_conference_2014

62

PART I THE GUIDELINES

When you define any constructor, you get no default constructor. A default
constructor is a constructor that can be invoked without an argument.

When you define or delete a default constructor with =default or =delete,
none of the other six special member functions is affected.

When you define or delete a destructor, a copy constructor, or a copy-as-
signment operator with =default or =delete, you get no compiler-generated
move-constructor and move-assignment constructor. This means move opera-
tions such as move construction or move assignment fall back to copy opera-
tions such as copy construction or copy assignment. This fallback automatism
is marked in red in the table.

When you define or delete with =default or =delete a move constructor
or a move-assignment operator, you get only the defined =default or =delete
move constructor or move-assignment operator. Consequently, the copy con-
structor and the copy-assignment operator are set to =delete. Invoking a copy
operation such as copy construction or copy assignment causes, therefore, a
compilation error.

When you don’t follow this rule, you get very unintuitive objects. Here is an unin-

tuitive example from the guidelines.

// doubleFree.cpp

#include <cstddef>

class BigArray {

public:

BigArray(std::size_t len): len_(len), data_(new int[len]) {}

~BigArray(){
delete[] data_;

private:

}i

size_t len_;
int* data_;

int main(){

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

BigArray bigArrayl(1000);

BigArray bigArray2(1000);

bigArray2 = bigArrayl; /7 (1)
3 /7 (2)

Why does this program have undefined behavior? The default copy-assignment oper-
ation bigArray2 = bigArray1 (1) of the example copies all members of bigArray2.
Copying means, in particular, that pointer data is copied but not the data. Hence,
the destructor for bigArray1 and bigArray2 is called (2), and we get undefined
behavior because of double free.

The unintuitive behavior of the example is that the compiler-generated copy-
assignment operator of BigArray makes a shallow copy of BigArray, but the explicit
implemented destructor of BigArray assumes ownership of data.

AddressSanitizer makes the undefined behavior visible (see Figure 5.2).

File Edit View Bookmarks Settings Help

rainer@seminar:~> g++ -fsanitize=address -g doubleFree.cpp -o doubleFree
rainer@seminar:~> doubleFree

==20089==ERROR: AddressSanitizer: attempting double-free on 0x621000000100 in thread TO:
#0 Bx7feec6541acd in operator delete[]{void*) (/usr/1ib64/1ibasan.so.4+@xdeactd)
#1 0x400d7f in BigArray::~BigArray() /home/rainer/doublefree.cpp:11
#2 0x480bf9 in main /home/rainer/doubleFree.cpp:21
#3 Ox7feec57e7349 in __libc_start_main (/1ib64/11ibc.so.6+0x24349)
#4 0x400a29 in _start (/home/rainer/doubleFree+@x4088a29)

freed by thread TO here:
#0 Ox7feect541ac® in operator delete[]{void*) (/usr/lib64/1libasan.so.4+0xdeacd)
#1 0x400d7f in BigArray::~BigArray() /home/rainer/doubleFree.cpp:11
#2 Ox400bed in main /home/rainer/doubleFree.cpp:23
#3 Ox7feec57e7349 in __libc_start_main (/1ib64/11ibc.so.6+0x24349)

previously allocated by thread TO here:
#0 Bx7feect548dcd in operator new[](unsigned long) (/usr/lib64/1ibasan.so.4+8xdddc@)
#1 0x480ct2 in BigArray::BigArray(unsigned long) /home/rainer/doubleFree.cpp:8
#2 0x480b7c in main /home/rainer/doubleFree.cpp:21
#3 Ox7feec57e7349 in __libc_start_main (/1ib64/1ibc.so.6+0x24349)

SUMMARY: AddressSanitizer: double-free (/usr/lib64/1libasan.so.4+Bxdeac®) in operator delete[](void*)
==20089==ABORTING
rainer@seminar:~> [j '

Figure 5.2 Double free detected with AddressSanitizer

C.22 Make default operations consistent

This rule is related to the previous rule. If you implement the default operations with
different semantics, the users of the class may become very confused. This strange

63

https://github.com/google/sanitizers/wiki/AddressSanitizer

64

PART I THE GUIDELINES

behavior may also appear if you partially implement the member functions and par-
tially request them via =default. You cannot assume that the compiler-generated
special member functions have the same semantics as yours.

As an example of the odd behavior, here is the class Strange. Strange includes a
pointer to int.

1 // strange.cpp

2

3 #include <iostream>

4

5 struct Strange {

6

7 Strange(): p(new int(2011)) {}

8

9 // deep copy
10 Strange(const Strange& a) : p(new int(*a.p)) {}
11
12 // shallow copy
13 // equivalent to Strange& operator = (const Strange&) = default;
14 Strange& operator = (const Strange& a) {
15 p =a.p;
16 return *this;
17}
18
19 int* p;
20
21 };
22
23 int main() {
24
25 std::cout << '\n';
26
27 std::cout << "Deep copy" << '\n';
28
29 Strange si;
30 Strange s2(s1);
31
32 std::cout << "sl.p: " << sl.p << "; *sl.p: " << *sl.p << '\n';
33 std::cout << "s2.p: " << 82.p << "; *s2.p: " << *s2.p << '\n';
34
35 std::cout << "*s2.p = 2017" << '\n';
36 *s2.p = 2017;

w
~

https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie

CHAPTER 5 CLASSES AND CLASS HIERARCHIES 65

38 std::cout << "sl.p: " << sl.p << "; *s1l.p: " << *sl.p << '\n';
39 std::cout << "s2.p: " << s2.p << "; *s2.p: " << *s2.p << '\n';
40

41 std::cout << '\n';

42

43 std::cout << "Shallow copy" << '\n';

44

45 Strange s3;

46 s3 = s1;

47

48 std::cout << "sl.p: " << sl.p << "; *s1l.p: " << *sl.p << '\n';
49 std::cout << "s3.p: " << s3.p << "; *s3.p: " << *s3.p << '\n';
50

51

52 std::cout << "*s3.p = 2017" << '\n';

53 *s3.p = 2017;

54

55 std::cout << "sl.p: " << sl.p << "; *s1l.p: " << *sl.p << '\n';
56 std::cout << "s3.p: " << s3.p << "; *s3.p: " << *s3.p << '\n';
57

58 std::cout << '\n';

59

60 std::cout << "delete si1.p" << '\n';

61 delete sl1.p;

62

63 std::cout << "s2.p: " << s2.p << "; *s2.p: " << *s2.p << '\n';
64 std::cout << "s3.p: " << s3.p << "; *s3.p: " << *s3.p << '\n';
65

66 std::cout << '\n';

67

68 }

The class Strange has a copy constructor (line 10) and a copy-assignment operator
(line 14). The copy constructor applies deep copy, and the assignment operator
applies shallow copy. By the way, the compiler-generated copy constructor or copy-
assignment operator also applies shallow copy. Most of the time, you want deep
copy semantics (value semantics) for your types, but you probably never want to have
different semantics for these two related operations. The difference is that deep copy
semantics creates two new separate storage p(new int(*a.p)) while shallow copy
semantics just copies the pointer p = a.p. Let’s play with the Strange types. Figure
5.3 shows the output of the program.

https://isocpp.org/wiki/faq/value-vs-ref-semantics
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie

66

PART I THE GUIDELINES

rainer : bash —

File Edit View Bookmarks Settings Help
rainer@seminar:~> strange

Deep copy

sl.p: Bx22ea2B8@; *sl.p: 2011
s2.p: Bx22ealal; *s2.p: 2011
*s2.p = 2017

sl.p: Ox22ea280; *sl.p: 2011
s2.p: Bx22eaZa®; *s2.p: 2017

Shallow copy
sl.p: Ox22ea280; *sl.p: 2011
s3.p: Bx22eaZBB; *s3.p: 2011
*s3.p = 2017
sl.p: 8x22ea2B@; *sl.p: 2017
s3.p: Ox22ea280; *s3.p: 2017

delete si.p
s2.p: Bx22eala®; *s2.p: 2017
s3.p: Ox22ea288; *s3.p: 0

rainer@seminar:~> Jj

Figure 5.3 Output of strange.cpp

Line 30 uses the copy constructor to create s2. Displaying the addresses of the
pointer and changing the value of the pointer s2.p (line 36) shows that s1 and s2 are
two distinct objects. This is not the case for s1 and s3. The copy-assignment opera-
tion in line 46 performs a shallow copy. The result is that changing the pointer s3.p
(line 53) also affects the pointer s1.p because both pointers refer to the same value.

The fun starts if [delete the pointer s1.p (line 61). Thanks to the deep copy, noth-
ing bad happens to s2.p, but the value of s3.p becomes an invalid pointer. To be
more precise: Dereferencing an invalid pointer such as in *s3.p (line 63) is undefined
behavior.

Constructor

Thirteen rules deal with the construction of objects. Roughly speaking, they fall into
five categories:

e Constructors in general

e Default constructor

¢ Constructor with a single argument
¢ Initialization of the members

e Special constructors such as an inheriting or a delegating constructor

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

In the end, I have a warning. Don’t call a virtual function from a constructor. I refer
to this warning in a broader context, including destructors, in the section Other
Default Operations later in this chapter.

Constructors in general

I skipped the rule “C.40: Define a constructor if a class has an invariant” because I
already wrote about it in the rule “C.2: Use class if the class has an invariant; use
struct if the data members can vary independently.” Therefore, two closely related
guidelines are left: “C.41: A constructor should create a fully initialized object” and
“C.42: If a constructor cannot construct a valid object, throw an exception.”

C.41 A constructor should create a fully initialized object

It is the job of the constructor to create a fully initialized object. A class having an
init member function is asking for trouble.

class DiskFile { // BAD: default constructor not sufficient

FILE* f; // call init() before any other function
// ...
public:
DiskFile() = default;
void init(); // initialize f
void read(); // read from f
// ...

i

int main() {
DiskFile file;

file.read(); // crash or bad read!
// ...

file.init(); // too late

// ...

The user might mistakenly invoke read before init or might just forget to invoke
init. Making the member function init private and calling it from all constructors
is better but not optimal. When you have common actions for all constructors of a
class, use a delegating constructor.

67

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-ctor

68

PART I THE GUIDELINES

If a constructor cannot construct a valid object, throw an
exception

C.42

According to the previous rule, throw an exception if you cannot construct a valid
object. There is not much to add. If you work with an invalid object, you always have
to check the state of the object before its usage. This is extremely tedious, inefficient,
and in particular, error prone. Here is an example from the guidelines, violating
this rule:

class DiskFile { // BAD: constructor leaves a nonvalid object behind

FILE* f;

bool valid;

// ...
public:

explicit DiskFile(const string& name)
:f{fopen(name.c_str(), "r")}, valid{false} {
if (f) valid = true;
// ..

bool is_valid() const { return valid; }
void read(); // read from f
// ...

}i

int main() {
DiskFile file {"Heraclides"};
file.read(); // crash or bad read!
// ...
if (file.is_valid()) {
file.read();

// ..
}
else {
// ... handle error ...
}
// ...
}
Default constructor

The next two rules answer the question: When does and when doesn’t a class need a
default constructor?

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

Ensure that a copyable (value type) class has a default
constructor

C.43

Informally said, a class needs no default constructor when instances of the class have
no meaningful default. For example, a human being has no meaningful default, but a
type such as a bank account has one. The initial value of a bank account may be zero.
Having a default constructor makes it easier to use your type. Many constructors of
the STL containers rely on the fact that your type has a default constructor—for
example, for the value of an ordered associative container such as std: :map. If all the
members of the class have a default constructor, the compiler generates one for your
class if possible (read the previous section in this chapter Dependencies between the
Special Member Functions for more details).
Now to the case where a default constructor should not be provided.

Don't define a default constructor that only initializes data
members; use member initializers instead

C.45

Often, code says more than a thousand words.

// classMemberInitializerwidget.cpp
#include <iostream>
public:

wWidget(): width(640), height(480),

1

2

3

4

5 class Widget {
6

7

8 frame(false), visible(true) {}
9

explicit widget(int w): width(w), height(getHeight(w)),

10 frame(false), visible(true) {}

11 widget(int w, int h): width(w), height(h),

12 frame(false), visible(true) {}

13

14 void show() const {

15 std::cout << std::boolalpha << width << "x" << height
16 << ", frame: " << frame

17 << ", visible: " << visible << '\n';

18 3}

19 private:
20 int getHeight(int w) { return w*3/4; }
21 int width;

69

https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/utility/tuple/tie

70

PART I THE GUIDELINES

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

int height;
bool frame;
bool visible;

i

class wWidgetImpro {

public:
widgetImpro() = default;
explicit widgetImpro(int w): width(w), height(getHeight(w)) {3}
widgetImpro(int w, int h): width(w), height(h) {3}

void show() const {
std::cout << std::boolalpha << width << "x" << height
<< ", frame: " << frame

<< ", visible: " << visible << '\n';

private:
int getHeight(int w) { returnw * 3/ 4; }
int width{6403};
int height{4803};
bool frame{false};
bool visible{true};

}

int main() {

std::cout << '"\n';
widget wVGA;
Widget wSVGA(800);
Widget wHD(1280, 720);
WVGA. show() ;
WSVGA. show() ;
wHD. show() ;
std::cout << '\n';
WidgetImpro wImproVGA;

wWidgetImpro wImproSVGA(800);
wWidgetImpro wImproHD(1280, 720);

https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie

CHAPTER 5 CLASSES AND CLASS HIERARCHIES 71

65

66 wImproVGA. show();
67 wImproSVGA. show();
68 wImproHD.show();
69

70 std::cout << '\n';
71

72 %}

The class widget uses its three constructors (lines 7—12) exclusively to initialize its
members. The refactored class WidgetImpro initializes its members directly in the
class body (lines 41-44). See Figure 5.4. By moving the initialization from the con-
structor to the class body, the three constructors (lines 29-31) become easier to com-
prehend and the class easier to maintain. For example, when you add a new member
to the class, you have only to add the initialization in the class body, not to all con-
structors. Additionally, there is no need to think about and take care of putting ini-
tializers in constructors in correct order. Consequently, you cannot have a partially
initialized object when you create a new object.
Of course, both objects behave identically.

rainer :

File Edit WView Bookmarks Settings Help
rainer@seminar:~> classMemberInitializerWidget

640x480, frame: false, visible: true
800x600, frame: false, visible: true
1280x720, frame: false, visible: true

640x480, frame: false, visible: true
800x600, frame: false, visible: true
1280x720, frame: false, visible: true

rainer@seminar:~> l I

Figure 5.4 Directly initializing in the class

Here is the approach that I follow when I design a new class: Define the default
behavior in the class body. Use explicitly defined constructors only to vary the default
behavior.

Did you notice the keyword explicit in the previous constructor taking one

argument?

https://en.cppreference.com/w/cpp/utility/tuple/tie

72 PART I THE GUIDELINES

By default, declare single-argument constructors
explicit

C.46

To say it more explicitly: A single-argument constructor without explicit is a con-
verting constructor. A converting constructor takes an argument and makes an
object of the class out of it. This behavior is often the cause of big surprises.

The program convertingConstructor.cpp uses user-defined literals.

// convertingConstructor.cpp

#include <iomanip>
#include <iostream>
#include <ostream>

namespace Distance {
class MyDistance {

public:
MyDistance(double d):m(d) {} // (5)
friend MyDistance operator + (const MyDistance& a, /7 (2)
const MyDistance& b) {
return MyDistance(a.m + b.m);
}

friend std::ostream& operator << (std::ostream &out, // (3)
const MyDistance& myDist) {
out << myDist.m << " m";
return out;
}
private:
double m;

3
namespace Unit{
MyDistance operator "" _km(long double d) { // (1)
return MyDistance(1000*d);
}
MyDistance operator "" _m(long double m) {
return MyDistance(m);
}

MyDistance operator "" _dm(long double d) {

https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

return MyDistance(d/10);

}

MyDistance operator "" _cm(long double c) {
return MyDistance(c/100);

}

using namespace Distance::Unit;

int main() {

std:: cout << std::setprecision(7) << '\n';
std::cout << "1.0_km + 2.0_dm + 3.0_cm: "
<< 1.0_km + 2.0_dm + 3.0_cm << '\n';
std::cout << "4.2_km + 5.5_dm + 10.0_m + 0.3_cm: "
<< 4.2_km + 5.5 + 10.0_m + 0.3_cm << '\n'; /7 (4)
std::cout << '\n';
}
A call such as 1.0_km goes to the literal operator "" _km(long double d) (1), which

creates a MyDistance(1000.0) object that stands for 1000.0 meters. Additionally,
MyDistance overloads the + operator (2) and the output operator (3). The main rea-

son for user-defined literals is to define a type-safe arithmetic. Each number has its

units attached. See Figure 5.5.

rainer : bash — Konsole

File Edit

View Bookmarks Settings Help

rainer@seminar:~> convertingConstructor

1.0_km + 2.0_dm + 3.0_cm: 1000.23 m
4.2 _km + 5.5_dm + 10.0_m + 0.3_cm: 4215.503 m

rainer@seminar:~> |

Figure 5.5 Converting constructor

73

https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie

74

PART I THE GUIDELINES

Fine? No! I made an error and wrote 5.5 (4) instead of 5.5_dm. The converting
constructor made a MyDistance object out of it. What should be a decimeter ended
up being a meter. This implicit conversion from double would not have happened if
the constructor (5) had been defined as explicit: explicit MyDistance(double d);.

Initialization of the members
Three rules deal with the initialization of members. The first rule has the potential
for a big surprise.

Define and initialize member variables in the order of

C.47 member declaration

The class members are initialized in the order of their declaration. If you initialize
them in the member initialization list in a different order, you may get a surprise.

// memberDeclarationOrder.cpp
#include <iostream>

class Foo {

int m1;
int m2;
public:
Foo(int x) :m2{x}, mi{++x} { // BAD: misleading initializer order
std::cout << "ml: " << ml << '\n';
std::cout << "m2: " << m2 <<

¥
int main() {

std::cout << '\n';
Foo foo(1);
std::cout<< '\n';

Many people assume that first m2 is initialized and then m1. As a consequence, m2
would have the value 1 and m1 the value 2.

The class members are destructed exactly in the reverse order of their initializa-
tion (see Figure 5.6).

https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

rainer : bash — Konsole <2> ~ o °

File Edit View Bookmarks Settings Help
rainer@seminar:~> memberDeclarationOrder

rainer@seminar:~> .

Figure 5.6 Wrong initialization order of member variables

Prefer in-class initializers to member initializers in
constructors for constant initializers

C.48

This rule is kind of similar to the previous rule “C.45: Don’t define a default con-
structor that only initializes data members; use member initializers instead.” In-class
initializers make it a lot easier to define the constructors. Additionally, you cannot

forget to initialize a member.

class X { // BAD
int i;
string s;
int j;
public:
X() :i{666}, s{"qqq"} {} // j is uninitialized
explicit X(int ii) :i{ii} {3 // s is "" and j is uninitialized
/7 ...
Y

class X2 {
int i{0};
std::string s{"qqq"};
int j{o}
public:
X2() = default; // all members are initialized to their defaults
explicit X2(int ii) :i{ii} {} // s and j initialized
// to their defaults
/7 ...

i

While the in-class initialization establishes the default behavior of an object, the con-
structor allows the variation of the default behavior.

75

76

PART I THE GUIDELINES

C.49 Prefer initialization to assignment in constructors

The most obvious pros of initialization to the assignment are twofold: First, you can-
not forget to assign a value and use it uninitialized; second, initialization may be
faster but never slower than an assignment. The following code snippet from the
guidelines shows why.

class Bad {
std::string si;
public:
Bad(const std::string& s2) { s1 = s2; } // BAD: default
// constructor followed by assignment
/7 ...

i

First, the default constructor of std::string is called, and second, the assignment
takes place in the constructor.
To the contrary, the constructor in the class Good initializes the std: :string.

class Good {
std::string si;
public:
Good(const std::string& s2): si{s2} {} // Good: initialization

/7 ..
3

Special constructors

Since C++11, a constructor can delegate its work to another constructor of the same
class and constructors can be inherited from the parent class. Both techniques allow
the programmer to write more concise and more expressive code.

Use delegating constructors to represent common actions
for all constructors of a class

C.51

A constructor can delegate its work to another constructor of the same class. Dele-
gating is the modern way in C++ to put common actions for all constructors into
one constructor. Before C++11, a special initialization function, which was typically
called init, had to be used.

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

class Degree {
public:
explicit Degree(int deg) { // (1)
degree = deg % 360;
if (degree < Q) degree += 360;

}
Degree(): Degree(0) {} // (2)
explicit Degree(double deg): // (3)
Degree(static_cast<int>(std::ceil(deg))) {3}
private:
int degree;

3

The constructors (2) and (3) of the class Degree delegate its initialization work to the
constructor (1), which verifies its arguments. Invoking constructors recursively is
undefined behavior.

A simplified implementation initializes Degree in the class and skips the default
constructor.

class Degree {

public:
explicit Degree(int deg) { /7 (1)
degree= deg % 360;
if (degree < Q) degree += 360;
}
explicit Degree(double deg): // (3)
Degree(static_cast<int>(std::ceil(deg))) {3}
private:
int degree = 0;
}
C.52 Use inheriting constructors to import constructors into a

derived class that does not need further explicit initialization

Reuse the constructors of the base class in the derived class if you can. This idea of
reuse applies when your derived class has no members. If you don’t reuse construc-
tors when you could, you violate the DRY (don’t repeat yourself) principle. The

77

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

78

PART I THE GUIDELINES

inherited constructors keep all characteristics from their definition in the base class,
such as access specifiers or attributes explicit or constexpr.

class Rec {
// ... data and lots of nice constructors ...

3

class Oper : public Rec {
using Rec::Rec;
// ... no data members ...
// ... lots of nice utility functions ...

3

struct Rec2 : public Rec {
int x;
using Rec::Rec;

3

Rec2 r {"foo", 7},
int val = r.x; // uninitialized

There is a danger of using inherited constructors. If your derived class, such as Rec2,
has its own members, such as int x, they are not initialized unless they have in-class
initializers (see “C.48: Prefer in-class initializers to member initializers in construc-
tors for constant initializers™).

Copy and move

Although the C++ Core Guidelines have eight rules regarding copy and move, they
boil down to three classes of rules: copy- and move-assignment operations, the
semantics of copy and move, and the infamous slicing.

Assignment

Syntax

The two rules “C.60: Make copy assignment non-virtual, take the parameter
by consté&, and return by non-const&” and “C.63: Make move assignment non-
virtual, take the parameter by &&, and return by non-const&” state explicitly the
syntax of the copy- and move-assignment operator. std::vector follows the
proposed syntax. Here is a simplified version:

// copy assignment
vector& operator = (const vector& other);

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-copy-assignment
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-copy-assignment
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-assignment
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-assignment

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

// move assignment
vector& operator = (vector&& other); // until C++17
vector& operator = (vector&& other) noexcept ; // since C++17

The small code snippet shows that the move-assignment operator is noexcept. With
C++17, the rule is quite obvious: “C.66: Make move operations noexcept.” Move
operations include the move constructor and the move-assignment operator. A noex-
cept declared function is an optimization opportunity for the compiler. The follow-
ing code snippet shows the declaration of the move operations for std: :vector.

vector(vector&& other) noexcept ; // since C++17
vector& operator = (vector&& other) noexcept ; // since C++17
Self-assignment

Both rules address self-assignment: “C.62: Make copy assignment safe for self-
assignment” and “C.65: Make move assignment safe for self-assignment.” Safe for
self-assignment means that the operation x = x should not change the value of x.

Copy/move assignment of the containers of the STL, std::string, and built-
in types such as int are safe for self-assignment. The automatic generated copy/
move assignment operator is safe for self-assignment. The same holds for an auto-
matically generated copy/move assignment operator that uses types that are safe for
self-assignment.

The following class Foo does the right job. No self-assignment could happen.

class Foo {
std::string s;
int 1i;
public:
Foo& Foo::operator = (const Foo& a) {
s = a.s;
i=a.i;
return *this;
}
Foo& Foo::operator = (Foo&& a) noexcept {
s = std::move(a.s);
i=a.i;
return *this;

/7

79

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-noexcept
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-copy-self
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-copy-self
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-self
https://en.cppreference.com/w/cpp/utility/move

80 PART I THE GUIDELINES

Any redundant and expensive check for self-assignment is a pessimization in this
case.

class Foo {
std::string s;
int i;
public:
Foo& Foo::operator = (const Foo& a) {
if (this == &a) return *this; // redundant self-assignment check
s = a.s;
i=a.i;
return *this;

}
Foo& Foo::operator = (Foo&& a) noexcept {
if (this == &a) return *this; // redundant self-assignment check
s = std::move(a.s);
i=a.i;
return *this;

b
/o

3

Semantics

The two guidelines for this section sound obvious: “C.61: A copy operation should
copy” and “C.64: A move operation should move and leave its source in a valid
state.” What does that mean?

e Copy operation
* After copying (a = b), a and b must be the same: (a == b).

* Copying can be deep or shallow. Deep copying means that both objects a
and b are afterward independent of each other (value semantics). Shallow
copying means that both objects a and b share an object afterward (refer-
ence semantics).

e Move operation
* The C++ standard requires that the moved-from object must be afterward

in an unspecified but valid state. Often, this moved-from state is in the
default state of the source of the move operation.

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-copy-semantic
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-copy-semantic
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-semantic
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-semantic
https://isocpp.org/wiki/faq/value-vs-ref-semantics
https://isocpp.org/wiki/faq/value-vs-ref-semantics
https://isocpp.org/wiki/faq/value-vs-ref-semantics
https://en.cppreference.com/w/cpp/utility/move

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

C.67 A polymorphic class should suppress copying

This rule sounds innocuous but is often the reason for undefined behavior. First of
all: What is a polymorphic class?
A polymorphic class is a class that defines or inherits at least one virtual function.
Copying a polymorphic class may end in slicing. Slicing is one of the darkest parts
of C++.

Slicing
Slicing means you want to copy an object during assignment or initialization
and you get only a part of the object. Let me give you a simple example:

// slice.cpp

struct Base {
int base{1998};
¥

struct Derived : Base {
int derived{2011};
¥

void needB(Base b) {
// ...

}i

int main() {

Derived d;

Base b = d; // (1)
Base b2(d); // (2)
needB(d); // (3)

The expressions (1), (2), and (3) have all the same effect: The Derived part
of d is removed. I assume that was not your intention.

81

82

PART I THE GUIDELINES

Now, it becomes really dangerous. Slicing kicks in when you copy a polymorphic
class.

1 // sliceVirtuality.cpp
2

3 #include <iostream>

4 #include <string>

5

6 struct Base {

7 virtual std::string getName() const {
8 return "Base";

9 1}

10 };

11

12 struct Derived : Base {

13 std::string getName() const override {

14 return "Derived";

15 }

16 };

17

18 int main() {

19

20 std::cout << '\n';

21

22 Base b;

23 std::cout << "b.getName(): " << b.getName() << '\n';
24

25 Derived d;

26 std::cout << "d.getName(): " << d.getName() << '\n';

27

28 Base bl = d; // slicing

29 std::cout << "bl.getName(): " << bl.getName() << '\n';
30

31 Base& b2 = d;

32 std::cout << "b2.getName(): " << b2.getName() << '\n';
33

34 Base* b3 = new Derived;

35 std::cout << "b3->getName(): " << b3->getName() << '\n';
36

37 std::cout << '\n';

38

39 }

https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

The program has a small hierarchy consisting of the Base and the Derived classes.
Each object of this class hierarchy returns its name. The member function getName is
virtual (line 7) and class Derived overrides it in line 13. Class Base is a polymorphic
class. This means that I can use a derived object via a reference (line 31) or a pointer
to a base object (line 34) to get polymorphic behavior. Under the hood, the object is
of type Derived.

This behavior does not hold if I copy Derived d to Base b1 (line 28). In this case,
slicing kicks in, and I have a Base object under the hood. See Figure 5.7. In the case of
copying, the declared or static type is used. If you use an indirection such as a refer-
ence or a pointer, the current or dynamic type is used.

File Edit View Bookmarks Settings Help
rainer@linux:~> sliceVirtuality

>

b.getName(}): Base
d.getName(): Derived
bl.getName(): Base
b2.getName(): Derived
b3->getName(): Derived

rainer@linux:~> |}

| rainer : bash

Figure 5.7 Slicing

If you want to make a deep copy, prefer a virtual clone function. Read the details
about this technique in the rule “C.130: For making deep copies of polymorphic
classes prefer a virtual clone function instead of copy construction/assignment.”

Destructors

Does my class need a destructor? I often hear this question. Most of the time, the
answer is no, and you are fine with the rule of zero. Sometimes the answer is yes, and
we are back to the rule of five/six. To be more precise, the C++ Core Guidelines pro-
vide seven rules for destructors. They fall into four categories: when destructors are
needed, how destructors should handle pointers and references, how base class
destructors should be defined, and why destructors should not fail.

Need for destructors

The destructor of an object is automatically invoked at the end of its lifetime. To be
more precise, the destructor of the object is invoked when the object goes out of
scope.

83

84

PART I THE GUIDELINES

Define a destructor if a class needs an explicit action at
object destruction

C.30

The question is if the compiler-generated destructor is sufficient in your case. If you
must execute extra code at the end of the lifetime of your user-defined type, you have
to write a destructor. For example, your user-defined type wants to deregister itself
from a registration. If you define the destructor, the rule of five/six kicks in.

To put it the other way around, if no member of your class needs additional
cleanup, there is no need to define a destructor such as in the following code snippet
from the guidelines:

class Foo { // bad; use the default destructor
public:

/7 ...

~Foo() { s="";, 1 =0; vi.clear(); } // clean up
private:

std::string s;

int i;

std::vector<int> vi;

}i

All resources acquired by a class must be released by the
class’s destructor

C.31

This rule sounds quite obvious and helps you to prevent resource leaks. Right? But
you have to consider which of your class members have a full set of default opera-
tions. Now we are once more back to the rule of zero or the rule of five/six.

In the following example, while the std::ifstream class has a destructor, the
class File might not have one, and therefore, we get a memory leak if instances of
MyClass go out of scope.

class MyClass {
std::ifstream fstream; // may own a file
File* file_; // may own a file

}i

Pointers and references
If your class has raw pointers or references, you have to answer the crucial question:
Who is the owner?

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

If a class has a raw pointer (T*) or reference (T&), consider
whether it might be owning

C.32

If a class has a raw pointer or a reference, you have to be specific about ownership.
This means in the case of the pointer. If the ownership is obscure, you may delete a
pointer to an object that you do not own or may not delete a pointer that you own. In
the first case, you end up with undefined behavior because of double delete; in the
second case, you end up with a memory leak. The corresponding reasoning holds
about references.

The topic of this paragraph is already thoroughly answered in the chapter on the
ownership semantics of function parameters. Read the details in the section Param-
eter Passing: Ownership Semantics in Chapter 4.

If a class has an owning pointer member, define a
destructor

C.33

The reason for this rule is straightforward: If a class owns an object, it is responsible
for its destruction. The destruction is the job of the destructor.

Admittedly, there is more to write about a class owning a pointer member. You
should first answer the following question: Is the class the exclusive owner of the
pointer? The answer can be yes or no. Make the class the exclusive owner by putting
the pointer into a std: :unique_ptr. Otherwise, make the class the shared owner
by putting the pointer into a std::shared_ptr. Raising the abstraction level from
a pointer to a smart pointer makes ownership semantics transparent and way less
error prone.

What are the advantages of smart pointers over pointers? First and foremost, the
lifetime of the smart pointer is automatically managed by the C++ run time. Second,
a std: :shared_ptr supports the big six. This means using a std: :shared_ptr in a
class does not impose any restriction on the class. To the contrary, a std: :unique_
ptr used in the class definition disables the copy semantics.

// classWithUniquePtr.cpp
#include <memory>

struct MyClass {
std::unique_ptr<int> uniPtr = std::make_unique<int>(2011);

}i

85

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr

86

PART I THE GUIDELINES

int main() {

MyClass myClass;

MyClass myClass2(myClass);
MyClass myClass3;
myClass3 = myClass;

Due to the std::unique_ptr, objects of type MyClass cannot be copied. Neither
calling the copy constructor (MyClass myClass2(myClass)) nor calling the copy-
assignment operator (myClass3 = myClass) is valid. See Figure 5.8.

Fls Ede Viw Bockmaris - Sitings el

v g+ CLESIHEIUNLQUEP T C0p, 8 £
cmwltwnlquenr cpp: In function “tnt’ main{)':
classWithUnlquePtr.cpp:12:29: error: use of deleten function ‘MyClass::MyClass{const MyClass&)’

MyClass mtlnss?lmlass i
:hsﬁi(ﬂ]nlqln?kr.cw:!’:l: ‘MyClass::MyClass{const MyClassE)' 1s implicltly deleted becsuse the defsult definitlon would be L1l-formed:
struct

classWithlntquePtr.cpp:5:8: srror: use of deleted function ‘std::usigue_ptr<_Tp, _Ope::uniquee_ptricenst std::unique_ptr< Tp, _Dp=&) [with _Tp = int; Op = std:
rdefault_delete<int=]"
In file included fram fusr/include/cs+/7/menory:B0:0,
fron classiithUniquePtr. cpp:3:
Jusr/include/c+4/7/bAits /unlque_ptr.h:383:7: declared here
(const unique_ptré) = delate;

:mﬁltmulqnﬂr.cpp:u:lﬁ: error: use of deleted function ‘MyClassé MyClass::operators{const MyClass&)’
myClassd = my

:hsmthl.luwulhr cpp:5:8:

struct

‘MyClassé MyClass:;operator={const MyClassé)" is inplicitly deleted because the default definition would be 1ll-formed:

classWithUnlquePtr .cpp:5: r: use of deleted Tunctlon ‘std::umigue_ptre Tp, DpsE std::unique_ptr<_Tp, Dp>::operators{const std::unigue ptre Tp, Dp=&) [
with Tp = int; Op = 5 Lt_delete<int>]'
In file included fr\m hlirfl.nl!du’:wﬂa’ml’)‘ e0:0,

classiithiniquePtr , cpp:3:
J-nrru:uha’tﬂﬂﬂth.-’unlqn ptr.h:384:19: declared here
que_ptré ={const unlgue_ptri} = delete;

rainar@seninari-> |

Figure 5.8 A class with a std: :unique_ptr

A base class destructor should be either public and virtual,
or protected and non-virtual

C.35

This rule is very interesting from the perspective of virtual functions. Let’s divide it
into two parts.

e Public and virtual destructor

If the base class has a public and virtual destructor, you can destroy instances
of a derived class through a base class pointer. The same holds for references.

struct Base { // no virtual destructor
virtual void f() {};
3

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

struct Derived : Base {
std::string s {"a resource needing cleanup"};
~Derived() { /* ... do some cleanup ... */ }

3

Base* b = new Derived();
delete b;

The compiler generates for Base a nonvirtual destructor, but deleting an
instance of Derived through a Base pointer is undefined behavior if the
destructor of Base is nonvirtual.

Protected and nonvirtual destructor

This is quite easy to get. If the destructor of the base class is protected, you
cannot destroy derived objects using a base class pointer or reference; there-
fore, the destructor need not be virtual.

Here are a few concluding remarks about the access specifiers for destructors
of a Base class.

e If the destructor of a class Base is private, you cannot derive from it.

¢ If the destructor of a class Base is protected, you can derive only Derived
from Base and use Derived.

struct Base {
protected:
~Base() = default;

¥
struct Derived: Base {};
int main() {

Base b; // Error: Base::~Base is protected within this context
Derived d;

The declaration Base b; causes an error because the destructor of Base is
inaccessible.

87

88

PART I THE GUIDELINES

Failing destructor
Two rules address the issue of failing destructors: “C.36: A destructor may not fail”
and “C.37: Make destructors noexcept.”

Clarification on C.37: Make destructors noexcept

The wording of the rule is misleading. A user-defined or implicitly generated
destructor of a type MyType is noexcept by default. If one of the members or
bases of MyType has a destructor without a noexcept guarantee, the destructor
of MyType has no noexcept guarantee, too. Consequently, there is no need to
specify the destructor as noexcept.

I think I should add a few words about noexcept.

noexcept

If you declare a function func such as a destructor as noexcept, an exception
thrown in func calls std::terminate. std::terminate calls the currently
installed std: : terminate_handler, which is by default std: :abort, and your
program aborts. By declaring a function void func() noexcept; as noexcept,
you state

e My function does not throw any exception.

e If my function throws an exception, it is fine to let the program abort.

The reason that you should explicitly declare your destructor as noexcept
is obvious. There is no general way to write error-free code if the destructor
could fail. If all of the members of a class have a noexcept destructor, the
user-defined or compiler-generated destructor is implicitly noexcept.

Other default operations

The remaining rules related to constructors, assignments, and destructors have a
broad focus. They cover when you should use =default and =delete explicitly and
why you should not call virtual functions from constructors and destructors. The

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-fail
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-noexcept
https://en.cppreference.com/w/cpp/error/terminate
https://en.cppreference.com/w/cpp/error/terminate
https://en.cppreference.com/w/cpp/error/terminate_handler
https://en.cppreference.com/w/cpp/utility/program/abort

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

remaining rules make the story of regular types complete. The swap function
(swap(X&, X&)) is the first rule, followed by the equality operator (operator ==
(const X&)).

Explicit use of =default and =delete
This section provides guidance about when to use =default and =delete explicitly.

Use =default if you have to be explicit about using the
default semantics

C.80

Do you remember the rule of five? It means that if you define one of the five special
member functions, you have to define them all. The five special member functions
are all the special member functions excluding the default constructor.

When I define the destructor such as in the following example, I have to define the
copy and move constructor and the copy- and move-assignment operators. Request-
ing the remaining four by =default is the easiest way.

class Tracer {
std::string message;
public:
explicit Tracer(const std::string& m) : message{m} {
std::cerr << "entering " << message << '\n';

}

~Tracer() { std::cerr << "exiting " << message << '\n'; }

Tracer(const Tracer&) = default;

Tracer& operator = (const Tracer&) = default;
Tracer(Tracer&&) = default;

Tracer& operator = (Tracer&&) = default;

i

This was easy! Right? Providing your own implementation is boring and also very
prone to mistakes. For example, the user-defined move constructor and move-
assignment operator in the following example are not declared noexcept.

class Tracer {
std::string message;
public:
explicit Tracer(const std::string& m) : message{m} {
std::cerr << "entering " << message << '\n';

}

~Tracer() { std::cerr << "exiting " << message << '\n'; }

89

https://en.cppreference.com/w/cpp/io/cerr
https://en.cppreference.com/w/cpp/io/cerr
https://en.cppreference.com/w/cpp/io/cerr
https://en.cppreference.com/w/cpp/io/cerr

90

PART I THE GUIDELINES

Tracer(const Tracer& a) : message{a.message} {}
Tracer& operator = (const Tracer& a) {
message = a.message; return *this;

}
Tracer(Tracer&& a) :message{a.message} {}
Tracer& operator = (Tracer&& a) {

message = a.message; return *this;

Use =delete when you want to disable default behavior
(without wanting an alternative)

C.81

Sometimes, you want to disable the default operations. Here comes =delete into
play. C++ eats its own dog food. The copy constructor of almost all types from the
threading APl is set to delete. This holds true for data types such as mutexes, locks,
or futures.

You can use delete to create strange types. Instances of Immortal cannot be
destructed.

// immortal.cpp

class Immortal {
public:
~Immortal() = delete; // do not allow destruction
}
int main() {
Immortal im; // (1)

Immortal* pIm = new Immortal;

delete pIm; // (2)

An implicit call of the destructor (1) or an explicit call of the destructor (2) causes a
compile-time error. See Figure 5.9.

https://en.cppreference.com/w/cpp/thread

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

File Edit View Bookmarks Settings Help

rainer@seminar:~> g++ immortal.cpp -o immortal

immortal.cpp: In function ‘int maln()':

immortal.cpp:9:14: error: use of deleted function ‘Immortal::~Immortal()’
Immortal im;

immortal.cpp:5:5: declared here
Immortal() = delete; // do not allow destruction

immortal.cpp:12:12: error: use of deleted function ‘Immortal::~Immortal()’
delete plm;

immortal.cpp:5:5: declared here
Immortal() = delete; // do not allow destruction

rainer@seminar:~> i

Figure 5.9 delete the destructor

C.82 Don't call virtual functions in constructors and destructors

Calling a pure virtual function from a constructor or a destructor is undefined behav-
ior. Calling a virtual function from a constructor or a destructor does not work the
way you may expect. For protection reasons, the virtual call mechanism is disabled in
the constructor or destructor, and you get a nonvirtual call.

Hence, the Base version of the virtual function f will be called in the following

example.

// virtualCall.cpp
#include <iostream>

struct Base {
Base() {
(),
}
virtual void f() {
std::cout << "Base called" << '\n';

}i

91

https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/utility/tuple/tie

PART I THE GUIDELINES

struct Derived: Base {
void f() override {
std::cout << "Derived called" << '\n';

}

int main() {
std::cout << '\n';
Derived d;
std::cout << '\n';

}

Figure 5.10 shows the surprising behavior.

rainer : bash — Konsole

File Edit View Bookmarks Settings Help
rainer@seminar:~> virtualCall

Base called

rainer@seminar:~> '

Figure 5.10 Cualling a virtual function in the constructor

swap function
For a type to be a regular type, it has to support a swap function. A more informal
term for a regular type is a value-like type, and this is the wording the first rule uses:
“C.83: For value-like types, consider providing a noexcept swap function.” Accord-
ing, to the first rule, a swap should not fail (“C.84: A swap may not fail”) and should,
therefore, be declared as noexcept: “C.85: Make swap noexcept.”

The data type Foo from the C++ Core Guidelines has a swap function.

class Foo {
public:
void swap(Foo& rhs) noexcept {
ml.swap(rhs.ml);
std::swap(m2, rhs.m2);

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-swap
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-swap-fail
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-swap-noexcept
http://en.cppreference.com/w/cpp/algorithm/swap
https://en.cppreference.com/w/cpp/utility/tuple/tie

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

private:
Bar mi;
int m2;
}

For convenience reasons, you should consider supporting a nonmember swap func-
tion based on the already implemented swap member function.

void swap(Foo& a, Foo& b) noexcept {
a.swap(b);

If you do not provide a nonmember swap function, then the standard library algo-
rithms that require swapping (such as std: :sort and std: :rotate) will fall back to
the std: :swap template, which is defined in terms of move construction and move
assignment.

template<typename T>

void std::swap(T& a, T& b) noexcept {
T tmp(std::move(a));

std: :move(b);

T @
1

std: :move(tmp);

The C++ standard offers more than 40 overloads of std: : swap. You can use the swap
function as a building block for many idioms such as copy construction or move
assignment. A swap function should not fail; therefore, you should declare it as
noexcept.

The copy-and-swap idiom

If you use the copy-and-swap idiom to implement the copy-assignment and
move-assignment operator, you must define your own swap — either as a mem-
ber function or as a friend. I added a swap function to the class Cont and use it
in the copy-assignment and move-assignment operator.

class Cont {
public:
// ...
Cont& operator = (const Conté& rhs);

Cont& operator = (Cont&& rhs) noexcept;

93

http://en.cppreference.com/w/cpp/algorithm/swap
http://en.cppreference.com/w/cpp/algorithm/swap
http://en.cppreference.com/w/cpp/algorithm/swap
https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/utility/move

94

PART I THE GUIDELINES

friend void swap(Cont& lhs, Cont& rhs) noexcept {
swap(lhs.size, rhs.size);
swap(lhs.pdata, rhs.pdata);

}

private:
int* pData;
std::size_ t size;

3

Cont& Cont::operator = (const Cont& rhs) {
Cont tmp(rhs);
swap(*this, tmp);
return *this;

Cont& Cont::operator = (Cont&& rhs) {
Cont tmp(std::move(rhs));
swap(*this, tmp);
return *this;

Both assignment operators make a temporary copy tmp of the source object
and then apply the swap function to it.

When a swap function is based on copy semantics instead of move semantics, a
swap function may fail because of memory exhaustion. The following implementa-
tion contradicts the already mentioned rule “C.84: A swap must not fail.” This is the
C++98 implementation of std: : swap.

template<typename T>
void std::swap(T& a, T& b) {

T tmp = a;
a=bhb;
b = tmp;

In this case, memory exhaustion causes a std: :bad_alloc exception.

Equality operator

To be regular, a data type also has to support the equality operator.

http://en.cppreference.com/w/cpp/algorithm/swap
http://en.cppreference.com/w/cpp/algorithm/swap
https://en.cppreference.com/w/cpp/memory/new/bad_alloc
https://en.cppreference.com/w/cpp/utility/move

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

Make == symmetric with respect to operand types and
noexcept

C.86

If you don’t want to surprise your user, you should make the equality operator
symmetric.

The following code snippet shows an unintuitive equality operator that is defined
inside the class.

class MyInt { // BAD: unsymmetric ==
int num;
public:
MyInt(int n): num(n) {};
bool operator == (const MyInt& rhs) const noexcept {
return num == rhs.num;
}
Y

int main() {

MyInt(5) == 5; // OK
5 == MyInt(5); // ERROR
}
The call MyInt(5) == 5 is valid because the constructor converts the int to an

instance of MyInt. The last line (5 == MyInt(5)) gives an error. An object of type int
cannot be compared with a MyInt object, and there is no conversion from MyInt to
int possible.

The elegant way to solve this asymmetry is to declare a friend operator == inside
the class MyInt. Here is the improved version of MyInt.

class MyInt {
int num;
public:
MyInt(int n): num(n) {};
friend bool operator == (const MyInt& lhs, const MyInt& rhs) noexcept {
return lhs.num == rhs.num;
}
}

int main() {
MyInt(5) == 5; // OK
5 == MyInt(5); // OK

95

96

PART I THE GUIDELINES

If you carefully read this book, you may recall that a constructor taking one argu-
ment should be explicit (“C.46: By default, declare single-argument constructors
explicit”). Honestly, you are right.

class MyInt {
int num;
public:
explicit MyInt(int n): num(n) {3};
friend bool operator == (const MyInt& lhs, const MyInt& rhs) noexcept {
return lhs.num == rhs.num;
}
¥

int main() {
MyInt(5) == 5; // ERROR
5 == MyInt(5); // ERROR

Making the constructor explicit breaks the implicit conversion from int to MyInt.
Providing two additional overloads solves the issue. One overload takes an int as the
left and the other an int as the right argument.

// equalityOperator.cpp

class MyInt {
int num;
public:
explicit MyInt(int n): num(n) {3};
friend bool operator == (const MyInt& lhs, const MyInt& rhs) noexcept {

return lhs.num == rhs.num;

}

friend bool operator == (int lhs, const MyInt& rhs) noexcept {
return lhs == rhs.num;

}

friend bool operator == (const MyInt& lhs, int rhs) noexcept {
return lhs.num == rhs;

}

Y
int main() {

MyInt(5) == 5; // OK
5 == MyInt(5); // OK

The surprises continue with the equality operator.

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

C.87 Beware of == on base classes

Writing a foolproof equality operator for a hierarchy is hard. The guidelines give a

nice example of the complications involved. Here is the hierarchy.

// equalityOperatorHierarchy.cpp

#include <string>

struct Base {

3

std::string name;

int number;

virtual bool operator == (const Base& a) const {
return name == a.name && number == a.number;

struct Derived: Base {

int

char character;
virtual bool operator == (const Derived& a) const {
return name == a.name &&
number == a.number &&
character == a.character;

main() {

Base b;

Base& base = b;
Derived d;

Derived& derived = d;

base == derived; // compares name and number, but (1)
// ignores derived's character

derived == base; // error: no == defined (2)

Derived derived2;

derived == derived2; // compares name, number, and character

Base& base2 = derived2;

base2 == derived; // compares name and number, but (3)

97

98

PART I THE GUIDELINES

// ignores derived2's and derived's character
} // ignores derived2's and derived's character

Comparing instances of Base or instances of Derived works. But mixing instances
of Base and Derived does not work as expected. Using Base’s == operator ignores
Derived’s character (3). Using Derived’s operator does not work for instances of
Base (4). The line causes a compilation error. The last line (3) is quite tricky. The
equality operator of Base is used. Why? The == operator of Derived overwrote the
== operator of Base. No! Both operators have different signatures. One operator
takes an instance of Base; the other operator takes an instance of Derived. Derived’s
version does not overwrite Base’s version.

These observations also hold for the other five comparison operators: !=, <, <=, >,
and >=. This misbehaving is another facet of the slicing issue: “C.67: A polymorphic
class should suppress copying.”

Class hierarchies

The C++ Core Guidelines have about thirty rules in total addressing class
hierarchies.

But first, what is a class hierarchy? The C++ Core Guidelines give a clear answer.
Let me rephrase it. A class hierarchy represents a set of hierarchically organized con-
cepts. Base classes typically act as interfaces. There are two uses for interfaces. One is
often named interface inheritance and the other implementation inheritance.

Interface inheritance uses public inheritance. It separates users from implementa-
tions to allow derived classes to add or change functionality of the base class without
affecting the users of base classes.

For example, if you derive public a class Handball from a Ball, you can use Hand-
ball instead of a Ball. A Handball is also a Ball. This principle is called the Liskov
substitution principle.

Implementation inheritance often uses private inheritance. Typically, the derived
class provides its functionality by adapting functionality from base classes.

A prominent example of implementation inheritance is the adapter pattern if you
implement it with multiple inheritance. The idea of the adapter pattern is to adapt
an existing interface to a new one. The adapter uses private inheritance from the
implementation and public inheritance from the new interface. The new interface
uses the existing implementation to provide its services to the user.

The first three rules for class hierarchies have a general focus. They provide a kind
of summary for the more detailed rules for the designing of classes and the accessing
of objects in class hierarchies.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Adapter_pattern
https://en.wikipedia.org/wiki/Adapter_pattern

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

General rules

The first rules describe when to use class hierarchies and introduce the idea of
abstract classes.

Use class hierarchies to represent concepts with inherent

C.120 hierarchical structure (only)

This rule makes a software system intuitive and easy to comprehend. If you model
something in the code that has an inherently hierarchical structure, you should use a
hierarchy. Often, the easiest way to reason about code is if you have a natural match
between the code and the world.

For example, your job as a software architect is to model a complex system such
as a defibrillator. This system consists of many subsystems. For example, a subsys-
tem is the user interfaces. The requirement for the defibrillator is that different input
devices such as a keyboard, a touch screen, or a few buttons could be used as a user
interface. This system consisting of various subsystems such as a user interface is
inherently hierarchical and should, therefore, be modeled hierarchically. The great
benefit is that the complex system is now easy to explain in a top-down fashion
because there is a natural match between the real hardware and the software.

Of course, the classic example of using a hierarchy is in the design of a graphical
user interface (GUI). This is the example the C++ Core Guidelines use.

class DrawableUIElement {
public:

virtual void render() const = 0;
/7.

3

class AbstractButton : public DrawableUIElement {
public:

virtual void onClick() = 0;
/7.

3

class PushButton : public AbstractButton {
void render() const override;
void onClick() override;

/7.

3

99

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces

100 PART I THE GUIDELINES

class Checkbox : public AbstractButton {
/7.

3

If something is not inherently hierarchical, you should not model it in a hierarchical
way. Have a look here.

template<typename T>
class Container {
public:
// list operations:
virtual T& get() = 0;
virtual void put(T&) = 0;
virtual void insert(Position) = 0;
/7 ...
// vector operations:
virtual T& operator [] (int) = 0O;
virtual void sort() = 0;
/7 ...
// tree operations:
virtual void balance() = 0;
/7 ...

}i

Why is the example terrible? Read the comments! The class template Container con-
sists of pure virtual functions for modeling a list, a vector, and a tree. That means if
you use Container as an interface, you have to implement three disjunctive
concepts.

Interface segregation principle

The class template Container breaks the interface segregation principle (ISP),
coined by the software engineer and instructor Robert C. Martin, popularly
known as “Uncle Bob.” The interface-segregation principle states that no cli-
ent such as a derived class should be forced to depend on member functions it
does not use. In the concrete case of the class template Container, each class
implementing the interface has to implement all abstract methods.

The ISP splits interfaces that are too large and consist of too many member
functions into smaller and more specific ones.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

If a base class is used as an interface, make it an abstract

C.121
class

An abstract class is a class that has at least one pure virtual function. A pure virtual
function (virtual void function() = @) isa function that must be implemented by
a derived class if that class should not be abstract. An abstract class cannot be
instantiated.

I want to add for completeness: An abstract class can provide an implementation
for a pure virtual function. A derived class can, therefore, use this implementation.

Interfaces should usually consist of public pure virtual functions, don’t have data
members, and have a default/empty virtual destructor (virtual ~My_interface() =
default).

Use abstract classes as interfaces when complete

C.122 separation of interface and implementation is needed

Abstract classes are about the separation of interface and implementation. If the cli-
ent, such as in this case an application, depends only on the interface Device, it can use
different implementations during run time. Additionally, a modification in the imple-
mentation does not necessarily affect the interface and, therefore, the application.

struct Device {
virtual void write(std::span<const char> outbuf) = 0;
virtual void read(std::span<char> inbuf) = 0;

}i

class Mouse : public Device {

// ... data ...
void write(std::span<const char> outbuf) override;
void read(std::span<char> inbuf) override;

}i

class TouchScreen : public Device {

// ... different data ...
void write(std::span<const char> outbuf) override;
void read(std::span<char> inbuf) override;

}i

101

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces

102

PART I THE GUIDELINES

Designing classes

The 12 rules for designing classes target the following topics: constructors for
abstract classes, virtuality, access specifiers for data members, multiple inheritance,
and typical traps.

C.126 An abstract class typically doesn’t need a constructor

Let me combine the already presented rules “C.2: Use class if the class has an invari-
ant; use struct if the data members can vary independently” and “C.41: A construc-
tor should create a fully initialized object” to get the actual rule. An invariant is a
condition on a class data member that has to be established by the constructor. Con-
versely, an abstract base class does not have any data and needs, therefore, no
declared constructor.

Virtuality
There a few rules to virtual functions you should keep in mind when designing class
hierarchies.

Virtual functions should specify exactly one of virtual,
override, or final

C.128

Since C++11, we have had three keywords to control overriding.

e virtual: declares a virtual function that can be overridden in derived classes

e override: verifies that the function is virtual and overrides a virtual function
of a base class

e final: verifies that the function is virtual and cannot be overridden by a
member function of a derived class

According to the guidelines, the rules for the usage of the three keywords are straight-
forward: “Use virtual only when declaring a new virtual function. Use override
only when declaring an overrider. Use final only when declaring a final overrider.”

struct Base{
virtual void testGood() {3}
virtual void testBad() {}
¥

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

struct Derived: Base{
void testGood() final {}
virtual void testBad() final override {}

3

int main() {
Derived d;

The member function testBad() in the class Derived provides much redundant

information.

* You should use final or override only if the function is virtual. Skip
virtual: void testBad() final override {}.

e Using the keyword final without the virtual keyword is valid only if the
function is already virtual; therefore, the function must override a virtual
function of a base class. Skip override: void testBad() final {3}.

For making deep copies of polymorphic classes prefer a
virtual clone function instead of copy construction/
assignment

This rule is a continuation of rule “C.67: A polymorphic class should suppress copy-
ing.” Rule C.67 explicitly shows that copying a polymorphic class may lead to the
slicing problem. To overcome this issue, override a virtual clone function that copies
the actual type and returns an owning pointer (std: :unique_ptr) to the new object.
In the derived class, return the derived type by using the so-called covariant return
type.

Covariant return type: allows for an overriding member function to return a
derived type of the return type of the overridden member function.

Let me illustrate this recommendation with an example.

// cloneFunction.cpp
#include <iostream>
#include <memory>

#include <string>

struct Base { // GOOD: base class suppresses copying

103

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/header/iostream

104 PART I

THE GUIDELINES

Base() = default;
virtual ~Base() = default;

Base(const Base&) = delete;

Base& operator = (const Base&) = delete;

virtual std::unique_ptr<Base> clone() {

return std::make_unique<Base>();

}

virtual std::string getName() const { return "Base"; }

3

struct Derived : public Base {
Derived() = default;

std::

unique_ptr<Base> clone() override {

return std::make_unique<Derived>();

}

std::string getName() const override { return "Derived"; }

3

int main() {

std:

auto
auto
std:
std:

auto
auto
std:
std:

std:

The clone member function returns the newly created object in a std: :unique_ptr.
The ownership of the newly created objects goes, therefore, to the caller. Now the

:cout << '\n';

basel = std::make_unique<Base>();

base2 = basel->clone();

rcout << "basel->getName(): " << basel->getName() << '\n';
rcout << "base2->getName(): " << base2->getName() << '\n';

derivedl = std::make_unique<Derived>();

derived2 = derivedl->clone();

rcout << "derivedl->getName(): " << derivedl->getName() << '\n';
rcout << "derived2->getName(): " << derived2->getName() << '\n';

:cout << '\n';

virtual dispatch happens as expected. See Figure 5.11.

It’s obligatory for the covariant return type that the Derived: : clone member func-
tion’s return type is std: :unique_ptr<Base> and not std: :unique_ptr<Derived>.
When I change the return type of Derived: :clone to std::unique_ptr<Derived>,

the compilation fails (see Figure 5.12).

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr

CHAPTER 5 CLASSES AND CLASS HIERARCHIES 105

rainer : bash —

File Edit View Bookmarks Settings Help
rainer@seminar:~> cloneFunction
basel->getName(): Base
base2->getName(): Base

derivedl->getName(): Derived
derived2->getName(): Derived

rainer@seminar:~> Jj

Figure 5.11 A virtual clone member function

Fie Edit Vew Bookmarks Semings Help

rainer@seminar:~=» g++ cloneFunction.cpp -o cloneFunction
cloneFunction.cpp:16:30: error: invalid covariant return type for ‘virtual std::unique_ptr<Derived> Derived::clonef)’

cloneFunction.cpp:10:35: error: overriding ‘virtual std::unique_ptr<Base> Base::clone{)’
virtual std::unique_ptr<Base> clone{) { return std::make_unique<Base={); }

ratner@seminar:~> i |

Figure 5.12 A virtual clone member function without covariant return type

C.132 Don’'t make a function virtual without reason

A virtual function is a feature that does not come for free.
A virtual function

¢ Increases the run time and the object code size

e s open for errors because it can be overridden in derived classes

Access specifiers for data members
Typically, the access specifier for all data members of a class is the same: All data
members are either public or private.

e public if there is no invariant on the data members. Use a struct.

e private if there is an invariant on the data members. Use a class.

106

PART I THE GUIDELINES

C.131 Avoid trivial getters and setters

Getters or setters are trivial if they do not provide additional semantic value to the
data members. Here are two examples of trivial getters and setters from the C++
Core Guidelines:

class Point { // Bad: verbose
public:
Point(int xx, int yy) : x{xx}, y{yy} { }
int get_x() const { return x; }
void set_x(int xx) { x = xx; }
int get_y() const { returny; }

void set_y(int yy) {y =vyy; }
// no behavioral member functions

private:
int x;
int y;
¥

x and y can have arbitrary values. This means an instance of Point maintains no
invariant on x and y. x and y are just values. Using a struct as a collection of values
is more appropriate, and x and y should, consequently, become public.

struct Point {
int x{0};
int y{0};
¥

C.133 Avoid protected data

protected data make your program complex and error prone. If you put protected
data into a base class, you cannot reason about derived classes in isolation and,
therefore, you break encapsulation. You always have to reason about the entire class
hierarchy.

This means you have to answer at least these three questions.

1. Do I have to implement a constructor to initialize the protected data?

CHAPTER 5 CLASSES AND CLASS HIERARCHIES 107

2. What is the actual value of the protected data if I use them?

3. Who is affected if I modify the protected data?

Answering these questions becomes more and more difficult as your class hierarchy
becomes more and more complex.

To put it the other way, protected data is a kind of global data in the scope of the
class hierarchy. And you know non-const global data is bad.

Ensure all non-const data members have the same
access level

The previous rule, C.133, stated that you should avoid protected data. Consequently,
all of your non-const data members should be either public or private. An object
can have data members that do not represent the invariants of the object. Non-const
data members that do not represent the invariants of an object should be public. In
contrast, non-const private data members are used for the object invariants. As a
reminder: A data member having an invariant cannot have all the values of the under-
lying type.

Based on this observation and the additional observation that you should not mix
data members representing/not representing invariants in one class, all your non-
const data members should be either public or private. Imagine if you have a class
with public and private data members that are non-const. Now your data type is
confusing. Does your data type maintain an invariant, or is it merely a collection of
unrelated values?

Multiple inberitance

There are two typical use cases for multiple inheritance: separating interface inherit-
ance from implementation inheritance and implementing multiple distinct
interfaces.

When designing a class hierarchy, distinguish between
implementation inheritance and interface inheritance

C.129

Interface inheritance is about the separation of interface and implementation, so
that a derived class can be changed without affecting the user of the base class;
implementation inheritance is the use of inheritance to support new functionality by
extending existing functionality.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces

108

PART I THE GUIDELINES

Pure interface inheritance is if your base class has only pure virtual functions.
In contrast, if your base class has data members or implemented functions, this is
implementation inheritance. Consequently, you break the previous rule “C.121: If a
base class is used as an interface, make it an abstract class.” The C++ Core Guide-
lines give an example of mixing both concepts.

class Shape { // BAD, mixed interface and implementation
public:
Shape(Point ce = {0, 0}, Color co = none):
cent{ce}, col {co} {
VAV

Point center() const { return cent; }
Color color() const { return col; }

virtual void rotate(int) = 0;
virtual void move(Point p) { cent = p; redraw(); }

virtual void redraw() const;

// ...
public:

Point cent;

Color col;

}i

class Circle : public Shape {
public:
Circle(Point c, int r) :Shape{c}, rad{r} { /* ... */ }

// ...
private:
int rad;

}i

class Triangle : public Shape {

public:
Triangle(Point p1, Point p2, Point p3); // calculate center
// ...

}i

CHAPTER 5 Crasses AND CLAss HIERARCHIES 109

Mixing the concepts of interface inheritance and implementation inheritance is bad.
Why?

® As the Shape class evolves, it may become more and more difficult and error
prone to maintain the various constructors.

e The member functions of the Shape class may never be used.

e If you add data to the Shape class, a recompilation becomes probable.

How can we get the best of those two worlds: stable interfaces with interface hierar-
chies and code reuse with implementation inheritance? One possible answer, which I
implement in this chapter, is dual inheritance. Another answer is the PImpl idiom.
PImpl stands for pointer to implementation. It moves implementation details in a
separate class that can be accessed through a pointer.

Let’s continue with dual inheritance. Dual inheritance implements a quite sophis-
ticated recipe.

1. Define the base shape of the class hierarchy as pure interface.

class Shape {

public:
virtual Point center() const = 0;
virtual Color color() const = 0;

virtual void rotate(int) = 0;
virtual void move(Point p) = 0;

virtual void redraw() const = 0;

/7 ..
3

2. Derive a pure interface Circle from the shape.

class Circle : public virtual Shape {
public:

virtual int radius() = 0;

/7 ...

3

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
https://en.cppreference.com/w/cpp/language/pimpl

110 PART I THE GUIDELINES

3. Provide the implementation class Impl: : Shape.

class Impl::Shape : public virtual Shape {

public:
// constructors, destructor
/7 ...
Point center() const override { /* ... */ }
Color color() const override { /* ... */ }
void rotate(int) override { /* ... */ }
void move(Point p) override { /* ... */ }
void redraw() const override { /* ... */ }
/7 ...

Y

4. Implement the class Impl::circle by inheriting from the interface and the
implementation.

class Impl::Circle : public Circle, public Impl::Shape {
public:
// constructors, destructor

int radius() override { /* ... */ }
/7 ...
}

5. If you want to extend the class hierarchy, you have to derive from the inter-
face and from the implementation.

class Smiley : public Circle {
public:

/7 ...
¥

// implementation
class Impl::Smiley : public virtual Smiley, public Impl::Circle {
public:
// constructors, destructor
/7 ...

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

This is the big picture of the two hierarchies.

o Interface: Smiley -> Circle -> Shape

L Implementation: Impl::Smiley -> Impl::Circle -> Impl::Shape

By reading the last lines, maybe you had déja vu. You are right. This technique of
multiple inheritance is similar to the adapter pattern, implemented with multiple
inheritance. The adapter pattern is from the well-known Gang of Four (GoF) design
pattern book, Design Patterns: Elements of Reusable Object-Oriented Software,
authored by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

Use multiple inheritance to represent multiple distinct

C.135 interfaces

It is a good idea that your interfaces support only one aspect of your design. What
does that mean? If you provide a pure interface consisting only of pure virtual func-
tions, a concrete class has to implement all functions. If the interface is too broad,
the class has to implement functions it doesn’t need or that make no sense.

An example of two distinct interfaces is istream and ostream from C++’s input
and output streams library.

class iostream : public istream, public ostream { // very simplified
// ...

}
Typical traps
There are two typical traps when it comes to the design of a class hierarchy.

Create an overload set for a derived class and its bases
with using

C.138

This rule holds for virtual and nonvirtual functions. If you don’t use the using
declaration, member functions in the derived class hide the entire overload set. This
process is also often called shadowing (see Figure 5.13). Shadowing is a behavior that
contradicts the intuition of many C++ developers because an overload may be
chosen that doesn’t seem like the best match.

111

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
https://en.wikipedia.org/wiki/Adapter_pattern
https://en.wikipedia.org/wiki/Adapter_pattern
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Ralph_Johnson_(computer_scientist)
https://en.wikipedia.org/wiki/John_Vlissides
https://en.cppreference.com/w/cpp/header/iostream

112

PART I THE GUIDELINES

// overloadSet.cpp
#include <iostream>

class Base {
public:
void func(int i) { std::cout << "Base::func(int) \n"; }
void func(double d) { std::cout << "Base::func(double) \n"; }

3

class Derived: public Base { // Bad: shadowing func of Base
public:
void func(int i) { std::cout << "Derived::func(int) \n"; }

}

int main() {
std::cout << '\n';
Derived der;
der.func(2011);

der.func(2020.5);

std::cout << '\n';

The line der . func(2020.5) with a double argument is called, but the int overload of
class Derived is used. Consequently, a narrowing conversion from double to int
happens. That is most of the time not the behavior that you want.

rainer : bash — Konsole v~

File Edit View Bookmarks Settings Help
rainer@seminar:~> overloadSet

Derived::func{int)
Derived::func{int)

rainer@seminar:~> ||

Figure 5.13 Shadowing of member functions

https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

To use the double overload of class Base, you have to introduce it in the scope of
Derived.

class Derived: public Base { // good: Base::func is introduced
public:

void func(int i) { std::cout << "f(int) \n"; }

using Base::func; // exposes func(double)

3

Do not provide different default arguments for a virtual
function and an overrider

C.140

If you provide different default arguments for a virtual function and an overrider,
your class may cause lots of confusion.

// overrider.cpp
#include <iostream>

class Base {
public:
virtual int multiply(int value, int factor = 2) = 0;

i

class Derived : public Base { // Bad: different defaults
// for virtual functions
public:
int multiply(int value, int factor = 10) override {
return factor * value;

1
int main() {
std::cout << '\n';

Derived d;
Base& b = d;

std::cout << "b.multiply(10): " << b.multiply(10) << '\n';
std::cout << "d.multiply(10): " << d.multiply(10) << '\n';

113

https://en.cppreference.com/w/cpp/header/iostream

114

PART I THE GUIDELINES

std::cout << '\n';

Figure 5.14 shows the surprising output of the program.

File Edit View Bookmarks Settings Help
rainer@linux:~> overrider

b.multiply(10): 20
d.multiply(1@): 100

>

rainer@linux:~> l

a rainer : bash

Figure 5.14 Different default arguments for virtual functions

What’s happening? Both objects b and d call the same function. The function is
virtual and, therefore, late binding happens. Late binding applies to member func-
tions, but not to data members of a class including default arguments. They are stati-
cally bound, and early binding happens for that part.

Accessing objects

Although this section has nine rules, only about four of them are covered, for two
reasons. First, the rule “C.145: Access polymorphic objects through pointers and
references” adds nothing new to the rule “C.67: A polymorphic class should sup-
press copying.” Second, the C++ Core Guidelines dedicate an entire section to smart
pointers. The section about resource management provides complete details.

The remaining rules are about the dynamic_cast and the erroneous assignment of
a pointer to an array of derived class objects.

dynamic_cast
Before I write about the dynamic_cast, let me emphasize that casts, including
dynamic_cast, are used way too often. The job description of the dynamic_cast,
according to cppreference.com, is “Safely converts pointers and references to classes
up, down, and sideways along the inheritance hierarchy.”

Let’s first start with the use case of a dynamic_cast.

http://cppreference.com
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-poly
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-poly

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

Use dynamic_cast where class hierarchy navigation is
unavoidable

C.146

It’s the job of a dynamic_cast to navigate in a class hierarchy.

struct Base { // an interface
virtual void f();
virtual void g();

3

struct Derived : Base { // a wider interface
void f() override;
virtual void h();

3

void user(Base* pb) {
if (Derived* pd = dynamic_cast<Derived*>(pb)) {

// ... use Derived's interface ...
}
else {

// ... make do with Base's interface ...
}

To detect the right type for pb during run time, a dynamic_cast is necessary:
dynamic_cast<Derived*>(pb). If the cast fails, you get a null pointer.

A downcast can also be performed with static_cast, which avoids the cost of the
run-time check. static_cast is only safe if the object is definitely Derived.

The following rules are two options you have for dynamic_cast.

Use dynamic_cast to a reference type when failure to find
the required class is considered an error

and

Use dynamic_cast to a pointer type when failure to find
the required class is considered a valid alternative

115

116

PART I THE GUIDELINES

To make it short: You can apply a dynamic_cast to a pointer or to a reference. If the

dynamic_cast fails, you get back a null pointer in the case of a pointer and a std: :bad_

cast exception in the case of a reference. Consequently, use a dynamic_cast to a

pointer if a failure is a valid option; if a failure is not a valid option, use a reference.
The program badCast . cpp shows both cases.

// badCast.cpp

struct Base {
virtual void f() {}

}i

struct Derived : Base {};
int main() {
Base a;

Derived* bl = dynamic_cast<Derived*>(&a); // nullptr
Derived& b2 = dynamic_cast<Derived&>(a); // std::bad_cast

The g++ compiler complains about both dynamic_casts at compile time. At run
time, the program throws the expected exception std: :bad_cast for the reference
(see Figure 5.15).

rainer :

File Edit View Bookmarks Settings Help

rainer@seminar:~> g++ badCast.cpp -o badCast

badCast.cpp: In function ‘int main()’:

badCast.cpp:11:44: warning: dynamic_cast of ‘Base a’' to ‘struct Derived*' can never succeed
Derived* bl = dynamic_cast<Derived*>(&a); // nullptr

badCast.cpp:12:43: warning: dynamic_cast of 'Base a' to ‘struct Derived&' can never succeed
Derived& b2 = dynamic_cast<Derived&>(a); // std::bad_cast

rainer@seminar:~> badCast
terminate called after throwing an instance of 'std::bad_cast'
what(): std::bad_cast
Aborted (core dumped) I
rainer@seminar:~= JJ

Figure 5.15 dynamic_cast causes a std: :bad_cast exception

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

Never assign a pointer to an array of derived class objects

C.152 to a pointer to its base

This may not happen very often, but when it happens, the consequences are terribly
bad. The result may be an invalid object access or memory corruption. The code
snippet shows the invalid object access.

struct Base { int x; };
struct Derived : Base { int y; };

Derived a[] = {{1, 2}, {3, 4}, {5, 6}};
Base* p = a; // Bad: a decays to &a[0] which is converted to a Base*
p[1].x = 7; // overwrite Derived[0].y

The last assignment should update the Base member x of the second array element,
but due to pointer arithmetic, it points to the second int after p[0].x. This happens
to be memory of a[0].y! The reason is that Base* was assigned a pointer to an array
of derived objects Derived. During this assignment (Base* p = a;), the array a
decays to &a[0], which is converted to a Base*.

Decay is the name of an implicit conversion that applies Ivalue-to-rvalue, array-
to-pointer, and function-to-pointer conversions, removing const and volatile qual-
ifiers. This means that you can call a function accepting Derived* with an array of
Deriveds. Necessary information such as the length of the array of Deriveds is lost.

In the following code snippet, the function func takes its array as a pointer to the
first element.
void func(Derived* d);

Derived d[] = {{1, 2}, {3, 4}, {5, 6}};

func(d);
The array-to-pointer decay is perfectly fine in this func case but causes problems
in the previous p[1] . x case.

Overloading and overloaded operators

You can overload functions, member functions, template functions, and operators.
You cannot overload function objects, and therefore, you cannot overload lambdas.
The seven rules to overloading and overloaded operators follow one key idea:
Build intuitive software systems for your users. Let me rephrase this key idea with
a well-known golden rule in software development: Follow the principle of least

117

https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/types/decay
https://en.cppreference.com/w/cpp/types/decay

118

PART I THE GUIDELINES

astonishment (also known as the principle of least surprise). The principle of least
astonishment essentially means that the components of a system should behave in
a way that most users will expect them to behave. This principle is very important
for overloading and overloaded operators because with great power comes great
responsibility.

Although the seven rules address the intuitive behavior of overloading and over-
loaded operators, they take different perspectives. They address their conventional
usage, the implicit conversion of operators, the equivalence of overloaded opera-
tions, and the idea that you should overload operators in the namespace of their
operands.

Conventional usage

Conventional usage means that the user should not be surprised by unexpected
behavior or mysterious side effects of the operators.

Use an operator for an operation with its conventional
meaning

Conventional meaning includes that you use the appropriate operator. For example,
here are a few operators that we are used to:

e ==, 1=, <, <=, >, and >=: comparison operations
e +,-,* /,and %: arithmetic operations

e _> unary *, and []: access of objects

e =:assignment of objects

e <<, >>:input and output operations

Use nonmember functions for symmetric operators

Conventional meaning includes that your data type should behave like a number if it
models a number. This rule is a kind of a generalization of the rule “C.86: Make ==
symmetric with respect to operand types and noexcept.”

In general, the implementation of a symmetric operator such as + inside the class
is not possible.

https://www.google.com/search?client=firefox-b-e&q=with+great+power+comes+great+responsibility
https://www.google.com/search?client=firefox-b-e&q=with+great+power+comes+great+responsibility

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

Assume that you want to implement a type MyInt. MyInt should support the addi-
tion of MyInts and built-in ints. Let’s give it a try.

// MyInt.cpp

struct MyInt {
MyInt(int v):val(v) {};
MyInt operator + (const MyInt& oth) const {
return MyInt(val + oth.val);
}

int val;

Y
int main() {

MyInt myFive = MyInt(2) + MyInt(3);
MyInt myFive2 = MyInt(3) + MyInt(2);

MyInt myTen = myFive + 5; // OK
MyInt myTen2 = 5 + myFive; // ERROR

Due to the implicit conversion constructor (MyInt(int v):val(v)), the expression
myFive + 5 is valid. Constructors taking one argument are conversion constructors
because they take in the concrete case an int and return a MyInt. In contrast, the last
expression 5 + myFive is not valid because the + operator for int and MyInt is not
overloaded (see Figure 5.16).

rainer : bash — Konsole

File Edit View Bookmarks Settings Help

rainer@seminar:~> g++ MyInt.cpp -o MyInt

MyInt.cpp: In function ‘int main()’':

MyInt.cpp:17:22: error: no match for ‘operator+' (operand types are ‘int’ and ‘MyInt')
MyInt myTen2 = 5 + myFive;

rainer@seminar:~> || l

Figure 5.16 Missing overload for int and MyInt

119

120

PART I THE GUIDELINES

The small program has many issues:

1. The + operator is not symmetric.
2. The val variable is public.

3. The conversion constructor is implicit.

It’s quite easy to overcome the first two issues with a nonmember operator + thatis
in the class declared as a friend.

// MyInt2.cpp

class MyInt2 {
public:
MyInt2(int v):val(v) {};
friend MyInt2 operator + (const MyInt2& fir, const MyInt2& sec) {
return MyInt2(fir.val + sec.val);

}
private:
int val;

}
int main() {

MyInt2 myFive = MyInt2(2) + MyInt2(3);
MyInt2 myFive2 = MyInt2(3) + MyInt2(2);

MyInt2 myTen = myFive + 5; // OK
MyInt2 myTen2 = 5 + myFive; // OK

Now implicit conversion from int to MyInt2 kicks in, and the variable val is pri-
vate. Thanks to the implicit conversion, the 5 in the last line becomes a MyInt2(5).
According to rule “C.46: By default, declare single-argument constructors
explicit,” you should not use an implicit conversion constructor.
MyInt3 has an explicit conversion constructor.

// MyInt3.cpp

class MyInt3 {
public:
explicit MyInt3(int v):val(v) {};

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

friend MyInt3 operator + (const MyInt3& fir, const MyInt3& sec) {
return MyInt3(fir.val + sec.val);

}
private:
int val;

}
int main() {

MyInt3 myFive = MyInt3(2) + MyInt3(3);
MyInt3 myFive2 = MyInt3(3) + MyInt3(2);

MyInt3 myTen = myFive + 5; // ERROR
MyInt3 myTen2 = 5 + myFive; // ERROR

Making the conversion constructor explicit breaks the compilation (see
Figure 5.17).

File Edit View Bookmarks Seftings Help

rainer@seninar:~> g++ MyInt3.cpp -o MyInt3

MyInt3.cpp: In function ‘int main()’:

MyInt3.cpp:18:27: error: no match for ‘operator+’ (operand types are ‘MyInt3’ and ‘int’)
MyInt3 myTen = myFive + 5;

oriraranirdne™ rirs

MyInt3.cpp:6:19: candidate: MyInt3 operator+(const MyInt3&, const MyInt3&)
friend MyInt3 +(const MyInt3& fir, const MyInt3& sec) {
MyInt3.cpp:6:19: no known conversion for argument 2 from ‘int’ to ‘const MyInt3&’

MyInt3.cpp:19:23: error: no match for ‘operator+' (operand types are ‘int’' and ‘MyInt3’)
MyInt3 myTen2 = 5 + myFive;

MyInt3.cpp:6:19: candidate: MyInt3 operator+{const MyInt3&, const MyInt3&)
friend MyInt3 +(const MyInt3& fir, const MyInt3& sec) {
MyInt3.cpp:6:19: no known conversion for argument 1 from ‘int’ to ‘const MyInt3&'

rainer@seninar:~> ||

Figure 5.17 Using an explicit constructor

The general way to solve the challenge is to implement two additional + opera-
tors for MyInt4. One takes an int as the left argument, and one takes an int as the

right argument.

// MyInt4.cpp

class MyInt4 {
public:

121

122 PART I THE GUIDELINES

explicit MyInt4(int v):val(v) {3};

friend MyInt4 operator + (const MyInt4& fir, const MyInt4& sec) {
return MyInt4(fir.val + sec.val);

}

friend MyInt4 operator + (const MyInt4& fir, int sec) {
return MyInt4(fir.val + sec);

}

friend MyInt4 operator + (int fir, const MyInt4& sec) {
return MyInt4(fir + sec.val);

}

private:
int val;

}
int main() {

MyInt4 myFive = MyInt4(2) + MyInt4(3);
MyInt4 myFive2 = MyInt4(3) + MyInt4(2);

MyInt4 myTen = myFive + 5; // OK
MyInt4 myTen2 = 5 + myFive; // OK

Make a constructor taking one argument explicit. The same reason holds for the
conversion operator.

Avoid implicit conversion operators

If you want to have fun, overload the operator bool and make it not explicit. Making
it not explicit means that integer promotion from bool to int can happen silently.

Let me design a data type MyHouse that can be bought. I implement the operator
bool to easily check to see if a family has already bought the house.

1 // implicitConversion.cpp
2

3 #include <iostream>

4 #include <string>

5

https://en.cppreference.com/w/c/language/conversion
https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

6 struct MyHouse {

7
8
9
10
11
12
13
14 };
15

MyHouse() = default;
explicit MyHouse(const std::string& fam): family(fam) {3}

operator bool(){ return not family.empty(); }
// explicit operator bool(){ return not family.empty(); }

std::string family = "";

16 int main() {

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41 3}

std::cout << std::boolalpha << '\n';

MyHouse firstHouse;
if (not firstHouse) {
std::cout << "firstHouse is not sold." << '\n';

MyHouse secondHouse("grimm");
if (secondHouse) {
std::cout << "Grimm bought secondHouse." << '\n';

std::cout << '\n';

int myNewHouse = firstHouse + secondHouse;

int myNewHouse2 = (20 * firstHouse - 10 * secondHouse)

/ secondHouse;

std::cout << "myNewHouse: " << myNewHouse << '\n';
std::cout << "myNewHouse2: " << myNewHouse2 << '\n';

std::cout << '\n';

Now I can easily check with the operator bool (line 10) to see if a family (line 21) or

no family (line 26) lives in the house. Fine. Due to the implicit operator bool, I can

use objects of MyHouse in arithmetic expressions (lines 32 and 33). Supporting arith-

metic was not my intention. See Figure 5.18.

123

124

PART I THE GUIDELINES

rainer : bash — Konsole

File Edit View Bookmarks Sefttings Help
rainer@seminar:~> implicitConversion

firstHouse is not sold.
Grimm bought secondHouse.

myNewHouse: 1
myNewHouse2: -10

rainer@seminar:~> |}

Figure 5.18 Implicit operator bool

This is weird!

Since C++11, you can make a conversion operator explicit; therefore, no
implicit conversion to int kicks in. If T use the explicit operator bool (line 11),
the arithmetic of houses is not possible anymore, but houses can be used in logical
expressions. See Figure 5.19.

File Edit View Bookmarks Settings Help

ratner@seminar:~> g++ implicitConversion.cpp -o implicitConversion
implicitConversion.cpp: In function ‘int main{)':
implicitConversion.cpp:32:33: error: no match for ‘operator+’ (operand types are ‘MyHouse' and ‘MyHous

e')

int myNewHouse = firstHouse + secondHouse;
implicitConversion.cpp:32:33: candidate: operator+(int, int) <built-in>
implicitConversion.cpp:32:33: no known conversion for argument 2 from 'MyHouse' to ‘int’

implicitConversion.cpp:33:28: error: no match for ‘operator*’ (operand types are ‘int’ and "MyHouse')

auto myMewHouse2 = (20 * firstHouse - 18 * secondHouse) / secondHouse;
implicitConversion.cpp:33:28: candidate: operator*(int, int) <built-in>
implicitConversion.cpp:33:28: no known conversion for argument 2 from ‘MyHouse' to ‘int’
implicitConversion.cpp:33:46: error: no match for ‘operator*’ (operand types are ‘int' and ‘MyHouse’)

auto myNewHouse2 = (20 * firstHouse - 10 * secondHouse) / secondHouse;
implicitConversion.cpp:33:46: candidate: operator*(int, int) <built-in>
implicitConversion.cpp:33:46: no known conversion for argument 2 from 'MyHouse' to ‘int’
rainer@seminar:~> Jj

Figure 5.19 Explicit operator bool

C.162 Overload operations that are roughly equivalent

and

C.163 Overload only for operations that are roughly equivalent

Both rules are closely related. Equivalent operations should have the same name. Or
the other way around: Nonequivalent operations should not have the same name.

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

Here is the example from the C++ Core Guidelines.

void print(int a);
void print(const string&);

print(5);

Invoking print(5) feels like generic programming. You don’t have to care which ver-
sion of print is used. This observation will not hold if the functions have different
names.

void print_int(int a);
void print_string(const string&);

print_int(5)

If nonequivalent operations have the same name, the names are too general or just
wrong. This is confusing and error prone.

std::string translate(const std::string& text); // translate into English
Code translate(const Code& code); // compile the code

Define overloaded operators in the namespace of their
operands

C.168

Have you ever wondered why the following program works and displays Test?

#include <iostream>
int main() {
std::cout << "Test\n";

First of all, when you execute the program, it essentially becomes the following
program:

#include <iostream>
int main() {
operator << (std::cout, "Test\n");

125

https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/header/iostream

126

PART I THE GUIDELINES

std: :cout << "Test\n" boils down to operator << (std::cout, "Test\n");. There
is no operator << in the global namespace, but argument-dependent lookup (ADL)
examines the std namespace. The operator << finds std::operator <<
(std::ostream&, const char*) because std::cout isinthe std:: namespace.

Argument-dependent lookup (ADL, also called Koenig lookup) means that for
unqualified function calls, the functions in the namespace of the function arguments
are considered by the C++ compile time.

Let me rephrase the definition of ADL using operands and operators. The C++
run time also considers for operators the namespace of the operands. Consequently,
you should define overloaded operators in the namespace of their operands.

Unions

A union is a special class type where all members start at the same address. A union
can hold only one type at a time; therefore, you can save memory. A tagged union
(aka discriminated union) is a union that keeps track of its types. std: :variant is a
tagged union.

The C++ Core Guidelines state that the job of unions is to save memory. You
should not use naked unions but tagged unions such as std: :variant.

Use unions to save memory

A union can hold only one type at one point in time, so you can save memory because
the elements of a union share the same memory. The union will be as big as the big-

gest type.

union Value {

int i;
double d;
Y
Value v = { 123 }; // initializes the first member with an int
std::cout << v.i << '\n'; // write 123
v.d = 987.654; // now v holds a double
std::cout << v.d << '\n'; // write 987.654

Value is a “naked” union. You should not use it, according to the next rule.

https://en.cppreference.com/w/cpp/utility/variant
https://en.cppreference.com/w/cpp/utility/variant
https://en.cppreference.com/w/cpp/language/adl
https://en.cppreference.com/w/cpp/language/adl
https://en.wikipedia.org/wiki/Andrew_Koenig_(programmer)

CHAPTER 5 CLASSES AND CLASS HIERARCHIES 127

C.181 Avoid “naked” unions

“Naked” unions are very error prone because you have to keep track of the underly-
ing type.

// nakedUnion.cpp
#include <iostream>
union Value {

int 1i;

double d;
¥

int main() {

std::cout << '\n';

Value v;

v.d = 987.654;

std::cout << "v.d: " << v.d << '\n';
std::cout << "v.i: " << v.i << '\n'; // (1)

std::cout << '\n';

v.i = 123;
std::cout << "v.i: " << v.i << '\n';
std::cout << "v.d: " << v.d << '\n'; // (2)

std::cout << '\n';

The union holds a double in the first section and an int value in the second section.
If you read a double as an int (1), or an int as a double (2), you get undefined behav-
ior (see Figure 5.20).

https://en.cppreference.com/w/cpp/header/iostream

128 PART I THE GUIDELINES

File Edit View Bookmarks Settings Help
rainer@linux:~> nakedUnion

>

v.d: 987.654
v.i: 1683627180

v.i: 123
v.d: 987.654

rainer@linux:~> |Jj

[] rainer : bash

Figure 5.20 Undefined behavior with a “naked” union

To overcome this source of errors, you should use a tagged union.

C.182 Use anonymous unions to implement tagged unions

Implementing a tagged union is quite sophisticated. In case you are curious, have a
look at the rule “C.182: Use anonymous unions to implement tagged unions.”

To simplify the code sample below, I used the tagged union std: :variant, which
is part of C++17.

1 // variant.cpp; C++17

2

3 #include <variant>

4 #include <string>

5

6 int main() {

7

8 std::variant<int, float> v;

9 std::variant<int, float> w;

10

11 int i = std::get<int>(v); // i is @

12

13 v = 12; // v contains int

14 int j = std::get<int>(v);

15

16 w = std::get<int>(v);

17 w = std::get<O>(v); // same effect as the previous line
18 w = V; // same effect as the previous line
19

20

https://en.cppreference.com/w/cpp/utility/variant
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ru-anonymous

CHAPTER 5 CLASSES AND CLASS HIERARCHIES

21 // std::get<double>(v); // error: no double in [int, float]

22 // std::get<3>(v); // error: valid index values are 0 and 1
23

24 try{

25 std::get<float>(w); // w contains int, not float: will throw
26 }

27 catch (std::bad_variant_access&) {}

28

29 v = 5,5f; // switch to float

30 v = 5; // and back

31

32 std::variant<std::string> v2("abc"); // converting constructors ok
// when unambiguous
33 v2 = "def"; // converting assignment ok when unambiguous
34
35 }

Lines 8 and 9 define the two variants v and w. Both variants can have an int and a
float value. Their initial value is O (line 11). The default value for the first underlying
type int is 0. v gets in the line 13 the value 13. Thanks to std: : get<int>(v), you can
get the value for the underlying type. Line 16 and the following two lines show three
possibilities to assign the variant v the variant w. You have to keep a few rules in
mind. You can ask for the value of a variant by type or by index. The type must be
unique, and the index valid (lines 21 and 22). If not, you get a std: :bad_variant_
access exception. Lines 29 and 30 switch the variant v to float and back to int. If
the constructor call or assignment call is unambiguous, a conversion takes place.
This conversion is the reason you can construct a std: :variant<std: :string> with
a C-string or assign a new C-string to the variant (lines 27 and 28).

Related rules

I have skipped two sections from the classes and class hierarchies part of the C++
Core Guidelines. The first one is the section on containers and other resource han-
dles; the second one is the section related to function objects and lambdas.

I also skipped the six guidelines discussing containers and other resource handles
because they lack content.

The four guidelines to function objects and lambdas are already part of Chapter 4,
Functions, and Chapter 8, Expressions and Statements.

The rules related to smart pointers are presented in a bigger context in Chapter 7,
Resource Management.

129

https://en.cppreference.com/w/cpp/utility/variant
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-containers
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-containers
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-lambdas
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-lambdas

130

PART 1

THE GUIDELINES

Distilled

Important

Prefer concrete types over class hierarchies. Make your concrete type
regular. Regular types support the big six (default constructor, destruc-
tor, copy and move constructor, copy- and move-assignment operator),
the swap function, and the equality operator.

If possible, let the compiler generate the big six. If not, request all the
special member functions via default. If this is not possible, imple-
ment all of them explicitly and give them a consistent design. A copy
constructor or copy-assignment operator should copy. A move con-
structor or move-assignment operator should move.

A constructor should return a fully initialized object. Use the construc-
tor to establish the invariant. Don’t use a constructor to set the mem-
bers to its defaults. Prefer in-class initialization to reduce repetition.

Implement a destructor if you need cleanup action at object destruc-
tion. A base-class destructor should be public and virtual or pro-
tected and nonvirtual.

Use class hierarchies to model only inherent hierarchical structures.
Make the base class abstract if used as an interface to separate the inter-
face from the implementation. An abstract class should have only a
defaulted default constructor.

Distinguish between interface inheritance and implementation inherit-
ance. The objective of interface inheritance is to separate the user from
the implementation; implementation inheritance is about reusing an
existing implementation. Don’t mix both concepts in a class.

A class with virtual functions should have a public and virtual or
protected destructor. Use exactly one of virtual, override, or final
for a virtual function.

Data members of a class should all be either public or private. Make
them private and use a class if the class establishes an invariant. If
not, make them public and use a struct.

Make single-argument constructors and conversion operators explicit.

Use unions to save memory, but don’t use naked unions; prefer tagged
unions such as std: :variant from C++17.

https://en.cppreference.com/w/cpp/utility/variant

Chapter 6

Enumerations

Cippi counts from one to five.

Enumerations are used to define sets of integer values and also a type for such sets of
values. Although this section has eight rules about enums, there is a crucial rule.
Prefer scoped enumerations to classic enumerations. Scoped enumerations are also
called strongly typed enums or enum classes.

General Rules

Classical enumerations (before C++11) have many drawbacks. Let me explicitly
compare plain (unscoped) enumerations and scoped enumerations because the dif-
ference is not explicitly mentioned in the C++ Core Guidelines.

131

132

PART I THE GUIDELINES

Here is a classical enumeration:

enum Color {
red,
blue,
green

3

What are the drawbacks of classical enumerations? The enumerators

* Have no scope.
e Implicitly convert int.
e Pollute the global namespace.

e Have an unknown type. The type has to be big enough to hold the enumerators.

By using the keyword class or struct, the enumeration becomes a scoped enumera-
tion (class enum):

enum class ColorScoped {

red,
blue,
green
}
Now you have to use the scope operator (::) to access the enumerators:

ColorScoped: :red. ColorScoped: : red does not implicitly convert to int and, there-
fore, does not pollute the global namespace. This is the reason they are often called
strongly typed.

Additionally, the underlying type is by default int, but you can choose a different
integral type.

Now that the background information has been provided, let’s dive directly into
the most important rules.

Prefer enumerations over macros

Macros don’t respect scope and have no type. This means you can override a previ-
ously set macro that specifies a color.

// webcolors.h
#define RED OXFFO000

CHAPTER 6 ENUMERATIONS

// productinfo.h
#define RED [¢]

int webcolor = RED; // should be OXFFOO00

With colorScoped, this would not have happened because you have to use the scope
operator: ColorScoped webcolor = ColorScoped::red;.

Use enumerations to represent sets of related named
constants

This rule is obvious because enumerators create a set of integers, which is a named
type.

enum class Day {
Mon,
Tue,
Wed,
Thu,
Fri,
Sat,
Sun

Prefer enum classes over “plain” enums

The enumerators of a scoped enumerator (enum class) do not automatically convert
to int. You have to access them with the scope operator.

// scopedEnum.cpp
#include <iostream>

enum class ColorScoped {
red,
blue,
green

}i

133

https://en.cppreference.com/w/cpp/header/iostream

134 PART I THE GUIDELINES

void useMe(ColorScoped color) {

switch(color) {

case ColorScoped::red:
std::cout << "ColorScoped::red" << '\n';
break;

case ColorScoped: :blue:
std::cout << "ColorScoped::blue" << '\n';
break;

case ColorScoped::green:
std::cout << "ColorScoped::green" << '\n';
break;

int main() {

std::cout << static_cast<int>(ColorScoped::red) << '\n'; // 0
std::cout << static_cast<int>(ColorScoped::green) << '\n'; // 2

ColorScoped color{ColorScoped::red};
useMe(color); // ColorScoped: :red

Don't use ALL_CAPS for enumerators

If you use ALL_CAPS for enumerators, you may get a conflict with macros because
they are typically written in ALL_CAPS.

enum class ColorScoped{ RED };
#define RED OXFFOO00

Of course, this rule does not only apply to enumerators but to constants in general.

Avoid unnamed enumerations

CHAPTER 6 ENUMERATIONS

Not every compile-time constant should be an enum. C++ also lets you define
compile-time constants as constexpr variables. Use enums only for sets of related
constants (Enum.2).

// bad
enum { red = OXFFOOOO, scale = 4, is_signed = 1 };

// good

constexpr int red = OXFFOO00;
constexpr short scale = 4;
constexpr bool is_signed = true;

Specify the underlying type of an enumeration only when
necessary

Enum.7

Since C++11, you can specify the underlying type of the enumeration and save mem-
ory. By default, the type of a scoped enum is int, and therefore, you can forward
declare an enum.

// typeEnum.cpp
#include <iostream>

enum class Coloril {
red,
blue,
green

}i

enum struct Color2: char {
red,
blue,
green

}
int main() {

std::cout << sizeof(Colorl) << '\n'; // 4
std::cout << sizeof(Color2) << '\n'; // 1

135

https://en.cppreference.com/w/cpp/language/class
https://en.cppreference.com/w/cpp/language/class
https://en.cppreference.com/w/cpp/header/iostream

136

PART I THE GUIDELINES

Specify enumerator values only when necessary

By specifying the enumerator values, you may set a value twice. The following enu-
meration Col2 has this issue.

enum class Coll { red, yellow, blue };
enum class Col2 { red = 1, yellow = 2, blue = 2 }; // typo
enum class Month { jan = 1, feb, mar,
apr, may, jun,
jul, aug, sep,
oct, nov, dec }; // 1 is conventional

Sccoped enumerations check the value of their underlying enumerators at compile
time.

// enumChecksRange.cpp

enum struct Color: char {
red = 127,
blue,
green

Y
int main() {

Color color{Color::green};

The compilation of the program fails because the enumerators are too big to fit into
the underlying type (see Figure 6.1).

rainer : bash — Konsole

File Edit View Bookmarks Semings Help

rainer@seminar:~> g++ enumChecksRange.cpp -0 enumChecksRange

enumChecksRange.cpp:3:5: error: enumerator value 128 is outside the range of underlying typ
blue,

rainer@seminar:~= [J '

Figure 6.1 The enumerators are too big for the underlying type

With classical enumerators, the size of the underlying type would be just big enough.

CHAPTER 6 ENUMERATIONS 137

Related rules

Chapter 8, Expressions and Statements, deepens the discussion to constexpr values.

Distilled

Important

e Use scoped enumerations instead of classical enumerations. As the name
suggests, scoped enumerations have a scope, do not implicitly convert to
int, do not pollute the global namespace, and have by default int as their
underlying type.

e Specify the underlying type of the scoped enumerations and the values of
the enumerators only when necessary.

This page intentionally left blank

Chapter 7

Resource Management

Cippi maintains the garden.

First, what is a resource? A resource is something that you have to manage. That means
you have to acquire and release it because resources are limited, or you have to protect it.
You can have only a limited amount of memory, sockets, processes, or threads; only one
process can write a shared file or one thread can write a shared variable at one point in
time. If you don’t follow the protocol, many issues are possible.

139

140 PART I THE GUIDELINES

If you think about resource management, it all boils down to one critical point:
ownership. What I like in particular about modern C++ is that we can directly
express our intention about ownership in code.

¢ Local objects: The C++ run time, as the owner, automatically manages the
lifetime of these resources. The same holds for global objects or members of a
class. The guidelines call them scoped objects.

¢ References: I’'m not the owner. I only borrowed the resource that cannot be empty:.

e Raw pointers: ’'m not the owner. I only borrowed the resource that can be
empty. I must not delete the resource.

® std::unique_ptr: I'm the exclusive owner of the resource. I may explicitly
release the resource.

¢ std::shared_ptr: I share the resource with other shared_ptrs and release
the resource if I’'m the last owner. I may explicitly release my share of the
ownership.

® std::weak_ptr: 'm not the owner of the resource, but may temporarily become
a shared owner of the resource by using the member function std: :weak_ptr.
lock().

General rules

Although this section has six rules, only two of them, RAII and scoped objects, are
original. Two of them are already part of other sections:

e R.2:Ininterfaces, use raw pointers to denote individual objects (only) (see 1.13:
Do not pass an array as a single pointer)

e R.6: Avoid non-const global variables (see 1.2: Avoid non-const global
variables)

The remaining four about the semantics of pointers and references extend existing rules.
The first general rule is idiomatic for C++: RAIL. RAII stands for Resource
Acquisition Is Initialization. The C++ standard library systematically relies on RAIL.

Manage resources automatically using resource handles
and RAII (Resource Acquisition Is Initialization)

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-use-ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/weak_ptr
https://en.cppreference.com/w/cpp/memory/weak_ptr

CHAPTER 7 RESOURCE MANAGEMENT

The idea of RAII is simple. You create a kind of proxy object for your resource. The
constructor of the proxy acquires the resource, and the destructor of the proxy
releases the resource. The central idea of RAIl is that the C++ run time is the owner
of this proxy as a local object and, therefore, of the resource. When the proxy object
as a local object goes out of the scope, the destructor of the proxy is automatically
called. Consequently, we get deterministic destruction behavior in C++.

RAII is heavily used in the C++ ecosystem. Examples of RAII are the containers
of the Standard Template Library (STL), smart pointers, and locks. Containers take
care of their elements, smart pointers take care of their memory, and locks take care
of their mutexes.

The following class ResourceGuard models RAII.

1 // raii.cpp

2

3 #include <iostream>

4 #include <new>

5 #include <string>

6

7 class ResourceGuard {

8 public:

9 explicit ResourceGuard(const std::string& res):resource(res){
10 std::cout << "Acquire the " << resource << "." << '\n';
11 3}

12 ~ResourceGuard(){

13 std::cout << "Release the "<< resource << "." << '\n';
14 3}

15 private:

16 std::string resource;

17 };

18

19 int main() {

20

21 std::cout << '"\n';

22

23 ResourceGuard resGuardi1{"memoryBlock1"};

24

25 std::cout << "\nBefore local scope" << '\n';
26 {

27 ResourceGuard resGuard2{"memoryBlock2"};
28 3}

29 std::cout << "After local scope" << '\n';

w
(o)

141

https://en.wikipedia.org/wiki/Proxy_pattern
https://en.wikipedia.org/wiki/Proxy_pattern
https://en.wikipedia.org/wiki/Proxy_pattern
https://en.wikipedia.org/wiki/Proxy_pattern
https://en.wikipedia.org/wiki/Proxy_pattern
https://en.wikipedia.org/wiki/Proxy_pattern
https://en.cppreference.com/w/cpp/header/iostream

142 PART I THE GUIDELINES

31 std::cout << '\n';

32

33

34 std::cout << "\nBefore try-catch block" << '"\n';
35 try {

36 ResourceGuard resGuard3{"memoryBlock3"};
37 throw std::bad_alloc();

38 3}

39 catch (const std::bad_alloc& e) {

40 std::cout << e.what();

41 3

42 std::cout << "\nAfter try-catch block" << '\n';
43

44 std::cout << '\n';

45

46 }

ResourceGuard is the guard that manages its resource. In this case, the resource is a sim-
ple string. ResourceGuard creates the resource in its constructor (lines 9—11) and releases
the resource in its destructor (lines 12—14). It does its job very reliably. The creation and
the releasing of the resource is only indicated in the constructor and in the destructor.

The C++ run time calls the destructor of resGuard1 (line 23) exactly at the end
of the main function (line 46). The lifetime of resGuard2 (line 27) already ends in
line 28. Therefore, the C++ run time calls the destructor once more. Even the throw-
ing of the exception std::bad_alloc does not affect the reliability of resGuard3
(line 36). Its destructor is called at the end of the try block (lines 35-38).

Figure 7.1 displays the lifetime of the objects.

" rainer: bash - Konsole <4>

File Edit View Bookmarks Settings Help
rainer@linux:~> raii

Acquire the memoryBlockl.

Before local scope
Acquire the memoryBlock2.
Release the memoryBlock2.
After local scope

Before try-catch block
Acquire the memoryBlock3.
Release the memoryBlocks.
std: :bad_alloc

After try-catch block

|Release the memoryBlockl.
rainer@linux:~> i

(=) rainer : bash | 3

Figure 7.1 Resource Acquisition Is Initialization

https://en.cppreference.com/w/cpp/memory/new/bad_alloc
https://en.cppreference.com/w/cpp/memory/new/bad_alloc
https://en.cppreference.com/w/cpp/memory/new/bad_alloc

CHAPTER 7 RESOURCE MANAGEMENT

A raw pointer (a T*) is non-owning

A raw reference (a T&) is non-owning

Both rules generalize the ownership aspect of the rule about passing pointers or
references to functions and the rule about when to return a pointer (T*) or an Ivalue
reference (T&) from a function. The critical question for pointers and references is,
Who is the owner of the resource? If you are not the owner but just borrowed it, you
must not delete the resource.

Prefer scoped objects, don't heap-allocate unnecessarily

The rule about scoped objects is probably the most important rule for resource man-
agement in order to make it simple. If possible, use a scoped object.

A scoped object is an object with its scope. That may be a local object, a global
object, or a member of a class. The C++ run time takes care of the scoped objects.
There is no memory allocation and deallocation involved, and you cannot get a
std: :bad_alloc exception.

Why is the following example bad?

void f(int n) {
auto* p = new Gadget{n};
/7.
delete p;

There is no need to create Gadget on the heap. It costs time, and it is error prone. You
may forget to deallocate the memory, or an exception may happen before the delete
call. In the end, you have a memory leak. Just use a local object and you are safe by
design.

void f(int n) {
Gadget g{n};
/7 .

143

https://en.cppreference.com/w/cpp/memory/new/bad_alloc

144 PART I THE GUIDELINES

The power of curly braces

It is handy to use extra curly braces to define an artificial scope. Thanks to the
artificial scope, you can control the lifetime of a local object explicitly.

int main() {

{
std::vector<int> myVec(SIZE);
measurePerformance(myVec, "std::vector<int>(SIZE)");
}
{
std: :deque<int> myDec(SIZE);
measurePerformance(myDec, "std::deque<int>(SIZE)");
}
{
std::list<int> myList(SIZE);
measurePerformance(myList, "std::list<int>(SIZE)");
}
{
std::forward_list<int> myForwardList(SIZE);
measurePerformance (myForwardList,
"std::forward_list<int>(SIZE)");
}
{
std::string myString(SIZE,' ');
measurePerformance(myString, "std::string(SIZE,' ')");
}

The code snippet shows part of a performance test (measurePerformance) that
includes substantial allocations. The temporarily created containers in each
artificial scope are quite big. Without deleting them at the end of each artificial
scope, your computer may run out of memory and you get a std: :bad_alloc
exception.

https://en.cppreference.com/w/cpp/memory/new/bad_alloc

CHAPTER 7 RESOURCE MANAGEMENT

Allocation and deallocation

Maybe you are a little bit bewildered? The C++ Core Guidelines have only four rules
for allocation and deallocation. Three of the four rules are about smart pointers. In
the end, the essence of this section is that you should use smart pointers, which are
the topic of the following section.

Before I dive into the four rules, let me give you a little background that is neces-
sary for understanding the rules. Creating an object in C++ with new consists of
two steps.

1. Allocate the memory for the object.

2. Construct the object into the allocated memory.

operator new or operator new [] is the first step; the constructor is the second step.

The same strategy applies to the destruction but the other way around. First,
the destructor (if any) is called, and then the memory is deallocated with operator
delete or operator delete [].

Avoid malloc() and free()

What is the difference between new and malloc, or delete and free? The C func-
tions malloc and free do only half of the job. malloc allocates the memory, and
free deallocates the memory. Neither does malloc invoke the constructor nor does
free invoke the destructor.

This means if you use an object that was just created via malloc, your program
has undefined behavior.

// mallocVersusNew.cpp

#include <iostream>
#include <string>

struct Record {
explicit Record(const std::string& na): name(na) {}
std::string name;

}i

int main() {

145

http://en.cppreference.com/w/cpp/memory/new/operator_new
http://en.cppreference.com/w/cpp/memory/new/operator_delete
http://en.cppreference.com/w/cpp/memory/new/operator_delete
https://en.cppreference.com/w/cpp/header/iostream

146

PART I THE GUIDELINES

Record* pl1 = static_cast<Record*>(malloc(sizeof(Record))); // (1)
std::cout << pl->name << '\n';

auto p2 = new Record("Record"); // (2)
std::cout << p2->name << '\n';

I allocate memory only for the Record object (1). The result is that the output
pi->name call in the following line is undefined behavior. Undefined behavior just
means that you cannot make any assumption about the behavior of the program. On
repeated runs, I got no output; the expected output, which is an empty string; and a
core dump. See Figure 7.2.

File Edit View Bookmarks Settings Help
rainer@linux:~> mallocVersusNew

Segmentation fault (core dumped)
rainer@linux:~> i

B]

. rainer : bash

Figure 7.2 Undefined behavior causes a core dump

In contrast, the call (2) invokes the constructor.

Avoid calling new and delete explicitly

You should keep this rule in mind. The emphasis in this rule lies in the word explicitly
because using smart pointers or containers of the STL gives you objects that
implicitly use new and delete.

For example, here are a few variations to create std::unique_ptr and
std::shared_ptr.

std::unique_ptr<int> uniql(new int(2011)); // (1)
std::unique_ptr<int> uniq2 = std::make_unique<int>(2014);

std::shared_ptr<int> sharl(new int(2011)); // (1)
std::shared_ptr<int> share2 = std::make_shared<int>(2014);

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr

CHAPTER 7 RESOURCE MANAGEMENT

If you don’t know which version you should prefer, the rules “R.22: Use make_
shared() to make shared_ptrs” and “R.23: Use make_unique() to make unique_
ptrs” give you the definite answer.

You cannot entirely avoid the calls in (1). When you want to create a
std:::unique_ptr or a std: :shared_ptr, which shouldn’t use the destructor of the
underlying type, the following syntax is obligatory:

std::shared_ptr<int> sharil(new int(2011), MyIntDeleter());

Immediately give the result of an explicit resource
allocation to a manager object

The C++ community loves acronyms. For memory allocation, there is a special name
for this rule: NNN. NNN stands for No Naked New and means the result of a mem-
ory allocation should be given to a manager object. This manager object could be a
std::unique_ptr or a std: :shared_ptr. Of course, this rule has a broader context.
For example, containers of the STL know how to take care of their elements, or
locks know how to take care of their mutexes.

When you don’t follow these rules, the danger of undefined behavior lurks.

// standaloneAllocation.cpp // Bad: because of double free

#include <iostream>
#include <memory>

struct MyInt{
explicit MyInt(int myInt):i(myInt) {3}

~MyInt() {
std::cout << "Goodbye from " << i << '\n';

}
int i;
}
int main() {
std::cout << '\n';

MyInt* myInt = new MyInt(2011);

std::unique_ptr<MyInt> unigql = std::unique_ptr<MyInt>(myInt);

147

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/header/iostream

148

PART I THE GUIDELINES

std::unique_ptr<MyInt> unig2 = std::unique_ptr<MyInt>(myInt);

std::cout << '\n';

The class MyInt displays in its destructor the value of the member attribute i_. The
issue starts with the standalone allocation (MyInt* myInt = new MyInt(2011)). Either
unigl or uniq2 is the owner of myInt, but not both. Due to the two owners, two deal-
locations of the memory happen, which is undefined behavior. See Figure 7.3.

rainer : bash — Konsole

File Edit View Bookmarks Settings Help

rainer@seminar:~> standaloneAllocation

Goodbye from 2011
Goodbye from 0
rainer@seminar:~> | |

Figure 7.3 Two owners with std: :unique_ptr

Two deallocations of myInt happen at the end of the main function. The first deallo-
cation via the handle is fine, but the second causes undefined behavior. The value of
the member attribute i_is 0 in the second case.

When using std: :make_unique, you avoid the risk of double-free problems:

int main() {
std::cout << '\n';
std::unique_ptr<MyInt> uniq = std::make_unique<int>(2011);

std::cout << '\n';

Perform at most one explicit resource allocation in a single
expression statement

This rule is a little bit tricky.

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr

CHAPTER 7 RESOURCE MANAGEMENT

void func(std::shared_ptr<widget> spl, std::shared_ptr<widget> sp2) {

func(std: :shared_ptr<widget>(new Widget(1)),
std::shared_ptr<widget>(new wWidget(2)));

This function call is not exception safe and may, therefore, result in a memory leak.
Why? The reason is that four operations must be performed to initialize both shared
pointers.

1. Allocate memory for widget (1).
2. Construct Widget (1).
3. Allocate memory for Widget(2).

4. Construct Widget(2).

Up to C++14, the compiler is free to first allocate the memory for widget(1) and
widget(2) and then construct both. From the optimization perspective, this makes
much sense because one memory allocation of two widgets is very likely faster than
two allocations of one Widget. This means the following instructions could happen:

1. Allocate memory for widget (1).
2. Allocate memory for widget(2).
3. Construct Widget(1).

4. Construct Widget(2).

If one of the constructors throws an exception, the memory of the other object is not
automatically freed and we get a memory leak.

It’s easy to overcome this issue by using the factory function std: :make_shared
for creating a std: :shared_ptr.

func(std: :make_shared<widget>(1), std::make_shared<widget>(2));

std: :make_shared guarantees that the function call has no effect if an exception is
thrown. The analogous function std: :make_unique for creating a std: :unique_ptr
gives the same guarantee.

149

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr

150

PART I THE GUIDELINES

Guaranteed evaluation order with C++17
Thanks to the guaranteed evaluation order in C++17, the already discussed code

snippet in this rule cannot cause a memory leak.

void func(std::shared_ptr<widget> spl, std::shared_ptr<widget> sp2) {

func(std: :shared_ptr<widget>(new Widget(1)),
std::shared_ptr<widget>(new Widget(2)));

The C++17 standard guarantees, in contrast to the C++14 standard, each subex-
pression in the function call func is evaluated before the other. In which sequence
is still unspecified.

Smart pointers

From the library perspective, the smart pointers were the most important addition to
the C++11 standard. The C++ Core Guidelines have more than ten rules related to
std::unique_ptr,std::shared_ptr,and std: :weak_ptr. The rules for smart point-
ers boil down to two categories: the basic usage of smart pointers as owners and
smart pointers as function parameters.

Basic usage

I assume in this section a basic familiarity with smart pointers. If you want to know
all the details, read the documentation for std: :unique_ptr, std: :shared_ptr, and
std: :weak_ptr.

Use unique_ptr or shared_ptr to represent ownership

For completeness, I also include std: :weak_ptr in this rule. Modern C++ has three
smart pointers for expressing three different kinds of ownership.

® std::unique_ptr: exclusive owner

https://en.cppreference.com/w/cpp/language/eval_order
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/weak_ptr
https://en.cppreference.com/w/cpp/memory/weak_ptr
https://en.cppreference.com/w/cpp/memory/weak_ptr

CHAPTER 7 RESOURCE MANAGEMENT

® std::shared_ptr: shared owner

® std::weak_ptr: non-owning reference to an object that is managed by a
std::shared_ptr

A std::unique_ptr is the exclusive owner of its resource. A std::unique_ptr
cannot be copied, only moved.

auto uniquePtrl = std::make_unique<int>(1998);
auto uniquePtr2(std::move(uniquePtrl));

In contrast, a std::shared_ptr shares ownership. If you copy or copy assign a
shared pointer, the reference counter is increased; if you delete or reset a shared
pointer, the reference counter is decreased. If the reference counter becomes zero, the
underlying resource will be deleted.

auto sharedPtrl = std::make_shared<int>(1998) // reference count 1
auto sharedPtr2(sharedPtril); // reference count 2

A std: :weak_ptr is not a smart pointer. It has a reference to an object that is man-
aged by a std: :shared_ptr. Its interface is quite limited and doesn’t allow the trans-
parent access on the underlying resource. By using the member function lock on a
std: :weak_ptr, you can create a std: :shared_ptr from a std: :weak_ptr.

auto sharedPtrl = std::make_shared<int>(1998) // reference count 1
std: :weak_ptr<int> weakPtri(sharedPtrl); // reference count 1
auto sharedPtr2 = weakPtri.lock(); // reference count 2

Prefer unique_ptr over shared_ptr unless you need to
share ownership

The std: :unique_ptr should always be your first choice if you need a smart pointer.
A std: :unique_ptr is per design as fast and as memory efficient as a raw pointer.

This observation does not hold for a std: :shared_ptr. A std: :shared_ptr needs
to manage its reference counter and allocate extra memory for maintaining the con-
trol block. The control block is necessary to manage the lifetime of the controlled
object. The std: :shared_ptr shines when you need shared ownership. In this case,
allocating the shared resource only once may spare memory and time.

Don’t use a std: :shared_ptr for convenience reasons because you want to copy
it. A std: :unique_ptr cannot be copied, but it can be moved.

151

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/weak_ptr
https://en.cppreference.com/w/cpp/memory/weak_ptr
https://en.cppreference.com/w/cpp/memory/weak_ptr
https://en.cppreference.com/w/cpp/memory/weak_ptr
https://en.cppreference.com/w/cpp/memory/weak_ptr
https://en.cppreference.com/w/cpp/utility/move

152 PART I THE GUIDELINES

// moveUniquePtr.cpp

#include <algorithm>
#include <iostream>

#include <utility>

1

2

3

4

5 #include <memory>
6

7 #include <vector>
8
9

void takeUniquePtr(std::unique_ptr<int> unigPtr) {

10 std::cout << "*unigPtr: " << *unigPtr << '\n';
11}

12

13 int main() {

14

15 std::cout << '\n';

16

17 auto unigPtrl = std::make_unique<int>(2011);

18

19 takeUniquePtr(std::move(unigPtril));

20

21 auto unigPtr2 = std::make_unique<int>(2014);

22 auto unigPtr3 = std::make_unique<int>(2017);

23

24 std::vector<std::unique_ptr<int>> vecUniqPtr {};
25 vecUniqgPtr.push_back(std: :move(uniqPtr2));

26 vecUnigPtr.push_back(std: :move(unigPtr3));

27 vecUnigPtr.push_back(std: :make_unique<int>(2020));
28

29 std::cout << '\n';

30

31 std: :for_each(vecUniqPtr.begin(), vecUniqgPtr.end(),
32 [1(std::unique_ptr<int>& uniqgPtr) {
33 std::cout << *unigPtr << '\n';
34 1)

35

36 std::cout << '\n';

37

38 }

The function takeUniquePtr (line 9) takes a std::unique_ptr by value. The key
observation is that you have to move the std: :unique_ptr inside. The same argument
holds for the std::vector<std::unique_ptr<int>> (line 24). std: :vector, like all
containers of the standard template, uses copy semantics. The container wants to own

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 7 RESOURCE MANAGEMENT

its elements but copying a std: :unique_ptr is not possible. std: :move solves this issue
(lines 25 and 26). Directly constructing the std: :unique_ptr is also possible (line 27).
You can apply an algorithm such as std: : for_each onthe std: :vector<std: :unique_
ptr<int>> (line 31) if no copy semantics is used internally.

Finally, Figure 7.4 shows the output of the program.

rainer : bash — Konsole <2>

File Edit View Bookmarks Settings Help
rainer@seminar:~> movelUniquePtr

*unigPtr: 2011
2014

2017
2020

rainer@seminar:~> Jj '

Figure 7.4 Moving a std: :unique_ptr

Use make_shared() to make shared_ptrs

Use make_unique () to make unique_ptrs

There are two reasons to prefer std: :make_unique to std: :unique_ptr and to prefer
std: :make_shared to std: :shared_ptr.
The first reason is exception safety. Read the details in the previous rule “R.13:
Perform at most one explicit resource allocation in a single expression statement.”
The second reason holds only for std: :shared_ptr.

auto sharPtrl = std::shared_ptr<int>(new int(1998));
auto sharPtr2 = std::make_shared<int>(1998);

When you call std: :shared_ptr<int>(new int(1998)), two memory allocations
are involved: one allocation for new int(1998) and the second for the control block
of the std::shared_ptr. Memory allocation is expensive. Therefore, you should
avoid it. std: :make_shared<int>(1998) makes out of two memory allocations one
and is, therefore, faster. Additionally, the allocated object (new int(1998)) and the
control block are next to each other and can, therefore, be accessed faster.

153

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/utility/move

154

PART I THE GUIDELINES

Use std: :weak_ptr to break cycles of shared_ptrs

You get cyclic references of std::shared_ptr if the std::shared_ptrs reference
each other. For example, a doubly linked list creates cycles. If you implement the
links with std::shared_ptr, your reference counter never becomes zero, and you
end up with a memory leak. Here is a short example.

There are two cycles in Figure 7.5: first, between the mother and her daughter;
second, between the mother and her son. The subtle difference is, however, that the
mother references her daughter with a std: :weak_ptr. So there’s a std::shared_
ptr cycle between mother and son keeping both objects alive, while there is no
std: :shared_ptr cycle between mother and daughter, which allows the daughter to

be deleted.

weak_ptr

shared_ptr I

Daughter

‘ shared_ptr
I shared_ptr ‘

Figure 7.5 Cycles of smart pointers

If you don’t like images, here is the corresponding source code.

1 // cycle.cpp

2

3 #include <iostream>
4 #include <memory>

5

https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/weak_ptr
https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 7 RESOURCE MANAGEMENT

6 struct Son;

7 struct Daughter;

8

9 struct Mother {

10
11
12
13
14
15
16
17
18
19
20
21 };
22

~Mother() {
std::cout << "Mother gone" << '\n';

}

void setSon(const std::shared_ptr<Son> s) {
mySon = s;

}

void setDaughter(const std::shared_ptr<Daughter> d) {
myDaughter = d;

}

std: :shared_ptr<Son> mySon;

std: :weak_ptr<Daughter> myDaughter;

23 struct Son {

24
25
26
27
28
29 };
30

explicit Son(std::shared_ptr<Mother> m): myMother(m) {}
~Son() {
std::cout << "Son gone" << '\n';
}
std::shared_ptr<Mother> myMother;

31 struct Daughter {

32
33
34
35
36
37 };
38

39 int

40
41
42
43
44
45
46
47 }

explicit Daughter(std::shared_ptr<Mother> m): myMother(m) {}
~Daughter() {
std::cout << "Daughter gone" << '\n';

}
std::shared_ptr<Mother> myMother;

main() {

std::shared_ptr<Mother> m = std::make_shared<Mother>();
std::shared_ptr<Son> s = std::make_shared<Son>(m);

std: :shared_ptr<bDaughter> d = std::make_shared<Daughter>(m);
m->setSon(s);

m->setDaughter(d);

155

https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/weak_ptr

156

PART I THE GUIDELINES

At the end of the main function, the lifetime of the mother, the son, and the daughter
ends. Or to say it the other way around: mother, son, and daughter go out of scope,
and therefore, the destructor of the class Mother (lines 10-12), Son (lines 25-27),
and Daughter (lines 33-35) should automatically be invoked.

“Should” because only the destructor of the daughter is called. See Figure 7.6.

rainer: bash — Konsole ~» ~ 9

File Edit View Bookmarks ¥

rainer@seminar:~> cycle
Daughter gone
rainer@seminar:~> |})

Figure 7.6 Cycles of smart pointers

Due to the cycle of std: :shared_ptrs between the mother and the son, the reference
counter is always greater than zero and the destructor is not automatically invoked.
That observation is not true for the mother and the daughter. If the daughter goes
out of scope, she is automatically deleted.

Function parameters

The remaining rules in this section answer the question, How should a function take
smart pointers as parameters? Should the parameter be a std::unique_ptr or a
std::shared_ptr? Should the argument be taken by const or by reference? You
should perceive these rules for smart pointers as function parameters as a refinement
of the more general previous rules for the parameter passing of function parameters:
See Parameter Passing: In and Out and Parameter Passing: Ownership Semantics in
Chapter 4.
Before I dive into the rules, Table 7.1 presents an overview first.

Table 7.1 Smart pointers as function parameters

Function signature Semantics Rule
func(std::unique_ptr<widget>) func takes ownership. R.32
func(std: :unique_ptr<widget>&) func meant to reseat Widget. R.33
func(std::shared_ptr<widget>) func shares ownership. R.34
func(std::shared_ptr<widget>&) func might reseat Widget. R.35

func(const std::shared ptr<Widget>&) func might retain a reference count. R.36

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr

CHAPTER 7 RESOURCE MANAGEMENT

The table has five rules. Two rules for using smart pointers as parameters are still
missing. First, we have to answer the question of when to use smart pointers as func-
tion parameters. Second, there are dangers involved if a function takes its parameters
by reference.

Let’s answer the first question: When should smart pointers be used as function
parameters?

Take smart pointers as parameters only to explicitly
express lifetime semantics

If you pass a smart pointer as a parameter to a function, and in this function, you use
only the underlying resource of the smart pointer, you are doing something wrong.
In this case, you should use a raw pointer or a reference as a function parameter
because you don’t need the lifetime semantics of a smart pointer.

Let me give you an example showing the quite sophisticated lifetime management
of a smart pointer.

1 // lifetimeSemantic.cpp

2

3 #include <iostream>

4 #include <memory>

5

6 using std::cout;

7

8 void asSmartPointerGood(std::shared_ptr<int>& shr) {

9 cout << "asSmartPointerGood \n";

10 cout << " shr.use_count(): " << shr.use_count() << '\n';
11 shr.reset(new int(2011));

12 cout << " shr.use_count(): " << shr.use_count() << '\n';
13 cout << "asSmartPointerGood \n";

14 %}

15

16 void asSmartPointerBad(std::shared_ptr<int>& shr) {

17 cout << "asSmartPointerBad(sharedPtr2) \n";

18 *shr += 19;

19 }

157

https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/header/iostream

158 PART I THE GUIDELINES

20

21 int main() {

22

23 cout << '\n';

24

25 auto sharedPtrl = std::make_shared<int>(1998);
26 auto sharedPtr2 = sharedPtri;

27 cout << "sharedPtrl.use_count(): " << sharedPtril.use_count()
28 << "\n';

29 cout << '\n';

30

31 asSmartPointerGood(sharedPtrl);

32

33 cout << '\n';

34

35 cout << "*sharedPtrl: " << *sharedPtrl << '\n';
36 cout << "sharedPtrl.use_count(): " << sharedPtril.use_count()
37 << '\n';

38 cout << '\n';

39

40 cout << "*sharedPtr2: " << *sharedPtr2 << '\n';
41 cout << "sharedPtr2.use_count(): " << sharedPtr2.use_count()
42 << '\n';

43 cout << '\n';

44

45 asSmartPointerBad(sharedPtr2);

46 cout << "*sharedPtr2: " << *sharedPtr2 << '\n';
47

48 cout << '\n';

49

50 }

Let me start with the good case for a std::shared_ptr. The reference counter at
line 27 is 2 because I used the shared pointer sharedPtri to initialize sharedPtr2.
Let’s have a closer look at the invocation of the function asSmartPointerGood
(line 8). In line 10, the reference count of shr is 2, and then it becomes 1 in line 12
What happened in line 11? T reset shr to the new resource: new int(2011).
Consequently, both the shared pointer sharedPtr1 and sharedPtr2 are immediately
owners of different resources. You can observe the behavior in Figure 7.7.

https://en.cppreference.com/w/cpp/memory/shared_ptr

CHAPTER 7 RESOURCE MANAGEMENT

rainer : bash — Konsole

File Edit View Bookmarks Settings Help
rainer@seminar:~> lifetimeSemantic

sharedPtri.use_count(): 2

asSmartPointerGood
shr.use_count(): 2
shr.use_count(): 1

asSmartPointerGood

*sharedPtri: 2011
sharedPtrl.use_count(): 1

*sharedPtr2: 1998
sharedPtr2.use_count(): 1

asSmartPointerBad(sharedPtr2)
*sharedPtr2: 2017

rainer@seminar:~> |j

Figure 7.7 Lifetime semantics of smart pointers

When you invoke reset on a shared pointer sharedPtr, a sophisticated workflow
happens under the hood:

e If you invoke reset without an argument on sharedPtr, the reference counter
is decreased by one. Afterward, sharedPtr is not an owner anymore.

e If you invoke reset with an argument and the reference counter is at least 2,
you get two independent shared pointers owning different resources.

e If you invoke reset with or without an argument and the reference counter

becomes 0, the resource is released.

The semantics of the argument of asSmartPointerBad(std::shared_ptr<int>&
shr) suggests that you might reseat the smart pointer in the method, but the method
does not have any intent to do so.

So the user of your method is pushed into the wrong direction.

This magic is overkill if you are only interested in the underlying resource of the
shared pointer; therefore, a raw pointer or a reference is the right kind of parameter
for the function asSmartPointerBad (line 16).

159

https://en.cppreference.com/w/cpp/memory/shared_ptr

160 PART I THE GUIDELINES

std: :unique_ptr
There are two rules regarding std: :unique_ptr parameters:

e R.32: Take a unique_ptr<widget> parameter to express that a function
assumes ownership of a Wwidget

e R.33: Take a unique_ptr<widget>& parameter to express that a function
reseats the Widget

Here are the two corresponding function signatures:
void sink(std::unique_ptr<widget>)

void reseat(std::unique_ptr<widget>&)

std::unique_ptr<widget> When a function takes ownership of a widget,
you should take the std: :unique_ptr<widget> by value. The consequence is that the
caller has to move the std: :unique_ptr<widget>.

// unigPtrMove.cpp

#include <memory>
#include <utility>

struct widget {
explicit wWidget(int) {3}
4
void sink(std::unique_ptr<widget> unigPtr) {
// do something with uniqPtr, then dispose of it
int main() {

auto unigPtr = std::make_unique<widget>(1998);

sink(std::move(unigPtr)); // OK
sink(uniqPtr); // ERROR

The call sink(std::move(unigPtr)) is fine, but the call sink(unigPtr) breaks
because you cannot copy a std: :unique_ptr. When your function only wants to use
a Widget, it should take its parameter, according to the previous rule “R.30: Take

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-uniqueptrparam
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-uniqueptrparam
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-reseat
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-reseat
https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/utility/move

CHAPTER 7 RESOURCE MANAGEMENT

smart pointers as parameters only to explicitly express lifetime semantics, by pointer
or by reference.”

std::unique_ptr<widget>& Sometimes a function wants to reseat a Wwidget.
In this case, you should pass the std::unique_ptr<widget> by a non-const
reference.

// unigPtrReference.cpp

#include <memory>
#include <utility>

struct widget{
widget(int) {}
}

void reseat(std::unique_ptr<widget>& uniqgPtr) {
unigPtr.reset(new Widget(2003));
// do something with unigPtr

int main() {
auto unigPtr = std::make_unique<widget>(1998);

reseat(std: :move(unigPtr)); // ERROR
reseat (unigPtr); // OK

Now the call reseat(std: :move(unigPtr)) fails because you cannot bind an rvalue
to a non-const lvalue reference. This error does not hold for the call in the following
line: reseat (unigPtr). An Ivalue can be bound to an lvalue reference. By the way, the
unigPtr.reset(new Widget(2003)) generates a new Widget(2003) and destructs
the old widget (1998).

Two of the three rules for std: :shared_ptr are repetitions; therefore, I will not
bother you with details.

std::shared _ptr
There are three rules about parameters of type std: :shared_ptr:

e R.34: Take a shared_ptr<widget> parameter to express that a function is part
owner

161

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam-owner
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam-owner
https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/utility/move

162

PART I THE GUIDELINES

e R.35: Take a shared_ptr<widget>& parameter to express that a function might
reseat the shared pointer

e R.36: Take a const shared_ptr<widget>& parameter to express that it might
retain a reference count to the object

Here are the relevant function signatures for std: : shared_ptr:

void share (std::shared_ptr<widget>) ;
void reseat (std::shared_ptr<widget>¢) ;
void mayShare (const std::shared_ptr<widget>s) ;

Let’s look at each function signature in isolation. What does this mean from
the function perspective?

® void share(std::shared ptr<widget>):I’'m a shared owner of the widget
during the lifetime of the function. At the beginning of the function, I
increase the reference counter; at the end of the function, I decrease the ref-
erence counter; therefore, the widget stays alive as long as [use it.

® void reseat(std::shared_ptr<Widget>&): [’m not a shared owner of the
widget because I do not change the reference counter. I have no guarantee
that the widget stays alive during the execution of the function, but I can
reseat the resource.

® void mayShare(const std::shared_ptr<widget>&): | Only borrow the
resource. I cannot extend the lifetime of the resource, nor can I reseat the
resource. Honestly, it would be best if you used a pointer (Widget*) or a
reference (Widget&) as a parameter instead because there is no added value
in using a const std: :shared_ptr<widget>& as a parameter.

Do not pass a pointer or reference obtained from an

R.37 aliased smart pointer

First of all, the title of this rule may be misleading. An aliased smart pointer
(reference to a smart pointer) is a smart pointer, of which you are not the owner.
Violating this rule often ends in a dangling pointer.

The code snippet exemplifies the problem.

void oldFunc(Widget* wid){
// do something with wid

https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam-const
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam-const

CHAPTER 7 RESOURCE MANAGEMENT

void shared(std::shared_ptr<widget>& shaPtr){

oldFunc(*shaPtr);
// do something with shaPtr

auto globShared = std::make_shared<widget>(2011);

shared(globShared);

globShared is a globally shared pointer. The function shared takes its argument by
reference. Therefore, the reference counter of shaPtr as the aliased smart pointer is
not increased and the function share does not extend the lifetime of widget (2011).
The issue begins with the call oldFunc(*shaPtr). oldFunc accepts a pointer to the
widget; therefore, oldFunc has no guarantee that the widget stays alive during its
execution. oldFunc only borrows the widget.

The cure is simple. You have to ensure that the reference count of globShared is
increased before the call to the function oldFunc.

e Pass the std: :shared_ptr by value to the function shared:

void shared(std::shared_ptr<wWidget> shaPtr) {
oldFunc(*shaPtr);
// do something with shaPtr

}

e Make a copy of the shaPtr in the function shared:

void shared(std::shared_ptr<Widget>& shaPtr) {

auto keepAlive = shaPtr;
oldFunc(*shaPtr);

// do something with keepAlive or shaPtr

163

https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr

164

PART I THE GUIDELINES

Let me formulate the cure as a straightforward rule: You should access a shared
resource only if you actually hold a share in its ownership.

The same reasoning also applies to std: :unique_ptr, but there is no simple cure
because you cannot copy a std: :unique_ptr.

Related rules

The general rules for resource management have a strong overlap with the existing
rules regarding functions and interfaces (see Chapter 4, Functions).

The guidelines addressing smart pointers as function parameters are a refinement of
the previous rules regarding the parameter passing of function parameters: See Param-
eter Passing: In and Out and Parameter Passing: Ownership Semantics in Chapter 4.

Distilled

Important

* Manage resources automatically. Create a kind of proxy object for your
resource. The constructor of the proxy acquires the resource, and the
destructor of the proxy releases the resource. The C++ run time takes care
of the proxy.

e Use scoped objects, if possible. A scoped object is an object with its scope.
That may be a local object, a global object, or a member of a class. The
C++ run time takes care of the scoped objects.

e Don’t use malloc and free, and avoid new and delete. Give the result
of a resource allocation immediately to a resource manager such as
std::unique_ptr or std: :shared_ptr.

e Use the smart pointer std: :unique_ptr to represent exclusive ownership
and the smart pointer std: :shared_ptr to represent shared ownership.
Use std::make_unique to create a std::unique_ptr and std::make_
shared to create a std: :shared_ptr.

e Take smart pointers as function parameters if you want to express lifetime
semantics. If not, use a plain pointer or a reference.

e Take smart pointers as function parameters by value to express ownership
semantics; take smart pointers by reference to express that the function
might reseat the smart pointer.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
https://en.wikipedia.org/wiki/Proxy_pattern
https://en.wikipedia.org/wiki/Proxy_pattern
https://en.wikipedia.org/wiki/Proxy_pattern
https://en.wikipedia.org/wiki/Proxy_pattern
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr

Chapter 8

Expressions and Statements

Cippi is back at school.

According to the C++ Core Guidelines, “expressions and statements are the lowest
and most direct way of expressing actions and computation.” This section has about
sixty-five rules that list best practices for expressions and statements in general and
declarations in arithmetic expressions in particular.

165

166

PART I THE GUIDELINES

First of all, I want to give you an informal definition of what expressions and
statements are:

e An expression evaluates to a value.

e A statement does something and is often composed of expressions or
statements.

5 * 5; // expression

std::cout << 25; // print statement

auto a = 10; // assignment statement

auto b =5 * 5; // expression statement

Declarations in a block scope are statements. A block scope is something
within curly braces.

General

The C++ Core Guidelines have two general rules with a particular focus on expres-
sions and statements.

Prefer the standard library to other libraries and to
“handcrafted code”

There is no reason to write a raw loop to sum up a vector of doubles:

int max = v.size();
double sum = 0.0;
for (int i = 0; 1 < max; ++i) sum += v[i];

Instead, use the std::accumulate algorithm from the Standard Template Library
(STL). This clearly communicates your intent and makes the code more readable.

auto sum = std::accumulate(std::begin(v), std::end(v), 0.0);

Maybe your next task is to build the product of the doubles. Just invoke
std: :accumulate with the suitable lambda.

auto pro = std::accumulate(std::begin(v), std::end(v), 1.0,
[1(double fir, double sec){ return fir * sec; });

https://en.cppreference.com/w/cpp/algorithm/accumulate
https://en.cppreference.com/w/cpp/algorithm/accumulate
https://en.cppreference.com/w/cpp/algorithm/accumulate
https://en.cppreference.com/w/cpp/algorithm/accumulate

CHAPTER 8 EXPRESSIONS AND STATEMENTS 167

The solution is good but not perfect. The C++ standard already defines many func-
tion objects such as multiplication.

auto pro = std::accumulate(std::begin(v), std::end(v), 1.0,
std::multiplies<>());

This rule reminds me of a quote from Sean Parent at the C++ Seasoning conference
in 2013: “If you want to improve the code quality in your organization, replace all
your coding guidelines with one goal: Prefer an algorithm to a raw loop.” Or to say it
more directly: If you write a raw loop, you probably don’t know the algorithms of
the STL well enough. The STL has more than 100 algorithms.

Prefer suitable abstractions to direct use of language
features

This is the next déja vu. In one C++ seminar, [had a long discussion followed by an
even more extended analysis of a few quite sophisticated and handmade functions
for reading and writing std: :strstreams. My students had to maintain a function,
and after one week, they had no idea what was going on. The main reason why they
got confused was that the functionality was not based on the right abstraction.

For example, consider this handmade function for reading a std: :istream.

char** readl(istream& is, int maxelem, int maxstring, int* nread) {
auto res = new char*[maxelem];
int elemcount = 0;
while (is && elemcount < maxelem) {
auto s = new char[maxstring];
is.read(s, maxstring);
res[elemcount++] = s;
}
nread = &elemcount;
return res;

In contrast, how easy is it to comprehend the following function?

std::vector<std::string> read2(std::istream& is) {
std::vector<std::string> res;
for (string s; is >> s;) res.push_back(s);
return res;

https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/utility/functional
https://www.youtube.com/watch?v=W2tWOdzgXHA
http://en.cppreference.com/w/cpp/io/strstream
https://en.cppreference.com/w/cpp/algorithm/accumulate

168

PART I THE GUIDELINES

The right abstraction often means that you don’t have to think about ownership such
as in the function read2. This concern does hold for the function readi. The caller
of read1 is the owner of the result and has, therefore, to delete it.

Declarations

First of all, here is how a declaration is defined in the C++ Core Guidelines:

A declaration is a statement. A declaration introduces a name into a scope and may
cause the construction of a named object.

The rules for declarations are about names, the variables and their initialization, and

macros.

Names

On the one hand, the following rules are obvious, and I describe them only briefly.
On the other hand, I know many code bases that permanently break these rules. For
example, I spoke with a former Fortran programmer who stated the following: Each
name should have exactly three characters.

Let me first name the most important rule: Good names are probably the most
important rule for good software.

Keep scopes small

If a scope is small, you can put it on a screen and get an idea of what is going on. If a
scope becomes too big, you should structure your code into functions or classes.
Identify logical entities and use self-explanatory names in your refactoring process.
Afterward, it becomes easier to think about your code.

Declare names in for-statement initializers and conditions
to limit scope

Since the first C++ standard, we can declare a variable in a for statement.

CHAPTER 8 EXPRESSIONS AND STATEMENTS

The Design and Evolution of C++ by Bjarne Stroustrup

Bjarne Stroustrup pointed out during the reviewing of this book that the defini-
tion of names in for statements was possible even before the first C++ standard.
In case you are curious about the history of C++, I strongly suggest you read Bja-
rne’s book The Design and Evolution of C++.

Since C++17, we can declare variables also in an if or a switch statement.
std::map<int,std::string> myMap;

if (auto result = myMap.insert(value); result.second) {
useResult(*result.first);

// ...
}
else {

// ...

} // result is automatically destroyed

The variable result is only valid inside the if and else branch of the if statement.
result does not pollute the outer scope and is automatically destroyed. Before
C++17, you had to declare result in the outer scope.

std: :map<int,std::string> myMap;

auto result = myMap.insert(value)

if (result.second){
useResult(*result.first);

/7 ..
}
else {

/7 ..
}

Keep common and local names short, and keep
uncommon and nonlocal names longer

169

https://www.stroustrup.com/dne.html
https://www.stroustrup.com/dne.html
https://en.cppreference.com/w/cpp/language/if
https://en.cppreference.com/w/cpp/language/switch

170

PART I THE GUIDELINES

This rule sounds strange, but we are already used to it. Giving a variable the name i
or j or giving a variable the name T makes its intention immediately clear: i and j are
indices, and T is a type for a template parameter.

template<typename T>
void print(std::ostream& os, const std::vector<T>& v) {
for (int 1 = 0; i < v.size(); ++1) os << v[i] << '\n';

i is an okay name for a loop control variable, a poor name for a function parameter,
and a terrible name for a global variable.

There is a meta-rule underlying this rule. A name should be self-explanatory. In
a brief context, you understand at a glance what the variable means. This will not
automatically hold for longer contexts; therefore, use longer names.

Avoid similar-looking names

Can you read this example without any hesitation?
if (readable(il + 11 + ol + o1 + 00 + 0l + 01 + IO + 10)) surprise();

For example, I often have problems with the number 0 and the capital letter O.
Depending on the font used, they look quite similar. A few years ago, it took me
quite some time to log in to a server. My automatically generated password had a let-

ter O.

Avoid ALL_CAPS names

If you use ALL_CAPS, macro substitution may kick in because ALL_CAPS are com-
monly used for macros. The following code snippet may be a little surprising.

// somewhere in some header:
#define NE !=

// somewhere else in some other header:
enum Coord { N, NE, N\W, S, SE, SW, E, W };

CHAPTER 8 EXPRESSIONS AND STATEMENTS

// third, somewhere in some poor programmer's .cpp:
switch (direction) {

case N:
/7 ...

case NE:
/7 ...

/7

}

Declare one name (only) per declaration

Let me give you two examples. Do you spot two issues?

char* p, p2;
char a = 'a';
p = &aj;
p2 = a;

inta=7, b=9, ¢c, d=10, e = 3;

p2 is just a char, and c is not initialized. With C++17, we acquired one exception to
this rule: structured binding.

Now I can write the if statement with initializer in rule “ES.6: Declare names in
for-statement initializers and conditions to limit scope” using a cleaner and more
readable syntax.

std::map<int, std::string> myMap;

if (auto [iter, succeeded] = myMap.insert(value); succeeded) {

useResult(iter);
/7 ...

}

else {
/7 ...

} // iter and succeeded are automatically destroyed

Use auto to avoid redundant repetition of type names

171

https://en.cppreference.com/w/cpp/language/structured_binding
https://en.cppreference.com/w/cpp/language/if

172

PART I THE GUIDELINES

If you use auto, changing your code may become a piece of cake.

The following code snippet only uses auto. You do not have to think about the
types, and therefore, you cannot make an error. This means the type of res will be
int at the end. Thanks to the typeid operator, you get a string representation of the

type.

auto a = 5;
auto b = 10;
auto sum = a * b * 3;

auto res = sum + 10;
std::cout << typeid(res).name() << '\n'; // i

If you decide to change the literal b from int to double (1), or use instead of the int
literal 3 a float literal 3.1f (2), res always has the correct type. The compiler auto-
matically deduces the correct type.

auto a = 5;

auto b = 10.5; // (1)
auto sum = a * b * 3;

auto res = sum * 10;

std::cout << typeid(res).name() << '\n'; // d
auto a = 5;

auto b = 10;

auto sum = a * b * 3.2f; // (2)

auto res = sum * 10;
std::cout << typeid(res).name() << '\n'; // f

The GCC and the Clang compiler generated the type hints i, d, and f in the tree code
snippets. The MSVC compiler would write more verbose type hints such as int,
double, and float.

Do not reuse names in nested scopes

For readability and maintenance reasons, you should not reuse names in nested
scopes.

// shadow.cpp
#include <iostream>

int shadow(bool cond) {

https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 8 EXPRESSIONS AND STATEMENTS

int d = 0;
if (cond) {

int d = 2; // declare a local scoped d;
// hiding d of the parent scope
d = 3;
} // the local scoped d is removed
return d;

int main() {

std::cout << '\n';

std::cout << "shadow(true): " << shadow(true) << '\n';
std::cout << "shadow(false): " << shadow(false) << '\n';

std::cout << '\n';

What is the output of the program? Confused by the ds? Figure 8.1 shows the result.

File Edit View Bookmarks Settings Help
rainer@linux:~> shadow

>

shadow(true): 1
shadow(false): 0

rainer@linux:~> |

. rainer : bash

Figure 8.1 Reusing names in nested scopes

This was easy! Right? But the same behavior is quite surprising in a class hierarchy.

// shadowClass.cpp

#include <iostream>
#include <string>

173

https://en.cppreference.com/w/cpp/header/iostream

174

PART I THE GUIDELINES

struct Base {
void shadow(std::string) { // (1)
std::cout << "Base::shadow" << '\n';

}
struct Derived: Base {

void shadow(int) { // (2)
std::cout << "Derived::shadow" << '\n';

}

int main() {
std::cout << '\n';
Derived derived;

derived.shadow(std::string{}); // (3)
derived.shadow(int{});

std::cout << '\n';

Both structs Base and Derived have a member function shadow. The one in the Base
accepts a std: :string (1) and the other one an int (2). When you invoke the object
derived with a default-constructed std: :string (3), you may assume that the base
version is called. Wrong! The member function shadow is implemented in the class
Derived. The member function of the base class is not considered during name reso-
lution. Figure 8.2 shows the compilation error of GCC.

File Edit Vew Bockmarks Seftings Help

rainer@seninari~= g++ shadowClass.cpp -0 shadowClass
lass.cpp: In function ‘int main{)':
shadowClass.cpp:24:33: error: no matching function for call to ‘Derived::shadow{std::__cocdl::string)'
derived. shadow] std: :string{});

shadowClass. cpp:13:10: candidate: vold Derived::shadow(int)

void {int) {
shadowClass. cpp:13:10: N KNoWn conversion Tor arguient 1 Trom ‘std:: exxll:istring {aka std::__cxxll::basic_string<char>}' to "int’'
rainergseninar:~=]

Figure 8.2 Hiding member functions of a base

CHAPTER 8 EXPRESSIONS AND STATEMENTS

Thanks to the using declaration, the base variant of shadow is visible in Derived.

struct Derived: Base {

using Base: :shadow;

void shadow(int) {
std::cout << "Derived::shadow" << '\n';

3

After adding the using Base::shadow into Derived, the program behaves as
expected. The guideline “C.138: Create an overload set for a derived class and its
bases with using” showed the issue of shadowing in a class hierarchy. See Figure 8.3.

rainer : bash — Konsole oA e

File Edit View Bookmarks Settings Help
rainer@seminar:~> shadowClass

Base: :shadow
Derived: : shadow

rainer@seminar:~> Jj '

Figure 8.3 Change visibility with a using declaration

Variables and their initialization

As in the previous section on names, the rules in this section regarding variables and
their initialization are often quite obvious but sometimes provide precious insights.
Consequently, I cover the intuitive rules quickly and write about the valuable insights

in more depth.

Always initialize an object

This is one of these elementary techniques that many professional C++ program-
mers get wrong. The simple question is: Which variable is initialized?

struct T1 {};

class T2{
public:

T2() {3
}

175

176

PART I THE GUIDELINES

int n;

int main() {
int n2;
std::string s;
T1 t1;
T2 t2;

n has a global scope and has a fundamental type. Consequently, it is initialized to 0.
The initialization does not happen for n2 because it has a local scope and is, there-
fore, not initialized. But if you use a user-defined type such as std::string, T1, or
T2, it is initialized even in a local scope.

There is a simple fix to prevent this issue: Use auto. Now you cannot forget to

initialize a variable.

struct T1 {};

class T2{
public:

T2() {3
¥

auto n = 0;

int main() {
auto n2 = 0;
auto s = ""s;
auto t1 = T1();
auto t2 = T2();

}

Don't introduce a variable (or constant) before you need to
use it

In the C standard C89, you must declare all of your variables at the beginning of a
scope. We program in C++, not in C89.

Don't declare a variable until you have a value to initialize
it with

https://en.cppreference.com/w/cpp/language/types

CHAPTER 8 EXPRESSIONS AND STATEMENTS

If you don’t follow this rule, you may have a so-called use-before-set error. Have a
look at the example from the guidelines.

int var;

if (cond) set(&var); // some non-trivial condition
else if (cond2 || !cond3) {
var = set2(3.14);

// use var

If conds holds but not cond, or cond2, then var is not initialized when it is used.

Prefer the {}-initializer syntax

There are many reasons to use {}-initialization.

{}-initialization

e Isalways applicable
e Overcomes the most vexing parse

e Prevents narrowing conversion

While the first two arguments make C++ more intuitive, the last argument often pre-
vents undefined behavior.

Always applicable

{}-initialization is always applicable. Here are a few examples:

// uniformInitialization.cpp

#include <map>
#include <vector>
#include <string>

// Initialization of a C-array
class Array {
public:

Array(): myData{1,2,3,4,5} {}

177

https://en.wikipedia.org/wiki/Most_vexing_parse

178 PART I THE GUIDELINES

private:
const int myData[5];

3

class MyClass {

public:
int x;
double y;
}

class MyClass2 {
public:
MyClass2(int fir, double sec): x{fir}, y{sec} {3},
private:
int x;
double y;

int main() {
// Direct initialization of standard containers
int intArray[]= {1, 2, 3, 4, 53},
std::vector<int> intArrayi{1, 2, 3, 4, 53},
std::map<std::string, int> myMap{ {"Scott", 1976},
{"Dijkstra", 1972} };

Array arr;

// Default initialization of arbitrary objects

int i{}; // 1 becomes 0

std::string s{}; // s becomes ""
std::vector<float> v{}; // v becomes an empty vector
double d{}; // d becomes 0.0

// Direct initialization of an object with public members
MyClass myClass{2011, 3.14};
MyClass myClassl = {2011, 3.14};

// Initialization of an object using the constructor

MyClass2 myClass2{2011, 3.14};
MyClass2 myClass3 = {2011, 3.14};

You should never say always. There is a weird behavior, which is fixed in C++17.

CHAPTER 8 EXPRESSIONS AND STATEMENTS 179

Type deduction with auto

Always applicable? Yes, but you have to keep a special rule in mind. If you use auto-
matic type deduction with auto in combination with {}-initialization, you get a
std::initializer_list.

auto initA{1}; // std::initializer_list<int>
auto initB = {2}; // std::initializer_list<int>
auto initcC{1, 2}; // std::initializer_list<int>
auto initD = {1, 2}, // std::initializer_list<int>

This counterintuitive behavior changes with C++17.

auto initA{1}; // int

auto initB = {2}; // std::initializer_list<int>
auto initC{1, 2}, // error, no single element
auto initD = {1, 2}, // std::initializer_list<int>
Most vexing parse

The most vexing parse is well known, and almost any professional C++ developer
has already fallen into this trap. The following short program demonstrates the trap.

// mostVexingParse.cpp

#include <iostream>

struct MyInt {
MyInt(int arg = 0): i(arg) {}
int 1i;

};

int main() {

MyInt myInt(2011);
MyInt myInt2();

std::cout << myInt.i;
std::cout << myInt2.i;

This simple-looking program does not compile! See Figure 8.4.

https://en.wikipedia.org/wiki/Most_vexing_parse
https://en.wikipedia.org/wiki/Most_vexing_parse
https://en.cppreference.com/w/cpp/header/iostream

180 PART I THE GUIDELINES

File Edit View Bookmarks Settings Help

rainer@seminar:~> g++ mostVexingParse.cpp -o mostVexingParse

mostVexingParse.cpp: In function ‘int main()’:

mostVexingParse.cpp:17:25: error: request for member ‘L' in ‘myInt2’', which is of non-class type ‘MyInt()’
std::cout << myInt2.1i;

rainer@seminar:~> || I

Figure 8.4 The most vexing parse

The error message is not very meaningful. The compiler can interpret the expres-
sion MyInt myInt2() as a call of a constructor or as a declaration of a function.
When there is an ambiguity, it selects a function declaration. Consequently, the call
myInt2.1i isnot valid.

Replacing round braces in the call MyInt myInt2() with curly braces, MyInt
myInt2{}, solves the ambiguity.

// mostVexingParseSolved.cpp
#include <iostream>

struct MyInt {
MyInt(int arg = 0): i(arg) {3}
int i;

}i

int main() {

MyInt myInt(2011);
MyInt myInt2{};

std::cout << myInt.i;
std::cout << myInt2.i;

Narrowing conversion

Narrowing conversion is an implicit conversion of arithmetic values, including a loss
of accuracy. That sounds extremely dangerous and is a common cause of undefined
behavior.

https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 8 EXPRESSIONS AND STATEMENTS

The following code snippet exemplifies narrowing conversion for the two funda-
mental types char and int. It doesn’t matter whether I use direct initialization or
copy initialization.

// narrowingConversion.cpp
#include <iostream>
int main() {

char ¢1(999);
char c2 = 999;
std::cout << "cl: " << cl1 << '"\n';
std::cout << "c2: " << c2 << '"\n';

int 11(3.14);
int i2 = 3.14;
std::cout << "il: " << il << "\n';
std::cout << "i2: " << i2 << "\n';

The output of the program shows both issues. First, the int literal 999 doesn’t
fit into the type char; second, the double literal doesn’t fit into the int type. See
Figure 8.5.

rainer : bash — Konsole

File Edit View Bookmarks Settings Help
rainer@seminar:~> narrowingConversion

i2: 3
rainer@seminar:~> ||]

Figure 8.5 Narrowing conversion

Narrowing conversion is not possible with {}-initialization.
// narrowingConversionSolved.cpp
#include <iostream>

int main() {

181

https://en.cppreference.com/w/cpp/language/types
https://en.cppreference.com/w/cpp/language/types
https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/header/iostream

182

PART I THE GUIDELINES

char c1{999};

char c2 = {999},

std::cout << "c1: " << cl1 << '"\n';
std::cout << "c2: " << c2 << '"\n';

int i1{3.14};

int i2 = {3.14};

std::cout << "il: " << i1 << '\n';
std::cout << "i2: " << i2 << '\n';

The program is ill formed because {}-initialization detects narrowing conversion.
The compiler has at least to diagnose a warning. Most of the compilers treat nar-
rowing conversion as an error. To be on the safe side, compile your program always
with the narrowing flag set. Figure 8.6 shows the failing compilation with GCC.

File Edit Vew Bookmarks Settings Help

rainergseningr:~> g++ narrowingConversionSolved.cpp -Werror=narrowlng -o narrowingComverslonSolved

narrowingConversionSolved.cpp: In function ‘int main()’:

narrowingConversionSolved.cpp:7:16: error: narrowing conversion of ‘999 fron “int" to ‘char’ inside { } [-Mnarrowlng]
char c1{999};

narrowingConversionSolved.cpp:8:19: error: narrowing conversion of “999' fron “int" to ‘char’ instde { } [-Wnarrowing]
char 2 = {999};

nurrmnyw{v;e;uonsalm.cw::I.z:l.i: error: narrewing of '3 ' 'fron 'double’ to "int" inside { } [-Wnarrowing]
int t1{3.14};

narrmmislunhhmi.(pp:u:l!: error: narrowing conversion of '3.1400000000000001e+8' fron ‘double’ to *int' inside { } [-Wnarrowing]
int 12 = {3.14);

rainergseninar i [1

Figure 8.6 Narrowing conversion detected

Don't use a variable for two unrelated purposes

Do you like the following code?

void use() {
int i;
for (1 =0; i<20; ++i) { /* ... */ }
for (1 =0; 1i<200; ++i) { /* ... */ } // bad: i recycled

CHAPTER 8 EXPRESSIONS AND STATEMENTS

L hope not. Put the declaration of i into the for loop and you are fine. i is now bound
to the lifetime of the for loop.

void use() {
for (int 1 = 0; i <20; ++i) { /* ... */ }
for (int i = 0; 1 <200; ++i) { /* ... */ }

With C++17, you can declare variables directly in an if statement or a switch
statement.

Use lambdas for complex initialization, especially of const
variables

I often hear the question: Why should I invoke a lambda function in place? This rule
answers this question. You can put complex initialization steps in a lambda. The in-
place invocation of a lambda is, in particular, valuable if your variable should
become const.

If you don’t want to modify your variable after initialization, you should make
it const. But sometimes, the initialization of the variable consists of more than one
step. Consequently, you cannot make the variable const.

The widget x in the following example should be const after its initialization. It
cannot be const because it is modified a few times during its initialization.

widget x; // should be const, but:
for (auto i = 2; i <= N; ++i) {
X += some_obj.do_something_with(1i);

// from here, x should be const,
// but we can't say so in code in this style

Now a lambda expression comes to our rescue. Use a technique called Immediately
Invoked Lambda Expression (IILE).

Put the initialization stuff into a lambda expression, capture the environment
by reference, and initialize your const variable with the in-place invoked lambda
function.

const widget x = [&]{
widget val;
for (auto 1 = 2; i <= N; ++1i) {

183

https://en.cppreference.com/w/cpp/language/if
https://en.cppreference.com/w/cpp/language/switch
https://en.cppreference.com/w/cpp/language/switch

184

PART I THE GUIDELINES

val += some_obj.do_something_with(1i);

}

return val;

HOF

Admittedly, it looks a little bit strange to invoke a lambda function just in place, but
from the conceptional view, I like it. You put the whole initialization stuff just in the
body of a lambda. The final pair of parentheses invokes the lambda.

Macros

If there is one unanimous consensus in the C++ standardization committee, then
this is it: Macros must go. Macros are just text substitution without any C++ seman-
tics. They transform the written code so that the compiler sees different code. This
transformation is highly error prone and obscures the cause of the error.

But sometimes you have to deal with legacy code, which relies on macros. For
completeness, the C++ Core Guidelines have four rules for macros.

e ES.30: Don’t use macros for program text manipulation
e FS.31: Don’t use macros for constants or “functions”
e ES.32: Use ALL_CAPS for all macro names

e ES.33: If you must use macros, give them unique names

Let me start with the don’ts. The following example shows the usage of the function-
like macro max. I copied max from the param.h header file, which is part of the GNU
Clibrary.

// macro.cpp
#include <stdio.h>
#define max(a, b) ((a) > (b)) ? (a) : (b)
int main() {
inta=1, b =2;
printf("\nmax(a, b): %d\n", max(a, b));

printf("a = %d, b = %d\n", a, b);

printf("\nmax(++a, ++b): %d\n", max(++a, ++b)); // (1)
printf("a = %d, b = %d\n\n", a, b); /7 (2)

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-macros
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-macros2
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-ALL_CAPS
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-MACROS
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/

CHAPTER 8 EXPRESSIONS AND STATEMENTS

The output in (2) may surprise you. See Figure 8.7.

rainer : bash — Konsole

File Edit View Bookmarks >
rainer@seminar:~> macro

max(a, b): 2

a=1,b=2

max(++a, ++h): 4

a=2,b=4

rainer@seminar:~> [j i

Figure 8.7 Usage of the function-like macro max

The variable b is two times evaluated and, therefore, incremented twice. Use
instead of the function-like macro max a constexpr function or a max function

template.
template<typename T>

Tmax (T i, T j) {
return ((i >3j) ?1: 3);

constexpr int max (int i, int j){
return ((i >3j) ?1: 3);
The same argumentation applies tO macros as constants.

#define PI 3.14 // bad

constexpr double pi = 3.14 // good

If, for whatever reason, you have to use or to maintain macros, write them ALL_
CAPS and give them unique names. The following code snippet breaks both rules.
forever is written in lowercase letters and the macro CHAR may conflict with some-
one else using the name CHAR.

#define forever for (;;)

#define CHAR

185

186

PART I THE GUIDELINES

Expressions

There are about twenty rules related to expressions. They are quite diverse and over-
lap with existing rules. Here I focus on the rules applying to complicated expres-
sions, pointers, the order of evaluation, and conversions.

Complicated expressions

First and foremost, you should avoid complicated expressions.

Avoid complicated expressions

What does complicated mean? Here is the example from the C++ Core Guidelines,
including the explanation:

// bad: assignment hidden in subexpression
while ((c = getc()) != -1)

// bad: two non-local variables assigned in a subexpression
while ((cin >> c1, cin >> c2), cl == c2)

// better, but possibly still too complicated
for (char c1, c2; cin >> cl1l >> c2 && c1 == c2;)

// OK: if i and j are not aliased (names for the same data)
int x = ++i + ++j;

// OK: if i 1= j and i 1=k
v[i] = v[j] + v[k];

// bad: multiple assignments "hidden" in subexpressions
x=a+ (b="F())+ (c=9(0) *7;

// bad: relies on commonly misunderstood precedence rules
X=a&b+c*d&&enrf==217;

// bad: undefined behavior

X = X++ + X++ + ++X]

CHAPTER 8 EXPRESSIONS AND STATEMENTS

If in doubt about operator precedence, parenthesize

On one hand, the guidelines say that if you are in doubt about operator precedence,
use parentheses. On the other hand, they state that you should know enough not to
need parentheses here. Finding the right balance is, therefore, the challenge and
depends on the expertise of the users.

const unsigned int flag = 2;
unsigned int a = flag;

if (a & flag !'= 0) // bad: means a&(flag != 0)
if (a <0 || a<=max) { // good: quite obvious

/7 ...
}

For an expert, the expression may be obvious, but for a beginner, it may be a
challenge.
I have only two tips in mind:

1. If in doubt about precedence, use parentheses. The precedence table gives you
all the details.

2. Program for the beginners! Keep the precedence table under your pillow.

Keep use of pointers simple and straightforward

Let me quote the C++ Core Guidelines: “Complicated pointer manipulation is a
major source of errors.” Why should we care? Of course, our legacy code is full of
pointer manipulations such as in the following code snippet.

void f(int* p, int count) {
if (count < 2) return;

int* g =p + 1,

int n = *p++;

187

https://en.cppreference.com/w/cpp/language/operator_precedence
https://en.cppreference.com/w/cpp/language/operator_precedence

188 PART I THE GUIDELINES

if (count < 6) return;
p[4] = 1;
p[count - 1] = 2;

use(&p[0], 3);

int myArray[100];
f(myArray, 100);

The main issue with these lines of code is that the caller must provide the correct
length of the C-array. If not, undefined behavior kicks in.

Think about the last two lines of the code snippet for a few seconds. We start
with a C-array and remove its type information by passing it to the function f. This
process is called an array to pointer decay and is the reason for many errors. Maybe
we counted the number of elements wrong or the size of the C-arrays changed. The
result is the same in both cases: undefined behavior.

What should we do? We should use the appropriate data type. C++20 offers
std:::span.

void f(std::span<int> a) {
if (a.size() < 2) return;

int n = a[0]; // OK
std::span<int> q = a.subspan(1);
if (a.size() < 6) return;
al[4] = 1,
afcount - 1] = 2;
use(a.data(), a.size());
std: :span knows its size. I hear your complaint. C++20 is not an option for you. To

our rescue, C++ has templates; therefore, it’s easy to overcome this restriction and
write bounds-safe code.

https://en.cppreference.com/w/cpp/container/span
https://en.cppreference.com/w/cpp/container/span
https://en.cppreference.com/w/cpp/types/decay

© 0 N o g b~ w N R

A A DDA WWWWWWWWWWNDNDNDNDDNDNDMDNDMDNDNDNDMDNREREREPRREPRRERREPR PR R PR R
W N PO © 00N g >~ WNROOOOONOOOORAWNROOOOOONOOOOR~WDNRO

CHAPTER 8 EXPRESSIONS AND STATEMENTS

// at.cpp

#include <algorithm>
#include <array>
#include <deque>
#include <string>

#include <vector>

template <typename T>
void use(T*, int) {3}

template <typename T>
void f(T& a) {

if (a.size() < 2) return;

int n = a.at(0);

std::array<typename T::value_type , 99> q;

std::copy(a.begin() + 1, a.end(), q.begin());

if (a.size() < 6) return;

a.at(4) = 1,

a.at(a.size() - 1) = 2;

use(a.data(), a.size());

int main() {

std::array<int, 100> arr{};
f(arr);

std::array<double, 20> arr2{};
f(arr2);

std::vector<double> vec{1, 2, 3, 4, 5, 6, 7, 8,

f(vec);

std::string myString= "123456789";
f(myString);

9};

189

http://a.at(
http://a.at(
http://a.at(

190

PART I THE GUIDELINES

44

45 // std::deque<int> deq{1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
46 // f(deq);

47

48 }

Now the function f works for std: :arrays of different sizes and types (lines 34 and
37) but also for a std: :vector (line 40) or a std: :string (line 43). These containers
have in common that their data is stored in a contiguous memory block. This is not
the case for std: :deque; therefore, the call a.data() in the comment (line 46) fails.
The key observation in the example is that the at call on a container checks its
boundaries and throws eventually a std: :out_of_range exception.

The expression T: :value_type helps to get the type of the elements of the con-
tainer. T is a so-called dependent type because T is a type parameter of the function
template f. This is the reason [have to give the compiler a hint that T: :value_type is
actually a type: typename T::value_type.

Avoid “magic constants”; use symbolic constants

A symbolic constant is more explicit than a magic constant. The example in the C++
Core Guidelines starts with the magic constants 1 and 12 and ends with the symbolic
constant first_month and last_month.

// don't: magic constants 1 and 12
for (int m = 1; m <= 12; ++m) std::cout << month[m] << '\n';

// months are indexed 1..12 (symbolic constant)
constexpr int first_month = 1;
constexpr int last_month = 12;
for (int m = first_month; m <= last_month; ++m) {
std::cout << month[m] << '\n';

Avoid the need for range checking

https://en.cppreference.com/w/cpp/error/out_of_range

CHAPTER 8 EXPRESSIONS AND STATEMENTS 191

If you don’t have to check the length of a range, you will not get an off-by-one error.
Let’s sum up the elements of a std: :vector.

// sumuUp.cpp

#include <iostream>
#include <numeric>
#include <vector>

int main() {
std::vector<int> vec{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
// bad
int suml = 0Q;
auto sizeVec = vec.size();
for (int i = 0; 1 < sizeVec; ++i) suml += vec[i];
std::cout << suml << '\n'; // 55
// better

int sum2 = 0Q;
for (auto v: vec) sum2 += v;

std::cout << sum2 << '\n'; // 55

// the best

auto sum3 = std::accumulate(vec.begin(), vec.end(), 0);
std::cout << sum3 << '\n'; // 55

Iterating explicitly through a container is very error prone. In contrast, iterating
implicitly with a range-based for loop is safe. Additionally, the algorithm
std: :accumulate of the STL documents its intention.

Pointers

The rules for pointers start with null pointers and continue with the deletion and
dereferencing of pointers.

ES.47 Use nullptr rather than © or NULL

https://en.cppreference.com/w/cpp/algorithm/accumulate
https://en.cppreference.com/w/cpp/algorithm/accumulate
https://en.cppreference.com/w/cpp/header/iostream

192 PART I THE GUIDELINES

Why should you not use 0 or NULL to denote a null pointer?

e 0: The literal 6 can be the null pointer (void*)e or the number 0. This is

dependent on the context. Consequently, what started as null pointer could

end up as number.

® NULL: NULL is a macro, and therefore, you don’t know what’s inside. A possible

implementation according to cppreference.com could be the following;:

#define NULL 0

//since C++11

#define NULL nullptr

Replace the null pointer 6 and NULL with the nullptr

I normally don’t suggest refactoring existing code. Both null pointer ® and NULL

are an exception to this rule. Replace all occurrences of null pointer @ and NULL

with the null pointer nullptr.

int* a
int* b =

int* a =
int* b =

0;
NULL;

nullptr;
nullptr;

// bad
// bad

// good
// good

If your program compiles after the refactoring, fine. If you get a compiler error,

you already know that you used a null pointer against its nature and you detected

undefined behavior.

The null pointer nullptr avoids the ambiguity of the number @ and the macro

NULL. nullptr is and remains of type std: :nullptr_t. You can assign a nullptr to

an arbitrary pointer. The pointer becomes a null pointer and points, therefore, to no

data. You cannot dereference a nullptr. The pointer of this type can on one hand be

compared with all pointers and can on the other hand be converted to all pointers.

You cannot compare and convert a nullptr to an integral type. There is one excep-

tion to this rule. nullptr can be explicitly or contextually converted to bool. Hence,

you can use a nullptr in a logical expression.

Generic code
Using the three kinds of null pointers in generic code shows immediately the flaws of

the number 0 and the macro NULL. Thanks to template argument deduction, the

http://cppreference.com

CHAPTER 8 EXPRESSIONS AND STATEMENTS

literals @ and NULL deduce to integral types. The information that both literals should
be null pointer constants is lost.

// nullPointer.cpp

#include <cstddef>
#include <iostream>

template<class P >
void functionTemplate(P p) {
int* a = p;

int main() {
int* a = 0;
int* b = NULL;
int* ¢ = nullptr;

functionTemplate(0); // (1)
functionTemplate(NULL); // (2)
functionTemplate(nullptr);

You can use 0 and NULL to initialize the int pointer in (1) and (2). But if you use the
values @ and NULL as arguments to the function template, the compiler will loudly
complain. See Figure 8.8.

rainer : bash — Ko

File Edit View Bookmarks Settings Help

rainer@seminar:~> g++ nullPointer.cpp -0 nullPointer

nullPointer.cpp: In instantiation of ‘vold functionTemplate(P) [with P = int]':

nullPointer.cpp:16:23: required from here

nullPolnter.cpp:8:10: error: invalid conversion from ‘int’ to ‘int*’' [-fpermissive]
int* a = p;

nullPointer.cpp: In instantiation of ‘vold functionTemplate(P) [with P = long int]':
nullPointer.cpp:17:26: required from here

nullPointer.cpp:8:10: error: invalid conversion from ‘long int’ to ‘int*’' [-fpermissive]
rainer@seminar:~> Jj

Figure 8.8 The null pointers 0, NULL, and nullptr

The compiler deduces 0 in the function template to type int; it deduces NULL to
the type long int. This observation does not hold for nullptr. nullptr preserves its
type std: :nullptr_t through template argument deduction.

193

https://en.cppreference.com/w/cpp/header/iostream

194

PART I THE GUIDELINES

Delete arrays using delete[] and non-arrays using
delete

Explicit memory management and not using a container of the STL or a smart
pointer such as std: :unique_ptr<X[]>is very error prone:

void f(int n) {
auto p = new X[n]; // n default constructed Xs
/7 ...
delete p; // error: just delete the object p,
// rather than deleting the array p[]

Deleting a C-array with an nonarray delete is undefined behavior.
If you have to manage raw memory, read the rules in the Allocation and Dealloca-
tion section of Chapter 7.

Don't dereference an invalid pointer

If you dereference an invalid pointer, your program has undefined behavior. The only
way to avoid this behavior is to check your pointer before its usage.

void func(int* p) {
if ('p) {
// do something special

}

int x = *p;

How can you overcome this issue? Don’t use a naked pointer. Use a smart pointer
such as std: :unique_ptr or std: :shared_ptr if you need pointer-like semantics.

Order of evaluation

If you don’t apply the right order of evaluation in an expression, your program may
end in undefined behavior.

Avoid expressions with undefined order of evaluation

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr

CHAPTER 8 EXPRESSIONS AND STATEMENTS 195

In C++14, the following expression has undefined behavior.
v[i] = ++i; // the result is undefined

This undefined behavior has been addressed in C++17. With C++17, the order of
evaluation of the last code snippet is right to left; therefore, the expression has well-
defined behavior.

Here are the additional guarantees we have with C++17:

e Postfix expressions are evaluated from left to right. This includes function calls
and member selection expressions.

e Assignment expressions are evaluated from right to left. This includes com-
pound assignments such as +=.

e Operands to shift operators are evaluated from left to right.

Here are a few examples:

a.b

a->b

a->*b

a(b1, b2, b3)
b @= a

a[b]

a<<b

a>>b

How should you read these examples? First, a is evaluated and then b.

The function call a(b1, b2, b3) is tricky. With C++17, we have the guarantee
that each function argument is entirely evaluated before each of the other function
arguments, but the order of the evaluation of the arguments is still unspecified.

Let me elaborate a little bit more on the last sentence.

Don't depend on order of evaluation of function arguments

In the last few years, I have seen many errors because developers assumed that the
order of the evaluation of function arguments is left to right. Wrong! There is no
such guarantee!

// unspecified.cpp

#include <iostream>

https://en.cppreference.com/w/cpp/header/iostream

196

PART I THE GUIDELINES

void func(int fir, int sec) {

std::cout << "(" << fir << ", " << sec << ")" << "\n';

int main(){

}

int 1 = 0;
func(i++, i++);

The order of the evaluation of the function arguments is unspecified. Unspecified

behavior means that the behavior of the program may vary between implementa-

tions and the conforming implementation is not required to document the effects of

each behavior.

Consequently, the output from GCC and Clang differs even if both compilers

conform to the C++ standard (see Figure 8.9).

File

rainer : bash — Konsole A 9

Edit View Bookmarks Settings Help

rainer@seminar:~> unspecifiedGecc

(1,0)

rainer@seminar:~> unspecifiedClang
(0,1)

rainer@seminar:~> [| I

Figure 8.9 Unspecified behavior

Guaranteed order of evaluation in expressions with C++17

With C++17, the order of evaluation of the following expressions is specified:

f1()->m(f2()); // evaluation left to right
std::cout << f1() << f2(); // evaluation left to right

f1() = f(2); // evaluation right to left

Here is the reason why:

f1()->m(f2()): Postfix expressions are evaluated from left to right. This
includes function calls and member selection expressions.

std::cout << f1() << f2(): Operands to shift operators are evaluated from
left to right.

f1() = f(2): Assignment expressions are evaluated from right to left.

CHAPTER 8 EXPRESSIONS AND STATEMENTS

Conversions

Casting types is a common cause of undefined behavior. If necessary, use explicit
casts.

Avoid casts

Let’s see what happens if I screw up the type system and cast a double to a long int
and to a long long int.

// casts.cpp
#include <iostream>
int main() {

double d = 2;

auto p = (long*)&d;

auto q = (long long*)é&d;
std::cout << d << ' ' << *p << !

<< *g << '\n';

The result with the Visual Studio compiler is not promising (see Figure 8.10).

B8 %64 Mative Tools Command Prompt for V5 2019 — a ®

Figure 8.10 Wrong casts with the Visual Studio compiler

Nor is the result with the GCC or Clang compiler promising (see Figure 8.11).

197

https://en.cppreference.com/w/cpp/header/iostream
https://visualstudio.microsoft.com/

198

PART I THE GUIDELINES

rainer : bash — Konsole VoA Q

File Edit View Bookmarks Settings Help
rainer@seminar:~> casts

2 4611686018427387904 4611686018427387904
rainer@seminar:~> |)

Figure 8.11 Wrong casts with the GCC or Clang compiler

What is terrible about the C-cast? You don’t see which cast is actually performed.
If you perform a C-cast, a combination of casts is applied if necessary.

Roughly speaking, a C-cast starts with a static_cast, continues with a const_
cast, and finally performs a reinterpret_cast.

If you must use a cast, use a named cast

The principle from The Zen of Python, “explicit is better than implicit,” also applies
to casts in C++: Use a named cast if necessary.
With C++11, we have the following six casts:

e static_cast: converts between similar types such as pointer types or numeric
types
e const_cast: adds or removes const or volatile

* reinterpret_cast: converts between pointers or between integral types and
pointers

e dynamic_cast: converts between polymorphic pointers or references in the
same class hierarchy

e std::move: converts to an rvalue reference

e std::forward: converts an lvalue to an lvalue reference and an rvalue to an
rvalue reference

I assume you are surprised that I presented std: :move and std::forward as casts.
Let’s have a closer look at the internals of std: :move:

static_cast<std::remove_reference<decltype(arg)>::type&&>(arg)

What’s happening here? First, the type of the argument arg is deduced by
decltype(arg). Afterward, all references are removed, and two new references are
added. The function std: :remove_reference is from the type-traits library. In the
end, we always get an rvalue reference.

https://en.cppreference.com/w/cpp/header/type_traits
https://www.python.org/dev/peps/pep-0020/
https://en.cppreference.com/w/cpp/types/remove_reference
https://en.cppreference.com/w/cpp/types/remove_reference
https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/utility/move

CHAPTER 8 EXPRESSIONS AND STATEMENTS

Don’t cast away const

Casting away const is undefined behavior if the underlying object such as constInt
is const and you try to modify the underlying object.

const int constInt = 10;
const int* pToConstInt = &constInt;

int* pToInt = const_cast<int*>(pToConstInt);
*pToInt = 12; // undefined behavior

You can find the rationale for this rule in the C standard, which is also relevant for
the C++ standard: “The implementation may place a const object that is not volatile
in a read-only region of storage” (International Organization for Standardization
(ISO)/International Electrotechnical Commission (IEC) 9899:2011, subclause 6.7.3,
paragraph 4).

Statements

Statements fall mainly into two categories: iteration statements and selection state-
ments. The rules for both kinds of statements are quite clear. Consequently, I quote
the rule of the C++ Core Guidelines and add a few pieces of information when
necessary.

Iteration statements

C++ implements three iteration statements: while, do while, and for. With C++11,
syntactic sugar is added to the for loop: range-based for loop.

std::vector<int> vec = {0, 1, 2, 3, 4, 5};
// for loop

for(std::size_t i = 0; i < vec.size(); ++i) {
std::cout << vec[i] << ' ';

// range-based for loop
for (auto ele : vec) std::cout << ele << ' ';

199

https://en.wikipedia.org/wiki/Syntactic_sugar

200

PART I THE GUIDELINES

* A range-based for loop is easier to read, and you cannot make an index error or

change the index while looping (“ES.71: Prefer a range-for-statement to a for-
statement when there is a choice” and “ES.86: Avoid modifying loop control
variables inside the body of raw for loops™).

When you have an obvious loop variable, you should use a for loop instead of
a while statement (“ES.72: Prefer a for-statement to a while-statement when
there is an obvious loop variable”); if not, you should use a while statement
(“ES.73: Prefer a while-statement to a for-statement when there is no obvious
loop variable”).

for (auto 1 = 0; 1 < vec.size(); ++i) {
// do work

int events = 0;
while (wait_for_event()) {
++events;

// do work
}

You should declare a loop variable in a for loop (“ES.74: Prefer to declare a
loop variable in the initializer part of a for-statement”). To remind you, since
C++17, declaring a variable such as result can also be done in the initializa-
tion part of an if or a switch statement.

std: :map<int, std::string> myMap;

if (auto result = myMap.insert(value); result.second){

useResult(result.first);

/7 ...
}
else{

/7 ...

} // result is automatically destroyed

Avoid do while statements (“ES.75: Avoid do-statements”) and goto state-
ments (“ES.76: Avoid goto”), and minimize the use of break and continue
in iteration statements (“ES.77: Minimize the use of break and continue in
loops™) because they are difficult to read. If something is difficult to read, it’s
error prone and makes refactoring of your code challenging. A break state-
ment ends the iteration statement, and a continue statement ends the current
iteration step.

https://en.cppreference.com/w/cpp/language/switch
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-while-for
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-while-for
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-while
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-while
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-init
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-init
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-do
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-goto
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-continue
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-continue

CHAPTER 8 EXPRESSIONS AND STATEMENTS

Prefer an algorithm to a raw loop

There is one meta-rule missing in this section: “Prefer an algorithm to a raw loop
provided there is a suitable named algorithm for the purpose” (Bjarne Stroustrup
during his proofread). The more than 100 algorithms of the STL provide implicit
operations on containers. This operation can often be adapted by a lambda
expression or performed in a parallel or parallel and vectorized version.

std::vector<int> vec = {-10, 5, 0, 3, -20, 31};

// permitting parallel execution
std::sort(std::execution::par, vec.begin(), vec.end());

// permitting parallel and vectorized execution
std::sort(std::execution::par_unseq, vec.begin(), vec.end())

Selection statements

if and switch are the selection statements of C++ that we inherited from C.

* You should prefer a switch statement to an if statement when there is a choice
(“ES.70: Prefer a switch statement to an if-statement when there is a choice”)
because a switch statement may be more readable and can be better optimized
than an if statement.

The next two rules related to switch statements need more attention than the ones
before.

ES.78 Don't rely on implicit fallthrough in switch statements

I saw switch statements in legacy code, which had more than 100 case labels. If you
use non-empty cases without a break, the maintenance of these switch statements
becomes a nightmare. Here is an example from the C++ Core Guidelines:

switch (eventType) {
case Information:
update_status_bar();
break;
case Warning:
write_event_log();
// Bad - implicit fallthrough

201

https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/language/if
https://en.cppreference.com/w/cpp/language/if
https://en.cppreference.com/w/cpp/language/if
https://en.cppreference.com/w/cpp/language/switch
https://en.cppreference.com/w/cpp/language/switch
https://en.cppreference.com/w/cpp/language/switch
https://en.cppreference.com/w/cpp/language/switch
https://en.cppreference.com/w/cpp/language/switch
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-switch-if

202

PART I THE GUIDELINES

case Error:
display_error_window();
break;

}

Maybe you overlooked it. The warning case has no break statement; therefore, the
Error case is automatically executed.

Since C++17, we have a cure with the attribute [[fallthrough]]. Now you can
explicitly express your intention. [[fallthrough]] has to be in its own statement
line and immediately before a case label. [[fallthrough]] indicates to the compiler
that a fallthrough is intentional. Consequently, the compiler may not diagnose a
warning,.

void f(int n) {
void g(), h(), i();
switch (n) {
case 1:
case 2:

g();

[[fallthrough]]; // (1)
case 3:

h(); /7 (2)
case 4:

i();

[[fallthrough]]; // (3)

}

The [[fallthrough]] attribute in (1) suppresses a compiler warning. That does not
hold for (2). The compiler may warn. (3) is ill formed because no case label follows.

ES.79 Use default to handle common cases (only)

The program switch.cpp should exemplify this rule.

// switch.cpp
#include <iostream>

enum class Message{
information,

https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 8 EXPRESSIONS AND STATEMENTS 203

warning,
error,
fatal

3

void writeMessage() { std::cerr << "message" << '\n'; }
void writewWarning() { std::cerr << "warning" << '\n'; }
void writeUnexpected() { std::cerr << "unexpected" << '\n'; }

void withDefault(Message message) {
switch(message) {

case Message::information:
writeMessage();
break;

case Message:: warning:
writeWarning();
break;

default:
writeUnexpected();
break;

void withoutDefaultGood(Message message) {
switch(message) {

case Message::information:
writeMessage();
break;

case Message:: warning:
writeWarning();
break;

default:
// nothing can be done
break;

void withoutDefaultBad(Message message) {
switch(message) {
case Message::information:
writeMessage();
break;

https://en.cppreference.com/w/cpp/io/cerr
https://en.cppreference.com/w/cpp/io/cerr
https://en.cppreference.com/w/cpp/io/cerr

204

PART I THE GUIDELINES

case Message::warning:
writeWarning();
break;

int main() {

withDefault(Message::fatal);
withoutDefaultGood(Message::information);
withoutDefaultBad(Message: ::warning);

The implementation of the functions withDefault and withoutDefaultGood are
expressive enough. The maintainer of the function withoutDefaultGood knows
because of the comment that there is no default case for this switch statement. Com-
pare the functions withoutDefaultGood and withoutDefaultBad from a mainte-
nance point of view. Do you know if the implementer of the function
withoutDefaultBad forgot the default case or if the enumerator’s Message: :error
and Message: : fatal were later added? To make sure, you have to study the source
code or ask the original author of the code, if possible.

Arithmetic

The seven arithmetic rules provide a significant surprise potential. They focus on
two topics: arithmetic with signed and unsigned integers, and typical arithmetic
errors such as overflow/underflow and division by zero.

Arithmetic with signed/unsigned integers

Breaking these arithmetic rules often ends in unexpected results.

Don't mix signed and unsigned arithmetic

https://en.cppreference.com/w/cpp/language/switch

CHAPTER 8 EXPRESSIONS AND STATEMENTS

If you mix signed and unsigned arithmetic, you may not get the expected result.

// mixSignedUnsigned.cpp
#include <iostream>
int main() {

int x = -3;
unsigned int y = 7;

std::cout << x - y << '\n'; // 4294967286
std::cout << x +y << '\n'; // 4

std::cout << x * y << '\n'; // 4294967275
std::cout << x / y << '\n'; // 613566756

GCC, Clang, and the Microsoft compiler produce the same result.

Use unsigned types for bit manipulation

Bit manipulations with bitwise operators (~, >>, >>=, <<, , &, &=, A, A=, |, and |=)
have implementation-defined behavior when performed on signed operands.
Implementation-defined behavior means that the behavior varies between imple-
mentations, and the implementation must document the effects of each behavior.
Consequently, don’t perform bit manipulations on signed types, but use unsigned
types instead:

unsigned char x = 0b00110010;
unsigned char y = ~x; // y == 0b116001101

Use signed types for arithmetic

First, you should not do arithmetic with unsigned types because subtraction of two
values often gives a negative value. Second, you should not mix signed and unsigned
arithmetic according to the previous rule: “ES.100: Don’t mix signed and unsigned
arithmetic.” Let’s see what happens when I break the rule.

205

https://en.cppreference.com/w/cpp/header/iostream

206

PART 1

THE GUIDELINES

GCC, Clang, and the Microsoft compiler produce the same result.

// signedTypes.cpp

#include <iostream>

template<typename T, typename T2>
T subtract(T x, T2 y) {

return x - vy;

int main() {

int s = 5;

unsigned int

std:
std:
std:
std:
std:
std:

rcout
rcout
rcout
rcout
rcout
rcout

<<

<<

<<

<<

<<

<<

us = 5;

subtract(s, 7) << '\n';
subtract(us, 7u) << '\n';
subtract(s, 7u) << '\n';
subtract(us, 7) << '\n';
subtract(s, us + 2) << '\n';
subtract(us, s + 2) << '\n';

// -2
// 4294967294
// -2
// 4294967294
// -2
// 4294967294

Don't try to avoid negative values by using unsigned

There is an interesting relation. When you assign a -1 to an unsigned

int, you get the largest unsigned int.

The behavior of arithmetic expression may differ between signed and unsigned

types.

Let’s start with a simple program.

// modulo.cpp

#include <cstddef>
#include <iostream>

int main(){

https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 8 EXPRESSIONS AND STATEMENTS 207

std::cout << '\n';

unsigned int max{100000};
unsigned short x{0};
std::size_t count{0};

while (x < max && count < 20) {

std::cout << x << " ",
X += 10000; /7 (1)
++count;

std::cout << "\n\n";

The crucial point of the program is that the successive addition to x in (1) does not
trigger an overflow but a modulo operation if the value range of x ends. The reason is
that x is of type unsigned short.

Making x signed changes the behavior of the program drastically.

// overflow.cpp

#include <cstddef>
#include <iostream>

int main() {
std::cout << '\n';
int max{100000};
short x{0};

std::size_t count{0};
while (x < max && count < 20) {

std::cout << x << " ",
X += 10000,
++count;

std::cout << "\n\n";

The addition now triggers an overflow. In Figure 8.12, [marked the key points with
red circles.

https://en.cppreference.com/w/cpp/header/iostream

208

PART I THE GUIDELINES

Fle Edit View Bookmarks Semtings Help

rainer@seminar:~> modulo
@ 10060 20008 30000 400008 5000060008 4464 WA464 24454 34464 44464 54464 64464 BOU2E 18028 28028 38028 48028 58928
rainer@seminar:~> overflow

0 10000 20000430000 -255363-15536 -5536 4464 14464 24464 -31072 -21872 -11072 -1072 B928 18928 28928 -26688 -16688 -G60B

rainer@seminar:n>

Figure 8.12 Modulo versus overflow with unsigneds and signeds

Detecting overflow

You may have a burning question: How can you detect an overflow? Quite eas-
ily! Replace the erroneous assignment x += 1000 with an expression using
curly braces: x = {x + 1000}. The difference is that the compiler checks for
narrowing conversions and, therefore, detects the overflow. Figure 8.13 shows
the output from GCC.

File Edit ‘ew Bookmarks Setings Help

rainer@seminart~= g++ overflow.cpp -0 overflow

overflow.cpp: In function “int main()':

overflow.cpp:15:16: rning: narrowing conversion of “({{int}x} + 100008)' from ‘int’' to ‘short int' inside { } [-Wnarrowing]
X H

rainer@seminar :~>

Figure 8.13 Detecting narrowing conversion

Typical arithmetic errors

The following three rules always result in undefined behavior.

Don'’t overflow

Don’t underflow

Let me combine both rules. The effect of an overflow or an underflow is the same:
memory corruption and, therefore, undefined behavior. Let’s make a simple test with
an int array. How long will the following program run when I compile it with GCC?

// overUnderflow.cpp

#include <cstddef>

CHAPTER 8 EXPRESSIONS AND STATEMENTS 209

#include <iostream>
int main() {

int a[0@];
int n = 0;

while (true){
if (!'(n % 100)){

std::cout << "a[" << n << "] =" << a[n]
Y
a[n] = n;
af-n] = -n;
++n;

7

}

Disturbingly long. The program writes each one-hundredth array entry to std: : cout.
See Figure 8.14.

rainer : bash — Ko

File Edit View Bookmarks Settings Help

rainer@seminar:~> overUnderflow
a[0] = 0, a[@] =@

a[100] = 32767, a[-100] = 32718
a[200] = 32767, a[-200] = -151653133
a[300] = 0, a[-300] = 32767
a[400] = 0, a[-400] = 32767
a[500] = 0, a[-500] = 32718
a[600] = 0, a[-600] = 0

a[700] = 0, a[-700] = 32718
a[800] = 0, a[-800] = 0

a[900] = 0, a[-900] = 0

a[1000] = 0, a[-1000] = 0

a[1100] = 0, a[-1100] = 0

a[1200] = 859516976, a[-1200] = ©

a[1300] = 1886924330, a[-1300] = 0
a[1400] = 1095520339, a[-1400] = 0
a[1500] = 1380212559, a[-1500] = 0@
a[1600] = 795566448, a[-1600] = 0
a[1700] = 1835628605, a[-1700] = 0
a[1800] = 1966042741, a[-1800] = @

a[1900] = 826098761, a[-1900] = @
Segmentation fault (core dumped)
rainer@seminar:~> Jj i

Figure 8.14 Underflow and overflow of a C-array

https://en.cppreference.com/w/cpp/header/iostream

210

PART I THE GUIDELINES

Don't divide by zero

Dividing by zero crashes with high probability the execution of your program.
auto res =5/ 0; // crash

Dividing by zero may be fine in a logical expression.

auto res = false and (5 / 0); // fine

The result of the expression (5 / 0) is not necessary for the overall result and is thus
not evaluated. This technique is called short circuit evaluation and is a special case of
lazy evaluation.

Related rules

I write about the rule “ES.25: Declare an object const or constexpr unless you want
to modify its value later on” in Chapter 12, Constants and Immutability.

The section Metaprogramming in Chapter 13 provides an introduction to tem-
plate metaprogramming and constexpr functions as a replacement for a function-
like macro.

The rules related to expressions have a broad focus. Consequently, some of the
rules have a strong overlap with already presented rules. Find more details in the
referenced rules:

e ES.56: Write std: :move() only when you need to explicitly move an object to
another scope (see Parameter Passing: Ownership Semantics in Chapter 4)

e ES.60: Avoid new and delete outside resource management functions (see R.12:
Immediately give the result of an explicit resource allocation to a manager
object)

e ES.63: Don’tslice (see C.67: A polymorphic class should suppress copying)

e ES.64: Use the T{e} notation for construction (see ES.23: Prefer the {}-
initializer syntax)

https://en.wikipedia.org/wiki/Short-circuit_evaluation
https://en.wikipedia.org/wiki/Short-circuit_evaluation
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-const
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-const
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-move
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-move
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-new
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-slice
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-construct

CHAPTER 8 EXPRESSIONS AND STATEMENTS

Distilled

Important

If you write a loop, you probably don’t know the algorithms of the Stand-
ard Template Library (STL) well enough. The STL has more than 100
algorithms.

Good names are probably the most important rule for good software.
Good names means that your names should be self-explanatory, should be
as local as possible, should not be similar to existing names, should not be
written in ALL_CAPS, and should not be reused in nested scopes.

Always initialize a variable. Prefer {}-initialization to prevent narrowing
conversion. For complex initialization of const variables, use in-place
invoked lambda expressions.

Don’t use macros for constants or functions. If you have to use them or to
maintain existing ones, use unique ALL_CAPS names.

You should prefer a range-based for loop to a for loop if possible. Range-
based for loops are easier to read and cannot cause an index error.

You should prefer a switch statement to an if statement. switch state-
ments are easier to read and have more optimization potential.

Unless there is a specific reason, use signed integers and don’t mix signed
and unsigned arithmetic.

Be aware that overflow or underflow is undefined behavior and ends typi-
cally in a crash at run time of your program.

211

https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/language/if
https://en.cppreference.com/w/cpp/language/switch
https://en.cppreference.com/w/cpp/language/switch

This page intentionally left blank

Chapter 9

Performance

Cippi’s performance test

Performance or low latency is the sweet spot for C++, right? Therefore, I'm quite
surprised that only a quarter of the 20 rules to performance have substantial content.
Hence, I have to improvise a little to make a story out of the existing guidelines. The
performance rules of the C++ Core Guidelines start with rules for wrong optimiza-
tions, continue with rules about wrong assumptions, and end with rules to enable

optimization.

213

214 PART I THE GUIDELINES

Wrong optimizations

e Per.1: Don’t optimize without reason
e Per.2: Don’t optimize prematurely

e Per.3: Don’t optimize something that’s not performance critical

A famous quote can nicely summarize the first three rules.

The real problem is that programmers have spent far too much time worrying about
efficiency in the wrong places and at the wrong times; premature optimization is the
root of all evil (or at least most of it) in programming.

—Donald Knuth, The Art of Computer Programming (1974)

To make it short, keep the phrase “premature optimization is the root of all evil”
in mind. Before you make any performance assumption, apply the most critical rule
to performance analysis: Measure the performance of your program.

Without performance numbers, you don’t know the following:

e Which part of your program is the bottleneck?
e How fast is good enough for your user?

¢ How fast could the program potentially be?

Make the performance test with real-world data and test under version control.
Rerun those performance tests each time you change something in your infrastruc-
ture such as the hardware or the compiler.

Applying substantial optimization based on wrong assumptions is a typical
antipattern.

Wrong assumptions

e Per.4: Don’t assume that complicated code is necessarily faster than simple

code

e Per.5: Don’t assume that low-level code is necessarily faster than high-level

code

e Per.6: Don’t make claims about performance without measurements

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-reason
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-Knuth
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-critical
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-simple
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-low
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-measure
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-simple
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-low

CHAPTER 9 PERFORMANCE

Before I continue, I have to make a disclaimer: I do not recommend using the infa-
mous singleton pattern. The singleton has many drawbacks. You can read more about
them in the section dedicated to singletons in Chapter 3. I use the singleton pattern in
this section because the following example is based on a real-world example.

Let me show you that complicated and low-level code does not always pay
off. To prove my point, I have to measure the performance of various singleton
implementations.

The key idea of the performance test is to invoke the singleton pattern 40 million
times from four threads, measure the execution time of each thread, and sum the
numbers up. Four threads seem to be the right choice due to my four-core machine.
The singleton pattern is initialized lazily; therefore, the first call has to initialize it.

Don’t take the performance numbers too seriously. They should only give a ball-
park feeling.

My first implementation is based on the so-called Meyers singleton. It is thread
safe because of the C++11 standard guarantees that a static variable with block
scope is initialized in a thread-safe way.

// singletonMeyers.cpp

#include <chrono>
#include <iostream>
#include <future>

constexpr auto tenMill = 10'000'000;

class MySingleton {
public:
static MySingleton& getInstance() {
static MySingleton instance;
volatile int dummy{};
return instance;
}
private:
MySingleton()= default;
~MySingleton()= default;
MySingleton(const MySingleton&)= delete;
MySingleton& operator = (const MySingleton&)= delete;
};

std::chrono::duration<double> getTime() {

auto begin= std::chrono::system_clock: :now();

215

https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Scott_Meyers
https://en.cppreference.com/w/cpp/header/iostream

216

PART I THE GUIDELINES

for (size_t i = 0; i < tenMill; ++i) {
MySingleton::getInstance();
}

return std::chrono::system_clock::now() - begin;

int main() {

auto futl = std::async(std::launch::async,getTime);
auto fut2 = std::async(std::launch::async,getTime);
auto fut3 = std::async(std::launch::async,getTime);
auto fut4 = std::async(std::launch::async,getTime);

auto total = futl.get() + fut2.get() +
fut3.get() + futd.get();

std::cout << total.count() << '\n';

Line 12 uses the guarantee of the C++11 run time that the singleton is initialized
in a thread-safe way. Each of the four threads in the main function invokes ten mil-
lion times the singleton in line 27. In total, this makes 40 million calls. The vola-
tile variable dummy at line 13 is necessary. Without the variable dummy, the optimizer
would do a perfect job and remove the loop in lines 26-28. Of course, the perfor-
mance numbers would be impressive.

Let’s try to do better. This time I use atomics to make the singleton pattern
thread safe. My implementation is based on the infamous double-checked locking
pattern. For the sake of simplicity, I will show only the implementation of the class
MySingleton.

class MySingleton {
public:
static MySingleton* getInstance() {
MySingleton* sin= instance.load(std::memory_order_acquire);
if (1sin) {
std::lock_guard<std::mutex> myLock(myMutex);
sin = instance.load(std: :memory_order_relaxed);
if(!sin){
sin = new MySingleton();
instance.store(sin,std::memory_order_release);

https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Double-checked_locking
https://en.wikipedia.org/wiki/Double-checked_locking

CHAPTER 9 PERFORMANCE

volatile int dummy{};
return sin;

}
private:
MySingleton()= default;
~MySingleton()= default;
MySingleton(const MySingleton&)= delete;
MySingleton& operator = (const MySingleton&)= delete;

static std::atomic<MySingleton*> instance;
static std::mutex myMutex;

std::atomic<MySingleton*> MySingleton::instance;
std::mutex MySingleton::myMutex;

To understand the implementation, you have to study the memory orderings,
think about the acquire-release semantics, and think about the synchronization and
ordering constraint. This is not an easy job, and it may take days.

But you know, highly sophisticated code pays off.

Darn. I forgot to apply the critical rule of performance optimization: “Per.6:
Don’t make claims about performance without measurements”. Figure 9.1 shows the
performance numbers for the Meyers singleton on Linux. I compiled the program, as
always, with maximum optimization.

File Edit View Bookmarks Settings >

rainer@linux:~> singletonMeyers -
0.0347642 E
rainer@linux:~> |j

W

>} rainer : bash

Figure 9.1 Performance of the Meyers singleton

Now I’m curious. What are the numbers for my highly sophisticated code? See
Figure 9.2.

217

https://en.wikipedia.org/wiki/Scott_Meyers
https://en.cppreference.com/w/cpp/atomic/memory_order
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-measure
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-measure

218

PART I THE GUIDELINES

File Edit View Bookmarks Settings Help

rainer@linux:~> singletonAcquireRelease -~
0.0623609 ﬂ
rainer@linux:~> Jj

B8 rainer : bash

Figure 9.2 Performance of the singleton based on acquire-release semantics

80% percent slower! 80% percent slower, and we cannot even prove that the
implementation is correct.

Are we done? No! I don’t have a baseline. The baseline should be your starting,
not your ending, point for a performance test. How fast can 40 million invocations
of a singleton be? Invoking 40 million times the singleton from a single-threaded
implementation with no synchronization overhead provides me a good baseline. See
Figure 9.3.

File Edit View Bookmarks Settings Help

rainer@linux:~> singletonSingleThreaded -~
0.0242369
rainer@linux:~> |j

[> | rainer : bash

Figure 9.3 Performance of the singleton in the single-threaded case

The single-threaded execution takes about 0.024 seconds, and the mulithreaded
execution based on the Meyers singleton about 0.035 seconds. This means that the
synchronization overhead makes the Meyers singleton 45% slower.

This small synchronization overhead is quite remarkable. If you want to know the
entire story behind the thread-safe initialization of the singleton pattern, read the
post “Thread-Safe Initialization of a Singleton” at https://www.modernescpp.com/
index.php/thread-safe-initialization-of-a-singleton. This story includes additional
implementations based on the function std::call_once and the std::once_flag,
the lock std::lock_guard, and atomics using sequential consistency. The perfor-
mance numbers provided are for Linux (GCC) and the Microsoft platform (cl.exe).

Enable optimization

The last section is about wrong assumptions. Now, | want to take an optimistic
approach.

https://www.modernescpp.com/index.php/thread-safe-initialization-of-a-singleton
https://www.modernescpp.com/index.php/thread-safe-initialization-of-a-singleton
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Scott_Meyers
https://en.wikipedia.org/wiki/Scott_Meyers
https://en.cppreference.com/w/cpp/thread/lock_guard

CHAPTER 9 PERFORMANCE

Get the ultimate truth with Compiler Explorer

If you want to know which code is better optimized, you have to study the
generated assembler instructions. Compiler Explorer generates the assembler
instructions for various compilers including GCC, Clang, and the Microsoft
compiler. Various versions of the compilers are available. Additionally, you can
specify the compiler flags such as -O3 or /Ox for maximum optimization.

Per.7 Design to enable optimization

This rule applies, in particular, to move semantics because you should write your
algorithms using move semantics and not copy semantics. Using move semantics
automatically provides a few benefits.

1. Instead of an expensive copy operation, your algorithm uses a cheap move
operation.

2. Your algorithm is a lot more stable because it requires no memory allocation,
and therefore, std: :bad_alloc exceptions are not possible.

3. You can use your algorithm with move-only types such as std: :unique_ptr.

You may see a loophole in my argumentation. What happens when I use a copy-
only type in an algorithm requiring move semantics?

// swap.cpp

#include <algorithm>
#include <iostream>
#include <utility>

template <typename T>

void swap(T& a, T& b) noexcept { // (2)
T tmp(std::move(a));
a = std::move(b);
b = std::move(tmp);

219

https://en.cppreference.com/w/cpp/memory/new/bad_alloc
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/algorithm
https://godbolt.org/
https://godbolt.org/
https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/header/iostream

220 PART I THE GUIDELINES

class BigArray {

public:
explicit BigArray(std::size_t sz): size(sz), data(new int[size]) {}

BigArray(const BigArray& other): size(other.size),
data(new int[other.size]) {
std::cout << "Copy constructor" << '\n';
std::copy(other.data, other.data + size, data);

}

BigArray& operator = (const BigArray& other) {
std::cout << "Copy assignment" << '\n';
if (this != &other){
delete [] data;
data = nullptr;
size = other.size;
data = new int[size];
std::copy(other.data, other.data + size, data);

}

return *this;

~BigArray() {
delete[] data;
}

private:
std::size_t size;
int* data;

Y

int main(){
std::cout << '\n';
BigArray bigArri1(2011);
BigArray bigArr2(2017);

swap(bigArrl, bigArr2); // (1)

std::cout << '\n';

CHAPTER 9 PERFORMANCE 221

BigArray does not support move semantics, only copy semantics. What happens
if I swap the BigArrays in (1)? My swap algorithm uses move semantics (2) internally.
Let’s try it out (see Figure 9.4).

File Edit View Bookmarks >
rainer@seminar:~> swap 2

Copy constructor
Copy assignment
Copy assignment

rainer@seminar:~> i |

B rainer: bash

Figure 9.4 Move semantics on a copy-only type

Applying move operations on a copy-only type triggers copy operations. Copy
semantics is a kind of fallback to move semantics. You can see it the other way around.
Move is an optimized copy. How is this possible? I asked for a move operation in my
swap algorithm. The reason is that std: :move returns an rvalue. A const lvalue refer-
ence can bind to an rvalue, and the copy constructor or the copy-assignment opera-
tor takes a const Ivalue reference. If BigArray would have a move-constructor or a
move-assignment operator taking rvalue references, both would have higher prior-
ity than the copy constructor or the move-assignment operator. Implementing your
algorithms with move semantics means that move semantics automatically kicks in
if your data types support it. If not, copy semantics is used as a fallback. In the worst
case, you get the classical behavior.

When you study the copy-assignment operator, you see that it has a number of
flaws. Here they are:

1. The expression (if(this != &other)) checks for self-assignment. Most of the
time self-assignment does not happen, but the check is always performed.

2. If the allocation (data = new int[size]) fails, this is already modified. The
size is wrong, and data is already deleted. This behavior means the copy con-
structor guarantees only that there is no leak after an exception.

https://en.cppreference.com/w/cpp/algorithm

222

PART I THE GUIDELINES

3. The expression (std: :copy(other.data, other.data + size,data)) is used
in the copy constructor and in the copy-assignment operator.

Implementing a swap function for BigArray and implementing the copy-
assignment operator with the help of the swap function would solve all flaws. Here
is the copy-assignment operator, which takes its argument by value. Consequently, a
test for self-assignment is not necessary.

BigArray& operator = (BigArray other) {
swap(*this, other);
return *this;

BigArray still has a few flaws. Using a std::vector instead of a C-array solves
them. The definition of BigArray boils down to a few lines:

class BigArray {
public:

BigArray(std::size_t sz): vec(std::vector<int>(sz)) {}
private:

std::vector<int> vec;

3

The compiler can autogenerate the big six if all members of the class support
them. The big six include the default constructor, destructor, copy- and move-
assignment operator, and copy and move constructor. std: : vector supports the big
six, and therefore, BigArray does support the big six with one exception. Due to the
user-defined constructor, BigArray does not have a default constructor.

Rely on the static type system

There are many ways that you can help the compiler to generate more optimized
code.

e Write local code: Using an in-place invoked lambda instead of a function to
adjust the behavior of std: :sort is in general the faster variant. The compiler
has all the information available to generate the most optimized code. On the
contrary, a function could be defined in another translation unit, which is a
hard boundary for the optimizer.

CHAPTER 9 PERFORMANCE

bool lessLength(const std::string& f, const std::string& s){
return f.size() < s.size();

int main() {

std::vector<std::string> vec = {"12345", "123456", "1234",
nqn, omqpn mi23M, 112345"};

// a function as predicate
std::sort(vec.begin(), vec.end(), lessLength);

// a lambda as predicate
std::sort(vec.begin(), vec.end(),
[J(const std::string& f, const std::string& s) {
return f.size() < s.size();

1)

e Write simple code: The optimizer looks for known patterns that could be
optimized. If your code is very handcrafted and complicated, you make the job
of the optimizer to find known patterns harder. In the end, you often get less
optimized code.

¢ Give the compiler additional hints: When your function cannot throw, or you
don’t care, declare it as noexcept. It is equally valuable to the optimizer to
declare a virtual function as final if it should not be overridden.

Move computation from run time to compile-time

The following example shows the gcd algorithm, which calculates the greatest com-
mon division at run time. gcd is implemented using the Euclidean algorithm.

int gcd(int a, int b) {
while (b !'=0) {

auto t = b;
b=a%b;
a=t;

}

return a;

223

https://en.wikipedia.org/wiki/Euclidean_algorithm

224

PART I THE GUIDELINES

By declaring gcd as constexpr, gcd becomes a function that can be executed at
compile time. There are a few restrictions on constexpr functions. gcd must not use
static or thread_local variables, exception handling, or goto statements, and all
variables have to be initialized and have a literal type. A literal type is essentially a
built-in type, or a reference, or an array of literal types, or a class with a constexpr
constructor.

Let's try it out.

// gcd.cpp
#include <iostream>

constexpr int gcd(int a, int b) {
while (b !'= 0){

auto t = b;
b =a%b;
a-=t,;

}

return a;

int main() {

std::cout << '\n';

constexpr auto resl = gcd(121, 11); // (1)
std::cout << "gcd(121, 11) = " << resl << '\n';

auto val = 121; // (3)
auto res2 = gcd(val, 11); // (2)
std::cout << "gcd(val, 11) = " << res2 << '\n';

std::cout << '\n';

Declaring gcd as a constexpr function does not mean that it has to run at com-
pile time. It means that gcd has the potential to run at compile time. A constexpr
function has to be executed at compile time if used in a constant expression. resl
in (1) is a constant expression because I ask for the result with a constexpr variable
resl. res2 in (2) is not a constant expression because val in (3) is not a constant

https://en.cppreference.com/w/cpp/named_req/LiteralType
https://en.cppreference.com/w/cpp/named_req/LiteralType
https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 9 PERFORMANCE

expression. When I change res2 to constexpr auto res2, 1 get an error: val is not a
constant expression. Figure 9.5 shows the output of the program.

rainer: bash

File Edit View Bookmarks Settings >
rainer@seminar:~> gcd =

ged(121, 11) = 11
ged(val, 11) = 11
rainer@seminar:~> i o

B rainer: bash

Figure 9.5 [nvoking ged at compile time and run time

Once more, here is the key observation. You can use a constexpr function at run
time and compile time. To use it at compile time, its arguments have to be constant
expressions.

Thanks to Compiler Explorer, I can show the relevant assembler instructions for
this program. The invocation of the function gcd(121, 11) in line 18 boils down to

its result as a constant. See Figure 9.6.

mov esi, 11
mov edi, OFFSET FLAT:std::cout
call std::basic_ostream<char, std::char_traits<char> >::operator<<(int)

Figure 9.6 The relevant assembler instructions to the algorithm gcd

Access memory predictably

What does predictably mean? For example, you read an int from memory more than
the size of this one int is read from memory. An entire cache line is read from mem-
ory and stored in a CPU’s cache. On modern architectures, a cache line typically has

225

https://godbolt.org/

226

PART I THE GUIDELINES

64 bytes. If you now request an additional variable from memory and this variable is
already cached, the read directly uses this cache, and the operation is much faster.

A data structure such as std: :vector, which stores its data in a contiguous mem-
ory block, is a cache-line-friendly data structure because each element in the cache
line is typically used. This cache-line friendliness also holds for a std::array and
std::string.

std::deque is in its structure similar to std::vector, but the elements of
std::deque are not stored in a contiguous memory block. The elements of a
std: :deque are typically stored in a sequence of fixed-size arrays. The fixed-sized
arrays are filled before new arrays are added to the std: : deque. See Figure 9.7.

= =

rrrrrrnnn

Figure 9.7 std: :deque

In contrast, std: :list and std: :forward_list are doubly or singly linked con-
tainers. A std: :1ist increases in both directions, a std: : forward_list in one direc-
tion. See Figures 9.8 and 9.9.

&= a2 (32|45 |=2|6|*|7|=[8| =™

Figure 9.8 std::list

1 |=|2|=[3[=|4|=|5|=|6|=|7|=|8| ==

Figure 9.9 std::forward_list

CHAPTER 9 PERFORMANCE

This was the theory of cache lines. Now I’'m curious. Does it make a performance

difference to read and accumulate all elements of a std::vector, a std: :deque, a

std::list,and a std::forward_list? This small program gives an answer

© 0 N o g b~ W N R

AD W W WWWWWWWWNNDNDDNDNDNDMDNDDNMNNDNRERRPERERERREREERRPR R BRPRRE
P ® © 0 N O 0O b WNEFEF O O 0 NO O b WNEROOG O 0NOO O~ wNRO

// memoryAccess.cpp

#include <forward_list>

#include <chrono>

#include <deque>

#include <iomanip>

#include <iostream>

#include <list>

#include <string>

#include <vector>

#include <numeric>

#include <random>

const int SIZE = 100'000'000;

template <typename T>

void sumUp(T& t, const std::string& cont) {

std::cout << std::fixed << std::setprecision(10);

std::chrono::steady_clock::now();

std::accumulate(t.begin(), t.end(), OLL);

std::chrono::duration<double> last =

std::chrono::steady_clock::now() - begin;

cont

<< '\n';

"time: " << last.count() << '\n';

"res:
l\nl;

l\nl;

auto begin =
std::size_t res =
std::cout <<
std::cout <<
std::cout <<
std::cout <<
std::cout <<

}

int main() {

std::cout

<<

l\nl;

" << res << '\n';

std: :random_device seed;
std::mt19937 engine(seed());
std::uniform_int_distribution<int> dist(0, 100);

227

https://en.cppreference.com/w/cpp/algorithm/accumulate
https://en.cppreference.com/w/cpp/header/iostream

228

PART I THE GUIDELINES

42 std::vector<int> randNum;

43 randNum.reserve(SIZE);

44 for (int i = 0; i < SIZE; ++i){

45 randNum.push_back(dist(engine));

46 }

47

48 {

49 std::vector<int> vec(randNum.begin(), randNum.end());
50 sumUp(vec, "std: :vector<int>");

51}

52

53

54 {

55 std: :deque<int>deq(randNum.begin(), randNum.end());
56 sumUp(deq, "std: :deque<int>");

57}

58

59 {

60 std::list<int>1st(randNum.begin(), randNum.end());
61 sumUp(1lst, "std::list<int>");

62 1}

63

64 {

65 std::forward_list<int>forwardLst(randNum.begin(),
66 randNum.end());

67 sumUp(forwardLst, "std: :forward_list<int>");

68 3}

69

70 }

The program memoryAccess.cpp creates first 100 million random numbers
between 0 and 100 (line 38). Then it accumulates the elements using a std: :vector
(line 50), a std::deque (line 56), a std::1list (line 61), and a std::forward_list
(line 67). The actual work is done in the function sumup (lines 16—32). My educated
guess is that GCC, Clang, and the Microsoft Visual Studio compiler use a quite simi-
lar implementation of std: :accumulate.

template<class InputIt, class T>
T accumulate(InputIt first, InputIt last, T init) {
for (; first != last; ++first) {
init = init + *first;
}

return init;

https://en.cppreference.com/w/cpp/algorithm/accumulate
https://visualstudio.microsoft.com/

CHAPTER 9 PERFORMANCE 229

Consequently, the access time of the elements is the dominant factor for the over-
all performance. See Figure 9.10.

B x64 MNative Tools Co... — O x

Figure 9.10 Memory access for sequence containers on Windows

Here are a few observations:

e std::vector is 30 times faster than std: :1ist or std: : forward_list.
e std::vector is 5 times faster than std: :deque.
e std::deque is 6 times faster than std: :1ist and std: :forward_list.

e std::list and std::forward_list are in the same ballpark.

Although I got similar relative numbers on Linux with the GCC compiler, don’t
take the performance numbers too seriously. The performance numbers give a solid
indication that the access time to the elements heavily depends on the cache-line
friendliness of the container.

230 PART I THE GUIDELINES

Related rules

The section Metaprogramming in Chapter 13 provides an introduction to template
metaprogramming, the type-traits library, and constexpr functions as a means to
move computation from run time to compile time.

Distilled
Important

¢ Before you make any supposed optimization based on wrong assumptions,
measure the performance of your program.

e Help the compiler to optimize your program. Implement your functions
with move semantics, and make them constexpr if possible.

* Modern computer architectures are optimized for the contiguous read-
ing of memory. Consequently, std: :vector, std: :array, or std::string
should be your first choice.

https://en.cppreference.com/w/cpp/header/type_traits

Chapter 10

Concurrency

Cippi’s challenges with threads

The C++ Core Guidelines list about thirty rules for concurrency that focus on three
main goals:

e To help in writing code that is amenable to being used in a multithreaded
environment

231

232

PART I THE GUIDELINES

¢ To show clean, safe ways to use the threading primitives offered by the stand-
ard library

e To offer guidance on what to do when concurrency and parallelism aren’t giv-
ing the performance gains needed

The rules consist of general guidelines, targeted to a non-expert audience, applied to
concurrency, parallelism, message passing, and lock-free programming.

Concurrency versus parallelism

e Concurrency: The execution of several tasks overlaps. Concurrency is a super-
set of parallelism.

o Parallelism: Several tasks are run at the same time. Parallelism is a subset of
concurrency.

General guidelines

Although the rules of this section have a general focus, all of them are important.

Assume that your code will run as part of a multi-threaded
program

CP.1

Maybe you are surprised to read this rule. Why should I optimize for a special case?
To make it clear, this rule is mainly about code used in libraries. And experience
shows that library code is often reused. This reuse means that the code is likely to
end up being exercised in a multithreaded program.

The code snippet shows an example from the guidelines.

1 double cached_computation(double x) {

2 static double cached_x = 0.0;

3 static double cached_result = COMPUTATION_OF_ZERO;
4 double result;

5

© 00 N O

11

CHAPTER 10 CONCURRENCY

if (cached_x == x) return cached_result;
result = computation(x);

cached_x = x;

cached_result = result;

return result;

The function cached_computation is fine if it runs in a single-threaded environment.

This observation does not hold for a multithreading environment because the static

variables cached_x (lines 2, 6, and 9) and cached_result (lines 3, 6, and 9) can be

modified simultaneously by various threads.

Unsynchronized reading and writing of a shared non-atomic variable is a data

race. Consequently, your program has undefined behavior.

What are your options to get rid of the data race?

1. Use one lock to protect the entire critical region.

2. Protect the call to the function cached_computation by a lock.

3. Make both static variables thread_local. thread_local guarantees that

std:

each thread gets its variable cached_x and cached_result. Such a static vari-
able is bound to the lifetime of the main thread; a thread_local variable is
bound to the lifetime of its thread.

rmutex m;

double cached_computation(double x) { // (1)

static double cached_x = 0.0;
static double cached_result = COMPUTATION_OF_ZERO;
double result;

{

std::lock_guard<std::mutex> lck(m);

if (cached_x == x) return cached_result;

result = computation(x);

cached_x = x;
cached_result = result;

std
{

}

return result;

::mutex cachedComputationMutex; // (2)

233

http://www.modernescpp.com/index.php/race-condition-versus-data-race
http://www.modernescpp.com/index.php/race-condition-versus-data-race
http://www.modernescpp.com/index.php/race-condition-versus-data-race

234

PART I THE GUIDELINES

std::lock_guard<std::mutex> lck(cachedComputationMutex);
auto cached = cached_computation(3.33);

}
double cached_computation(double x) { // (3)
thread_local double cached_x = 0.0;
thread_local double cached_result = COMPUTATION_OF_ZERO;
double result;
if (cached_x == x) return cached_result;
result = computation(x);
cached_x = x;
cached_result = result;
return result;
}

First, the C++11 standard guarantees that the C++ run time initializes static vari-
ables in a thread-safe way; therefore, you do not need to protect their initialization.

1. This version uses a coarse-grained locking approach. Usually, you should not
use coarse-grained locking such as in this version, but maybe in this use case, it
is acceptable.

2. This version is the most coarse-grained solution because the entire function is
locked. Of course, the downside is that the user of the function is responsible
for the synchronization. In general, that is a bad idea.

3. Just make the static variables thread_local, and you are done.

CP.2 Avoid data races

First of all, what is a data race?

e A data race is a situation in which at least two threads access a non-atomic
shared variable without synchronization and at least one thread tries to modify
the variable.

The rest is simple. If you have a data race in your program, your program has unde-
fined behavior.

http://www.modernescpp.com/index.php/race-condition-versus-data-race
http://www.modernescpp.com/index.php/race-condition-versus-data-race
http://www.modernescpp.com/index.php/race-condition-versus-data-race

CHAPTER 10 CONCURRENCY 235

If you read the definition of data race carefully, you will notice that a shared,
mutable state is necessary for having a data race. Figure 10.1 displays this critical
observation. You should avoid the bottom right quadrant, in particular, in a concur-
rent environment.

Mutable?

OK OK

Yes OK Data
race

Shared?

Figure 10.1 Four categories of variables
Let me show you a simple data race.

// dataRace.cpp

#include <future>

int getUniqueId() {

static int id = 1;
return id++;

int main() {

auto futl = std::async([]{ return getUniqueId(); });
auto fut2 = std::async([]{ return getUniqueId(); });

auto id = futil.get();
auto id2= fut2.get();

3

What can go wrong? For example id++ is a read-modify-write operation. Even if
each of the three operations read, modify, and write were atomic, the read-modify-
write operation is not atomic. The effect of this data race would be with high prob-
ability that ids would not be unique.

http://www.modernescpp.com/index.php/race-condition-versus-data-race
http://www.modernescpp.com/index.php/race-condition-versus-data-race
http://www.modernescpp.com/index.php/race-condition-versus-data-race
http://www.modernescpp.com/index.php/race-condition-versus-data-race

236

PART I THE GUIDELINES

CP.3 Minimize explicit sharing of writable data

Based on the previous rule related to data races, your shared data should be
constant.

Now the only challenge left to solve is how to initialize the constant shared data in
a thread-safe way. C++11 supports a few ways to achieve this.

1. Initialize your data before you start a thread. This is not due to C++11 but is
often quite easy to apply.

const std::unordered_map<std::string, int> val = {
{"Grimm", 1966},
{"smith", 1968},
{"Blac", 1930} };

std::thread ti([&tele] { });

std::thread t2([&tele] { });

2. Use constant expressions because they are initialized at compile time.
constexpr auto doub = 5.1;

3. Use the function std::call_once in combination with the std::once_flag.
You can put the important initialization stuff into the function onlyonceFunc.
The C++ run time guarantees that this function runs exactly once successfully.

std::once_flag onceFlag;

void do_once() {
std::call_once(onceFlag, []{
std::cout << "Important initialization" << '\n';

}i

std::thread ti(do_once);
std::thread t2(do_once);
std::thread t3(do_once);
std::thread t4(do_once);

4. Use static variables with block scope because the C++11 run time guarantees
that they are initialized in a thread-safe way.

void func() {

static int val = 2011;

http://www.modernescpp.com/index.php/race-condition-versus-data-race

CHAPTER 10 CONCURRENCY

std::thread t1{ func() };
std::thread t2{ func() },

CP4 Think in terms of tasks, rather than threads

What is a task? “Task” is a general term for a unit of execution. Since C++11, we
have used task as a special term, which stands for two components: a promise and a
future. A promise produces a value that the future can asynchronously pick up.
Promise and future can run in different threads and are connected by a secure data
channel.

Promise exists in three variations in C++: std: :async, std: : packaged_task, and
std: :promise. To get more details on tasks, consult the blog posts I’'ve written here:
https://www.modernescpp.com/index.php/tag/tasks.

A std: :packaged_task and a std: :promise have in common that they are quite
low level; therefore, I present std: :async.

Here are a thread and a future/promise pair that calculate the sum of 3 + 4.

// thread

int res;

std::thread t([&]{ res =3 + 4; });
t.join();

std::cout << res << '\n';

// task
auto fut = std::async([]{ return 3 + 4; });
std::cout << fut.get() << '"\n';

What is the fundamental difference between a thread and a future/promise pair? A
thread is about how something should be calculated; a task is about what should be
calculated.

Let me be more specific.

e The thread t uses the shared variable res to provide its results. In contrast, the
promise std: :async uses a secure data channel established by the promise to
communicate its result to the future fut. This sharing means for the thread t
that you have to protect res.

237

https://www.modernescpp.com/index.php/tag/tasks

238

PART I THE GUIDELINES

e In case of a thread, you explicitly create a thread. This creation of a thread
does not hold automatically for the promise std::async. You specify what
should be calculated and not how it should be calculated. The C++ run time
decides to create a thread, if necessary.

CP.8 Don't try to use volatile for synchronization

If you want to have an atomic in Java or C#, you declare it as volatile. You may
think that you could do the same in C++. That is wrong. volatile has no multi-
threading semantics in C++. Atomics are called std: :atomic in C++11.

Now, you may be curious: What is the meaning of volatile in C++?

volatile is meant to be used for special objects, on which optimized read or write
operations are not allowed. volatile is typically used in embedded programming
domains to denote objects that can change independently of the regular program
flow. These are, for example, objects that represent an external device (memory-
mapped I/O). Because these objects can change independently of the regular pro-
gram flow, their value is directly written to main memory. Consequently, there is no
optimized storing of values in hardware caches.

Whenever feasible use tools to validate your concurrent
code

CP.9

This rule is probably one of the most important ones, and I fully agree.

My students write lots of bugs; in fact, even many of my own programs contain
bugs! How can I be sure? Because of the dynamic code analysis tool ThreadSanitizer
and the static code analysis tool CppMem. The use cases for ThreadSanitizer and
CppMem are different.

ThreadSanitizer gives you the big picture and detects if the execution of your pro-
gram has a data race. CppMem gives you detailed insight into small pieces of your
code, most of the time including atomics. You get the answer to the question, Which
interleavings are possible according to the memory model?

Let’s start with ThreadSanitizer.

http://www.modernescpp.com/index.php/race-condition-versus-data-race
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/

CHAPTER 10 CONCURRENCY

ThreadSanitizer

Here is the official introduction to ThreadSanitizer from “ThreadSanitizerCpp
Manual” (https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual):
“ThreadSanitizer (aka TSan) is a data race detector for C/C++. Data races are one of
the most common and hardest bugs in concurrent systems. A data race occurs when
two threads access the same non-atomic variable concurrently, and at least one of the
accesses is a write. C++11 standard officially bans data races as undefined
behavior.”

ThreadSanitizer is part of Clang 3.2 and GCC 4.8. To use it, you have to compile
and link using the -fsanitize=thread option and use at least optimization level -02
and the flag -g for producing debugging information: -fsanitize=thread -02 -g.

The run-time overhead is significant: The memory usage may increase 5 to 10
times and the execution time 2 to 20 times. Of course, you know the outstanding law
of software development: First, make your program correct; then, make it fast.

Now let’s see ThreadSanitizer in action. Here is a typical exercise I have often
given in my multithreading classes to condition variables:

Write a small ping-pong game.

Two threads should alternatively set a bool value to true or false. One thread sets the
value to true and notifies the other thread. The other thread sets the value to false and
notifies the original thread. That play should end after a fixed amount of iterations.

And this is the typical implementation my students come up with.

// conditionVariablePingPong.cpp
#include <condition_variable>
#include <iostream>

#include <thread>

bool dataReady= false;

© 0 N o g b~ W N R

std: :mutex mut;

10 std::condition_variable condvaril;
11 std::condition_variable condvar2;
12

13 int counter = 0;

14 int COUNTLIMIT = 50;

15

16 void setTrue() {

17

18 while(counter <= COUNTLIMIT) {

239

https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
http://www.modernescpp.com/index.php/race-condition-versus-data-race
http://www.modernescpp.com/index.php/race-condition-versus-data-race
http://www.modernescpp.com/index.php/race-condition-versus-data-race
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
https://en.cppreference.com/w/cpp/header/iostream

240

PART I THE GUIDELINES

19 std::unique_lock<std::mutex> lck(mut);
20 condvarl.wait(lck, []{return dataReady == false;});
21 dataReady = true;

22 ++counter;

23 std::cout << dataReady << '\n';

24 condvar2.notify_one();

25 3}

26 1}

27

28 void setFalse() {

29

30 while(counter < COUNTLIMIT) {

31 std::unique_lock<std::mutex> lck(mut);
32 condvar2.wait(lck, []{return dataReady == true;});
33 dataReady = false;

34 std::cout << dataReady << '\n';

35 condvarl.notify_one();

36 3}

37 1}

38

39 int main() {

40

41 std::cout << std::boolalpha << '\n';

42

43 std::cout << "Begin: " << dataReady << '\n';
44

45 std::thread ti1(setTrue);

46 std::thread t2(setFalse);

47

48 tl.join();

49 t2.join();

50

51 dataReady = false;

52 std::cout << "End: " << dataReady << '\n';
53

54 std::cout << '\n';

55

56 1}

Function setTrue (line 16) sets the boolean value dataReady (line 21) to true, and
function setFalse (line 28) sets it to false. The play starts with setTrue. The condi-
tion variable in the function waits for the notification and therefore first checks the
boolean dataReady (line 20). Afterward, the function increments the counter (line
22) and notifies the other thread with the help of the condition variable condvar2

CHAPTER 10 CONCURRENCY

(line 24). The function setFalse follows the same workflow. If the counter becomes
equal to COUNTLIMIT (line 18), the game ends. Fine? No!

Fle Edit View Bookmarks Seftings Help

rainerdlimii=> conditionvariablePingPong
Begin: false
true

WARNING : Thrend

ri datn race {p LETY)

#0 setFaleel | Ma’ralher.fcnnﬂl(lnnuurlanleFlannnq eppe3a
#1 void std::_Bind_sisplesvoid ke 51d: s

A cond Lt LonVar LableP LigPong Sxidbils 18!
_Index, luﬂleo] .-’USHLIKlIl’ea’(na’w‘hn((Ml Leba lﬂmﬂllW!rlwlﬂlnﬂfnnwzmﬂuﬂhill

#2 std: _ﬂw_slw'lﬂvnld (% II(I) nperamrl Ii J
#3 sud: te_implestd: !
M emill> mu'l'l) mnsm“ 50, G+RxRRBARARC D

Previous write of size 4 at 0x000000604380 by threed T1 {sutw
M setTroel | /

_Bind sliple«vnlﬂ l‘l 10> = Morund) fusr/
e)

i/ thresd: 196 17

.._m,,.,

mes: write ML)

#1 void std:: au\d slmlecvmd (LS _ﬂ_lnunkeevlsm
=.-_n le<void (*())0 b= operatord)i) .fusr.rlnclu
#3 std tate_implestd:: Bind su@le«unlﬂ (LIRIIR
L am'lls dm'l'l) [libstdee+. o, fellunnnBnaRC260e |

Mutex M1l (OxODDDDOBOAZND) Croator
u pthread_sutex_lock <null> Eluﬂsun 20, B+AxBARRAAA b0 |

> >::_M_runl) jusr/

_Index_tuplec) a’ll!fa’hl:hlie!(u}ﬁﬂmuml 1ema lf.ondllmm‘arlnh'le!manng»r!meMl!hEeJ
ﬂe.-’c'-r.-’wfmllm'l 1389 |cmaumrww
196

isblePingp

he-default.h: 748 | condi '

hg!treodjlt:x lock {usr{\n:lud!(:tt(ﬂﬂﬂﬂ ﬂd—!usrvl
lz Y

tex: s lock() fu o
5 s ique_lockestd: gLt +1ocki | .rllsl.fm:'lud!.n’:n.n’ﬂa’
e pnlain Tockestd: mutens: sunique_lock{std: m.

h
bn:.rnd _mutex. hi! 20‘! | conditis
d_mutex.h: 197 i i ingP
)

read_create <nulle ilibtsan.so.B+BxERaeRaezh7Ea |
n stdi |ﬂ|rund|lJ| start_thread{std; ; umqu- ptumi thllnd

5 setTroel)

#6 void stdis_Bind lwlmn\ﬂ t-mt Jai JLmunk-ndnd _Indes mplml Juesrine Lonal s 1468 itioniariablefing i
#7 stdis d (# operatort){ | functional: 1388 |] }

#3 std s thresds 1_State u.nmu nd nnp'ln«un\ﬂ T4 13035 27 Morund) fumeyinel hiread: 196 ; inblefing?

#3 amill> <ull> | libstdces. so. G+xaanaannc.

State, std:idefault deletesstd::thresd:: States », void (#}0}} snull> {libstdces.so GeBxBaRgRREC2084)

#8 pthroad_create <nulle (libtsan.so.B+8x88888e82b788)

#2 main jhoma/ratnar/conditionvariaklepingPang. cppi5e | con

1oF)

rosd: 1 States =, void (#}0)} enulle (libstdces.so.G+BuNRAARAAC2T84)

LHLONVar LaBLaP INGPonGs BrBgeeesls]:

izer: data race

gPong.cppi32 in setFalsel |

[] rainer ; canditionaniab

Figure 10.2 Data race detection with ThreadSanitizer

There is a data race on the counter. It is read (line 30) and written (line 22) with-

out synchronization. ThreadSa

ThreadSanitizer detects data races during run time; CppMem lets you analyze

small code snippets.

CppMem

nitizer shows the data race (see Figure 10.2).

Here is a short overview of CppMem.

The online tool, which you can also install on your PC, provides very valuable

services.

1. CppMem validates small

code snippets, typically including atomics.

2. The very accurate analysis of CppMem gives you deep insight into the C++

memory model.

241

http://www.modernescpp.com/index.php/race-condition-versus-data-race
http://www.modernescpp.com/index.php/race-condition-versus-data-race
http://www.modernescpp.com/index.php/race-condition-versus-data-race
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/

242

PART I THE GUIDELINES

For more in-depth insight, read my blog posts about CppMem at http://
www.modernescpp.com/index.php/tag/cppmem. For now, I refer to the first point
and provide you a thousand-foot view of CppMem.

My overview uses the default configuration of the tool. This overview should give
you the basis for further experiments.

For simplicity reasons, I refer to the red numbers in Figure 10.3.

CppMem: Interactive C/C++ memory model E ti didate no. 1 of 8
Model e ,5 et | pesvious canaidate | next candidate | next consistent |1 | geto
sf 161-1 prefemed O release_acquire tot O retaxed_onty K Model Predicates
Program consistent race free execution = true
phes Faper ~|sc_ainmics ¢ v 54 execution = true
ution

return 47 |

)

nn | reset Iiﬂ_’||1 8 executions; 2 consistent, all race free

HHH T

are absent
locks_or s are absent

2Wna x=2

Ci cutions
mrg;)“ Display Relations "’l

bAsb™ Cldd Clea bwna y=0
B Mmo Mse Mio
Cihb Clvse [Clithh #sw Clrs Chrs Wdob Clead W

Munsequenced_races & data_races 6 CWSCX=3 e ORSCHED
iq_ﬁ)ﬁ Display Layout o

sb|
_par ®neato_par_init (' neato_downwards

me’

eWna y=1

Flies: out-axc, out.dot, out dsp, out tex

Figure 10.3 Overview of CppMem

1. Model

* This specifies the C++ memory model. The C++ memory model is
preferred.

2. Program
® This is the executable program in C or C++ —like syntax.

* CppMem offers you a bunch of typical interleavings of atomics. To get
the details of these programs, read the very well-written article “Mathe-
matizing C++ Concurrency” by Mark Batty et al. at http://www.cl.cam.
ac.uk/~pes20/cpp/popl085ap-sewell.pdf. Of course, you can also use your
code.

http://www.modernescpp.com/index.php/tag/cppmem
http://www.modernescpp.com/index.php/tag/cppmem
http://www.cl.cam.ac.uk/~pes20/cpp/popl085ap-sewell.pdf
http://www.cl.cam.ac.uk/~pes20/cpp/popl085ap-sewell.pdf
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
http://www.cl.cam.ac.uk/~pes20/cpp/popl085ap-sewell.pdf
http://www.cl.cam.ac.uk/~pes20/cpp/popl085ap-sewell.pdf

CHAPTER 10 CONCURRENCY

* CppMem is about multithreading, so there are a few simplifications.

* You can easily define two threads by the symbols {{{ ... ||| ... }}3.
The three dots (...) stand for the work package of the thread.

3. Display Relations

* This describes the relations between the read, write, and read-write modifi-
cations on atomic operations, fences, and locks.

¢ If the relation is enabled, it is displayed in the annotated graph (see point 6).
* sb: sequenced-before
* rf: read from
* mo: modification order
* sc: sequential consistency
* lo: lock order
* sw: synchronizes-with
* dob: dependency-ordered-before
e data_races
4. Display Layout
* You can choose with this switch which Doxygraph graph is used.
5. Choose the Executions
¢ Switch between the various consistent executions.
6. Annotated Graph
* This displays the annotated graph.

Now, let’s try it out.
The program dataRaceOnX.cpp has a data race on the int variable x. y is an
atomic and, therefore, fine from a concurrency perspective.

// dataRaceOnX.cpp

#include <atomic>
#include <iostream>
#include <thread>

243

http://www.modernescpp.com/index.php/race-condition-versus-data-race
http://www.modernescpp.com/index.php/race-condition-versus-data-race
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
https://sourceforge.net/projects/doxygraph/
https://en.cppreference.com/w/cpp/header/iostream

244 PART I THE GUIDELINES

int x = 0Q;
std::atomic<int> y{0};

void writing() {
X = 2000;
y.store(11);

void reading(){
std::cout << y.load() << " ";
std::cout << x << '\n';

int main() {

std::thread threadl(writing);
std::thread thread2(reading);

threadl.join();
thread2.join();

In order to use CppMem, you must rewrite your C++ program in the dialect of C
expected by CppMem’s parser. Cutting and pasting standard C++ code fails with a
cryptic “Frontc.ParseError.” Here is the equivalent program written in the more con-

cise CppMem syntax.

// dataRaceOnXCppMem. txt

int main(){
int x = 0;
atomic_int y = 0;

{{
{
X = 2000;
y.store(11);
}
[

http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/

CHAPTER 10 CONCURRENCY 245

{
y.load();
X;
}
11}
}

CppMem shows it immediately. The first consistent execution has a data race on x.
See Figure 10.4.

SwW

c:Wna x=2000

S

d:Wsc yﬁfl‘\x\‘* f:Rna x=0

Figure 10.4 A data race in CppMem

You can observe the data race in the graph. It is the yellow edge (dr) between the
write operation (x=2000) and the read operation (x=0).

To get more details on CppMem, read the blog posts I’ve written at https://
www.modernescpp.com/index.php/tag/cppmem.

Concurrency

Concurrency is a challenging topic. This challenge is due, in particular, to the low-
level abstraction we have now at our disposal. Knowing and applying the rules of this
section is, therefore, crucial to get a well-defined multithreading program.

Let me classify about fifteen rules into categories related to locks, threads, and
condition variables, but also data sharing between threads, resource considerations,
and a sometimes overlooked danger.

http://www.modernescpp.com/index.php/tag/cppmem
http://www.modernescpp.com/index.php/tag/cppmem
http://www.modernescpp.com/index.php/race-condition-versus-data-race
http://www.modernescpp.com/index.php/race-condition-versus-data-race
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/

246

PART I THE GUIDELINES

Locks

NNN stands for No Naked New and means that memory allocation should not be
done as a standalone operation but inside a manager object (“R.12: Immediately give
the result of an explicit resource allocation to a manager object”). The same obser-
vation holds for mutexes. Mutexes should immediately be given to a manager object,
which is, in this case, a lock. In modern C++, we have a std::lock_guard,
std::unique_lock, std::shared_lock (C++14), or std::scoped_lock (C++17).
Consequently, keep the acronym NNM, which stands for No Naked Mutex, in mind.
Locks implement the RAII idiom. The crucial idea behind the RAII idiom is to bind
the lifetime of a resource to the lifetime of a local variable. C++ automatically man-
ages the lifetime of locals.

CP.20 Use RAIl, never plain 1ock()/unlock()

The small code snippet should make the value of a lock immediately clear.

std: :mutex mtx;

void do_stuff() {
mtx.lock();
// ... do stuff ... (1)
mtx.unlock();

}

It doesn’t matter if an exception occurs in (1) or you just forgot to unlock the mtx; in
both cases, you will get a deadlock if another thread wants to acquire (lock) the
std::mutex mtx. Locks come to the rescue.

std::mutex mtx;

void do_stuff() {
std::lock_guard<std::mutex> lck {mtx};
// ... do stuff ...

}

Put the mutex into a lock, and the mutex is automatically locked in the constructor
of the std: : lock_guard and unlocked when 1lck goes out of scope.

https://en.cppreference.com/w/cpp/thread/lock_guard
https://en.cppreference.com/w/cpp/thread/lock_guard
https://en.cppreference.com/w/cpp/thread/shared_lock
https://en.cppreference.com/w/cpp/thread/scoped_lock
https://en.cppreference.com/w/cpp/thread/lock

CP.21

CHAPTER 10 CONCURRENCY

Use std: :lock() or std: :scoped_lock to acquire
multiple mutexes

If a thread needs more than one mutex at a time, you have to be extremely careful

that you always lock the mutexes in the same sequence. If not, a bad interleaving of

threads may cause a deadlock. The following program causes a deadlock.

// lockGuardDeadlock.cpp

#include
#include
#include
#include

<iostream>
<chrono>
<mutex>
<thread>

struct CriticalbData {

std::mutex mut;

3

void deadLock(CriticalData& a, CriticalData& b) {

std::lock_guard<std::mutex> guardi(a.mut); // (1)
std::cout << "Thread: " << std::this_thread::get_id() << '\n';
std::this_thread::sleep_for(std::chrono::milliseconds(1));
std::lock_guard<std::mutex> guard2(b.mut); // (1)
std::cout << "Thread: " << std::this_thread::get_id() << '\n';
// do something with a and b (critical region) (2)

int main() {

std::

cout << '\n';

CriticalData c1;

CriticalData c2;

std::
std::

thread ti1([&]{deadLock(c1, c2);3});
thread t2([&]{deadLock(c2, c1);3});

247

https://en.cppreference.com/w/cpp/thread/lock
https://en.cppreference.com/w/cpp/thread/lock
https://en.cppreference.com/w/cpp/header/iostream

248

PART I THE GUIDELINES

til.join();
t2.join();

std::cout << '\n';

Threads t1 and t2 need two CriticalDatas, to perform their jobs in (2). Critical-
Data has its mutex mut to synchronize the access. Unfortunately, both invoke the
function deadlock with the arguments c1 and c2 in a different sequence (1). Now we
have a race condition that could end up in a deadlock. Thread t1 can lock the first
mutex a.mut but not the second one b.mut because, in the meantime, thread t2

locked the second one. See Figure 10.5.

File Edit View Bookmarks Settings Help
rainer@linux:~> lockGuardDeadlock

Thread: 140141287732992
Thread: 140141296125696

. rainer : lockGuardDeadlo

>

Figure 10.5 A deadlock due to multiple locked mutexes

The easiest way to solve the deadlock is to lock both mutexes atomically.

With C++11, you can use a std: :unique_lock together with std: : lock. Thanks
to the tag std: :defer_lock, the std: :unique_lock takes the mutex without locking
it. The locking finally takes place in the std: : lock call. std: : lock can take an arbi-
trary number of arguments.

void deadLock(CriticalData& a, CriticalData& b) {
std::unique_lock<mutex> guardl(a.mut, std::defer_lock);
std::unique_lock<mutex> guard2(b.mut, std::defer_lock);
std::lock(guardl, guard2);
// do something with a and b (critical region)

With C++17, a std: :scoped_lock can lock an arbitrary number of mutexes in an

atomic operation.

void deadLock(CriticalData& a, CriticalData& b) {
std: :scoped_lock scoLock(a.mut, b.mut);

https://en.cppreference.com/w/cpp/thread/lock
https://en.cppreference.com/w/cpp/thread/lock
https://en.cppreference.com/w/cpp/thread/lock
https://en.cppreference.com/w/cpp/thread/lock

CHAPTER 10 CONCURRENCY

// do something with a and b (critical region)

Never call unknown code while holding a lock (e.g., a

Cp.22 callback)

Why is this code snippet bad, and why should it not pass a code review?

std::mutex m;

{
std::lock_guard<std::mutex> lockGuard(m);
sharedvariable = unknownFunction();

I can only speculate about the unknownFunction. If unknownFunction

e Tries to lock the mutex m, you get undefined behavior. Most of the time, the
result of this undefined behavior is a deadlock.

e Starts a new thread that tries to lock the mutex m, you get a deadlock.

e Locks another mutex m2, you may get a deadlock because you lock the two
mutexes m and m2 at the same time. Another thread may lock the same mutexes
in a different sequence.

e Does not directly or indirectly try to lock the mutex m, all seems to be fine.
“Seems” because a coworker can modify the function, and you get a changed
version of the function unknownFunction. Now all bets are off.

e Works as expected, you still may have a performance issue because the
unknownFunction takes quite a while. What was meant to be a multithreaded
program behaves similarly to a single-threaded program.

To overcome the issues, use a local variable and invoke the unknown function outside
of the critical region.

std::mutex m;

auto tempvar = unknownFunction();

{
std::lock_guard<std::mutex> lockGuard(m);
sharedvariable = tempVvar;

249

https://en.cppreference.com/w/cpp/thread/lock
https://en.cppreference.com/w/cpp/thread/lock

250

PART I THE GUIDELINES

This additional indirection solves all issues. tempvar is a local variable and can,
therefore, not be a victim of a data race. No victim means that you can invoke
unknownFunction without a synchronization mechanism. Additionally, the time for
holding the lock is reduced to its bare minimum: assigning the value of tempvar to

sharedvariable.

Threads

Threads are the basic building block for concurrent and parallel programming. With
each new C++ standard, threads become more and more an implementation detail
for concurrency. For example, with C++17, we got the parallel STL, which allows us
to specify the execution policy; with C++20, coroutines; and with C++23, we can

hope for transactional memory.

CP.23 Think of a joining thread as a scoped container
and
CP.24 Think of a thread as a global container

The slight variation of the code snippet from the C++ Core Guidelines should make

both rules clear:

void f(int* p) {
/7.
*p = 99;
/7.

int glob = 33;

void some_fct(int* p) {
int x = 77;
std::thread tO(f, &x);
std::thread t1(f, p);
std::thread t2(f, &glob);
auto q = make_unique<int>(99);
std::thread t3(f, q.get());
/7 ...
t0.join();

/7 (1)
// OK
// OK
// OK

// 0K

http://www.modernescpp.com/index.php/race-condition-versus-data-race
https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/language/coroutines
https://en.cppreference.com/w/cpp/language/transactional_memory

CHAPTER 10 CONCURRENCY

til.join();
t2.join();
t3.join();
/7.

void some_fct2(int* p) { // (2)
int x = 77;
std::thread tO(f, &x); // bad
std::thread ti(f, p); // bad
std::thread t2(f, &glob); // OK
auto q = make_unique<int>(99);
std::thread t3(f, q.get()); // bad
// ...
to.detach();
tl.detach();
t2.detach();
t3.detach();
// ...

The only difference between the functions some_fct (1) and some_fct2 (2) is that the
first variation joins its created threads, but the second variation detaches all created
threads.

First of all, you have to join or detach the children threads. If you don’t, you
get a std::terminate in the destructor of the child thread (see rule “CP25: Prefer
gsl::joining_thread over std::thread”).

The difference between joining or detaching a created thread is the following:
When the creator calls a thr.join() call on the created thread thr, it waits until the
created thread is done. thr.join() is a synchronization point. To put it the other
way around, the child thread thr can use all variables (state) of the enclosing scope in
which it was created. Consequently, all calls of the function f are well-defined.

On the contrary, a thr.detach() call does not wait and is, therefore, not a syn-
chronization point. This means that the created thread can outlive its creator. Con-
sequently, using variables of the enclosing scope may not be valid anymore. This is
precisely the issue in the function some_fct2. The variable x, the pointer p, or the
resource of the std: :unique_ptr g may not be valid anymore.

A thread can be seen as a global container using variables from outside. Addition-
ally, in case of a joining thread, the lifetime of the container is scoped.

CP.25 Prefer std: : jthread over std: : thread

251

https://en.cppreference.com/w/cpp/error/terminate
https://en.cppreference.com/w/cpp/memory/unique_ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-joining_thread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-joining_thread

252

PART I THE GUIDELINES

The original title of this rule is “CP25: Prefer gsl::joining_thread over
std::thread.” 1 replaced gsl::joining_thread from the Guidelines Support
Library with std: : jthread from C++20.

In the following program, I forgot to join the thread t.

// threadwithoutJoin.cpp

#include <iostream>
#include <thread>

int main() {
std::thread t([]{
std::cout << std::this_thread::get_id() << '\n';

1)

}

The execution of the program ends abruptly. See Figure 10.6.

rainer : bash — Konsole

File Edit View Bookmarks Settings Help

rainer@seminar:~> threadWithoutloin

terminate called without an active exception
Aborted (core dumped)

rainer@seminar:~> |j I

Figure 10.6 Forgot to join a thread

The lifetime of the created thread t ends with its callable. The creator has two
choices. First, it waits until its child is done (t.join()). Second, it detaches itself
from its child (t.detach()). A thread t with a callable unit—you can create threads
without callable units—is called joinable if neither a t.join() nor t.detach() call
happened. The destructor of a joinable thread throws a std: : terminate exception,
which ends in std::abort. In our case, the program terminated before the child
thread had time to display its id.

In addition to a std: : thread, a std: : jthread automatically joins on destruction.
Replacing the std: : thread with a std: : jthread, therefore, solves the issue.

// threadwithJoin.cpp; C++20

#include <iostream>
#include <thread>

https://en.cppreference.com/w/cpp/error/terminate
https://en.cppreference.com/w/cpp/utility/program/abort
https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 10 CONCURRENCY

int main() {

std::jthread t([]{
std::cout << std::this_thread::get_id() << '\n';
1)

CP.26 Don't detach() athread

This rule sounds strange. The C++11 standard supports detaching a thread, but we
should not do it! The reason is that detaching a thread can be quite challenging. For
example, have a look at this small program that has undefined behavior. Even objects
with static duration can be critical.

// threadDetach.cpp

#include <iostream>
#include <string>
#include <thread>

void func() {
std::string s{"C++11"};
std::thread t([&s]{ std::cout << s << '\n';});
t.detach();

int main() {
func();

The lambda takes s by reference. This is undefined behavior because the child thread
t uses the variable s, which goes out of scope. Stop! This is the obvious problem, but
the hidden issue that many programmers overlook is std::cout. std::cout has
static duration. Static duration means the lifetime of std: :cout ends with the end of
the process, and we have, additionally, a race condition: Thread t may use std: :cout
at this time.

Race condition: A race condition is a situation in which the result of an operation
depends on the interleaving of certain individual operations.

253

https://en.cppreference.com/w/cpp/header/iostream

254

PART I THE GUIDELINES

Condition variables

CP.42 Don’t wait without a condition

Condition variables support a quite simple concept. One thread prepares something
and sends a notification to another thread that is waiting for it.

Here is the rationale for the rule: “A wait without a condition can miss a wakeup
or wake up simply to find that there is no work to do.” What does that mean? Condi-
tion variables are subject to two very serious issues: lost wakeups and spurious wake-
ups. The key concern about condition variables is that they have no memory.

Before I present you with this issue, let me first present the correct way to use con-
dition variables.

// conditionVariable.cpp

#include <condition_variable>
#include <iostream>

#include <mutex>

#include <thread>

std: :mutex mut;
std::condition_variable condVar;

bool dataReady{false};

void waitingForwWork() {
std::cout << "waiting " << '\n';
std::unique_lock<std::mutex> lck(mut);
condvar.wait(1lck, []{ return dataReady; }); /7 (4)
std::cout << "Running " << '\n';

}
void setDataReady() {
{
std::lock_guard<std::mutex> lck(mut);
dataReady = true;
}
std::cout << "Data prepared" << '\n';
condvar.notify_one(); // (3)

int main() {

std::cout << '\n';

https://en.cppreference.com/w/cpp/thread/lock
https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 10 CONCURRENCY

std::thread tl(waitingForWork); // (1)
std::thread t2(setDataReady); // (2)
til.join();
t2.join();

std::cout << '\n';

How does the synchronization work? The program has two children threads: t1 and
t2. They get their work package waitingForWork and setDataReady (1) and (2).
setDataReady sends a notification—using the condition variable condvar—that it is
done with the preparation of the work: condvar.notify_one()(3). While holding
the lock, thread t1 waits for its notification: condvar .wait (lck, []{ return data-
Ready; })(4). The sender and receiver need a lock. In the case of the sender, a
std::lock_guard is sufficient because it calls lock and unlock only once. In the case
of the receiver, a std: :unique_lock is necessary because it usually frequently locks
and unlocks its mutex.
Figure 10.7 shows the output of the program.

rainer : bash — Konsole <3> VoA e

File Edit View Bookmarks Settings Help
rainer@seminar:~> conditionVariable
Waiting
Data prepared
Running

rainer@seminar:~> |j |

Figure 10.7 A condition variable in action

Maybe you are wondering, Why do we need a predicate for the wait call since you
can invoke wait without a predicate? This workflow seems too complicated for such
a simple synchronization of threads.

Now we are back to the missing memory of condition variables and the two phe-
nomena called lost wakeup and spurious wakeup.

¢ Lost wakeup: The phenomenon of the lost wakeup is that the sender sends
its notification before the receiver begins waiting. The consequence is that the
notification is lost.

255

https://en.cppreference.com/w/cpp/thread/lock

256

PART I THE GUIDELINES

¢ Spurious wakeup: The receiver may wake up even if no notification has been
sent. At least POSIX Threads and the Windows API can be victims of these
phenomena.

To avoid these two issues, you have to use an additional predicate as memory or, as
the rule states it, an additional condition. If you use a condition variable without a
predicate, it’s possible that you will get a lost wakeup and, therefore, a deadlock
because the waiting thread is waiting for something that never happens.

The following program uses a condition variable without an additional predicate.
Let’s see what happens:

// conditionVariablewWithoutPredicate.cpp

#include <condition_variable>
#include <iostream>

#include <mutex>

#include <thread>

std::mutex mut;
std::condition_variable condvar;

void waitingForWork() {
std::cout << "waiting " << '\n';
std::unique_lock<std::mutex> lck(mut);
condvar.wait(1lck);
std::cout << "Running " << '\n';

void setDataReady() {
std::cout << "Data prepared" << '\n';
condvar.notify_one();

int main() {

std::cout << '\n';

std::thread ti(waitingForWork);
std::thread t2(setDataReady);

https://en.wikipedia.org/wiki/Windows_API
https://en.wikipedia.org/wiki/POSIX_Threads
https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 10 CONCURRENCY

til.join();
t2.join();

std::cout << '\n';

}

Whenever the notification thread t2 runs before the waiting thread t1, the notifica-
tion is lost. The second execution shows this phenomenon that results in a deadlock.

See Figure 10.8.

rainer : conditionVariab — Konsole

File Edit View Bookmarks Settings Help
rainer@seminar:~> conditionVariableWithoutPredicate

Waiting
Data prepared
Running

rainer@seminar:~> conditionVariableWithoutPredicate

Data prepared
Waiting

Figure 10.8 A condition variable without a predicate

Data sharing

The less you share data, and the more you work with local variables, the better.
Sometimes, though, you have no other option but to share data. For example, the
child thread wants to communicate its work to its parent thread.

Pass small amounts of data between threads by value,
rather than by reference or pointer

CP.31

Passing data to a thread by value immediately gives you two benefits:

1. There is no sharing, and therefore, no data race is possible. The requirement

for a data race is a mutable, shared state.

2. You don’t have to be concerned about the lifetime of the data. The data stays
alive for the lifetime of the created thread.

257

http://www.modernescpp.com/index.php/race-condition-versus-data-race
http://www.modernescpp.com/index.php/race-condition-versus-data-race

258

PART I THE GUIDELINES

Of course, the crucial question is, What does a small amount of data mean? The
C++ Core Guidelines are not clear about this point. In the rule “E.16: For ‘in’ param-
eters, pass cheaply-copied types by value and others by reference to,” the C++ Core
Guidelines state that 4 * sizeof(int) is a rule of thumb for functions. This means
that smaller than 4 * sizeof(int) should be passed by value, bigger than 4 *
sizeof(int) by reference or pointer.

In the end, you must measure the performance of your program if necessary.

To share ownership between unrelated threads use

CP.32 shared_ptr

Imagine that you have an object that you want to share between unrelated threads.
Unrelated means that there is no data race on that object. The key question is, Who
is the owner of the object and, therefore, responsible for releasing the memory? Now
you can choose between a memory leak if you don’t deallocate the memory or unde-
fined behavior if you invoke delete more than once. Most of the time, the undefined
behavior causes a run-time crash.

// threadSharesOwnership.cpp

#include <iostream>
#include <thread>

using namespace std::literals::chrono_literals;
struct MyInt {
int val{2017};

~MyInt() { /7 (4)
std::cout << "Goodbye" << '\n';

Y
void showNumber(const MyInt* myInt) {
std::cout << myInt->val << '\n';
void threadCreator() {
MyInt* tmpInt= new MyInt; // (1)

std::thread ti(showNumber, tmpInt); // (2)
std::thread t2(showNumber, tmpInt); // (3)

http://www.modernescpp.com/index.php/race-condition-versus-data-race
https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 10 CONCURRENCY

tl.detach();
t2.detach();

int main() {
std::cout << '\n';

threadCreator();
std::this_thread::sleep_for(1s);

std::cout << '\n';

The example is intentionally simple. I let the main thread sleep for one second to be
sure that it outlived the lifetime of the children threads t1 and t2. This is, of course,
not an appropriate synchronization, but it helps to make my point. The vital issue of
the program is, Who is responsible for the deletion of tmpInt (1)? Thread t1 (2),
thread t2 (3), or the function (main thread) itself? Because I cannot forecast how
long each thread runs, I decided to go with a memory leak. Consequently, the
destructor of MyInt (4) is never called (see Figure 10.9).

File Edit View Bookmarks Settings Help
rainer@linux:~> threadSharesOwnership

>

2017
2017

rainer@linux:~> Jj
. rainer : bash

Figure 10.9 Shared ownership using a pointer

The lifetime issues are easy to handle if [use a std: : shared_ptr.

// threadSharesOwnershipSharedPtr.cpp

#include <iostream>
#include <memory>
#include <thread>

259

https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/header/iostream

260 PART I THE GUIDELINES

using namespace std::literals::chrono_literals;

struct MyInt {
int val{2017};
~MyInt() {

std::cout << "Goodbye" << '\n';
}
void showNumber(std::shared_ptr<MyInt> myInt) {
std::cout << myInt->val << '\n';
void threadCreator() {

auto sharedPtr = std::make_shared<MyInt>(); /7 (1)

std::thread ti(showNumber, sharedPtr);
std::thread t2(showNumber, sharedPtr);

tl.detach();
t2.detach();

int main() {
std::cout << '\n';

threadCreator();
std::this_thread::sleep_for(1s);

std::cout << '\n';

Two small changes to the source code are necessary. First, the pointer in (1) becomes
a std::shared_ptr, and second, the function showNumber takes a smart pointer
instead of a raw pointer. I assume for simplicity reasons that the threads t1 and t2
are done within a second. See Figure 10.10.

https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr

CHAPTER 10 CONCURRENCY

rainer : bash — Konsole

File Edit View Bookmarks Settings Help
rainer@seminar:~> threadSharesOwnershipSharedPtr

2017
2017
Goodbye

rainer@seminar:~> [j 1

Figure 10.10 Shared ownership using a smart pointer

Resources

One of the main reasons for using concurrency is performance. You have to keep in
mind that using threads requires resources: time and memory. The resource usage
begins with creation, continues with context switching from user space, to kernel
space, and ends with the destruction of a thread. Additionally, a thread has its own
state that has to be allocated and maintained.

CP.40 Minimize context switching
and
CP.41 Minimize thread creation and destruction

How expensive is a thread? The answer to this question is the reason for this rule. Let
me first talk about the usual size of a thread and then about the costs of its creation.

Size
A std: :thread is a thin wrapper around the native thread, and I’m, therefore, inter-
ested in the size of a Windows thread and a POSIX thread.

¢ Windows systems: The blog post “Thread Stack Size” on the Microsoft web-
site (https://msdn.microsoft.com/en-us/library/windows/desktop/ms686774
(v=vs.85).aspx) gave me the answer: 1MB.

e Linux systems: The pthread_create man page (http://man7.org/linux/man-
pages/man3/pthread_create.3.html) provided me with the answer: 2MB. This
number applies to the 1386 and x86_64 architectures. If you want to know the
sizes for other architectures that support POSIX, see Table 10.1.

261

https://msdn.microsoft.com/en-us/library/windows/desktop/ms686774(v=vs.85).aspx)
http://man7.org/linux/man-pages/man3/pthread_create.3.html
http://man7.org/linux/man-pages/man3/pthread_create.3.html
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686774(v=vs.85).aspx)
https://en.wikipedia.org/wiki/POSIX_Threads
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686774(v=vs.85).aspx
http://man7.org/linux/man-pages/man3/pthread_create.3.html

262

PART I THE GUIDELINES

Table 10.1 Typical thread size

Architecture Default stack size
1386 2MB

1A-64 32MB

PowerPC 4MB

S/390 2MB

Sparc-32 2MB

Sparc-64 4MB

x86_64 2MB

Creation

[didn’t find numbers on how much time it takes to create a thread. To get a gut feel-

ing, [made a simple performance test on Linux and Windows. Don’t use the num-

bers to compare Linux and Windows. This is not the point of this experiment.
I used GCC 6.2.1 on a desktop and Microsoft Visual Studio 2017 on a laptop
for my performance tests. I compiled the programs with maximum optimization on

both platforms.

Here is the small test program.

// threadCreationPerformance.cpp

#include <chrono>
#include <iostream>
#include <thread>

constexpr long long numThreads= 1'000'000;

int main() {

auto start = std::chrono::system_clock: :now();

for (long long i = 0; i < numThreads; ++i) {
std::thread([]{}).detach();

std::chrono: :duration<double> dur =
std::chrono::system_clock::now() - start;

std::cout << "time: " << dur.count()

/7 (1)

https://en.cppreference.com/w/cpp/header/iostream
https://visualstudio.microsoft.com/

CHAPTER 10 CONCURRENCY 263

The program creates one million threads that execute an empty lambda function (1).
Figures 10.11 and 10.12 show the results for Linux and Windows.

File Edit View Bookmarks Settings Help

rainer@linux:~> threadCreationPerformance ~
time: 14.4885 seconds

rainer@linux:~> threadCreationPerformance

time: 14.4454 seconds

rainer@linux:~> threadCreationPerformance

time: 14.4168 seconds

rainer@linux:~> threadCreationPerformance

time: 14.4662 seconds

rainer@linux:~> threadCreationPerformance

time: 14.4365 seconds

ratner@linux:~> i 0

- rainer : bash

Figure 10.11 Thread creation on Linux

BN x64 Native Tools Command Prompt for VS 2017 == O x

62 seconds

s\Rainer>threadCreationPerformance.
1.5984 seconds

ainer>threadCreationPerformance.
6.8437 seconds

Figure 10.12 Thread creation on Windows

This means that the creation of a single thread took about 14.5 seconds / 1000000
= 14.5 microseconds on Linux and about 44 seconds / 1000000 = 44 microseconds on
Windows.

To put it another way, in one second, you can create about 69,000 threads on
Linux and 23,000 threads on Windows.

264

PART I THE GUIDELINES

CP.43 Minimize time spent in a critical section

The less time you lock a mutex, the more time other threads can run. Let’s take the
example of the notification of a condition variable.

void setDataReady() {
std::lock_guard<std::mutex> lck(mut);
dataReady = true; // (1)
std::cout << "Data prepared" << '\n';
condvar.notify_one();

The mutex mut is locked at the beginning of the function and unlocked at the end of
the function. This locking is not necessary. Only the expression dataReady = true
(1) has to be protected.

First, std: :cout is thread safe. The C++11 standard guarantees that each char-
acter is written in an atomic step and the right sequence. Second, the notification
condvar.notify_one() is thread safe.

Here is the improved version of the function setDataReady:

void setDataReady() {
{

std::lock_guard<std::mutex> lck(mut);
dataReady = true;

}

std::cout << "Data prepared" << '\n';
condvar.notify_one();

Overlooked danger

Remember to name your lock_guards and
unique_locks

CP.44

When you don’t name the std: :lock_guard or the std: :unique_lock, you just cre-
ate a temporary that is created and immediately destroyed. The std: : lock_guard or
std: :unique_lock automatically locks its mutex and its constructor and unlocks it
in its destructor. This pattern is called RAII.

https://en.cppreference.com/w/cpp/thread/lock
https://en.cppreference.com/w/cpp/thread/lock

CHAPTER 10 CONCURRENCY

My small example shows the conceptual behavior of a std::lock_guard. Its big
brother std: :unique_lock supports more operations.

// myGuard.cpp

#include <mutex>
#include <iostream>

template <typename T>
class MyGuard {
public:
explicit MyGuard(T& m): myMutex(m) {
std::cout << "lock" << '\n';
myMutex.lock();

}
~MyGuard() {
myMutex.unlock();
std::cout << "unlock" << '\n';

}
private:
T& myMutex;

¥

int main() {
std::cout << '\n';
std::mutex m;

MyGuard<std::mutex> {m}; // (1) oops!
std::cout << "CRITICAL SECTION" << '\n'; /7 (2)

std::cout << '\n';
} /7 (3)

MyGuard calls lock and unlock in its constructor and its destructor. Because of the
temporary, the call to the constructor and destructor happens in (1) and not, as usual,
in line (3). As a consequence, the critical section in line (2) is executed unprotected.

This execution of the program shows that the output of the message unlock hap-
pens before the output of the message CRITICAL SECTION. See Figure 10.13.

265

https://en.cppreference.com/w/cpp/header/iostream

266

PART I THE GUIDELINES

b 4 rainer :

File Edit View Bookmarks Settings Help
rainer@seminar:~> myGuard ~

lock

unlock

CRITICAL SECTION

rainer@seminar:~> |} |

[| rainer : bash

Figure 10.13 Using a temporary lock std: : lock_guard

By giving the unnamed MyGuard MyGuard<std::mutex> {m}; (1) a name
MyGuard<std::mutex> myGuard{m};, the critical section becomes protected. See
Figure 10.14.

rainer : bash — Konsole ~ ~ 9

File Edit View Bookmarks >
ralner@seminar:~> myGuard

lock
CRITICAL SECTION

unlock
rainer@seminar:~> | |

Figure 10.14 Using a named temporary std: : lock_guard

Parallelism

Besides the title, there is no content regarding parallelism in the C++ Core Guide-
lines. To fill the gap, I have provided a short introduction to the parallel STL and a
rule. First of all, here is my rule.

Prefer the parallel algorithms of the STL to handcrafted solutions with threads.

The idea is quite simple. The Standard Template Library has more than 100 algo-
rithms for searching, counting, and manipulating of ranges and their elements. With
C++17, 69 of them are overloaded and a few new ones are added. The overloaded
and new algorithms can be invoked with a so-called execution policy. By using the

https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/algorithm

CHAPTER 10 CONCURRENCY 267

execution policy, you can specify whether the algorithm should run sequential, paral-
lel, or parallel and vectorized.

e std::execution: :seq: runs the algorithm sequentially
e std::execution: :par: runs the algorithm in parallel on multiple threads

e std::execution::par_unseq: runs the algorithm in parallel on multi-
ple threads and allows the interleaving of individual loops

Vectorization (std::execution: :par_unseq) stands for the SIMD (Single Instruc-
tion, Multiple Data) extensions of the instruction set of a modern processor. SIMD
enables your processor to execute one operation in parallel on multiple data.

With the execution policy tag, you can choose which variant of an algorithm
should be performed. The tag is not binding but is a strong hint to the C++ run time.

std::vector<int> v = {5, -3, 10, -5, -10, 22, 0},

// standard sequential sort
std::sort(v.begin(), v.end());

// sequential execution
std::sort(std::execution::seq, v.begin(), v.end());

// permitting parallel execution
std::sort(std::execution::par, v.begin(), v.end());

// permitting parallel and vectorized execution
std::sort(std::execution::par_unseq, v.begin(), v.end())

Sixty-nine of the algorithms of the STL support a parallel or a parallel and vector-

ized execution. See Table 10.2.

Table 10.2 Algorithms of the STL for which parallel versions are available (the std namespace
is omitted)

adjacent_difference is_heap_until replace_copy_if
adjacent_find is_partitioned replace_if

all of is_sorted reverse

any_of is_sorted_until reverse_copy
copy lexicographical_compare rotate

copy_if max_element rotate_copy

https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/algorithm
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/SIMD

PART I THE GUIDELINES

copy_n merge search

count min_element search_n

count_if minmax_element set_difference
equal mismatch set_intersection
fill move set_symmetric_difference
fill n none_of set_union

find nth_element sort

find_end partial_sort stable_partition
find_first_of partial_sort_copy stable_sort
find_if partition swap_ranges
find_if_not partition_copy transform

generate remove uninitialized_copy

generate_n

remove_copy

uninitialized_copy_n

includes remove_copy_if uninitialized_fill
inner_product remove_if uninitialized_fill_n
inplace_merge replace unique

is_heap

replace_copy

unique_copy

Additionally, eight new algorithms are added with C++17.

std: :for_each

std: :for_each_n
std::exclusive_scan
std::inclusive_scan
std::transform_exclusive_scan
std::transform_inclusive_scan
std: :reduce

std: :transform_reduce

The following example shows the usage of the std::transform_exclusive_scan
algorithm.

// transformExclusiveScan.cpp; C++17 with MSVC

#include <execution>
#include <numeric>
#include <iostream>
#include <vector>

int main() {

https://en.cppreference.com/w/cpp/algorithm/transform_reduce
https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 10 CONCURRENCY

std::cout << '\n';

std::vector<int> resvec{1, 2, 3, 4, 5, 6, 7, 8, 9},
std::vector<int> resVecl(resVec.size());
std::transform_exclusive_scan(std::execution::par,
resVec.begin(), resVec.end(),
resVecl.begin(), 0,
[1(int fir, int sec){ return fir + sec; },
[1(int arg){ return arg * arg; }),;

std::cout << "transform_exclusive_scan: ";
for (auto v: resVecl) std::cout << v << " ";

std::cout << '\n';

The std: :transform_exclusive_scan algorithm is quite challenging to read. Let me
try to explain it. In the first step, std::transform_exclusive_scan applies the
lambda expression [](int arg){ return arg * arg; } to each element of the range
resvVec.begin() to resVec.end(). In the second step, the algorithm applies the
binary operation [](int fir, int sec){ return fir + sec; } to the intermediate
vector. This means the algorithm sums up all elements using 0 as the initial value.
The result is placed in resveci. See Figure 10.15.

[EX %54 Native Tools Command Prompt for VS 2019 = o ®

transform_exclusive_scan: @ > 14 30 55 91 140 204

\Users\rainer>

Figure 10.15 Usage of std: : transform_exclusive_scan

Message passing

The section on message passing has two rules.

e (CP60: Use a future to return a value from a concurrent task

e (CP61: Use an async() to spawn a concurrent task

Both rules lack content. Therefore, I have to improvise.

269

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-future
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-async

270

PART I THE GUIDELINES

A task is the C++-ish way to pass messages between threads. The message
can be a value, an exception, or a notification. A task consists of the two compo-
nents promise and future. Promise exists in three variations in C++: std: :async,
std::packaged_task, and std::promise. The promise creates the message, which
the future picks up asynchronously.

I already gave a short example of std: :async in the rule “CP.4: Think in terms of
tasks, rather than threads” to send a value from the promise to the future. In this sec-
tion, [use a std: :promise as the sender.

Sending a value, or an exception

In contrast to a thread, the promise and the associated future share a secure channel.
In the following example, one promise sends a value, and one promise sends an
exception.

// promiseFutureException.cpp

#include <exception>
#include <future>
#include <iostream>
#include <thread>
#include <utility>

struct Div {
void operator()(std::promise<int> intPromise, int a, int b) const {
try { // (4)
if (b == 0) {
std::string err = "Illegal division by zero: " +
std::to_string(a) + "/" + std::to_string(b);
throw std::runtime_error(err);

}

intPromise.set_value(a / b); // (2)
}
catch (...) {

intPromise.set_exception(std::current_exception()); // (1)
}

}
3

void executeDivision(int nom, int denom) {
std::promise<int> divPromise;
std: :future<int> divResult= divPromise.get_future();

https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 10 CONCURRENCY

Div div;
std::thread divThread(div, std::move(divPromise), nom, denom);

// get the result or the exception // (5)
try {

std::cout << nom << "/" << denom << " ="
}

catch (std::runtime_error& e){
std::cout << e.what() << '\n';

divThread.join();

int main() {
std::cout << '\n';

executeDivision(20, 0);
executeDivision(20, 10);

std::cout << '\n';

If the callable used by std: :promise throws an error, the exception is stored in the
shared state. When the future divResult then calls divResult.get() (3), the excep-
tion is rethrown, and the associated future has to handle it. The std: :promise prom
set the exception via prom.set_value(std::current_exception()) (1) and the
value via divPromise.set_value (2) as the shared state. As the promise in (4), the
future has to deal with the exception in its try-catch block (5). Dividing a number by
0 is undefined behavior. The function executeDivision displays the result of the
calculation or the exception. See Figure 10.16.

rainer : bash — Konsole

File Edit View Bookmarks Settings Help

rainer@seminar:~> promiseFutureException o
Illega} division by zero: 20/0

20/10 = 2

rainer@seminar:~> [|
a rainer : bash

Figure 10.16 A value and an exception as message

271

272

PART I THE GUIDELINES

Sending a notification

If you use promises and futures (in short tasks) to synchronize threads, they have a
lot in common with condition variables. Most of the time, promises and futures are
the safer choice than condition variables.

Before I present you with an example, Table 10.3 shows the big picture.

Table 10.3 Condition variables versus tasks

Criteria Condition variables Tasks
Multiple synchronizations Yes No
Critical section Yes No
Spurious wakeup Yes No
Lost wakeup Yes No

The advantage of a condition variable with respect to a promise and future is that
you can use condition variables to synchronize threads multiple times. In contrast to
that, a promise can send its notification only once. If you use a condition variable for
only one synchronization, the condition variable is a lot more challenging to use cor-
rectly. A promise and future pair needs no locks and is not prone to spurious or lost
wakeups, and there are no critical sections or additional conditional.

// promiseFutureSynchronize.cpp

#include <future>
#include <iostream>
#include <utility>

void waitingForWork(std::future<void> fut) {
std::cout << "Waiting " << '\n';
fut.wait(); // (5)
std::cout << "Running " << '\n';

void setDataReady(std::promise<void> prom) {
std::cout << "Data prepared" << '\n';
prom.set_value(); // (6)

int main() {

std::cout << '\n';

https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 10 CONCURRENCY 273

std: :promise<void> sendReady; // (1)
auto fut = sendReady.get_future(); // (2)
std::thread ti(waitingForWork, std::move(fut)); /7 (3)

std::thread t2(setDataReady, std::move(sendReady)); // (4)

til.join();
t2.join();

std::cout << '\n';

Thanks to sendReady (1), you get a future fut (2). Both communication endpoints
are moved into threads t1 (3) and t2 (4). The future waits using the call fut.wait()
(5), and it gets the notification of the associated promise: prom.set_value() (6).

The structure and the output of the program match the corresponding program
in the rule for condition variables: “C.42: Don’t wait without a condition.” See
Figure 10.17.

rainer : bash — Konsole

File Edit View Bookmarks Settings Help
rainer@seminar:~> promiseFutureSynchronize

Waiting
Data prepared
Running

rainer@seminar:~> ||]

Figure 10.17 Notifications with a task

Lock-free programming

The rules on concurrency and parallelism target non-experts. Lock-free program-
ming is an experts-only topic. Consequently, there are only a few short rules to lock-

free programming,.

Don't use lock-free programming unless you absolutely

CP.100 have to

274

PART I THE GUIDELINES

This rule is the most critical meta-rule to lock-free programming. If you don’t believe
me, here are a few quotes from talks given by worldwide recognized experts in this
particular domain.

e Herb Sutter: “Lock-free programming is like playing with knives” (CppCon
2014).

¢ Anthony Williams: “Lock-free programming is about how to shoot yourself
in the foot” (NDC 2016).

e Tony Van Eerd: “Lock-free coding is the last thing you want to do” (NDC
2016).

¢ Fedor Pikus: “Writing lock-free programs is hard. Writing correct lock-free
programs is even harder” (NDC 2018).

CP.101 Distrust your hardware/compiler combination

What does “distrust your hardware/compiler combination” mean? Let me put it
another way: When you break the sequential consistency, you also break your intui-
tion with high probability. Let me start with a simple program.

// sequentialConsistency.cpp
#include <atomic>
#include <iostream>

#include <thread>

std::atomic<int> x{0};
std::atomic<int> y{0};

void writing(){

x.store(2000); /7 (1)
y.store(11); // (2)
}
void reading(){
std::cout << y.load() << " "; // (3)
std::cout << x.load() << '\n'; // (4)

https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 10 CONCURRENCY

int main(){
std::thread threadl(writing);
std::thread thread2(reading);
threadl.join();
thread2.join();

I have a question about a short example: Which values for y and x are possible in (3)
and (4)? Because y and x are atomic, no data race is possible. I further don’t specify
the memory ordering; therefore, sequential consistency applies. Sequential consist-
ency means the following:

e FEach thread performs its operation in the specified sequence: (1) happens
before (2), and (3) happens before (4).

e There is a global order of all operations on all threads. To put it the other way
around, each thread sees all operations in the same sequence.

If you combine these two properties of the sequential consistency, there is only one
combination of x and y not possible: y == 11 and x == 0. Now let me break the
sequential consistency and maybe your intuition.

The relaxed semantics is the weakest of all memory orderings. Relaxed seman-
tics essentially boils down to one guarantee: Operations on atomics only guarantee
atomicity.

// relaxedSemantic.cpp

#include <atomic>
#include <iostream>
#include <thread>

std::atomic<int> x{0};
std::atomic<int> y{0};

void writing(){
x.store(2000, std::memory_order_relaxed);
y.store(11, std::memory_order_relaxed);

void reading(){
std::cout << y.load(std::memory_order_relaxed) << " ";
std::cout << x.load(std::memory_order_relaxed) << '\n';

275

http://www.modernescpp.com/index.php/race-condition-versus-data-race
https://en.cppreference.com/w/cpp/atomic/memory_order
https://en.cppreference.com/w/cpp/header/iostream

276

PART I THE GUIDELINES

int main(){
std::thread threadl(writing);
std::thread thread2(reading);
threadl.join();
thread2.join();

}

Two highly unintuitive phenomena can happen. First, thread2 can see the opera-
tions of thread1 in a different sequence. Second, thread1 can reorder its instruction
because it is not performed on the same atomic. What does this mean for the possible
values of x and y? y == 11 and x == 0 is now a possible result. I want to be more
specific. Which result is possible depends on your hardware. See Table 10.4.

For example, operation reordering is quite conservative on x86 or AMD64; stores
can be reordered after loads, but on Alpha, IA64, or RISC (ARM) architectures, all
four possible reorderings of store and load operations are allowed.

Table 10.4 Operation reordering on various platforms

Architecture LoadLoad LoadStore StoreLoad StoreStore
x86, AMD64 Yes
Alpha, 1A64, RISC Yes Yes Yes Yes

LoadLoad in the table means for one control flow that a load operation on an
atomic is followed by a load operation on another atomic. The same argumentation
applies to LoadStore, StoreLLoad, and StoreStore.

CP.102 Carefully study the literature

Here are a few resources for outstanding literature. Study them first.

e Anthony Williams: C++ Concurrency in Action, 2nd ed., Manning Pub-
lications, 2019, ISBN 9781617294693 (https://www.manning.com/books/
c-plus-plus-concurrency-in-action-second-edition)

¢ Bartosz Milewski: Bartosz Milewski’s Programming Cafe (https://
bartoszmilewski.com/)

e Herb Sutter: Effective Concurrency (http://www.gotw.ca/publications/)

e Jeff Preshing: Preshing on Programming (https://preshing.com/)

https://www.manning.com/books/c-plus-plus-concurrency-in-action-second-edition
https://www.manning.com/books/c-plus-plus-concurrency-in-action-second-edition
http://bartoszmilewski.com/
http://www.gotw.ca/publications/
https://preshing.com/
http://bartoszmilewski.com/
https://bartoszmilewski.com/
https://preshing.com/

CHAPTER 10 CONCURRENCY 277

Related rules

e The two rules “CP.110: Do not write your own double-checked locking for ini-
tialization” and “CP.111: Use a conventional pattern if you really need double-
checked locking” are already covered by the rule about wrong assumptions.

e The rule “CP.200: Use volatile only to talk to non-C++ memory” was already
addressed in the rule “CP.8: Don’t try to use volatile for synchronization.”

Distilled

Important

¢ Distinguish concurrency from parallelism. Concurrency is the overlap of
several tasks, but parallelism is when several tasks run at the same time.

* Avoid data races by minimizing the sharing of data, and make your shared
data immutable.

e Use tools such as ThreadSanitizer or CppMem to validate your concurrent
code.

e Don’tlock or unlock a mutex directly. Put your mutexes into a lock such as
std::lock_guard or std: :unique_lock.

e Don’t call unknown code while holding a lock. Try to acquire not more
than one lock at any point in time.

® When you need more than one lock at a given time, acquire them atomi-
cally by using std: :lock or std: : scoped_lock.

e Use std::jthread instead of std::thread for automatic rejoining at
destruction.

e Don’t use a condition variable without an additional predicate to avoid
spurious wakeup and lost wakeup.

e If you want to perform a job in parallel, prefer the parallel algorithms of
the STL over handcrafted solutions with threads.

e Use tasks to pass messages or exceptions between threads. Use tasks and
not condition variables to synchronize threads.

e Use lock-free programming techniques only if you have to. Study the lit-
erature carefully beforehand.

https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/algorithm
http://www.modernescpp.com/index.php/race-condition-versus-data-race
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-double
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-double
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-double-pattern
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-double-pattern
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-volatile2

This page intentionally left blank

Chapter 11

Error Handling

Cippi handles errors.

First of all, according to the C++ Core Guidelines, the following actions are involved
in error handling:

e Detect an error.
e Transmit information about an error to some handler code.
e DPreserve the valid state of a program.

e Avoid resource leaks.

279

280

PART I THE GUIDELINES

You should use exceptions for error handling. David Abrahams, one of the
founders of the Boost C++ Library and former member of the ISO C++ standardi-
zation committee, formalized in the document “Exception Safety in Generic Com-
ponents” what exception safety means. “Abrahams guarantees” describe a contract
that is fundamental if you think about exception safety. Here are the four levels of
the contract':

1. No-throw guarantee, also known as failure transparency: Operations are
guaranteed to succeed and satisfy all requirements, even in exceptional situa-
tions. If an exception occurs, it is handled internally and cannot be observed
by clients.

2. Strong exception safety, also known as commit or rollback semantics: Oper-
ations can fail, but failed operations are guaranteed to have no side effects, so
all data retain their original values.

3. Basic exception safety, also known as a no-leak guarantee: Partial execution
of failed operations can cause side effects, but all invariants are preserved, and
there are no resource leaks (including memory leaks). Any stored data contains
valid values, even if they differ from what they were before the exception.

4. No exception safety: No guarantees are made.

The rules from the guidelines should help you to avoid the following kinds of
errors. [added typical examples in parentheses:

e Type violations (casts)

e Resource leaks (memory leaks)

e Bounds errors (accessing a container outside the boundaries)
e Lifetime errors (accessing an object after deletion)

e Logical errors (logical expressions)

e Interface errors (passing wrong values in interfaces)

1. Source: Bjarne Stroustrup, The C++ Programming Language, Third Edition. Addison-Wesley, 1997.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
https://en.wikipedia.org/wiki/David_Abrahams_(computer_programmer)
https://en.wikipedia.org/wiki/Exception_safety

CHAPTER 11 ERROR HANDLING

There are more than 20 rules divided into three categories. The first two catego-
ries are about the design of the error-handling strategy and its concrete implementa-
tion. The third category discusses situations where you can’t throw an exception.

This section on error handling has a massive overlap with the sections for func-
tions and classes and class hierarchies. I intentionally skipped all rules that I already
presented in those sections. The “Related rules” section provides you with the details
on the skipped rules.

Design

Each software unit has two communication channels to its client: one for the regular
case and one for the irregular case. The software units should be designed around
invariants.

Communication

e E.1: Develop an error handling strategy early in a design
e E.17: Don’t try to catch every exception in every function

e FE.18: Minimize the use of explicit try/catch

First of all, what is a software unit? A software unit may be a function, an object, a
subsystem, or the entire system. The software units communicate with their clients.
Designing the communication should, therefore, occur early in the design of your
system. At the boundary level, you have two ways to communicate: regularly and
irregularly. The regular communication is the functional aspect of the interface or, to
say it differently, what the software unit should do. The irregular communication
stands for the nonfunctional aspects. The nonfunctional aspects specify how a system
should operate. A big part of the nonfunctional aspects is error handling, or what can
go wrong. Often the nonfunctional aspects are just called “quality attributes.”

From the control-flow perspective, explicit try/catch has a lot in common with
the goto statement. This means that if an exception is thrown, the control flow
directly jumps to the exception handler, which might be in a different software unit.
In the end, you may get spaghetti code, meaning code with control flow that is dif-
ficult to predict and maintain.

Now, the question is, How should you structure your exception handling? I think
you should ask yourself the question, Is it possible to handle the exception locally?

281

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-design
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-not-always
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-catch
https://en.wikipedia.org/wiki/Spaghetti_code

282

PART I THE GUIDELINES

If yes, do it. If not, let the exception propagate until you have sufficient context to
handle it. Handling an exception can also mean catching it and then rethrowing a
different exception more convenient to the client. This translation of an exception
may serve the purpose that the client of the software unit has only to deal with a lim-
ited number of different exceptions.

Often boundaries are the appropriate place to handle exceptions because you
want to protect the client from arbitrary exceptions. Consequently, boundaries are
also the appropriate place to test regular and irregular communication.

Invariants

e E.2: Throw an exception to signal that a function can’t perform its assigned
task

e E.4: Design your error handling strategy around invariants

e E.5:Leta constructor establish an invariant, and throw if it cannot

According to the C++ Core Guidelines, “An invariant is a logical condition for the
members of an object that a constructor must establish for the public member func-
tions to assume. After the invariant is established (typically by a constructor) every
member function can be called for the object.” This definition is too narrow for me.
An invariant can also be established by a function using concepts or contracts.

There are more rules about invariants and how to establish an invariant that com-
plement the discussion at the beginning of this chapter:

e (C.2: Use class if the class has an invariant; use struct if the data members
can vary independently

e (C.41: A constructor should create a fully initialized object

e (C.45: Don’t define a default constructor that only initializes data members;
use member initializers instead

The Core Guidelines’ definition essentially says that you should define your
error-handling strategy around invariants. If an invariant can’t be established, throw
an exception.

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-throw
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-design-invariants
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-invariant
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-throw

CHAPTER 11 ERROR HANDLING

Implementation

When implementing the error handling, you have to keep a few do’s and don’ts in
mind.

Do’s

Besides the do’s referred to in the section “Related rules” at the end of this chapter,
there are three additional rules.

Use exceptions for error handling only

Exceptions are a kind of goto statement. Maybe your code guidelines forbid you to
use goto statements. Therefore, you come up with a clever idea: Use exceptions for
the control flow. In the following example, the exception is used in the success case.

// don't: exception not used for error handling
int getIndex(std::vector<const std::string>& vec,
const std::string& x) {

try {
for (auto i = 0; i < vec.size(); ++i) {
if (vec[i] == x) throw i; // found x
}
} catch (int i) {
return i;

}

return -1; // not found

In my opinion, this is the worst misuse of exceptions. In this case, the regular
control flow is not separated from the exceptional control flow. In the success case,
the code uses a throw statement; in the failure case, the code uses a return statement.
That is confusing, isn’t it?

Use purpose-designed user-defined types as exceptions
(not built-in types)

283

284 PART I THE GUIDELINES

You should not use built-in types or even the standard exception types. Here are two
code snippets from the C++ Core Guidelines exemplifying the don’ts.

void my_code() // Don't

{
/7 ...
throw 7; // 7 means "moon in the 4th quarter"
/7 ...

}

void your_code() // Don't

{
try {
// ...
my_code();
// ...
}
catch(int i) { // i == 7 means "input buffer too small"
// ...
}
}

In this case, the exception is an int without any semantics. What 7 means is
described in the comment, but it would be better to use a self-describing type. The
comment can be wrong. To be sure, you have to consult the documentation to get an
idea. You cannot attach any meaningful information to an exception of kind int.
If you have a 7, I assume you use at least the numbers 1 to 6 for your exception han-
dling, 1 probably meaning an unspecific error and so on. This strategy is way too
sophisticated, error prone, and quite hard to read and to maintain.

Let’s use a standard exception instead of an int.

void my_code() // Don't

{
/7 ...
throw std::runtime_error{"moon in the 4th quarter"};
/7 ...
3
void your_code() // Don't
{
try {
/7 .

my_code();

CHAPTER 11 ERROR HANDLING

/7
3

catch(const std::runtime_error&) { // std::runtime_error means
// "input buffer too small"
// .

Using a standard exception instead of a built-in type is better because you can
attach additional information to an exception or build hierarchies of exceptions. This
standard exception is better but not good. Why? The exception is too generic. It’s just
a std::runtime_error. Imagine that the function my_code is part of an input sub-
system. If the client of the function catches the exception by std: :runtime_error,
it has no idea if it was a generic error such as “input buffer too small” or a subsys-
tem-specific error such as “input device is not connected.”

To overcome these issues, derive your specific exception from std: : runtime_error.
Here is a short example to give you the idea:

class InputSubsystemException: public std::runtime_error {
const char* what() const noexcept override {
return "Provide more details to the exception";

}i

Now the client of the input, subsystem can specifically catch the exception via
catch(const InputSubsystemException& ex). Additionally, you can refine the
exception hierarchy by further deriving from the class InputSubsystemException.

Catch exceptions from a hierarchy by reference

If you catch an exception from a hierarchy by value, you may become a victim of
slicing.

Imagine that you derive a new exception class USBInputException from Input-
SubsystemException (previous rule “E.14: Use purpose-designed user-defined
types as exceptions [not built-in types]”). You then catch the exception by value of
type InputSubsystemException. Now an exception of type USBInputException is
thrown.

void subsystem() {
// ...

285

286

PART I THE GUIDELINES

throw USBInputException();
/7 ..

void clientCode() {

try {
subsystem();

}

catch(InputSubsystemexception e) { // slicing may happen
// .

}

By catching the USBInputException by value to InputSubsystemException, slic-
ing kicks in and e has the base type InputSubsystemException. Read the details on
slicing in the guideline “C.67: A polymorphic class should suppress copying”.

To say it explicitly,

1. Catch your exception by const reference and only by reference if you want to
modify the exception.

2. If you rethrow an exception e in the exception handler, just use throw and not
throw e. In the second case, e would be copied.

There is a straightforward cure to catch an exception by value: Apply the rule
“C.121: If a base class is used as an interface, make it an abstract class.” Making
the InputSubsystemException an abstract base class makes it impossible to catch
InputSubsystemException by value.

Don’ts

In addition to the do’s, the C++ Core Guidelines have three don’ts.

Never throw while being the direct owner of an object

This is the example of direct ownership from the C++ Core Guidelines:

void leak(int x) { // Bad: may leak
auto* p = new int{7};
auto* pa = new int[100]

CHAPTER 11 ERROR HANDLING

if (x < 0) throw Get_me_out_of_here{}; // leaks *p, and *pa
// ...

delete p; // we may never get here

delete [] pa;

If the throw is fired, the memory is lost and you have a memory leak. The simple
solution is to get rid of the ownership and make the C++ run time the direct owner
of the object. This means you simply apply RAII: “R.1: Manage resources automati-
cally using resource handles and RAII (Resource Acquisition Is Initialization).”

Just create a local object or at least a guard as a local object. The C++ run time
takes care of local objects and, therefore, frees the memory if necessary. Here are
three variations of automatic memory management:

void leak(int x) { // Good: does not leak
auto p1 = int{7};
auto p = std::make_unique<int>(7);
auto pa = std::vector<int>(100);
if (x < 0) throw Get_me_out_of_here{};
// ...

pl is a local, but p and pa are a kind of guard for the underlying objects. The
std: :vector uses the heap to manage its data. Additionally, with all three variations,
you eliminate the delete call.

Don’t use exception specifications

First, here is an example of an exception specification:

int use(int arg) throw(X, Y) {
/7 ...
auto x = f(arg);
/7 ...

This means that the function use may throw an exception of type X or Y. If a
different exception is thrown, std: : terminate is called.

Dynamic exception specifications with argument throw(X, Y) and without argu-
ment throw() were deprecated in C++11. Dynamic exception specifications with
arguments were removed with C++17; dynamic exception specifications without

287

https://en.cppreference.com/w/cpp/error/terminate

288

PART I THE GUIDELINES

arguments were removed with C++20. Until C++20, throw() was equivalent to
noexcept.

Read more details on noexcept in the rule “E.12: Use noexcept when exiting a
function because of a throw is impossible or unacceptable.”

Properly order your catch-clauses

An exception is caught according to the first match strategy. This means that the first
exception handler that fits for an exception is used. This is the reason why you should
structure your exception handler from specific to general. If not, your specific excep-
tion handler may never be invoked. In the following example, the DivisionByzero-
Exception is derived from std: :exception.

try{

// throw an exception (1)
}
catch(const DivisionByZeroException& ex) { } // (2)
catch(const std::exception& ex) { } // (3)
catch(...) { } // (4)

In this case, the DivisionByZeroException (2) is used first for handling the excep-
tion thrown in (1). If the specific handler does not fit, all exceptions derived from
std: :exception are caught in the following line (3). The last exception handler in
line (4) has an ellipsis (. . .) and can, therefore, catch all other exceptions.

If you can’t throw

e E.25:If you can’t throw exceptions, simulate RAII for resource management
e E.26: If you can’t throw exceptions, consider failing fast

e E.27:If you can’t throw exceptions, use error codes systematically

Let me start with the first rule: “E.25: If you can’t throw exceptions, simulate
RAII for resource management.” The idea of RAII is simple. If you have to take care
of a resource, put the resource into a class. Use the constructor of the class for the
initialization and the destructor for the destruction of the resource. When you cre-
ate a local instance of the class on the stack, the C++ run time automatically takes
care of the resource and you are done. For more information on RAII, read the first

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-noexcept
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-noexcept
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-raii
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-crash
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-codes
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-raii
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-raii

CHAPTER 11 ERROR HANDLING

rule for resource management: “R.1: Manage resources automatically using resource
handles and RAII (Resource Acquisition Is Initialization).”

What does it mean to simulate RAII for resource management? Imagine you have
a function func that exits with an exception if Gadget can’t be created.

void func(std::string& arg) {
Gadget g {arg};
/7 ...

If you can’t throw an exception, you should simulate RAII by adding a valid
member function to Gadget.

error_indicator func(std::string& arg) {
Gadget g {arg};
if (!'g.valid()) return gadget_construction_error;
/7 ...
return 0; // zero indicates '"good"

In this case, the caller has to test the return value of func.

The rule “E.26: If you can’t throw exceptions, consider failing fast” is straight-
forward. If there is no way to recover from an error such as memory exhaustion,
fail fast. If you can’t throw an exception, call std: :abort, which causes abnormal
program termination.

void f(int n) {
/7 ...
p = static_cast<X*>(malloc(n, X));
if (!p) std::abort(); // abort if memory is exhausted
/7 ...

std: :abort causes an abnormal program termination if you don’t install a signal
handler that catches the signal SIGABRT.

When you don’t install a signal handler, the function f behaves like the following
one:

void f(int n) {
/7 ...
p = new X[n]; // throw if memory is exhausted
/7 ...

289

https://en.cppreference.com/w/cpp/utility/program/abort
https://en.cppreference.com/w/cpp/utility/program/abort
https://en.cppreference.com/w/cpp/utility/program/abort
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-crash
https://en.cppreference.com/w/cpp/utility/program/SIG_types

290 PART I THE GUIDELINES

Now, I write about the abominable keyword goto in the last rule: “E.27: If you
can’t throw exceptions, use error codes systematically.”

In case of an error, you have a few issues to solve, according to the C++ Core
Guidelines:

1. How do you transmit an error indicator out of a function?
2. How do you release all resources from a function before doing an error exit?

3. What do you use as an error indicator?

In general, your function should have two return values, the value and the error
indicator. Therefore, std::pair is a good fit. Releasing the resources may easily
become a maintenance nightmare, even if you encapsulate the cleanup code in a
function.

std::pair<int, error_indicator> user() {

Gadget g1 = make_gadget(17);
Gadget g2 = make_gadget(17);

if ('gil.valid()) {
return {0, gl_error};

if ('g2.valid()) {
cleanup(gl);
return {0, g2_error};

/7 ..

if (all_foobar(gl, g2)) {
cleanup(gl);
cleanup(g2);
return {0, foobar_error};
// ...

cleanup(gl);
cleanup(g2);
return {res, 0};

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-codes
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-codes

CHAPTER 11 ERROR HANDLING 291

Okay, seems to be correct! Or?

Do you recall what DRY stands for? Don’t repeat yourself. Although the cleanup
code is encapsulated into functions, the code has a smell of code repetition because
the cleanup functions are invoked in various places. How can we get rid of this rep-
etition? Just put the cleanup code at the end of the function and jump to it.

std::pair<int, error_indicator> user() {
error_indicator err = 0;

Gadget g1 = make_gadget(17);
Gadget g2 = make_gadget(17);

if ('gl.valid()) {
err = gl_error; /7 (1)
goto exit;

if ('g2.valid()) {
err = g2_error; // (1)
goto exit;

if (all_foobar(gl, g2)) {

err = foobar_error; /7 (1)
goto exit;
}
// ...
exit:

if (g1.valid()) cleanup(gl);
if (g2.valid()) cleanup(g2);
return {res, err};

Admittedly, with the help of goto, the overall structure of the function is quite
clear. In case of an error, just the error indicator (1) is set. Exceptional circumstances
require exceptional actions.

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

292

PART I THE GUIDELINES

Related rules

RAII was already the topic of the first rule to resource management: “R.1: Manage
resources automatically using resource handles and RAII (Resource Acquisition Is
Initialization).” Consequently, I skipped the rule “E.6: Use RAII to prevent leaks.”

The rules “E.7: State your preconditions” and “E.8: State your postconditions”
are about contracts, which are not part of C++20. I give a concise introduction to
them in Appendix C, Contracts.

The rule “E.12: Use noexcept when exiting a function because of a throw is
impossible or unacceptable” is already handled in the rule on functions “E.6: If your
function may not throw, declare it noexcept.”

Global state is hard to manage and introduces hidden dependencies: “I.2: Avoid
non-const global variables.” Consequently, rule E.28 applies: “Avoid error handling
based on global state (e.g. errno).”

The rule “E.16: Destructors, deallocation, and swap must never fail” is already
handled in the rules about classes in the sections Failing Destructors and swap
Function in Chapter $.

Distilled

Important

e Software units communicate their results via a regular and an irregular
channel to their clients. Error handling is a main part of the irregular
channel and should be developed early in the design.

e Design your error handling around invariants. The job of a constructor is
to establish the invariant. If the invariant cannot be established, throw an
exception.

e Use user-defined types for exceptions. Catch them by reference, ordered
from specific to general.

e Use exceptions only for error handling.

e Never directly own an object. Always use RAII types to manage any
resources that will need freeing. RAII helps with resource management,
even if you don’t use exceptions.

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-precondition
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-postcondition
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-noexcept
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-noexcept
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-never-fail

Chapter 12

Constants and Immutability

Cippi admires her diamond.

I have a bit of an issue: On the one hand, pretty much everything in the five rules
about constants and immutability has been covered in previous rules. On the other
hand, writing your software using as much constant and immutable data as possible
solves many challenges by design. Therefore, this section recapitulates the rules on
constness and refers to previous rules when they provide additional value. In the end,
const, constexpr, and immutability are such essential ideas that they should have an
explicit place in this book about the C++ Core Guidelines.

293

294

PART I THE GUIDELINES

Use const

const COrrectness

When someone speaks or writes about constness and immutability, you often
hear the term const correctness. According to the C++ FAQ, “It [const
correctness| means using the keyword const to prevent const objects from
getting mutated.”

Con.1 By default, make objects immutable

This rule is straightforward. You can make a value of a built-in data type or an
instance of a user-defined data type const. The effect is the same. If you want to
change it, you get a compiler error.

struct Immutable {
int val{12},;
¥
int main() {
const int val{12};
val = 13; // assignment of read-only variable 'val'

const Immutable immu;

immu.val = 13;

// assignment of member 'Immutable::val'
// in read-only object

Casting away const may cause undefined behavior if the underlying object is const:
“ES.50: Don’t cast away const.”

Con.2 By default, make member functions const

Declaring member functions const has two obvious benefits. An immutable object
can only invoke const member functions, and const member functions cannot
modify the underlying object. Here is a short example that includes the error
messages from GCC:

CHAPTER 12 CONSTANTS AND IMMUTABILITY

struct Immutable {
int val{12};
void canNotModify() const {
val = 13; // assignment of member 'Immutable::val'
// in read-only object

}

void modifyval() {
val = 13;

}

3

int main() {
const Immutable immu;
immu.modifyval(); // passing 'const Immutable' as 'this'
// argument discards qualifiers

This was not the full truth. Sometimes you have to distinguish between the logical
and the physical constness of an object. Sounds strange, right?

¢ Physical constness: Your object is declared const and cannot, therefore, be
changed. Its representation in memory is fixed.

e Logical constness: Your object is declared const but could be changed. Its
logical value is fixed, but its representation in memory may change at run time.

Physical constness is quite easy to comprehend, but logical constness is more subtle.
Let me modify the previous example a bit. Assume I want to change the attribute val
in a const member function.

// mutable.cpp
#include <iostream>
struct Immutable {
mutable int val{12},; // (1)
void canNotModify() const {
val = 13;

}i

int main() {

295

https://en.cppreference.com/w/cpp/header/iostream

296 PART I THE GUIDELINES

std::cout << '\n';

const Immutable immu;

std::cout << "val: " << immu.val << '\n';
immu.canNotModify(); /7 (2)
std::cout << "val: " << immu.val << '\n';

std::cout << '\n';

The specifier mutable (1) made the magic possible. The const object can, therefore,
invoke the const member function (2), which modifies val. See Figure 12.1.

B x64 Native Tools Command P... — O X

ainer>

Figure 12.1 A mutable variable

Typically, a mutex used in a class member variable is mutable. Imagine your class has
a read operation, which should be const. Because you use the data of the class con-
currently, you have to protect the read member function with a mutex. So the class
gets a mutex, and you lock the mutex in the read operation. Now you have an issue.
Your read member function cannot be const because of the locking of the mutex.
The solution is to declare the mutex as mutable.

Here is a sketch of the presented use case. Without mutable, this code would not
work.

struct Immutable {
mutable std::mutex m;
int read() const {
std::lock_guard<std::mutex> lck(m);
// critical section

CHAPTER 12 CONSTANTS AND IMMUTABILITY 297

}i

Con.3 By default, pass pointers and references to consts

If you pass pointers or references to const to a function, the intention of the function
is obvious. The pointed to or referenced object cannot be modified. This observation
matches the previous rule covered in the section Parameter Passing: In and Out in
Chapter 4.

void getCString(const char* cStr);
void getCppString(const std::string& cppStr);

Are both declarations equivalent? No! In the case of the function getCString, the
pointer could be a null pointer. This means you have to check it before its usage:
if (cStr)

But there is even more. The pointer and the pointee can be const.

® const char* cStr: cStr points to a char that is const; the pointee cannot be
modified but the pointer can.

® char* const cStr:cStr isa const pointer; the pointer cannot be modified but
the pointee can.

® const char* const cStr: cStr is a const pointer to a char that is const;
neither the pointer nor the pointee can be modified.

Too complicated? Read the expressions from right to left or use a reference to const.

Use const to define objects with values that do not

Con.4 change after construction

If you want to share a variable immutable between threads and this variable is
declared as const, you are done. You can use const variables without synchroniza-
tion, and you get the most performance out of your machine. The reason is quite
simple. To get a data race, you need to have a mutable, shared state. I already wrote
about data races in the section addressing concurrency and parallelism: “CP.2: Avoid
data races.”

http://www.modernescpp.com/index.php/race-condition-versus-data-race

298 PART I THE GUIDELINES

There is an additional problem to solve when using immutable and shared data in
a concurrent environment. You have to initialize the shared variable in a thread-safe
way. [have at least four ideas in mind.

1. Initialize the shared variable before you start a thread.
2. Usethefunctionstd: :call_onceincombination with theflagstd: :once_flag.
3. Use a static variable with block scope.

4. Use a constexpr variable.

In the rule “CP.3: Minimize explicit sharing of writable data,” 1 addressed these
challenges.

Use constexpr

Use constexpr for values that can be computed at
compile-time

Con.5

constexpr values give you better performance, are evaluated at compile time, and are
never subject to data races. You must initialize a constexpr value constexprvalue at
compile time:

constexpr double constexprValue = constexprFunction(2);

A constexpr function constexprFunction can be executed at compile time. There is
no state at compile time. A constexpr function, when executed at compile time, is
pure. Pure functions have many advantages:

1. The function call can be replaced by the result.

2. The function can be performed on a different thread.

3. A function call can be reordered.

4. The function can easily be refactored or be tested in isolation.

Read more details about the benefits of constexpr functions in previous rules for
functions:

e F4:1f a function may have to be evaluated at compile-time, declare it constexpr

e ES8: Prefer pure functions

CHAPTER 12 CONSTANTS AND IMMUTABILITY 299

Distilled

Important

* By default, make objects immutable. Immutable objects cannot be subject
to data races. Ensure that these objects are initialized in a thread-safe way.

e By default, make member functions const. Distinguish if your object
should be a physical or logical const.

e Don’t cast away the constness from an original const object. This conver-
sion is undefined behavior if you try to modify the object.

e If possible, make your functions constexpr. constexpr functions can run
at compile time, are pure when they run at compile time, and provide addi-
tional optimization opportunities.

This page intentionally left blank

Chapter 13

Templates and Generic
Programming

Should Cippi use the left or right door?

There are more than 50 rules regarding templates and generic programming that are

unique for many reasons.

e Often, they have a very low-level focus. Since they address the experts, they
are irrelevant for the novice or need additional information. This observation
holds true, in particular, for this section, which gives additional information to
get the most out of the rules of the C++ Core Guidelines.

301

302 PART I THE GUIDELINES

e Often the rules lack content, or sometimes they contradict each other. For
example, the rule “T.5: Combine generic and OO techniques to amplify their
strengths, not their costs” presents type erasure (read more at https://www.
modernescpp.com/index.php/c-core-guidelines-type-erasure) as a solution,
but the rule “T.49: Where possible, avoid type-erasure” states the contrary.

e More than ten rules are about concepts in C++20. I provide a short introduc-
tion to concepts in Appendix B. In the examples in the C++ Core Guidelines,
concepts are often commented out. I follow this convention. If you want to try
them out, comment them in. cppreference.com provides details to the current
compiler support of concepts.

First of all, I use the terms “templates” and “generic programming,” although tem-
plates are just one way to write generic code. I assume you know what templates in
C++ are, but do you know what generic programming means? Here is my favorite
definition from Wikipedia (https://en.wikipedia.org/wiki/Generic_programming).

Generic programming is a style of computer programming in which algorithms are
written in terms of types to-be-specified-later that are then instantiated when needed
for specific types provided as parameters.

The rules about templates focus on their use, their interfaces, and their definition.
Additional rules address hierarchies with templates, variadic templates, metapro-
gramming, and more.

Use

Concepts are predicates on templates that are evaluated at compile time. They
should model semantic categories such as Arithmetic, Callable, Iterator, or
Range but not syntactic restrictions such as HasPlus or IsInvocable. Maybe you are
puzzled by the difference between semantic categories and syntactic restrictions. The
first rule helps to distinguish those terms.

TA Use templates to raise the level of abstraction of code

https://www.modernescpp.com/index.php/c-core-guidelines-type-erasure
https://www.modernescpp.com/index.php/c-core-guidelines-type-erasure
http://cppreference.com
https://en.wikipedia.org/wiki/Generic_programming
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
https://en.cppreference.com/w/cpp/algorithm
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-generic-oo
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-generic-oo
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-erasure
https://en.wikipedia.org/wiki/Generic_programming
Administrator
Cross-Out

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

Here is the example from the guidelines, but I renamed the second concept Addable.

template<typename T>
// requires Addable<T>

T suml(const std::vector<T>& v, T s) {
for (auto x : v) s += X;
return s;

template<typename T>
// requires Addable<T>

T sum2(const std::vector<T>& v, T s) {
for (auto x : v) s = s + X;
return s;

What is wrong with those concepts? Both concepts are too specific. Both concepts
are based on specific operations such as the increment and the + operation. Let’s go
one step further from the syntactic constraints to the semantic category
Arithmetic.

template<typename T>
// requires Arithmetic<T>

T sum(const std::vector<T>& v, T s) {
for (auto x : v) s += X;
return s;

Now the algorithm has the adequate requirements. The algorithm is better but not
good. It works only on a std: :vector. It’s generic on the element type of the con-
tainer but not on the container. Let me generalize the sum algorithm further.

template<typename Cont, typename T>
// requires Container<Cont>
// && Arithmetic<T>

T sum(const Cont& v, T s) {
for (auto x : v) s += x;

return s;

303

304 PART I THE GUIDELINES

Now, that’s better. Maybe you prefer a more concise definition of sum. Instead of the
keyword typename, I use the concepts directly.

template<Container Cont, Arithmetic T>
T sum(const Cont& cont, T s) {

for (auto x : cont) s += x;

return s;

Use templates to express algorithms that apply to many

T.2
argument types

When you study the first overload of std::find at cppreference.com, it looks like
this:

template< class InputIt, class T >
InputIt find(InputIt first, InputIt last, const T& value);

The types of the iterators are encoded in their names: InputIt stands for input itera-
tor and essentially means that it is an iterator that can read from the pointed-to ele-
ment at least once and allows iteration in one direction. An input iterator It supports
the following operations:

++It, It++
*It
It == It2, It != It2

There are two issues with this declaration:

1. The requirements for the iterators are encoded in the name. This encoding
reminds me of the infamous Hungarian notation.

2. There is no requirement specifying that the pointed-to element can be com-
pared with the value.

Let me use the iterator concept directly:

template<Input_iterator Iter, typename Val>

// Equality_comparable<Value_type<Iter>, Val>
Iter find(Iter b, Iter e, const Val& v) {

/7 ...

http://cppreference.com
https://en.wikipedia.org/wiki/Hungarian_notation

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

T.3 Use templates to express containers and ranges

Containers need to be generic. Thanks to templates, you can rely on the static type
system (Per.10). For example, here is a Vector.

template<typename T>
// requires Regular<T>
class Vector {

/7 ...
T* elem; // points to sz Ts
int sz;

3

Vector<double> v(10);
v[7] = 9.9;

One question remains. When is a type T regular? I answer this question later in this
chapter in the section “T.46: Require template arguments to be at least Regular or
SemiRegular.”

Interfaces

An interface is a contract between a user and an implementer. It should, therefore, be
written with great care.

T.40 Use function objects to pass operations to algorithms

Often, you can adapt the behavior of the around one hundred algorithms of the
Standard Template Library (STL) by providing a callable. Callables are typically
functions, function objects, or lambdas.

There are various ways to sort a vector of strings.

// functionObjects.cpp

#include <algorithm>
#include <functional>
#include <iostream>
#include <iterator>

305

https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/header/iostream

306

PART I THE GUIDELINES

#include <string>
#include <vector>

bool byLessLength(const std::string& f,
const std::string& s) { // (4)
return f.size() < s.size();

class ByGreaterLength {
public:
bool operator()(const std::string& f, const std::string& s)
const { // (5)
return f.size() > s.size();

3

int main() {

std::vector<std::string> myStrVec = {"523345", "4336893456", "7234",
"564", "199", "433", "2435345"};

std::cout << '\n';

std::cout << "Ascending by length with a function \n";
std::sort(myStrVvec.begin(), myStrVec.end(), byLessLength); // (1)
for (const auto& str: myStrVec) std::cout << str << " ";

std::cout << "\n\n";

std::cout << "Descending by length with a function object \n";
std::sort(myStrVec.begin(), myStrVec.end(), ByGreaterLength()); // (2)
for (const auto& str: myStrVec) std::cout << str << " ";

std::cout << "\n\n";

std::cout << "Ascending by length with a lambda \n";
std::sort(myStrVvec.begin(), myStrVvec.end(),
[1(const std::string& f, const std::string& s){ // (3)
return f.size() < s.size();

1)

for (const auto& str: myStrVec) std::cout << str << " ";

std::cout << "\n\n";

https://en.cppreference.com/w/cpp/utility/functional

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

The program sorts a vector of strings based on the length of the strings. The markers
(1), (2), and (3) use a function (4), a function object (5), and a lambda expression (3).
A function object is a class (5), for which the call operator (operator()) is
overloaded.

For completeness, Figure 13.1 shows the output of the program.

rainer : bash — Ko

File Edit View Bookmarks Settings Help

rainer@seminar:~> functionObjects

Ascending by length with a function
564 199 433 7234 523345 2435345 4336893456

Descending by length with a function object
4336893456 2435345 523345 7234 564 199 433

Ascending by length with a lambda
564 199 433 7234 523345 2435345 4336893456

rainer@seminar:~> [j I

Figure 13.1 A function, a function object, and a lambda as sorting criteria

The rule states you should use function objects to pass operations to algorithms.

Advantages of function objects

My argumentation for function objects boils down to three points: performance,
expressiveness, and state. It makes my argumentation easier if we consider that
lambda functions are function objects under the hood.

Performance

The more the optimizer can reason locally, the better the code becomes. A lambda (3)
is compiler generated just in place. Compare this to a function that is defined in a
different translation unit. In this case, the optimizer cannot perform all optimization

steps.

Expressiveness

Your code should be so expressive that it needs no documentation, and lambdas give
you this expressiveness. [can make my argumentation short because I already wrote
about the expressiveness of lambdas in the chapter on functions.

307

https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/algorithm

308 PART I THE GUIDELINES

State
In contrast to a function, a function object can have state. The code example makes
my point.

// sumUpFunctionObject.cpp

#include <algorithm>
#include <iostream>
#include <vector>

class SumMe {

int sum{0};
public:

SumMe() = default;

void operator()(int x) {
sum += Xx;

int getSum() const {
return sum;
}
}

int main() {
std::vector<int> intvec{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

// (1)
SumMe sumMe = std::for_each(intVec.begin(), intVec.end(), SumMe());

std::cout << '\n'; // (2)
std::cout << "Sum of intVec= " << sumMe.getSum() << '\n';
std::cout << '\n';

The std: : for_each call in (1) is crucial. std: : for_each is a unique algorithm of the
Standard Template Library because it can return its callable. I invoke std: : for_each
with the function object SumMe and can, therefore, store the result of the function call
directly in the function object. I ask in (2) for the sum of all calls. See Figure 13.2.

https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

rainer : bash — Konsole

File Edit View Bookmarks Settings Help
rainer@seminar:~> sumUpFunctionObject

Sum of 1intVec= 55

rainer@seminar:~> I l

Figure 13.2 A function object with state

Just to be complete, lambdas can also have state. You can use a lambda to accumu-

late values.

// sumUpLambda.cpp

#include <algorithm>
#include <iostream>
#include <vector>

int main(){
std::cout << '\n';
std::vector<int> intvec{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

std: :for_each(
intVec.begin(), intVec.end(),
[sum = @](int i) mutable {
sum += i;
std::cout << sum << " ";

);

std::cout << "\n\n";

This lambda looks scary. First of all, the variable sum represents the state of the
lambda. With C++14, the so-called initialization capture of lambdas is supported.
sum = 0 declares and initializes a variable of type int, which is valid only in the scope
of the lambda. Lambdas are per default const. By declaring it as mutable, [can add
the numbers to sum. See Figure 13.3.

309

https://en.cppreference.com/w/cpp/header/iostream

310

PART I THE GUIDELINES

rainer : bash — Konsole = ° g

File Edit View Bookmarks Settings Help
rainer@seminar:~> sumUpLambda

13610 1521 28 36 45 55

rainer@seminar:~> [j |

Figure 13.3 A lambda with state

A lambda expression is syntactic sugar for a function object that is instantiated in
place. Thanks to C++ Insights, you can observe the transformation performed by
the compiler (https://cppinsights.io/s/0a702053).

Use template aliases to simplify notation and hide
implementation details

Since C++11, we have had template aliases. A template alias is a name that refers to
a family of types. Using them makes your code more readable and helps you to get
rid of type traits. The section Metaprogramming later in this chapter provides more
information on type traits.

Let’s see what the C++ Core Guidelines mean by readability. The first example
uses type traits:

template<typename T>

void user(T& c) {
/7 ...
typename container_traits<T>::value_type x; // bad, verbose
/7 ...

Here is the equivalent case with template aliases:

template<typename T>
using value_type = typename container_traits<T>::value_type;

void user2(T& c) {
// ...
value_type<T> Xx;
// ...

https://cppinsights.io/s/0a702053
https://cppinsights.io/s/ad5b8b5d
https://en.cppreference.com/w/cpp/utility/functional
https://en.wikipedia.org/wiki/Syntactic_sugar

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

Readability is also the reason for the next rule.

T.43 Prefer using over typedef for defining aliases

There are two arguments from the readability perspective for preferring using over
typedef. First, using comes first when used. Second, using feels quite similar to
auto. Additionally, using can easily be used for template aliases.

typedef int (*PFI)(int); // OK, but convoluted
using PFI2 = int (*)(int); // OK, preferred

template<typename T>
typedef int (*PFT)(T); // error (1)

template<typename T>
using PFT2 = int (*)(T); // OK

The first two lines define a pointer to a function (PFI and PFI2), which takes an int
and returns an int. In the first case, typedef is used and, in the second case, using.
The last two lines define a function template (PFT2), which takes a type parameter T
and returns an int. Line (1) is not valid.

Use function templates to deduce class template argument

T.44 types (where feasible)

The primary reason that we have factory functions such as std::make_tuple or
std::make_unique is that a function template can deduce its template arguments
from its function arguments. During this process, the compiler applies a few simple
conversions such as removing the outermost const/volatile qualifier and decaying
C-arrays and functions to a pointer to the first element of the C-array or a pointer to
the function.

This automatic template argument deduction makes our lives as programmers
much more comfortable.

Instead of typing

std::tuple<int, double, std::string> myTuple = {2011, 20.11, "C++11"};

311

312

PART I THE GUIDELINES

you can use the factory function std: :make_tuple.
auto myTuple = std::make_tuple(2011, 20.11, "C++11");

Since C++17, the compiler can in many situations deduce its template arguments
not only from the function arguments but also from the constructor arguments. Here
is the way to define myTuple in C++17:

std::tuple myTuple = {2017, 20.17, "C++17"};

An obvious effect of this C++17 feature is that most of the factory functions such as
std: :make_tuple become obsolete.

The following program templateArgumentDeduction.cpp, shows class and func-
tion argument deduction in action.

// templateArgumentDeduction.cpp; C++17
#include <iostream>
template <typename T>

void showMe(const T& t) {
std::cout << t << '\n';

template <typename T>
struct ShowMe{
ShowMe(const T& t) {
std::cout << t << '\n';

}
int main() {

std::cout << '\n';

showMe(5.5); // not showMe<double>(5.5);
showMe(5); // not showMe<int>(5);
ShowMe a(5.5); // not ShowMe<double>(5.5);
ShowMe b(5); // not ShowMe<int>(5);

std::cout << '\n';

https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

File Edit WView Bookmarks Settings Help

rainer@seminar:~> g#+ -std=c++17 templateArgumentDeduction.cpp -o templateArgumentDeduction
rainer@seminar:~> templateArgumentDeduction

.5

«5

[T T T

rainer@seminar:-~> l l

Figure 13.4 Template argument deduction

The comments display the explicit specification of the template arguments. With
template argument deduction, the user invokes a function or a class. The fact that the
function is a function template or that the class is a class template is an implementa-
tion detail. See Figure 13.4.

Require template arguments to be at least Regular or
SemiRegular

The concepts Regular and SemiRegular are quite important in C++. Regular types
work well in the C++ ecosystem. A Regular type “behaves like an int.” It can be cop-
ied, and the result of the copy operation is independent of the original one and has
the same value.

Let’s be more formal. All Regular types are also SemiRegular. Consequently, I
start with defining a SemiRegular type.

¢ SemiRegular: A semiRegular type has to support the rule of six and has to be
swappable.

* Default constructor: x()

* Copy constructor: X(const X&)

* Copy assignment: X& operator = (const X&)
* Move constructor: X(X&&)

* Move assignment: X& operator = (X&&)

* Destructor: ~X()

* Swappable: swap(x&, X&)

313

314

PART I THE GUIDELINES

¢ Regular: A semiRegular type that supports equality comparable is Regular.
* Equality operator: operator == (const X&, const X&)
* Inequality operator: operator != (const X& const X&)

The STL containers and algorithms, in particular, assume Regular data types.
What is commonly used but is not a Regular type? Right: a reference. A reference
is not even SemiRegular because it cannot be default constructed.

// semiRegular.cpp; C++17

#include <iostream>
#include <type_traits>

int main() {
std::cout << std::boolalpha << '\n';

std::cout << "std::is_default_constructible<int&>::value: "

<< std::is_default_constructible<int&>::value << '\n';
std::cout << "std::is_copy_constructible<int&>::value: "

<< std::is_copy_constructible<int&>::value << '\n';
std::cout << "std::is_copy_assignable<int&>::value: "

<< std::is_copy_assignable<inté&>::value << '\n';
std::cout << "std::is_move_constructible<int&>::value: "

<< std::is_move_constructible<int&>::value << '\n';
std::cout << "std::is_move_assignable<int&>::value: "

<< std::is_move_assignable<int&>::value << '\n';
std::cout << "std::is_destructible<int&>::value: "

<< std::is_destructible<int&>::value << '\n';
std::cout << '\n';
std::cout << "std::is_swappable<int&>::value: "

<< std::is_swappable<int&>::value << '\n';

std::cout << '\n';

The type-traits library gives the authoritative answer. See Figure 13.5.

Avoid highly visible unconstrained templates with common
names

To get the point of this rule, I have to make a short detour. This detour is about
argument-dependent lookup (ADL), also known as Koenig lookup, after Andrew
Koenig. First of all, what is argument-dependent lookup?

https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/language/adl
https://en.cppreference.com/w/cpp/language/adl
https://en.cppreference.com/w/cpp/algorithm
https://en.wikipedia.org/wiki/Andrew_Koenig_(programmer)
https://en.wikipedia.org/wiki/Andrew_Koenig_(programmer)
https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

rainer : bash — Konsold

File Edit View Bookmarks Settings Help
rainer@seminar:~> semiRegular %

std::is_default_constructible<int&>::value: false
std::is_copy_constructible<int&>::valve: true
std::is_copy_assignable<int&>::value: true
std::is_move_constructible<int&>::value: true
std::is_move_assignable<int&>::value: true
std::is_destructible<int&>::value: true

std::is_swappable<int&>::value: true
rainer@seminar:~> []

[>] rainer : bash

Figure 13.5 A reference is not SemiRegular

Argument-dependent lookup

¢ Argument-dependent lookup (ADL) is a set of rules for the lookup of
unqualified function names. Unqualified function names are additionally
looked up in the namespace of their arguments.

Unqualified function names means functions without the scope operator (: :).
Is argument-dependent lookup bad? Of course not—ADL makes our lives as
programmers easier. Here is an example.

#include <iostream>

int main() {
std::cout << "Argument-dependent lookup";

}

Fine. Let me remove the syntactic sugar of operator overloading and use the
function call directly.

#include <iostream>

int main() {
operator << (std::cout, "Argument-dependent lookup");

315

https://en.cppreference.com/w/cpp/language/adl
https://en.cppreference.com/w/cpp/language/adl
https://en.cppreference.com/w/cpp/language/adl
https://en.cppreference.com/w/cpp/language/adl
https://en.cppreference.com/w/cpp/language/adl
https://en.wikipedia.org/wiki/Syntactic_sugar
https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/header/iostream

316

PART I THE GUIDELINES

This equivalent program shows what is happening under the hood. The func-
tion operator << is called with the two arguments std: :cout and the C-string
“Argument-dependent lookup.”

Fine? No? The question arises: Where is the definition of the function opera-
tor <<? Of course, there is no definition in the global namespace. operator <<
is an unqualified function name; therefore, argument-dependent lookup kicks in.
The function name is additionally looked up in the namespace of their arguments.
In this particular case, the namespace std is due to the first argument std: : cout
considered, and the lookup finds the appropriate candidate: std: :operator <<
(std::ostream&, const char*). Often ADL provides you with precisely the
function you are looking for, but sometimes . . .

Now we have the necessary background information to write about this rule.

In the expression std: :cout << "Argument-dependent lookup", the overloaded
output operator << is the highly visible common name because it is defined in the
namespace std. The following program, based on the program of the C++ Core
Guidelines, shows the crucial point of this rule.

// argumentDependentLookup.cpp

#include <iostream>
#include <vector>

namespace Bad {
struct Number {
int m;
}i
template<typename T1, typename T2> // generic equality (5)

bool operator == (T1, T2) {
return false;

namespace Util {

bool operator == (int, Bad::Number) { // equality to int (4)
return true;

https://en.cppreference.com/w/cpp/language/adl
https://en.cppreference.com/w/cpp/language/adl
https://en.cppreference.com/w/cpp/language/adl
https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

void compareSize() {
Bad: :Number badNumber{5}; // (1)
std::vector<int> vec{1, 2, 3, 4, 5};

std::cout << std::boolalpha << '\n';

std::cout << "5 == badNumber: " <<

(5 == badNumber) << '\n'; /7 (2)
std::cout << "vec.size() == badNumber: " <<
(vec.size() == badNumber) << '\n'; // (3)

std::cout << '\n';

int main() {

Util::compareSize();

I expect that in both cases (2) and (3), the overloaded Util::operator == (4) is
called because it takes an argument of type Bad: :Number (1); therefore, I should get
true twice. See Figure 13.6.

rainer : bash — Konsgle

File Edit View Bookmarks Settings Help

rainer@seminar:~> argumentDependentLookup 2
5 == badNumber: true

vec.size() == badNumber: false

rainer@seminar:~> i 2
u rainer : bash

Figure 13.6 Surprise with argument-dependent lookup

What happened here? The call in (3) is resolved by the generic equality opera-
tor in (5)? The reason for the surprise is that vec.size() returns a value of type
std::size_type, which is an unsigned integer type. This means that the equality
operator requires in (4) a conversion to int. This conversion is not necessary for
the generic equality (5) because this is an ideal fit. Thanks to argument-dependent
lookup, the generic equality operator belongs to the set of possible overloads.

317

https://en.cppreference.com/w/cpp/language/adl
https://en.cppreference.com/w/cpp/language/adl

318 PART I THE GUIDELINES

The rule states “Avoid highly visible unconstrained templates with common
names.” Let me see what would happen if I followed the rule and removed the generic
equality operator. Here is the fixed code.

// argumentDependentLookupResolved.cpp

#include <iostream>
#include <vector>

namespace Bad {
struct Number {

int m;

Iy

namespace Util {
bool operator == (int, Bad::Number) { // compare to int (4)

return true;

void compareSize() {
Bad: :Number badNumber{5}; // (1)
std::vector<int> vec{1, 2, 3, 4, 5};

std::cout << std::boolalpha << '\n';

std::cout << "5 == badNumber: " <<

(5 == badNumber) << '\n'; /7 (2)
std::cout << "vec.size() == badNumber: " <<

(vec.size() == badNumber) << '\n'; // (3)

std::cout << '\n';

int main() {

Util::compareSize();

Now, the result matches my expectations. See Figure 13.7.

https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING 319

rainer : bash — Konsqle <3>

File Edit View Bookmarks Settings Help
rainer@seminar:~> argumentDependentLookupResolved A

5 == badNumber: true
vec.size() == badNumber: true

rainer@seminar:~> |

[] rainer : bash

Figure 13.7 Surprises with argument-dependent lookup solved

If your compiler does not support concepts, fake them with
enable if

T.48

When I present std: :enable_if in my seminars, a few participants are scared. Here
is the simplified version of a generic greatest-common-divisor algorithm.

// enable_if.cpp

#include <iostream>
#include <type_traits>

template<typename T, // (1)
typename std::enable_if<std::is_integral<T>::value, T>::type = 0>
T ged(Ta, Th) {
if(b == 0){ return a; }
else{
return gcd(b, a % b); /7 (2)

int main() {
std::cout << '\n';

std::cout << "gcd(100, 10)= " << gcd(100, 10) << '\n';
std::cout << "gcd(3.5, 4)= " << gcd(3.5, 4.0) << '\n';

std::cout << '\n';

https://en.cppreference.com/w/cpp/header/iostream

320

PART I THE GUIDELINES

The algorithm is too generic. It should only work for integral types. Now
std::enable_if from the type-traits library (1) comes to my rescue. See Figure 13.8.

The expression std: :is_integral (1) is critical for the understanding of the pro-
gram. This line determines whether the type parameter T is integral. If T is not inte-
gral, and therefore, the return value is false, there is no template instantiation for
this specific type.

Only if std::is_integral returns true does std: :enable_if have a public mem-
ber typedef type. But this is not an error.

The C++ standard says, “When substituting the deduced type for the template
parameter fails, the specialization is discarded from the overload set instead of caus-
ing a compile error.” There is an acronym for this rule: SFINAE (Substitution Failure
Is Not An Error).

File Edit View Bookmarks Settings Help

rainer@seminar:~> g++ enable_if.cpp -o enable_if
enable_if.cpp: In function 'int main()':

enable_if.cpp:20:49: error: no matching function for call to 'gcd{double, double)’
std::cout << "gcd(3.5, 4)= " << gcd(3.5, 4.0) << std::endl;

enable_if.cpp:8:3: candidate: 'template<class T, typename std::enable_if<std::is_in

tegral<_Tp>::value, T>::type <anonymous> > T gecd(T, T)'

T (T a, ThbM{

enable_if.cpp:8:3: template argument deduction/substitution failed:

enable_if.cpp:7:71: error: no type named "type’ in ‘struct std::enable_if<false, double>'

typename std::enable_if<std::is_integral<T>::value, T>::type= 0>
rainer@seminar:~> | I
a rainer : bash

Figure 13.8 std::enable_if

The output of the compilation (enable_if.cpp: 20:49) shows it. There is no tem-
plate specialization for the type double available.

Definition

When defining templates, you should minimize dependencies, avoid overparameter-
izing, and factor out code from the template that does not depend on its type

parameters.

T.60 Minimize a template’s context dependencies

https://en.cppreference.com/w/cpp/header/type_traits
http://en.cppreference.com/w/cpp/language/sfinae

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

To be honest, it took me a moment to get this rule. Let’s look at the function tem-
plates sort and algo. Here is a simplified example from the C++ Core Guidelines.

template<typename C>
void sort(C& c) {
std::sort(begin(c), end(c)); // necessary and useful dependency

template<typename Iter>
Iter algo(Iter first, Iter last) {
for (; first != last; ++first) {
auto x = sqrt(*first); // potentially surprising dependency:
// which sqrt()?

helper(first, x); // potentially surprising dependency:
// helper is chosen based on first
// and x

It would be optimal but not always manageable if a template operated only on its
arguments. This argument holds for the function template sort but not for algo.
The function template algo has dependencies on sqrt and the function helper.
Moreover, the implementation of algo introduces more dependencies than the inter-
face shows. For example, the calls sqrt and helper are not qualified, and therefore,
argument-dependent lookup kicks in. Using std: :sqrt instead of sqrt reduces the

dependencies.

Do not over-parameterize members

If a member of a template does not depend on a template parameter, remove it from
the template. A member may be a type or a member function. By following this rule,
you may decrease the code size because the nongeneric code is factored out.

The example from the guidelines is straightforward.

template<typename T, typename A = std::allocator{}>
// requires Regular<T> && Allocator<A>
class List {
public:
struct Link { // does not depend on A
T elem;

321

https://en.cppreference.com/w/cpp/language/adl

322 PART I THE GUIDELINES

T* pre;
T* suc;

3
using iterator = Link*;
iterator first() const { return head; }

/7.
private:
Link* head;

3

List<int> 1st1;
List<int, My_allocator> 1lst2;

The type Link does not depend on the template parameter A. Consequently, you can
extract it and use it in List2.

template<typename T>
struct Link {

T elem;

T* pre;

T* suc;

}i

template<typename T, typename A = std::allocator{}>
// requires Regular<T> && Allocator<A>

class List2 {

public:
using iterator = Link<T>*;

iterator first() const { return head; }

/7 ...
private:
Link* head;

}i

List2<int> 1st1;
List2<int, My_allocator> 1lst2;

The next rule also helps to fight code bloat.

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

Place non-dependent class template members in a non-

T.62 templated base class

Let’s reformulate it more informally: Put the functionality of the template that does
not depend on the template parameters in a nontemplated base class.
The C++ Core Guidelines present a quite obvious example.

template<typename T>
class Foo {
public:
enum { v1, v2 };
/7 ...
}

The enumeration is independent of the type parameter T and should, therefore, be
placed in a nontemplated base class.

struct Foo_base {
enum { vi, v2 };
/7 ...

Y

template<typename T>
class Foo : public Foo_base {
public:
/7 ...
Y

Now Foo_base can be used without template arguments and template instantiation.
This technique is quite interesting if you want to reduce your code size. Here is a
simple class template Array.

// genericArray.cpp

#include <cstddef>
#include <iostream>

template <typename T, std::size_t N>
class Array {
public:

Array()= default;

std::size_t getSize() const{

323

https://en.cppreference.com/w/cpp/header/iostream

324

PART I THE GUIDELINES

return N;
}
private:
T elem[N];
}

int main(){

Array<int, 100> arril;
std::cout << "arril.getSize(): " << arrl.getSize() << '\n’';

Array<int, 200> arr2;
std::cout << "arr2.getSize(): " << arr2.getSize() << '\n';

If you study the class template Array, you notice that the member function getSize
is the same except for type parameter N. Let me refactor the code and declare a class
template Array that depends on the type parameter T and the size n.

// genericArrayInheritance.cpp

#include <cstddef>
#include <iostream>

class ArrayBase {
protected:
ArrayBase(std::size_t n): size(n) {}
std::size_t getSize() const {
return size;
}
private:
std::size_t size;

}i

template<typename T, std::size_t N>
class Array: private ArrayBase {
public:
Array(): ArrayBase(N){}
std::size_t getSize() const {
return ArrayBase::getSize();

https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

private:
T data[N];
}

int main() {

Array<int, 100> arril;
std::cout << "arril.getSize(): " << arrl.getSize() << '\n’';

Array<double, 200> arr2;
std::cout << "arr2.getSize(): " << arr2.getSize() << '\n';

Array has two template parameters for the type T and the size N, but ArrayBase is no
template. Array derives from ArrayBase. This means ArrayBase is shared between
all instantiations of Array. In the concrete case, the getSize member function of
Array uses the getSize method of ArrayBase. ArrayBase is shared between the
instantiations Array<int, 100>and Array<double, 200>.

Alternative implementations with specializations

e T.64: Use specialization to provide alternative implementations of class
templates
e T.67: Use specialization to provide alternative implementations for irregular

types

The rules in this section address mainly one concern: using template specialization
to provide alternative implementations.

Let’s start simple. I have a class Account, and I want to know which account is
smaller. Smaller means in this case that the balance is lower.

// isSmaller.cpp
#include <iostream>
class Account {

public:
Account() = default;

325

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-specialization
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-specialization2
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-specialization2
https://en.cppreference.com/w/cpp/header/iostream

326

PART I THE GUIDELINES

Account(double b): balance(b) {3}
private:
double balance{0.0};

}
template<typename T> // (1)
bool isSmaller (T fir, T sec) {
return fir < sec;
int main() {

std::cout << std::boolalpha << '\n';

double firDoub{};
double secDoub{2014.0};

std::cout << "isSmaller(firDoub, secDoub): "
<< isSmaller(firDoub, secDoub) << '\n';

Account firAcc{};
Account secAcc{2014.0};

std::cout << "isSmaller(firAcc, secAcc): "
<< isSmaller(firAcc, secAcc) << '\n';

std::cout << '\n';

To make my job easier, [wrote a generic isSmaller function (1) for comparing two
accounts. As you presumably expected, I cannot compare accounts because its oper -

ator <isnot overloaded. See Figure 13.9.

rainer : bash — Kol

File Edit View Bookmarks Settings Help

rainer@seminar:~> g4+ isSmaller.cpp -o isSmaller

isSmaller.cpp: In instantiation of ‘bool isSmaller(T, T) [with T = Account]':
5

isSmaller.cpp:33:7 required from here
isSmaller.cpp:18:1 rror: no mateh for ‘operator<’ (operand types are ‘Account’ and ‘Account')
return fir i

rainer@seminar:~> ['

[] rainer : bash

Figure 13.9 Comparing two accounts

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING 327

Now to the interesting question. Which techniques are available to compare two
accounts? For the sake of simplicity, I show only the essential part of the next pro-
grams. The complete programs are part of the source code to this book.

Overloading operator < forthe class
Overloading operator < is probably the most obvious way. Even the error message
of the program isSmaller.cpp showed it.

// accountIsSmallerl.cpp

class Account {
public:
Account() = default;
Account(double b): balance(b) {}
friend bool operator < (Account const& fir, Account const& sec) {
return fir.getBalance() < sec.getBalance();
}
double getBalance() const {
return balance;
}
private:
double balance{0.0};
};

template<typename T>
bool isSmaller (T fir, T sec) {
return fir < sec;

Full specialization of the comparison function
If you cannot change Account, you can at least fully specialize isSmaller for
Account.

// accountIsSmaller2.cpp

class Account {
public:
Account() = default;
Account(double b): balance(b) {}
double getBalance() const {
return balance;

328

PART I THE GUIDELINES

private:
double balance{0.0};
3

template<typename T>
bool isSmaller (T fir, T sec){
return fir < sec;

template<>
bool isSmaller<Account>(Account fir, Account sec){
return fir.getBalance() < sec.getBalance();

By the way, a nongeneric function bool isSmaller(Account fir, Account sec)
would also do the job.

Extending the comparison function

There is another way: Extend issmaller. I extend the generic function with an addi-
tional type parameter Pred that can hold a binary predicate. This pattern is heavily
used in the Standard Template Library.

// accountIsSmaller3.cpp

#include <functional>
#include <iostream>
#include <string>

class Account {
public:
Account() = default;
Account(double b): balance(b){}
double getBalance() const {
return balance;

}
private:
double balance{0.0};
Y
template <typename T, typename Pred = std::less<T> > // (1)
bool isSmaller (T fir, T sec, Pred pred = Pred()) { // (2)

return pred(fir, sec); // (3)

https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

int main() {
std::cout << std::boolalpha << '\n';

double firDou{};
double secDou{2014.0};

std::cout << "isSmaller(firDou, secDou): "
<< isSmaller(firDou, secDou) << '\n';

Account firAcc{};
Account secAcc{2014.0};

auto res = isSmaller(firAcc, secAcc, /7 (4)

[1(const Account& fir, const Accounté& sec){
return fir.getBalance() < sec.getBalance();

std::cout << "isSmaller(firAcc, secAcc): " << res << '\n';
std::cout << '\n';

std::string firStr = "AAA";
std::string secStr = "BB";

std::cout << "isSmaller(firStr, secStr): "
<< isSmaller(firStr, secStr) << '\n';

auto res2 = isSmaller(firStr, secStr, // (5)

[J(const std::string& fir, const std::string& sec){
return fir.size() < sec.length();

)i
std::cout << "isSmaller(firStr, secStr): " << res2 << '\n';

std::cout << '\n';

The generic function uses the predefined function object std: : Less<T> as the default
ordering (1). The binary predicate Pred is instantiated in (2) and used in (3). Addi-
tionally, you can provide your binary predicate such as in (4) or (5). A lambda expres-
sion is an ideal fit for this job.

329

https://en.cppreference.com/w/cpp/utility/functional

330

PART I THE GUIDELINES

Finally, Figure 13.10 shows the output of the program.

rainer : bash — Konsole VoA 8

File Edit View Bookmarks Settings Help
rainer@seminar:~> accountIsSmaller3 2

isSmaller(firDou, secDou): true
isSmaller(firAcc, secAcc): true

isSmaller(firStr, secStr): true
isSmaller(firStr, secStr): false

rainer@seminar:~> | s

a rainer : bash

Figure 13.10 Comparing two accounts with a binary predicate

Comparing the three techniques
What are the differences between these three techniques (see Table 13.1)?

Table 13.1 Comparing two accounts

General solution Configuration time Extension Variability

operator < Yes Compile time Type No
Full specialization No Compile time Function No
Extension with predicate ~ Yes Run time Function Yes

The full specialization is not a general solution. It works only for the function
isSmaller. In contrast, the operator < is quite often applicable, and any type can
use the extension with predicate. The operator < and the full specialization are
static. This means the ordering is defined at compile time and is encoded in the type
or the generic function. In contrast, the extension with the predicate can be invoked
with different predicates. The decision happens at run time. The operator
< extends the type, both of the other variants the function. The extension with predi-
cate allows it to order your type in various ways. For example, you can compare
strings lexicographically or by their length.

Based on this comparison, a good rule of thumb is to implement an operator < for
your types and add an extension to your generic functions if necessary.

Hierarchies

Virtual functions used in templates are special. Here is why.

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING 331

Do not naively templatize a class hierarchy

Here is the example of a naively templatized class hierarchy from the C++ Core
Guidelines:

template<typename T>
struct Container { // an interface
virtual T* get(int 1i);
virtual T* first();
virtual T* next();
virtual void sort();

3

template<typename T>
class Vector : public Container<T> {
public:
/7 ...
¥

Vector<int> vi;

Vector<std::string> vs;

This is naive because the base class Container has many virtual functions. The pre-
sented design introduces unnecessary code bloat. Virtual member functions must be
instantiated for each type used in a class template. This observation applies to the
Container and the Vector<int> and Vector<std: :string>. In contrast, nonvirtual
functions are instantiated only if they are used.

T.83 Do not declare a member function template virtual

Let me try to use a virtual member function template.

// virtualMemberFunction.cpp

class Shape {
template<class T>
virtual void intersect(T* p) {}

3

332

PART I THE GUIDELINES

int main(){

Shape shape;

The error message for the GCC is crystal clear: Templates may not be virtual. See
Figure 13.11.

rainer : bash

File Edit View Bookmarks Settings Help

rainer@seminar:~> g++ virtualMemberFunction.cpp -o virtualMemberFunction

virtualMemberFunction.cpp:5:5: error: templates may not be ‘virtual’
virtual void intersect(T* p) {};

M rareraranard

rainer@seminar:~> [j |

Figure 13.11 Compiler error with a virtual member function

Variadic templates

e T.100: Use variadic templates when you need a function that takes a variable
number of arguments of a variety of types

e T.101: How to pass arguments to a variadic template

e T.102: How to process arguments to a variadic template

These three rules about variadic templates have little content. Consequently, I have to
improvise. Let me use std: :make_unique as an example. As a side note, the three
lines of std: :make_unique, which I’'m going to develop in this section, are the most
impressive three lines of code I know in modern C++.

std::make_unique is a function template that returns a dynamically allocated
object, wrapped into a std: :unique_ptr. Here are a few use cases.

// makeUnique.cpp
#include <memory>
struct MyType {

MyType(int, double, bool){};
}

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-variadic
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-variadic-pass
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-variadic-process
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-variadic

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

int main() {

int lvalue{2020};

std::unique_ptr<int> unigZero = std::make_unique<int>();
auto unigEleven = std::make_unique<int>(2011);

auto unigTwenty = std::make_unique<int>(lvalue);
auto unigqType = std::make_unique<MyType>(lvalue, 3.14, true);

Based on these use cases, what are the requirements for std: :make_unique?

1. std::make_unique should deal with an arbitrary number of arguments. It gets
0,1, and 3 arguments.

2. std: :make_unique should accept lvalues and rvalues. It gets an rvalue (2011)
and an Ivalue (1value). The last call even gets both an rvalue and an lvalue.

3. std: :make_unique should forward its arguments unchanged to the underlying
constructor. This means that the constructor of std::unique_ptr should get
an lvalue/rvalue if std: :make_unique gets an lvalue/rvalue.

These requirements are typical for factory functions such as std::make_unique,
std::make_shared, std: :make_tuple, but also std::thread. Factory functions in
modern C++ rely on two powerful features in C++11:

e Perfect forwarding

e Variadic templates

Now I want to create my factory function createT. Let’s start the job with perfect
forwarding.

Perfect forwarding
First of all: What is perfect forwarding?

Perfect forwarding allows you to preserve an argument’s value category (Ivalue/rvalue)
and const/volatile type qualifiers.

333

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr

334

PART I THE GUIDELINES

Perfect forwarding follows a typical pattern, consisting of a universal reference
(perfect forwarding reference) and std: : forward.

template<typename T> // (1)
void createT(T&& t) { // (2)

std::forward<T>(t); // (3)
}

The three parts of the pattern to get perfect forwarding are as follows:

1. Start with a template parameter T: typename T,

2. Bind T by universal reference, also known as perfect forwarding reference:
T&& t,

3. Invoke std: : forward on the argument: std: : forward<T>(t),

The key observation is that T&& (2) can bind an lvalue or an rvalue and that
std::forward (3) does the perfect forwarding. std::forward is a conditional
std: :move. [t moves an rvalue and copies an lvalue.

It’s time to create the prototype of the createT factory function, which should
behave at the end similarly to std: :make_unique in the program makeUnique.cpp.
I just replaced std: :make_unique with the createT call, added the createT factory
function, and commented the two lines (1) out. Additionally, I removed the header
<memory> (std: :make_unique) and added the header <utility> for std: : forward.

// createT1l.cpp
#include <utility>
struct MyType {
MyType(int, double, bool) {};
}
template <typename T, typename Arg>

T createT(Arg&& arg) {
return T(std::forward<Arg>(arg));

int main() {

int lvalue{2020};

https://en.cppreference.com/w/cpp/utility/move

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

//std::unique_ptr<int> uniqZero = std::make_unique<int>();

auto unigEleven = createT<int>(2011);

auto unigTwenty = createT<int>(1lvalue);

//auto uniqType = std::make_unique<MyType>(lvalue, 3.14, true);

Excellent! The rvalue (2011) and the lvalue (1value) pass my test.

Variadic templates

Sometimes dots are important. Insert exactly nine dots at the right place, and the
two commented-out lines work.

// createT2.cpp
#include <utility>

struct MyType {
MyType(int, double, bool) {3};

¥
template <typename T, typename ... Args>
T createT(Args&& ... args) {
return T(std::forward<Args>(args) ...);
}

int main() {
int lvalue{2020};

int unigZero = createT<int>();

auto unigEleven = createT<int>(2011);

auto unigTwenty = createT<int>(1lvalue);

auto uniqType = createT<MyType>(lvalue, 3.14, true);

How does the magic work? The three dots stand for an ellipsis. By using them,
Args or args becomes a parameter pack. To be more precise, Args is a template
parameter pack, and args is a function parameter pack. You can apply only two
operations to a parameter pack: pack or unpack. If the ellipsis is left of Args, the
parameter pack is packed; if the ellipsis is right of Args, the parameter pack is

335

https://en.cppreference.com/w/cpp/memory/unique_ptr

336

PART I THE GUIDELINES

unpacked. In the case of the expression std: : forward<Args>(args). .., this means
the expression is unpacked until the parameter pack is consumed and a comma is
just placed between the unpacked components. That’s all.

C++ Insights helps you to visualize this unpacking process.

Now I’m nearly done. The two missing steps are as follows.

1. Create a std: :unique_ptr<T>instead of a plain T.

2. Rename the function to make_unique.

Voila.
template <typename T, typename ... Args>
std::unique_ptr<T> make_unique(Args&& ... args) {
return std::unique_ptr<T>(new T(std::forward<Args>(args) ...));
}
Metaprogramming

~
Constant
expressions
S
=X
Type-traits library
S
N
Template
metaprogramming

Metaprogramming is programming at compile time. It started in C++98 with tem-
plate metaprogramming, was formalized in C++11 with the type-traits library, and
since C++11, has steadily improved. The main driving force is constant expressions.
The introduction to template metaprogramming in the C++ Core Guidelines ends
uniquely: “The syntax and techniques needed are pretty horrendous.”

https://en.cppreference.com/w/cpp/header/type_traits
https://cppinsights.io/s/ad5b8b5d
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

My perception is that template metaprogramming is not so horrendous, the
C++ Core Guidelines lack content, and a straightforward introduction to metapro-
gramming is missing. Consequently, this section provides a concise introduction to
metaprogramming. As the various concepts are introduced, I refer to the four rules
about metaprogramming.

Template metaprogramming

.
Constant
expressions
P
%

Type-traits library

Template

metaprogramming

e T.120: Use template metaprogramming only when you really need to

e T.122: Use templates (usually template aliases) to compute types at compile
time

How did it all start?
In 1994, Erwin Unruh presented at a C++ committee meeting a program that didn’t
compile. Here is probably the most famous program that never compiled.

// Prime number computation by Erwin Unruh
template <int i> struct D { D(void*); operator int(); };

template <int p, int i> struct is_prime {
enum { prim = (p%i) && is_prime<(i >2 ? p : 0), i -1> :: prim };

Iy

337

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-metameta
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-tmp
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-tmp
http://www.erwin-unruh.de/primorig.html
http://www.erwin-unruh.de/primorig.html

338

PART I THE GUIDELINES

template < int i > struct Prime_print {
Prime_print<i-1> a;
enum { prim = is_prime<i, i-1>::prim };
void f() { D<i> d = prim; }
}i

struct is_prime<0,0> { enum {prim=1}; 3},

struct is_prime<0,1> { enum {prim=1}; 3},

struct Prime_print<2> { enum {prim = 1}; void f() {
D<2> d = prim; }

}

#ifndef LAST

#define LAST 10

#endif

main () {
Prime_print<LAST> a;

}

Erwin Unruh used the Metaware compiler, but the program does not produce the
presented error messages with a recent C++ compiler. A newer variant from the
author can be found at http://www.erwin-unruh.de/prim.html. Why is this program
so famous? Let’s have a closer look at the original error messages (see Figure 13.12).

01 | Type “enum{}' can't be converted to txpe 'D<2>' ("primes.cpp",L2/C25).
02 | Type ‘enum{}' can't be converted to txpe °D<3>' ("primes.cpp",L2/C25).
03 | Type ‘enum{}' can't be converted to txpe 'D<5>' ("primes.cpp",L2/C25).
04 | Type “enum{}' can't be converted to txpe 'D<7>' ("primes.cpp",L2/C25).
05 | Type ‘enum{}' can't be converted to txpe 'D<11>' ("primes.cpp",L2/C25).
06 | Type ‘enum{}' can't be converted to txpe 'D<13>' ("primes.cpp",L2/C25).
07 | Type ‘enum{}' can't be converted to txpe 'D<17>' ("primes.cpp",L2/C25).
08 | Type ‘enum{}' can't be converted to txpe ‘D<19>' ("primes.cpp",L2/C25).
09 | Type ‘enum{}' can't be converted to txpe 'D<23>' ("primes.cpp",L2/C25).
10 | Type ‘enum{}' can't be converted to txpe 'D<29>' ("primes.cpp",L2/C25).

Figure 13.12 Calculating primes at compile time

I highlighted the important parts in red. I think you see the pattern. The program
calculates at compile time the first 30 prime numbers. This means template instanti-
ation empowers you to do math at compile time. It is even better. Template metapro-
gramming is Turing complete, and can, therefore, be used to solve any computational
problem. (Of course, Turing completeness holds only in theory for template

http://www.erwin-unruh.de/prim.html
http://www.erwin-unruh.de/primorig.html

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

metaprogramming because the recursion depth (at least 1024 with C++11) and the

length of the names that are generated during template instantiation provide some

limitations.)

How does the magic work?
Let me decompose what is going on step by step.

Calculating at compile time
Calculating the factorial of a number is the “Hello World” of template

metaprogramming.

// factorial.cpp

#include <iostream>

template <int N>

struct Factorial {
static int const value = N * Factorial<N-1>::value;

3

template <>

struct Factorial<i1> {

static int const value

3

int main() {

std:

std:

std:

std:

:cout

:cout

:cout

:cout

<<

<<

<<

<<

<<

<<

1
[y

|\n|,.

"Factorial<5>::value: "
Factorial<5>::value << '\n';
"Factorial<10>::value: "
Factorial<10>::value << '\n';

|\n|,.

/7 (2)

/7 (3)

/7 (1)

The call factorial<5>::value (1) causes the instantiation of the primary or general

template (2). This instantiation triggers the call of Factorial<4>::value. This

recursion ends with the fully specialized class template Factorial<1> as a boundary
condition (3). See Figure 13.13.

339

https://en.cppreference.com/w/cpp/header/iostream

340

PART I THE GUIDELINES

File Edit View Bookmarks Settings >
rainer@linux:~> factorial

>

Factorial<5>::value: 120
Factorial<l0>::value: 3628800

rainer@linux:~> []

Bl rainer:bash

Figure 13.13 Cualculating the factorial of 5 at compile time

Compiler Explorer allows you to visualize this compile-time calculation. The fac-
torial program is nice but is not idiomatic for template metaprogramming.

Type manipulation at compile time
Manipulating types at compile time is typical in template metaprogramming. For
example, here is what std: :move is conceptionally doing:

static_cast<std::remove_reference<decltype(arg)>::type&&>(arg);

std: :move takes its argument arg, deduces its type (decltype(arg)), removes its ref-
erence (remove_reference), and casts it to an rvalue reference (static_
cast<...>::type&&>). Essentially, std: :move is an rvalue reference cast. Now move
semantics can kick in.

How can a function remove constness from its argument?

// removeConst.cpp

#include <iostream>
#include <type_traits>

template<typename T >
struct removeConst {

using type = T; // (1)
¥

template<typename T >

struct removeConst<const T> {
using type = T; /7 (2)

¥

https://en.cppreference.com/w/cpp/types/remove_reference
https://godbolt.org/
https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

using std::boolalpha;
using std::cout;
using std::is_same;

int main() {
cout << boolalpha;

cout << is_same<int, removeConst<int>::type>::value << '\n';
cout << is_same<int, removeConst<const int>::type>::value << '\n';

Both function calls is_same in the main function return true.

Iimplemented removeConst the way std: : remove_const is probably implemented
in the type-traits library. std::is_same_v from the type-traits library helps me to
decide at compile time if both types are the same. In case of removeConst<int>,
the primary or general class template kicks in; in case of removeConst
<const int>, the partial specialization for const T applies. The critical observation
is that both class templates return the underlying type in (1) and (2) via the alias
type. As promised, the constness of the argument is removed.

There are additional exciting observations:

e Template specialization (partial or full) is conditional execution at compile
time. Let me be more specific: When I use removeConst with a non-constant
int, the compiler chooses the primary or general template. When I use a con-
stant int, the compiler chooses the partial specialization for const T.

e The expression using type = T serves as the return value, which is in this case
a type.

More meta
At run time, we use data and functions. At compile time, we use metadata and
metafunctions. Quite logically, it’s called “meta” because we do metaprogramming.

Metadata Metadata: values that metafunctions use at compile time
There are three types of values:

e Types such as int or double
e Nontypes such as integrals, enumerators, pointers, or references

e Templates such as std: :vector or std: :deque

341

https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/header/type_traits

342

PART I THE GUIDELINES

Metafunctions Metafunction: a function that is executed at compile time
Admittedly, this sounds strange. Types are used in template metaprogramming to
simulate functions. Based on the definition of metafunctions, constexpr functions
that can be executed at compile time, are also metafunctions.
Here are two metafunctions.

template <int a , int b>
struct Product {
static int const value = a * b;

3

template<typename T >

struct removeConst<const T> {
using type = T;

};

The first metafunction Product returns a value, and the second one removeConst
returns a type. The name value and type are just naming conventions for the return
values. If a metafunction returns a value, it is called value; if it returns a type, it is
called type. The type-traits library follows exactly this naming convention.

I think it is quite enlightening to compare functions with metafunctions.

Functions versus metafunctions
The following function power and the metafunction Power calculate pow(2, 10) at
run time and compile time.

// power.cpp
#include <iostream>

int power(int m, int n) {

int r = 1;
for(int k = 1; k <= n; ++k) r *= m;
return r;

template<int m, int n>
struct Power {
static int const value = m * Power<m, n-1>::value;

}i

https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

template<int m>
struct Power<m, 0> {
static int const value = 1;

}
int main() {
std::cout << '\n';

std::cout << "power(2, 10)= " << power(2, 10) << '\n';
std::cout << "Power<2,10>::value= " << Power<2, 10>::value << '\n';

std::cout << '\n';

This is the main difference:

e Arguments: The function arguments go into the round brackets ((...))
and the metafunction arguments go into the sharp brackets (< ... >). This
observation also holds for the definition of the function and the metafunc-
tion. The function uses round brackets, the metafunction sharp brackets. Each
metafunction argument produces a new type.

e Return value: The function uses a return statement, and the metafunction
uses a static integral constant value.

I elaborate more on this comparison in the section discussing constant expressions
later in this chapter. Figure 13.14 shows the output of the program.

rainer : bash — Konsole v A €@

File Edit View Bookmarks Settings Help
rainer@seminar:~> power ~

power (2, 10)= 1024
Power<2,10>::value= 1024

rainer@seminar:~> i []

a rainer : bash

Figure 13.14 Calculating at run time and compile time

343

344 PART I THE GUIDELINES

power is executed at run time and Power at compile time, but what is happening in
the following example?

// powerHybrid.cpp
#include <iostream>
template<int n>

int power(int m) {
return m * power<n-1>(m);

template<>
int power<i>(int m) {
return m;

template<>

int power<@>(int m) {
return 1,

int main() {
std::cout << '\n';
std::cout << "power<10>(2): " << power<10>(2) << '\n'; // (1)
std::cout << '\n';
auto power2 = power<2>; /7 (2)
for (int i = 0; i <= 10; ++i) { // (3)

std::cout << "power2(" << i << ")="
<< power2(i) << '\n';

std::cout << '\n';

The call power<16>(2) (1) uses sharp and round brackets and calculates 2 to the power
of 10. This means 10 is the compile-time argument and 2 the run-time argument. To say
it differently: power is at the same time a function and a metafunction (see Figure 13.15).
Now I can instantiate the class template for 2 and give it the name power2 (2).

https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING 345

The function argument is a run-time argument and can, therefore, be used in a for
loop (3).

File Edit View Bookmarks Settings Help
rainer@seminar:~> powerHybrid >

power<10>(2): 1024

power2(0)= 0

power2(1)= 1

power2(2)= 4

power2(3)= 9

power2(4)= 16
power2(5)= 25
power2(6)= 36
power2(7)= 49
power2(8)= 64
power2(9)= 81
power2(10)

[}
=
=
(=]

L1

rainer@seminar:~> [

| rainer ; bash

Figure 13.15 power as function and metafunction

Type-traits library

Constant
expressions

Type-traits library

Template
metaprogramming

e T.124: Prefer to use standard-library TMP facilities

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-std-tmp

346

PART I THE GUIDELINES

The type-traits library is part of C++11 and supports type checks, type compari-

sons, and type modifications at compile time. The library has more than 100 func-

tions but grows with each new C++ standard release.

Type checks

Each type belongs precisely to one of the 14 primary type categories.

Primary type categories
Here they are:

template <class T> struct
template <class T> struct
template <class T> struct
template <class T> struct
template <class T> struct
template <class T> struct
template <class T> struct
template <class T> struct
template <class T> struct
template <class T> struct
template <class T> struct
template <class T> struct
template <class T> struct
template <class T> struct

is_void;

is_integral;
is_floating_point;
is_array;

is_pointer;
is_null_pointer;
is_member_object_pointer;
is_member_function_pointer;
is_enum;

is_union;

is_class;

is_function;
is_lvalue_reference;
is_rvalue_reference;

The following program gives an example of a type fulfilling the check for each one of

these primary type categories.

// primaryTypeCategories.

#include <iostream>
#include <type_traits>

struct A {

int a;

int f(int) { return 2011
}

cpp

i}

https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING 347

enum E {
e= 1,

3

union U {
int u;

int main() {
using namespace std;
cout << boolalpha << '\n';

cout << is_void<void>::value << '\n';

cout << is_integral<short>::value << '\n';

cout << is_floating_point<double>::value << '\n';

cout << is_array<int []>::value << '\n';

cout << is_pointer<int*>::value << '\n';

cout << is_null_pointer<nullptr_t>::value << '\n';

cout << is_member_object_pointer<int A::*>::value << '\n';
cout << is_member_function_pointer<int (A::*)(int)>::value << '\n';
cout << is_enum<E>::value << '\n';

cout << is_union<U>::value << '\n';

cout << is_class<string>::value << '\n';

cout << is_function<int * (double)>::value << '\n';

cout << is_lvalue_reference<int&>::value << '\n';

cout << is_rvalue_reference<int&&>::value << '\n';

cout << '\n';

Each of the 14 calls of type-traits functions in the main program returns true. Com-
posite type categories are then assembled from those primary type categories.

Composite type categories
Table 13.2 gives you the relation between the primary type categories and the com-
posite type categories.

348

PART 1

THE GUIDELINES

Table 13.2 Composite type categories

Composite type categories

Primary type categories

std::is_arithmetic

std::is_floating_pointorstd::is_integral

std::is_fundamental

std::is_arithmeticorstd::is_voidor
std::is_null_pointer

std::is_object

std:::is_scalarorstd::is_arrayor
std::is_unionorstd::is_class

std::is_scalar

std::is_arithmeticorstd::is_enumor

std::is_pointerorstd::is_member_pointer or

std::is_null_pointer

std::is_compound

Istd::is_fundamental

std::is_reference

std::is_lvalue_referenceor
std::is_rvalue_reference

std::is_member_pointer

std::is_member_object_pointer or
std::is_member_function_pointer

Type properties
The type-traits library offers additional checks for type properties.

template
template
template
template
template
template
template
template
template
template
template
template
template
template
template
template
template
template
template
template
template
template
template
template

<class
<class
<class
<class
<class
<class
<class
<class
<class
<class
<class
<class
<class
<class
<class
<class
<class
<class
<class
<class
<class
<class
<class
<class

™
™
™
™
™
™
™
™
™
™
™
™
T,
™
™
™
T,
™
™
™
T,
™
™
™

struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct

class...

struct
struct
struct

is_const;

is_volatile;

is_trivial;

is_trivially copyable;
is_standard_layout;
is_pod;

is_literal_type;
is_empty;

is_polymorphic;
is_abstract;

is_signed;

is_unsigned;

Args> struct is_constructible;
is_default_constructible;
is_copy_constructible;
is_move_constructible;

class U> struct is_assignable;

struct
struct
struct

class...

struct
struct
struct

is_copy_assignable;

is_move_assignable;

is_destructible;

Args> struct is_trivially constructible;
is_trivially default_constructible;
is_trivially copy_constructible;
is_trivially move_constructible;

https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/named_req/LiteralType

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

template <class T, class U> struct is_trivially assignable;
template <class T> struct is_trivially copy_assignable;
template <class T> struct is_trivially _move_assignable;
template <class T> struct is_trivially destructible;
template <class T, class... Args> struct is_nothrow_constructible;
template <class T> struct is_nothrow_default_constructible;
template <class T> struct is_nothrow_copy_constructible;
template <class T> struct is_nothrow_move_constructible;
template <class T, class U> struct is_nothrow_assignable;
template <class T> struct is_nothrow_copy_assignable;
template <class T> struct is_nothrow_move_assignable;
template <class T> struct is_nothrow_destructible;

template <class T> struct has_virtual_destructor;

Many of the metafunctions like std::is_trivially copyable have “trivially” in
their name. That means that the compiler provides this method. Requesting a
method from the compiler with the keyword default is also trivial.

The type-traits library has more metafunctions to offer. Read the details on
cppreference.com.

Type comparisons
The type-traits library supports three kinds of comparisons:

® std::is_base_of<Base, Derived>
® std::is_convertible<From, To>
® std::is_same<T, U>
The following example uses all three functions:

// compare.cpp
#include <cstdint>
#include <iostream>

#include <type_traits>

class Base{};
class Derived: public Base{};

int main() {

std::cout << std::boolalpha << '\n';

349

http://cppreference.com
https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/io/c

350

PART

std:

std:

std:

std:
std:

std:

std:

std:

std:

std:

std:

std:

I THE GUIDELINES

rcout

rcout

rcout

rcout
rcout

rcout

rcout

rcout

rcout

rcout

rcout

rcout

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

"std::is_base_of<Base, Derived>::value: "
std::is_base_of<Base, Derived>::value << '\n';
"std::is_base_of<Derived, Base>::value: "
std::is_base_of<Derived, Base>::value << '\n';
"std::is_base_of<Derived, Derived>::value: "
std::is_base_of<Derived, Derived>::value << '\n';
'\n';

"std::is_convertible<Base*, Derived*>::value: "
std::is_convertible<Base*, Derived*>::value << '\n';
"std::is_convertible<Derived*, Base*>::value: "
std::is_convertible<Derived*, Base*>::value << '\n';
"std::is_convertible<Derived*, Derived*>::value: "
std::is_convertible<Derived*, Derived*>::value << '\n';

l\nl;

"std::is_same<int, int32_t>::value: "
std::is_same<int, int32_t>::value << '\n';
"std::is_same<int, int64_t>::value: "
std::is_same<int, int64_t>::value << '\n';
"std::is_same<long int, int64_t>::value: "
std::is_same<long int, int64_t>::value << '\n';

l\nl;

The program produces the expected outcome (see Figure 13.16).

rainer : bash - Kansole

std:
std:
std:

std:
std:

Fle Edit View Bookmarks Settings Felp
rainer@linux:~> compare

1is_base_of<Base,Derived>: :value: true
11s_base_of<Derived, Base>: :value: false
:is_base_of<Derived, Derived>::value: true

1is_convertible<Base*, Derived*>::value: false
1is_convertible<Derived*, Base*>::value: true
std: :is_convertible<Derived*, Derived*>::value: true
std: :is_same<int, int32_t>::value: true

std: :is_same<int, int64_t>::value: false

std: :is_same<long int, int84_t>::value: true

rainer@linux:~> [}

=)

rainer : bash | {5

Figure 13.16 Type comparisons

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

Template metaprogramming with the type-traits functions

Okay, let’s step back and think about the functions of the type-traits library. Here
are a few observations.

e The functions from the type-traits library are metafunctions because they run
at compile time. Metafunctions are class templates.

e The arguments of the metafunctions that go into the sharp brackets (<...>)
are metadata. Metadata are, in this case, types.

e The return value of the functions is (::value). value is an alias. Since
C++17, there is a simpler form for getting the result: Instead of std::is_
void<void>::value, you just type std: :is_void_v<void>.

If these three observations remind you of the previous section about template
metaprogramming, it is no coincidence: These are precisely the conventions that
were presented there.

Type modifications
Type modifications are the domain of template metaprogramming and, therefore,
are supported by the type-traits library.

The type-traits library offers many metafunctions to manipulate types. Here are
the most interesting ones.

// const-volatile modifications:
remove_const;

remove_volatile;

remove_cv;

add_const;

add_volatile;

add_cv;

// reference modifications:
remove_reference;
add_lvalue_reference;
add_rvalue_reference;

// sign modifications:
make_signed;
make_unsigned;

351

https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/header/type_traits

352

PART I THE GUIDELINES

// pointer modifications:
remove_pointer;
add_pointer;

// other transformations:
decay;

enable_if;

conditional;

common_type;
underlying_type;

To get an int from an int or a const int, you have to ask for the type with : : type.

std::is_same<int, std::remove_const<int>::type>::value; // true
std::is_same<int, std::remove_const<const int>::type>::value; // true

Since C++14, you can just use _t to get the type such as with std::

remove_const_t:

std::is_same<int, std::remove_const_t<int>>::value; // true
std::is_same<int, std::remove_const_t<const int>>::value; // true

To get an idea of how useful these metafunctions from the type-traits library are,

here are a few examples.

e std::decayisapplied by std::thread toits arguments. std: : thread gets as

arguments the executed function f and its function arguments args. “Decay”
means that implicit conversions from array to pointer and function to pointer
are performed and const/volatile qualifiers and references are removed.

std: :enable_if is a convenient way to use SFINAE. SFINAE stands for
Substitution Failure Is Not An Error and applies during overload resolution of
a function template. It means that if substituting the template parameter fails,
the specialization is discarded from the overload set but this failure causes no
compiler error.

std: :conditional is the ternary operator at compile time.

std: :common_type determines the common type among all types to which
all types can be converted.

std: :underlying_type determines the type of an enum.

Maybe you are not convinced about the benefit of the type-traits library. Let me end
my short introduction to the type-traits library with its two main goals: correctness
and optimization.

https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/types/decay
https://en.cppreference.com/w/cpp/types/decay
http://en.cppreference.com/w/cpp/language/sfinae

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

Correctness
Correctness means on one hand that you can use the type-traits library to implement
Conceptssuch;asIntegral,SignedIntegral,anclUnsignedIntegral.

template <typename T>
concept Integral = std::is_integral<T>::value;

template <typename T>
concept SignedIntegral = Integral<T> && std::is_signed<T>::value;

template <typename T>
concept UnsignedIntegral = Integral<T> && !SignedIntegral<T>;

But it also means that you can use them to make your algorithm safer.

// gcd2.cpp

#include <iostream>
#include <type_traits>

template<typename T>
T ged(T a, Th) {
static_assert(std::is_integral<T>::value,
"T should be an integral type!");
if(b == 0){ return a; }
else{
return gcd(b, a % b);

int main() {

std::cout << gcd(100, 33) << '\n'; // (1)
std::cout << gcd(3.5,4.0) << '"\n'; // (2)
std::cout << gcd("100","10") << '\n'; // (3)

353

https://en.cppreference.com/w/cpp/header/iostream

354

PART I THE GUIDELINES

The error message is quite explicit. See Figure 13.17.

File Edit View Bookmarks Settings Help

rainer@seminar:~> g++ gcd2.cpp -o gcd2
gcd2.cpp: In instantiation of 'T ged(T, T) [with T = double]':
gcd2.cpp:18:29: required from here
ged2.cpp:8:5: error: static assertion failed: T should be an integral type!
static_assert(std::is_integral<T>::value, *T should be an integral type!");
ged2.cppill:25: error: invalid operands of types '‘double’ and ‘double’ to binary ‘operators’
return ged(b, a % b);

ged2.cpp: In instantiation of 'T ged(T, T) [with T = const char*]":
ged2.cpp:19:32: required from here
gcd2.cpp:B:5: error: static assertion failed: T should be an integral type!
static_assert(std::is_integral<T=::value, "T should be an integral type!"};
ged2.cpp:11:25: error: invalid operands of types ‘const char*’ and ‘const char*' to binary 'operator%’
return ged(b, a % b);

ratner@seminar:~=> [j

Figure 13.17 Correctness with the type-traits functions

The compiler complains immediately that a double or a const char* is not an
integral.
The added value of the type-traits library lies not only in the correctness it ena-

bles, but also in optimization.

Optimization
The key idea of the type-traits library is straightforward. The compiler analyzes the
used types and makes decisions on the code that should be created. For the algo-
rithms std: :copy, std::fill, or std: :equal of the Standard Template Library, this
means that in one case the algorithm is applied to each element of the range one by
one or on the entire memory. In the other case, C functions such as memcpy, mem-
move, memset, or memcmp are used, which makes the algorithm faster. The small
difference between memcpy and memmove is that memmove can deal with overlapping
memory areas.

The following three code snippets from the GCC 6 implementation (layout
adjusted) make one point clear: The checks of the type traits help to generate better-
optimized code.

// fill

// Specialization: for char types we can use memset.

template<typename _Tp>
inline typename
__gnu_cxx::__enable_if<__is_byte< Tp>::__value, void>::__type // (1)
_ fill a(_Tp* __first, _Tp* __last, const _Tp& __c)

https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/algorithm
http://en.cppreference.com/w/cpp/string/byte/memcpy
http://en.cppreference.com/w/cpp/string/byte/memcpy
http://en.cppreference.com/w/cpp/string/byte/memset
http://en.cppreference.com/w/cpp/string/byte/memset
http://en.cppreference.com/w/cpp/string/byte/memcmp

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

{
const _Tp __tmp = __c;
if (const size_t _ len = __last - _ first)
__builtin_memset(__first, static_cast<unsigned char>(__tmp), __len);
}
// copy

template<bool _IsMove, typename
inline _OI
__copy_move_a(_II _ first, _II _ last, _OI _ result)
{
typedef typename iterator_traits<_II>::value_type _ValueTypeI;
typedef typename iterator_traits<_OI>::value_type _ValueTypeO;
typedef typename iterator_traits< II>::iterator_category _Category;

II, typename _OI>

const bool _ simple = (__is_trivial(_ValueTypeI) // (2)

&& __is_pointer<_II>::_ value

&& __is_pointer<_0I>::__value

&& __are_same<_ValueTypeI, _ValueTypeO>::__value);
return std::__copy_move<_IsMove, _ simple,

// lexicographical_compare

template<typename _II1, typename _II2>
inline bool
_lexicographical_compare_aux(_II1 _ first1, _II1 _ lasti,
_II2 _ first2, _II2 _ last2)

{
typedef typename iterator_traits< II1>::value_type _ValueTypel;
typedef typename iterator_traits< II2>::value_type _ValueType2;
const bool _ simple = // (3)
(__is_byte< ValueTypel>::__value
&& __is_byte< ValueType2>::_ value
&& !__gnu_cxx::__numeric_traits<_ValueTypel>::_ 1is_signed
&& !'__gnu_cxx::__numeric_traits<_ValueType2>::__is_signed
&& __is_pointer<_II1>::__value
&& __is_pointer<_II2>::__value);
return std::___lexicographical_compare<__simple>::__1lc(__first1l,
_ lasti,
_ first2,
_ last2);

355

http://en.cppreference.com/w/cpp/string/byte/memset

356

PART I THE GUIDELINES

The markers (1) through (3) show that the type-traits library is used to generate
better-optimized code. Internally, the GCC 6 compiler uses functions such as
__enable_if or __is pointer to provide the type-traits functions such as
std::enable_if or std::is_pointer.

Constant expressions

Constant

expressions

Type-traits library

Template
metaprogramming

e T.123: Use constexpr functions to compute values at compile time

Finally, we are at the peak of the graphic.

constexpr allows you to program at compile time with the typical C++ syntax.
The focus of this section is not to provide you with all details of constexpr but to
compare template metaprogramming with constexpr functions. Before I compare
both techniques, I will give you a short overview of constexpr. What are the advan-
tages of constant expressions?

Constant expressions with constexpr can have three forms.

Variables
e Areimplicit const

e Have to be initialized by a constant expression

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-fct

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

Functions
e (Can invoke other constexpr functions
e Can have variables that have to be initialized by a constant expression
e Can use conditional expressions or loops
e Areimplicit inline
e Cannot have static or thread_local data

e Cannot use exception handling

User-defined types
e Must have a constructor, which is a constant expression
e Cannot have virtual functions

e Cannot have a virtual base class

Advantages
A constant expression

e Can be evaluated at compile time
e Gives the compiler deep insight into the code
e Isimplicitly thread safe

e Can be constructed in the read-only memory (ROM-able)

constexpr functions can depend only on other constant expressions. Being a const -
expr function does not mean that the function is executed at compile time. It means
that the function has the potential to be executed at compile time. A constexpr func-
tion can also be executed at run time. The compiler and the optimization level deter-
mine if a constexpr function runs at compile time or run time.

There are two contexts in which a constexpr function func has to run at compile
time.

1. The constexpr function is used in a context that is evaluated at compile time.
This can be a static_assert expression, the instantiation of a template, or
the initialization of a C-array.

2. The value of a constexpr function is explicitly requested during compile time:
constexpr auto res = func(5).

357

https://en.wikipedia.org/wiki/Read-only_memory

358

PART I THE GUIDELINES

To see the theory in praxis, study the ged.cpp program in the rule “Per.11: Move

computation from run time to compile time.”
Finally, [come to my main point.

Template metaprogramming versus constexpr functions
Table 13.3 shows the big picture.

Table 13.3 Template metaprogramming versus constexpr functions

Characteristic Template metaprogramming constexpr functions
Execution time Compile time Compile time and run time
Arguments Types, nontypes, and templates Values

Programming paradigm Functional Imperative

Modification No Yes

Control structure Recursion Conditions and loops
Conditional execution Template specialization Conditional statements

I want to add a few remarks about the table.

* A template metaprogram runs at compile time, but a constexpr function can

run at compile time or run time.

* Arguments of a template metaprogram can be types, nontypes (for example,

5), and templates. constexpr functions are functions that have the potential to
run at compile time.

There is no state at compile time and, therefore, no modification. This means
template metaprogramming is programming in a pure functional style. Here
are the characteristics from the functional style perspective:

* In template metaprogramming, instead of modifying a value you return a
new value each time.

* Controlling a for loop by incrementing a variable such as i is not possible at
compile time: for (int i; i <= 10; ++i). Template metaprogramming,
therefore, replaces loops with recursion.

* In template metaprogramming, conditional execution is replaced by tem-
plate specialization.

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

Admittedly, this comparison was quite concise. A pictorial comparison of a
metafunction and a constexpr function should answer the remaining open ques-
tions. Both functions calculate the factorial of a number.

e The function arguments of a constexpr function correspond to template argu-
ments of a metafunction. See Figure 13.18.

constexpr int factorial(int n){
auto res= 1;
for { auto i=n; i >= 1; i\—{. i
res *= i; \ N
} \\
return res; >

template sgint N>
struct Fadtorialf

static in\ﬁ\const value= N * Factorial<N-1>::value;
i \

AY

template <>
struct Factorial<l>{

static int const value = 1

b i

Figure 13.18 Function versus template arguments

e A constexpr function can have variables and modify them. A metafunction
generates new values. See Figure 13.19.

constexpr int factorial(int n){
auto res= 1;

for { au&ii:—:‘n: i>=1; ——1i)¢
res *= i; N\~
e B M
} oy ‘--..\‘
return res; G e
} ~ -~
~ o
~ -~

S e
template <1otaN>
strhqt Factorialf~._
stat}q‘int const value= N * Factorial<N-1>::value;
b ~
~
™

template <> \.\
struct Factorial<Ds

static int const value = 1
bi

Figure 13.19 Modification versus new value

359

360

PART I THE GUIDELINES

¢ A metafunction uses recursion to simulate a loop. See Figure 13.20.

constexpr int factorial(int n){
auto res= 1;

for { auto i=n; i >= 1; —--i)R[
*= J a
res iz S
} e
return res; g
~
} ~
S~
~
~
template <int N> G
struct Factorialf ¥

2
static int const value= N * Factorial<N-1>::value;
bi

template <>
struct Factorial<l>{

static int const value = 1;
b i

Figure 13.20 Recursion versus loop

¢ Instead of an end condition, a metafunction uses a full specialization of a
template to end a recursion. Additionally, a metafunction uses partial or full
specialization to perform conditional execution such as an if statement. See
Figure 13.21.

constexpr int factorial(int n){
auto res= 1;
for { auto i= n; i§= B e L X
res *= i;
) \
\
return res; \

ik
\ \ template <int N>
\ ¥ struct Factorial(
\ static int const value= N * Factorial<N-1l>::value;

\ s

&'template <>
struct Factorial<l>{
static int const value = 1;

b i

Figure 13.21 Template specialization for conditional execution

e Instead of an updated value res, the metafunction generates a new value in
each iteration. See Figure 13.22.

https://en.cppreference.com/w/cpp/language/if

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

constexpr int factorial(int n){
auto res= 1;

for { auto i=n; i >= 1; —1){
res *= i;
} S
return res; e
-“"‘-
' -“-‘""..___
-

-
template <fﬁt~N¢h~
struct Factorial{ ™~

static int const valué= N * Factorial<N-1>::value;
b

template <>
struct Factorial<l>{
static int const value = 1;

b i

Figure 13.22 Update versus new value

e A metafunction has no return statement but uses value as the return value. See
Figure 13.23.

constexpr int factorial(int n){
auto res= 1;
for { auto i=n; i >= 1; —1){
res *= i;
}
return res;

T P
tempIEte.éaEt N>
struct FactorTak i~ __
static int const vé-)iue= N * Factorial<N-l>::value;
bi

template <>
struct Factorial<l>{

static int const value = 1;
i

Figure 13.23 Simulating a return value

Advantages of constexpr functions
Besides the advantages that constexpr functions are easier to write and to maintain
and can run at compile time and run time, they have an additional advantage.

constexpr double average(double fir , double sec) {
return (fir + sec) / 2;

361

362

PART I THE GUIDELINES

int main() {
constexpr double res = average(2, 3);

constexpr functions can deal with floating-point numbers. Template metaprogram-
ming accepts only integral numbers.

Other rules

There are a few rules on templates that don’t fit in any of the previous sections. They
mainly target code quality.

T.140 Name all operations with potential for reuse

Honestly, I’'m not so sure why this rule belongs to the templates section. Maybe tem-
plates are about reuse? The example in the C++ Core Guidelines uses the std: : find_
if algorithm of the STL. Bearing that in mind, the rule is fundamental from a
code-quality perspective.

Imagine that you have a vector of records. Each record consists of a name, an
address, and an identifier. Quite often, you want to find a record with a specific
name; but to make it more challenging, you ignore the case sensitivity of the names.

// records.cpp

#include <algorithm>
#include <cctype>
#include <iostream>
#include <string>
#include <vector>

struct Rec { // (1)
std::string name;
std::string addr;
int id;

Y
int main() {

std::cout << '"\n';

https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING 363

std::vector<Rec> vr{ {"Grimm", "Munich", 13}, /7 (2)
{"huber", "Stuttgart", 2},
{"smith", "Rottenburg", 3},
{"black", "Hanover", 4} };

std::string name = "smith";

auto rec = std::find_if(vr.begin(), vr.end(), [&name](Rec& r) { // (3)
if (r.name.size() != name.size()) return false;
for (std::string::size_type i = 0; i < r.name.size(); ++1i) {
{
if (std::tolower(r.name[i]) != std::tolower(name[i]))
return false;
}
}
return true;

1)

if (rec !'= vr.end()) {
std::cout << rec->name << ", "
<< rec->addr << ", " << rec->id << '\n';

std::cout << '\n';

The struct Rec (1) has only public members; therefore, I can use aggregate initiali-
zation and initialize all members directly (2). In line (3), I use a lambda expression to
search for the record with the name "smith". I first check if both names have the
same size and then if the characters are identical when compared in a case-insensitive
manner. See Figure 13.24.

File Edit View Bookmarks >
rainer@linux:~> records ~

Smith, Rottenburg, 3
rainer@linux:~> []

. rainer : bash

Figure 13.24 Case-insensitive search in a struct

https://en.cppreference.com/w/cpp/language/aggregate_initialization
https://en.cppreference.com/w/cpp/language/aggregate_initialization

364

PART I THE GUIDELINES

What’s the problem with this code? The requirement of the case-insensitive com-
parison of strings is very common, and we should, therefore, put the solution in its
own entity and give it a name, which allows it to be reused.

bool compare_insensitive(const std::string& a,
const std::string& b) { // (1)
if (a.size() != b.size()) return false;
for (std::string::size_type i = 0; i < a.size(); ++i) {
if (std::tolower(a[i]) != std::tolower(b[i])) return false;
}

return true;

std::string name = "smith";

auto res = std::find_if(vr.begin(), vr.end(),
[&name](Rec& r) { return compare_insensitive(r.name, name); }

)i
std::vector<std::string> vs{"Grimm", "huber", "Smith", "black"}; // (2)

auto res2 = std::find_if(vs.begin(), vs.end(),
[&name](std::string& r) { return compare_insensitive(r, name); }

)

The function compare_insensitive (1) gives a name to the general concept. Now, I
can reuse it for a vector of strings (2).

Use an unnamed lambda if you need a simple function

T.141 o
object in one place only

Admittedly, I often have this discussion in my classes: When should I use a named
callable (function or a function object) or a lambda expression? Sorry, [have no easy
answer. Here, two principles of code quality contradict:

1. Don’t repeat yourself (DRY).

2. Explicit is better than implicit (The Zen of Python).

I borrowed the second point from Python. But what does that mean? Imagine that
you have an old-fashioned Fortran programmer on your team, and they tell you:

https://en.cppreference.com/w/cpp/utility/functional
https://www.python.org/dev/peps/pep-0020/
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING 365

“Each name must have three capital characters.” So, you end up with the following

code.

auto EUE = std::remove_if (USE.begin(), USE.end(), IGH);

What does the name IGH stand for? IGH stands for an id greater hundred. Now, you

have to document the meaning of the predicate.
But if you use a lambda, the code documents itself.

auto earlyUsersknd = std::remove_if(users.begin(), users.end(),

[1(const User &user) { return user.id > 100; });

The open question is now: When should you use a named entity (DRY) or a lambda

expression (The Zen of Python)? My rule of thumb is that I use a named entity if 1

reuse a general concept at least three times.

T.143 Don't write unintentionally nongeneric code

A short example says more than a long explanation. In the following example, I iter-

ate through a std: :vector, a std: :deque, and a std: :list.

// notGeneric.cpp

#include <deque>
#include <list>
#include <vector>

template <typename Cont>
void justIterate(const Cont& cont) {
const auto itEnd = cont.end();

for (auto it = cont.begin(); it < itEnd; ++it) { // (1)

// do something

int main() {

std::vector<int> vecInt{1, 2, 3, 4, 5};
justIterate(vecInt);

std::deque<int> deqInt{1, 2, 3, 4, 5};

/7 (2)

https://www.python.org/dev/peps/pep-0020/
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

366

PART I THE GUIDELINES

justIterate(deqInt); // (3)

std::list<int> listInt{1, 2, 3, 4, 5};
justIterate(listInt); // (4)

The code looks innocent, but when I compile the program, the compilation breaks. I
get about one hundred lines of error messages. See Figure 13.25.

File Edit View Bookmarks Settings Help
rainer@linux:~> g++-6 notGeneric.cpp -o notGeneric ~
notGeneric.cpp: In instantiation of ‘vold justIterate(const Cont&) [with Cont = std::list<int>]':
notGeneric.cpp:24:24: required from here
notGeneric.cpp:10:37: error: no match for ‘operator<’ (operand types are ‘std::_List_const_iterator<
int>" and ‘const std::_List_const_iterator<int>')

for (auto it = cont.begin{); it < itEnd; ++it) { // (1)
In file included from fusr/include/c++/6/vector:64:0,

from notGeneric.cpp:5:

fusr/include/c++/6/blts/stl_vector.h:1526:5: candidate: template<class _Tp, class _Alloc> bool

[>] rainer : bash

Figure 13.25 [terating through a few containers

The beginning of the error message shows the problem: “notGeneric.cpp:10:37:
error: no match for ‘operator<’ (operand types are ‘std::_List_const_iterator.”

What is the issue? The issue lies in (1). The iterator comparison (1) works for
the std: :vector (2) and the std: :deque (3) but breaks for the std::1ist (4). Each
container returns an iterator representing its structure. This iterator in case of a
std::vector and a std: :deque is a random access iterator, and this iterator in case
of the std: :1ist is a bidirectional iterator. A look at the iterator categories helps a
lot (see Table 13.4).

Table 13.4 Iterator categories

Iterator category Properties Containers
Forward iterator ++It, It++, *It std::unordered_set

std: :unordered_map
It == It2, It != It2 std::unordered_multiset

std::unordered_multimap

std::forwared_list

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

Iterator category Properties Containers
Bidirectional iterator --It, It-- std::set
std: :map

std::multiset

std: :multimap

std::1list

Random access iterator It[I] std::array

It +=n, It -= n

It + n, It -n std: :vector

n + It

It + It2 std: :deque

It < It2, It <= It2

It < It2, It >= It2 std::string

The random access iterator category is a superset of the bidirectional iterator cat-
egory, and the bidirectional iterator category is a superset of the forward iterator
category. Now the issue is obvious. An iterator given by a std::1ist does not sup-
port the < comparison. Fixing the bug is straightforward. Iterators of each iterator
category support the != comparison.

Here is the improved justIterate function template.

template <typename Cont>
void justIterate(const Cont& cont) {
const auto itEnd = cont.end();
for (auto it = cont.begin(); it != itEnd; ++it) {
// do something

By the way, it is typically a bad idea to loop explicitly through a container. By explic-
itly, I mean that you manually increment the counter variable. This is a job for an
algorithm of the Standard Template Library: Prefer an algorithm to a raw loop.

T.144 Don't specialize function templates

This rule is special. Consequently, I have been contemplating for a long time whether
or not I should include it. I ended up including it for two reasons. First, it helps me to

367

368

PART I THE GUIDELINES

give an idea of partial template specialization, and second, the rule is easy to
comprehend.

Template specialization
Templates define the behavior of families of classes and functions. Often, special
arguments must be treated separately. To support this use case, you can fully special-
ize templates. Class templates can even be partially specialized.

The next code snippet presents the general idea.

template <typename T, int Line, int Column> // (1)
class Matrix;

template <typename T> /7 (2)
class Matrix<T, 3, 3> {};

template <> // (3)
class Matrix<int, 3, 3> {};

Line (1) is the primary or general template. This template must be declared at least
and has to be declared before the partially or fully specialized templates. Line (2) fol-
lows with the partial specialization. Line (3) is the full specialization.

To better understand partial and full specialization, I want to present a visual
explanation. Think about an n-dimensional space of template parameters. In the
primary template (1), you can choose an arbitrary type and two arbitrary ints. In the
case of the partial specialization in line (2), you can only choose the type. This par-
tial specialization means the three-dimensional space is reduced to a line. In contrast,
full specialization stands for a point in a three-dimensional space.

What is happening when you invoke the templates?

Matrix<int, 3, 3> m1; // class Matrix<int, 3, 3>
Matrix<double, 3, 3> m2; // class Matrix<T, 3, 3>
Matrix<std::string, 4, 3> m3; // class Matrix<T, Line, Column> => ERROR

m1 uses the full specialization, m2 uses the partial specialization, and m3 uses the pri-
mary template. m3 causes an error because the definition of the primary template is
missing.

Here are three rules that the compiler uses to determine which specialization to
pick.

1. The compiler finds only one specialization. The compiler uses this
specialization.

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

2. The compiler finds more than one specialization. The compiler uses the most
specialized one. If this process ends in more than one specialization, the com-
piler throws an error.

3. The compiler finds no specialization. It uses the primary specialization.

Now, I have to explain what “A is a more specialized template than B” means. Here is
the informal definition on cppreference.com: “A accepts a subset of the types that B
accepts.”

After this first overview, I can dig a little bit deeper into function templates.

Specialization and overloading of function templates
Function templates make the job of template specialization easier but also more dif-
ficult at the same time.

e Easier because a function template only supports full specialization

e More difficult because function overloading comes into play

From a design perspective, you can specialize a function template with template spe-
cialization or overloading.

// functionTemplateSpecialization.cpp

#include <iostream>
#include <string>

template <typename T> // (1)
std::string getTypeName(T) {
return "unknown type";

template <> // (2)
std::string getTypeName<int>(int) {
return "int";

std::string getTypeName(double) { // (3)
return "double";

369

http://cppreference.com:
https://en.cppreference.com/w/cpp/header/iostream

370

PART I THE GUIDELINES

int main() {
std::cout << '\n';

std::cout << "getTypeName(true): " << getTypeName(true) << '\n';
std::cout << "getTypeName(4711): " << getTypeName(4711) << '\n';
std::cout << "getTypeName(3.14): " << getTypeName(3.14) << '\n';

std::cout << '\n';

(1) is the primary template, (2) the full specialization for int, and (3) the overload for
double. The compiler deduces the types, and the correct function or function tem-
plate is invoked. In the case of the function overloading, the compiler prefers the
function overloading to the function template when the function overloading is a
perfect fit. See Figure 13.26.

rainer : bash — Konsole

File Edit View Bookmarks Settings Help
rainer@seminar:~> functionTemplateSpecialization
getTypeName(true): unknown type
getTypeName(4711): int

getTypeName(3.14): double

rainer@seminar:~> [

Figure 13.26 Specialization and overloading of function templates

Now comes the reason for this rule.

The surprise

The reason for the rule is quite brief: Function template specialization doesn’t par-
ticipate in overloading. Let’s see what that means. My program is based on a code
snippet from Dimov/Abrahams.

// dimovAbrahams.cpp

#include <iostream>
#include <string>

https://en.wikipedia.org/wiki/David_Abrahams_(computer_programmer)
https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

// getTypeName

template<typename T> // (1) primary template
std::string getTypeName(T) {
return "unknown";

template<typename T> // (2) primary template that overloads (1)
std::string getTypeName(T*) {
return "pointer";

template<> // (3) explicit specialization of (2)
std::string getTypeName(int*) {
return "int pointer";
// getTypeName2
template<typename T> // (4) primary template

std::string getTypeName2(T) {
return "unknown";

template<> // (5) explicit specialization of (4)
std::string getTypeName2(int*) {
return "int pointer";

template<typename T> // (6) primary template that overloads (4)

std::string getTypeName2(T*) {

return "pointer";

int main() {

std::cout << '\n';

int *p;

std::cout << "getTypeName(p): " << getTypeName(p) << '\n';
std::cout << "getTypeName2(p): " << getTypeName2(p) << '\n';

std::cout << '\n';

371

372

PART I THE GUIDELINES

Admittedly, the code looks quite boring, but bear with me. I defined the primary
template getTypeName at (1). (2) is an overload for pointers, and (3) is a full speciali-
zation for an int pointer. In the case of TypeName2, [made a small variation. I put the
explicit specialization (5) before the overload for pointers (6). See Figure 13.27.

This reordering has some surprising consequences.

File Edit View Bookmarks >
rainer@linux:~> dimovAbrahams ~

getTypeName(p): int pointer
getTypeNameZt p): pointer

rainer@linux:~> Jj

Bl rainer:bash

Figure 13.27 Specialization of function templates

In the first case, the full specialization for the int pointer is called, and in the sec-
ond case, the overload for pointers is called. What? The reason for this nonintuitive
behavior is that overload resolution ignores function template specialization. Over-
load resolution operates on primary templates and functions. In both cases, over-
load resolution finds both primary templates. In the first case (getTypeName), the
pointer variant is the better fit, and therefore, the explicit specialization for the int
pointer is chosen. In the second variant (getTypeName2), the pointer variant also is
chosen, but the full specialization belongs to the primary template (4). Consequently,
it is ignored. This is why this rule recommends that you do not specialize function
templates.

Related rules

I already wrote about the rule “T.80: Do not naively templatize a class hierarchy” in
the rule “ES.23: Prefer the {}-initializer syntax.”

The rule “T.84: Use a non-template core implementation to provide an ABI-stable
interface” was already the topic of the previous rule “T.62: Place non-dependent
class template members in a non-templated base class.”

The rule “T.141: Use an unnamed lambda if you need a simple function object in
one place only” presents the use case for lambdas. The section about lambdas pro-
vides more information on the question of when to use lambdas.

https://en.cppreference.com/w/cpp/utility/functional
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-hier

CHAPTER 13 TEMPLATES AND GENERIC PROGRAMMING

Distilled

Important

Concepts are predicates on templates that are evaluated at compile time.
They should model semantic categories such as Arithmetic or Iterator
but not syntactic restrictions such as HasPlus or IsInvocable.

Use function objects to pass operations to algorithms. They provide a
higher optimization potential and more expressiveness than a function.
Additionally, they can have state.

Let the compiler deduce the types of the template arguments.
Template arguments should be at least Regular or SemiRegular.

Place nondependent class template members in a nontemplated base class
to reduce code size.

When a user-defined type MyType should support a generic function such as
isSmaller, there are various possibilities. Extend MyType with the required
operations, implement a full specialization of isSmaller for MyType, or
extend isSmaller with the possibility of providing a special predicate.

Virtual member functions are instantiated for each type in a class template
and can, therefore, cause code bloat. A member function template cannot
be virtual.

A factory function such as std: :make_unique relies on two powerful fea-
tures in C++11: perfect forwarding and variadic templates. Thanks to per-
fect forwarding and variadic templates, a factory function can accept an
arbitrary number of arguments. The arguments can be lvalues or rvalues.

The three typical ways of metaprogramming in C++ are template
metaprogramming, the type-traits library, and the constexpr function.
Prefer constexpr functions to the type-traits library; prefer the type-traits
library to template metaprogramming.

Use a lambda if you need a simple operation in place. Name operations
with a potential for reuse.

373

https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/algorithm

This page intentionally left blank

Chapter 14

C-Style Programming

Cippi mixes C with C++ code.

Due to the shared history of C and C++, both languages are closely related. Because
neither of them is a subset of the other, you have to know a few rules to mix them.

This section in the C++ Core Guidelines consists of three rules. These three rules
cover the typical issues encountered when dealing with legacy code.

CPL1 Prefer C++to C

Without further ado, here is the reason the C++ Core Guidelines prefer C++: “C++
provides better type checking and more notational support [than C]. It provides bet-
ter support for high-level programming and often generates faster code.”

375

376

PART I THE GUIDELINES

If you must use C, use the common subset of C and C++,
CPL.2 .
and compile the C code as C++

The first question that you have to answer when mixing C and C++ is, Can you
compile the entire code base with a C++ compiler?

Entire source code available

If the entire source code is available, you are almost done. I say “almost” because C is
not a subset of C++. Here is a small and bad C program that breaks with a C++
compiler.

// cStyle.c
#include <stdio.h>
int main() {
double sq2 = sqrt(2); /7 (1)

printf("\nsizeof(\'a\'): %d\n\n", sizeof('a')); // (2)

char c;

void* pv = &c;

int* pi = pv; // (3)
int class = 5; // (4)

First, let me compile the program and execute it with the C90 standard. The compi-
lation succeeds with a few warnings (see Figure 14.1).

File Edit View Bookmarks Settings Help

rainer@linux:~> gcc -std=c99 cStyle.c -o cStyle -
cStyle.c: In function ‘main’:
cStyle.c:7:5: warning: implicit declaration of function 'sqrt’ [-Wimplicit-function-declaration]
double 5q2 = sqrt(2); /(1)
-

cStyle.c:7:18: warning: incompatible implicit declaration of buillt-in function ‘sqrt’ [enabled by default]
double s5q2 = sqri(2);

rainer@linux:~> cStyle
sizeof{'a'): 4

rainer@linux:~> ||

] rainer ; bash

Figure 14.1 Warnings with a C compiler

CHAPTER 14 C-STYLE PROGRAMMING

The program cStyle.c has a few issues. There is no declaration for the sqrt func-
tion (1), (3) performs an implicit conversion from a void pointer to an int pointer,
and (4) uses the class keyword.

Let’s see how the C++ compiler reacts to the same code. See Figure 14.2.

File Edit WView Bookmarks Settings Help
ratner@linux:~> g++ cStyle.cpp -o cStyle ~
cStyle.cpp: In function ‘int main{)':
cStyle.cpp:7:24: error: 'sqrt’ was not declared in this scope
double sq2 = sqrt(2); £ (1)

cStyle.cpp:13:15: error: invalid conversion from ‘vold*' to ‘int*' [-fpermissive]
int* pi = pv; /o (3)

cStyle.cpp:15:5: error: expected primary-expression before ‘int’
int class = 5; /1 (4)

cStyle.cpp:15:5: error: expected ';" before ‘int’
rainer@linux:~> ||

L] rainer : bash

Figure 14.2 Errors with a C++ compiler

I get what I deserve: three compiler errors. The program cStyle.c shows more subtle
differences between a C and a C++ compiler. Figure 14.3 shows the program reduced
(2): printf("\nsizeof(\'a\'): %d\n\n", sizeof('a'));.Hereis the output.

File Edit View Bookmarks Settings Help

rainer@linux:~> g++ cStyle.cpp -0 cStyle ~
rainer@linux:~> cStyle

sizeof('a'): 1

rainer@linux:~> [
. rainer : bash

Figure 14.3 Different size of a char with a C++ compiler

Instead of 4, such as for the C compiler, sizeof('a') is 1 with the C++ compiler.
'a'is an int in C.

Now, let’s discuss the more challenging case where the entire source code is not
available.

377

378

PART I THE GUIDELINES

Entire source code not available

These are the essential points.

1. Use your C++ compiler to compile your main function. In contrast to a C
compiler, a C++ compiler generates additional startup code that is executed
before the main function. For example, the startup code calls constructors of
global (static) objects.

2. Use your C++ compiler to link your program. The C++ compiler, when
used for linking the program, automatically links in standard C++ libraries.

3. Use a C and C++ compiler from the same vendor, which should have the
same calling conventions. A calling convention specifies the method that a
compiler sets up to access a function. This includes in which order parameters
are allocated, how parameters are passed, or whether the caller or the callee pre-
pares the stack. Read the full details of x86’s calling conventions on Wikipedia
(https://en.wikipedia.org/wiki/X86_calling_conventions).

If you must use C for interfaces, use C++ in the calling

CPL.3 code using such interfaces

In contrast to C, C++ supports function overloading. This means that you can define
functions having the same name but different parameters. The compiler picks the
right function when a function is invoked.

// functionOverloading.cpp
#include <iostream>
void print(int) {

std::cout << "int" << '\n';

void print(double) {
std::cout << "double" << '\n';

void print(const char*) {

https://en.wikipedia.org/wiki/X86_calling_conventions
https://en.wikipedia.org/wiki/Generic_programming
https://godbolt.org/z/gFn4NU
https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 14 C-STYLE PROGRAMMING

std::cout << "const char* " << '\n';

void print(int, double, const char*) {
std::cout << "int, double, const char* " << '\n';

int main() {
std::cout << '\n';
print(10);
print(10.10);
print("ten");

print(10, 10.10, "ten");

std::cout << '\n';

The output is as expected (see Figure 14.4).

File Edit View Bookmarks Settings Help
rainer@linux:~> functionOverloading ~
int

double

const char*
int, double, const char*

rainer@linux:~> |}

[rainer : bash '

Figure 14.4 Function overloading

The interesting question is now: How can the C++ compiler distinguish the various
functions? The C++ compiler additionally encodes the type and numbers of the
parameters into the function name. This process is called “name mangling” and is
specific for each C++ compiler. The process, which is not standardized, is often also
called “name decoration.”

379

380 PART I THE GUIDELINES

With the help of the functionoverloading.cpp on Compiler Explorer, it is quite

easy to see the mangled names. Just disable the button Demangle.
Table 14.1 shows the names that the GCC 8.3 and the MSVC 19.16 are producing.

Table 14.1 Name mangling

Function GCC 8.3 MSVC 19.16
print(int) _Z5printi ?print@@YAXH@Z
print(double) _Z5printd ?print@@YAXN@Z
print(const char*) _Z5printPKc ?print@@YAXPEBD@Z
print(int, double, const char*) _Z5printidPKc ?print@@YAXHNPEBD@Z

By using the extern "C" linkage specifier, you can prevent the C++ compiler from

mangling the names. The result is that you can call a C function from C++ ora C++

function from C.

You can use extern "c" for

Each function.
extern "C" void foo(int);

Each function in a scope.
extern "C" {
void foo(int);
double bar(double);
}

The entire header file by using include guards. The macro
defined when the C++ compiler is used.
#ifdef __cplusplus
extern "C" {
#endif
void foo(int);
double bar(double);

#ifdef __cplusplus

}
#endif

__cplusplus is

https://godbolt.org/
https://godbolt.org/z/gFn4NU

CHAPTER 14 C-STYLE PROGRAMMING 381

Distilled
Important

e If you have to support C code, compile the C code with a C++ compiler. If
that is not possible, compile your main function with a C++ compiler and
link the program with a C++ linker. Use a C and C++ compiler from the
same vendor.

* By using the extern "C" linkage specifier, you can prevent the C++
compiler from mangling the names. The result is that you can call a
C function from C++ or a C++ function from C.

This page intentionally left blank

Chapter 15

Source Files

<&

Cippi juggles with source files.

With C++20 we get modules, but until we have modules available, we should distin-
guish between the implementation and the interface of our code.

383

https://en.cppreference.com/w/cpp/language/modules
https://en.cppreference.com/w/cpp/language/modules

384

PART I THE GUIDELINES

The guidelines make their point regarding source files quite clear: “Distinguish
between declarations (used as interfaces) and definitions (used as implementations).
Use header files to represent interfaces and to emphasize logical structure.” Conse-
quently, there are more than ten rules for source files. Most of the rules are quite con-
cise. The first rules focus on interface and implementation files, and the remaining
rules address namespaces.

Interface and implementation files
Declarations or interfaces are typically in *.h files and definitions or implementa-

tions in *.cpp files.

Use a . cpp suffix for code files and . h for interface files if
your project doesn't already follow another convention

When you have a C++ project, header files should be called *.h and implementation
files *.cpp. Convention beats this rule if you already have another policy in your
project.

I have often seen other conventions for header and implementation files. Here are
a few I have in mind:

e Header files

e *.h
® *.hpp
® * . hxx
° *.inl

e Implementation files

® *.cpp
° *.C
® *.cc

http://*.cc
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces

CHAPTER 15 SouURCE FILES

A . h file may not contain object definitions or non-inline
function definitions

If your header file contains an object definition or a definition of a noninline func-
tion, your linker may complain. This complaint is the reason for this rule. To be
more specific, C++ has the One Definition Rule.

Omne Definition Rule
ODR stands for One Definition Rule. Here is what it says in the case of a function:

¢ A function cannot have more than one definition in any translation unit.
¢ A function cannot have more than one definition in the program.

¢ Inline functions with external linkage can be defined in more than one transla-
tion. The definitions have to satisfy the requirement that they are all the same.

In modern compilers, the keyword inline is quite misleading. Modern compilers
almost completely ignore it. The typical use case for inline is to mark functions for
ODR correctness.

Let’s see what my linker has to say when I try to link a program breaking the
ODR. The following code example has one header file header .h and two implemen-
tation files. Each implementation file includes this header file and, therefore, breaks
the ODR, because two definitions of func exist.

// header.h

void func(){}
// impl.cpp

#include "header.h"
// main.cpp

#include "header.h"
int main() {3}

The linker complains in this concrete case about the multiple definitions of the func-
tion func. See Figure 15.1.

385

386

PART I THE GUIDELINES

rainer : bash — Konsole

File Edit View Bookmarks Settings Help
rainer@seminar:~> g++ main.cpp impl.cpp -o main ~
1

/tmp/cczVexBv.o: In function “func()':

impl.cpp:(.text+0x0): multiple definition of “func()'
/tmp/cc4irQ7f.o:main.cpp:(.text+0x0): first defined here
collect2: error: 1d returned 1 exit status | |

rainer@seminar:~> ||

] rainer : bash

Figure 15.1 Multiple definitions of a function

A .cpp file must include the . h file(s) that defines its
interface

The interesting question is, What happens if you don’t include the *.h file in the
* . cpp file and there is a mismatch between the interface file * . h and the implementa-
tion file *.cpp?

Assume I am having a bad day. I define a function func that should get an int and
return an int.

// impl.cpp
// #include "impl.h" (1)

int func(int) {
return 5;

}

My mistake is that I declare this function in the header file impl.h, getting an int but
returning a std: :string.

// impl.h
#include <string>

std::string func(int);

CHAPTER 15 SouURCE FILES

I include the header in the main program because I want to invoke this function
there.

// main.cpp
#include "impl.h"
int main() {
auto res = func(5);

}

The issue is that the error may be delayed until link time when main.cpp is compiled.
See Figure 15.2. This error is too late.

rainer : bash — Konsole

File Edit View Bookmarks Settings Help

rainer@seminar:~> g++ main.cpp impl.cpp -0 main ~
Jtmp/ccms@CkD.o: In function ‘main':

main.cpp:(.text+0x15): undefined reference to “funclabi:cxx11](int)"’
collect2: error: 1d returned 1 exit status

rainer@seminar:~> |}

o rainer : bash

Figure 15.2 Linker error because of mismatch between function declaration and definition

When I include the header impl.h in my impl.cpp (1) file, I get a compile-time
error. See Figure 15.3.

rainer : bash — Konsole

File Edit View Bookmarks Settings Help

rainer@seminar:~> g++ -c impl.cpp A
impl.cpp:5:5: error: ambiguating new declaration of ‘int func(int)’

int func(int){

In file included from impl.cpp:3:

impl.h:5:13: old declaration ‘std::__cxx11l::string func(int)’
std::string (int);

rainer@seminar:~> |
> rainer : bash

Figure 15.3 Compiler error because of a mismatch between function declaration and
definition

387

388

PART I THE GUIDELINES

Use #include guards for all . h files

By putting an include guard around your header file, the header file is included only
once. The following is the small example from the C++ Core Guidelines.

// file foobar.h:

#ifndef LIBRARYNAME_FOOBAR_H
#define LIBRARYNAME_FOOBAR_H
// ... declarations ...

#endif // LIBRARYNAME_FOOBAR_H

There are two points to keep in mind.

1. Give your guard a unique name. If you use a guard name more than once, it
may exclude the inclusion of a header file.

2. #pragma is nonstandard but is a widely supported preprocessor directive. This
pragma means the following variation of the header foobar .h is not portable.

// file foobar.h:
#pragma once

// ... declarations ...

Avoid cyclic dependencies among source files

First of all, what is a cyclic dependency among source files? Imagine you have the
following source files.

// a.h

#ifndef LIBRARY_A_H
#define LIBRARY_A_H
#include "b.h"

class A {
B b;
¥

https://en.wikipedia.org/wiki/Pragma_once

CHAPTER 15 SoOURCE FILES 389

#endif // LIBRARY_A_H
// b.h

#ifndef LIBRARY_B_H
#define LIBRARY_B_H
#include "a.h"

class B {
A a;
}

#endif // LIBRARY_B_H
// main.cpp

#include "a.h"
int main() {

A myA;
}

The compilation of the program fails (see Figure 15.4).

File Edit View Bookmarks Settings Help

rainer@linux:~> g++ main.cpp
In file included from a.h:3:0,
from main.cpp:1l:
b.h:6:3: error: ‘A’ does not name a type
A a;

~

rainer@linux:~> |}

>

[>] rainer : bash

Figure 15.4 Cyclic dependencies among source files

The issue is that there is a circular dependency between the header files a.h and b. h.
The problem manifests itself when myA is created in the main program. To create an
object of type A, the compiler must figure out the size of an object of type B. To cre-
ate an object of type B, the compiler must figure out the size of A. This is not possible
if the respective members of type A and type B, a or b, are objects. The determination
of the size would only be possible if a or b were pointers or references.

390

PART I THE GUIDELINES

The straightforward fix is, therefore, to forward declare A in b.h or B in a.h.
Depending on your platform, the size of the reference or pointer is 32 or 64 bits. Here
is the modified header of a.h.

#ifndef LIBRARY_A_H
#define LIBRARY_A_H

class B;
class A {

B* b;

B& b2 = *b;
}

#endif // LIBRARY_A_H

The standard library header <iosfwd> holds forward declarations of the input/
output library.

Avoid dependencies on implicitly #included names

For example, the following program will compile with GCC 5.4 but will break with
the Microsoft compiler 19.00.23506.

#include <iostream>
int main() {

std::string s = "Hello World";
std::cout << s;

}

I forgot to include a necessary header <string>. GCC 5.4 includes <string> with the
header <iostream>. This automatic inclusion does not happen with the Microsoft
compiler.

https://en.cppreference.com/w/cpp/language/class
https://en.cppreference.com/w/cpp/header/iosfwd
https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 15 SouURCE FILES

Header files should be self-contained

This rule is concise but important. A self-contained header file can be included
topmost in a translation unit. Self-contained means that the header does not depend
on other headers that were included before. If you don’t follow this rule, a user of
your header may be surprised by difficult-to-understand error messages. Sometimes
the header seems to work, sometimes not. It just depends on which header was
included before.

Namespaces

A namespace is a scope for identifiers. Identifiers can be names of types, functions,

or variables.

Use using namespace directives for transition, for
foundation libraries (such as std), or within a local scope

(only)

Honestly, [want to reformulate this rule: Don’t use namespace directives such as in
the following example.

#include <cmath>
using namespace std;

int g(int x) {
int sqrt = 7;
// ...
return sqrt(x); // error

The program does not compile because there is a name clash. This is not my main
argument against a using directive. My main argument is that the using directive
hides the origin of the name and breaks the readability of the code.

// namespaceDirective.cpp

#include <iostream>
#include <chrono>

391

https://en.cppreference.com/w/cpp/header/iostream

392

PART I THE GUIDELINES

using namespace std;

using namespace std::chrono;

using namespace std::literals::chrono_literals;

int main() {

cout <<

"\n';

auto schoolHour = 45min;

auto shortBreak = 300s;

auto longBreak = 0.25h;

auto schoolway = 15min;

auto homework = 2h;

auto schoolbDayInSec = 2 * schoolway + 6 * schoolHour +

cout <<

4 * shortBreak + longBreak + homework;

"School day in seconds: " << schoolDayInSec.count() << endl;

duration<double, ratio<3600>> schoolDayInHours = schoolDayInSec;

duration<double, ratio<60>> schoolDayInMin = schoolDayInSec;
duration<double, ratio<l, 1000>> schoolDayInMilli = schoolDayInSec;

cout <<
cout <<
cout <<

<<

cout <<

Do you know by heart which function or object was declared in which namespace? If
not, looking for the definition may be a challenge. This is true in particular if you are

a novice.

Only the built-in literals in this example, such as 45min or 300s, are self-explanatory.
Here is the adequate program, which this time doesn’t use the using directive for std

"School day in hours: " << schoolDayInHours.count() << endl;
"School day in minutes: " << schoolbayInMin.count() << endl;
"School day in milliseconds: "

schoolbDayInMilli.count() << endl;

endl;

and std: :chrono.

// namespaceDirectiveRemoved.cpp

CHAPTER 15 SouURCE FILES

#include <iostream>
#include <chrono>

using namespace std::literals::chrono_literals;

int main() {

std::cout << std::endl;

auto schoolHour = 45min;

auto shortBreak = 300s;
auto longBreak = 0.25h;

auto schoolway = 15min;
auto homework = 2h;

auto schoolbDayInSec = 2 * schoolway + 6 * schoolHour +
4 * shortBreak + longBreak + homework;

std::cout << "School day in seconds: "
<< schoolDayInSec.count() << std::endl;

std::chrono::duration<double, std::ratio<3600>> schoolDayInHours =

schoolbDayInSec;

std::chrono::duration<double, std::ratio<60>> schoolbDayInMin =
schoolbDayInSec;

std::chrono::duration<double, std::ratio<l, 1000>> schoolDayInMilli =
schoolbDayInSec;

std::cout << "School day in hours: "

<< schoolDayInHours.count() << std::endl;
std::cout << "School day in minutes: "

<< schoolDayInMin.count() << std::endl;
std::cout << "School day in milliseconds: "

<< schoolDayInMilli.count() << std::endl;

std::cout << std::endl;

SE.7 Don't write using namespace at global scope in a header
. file

393

https://en.cppreference.com/w/cpp/header/iostream

394

PART I THE GUIDELINES

Here is the rationale for this important rule.
A using namespace at global scope in the header injects names into every file that
includes that header. This injection has a few bad consequences:

e When you use the header, you cannot undo the using directive.
e The possibility of a name collision increases drastically.

® A change to the included namespace may break your compilation because a
new name is introduced.

Use namespaces to express logical structure

Obviously, we have namespaces in the C++ standard to express logical structure.
Examples? Here are a few:

std::chrono

std::literals
std::literals::chrono_literals
std::filesystem

std: :placeholders

std::view // C++20

Don't use an unnamed (anonymous) namespace in a
header

Use an unnamed (anonymous) namespace for all internal/
nonexported entities

An unnamed namespace has internal linkage. Internal linkage means that names
inside the unnamed namespace can be referred only from within the current

CHAPTER 15 SouURCE FILES

translation unit and are not exported. The same applies to names, which are declared
in the unnamed namespace. Okay, what does that mean?

namespace {

int i; // defines ::(unique_name)::i
}
void inc() {

i++; // increments ::(unique_name)::i

When you refer to i from within the translation unit, you do so by an implicit
unique_name that is specific to the current compilation unit, and therefore, there is
no name clash. For example, you can define an add addition function inside the
unnamed namespace, and the linker does not complain. In this case, you would not
break the One Definition Rule even if your header is included more than once.

When you use an unnamed namespace in the header, each translation unit defines
its unique instance of the unnamed namespace. Unnamed namespaces in headers
have a few consequences:

e The resulting executable size bloats.

* Any declaration in an unnamed namespace refers to a different entity in each
translation unit. This may not be the expected behavior.

The usage of an unnamed namespace is similar to the static keyword used in C.

namespace { int i1; }
static int i2;

Distilled

Important

e Header files should not contain object definitions or noninline func-
tions. They should be self-contained and have #include guards. Don’t
write using namespace in a header file.

e Source files should include the necessary header files and avoid cyclic
dependencies.

e Namespaces should express the logical structure of the software. Avoid
the using namespace directive for readability, if possible.

395

This page intentionally left blank

Chapter 16

The Standard Library

Cippi admires the ISO Standard.

Despite the standard library’s crucial importance, this section is not exhaustive.
Many rules are missing, the mentioned rules are often quite concise, other rules are
already the topic of other parts of the C++ Core Guidelines. Consequently, I com-
plement those rules with additional information when necessary.

397

398 PART I THE GUIDELINES

Containers

Let me start with a significant rule.

SL.con.1 Prefer using STL array or vector instead of a C-array

I assume that you know about std: :vector. Why should you prefer std: :vector to
a C-array?

std: :vector

One of the big advantages of a std::vector compared to a C-array is that the
std::vector automatically manages its memory. Of course, that holds true for all
standard containers. The following program gives a closer look at the automatic
memory management provided by std: :vector.

// vectorMemory.cpp
#include <iostream>
#include <string>

#include <vector>

template <typename T>
void showInfo(const T& t, const std::string& name) {

std::cout << name << " t.size(): " << t.size() << '\n';
std::cout << name << " t.capacity(): " << t.capacity() << '\n';

int main() {

std::cout << '\n';

std::vector<int> vec; // (1)
std::cout << "Maximal size: " << '\n';
std::cout << "vec.max_size(): " << vec.max_size() << '\n'; // (2)

std::cout << '\n';

https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 16 THE STANDARD LIBRARY 399

std::cout << "Empty vector: " << '\n';
showInfo(vec, "Vector");
std::cout << '\n';

std::cout << "Initialized with five values: " << '\n';
vec = {1,2,3,4,5%};
showInfo(vec, "Vector"); // (3)

std::cout << '\n';

std::cout << "Added four additional values: " << '\n';
vec.insert(vec.end(),{6,7,8,9});

showInfo(vec, "Vector"); // (4)
std::cout << '\n';

std::cout << "Resized to 30 values: " << '\n';

vec.resize(30);

showInfo(vec, "Vector"); // (5)
std::cout << '\n';

std::cout << "Reserved space for at least 1000 values: " << '\n';
vec.reserve(1000);
showInfo(vec, "Vector"); // (6)
std::cout << '\n';

std::cout << "Shrinked to the current size: " << '\n';
vec.shrink_to_fit(); /7 (7)
showInfo(vec, "Vector");

To spare typing, | wrote the small function showInfo. showInfo prints out the size
and the capacity of a vector. The size of a vector is its number of elements; the capac-
ity of a container is the number of elements a vector can hold without an additional
memory allocation. Therefore, the capacity of a vector has to be at least as big as its
size. You can adjust the size of a vector with its method resize; you can adjust the
capacity of a container with its member function reserve.

But back to the program from top to bottom. I create an empty vector (1). After-
ward, the program displays number of elements a vector can have (2). After each
operation, I output its size and capacity. That happens for the initialization of the
vector (3), the addition of four new elements (4), the resizing of the containers to 30
elements (5), and the reserving of additional memory for at least 1,000 elements (6).

400

PART I THE GUIDELINES

With C++11, you can shrink a vector with the member function shrink_to_fit (7).
That sets the vector’s capacity to its size.
Before I present the output of the program in Figure 16.1, I have a few remarks.

¢ The adjustment of the size and the capacity of the container is done automati-
cally. I don’t have to use any memory operations like new and delete.

* By using the member function vec.resize(n), the vector vec gets default-
initialized elements if n > vec.size().

* By using the member function vec.reserve(n), the container vec gets new
memory for at least n elements if n > vec.capacity().

e The call shrink_to_fit is nonbinding. That means the C++ run time doesn’t
have to adjust the capacity of a container to its size. But my usage so far of the
member function shrink_to_fit with GCC, Clang, or cl.exe has always freed
unnecessary memory.

File Edit View Bookmarks Settings Help
rainer@seminar:~> vectorMemory

Maximal size:
vec.max_size(): 4611686018427387903

Empty vector:
Vector t.size(): @
Vector t.capacity(): @

Initialized with five values:
Vector t.size(): 5
Vector t.capacity(): 5

Added four additional values:
Vector t.size(): 9
Vector t.capacity(): 10

Resized to 3@ values:
Vector t.size(): 30
Vector t.capacity(): 30

Reserved space for at least 1000 values:
Vector t.size(): 30
Vector t.capacity(): 1000

Shrinked to the current size:
Vector t.size(): 30

Vector t.capacity(): 30
rainer@seminar:~> |Jj

Figure 16.1 Automatic management of memory

CHAPTER 16 THE STANDARD LIBRARY

std::array
Okay, but what is the difference between a C-array and a C++-array?

std: :array combines the best of two worlds. On the one hand, std: :array has
the size and the efficiency of a C-array; on the other hand, std: :array has the inter-
face of a std: :vector.

My small program compares the memory efficiency of a C-array, a C++-array
(std::array), and a std: :vector. See Figure 16.2.

// sizeof.cpp
#include <iostream>
#include <array>
#include <vector>
int main() {
std::cout << '\n';
std::cout << "sizeof(int)= " << sizeof(int) << '\n';
std::cout << '\n';
int cArr[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

std::array<int, 10> cppArr = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

std::vector<int> cppvec = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},

std::cout << "sizeof(cArr)= " << sizeof(cArr) << '\n'; // (1)
std::cout << "sizeof(cppArr)= " << sizeof(cppArr) << '\n'; // (2)

/7 (3)
std::cout << "sizeof(cppVec) = " << sizeof(cppVec) + sizeof(int)

* cppVec.capacity() << '\n';
std::cout << " = sizeof(cppvec): "
<< sizeof(cppVec) << '\n';
std::cout << " + sizeof(int)* cppVec.capacity(): "
<< sizeof(int)* cppVec.capacity() << '\n';

std::cout << '\n';

401

https://en.cppreference.com/w/cpp/header/iostream

402

PART I THE GUIDELINES

= & — =53

File Edit View Bookmarks Settings Help
rainer@linux:~> sizeof

sizeof(int)= 4

sizeof(cArr)= 40

sizeof(cppArr)= 40

'sizeof(cppVec) = 64

= sizeof(cppVec): 24

+ sizeof(int)* cppVec.capacity(): 40

(rainerd@linux: ~> []

-f, - rainer : bash ’.

Figure 16.2 sizeof a C-array, a C++-array, and a std: :vector

Both the C-array (1) and the C++-array (2) occupy 40 bytes. That is precisely
sizeof(int) * 10. In contrast, the std: :vector needs an additional 24 bytes (3) to
manage its data on the heap.

This was the C part of a std::array, but the std: :array supports to a large
extent the interface of a std::vector. Supporting the interface of a std::vector
means, in particular, that std: :array knows its size.

Prefer using STL vector by default unless you have a
reason to use a different container

SL.con.2

If you want to add elements to your container or remove elements from your con-

tainer at run time, use a std::vector; if not, use a std::array. Additionally, a

std::vector can be much larger than a std::array because its elements go to the

heap. std: :array uses a buffer that is local to the context in which it is being used.
std::array and std: :vector offer the following advantages:

1. The fastest general-purpose access (random access, including being CPU
vectorization friendly)

2. The fastest default access pattern (begin-to-end or end-to-begin is CPU cache
prefetcher friendly)

3. The lowest space overhead (contiguous layout has zero per-element overhead,
which is CPU cache friendly)

std::array and std::vector support the index operator, which boils down to
pointer arithmetic. Consequently, advantage 1 is obvious. Advantage 2 was discussed
in the section about performance. Read the details in the rule “Per.19: Access

CHAPTER 16 THE STANDARD LIBRARY

memory predictably.” The last rule already covered advantage 3: “SL.con.1: Prefer
using STL array or vector instead of a C array.” std: :array is comparable in size to
a C-array, and std: :vector adds 24 bytes.

SL.con.3 Avoid bounds errors

In the case of the C-array, there is no help: detecting a bounds error. Ignoring the
bounds of a C-array can go unnoticed for too long. The rules “ES.103: Don’t over-
and “ES.104: Don’t underflow” in Chapter 8, Expressions and Statements,

i

flow,
clearly demonstrate the risks.

In the case of the C-array, there is no support to detect a bounds error. Many of
the containers of the STL support an at member function that checks boundaries.
In the case of accessing a nonexisting element, a std: :out_of_range exception is
thrown. The following containers have a boundary-checking at member function:

e Sequence container: std: :array, std: :vector, and std: :deque
e Associative container: std: :map and std: :unordered_map

® std::string
The std: :string in the next example shows the boundary check.
// stringBoundsCheck.cpp
#include <stdexcept>
#include <iostream>
#include <string>
int main() {
std::cout << '\n';
std::string str("1123456789");
str.at(0) = '0'; // (1)

std::cout << str << '\n';

403

http://str.at(
https://en.cppreference.com/w/cpp/error/out_of_range
https://en.cppreference.com/w/cpp/header/iostream

404

PART I THE GUIDELINES

std::cout << "str.size(): " << str.size() << '\n';
std::cout << "str.capacity() = " << str.capacity() << '\n';
try {

str.at(12) = 'X'; // (2)
}

catch (const std::out_of_range& exc) {
std::cout << exc.what() << '\n';

std::cout << '\n';

Setting the first character of the string str to ‘0’ (1) is fine, but accessing a character
outside the size is an error. This even occurs if the access is within the capacity but
outside the size of the std: :string.

1. The size of a std::string str is the number of elements the str has.

2. The capacity of a str is the number of elements a str could have without allo-
cating additional memory.

Compiling the program with GCC 8.2 and executing it produces a quite explicit
error message. See Figure 16.3.

rainer : bash — Konsol

File Edit View Bookmarks Settings Help

rainer@seminar:~> stringBoundsCheck

0123456789
str.size(): 10
str.capacity() = 15

basic_string::at: __n (which is 12) >= this->size() (which is 10)

rainer@seminar:~> |j
| rainer : bash

Figure 16.3 Accessing a nonexisting element of a std: :string

Text

There are various kinds of text and various ways to present this text. Table 16.1 gives
you a preview before I dive into the rules.

http://str.at(
https://en.cppreference.com/w/cpp/error/out_of_range

CHAPTER 16 THE STANDARD LIBRARY

Table 16.1 Various kinds of text

Text Semantic Rule

std::string Owns a character sequence SL.str.1
std::string_view Refers to a character sequence SL.str.2
char* Refers to a single character SL.str.4
std::byte Refers to byte values (not necessarily characters) SL.str.5

To summarize, only std: :

SL.str.1 Use std: :string to own character sequences

string is an owner. All the others refer to existing text.

Maybe you know another string that owns its character sequence: a C-string. Don’t

use a C-string! Why? Because you have to manually take care of the memory man-

agement, the string termination character, and the length of the string.

// stringC.c

#include <stdio.h>
#include <string.h>

int main(void) {

char text[10];

strcpy(text, "The Text is too long for text."); // (1) too long
printf("strlen(text): %u\n", strlen(text));

printf("%s\n", text);

text[sizeof(text)-1] = '"\0';
printf("strlen(text): %u\n", strlen(text));

return 0;

// (2) missing '\0'

The simple program stringC.c has undefined behavior (1) and (2). Compiling it
with a rusty GCC 4.8 seems to work. See Figure 16.4.

405

406

PART I THE GUIDELINES

rainer

File Edit View Bookmarks Settings Help
rainer@seminar:~> gcc-4.8 stringC.c -o stringC ~
rainer@seminar:~> stringC
strlen(text): 30

The Text is too long for text.
strlen(text): 9
rainer@seminar:~> |j

>} rainer : bash

Figure 16.4 Undefined behavior with a C-string

The C++ equivalent does not have the same issues.

// stringCpp.cpp

#include <iostream>
#include <string>

int main() {
std::string text{"The Text is not too long."};

std::cout << "text.size(): " << text.size() << '\n';
std::cout << text << '\n';

text +=" And can still grow!";

std::cout << "text.size(): " << text.size() << '\n';
std::cout << text << '\n';

In the case of a C++-string, you cannot make an error because the C++ run time
takes care of the memory management and the termination character. Additionally,
if you access the elements of the C++-string with the at operator instead of the
index operator, bounds errors are automatically detected. You can read the details
on the at operator in the rule “SL.con.3: Avoid bounds errors.”

https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 16 THE STANDARD LIBRARY

Use std: :string_view to refer to character sequences

A std::string_view refers to the character sequence. To say it more explicitly: A
std::string_view does not own the character sequence. It represents a view of a
sequence of characters. This sequence of characters can be a C++-string or C-string.
A std::string_view needs two pieces of information: the pointer to the character
sequence and the length. It supports the reading part of the interface of std: :string.
In addition to a std::string, std::string_view has two modifying operations
remove_prefix and remove_suffix.
std::string_view shines brightly when it comes to memory allocation.

// stringView.cpp; C++20

#include <cassert>

#include <iostream>

#include <string>

#include <string_view>

void* operator new(std::size_t count) { // (1)
std::cout << " " << count << " bytes" << '\n';
return malloc(count);

void getString(const std::string& str) {}

void getStringView(std::string_view strView) {}

int main() {

std::cout << '\n';

std::cout << "std::string" << '\n';

/7 (2)
std::string large = "0123456789-123456789-123456789-123456789";
std::string substr = large.substr(10); // (2)

std::cout << '\n';

std::cout << "std::string_view" << '\n';
/7 (3)

407

https://en.cppreference.com/w/cpp/header/iostream

408 PART 1 THE GUIDELINES
std::string_view largeStringView{large.c_str(), large.size()};
largeStringView.remove_prefix(10); // (3)
assert(substr == largeStringView);
std::cout << '\n';
std::cout << "getString" << '\n';
getString(large);
getString("0123456789-123456789-123456789-123456789"); // (2)
const char message []= "0123456789-123456789-123456789-123456789";
getString(message); // (2)

std::cout << '\n';

std::cout << "getStringview" << '\n';

getStringview(large); // (3)
getStringView("0123456789-123456789-123456789-123456789");
getStringView(message); // (3)

std::cout << '\n';

I overloaded the global operator new (1) to trace each memory allocation. Memory
allocations take place in (2) but not in (3). See Figure 16.5.

File Edit View Bookmarks Settings Help
rainer@suse:~> stringView A~
std::string
41 bytes
31 bytes
std::string_view
getString
41 bytes
41 bytes
getStringView

rainer@suse:~> |

> | rainer : bash

Figure 16.5 No memory allocation with std: :string_view

CHAPTER 16 THE STANDARD LIBRARY

Use char* to refer to a single character

If you don’t follow this rule and use const char* as a C-string, you may end up with
a critical issue such as the following one.

char arr[] = {'a', 'b', 'c'};
void print(const char* p) {

std::cout << p << '\n';

void use() {
print(arr); // undefined behavior

arr decays to a pointer when used as an argument of the function print. The issue is
that arr is not zero terminated. The call print(arr) has undefined behavior.

Use std: : byte to refer to byte values that do not
necessarily represent characters

SL.str.5

std: :byte (C++17) is a distinct type implementing the concept of a byte as specified
in the C++ language definition. This means a byte is neither an integer nor a charac-
ter. Its job is to access object storage. std: :byte’s interface consists of methods for
bitwise logical operations.

template <class IntType>

constexpr byte operator << (byte b, IntType shift);
template <class IntType>

constexpr byte operator >> (byte b, IntType shift);
constexpr byte operator | (byte 1, byte r);
constexpr byte operator & (byte 1, byte r);
constexpr byte operator ~ (byte b);
constexpr byte operator A (byte 1, byte r);

409

410

PART I THE GUIDELINES

You can use the function std: :to_integer(std::byte b) to convert a std: :byte to
an integer type and the call std::byte{integer} to do it the other way around.
integer has to be a non-negative value smaller than std::numeric_limits
<unsigned_char>::max().

Use the s sulffix for string literals meant to be standard-

SL.str.12 library strings

Before C++14, there was no way to create a C++-string without a C-string. This is
strange because we want to get rid of the C-string. With C++14, we got C++-string
literals. They’re C-string literals with the suffix s: "cStringLiteral”s.

Let me show you an example that makes my point: C-string literals and C++-
string literals are different.

// stringLiteral.cpp

#include <iostream>
#include <string>
#include <utility>

int main() {

std::string hello = "hello";
auto firstPair = std::make_pair(hello, 5);

auto secondPair = std::make_pair("hello", 15); // (2) ERROR

using namespace std::string_literals; // (1)
// auto secondPair = std::make_pair("hello"s, 15); // (3) OK

if (firstPair < secondPair) std::cout << "true\n"; // (4)

I have to include the namespace std::string_literals (1) to use the C++-string
literals. Lines (2) and (3) are the critical lines in the example. I use the C-string literal
"hello" to create a C++-string (2). This is the reason that the type of firstPair is
of type (std::string, int), butthe type of the secondPair is (const char*, int).
In the end, the program does not compile when I use (2). The program compiles and
the comparison works when I use (3).

https://en.cppreference.com/w/cpp/header/iostream

CHAPTER 16 THE STANDARD LIBRARY

Input and output

When you interact with the outside world, two input/output libraries come into play:
the stream-based 1/O library (short for iostream library) and the C-style I/O func-
tions. Of course, you should prefer the iostream library. The C++ Core Guidelines
give a good overview of iostreams: “iostreams is a type safe, extensible, format-
ted and unformatted 1/O library for streaming I/O. It supports multiple (and user
extensible) buffering strategies and multiple locales. It can be used for conventional
I/O, reading and writing to memory (string streams), and user-defined extensions,
such as streaming across networks (asio: not yet standardized).”

Use character-level input only when you have to

First, here is a bad example from the guidelines: using character-level input for more
than one character.

char c;
char buf[128];
int i = 0Q;

while (cin.get(c) && !isspace(c) && i < 128)
buf[i++] = c;

if (i == 128) {
// ... handle too long string

}

Honestly, this is a terrible solution for a simple job. Here is the right way to do it:

std::string s;
std::cin >> s;

SL.io.2 When reading, always consider ill-formed input

Each stream has a state associated with it, which is represented by flags. See Table 16.2.

411

https://en.cppreference.com/w/cpp/io
https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/io/cin

412 PART I THE GUIDELINES

Table 16.2 State of the stream

Flag Query of the flag ~ Description Examples

std::ios::goodbit stream.good() No bit set

std::ios::eofbit stream.eof() End-of-file bitset ~ ® Reading beyond the last
valid character

std::ios::failbit stream.fail() Error ® False formatted reading

® Reading beyond the last
valid character

® Opening a file failed

std::ios::badbit stream.bad() Undefined behavior Size of stream buffer cannot

be adjusted

e Code conversion of stream
buffer failed

® A partof the stream throws

an exception

Operations on a stream have an effect only if the stream is in the std::ios::
goodbit state. If the stream is in the std::ios: :badbit state, it cannot be reset to
the std: :ios::goodbit state.

// streamState.cpp

#include <ios>
#include <iostream>

int main() {
std::cout << std::boolalpha << '\n';
std::cout << "In failbit-state: " << std::cin.fail() << '\n';
std::cout << '\n';
int myInt;
while (std::cin >> myInt){
std::cout << "OQutput: " << myInt << '\n';

std::cout << "In failbit-state: " << std::cin.fail() << '\n';
std::cout << '\n';

std::cout << "In failbit-state: " << std::cin.fail() << '\n';
std::cin.clear();

https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/io/cin
https://en.cppreference.com/w/cpp/io/cin
https://en.cppreference.com/w/cpp/io/cin
https://en.cppreference.com/w/cpp/io/cin
https://en.cppreference.com/w/cpp/io/cin

CHAPTER 16 THE STANDARD LIBRARY

std::cout << "In failbit-state: " << std::cin.fail() << '\n';

std::cout << '\n';

The input of the text wrongInput causes the stream std::cin to be in the
std::ios::failbit state. Consequently, wrongInput and std::cin.fail() cannot
be displayed. First, you have to set the stream std: :cin to the std::ios::goodbit

state.

Prefer iostreams for 1/0

Why should you prefer iostreams to printf? There is a subtle but critical difference
between printf and iostreams. The format string with printf specifies the format,
and the type of the displayed value, while the format manipulator with iostreams
specifies only the format. To say it the other way around: The compiler deduces the
correct type automatically in case of iostreams.

The following program makes my point clear. When you specify the wrong type in
a format string, you get undefined behavior.

// printfIostreamsUndefinedBehavior.cpp
#include <cstdio>
#include <iostream>
int main() {
printf("\n");
printf("2011: %d\n",2011);
printf("3.1416: %d\n",63.1416);
printf("\"2011\": %d\n","2011");
// printf("%s\n",2011); // segmentation fault
std::cout << '\n';

std::cout << "2011: " << 2011 << '\n';
std::cout << "3.146: " << 3.1416 << '\n';

413

http://SL.io
https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/io/cin
https://en.cppreference.com/w/cpp/io/cin
https://en.cppreference.com/w/cpp/io/cin
https://en.cppreference.com/w/cpp/io/cin

414 PART I THE GUIDELINES

std::cout << "\"2011\": " << "2011" << '\n';

std::cout << '\n';

Figure 16.6 shows how this undefined behavior manifests itself on my computer.

rainer : bash — Konsale

File Edit View Bookmarks Settings Help
rainer@seminar:~> printfIostreamsUndefinedBehavior

2011: 2011
3.1416: 23342704
"2011": 4197119

2011: 2011
3.146: 3.1416
"2011": 2011

rainer@seminar:~> l

Figure 16.6 Undefined behavior with printf

You may assume that the compiler issues a warning in the case of a wrong format
string, but you have no guarantee. Additionally, [know what often happens when the
deadline has passed. You ignore the warnings and maybe decide to look into it later.
Instead of facing the consequences of those errors later, avoid the errors in the first

place.

SL.i0.10 Unless you use printf-family functions call
e ios_base::sync_with_stdio(false)

Per default, operations on the C++ streams are synchronized with the C streams.

This synchronization happens after each input or output operation.

e C++ streams: std::cin, std::cout, std::cerr, std::clog, std::wcin,

std: :wcout, std: :wcerr, and std: :wclog

e Cstreams: stdin, stdout, and stderr

https://en.cppreference.com/w/cpp/io/cin
https://en.cppreference.com/w/cpp/io/cerr
https://en.cppreference.com/w/cpp/io/clog
https://en.cppreference.com/w/cpp/io/cin
https://en.cppreference.com/w/cpp/io/cout
https://en.cppreference.com/w/cpp/io/cerr
https://en.cppreference.com/w/cpp/io/clog
https://en.cppreference.com/w/cpp/io/c
https://en.cppreference.com/w/cpp/io/c
https://en.cppreference.com/w/cpp/io/c

CHAPTER 16 THE STANDARD LIBRARY

This synchronization allows mixing C++ and C input or output operations because
operations on the C++ streams go unbuffered to the C streams. What is also impor-
tant to note from the concurrency perspective is that synchronized C++ streams are
thread safe. All threads can write to the C++ streams without any need for synchro-
nization. The effect may be an interleaving of characters but not a data race.

When you set the std::ios_base::sync_with_stdio(false), the synchroniza-
tion between C++ streams and C streams does not happen because the C++ streams
may put their output into a buffer. Because of the buffering, the input and output
operation may become faster. You have to invoke std::ios_base::sync_with_
stdio(false) before any input or output operation. If not, the behavior is imple-
mentation defined.

Avoid endl

Why should you avoid std::end1? Or to say it differently: What is the difference
between the manipulators std: :endl and '\n'?

e std::endl: writes a newline and flushes the output buffer

e '\n': writes a newline

Flushing the buffer is an expensive operation and should, therefore, be avoided. If
necessary, the buffer is automatically flushed. Honestly, I was curious to see the
benchmarks. To simulate the worst case, here is my program, which puts a line break
(1) after each character.

// syncwWithStdioPerformanceEndl.cpp

#include <chrono>
#include <fstream>
#include <iostream>
#include <random>
#include <sstream>
#include <string>

constexpr int iterations = 500; // (2)

415

http://www.modernescpp.com/index.php/race-condition-versus-data-race
https://en.cppreference.com/w/cpp/header/iostream

416 PART I THE GUIDELINES

std::ifstream openFile(const std::string& myFile){

std::ifstream file(myFile, std::ios::in);

if (!file){
std::cerr << "Can't open file "+ myFile + "!" << '\n';
exit (EXIT_FAILURE);

}

return file;

std::string readFile(std::ifstream file){

std::stringstream buffer;
buffer << file.rdbuf();

return buffer.str();

template <typename End>
auto writeToConsole(const std::string& fileContent, End end){

auto start = std::chrono::steady_clock: :now();

for (auto c: fileContent) std::cout << c << end; // (1)

std::chrono::duration<double> dur = std::chrono::steady_clock: :now()
- start;

return dur;

template <typename Function>
auto measureTime(std::size_t iter, Function&& f){
std::chrono::duration<double> dur{};
for (int i = 0; 1 < iter; ++i){
dur += f();
}

return dur / iter;

int main(int argc, char* argv[]){

https://en.cppreference.com/w/cpp/io/cerr

CHAPTER 16 THE STANDARD LIBRARY 417

std::cout << '\n';

// get the filename

std::string myFile;

if (argc == 2){
myFile= argv[1];

}

else {
std::cerr << "Filename missing !" << '\n';
exit (EXIT_FAILURE);

}

std::ifstream file = openFile(myFile);
std::string fileContent = readFile(std::move(file));

// (3)
auto averageWithFlush = measureTime(iterations, [&fileContent] {
return writeToConsole(fileContent,
std::endl<char, std::char_traits<char>>);
1)
/7 (4)
auto averageWithoutFlush = measureTime(iterations, [&fileContent] {
return writeToConsole(fileContent, '\n');

1)

std::cout << '\n';
std::cout << "wWith flush(std::endl) " << averageWithFlush.count()
<< " seconds" << '\n';
std::cout << "wWithout flush(\\n): " << averageWithoutFlush.count()
<< " seconds" << '\n';
std::cout << "With Flush/Without Flush: "
<< averageWithFlush/averageWithoutFlush << '\n';

std::cout << '\n';

In the first case, | execute the program with std: :endl (3); in the second case, I exe-
cute it with "\n"' (4). When I perform the program with 500 iterations (2), I get the

https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/io/cerr

418 PART I THE GUIDELINES

expected winner. '\n"' is about 10% to 20% faster on Linux (GCC) and Windows

(cl.exe) than std: :endl.
Here are the concrete numbers.

rainer : bash — Konsole <3>

File Edit View Bookmarks Settings Help

With flush(std::endl) 0.00357554 seconds
Without flush(\n): 0.00302907 seconds
With Flush/Without Flush: 1.18041
rainer@seminar:~> |j

i rainer : bash

Figure 16.7 Performance with/without flushing on Linux

e GCC (see Figure 16.7).

B x64 Native Tools Command Prompt for VS 2019 i =] *

With flush(std::endl) ©.0983423 seconds
Without flush(\n): ©.0890488 seconds
With Flush/Without Flush: 1.10436

C:\Users\rainer>

Figure 16.8 Performance with/without flush on Windows

e cl.exe (see Figure 16.8).

CHAPTER 16 THE STANDARD LIBRARY

Related rules

The standard library is an important part of the C++ standard: “ES.1: Prefer the
standard library to other libraries and to ‘handcrafted code.’” This means that the
rules in this book address various aspects of the library. Prominent examples are
smart pointers in Chapter 7, Resource Management, or the threading components in
Chapter 10, Concurrency.

Many rules present the pros of the STL containers over C-arrays. For complete-
ness, here are a few of the rules:

e P.4:1deally, a program should be statically type safe
¢ 1.13: Do not pass an array as a single pointer
e ES.42: Keep use of pointers simple and straightforward

e ES.55: Avoid the need for range checking

Distilled

Important

e Use a std::array or a std::vector instead of a C-array. Prefer a
std::vector to a std: :array if the vector has to grow at run time or
the number of elements is too big for a std: :array. std: :vector and
std: :array support the safe access to the element using the at operator.

e There are various kinds of text. std::string is the owner of the
text. The other types, such as std::string_view, const char*, or
std: :byte, only refer to text.

e Prefer iostreams to C-style functions for input/output functionality.
Always consider ill-formed input when reading text.

419

This page intentionally left blank

PART II

Supporting Sections

Chapter 17: Architectural Ideas 423
Chapter 18: Nonrules and Myths............... 427
Chapter 19: Profiles, 437
Chapter 20: Guidelines Support Library.......... 441

421

This page intentionally left blank

Chapter 17

Architectural Ideas

The first support section is quite short. It has only three rules, with a few sentences
of content for each one. Their focus is programming-language agnostic, and they
remind me of the philosophical chapter.

Separate stable code from less stable code

Here is the sentence from the C++ Core Guidelines: “Isolating less stable code facili-
tates its unit testing, interface improvement, refactoring, and eventual deprecation.”
What does that mean?

Putting an interface between stable and less stable code is a way to separate it.
Due to the interface, your less stable code becomes a kind of subsystem, which you
can test or refactor in isolation. You can now test not only the subsystem but also
the integration of the subsystem into the system. The first kind of test is typically
called the subsystem test, and the second is called the subsystem integration test. The
subsystem has two channels into the system: the functional and the nonfunctional
channels. Both have to be tested. The functional channel provides the functionality
of the subsystem, and the nonfunctional channel propagates the exceptions that can
happen and to which the system may react. Thanks to the interface, the concrete
subsystem is an implementation of the interface and can, therefore, quite quickly be
replaced by another, maybe more stable, implementation.

423

https://en.wikipedia.org/wiki/Unit_testing

424

PART II SUPPORTING SECTIONS

Express potentially reusable parts as a library

This is a straightforward idea. Immediately, a few questions arise:

1. When is a part of software potentially reusable?
2. When do the costs of implementing the library pay off?

3. What is the right kind of abstraction?

The three questions are quite blurry and are, therefore, difficult to answer in the
general case. This is particularly true for the last question. Let me explain it.

First of all, don’t put too much effort up front into your code to make it reusable
as a library because “you aren’t gonna need it” (YAGNI), but write your code so that
it could be reusable. This means follow simple guidelines such as writing your code
for understandability, maintainability, testability, and other quality attributes. It is
highly probable that you or another programmer will have to work with your code in
the future. Or to say it with the words of Philip Wadler: “Make your code readable.
Pretend the next person who looks at your code is a psychopath, and he knows where
you live.”

The second principle that comes into play is “don’t repeat yourself” (DRY) when
you need the same or similar functionality more than once. Now you should think
about abstraction. When I have two similar functions, I write a third function that
provides the implementation, and the similar functions just become wrappers for
using the implementation function. Here are my ideas put into code to make my
point.

std::vector<void*> myAlloc;

void* newImpl(std::size_t sz, char const* file, int line){ // (3)
static int counter{};
void* ptr = std::malloc(sz);
std::cerr << file << ": " << line << " " << ptr << '\n';
myAlloc.push_back(ptr);
return ptr;

// (1)
void* operator new(std::size_t sz, char const* file, int line){

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.cppreference.com/w/cpp/io/cerr
https://en.wikipedia.org/wiki/You_aren%27t_gonna_need_it
https://en.wikipedia.org/wiki/Philip_Wadler

CHAPTER 17 ARCHITECTURAL IDEAS

return newImpl(sz, file, line);

/7 (2)
void* operator new[](std::size_t sz,char const* file, int line){
return newImpl(sz, file, line);

}

The overloaded new operators in the simple form (1) and for arrays (2) invoke the
common implementation in (3).

Third, I don’t want to answer question 3 because it is very subjective and may
be affected by many factors. The answer may depend on the domain of the soft-
ware. Does the software, for example, run on a desktop, embedded device, or high-
frequency server? It depends on factors such as maintainability, testability, scalability,
to name a few traits, but also on performance. It may depend on the skill level of the
users. Maybe your library is an infrastructure library or a library for your customers.

Writing reusable software in the form of a library is about three to four times
more effort than doing a one-off implementation. Here’s my rule of thumb: You
should think about a library when you know you reuse the functionality. You should
write a library only when you will reuse the functionality at least twice.

There should be no cycles among libraries

Cycles among libraries c1 and c2 make your software system more complicated.
First, they make your libraries challenging to test and impossible to reuse indepen-
dently. Second, your libraries become more difficult to understand, maintain, and
extend. When you find such a dependency, you should break it. There are a few
options, thanks to John Lakos (Large Scale C++ Software Design, p. 185):

1. Repackage c1 and c2 so they are no longer mutually dependent.
2. Physically combine c1 and c2 into a single component, c12.

3. Think of c1 and c2 as if they were a single component, c12.

425

https://codedive.pl/index/speaker/name/john-lakos

This page intentionally left blank

Chapter 18

Nonrules and Myths

I assume that you already know many nonrules and myths about C++. Some of
these nonrules and myths predate modern C++ and sometimes even contradict mod-
ern C++ techniques. Sometimes these nonrules and myths were best practices for
writing good C++ code. The C++ Core Guidelines address the most resistant don’ts
but also provide alternatives.

Don't insist that all declarations should be at the top of a
function

NR.1

This rule is a relict of the C89 standard. C89 doesn’t allow the declaration of a vari-
able after a statement. This results in a significant distance between the variable dec-
laration and its usage. Often the variable is not initialized. This is exactly what
happens in the example provided by the C++ Core Guidelines:

int use(int x) {
int i;
char c;
double d;
// ... some stuff ...
if (x < 1) {
/7 ...
i="f(x, d);

427

428 PART II SUPPORTING SECTIONS

if (1 <x) {
// .
i=g(x, c);

}

return ;

I assume that you have already found the issue in this code snippet. The variable i
(the same holds true for ¢ and d) is not initialized because it is a built-in variable used
in a local scope, and therefore, the program has undefined behavior. If i was a user-
defined type such as std: : string, all would be fine. So, what should you do?

e Place the declaration of i directly before its first usage.

e Always initialize a variable such as in int i{}, or better, use auto. The
compiler cannot guess from a declaration such as auto i; the type of i and,
therefore, rejects the program. To put it the other way around: auto forces you
to initialize variables.

Don't insist to have only a single return-statement in a
function

When you follow this rule, you implicitly apply the first nonrule.

template<class T>
std::string sign(T x) {
std::string res;
if (x < 0)
res = "negative";
else if (x > 0)
res = "positive";
else
res = "zero";
return res;

Using more than one return statement makes the code easier to read and also
faster.

template<class T>
std::string sign(T x) {

CHAPTER 18 NONRULES AND MYTHS

if (x < 0)

return "negative";
else if (x > 0)

return "positive";
return "zero";

What happens if automatic return-type deduction returns different types?
// differentReturnTypes.cpp

template <typename T>
auto getvalue(T x) {

if (x < 0) // int
return -1;
else if (x > 0)
return 1.0; // double
else return 0.0f; // float

int main(){
getvalue(5.5);

As expected, the program is not valid. See Figure 18.1.

rainer : bash — Konsole

File Edit View Bookmarks Settings Help
rainer@seminar:~> g++ differentReturnTypes.cpp -o differentReturnTypes

differentReturnTypes.cpp: In instantiation of ‘auto getValue(T) [with T = double]’:
differentReturnTypes.cpp:13:17: required from here

differentReturnTypes.cpp:8:12: error: inconsistent deduction for aute return type: ‘int’ and then 'double’

return 1.0; // double

differentReturnTypes.cpp:9:15: error: inconsistent deduction for auto return type: ‘int' and then 'float’
else return 0.0f; // float

rainer@seminar:~> Jj

Figure 18.1 Different return types in a function

Don’t avoid exceptions

429

430 PART II SUPPORTING SECTIONS

The rule starts by stating the four main reasons against exceptions:

1. Exceptions are inefficient.
2. Exceptions lead to leaks and errors.
3. Exception performance is not predictable.

4. Exception handling run-time support takes too much space.

The C++ Core Guidelines have profound responses to these statements.

First, the efficiency of exception handling is compared to a program that just ter-
minates or displays the error code. Often the exception-handling implementation
is poor. Of course, a comparison makes no sense in such cases. [want to explicitly
mention the Technical Report on C++ Performance (TR18015.pdf), which presents
two typical ways used by compilers to implement exceptions:

e The code approach, where code is associated with each try-block

e The table approach, which uses compiler-generated static tables

Simply said, the code approach has the downside that even when no exception is
thrown, the bookkeeping of the exception-handling stack must be performed and,
therefore, code unrelated to error handling slows down. This downside does not
apply to the table approach, because it introduces no stack or run-time costs when
no exception is thrown. In contrast, the table approach seems to be more compli-
cated to implement, and the static table can get quite big.

I have nothing to add to point two. Exceptions cannot be blamed for a missing
resource management strategy.

Third, if you have hard real-time guarantees to fulfill so that an answer that is too
late is a wrong answer, an exception implementation based on the table approach
will not—as we saw—affect the run time of the program in the good case. Hon-
estly, even if you have a hard real-time system, this hard real-time restriction typically
applies to only a small part of your system.

Instead of arguing against the nonrules, here are the reasons for using exceptions:

Exceptions

e (Clearly differentiate between erroneous return and ordinary return
e Cannot be forgotten or ignored

e Can be used systematically

http://www.open-std.org/jtc1/sc22/wg21/docs/TR18015.pdf

CHAPTER 18 NONRULES AND MYTHS

Let me add an anecdote about a situation that I once faced in a legacy code base. The
system used error codes to signal the success or failure of a function. They checked
the error codes. This was fine. But due to the error codes, the functions didn’t use
return values. The consequence was that the functions operated on global variables
and, consequently, had no parameters because they used the global variables anyway.
The end of the story was that the system was not maintainable or testable, and my
job was to refactor it.

To get more information about the correct handling of errors, read Chapter 11,
Error Handling.

Don't insist on placing each class declaration in its own
source file

The adequate way to structure your code is not to use files; the correct way is to use
namespaces. Using a file for each class declaration results in many files and can make
your program, therefore, harder to manage and slower to compile.

Don't use two-phase initialization

Obviously, the job of a constructor is straightforward: After the constructor is exe-
cuted, you should have a fully initialized object. For that reason, the following code
snippet from the C++ Core Guidelines is bad.

class Picture {

int mx;
int my;
char * data;
public:
Picture(int x, int y) {
mx = X,
my =y,

data = nullptr;

~Picture() {
Cleanup();

431

432 PART II SUPPORTING SECTIONS

bool Init() {
// invariant checks
if (mx <=0 || my <= 0) {
return false;

}

if (data) {
return false;

}

data = (char*) malloc(x*y*sizeof(int));
return data != nullptr;

}

void Cleanup() { // (2)
if (data) free(data);
data = nullptr;

}

3

Picture picture(100, 0);
// this will fail.. // (1)
if (!picture.Init()) {

puts("Error, invalid picture");

picture(100, 0) is not initialized, and therefore, all operations on picture in
(1) operate on an invalid picture. The solution to this problem is as simple as it is
effective: Put all initialization into the constructor.

class Picture {
std::size_t mx;
std::size_t my;
std::vector<char> data;

static size_t check_size(size_t s) {
Expects(s > 0);
return s;

}

public:

Picture(size_t x, size_t y)
: mx(check_size(x))
, my(check_size(y))
, data(mx * my * sizeof(int)) {

CHAPTER 18 NONRULES AND MYTHS

Additionally, data is in the second example a std: :vector instead of a raw pointer.
This means the cleanup function (2) from the first example is not necessary anymore
because the compiler automatically cleans up. Thanks to the static function check_
size, the constructor can validate its arguments. But this is not the end of the bene-
fits modern C++ gives us.

Often you use a constructor to set the default behavior of an object. Don’t do it.
Directly set the default behavior of an object in the class body. Use constructors to
vary the default behavior: “C.45: Don’t define a default constructor that only initial-
izes data members; use member initializers instead.”

init member functions are often used to put common initialization or valida-
tion routines into one place. You invoke them immediately after the constructor call.
Fine, you follow the essential DRY (don’t repeat yourself) principle, but you auto-
matically break another important principle: Objects should be fully initialized after
the constructor call. How can you solve this riddle? Quite easily. Since C++11, we
have had constructor delegation. This means that you put the common initialization
and validation logic into one smart constructor and use the other constructors as a
kind of wrapper constructor: “C.51: Use delegating constructors to represent com-
mon actions for all constructors of a class.”

Don't place all cleanup actions at the end of a function and
goto exit

Okay, we can and should do better than the following code from the C++ Core
Guidelines:

void do_something(int n) {
if (n < 100) goto exit;
/7 ...
int* p = (int*) malloc(n);
/7 ...
exit:
free(p),;

By the way, do you spot the error? The jump goto exit bypasses the definition of
the pointer p.
What I often saw in legacy C code was code structured like this.

// lifecycle.c

#include <stdio.h>

433

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

434

PART II SUPPORTING SECTIONS

void initDevice(const char* mess) {
printf("\n\nINIT: %s\n", mess);

void work(const char* mess) {
printf("WORKING: %s",mess);

void shutDownDevice(const char* mess) {

printf("\nSHUT DOWN: %s\n\n",6mess);

int main(void) {

initDevice("DEVICE 1");
work("DEVICE1");

{
initDevice("DEVICE 2");
work ("DEVICE2");
shutDownDevice("DEVICE 2");
}

work("DEVICE 1");
shutDownDevice("DEVICE 1");

return 0;

This code is very error prone. Each usage of the device consists of three steps:
initialization, usage, and release of the device. This is a job for RAIL: “R.1: Manage
resources automatically using resource handles and RAII (Resource Acquisition Is

Initialization).”
// lifecycle.cpp

#include <iostream>
#include <string>

class Device {
public:

Device(const std::string& res):resource(res) {
std::cout << "\nINIT: " << resource << ".\n";

https://en.cppreference.com/w/cpp/header/iostream

void work() const {

CHAPTER 18 NONRULES AND MYTHS

std::cout << "WORKING: " << resource << '\n';

}

~Device() {

std::cout << "SHUT DOWN: "<< resource << ".\n\n";

}

private:

3

int

const std::string resource;

main() {

Device resGuardl{"DEVICE 1"};
resGuardil.work();

Device resGuard2{"DEVICE 2"};
resGuard2.work();

}

resGuardil.work();

Initialize the resource in the constructor and release it in the destructor. First, you

cannot forget to initialize the object, and second, the compiler takes care of releasing

the resource. The output of both programs is equivalent (see Figure 18.2).

File Edit View Bookmarks >

INIT: DEVICE 1.
WORKING: DEVICE 1

INIT: DEVICE 2.
WORKING: DEVICE 2
ISHUT DOWN: DEVICE 2.

WORKING: DEVICE 1
ISHUT DOWN: DEVICE 1.

rainer@linux:~>

[>] rainer : bash

rainer@linux:~> lifecycle A

Figure 18.2. Automatic managing of a device

435

436

PART II SUPPORTING SECTIONS

NR.7 Don’t make all data members protected

Protected data makes your program complex and error prone. If you put protected
data into a base class, you cannot reason about derived classes in isolation and,
therefore, you break encapsulation. You always have to reason about the entire class
hierarchy.

Protected data means you have to answer at least these three questions.

1. Do I have to implement a constructor in a derived class to initialize the
protected data?

2. What is the actual value of the protected data if [use it?

3. Who is affected if I modify the protected data?

Answering these questions becomes more and more complicated the deeper your
class hierarchy becomes.

Protected data is a kind of global data within the scope of the class hierarchy. And
you know mutable, shared state is terrible. It makes testing and concurrency quite
tricky, for example.

Chapter 19

Profiles

First of all: What is a profile according to the C++ Core Guidelines? Here is their
definition: “A ‘profile’ is a set of deterministic and portably enforceable subset rules
(i.e., restrictions) that are designed to achieve a specific guarantee.”

Two terms in this definition are particularly interesting:

¢ Deterministic: The profiles require only local analysis that can be imple-
mented by a compiler.

¢ Portably enforceable: Different tools on different platforms give you the same
answer.

There are two main reasons for the profiles:

1. You have to deal with legacy code, and you cannot apply all rules of the C++
Core Guidelines in one step. You have to apply the rules step by step and, there-
fore, use some rules first and some rules later.

2. Some related rules may be more important to your code base than others. They
aim for a specific goal such as the “avoidance of bounds errors” or the “correct
usage of types.” These related rules are called profiles.

The C++ Core Guidelines provide profiles for type safety, bounds safety, and lifetime
safety, which can be automatically checked. Read more details about automatic
checks in Appendix A, Enforcing the C++ Core Guidelines.

The following sections give a concise overview of the three profiles.

437

438

PART II SUPPORTING SECTIONS

Pro.typeType safety

Type safety: Use the types correctly, and therefore, avoid unsafe casts and
unions.

Type safety consists of eight rules, which are prefixed by type. The rules start
with “Don’t,” “Always,” or “Avoid” and refer to existing rules.

Type.1: Avoid casts

* Don’tuse reinterpret_cast: ES.48: Avoid casts and ES.49: If you must use
a cast, use a named cast

* Don’t use static_cast for arithmetic types: ES.48: Avoid casts and ES.49:
If you must use a cast, use a named cast

* Don’t cast between pointer types where the source type and the target type
are the same: ES.48: Avoid casts

* Don’t cast between pointer types when the conversion could be implicit:
ES.48: Avoid casts

Type.2: Don’t use static_cast to downcast: C.146: Use dynamic_cast where
class hierarchy navigation is unavoidable

Type.3: Don’t use const_cast to cast away const: ES.50: Don’t cast away
const

Type.4: Don’t use C-style (T)expression or functional T(expression) casts:
ES.34: Prefer the {}-initializer syntax and ES.49: If you must use a cast, use a
named cast

Type.5: Don’t use a variable before it has been initialized: ES.20: Always initial-
ize an object

Type.6: Always initialize a member variable: ES.20: Always initialize an object,
C.43: Ensure that a copyable (value type) class has a default constructor, and
C.45: Don’t define a default constructor that only initializes data members;
use member initializers instead

Type.7: Avoid naked union: C.181: Avoid “naked” unions

Type.8: Avoid va_args: E55: Don’t use va_arg arguments

CHAPTER 19 PROFILES

Pro.boundsBounds safety

¢ Bounds safety: Operate inside the bounds of allocated memory.

The two enemies for bounds safety are pointer arithmetic and array indexing.
Additionally, when you use a pointer, it should only address a single object but
not an array. To make the profile bounds safety complete, you should combine
it with the rules to type safety and lifetime safety.

Bounds safety consists of four rules:

® Bounds.1: Don’t use pointer arithmetic: I.13: Do not pass an array as a single
pointer and ES.42: Keep use of pointers simple and straightforward

® Bounds.2: Only index into arrays using constant expressions: 1.13: Do not
pass an array as a single pointer and ES.42: Keep use of pointers simple and
straightforward

¢ Bounds.3: No array-to-pointer decay: 1.13: Do not pass an array as a single
pointer and ES.42: Keep use of pointers simple and straightforward

¢ Bounds.4: Don’t use standard-library functions and types that are not bounds-
checked: SL.con.3: Avoid bounds error

Pro.lifetimeLifetime safety

¢ Lifetime safety: Dereference only a valid pointer.

A pointer is invalid if, for example, the pointer is uninitialized, is a
std::nullptr, points outside the range of an array, or points to a deleted
object. The profile lifetime safety consists of one rule:

e Lifetime.1: Don’t dereference a possibly invalid pointer: ES.65: Don’t derefer-
ence an invalid pointer

439

https://en.cppreference.com/w/cpp/types/decay

This page intentionally left blank

Chapter 20

Guidelines Support Library

The Guidelines Support Library (GSL) is a small library for supporting the rules of
the C++ Core Guidelines. The GSL consists of components such as views, owner-
ship pointers, assertions, utilities, and concepts.

The best-known implementation of the GSL is the one from Microsoft, hosted
at GitHub: Microsoft/GSL (https://github.com/Microsoft/GSL). The Microsoft ver-
sion requires C++14 support and runs on various platforms. But that is not all; more
implementations are available on GitHub. I want to explicitly emphasize the GSL-
lite implementation of Martin Moene. His implementation even works with C++98
and C++03.

This section does not present the GSL in detail but provides a first introduction.
For your further investigation, use the concrete implementations such as Microsoft/
GSL or GSL-lite.

The GSL consists of five components. I ignore the GSL concepts in this overview
because they are already part of C++20. Appendix B, Concepts, gives you an intro-
duction to concepts.

Views

A view is never an owner. In the case of a gsl::span<T>, it represents a nonowning
range of continuous memory. This nonowning range can be an array, a pointer
with a size, or a std: :vector. The same applies to gsl::string_span<T> or zero-
terminated C-strings: gsl::czstring or gsl::wzstring. The main reason for
having a gsl::span<T> is to prevent a situation where a plain array is decayed to a
pointer if passed to a function; therefore, the size information would be lost.

441

https://github.com/Microsoft/GSL
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-assertions
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-utilities
https://github.com/Microsoft/GSL
https://github.com/Microsoft/GSL
https://github.com/martinmoene/gsl-lite

442

PART II SUPPORTING SECTIONS

gsl::span<T> automatically deduces the size of the plain array or the
std: :vector. If you use a pointer, you have to provide the size.

template <typename T>
void copy_n(const T* p, T* q, int n){}

template <typename T>
void copy(gsl::span<const T> src, gsl::span<T> des){}

int main(){

int arri[] = {1, 2, 3},
int arr2[] = {3, 4, 5},

copy_n(arrl, arr2, 3); // (1)
copy(arrl, arr2); /7 (2)

In contrast to the function copy_n (1), you do not have to provide the number of ele-
ments for the function copy (2). Hence, a common cause of errors is gone with
gsl::span<T>.gsl::span<T> is similar to std: :span<T>, which is part of C++20.

Ownership pointers

The GSL has various kinds of owners.

I assume that you know about std::unique_ptr and std::shared_ptr, and
therefore, you know gsl::unique_ptr and gsl::shared_ptr. You may be wonder-
ing whether the GSL has its own smart pointers, because the C++11 standard has
std::unique_ptr and std::shared_ptr. The answer is straightforward: You can use
the GSL with a compiler that does not support C++11.

gsl::owner<T*> is a pointer that has ownership of the referenced object. You
should use gsl::owner<T> if you cannot use resource handles such as smart point-
ers or containers. The crucial point is that you have to free the resource explicitly.
Raw pointers that are not marked as gs1: :owner<T*> are considered nonowning in
the C++ Core Guidelines (see “R.3: A raw pointer (a T*) is non-owning” and “R.4:
A raw reference (a T&) is non-owning”). Consequently, you don’t have to free the
resource.

gsl::dyn_array<T>and gsl::stack_array<T> are two new array types.

https://en.cppreference.com/w/cpp/container/span
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr

CHAPTER 20 GUIDELINES SUPPORT LIBRARY

e gsl::dyn_array<T>is a heap-allocated array with a fixed number of elements

that is specified at run time.

e gsl::stack array<T> is a stack-allocated array with a fixed number of

elements that is specified at run time.

Assertions

Thanks to Expects() and Ensures(), you can state preconditions and postcondi-
tions for your functions. Currently, you have to place them in the function body,
but these will be moved in upcoming implementations to the function declaration.
Both functions are part of contracts. Appendix C, Contracts, provides more details
about contracts.

Here is an example using Expects() and Ensures () from the GSL.

int area(int height, int width) {
Expects(height > 0);
auto res = height * width;
Ensures(res > 0);
return res;

When the function invocation breaks the precondition Expects(height > @) or
the postcondition (Ensures(res >0), the program terminates.

Utilities
gsl::narrow_cast<T>and gsl::narrow are two new casts.

e gsl::narrow_cast<T> is a static_cast<T> that expresses only its intent. A

narrowing conversion may happen.

e gsl::narrowis a static_cast<T> that throws a narrowing_error exception if

static_cast<T>(x) != x.

gsl::not_null<T*> models a pointer that never should be a null pointer. If you set a
gsl::not_null<T*> pointer to a null pointer, you get a compiler error. You can even
put a smart pointer such as std::unique_ptr or std::shared_ptr into a

443

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr

444 PART II SUPPORTING SECTIONS

gsl::not_null<T*>. There is one main difference between gsl::not_null<T*> and
a reference: You can rebind a gs1: :not_null<T*> object but not a reference.

Typically, you use gsl::not_null<T*> for function parameters and their return
type. Consequently, you do have to check to see if the pointer is a null pointer.

// p cannot be a null pointer
int getLength(gsl::not_null<const char*> p);

// p can be a null pointer
int getLength(const char* p);

finally allows you to register a callable that runs at the end of the scope.

void f(int n) {
void* p = malloc(1, n);
auto _ = finally([p] { free(p); });

} // the lambda is invoked

At the end of the function f, the lambda function [p] { free(p); } is invoked
automatically.

According to the C++ Core Guidelines, you should consider finally as a last
resort if you cannot use proper resource management such as smart pointers or STL
containers.

PART III

Appendixes

Appendix A: Enforcing the C++ Core Guidelines . . . 447
Appendix B: Concepts . ..o v vvveeiininnnnnen.. 453
Appendix C: Contracts. . . oo vvvvvvneennneennns 457

445

This page intentionally left blank

Appendix A

Enforcing the C++ Core

Guidelines

You can check to see if you are breaking the rules of the C++ Core Guidelines.

Let’s start with a program that breaks type safety, bounds safety, and lifetime

safety.

1 // gslCheck.cpp

2

3 #include <iostream>

4

5 void f(int* p, int count) {
6 }

7

8 void f2(int* p) {

9 int x = *p;

10 3}

11

12 int main() {

13

14 // Break of type safety
15 // use of a c-cast

16 double d = 2;

17 auto p = (long*)&d;

18 auto q = (long long*)é&d;
19

20 // Break of bounds safety
21 // array-to-pointer decay
22 int myArray[100];

23 f(myArray, 100);

447

https://en.cppreference.com/w/cpp/types/decay
https://en.cppreference.com/w/cpp/header/iostream

448 PART III APPENDIXES

24

25 // Break of lifetime safety
26 // a is not valid

27 int* a = new int;

28 delete a;

29 f2(a);

30

31 %}

The comments in the source code document the issues. Let me check the program
with Visual Studio and clang-tidy.

Visual Studio

These are the steps to detect the issues with the program gs1Check.cpp.
1. Enable code analysis on build.

You have to enable the checkbox. Per default, type-safety, bounds-safety, and
lifetime-safety rules are not part of the Microsoft Native Recommended Rules.

See Figure A.1.
gsl Property Pages ? ®
Configuration: Active{Debug) # Platform: x4 Configuration Manager...
= . .
e A [Enable Code Analysis an Bulld
General
Advanced i
Debugging Configure nule set
VC++ Directories Abtreyles:
BC/C++
5 Linkar Microsoft Native Recormmended Rules . Canfigure
Manifest Tool
b XML Document Generator Description;
[Browse Infarmation These rules focus on the mast critical and commen problems in your native code, including
b Build Events potential security holes and application crashes. You should include this rule set in any
© Custom Build Step custom rule set you create for your native projects. This ruleset is designed to work with
4Code Analysis Visual Studio Professional edition and higher.
General
Path:
CAProgram Files (x86)\Microsoft Visual Studich2019\Community’Team Tools\Static Analysis
Tools\Rule Sets\Mati C e ruleset

Using rule ses 1o group code analysis nules

OK | Cancel Apply

Figure A.1 Enable code analysis

https://visualstudio.microsoft.com/
https://clang.llvm.org/extra/clang-tidy/

ArPENDIX A ENFORCING THE C++ CORE GUIDELINES

2. Configure the active rules.

As you can see in Figure A.2, I create rule set CheckProfiles, which consists
of the rules C++ Core Guidelines Bounds Rules, C++ Core Guidelines Type
Rules, and C++ Core Guidelines Lifetime Rules.

gsl Property Pages . .
Configuration: Active(Debug) < Platform: %64 “ Configuration Manager...
R e [] Enable Code Analysis on Build

General
Advanced
Debugging Configure rule set
VT ++ Directories e i
e [hai = . P e -
b Linker | it Native Rules 4 | Veanha

C++ Core Check Arithmetic Rules
C++ Core Check Bounds Rules
C++ Core Check Class Rules

[Manifest Tool
b XML Document Generator

l_ B“?wse b o C++ Core Check Concurrency Rules dte.' Kichicing
& Buld Evecis C++ Care Check Const Rules ¢ r::\'::ﬂ\
B RS C++ Core Check Declaration Rules i
“Code Analysis C++ Core Check Enum Rules

General C++ Core Check Experimental Rules

C++ Core Check Function Rules

C++ Core Check GSL Rules

C++ Core Check Lifetime Rules

C++ Core Check Owner Pointer Rules
C++ Core Check Raw Pointer Rules
C++ Core Check Rules

C++ Care Check Shared Pointer Rules
C++ Core Check STL Rules

C++ Care Check Style Rules

C++ Core Check Type Rules

C++ Caore Check Unique Pointer Rules

tatic Analysis

Concurrency Check Rules
Concurrency Rules | Cancel Apply

Figure A.2 Configure the applied rules

3. Run code analysis.

Applying the set of rules on the code example is quite promising. See Figure A.3.

T

Tsgslovompro] -3 Cridsersir

e heck cpp{17) ¢ Waring C26493: Don't Use C.style casts (type.d).

©iger ehr 18)1 warning C6453: Don't use C-style casts (type.d).

o \ heck £pA(25Y1 Wanning C264861 Don't pass a pointer that eay be invalid to & function, Parasster @ "a’ in call to '127 may be imvalld [1ifetine,3).

e \rapostgal'g SPACEN)E WarAIng CIBASS: Expression ‘myhreay’s Mo arrdy Ta polnter decdy (Bounds.3).
13Done building project “gal.wckprog”.
wmmmemmees RgEUL1d ALLL 1 Succeeded, O fafled, B SKIPPSA =mememmses

Figure A.3 Automatic managing of a device

All issues are found. For each issue such as the first one, I get the line number
(17) and the rule of the affected profile (Type.4).

449

450 PART III APPENDIXES

4. Suppress warnings.

Sometimes you want to suppress specific warnings. You can achieve this with
attributes. My next example, gslCheckSuppress.cpp, applies an array-to-
pointer decay twice. Only the second call should give a warning.

// gslCheckSuppress.cpp; C++20 with MSVC
#include <iostream>

void f(int* p, int count) {

}
int main() {
int myArray[100];
// Break of bounds safety

[[gsl::suppress(bounds.3)]] { // suppress warning
f(myArray, 100);

f(myArray, 100); // warning

The attribute gs1: : suppress(bounds.3) behaves as expected. It’s only valid in
its scope. The second violation of bounds safety is displayed. See Figure A.4.

1:gslcheckSuppress.cpp

1rgsl.vexproj -» Cii\Users\raine\source\reposi\gsl\x64\Debug\gslCheckSuppress, exe
C:\Users\raine\source\reposigsligsligslcheckSuppress.cpp(17): warning C26485: Expression "myArray': No array to pointer decay (bounds.3).
1»Done building project "gsl.vexprod®.

Figure A.4 Suppress warnings

clang-tidy

clang-tidy is a clang-based C++ “linter” tool. Its purpose is to provide an extensible
framework for diagnosing and fixing typical programming errors, like style violations,
interface misuse, or bugs that can be deduced via static analysis. clang-tidy is modu-
lar and provides a convenient interface for writing new checks—Extra Clang Tools 11
documentation (https:/clang.llvm.org/extra/clang-tidy/).

https://clang.llvm.org/extra/clang-tidy/
https://en.cppreference.com/w/cpp/types/decay
https://en.cppreference.com/w/cpp/header/iostream
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/

ArPENDIX A ENFORCING THE C++ CORE GUIDELINES 451

clang-tidy supports more than 200 rules. About twenty of them are dedicated to the
C++ Core Guidelines. Here are the steps to detect the issues with the program
gslCheck.cpp.

1. Apply the C++ Core Guidelines checks.

The command line

clang-tidy -checks=-*,cppcoreguidelines-* gslCheck.cpp

checks the C++ Core Guidelines exclusively (see Figure A.5). The option
-checks expects comma-separated values of glob patterns and means the fol-
lowing in this case:

e -*: Disable the default checks of clang-tidy.

® cppcoreguidelines-+: Enable the C++ Core Guidelines checks.

These checks detected only the type-safety issues in the program
gslCheck.cpp.

File Edit Vew Bookmarks Semings Help

/home/rainer /gslcheck.cppilTile: warning: do not use C-style cast to convert between types [cpp
auto p = {longs)ad;

Jhome/rain 181141 warning: de mot use C-style cast to convert between types [cpp:
auto g = {long longs)ad;

Figure A.5 Check the C++ Core Guidelines exclusively
2. Apply the clang-tidy checks and the C++ Core Guidelines checks.

The slightly simplified command line

clang-tidy -checks=cppcoreguidelines-* gslCheck.cpp

also applies the clang-tidy checks (see Figure A.6). Now, the lifetime-safety
issue is detected.

https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://en.wikipedia.org/wiki/Glob_(programming)

452 PART III APPENDIXES

File Edit \iew Bookmarks Settings Help

[fhome /rainer/gslCheck.cpp:29:5: warning: Use of memory after it is freed [clang-analyzer-cplusplus.NewDelete]
f2(a);

[home /rainer/gslCheck.cppt27:14: note: Memory 1s allocated
intx a = new int;

/home /rainer/gslCheck.cpp:28:5: note: Memory is released
delete a;

fhome /rainer/gslcheck.cpp:29:5: note: Use of memory after it is freed
f2(a);

Figure A.6 Check the C++ Core Guidelines with clang-tidy

In contrast to Visual Studio, I could not detect the boundary-safety issue with

clang-tidy.

https://visualstudio.microsoft.com/

Appendix B

Concepts

The C++20 feature “concepts” (also known as “named requirements™) allows you to
express the template parameter requirements as part of the interface. Before I dive
deeper, here is the first example:

template<typename Cont>
requires Sortable<Cont> // Sortable is a user-defined concept
void sort(Cont& container);

template<typename Cont>
void sort(Cont& container) requires Sortable<Cont>; // Trailing
// requires clause

template<Sortable Cont> // Constrained template parameters
void sort(Cont& container);

The first version of the generic function sort requires that its argument supports the
concept Sortable. The second and the third variants of the function sort are seman-
tically identical. The second version uses the so-called trailing requires clause and
just constrained the template parameter to the concept Sortable.

[assume you want to know the following: What are the benefits of concepts?

e Express the template parameter requirements as part of the interface.
e Support the overloading of functions and the specialization of class templates.

e Produce drastically improved error messages by comparing the requirements
of the template parameter with the template arguments.

453

https://en.cppreference.com/w/cpp/named_req

454

PART III APPENDIXES

Essentially, you can use concepts in any template context. Besides the obvious use
cases of class templates, function templates, and non-template members of class
templates, you can use them for variadic templates. Variadic templates are templates
that can accept an arbitrary number of arguments.

template<Arithmetic... Args>

bool all(Args... args) { return (... && args); } // (1)
std::cout << all(true); // true // (2)
std::cout << all(5, true, 5.5, false); // false // (3)

The function template all requires that the arguments are Arithmetic. Arithmetic
means they have to be integrals or floating-point numbers. The fold expression (1)
applies the logical AND operator to all arguments. In (2) and (3), the function is
used. You can also overload on concepts, specialize templates with concepts, or use
more than one concept. The following function template requires that the container
is a SequenceContainer and that the elements of the container are
EqualityComparable.

template <SequenceContainer S,
EqualityComparable<value_type<S>> T>
Iterator_type<S> find(S&& seq, const T& val) {

With concepts, the usage of type deduction with auto and concepts is unified. auto is
just an unconstrained placeholder, and a concept is a constrained placeholder. The
rule to keep in mind is simple: Whenever you can use an unconstrained placeholder
(auto) with C++11, you can use a constrained placeholder (concept) with C++20.

Integral auto getIntegral(int val) { // (1)
return val;

std::vector<int> vec{1, 2, 3, 4, 5};
for (Integral auto i: vec) std::cout << i << " "; // (2)

https://en.cppreference.com/w/cpp/language/fold

APPENDIX B CONCEPTS

Integral auto b = true; // (3)
Integral auto integ = getIntegral(10); // (4)

The code snippet shows a few usages of the concept Integral. Instead of the auto
keyword, I use Integral auto for the return type of the function getIntegral (1),
for the range-based for loop (2), for taking a bool value (3), and for taking an int
value (4).

With concepts, C++20 supports a new and very convenient way to define function
templates. Using a concept (constrained placeholder) or auto (unconstrained place-
holder) in the function signature or as the return type creates a function template.

Integral auto gcd(Integral auto a, Integral auto b) {
if(b == 0) return a;
else return gcd(b, a % b);

auto gcd2(auto a, auto b) {
if(b == 0) return a;
else return gcd(b, a % b);

The function template gcd requires that each argument and the return type support
the concept Integral. In contrast, the function template gcd2 puts no requirements
on its arguments.

Of course, you can define your own concepts. Most of the time it is not necessary
to define your concepts because many named requirements are already available with
C++20. This holds true for the following two concepts in particular: Integral and
Equal. I defined them only for comprehensibility.

template<typename T>
concept Integral = std::is_integral<T>::value;

template<typename T>

concept Equal =

requires(T a, T b) {
{ a==Db3} ->std::convertible_to<bool>;
{al!l=Db3} ->std::convertible_to<bool>;

3

455

https://en.cppreference.com/w/cpp/named_req

456

PART III APPENDIXES

The concept Integral requires that the call std::is_integral<T>::value; return
true. std::is_integral is a function from the type-traits library, which evaluates its
argument at compile time. The definition of the concept of Equal is more verbose.
Both arguments must have the same type T, the type T> has to support the operators
==and !=, and both operators have to return a bool.

Detailed information on concepts is available at https://en.cppreference.com/
w/cpp/language/constraints. Additionally, you can read my blog post on
www.ModernesCpp.com.

https://en.cppreference.com/w/cpp/language/constraints
https://en.cppreference.com/w/cpp/language/constraints
http://www.ModernesCpp.com

Appendix C

Contracts

First of all: What is a contract? A contract specifies, in a precise and checkable way,
interfaces for software components. These software components are typically func-
tions and member functions that have to fulfill preconditions, postconditions, and
invariants. We may get contracts with C++23.

By default, a violation of a contract terminates the program.

Here are the simplified definitions from the C++ proposal P0380r1.

Preconditions, postconditions, and invariants

precondition A precondition is a predicate that is supposed to hold upon entry
in a function.

postcondition A postcondition is a predicate that is supposed to hold upon exit
from the function.

invariant An invariant is a predicate that is supposed to hold at its point in
the computation.

The precondition and the postcondition are placed outside the function definition in
C++, but the invariant is placed inside the function definition. A predicate is a func-
tion that returns a boolean.

457

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf

458

PART III APPENDIXES

The following code snippet applies all three types of conditions:

int push(queue& ¢, int val)
[[expects: !q.full()]]
[[ensures: !qg.empty() 11 {

[[assert: g.is_ok() 1]

The attribute expects is a precondition, the attribute ensures is a postcondition,
and the attribute assert is an invariant. The contract for the function push is that
the queue is not full before adding an element, the queue is not empty after adding an
element, and the queue is in a valid state: q.is_ok(). Preconditions and postcondi-
tions are part of the function interface. This means they can access only parameters
of the function or public members of a class. In contrast, assertions are part of the
implementation and can, therefore, access local members of a function of private or

protected members of a class.

class X {
public:
void f(int n)
[[expects: n<m]] { // error; m is private
[[assert: n<m]]; // OK
// ..
}
private:
int m;

}i

The variable m is private and cannot, therefore, be part of a precondition.
For the ensures attribute, there is an additional identifier available. The identifier

lets you refer to the return value of the function.

int mul(int x, int y)
[[expects: x > 0]]
[[expects: y > 0]]
[[ensures res: res > 0]] {
return x * vy;

The name res as the identifier is, in this case, an arbitrary name. As shown in the
example, you can use more contracts of the same kind.

Until we get contracts, perhaps with C++23, you can use assertions from the
Guidelines Support Library as a replacement for contracts.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-assertions
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-assertions

Index

Symbols

() (parentheses), 187
{} (curly braces), 144, 166

A

ABI (application binary interface), 23-24
Abrahams, David, 280
abstract class, 101, 102
abstraction, 167, 302-304
access
memory, 225-229
nonexisting element of a std::string, 404
objects, 114-117
sequence containers, 229
accounts, comparing, 326
accumulate algorithm, 166
acquire-release semantics, singletons, 218
ADL (argument-dependent lookup), 126, 314,
315-316
algorithms, 8
Euclidean, 223
expressing, 304
function objects, 305-307
ged, 223-225
generic programming, 301, 302. See also
generic programming
parallel, 266
preference over raw loops, 201
std::accumulate, 166
std::transform_exclusive_scan, 269
STL (Standard Template Library), 12, 266
aliases
defining, 311
smart pointers, 162—-164
templates, 310, 311
ALL_CAPS, 134, 170-171
allocation
memory, 147, 246
resource management, 145-150

analysis, enabling code, 448
annotated graphs, 243
anonymous unions, 128—129
application binary interface. See ABI
(application binary interface)
architecture, 423425
code stability, 423
cycles among libraries, 425
expressing reusable parts as libraries,
424425
argument-dependent lookup. See ADL
(argument-dependent lookup)
arguments
binary callables, 21, 22
defaults, 49, 113-114
functions, 359
metafunctions, 343
order of evaluation, 195-196
Regular type/SemiRegular type, 313-314
template argument deduction, 313
templates, 359
va_arg, 49-52
arithmetic
errors, 208-210
rules, 204
signed/unsigned integers, 204208
array, 401-403
arrays, deleting, 194
artificial scope, 144
assembler instructions, 30
assertions, 443
assignments
classes, 59-60, 78-80
copy-assignment operator, 221,222
pointers, 117
auto, applying, 171-172
automatic management of devices, 435, 449
automatic memory management, 398. See also
memory
automatic type deduction, 179
availability of source code, 376-377

459

460

INDEX

B

bad functions, example of, 28-29
Bartosz, Milewski, 276
base classes, 101
basic exception safety, 280
behaviors
default, 71
defining, 368
implementation-defined, 9
regular types, 58
shadowing, 111-113

undefined, 9, 22, 42, 63, 234-235. See also

undefined behaviors

unspecified, 196
big six, 59, 60, 61, 85, 130, 222
binary callables, 21, 22
binding, late, 114
bit manipulation, 205
block scope, 166
Boost C++ Library, 280
boundaries, 282, 403—404
bounds

errors, 403—404

safety, 439
built-in types, 283-285, 294
byte, 409

C

calculating (at compile time), 339-341
callables
definition of, 21, 22
providing, 305
C-arrays
bounds errors, 403—404
size of, 402
std::array instead of, 401-403
std::vector instead of, 398—400
case-sensitivity, 363
casts
avoiding, 197
naming, 198
Visual Studio compiler, 197
catch-clauses, ordering, 288
catch-fire semantics, 9
catching exceptions, 285-286. See also
exceptions
categories
types, 346—349
C++ Core Guidelines, enforcing, 447452

chain operations, 42
characters
arbitrary, 44
character-level input, 411
owning sequences, 405—406
std::string_view, 407—408
termination, 405, 406
cheap operations, 33
Clang compiler, 172, 196-197, 219
clang-tidy tool, 450452
classes
abstract, 101, 102
accessing, 56
assignments, 59-60, 78-80
base, 101
concrete types, 5859
constructors, 59-60, 66—78. See also
constructors
copying, 69, 78-83
declarations, 431
default arguments, 113-114
default constructors, 68-74
default operations, 60-66, 88—98
definitions of, 53
designing, 102-117
destructors, 59-60, 83—88
dynamic-cast, 114-117
enum, 133—-134
explicit actions, 84
functions, 55
hierarchies, 59, 98-117, 331
implementation, 56
inheritance, 54
initializing, 71
invariant, 55
moving, 78-83
non-dependent class template members,
323-325
objects, 114-117. See also objects
operators, 117-126. See also operators
overloading, 111
Plmpl idiom, 23-24
polymorphic, 81-83
RAII (Resource Acquisition Is
Initialization), 140—142
resources, 84
special constructors, 76—78
versus struct, 54
summary rules, 54-58
unions, 126—129

classical enumerations, 131, 132. See also
enumerations
cleanup actions, 433—435
clients, communication, 281
clone function, 103-105
code. See also performance
abstraction, 302-304
enabling analysis, 448
expressing ideas in, 8
expressiveness, 307
generic code based on
templates, 10
messy, 12, 13
multi-threaded programs, 232-234
null pointers, 192-193
optimization, 354-356
quality of, 167
repetition, 291
reusing, 232
source. See source code
stability, 423
unknown, 249-250
writing, 223
wrong assumptions, 214-218
common names, 169—170
communication
error handling, 281-282
functions, 20-22
comparisons, 325-330
type-traits library, 349-351
compiler errors, 332, 387
Compiler Explorer, 30, 219
compilers, default operations, 60—66
compile time, 338
calculating at, 338, 339-341
checking, 10, 11
gcd algorithms, 223-225
type manipulation at, 340-341
complicated expressions, 186
composite type categories, 347-348
concepts, 453456
concrete types, 5859
concurrency, 17,231-232, 245
data sharing, 257-261
general guidelines, 232-245
lock-free programming, 273-276
locks, 246-250
message passing, 269273
parallelism and, 232, 266-269
resources, 261-264

INDEX

threads, 250-257

validating, 238-245
conditional execution, 360
condition variables, 254-257

versus tasks, 272

without predicates, 257
configuring applied rules, 449
consistency

of default operations, 63-66

initialization preferences, 76
const

casts, 199

correctness, 294

defining objects, 297-298

member functions, 294-296
constant expressions, 29-30

functions, 357

templates, 356-362

user-defined types, 357358

variables, 356
constants, 293-298

enumerations, 133

initializers, 75

introducing, 176

magic, 190

symbolic, 190
constexpr, 29-30, 298, 342

metaprogramming, 358
constructors

calling virtual functions, 91-98

classes, 59—60, 66—78

conversion, 73

copy, 65

default, 68-74

defining, 62

delegating, 76, 77

explicit, 121

inheriting, 77-78

special, 76-78

throwing exceptions, 68
containers, 23

expressing, 305

iterating through, 366

sequence, 229

STL (Standard Template Library), 60,

398—404

threads as, 250-251
context

minimizing dependencies, 320-321

minimizing switching, 261

461

462

INDEX

contracts, 457458
interfaces, 15-16. See also interfaces
conventional usage, 118-126
conversions
constructors, 121
decay, 117
expressions, 197-199
implicit conversion operators, 122124
narrowing, 180-182
copy-and-swap idiom, 93-94
copy-assignment operator, 63, 221, 222
copy constructors, 65
copying, 42
classes, 69, 78-83
deep copying, 80
parameters, 34
semantics, 80-83
shallow copying, 80
copy-only type, 221
copy semantics, 12
core dumps, 44, 146
correctness, type-traits library, 353-354
covariant return type, 103, 104
.cpp files, 384, 386-387
CppMem, 241-245
C-strings, 406
C-style programming, 375
availability of source code, 376-377
entire source code not available, 378-380
preference for C++, 375-376
using interfaces for, 378-380
curly braces (), 144, 166
cycles
breaking, 154-156
of smart pointers, 154, 156
cyclic dependencies, 388-390

D

data members

accessing specifiers, 105

non-const, 107
data races, 234-235

in CppMem, 245
data sharing, concurrency, 257-261
deadlocks, 248
deallocation, resource management, 145-150
decay, 117

declaration
classes, 431
expressions, 168
functions, 427—428
naming, 168-169, 171
statements, 168
static_assert, 10
deduction
automatic type, 179
template argument, 311-312
deep copying, 80. See also copying
polymorphic classes, 103
=default, §9-90
defaults
arguments, 49, 113-114
behaviors, 71
constructors, 68—74, 69—74
operations, 60—66, 88—98
statements, 202-204
=delete, 89, 90-91
deleting
arrays, 194
destructors, 91
dependencies
avoiding, 390
cyclic, 388-390
injection, 18-20
minimizing context, 320-321
non-dependent class template members,
323-325
between special member functions, 61
deque, 226
dereferencing pointers, 191-193, 194
design
classes, 102-117
error handling, 281-282
Gang of Four (GoF), 111
optimizations, 219-222
Design Patterns: Elements of Reusable Object-
Oriented Software (Gamma, Helm,
Johnson, Vlissides), 111
destructors, 145
calling virtual functions, 91-98
classes, 59—-60, 83—-88
defining, 84, 85
deleting, 91
failing, 88
need for, 83

nonvirtual, 87
protected, 87
public, 86-87
virtual, 86-87
detection
errors, 10
overflow, 208
deterministic, definition of, 437
devices, automatic management of, 435, 449
direct ownership, 286-287
discriminated unions, 126
documentation, intention of, 9
don’t repeat yourself. See DRY (don’t repeat
yourself)
do while loops, 199, 200
DRY (don’t repeat yourself), 49, 291, 364, 365
dynamic-cast, 114-117

E

enable_if, 319-320, 352, 356
enabling code analysis, 448
endl, 415-418
enforcing rules, 447-452
enumerations, 131-137
ALL_CAPS, 134
constants, 133
enum class, 133-134
enumerator values, 136
over macros, 132—-133
strongly typed enums, 131
underlying types, 135
unnamed, 134-135
equality operators, 94-96, 97-98
equivalent operations, 124-125
error handling, 279, 280-281. See also errors
design, 281-282
implementation, 283-291
errors
arithmetic, 208-210
bounds, 403—404
with C++ compilers, 377
compilation, 174
compiler, 387
detecting, 10
run-time, 11
SFINAE (Substitution Failure Is Not An
Error), 320, 352
single pointers and, 22-23

INDEX

static_assert declarations, 10
use-before-set, 177
Euclidean algorithm, 223
evaluation, order of, 150, 194-195, 194-196
exceptions
avoiding, 429431
basic exception safety, 280
catching, 285-286
dynamic-cast, 116
error handling, 283. See also error handling
ordering catch-clauses, 288
purpose-designed user-defined types,
283-285
safety, 280
sending, 270-271
specifications, 287-288
strong exception safety, 280
throwing, 68
execution
conditional, 360
metafunctions, 342
policies, 267
selecting, 243
single-threaded, 218
explicit constructors, 121
explicit sharing, minimizing, 236-237
expressions, 165-166, 186
complicated, 186
constant, 29-30
conversions, 197-199
general rules, 166—168
magic constants, 190
operator precedence, 187
order of evaluation, 194-195
pointers, 187-190, 191-193
range checking, 190-191
statements, 148—150
summation with fold, 51
expressiveness, 46—47
function objects, 307

F

failing destructors, 88
failure transparency, 280
fallthrough, 201, 202
files
.cpp, 384, 386-387
.h, 384, 385-386, 388

463

464

INDEX

header, 391, 393-394
source. See source files
final, 102, 103
flushing, 415-418
fold expressions, summation with, 51
for loops, 199, 200
format strings, 413—414
for-statements, 168—169
forwarding, perfect, 333-335
forward_list, 226
forward parameters, 34-36
forward std, 144, 198, 226
free, 145-146
func, 39
function objects
advantages of, 307-310
algorithms, 305-307
as sorting criteria, 307
with state, 309
functions, 27-28
ADL (argument-dependent lookup), 126
arguments, 359
callables, 21, 22
classes, 55
cleanup actions, 433-435
clone, 103-105
communication, 20-22
constant expressions, 357
constexpr, 29-30, 298, 342, 356
declarations, 427—428
=default, §9-90
defining, 368, 385
definitions, 28-29
=delete, 89, 90-91
dependencies between special member, 61
free, 145-146
helper, 57
invariants for, 15
ISP (interface segregation principle), 100
lambdas, 46
main, 42
malloc, 145-146
members, 56
metafunctions, 342-345
naming, 28-29
noexcept, 30-31, 88
nonmember, 118—122
order of evaluation, 195-196
overloading, 379

parameter packs, 35, 51, 335, 336

parameters, 156—159

passing parameters, 32-38. See also
parameters

printf, 413-414

pure, 31-32

refactoring, 29

return-statements in, 428—429

as sorting criteria, 307

specialization of templates, 367-372

std::move(local), 45-46

struct, 55

swap, 92-94

templates, 311-313

unit tests, 18

virtual, 82, 102, 223, 331, 357

virtual clone member, 105

fundamental types, 176, 181

G

Gang of Four design. See GoF (Gang of Four)
design
GCC compiler, 172,174, 196, 197, 219, 354
gcd algorithm, 223-225
general rules. See rules
generic code. See also code
templates, 10
generic programming, 301, 302
getters, 106
global containers, threads as, 250-251
global scope, 176
global variables, non-const, 16-17
GoF (Gang of Four) design, 111
graphs, annotated, 243
GSL (Guidelines Support Library), 441-444
assertions, 443
ownership pointers, 442—443
utilities, 443—444
views, 441-442
guarantees
evaluation order, 150, 196
exceptions, 280. See also exceptions
Guidelines Support Library. See GSL
(Guidelines Support Library)

H

hardware/compiler combinations, 274-276
Haskell, 32

header files, 391
unnamed namespaces, 394
using namespaces, 393-394
helper functions, 57
' files, 384, 385-386
#include guard, 388
hiding
implementation details, 310
member functions, 174
hierarchies
catching exceptions, 285-286
classes, 53, 59, 98-117, 331. See also classes
equality operators, 97-98
navigating, 115
templates, 330332
hints, compilers, 223

I

IILE (Immediately Invoked Lambda
Expression), 183
Immediately Invoked Lambda Expression. See
IILE (Immediately Invoked Lambda
Expression)
immutable data, 12, 293-298
implementation
classes, 56
error handling, 283-291
hiding details, 310
inheritance, 98, 107-111
Plmpl idiom, 23-24, 109
singletons, 18
source files, 384-391
templates with specializations, 325-330
ThreadSanitizer, 239-241
implementation-defined behavior, 9, 205
implicit conversion operators, 122-124
in-class initializers, 75
inheritance
classes, 54
implementation, 98, 107-111
interfaces, 107-111
multiple, 107, 111
initialization, 177—-182
lambdas, 183-184
objects, 175-176
two-phase, 431-433
variables, 175-184

INDEX

injection
dependency, 18-20
inline, 30, 354, 357, 385
in-out parameters, 36
in parameters, 34
input/output. See I/O (input/output)
integers, signed/unsigned, 204-208
interfaces, 15-16
ABI (application binary interface), 23-24
abstract classes, 101
applying classes, 56
base classes, 101
C-style programming, 378-380
defining, 386-387
dependency injection, 18-20
function communication, 20—22
functions, 27-28. See also functions
inheritance, 107-111
multiple inheritance, 111
non-const global variables, 16-17
segregation principle, 100
single pointers, 22-23
singletons, 17-18
source files, 384-391
templates, 305-320
interface segregation principle. See ISP
(interface segregation principle)
internal linkage, 394-395
invariants
error handling, 282
for functions, 15
/O (input/output)
character-level input, 411
iostreams, 413—414
std::endl, 415418
STL (Standard Template Library), 411-418
stream synchronization, 414415
iostreams, 411, 413—414
ISO Standards, 8, 9
ISP (interface segregation principle), 100
iteration
statements, 199-201
through containers, 366
iterator categories, 366—367

J

jthread, 251-253

465

466

INDEX

K

keep it simple, stupid. See KISS (keep it simple,
stupid)

keywords, overriding, 102

KISS (keep it simple, stupid), 59

Koenig lookup, 126, 314, 315-316

L

lambdas, 46
initializing, 183-184
overloading, 117
references, 47, 48—49
as sorting criteria, 307
with state, 310
unnamed, 364-365
languages
features, 167-168
Haskell, 32
late binding, 114
leaks
memory, 287
resources, 11
libraries, 166. See also STL (Standard
Template Library)
Boost C++ Library, 280
cycles among, 425
expressing reusable parts as, 424425
GSL (Guidelines Support Library),
441444
reusing code, 232
STL (Standard Template Library). See STL
(Standard Template Library)
support, 13
type-traits, 345-346, 351
life cycles of objects, 59
lifetimes
objects, 142
safety, 439
semantics, 157-159
limiting scope, 168—169
linker errors, 387
Linux systems
creation of threads, 262
flushing, 418
size of threads, 261
list, 226
literal type, 224
LoadLoad, 276

local names, 169170
local objects, 140, 141, 287. See also objects
lock-free programming, 273-276
lock_guard, 264-266
locks
concurrency, 246-250
mutexes, 264
std::lock_guard, 264-266
std::unique_lock, 264-266
logical constness, 295
logical structure, expressing, 394
lookups, 126, 314, 315
loops, 199, 200
raw, 201
recursion versus, 360
lost wakeups, 255, 256
Ivalue references, 42-46

M

macros
enumerations over, 132-133
statements, 184-185
magic constants, 190
malloc, 145-146
management
automatic management of devices, 435,
449
automatic memory management, 398
memory, 398, 405
resources, 139-140. See also resource
management
Martin, Robert C., 100
mathematical functions, 32. See also pure
functions
member functions, 56
boundary-checking, 403—404
compiler errors, 332
const, 294-296
hiding, 174
reserve, 399
shadowing, 112
virtual member function templates,
331-332
members
accessing specifiers for data, 1035
declaring, 74
dependencies between special functions, 61
initializing, 74-76,75
ISP (interface segregation principle), 100

minimizing exposure, 58
non-dependent class template, 323-325
nonpublic, 58
parameters, 321-322
pointers, 85
variables, 75
memory
accessing, 225-229
allocation, 147, 246
automatic memory management, 398
leaks, 287
management, 398, 405
models, 242
ROM (readonly memory), 29
saving, 126
sequence containers, 229
messages
as exceptions and values, 271
passing, 269-273
messy code, 12,13
metadata, templates, 341
metafunctions, templates, 342-345
metaprogramming, 336-356
constexpr function, 358
templates, 351
meta-rules. See philosophical rules
Metaware compiler, 338
Meyers singleton, 217
Microsoft Visual Studio Compiler, 30
minimizing
context dependencies, 320-321
context switching, 261
thread creation/destruction, 261-263
time locking mutexes, 264
models, memory, 242
modification versus new value, 359
most vexing parse, 177, 179
move(local) function, 45-46
moving
classes, 7883
semantics, 80-83
std::unique_ptr, 153
MSVC compiler, 172
multiple inheritance, 107, 111
multiple mutexes, acquiring, 247-248
multi-threaded programs, 232-234
mutable data, 12
mutexes
acquiring, 247-248
locks, 264

INDEX

MyGuard, 265
myths, 427436

N

naked unions, 127-128
Named Return Value Optimization. See
NRVO (Named Return Value
Optimization)
names
ALL_CAPS, 170-171
casts, 198
common names, 169-170
conventions, 342
declarations, 168—-169, 171
expressions, 168—185
functions, 28-29
local names, 169170
mangling, 380
operations, 362-364
redundancy, 171-172
reusing names, 172-175
similar names, 170
statements, 168—185
templates, 314-319
namespaces, 57
defining overloaded operators, 125-126
source code, 391-395
narrowing conversion, 180—182
negative values, 206208
nested scopes, reusing names, 172-175
NNM (No Naked Mutex), 246
NNN (No Naked New), 147, 246
noexcept, 30, 31,79, 95
destructors, 88
function definition, 88
noexcept function, 30-31, 88
no exception safety, 280
no-leak guarantee, 280
No Naked Mutex. See NNM (No Naked
Mutex)
No Naked New. See NNN (No Naked New)
non-const data members, 107
non-const global variables, 16-17
non-dependent class template members,
323-325
nongeneric code, writing, 365-367
nonmember functions, 118—122
nonpublic members, 58
nonrules, 427-436

467

468

INDEX

nonvirtual, destructors, 87
normal parameter passing, 32
no-throw guarantees, 280
notifications
sending, 272-273
with tasks, 273
NRVO (Named Return Value Optimization),
36,37
NULL, 192
nullptr, 191-193, 192-193. See also pointers

@)

objects
accessing, 114-117
constructors creating, 67
creating, 145
defining, 297-298, 385-386
direct ownership, 286-287
function objects. See function objects
immutable data and, 294
initializing, 175-176
life cycles of, 59
lifetimes, 142
local, 140, 141
moving, 80
scoped, 143—144
ODR (One Definition Rule), 385
One Definition Rule. See ODR (One
Definition Rule)
operands, defining overloaded operators,
125-126
operations
cheap, 33
equivalent, 124-125
naming, 362-364
naming functions, 28-29
passing to algorithms, 305-307
reordering, 276
operators
ADL (argument-dependent lookup), 126
conventional usage, 118-126
copy-assignment, 221, 222
defining, 125-126
equality, 94-96, 97-98
implicit conversion, 122124
overloading, 117-126
precedence, 187
symmetric, 118-122

optimization, 17
code, 167
design, 219-222
enabling, 218-229
type-traits library, 354-356
wrong, 214
order of evaluation, expressions, 194-195
out_of_range, 190, 403
out parameter, 52
output parameters, 36—37
out values, 37-38
overflow, 208
overloading, 49
ADL (argument-dependent lookup), 126
classes, 111
conventional usage, 118-126
defining operators, 125-126
functions, 379
function templates, 369-370
implicit conversion operators, 122-124
operators, 117-126
override, 102
ownership
direct, 286-287
pointers/references, 143, 442443
semantics, 38—41
sharing, 164, 258-261
std::shared_ptr, 151-153
std::unique_ptr, 150-151

P

packing parameters, 35
parallelism, concurrency and, 232, 266-269
parameters

in, 34

forward, 34-36

functions, 156-159

in-out, 36

members, 321-322

normal parameter passing, 32

out, 52

output, 36-37

ownership semantics, 38—41

packs, 35, 51, 335, 336

passing, 32-38

value return semantics, 42—46
Parent, Sean, 167
parentheses (), 187

passing
messages, 269-273
pointers, 297
references, 297
passing parameters, 32-38
normal parameter passing, 32
ownership semantics, 38—41
value return semantics, 42—46
perfect forwarding, 333-335
performance, 213
enabling optimization, 218-229
function objects, 307
measurements, 214
Meyers singleton, 217
wrong assumptions, 214-218
wrong optimizations, 214
philosophical rules, 7
compile-time checking, 10
expressing ideas in code, 8
expressing intent, 9
immutable data, 12
messy code, 12, 13
resource leaks, 11
run-time checking, 11
run-time errors, 11
saving space and time, 11-12
statically type safe programs, 10
supporting tools, 13
support libraries, 13
writing in ISO standard C++, 8-9
physical constness, 295
Pikus, Fedor, 274
Plain Old Data. See POD (Plain Old Data)
Plmpl idiom, 23-24, 109
POD (Plain Old Data), 33
pointers, 42-46, 84
assigning, 117
dereferencing, 191-193, 194
dynamic-cast, 114, 115, 116
expressions, 187-190, 191-193
members, 85
null, 191-193
passing, 162-164, 297
Plmpl idiom, 23-24, 109
raw, 85, 140, 143
rules, 191
single, 22-23
smart, 150-164
policy execution, 266, 267
polymorphic classes, 81-83, 103

INDEX

portably enforceable, definition of, 437

POSIX Threads, 256

postconditions, 15

power as function/metafunction, 345

pragma once, 388

preconditions, 15

predicates, condition variables without, 257

predictability, 225-229

Preshing, Jeff, 276

primary type categories, 346-349

principle of least astonishment, 118

printf function, 413-414

profiles, 437439
Pro.boundsBounds safety, 439
Pro.lifetimeLifetime safety, 439
Pro.typeType safety, 438

programming
C-style, 375. See also C-style programming
generic. See generic programming
metaprogramming, 336-356, 351, 358. See

also metaprogramming

programs
multi-threaded, 232-234
statically type safe, 10

property types, 348-349

protected data, 106-107, 436

protected destructors, 87

public destructors, 86-87

pure functions, 31-32. See also functions

purpose-designed user-defined types, 283-285

Q

quality of code, 167

R

race conditions, 253

RAII (Resource Acquisition Is Initialization),
140-142, 246, 264, 287, 288, 289

range checking, 190-191

ranges, expressing, 305

raw loops, 201

raw pointers, 85, 140, 143

raw references, 143

read-only memory. See ROM (read-only
memory)

recursion versus loop, 360

redundancy, naming, 171-172

refactoring, 17, 29

469

INDEX

references, 84, 140
catching exceptions, 285-286
dynamic-cast, 114, 115, 116
lambdas, 47, 48—49
to locals, 42—44
Ivalue, 4246
passing, 297
raw, 143
SemiRegular type, 315
universal, 334
referential transparency, 31
Regular, 313-314
regular types, 58, 59
relations, enabling, 243
relaxed semantics, 275
reordering operations, 276
repetition of code, 291
reserve function, 399
Resource Acquisition Is Initialization.
See RAII (Resource Acquisition Is
Initialization)
resource management, 139-140
allocation, 145-150
deallocation, 145-150
general rules, 140-144
smart pointers, 150-164
resources
concurrency, 261-264
leaks, 11
ownership of, 39
return-statements in functions, 428—429

Return Value Optimization. See RVO (Return

Value Optimization)
return values
metafunctions, 343
simulations, 361
reusing
expressing reusable parts as libraries,
424-425
operations, 362-364
ROM (read-only memory), 29
rule of five, 61, 83, 84, 89
rule of six, 61
rule of zero, 60
rules
arithmetic, 204
class hierarchies, 99—101
configuring applied, 449
enforcing, 447-452

expressions, 166—168
interfaces, 20-22
NNN (No Naked New), 147
ODR (One Definition Rule), 385
passing parameters, 32—38
philosophical, 7. See also philosophical
rules
pointers, 191
resource management, 140—144
statements, 166—168
summary, 54-58
templates, 362372
user-defined types, 53
running code analysis, 449
run time
calculating at, 343
checking, 10, 11
constant expression in ROM, 29-30
errors, 11
gcd algorithms, 223-225
RVO (Return Value Optimization), 36, 37

S

safety
basic exception, 280
bounds, 439
exceptions, 280
lifetimes, 439
types, 438
scoped enums, 131, 135, 137
scoped objects, 143-144
scopes
block, 166
global, 176
limiting, 168-169
reusing names, 172—-175
sizes, 168
selection statements, 201-204
self-assignment, 79-80
semantics
acquire-release, 218
catch-fire, 9
copy, 65
copying, 80—83
copy-only type, 221
lifetime, 157-159
moving, 80-83
ownership, 38—41

relaxed, 275
summary rules, 54-58
value return, 42-46
SemiRegular, 313-314
sequence containers, 229
sequential consistency, 218, 243,274,275
setters, 106
SFINAE (Substitution Failure Is Not An
Error), 320, 352
shadowing, 111-113
shallow copying, 80. See also copying
sharing ownership, 258-261
signed/unsigned integers, 204208
SIMD (Single Instruction, Multiple Data), 267
similar names, 170. See also naming
simulations, return values, 361
single-argument constructors, 72-74
Single Instruction, Multiple Data. See SIMD
(Single Instruction, Multiple Data)
single pointers, 22-23
single return-statements in functions,
428-429
single-threaded case, 218
singletons, 17-18
six, rule of, 61
sizes
of C-arrays, 402
of chars with C++ compilers, 377
of enumerators, 136
of scopes, 168
of threads, 261
of vectors, 399, 400
slicing, 81
smart pointers, 150-164
aliases, 162-164
cycles of, 154
as function parameters, 156
lifetime semantics of, 157—159
sharing ownership, 261
std::unique_ptr, 160-162
software units, 281
source code
availability of, 376-377
entire code not available, 378-380
namespaces, 391-395
source files, 383, 384
cyclic dependencies, 388-390
implementation, 384-391
interfaces, 384-391
span, 10, 23, 52, 101

INDEX

special constructors, 76-78
specialization,
function templates, 367-372
templates, 360
special member functions, 61
specifications, exceptions, 287288
spurious wakeups, 256
stability, code, 423
Standard Template Library. See STL (Standard
Template Library)
state, function objects, 308-310
statements, 165-166, 199. See also declarations
defaults, 202-204
definitions of, 166
expressions, 148—150
for-statements, 168—169
general rules, 166-168
initializing variables, 175-184
iteration, 199-201
macros, 184-185
naming, 168185
return-statements in functions, 428—429
selection, 201-204
switch, 201-202
statically type safe programs, 10
static_assert declarations, 10
static type systems, 222223
std::forward, 144, 198, 226, 334
std::make_unique, 36, 148, 153, 334, 335
std::shared_ptr, 140, 151-153
std::unique_ptr, 140, 146-147, 150-151
moving, 152
smart pointers, 160—-162
std::weak_ptr, 140, 154-156
STL (Standard Template Library), 8, 21, 303,
397
algorithms, 8, 12, 266
containers, 23, 60, 398—404
expressions, 166
I/O (input/output), 411418
RAII (Resource Acquisition Is
Initialization), 140—142
strings, 410
text, 404411
streams
state, 411-413
synchronization, 414415
strings
accessing nonexisting element of, 404
format, 413414

471

472

INDEX

owning character sequences, 405—406
STL (Standard Template Library), 410
string_view, referring to character sequences,
407-408
strong exception safety, 280
strongly typed enums, 131
Stroustrup, Bjarne, 169
struct, 55
case-sensitivity, 363
class versus, 54
structures, organizing data into, 54-55
Substitution Failure Is Not An Error. See
SFINAE (Substitution Failure Is Not
An Error)
suffixes, .cpp, 384
summary rules, 54-58
summation
with fold expressions, 51
with va_arg, 51
support
C-arrays, 403—404
libraries, 13
tools, 13
Sutter, Herb, 274, 276
swap function, 92-94
switch statements, 201-202
symbolic constants, 190
symmetric operators, 118-122
synchronization, 255
streams, 414—415
volatile for, 238
sync_with_stdio, 404, 415

T

tagged unions, 128-129
tasks
condition variables versus, 272
notifications with, 273
versus threads, 237-238
Technical Report on C++ Performance, 430
templates, 301, 302
aliases, 310, 311
applying, 302-305
argument deduction, 313
arguments, 359
constant expressions, 356362
defining, 320-330

faking concepts, 319-320
function objects. See function objects
functions, 311-313
function template specialization, 367-372
generic code, 10
hierarchies, 330-332
implementations with specializations,
325-330
instantiation, 338
interfaces, 305-320
metadata, 341
metafunctions, 342-345
metaprogramming, 336-356, 351. See also
metaprogramming
naming, 314-319
parameter packs, 35, 51, 335, 336
Regular type, 313-314
rules, 362-372
specialization, 360
STL (Standard Template Library), 8
variadic, 332-336
virtual member function, 331-332
terminate, 88, 251, 252, 287
termination characters, 405, 406
testability, 16
text
STL (Standard Template Library), 404411
types of, 405
threads
concurrency, 250-257
creation/destruction, 261-263
detaching, 253
as global containers, 250-251
joining, 250
passing data to, 257-258
POSIX Threads, 256
sharing ownership, 258-261
sizes of, 261
std::jthread, 251-253
versus tasks, 237-238
ThreadSanitizer, 239-241
throwing exceptions, 68
direct ownership, 286-287
troubleshooting, 288-291
throwing functions, 30-31. See also functions
tools, 238
clang-tidy, 450-452
CppMem, 241-245

supporting, 13

ThreadSanitizer, 239-241
transform_exclusive_scan algorithm, 269
transform_reduce, 21, 22
transparency, referential, 31
troubleshooting throwing exceptions,

288-291

two-phase initializations, 431-433
typedef, defining aliases, 311
types

automatic type deduction, 179

built-in, 283-285, 294

categories, 346—-349

concrete, 58—59

copy-only, 221

fundamental, 176, 181

literal, 224

manipulation at compile time, 340-341

modifying, 351-352

properties, 348-349

purpose-designed user-defined, 283-285

regular, 58, 59

Regular, 313-314

return, 103, 104

safety, 438

SemiRegular, 313-314

static type systems, 222223

of text, 405

underlying, 135

unsigned, 205

user-defined, 357-358
type-traits library, 345-346

comparisons, 349-351

correctness, 353-354

metaprogramming, 351

modifying types, 351-352

optimization, 354-356

type categories, 346—-349

U

Uncle Bob, 100

undefined behaviors, 9, 22, 42, 63
core dumps, 146
C-strings, 405
data races, 234-235
naked unions, 127
order of evaluation, 194-195
printf function, 414

INDEX

underflow, 208. See also overflow
underlying types, 135
unions, 126—129
anonymous, 128—-129
discriminated, 126
naked, 127
saving memory, 126—128
tagged, 128-129
unique_lock, 264-266
unit tests, 18
universal references, 334
unknown code, calling, 249-250
unnamed enumerations, 134—135
unnamed lambdas, 364365
unnamed namespaces, 394
unpacking parameters, 35
Unruh, Erwin, 337, 338
unsigned/signed integers, 204-208
unspecified behavior, 196
use-before-set error, 177
user-defined types
constant expressions, 357-358
rules, 53
using
defining aliases, 311
namespaces, 393-394
utilities. See libraries; tools

A%

va_arg arguments, 49-52
value return semantics, 42—46
values
declaring variables, 176-177
enumerations. See enumerations
enumerator, 136
negative, 206-208
out, 37-38
return, 343
sending, 270-271
Van Eerd, Tony, 274
variables
categories of, 235
condition, 254-257. See also condition
variables
constant expressions, 356
declaring, 57
global, 16-17. See also global variables
initializing, 175-184, 176

473

INDEX

introducing, 176
member, 74
mutable, 296
naming, 169-170
purposes of, 182-183
variadic templates, 332-336
vector, 398—400, 402—403
vectorization, 267
vectors, size of, 399, 400
views, 441442
virtual, 82,223, 331, 357
virtual clone member function, 105
virtual destructors, 86—-87
virtual functions, 102
calling, 91-98
clone, 105
default arguments, 113-114
reasons for, 105
virtuality, 102-105
virtual member function templates,
331-332
visibility, modifying, 175
Visual Studio
casts, 197
enforcing C++ Core Guidelines,
448-450
volatile for synchronization, 238

W

wakeups

lost, 255

spurious, 256
warnings with C compilers, 376
while loops, 199, 200
Williams, Anthony, 274, 276
Windows systems

creation of threads, 262

flushing, 418

size of threads, 261
writing

code, 223

in ISO standard C++, 8-9

nongeneric code, 365-367
wrong assumptions, 214-218
wrong optimizations, 214

Y

YAGNI (you aren’t gonna need it), 424

Z

The Zen of Python, 198, 364, 365
zero. See also arithmetic

dividing by, 210

rule of, 60

This page intentionally left blank

C/C++ Programming
Books, eBooks & Video

Whether you are new to programming, are a programmer just
starting to learn C or C++, or have been programming with C or
C++ for years, InformIT has the C/C++ books, eBooks, and video
courses you need.

Official guides from language creators
Primers and tutorials
References

Pragmatic guides on coding and design

Visit informit.com/cplusplus to read sample chapters, shop, and
watch video lessons from featured products.

-
t source

he trusted technology learning

Addison-Wesley - Adobe Press - Cisco Press - Microsoft Press - Pearson IT Certification - Que - Sams - Peachpit Press

@ Pearson

http://Visitinformit.com/cplusplus

Photo by izusek/gettyimages

Register Your Product at informit.com/register
Access additional benefits and save 35% on your next purchase

Automatically receive a coupon for 35% off your next purchase, valid
for 30 days. Look for your code in your InformIT cart or the Manage
Codes section of your account page.

Download available product updates.

Access bonus material if available.”

Check the box to hear from us and receive exclusive offers on new
editions and related products.

“Registration benefits vary by product. Benefits will be listed on your account page under
Registered Products.

InformIT.com—The Trusted Technology Learning Source
InformIT is the online home of information technology brands at Pearson, the world's
foremost education company. At InformIT.com, you can:
Shop our books, eBooks, software, and video training
Take advantage of our special offers and promotions (informit.com/promotions)
Sign up for special offers and content newsletter (informit.com/newsletters)
Access thousands of free chapters and video lessons

Connect with InformIT—Visit informit.com/community

informit

the trusted technology learning source

Addison-Wesley - Adobe Press - Cisco Press + Microsoft Press « Pearson IT Certification « Que - Sams « Peachpit Press

@ Pearson

http://informit.com/register
http://InformIT.com
http://InformIT.com
http://informit.com/promotions
http://informit.com/newsletters
http://informit.com/community

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	List of selected C++ Core Guidelines
	List of figures
	List of tables
	Foreword
	Preface
	Acknowledgments
	About the author
	Part I: The Guidelines
	Chapter 1: Introduction
	Target readership
	Aim
	Non-aims
	Enforcement
	Structure
	Major sections

	Chapter 2: Philosophy
	Chapter 3: Interfaces
	The curse of non-const global variables
	Dependency injection as a cure
	Making good interfaces
	Related rules

	Chapter 4: Functions
	Function definitions
	Good names

	Parameter passing: in and out
	Parameter passing: ownership semantics
	Value return semantics
	When to return a pointer (T*) or an lvalue reference (T&)

	Other functions
	Lambdas

	Related rules

	Chapter 5: Classes and Class Hierarchies
	Summary rules
	Concrete types
	Constructors, assignments, and destructors
	Default operations
	Constructor
	Copy and move
	Destructors
	Other default operations

	Class hierarchies
	General rules
	Designing classes
	Accessing objects

	Overloading and overloaded operators
	Conventional usage

	Unions
	Related rules

	Chapter 6: Enumerations
	General rules
	Related rules

	Chapter 7: Resource Management
	General rules
	Allocation and deallocation
	Smart pointers
	Basic usage
	Function parameters

	Related rules

	Chapter 8: Expressions and Statements
	General
	Declarations
	Names
	Variables and their initialization
	Macros

	Expressions
	Complicated expressions
	Pointers
	Order of evaluation
	Conversions

	Statements
	Iteration statements
	Selection statements

	Arithmetic
	Arithmetic with signed/unsigned integers
	Typical arithmetic errors

	Related rules

	Chapter 9: Performance
	Wrong optimizations
	Wrong assumptions
	Enable optimization
	Related rules

	Chapter 10: Concurrency
	General guidelines
	Concurrency
	Locks
	Threads
	Condition variables
	Data sharing
	Resources
	Overlooked danger

	Parallelism
	Message passing
	Sending a value, or an exception
	Sending a notification

	Lock-free programming
	Related rules

	Chapter 11: Error Handling
	Design
	Communication
	Invariants

	Implementation
	Do’s
	Don’ts

	If you can’t throw
	Related rules

	Chapter 12: Constants and Immutability
	Use const
	Use constexpr

	Chapter 13: Templates and Generic Programming
	Use
	Interfaces
	Advantages of function objects

	Definition
	Alternative implementations with specializations

	Hierarchies
	Variadic templates
	Perfect forwarding
	Variadic templates

	Metaprogramming
	Template metaprogramming
	Type-traits library
	Constant expressions

	Other rules
	Related rules

	Chapter 14: C-Style Programming
	Entire source code available
	Entire source code not available

	Chapter 15: Source Files
	Interface and implementation files
	Namespaces

	Chapter 16: The Standard Library
	Containers
	Text
	Input and output
	Related rules

	Part II: Supporting Sections
	Chapter 17: Architectural Ideas
	Chapter 18: Nonrules and Myths
	Chapter 19: Profiles
	Pro.typeType safety
	Pro.boundsBounds safety
	Pro.lifetimeLifetime safety

	Chapter 20: Guidelines Support Library
	Views
	Ownership pointers
	Assertions
	Utilities

	Part III: Appendixes
	Appendix A: Enforcing the C++ Core Guidelines
	Visual Studio
	clang-tidy

	Appendix B: Concepts
	Appendix C: Contracts

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

