
M A N N I N G

SECOND EDITION

Anthony Williams

IN ACTION

Praise for the first edition

“It’s not just the best current treatment of C++11’s threading facilities ... it’s likely to
remain the best for some time to come.”

—Scott Meyers, author of Effective C++ and More Effective C++

“Simplifies the dark art of C++ multithreading.”
—Rick Wagner, Red Hat

“Reading this made my brain hurt. But it’s a good hurt.”
—Joshua Heyer, Ingersoll Rand

“Anthony shows how to put concurrency into practice.”
—Roger Orr, OR/2 Limited

“A thoughtful, in-depth guide to the new concurrency standard for C++ straight from
the mouth of one the horses.”

—Neil Horlock, Director, Credit Suisse

“Any serious C++ developers should understand the contents of this important book.”
—Dr. Jamie Allsop, Development Director

C++ Concurrency
in Action

Second Edition

ANTHONY WILLIAMS

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editors: Cynthia Kane, Jennifer Stout
20 Baldwin Road Technical development editor: Alain Couniot
PO Box 761 Review editor: Aleksandar Dragosavljević
Shelter Island, NY 11964 Production editor: Janet Vail

Copy editors: Safis Editing, Heidi Ward
Proofreader: Melody Dolab

Technical proofreader: Frédéric Flayol
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617294693
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19

www.manning.com

 To Kim, Hugh, and Erin

vivi

brief contents
1 ■ Hello, world of concurrency in C++! 1

2 ■ Managing threads 16

3 ■ Sharing data between threads 36

4 ■ Synchronizing concurrent operations 72

5 ■ The C++ memory model and operations on
atomic types 124

6 ■ Designing lock-based concurrent data structures 173

7 ■ Designing lock-free concurrent data structures 205

8 ■ Designing concurrent code 251

9 ■ Advanced thread management 300

10 ■ Parallel algorithms 327

11 ■ Testing and debugging multithreaded applications 339

contents
preface xiii
acknowledgments xv
about this book xvii
about the author xx
about the cover illustration xxi

1 Hello, world of concurrency in C++! 1
1.1 What is concurrency? 2

Concurrency in computer systems 2 ■ Approaches to
concurrency 4 ■ Concurrency vs. parallelism 6

1.2 Why use concurrency? 7
Using concurrency for separation of concerns 7 ■ Using
concurrency for performance: task and data parallelism 8
When not to use concurrency 9

1.3 Concurrency and multithreading in C++ 10
History of multithreading in C++ 10 ■ Concurrency support in the
C++11 standard 11 ■ More support for concurrency and
parallelism in C++14 and C++17 12 ■ Efficiency in the C++
Thread Library 12 ■ Platform-specific facilities 13

1.4 Getting started 13
Hello, Concurrent World 14
vii

CONTENTSviii
2 Managing threads 16

2.1 Basic thread management 17
Launching a thread 17 ■ Waiting for a thread to complete 20
Waiting in exceptional circumstances 20 ■ Running threads in
the background 22

2.2 Passing arguments to a thread function 24
2.3 Transferring ownership of a thread 27
2.4 Choosing the number of threads at runtime 31
2.5 Identifying threads 34

3 Sharing data between threads 36

3.1 Problems with sharing data between threads 37
Race conditions 38 ■ Avoiding problematic race conditions 39

3.2 Protecting shared data with mutexes 40
Using mutexes in C++ 41 ■ Structuring code for protecting shared
data 42 ■ Spotting race conditions inherent in interfaces 44
Deadlock: the problem and a solution 51 ■ Further guidelines
for avoiding deadlock 53 ■ Flexible locking with
std::unique_lock 59 ■ Transferring mutex ownership between
scopes 61 ■ Locking at an appropriate granularity 62

3.3 Alternative facilities for protecting shared data 64
Protecting shared data during initialization 65 ■ Protecting rarely
updated data structures 68 ■ Recursive locking 70

4 Synchronizing concurrent operations 72

4.1 Waiting for an event or other condition 73
Waiting for a condition with condition variables 74
Building a thread-safe queue with condition variables 76

4.2 Waiting for one-off events with futures 81
Returning values from background tasks 82 ■ Associating a task
with a future 84 ■ Making (std::)promises 87 ■ Saving an
exception for the future 89 ■ Waiting from multiple threads 90

4.3 Waiting with a time limit 93
Clocks 93 ■ Durations 94 ■ Time points 96 ■ Functions
that accept timeouts 98

CONTENTS ix
4.4 Using synchronization of operations to simplify code 99
Functional programming with futures 99 ■ Synchronizing
operations with message passing 104 ■ Continuation-style
concurrency with the Concurrency TS 108 ■ Chaining
continuations 110 ■ Waiting for more than one future 114
Waiting for the first future in a set with when_any 115
Latches and barriers in the Concurrency TS 118 ■ A basic latch
type: std::experimental::latch 118 ■ std::experimental::barrier:
a basic barrier 120 ■ std::experimental::flex_barrier—
std::experimental::barrier’s flexible friend 121

5 The C++ memory model and operations on atomic types 124

5.1 Memory model basics 125
Objects and memory locations 125 ■ Objects, memory locations,
and concurrency 126 ■ Modification orders 127

5.2 Atomic operations and types in C++ 128
The standard atomic types 128 ■ Operations on
std::atomic_flag 132 ■ Operations on std::atomic<bool> 134
Operations on std::atomic<T*>: pointer arithmetic 137
Operations on standard atomic integral types 138
The std::atomic<> primary class template 138
Free functions for atomic operations 140

5.3 Synchronizing operations and enforcing ordering 142
The synchronizes-with relationship 143 ■ The happens-before
relationship 145 ■ Memory ordering for atomic operations 146
Release sequences and synchronizes-with 164 ■ Fences 166
Ordering non-atomic operations with atomics 168 ■ Ordering
non-atomic operations 169

6 Designing lock-based concurrent data structures 173

6.1 What does it mean to design for concurrency? 174
Guidelines for designing data structures for concurrency 175

6.2 Lock-based concurrent data structures 176
A thread-safe stack using locks 176 ■ A thread-safe queue using
locks and condition variables 179 ■ A thread-safe queue using
fine-grained locks and condition variables 183

6.3 Designing more complex lock-based data structures 194
Writing a thread-safe lookup table using locks 194 ■ Writing a
thread-safe list using locks 199

CONTENTSx
7 Designing lock-free concurrent data structures 205

7.1 Definitions and consequences 206
Types of nonblocking data structures 206 ■ Lock-free data
structures 207 ■ Wait-free data structures 208 ■ The pros and
cons of lock-free data structures 208

7.2 Examples of lock-free data structures 209
Writing a thread-safe stack without locks 210 ■ Stopping those
pesky leaks: managing memory in lock-free data structures 214
Detecting nodes that can’t be reclaimed using hazard pointers 218
Detecting nodes in use with reference counting 226 ■ Applying the
memory model to the lock-free stack 232 ■ Writing a thread-safe
queue without locks 236

7.3 Guidelines for writing lock-free data structures 248
Guideline: use std::memory_order_seq_cst for prototyping 248
Guideline: use a lock-free memory reclamation scheme 248
Guideline: watch out for the ABA problem 249 ■ Guideline:
identify busy-wait loops and help the other thread 249

8 Designing concurrent code 251

8.1 Techniques for dividing work between threads 252
Dividing data between threads before processing begins 253
Dividing data recursively 254 ■ Dividing work by task type 258

8.2 Factors affecting the performance of concurrent
code 260
How many processors? 261 ■ Data contention and cache
ping-pong 262 ■ False sharing 264 ■ How close is
your data? 265 ■ Oversubscription and excessive task
switching 266

8.3 Designing data structures for multithreaded
performance 266
Dividing array elements for complex operations 267 ■ Data access
patterns in other data structures 269

8.4 Additional considerations when designing for
concurrency 270
Exception safety in parallel algorithms 271 ■ Scalability and
Amdahl’s law 277 ■ Hiding latency with multiple threads 279
Improving responsiveness with concurrency 280

CONTENTS xi
8.5 Designing concurrent code in practice 282
A parallel implementation of std::for_each 282 ■ A parallel
implementation of std::find 284 ■ A parallel implementation of
std::partial_sum 290

9 Advanced thread management 300
9.1 Thread pools 301

The simplest possible thread pool 301 ■ Waiting for tasks
submitted to a thread pool 303 ■ Tasks that wait for other
tasks 307 ■ Avoiding contention on the work queue 310
Work stealing 311

9.2 Interrupting threads 315
Launching and interrupting another thread 316 ■ Detecting
that a thread has been interrupted 318 ■ Interrupting a
condition variable wait 318 ■ Interrupting a wait on
std::condition_variable_any 321 ■ Interrupting other
blocking calls 323 ■ Handling interruptions 324
Interrupting background tasks on application exit 325

10 Parallel algorithms 327
10.1 Parallelizing the standard library algorithms 327
10.2 Execution policies 328

General effects of specifying an execution policy 328
std::execution::sequenced_policy 330
std::execution::parallel_policy 330
std::execution::parallel_unsequenced_policy 331

10.3 The parallel algorithms from the C++ Standard
Library 331
Examples of using parallel algorithms 334
Counting visits 336

11 Testing and debugging multithreaded applications 339
11.1 Types of concurrency-related bugs 340

Unwanted blocking 340 ■ Race conditions 341

11.2 Techniques for locating concurrency-related bugs 342
Reviewing code to locate potential bugs 342 ■ Locating
concurrency-related bugs by testing 344 ■ Designing for
testability 346 ■ Multithreaded testing techniques 347
Structuring multithreaded test code 350 ■ Testing the performance
of multithreaded code 352

CONTENTSxii
appendix A Brief reference for some C++11 language features 354
appendix B Brief comparison of concurrency libraries 382
appendix C A message-passing framework and complete ATM example 384
appendix D C++ Thread Library reference 401

index 551

preface
I encountered the concept of multithreaded code while working at my first job after I
left college. We were writing a data processing application that had to populate a data-
base with incoming data records. There was a lot of data, but each record was inde-
pendent and required a reasonable amount of processing before it could be inserted
into the database. To take full advantage of the power of our 10-CPU UltraSPARC, we
ran the code in multiple threads, each thread processing its own set of incoming
records. We wrote the code in C++, using POSIX threads, and made a fair number of
mistakes—multithreading was new to all of us—but we got there in the end. It was also
while working on this project that I first became aware of the C++ Standards Commit-
tee and the freshly published C++ Standard.

 I have had a keen interest in multithreading and concurrency ever since. Where
others saw it as difficult, complex, and a source of problems, I saw it as a powerful tool
that could enable your code to take advantage of the available hardware to run faster.
Later on, I would learn how it could be used to improve the responsiveness and per-
formance of applications even on single-core hardware, by using multiple threads to
hide the latency of time-consuming operations such as I/O. I also learned how it
worked at the OS level and how Intel CPUs handled task switching.

 Meanwhile, my interest in C++ brought me in contact with the ACCU and then the
C++ Standards panel at BSI, as well as Boost. I followed the initial development of the
Boost Thread Library with interest, and when it was abandoned by the original devel-
oper, I jumped at the chance to get involved. I was the primary developer and main-
tainer of the Boost Thread Library for a number of years, though I have since handed
that responsibility on.
xiii

PREFACExiv
 As the work of the C++ Standards Committee shifted from fixing defects in the
existing standard to writing proposals for the C++11 standard (named C++0x in the
hope that it would be finished by 2009, and then officially C++11, because it was finally
published in 2011), I got more involved with BSI and started drafting proposals of my
own. Once it became clear that multithreading was on the agenda, I jumped in with
both feet and authored or co-authored many of the multithreading and concurrency-
related proposals that shaped this part of the standard. I have continued to be
involved with the concurrency group as we worked on the changes for C++17, the
Concurrency TS, and proposals for the future. I feel privileged to have had the oppor-
tunity to combine two of my major computer-related interests—C++ and multithread-
ing—in this way.

 This book draws on all my experience with both C++ and multithreading and aims
to teach other C++ developers how to use the C++17 Thread Library and Concurrency
TS safely and efficiently. I also hope to impart some of my enthusiasm for the subject
along the way.

acknowledgments
I will start by saying a big “Thank you” to my wife, Kim, for all the love and support she
has given me while writing this book. The first edition occupied a significant part of
my spare time for the four years before publication, and the second edition has again
required a significant investment of time, and without her patience, support, and
understanding, I couldn’t have managed it.

 Second, I would like to thank the team at Manning who have made this book possi-
ble: Marjan Bace, publisher; Michael Stephens, associate publisher; Cynthia Kane, my
development editor; Aleksandar Dragosavljević, review editor; Safis Editing and Heidi
Ward, my copyeditors; and Melody Dolab, my proofreader. Without their efforts you
would not be reading this book right now.

 I would also like to thank the other members of the C++ Standards Committee
who wrote committee papers on the multithreading facilities: Andrei Alexandrescu,
Pete Becker, Bob Blainer, Hans Boehm, Beman Dawes, Lawrence Crowl, Peter Dimov,
Jeff Garland, Kevlin Henney, Howard Hinnant, Ben Hutchings, Jan Kristofferson,
Doug Lea, Paul McKenney, Nick McLaren, Clark Nelson, Bill Pugh, Raul Silvera, Herb
Sutter, Detlef Vollmann, and Michael Wong, plus all those who commented on the
papers, discussed them at the committee meetings, and otherwise helped shaped the
multithreading and concurrency support in C++11, C++14, C++17, and the Concur-
rency TS.

 Finally, I would like to thank the following people, whose suggestions have greatly
improved this book: Dr. Jamie Allsop, Peter Dimov, Howard Hinnant, Rick Molloy,
Jonathan Wakely, and Dr. Russel Winder, with special thanks to Russel for his detailed
xv

ACKNOWLEDGMENTSxvi
reviews and to Frédéric Flayol, who, as technical proofreader, painstakingly checked
all the content for outright errors in the final manuscript during production. (Any
remaining mistakes are, of course, all mine.) In addition, I’d like to thank my panel
of reviewers for the second edition: Al Norman, Andrei de Araújo Formiga, Chad
Brewbaker, Dwight Wilkins, Hugo Filipe Lopes, Vieira Durana, Jura Shikin, Kent R.
Spillner, Maria Gemini, Mateusz Malenta, Maurizio Tomasi, Nat Luengnaruemitchai,
Robert C. Green II, Robert Trausmuth, Sanchir Kartiev, and Steven Parr. Also, thanks
to the readers of the MEAP edition who took the time to point out errors or highlight
areas that needed clarifying.

about this book
This book is an in-depth guide to the concurrency and multithreading facilities from
the new C++ Standard, from the basic usage of std::thread, std::mutex, and std::
async, to the complexities of atomic operations and the memory model.

Roadmap
The first four chapters introduce the various library facilities provided by the library
and show how they can be used.

 Chapter 5 covers the low-level nitty-gritty of the memory model and atomic opera-
tions, including how atomic operations can be used to impose ordering constraints on
other code, and marks the end of the introductory chapters.

 Chapters 6 and 7 start the coverage of higher-level topics, with some examples of
how to use the basic facilities to build more complex data structures—lock-based data
structures in chapter 6, and lock-free data structures in chapter 7.

 Chapter 8 continues the higher-level topics, with guidelines for designing multi-
threaded code, coverage of the issues that affect performance, and example imple-
mentations of various parallel algorithms.

 Chapter 9 covers thread management—thread pools, work queues, and interrupt-
ing operations.

 Chapter 10 covers the new parallelism support from C++17, which comes in the
form of additional overloads for many of the Standard Library algorithms.

 Chapter 11 covers testing and debugging—types of bugs, techniques for locating
them, how to test for them, and so forth.
xvii

ABOUT THIS BOOKxviii
 The appendixes include a brief description of some of the new language facilities
introduced with the new standard that are relevant to multithreading, the implemen-
tation details of the message-passing library mentioned in chapter 4, and a complete
reference to the C++17 Thread Library.

Who should read this book
If you're writing multithreaded code in C++, you should read this book. If you're using
the new multithreading facilities from the C++ Standard Library, this book is an essen-
tial guide. If you’re using alternative thread libraries, the guidelines and techniques
from the later chapters should still prove useful.

 A good working knowledge of C++ is assumed, though familiarity with the new lan-
guage features is not—these are covered in appendix A. Prior knowledge or experi-
ence of multithreaded programming is not assumed, though it may be useful.

How to use this book
If you’ve never written multithreaded code before, I suggest reading this book sequen-
tially from beginning to end, though possibly skipping the more detailed parts of
chapter 5. Chapter 7 relies heavily on the material in chapter 5, so if you skipped
chapter 5, you should save chapter 7 until you’ve read it.

 If you haven’t used the new C++11 language facilities before, it might be worth
skimming appendix A before you start to ensure that you’re up to speed with the
examples in the book. The uses of the new language facilities are highlighted in the
text, though, and you can always flip to the appendix if you encounter something you
haven’t seen before.

 If you have extensive experience with writing multithreaded code in other environ-
ments, the beginning chapters are probably still worth skimming so you can see how
the facilities you know map onto the new standard C++ ones. If you’re going to be
doing any low-level work with atomic variables, chapter 5 is a must. Chapter 8 is worth
reviewing to ensure that you’re familiar with things like exception safety in multi-
threaded C++. If you have a particular task in mind, the index and table of contents
should help you find a relevant section quickly.

 Once you’re up to speed on the use of the C++ Thread Library, appendix D should
continue to be useful, such as for looking up the exact details of each class and func-
tion call. You may also like to dip back into the main chapters from time to time to
refresh your memory on a particular construct or to look at the sample code.

Code conventions and downloads
All source code in listings or in text is in a fixed-width font like this to separate it
from ordinary text. Code annotations accompany many of the listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that follow
the listing.

ABOUT THIS BOOK xix
 Source code for all working examples in this book is available for download from
the publisher’s website at www.manning.com/books/c-plus-plus-concurrency-in-action-
second-edition. You may also download the source code from github at https://github
.com/anthonywilliams/ccia_code_samples.

Software requirements
To use the code from this book unchanged, you’ll need a recent C++ compiler that
supports the C++17 language features used in the examples (see appendix A), and
you’ll need a copy of the C++ Standard Thread Library.

 At the time of writing, the latest versions of g++, clang++, and Microsoft Visual Stu-
dio all ship with implementations of the C++17 Standard Thread Library. They also
support most of the language features from the appendix, and those features that
aren't supported are coming soon.

 My company, Just Software Solutions Ltd, sells a complete implementation of the
C++11 Standard Thread Library for several older compilers, along with an implemen-
tation of the Concurrency TS for newer versions of clang, gcc, and Microsoft Visual
Studio.1 This implementation has been used for testing the examples in this book.

 The Boost Thread Library2 provides an API that’s based on the C++11 Standard
Thread Library proposals and is portable to many platforms. Most of the examples
from the book can be modified to work with the Boost Thread Library by judicious
replacement of std:: with boost:: and use of the appropriate #include directives.
There are a few facilities that are either not supported (such as std::async) or have
different names (such as boost::unique_future) in the Boost Thread Library.

Book forum
Purchase of C++ Concurrency in Action, Second Edition includes free access to a pri-
vate web forum run by Manning Publications where you can make comments about
the book, ask technical questions, and receive help from the author and from other
users. To access the forum, go to www.manning.com/books/c-plus-plus-concurrency-
in-action-second-edition. You can also learn more about Manning’s forums and the
rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking the author some challenging questions, lest his interest stray!

 The forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.

1 The just::thread implementation of the C++ Standard Thread Library, http://www.stdthread.co.uk.
2 The Boost C++ library collection, http://www.boost.org.

http://www.manning.com/books/c-plus-plus-concurrency-in-action-second-edition
http://www.manning.com/books/c-plus-plus-concurrency-in-action-second-edition
http://www.manning.com/books/c-plus-plus-concurrency-in-action-second-edition
http://www.manning.com/books/c-plus-plus-concurrency-in-action-second-edition
http://www.stdthread.co.uk
http://www.boost.org
https://forums.manning.com/forums/about
https://github.com/anthonywilliams/ccia_code_samples
https://github.com/anthonywilliams/ccia_code_samples
https://github.com/anthonywilliams/ccia_code_samples

about the author
Anthony Williams is a UK-based developer, consultant, and
trainer with over 20 years of experience in C++. He has been an
active member of the BSI C++ Standards Panel since 2001, and
is the author or coauthor of many of the C++ Standards Com-
mittee papers that led up to the inclusion of the thread library
in the C++11 Standard. He continues to work on new facilities
to enhance the C++ concurrency toolkit, both with standards
proposals, and implementations of those facilities for the
just::thread Pro extensions to the C++ thread library from Just
Software Solutions Ltd. Anthony lives in the far west of Corn-
wall, England.
xx

about the cover illustration
The illustration on the cover of C++ Concurrency in Action is captioned “Habit of a Lady
of Japan.” The image is taken from the four-volume Collection of the Dress of Different
Nations by Thomas Jefferys, published in London between 1757 and 1772. The collec-
tion includes beautiful hand-colored copperplate engravings of costumes from
around the world and has influenced theatrical costume design since its publication.
The diversity of the drawings in the compendium speaks vividly of the richness of the
costumes presented on the London stage over 200 years ago. The costumes, both his-
torical and contemporaneous, offered a glimpse into the dress customs of people
living in different times and in different countries, making them come alive for
London theater audiences.

 Dress codes have changed in the last century, and the diversity by region, so rich in
the past, has faded away. It’s now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we’ve traded a cultural and
visual diversity for a more varied personal life—or a more varied and interesting intel-
lectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of the regional and theatri-
cal life of two centuries ago, brought back to life by the pictures from this collection.
xxi

Hello, world of
concurrency in C++!
These are exciting times for C++ users. Thirteen years after the original C++ Stan-
dard was published in 1998, the C++ Standards Committee gave the language and
its supporting library a major overhaul. The new C++ Standard (referred to as
C++11 or C++0x) was published in 2011 and brought with it a swath of changes that
made working with C++ easier and more productive. The Committee also commit-
ted to a new “train model” of releases, with a new C++ Standard to be published
every three years. So far, we've had two of these publications: the C++14 Standard in
2014, and the C++17 Standard in 2017, as well as several Technical Specifications
describing extensions to the C++ Standard.

This chapter covers
 What is meant by concurrency and multithreading

 Why you might want to use concurrency and
multithreading in your applications

 Some of the history of the support for
concurrency in C++

 What a simple multithreaded C++ program
looks like
1

2 CHAPTER 1 Hello, world of concurrency in C++!
 One of the most significant new features in the C++11 Standard was the support of
multithreaded programs. For the first time, the C++ Standard acknowledged the exis-
tence of multithreaded applications in the language and provided components in the
library for writing multithreaded applications. This made it possible to write multi-
threaded C++ programs without relying on platform-specific extensions and enabled
you to write portable multithreaded code with guaranteed behavior. It also came at a
time when programmers were increasingly looking to concurrency in general, and
multithreaded programming in particular, to improve application performance. The
C++14 and C++17 Standards have built upon this baseline to provide further support
for writing multithreaded programs in C++, as have the Technical Specifications.
There’s a Technical Specification for concurrency extensions, and another for paral-
lelism, though the latter has been incorporated into C++17.

 This book is about writing programs in C++ using multiple threads for concur-
rency and the C++ language features and library facilities that make it possible. I’ll
start by explaining what I mean by concurrency and multithreading and why you
would want to use concurrency in your applications. After a quick detour into why you
might not want to use it in your applications, we’ll go through an overview of the con-
currency support in C++, and we’ll round off this chapter with a simple example of
C++ concurrency in action. Readers experienced with developing multithreaded
applications may wish to skip the early sections. In subsequent chapters, we’ll cover
more extensive examples and look at the library facilities in more depth. The book
will finish with an in-depth reference to all the C++ Standard Library facilities for mul-
tithreading and concurrency.

 So, what do I mean by concurrency and multithreading?

1.1 What is concurrency?
At the simplest and most basic level, concurrency is about two or more separate activi-
ties happening at the same time. We encounter concurrency as a natural part of life;
we can walk and talk at the same time or perform different actions with each hand,
and we each go about our lives independently of each other—you can watch football
while I go swimming, and so on.

1.1.1 Concurrency in computer systems

When we talk about concurrency in terms of computers, we mean a single system per-
forming multiple independent activities in parallel, rather than sequentially, or one
after the other. This isn’t a new phenomenon. Multitasking operating systems that
allow a single desktop computer to run multiple applications at the same time
through task switching have been commonplace for many years, as have high-end
server machines with multiple processors that enable genuine concurrency. What’s
new is the increased prevalence of computers that can genuinely run multiple tasks in
parallel rather than giving the illusion of doing so.

3What is concurrency?
 Historically, most desktop computers have had one processor, with a single process-
ing unit or core, and this remains true for many desktop machines today. Such a
machine can only perform one task at a time, but it can switch between tasks many times
per second. By doing a bit of one task and then a bit of another and so on, it appears
that the tasks are happening concurrently. This is called task switching. We still talk about
concurrency with such systems; because the task switches are so fast, you can’t tell at
which point a task may be suspended as the processor switches to another one. The task
switching provides the illusion of concurrency to both the user and the applications
themselves. Because there is only the illusion of concurrency, the behavior of applica-
tions may be subtly different when executing in a single-processor task-switching envi-
ronment compared to when executing in an environment with true concurrency. In
particular, incorrect assumptions about the memory model (covered in chapter 5) may
not show up in such an environment. This is discussed in more depth in chapter 10.

 Computers containing multiple processors have been used for servers and high-
performance computing tasks for years, and computers based on processors with
more than one core on a single chip (multicore processors) are becoming increas-
ingly common as desktop machines. Whether they have multiple processors or multi-
ple cores within a processor (or both), these computers are capable of genuinely
running more than one task in parallel. We call this hardware concurrency.

 Figure 1.1 shows an idealized scenario of a computer with precisely two tasks to do,
each divided into 10 equally sized chunks. On a dual-core machine (which has two
processing cores), each task can execute on its own core. On a single-core machine
doing task switching, the chunks from each task are interleaved. But they are also
spaced out a bit (in figure 1.1, this is shown by the gray bars separating the chunks
being thicker than the separator bars shown for the dual-core machine); in order to
do the interleaving, the system has to perform a context switch every time it changes
from one task to another, and this takes time. In order to perform a context switch,
the OS has to save the CPU state and instruction pointer for the currently running
task, work out which task to switch to, and reload the CPU state for the task being
switched to. The CPU will then potentially have to load the memory for the instruc-
tions and data for the new task into the cache, which can prevent the CPU from exe-
cuting any instructions, causing further delay.

Single core

Core 1

Core 2

Dual core

Figure 1.1 Two approaches to concurrency: parallel execution on a dual-core
machine versus task switching on a single-core machine

4 CHAPTER 1 Hello, world of concurrency in C++!
Though the availability of concurrency in the hardware is most obvious with multipro-
cessor or multicore systems, some processors can execute multiple threads on a single
core. The important factor to consider is the number of hardware threads, which is the
measure of how many independent tasks the hardware can genuinely run concur-
rently. Even with a system that has genuine hardware concurrency, it’s easy to have
more tasks than the hardware can run in parallel, so task switching is still used in these
cases. For example, on a typical desktop computer there may be hundreds of tasks
running, performing background operations, even when the computer is nominally
idle. It’s the task switching that allows these background tasks to run and you to run
your word processor, compiler, editor, and web browser (or any combination of appli-
cations) all at once. Figure 1.2 shows task switching among four tasks on a dual-core
machine, again for an idealized scenario with the tasks divided neatly into equally
sized chunks. In practice, many issues will make the divisions uneven and the schedul-
ing irregular. Some of these issues are covered in chapter 8 when we look at factors
affecting the performance of concurrent code.

All the techniques, functions, and classes covered in this book can be used whether
your application is running on a machine with one single-core processor or with many
multicore processors, and are not affected by whether the concurrency is achieved
through task switching or by genuine hardware concurrency. But as you may imagine,
how you make use of concurrency in your application may well depend on the
amount of hardware concurrency available. This is covered in chapter 8, where I dis-
cuss the issues involved in designing concurrent code in C++.

1.1.2 Approaches to concurrency

Imagine, for a moment, a pair of programmers working together on a software proj-
ect. If your developers are in separate offices, they can go about their work peacefully,
without being disturbed by each other, and they each have their own set of reference
manuals. But communication isn’t straightforward; rather than turning around and
talking to each other, they have to use the phone or email, or get up and walk to the
other’s office. Also, you have the overhead of two offices to manage and multiple cop-
ies of reference manuals to purchase.

 Now imagine that you move your developers into the same office. They can now
talk to each other freely to discuss the design of the application, and they can easily

Core 1

Core 2

Dual core

Figure 1.2 Task switching of four tasks on two cores

5What is concurrency?
draw diagrams on paper or on a whiteboard to help with design ideas or explanations.
You have only one office to manage, and one set of resources will often suffice. On the
negative side, they might find it harder to concentrate, and there may be issues with
sharing resources (“Where’s the reference manual gone now?”).

 These two ways of organizing your developers illustrate the two basic approaches
to concurrency. Each developer represents a thread, and each office represents a pro-
cess. The first approach is to have multiple single-threaded processes, which is similar
to having each developer in their own office, and the second approach is to have mul-
tiple threads in a single process, which is like having two developers in the same office.
You can combine these in an arbitrary fashion and have multiple processes, some of
which are multithreaded and some of which are single-threaded, but the principles
are the same. Let’s now have a brief look at these two approaches to concurrency in
an application.

CONCURRENCY WITH MULTIPLE PROCESSES

The first way to make use of concurrency within an appli-
cation is to divide the application into multiple, separate,
single-threaded processes that are run at the same time,
much as you can run your web browser and word proces-
sor at the same time. These separate processes can then
pass messages to each other through all the normal inter-
process communication channels (signals, sockets, files,
pipes, and so on), as shown in figure 1.3. One downside is
that such communication between processes is often
either complicated to set up or slow, or both, because
operating systems typically provide a lot of protection
between processes to avoid one process accidentally modi-
fying data belonging to another process. Another downside
is that there’s an inherent overhead in running multiple
processes: it takes time to start a process, the operating
system must devote internal resources to managing the
process, and so forth.

 It’s not all negative: the added protection operating systems typically provide
between processes and the higher-level communication mechanisms mean that it
can be easier to write safe concurrent code with processes rather than threads.
Indeed, environments such as that provided for the Erlang (www.erlang.org/) pro-
gramming language use processes as the fundamental building block of concur-
rency to great effect.

 Using separate processes for concurrency also has an additional advantage—you
can run the separate processes on distinct machines connected over a network. Though
this increases the communication cost, on a carefully designed system it can be a cost-
effective way of increasing the available parallelism and improving performance.

Process 1

Thread

Operating

system

Interprocess

communication

Process 2

Thread

Figure 1.3 Communication
between a pair of processes
running concurrently

http://www.erlang.org/

6 CHAPTER 1 Hello, world of concurrency in C++!
CONCURRENCY WITH MULTIPLE THREADS

The alternative approach to concurrency is to run multiple
threads in a single process. Threads are much like light-
weight processes: each thread runs independently of the
others, and each may run a different sequence of instruc-
tions. But all threads in a process share the same address
space, and most of the data can be accessed directly from
all threads—global variables remain global, and pointers or
references to objects or data can be passed around among
threads. Although it’s often possible to share memory
among processes, this is complicated to set up and often
hard to manage, because memory addresses of the same
data aren’t necessarily the same in different processes. Fig-
ure 1.4 shows two threads within a process communicating
through shared memory.

 The shared address space and lack of protection of data between threads makes
the overhead associated with using multiple threads much smaller than that from
using multiple processes, because the operating system has less bookkeeping to do.
But the flexibility of shared memory also comes with a price: if data is accessed by mul-
tiple threads, the application programmer must ensure that the view of data seen by
each thread is consistent whenever it’s accessed. The issues surrounding sharing data
between threads, and the tools to use and guidelines to follow to avoid problems, are
covered throughout this book, notably in chapters 3, 4, 5, and 8. The problems aren’t
insurmountable, provided suitable care is taken when writing the code, but they do
mean that a great deal of thought must go into the communication between threads.

 The low overhead associated with launching and communicating between multi-
ple threads within a process compared to launching and communicating between
multiple single-threaded processes means that this is the favored approach to concur-
rency in mainstream languages, including C++, despite the potential problems arising
from the shared memory. In addition, the C++ Standard doesn’t provide any intrinsic
support for communication between processes, so applications that use multiple pro-
cesses will have to rely on platform-specific APIs to do so. This book therefore focuses
exclusively on using multithreading for concurrency, and future references to concur-
rency assume that this is achieved by using multiple threads.

 There’s another word that gets used a lot around multithreaded code: parallelism.
Let’s clarify the differences.

1.1.3 Concurrency vs. parallelism

Concurrency and parallelism have largely overlapping meanings with respect to
multithreaded code. Indeed, to many they mean the same thing. The difference is
primarily a matter of nuance, focus, and intent. Both terms are about running mul-
tiple tasks simultaneously, using the available hardware, but parallelism is much more

Process

Thread 1

Shared memory

Thread 2

Figure 1.4 Communication
between a pair of threads
running concurrently in a
single process

7Why use concurrency?
performance-oriented. People talk about parallelism when their primary concern is
taking advantage of the available hardware to increase the performance of bulk data
processing, whereas people talk about concurrency when their primary concern is sepa-
ration of concerns, or responsiveness. This dichotomy is not cut and dried, and there
is still considerable overlap in meaning, but it can help clarify discussions to know of
this distinction. Throughout this book, there will be examples of both.

 Having clarified what we mean by concurrency and parallelism, let’s look at why
you would use concurrency in your applications.

1.2 Why use concurrency?
There are two main reasons to use concurrency in an application: separation of con-
cerns and performance. In fact, I’d go so far as to say that they’re almost the only rea-
sons to use concurrency; anything else boils down to one or the other (or maybe even
both) when you look hard enough (well, except for reasons like “because I want to”).

1.2.1 Using concurrency for separation of concerns

Separation of concerns is almost always a good idea when writing software; by group-
ing related bits of code together and keeping unrelated bits of code apart, you can
make your programs easier to understand and test, and less likely to contain bugs. You
can use concurrency to separate distinct areas of functionality, even when the opera-
tions in these distinct areas need to happen at the same time; without the explicit use
of concurrency, you either have to write a task-switching framework or actively make
calls to unrelated areas of code during an operation.

 Consider a processing-intensive application with a user interface, such as a DVD
player application for a desktop computer. This application fundamentally has two
sets of responsibilities. Not only does it have to read the data from the disk, decode
the images and sound, and send them to the graphics and sound hardware in a timely
fashion so the DVD plays without glitches, but it must also take input from the user,
such as when the user clicks Pause or Return To Menu, or even Quit. In a single
thread, the application has to check for user input at regular intervals during the play-
back, conflating the DVD playback code with the user interface code. By using multi-
threading to separate these concerns, the user interface code and DVD playback code
no longer have to be so closely intertwined; one thread can handle the user interface
and another the DVD playback. There will have to be interaction between them, such
as when the user clicks Pause, but now these interactions are directly related to the
task at hand.

 This gives the illusion of responsiveness, because the user interface thread can typ-
ically respond immediately to a user request, even if the response is to display a busy
cursor or a Please Wait message while the request is conveyed to the thread doing the
work. Similarly, separate threads are often used to run tasks that must run continu-
ously in the background, such as monitoring the filesystem for changes in a desktop
search application. Using threads in this way generally makes the logic in each thread

8 CHAPTER 1 Hello, world of concurrency in C++!
much simpler, because the interactions between them can be limited to clearly identi-
fiable points, rather than having to intersperse the logic of the different tasks.

 In this case, the number of threads is independent of the number of CPU cores
available, because the division into threads is based on the conceptual design rather
than an attempt to increase throughput.

1.2.2 Using concurrency for performance: task and data parallelism

Multiprocessor systems have existed for decades, but until recently they were mostly
found only in supercomputers, mainframes, and large server systems. But chip manu-
facturers have increasingly been favoring multicore designs with 2, 4, 16, or more pro-
cessors on a single chip over better performance with a single core. Consequently,
multicore desktop computers, and even multicore embedded devices, are now increas-
ingly prevalent. The increased computing power of these machines comes not from
running a single task faster but from running multiple tasks in parallel. In the past,
programmers have been able to sit back and watch their programs get faster with each
new generation of processors, without any effort on their part. But now, as Herb Sut-
ter put it, “The free lunch is over.”1 If software is to take advantage of this increased
computing power, it must be designed to run multiple tasks concurrently. Program-
mers must therefore take heed, and those who have hitherto ignored concurrency
must now look to add it to their toolbox.

 There are two ways to use concurrency for performance. The first, and most obvi-
ous, is to divide a single task into parts and run each in parallel, reducing the total
runtime. This is task parallelism. Although this sounds straightforward, it can be quite a
complex process, because there may be many dependencies between the various
parts. The divisions may be either in terms of processing—one thread performs one
part of the algorithm while another thread performs a different part—or in terms of
data—each thread performs the same operation on different parts of the data. This
latter approach is called data parallelism.

 Algorithms that are readily susceptible to such parallelism are frequently called
embarrassingly parallel. Despite the implication that you might be embarrassed to have
code so easy to parallelize, this is a good thing; other terms I’ve encountered for such
algorithms are naturally parallel and conveniently concurrent. Embarrassingly parallel algo-
rithms have good scalability properties—as the number of available hardware threads
goes up, the parallelism in the algorithm can be increased to match. Such an algo-
rithm is the perfect embodiment of the adage, “Many hands make light work.” For
those parts of the algorithm that aren’t embarrassingly parallel, you might be able to
divide the algorithm into a fixed (and therefore not scalable) number of parallel
tasks. Techniques for dividing tasks between threads are covered in chapters 8 and 10.

 The second way to use concurrency for performance is to use the available paral-
lelism to solve bigger problems; rather than processing one file at a time, process 2, or

1 “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software,” Herb Sutter, Dr. Dobb’s
Journal, 30(3), March 2005. http://www.gotw.ca/publications/concurrency-ddj.htm.

http://www.gotw.ca/publications/concurrency-ddj.htm

9Why use concurrency?
10, or 20, as appropriate. Although this is an application of data parallelism, by per-
forming the same operation on multiple sets of data concurrently, there’s a different
focus. It still takes the same amount of time to process one chunk of data, but now
more data can be processed in the same amount of time. Obviously, there are limits
to this approach, and this won’t be beneficial in all cases, but the increase in throughput
that comes from this approach can make new things possible—increased resolution
in video processing, for example, if different areas of the picture can be processed
in parallel.

1.2.3 When not to use concurrency

It’s just as important to know when not to use concurrency as it is to know when to use
it. Fundamentally, the only reason not to use concurrency is when the benefit isn’t
worth the cost. Code using concurrency is harder to understand in many cases, so
there’s a direct intellectual cost to writing and maintaining multithreaded code, and
the additional complexity can also lead to more bugs. Unless the potential perfor-
mance gain is large enough or the separation of concerns is clear enough to justify the
additional development time required to get it right and the additional costs associ-
ated with maintaining multithreaded code, don’t use concurrency.

 Also, the performance gain might not be as large as expected; there’s an inherent
overhead associated with launching a thread, because the OS has to allocate the asso-
ciated kernel resources and stack space and then add the new thread to the scheduler,
all of which takes time. If the task being run on the thread is completed quickly, the
time taken by the task may be dwarfed by the overhead of launching the thread, possi-
bly making the overall performance of the application worse than if the task had been
executed directly by the spawning thread.

 Furthermore, threads are a limited resource. If you have too many threads run-
ning at once, this consumes OS resources and may make the system as a whole run
slower. Not only that, but using too many threads can exhaust the available memory or
address space for a process, because each thread requires a separate stack space. This
is particularly a problem for 32-bit processes with a flat architecture where there’s a 4 GB
limit to the available address space: if each thread has a 1 MB stack (as is typical on
many systems), then the address space would be used up with 4,096 threads, without
allowing any space for code, static data, or heap data. Although 64-bit (or larger) sys-
tems don’t have this direct address-space limit, they still have finite resources: if you
run too many threads, this will eventually cause problems. Though thread pools (see
chapter 9) can be used to limit the number of threads, they aren’t a silver bullet, and
they do have their own issues.

 If the server side of a client/server application launches a separate thread for each
connection, this will work fine for a small number of connections, but can quickly
exhaust system resources by launching too many threads if the same technique is used
for a high-demand server that has to handle many connections. In this scenario, care-
ful use of thread pools can provide optimal performance (see chapter 9).

10 CHAPTER 1 Hello, world of concurrency in C++!
 Finally, the more threads you have running, the more context switching the oper-
ating system has to do. Each context switch takes time that could be spent doing use-
ful work, so at some point, adding an extra thread will reduce the overall application
performance rather than increase it. For this reason, if you’re trying to achieve the
best possible performance of the system, it’s necessary to adjust the number of threads
running to take into account the available hardware concurrency (or lack of it).

 The use of concurrency for performance is like any other optimization strategy: it
has the potential to greatly improve the performance of your application, but it can
also complicate the code, making it harder to understand and more prone to bugs.
Therefore, it’s only worth doing for those performance-critical parts of the applica-
tion where there’s the potential for measurable gain. Of course, if the potential for
performance gains is only secondary to clarity of design or separation of concerns, it
may still be worth using a multithreaded design.

 Assuming that you’ve decided you do want to use concurrency in your application,
whether for performance, separation of concerns, or because it’s “multithreading
Monday,” what does that mean for C++ programmers?

1.3 Concurrency and multithreading in C++
Standardized support for concurrency through multithreading is a relatively new
thing for C++. It’s only since the C++11 Standard that you’ve been able to write multi-
threaded code without resorting to platform-specific extensions. In order to under-
stand the rationale behind lots of the decisions in the Standard C++ Thread Library,
it’s important to understand the history.

1.3.1 History of multithreading in C++

The 1998 C++ Standard doesn’t acknowledge the existence of threads, and the opera-
tional effects of the various language elements are written in terms of a sequential
abstract machine. Not only that, but the memory model isn’t formally defined, so you
can’t write multithreaded applications without compiler-specific extensions to the
1998 C++ Standard.

 Compiler vendors are free to add extensions to the language, and the prevalence
of C APIs for multithreading—such as those in the POSIX C standard and the Micro-
soft Windows API—has led many C++ compiler vendors to support multithreading
with various platform-specific extensions. This compiler support is generally limited to
allowing the use of the corresponding C API for the platform and ensuring that the
C++ Runtime Library (such as the code for the exception-handling mechanism) works
in the presence of multiple threads. Although few compiler vendors have provided a
formal multithreading-aware memory model, the behavior of the compilers and pro-
cessors has been sufficiently good that a large number of multithreaded C++ pro-
grams have been written.

 Not content with using the platform-specific C APIs for handling multithreading,
C++ programmers have looked to their class libraries to provide object-oriented

11Concurrency and multithreading in C++
multithreading facilities. Application frameworks, such as MFC, and general-purpose
C++ libraries, such as Boost and ACE, have accumulated sets of C++ classes that wrap
the underlying platform-specific APIs and provide higher-level facilities for multi-
threading that simplify tasks. Although the precise details of the class libraries vary
considerably, particularly in the area of launching new threads, the overall shape of
the classes has a lot in common. One particularly important design that’s common to
many C++ class libraries, and that provides considerable benefit to the programmer, is
the use of the Resource Acquisition Is Initialization (RAII) idiom with locks to ensure
that mutexes are unlocked when the relevant scope is exited.

 For many cases, the multithreading support of existing C++ compilers combined
with the availability of platform-specific APIs and platform-independent class libraries,
such as Boost and ACE, provide a solid foundation on which to write multithreaded
C++ code, and as a result, there are probably millions of lines of C++ code written as
part of multithreaded applications. But the lack of standard support means that there
are occasions where the lack of a thread-aware memory model causes problems, par-
ticularly for those who try to gain higher performance by using knowledge of the pro-
cessor hardware or for those writing cross-platform code where the behavior of the
compilers varies between platforms.

1.3.2 Concurrency support in the C++11 standard

All this changed with the release of the C++11 Standard. Not only is there a thread-
aware memory model, but the C++ Standard Library was extended to include classes
for managing threads (see chapter 2), protecting shared data (see chapter 3), syn-
chronizing operations between threads (see chapter 4), and low-level atomic opera-
tions (see chapter 5).

 The C++11 Thread Library is heavily based on the prior experience accumulated
through the use of the C++ class libraries mentioned previously. In particular, the
Boost Thread Library was used as the primary model on which the new library is
based, with many of the classes sharing their names and structure with the corre-
sponding ones from Boost. As the standard has evolved, this has been a two-way flow,
and the Boost Thread Library has itself changed to match the C++ Standard in many
respects, so users transitioning from Boost should find themselves at home.

 Concurrency support is one of the changes with the C++11 Standard—as men-
tioned at the beginning of this chapter, there are many enhancements to the language
to make programmers’ lives easier. Although these are generally outside the scope of
this book, some of those changes have had a direct impact on the Thread Library and
the ways in which it can be used. Appendix A provides a brief introduction to these
language features.

12 CHAPTER 1 Hello, world of concurrency in C++!
1.3.3 More support for concurrency and parallelism in C++14
and C++17

The only specific support for concurrency and parallelism added in C++14 was a new
mutex type for protecting shared data (see chapter 3). But C++17 adds considerably
more: a full suite of parallel algorithms (see chapter 10) for starters. Both of these
Standards enhance the core language and the rest of the Standard Library, and these
enhancements can simplify the writing of multithreaded code.

 As mentioned previously, there’s also a Technical Specification for concurrency,
which describes extensions to the functions and classes provided by the C++ Standard,
especially around synchronizing operations between threads (see chapter 4).

 The support for atomic operations directly in C++ enables programmers to write
efficient code with defined semantics without the need for platform-specific assembly
language. This is a real boon for those trying to write efficient, portable code; not only
does the compiler take care of the platform specifics, but the optimizer can be written
to take into account the semantics of the operations, enabling better optimization of
the program as a whole.

1.3.4 Efficiency in the C++ Thread Library

One of the concerns that developers involved in high-performance computing often
raise regarding C++ in general, and C++ classes that wrap low-level facilities—such as
those in the new Standard C++ Thread Library specifically—is that of efficiency. If
you’re after the utmost in performance, it’s important to understand the implementa-
tion costs associated with using any high-level facilities, compared to using the under-
lying low-level facilities directly. This cost is the abstraction penalty.

 The C++ Standards Committee was aware of this when designing the C++ Standard
Library in general and the Standard C++ Thread Library in particular; one of the
design goals has been that there should be little or no benefit to be gained from using
the lower-level APIs directly, where the same facility is to be provided. The library has
therefore been designed to allow for efficient implementation (with a low abstraction
penalty) on most major platforms.

 Another goal of the C++ Standards Committee has been to ensure that C++ pro-
vides sufficient low-level facilities for those wishing to work close to the metal for the
ultimate performance. To this end, along with the new memory model comes a com-
prehensive atomic operations library for direct control over individual bits and bytes
and the inter-thread synchronization and visibility of any changes. These atomic types
and the corresponding operations can now be used in many places where developers
would previously have chosen to drop down to platform-specific assembly language.
Code using the new standard types and operations is more portable and easier to
maintain.

 The C++ Standard Library also provides higher-level abstractions and facilities that
make writing multithreaded code easier and less error-prone. Sometimes the use of
these facilities comes with a performance cost because of the additional code that

13Getting started
must be executed. But this performance cost doesn’t necessarily imply a higher abstrac-
tion penalty; in general, the cost is no higher than would be incurred by writing
equivalent functionality by hand, and the compiler may inline much of the addi-
tional code anyway.

 In some cases, the high-level facilities provide additional functionality beyond what
may be required for a specific use. Most of the time this isn’t an issue: you don’t pay
for what you don’t use. On rare occasions, this unused functionality will impact the
performance of other code. If you’re aiming for performance and the cost is too high,
you may be better off handcrafting the desired functionality from lower-level facilities.
In the vast majority of cases, the additional complexity and chance of errors far out-
weigh the potential benefits from a small performance gain. Even if profiling does
demonstrate that the bottleneck is in the C++ Standard Library facilities, it may be due
to poor application design rather than a poor library implementation. For example, if
too many threads are competing for a mutex, it will impact the performance signifi-
cantly. Rather than trying to shave a small fraction of time off the mutex operations, it
would probably be more beneficial to restructure the application so that there’s less
contention on the mutex. Designing applications to reduce contention is covered in
chapter 8.

 In those rare cases where the C++ Standard Library doesn’t provide the perfor-
mance or behavior required, it might be necessary to use platform-specific facilities.

1.3.5 Platform-specific facilities

Although the C++ Thread Library provides reasonably comprehensive facilities for
multithreading and concurrency, on any given platform there will be platform-specific
facilities that go beyond what’s offered. In order to gain easy access to those facilities
without giving up the benefits of using the Standard C++ Thread Library, the types in
the C++ Thread Library may offer a native_handle() member function that allows
the underlying implementation to be directly manipulated using a platform-specific
API. By its nature, any operations performed using native_handle() are entirely
platform dependent and beyond of the scope of this book (and the Standard C++
Library itself).

 Before even considering using platform-specific facilities, it’s important to under-
stand what the Standard Library provides, so let’s get started with an example.

1.4 Getting started
OK, so you have a nice, shiny C++11/C++14/C++17 compiler. What’s next? What does
a multithreaded C++ program look like? It looks much like any other C++ program,
with the usual mix of variables, classes, and functions. The only real distinction is that
some functions might be running concurrently, so you need to ensure that shared
data is safe for concurrent access, as described in chapter 3. In order to run func-
tions concurrently, specific functions and objects must be used to manage the differ-
ent threads.

14 CHAPTER 1 Hello, world of concurrency in C++!
1.4.1 Hello, Concurrent World

Let’s start with a classic example: a program to print “Hello World.” A simple Hello
World program that runs in a single thread is shown here, to serve as a baseline when
we move to multiple threads:

#include <iostream>
int main()
{
 std::cout<<"Hello World\n";
}

All this program does is write “Hello World” to the standard output stream. Let’s com-
pare it to the simple Hello Concurrent World program shown in the following listing,
which starts a separate thread to display the message.

#include <iostream>
#include <thread>
void hello()
{
 std::cout<<"Hello Concurrent World\n";
}
int main()
{
 std::thread t(hello); 3
 t.join();
}

The first difference is the extra #include <thread>. The declarations for the multi-
threading support in the Standard C++ Library are in new headers: the functions and
classes for managing threads are declared in <thread>, whereas those for protecting
shared data are declared in other headers.

 Second, the code for writing the message has been moved to a separate function.
This is because every thread has to have an initial function, where the new thread of
execution begins. For the initial thread in an application, this is main(), but for
every other thread it’s specified in the constructor of a std::thread object—in this
case, the std::thread object named t has the new hello() function as its initial
function.

 This is the next difference: rather than writing directly to standard output or call-
ing hello() from main(), this program launches a new thread to do it, bringing the
thread count to two—the initial thread that starts at main() and the new thread that
starts at hello().

 After the new thread has been launched, the initial thread continues execution. If
it didn’t wait for the new thread to finish, it would merrily continue to the end of
main() and end the program—possibly before the new thread had a chance to run.
This is why the call to join() is there—as described in chapter 2, this causes the calling

Listing 1.1 A simple Hello Concurrent World program

15Summary
thread (in main()) to wait for the thread associated with the std::thread object, in
this case, t.

 If this seems like a lot of effort to write a message to standard output, it is—as
described in section 1.2.3, it’s generally not worth the effort to use multiple threads
for such a simple task, especially if the initial thread has nothing to do in the mean-
time. Later in the book, you’ll work through examples of scenarios where there’s a
clear gain to using multiple threads.

Summary
In this chapter, I covered what’s meant by concurrency and multithreading and why
you’d choose to use it (or not) in your applications. I also covered the history of multi-
threading in C++, from the complete lack of support in the 1998 standard, through
various platform-specific extensions, to proper multithreading support in the C++11
Standard, and on to the C++14 and C++17 standards and the Technical Specification
for concurrency. This support has come in time to allow programmers to take advan-
tage of the greater hardware concurrency becoming available with newer CPUs, as
chip manufacturers choose to add more processing power in the form of multiple
cores that allow more tasks to be executed concurrently, rather than increasing the
execution speed of a single core.

 I also showed how simple using the classes and functions from the C++ Standard
Library can be in the examples in section 1.4. In C++, using multiple threads isn’t
complicated in and of itself; the complexity lies in designing the code so that it
behaves as intended.

 After the examples of section 1.4, it’s time for something with a bit more substance.
In chapter 2, we’ll look at the classes and functions available for managing threads.

Managing threads
OK, so you’ve decided to use concurrency for your application. In particular,
you’ve decided to use multiple threads. What now? How do you launch these
threads, check that they’ve finished, and keep tabs on them? The C++ Standard
Library makes most thread-management tasks relatively easy, with almost every-
thing managed through the std::thread object associated with a given thread, as
you’ll see. For those tasks that aren’t so straightforward, the library provides the
flexibility to build what you need from the basic building blocks.

 In this chapter, I’ll start by covering the basics: launching a thread, waiting for it
to finish, or running it in the background. We’ll then look at passing additional
parameters to the thread function when it’s launched and how to transfer owner-
ship of a thread from one std::thread object to another. Finally, we’ll look at
choosing the number of threads to use and identifying particular threads.

This chapter covers
 Starting threads, and various ways of specifying

code to run on a new thread

 Waiting for a thread to finish versus leaving it
to run

 Uniquely identifying threads
16

17Basic thread management
2.1 Basic thread management
Every C++ program has at least one thread, which is started by the C++ runtime: the
thread running main(). Your program can then launch additional threads that have
another function as the entry point. These threads then run concurrently with each
other and with the initial thread. In the same way that the program exits when it returns
from main(), when the specified entry point function returns, the thread exits. As you’ll
see, if you have a std::thread object for a thread, you can wait for it to finish; but first
you have to start it, so let’s look at launching threads.

2.1.1 Launching a thread

As you saw in chapter 1, threads are started by constructing a std::thread object that
specifies the task to run on that thread. In the simplest case, that task is a plain, ordi-
nary void-returning function that takes no parameters. This function runs on its own
thread until it returns, and then the thread stops. At the other extreme, the task could
be a function object that takes additional parameters and performs a series of inde-
pendent operations that are specified through some kind of messaging system while
it’s running, and the thread stops only when it’s signaled to do so, again via some kind
of messaging system. It doesn’t matter what the thread is going to do or where it’s
launched from, but starting a thread using the C++ Standard Library always boils
down to constructing a std::thread object:

void do_some_work();
std::thread my_thread(do_some_work);

This is about as simple as it gets. Of course, you have to make sure that the <thread>
header is included so the compiler can see the definition of the std::thread class. As
with much of the C++ Standard Library, std::thread works with any callable type, so
you can pass an instance of a class with a function call operator to the std::thread
constructor instead:

class background_task
{
public:
 void operator()() const
 {
 do_something();
 do_something_else();
 }
};
background_task f;
std::thread my_thread(f);

In this case, the supplied function object is copied into the storage belonging to the
newly created thread of execution and invoked from there. It’s therefore essential that
the copy behaves equivalently to the original, or the result may not be what’s expected.

18 CHAPTER 2 Managing threads
 One thing to consider when passing a function object to the thread constructor is
to avoid what’s dubbed “C++’s most vexing parse.” If you pass a temporary rather than
a named variable, the syntax can be the same as that of a function declaration, in
which case the compiler interprets it as such, rather than an object definition. For
example,

std::thread my_thread(background_task());

declares a my_thread function that takes a single parameter (of type pointer-to-a-
function-taking-no-parameters-and-returning-a-background_task-object) and
returns a std::thread object, rather than launching a new thread. You can avoid this
by naming your function object as shown previously, by using an extra set of parenthe-
ses, or by using the new uniform initialization syntax; for example:

std::thread my_thread((background_task()));
std::thread my_thread{background_task()};

In the first example, the extra parentheses prevent interpretation as a function decla-
ration, allowing my_thread to be declared as a variable of type std::thread. The sec-
ond example uses the new uniform initialization syntax with braces rather than
parentheses, and thus would also declare a variable.

 One type of callable object that avoids this problem is a lambda expression. This is a
new feature from C++11 which allows you to write a local function, possibly capturing
some local variables and avoiding the need to pass additional arguments (see sec-
tion 2.2). For full details on lambda expressions, see appendix A, section A.5. The
previous example can be written using a lambda expression as follows:

std::thread my_thread([]{
 do_something();
 do_something_else();
});

Once you’ve started your thread, you need to explicitly decide whether to wait for it
to finish (by joining with it—see section 2.1.2) or leave it to run on its own (by
detaching it—see section 2.1.3). If you don’t decide before the std::thread object
is destroyed, then your program is terminated (the std::thread destructor calls
std::terminate()). It’s therefore imperative that you ensure that the thread is cor-
rectly joined or detached, even in the presence of exceptions. See section 2.1.3 for a
technique to handle this scenario. Note that you only have to make this decision
before the std::thread object is destroyed—the thread itself may well have finished
long before you join with it or detach it, and if you detach it, then if the thread is
still running, it will continue to do so, and may continue running long after the
std::thread object is destroyed; it will only stop running when it finally returns from
the thread function.

 If you don’t wait for your thread to finish, you need to ensure that the data
accessed by the thread is valid until the thread has finished with it. This isn’t a new

19Basic thread management
problem—even in single-threaded code it’s undefined behavior to access an object
after it’s been destroyed—but the use of threads provides an additional opportunity to
encounter such lifetime issues.

 One situation in which you can encounter such problems is when the thread func-
tion holds pointers or references to local variables and the thread hasn’t finished
when the function exits. The following listing shows an example of such a scenario.

struct func
{
 int& i;
 func(int& i_):i(i_){}
 void operator()()
 {
 for(unsigned j=0;j<1000000;++j)
 {
 do_something(i);
 }
 }
};
void oops()
{
 int some_local_state=0;
 func my_func(some_local_state);
 std::thread my_thread(my_func);
 my_thread.detach();
}

In this case, the new thread associated with my_thread will probably still be running
when oops exits, because you’ve explicitly decided not to wait for it by calling detach().
If the thread is still running, you have the scenario shown in table 2.1: the next call to
do_something(i) will access an already destroyed variable. This is like normal single-
threaded code—allowing a pointer or reference to a local variable to persist beyond the
function exit is never a good idea—but it’s easier to make the mistake with multithreaded
code, because it isn’t necessarily immediately apparent that this has happened.

Listing 2.1 A function that returns while a thread still has access to local variables

Table 2.1 Accessing a local variable with a detached thread after it has been destroyed

Main thread New thread

Constructs my_func with reference to
some_local_state

Starts new thread my_thread

Started

Calls func::operator()

Detaches my_thread Running func::operator(); may call do_something with
reference to some_local_state

Potential access to
dangling reference

Don’t wait for
thread to finish

New thread might
still be running

20 CHAPTER 2 Managing threads
One common way to handle this scenario is to make the thread function self-contained
and copy the data into the thread rather than sharing the data. If you use a callable
object for your thread function, that object is copied into the thread, so the original
object can be destroyed immediately. But you still need to be wary of objects contain-
ing pointers or references, such as in listing 2.1. In particular, it’s a bad idea to create
a thread within a function that has access to the local variables in that function, unless
the thread is guaranteed to finish before the function exits.

 Alternatively, you can ensure that the thread has completed execution before the
function exits by joining with the thread.

2.1.2 Waiting for a thread to complete

If you need to wait for a thread to complete, you can do this by calling join() on
the associated std::thread instance. In the case of listing 2.1, replacing the call to
my_thread.detach() before the closing brace of the function body with a call to
my_thread.join() would therefore be sufficient to ensure that the thread was fin-
ished before the function was exited and thus before the local variables were destroyed.
In this case, it would mean there was little point in running the function on a separate
thread, because the first thread wouldn’t be doing anything useful in the meantime, but
in real code the original thread would either have work to do or would have launched
several threads to do useful work before waiting for all of them to complete.

 join() is a simple and brute-force technique—either you wait for a thread to fin-
ish or you don’t. If you need more fine-grained control over waiting for a thread, such
as to check whether a thread is finished, or to wait only a certain period of time, then
you have to use alternative mechanisms such as condition variables and futures, which
we’ll look at in chapter 4. The act of calling join() also cleans up any storage associ-
ated with the thread, so the std::thread object is no longer associated with the now-
finished thread; it isn’t associated with any thread. This means that you can call join()
only once for a given thread; once you’ve called join(), the std::thread object is no
longer joinable, and joinable() will return false.

2.1.3 Waiting in exceptional circumstances

As mentioned earlier, you need to ensure that you’ve called either join() or
detach() before a std::thread object is destroyed. If you’re detaching a thread, you
can usually call detach() immediately after the thread has been started, so this isn’t a
problem. But if you’re intending to wait for the thread, you need to carefully pick the

Destroys some_local_state Still running

Exits oops Still running func::operator(); may call do_something
with reference to some_local_state => undefined behavior

Table 2.1 Accessing a local variable with a detached thread after it has been destroyed (continued)

Main thread New thread

21Basic thread management
place in the code where you call join(). This means that the call to join() is liable to
be skipped if an exception is thrown after the thread has been started but before the
call to join().

 To avoid your application being terminated when an exception is thrown, you
therefore need to make a decision about what to do in this case. In general, if you
were intending to call join() in a non-exceptional case, you also need to call join()
in the presence of an exception to avoid accidental lifetime problems. The next listing
shows some simple code that does just that.

struct func;
void f()
{
 int some_local_state=0;
 func my_func(some_local_state);
 std::thread t(my_func);
 try
 {
 do_something_in_current_thread();
 }
 catch(...)
 {
 t.join();
 throw;
 }
 t.join();
}

The code in listing 2.2 uses a try/catch block to ensure that a thread with access to
local state is finished before the function exits, whether the function exits normally, or
by an exception. The use of try/catch blocks is verbose, and it’s easy to get the scope
slightly wrong, so this isn’t an ideal scenario. If it’s important to ensure that the thread
completes before the function exits—whether because it has a reference to other local
variables or for any other reason—then it’s important to ensure this is the case for all
possible exit paths, whether normal or exceptional, and it’s desirable to provide a sim-
ple, concise mechanism for doing so.

 One way of doing this is to use the standard Resource Acquisition Is Initialization
(RAII) idiom and provide a class that does the join() in its destructor, as in the fol-
lowing listing. See how it simplifies the f() function.

class thread_guard
{
 std::thread& t;
public:
 explicit thread_guard(std::thread& t_):
 t(t_)

Listing 2.2 Waiting for a thread to finish

Listing 2.3 Using RAII to wait for a thread to complete

See definition
in listing 2.1

22 CHAPTER 2 Managing threads
 {}
 ~thread_guard()
 {
 if(t.joinable())
 {
 t.join();
 }
 }
 thread_guard(thread_guard const&)=delete;
 thread_guard& operator=(thread_guard const&)=delete;
};
struct func;
void f()
{
 int some_local_state=0;
 func my_func(some_local_state);
 std::thread t(my_func);
 thread_guard g(t);
 do_something_in_current_thread();
}

When the execution of the current thread reaches the end of f, the local objects are
destroyed in reverse order of construction. Consequently, the thread_guard object,
g, is destroyed first, and the thread is joined with, in the destructor. This even hap-
pens if the function exits because do_something_in_current_thread throws an
exception.

 The destructor of thread_guard in listing 2.3 first tests to see if the std::thread
object is joinable() before calling join(). This is important, because join() can be
called only once for a given thread of execution, so it would be a mistake to do so if
the thread had already been joined.

 The copy constructor and copy-assignment operators are marked =delete to ensure
that they’re not automatically provided by the compiler. Copying or assigning such an
object would be dangerous, because it might then outlive the scope of the thread it was
joining. By declaring them as deleted, any attempt to copy a thread_guard object will
generate a compilation error. See appendix A, section A.2, for more about deleted
functions.

 If you don’t need to wait for a thread to finish, you can avoid this exception-safety
issue by detaching it. This breaks the association of the thread with the std::thread
object and ensures that std::terminate() won’t be called when the std::thread
object is destroyed, even though the thread is still running in the background.

2.1.4 Running threads in the background

Calling detach() on a std::thread object leaves the thread to run in the back-
ground, with no direct means of communicating with it. It’s no longer possible to wait
for that thread to complete; if a thread becomes detached, it isn’t possible to obtain
a std::thread object that references it, so it can no longer be joined. Detached
threads truly run in the background; ownership and control are passed over to the

See definition
in listing 2.1

23Basic thread management
C++ Runtime Library, which ensures that the resources associated with the thread are
correctly reclaimed when the thread exits.

 Detached threads are often called daemon threads after the UNIX concept of a dae-
mon process that runs in the background without any explicit user interface. Such
threads are typically long-running; they run for almost the entire lifetime of the appli-
cation, performing a background task such as monitoring the filesystem, clearing
unused entries out of object caches, or optimizing data structures. At the other
extreme, it may make sense to use a detached thread where there’s another mecha-
nism for identifying when the thread has completed or where the thread is used for a
fire-and-forget task.

 As you’ve saw in section 2.1.2, you detach a thread by calling the detach() mem-
ber function of the std::thread object. After the call completes, the std::thread
object is no longer associated with the actual thread of execution and is therefore no
longer joinable:

std::thread t(do_background_work);
t.detach();
assert(!t.joinable());

In order to detach the thread from a std::thread object, there must be a thread to
detach: you can’t call detach() on a std::thread object with no associated thread of
execution. This is exactly the same requirement as for join(), and you can check it in
exactly the same way—you can only call t.detach() for a std::thread object t when
t.joinable() returns true.

 Consider an application such as a word processor that can edit multiple docu-
ments at once. There are many ways to handle this, both at the UI level and internally.
One way that’s increasingly common at the moment is to have multiple, independent,
top-level windows, one for each document being edited. Although these windows
appear to be completely independent, each with its own menus, they’re running
within the same instance of the application. One way to handle this internally is to run
each document-editing window in its own thread; each thread runs the same code but
with different data relating to the document being edited and the corresponding win-
dow properties. Opening a new document therefore requires starting a new thread.
The thread handling the request isn’t going to care about waiting for that other
thread to finish, because it’s working on an unrelated document, so this makes it a
prime candidate for running a detached thread.

 The following listing shows a simple code outline for this approach.

void edit_document(std::string const& filename)
{
 open_document_and_display_gui(filename);
 while(!done_editing())
 {
 user_command cmd=get_user_input();

Listing 2.4 Detaching a thread to handle other documents

24 CHAPTER 2 Managing threads
 if(cmd.type==open_new_document)
 {
 std::string const new_name=get_filename_from_user();
 std::thread t(edit_document,new_name);
 t.detach();
 }
 else
 {
 process_user_input(cmd);
 }
 }
}

If the user chooses to open a new document, you prompt them for the document to
open, start a new thread to open that document, and then detach it. Because the new
thread is doing the same operation as the current thread but on a different file, you
can reuse the same function (edit_document) with the newly chosen filename as the
supplied argument.

 This example also shows a case where it’s helpful to pass arguments to the function
used to start a thread: rather than just passing the name of the function to the
std::thread constructor, you also pass in the filename parameter. Although other
mechanisms could be used to do this, such as using a function object with member
data instead of an ordinary function with parameters, the C++ Standard Library pro-
vides you with an easy way of doing it.

2.2 Passing arguments to a thread function
As shown in listing 2.4, passing arguments to the callable object or function is funda-
mentally as simple as passing additional arguments to the std::thread constructor.
But it’s important to bear in mind that by default, the arguments are copied into inter-
nal storage, where they can be accessed by the newly created thread of execution, and
then passed to the callable object or function as rvalues as if they were temporaries.
This is done even if the corresponding parameter in the function is expecting a refer-
ence. Here’s an example:

void f(int i,std::string const& s);
std::thread t(f,3,”hello”);

This creates a new thread of execution associated with t, which calls f(3,”hello”).
Note that even though f takes a std::string as the second parameter, the string lit-
eral is passed as a char const* and converted to a std::string only in the context of
the new thread. This is particularly important when the argument supplied is a
pointer to an automatic variable, as follows:

void f(int i,std::string const& s);
void oops(int some_param)
{
 char buffer[1024];
 sprintf(buffer, "%i",some_param);

25Passing arguments to a thread function
 std::thread t(f,3,buffer);
 t.detach();
}

In this case, it’s the pointer to the local variable buffer that’s passed through to the
new thread and there’s a significant chance that the oops function will exit before
the buffer has been converted to a std::string on the new thread, thus leading to
undefined behavior. The solution is to cast to std::string before passing the buffer
to the std::thread constructor:

void f(int i,std::string const& s);
void not_oops(int some_param)
{
 char buffer[1024];
 sprintf(buffer,"%i",some_param);
 std::thread t(f,3,std::string(buffer));
 t.detach();
}

In this case, the problem is that you were relying on the implicit conversion of the
pointer to the buffer into the std::string object expected as a function parameter,
but this conversion happens too late because the std::thread constructor copies the
supplied values as is, without converting to the expected argument type.

 It’s not possible to get the reverse scenario: the object is copied, and you wanted a
non-const reference, because this won't compile. You might try this if the thread is
updating a data structure that’s passed in by reference; for example:

void update_data_for_widget(widget_id w,widget_data& data);
void oops_again(widget_id w)
{
 widget_data data;
 std::thread t(update_data_for_widget,w,data);
 display_status();
 t.join();
 process_widget_data(data);
}

Although update_data_for_widget expects the second parameter to be passed by ref-
erence, the std::thread constructor doesn’t know that; it’s oblivious to the types of
the arguments expected by the function and blindly copies the supplied values. But
the internal code passes copied arguments as rvalues in order to work with move-only
types, and will thus try to call update_data_for_widget with an rvalue. This will fail to
compile because you can't pass an rvalue to a function that expects a non-const refer-
ence. For those of you familiar with std::bind, the solution will be readily apparent:
you need to wrap the arguments that need to be references in std::ref. In this case,
if you change the thread invocation to

std::thread t(update_data_for_widget,w,std::ref(data));

Using std::string
avoids dangling
pointer

26 CHAPTER 2 Managing threads
then update_data_for_widget will be correctly passed a reference to data rather
than a temporary copy of data, and the code will now compile successfully.

 If you’re familiar with std::bind, the parameter-passing semantics will be unsur-
prising, because both the operation of the std::thread constructor and the opera-
tion of std::bind are defined in terms of the same mechanism. This means that, for
example, you can pass a member function pointer as the function, provided you sup-
ply a suitable object pointer as the first argument:

class X
{
public:
 void do_lengthy_work();
};
X my_x;
std::thread t(&X::do_lengthy_work,&my_x);

This code will invoke my_x.do_lengthy_work() on the new thread, because the address
of my_x is supplied as the object pointer. You can also supply arguments to such a
member function call: the third argument to the std::thread constructor will be the
first argument to the member function, and so forth.

 Another interesting scenario for supplying arguments is where the arguments
can’t be copied but can only be moved: the data held within one object is transferred
over to another, leaving the original object empty. An example of such a type is
std::unique_ptr, which provides automatic memory management for dynamically
allocated objects. Only one std::unique_ptr instance can point to a given object at a
time, and when that instance is destroyed, the pointed-to object is deleted. The move
constructor and move assignment operator allow the ownership of an object to be trans-
ferred around between std::unique_ptr instances (see appendix A, section A.1.1, for
more on move semantics). Such a transfer leaves the source object with a NULL
pointer. This moving of values allows objects of this type to be accepted as function
parameters or returned from functions. Where the source object is temporary, the
move is automatic, but where the source is a named value, the transfer must be
requested directly by invoking std::move(). The following example shows the use of
std::move to transfer ownership of a dynamic object into a thread:

void process_big_object(std::unique_ptr<big_object>);
std::unique_ptr<big_object> p(new big_object);
p->prepare_data(42);
std::thread t(process_big_object,std::move(p));

By specifying std::move(p) in the std::thread constructor, the ownership of big_
object is transferred first into internal storage for the newly created thread and then
into process_big_object.

 Several of the classes in the C++ Standard Library exhibit the same ownership
semantics as std::unique_ptr, and std::thread is one of them. Though std::thread
instances don’t own a dynamic object in the same way as std::unique_ptr does, they do

27Transferring ownership of a thread
own a resource: each instance is responsible for managing a thread of execution. This
ownership can be transferred between instances, because instances of std::thread are
movable, even though they aren’t copyable. This ensures that only one object is associ-
ated with a particular thread of execution at any one time while allowing program-
mers the option of transferring that ownership between objects.

2.3 Transferring ownership of a thread
Suppose you want to write a function that creates a thread to run in the background,
but passes ownership of the new thread back to the calling function rather than wait-
ing for it to complete; or maybe you want to do the reverse: create a thread and pass
ownership in to some function that should wait for it to complete. In either case, you
need to transfer ownership from one place to another.

 This is where the move support of std::thread comes in. As described in the pre-
vious section, many resource-owning types in the C++ Standard Library, such as
std::ifstream and std::unique_ptr, are movable but not copyable, and std::thread
is one of them. This means that the ownership of a particular thread of execution can
be moved between std::thread instances, as in the following example. The example
shows the creation of two threads of execution and the transfer of ownership of those
threads among three std::thread instances, t1, t2, and t3:

void some_function();
void some_other_function();
std::thread t1(some_function);
std::thread t2=std::move(t1);
t1=std::thread(some_other_function);
std::thread t3;
t3=std::move(t2);
t1=std::move(t3);

First, a new thread is started and associated with t1. Ownership is then transferred
over to t2 when t2 is constructed, by invoking std::move() to explicitly move owner-
ship. At this point, t1 no longer has an associated thread of execution; the thread run-
ning some_function is now associated with t2.

 Then, a new thread is started and associated with a temporary std::thread object.
The subsequent transfer of ownership into t1 doesn’t require a call to std::move() to
explicitly move ownership, because the owner is a temporary object—moving from
temporaries is automatic and implicit.

 t3 is default-constructed, which means that it’s created without any associated thread
of execution. Ownership of the thread currently associated with t2 is transferred into
t3, again with an explicit call to std::move(), because t2 is a named object. After all
these moves, t1 is associated with the thread running some_other_function, t2 has no
associated thread, and t3 is associated with the thread running some_function.

 The final move transfers ownership of the thread running some_function back to
t1 where it started. But in this case t1 already had an associated thread (which was run-
ning some_other_function), so std::terminate() is called to terminate the program.

This assignment
will terminate the
program!

28 CHAPTER 2 Managing threads
This is done for consistency with the std::thread destructor. You saw in section 2.1.1
that you must explicitly wait for a thread to complete or detach it before destruction,
and the same applies to assignment: you can’t just drop a thread by assigning a new
value to the std::thread object that manages it.

 The move support in std::thread means that ownership can readily be trans-
ferred out of a function, as shown in the following listing.

std::thread f()
{
 void some_function();
 return std::thread(some_function);
}
std::thread g()
{
 void some_other_function(int);
 std::thread t(some_other_function,42);
 return t;
}

Likewise, if ownership should be transferred into a function, it can accept an instance
of std::thread by value as one of the parameters, as shown here:

void f(std::thread t);
void g()
{
 void some_function();
 f(std::thread(some_function));
 std::thread t(some_function);
 f(std::move(t));
}

One benefit of the move support of std::thread is that you can build on the
thread_guard class from listing 2.3 and have it take ownership of the thread. This
avoids any unpleasant consequences should the thread_guard object outlive the thread
it was referencing, and it also means that no one else can join or detach the thread
once ownership has been transferred into the object. Because this would primarily be
aimed at ensuring that threads are completed before a scope is exited, I named this
class scoped_thread. The implementation is shown in the following listing, along with
a simple example.

class scoped_thread
{
 std::thread t;
public:
 explicit scoped_thread(std::thread t_):
 t(std::move(t_))

Listing 2.5 Returning a std::thread from a function

Listing 2.6 scoped_thread and example usage

29Transferring ownership of a thread
 {
 if(!t.joinable())
 throw std::logic_error(“No thread”);
 }
 ~scoped_thread()
 {
 t.join();
 }
 scoped_thread(scoped_thread const&)=delete;
 scoped_thread& operator=(scoped_thread const&)=delete;
};
struct func;
void f()
{
 int some_local_state;
 scoped_thread t{std::thread(func(some_local_state))};
 do_something_in_current_thread();
}

The example is similar to listing 2.3, but the new thread is passed in directly to
scoped_thread rather than having to create a separate named variable for it. When
the initial thread reaches the end of f, the scoped_thread object is destroyed and then
joins with the thread supplied to the constructor. Whereas with the thread_guard class
from listing 2.3 the destructor had to check that the thread was still joinable, you can
do that in the constructor and throw an exception if it’s not.

 One of the proposals for C++17 was for a joining_thread class that would be simi-
lar to std::thread, except that it would automatically join in the destructor much like
scoped_thread does. This didn't get consensus in the committee, so it wasn’t accepted
into the standard (though it’s still on track for C++20 as std::jthread), but it’s rela-
tively easy to write. One possible implementation is shown in the next listing.

class joining_thread
{
 std::thread t;
public:
 joining_thread() noexcept=default;
 template<typename Callable,typename ... Args>
 explicit joining_thread(Callable&& func,Args&& ... args):
 t(std::forward<Callable>(func),std::forward<Args>(args)...)
 {}
 explicit joining_thread(std::thread t_) noexcept:
 t(std::move(t_))
 {}
 joining_thread(joining_thread&& other) noexcept:
 t(std::move(other.t))
 {}
 joining_thread& operator=(joining_thread&& other) noexcept
 {
 if(joinable())
 join();

Listing 2.7 A joining_thread class

See listing 2.1

30 CHAPTER 2 Managing threads
 t=std::move(other.t);
 return *this;
 }
 joining_thread& operator=(std::thread other) noexcept
 {
 if(joinable())
 join();
 t=std::move(other);
 return *this;
 }
 ~joining_thread() noexcept
 {
 if(joinable())
 join();
 }
 void swap(joining_thread& other) noexcept
 {
 t.swap(other.t);
 }
 std::thread::id get_id() const noexcept{
 return t.get_id();
 }
 bool joinable() const noexcept
 {
 return t.joinable();
 }
 void join()
 {
 t.join();
 }
 void detach()
 {
 t.detach();
 }
 std::thread& as_thread() noexcept
 {
 return t;
 }
 const std::thread& as_thread() const noexcept
 {
 return t;
 }
};

The move support in std::thread also allows for containers of std::thread objects,
if those containers are move-aware (like the updated std::vector<>). This means
that you can write code like that in the following listing, which spawns a number of
threads and then waits for them to finish.

void do_work(unsigned id);
void f()

Listing 2.8 Spawns some threads and waits for them to finish

31Choosing the number of threads at runtime
{
 std::vector<std::thread> threads;
 for(unsigned i=0;i<20;++i)
 {
 threads.emplace_back(do_work,i);
 }
 for(auto& entry: threads)
 entry.join();
}

If the threads are being used to subdivide the work of an algorithm, this is often what’s
required; before returning to the caller, all threads must have finished. The simple
structure of listing 2.8 implies that the work done by the threads is self-contained, and
the result of their operations is purely the side effects on shared data. If f() were to
return a value to the caller that depended on the results of the operations performed
by these threads, then as written, this return value would have to be determined by
examining the shared data after the threads had terminated. Alternative schemes for
transferring the results of operations between threads are discussed in chapter 4.

 Putting std::thread objects in a std::vector is a step toward automating the
management of those threads: rather than creating separate variables for those
threads and joining with them directly, they can be treated as a group. You can take
this a step further by creating a dynamic number of threads determined at runtime,
rather than creating a fixed number, as in listing 2.8.

2.4 Choosing the number of threads at runtime
One feature of the C++ Standard Library that helps here is std::thread::hardware_
concurrency(). This function returns an indication of the number of threads that can
truly run concurrently for a given execution of a program. On a multicore system it
might be the number of CPU cores, for example. This is only a hint, and the function
might return 0 if this information isn’t available, but it can be a useful guide for split-
ting a task among threads.

 Listing 2.9 shows a simple implementation of a parallel version of std::accumulate.
In real code you'll probably want to use the parallel version of std::reduce described
in chapter 10, rather than implementing it yourself, but this illustrates the basic idea.
It divides the work among the threads, with a minimum number of elements per
thread in order to avoid the overhead of too many threads. Note that this implementa-
tion assumes that none of the operations will throw an exception, even though excep-
tions are possible; the std::thread constructor will throw if it can’t start a new thread
of execution, for example. Handling exceptions in such an algorithm is beyond the
scope of this simple example and will be covered in chapter 8.

template<typename Iterator,typename T>
struct accumulate_block

Listing 2.9 A naïve parallel version of std::accumulate

Spawns threads

Calls join() on each
thread in turn

32 CHAPTER 2 Managing threads
{
 void operator()(Iterator first,Iterator last,T& result)
 {
 result=std::accumulate(first,last,result);
 }
};
template<typename Iterator,typename T>
T parallel_accumulate(Iterator first,Iterator last,T init)
{
 unsigned long const length=std::distance(first,last);
 if(!length)
 return init;
 unsigned long const min_per_thread=25;
 unsigned long const max_threads=
 (length+min_per_thread-1)/min_per_thread;
 unsigned long const hardware_threads=
 std::thread::hardware_concurrency();
 unsigned long const num_threads=
 std::min(hardware_threads!=0?hardware_threads:2,max_threads);
 unsigned long const block_size=length/num_threads;
 std::vector<T> results(num_threads);
 std::vector<std::thread> threads(num_threads-1);
 Iterator block_start=first;
 for(unsigned long i=0;i<(num_threads-1);++i)
 {
 Iterator block_end=block_start;
 std::advance(block_end,block_size);
 threads[i]=std::thread(
 accumulate_block<Iterator,T>(),
 block_start,block_end,std::ref(results[i]));
 block_start=block_end;
 }
 accumulate_block<Iterator,T>()(
 block_start,last,results[num_threads-1]);

 for(auto& entry: threads)
 entry.join();
 return std::accumulate(results.begin(),results.end(),init);
}

Although this is a long function, it’s straightforward. If the input range is empty, you
return the initial value supplied as the init parameter value. Otherwise, there’s at
least one element in the range, so you can divide the number of elements to process
by the minimum block size in order to give the maximum number of threads . This is
to avoid creating 32 threads on a 32-core machine when you have only five values in
the range.

 The number of threads to run is the minimum of your calculated maximum and
the number of hardware threads. You don’t want to run more threads than the hard-
ware can support (which is called oversubscription), because the context switching will
mean that more threads will decrease the performance. If the call to std::thread::
hardware_concurrency() returned 0, you’d substitute a number of your choice; in

33Choosing the number of threads at runtime
this case I’ve chosen 2. You don’t want to run too many threads because that would
slow things down on a single-core machine, but likewise you don’t want to run too few
because you’d be passing up the available concurrency.

 The number of entries for each thread to process is the length of the range
divided by the number of threads. If you’re worrying about cases where the number
doesn’t divide evenly, don’t—you’ll handle that later.

 Now that you know how many threads you have, you can create a std::vector<T>
for the intermediate results and a std::vector<std::thread> for the threads. Note
that you need to launch one fewer thread than num_threads, because you already
have one.

 Launching the threads is a simple loop: advance the block_end iterator to the end
of the current block and launch a new thread to accumulate the results for this block.
The start of the next block is the end of this one.

 After you’ve launched all the threads, this thread can then process the final block.
This is where you take account of any uneven division: you know the end of the final
block must be last, and it doesn’t matter how many elements are in that block.

 Once you’ve accumulated the results for the last block, you can wait for all the
threads you spawned with std::for_each, as in listing 2.8, and then add up the results
with a final call to std::accumulate.

 Before you leave this example, it’s worth pointing out that where the addition
operator for the type T isn’t associative (such as for float or double), the results of
this parallel_accumulate may vary from those of std::accumulate because of the
grouping of the range into blocks. Also, the requirements on the iterators are slightly
more stringent: they must be at least forward iterators, whereas std::accumulate can
work with single-pass input iterators, and T must be default-constructible so that you can
create the results vector. These sorts of requirement changes are common with par-
allel algorithms; by their nature they’re different in order to make them parallel, and
this has consequences for the results and requirements. Implementing parallel algo-
rithms is covered in more depth in chapter 8, and chapter 10 covers the standard sup-
plied ones from C++17 (the equivalent to the parallel_accumulate described here
being the parallel form of std::reduce). It’s also worth noting that because you can’t
return a value directly from a thread, you must pass in a reference to the relevant
entry in the results vector. Alternative ways of returning results from threads are
addressed through the use of futures in chapter 4.

 In this case, all the information required by each thread was passed in when the
thread was started, including the location in which to store the result of its calculation.
This isn’t always the case; sometimes it’s necessary to be able to identify the threads in
some way for part of the processing. You could pass in an identifying number, such as
the value of i in listing 2.8, but if the function that needs the identifier is several levels
deep in the call stack and could be called from any thread, it’s inconvenient to have to
do it that way. When we were designing the C++ Standard Library we foresaw this
need, so each thread has a unique identifier.

34 CHAPTER 2 Managing threads
2.5 Identifying threads
Thread identifiers are of type std::thread::id and can be retrieved in two ways.
First, the identifier for a thread can be obtained from its associated std::thread object
by calling the get_id() member function. If the std::thread object doesn’t have an
associated thread of execution, the call to get_id() returns a default-constructed
std::thread::id object, which indicates “not any thread.” Alternatively, the identifier
for the current thread can be obtained by calling std::this_thread:: get_id(),
which is also defined in the <thread> header.

 Objects of type std::thread::id can be freely copied and compared; they wouldn’t
be of much use as identifiers otherwise. If two objects of type std::thread::id are
equal, they represent the same thread, or both are holding the “not any thread” value.
If two objects aren’t equal, they represent different threads, or one represents a
thread and the other is holding the “not any thread” value.

 The C++ Standard Library doesn’t limit you to checking whether thread identifiers
are the same or not; objects of type std::thread::id offer the complete set of com-
parison operators, which provide a total ordering for all distinct values. This allows
them to be used as keys in associative containers, or sorted, or compared in any other
way that you as a programmer may see fit. The comparison operators provide a total
order for all non-equal values of std::thread::id, so they behave as you’d intuitively
expect: if a<b and b<c, then a<c, and so forth. The Standard Library also provides
std::hash<std::thread::id> so that values of type std::thread::id can be used as
keys in the new unordered associative containers too.

 Instances of std::thread::id are often used to check whether a thread needs to
perform some operation. For example, if threads are used to divide work, as in listing
2.9, the initial thread that launched the others might need to perform its work slightly
differently in the middle of the algorithm. In this case it could store the result of
std::this_thread::get_id() before launching the other threads, and then the core
part of the algorithm (which is common to all threads) could check its own thread ID
against the stored value:

std::thread::id master_thread;
void some_core_part_of_algorithm()
{
 if(std::this_thread::get_id()==master_thread)
 {
 do_master_thread_work();
 }
 do_common_work();
}

Alternatively, the std::thread::id of the current thread could be stored in a data
structure as part of an operation. Later operations on that same data structure could
then check the stored ID against the ID of the thread performing the operation to
determine what operations are permitted/required.

35Summary
 Similarly, thread IDs could be used as keys into associative containers where spe-
cific data needs to be associated with a thread and alternative mechanisms such as
thread-local storage aren’t appropriate. Such a container could, for example, be used
by a controlling thread to store information about each of the threads under its con-
trol or for passing information between threads.

 The idea is that std::thread::id will suffice as a generic identifier for a thread in
most circumstances; it’s only if the identifier has semantic meaning associated with it
(such as being an index into an array) that alternatives should be necessary. You can
even write out an instance of std::thread::id to an output stream such as std::cout:

std::cout<<std::this_thread::get_id();

The exact output you get is strictly implementation-dependent; the only guarantee
given by the standard is that thread IDs that compare as equal should produce the
same output, and those that aren’t equal should give different output. This is there-
fore primarily useful for debugging and logging, but the values have no semantic
meaning, so there’s not much more that could be said anyway.

Summary
In this chapter, I covered the basics of thread management with the C++ Standard
Library: starting threads, waiting for them to finish, and not waiting for them to finish
because you want them to run in the background. We also saw how to pass arguments
into the thread function when a thread is started, how to transfer the responsibility for
managing a thread from one part of the code to another, and how groups of threads
can be used to divide work. Finally, we discussed identifying threads in order to associ-
ate data or behavior with specific threads that’s inconvenient to associate through
alternative means. Although you can do quite a lot with purely independent threads
that each operate on separate data, sometimes it’s desirable to share data among
threads while they’re running. Chapter 3 discusses the issues surrounding sharing
data directly among threads, and chapter 4 covers more general issues surrounding
synchronizing operations with and without shared data.

Sharing data
between threads
One of the key benefits of using threads for concurrency is the potential to easily
and directly share data between them, so now that we’ve covered starting and man-
aging threads, let’s look at the issues surrounding shared data.

 Imagine for a moment that you’re sharing an apartment with a friend. There’s
only one kitchen and one bathroom. Unless you’re particularly friendly, you can’t
both use the bathroom at the same time, and if your roommate occupies the bath-
room for a long time, it can be frustrating if you need to use it. Likewise, though it
might be possible to both cook meals at the same time, if you have a combined oven
and grill, it’s not going to end well if one of you tries to grill some sausages at the
same time as the other is baking a cake. Furthermore, we all know the frustration of
sharing a space and getting halfway through a task only to find that someone has bor-
rowed something we need or changed something from the way we left it.

 It’s the same with threads. If you’re sharing data between threads, you need to
have rules for which thread can access which bit of data when, and how any updates

This chapter covers
 Problems with sharing data between threads

 Protecting data with mutexes

 Alternative facilities for protecting shared data
36

37Problems with sharing data between threads
are communicated to the other threads that care about that data. The ease with which
data can be shared between multiple threads in a single process is not only a benefit—
it can also be a big drawback. Incorrect use of shared data is one of the biggest causes
of concurrency-related bugs, and the consequences can be far worse than sausage-
flavored cakes.

 This chapter is about sharing data safely between threads in C++, avoiding the
potential problems that can arise, and maximizing the benefits.

3.1 Problems with sharing data between threads
When it comes down to it, the problems with sharing data between threads are all due
to the consequences of modifying data. If all shared data is read-only, there’s no problem,
because the data read by one thread is unaffected by whether or not another thread is reading the
same data. But if data is shared between threads, and one or more threads start modify-
ing the data, there’s a lot of potential for trouble. In this case, you must take care to
ensure that everything works out OK.

 One concept that’s widely used to help programmers reason about their code is
invariants—statements that are always true about a particular data structure, such as
“this variable contains the number of items in the list.” These invariants are often bro-
ken during an update, especially if the data structure is of any complexity or the
update requires modification of more than one value.

 Consider a doubly linked list, where each node holds a pointer to both the next
node in the list and the previous one. One of the invariants is that if you follow a
“next” pointer from one node (A) to another (B), the “previous” pointer from that
node (B) points back to the first node (A). In order to remove a node from the list,
the nodes on either side have to be updated to point to each other. Once one has
been updated, the invariant is broken until the node on the other side has been
updated too; after the update has completed, the invariant holds again.

 The steps in deleting an entry from such a list are shown in figure 3.1:

a Identify the node to delete: N.
b Update the link from the node prior to N to point to the node after N.
c Update the link from the node after N to point to the node prior to N.
d Delete node N.

As you can see in figure 3.1, between steps b and c, the links going in one direction
are inconsistent with the links going in the opposite direction, and the invariant is
broken.

 The simplest potential problem with modifying data that’s shared between threads
is that of broken invariants. If you don’t do anything special to ensure otherwise, if
one thread is reading the doubly linked list while another is removing a node, it’s
quite possible for the reading thread to see the list with a node only partially removed
(because only one of the links has been changed, as in step b of figure 3.1), so the
invariant is broken. The consequences of this broken invariant can vary; if the other

38 CHAPTER 3 Sharing data between threads
thread is reading the list items from left to right in the diagram, it will skip the node
being deleted. On the other hand, if the second thread is trying to delete the right-
most node in the diagram, it might end up permanently corrupting the data structure
and eventually crashing the program. Whatever the outcome, this is an example of
one of the most common causes of bugs in concurrent code: a race condition.

3.1.1 Race conditions

Suppose you’re buying tickets to see a movie at the movie theater. If it’s a big theater,
multiple cashiers will be taking money so more than one person can buy tickets at the
same time. If someone at another cashier’s desk is also buying tickets for the same

Figure 3.1 Deleting a node from a doubly linked list

39Problems with sharing data between threads
movie as you are, which seats are available for you to choose from depends on
whether the other person books first or you do. If there are only a few seats left, this
difference can be quite crucial: it might literally be a race to see who gets the last tick-
ets. This is an example of a race condition: which seats you get (or even whether you get
tickets) depends on the relative ordering of the two purchases.

 In concurrency, a race condition is anything where the outcome depends on the
relative ordering of execution of operations on two or more threads; the threads race
to perform their respective operations. Most of the time, this is quite benign because
all possible outcomes are acceptable, even though they may change with different rel-
ative orderings. For example, if two threads are adding items to a queue for process-
ing, it generally doesn’t matter which item gets added first, provided that the
invariants of the system are maintained. It’s when the race condition leads to broken
invariants that there’s a problem, such as with the doubly linked list example men-
tioned. When talking about concurrency, the term race condition is usually used to mean
a problematic race condition; benign race conditions aren’t so interesting and aren’t a
cause of bugs. The C++ Standard also defines the term data race to mean the specific
type of race condition that arises because of concurrent modification to a single object
(see section 5.1.2 for details); data races cause the dreaded undefined behavior.

 Problematic race conditions typically occur where completing an operation requires
modification of two or more distinct pieces of data, such as the two link pointers in
the example. Because the operation must access two separate pieces of data, these
must be modified in separate instructions, and another thread could potentially
access the data structure when only one of them has been completed. Race conditions
can often be hard to find and hard to duplicate because the window of opportunity is
small. If the modifications are done as consecutive CPU instructions, the chance of
the problem exhibiting on any one run-through is small, even if the data structure is
being accessed by another thread concurrently. As the load on the system increases,
and the number of times the operation is performed increases, the chance of the
problematic execution sequence occurring also increases. It’s almost inevitable that
such problems will show up at the most inconvenient time. Because race conditions
are generally timing-sensitive, they can often disappear entirely when the application
is run under the debugger, because the debugger affects the timing of the program,
even if only slightly.

 If you’re writing multithreaded programs, race conditions can easily be the bane
of your existence; a great deal of the complexity in writing software that uses concur-
rency comes from avoiding problematic race conditions.

3.1.2 Avoiding problematic race conditions

There are several ways to deal with problematic race conditions. The simplest option
is to wrap your data structure with a protection mechanism to ensure that only the
thread performing a modification can see the intermediate states where the invariants
are broken. From the point of view of other threads accessing that data structure, such

40 CHAPTER 3 Sharing data between threads
modifications either haven’t started or have completed. The C++ Standard Library
provides several of these mechanisms, which are described in this chapter.

 Another option is to modify the design of your data structure and its invariants so
that modifications are done as a series of indivisible changes, each of which preserves
the invariants. This is generally referred to as lock-free programming and is difficult to get
right. If you’re working at this level, the nuances of the memory model and identify-
ing which threads can potentially see which set of values can get complicated. The
memory model is covered in chapter 5, and lock-free programming is discussed in
chapter 7.

 Another way of dealing with race conditions is to handle the updates to the data
structure as a transaction, just as updates to a database are done within a transaction.
The required series of data modifications and reads is stored in a transaction log and
then committed in a single step. If the commit can’t proceed because the data struc-
ture has been modified by another thread, the transaction is restarted. This is termed
software transactional memory (STM), and it’s an active research area at the time of writ-
ing. It won’t be covered in this book, because there’s no direct support for STM in
C++ (though there is a Technical Specification for Transactional Memory Extensions
to C++1). But the basic idea of doing something privately and then committing in a
single step is something that I’ll come back to later.

 The most basic mechanism for protecting shared data provided by the C++ Stan-
dard is the mutex, so we’ll look at that first.

3.2 Protecting shared data with mutexes
So, you have a shared data structure such as the linked list from the previous section,
and you want to protect it from race conditions and the potential broken invariants
that can ensue. Wouldn’t it be nice if you could mark all the pieces of code that access
the data structure as mutually exclusive, so that if any thread was running one of them,
any other thread that tried to access that data structure had to wait until the first
thread was finished? That would make it impossible for a thread to see a broken
invariant except when it was the thread doing the modification.

 Well, this isn’t a fairy tale wish—it’s precisely what you get if you use a synchroniza-
tion primitive called a mutex (mutual exclusion). Before accessing a shared data struc-
ture, you lock the mutex associated with that data, and when you’ve finished accessing
the data structure, you unlock the mutex. The Thread Library then ensures that once
one thread has locked a specific mutex, all other threads that try to lock the same
mutex have to wait until the thread that successfully locked the mutex unlocks it. This
ensures that all threads see a self-consistent view of the shared data, without any bro-
ken invariants.

 Mutexes are the most general of the data-protection mechanisms available in C++,
but they’re not a silver bullet; it’s important to structure your code to protect the right

1 ISO/IEC TS 19841:2015—Technical Specification for C++ Extensions for Transactional Memory http://www
.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=66343.

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=66343
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=66343
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=66343

41Protecting shared data with mutexes
data (see section 3.2.2) and avoid race conditions inherent in your interfaces (see sec-
tion 3.2.3). Mutexes also come with their own problems in the form of a deadlock (see
section 3.2.4) and protecting either too much or too little data (see section 3.2.8).
Let’s start with the basics.

3.2.1 Using mutexes in C++

In C++, you create a mutex by constructing an instance of std::mutex, lock it with a
call to the lock() member function, and unlock it with a call to the unlock() member
function. But it isn’t recommended practice to call the member functions directly,
because this means that you have to remember to call unlock() on every code path
out of a function, including those due to exceptions. Instead, the Standard C++
Library provides the std::lock_guard class template, which implements that RAII
idiom for a mutex; it locks the supplied mutex on construction and unlocks it on
destruction, ensuring a locked mutex is always correctly unlocked. The following list-
ing shows how to protect a list that can be accessed by multiple threads using
std::mutex, along with std::lock_guard. Both of these are declared in the <mutex>
header.

#include <list>
#include <mutex>
#include <algorithm>
std::list<int> some_list;
std::mutex some_mutex;
void add_to_list(int new_value)
{
 std::lock_guard<std::mutex> guard(some_mutex);
 some_list.push_back(new_value);
}
bool list_contains(int value_to_find)
{
 std::lock_guard<std::mutex> guard(some_mutex);
 return std::find(some_list.begin(),some_list.end(),value_to_find)
 != some_list.end();
}

In listing 3.1, there’s a single global variable B, and it’s protected with a correspond-
ing global instance of std::mutex c. The use of std::lock_guard<std::mutex> in
add_to_list() d, and again in list_contains() e, means that the accesses in
these functions are mutually exclusive: list_contains() will never see the list partway
through a modification by add_to_list().

 C++17 has a new feature called class template argument deduction, which means
that for simple class templates like std::lock_guard, the template argument list can
often be omitted. d and e can be reduced to

std::lock_guard guard(some_mutex);

Listing 3.1 Protecting a list with a mutex

B

c

d

e

42 CHAPTER 3 Sharing data between threads
on a C++17 compiler. As we will see in section 3.2.4, C++17 also introduces an enhanced
version of lock guard called std::scoped_lock, so in a C++17 environment, this may
well be written as

std::scoped_lock guard(some_mutex);

For clarity of code and compatibility with older compilers, I’ll continue to use
std::lock_guard and specify the template arguments in other code snippets.

 Although there are occasions where this use of global variables is appropriate, in
the majority of cases it’s common to group the mutex and the protected data together
in a class rather than use global variables. This is a standard application of object-
oriented design rules: by putting them in a class, you’re clearly marking them as
related, and you can encapsulate the functionality and enforce the protection. In this
case, the add_to_list and list_contains functions would become member func-
tions of the class, and the mutex and protected data would both become private
members of the class, making it much easier to identify which code has access to the
data and thus which code needs to lock the mutex. If all the member functions of
the class lock the mutex before accessing any other data members and unlock it when
done, the data is nicely protected from all comers.

 Well, that’s not quite true, as the astute among you will have noticed: if one of the
member functions returns a pointer or reference to the protected data, then it doesn’t
matter that the member functions all lock the mutex in a nice, orderly fashion, because
you’ve blown a big hole in the protection. Any code that has access to that pointer or ref-
erence can now access (and potentially modify) the protected data without locking the mutex.
Protecting data with a mutex therefore requires careful interface design to ensure
that the mutex is locked before there’s any access to the protected data and that there
are no backdoors.

3.2.2 Structuring code for protecting shared data

As you’ve seen, protecting data with a mutex is not quite as easy as slapping an
std::lock_guard object in every member function; one stray pointer or reference,
and all that protection is for nothing. At one level, checking for stray pointers or refer-
ences is easy; as long as none of the member functions return a pointer or reference
to the protected data to their caller either via their return value or via an out parame-
ter, the data is safe. If you dig a little deeper, it’s not that straightforward—nothing
ever is. As well as checking that the member functions don’t pass out pointers or refer-
ences to their callers, it’s also important to check that they don’t pass these pointers or
references in to functions they call that aren’t under your control. This is just as dan-
gerous: those functions might store the pointer or reference in a place where it can
later be used without the protection of the mutex. Particularly dangerous in this
regard are functions that are supplied at runtime via a function argument or other
means, as in the next listing.

43Protecting shared data with mutexes
class some_data
{
 int a;
 std::string b;
public:
 void do_something();
};
class data_wrapper
{
private:
 some_data data;
 std::mutex m;
public:
 template<typename Function>
 void process_data(Function func)
 {
 std::lock_guard<std::mutex> l(m);
 func(data);
 }
};
some_data* unprotected;
void malicious_function(some_data& protected_data)
{
 unprotected=&protected_data;
}
data_wrapper x;
void foo()
{
 x.process_data(malicious_function);
 unprotected->do_something();
}

In this example, the code in process_data looks harmless enough, nicely protected
with std::lock_guard, but the call to the user-supplied func function B means that
foo can pass in malicious_function to bypass the protection c and then call
do_something() without the mutex being locked d.

 Fundamentally, the problem with this code is that it hasn’t done what you set out
to do: mark all the pieces of code that access the data structure as mutually exclusive. In
this case, it missed the code in foo() that calls unprotected->do_something().
Unfortunately, this part of the problem isn’t something the C++ Thread Library can
help you with; it’s up to you as programmers to lock the right mutex to protect your
data. On the upside, you have a guideline to follow, which will help you in these cases:
Don’t pass pointers and references to protected data outside the scope of the lock, whether by
returning them from a function, storing them in externally visible memory, or passing them as
arguments to user-supplied functions.

 Although this is a common mistake when trying to use mutexes to protect shared
data, it’s far from the only potential pitfall. As you’ll see in the next section, it’s still
possible to have race conditions, even when data is protected with a mutex.

Listing 3.2 Accidentally passing out a reference to protected data

Pass “protected” data to
user-supplied functionB

Pass in a malicious
function

c

Unprotected access
to protected datad

44 CHAPTER 3 Sharing data between threads
3.2.3 Spotting race conditions inherent in interfaces

Just because you’re using a mutex or other mechanism to protect shared data, it
doesn’t mean you’re protected from race conditions; you still have to ensure that the
appropriate data is protected. Consider the doubly linked list example again. In order
for a thread to safely delete a node, you need to ensure that you’re preventing concur-
rent accesses to three nodes: the node being deleted and the nodes on either side. If
you protected access to the pointers of each node individually, you’d be no better off
than with code that used no mutexes, because the race condition could still happen—
it’s not the individual nodes that need protecting for the individual steps but the
whole data structure, for the whole delete operation. The easiest solution in this case
is to have a single mutex that protects the entire list, as in listing 3.1.

 Just because individual operations on the list are safe, you’re not out of the woods
yet; you can still get race conditions, even with a simple interface. Consider a stack
data structure like the std::stack container adapter shown in listing 3.3. Aside from
the constructors and swap(), there are only five things you can do to a std::stack:
you can push() a new element onto the stack, pop() an element off the stack, read the
top() element, check whether it’s empty(), and read the number of elements—the
size() of the stack. If you change top() so that it returns a copy rather than a refer-
ence (so you’re following the guideline from section 3.2.2) and protect the internal
data with a mutex, this interface is still inherently subject to race conditions. This
problem is not unique to a mutex-based implementation; it’s an interface problem, so
the race conditions would still occur with a lock-free implementation.

template<typename T,typename Container=std::deque<T> >
class stack
{
public:
 explicit stack(const Container&);
 explicit stack(Container&& = Container());
 template <class Alloc> explicit stack(const Alloc&);
 template <class Alloc> stack(const Container&, const Alloc&);
 template <class Alloc> stack(Container&&, const Alloc&);
 template <class Alloc> stack(stack&&, const Alloc&);
 bool empty() const;
 size_t size() const;
 T& top();
 T const& top() const;
 void push(T const&);
 void push(T&&);
 void pop();
 void swap(stack&&);
 template <class... Args> void emplace(Args&&... args);
};

The problem here is that the results of empty() and size() can’t be relied on. Although
they might be correct at the time of the call, once they’ve returned, other threads are

Listing 3.3 The interface to the std::stack container adapter

New in
C++14

45Protecting shared data with mutexes
free to access the stack and might push() new elements onto or pop() the existing
ones off of the stack before the thread that called empty() or size() could use that
information.

 In particular, if the stack instance is not shared, it’s safe to check for empty() and
then call top() to access the top element if the stack is not empty, as follows:

stack<int> s;
if(!s.empty())
{
 int const value=s.top();
 s.pop();
 do_something(value);
}

Not only is it safe in single-threaded code, it’s expected: calling top() on an empty
stack is undefined behavior. With a shared stack object, this call sequence is no longer
safe, because there might be a call to pop() from another thread that removes the last
element in between the call to empty() B and the call to top() c. This is therefore a
classic race condition, and the use of a mutex internally to protect the stack contents
doesn’t prevent it; it’s a consequence of the interface.

 What’s the solution? Well, this problem happens as a consequence of the design of
the interface, so the solution is to change the interface. But that still begs the ques-
tion: what changes need to be made? In the simplest case, you could declare that
top() will throw an exception if there aren’t any elements in the stack when it’s called.
Though this directly addresses this issue, it makes for more cumbersome program-
ming, because now you need to be able to catch an exception, even if the call to
empty() returned false. This makes the call to empty() an optimization to avoid the
overhead of throwing an exception if the stack is already empty (though if the state
changes between the call to empty() and the call to top(), then the exception will still
be thrown), rather than a necessary part of the design.

 If you look closely at the previous snippet, there’s also potential for another race
condition, but this time between the call to top() c and the call to pop() d. Con-
sider two threads running the previous snippet of code and both referencing the same
stack object, s. This isn’t an unusual situation; when using threads for performance,
it’s quite common to have several threads running the same code on different data,
and a shared stack object is ideal for dividing work between them (though more com-
monly, a queue is used for this purpose—see the examples in chapters 6 and 7). Sup-
pose that initially the stack has two elements, so you don’t have to worry about the
race between empty() and top() on either thread, and consider the potential execu-
tion patterns.

 If the stack is protected by a mutex internally, only one thread can be running a
stack member function at any one time, so the calls get nicely interleaved, but the
calls to do_something() can run concurrently. One possible execution is shown in
table 3.1.

b

c

d

46 CHAPTER 3 Sharing data between threads
As you can see, if these are the only threads running, there’s nothing in between the
two calls to top() to modify the stack, so both threads will see the same value. Not only
that, but there are no calls to top() between the calls to pop(). Consequently, one of
the two values on the stack is discarded without ever having been read, whereas the
other is processed twice. This is yet another race condition and far more insidious
than the undefined behavior of the empty()/top() race; there’s never anything obvi-
ously wrong going on, and the consequences of the bug are likely far removed from
the cause, although they obviously depend on exactly what do_something() does.

 This calls for a more radical change to the interface, one that combines the calls to
top() and pop() under the protection of the mutex. Tom Cargill2 pointed out that a
combined call can lead to issues if the copy constructor for the objects on the stack
can throw an exception. This problem was dealt with fairly comprehensively from an
exception-safety point of view by Herb Sutter,3 but the potential for race conditions
brings something new to the mix.

 For those of you who aren’t aware of the issue, consider stack<vector<int>>.
Now, a vector is a dynamically sized container, so when you copy a vector, the library
has to allocate some more memory from the heap in order to copy the contents. If the
system is heavily loaded or there are significant resource constraints, this memory allo-
cation can fail, so the copy constructor for vector might throw a std::bad_alloc
exception. This is likely if the vector contains a lot of elements. If the pop() function
was defined to return the value popped, as well as remove it from the stack, you have a
potential problem: the value being popped is returned to the caller only after the stack
has been modified, but the process of copying the data to return to the caller might
throw an exception. If this happens, the data popped is lost; it has been removed from

Table 3.1 A possible ordering of operations on a stack from two threads

Thread A Thread B

if(!s.empty())

if(!s.empty())

 int const value=s.top();

 int const value=s.top();

 s.pop();

 do_something(value); s.pop();

 do_something(value);

2 Tom Cargill, “Exception Handling: A False Sense of Security,” in C++ Report 6, no. 9 (November–December
1994). Also available at http://www.informit.com/content/images/020163371x/supplements/Exception_
Handling_Article.html.

3 Herb Sutter, Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions (Addison Wes-
ley Professional, 1999).

http://www.informit.com/content/images/020163371x/supplements/Exception_ Handling_Article.html
http://www.informit.com/content/images/020163371x/supplements/Exception_ Handling_Article.html
http://www.informit.com/content/images/020163371x/supplements/Exception_ Handling_Article.html

47Protecting shared data with mutexes
the stack, but the copy was unsuccessful! The designers of the std::stack interface
helpfully split the operation in two: get the top element (top()) and then remove it
from the stack (pop()), so that if you can’t safely copy the data, it stays on the stack. If
the problem was lack of heap memory, maybe the application can free some memory
and try again.

 Unfortunately, it’s precisely this split that you’re trying to avoid in eliminating the
race condition! Thankfully, there are alternatives, but they aren’t without cost.

OPTION 1: PASS IN A REFERENCE

The first option is to pass a reference to a variable in which you want to receive the
popped value as an argument in the call to pop():

std::vector<int> result;
some_stack.pop(result);

This works well for many cases, but it has the distinct disadvantage that it requires the
calling code to construct an instance of the stack’s value type prior to the call, in order
to pass this in as the target. For some types this is impractical, because constructing an
instance is expensive in terms of time or resources. For other types this isn’t always
possible, because the constructors require parameters that aren’t necessarily avail-
able at this point in the code. Finally, it requires that the stored type be assignable.
This is an important restriction: many user-defined types do not support assign-
ment, though they may support move construction or even copy construction (and
allow return by value).

OPTION 2: REQUIRE A NO-THROW COPY CONSTRUCTOR OR MOVE CONSTRUCTOR

There’s only an exception safety problem with a value-returning pop() if the return by
value can throw an exception. Many types have copy constructors that don’t throw
exceptions, and with the new rvalue-reference support in the C++ Standard (see
appendix A, section A.1), many more types will have a move constructor that doesn’t
throw exceptions, even if their copy constructor does. One valid option is to restrict
the use of your thread-safe stack to those types that can safely be returned by value
without throwing an exception.

 Although this is safe, it’s not ideal. Even though you can detect at compile time the
existence of a copy or move constructor that doesn’t throw an exception using the
std::is_nothrow_copy_constructible and std::is_nothrow_move_constructible
type traits, it’s quite limiting. There are many more user-defined types with copy con-
structors that can throw and don’t have move constructors than there are types with
copy and/or move constructors that can’t throw (although this might change as peo-
ple get used to the rvalue-reference support in C++11). It would be unfortunate if
such types couldn’t be stored in your thread-safe stack.

OPTION 3: RETURN A POINTER TO THE POPPED ITEM

The third option is to return a pointer to the popped item rather than return the item
by value. The advantage here is that pointers can be freely copied without throwing an

48 CHAPTER 3 Sharing data between threads
exception, so you’ve avoided Cargill’s exception problem. The disadvantage is that
returning a pointer requires a means of managing the memory allocated to the
object, and for simple types such as integers, the overhead of such memory manage-
ment can exceed the cost of returning the type by value. For any interface that uses
this option, std::shared_ptr would be a good choice of pointer type; not only does it
avoid memory leaks, because the object is destroyed once the last pointer is destroyed,
but the library is in full control of the memory allocation scheme and doesn’t have to
use new and delete. This can be important for optimization purposes: requiring that
each object in the stack be allocated separately with new would impose quite an over-
head compared to the original non-thread-safe version.

OPTION 4: PROVIDE BOTH OPTION 1 AND EITHER OPTION 2 OR 3
Flexibility should never be ruled out, especially in generic code. If you’ve chosen
option 2 or 3, it’s relatively easy to provide option 1 as well, and this provides users of
your code the ability to choose whichever option is most appropriate for them at little
additional cost.

EXAMPLE DEFINITION OF A THREAD-SAFE STACK

Listing 3.4 shows the class definition for a stack with no race conditions in the
interface and that implements options 1 and 3: there are two overloads of pop(),
one that takes a reference to a location in which to store the value and one that
returns std::shared_ptr<>. It has a simple interface, with only two functions: push()
and pop().

#include <exception>
#include <memory>
struct empty_stack: std::exception
{
 const char* what() const noexcept;
};
template<typename T>
class threadsafe_stack
{
public:
 threadsafe_stack();
 threadsafe_stack(const threadsafe_stack&);
 threadsafe_stack& operator=(const threadsafe_stack&) = delete;
 void push(T new_value);
 std::shared_ptr<T> pop();
 void pop(T& value);
 bool empty() const;
};

By paring down the interface you allow for maximum safety; even operations on the
whole stack are restricted. The stack itself can’t be assigned, because the assignment
operator is deleted B (see appendix A, section A.2), and there’s no swap() function.

Listing 3.4 An outline class definition for a thread-safe stack

For std::shared_ptr<>

bAssignment
operator is

deleted

49Protecting shared data with mutexes
It can, however, be copied, assuming the stack elements can be copied. The pop()
functions throw an empty_stack exception if the stack is empty, so everything still
works even if the stack is modified after a call to empty(). As mentioned in the
description of option 3, the use of std::shared_ptr allows the stack to take care of
the memory-allocation issues and avoid excessive calls to new and delete if desired.
Your five stack operations have now become three: push(), pop(), and empty(). Even
empty() is superfluous. This simplification of the interface allows for better control
over the data; you can ensure that the mutex is locked for the entirety of an operation.
The following listing shows a simple implementation that’s a wrapper around
std::stack<>.

#include <exception>
#include <memory>
#include <mutex>
#include <stack>
struct empty_stack: std::exception
{
 const char* what() const throw();
};
template<typename T>
class threadsafe_stack
{
private:
 std::stack<T> data;
 mutable std::mutex m;
public:
 threadsafe_stack(){}
 threadsafe_stack(const threadsafe_stack& other)
 {
 std::lock_guard<std::mutex> lock(other.m);
 data=other.data;
 }
 threadsafe_stack& operator=(const threadsafe_stack&) = delete;
 void push(T new_value)
 {
 std::lock_guard<std::mutex> lock(m);
 data.push(std::move(new_value));
 }
 std::shared_ptr<T> pop()
 {
 std::lock_guard<std::mutex> lock(m);
 if(data.empty()) throw empty_stack();
 std::shared_ptr<T> const res(std::make_shared<T>(data.top()));
 data.pop();
 return res;
 }
 void pop(T& value)
 {
 std::lock_guard<std::mutex> lock(m);
 if(data.empty()) throw empty_stack();

Listing 3.5 A fleshed-out class definition for a thread-safe stack

Copy performed
in constructor
body

b

Check for empty
before trying to
pop value

Allocate return value
before modifying stack

50 CHAPTER 3 Sharing data between threads
 value=data.top();
 data.pop();
 }
 bool empty() const
 {
 std::lock_guard<std::mutex> lock(m);
 return data.empty();
 }
};

This stack implementation is copyable—the copy constructor locks the mutex in the
source object and then copies the internal stack. You do the copy in the constructor
body B rather than the member initializer list in order to ensure that the mutex is
held across the copy.

 As the discussion of top() and pop() shows, problematic race conditions in inter-
faces arise because of locking at too small a granularity; the protection doesn’t cover
the entirety of the desired operation. Problems with mutexes can also arise from lock-
ing at too large a granularity; the extreme situation is a single global mutex that pro-
tects all shared data. In a system where there’s a significant amount of shared data,
this can eliminate any performance benefits of concurrency, because the threads are
forced to run one at a time, even when they’re accessing different bits of data. The
first versions of the Linux kernel that were designed to handle multi-processor systems
used a single global kernel lock. Although this worked, it meant that a two-processor
system typically had much worse performance than two single-processor systems, and
performance on a four-processor system was nowhere near that of four single-processor
systems. There was too much contention for the kernel, so the threads running on the
additional processors were unable to perform useful work. Later revisions of the Linux
kernel have moved to a more fine-grained locking scheme, so the performance of a
four-processor system is much nearer the ideal of four times that of a single-processor
system, because there’s far less contention.

 One issue with fine-grained locking schemes is that sometimes you need more
than one mutex locked in order to protect all the data in an operation. As described
previously, sometimes the right thing to do is increase the granularity of the data cov-
ered by the mutexes, so that only one mutex needs to be locked. But sometimes that’s
undesirable, such as when the mutexes are protecting separate instances of a class. In
this case, locking at the next level up would mean either leaving the locking to the
user or having a single mutex that protected all instances of that class, neither of
which is particularly desirable.

 If you end up having to lock two or more mutexes for a given operation, there’s
another potential problem lurking in the wings: deadlock. This is almost the opposite
of a race condition: rather than two threads racing to be first, each one is waiting for
the other, so neither makes any progress.

51Protecting shared data with mutexes
3.2.4 Deadlock: the problem and a solution

Imagine that you have a toy that comes in two parts, and you need both parts to play
with it—a toy drum and drumstick, for example. Now imagine that you have two small
children, both of whom like playing with it. If one of them gets both the drum and the
drumstick, that child can merrily play the drum until tiring of it. If the other child
wants to play, they have to wait, however sad that makes them. Now imagine that the
drum and the drumstick are buried (separately) in the toy box, and your children
both decide to play with them at the same time, so they go rummaging in the toy box.
One finds the drum and the other finds the drumstick. Now they’re stuck; unless one
decides to be nice and let the other play, each will hold on to whatever they have and
demand that they be given the other piece, so neither gets to play.

 Now imagine that you have not children arguing over toys but threads arguing
over locks on mutexes: each of a pair of threads needs to lock both of a pair of
mutexes to perform some operation, and each thread has one mutex and is waiting
for the other. Neither thread can proceed, because each is waiting for the other to
release its mutex. This scenario is called deadlock, and it’s the biggest problem with
having to lock two or more mutexes in order to perform an operation.

 The common advice for avoiding deadlock is to always lock the two mutexes in the
same order: if you always lock mutex A before mutex B, then you’ll never deadlock.
Sometimes this is straightforward, because the mutexes are serving different pur-
poses, but other times it’s not so simple, such as when the mutexes are each protect-
ing a separate instance of the same class. Consider, for example, an operation that
exchanges data between two instances of the same class; in order to ensure that the
data is exchanged correctly, without being affected by concurrent modifications, the
mutexes on both instances must be locked. But if a fixed order is chosen (for exam-
ple, the mutex for the instance supplied as the first parameter, then the mutex for the
instance supplied as the second parameter), this can backfire: all it takes is for two
threads to try to exchange data between the same two instances with the parameters
swapped, and you have deadlock!

 Thankfully, the C++ Standard Library has a cure for this in the form of
std::lock—a function that can lock two or more mutexes at once without risk of
deadlock. The example in the next listing shows how to use this for a simple swap
operation.

class some_big_object;
void swap(some_big_object& lhs,some_big_object& rhs);
class X
{
private:
 some_big_object some_detail;
 std::mutex m;
public:
 X(some_big_object const& sd):some_detail(sd){}

Listing 3.6 Using std::lock() and std::lock_guard in a swap operation

52 CHAPTER 3 Sharing data between threads
 friend void swap(X& lhs, X& rhs)
 {
 if(&lhs==&rhs)
 return;
 std::lock(lhs.m,rhs.m);
 std::lock_guard<std::mutex> lock_a(lhs.m,std::adopt_lock);
 std::lock_guard<std::mutex> lock_b(rhs.m,std::adopt_lock);
 swap(lhs.some_detail,rhs.some_detail);
 }
};

First, the arguments are checked to ensure they are different instances, because
attempting to acquire a lock on std::mutex when you already hold it is undefined
behavior. (A mutex that does permit multiple locks by the same thread is provided in
the form of std::recursive_mutex. See section 3.3.3 for details.) Then, the call to
std::lock() B locks the two mutexes, and two std::lock_guard instances are con-
structed c and d, one for each mutex. The std::adopt_lock parameter is supplied
in addition to the mutex to indicate to the std::lock_guard objects that the mutexes
are already locked, and they should adopt the ownership of the existing lock on the
mutex rather than attempt to lock the mutex in the constructor.

 This ensures that the mutexes are correctly unlocked on function exit in the gen-
eral case where the protected operation might throw an exception; it also allows for a
simple return. Also, it’s worth noting that locking either lhs.m or rhs.m inside the call
to std::lock can throw an exception; in this case, the exception is propagated out of
std::lock. If std::lock has successfully acquired a lock on one mutex and an excep-
tion is thrown when it tries to acquire a lock on the other mutex, this first lock is
released automatically: std::lock provides all-or-nothing semantics with regard to
locking the supplied mutexes.

 C++17 provides additional support for this scenario, in the form of a new RAII tem-
plate, std::scoped_lock<>. This is exactly equivalent to std::lock_guard<>, except
that it is a variadic template, accepting a list of mutex types as template parameters, and
a list of mutexes as constructor arguments. The mutexes supplied to the constructor
are locked using the same algorithm as std::lock, so that when the constructor com-
pletes they are all locked, and they are then all unlocked in the destructor. The
swap() operation from listing 3.6 can be rewritten as follows:

void swap(X& lhs, X& rhs)
 {
 if(&lhs==&rhs)
 return;
 std::scoped_lock guard(lhs.m,rhs.m);
 swap(lhs.some_detail,rhs.some_detail);
 }

This example uses another feature added with C++17: automatic deduction of class
template parameters. If you have a C++17 compiler (which is likely if you’re using
std::scoped_lock, because that is a C++17 library facility), the C++17 implicit class

B
c

d

b

53Protecting shared data with mutexes
template parameter deduction mechanism will choose the correct mutex types from
the types of the objects passed to the constructor at object B. This line is equivalent
to the fully specified version:

std::scoped_lock<std::mutex,std::mutex> guard(lhs.m,rhs.m);

The existence of std::scoped_lock means that most of the cases where you would
have used std::lock prior to C++17 can now be written using std::scoped_lock,
with less potential for mistakes, which can only be a good thing!

 Although std::lock (and std::scoped_lock<>) can help you avoid deadlock in
those cases where you need to acquire two or more locks together, it doesn’t help if
they’re acquired separately. In that case, you have to rely on your discipline as devel-
opers to ensure you don’t get deadlock. This isn’t easy: deadlocks are one of the nasti-
est problems to encounter in multithreaded code and are often unpredictable, with
everything working fine the majority of the time. There are, however, some relatively
simple rules that can help you to write deadlock-free code.

3.2.5 Further guidelines for avoiding deadlock

Deadlock doesn’t only occur with locks, although that’s the most frequent cause; you
can create deadlock with two threads and no locks by having each thread call join()
on the std::thread object for the other. In this case, neither thread can make prog-
ress because it’s waiting for the other to finish, like the children fighting over their toy.
This simple cycle can occur anywhere that a thread can wait for another thread to per-
form some action if the other thread can simultaneously be waiting for the first
thread, and it isn’t limited to two threads: a cycle of three or more threads will still
cause deadlock. The guidelines for avoiding deadlock all boil down to one idea: don’t
wait for another thread if there’s a chance it’s waiting for you. The individual guide-
lines provide ways of identifying and eliminating the possibility that the other thread
is waiting for you.

AVOID NESTED LOCKS

The first idea is the simplest: don’t acquire a lock if you already hold one. If you stick
to this guideline, it’s impossible to get a deadlock from the lock usage alone because
each thread only ever holds a single lock. You could still get deadlock from other
things (like the threads waiting for each other), but mutex locks are probably the
most common cause of deadlock. If you need to acquire multiple locks, do it as a sin-
gle action with std::lock in order to acquire them without deadlock.

AVOID CALLING USER-SUPPLIED CODE WHILE HOLDING A LOCK

This is a simple follow-on from the previous guideline. Because the code is user-
supplied, you have no idea what it could do; it could do anything, including acquiring
a lock. If you call user-supplied code while holding a lock, and that code acquires a
lock, you’ve violated the guideline on avoiding nested locks and could get deadlock.
Sometimes this is unavoidable; if you’re writing generic code, such as the stack in

54 CHAPTER 3 Sharing data between threads
section 3.2.3, every operation on the parameter type or types is user-supplied code. In
this case, you need a new guideline.

ACQUIRE LOCKS IN A FIXED ORDER

If you absolutely must acquire two or more locks, and you can’t acquire them as a sin-
gle operation with std::lock, the next best thing is to acquire them in the same order
in every thread. I touched on this in section 3.2.4 as one way of avoiding deadlock
when acquiring two mutexes: the key is to define the order in a way that’s consistent
between threads. In some cases, this is relatively easy. For example, look at the stack
from section 3.2.3—the mutex is internal to each stack instance, but the operations
on the data items stored in a stack require calling user-supplied code. You can, how-
ever, add the constraint that none of the operations on the data items stored in the
stack should perform any operation on the stack itself. This puts the burden on the
user of the stack, but it’s rather uncommon for the data stored in a container to access
that container, and it’s quite apparent when this is happening, so it’s not a particularly
difficult burden to carry.

 In other cases, this isn’t so straightforward, as you discovered with the swap opera-
tion in section 3.2.4. At least in that case you could lock the mutexes simultaneously,
but that’s not always possible. If you look back at the linked list example from sec-
tion 3.1, you’ll see that one possibility for protecting the list is to have a mutex per
node. Then, in order to access the list, threads must acquire a lock on every node
they’re interested in. For a thread to delete an item, it must then acquire the lock on
three nodes: the node being deleted and the nodes on either side, because they’re all
being modified in some way. Likewise, to traverse the list, a thread must keep hold of
the lock on the current node while it acquires the lock on the next one in the
sequence, in order to ensure that the next pointer isn’t modified in the meantime.
Once the lock on the next node has been acquired, the lock on the first can be
released because it’s no longer necessary.

 This hand-over-hand locking style allows multiple threads to access the list, pro-
vided each is accessing a different node. But in order to prevent deadlock, the
nodes must always be locked in the same order: if two threads tried to traverse the
list in opposite orders using hand-over-hand locking, they could deadlock with
each other in the middle of the list. If nodes A and B are adjacent in the list, the
thread going one way will try to hold the lock on node A and try to acquire the lock
on node B. A thread going the other way would be holding the lock on node B and
trying to acquire the lock on node A—a classic scenario for deadlock, as shown in
figure 3.2.

 Likewise, when deleting node B that lies between nodes A and C, if that thread
acquires the lock on B before the locks on A and C, it has the potential to deadlock
with a thread traversing the list. Such a thread would try to lock either A or C first
(depending on the direction of traversal) but would then find that it couldn’t obtain a
lock on B because the thread doing the deleting was holding the lock on B and trying
to acquire the locks on A and C.

55Protecting shared data with mutexes
One way to prevent deadlock here is to define an order of traversal, so a thread must
always lock A before B and B before C. This would eliminate the possibility of dead-
lock at the expense of disallowing reverse traversal. Similar conventions can often be
established for other data structures.

USE A LOCK HIERARCHY

Although this is a particular case of defining lock ordering, a lock hierarchy can pro-
vide a means of checking that the convention is adhered to at runtime. The idea is that
you divide your application into layers and identify all the mutexes that may be locked
in any given layer. When code tries to lock a mutex, it isn’t permitted to lock that mutex
if it already holds a lock from a lower layer. You can check this at runtime by assigning
layer numbers to each mutex and keeping a record of which mutexes are locked by
each thread. This is a common pattern, but the C++ Standard Library does not provide
direct support for it, so you will need to write a custom hierarchical_mutex mutex
type, the code for which is shown in listing 3.8.

Thread 1 Thread 2

Lock master entry mutex

Read head node pointer

Lock head node mutex

Unlock master entry mutex

Lock master entry mutex

Read head → next pointer Lock tail node mutex

Lock next node mutex Read tail → prev pointer

Read next → next pointer Unlock tail node mutex

… …

Lock node A mutex Lock node C mutex

Read A → next pointer (which is B) Read C → next pointer (which is B)

Lock node B mutex

Block trying to lock node B mutex Unlock node C mutex

Read B → prev pointer (which is A)

Block trying to lock node A mutex

Deadlock!

Figure 3.2 Deadlock with threads traversing a list in opposite orders

56 CHAPTER 3 Sharing data between threads
 The following listing shows an example of two threads using a hierarchical mutex.

hierarchical_mutex high_level_mutex(10000);
hierarchical_mutex low_level_mutex(5000);
hierarchical_mutex other_mutex(6000);
int do_low_level_stuff();
int low_level_func()
{
 std::lock_guard<hierarchical_mutex> lk(low_level_mutex);
 return do_low_level_stuff();
}
void high_level_stuff(int some_param);
void high_level_func()
{
 std::lock_guard<hierarchical_mutex> lk(high_level_mutex);
 high_level_stuff(low_level_func());
}
void thread_a()
{
 high_level_func();
}

void do_other_stuff();
void other_stuff()
{
 high_level_func();
 do_other_stuff();
}
void thread_b()
{
 std::lock_guard<hierarchical_mutex> lk(other_mutex);
 other_stuff();
}

This code has three instances of hierarchical_mutex, (B, c, and d), which are
constructed with progressively lower hierarchy numbers. Because the mechanism is
defined so that if you hold a lock on a hierarchical_mutex, then you can only acquire
a lock on another hierarchical_mutex with a lower hierarchy number, this imposes
restrictions on what the code can do.

 Assuming do_low_level_stuff doesn’t lock any mutexes, low_level_func is the
bottom of your hierarchy, and locks the low_level_mutex e. high_level_func calls
low_level_func f, while holding a lock on high_level_mutex g, but that’s OK,
because the hierarchy level of high_level_mutex (B: 10000) is higher than that of
low_level_mutex (c: 5000).

 thread_a() h abides by the rules, so it runs fine.
 On the other hand, thread_b() i disregards the rules and therefore will fail at

runtime.

Listing 3.7 Using a lock hierarchy to prevent deadlock

b

c
d

e

g

f
h

1)

i

j

57Protecting shared data with mutexes
 First off, it locks other_mutex j, which has a hierarchy value of only 6000 d.
This means it should be somewhere midway in the hierarchy. When other_stuff()
calls high_level_func() 1), it’s violating the hierarchy: high_level_func() tries to
acquire the high_level_mutex, which has a value of 10000, considerably more than
the current hierarchy value of 6000. The hierarchical_mutex will therefore report
an error, possibly by throwing an exception or aborting the program. Deadlocks
between hierarchical mutexes are impossible, because the mutexes themselves
enforce the lock ordering. This does mean that you can’t hold two locks at the same
time if they’re the same level in the hierarchy, so hand-over-hand locking schemes
require that each mutex in the chain has a lower hierarchy value than the prior one,
which may be impractical in some cases.

 This example also demonstrates another point: the use of the std::lock_guard<>
template with a user-defined mutex type. hierarchical_mutex is not part of the stan-
dard but is easy to write; a simple implementation is shown in listing 3.8. Even though
it’s a user-defined type, it can be used with std::lock_guard<> because it implements
the three member functions required to satisfy the mutex concept: lock(), unlock(),
and try_lock(). You haven’t yet seen try_lock() used directly, but it’s fairly simple: if
the lock on the mutex is held by another thread, it returns false rather than waiting
until the calling thread can acquire the lock on the mutex. It may also be used by
std::lock() internally, as part of the deadlock-avoidance algorithm.

 The implementation of hierarchical_mutex uses a thread-local variable to store
the current hierarchy value. This value is accessible to all mutex instances, but has a
different value on each thread. This allows the code to check the behavior of each
thread separately, and the code for each mutex can check whether or not the current
thread is allowed to lock that mutex.

class hierarchical_mutex
{
 std::mutex internal_mutex;
 unsigned long const hierarchy_value;
 unsigned long previous_hierarchy_value;
 static thread_local unsigned long this_thread_hierarchy_value;
 void check_for_hierarchy_violation()
 {
 if(this_thread_hierarchy_value <= hierarchy_value)
 {
 throw std::logic_error(“mutex hierarchy violated”);
 }
 }
 void update_hierarchy_value()
 {
 previous_hierarchy_value=this_thread_hierarchy_value;
 this_thread_hierarchy_value=hierarchy_value;
 }

Listing 3.8 A simple hierarchical mutex

b

c

d

58 CHAPTER 3 Sharing data between threads
public:
 explicit hierarchical_mutex(unsigned long value):
 hierarchy_value(value),
 previous_hierarchy_value(0)
 {}
 void lock()
 {
 check_for_hierarchy_violation();
 internal_mutex.lock();
 update_hierarchy_value();
 }
 void unlock()
 {
 if(this_thread_hierarchy_value!=hierarchy_value)
 throw std::logic_error(“mutex hierarchy violated”);
 this_thread_hierarchy_value=previous_hierarchy_value;
 internal_mutex.unlock();
 }
 bool try_lock()
 {
 check_for_hierarchy_violation();
 if(!internal_mutex.try_lock())
 return false;
 update_hierarchy_value();
 return true;
 }
};
thread_local unsigned long
 hierarchical_mutex::this_thread_hierarchy_value(ULONG_MAX);

The key here is the use of the thread_local value representing the hierarchy value
for the current thread: this_thread_hierarchy_value B. It’s initialized to the
maximum value i, so initially any mutex can be locked. Because it’s declared
thread_local, every thread has its own copy, so the state of the variable in one thread
is entirely independent of the state of the variable when read from another thread.
See appendix A, section A.8, for more information about thread_local.

 So, the first time a thread locks an instance of hierarchical_mutex, the value of
this_thread_hierarchy_value is ULONG_MAX. By its nature, this is greater than any
other value, so the check in check_for_hierarchy_violation() c passes. With that
check out of the way, lock()delegates to the internal mutex for the locking e. Once
this lock has succeeded, you can update the hierarchy value f.

 If you now lock another hierarchical_mutex while holding the lock on this first
one, the value of this_thread_hierarchy_value reflects the hierarchy value of the
first mutex. The hierarchy value of this second mutex must now be less than that of
the mutex already held in order for the check c to pass.

 Now, it’s important to save the previous value of the hierarchy value for the cur-
rent thread so you can restore it in unlock() g; otherwise you’d never be able to
lock a mutex with a higher hierarchy value again, even if the thread didn’t hold any
locks. Because you store this previous hierarchy value only when you hold the

e

f

j

g

h

i

59Protecting shared data with mutexes
internal_mutex d, and you restore it before you unlock the internal mutex g, you
can safely store it in the hierarchical_mutex itself, because it’s safely protected by the
lock on the internal mutex. In order to avoid the hierarchy getting confused due to
out-of-order unlocking, you throw at j if the mutex being unlocked is not the most
recently locked one. Other mechanisms are possible, but this is the simplest.

 try_lock() works the same as lock(), except that if the call to try_lock() on the
internal_mutex fails h, then you don’t own the lock, so you don’t update the hierar-
chy value, and return false rather than true.

 Although detection is a runtime check, it’s at least not timing-dependent—you
don’t have to wait around for the rare conditions that cause deadlock to show up.
Also, the design process required to divide the application and mutexes in this way
can help eliminate many possible causes of deadlock before they even get written. It
might be worth performing the design exercise even if you don’t go as far as writing
the runtime checks.

EXTENDING THESE GUIDELINES BEYOND LOCKS

As I mentioned back at the beginning of this section, deadlock doesn’t only occur
with locks; it can occur with any synchronization construct that can lead to a wait
cycle. It’s therefore worth extending these guidelines to cover those cases too. For
example, just as you should avoid acquiring nested locks if possible, it’s a bad idea to
wait for a thread while holding a lock, because that thread might need to acquire the
lock in order to proceed. Similarly, if you’re going to wait for a thread to finish, it
might be worth identifying a thread hierarchy, so that a thread waits only for threads
lower down the hierarchy. One simple way to do this is to ensure that your threads are
joined in the same function that started them, as described in sections 3.1.2 and 3.3.

 Once you’ve designed your code to avoid deadlock, std::lock() and std::
lock_guard cover most of the cases of simple locking, but sometimes more flexibility
is required. For those cases, the Standard Library provides the std::unique_lock
template. Like std::lock_guard, this is a class template parameterized on the mutex
type, and it also provides the same RAII-style lock management as std::lock_guard,
but with a bit more flexibility.

3.2.6 Flexible locking with std::unique_lock

std::unique_lock provides a bit more flexibility than std::lock_guard by relaxing
the invariants; an std::unique_lock instance doesn’t always own the mutex that it’s
associated with. First off, as you can pass std::adopt_lock as a second argument to the
constructor to have the lock object manage the lock on a mutex, you can also pass
std::defer_lock as the second argument to indicate that the mutex should remain
unlocked on construction. The lock can then be acquired later by calling lock() on the
std::unique_lock object (not the mutex) or by passing the std:: unique_lock object
to std::lock(). Listing 3.6 could easily have been written as shown in listing 3.9,
using std::unique_lock and std::defer_lock B, rather than std::lock_guard and
std::adopt_lock. The code has the same line count and is equivalent, apart from

60 CHAPTER 3 Sharing data between threads
one small thing: std::unique_lock takes more space and is slightly slower to use
than std::lock_guard. The flexibility of allowing an std::unique_lock instance not
to own the mutex comes at a price: this information has to be stored, and it has to
be updated.

class some_big_object;
void swap(some_big_object& lhs,some_big_object& rhs);
class X
{
private:
 some_big_object some_detail;
 std::mutex m;
public:
 X(some_big_object const& sd):some_detail(sd){}
 friend void swap(X& lhs, X& rhs)
 {
 if(&lhs==&rhs)
 return;
 std::unique_lock<std::mutex> lock_a(lhs.m,std::defer_lock);
 std::unique_lock<std::mutex> lock_b(rhs.m,std::defer_lock);
 std::lock(lock_a,lock_b);
 swap(lhs.some_detail,rhs.some_detail);
 }
};

In listing 3.9, the std::unique_lock objects could be passed to std::lock() c,
because std::unique_lock provides lock(), try_lock(), and unlock() member
functions. These forward to the member functions of the same name on the underly-
ing mutex to do the work and update a flag inside the std::unique_lock instance to
indicate whether the mutex is currently owned by that instance. This flag is necessary
in order to ensure that unlock() is called correctly in the destructor. If the instance does
own the mutex, the destructor must call unlock(), and if the instance does not own the
mutex, it must not call unlock(). This flag can be queried by calling the owns_lock()
member function. Unless you’re going to be transferring lock ownership around or
doing something else that requires std::unique_lock, you’re still better off using the
C++17 variadic std::scoped_lock if it’s available to you (see section 3.2.4).

 As you might expect, this flag has to be stored somewhere. Therefore, the size of a
std::unique_lock object is typically larger than that of a std::lock_guard object,
and there’s also a slight performance penalty when using std::unique_lock over
std:: lock_guard because the flag has to be updated or checked, as appropriate. If
std::lock_ guard is sufficient for your needs, I’d therefore recommend using it in
preference. That said, there are cases where std::unique_lock is a better fit for the
task at hand because you need to make use of the additional flexibility. One example
is deferred locking, as you’ve already seen; another case is where the ownership of the
lock needs to be transferred from one scope to another.

Listing 3.9 Using std::lock() and std::unique_lock in a swap operation

std::defer_lock
leaves mutexes

unlocked.

B

Mutexes are
locked here.c

61Protecting shared data with mutexes
3.2.7 Transferring mutex ownership between scopes

Because std::unique_lock instances don’t have to own their associated mutexes, the
ownership of a mutex can be transferred between instances by moving the instances
around. In some cases this transfer is automatic, such as when returning an instance
from a function, and in other cases you have to do it explicitly by calling std::move().
Fundamentally this depends on whether the source is an lvalue—a real variable or ref-
erence to one—or an rvalue—a temporary of some kind. Ownership transfer is auto-
matic if the source is an rvalue and must be done explicitly for an lvalue in order to
avoid accidentally transferring ownership away from a variable. std::unique_lock is
an example of a type that’s moveable but not copyable. See appendix A, section A.1.1, for
more about move semantics.

 One possible use is to allow a function to lock a mutex and transfer ownership of
that lock to the caller, so the caller can then perform additional actions under the
protection of the same lock. The following code snippet shows an example of this; the
get_lock() function locks the mutex and then prepares the data before returning
the lock to the caller:

std::unique_lock<std::mutex> get_lock()
{
 extern std::mutex some_mutex;
 std::unique_lock<std::mutex> lk(some_mutex);
 prepare_data();
 return lk;
}
void process_data()
{
 std::unique_lock<std::mutex> lk(get_lock());
 do_something();
}

Because lk is an automatic variable declared within the function, it can be returned
directly B, without a call to std:move(); the compiler takes care of calling the move
constructor. The process_data() function can then transfer ownership directly into
its own std::unique_lock instance c, and the call to do_something() can rely on
the data being correctly prepared without another thread altering the data in the
meantime.

 Typically this sort of pattern would be used where the mutex to be locked is depen-
dent on the current state of the program or on an argument passed in to the function
that returns the std::unique_lock object. One such usage is where the lock isn’t
returned directly but is a data member of a gateway class used to ensure correctly
locked access to some protected data. In this case, all access to the data is through this
gateway class: when you want to access the data, you obtain an instance of the gateway
class (by calling a function such as get_lock() in the preceding example), which
acquires the lock. You can then access the data through member functions of the gate-
way object. When you’re finished, you destroy the gateway object, which releases the

B

c

62 CHAPTER 3 Sharing data between threads
lock and allows other threads to access the protected data. Such a gateway object may
well be moveable (so that it can be returned from a function), in which case the lock
object data member also needs to be moveable.

 The flexibility of std::unique_lock also allows instances to relinquish their locks
before they’re destroyed. You can do this with the unlock() member function, like for
a mutex. std::unique_lock supports the same basic set of member functions for lock-
ing and unlocking as a mutex does, so that it can be used with generic functions such
as std::lock. The ability to release a lock before the std::unique_lock instance is
destroyed means that you can optionally release it in a specific code branch if it’s
apparent that the lock is no longer required. This can be important for the perfor-
mance of the application; holding a lock for longer than required can cause a drop in
performance, because other threads waiting for the lock are prevented from proceed-
ing for longer than necessary.

3.2.8 Locking at an appropriate granularity

The granularity of a lock is something I touched on earlier, in section 3.2.3: the lock
granularity is a hand-waving term to describe the amount of data protected by a single
lock. A fine-grained lock protects a small amount of data, and a coarse-grained lock
protects a large amount of data. Not only is it important to choose a sufficiently coarse
lock granularity to ensure the required data is protected, but it’s also important to
ensure that a lock is held only for the operations that require it. We all know the frus-
tration of waiting in the checkout line in a supermarket with a cart full of groceries
only for the person currently being served to suddenly realize that they forgot some
cranberry sauce and then leave everybody waiting while they go and find some, or
for the cashier to be ready for payment and the customer to only then start rummag-
ing in their bag for their wallet. Everything proceeds much more easily if everybody
gets to the checkout with everything they want and with an appropriate method of
payment ready.

 The same applies to threads: if multiple threads are waiting for the same resource
(the cashier at the checkout), then if any thread holds the lock for longer than neces-
sary, it will increase the total time spent waiting (don’t wait until you’ve reached the
checkout to start looking for the cranberry sauce). Where possible, lock a mutex only
while accessing the shared data; try to do any processing of the data outside the lock.
In particular, don’t do any time-consuming activities like file I/O while holding a lock.
File I/O is typically hundreds (if not thousands) of times slower than reading or writ-
ing the same volume of data from memory. Unless the lock is intended to protect
access to the file, performing I/O while holding the lock will delay other threads
unnecessarily (because they’ll block while waiting to acquire the lock), potentially
eliminating any performance gain from the use of multiple threads.

 std::unique_lock works well in this situation, because you can call unlock()
when the code no longer needs access to the shared data and then call lock() again if
access is required later in the code:

63Protecting shared data with mutexes
void get_and_process_data()
{
 std::unique_lock<std::mutex> my_lock(the_mutex);
 some_class data_to_process=get_next_data_chunk();
 my_lock.unlock();
 result_type result=process(data_to_process);
 my_lock.lock();
 write_result(data_to_process,result);
}

You don’t need the mutex locked across the call to process(), so you manually
unlock it before the call B and then lock it again afterward c.

 Hopefully it’s obvious that if you have one mutex protecting an entire data struc-
ture, not only is there likely to be more contention for the lock, but also the potential
for reducing the time that the lock is held is diminished. More of the operation steps
will require a lock on the same mutex, so the lock must be held longer. This double
whammy of a cost is also a double incentive to move toward finer-grained locking
wherever possible.

 As this example shows, locking at an appropriate granularity isn’t only about the
amount of data locked; it’s also about how long the lock is held and what operations
are performed while the lock is held. In general, a lock should be held for only the mini-
mum possible time needed to perform the required operations. This also means that time-
consuming operations such as acquiring another lock (even if you know it won’t
deadlock) or waiting for I/O to complete shouldn’t be done while holding a lock
unless absolutely necessary.

 In listings 3.6 and 3.9, the operation that required locking the two mutexes was a
swap operation, which obviously requires concurrent access to both objects. Suppose
instead you were trying to compare a simple data member that was a plain int. Would
this make a difference? ints are cheap to copy, so you could easily copy the data for
each object being compared while only holding the lock for that object and then com-
pare the copied values. This would mean that you were holding the lock on each
mutex for the minimum amount of time and also that you weren’t holding one lock
while locking another. The following listing shows a class Y for which this is the case
and a sample implementation of the equality comparison operator.

class Y
{
private:
 int some_detail;
 mutable std::mutex m;
 int get_detail() const
 {
 std::lock_guard<std::mutex> lock_a(m);
 return some_detail;
 }

Listing 3.10 Locking one mutex at a time in a comparison operator

Don’t need mutex
locked across call
to process()

B

Relock mutex
to write resultc

b

64 CHAPTER 3 Sharing data between threads
public:
 Y(int sd):some_detail(sd){}
 friend bool operator==(Y const& lhs, Y const& rhs)
 {
 if(&lhs==&rhs)
 return true;
 int const lhs_value=lhs.get_detail();
 int const rhs_value=rhs.get_detail();
 return lhs_value==rhs_value;
 }
};

In this case, the comparison operator first retrieves the values to be compared by call-
ing the get_detail() member function, c and d. This function retrieves the value
while protecting it with a lock B. The comparison operator then compares the
retrieved values e. Note, however, that as well as reducing the locking periods so that
only one lock is held at a time (and eliminating the possibility of deadlock), this has
subtly changed the semantics of the operation compared to holding both locks together. In
listing 3.10, if the operator returns true, it means that the value of lhs.some_detail
at one point in time is equal to the value of rhs.some_detail at another point in
time. The two values could have been changed in any way in between the two reads;
the values could have been swapped in between c and d, for example, rendering
the comparison meaningless. The equality comparison might return true to indicate
that the values were equal, even though there was never an instant in time when the
values were equal. It’s therefore important to be careful when making these changes
that the semantics of the operation are not changed in a problematic fashion: if you
don’t hold the required locks for the entire duration of an operation, you’re exposing yourself to
race conditions.

 Sometimes, there isn’t an appropriate level of granularity because not all accesses
to the data structure require the same level of protection. In this case, it might be
appropriate to use an alternative mechanism, instead of a plain std::mutex.

3.3 Alternative facilities for protecting shared data
Although they’re the most general mechanism, mutexes aren’t the only game in town
when it comes to protecting shared data; there are alternatives that provide more
appropriate protection in specific scenarios.

 One particularly extreme (but remarkably common) case is where the shared data
needs protection only from concurrent access while it’s being initialized, but after that
no explicit synchronization is required. This might be because the data is read-only
once created, and so there are no possible synchronization issues, or it might be
because the necessary protection is performed implicitly as part of the operations on
the data. In either case, locking a mutex after the data has been initialized, purely in
order to protect the initialization, is unnecessary and a needless hit to performance.
It’s for this reason that the C++ Standard provides a mechanism purely for protecting
shared data during initialization.

c

d

e

65Alternative facilities for protecting shared data
3.3.1 Protecting shared data during initialization

Suppose you have a shared resource that’s so expensive to construct that you want to
do so only if it’s required; maybe it opens a database connection or allocates a lot of
memory. Lazy initialization such as this is common in single-threaded code—each
operation that requires the resource first checks to see if it has been initialized and
then initializes it before use if not:

std::shared_ptr<some_resource> resource_ptr;
void foo()
{
 if(!resource_ptr)
 {
 resource_ptr.reset(new some_resource);
 }
 resource_ptr->do_something();
}

If the shared resource itself is safe for concurrent access, the only part that needs pro-
tecting when converting this to multithreaded code is the initialization B, but a naïve
translation such as that in the following listing can cause unnecessary serialization of
threads using the resource. This is because each thread must wait on the mutex in
order to check whether the resource has already been initialized.

std::shared_ptr<some_resource> resource_ptr;
std::mutex resource_mutex;
void foo()
{
 std::unique_lock<std::mutex> lk(resource_mutex);
 if(!resource_ptr)
 {
 resource_ptr.reset(new some_resource);
 }
 lk.unlock();
 resource_ptr->do_something();
}

This code is common enough, and the unnecessary serialization problematic enough,
that many people have tried to come up with a better way of doing this, including the
infamous double-checked locking pattern: the pointer is first read without acquiring the
lock (B in the following code), and the lock is acquired only if the pointer is NULL.
The pointer is then checked again once the lock has been acquired (c, hence the
double-checked part) in case another thread has done the initialization between the first
check and this thread acquiring the lock:

void undefined_behaviour_with_double_checked_locking()
{
 if(!resource_ptr)

Listing 3.11 Thread-safe lazy initialization using a mutex

b

All threads are
serialized here

Only the
initialization
needs protection

B

66 CHAPTER 3 Sharing data between threads
 {
 std::lock_guard<std::mutex> lk(resource_mutex);
 if(!resource_ptr)
 {
 resource_ptr.reset(new some_resource);
 }
 }
 resource_ptr->do_something();
}

Unfortunately, this pattern is infamous for a reason: it has the potential for nasty race
conditions, because the read outside the lock B, isn’t synchronized with the write
done by another thread inside the lock d. This creates a race condition that covers
not only the pointer itself but also the object pointed to; even if a thread sees the
pointer written by another thread, it might not see the newly created instance of
some_resource, resulting in the call to do_something() e operating on incorrect val-
ues. This is an example of the type of race condition defined as a data race by the C++
Standard and specified as undefined behavior. It’s therefore quite definitely something
to avoid. See chapter 5 for a detailed discussion of the memory model, including what
constitutes a data race.

 The C++ Standards Committee also saw that this was an important scenario, and
so the C++ Standard Library provides std::once_flag and std::call_once to han-
dle this situation. Rather than locking a mutex and explicitly checking the pointer,
every thread can use std::call_once, safe in the knowledge that the pointer will
have been initialized by some thread (in a properly synchronized fashion) by the
time std::call_once returns. The necessary synchronization data is stored in the
std::once_flag instance; each instance of std::once_flag corresponds to a different
initialization. Use of std::call_once will typically have a lower overhead than using a
mutex explicitly, especially when the initialization has already been done, so it should be
used in preference where it matches the required functionality. The following example
shows the same operation as listing 3.11, rewritten to use std::call_once. In this case,
the initialization is done by calling a function, but it could easily have been done with
an instance of a class with a function call operator. Like most of the functions in the
standard library that take functions or predicates as arguments, std::call_once
works with any function or callable object:

std::shared_ptr<some_resource> resource_ptr;
std::once_flag resource_flag;
void init_resource()
{
 resource_ptr.reset(new some_resource);
}
void foo()
{
 std::call_once(resource_flag,init_resource);
 resource_ptr->do_something();
}

c

d

e

b

Initialization is
called exactly
once.

67Alternative facilities for protecting shared data
In this example, both the std::once_flag B and data being initialized are namespace-
scope objects, but std::call_once() can easily be used for lazy initialization of class
members, as in the following listing.

class X
{
private:
 connection_info connection_details;
 connection_handle connection;
 std::once_flag connection_init_flag;
 void open_connection()
 {
 connection=connection_manager.open(connection_details);
 }
public:
 X(connection_info const& connection_details_):
 connection_details(connection_details_)
 {}
 void send_data(data_packet const& data)
 {
 std::call_once(connection_init_flag,&X::open_connection,this);
 connection.send_data(data);
 }
 data_packet receive_data()
 {
 std::call_once(connection_init_flag,&X::open_connection,this);
 return connection.receive_data();
 }
};

In that example, the initialization is done either by the first call to send_data() B,
or by the first call to receive_data() d. The use of the open_connection() member
function to initialize the data also requires that the this pointer be passed in. Just as
for other functions in the Standard Library that accept callable objects, such as the
constructors for std::thread and std::bind(), this is done by passing an additional
argument to std::call_once() c.

 It’s worth noting that like std::mutex, std::once_flag instances can’t be copied
or moved, so if you use them as a class member like this, you’ll have to explicitly
define these special member functions should you require them.

 One scenario where there’s a potential race condition over initialization is that of a
local variable declared with static. The initialization of such a variable is defined to
occur the first time control passes through its declaration; for multiple threads calling
the function, this means there’s the potential for a race condition to define first. On
many pre-C++11 compilers this race condition is problematic in practice, because
multiple threads may believe they’re first and try to initialize the variable, or threads
may try to use it after initialization has started on another thread but before it’s fin-
ished. In C++11 this problem is solved: the initialization is defined to happen on

Listing 3.12 Thread-safe lazy initialization of a class member using std::call_once

B

c
d

68 CHAPTER 3 Sharing data between threads
exactly one thread, and no other threads will proceed until that initialization is com-
plete, so the race condition is over which thread gets to do the initialization rather
than anything more problematic. This can be used as an alternative to std::call_
once for those cases where a single global instance is required:

class my_class;
my_class& get_my_class_instance()
{
 static my_class instance;
 return instance;
}

Multiple threads can then call get_my_class_instance() safely B, without having to
worry about race conditions on the initialization.

 Protecting data only for initialization is a special case of a more general scenario:
that of a rarely updated data structure. For most of the time, this data structure is
read-only and can therefore be read by multiple threads concurrently, but on occa-
sion the data structure may need updating. What’s needed here is a protection mech-
anism that acknowledges this fact.

3.3.2 Protecting rarely updated data structures

Consider a table used to store a cache of DNS entries for resolving domain names to
their corresponding IP addresses. Typically, a given DNS entry will remain unchanged
for a long period of time—in many cases, DNS entries remain unchanged for years.
Although new entries may be added to the table from time to time as users access dif-
ferent websites, this data will therefore remain largely unchanged throughout its life.
It’s important that the validity of the cached entries is checked periodically, but this
still requires an update only if the details have changed.

 Although updates are rare, they can still happen, and if this cache is to be accessed
from multiple threads, it will need to be appropriately protected during updates to
ensure that none of the threads reading the cache see a broken data structure.

 In the absence of a special-purpose data structure that exactly fits the desired
usage and that’s specially designed for concurrent updates and reads (such as those in
chapters 6 and 7), this update requires that the thread doing the update has exclusive
access to the data structure until it has completed the operation. Once the change is
complete, the data structure is again safe for multiple threads to access concurrently.
Using std::mutex to protect the data structure is therefore overly pessimistic, because
it will eliminate the possible concurrency in reading the data structure when it isn’t
undergoing modification; what’s needed is a different kind of mutex. This new kind
of mutex is typically called a reader-writer mutex, because it allows for two different
kinds of usage: exclusive access by a single “writer” thread or shared, and concurrent
access by multiple “reader” threads.

 The C++17 Standard Library provides two such mutexes out of the box, std::
shared_mutex and std::shared_timed_mutex. C++14 only features std::shared_
timed_mutex, and C++11 didn’t provide either. If you’re struck with a pre-C++14

Initialization guaranteed
to be thread-safe

B

69Alternative facilities for protecting shared data
compiler, then you could use the implementation provided by the Boost library, which
is based on the original proposal. The difference between std::shared_mutex and
std::shared_timed_mutex is that std::shared_timed_mutex supports additional
operations (as described in section 4.3), so std::shared_mutex might offer a perfor-
mance benefit on some platforms, if you don’t need the additional operations.

 As you’ll see in chapter 8, the use of such a mutex isn’t a panacea, and the perfor-
mance is dependent on the number of processors involved and the relative workloads
of the reader and updater threads. It’s therefore important to profile the perfor-
mance of the code on the target system to ensure that there’s a benefit to the addi-
tional complexity.

 Rather than using an instance of std::mutex for the synchronization, you use an
instance of std::shared_mutex. For the update operations, std::lock_guard
<std::shared_mutex> and std::unique_lock<std::shared_mutex> can be used for
the locking, in place of the corresponding std::mutex specializations. These ensure
exclusive access, as with std::mutex. Those threads that don’t need to update the
data structure can instead use std::shared_lock<std::shared_mutex> to obtain
shared access. This RAII class template was added in C++14, and is used the same as
std::unique_lock, except that multiple threads may have a shared lock on the same
std::shared_mutex at the same time. The only constraint is that if any thread has a
shared lock, a thread that tries to acquire an exclusive lock will block until all other
threads have relinquished their locks, and likewise if any thread has an exclusive lock,
no other thread may acquire a shared or exclusive lock until the first thread has relin-
quished its lock.

 The following listing shows a simple DNS cache like the one described, using
std::map to hold the cached data, protected using std::shared_mutex.

#include <map>
#include <string>
#include <mutex>
#include <shared_mutex>
class dns_entry;
class dns_cache
{
 std::map<std::string,dns_entry> entries;
 mutable std::shared_mutex entry_mutex;
public:
 dns_entry find_entry(std::string const& domain) const
 {
 std::shared_lock<std::shared_mutex> lk(entry_mutex);
 std::map<std::string,dns_entry>::const_iterator const it=
 entries.find(domain);
 return (it==entries.end())?dns_entry():it->second;
 }
 void update_or_add_entry(std::string const& domain,
 dns_entry const& dns_details)

Listing 3.13 Protecting a data structure with std::shared_mutex

b

70 CHAPTER 3 Sharing data between threads
 {
 std::lock_guard<std::shared_mutex> lk(entry_mutex);
 entries[domain]=dns_details;
 }
};

In listing 3.13, find_entry() uses an instance of std::shared_lock<> to protect it for
shared, read-only access B; multiple threads can therefore call find_entry() simulta-
neously without problems. On the other hand, update_or_add_entry() uses an
instance of std::lock_guard<> to provide exclusive access while the table is updated

c; not only are other threads prevented from doing updates in a call to update_
or_add_entry(), but threads that call find_entry() are blocked too.

3.3.3 Recursive locking

With std::mutex, it’s an error for a thread to try to lock a mutex it already owns, and
attempting to do so will result in undefined behavior. But in some circumstances it
would be desirable for a thread to reacquire the same mutex several times without
having first released it. For this purpose, the C++ Standard Library provides
std::recursive_mutex. It works like std::mutex, except that you can acquire multi-
ple locks on a single instance from the same thread. You must release all your locks
before the mutex can be locked by another thread, so if you call lock() three times,
you must also call unlock() three times. The correct use of std::lock_guard
<std::recursive_mutex> and std::unique_lock<std::recursive_mutex> will han-
dle this for you.

 Most of the time, if you think you want a recursive mutex, you probably need to
change your design instead. A common use of recursive mutexes is where a class is
designed to be accessible from multiple threads concurrently, so it has a mutex pro-
tecting the member data. Each public member function locks the mutex, does the
work, and then unlocks the mutex. But sometimes it’s desirable for one public mem-
ber function to call another as part of its operation. In this case, the second member
function will also try to lock the mutex, leading to undefined behavior. The quick-and-
dirty solution is to change the mutex to a recursive mutex. This will allow the mutex
lock in the second member function to succeed and the function to proceed.

 But such usage is not recommended because it can lead to sloppy thinking and
bad design. In particular, the class invariants are typically broken while the lock is
held, which means that the second member function needs to work even when
called with the invariants broken. It’s usually better to extract a new private member
function that’s called from both member functions, which does not lock the mutex
(it expects it to already be locked). You can then think carefully about the circum-
stances under which that new function can be called and the state of the data under
those circumstances.

c

71Summary
Summary
In this chapter I discussed how problematic race conditions can be disastrous when
sharing data between threads and how to use std::mutex and careful interface design
to avoid them. You saw that mutexes aren’t a panacea and do have their own problems
in the form of deadlock, though the C++ Standard Library provides a tool to help
avoid that in the form of std::lock(). You then looked at some further techniques
for avoiding deadlock, followed by a brief look at transferring lock ownership and
issues surrounding choosing the appropriate granularity for locking. Finally, I covered
the alternative data-protection facilities provided for specific scenarios, such as std::
call_once() and std::shared_mutex.

 One thing that I haven’t covered yet, however, is waiting for input from other
threads. Your thread-safe stack throws an exception if the stack is empty, so if one
thread wanted to wait for another thread to push a value on the stack (which is, after
all, one of the primary uses for a thread-safe stack), it would have to repeatedly try to
pop a value, retrying if an exception gets thrown. This consumes valuable processing
time in performing the check, without making any progress; indeed, the constant
checking might hamper progress by preventing the other threads in the system from
running. What’s needed is some way for a thread to wait for another thread to com-
plete a task without consuming CPU time in the process. Chapter 4 builds on the facil-
ities I’ve discussed for protecting shared data and introduces the various mechanisms
for synchronizing operations between threads in C++; chapter 6 shows how these can
be used to build larger reusable data structures.

Synchronizing
concurrent operations
In the last chapter, we looked at various ways of protecting data that’s shared between
threads. But sometimes you don’t just need to protect the data, you also need to syn-
chronize actions on separate threads. One thread might need to wait for another
thread to complete a task before the first thread can complete its own, for example.
In general, it’s common to want a thread to wait for a specific event to happen or a
condition to be true. Although it would be possible to do this by periodically check-
ing a “task complete” flag or something similar stored in shared data, this is far from
ideal. The need to synchronize operations between threads like this is such a com-
mon scenario that the C++ Standard Library provides facilities to handle it, in the
form of condition variables and futures. These facilities are extended in the Concur-
rency Technical Specification (TS), which provides additional operations for futures,
alongside new synchronization facilities in the form of latches and barriers.

This chapter covers
 Waiting for an event

 Waiting for one-off events with futures

 Waiting with a time limit

 Using the synchronization of operations to
simplify code
72

73Waiting for an event or other condition
 In this chapter, I’ll discuss how to wait for events with condition variables, futures,
latches, and barriers, and how to use them to simplify the synchronization of opera-
tions.

4.1 Waiting for an event or other condition
Suppose you’re traveling on an overnight train. One way to ensure you get off at the
right station would be to stay awake all night and pay attention to where the train
stops. You wouldn’t miss your station, but you’d be tired when you got there. Alterna-
tively, you could look at the timetable to see when the train is supposed to arrive, set
your alarm a bit before, and go to sleep. That would be OK; you wouldn’t miss your
stop, but if the train got delayed, you’d wake up too early. There’s also the possibility
that your alarm clock’s batteries would die, and you’d sleep too long and miss your sta-
tion. What would be ideal is if you could go to sleep and have somebody or something
wake you up when the train gets to your station, whenever that is.

 How does that relate to threads? Well, if one thread is waiting for a second thread
to complete a task, it has several options. First, it could keep checking a flag in shared
data (protected by a mutex) and have the second thread set the flag when it com-
pletes the task. This is wasteful on two counts: the thread consumes valuable process-
ing time repeatedly checking the flag, and when the mutex is locked by the waiting
thread, it can’t be locked by any other thread. Both of these work against the thread
doing the waiting: if the waiting thread is running, this limits the execution resources
available to run the thread being waited for, and while the waiting thread has locked
the mutex protecting the flag in order to check it, the thread being waited for is
unable to lock the mutex to set the flag when it’s done. This is akin to staying awake all
night talking to the train driver: he has to drive the train more slowly because you
keep distracting him, so it takes longer to get there. Similarly, the waiting thread is
consuming resources that could be used by other threads in the system and may end
up waiting longer than necessary.

 A second option is to have the waiting thread sleep for short periods between the
checks using the std::this_thread::sleep_for() function (see section 4.3):

bool flag;
std::mutex m;
void wait_for_flag()
{
 std::unique_lock<std::mutex> lk(m);
 while(!flag)
 {
 lk.unlock();
 std::this_thread::sleep_for(std::chrono::milliseconds(100));
 lk.lock();
 }
}

In the loop, the function unlocks the mutex B before the sleep c, and locks it again
afterward d so another thread gets a chance to acquire it and set the flag.

Unlock the
mutex.

B
cSleep for

100 ms.

Relock the mutex.d

74 CHAPTER 4 Synchronizing concurrent operations
 This is an improvement because the thread doesn’t waste processing time while it’s
sleeping, but it’s hard to get the sleep period right. Too short a sleep in between
checks and the thread still wastes processing time checking; too long a sleep and the
thread will keep on sleeping even when the task it’s waiting for is complete, introduc-
ing a delay. It’s rare that this oversleeping will have a direct impact on the operation of
the program, but it could mean dropped frames in a fast-paced game or overrunning
a time slice in a real-time application.

 The third and preferred option is to use the facilities from the C++ Standard
Library to wait for the event itself. The most basic mechanism for waiting for an event
to be triggered by another thread (such as the presence of additional work in the
pipeline mentioned previously) is the condition variable. Conceptually, a condition vari-
able is associated with an event or other condition, and one or more threads can wait
for that condition to be satisfied. When a thread has determined that the condition is
satisfied, it can then notify one or more of the threads waiting on the condition vari-
able in order to wake them up and allow them to continue processing.

4.1.1 Waiting for a condition with condition variables

The Standard C++ Library provides not one but two implementations of a condition
variable: std::condition_variable and std::condition_variable_any. Both of
these are declared in the <condition_variable> library header. In both cases, they
need to work with a mutex in order to provide appropriate synchronization; the for-
mer is limited to working with std::mutex, whereas the latter can work with anything
that meets the minimal criteria for being mutex-like, hence the _any suffix. Because
std::condition_variable_any is more general, there’s the potential for additional
costs in terms of size, performance, or OS resources, so std::condition_variable
should be preferred unless the additional flexibility is required.

 So, how do you use std::condition_variable to handle the example in the
introduction? How do you let the thread that’s waiting for work sleep until there’s
data to process? The following listing shows one way you could do this with a condi-
tion variable.

std::mutex mut;
std::queue<data_chunk> data_queue;
std::condition_variable data_cond;
void data_preparation_thread()
{
 while(more_data_to_prepare())
 {
 data_chunk const data=prepare_data();
 {
 std::lock_guard<std::mutex> lk(mut);
 data_queue.push(data);
 }
 data_cond.notify_one();

Listing 4.1 Waiting for data to process with std::condition_variable

b

c

d

75Waiting for an event or other condition
 }
}
void data_processing_thread()
{
 while(true)
 {
 std::unique_lock<std::mutex> lk(mut);
 data_cond.wait(
 lk,[]{return !data_queue.empty();});
 data_chunk data=data_queue.front();
 data_queue.pop();
 lk.unlock();
 process(data);
 if(is_last_chunk(data))
 break;
 }
}

First off, you have a queue B that’s used to pass the data between the two threads.
When the data is ready, the thread preparing the data locks the mutex protecting the
queue using a std::lock_guard and pushes the data onto the queue c. It then calls
the notify_one() member function on the std::condition_variable instance to
notify the waiting thread (if there is one) d. Note that you put the code to push the
data onto the queue in a smaller scope, so you notify the condition variable after
unlocking the mutex — this is so that, if the waiting thread wakes immediately, it
doesn’t then have to block again, waiting for you to unlock the mutex.

 On the other side of the fence, you have the processing thread. This thread first
locks the mutex, but this time with a std::unique_lock rather than a std::lock_
guard e—you’ll see why in a minute. The thread then calls wait() on the std::
condition_variable, passing in the lock object and a lambda function that expresses
the condition being waited for f. Lambda functions are a new feature in C++11 that
allow you to write an anonymous function as part of another expression, and they’re
ideally suited for specifying predicates for standard library functions such as wait().
In this case, the simple []{return !data_queue.empty();} lambda function checks to
see if the data_queue is not empty()—that is, there’s some data in the queue ready for
processing. Lambda functions are described in more detail in appendix A, section A.5.

 The implementation of wait() then checks the condition (by calling the supplied
lambda function) and returns if it’s satisfied (the lambda function returned true). If
the condition isn’t satisfied (the lambda function returned false), wait() unlocks
the mutex and puts the thread in a blocked or waiting state. When the condition vari-
able is notified by a call to notify_one() from the data-preparation thread, the thread
wakes from its slumber (unblocks it), reacquires the lock on the mutex, and checks
the condition again, returning from wait() with the mutex still locked if the condi-
tion has been satisfied. If the condition hasn’t been satisfied, the thread unlocks the
mutex and resumes waiting. This is why you need the std::unique_lock rather than
the std::lock_guard—the waiting thread must unlock the mutex while it’s waiting

e

f

g

76 CHAPTER 4 Synchronizing concurrent operations
and lock it again afterward, and std::lock_guard doesn’t provide that flexibility. If
the mutex remained locked while the thread was sleeping, the data-preparation
thread wouldn’t be able to lock the mutex to add an item to the queue, and the wait-
ing thread would never be able to see its condition satisfied.

 Listing 4.1 uses a simple lambda function for the wait f, which checks to see if
the queue is not empty, but any function or callable object could be passed. If you
already have a function to check the condition (perhaps because it’s more compli-
cated than a simple test like this), then this function can be passed in directly; there’s
no need to wrap it in a lambda. During a call to wait(), a condition variable may
check the supplied condition any number of times; but it always does so with the
mutex locked and will return immediately if (and only if) the function provided to
test the condition returns true. When the waiting thread reacquires the mutex and
checks the condition, if it isn’t in direct response to a notification from another
thread, it’s called a spurious wake. Because the number and frequency of any such spu-
rious wakes are by definition indeterminate, it isn’t advisable to use a function with
side effects for the condition check. If you do so, you must be prepared for the side
effects to occur multiple times.

 Fundamentally, std::condition_variable::wait is an optimization over a busy-wait.
Indeed, a conforming (though less than ideal) implementation technique is just a
simple loop:

template<typename Predicate>
void minimal_wait(std::unique_lock<std::mutex>& lk,Predicate pred){
 while(!pred()){
 lk.unlock();
 lk.lock();
 }
}

Your code must be prepared to work with such a minimal implementation of wait(),
as well as an implementation that only wakes up if notify_one() or notify_all() is
called.

 The flexibility to unlock a std::unique_lock isn’t just used for the call to wait();
it’s also used once you have the data to process but before processing it g. Processing
data can potentially be a time-consuming operation, and as you saw in chapter 3, it’s a
bad idea to hold a lock on a mutex for longer than necessary.

 Using a queue to transfer data between threads, as in listing 4.1, is a common sce-
nario. Done well, the synchronization can be limited to the queue itself, which greatly
reduces the possible number of synchronization problems and race conditions. In
view of this, let’s now work on extracting a generic thread-safe queue from listing 4.1.

4.1.2 Building a thread-safe queue with condition variables

If you’re going to be designing a generic queue, it’s worth spending a few minutes
thinking about the operations that are likely to be required, as you did with the

77Waiting for an event or other condition
thread-safe stack back in section 3.2.3. Let’s look at the C++ Standard Library for
inspiration, in the form of the std::queue<> container adaptor shown in the follow-
ing listing.

template <class T, class Container = std::deque<T> >
class queue {
public:
 explicit queue(const Container&);
 explicit queue(Container&& = Container());
 template <class Alloc> explicit queue(const Alloc&);
 template <class Alloc> queue(const Container&, const Alloc&);
 template <class Alloc> queue(Container&&, const Alloc&);
 template <class Alloc> queue(queue&&, const Alloc&);
 void swap(queue& q);
 bool empty() const;
 size_type size() const;
 T& front();
 const T& front() const;
 T& back();
 const T& back() const;
 void push(const T& x);
 void push(T&& x);
 void pop();
 template <class... Args> void emplace(Args&&... args);
};

If you ignore the construction, assignment, and swap operations, you’re left with three
groups of operations: those that query the state of the whole queue (empty() and
size()), those that query the elements of the queue (front() and back()), and those
that modify the queue (push(), pop() and emplace()). This is the same as you had
back in section 3.2.3 for the stack, and therefore you have the same issues regarding
race conditions inherent in the interface. Consequently, you need to combine
front() and pop() into a single function call, much as you combined top() and
pop() for the stack. The code from listing 4.1 adds a new nuance, though: when using
a queue to pass data between threads, the receiving thread often needs to wait for the
data. Let’s provide two variants on pop(): try_pop(), which tries to pop the value
from the queue but always returns immediately (with an indication of failure) even if
there wasn’t a value to retrieve; and wait_and_pop(), which waits until there’s a value
to retrieve. If you take your lead for the signatures from the stack example, your inter-
face looks like the following.

#include <memory>
template<typename T>
class threadsafe_queue
{

Listing 4.2 std::queue interface

Listing 4.3 The interface of your threadsafe_queue

For std::shared_ptr

78 CHAPTER 4 Synchronizing concurrent operations
public:
 threadsafe_queue();
 threadsafe_queue(const threadsafe_queue&);
 threadsafe_queue& operator=(
 const threadsafe_queue&) = delete;
 void push(T new_value);
 bool try_pop(T& value);
 std::shared_ptr<T> try_pop();
 void wait_and_pop(T& value);
 std::shared_ptr<T> wait_and_pop();
 bool empty() const;
};

As you did for the stack, you’ve cut down on the constructors and eliminated assign-
ment in order to simplify the code. You’ve also provided two versions of both
try_pop() and wait_for_pop(), as before. The first overload of try_pop() B stores
the retrieved value in the referenced variable, so it can use the return value for status;
it returns true if it retrieved a value and false otherwise (see section A.2). The sec-
ond overload c can’t do this, because it returns the retrieved value directly. But the
returned pointer can be set to NULL if there’s no value to retrieve.

 So, how does all this relate to listing 4.1? Well, you can extract the code for push()
and wait_and_pop() from there, as shown in the next listing.

#include <queue>
#include <mutex>
#include <condition_variable>
template<typename T>
class threadsafe_queue
{
private:
 std::mutex mut;
 std::queue<T> data_queue;
 std::condition_variable data_cond;
public:
 void push(T new_value)
 {
 std::lock_guard<std::mutex> lk(mut);
 data_queue.push(new_value);
 data_cond.notify_one();
 }
 void wait_and_pop(T& value)
 {
 std::unique_lock<std::mutex> lk(mut);
 data_cond.wait(lk,[this]{return !data_queue.empty();});
 value=data_queue.front();
 data_queue.pop();
 }
};
threadsafe_queue<data_chunk> data_queue;
void data_preparation_thread()

Listing 4.4 Extracting push() and wait_and_pop() from listing 4.1

Disallow assignment
for simplicity.

b

c

b

79Waiting for an event or other condition
{
 while(more_data_to_prepare())
 {
 data_chunk const data=prepare_data();
 data_queue.push(data);
 }
}
void data_processing_thread()
{
 while(true)
 {
 data_chunk data;
 data_queue.wait_and_pop(data);
 process(data);
 if(is_last_chunk(data))
 break;
 }
}

The mutex and condition variable are now contained within the threadsafe_queue
instance, so separate variables are no longer required B, and no external synchroni-
zation is required for the call to push() c. Also, wait_and_pop() takes care of the
condition variable wait d.

 The other overload of wait_and_pop() is now trivial to write, and the remaining
functions can be copied almost verbatim from the stack example in listing 3.5. The
final queue implementation is shown here.

#include <queue>
#include <memory>
#include <mutex>
#include <condition_variable>
template<typename T>
class threadsafe_queue
{
private:
 mutable std::mutex mut;
 std::queue<T> data_queue;
 std::condition_variable data_cond;
public:
 threadsafe_queue()
 {}
 threadsafe_queue(threadsafe_queue const& other)
 {
 std::lock_guard<std::mutex> lk(other.mut);
 data_queue=other.data_queue;
 }
 void push(T new_value)
 {
 std::lock_guard<std::mutex> lk(mut);
 data_queue.push(new_value);

Listing 4.5 Full class definition of a thread-safe queue using condition variables

c

d

The mutex must
be mutable.

b

80 CHAPTER 4 Synchronizing concurrent operations
 data_cond.notify_one();
 }
 void wait_and_pop(T& value)
 {
 std::unique_lock<std::mutex> lk(mut);
 data_cond.wait(lk,[this]{return !data_queue.empty();});
 value=data_queue.front();
 data_queue.pop();
 }
 std::shared_ptr<T> wait_and_pop()
 {
 std::unique_lock<std::mutex> lk(mut);
 data_cond.wait(lk,[this]{return !data_queue.empty();});
 std::shared_ptr<T> res(std::make_shared<T>(data_queue.front()));
 data_queue.pop();
 return res;
 }
 bool try_pop(T& value)
 {
 std::lock_guard<std::mutex> lk(mut);
 if(data_queue.empty())
 return false;
 value=data_queue.front();
 data_queue.pop();
 return true;
 }
 std::shared_ptr<T> try_pop()
 {
 std::lock_guard<std::mutex> lk(mut);
 if(data_queue.empty())
 return std::shared_ptr<T>();
 std::shared_ptr<T> res(std::make_shared<T>(data_queue.front()));
 data_queue.pop();
 return res;
 }
 bool empty() const
 {
 std::lock_guard<std::mutex> lk(mut);
 return data_queue.empty();
 }
};

Even though empty() is a const member function, and the other parameter to the
copy constructor is a const reference, other threads may have non-const references
to the object, and may be calling mutating member functions, so you still need to lock
the mutex. Since locking a mutex is a mutating operation, the mutex object must be
marked mutable B so it can be locked in empty() and in the copy constructor.

 Condition variables are also useful where there’s more than one thread waiting for
the same event. If the threads are being used to divide the workload, and thus only
one thread should respond to a notification, exactly the same structure as shown in
listing 4.1 can be used; just run multiple instances of the data-processing thread.
When new data is ready, the call to notify_one() will trigger one of the threads

81Waiting for one-off events with futures
currently executing wait() to check its condition and return from wait() (because
you’ve just added an item to the data_queue). There’s no guarantee of which thread
will be notified or even if there’s a thread waiting to be notified; all the processing
threads might still be processing data.

 Another possibility is that several threads are waiting for the same event, and all of
them need to respond. This can happen where shared data is being initialized, and
the processing threads can all use the same data but need to wait for it to be initialized
(although there are potentially better mechanisms for this, such as std::call_once;
see section 3.3.1 in chapter 3 for a discussion of the options), or where the threads
need to wait for an update to shared data, such as a periodic reinitialization. In these
cases, the thread preparing the data can call the notify_all() member function on
the condition variable rather than notify_one(). As the name suggests, this causes all
the threads currently executing wait() to check the condition they’re waiting for.

 If the waiting thread is going to wait only once, so when the condition is true it will
never wait on this condition variable again, a condition variable might not be the best
choice of synchronization mechanisms. This is especially true if the condition being
waited for is the availability of a particular piece of data. In this scenario, a future might
be more appropriate.

4.2 Waiting for one-off events with futures
Suppose you’re going on vacation abroad by plane. Once you get to the airport and
clear the various check-in procedures, you still have to wait for notification that your
flight is ready for boarding, possibly for several hours. Yes, you might be able to find
some means of passing the time, such as reading a book, surfing the internet, or eat-
ing in an overpriced airport café, but fundamentally you’re just waiting for one thing:
the signal that it’s time to get on the plane. Not only that, but a given flight goes only
once; the next time you’re going on vacation, you’ll be waiting for a different flight.

 The C++ Standard Library models this sort of one-off event with something called a
future. If a thread needs to wait for a specific one-off event, it somehow obtains a future
representing that event. The thread can then periodically wait on the future for short
periods of time to see if the event has occurred (check the departures board) while per-
forming some other task (eating in the overpriced café) between checks. Alternatively, it
can do another task until it needs the event to have happened before it can proceed and
then just wait for the future to become ready. A future may have data associated with it
(such as which gate your flight is boarding at), or it may not. Once an event has hap-
pened (and the future has become ready), the future can’t be reset.

 There are two sorts of futures in the C++ Standard Library, implemented as two
class templates declared in the <future> library header: unique futures (std::future<>)
and shared futures (std::shared_future<>). These are modeled after std::unique_ptr
and std::shared_ptr. An instance of std::future is the one and only instance that
refers to its associated event, whereas multiple instances of std::shared_future may
refer to the same event. In the latter case, all the instances will become ready at the same

82 CHAPTER 4 Synchronizing concurrent operations
time, and they may all access any data associated with the event. This associated data is
the reason these are templates; just like std::unique_ptr and std::shared_ptr, the
template parameter is the type of the associated data. The std:future<void> and
std::shared_future<void> template specializations should be used where there’s no
associated data. Although futures are used to communicate between threads, the
future objects themselves don’t provide synchronized accesses. If multiple threads
need to access a single future object, they must protect access via a mutex or other syn-
chronization mechanism, as described in chapter 3. But as you’ll see in section 4.2.5,
multiple threads may each access their own copy of std::shared_future<> without
further synchronization, even if they all refer to the same asynchronous result.

 The Concurrency TS provides extended versions of these class templates in the
std::experimental namespace: std::experimental::future<> and std::experi-
mental::shared_future<>. These behave identically to their counterparts in the std
namespace, but they have additional member functions to provide additional facili-
ties. It is important to note that the name std::experimental does not imply any-
thing about the quality of the code (I would hope that the implementation will be the
same quality as everything else shipped from your library vendor), but highlights that
these are non-standard classes and functions, and therefore may not have exactly the
same syntax and semantics if and when they are finally adopted into a future C++ Stan-
dard. To use these facilities, you must include the <experimental/future> header.

 The most basic of one-off events is the result of a calculation that has been run in
the background. Back in chapter 2 you saw that std::thread doesn’t provide an easy
means of returning a value from such a task, and I promised that this would be
addressed in chapter 4 with futures—now it’s time to see how.

4.2.1 Returning values from background tasks

Suppose you have a long-running calculation that you expect will eventually yield a
useful result but for which you don’t currently need the value. Maybe you’ve found a
way to determine the answer to Life, the Universe, and Everything, to pinch an exam-
ple from Douglas Adams.1 You could start a new thread to perform the calculation, but
that means you have to take care of transferring the result back, because std::thread
doesn’t provide a direct mechanism for doing so. This is where the std::async func-
tion template (also declared in the <future> header) comes in.

 You use std::async to start an asynchronous task for which you don’t need the
result right away. Rather than giving you a std::thread object to wait on, std::async
returns a std::future object, which will eventually hold the return value of the func-
tion. When you need the value, you just call get() on the future, and the thread
blocks until the future is ready and then returns the value. The following listing shows
a simple example.

1 In The Hitchhiker’s Guide to the Galaxy, the computer Deep Thought is built to determine “the answer to Life,
the Universe and Everything.” The answer is 42.

83Waiting for one-off events with futures
#include <future>
#include <iostream>
int find_the_answer_to_ltuae();
void do_other_stuff();
int main()
{
 std::future<int> the_answer=std::async(find_the_answer_to_ltuae);
 do_other_stuff();
 std::cout<<"The answer is "<<the_answer.get()<<std::endl;
}

std::async allows you to pass additional arguments to the function by adding extra
arguments to the call, in the same way that std::thread does. If the first argument is
a pointer to a member function, the second argument provides the object on which to
apply the member function (either directly, or via a pointer, or wrapped in std::ref),
and the remaining arguments are passed as arguments to the member function.
Otherwise, the second and subsequent arguments are passed as arguments to the
function or callable object specified as the first argument. Just as with std::thread,
if the arguments are rvalues, the copies are created by moving the originals. This
allows the use of move-only types as both the function object and the arguments.
See the following listing.

#include <string>
#include <future>
struct X
{
 void foo(int,std::string const&);
 std::string bar(std::string const&);
};
X x;
auto f1=std::async(&X::foo,&x,42,"hello");
auto f2=std::async(&X::bar,x,"goodbye");
struct Y
{
 double operator()(double);
};
Y y;
auto f3=std::async(Y(),3.141);
auto f4=std::async(std::ref(y),2.718);
X baz(X&);
std::async(baz,std::ref(x));
class move_only
{
public:
 move_only();
 move_only(move_only&&)
 move_only(move_only const&) = delete;
 move_only& operator=(move_only&&);

Listing 4.6 Using std::future to get the return value of an asynchronous task

Listing 4.7 Passing arguments to a function with std::async

Calls p->foo(42,"hello")
where p is &x

Calls tmpx.bar("goodbye")
where tmpx is a copy of x

Calls tmpy(3.141) where tmpy
is move-constructed from Y()

Calls y(2.718)

Calls baz(x)

84 CHAPTER 4 Synchronizing concurrent operations
 move_only& operator=(move_only const&) = delete;
 void operator()();
};
auto f5=std::async(move_only());

By default, it’s up to the implementation whether std::async starts a new thread, or
whether the task runs synchronously when the future is waited for. In most cases this is
what you want, but you can specify which to use with an additional parameter to
std::async before the function to call. This parameter is of the type std::launch,
and can either be std::launch::deferred to indicate that the function call is to be
deferred until either wait() or get() is called on the future, std::launch::async to
indicate that the function must be run on its own thread, or std::launch::deferred
| std::launch::async to indicate that the implementation may choose. This last
option is the default. If the function call is deferred, it may never run. For example:

auto f6=std::async(std::launch::async,Y(),1.2);
auto f7=std::async(std::launch::deferred,baz,std::ref(x));
auto f8=std::async(
 std::launch::deferred | std::launch::async,
 baz,std::ref(x));
auto f9=std::async(baz,std::ref(x));
f7.wait();

As you’ll see later in this chapter and again in chapter 8, using std::async makes it
easy to divide algorithms into tasks that can be run concurrently. However, it’s not the
only way to associate a std::future with a task; you can also do it by wrapping the task
in an instance of the std::packaged_task<> class template or by writing code to
explicitly set the values using the std::promise<> class template. std::packaged_
task is a higher-level abstraction than std::promise, so I’ll start with that.

4.2.2 Associating a task with a future

std::packaged_task<> ties a future to a function or callable object. When the std::
packaged_task<> object is invoked, it calls the associated function or callable object
and makes the future ready, with the return value stored as the associated data. This
can be used as a building block for thread pools (see chapter 9) or other task manage-
ment schemes, such as running each task on its own thread, or running them all
sequentially on a particular background thread. If a large operation can be divided
into self-contained sub-tasks, each of these can be wrapped in a std::packaged_
task<> instance, and then that instance passed to the task scheduler or thread pool.
This abstracts out the details of the tasks; the scheduler just deals with std::packaged
_task<> instances rather than individual functions.

 The template parameter for the std::packaged_task<> class template is a func-
tion signature, like void() for a function taking no parameters with no return value,
or int(std::string&,double*) for a function that takes a non-const reference to a
std::string and a pointer to a double and returns an int. When you construct an

Calls tmp() where tmp is constructed
from std::move(move_only())

Run in new thread

Run in wait()
or get()Implementation

chooses

Invoke deferred function

85Waiting for one-off events with futures
instance of std::packaged_task, you must pass in a function or callable object that
can accept the specified parameters and that returns a type that’s convertible to the
specified return type. The types don’t have to match exactly; you can construct a
std::packaged_task<double(double)> from a function that takes an int and returns
a float because the types are implicitly convertible.

 The return type of the specified function signature identifies the type of the
std::future<> returned from the get_future() member function, whereas the argu-
ment list of the function signature is used to specify the signature of the packaged
task’s function call operator. For example, a partial class definition for std::packaged
_task <std::string(std::vector<char>*,int)> would be as shown in the follow-
ing listing.

template<>
class packaged_task<std::string(std::vector<char>*,int)>
{
public:
 template<typename Callable>
 explicit packaged_task(Callable&& f);
 std::future<std::string> get_future();
 void operator()(std::vector<char>*,int);
};

The std::packaged_task object is a callable object, and it can be wrapped in a
std::function object, passed to a std::thread as the thread function, passed to
another function that requires a callable object, or even invoked directly. When the
std::packaged_task is invoked as a function object, the arguments supplied to the
function call operator are passed on to the contained function, and the return value is
stored as the asynchronous result in the std::future obtained from get_future().
You can thus wrap a task in a std::packaged_task and retrieve the future before pass-
ing the std::packaged_task object elsewhere to be invoked in due course. When you
need the result, you can wait for the future to become ready. The following example
shows this in action.

PASSING TASKS BETWEEN THREADS

Many GUI frameworks require that updates to the GUI be done from specific threads,
so if another thread needs to update the GUI, it must send a message to the right
thread in order to do so. std:packaged_task provides one way of doing this without
requiring a custom message for each and every GUI-related activity, as shown here.

#include <deque>
#include <mutex>
#include <future>
#include <thread>

Listing 4.8 Partial class definition for a specialization of std::packaged_task< >

Listing 4.9 Running code on a GUI thread using std::packaged_task

86 CHAPTER 4 Synchronizing concurrent operations
#include <utility>
std::mutex m;
std::deque<std::packaged_task<void()> > tasks;
bool gui_shutdown_message_received();
void get_and_process_gui_message();
void gui_thread()
{
 while(!gui_shutdown_message_received())
 {
 get_and_process_gui_message();
 std::packaged_task<void()> task;
 {
 std::lock_guard<std::mutex> lk(m);
 if(tasks.empty())
 continue;
 task=std::move(tasks.front());
 tasks.pop_front();
 }
 task();
 }
}
std::thread gui_bg_thread(gui_thread);
template<typename Func>
std::future<void> post_task_for_gui_thread(Func f)
{
 std::packaged_task<void()> task(f);
 std::future<void> res=task.get_future();
 std::lock_guard<std::mutex> lk(m);
 tasks.push_back(std::move(task));
 return res;
}

This code is simple: the GUI thread B loops until a message has been received telling
the GUI to shut down c, repeatedly polling for GUI messages to handle d, such as
user clicks, and for tasks on the task queue. If there are no tasks on the queue e, it
loops again; otherwise, it extracts the task from the queue f, releases the lock on the
queue, and then runs the task g. The future associated with the task will then be
made ready when the task completes.

 Posting a task on the queue is equally simple: a new packaged task is created from
the supplied function h, the future is obtained from that task i by calling the get_-
future() member function, and the task is put on the list j before the future is
returned to the caller 1). The code that posted the message to the GUI thread can
then wait for the future if it needs to know that the task has been completed, or it can
discard the future if it doesn’t need to know.

 This example uses std::packaged_task<void()> for the tasks, which wraps a
function or other callable object that takes no parameters and returns void (if it
returns anything else, the return value is discarded). This is the simplest possible task,
but as you saw earlier, std::packaged_task can also be used in more complex situa-
tions—by specifying a different function signature as the template parameter, you can

b

c

d

e

f

g

h

i
j

1)

87Waiting for one-off events with futures
change the return type (and thus the type of data stored in the future’s associated
state) and also the argument types of the function call operator. This example could eas-
ily be extended to allow for tasks that are to be run on the GUI thread to accept argu-
ments and return a value in the std::future rather than just a completion indicator.

 What about those tasks that can’t be expressed as a simple function call or those
tasks where the result may come from more than one place? These cases are dealt with
by the third way of creating a future: using std::promise to set the value explicitly.

4.2.3 Making (std::)promises

When you have an application that needs to handle a lot of network connections, it’s
often tempting to handle each connection on a separate thread, because this can
make the network communication easier to think about and easier to program. This
works well for low numbers of connections (and thus low numbers of threads). Unfor-
tunately, as the number of connections rises, this becomes less suitable; the large num-
bers of threads consequently consume large amounts of OS resources and potentially
cause a lot of context switching (when the number of threads exceeds the available
hardware concurrency), impacting performance. In extreme cases, the OS may run
out of resources for running new threads before its capacity for network connections
is exhausted. In applications with large numbers of network connections, it’s there-
fore common to have a small number of threads (possibly only one) handling the con-
nections, with each thread dealing with multiple connections at once.

 Consider one of these threads handling the connections. Data packets will come in
from the various connections being handled in essentially random order, and like-
wise, data packets will be queued to be sent in random order. In many cases, other
parts of the application will be waiting either for data to be successfully sent or for a
new batch of data to be successfully received via a specific network connection.

 std::promise<T> provides a means of setting a value (of type T) that can later be
read through an associated std::future<T> object. A std::promise/std::future
pair would provide one possible mechanism for this facility; the waiting thread could
block on the future, while the thread providing the data could use the promise half of
the pairing to set the associated value and make the future ready.

 You can obtain the std::future object associated with a given std::promise by
calling the get_future() member function, just like with std::packaged_task. When
the value of the promise is set (using the set_value() member function), the future
becomes ready and can be used to retrieve the stored value. If you destroy the
std::promise without setting a value, an exception is stored instead. Section 4.2.4
describes how exceptions are transferred across threads.

 Listing 4.10 shows some example code for a thread that’s processing connections
as just described. In this example, you use a std::promise<bool>/std::future<bool>
pair to identify the successful transmission of a block of outgoing data; the value asso-
ciated with the future is a simple success/failure flag. For incoming packets, the data
associated with the future is the payload of the data packet.

88 CHAPTER 4 Synchronizing concurrent operations
#include <future>
void process_connections(connection_set& connections)
{
 while(!done(connections))
 {
 for(connection_iterator
 connection=connections.begin(),end=connections.end();
 connection!=end;
 ++connection)
 {
 if(connection->has_incoming_data())
 {
 data_packet data=connection->incoming();
 std::promise<payload_type>& p=
 connection->get_promise(data.id);
 p.set_value(data.payload);
 }
 if(connection->has_outgoing_data())
 {
 outgoing_packet data=
 connection->top_of_outgoing_queue();
 connection->send(data.payload);
 data.promise.set_value(true);
 }
 }
 }
}

The process_connections() function loops until done() returns true B. Every
time it goes through the loop, it checks each connection in turn c, retrieving
incoming data if there is any d or sending any queued outgoing data f. This
assumes that an incoming packet has an ID and a payload with the data in it. The ID
is mapped to a std::promise (perhaps by a lookup in an associative container) e,
and the value is set to the packet’s payload. For outgoing packets, the packet is
retrieved from the outgoing queue and sent through the connection. Once the send
has completed, the promise associated with the outgoing data is set to true to indi-
cate successful transmission g. Whether this maps nicely to the network protocol
depends on the protocol; this promise/future style structure may not work for a par-
ticular scenario, although it does have a similar structure to the asynchronous I/O
support of some OSes.

 All the code up to now has completely disregarded exceptions. Although it might
be nice to imagine a world in which everything worked all the time, this isn’t the case.
Sometimes disks fill up, sometimes what you’re looking for just isn’t there, sometimes
the network fails, and sometimes the database goes down. If you were performing the
operation in the thread that needed the result, the code could just report an error
with an exception, so it would be unnecessarily restrictive to require that everything
goes well just because you wanted to use std::packaged_task or std::promise. The

Listing 4.10 Handling multiple connections from a single thread using promises

b
c

d

e

f

g

89Waiting for one-off events with futures
C++ Standard Library therefore provides a clean way to deal with exceptions in such a
scenario and allows them to be saved as part of the associated result.

4.2.4 Saving an exception for the future

Consider the following short snippet of code. If you pass in -1 to the square_root()
function, it throws an exception, and this gets seen by the caller:

double square_root(double x)
{
 if(x<0)
 {
 throw std::out_of_range(“x<0”);
 }
 return sqrt(x);
}

Now suppose that instead of just invoking square_root() from the current thread

double y=square_root(-1);

you run the call as an asynchronous call:

std::future<double> f=std::async(square_root,-1);
double y=f.get();

It would be ideal if the behavior was exactly the same; just as y gets the result of the
function call in either case, it would be great if the thread that called f.get() could
see the exception too, just as it would in the single-threaded case.

 Well, that’s exactly what happens: if the function call invoked as part of std::async
throws an exception, that exception is stored in the future in place of a stored value, the
future becomes ready, and a call to get() rethrows that stored exception. (Note: the
standard leaves it unspecified whether it is the original exception object that’s rethrown
or a copy; different compilers and libraries make different choices on this matter.) The
same happens if you wrap the function in a std::packaged_task—when the task is
invoked, if the wrapped function throws an exception, that exception is stored in the
future in place of the result, ready to be thrown on a call to get().

 Naturally, std::promise provides the same facility, with an explicit function call. If
you wish to store an exception rather than a value, you call the set_exception()
member function rather than set_value(). This would typically be used in a catch
block for an exception thrown as part of the algorithm, to populate the promise with
that exception:

extern std::promise<double> some_promise;
try
{
 some_promise.set_value(calculate_value());
}

90 CHAPTER 4 Synchronizing concurrent operations
catch(...)
{
 some_promise.set_exception(std::current_exception());
}

This uses std::current_exception() to retrieve the thrown exception; the alterna-
tive here would be to use std::make_exception_ptr() to store a new exception
directly without throwing:

some_promise.set_exception(std::make_exception_ptr(std::logic_error("foo ")));

This is much cleaner than using a try/catch block if the type of the exception is
known, and it should be used in preference; not only does it simplify the code, but it
also provides the compiler with greater opportunity to optimize the code.

 Another way to store an exception in a future is to destroy the std::promise or
std::packaged_task associated with the future without calling either of the set func-
tions on the promise or invoking the packaged task. In either case, the destructor of
std::promise or std::packaged_task will store a std::future_error exception with
an error code of std::future_errc::broken_promise in the associated state if the
future isn’t already ready; by creating a future you make a promise to provide a value
or exception, and by destroying the source of that value or exception without provid-
ing one, you break that promise. If the compiler didn’t store anything in the future in
this case, waiting threads could potentially wait forever.

 Up until now, all the examples have used std::future. However, std::future has
its limitations, not the least of which being that only one thread can wait for the result.
If you need to wait for the same event from more than one thread, you need to use
std::shared_future instead.

4.2.5 Waiting from multiple threads

Although std::future handles all the synchronization necessary to transfer data from
one thread to another, calls to the member functions of a particular std::future
instance are not synchronized with each other. If you access a single std::future
object from multiple threads without additional synchronization, you have a data race
and undefined behavior. This is by design: std::future models unique ownership of
the asynchronous result, and the one-shot nature of get() makes such concurrent
access pointless anyway—only one thread can retrieve the value, because after the first
call to get() there’s no value left to retrieve.

 If your fabulous design for your concurrent code requires that multiple threads
can wait for the same event, don’t despair just yet; std::shared_future allows exactly
that. Whereas std::future is only moveable (so ownership can be transferred between
instances, but only one instance refers to a particular asynchronous result at a time),
std::shared_future instances are copyable (so you can have multiple objects referring
to the same associated state).

91Waiting for one-off events with futures
 Now, with std::shared_future, member functions on an individual object are still
unsynchronized, so to avoid data races when accessing a single object from multiple
threads, you must protect accesses with a lock. The preferred way to use it would be to
pass a copy of the shared_future object to each thread, so each thread can access its
own local shared_future object safely, as the internals are now correctly synchronized
by the library. Accessing the shared asynchronous state from multiple threads is safe if
each thread accesses that state through its own std::shared_future object. See fig-
ure 4.1.

 One potential use of std::shared_future is for implementing parallel execution
of something akin to a complex spreadsheet; each cell has a single final value, which
may be used by the formulas in multiple other cells. The formulas for calculating the
results of the dependent cells can then use std::shared_future to reference the first

Thread 1 Thread 2

std::shared_future<int>

Shared variable sf

int

sf.wait() sf.wait()

Data race on sf

without synchronization

Shared variable sf

int

Copying is safe.

Thread 1

local

Thread 2

local

Refers to Refers to

Separate objects,
so no data race

std::shared_future<int>

std::shared_future<int> std::shared_future<int>

auto local=sf; auto local=sf;

local.wait()local.wait()

Refers to
asynchronous

result

Refers to
asynchronous

result

Figure 4.1 Using multiple std::shared_future objects to avoid data races

92 CHAPTER 4 Synchronizing concurrent operations
cell. If all the formulas for the individual cells are then executed in parallel, those
tasks that can proceed to completion will do so, whereas those that depend on others
will block until their dependencies are ready. This will allow the system to make maxi-
mum use of the available hardware concurrency.

 Instances of std::shared_future that reference some asynchronous state are con-
structed from instances of std::future that reference that state. Since std::future
objects don’t share ownership of the asynchronous state with any other object, the
ownership must be transferred into the std::shared_future using std::move, leav-
ing std::future in an empty state, as if it were a default constructor:

std::promise<int> p;
std::future<int> f(p.get_future());
assert(f.valid());
std::shared_future<int> sf(std::move(f));
assert(!f.valid());
assert(sf.valid());

Here, the future f is initially valid B because it refers to the asynchronous state of
the promise p, but after transferring the state to sf, f is no longer valid c, whereas
sf is d.

 Just as with other movable objects, the transfer of ownership is implicit for rval-
ues, so you can construct a std::shared_future directly from the return value of the
get_future() member function of a std::promise object, for example:

std::promise<std::string> p;
std::shared_future<std::string> sf(p.get_future());

Here, the transfer of ownership is implicit; std::shared_future<> is constructed
from an rvalue of type std::future<std::string> B.

 std::future also has an additional feature to facilitate the use of std::shared_
future, with the new facility for automatically deducing the type of a variable from its
initializer (see appendix A, section A.6). std::future has a share() member func-
tion that creates a new std::shared_future and transfers ownership to it directly.
This can save a lot of typing and makes code easier to change:

std::promise< std::map< SomeIndexType, SomeDataType, SomeComparator,
 SomeAllocator>::iterator> p;
auto sf=p.get_future().share();

In this case, the type of sf is deduced to be std::shared_future< std::map< Some-
IndexType, SomeDataType, SomeComparator, SomeAllocator>::iterator>, which is
rather a mouthful. If the comparator or allocator is changed, you only need to change
the type of the promise; the type of the future is automatically updated to match.

 Sometimes you want to limit the amount of time you’re waiting for an event, either
because you have a hard time limit on how long a particular section of code may take,
or because there’s other useful work that the thread can be doing if the event isn’t

The future
f is valid.

b

f is no
longer valid.

c

sf is now valid.d

Implicit transfer
of ownership

b

93Waiting with a time limit
going to happen soon. To handle this facility, many of the waiting functions have vari-
ants that allow a timeout to be specified.

4.3 Waiting with a time limit
All the blocking calls introduced previously will block for an indefinite period of time,
suspending the thread until the event being waited for occurs. In many cases this is
fine, but in some cases you may want to put a limit on how long you wait. This might
be to allow you to send some form of “I’m still alive” message either to an interactive
user, or another process, or indeed to allow you to abort the wait if the user has given
up waiting and clicked Cancel.

 There are two sorts of timeouts you may wish to specify: a duration-based timeout,
where you wait for a specific amount of time (for example, 30 milliseconds); or an
absolute timeout, where you wait until a specific point in time (for example,
17:30:15.045987023 UTC on November 30, 2011). Most of the waiting functions pro-
vide variants that handle both forms of timeouts. The variants that handle the duration-
based timeouts have a _for suffix, and those that handle the absolute timeouts have
an _until suffix.

 So, for example, std::condition_variable has two overloads of the wait_for()
member function and two overloads of the wait_until() member function that cor-
respond to the two overloads of wait()—one overload that just waits until signaled, or
the timeout expires, or a spurious wakeup occurs; and another that will check the sup-
plied predicate when woken and will return only when the supplied predicate is true
(and the condition variable has been signaled) or the timeout expires.

 Before we look at the details of the functions that use the timeouts, let’s examine
the way that times are specified in C++, starting with clocks.

4.3.1 Clocks

As far as the C++ Standard Library is concerned, a clock is a source of time informa-
tion. Specifically, a clock is a class that provides four distinct pieces of information:

 The time now
 The type of the value used to represent the times obtained from the clock
 The tick period of the clock
 Whether or not the clock ticks at a uniform rate and is therefore considered to

be a steady clock

The current time of a clock can be obtained by calling the now() static member function
for that clock class; for example, std::chrono::system_clock::now() will return the
current time of the system clock. The type of the time points for a particular clock is spec-
ified by the time_point member typedef, so the return type of some_clock::now() is
some_clock::time_point.

 The tick period of the clock is specified as a fractional number of seconds, which is
given by the period member typedef of the clock—a clock that ticks 25 times per

94 CHAPTER 4 Synchronizing concurrent operations
second has a period of std::ratio<1,25>, whereas a clock that ticks every 2.5 sec-
onds has a period of std::ratio<5,2>. If the tick period of a clock can’t be known
until runtime, or it may vary during a given run of the application, the period may
be specified as the average tick period, smallest possible tick period, or some other
value that the library writer deems appropriate. There’s no guarantee that the
observed tick period in a given run of the program matches the specified period for
that clock.

 If a clock ticks at a uniform rate (whether or not that rate matches the period) and
can’t be adjusted, the clock is said to be a steady clock. The is_steady static data mem-
ber of the clock class is true if the clock is steady, and false otherwise. Typically,
std::chrono::system_clock will not be steady, because the clock can be adjusted,
even if such adjustment is done automatically to take account of local clock drift. Such
an adjustment may cause a call to now() to return a value earlier than that returned by
a prior call to now(), which is in violation of the requirement for a uniform tick rate.
Steady clocks are important for timeout calculations, as you’ll see shortly, so the C++
Standard Library provides one in the form of std::chrono::steady_clock. The
other clocks provided by the C++ Standard Library are std::chrono::system_clock
(mentioned earlier), which represents the “real-time” clock of the system and pro-
vides functions for converting its time points to and from time_t values, and
std::chrono::high_resolution_clock, which provides the smallest possible tick
period (and thus the highest possible resolution) of all the library-supplied clocks. It
may be a typedef to one of the other clocks. These clocks are defined in the <chrono>
library header, along with the other time facilities.

 We’ll look at the representation of time points shortly, but first let’s look at how
durations are represented.

4.3.2 Durations

Durations are the simplest part of the time support; they’re handled by the std::
chrono::duration<> class template (all the C++ time-handling facilities used by the
Thread Library are in the std::chrono namespace). The first template parameter is
the type of the representation (such as int, long, or double), and the second is a frac-
tion specifying how many seconds each unit of the duration represents. For example,
a number of minutes stored in a short is std::chrono::duration<short,std::
ratio<60,1>>, because there are 60 seconds in a minute. On the other hand, a count
of milliseconds stored in a double is std::chrono::duration<double,std::ratio
<1,1000>>, because each millisecond is 1/1000th of a second.

 The Standard Library provides a set of predefined typedefs in the std::chrono
namespace for various durations: nanoseconds, microseconds, milliseconds, sec-
onds, minutes, and hours. They all use a sufficiently large integral type for the repre-
sentation chosen such that you can represent a duration of over 500 years in the
appropriate units if you so desire. There are also typedefs for all the SI ratios from
std::atto (10–18) to std::exa (1018) (and beyond, if your platform has 128-bit

95Waiting with a time limit
integer types) for use when specifying custom durations such as std::duration<d-
ouble,std::centi> for a count of 1/100th of a second represented in a double.

 For convenience, there are a number of predefined literal suffix operators for
durations in the std::chrono_literals namespace, introduced with C++14. This can
simplify code that uses hard-coded duration values, such as

using namespace std::chrono_literals;
auto one_day=24h;
auto half_an_hour=30min;
auto max_time_between_messages=30ms;

When used with integer literals, these suffixes are equivalent to using the predefined
duration typedefs, so 15ns and std::chrono::nanoseconds(15) are identical values.
However, when used with floating-point literals, these suffixes create a suitably-scaled
floating-point duration with an unspecified representation type. Therefore, 2.5min
will be std::chrono::duration<some-floating-point-type,std::ratio<60,1>>. If
you are concerned about the range or precision of the implementation’s chosen float-
ing point type, then you will need to construct an object with a suitable representation
yourself, rather than using the convenience of the literal suffixes.

 Conversion between durations is implicit where it does not require truncation of
the value (so converting hours to seconds is OK, but converting seconds to hours is
not). Explicit conversions can be done with std::chrono::duration_cast<>:

std::chrono::milliseconds ms(54802);
std::chrono::seconds s=
 std::chrono::duration_cast<std::chrono::seconds>(ms);

The result is truncated rather than rounded, so s will have a value of 54 in this example.
 Durations support arithmetic, so you can add and subtract durations to get new

durations or multiply or divide by a constant of the underlying representation type
(the first template parameter). Thus 5*seconds(1) is the same as seconds(5) or
minutes(1) – seconds(55). The count of the number of units in the duration can be
obtained with the count() member function. Thus std::chrono::milliseconds(1234)
.count() is 1234.

 Duration-based waits are done with instances of std::chrono::duration<>. For
example, you can wait for up to 35 milliseconds for a future to be ready:

std::future<int> f=std::async(some_task);
if(f.wait_for(std::chrono::milliseconds(35))==std::future_status::ready)
 do_something_with(f.get());

The wait functions all return a status to indicate whether the wait timed out or the
waited-for event occurred. In this case, you’re waiting for a future, so the function
returns std::future_status::timeout if the wait times out, std::future_status::
ready if the future is ready, or std::future_status::deferred if the future’s task is
deferred. The time for a duration-based wait is measured using a steady clock internal

96 CHAPTER 4 Synchronizing concurrent operations
to the library, so 35 milliseconds means 35 milliseconds of elapsed time, even if the
system clock was adjusted (forward or back) during the wait. Of course, the vagaries
of system scheduling and the varying precisions of OS clocks means that the time
between the thread issuing the call and returning from it may be much longer than
35 ms.

 With durations under our belt, we can now move on to time points.

4.3.3 Time points

The time point for a clock is represented by an instance of the std::chrono::time_
point<> class template, which specifies which clock it refers to as the first template
parameter and the units of measurement (a specialization of std::chrono::dura-
tion<>) as the second template parameter. The value of a time point is the length of
time (in multiples of the specified duration) since a specific point in time called the
epoch of the clock. The epoch of a clock is a basic property but not something that’s
directly available to query or specified by the C++ Standard. Typical epochs include
00:00 on January 1, 1970 and the instant when the computer running the application
booted up. Clocks may share an epoch or have independent epochs. If two clocks
share an epoch, the time_point typedef in one class may specify the other as the clock
type associated with the time_point. Although you can’t find out when the epoch is,
you can get the time_since_epoch() for a given time_point. This member function
returns a duration value specifying the length of time since the clock epoch to that
particular time point.

 For example, you might specify a time point as std::chrono::time_point<std::
chrono::system_clock, std::chrono::minutes>. This would hold the time relative
to the system clock but measured in minutes as opposed to the native precision of the
system clock (which is typically seconds or less).

 You can add durations and subtract durations from instances of std::chrono::
time_point<> to produce new time points, so std::chrono::high_resolution_clock::
now() + std::chrono::nanoseconds(500) will give you a time 500 nanoseconds in the
future. This is good for calculating an absolute timeout when you know the maximum
duration of a block of code, but there are multiple calls to waiting functions within
it or nonwaiting functions that precede a waiting function but take up some of the
time budget.

 You can also subtract one time point from another that shares the same clock. The
result is a duration specifying the length of time between the two time points. This is
useful for timing blocks of code, for example:

auto start=std::chrono::high_resolution_clock::now();
do_something();
auto stop=std::chrono::high_resolution_clock::now();
std::cout<<”do_something() took “
 <<std::chrono::duration<double,std::chrono::seconds>(stop-start).count()
 <<” seconds”<<std::endl;

97Waiting with a time limit
The clock parameter of a std::chrono::time_point<> instance does more than just
specify the epoch, though. When you pass the time point to a wait function that takes
an absolute timeout, the clock parameter of the time point is used to measure the
time. This has important consequences when the clock is changed, because the wait
tracks the clock change and won’t return until the clock’s now() function returns a
value later than the specified timeout. If the clock is adjusted forward, this may reduce
the total length of the wait (as measured by a steady clock), and if it’s adjusted back-
ward, this may increase the total length of the wait.

 As you may expect, time points are used with the _until variants of the wait func-
tions. The typical use case is as an offset from some-clock::now() at a fixed point in the
program, although time points associated with the system clock can be obtained by
converting from time_t using the std::chrono::system_clock::to_time_point()
static member function to schedule operations at a user-visible time. For example, if
you have a maximum of 500 milliseconds to wait for an event associated with a condi-
tion variable, you might do something like in the following listing.

#include <condition_variable>
#include <mutex>
#include <chrono>
std::condition_variable cv;
bool done;
std::mutex m;
bool wait_loop()
{
 auto const timeout= std::chrono::steady_clock::now()+
 std::chrono::milliseconds(500);
 std::unique_lock<std::mutex> lk(m);
 while(!done)
 {
 if(cv.wait_until(lk,timeout)==std::cv_status::timeout)
 break;
 }
 return done;
}

This is the recommended way to wait for condition variables with a time limit if you’re
not passing a predicate to wait. This way, the overall length of the loop is bounded. As
you saw in section 4.1.1, you need to loop when using condition variables if you don’t
pass in the predicate, in order to handle spurious wakeups. If you use wait_for() in a
loop, you might end up waiting almost the full length of time before a spurious wake-
up, and the next time through the wait time starts again. This may repeat any number
of times, making the total wait time unbounded.

 With the basics of specifying timeouts under your belt, let’s look at the functions
that you can use timeout with.

Listing 4.11 Waiting for a condition variable with a timeout

98 CHAPTER 4 Synchronizing concurrent operations
4.3.4 Functions that accept timeouts

The simplest use for a timeout is to add a delay to the processing of a particular
thread so that it doesn’t take processing time away from other threads when it has
nothing to do. You saw an example of this in section 4.1, where you polled a “done”
flag in a loop. The two functions that handle this are std::this_thread::sleep_
for() and std::this_thread::sleep_until(). They work like a basic alarm clock:
the thread goes to sleep either for the specified duration (with sleep_for()) or until
the specified point in time (with sleep_until()). sleep_for() makes sense for exam-
ples like those in section 4.1, where something must be done periodically, and the
elapsed time is what matters. On the other hand, sleep_until() allows you to sched-
ule the thread to wake at a particular point in time. This could be used to trigger the
backups at midnight, or the payroll print run at 6:00 a.m., or to suspend the thread
until the next frame refresh when doing a video playback.

 Sleeping isn’t the only facility that takes a timeout; you already saw that you can
use timeouts with condition variables and futures. You can even use timeouts when
trying to acquire a lock on a mutex if the mutex supports it. Plain std::mutex and
std::recursive_mutex don’t support timeouts on locking, but std::timed_mutex
does, as does std::recursive_timed_mutex. Both these types support try_lock_for()
and try_lock_until() member functions that try to obtain the lock within a speci-
fied time period or before a specified time point. Table 4.1 shows the functions from
the C++ Standard Library that can accept timeouts, their parameters, and their return
values. Parameters listed as duration must be an instance of std::duration<>, and
those listed as time_point must be an instance of std::time_point<>.

Table 4.1

Class/Namespace Functions Return Values

std::this_thread namespace sleep_for(duration)
sleep_until(time_point)

N/A

std::condition_variable or
std::condition_variable_an
ywait_for(lock,duration)

wait_until(lock,time_
point)

std::cv_status::timeout or
std::cv_status::no_timeout

wait_for(lock,duration,
predicate)
wait_until(lock,time_point,
predicate)

bool—the return value
of the predicate
when woken

std::timed_mutex,
std::recursive_timed_mutex
or std::shared_timed_
mutextry_lock_for(duration)

try_lock_until(time_point)

bool—true if the lock was acquired,
false otherwise

std::shared_timed_mutex try_lock_shared_for(duration)
try_lock_shared_until(time_
point)

bool—true if the lock
was acquired, false
otherwise

99Using synchronization of operations to simplify code
Now that I’ve covered the mechanics of condition variables, futures, promises, and
packaged tasks, it’s time to look at the wider picture and how they can be used to sim-
plify the synchronization of operations between threads.

4.4 Using synchronization of operations to simplify code
Using the synchronization facilities described so far in this chapter as building blocks
allows you to focus on the operations that need synchronizing rather than the
mechanics. One way this can help simplify your code is that it accommodates a much
more functional (in the sense of functional programming) approach to programming
concurrency. Rather than sharing data directly between threads, each task can be pro-
vided with the data it needs, and the result can be disseminated to any other threads
that need it through the use of futures.

4.4.1 Functional programming with futures

The term functional programming (FP) refers to a style of programming where the
result of a function call depends solely on the parameters to that function and doesn’t
depend on any external state. This is related to the mathematical concept of a func-
tion, and it means that if you invoke a function twice with the same parameters, the
result is exactly the same. This is a property of many of the mathematical functions in
the C++ Standard Library, such as sin, cos, and sqrt, and simple operations on basic

std::unique_lock<TimedLock
able>unique_lock(lockable,
duration)

unique_lock(lockable,time_
point)

N/A—owns_lock() on the newly-
constructed object returns true if the
lock was acquired, false otherwise

try_lock_for(duration)
try_lock_until(time_point)

bool—true if the lock
was acquired, false
otherwise

std::shared_lock<Shared-
TimedLockable>shared_lock
(lockable,duration)

shared_lock(lockable,time_
point)

N/A—owns_lock() on the newly-
constructed object returns true if the
lock was acquired, false otherwise

try_lock_for(duration)
try_lock_until(time_point)

bool—true if the lock
was acquired, false
otherwise

std::future<ValueType> or
std::shared_future<Value-
Type>wait_for(duration)

wait_until(time_point)

std::future_status::timeout
if the wait timed out,
std::future_status::ready if
the future is ready, or
std::future_status::deferred
if the future holds a deferred function
that hasn’t yet started

Table 4.1 (continued)

Class/Namespace Functions Return Values

100 CHAPTER 4 Synchronizing concurrent operations
types, such as 3+3, 6*9, or 1.3/4.7. A pure function doesn’t modify any external state
either; the effects of the function are entirely limited to the return value.

 This makes things easy to think about, especially when concurrency is involved,
because many of the problems associated with shared memory discussed in chapter 3
disappear. If there are no modifications to shared data, there can be no race conditions
and thus no need to protect shared data with mutexes either. This is such a powerful
simplification that programming languages such as Haskell (http://www.haskell.org/),
where all functions are pure by default, are becoming increasingly popular for pro-
gramming concurrent systems. Because most things are pure, the impure functions
that actually do modify the shared state stand out all the more, and it’s therefore easier
to reason about how they fit into the overall structure of the application.

 The benefits of FP aren’t limited to those languages where it’s the default para-
digm, however. C++ is a multiparadigm language, and it’s entirely possible to write
programs in the FP style. This is even easier in C++11 than it was in C++98, with the
advent of lambda functions (see appendix A, section A.6), the incorporation of
std::bind from Boost and TR1, and the introduction of automatic type deduction for
variables (see appendix A, section A.7). Futures are the final piece of the puzzle that
makes FP-style concurrency viable in C++; a future can be passed around between
threads to allow the result of one computation to depend on the result of another,
without any explicit access to shared data.

FP-STYLE QUICKSORT

To illustrate the use of futures for FP-style concurrency, let’s look at a simple imple-
mentation of the Quicksort algorithm. The basic idea of the algorithm is simple: given
a list of values, take an element to be the pivot element, and then partition the list into
two sets—those less than the pivot and those greater than or equal to the pivot. A
sorted copy of the list is obtained by sorting the two sets and returning the sorted list
of values less than the pivot, followed by the pivot, followed by the sorted list of val-
ues greater than or equal to the pivot. Figure 4.2 shows how a list of 10 integers is

3

4

1

2

5

7

9

8

1

2

3

4

6

7

9

1

2

1

2

8 8

1

2

3

4

6

7

8

5

7

3

4

1

9

2

8

1

2

3

4

5

6

7

8

10 8 9 9 910 9

6 10 10 10 106 10

Figure 4.2 FP-style recursive sorting

http://www.haskell.org/
http://www.haskell.org/

101Using synchronization of operations to simplify code
sorted under this scheme. An FP-style sequential implementation is shown in the fol-
lowing listing; it takes and returns a list by value rather than sorting in place like
std::sort() does.

template<typename T>
std::list<T> sequential_quick_sort(std::list<T> input)
{
 if(input.empty())
 {
 return input;
 }
 std::list<T> result;
 result.splice(result.begin(),input,input.begin());
 T const& pivot=*result.begin();

 auto divide_point=std::partition(input.begin(),input.end(),
 [&](T const& t){return t<pivot;});
 std::list<T> lower_part;
 lower_part.splice(lower_part.end(),input,input.begin(),
 divide_point);
 auto new_lower(
 sequential_quick_sort(std::move(lower_part)));
 auto new_higher(
 sequential_quick_sort(std::move(input)));
 result.splice(result.end(),new_higher);
 result.splice(result.begin(),new_lower);
 return result;
}

Although the interface is FP-style, if you used FP style throughout, you’d do a lot of
copying, so you use “normal” imperative style for the internals. You take the first ele-
ment as the pivot by slicing it off the front of the list using splice() B. Although this
can potentially result in a suboptimal sort (in terms of numbers of comparisons and
exchanges), doing anything else with a std::list can add quite a bit of time because
of the list traversal. You know you’re going to want it in the result, so you can splice it
directly into the list you’ll be using for that. Now, you’re also going to want to use it for
comparisons, so let’s take a reference to it to avoid copying c. You can then use
std::partition to divide the sequence into those values less than the pivot and those
not less than the pivot d. The easiest way to specify the partition criteria is to use a
lambda function; you use a reference capture to avoid copying the pivot value (see
appendix A, section A.5 for more on lambda functions).

 std::partition() rearranges the list in place and returns an iterator marking the
first element that’s not less than the pivot value. The full type for an iterator can be
quite long-winded, so you just use the auto type specifier to force the compiler to
work it out for you (see appendix A, section A.7).

 Now, you’ve opted for an FP-style interface, so if you’re going to use recursion to
sort the two “halves,” you’ll need to create two lists. You can do this by using splice()

Listing 4.12 A sequential implementation of Quicksort

b

c

d

e

f

g

h
i

102 CHAPTER 4 Synchronizing concurrent operations
again to move the values from input up to the divide_point into a new list: lower_
part e. This leaves the remaining values alone in input. You can then sort the two
lists with recursive calls, f and g. By using std::move() to pass the lists in, you can
avoid copying here too—the result is implicitly moved out anyway. Finally, you can use
splice() yet again to piece the result together in the right order. The new_higher
values go on the end h, after the pivot, and the new_lower values go at the beginning,
before the pivot i.

FP-STYLE PARALLEL QUICKSORT

Because this uses a functional style already, it’s now easy to convert this to a parallel
version using futures, as shown in the next listing. The set of operations is the same as
before, except that some of them now run in parallel. This version uses an implemen-
tation of the Quicksort algorithm using futures and a functional style.

template<typename T>
std::list<T> parallel_quick_sort(std::list<T> input)
{
 if(input.empty())
 {
 return input;
 }
 std::list<T> result;
 result.splice(result.begin(),input,input.begin());
 T const& pivot=*result.begin();
 auto divide_point=std::partition(input.begin(),input.end(),
 [&](T const& t){return t<pivot;});
 std::list<T> lower_part;
 lower_part.splice(lower_part.end(),input,input.begin(),
 divide_point);
 std::future<std::list<T> > new_lower(
 std::async(¶llel_quick_sort<T>,std::move(lower_part)));
 auto new_higher(
 parallel_quick_sort(std::move(input)));
 result.splice(result.end(),new_higher);
 result.splice(result.begin(),new_lower.get());
 return result;
}

The big change here is that rather than sorting the lower portion on the current
thread, you sort it on another thread using std::async() B. The upper portion of
the list is sorted with direct recursion as before c. By recursively calling parallel_
quick_sort(), you can take advantage of the available hardware concurrency. If
std::async() starts a new thread every time, then if you recurse down three times,
you’ll have eight threads running; if you recurse down 10 times (for ~1000 ele-
ments), you’ll have 1,024 threads running if the hardware can handle it. If the library
decides there are too many spawned tasks (perhaps because the number of tasks has
exceeded the available hardware concurrency), it may switch to spawning the new

Listing 4.13 Parallel Quicksort using futures

b

c

d
e

103Using synchronization of operations to simplify code
tasks synchronously. They will run in the thread that calls get() rather than on a new
thread, thus avoiding the overhead of passing the task to another thread when this
won’t help the performance. It’s worth noting that it’s perfectly conforming for an
implementation of std::async to start a new thread for each task (even in the face of
massive oversubscription) unless std::launch::deferred is explicitly specified, or to
run all tasks synchronously unless std::launch::async is explicitly specified. If you’re
relying on the library for automatic scaling, you’re advised to check the documenta-
tion for your implementation to see what behavior it exhibits.

 Rather than using std::async(), you could write your own spawn_task() func-
tion as a simple wrapper around std::packaged_task and std::thread, as shown in
listing 4.14; you’d create a std::packaged_task for the result of the function call, get
the future from it, run it on a thread, and return the future. This wouldn’t offer much
of an advantage (and indeed would likely lead to massive oversubscription), but it
would pave the way to migrate to a more sophisticated implementation that adds the
task to a queue to be run by a pool of worker threads. We’ll look at thread pools in
chapter 9. It’s probably worth going this way in preference to using std::async only if
you know what you’re doing and want complete control over the way the thread pool
is built and executes tasks.

 Anyway, back to parallel_quick_sort. Because you just used direct recursion to
get new_higher, you can splice it into place as before d. But new_lower is now
std::future<std::list<T>> rather than a list, so you need to call get() to retrieve
the value before you can call splice() e. This then waits for the background task to
complete and moves the result into the splice() call; get() returns an rvalue refer-
ence to the contained result, so it can be moved out (see appendix A, section A.1.1 for
more on rvalue references and move semantics).

 Even assuming that std::async() makes optimal use of the available hardware
concurrency, this still isn’t an ideal parallel implementation of Quicksort. For one
thing, std::partition does a lot of the work, and that’s still a sequential call, but it’s
good enough for now. If you’re interested in the fastest possible parallel implementa-
tion, check the academic literature. Alternatively, you could use the parallel overload
from the C++17 Standard Library (see chapter 10).

template<typename F,typename A>
std::future<std::result_of<F(A&&)>::type>
 spawn_task(F&& f,A&& a)
{
 typedef std::result_of<F(A&&)>::type result_type;
 std::packaged_task<result_type(A&&)>
 task(std::move(f)));
 std::future<result_type> res(task.get_future());
 std::thread t(std::move(task),std::move(a));
 t.detach();
 return res;
}

Listing 4.14 A sample implementation of spawn_task

104 CHAPTER 4 Synchronizing concurrent operations
FP isn’t the only concurrent programming paradigm that eschews shared mutable
data; another paradigm is CSP (Communicating Sequential Processes),2 where threads
are conceptually entirely separate, with no shared data but with communication chan-
nels that allow messages to be passed between them. This is the paradigm adopted by
the programming language Erlang (http://www.erlang.org/) and by the MPI (Mes-
sage Passing Interface; http://www.mpi-forum.org/) environment commonly used
for high-performance computing in C and C++. I’m sure that by now you’ll be unsur-
prised to learn that this can also be supported in C++ with a bit of discipline; the fol-
lowing section discusses one way to achieve this.

4.4.2 Synchronizing operations with message passing

The idea of CSP is simple: if there’s no shared data, each thread can be reasoned
about entirely independently, purely on the basis of how it behaves in response to the
messages that it received. Each thread is therefore effectively a state machine: when it
receives a message, it updates its state in some manner and maybe sends one or more
messages to other threads, with the processing performed depending on the initial
state. One way to write such threads would be to formalize this and implement a
Finite State Machine model, but this isn’t the only way; the state machine can be
implicit in the structure of the application. Which method works better in any given
scenario depends on the exact behavioral requirements of the situation and the
expertise of the programming team. However you choose to implement each thread,
the separation into independent processes has the potential to remove much of the
complication from shared-data concurrency and therefore make programming easier,
lowering the bug rate.

 True communicating sequential processes have no shared data, with all communi-
cation passed through the message queues, but because C++ threads share an address
space, it’s not possible to enforce this requirement. This is where the discipline comes
in: as application or library authors, it’s our responsibility to ensure that we don’t
share data between the threads. Of course, the message queues must be shared in
order for the threads to communicate, but the details can be wrapped in the library.

 Imagine for a moment that you’re implementing the code for an ATM. This code
needs to handle interaction with the person trying to withdraw money and interaction
with the relevant bank, as well as control the physical machinery to accept the per-
son’s card, display appropriate messages, handle key presses, issue money, and return
their card.

 One way to handle everything would be to split the code into three independent
threads: one to handle the physical machinery, one to handle the ATM logic, and one
to communicate with the bank. These threads could communicate purely by passing
messages rather than sharing any data. For example, the thread handling the machinery

2 Communicating Sequential Processes, C.A.R. Hoare, Prentice Hall, 1985. Available free online at http://www
.usingcsp.com/cspbook.pdf.

http://www.usingcsp.com/cspbook.pdf
http://www.usingcsp.com/cspbook.pdf
http://www.usingcsp.com/cspbook.pdf
http://www.erlang.org/
http://www.mpi-forum.org/

105Using synchronization of operations to simplify code
would send a message to the logic thread when the person at the machine entered
their card or pressed a button, and the logic thread would send a message to the
machinery thread indicating how much money to dispense, and so forth.

 One way to model the ATM logic would be as a state machine. In each state, the
thread waits for an acceptable message, which it then processes. This may result in
transitioning to a new state, and the cycle continues. The states involved in a simple
implementation are shown in figure 4.3. In this simplified implementation, the system
waits for a card to be inserted. Once the card is inserted, it then waits for the user to
enter their PIN, one digit at a time. They can delete the last digit entered. Once
enough digits have been entered, the PIN is verified. If the PIN is not OK, you’re fin-
ished, so you return the card to the customer and resume waiting for someone to
enter their card. If the PIN is OK, you wait for them to either cancel the transaction or
select an amount to withdraw. If they cancel, you’re finished, and you return their
card. If they select an amount, you wait for confirmation from the bank before issuing
the cash and returning the card or displaying an “insufficient funds” message and
returning their card. Obviously, a real ATM is considerably more complex, but this is
enough to illustrate the idea.

Having designed a state machine for your ATM logic, you can implement it with a
class that has a member function to represent each state. Each member function can
then wait for specific sets of incoming messages and handle them when they arrive,
possibly triggering a switch to another state. Each distinct message type is represented

Initial state Getting PIN
Card inserted

Digit pressed

Clear last digit pressed

Verifying

PIN

Digit pressed (final digit)

PIN OK

Done

Card taken

PIN not OK

Cancel

pressed

Cancel pressed

Waiting for

confirmation

Withdraw (amount)

pressed

Withdrawal OK

(issue cash)

Insufficient funds

Waiting for

withdrawal
amount

Figure 4.3 A simple state machine model for an ATM

106 CHAPTER 4 Synchronizing concurrent operations
by a separate struct. Listing 4.15 shows part of a simple implementation of the ATM
logic in such a system, with the main loop and the implementation of the first state,
waiting for the card to be inserted.

 As you can see, all the necessary synchronization for the message passing is entirely
hidden inside the message-passing library (a basic implementation of which is given in
appendix C, along with the full code for this example).

struct card_inserted
{
 std::string account;
};
class atm
{
 messaging::receiver incoming;
 messaging::sender bank;
 messaging::sender interface_hardware;
 void (atm::*state)();
 std::string account;
 std::string pin;
 void waiting_for_card()
 {
 interface_hardware.send(display_enter_card());
 incoming.wait()
 .handle<card_inserted>(
 [&](card_inserted const& msg)
 {
 account=msg.account;
 pin="";
 interface_hardware.send(display_enter_pin());
 state=&atm::getting_pin;
 }
);
 }
 void getting_pin();
public:
 void run()
 {
 state=&atm::waiting_for_card;
 try
 {
 for(;;)
 {
 (this->*state)();
 }
 }
 catch(messaging::close_queue const&)
 {
 }
 }
};

Listing 4.15 A simple implementation of an ATM logic class

b
c

d

e

f

g

h

107Using synchronization of operations to simplify code
As already mentioned, the implementation described here is grossly simplified from
the real logic that would be required in an ATM, but it does give you a feel for the
message-passing style of programming. There’s no need to think about synchroniza-
tion and concurrency issues, just which messages may be received at any given point
and which messages to send. The state machine for this ATM logic runs on a single
thread, with other parts of the system such as the interface to the bank and the termi-
nal interface running on separate threads. This style of program design is called the
Actor model—there are several discrete actors in the system (each running on a separate
thread), which send messages to each other to perform the task at hand, and there’s
no shared state except that which is directly passed via messages.

 Execution starts with the run() member function f, which sets the initial state to
waiting_for_card g and then repeatedly executes the member function represent-
ing the current state (whatever it is) h. The state functions are simple member func-
tions of the atm class. The waiting_for_card state function B is also simple: it sends
a message to the interface to display a “waiting for card” message c, and then waits
for a message to handle d. The only type of message that can be handled here is a
card_inserted message, which you handle with a lambda function e. You could pass
any function or function object to the handle function, but for a simple case like this,
it’s easiest to use a lambda. Note that the handle() function call is chained onto the
wait() function; if a message is received that doesn’t match the specified type, it’s dis-
carded, and the thread continues to wait until a matching message is received.

 The lambda function itself caches the account number from the card in a member
variable, clears the current PIN, sends a message to the interface hardware to display
something asking the user to enter their PIN, and changes to the “getting PIN” state.
Once the message handler has completed, the state function returns, and the main
loop then calls the new state function h.

 The getting_pin state function is a bit more complex in that it can handle three
distinct types of message, as in figure 4.3. This is shown in the following listing.

void atm::getting_pin()
{
 incoming.wait()
 .handle<digit_pressed>(
 [&](digit_pressed const& msg)
 {
 unsigned const pin_length=4;
 pin+=msg.digit;
 if(pin.length()==pin_length)
 {
 bank.send(verify_pin(account,pin,incoming));
 state=&atm::verifying_pin;
 }
 }
)

Listing 4.16 The getting_pin state function for the simple ATM implementation

b

108 CHAPTER 4 Synchronizing concurrent operations
 .handle<clear_last_pressed>(
 [&](clear_last_pressed const& msg)
 {
 if(!pin.empty())
 {
 pin.resize(pin.length()-1);
 }
 }
)
 .handle<cancel_pressed>(
 [&](cancel_pressed const& msg)
 {
 state=&atm::done_processing;
 }
);
}

This time, there are three message types you can process, so the wait() function has
three handle() calls chained on the end, B, c, and d. Each call to handle() speci-
fies the message type as the template parameter and then passes in a lambda function
that takes that particular message type as a parameter. Because the calls are chained
together in this way, the wait() implementation knows that it’s waiting for a digit_
pressed message, a clear_last_pressed message, or a cancel_pressed message.
Messages of any other type are again discarded.

 This time, you don’t necessarily change state when you get a message. For exam-
ple, if you get a digit_pressed message, you add it to the pin unless it’s the final
digit. The main loop h in listing 4.15 will then call getting_pin() again to wait for
the next digit (or clear or cancel).

 This corresponds to the behavior shown in figure 4.3. Each state box is imple-
mented by a distinct member function, which waits for the relevant messages and
updates the state as appropriate.

 As you can see, this style of programming can greatly simplify the task of designing
a concurrent system, because each thread can be treated entirely independently. It is
an example of using multiple threads to separate concerns and as such requires you to
explicitly decide how to divide the tasks between threads.

 Back in section 4.2, I mentioned that the Concurrency TS provides extended ver-
sions of futures. The core part of the extensions is the ability to specify continuations—
additional functions that are run automatically when the future becomes ready. Let’s
take the opportunity to explore how this can simplify our code.

4.4.3 Continuation-style concurrency with the Concurrency TS

The Concurrency TS provides new versions of std::promise and std::packaged_task
in the std::experimental namespace that all differ from their std originals in the same
way: they return instances of std::experimental::future rather than std::future.
This enables users to take advantage of the key new feature in std::experimental
::future—continuations.

c

d

109Using synchronization of operations to simplify code
 Suppose you have a task running that will produce a result, and a future that will
hold the result when it becomes available. You then have some code that needs to run
in order to process that result. With std::future you would have to wait for the
future to become ready, either with the fully-blocking wait() member function or
either of the wait_for() or wait_until() member functions to allow a wait with a
timeout. This can be inconvenient, and can complicate the code. What you want is a
means of saying “When the data is ready, then do this processing”. This is exactly what
continuations give us; unsurprisingly, the member function to add a continuation to a
future is called then(). Given a future fut, a continuation is added with the call
fut.then(continuation).

 Just like std::future, std::experimental::future only allows the stored value to
be retrieved once. If that value is being consumed by a continuation, this means it can-
not be accessed by other code. Consequently, when a continuation is added with
fut.then(), the original future, fut, becomes invalid. Instead, the call to fut.then()
returns a new future to hold the result of the continuation call. This is shown in the
following code:

std::experimental::future<int> find_the_answer;
auto fut=find_the_answer();
auto fut2=fut.then(find_the_question);
assert(!fut.valid());
assert(fut2.valid());

The find_the_question continuation function is scheduled to run “on an unspeci-
fied thread” when the original future is ready. This gives the implementation freedom
to run it on a thread pool or another library-managed thread. As it stands, this gives
the implementation a lot of freedom; this is deliberate, with the intention that when
continuations are added to a future C++ Standard, the implementers will be able to
draw on their experience to better specify the choice of threads and provide users
with suitable mechanisms for controlling the choice of threads.

 Unlike direct calls to std::async or std::thread, you cannot pass arguments to a
continuation function, because the argument is already defined by the library—the
continuation is passed a ready future that holds the result that triggered the continua-
tion. Assuming your find_the_answer function returns an int, the find_the_question
function referenced in the previous example must take a std::experimental::
future<int> as its sole parameter; for example:

std::string find_the_question(std::experimental::future<int> the_answer);

The reason for this is that the future on which the continuation was chained may end
up holding a value or an exception. If the future was implicitly dereferenced to pass
the value directly to the continuation, then the library would have to decide how to
handle the exception, whereas by passing the future to the continuation, the continua-
tion can handle the exception. In simple cases, this may be done by calling fut.get()

110 CHAPTER 4 Synchronizing concurrent operations
and allowing the re-thrown exception to propagate out of the continuation function.
Just as for functions passed to std::async, exceptions that escape a continuation are
stored in the future that holds the continuation result.

 Note that the Concurrency TS doesn’t specify that there is an equivalent to
std::async, though implementations may provide one as an extension. Writing such
a function is fairly straightforward: use std::experimental::promise to obtain a
future, and then spawn a new thread running a lambda that sets the promise’s value to
the return value of the supplied function, as in the next listing.

template<typename Func>
std::experimental::future<decltype(std::declval<Func>()())>
spawn_async(Func&& func){
 std::experimental::promise<
 decltype(std::declval<Func>()())> p;
 auto res=p.get_future();
 std::thread t(
 [p=std::move(p),f=std::decay_t<Func>(func)]()
 mutable{
 try{
 p.set_value_at_thread_exit(f());
 } catch(...){
 p.set_exception_at_thread_exit(std::current_exception());
 }
 });
 t.detach();
 return res;
}

This stores the result of the function in the future, or catches the exception thrown
from the function and stores that in the future, just as std::async does. Also, it uses
set_value_at_thread_exit and set_exception_at_thread_exit to ensure that thread
_local variables have been properly cleaned up before the future becomes ready.

 The value returned from a then() call is a fully-fledged future itself. This means
that you can chain continuations.

4.4.4 Chaining continuations

Suppose you have a series of time-consuming tasks to do, and you want to do them
asynchronously in order to free up the main thread for other tasks. For example, when
the user logs in to your application, you might need to send the credentials to the
backend for authentication; then, when the details have been authenticated, make a
further request to the backend for information about the user’s account; and finally,
when that information has been retrieved, update the display with the relevant infor-
mation. As sequential code, you might write something like the following listing.

Listing 4.17 A simple equivalent to std::async for Concurrency TS futures

111Using synchronization of operations to simplify code
void process_login(std::string const& username,std::string const& password)
{
 try {
 user_id const id=backend.authenticate_user(username,password);
 user_data const info_to_display=backend.request_current_info(id);
 update_display(info_to_display);
 } catch(std::exception& e){
 display_error(e);
 }
}

However, you don’t want sequential code; you want asynchronous code so you’re not
blocking the UI thread. With plain std::async, you could punt it all to a background
thread like the next listing, but that would still block that thread, consuming resources
while waiting for the tasks to complete. If you have many such tasks, then you can end
up with a large number of threads that are doing nothing except waiting.

std::future<void> process_login(
 std::string const& username,std::string const& password)
{
 return std::async(std::launch::async,[=](){
 try {
 user_id const id=backend.authenticate_user(username,password);
 user_data const info_to_display=
 backend.request_current_info(id);
 update_display(info_to_display);
 } catch(std::exception& e){
 display_error(e);
 }
 });
}

In order to avoid all these blocked threads, you need some mechanism for chaining
tasks as they each complete: continuations. The following listing shows the same over-
all process, but this time split into a series of tasks, each of which is then chained on
the previous one as a continuation.

std::experimental::future<void> process_login(
 std::string const& username,std::string const& password)
{
 return spawn_async([=](){
 return backend.authenticate_user(username,password);
 }).then([](std::experimental::future<user_id> id){
 return backend.request_current_info(id.get());
 }).then([](std::experimental::future<user_data> info_to_display){

Listing 4.18 A simple sequential function to process user login

Listing 4.19 Processing user login with a single async task

Listing 4.20 A function to process user login with continuations

112 CHAPTER 4 Synchronizing concurrent operations
 try{
 update_display(info_to_display.get());
 } catch(std::exception& e){
 display_error(e);
 }
 });
}

Note how each continuation takes a std::experimental::future as the sole parame-
ter, and then uses .get() to retrieve the contained value. This means that exceptions
get propagated all the way down the chain, so the call to info_to_display.get() in
the final continuation will throw if any of the functions in the chain threw an excep-
tion, and the catch block here can handle all the exceptions, just like the catch block
in listing 4.18 did.

 If the function calls to the backend block internally because they’re waiting for
messages to cross the network or for a database operation to complete, then you’re
not done yet. You may have split the task into its individual parts, but they’re still
blocking calls, so you still get blocked threads. What you need is for the backend calls
to return futures that become ready when the data is ready, without blocking any
threads. In this case, backend.async_authenticate_user(username,password) will
now return a std::experimental::future<user_id> rather than a plain user_id.

 You might think this would complicate the code, because returning a future from a
continuation would give you future<future<some_value>>, or else you’d have to put
the .then calls inside the continuations. Thankfully, if you thought that, then you’d be
mistaken: the continuation support has a nifty feature called future-unwrapping. If the
continuation function you pass to a .then() call returns a future<some_type>, then the
.then() call will return a future<some_type> in turn. This means your final code looks
like the next listing, and there is no blocking in your asynchronous function chain.

std::experimental::future<void> process_login(
 std::string const& username,std::string const& password)
{
 return backend.async_authenticate_user(username,password).then(
 [](std::experimental::future<user_id> id){
 return backend.async_request_current_info(id.get());
 }).then([](std::experimental::future<user_data> info_to_display){
 try{
 update_display(info_to_display.get());
 } catch(std::exception& e){
 display_error(e);
 }
 });
}

This is almost as straightforward as the sequential code from listing 4.18, with a little bit
more boilerplate around the .then calls and the lambda declarations. If your compiler

Listing 4.21 A function to process user login with fully asynchronous operations

113Using synchronization of operations to simplify code
supports C++14 generic lambdas, then the types of the futures in the lambda parame-
ters can be replaced with auto, which simplifies the code even further:

return backend.async_authenticate_user(username,password).then(
 [](auto id){
 return backend.async_request_current_info(id.get());
 });

If you need anything more complex than simple linear control flow, then you can
implement this by putting the logic in one of the lambdas; for truly complex control
flow you probably need to write a separate function.

 So far, we’ve focused on the continuation support in std::experimental::future.
As you might expect, std::experimental::shared_future also supports continuations.
The difference here is that std::experimental::shared_future objects can have more
than one continuation, and the continuation parameter is a std::experimental::
shared_future rather than a std::experimental::future. This naturally falls out of
the shared nature of std::experimental::shared_future—because multiple objects
can refer to the same shared state, if only one continuation was allowed, there would
be a race condition between two threads that were each trying to add continuations to
their own std::experimental::shared_future objects. This is obviously undesir-
able, so multiple continuations are permitted. Once you have multiple continuations
permitted, you may as well allow them to be added via the same std::experimental::
shared_future instance, rather than only allowing one continuation per object. In
addition, you can’t package the shared state in a one-shot std::experimental::
future passed to the first continuation, when you’re going to want to also pass it to
the second continuation. Thus the parameter passed to the continuation function
must also be a std::experimental::shared_future:

auto fut=spawn_async(some_function).share();
auto fut2=fut.then([](std::experimental::shared_future<some_data> data){
 do_stuff(data);
 });
auto fut3=fut.then([](std::experimental::shared_future<some_data> data){
 return do_other_stuff(data);
 });

fut is a std::experimental::shared_future due to the share() call, so the continu-
ation function must take a std::experimental::shared_future as its parameter.
However, the return value from the continuation is a plain std::experimental::
future—that value isn’t currently shared until you do something to share it—so both
fut2 and fut3 are std::experimental::futures.

 Continuations aren’t the only enhancement to futures in the Concurrency TS,
though they are probably the most important. Also provided are two overloaded func-
tions that allow you to wait for either any one of a bunch of futures to become ready, or
all of a bunch of futures to become ready.

114 CHAPTER 4 Synchronizing concurrent operations
4.4.5 Waiting for more than one future

Suppose you have a large volume of data to process, and each item can be processed
independently. This is a prime opportunity to make use of the available hardware by
spawning a set of asynchronous tasks to process the data items, each of them return-
ing the processed data via a future. However, if you need to wait for all the tasks to
finish and then gather all the results for some final processing, this can be inconve-
nient—you have to wait for each future in turn, and then gather the results. If you
want to do the result gathering with another asynchronous task, then you either have
to spawn it up front so it is occupying a thread that’s waiting, or you have to keep poll-
ing the futures and spawn the new task when all the futures are ready. An example of
such code is shown in the following listing.

std::future<FinalResult> process_data(std::vector<MyData>& vec)
{
 size_t const chunk_size=whatever;
 std::vector<std::future<ChunkResult>> results;
 for(auto begin=vec.begin(),end=vec.end();beg!=end;){
 size_t const remaining_size=end-begin;
 size_t const this_chunk_size=std::min(remaining_size,chunk_size);
 results.push_back(
 std::async(process_chunk,begin,begin+this_chunk_size));
 begin+=this_chunk_size;
 }
 return std::async([all_results=std::move(results)](){
 std::vector<ChunkResult> v;
 v.reserve(all_results.size());
 for(auto& f: all_results)
 {
 v.push_back(f.get());
 }
 return gather_results(v);
 });
}

This code spawns a new asynchronous task to wait for the results, and then processes
them when they are all available. However, because it waits for each task individually, it
will repeatedly be woken by the scheduler at B as each result becomes available, and
then go back to sleep again when it finds another result that is not yet ready. Not only
does this occupy the thread doing the waiting, but it adds additional context switches
as each future becomes ready, which adds additional overhead.

 With std::experimental::when_all, this waiting and switching can be avoided.
You pass the set of futures to be waited on to when_all, and it returns a new future
that becomes ready when all the futures in the set are ready. This future can then be
used with continuations to schedule additional work when the all the futures are
ready. See, for example, the next listing.

Listing 4.22 Gathering results from futures using std::async

b

115Using synchronization of operations to simplify code
std::experimental::future<FinalResult> process_data(
 std::vector<MyData>& vec)
{
 size_t const chunk_size=whatever;
 std::vector<std::experimental::future<ChunkResult>> results;
 for(auto begin=vec.begin(),end=vec.end();beg!=end;){
 size_t const remaining_size=end-begin;
 size_t const this_chunk_size=std::min(remaining_size,chunk_size);
 results.push_back(
 spawn_async(
 process_chunk,begin,begin+this_chunk_size));
 begin+=this_chunk_size;
 }
 return std::experimental::when_all(
 results.begin(),results.end()).then(
 [](std::future<std::vector<
 std::experimental::future<ChunkResult>>> ready_results)
 {
 std::vector<std::experimental::future<ChunkResult>>
 all_results=ready_results .get();
 std::vector<ChunkResult> v;
 v.reserve(all_results.size());
 for(auto& f: all_results)
 {
 v.push_back(f.get());
 }
 return gather_results(v);
 });
}

In this case, you use when_all to wait for all the futures to become ready, and then
schedule the function using .then rather than async B. Though the lambda is super-
ficially the same, it takes the results vector as a parameter (wrapped in a future)
rather than as a capture, and the calls to get on the futures at c do not block, as all
the values are ready by the time execution gets there. This has the potential to reduce
the load on the system for little change to the code.

 To complement when_all, we also have when_any. This creates a future that
becomes ready when any of the supplied futures becomes ready. This works well for
scenarios where you’ve spawned multiple tasks to take advantage of the available con-
currency, but need to do something when the first one becomes ready.

4.4.6 Waiting for the first future in a set with when_any

Suppose you are searching a large dataset for a value that meets particular criteria, but
if there are multiple such values, then any will do. This is a prime target for parallel-
ism—you can spawn multiple threads, each of which checks a subset of the data; if a
given thread finds a suitable value, then it sets a flag indicating that the other threads
should stop their search, and then sets the final return value. In this case, you want to

Listing 4.23 Gathering results from futures using std::experimental::when_all

b

c

116 CHAPTER 4 Synchronizing concurrent operations
do the further processing when the first task completes its search, even if the other
tasks haven’t finished cleaning up yet.

 Here, you can use std::experimental::when_any to gather the futures together,
and provide a new future that is ready when at least one of the original set is ready.
Whereas when_all gave you a future that wrapped the collection of futures you passed
in, when_any adds a further layer, combining the collection with an index value that
indicates which future triggered the combined future to be ready into an instance of
the std::experimental::when_any_result class template.

 An example of using when_any as described here is shown in the next listing.

std::experimental::future<FinalResult>
find_and_process_value(std::vector<MyData> &data)
{
 unsigned const concurrency = std::thread::hardware_concurrency();
 unsigned const num_tasks = (concurrency > 0) ? concurrency : 2;
 std::vector<std::experimental::future<MyData *>> results;
 auto const chunk_size = (data.size() + num_tasks - 1) / num_tasks;
 auto chunk_begin = data.begin();
 std::shared_ptr<std::atomic<bool>> done_flag =
 std::make_shared<std::atomic<bool>>(false);
 for (unsigned i = 0; i < num_tasks; ++i) {
 auto chunk_end =
 (i < (num_tasks - 1)) ? chunk_begin + chunk_size : data.end();
 results.push_back(spawn_async([=] {
 for (auto entry = chunk_begin;
 !*done_flag && (entry != chunk_end);
 ++entry) {
 if (matches_find_criteria(*entry)) {
 *done_flag = true;
 return &*entry;
 }
 }
 return (MyData *)nullptr;
 }));
 chunk_begin = chunk_end;
 }
 std::shared_ptr<std::experimental::promise<FinalResult>> final_result =
 std::make_shared<std::experimental::promise<FinalResult>>();
 struct DoneCheck {
 std::shared_ptr<std::experimental::promise<FinalResult>>
 final_result;

 DoneCheck(
 std::shared_ptr<std::experimental::promise<FinalResult>>
 final_result_)
 : final_result(std::move(final_result_)) {}

 void operator()(
 std::experimental::future<std::experimental::when_any_result<
 std::vector<std::experimental::future<MyData *>>>>

Listing 4.24 Using std::experimental::when_any to process the first value found

b

c

e

117Using synchronization of operations to simplify code
 results_param) {
 auto results = results_param.get();
 MyData *const ready_result =
 results.futures[results.index].get();
 if (ready_result)
 final_result->set_value(
 process_found_value(*ready_result));
 else {
 results.futures.erase(
 results.futures.begin() + results.index);
 if (!results.futures.empty()) {
 std::experimental::when_any(
 results.futures.begin(), results.futures.end())
 .then(std::move(*this));
 } else {
 final_result->set_exception(
 std::make_exception_ptr(
 std::runtime_error(“Not found”)));
 }
 }
 };

 std::experimental::when_any(results.begin(), results.end())
 .then(DoneCheck(final_result));
 return final_result->get_future();
}

The initial loop B spawns off num_tasks asynchronous tasks, each running the
lambda function from c. This lambda captures by copying, so each task will have its
own values for chunk_begin and chunk_end, as well as a copy of the shared pointer,
done_flag. This avoids any concerns over lifetime issues.

 Once all the tasks have been spawned, you want to handle the case that a task
returned. This is done by chaining a continuation on the when_any call d. This time
you write the continuation as a class because you want to reuse it recursively. When
one of the initial tasks is ready, the DoneCheck function call operator is invoked e.
First, it extracts the value from the future that is ready f, and then if the value was
found, you process it and set the final result g. Otherwise, you drop the ready future
from the collection h, and if there are still more futures to check, issue a new call to
when_any i, that will trigger its continuation when the next future is ready. If there
are no futures left, then none of them found the value, so store an exception instead

j. The return value of the function is the future for the final result 1). There are
alternative ways to solve this problem, but I hope this shows how one might use
when_any.

 Both these examples of using when_all and when_any have used the iterator-range
overloads, which take a pair of iterators denoting the beginning and end of a set of
futures to wait for. Both functions also come in variadic forms, where they accept a
number of futures directly as parameters to the function. In this case, the result is a
future holding a tuple (or a when_any_result holding a tuple) rather than a vector:

f

g

h

i

j

d

1)

118 CHAPTER 4 Synchronizing concurrent operations
std::experimental::future<int> f1=spawn_async(func1);
std::experimental::future<std::string> f2=spawn_async(func2);
std::experimental::future<double> f3=spawn_async(func3);
std::experimental::future<
 std::tuple<
 std::experimental::future<int>,
 std::experimental::future<std::string>,
 std::experimental::future<double>>> result=
 std::experimental::when_all(std::move(f1),std::move(f2),std::move(f3));

This example highlights something important about all the uses of when_any and
when_all—they always move from any std::experimental::futures passed in via a
container, and they take their parameters by value, so you have to explicitly move the
futures in, or pass temporaries.

 Sometimes the event that you’re waiting for is for a set of threads to reach a partic-
ular point in the code, or to have processed a certain number of data items between
them. In these cases, you might be better served using a latch or a barrier rather than a
future. Let’s look at the latches and barriers that are provided by the Concurrency TS.

4.4.7 Latches and barriers in the Concurrency TS

First off, let’s consider what is meant when we talk of a latch or a barrier. A latch is a syn-
chronization object that becomes ready when its counter is decremented to zero. Its
name comes from the fact that it latches the output—once it is ready, it stays ready
until it is destroyed. A latch is thus a lightweight facility for waiting for a series of
events to occur.

 On the other hand, a barrier is a reusable synchronization component used for
internal synchronization between a set of threads. Whereas a latch doesn’t care which
threads decrement the counter—the same thread can decrement the counter multi-
ple times, or multiple threads can each decrement the counter once, or some combi-
nation of the two—with barriers, each thread can only arrive at the barrier once per
cycle. When threads arrive at the barrier, they block until all of the threads involved
have arrived at the barrier, at which point they are all released. The barrier can then
be reused—the threads can then arrive at the barrier again to wait for all the threads
for the next cycle.

 Latches are inherently simpler than barriers, so let’s start with the latch type from
the Concurrency TS: std::experimental::latch.

4.4.8 A basic latch type: std::experimental::latch

std::experimental::latch comes from the <experimental/latch> header. When
you construct a std::experimental::latch, you specify the initial counter value as
the one and only argument to the constructor. Then, as the events that you are wait-
ing for occur, you call count_down on your latch object, and the latch becomes ready
when that count reaches zero. If you need to wait for the latch to become ready, then
you can call wait on the latch; if you only need to check if it is ready, then you can call

119Using synchronization of operations to simplify code
is_ready. Finally, if you need to both count down the counter and then wait for the
counter to reach zero, you can call count_down_and_wait. A basic example is shown
in the following listing.

void foo(){
 unsigned const thread_count=...;
 latch done(thread_count);
 my_data data[thread_count];
 std::vector<std::future<void> > threads;
 for(unsigned i=0;i<thread_count;++i)
 threads.push_back(std::async(std::launch::async,[&,i]{
 data[i]=make_data(i);
 done.count_down();
 do_more_stuff();
 }));
 done.wait();
 process_data(data,thread_count);
}

This constructs done with the number of events that you need to wait for B, and then
spawns the appropriate number of threads using std::async c. Each thread then
counts down the latch when it has generated the relevant chunk of data d before
continuing on with further processing e. The main thread can wait for all the data to
be ready by waiting on the latch f before processing the generated data g. The data
processing at g will potentially run concurrently with the final processing steps of
each thread e—there is no guarantee that the threads have all completed until the
std::future destructors run at the end of the function h.

 One thing to note is that the lambda passed to std::async at c captures every-
thing by reference except i, which is captured by value. This is because i is the loop
counter, and capturing that by reference would cause a data race and undefined
behavior, whereas data and done are things you need to share access to. Also, you only
need a latch at all in this scenario because the threads have additional processing to
do after the data is ready; otherwise you could wait for all the futures to ensure the
tasks were complete before processing the data.

 It is safe to access data in the process_data call g, even though it is stored by
tasks running in other threads, because the latch is a synchronization object, so
changes visible to a thread that call count_down are guaranteed to be visible to a
thread that returns from a call to wait on the same latch object. Formally, the call to
count_down synchronizes with the call to wait—we’ll see what that means when we look
at the low-level memory ordering and synchronization constraints in chapter 5.

 Alongside latches, the Concurrency TS gives us barriers—reusable synchronization
objects for synchronizing a group of threads. Let’s look at those next.

Listing 4.25 Waiting for events with std::experimental::latch

b

c

d
e

f
g

h

120 CHAPTER 4 Synchronizing concurrent operations
4.4.9 std::experimental::barrier: a basic barrier

The Concurrency TS provides two types of barriers in the <experimental/barrier>
header: std::experimental::barrier and std::experimental::flex_barrier. The
former is more basic, and potentially therefore has lower overhead, whereas the latter
is more flexible, but potentially has more overhead.

 Suppose you have a group of threads that are operating on some data. Each thread
can do its processing on the data independently of the others, so no synchronization
is needed during the processing, but all the threads must have completed their pro-
cessing before the next data item can be processed, or before the subsequent process-
ing can be done. std::experimental::barrier is targeted at precisely this scenario.
You construct a barrier with a count specifying the number of threads involved in the
synchronization group. As each thread is done with its processing, it arrives at the bar-
rier and waits for the rest of the group by calling arrive_and_wait on the barrier
object. When the last thread in the group arrives, all the threads are released, and the
barrier is reset. The threads in the group can then resume their processing and either
process the next data item or proceed with the next stage of processing, as appropriate.

 Whereas latches latch, so once they are ready they stay ready, barriers do not—bar-
riers release the waiting threads and then reset so they can be used again. They also
only synchronize within a group of threads—a thread cannot wait for a barrier to be
ready unless it is one of the threads in the synchronization group. Threads can explic-
itly drop out of the group by calling arrive_and_drop on the barrier, in which case
that thread cannot wait for the barrier to be ready anymore, and the count of threads
that must arrive in the next cycle is one less than the number of threads that had to
arrive in the current cycle.

result_chunk process(data_chunk);
std::vector<data_chunk>
divide_into_chunks(data_block data, unsigned num_threads);

void process_data(data_source &source, data_sink &sink) {
 unsigned const concurrency = std::thread::hardware_concurrency();
 unsigned const num_threads = (concurrency > 0) ? concurrency : 2;

 std::experimental::barrier sync(num_threads);
 std::vector<joining_thread> threads(num_threads);

 std::vector<data_chunk> chunks;
 result_block result;

 for (unsigned i = 0; i < num_threads; ++i) {
 threads[i] = joining_thread([&, i] {
 while (!source.done()) {
 if (!i) {
 data_block current_block =
 source.get_next_data_block();

Listing 4.26 Using std::experimental::barrier

g

b

121Using synchronization of operations to simplify code
 chunks = divide_into_chunks(
 current_block, num_threads);
 }
 sync.arrive_and_wait();
 result.set_chunk(i, num_threads, process(chunks[i]));
 sync.arrive_and_wait();
 if (!i) {
 sink.write_data(std::move(result));
 }
 }
 });
 }
}

Listing 4.26 shows an example of using a barrier to synchronize a group of threads.
You have data coming from source, and you’re writing the output to sink, but in
order to make use of the available concurrency in the system, you’re splitting each
block of data into num_threads chunks. This has to be done serially, so you have an
initial block B that only runs on the thread for which i==0. All threads then wait on
the barrier for that serial code to complete c before you reach the parallel region,
where each thread processes its individual chunk and updates the result with that d
before synchronizing again e. You then have a second serial region where only
thread 0 writes the result out to the sink f. All threads then keep looping until the
source reports that everything is done g. Note that as each thread loops round, the
serial section at the bottom of the loop combines with the section at the top; because
only thread 0 has anything to do in either of these sections, this is OK, and all the
threads will synchronize together at the first use of the barrier c. When all the pro-
cessing is done, then all the threads will exit the loop, and the destructors for the
joining_thread objects will wait for them all to finish at the end of the outer func-
tion h (joining_thread was introduced in chapter 2, listing 2.7).

 The key thing to note here is that the calls to arrive_and_wait are at the points in
the code where it is important that no threads proceed until all threads are ready. At
the first synchronization point, all the threads are waiting for thread 0 to arrive, but
the use of the barrier provides you with a clean line in the sand. At the second syn-
chronization point, you have the reverse situation: it is thread 0 that is waiting for all
the other threads to arrive before it can write out the completed result to the sink.

 The Concurrency TS doesn’t just give you one barrier type; as well as std::experi-
mental::barrier, you also get std::experimental::flex_barrier, which is more flex-
ible. One of the ways that it is more flexible is that it allows for a final serial region to be
run when all threads have arrived at the barrier, before they are all released again.

4.4.10 std::experimental::flex_barrier—std::experimental::barrier’s
flexible friend

The interface to std::experimental::flex_barrier differs from that of std::
experimental::barrier in only one way: there is an additional constructor that takes

c

d

e
f

h

122 CHAPTER 4 Synchronizing concurrent operations
a completion function, as well as a thread count. This function is run on exactly one
of the threads that arrived at the barrier, once all the threads have arrived at the bar-
rier. Not only does it provide a means of specifying a chunk of code that must be run
serially, it also provides a means of changing the number of threads that must arrive at
the barrier for the next cycle. The thread count can be changed to any number,
whether higher or lower than the previous count; it is up to the programmer who uses
this facility to ensure that the correct number of threads will arrive at the barrier the
next time round.

 The following listing shows how listing 4.26 could be rewritten to use std::
experimental::flex_barrier to manage the serial region.

void process_data(data_source &source, data_sink &sink) {
 unsigned const concurrency = std::thread::hardware_concurrency();
 unsigned const num_threads = (concurrency > 0) ? concurrency : 2;

 std::vector<data_chunk> chunks;

 auto split_source = [&] {
 if (!source.done()) {
 data_block current_block = source.get_next_data_block();
 chunks = divide_into_chunks(current_block, num_threads);
 }
 };

 split_source();

 result_block result;

 std::experimental::flex_barrier sync(num_threads, [&] {
 sink.write_data(std::move(result));
 split_source();
 return -1;
 });
 std::vector<joining_thread> threads(num_threads);

 for (unsigned i = 0; i < num_threads; ++i) {
 threads[i] = joining_thread([&, i] {
 while (!source.done()) {
 result.set_chunk(i, num_threads, process(chunks[i]));
 sync.arrive_and_wait();
 }
 });
 }
}

The first difference between this code and listing 4.26 is that you’ve extracted a
lambda that splits the next data block into chunks B. This is called before you start

c, and encapsulates the code that was run on thread 0 at the start of each iteration.

Listing 4.27 Using std::flex_barrier to provide a serial region

b

c

d

e
f

g

h

123Summary
 The second difference is that your sync object is now a std::experimental::flex
_barrier, and you are passing a completion function as well as a thread count d.
This completion function is run on one thread after each thread has arrived, and so
can encapsulate the code that was to be run on thread 0 at the end of each iteration,
and then there’s a call to your newly-extracted split_source lambda that would have
been called at the start of the next iteration e. The return value of -1 f indicates that
the number of participating threads is to remain unchanged; a return value of zero or
more would specify the number of participating threads in the next cycle.

 The main loop g is now simplified: it only contains the parallel portion of the
code, and thus only needs a single synchronization point h. The use of std::
experimental::flex_barrier has thus simplified the code.

 The use of the completion function to provide a serial section is quite powerful, as
is the ability to change the number of participating threads. For example, this could
be used by pipeline style code where the number of threads is less during the initial
priming of the pipeline and the final draining of the pipeline than it is during the
main processing, when all the stages of the pipeline are operating.

Summary
Synchronizing operations between threads is an important part of writing an applica-
tion that uses concurrency: if there’s no synchronization, the threads are essentially
independent and might as well be written as separate applications that are run as a
group because of their related activities. In this chapter, I’ve covered various ways of
synchronizing operations from the basic condition variables, through futures, prom-
ises, packaged tasks, latches, and barriers. I’ve also discussed ways of approaching the
synchronization issues: functional-style programming, where each task produces a
result entirely dependent on its input rather than on the external environment; mes-
sage passing, where communication between threads is via asynchronous messages
sent through a messaging subsystem that acts as an intermediary; and continuation
style, where the follow-on tasks for each operation are specified, and the system takes
care of the scheduling.

 Having discussed many of the high-level facilities available in C++, it’s now time to
look at the low-level facilities that make it all work: the C++ memory model and atomic
operations.

The C++ memory model
and operations on

atomic types
One of the most important features of the C++ Standard is something most pro-
grammers won’t even notice. It’s not the new syntax features, nor is it the new
library facilities, but the new multithreading-aware memory model. Without the
memory model to define exactly how the fundamental building blocks work, none
of the facilities I’ve covered could be relied on to work. There’s a reason that most
programmers won’t notice: if you use mutexes to protect your data and condition
variables, futures, latches, or barriers to signal events, the details of why they work
aren’t important. It’s only when you start trying to get “close to the machine” that
the precise details of the memory model matter.

 Whatever else it is, C++ is a systems programming language. One of the goals of
the Standards Committee is that there will be no need for a lower-level language

This chapter covers
 The details of the C++ memory model

 The atomic types provided by the C++

 Standard Library

 The operations that are available on those types

 How those operations can be used to provide
synchronization between threads
124

125Memory model basics
than C++. Programmers should be provided with enough flexibility within C++ to do
whatever they need without the language getting in the way, allowing them to get
“close to the machine” when the need arises. The atomic types and operations allow
just that, providing facilities for low-level synchronization operations that will com-
monly reduce to one or two CPU instructions.

 In this chapter, I’ll start by covering the basics of the memory model, then move on
to the atomic types and operations, and finally cover the various types of synchroniza-
tion available with the operations on atomic types. This is quite complex: unless you’re
planning on writing code that uses the atomic operations for synchronization (such as
the lock-free data structures in chapter 7), you won’t need to know these details.

 Let’s ease into things with a look at the basics of the memory model.

5.1 Memory model basics
There are two aspects to the memory model: the basic structural aspects, which
relate to how things are laid out in memory, and the concurrency aspects. The struc-
tural aspects are important for concurrency, particularly when you’re looking at low-
level atomic operations, so I’ll start with those. In C++, it’s all about objects and
memory locations.

5.1.1 Objects and memory locations

All data in a C++ program is made up of objects. This is not to say that you can create a
new class derived from int, or that the fundamental types have member functions, or
any of the other consequences often implied when people say “everything is an object”
when discussing a language like Smalltalk or Ruby. It’s a statement about the building
blocks of data in C++. The C++ Standard defines an object as “a region of storage,”
although it goes on to assign properties to these objects, such as their type and lifetime.

 Some of these objects are simple values of a fundamental type such as int or
float, whereas others are instances of user-defined classes. Some objects (such as
arrays, instances of derived classes, and instances of classes with non-static data
members) have sub-objects, but others don’t.

 Whatever its type, an object is stored in one or more memory locations. Each mem-
ory location is either an object (or sub-object) of a scalar type such as unsigned short
or my_class* or a sequence of adjacent bit fields. If you use bit fields, this is an
important point to note: though adjacent bit fields are distinct objects, they’re still
counted as the same memory location. Figure 5.1 shows how a struct divides into
objects and memory locations.

 First, the entire struct is one object that consists of several sub-objects, one for
each data member. The bf1 and bf2 bit fields share a memory location, and the
std::string object, s, consists of several memory locations internally, but otherwise
each member has its own memory location. Note how the zero-length bit field bf3
(the name is commented out because zero-length bit fields must be unnamed) sepa-
rates bf4 into its own memory location, but doesn't have a memory location itself.

126 CHAPTER 5 The C++ memory model and operations on atomic types
There are four important things to take away from this:

 Every variable is an object, including those that are members of other objects.
 Every object occupies at least one memory location.
 Variables of fundamental types such as int or char occupy exactly one memory

location, whatever their size, even if they’re adjacent or part of an array.
 Adjacent bit fields are part of the same memory location.

I’m sure you’re wondering what this has to do with concurrency, so let’s take a look.

5.1.2 Objects, memory locations, and concurrency

Now, here’s the part that’s crucial for multithreaded applications in C++: everything
hinges on those memory locations. If two threads access separate memory locations,
there’s no problem: everything works fine. On the other hand, if two threads access
the same memory location, then you have to be careful. If neither thread is updating
the memory location, you’re fine; read-only data doesn’t need protection or synchro-
nization. If either thread is modifying the data, there’s a potential for a race condi-
tion, as described in chapter 3.

 In order to avoid the race condition, there has to be an enforced ordering
between the accesses in the two threads. This could be a fixed ordering such that one
access is always before the other, or it could be an ordering that varies between runs of
the application, but guarantees that there is some defined ordering. One way to ensure
there’s a defined ordering is to use mutexes as described in chapter 3; if the same
mutex is locked prior to both accesses, only one thread can access the memory location

struct my_data

{

int i;

double d;

unsigned bf1:10;

int bf2:25;

int bf3:0;

int bf4:9;

int i2;

char c1,c2;

std::string s;

};

s

c1

i2

bf4

bf3

bf1 bf2

i

c2

d

Object

Memory Location

Figure 5.1 The division of a struct into objects and memory locations

127Memory model basics
at a time, so one must happen before the other (though, in general, you can't know in
advance which will be first). The other way is to use the synchronization properties of
atomic operations (see section 5.2 for the definition of atomic operations) either on
the same or other memory locations to enforce an ordering between the accesses in
the two threads. The use of atomic operations to enforce an ordering is described
in section 5.3. If more than two threads access the same memory location, each pair of
accesses must have a defined ordering.

 If there’s no enforced ordering between two accesses to a single memory location
from separate threads, one or both of those accesses is not atomic, and if one or both
is a write, then this is a data race and causes undefined behavior.

 This statement is crucially important: undefined behavior is one of the nastiest cor-
ners of C++. According to the language standard, once an application contains any
undefined behavior, all bets are off; the behavior of the complete application is now
undefined, and it may do anything at all. I know of one case where a particular
instance of undefined behavior caused someone’s monitor to catch fire. Although this
is rather unlikely to happen to you, a data race is definitely a serious bug and should
be avoided at all costs.

 There’s another important point in that statement: you can also avoid the unde-
fined behavior by using atomic operations to access the memory location involved
in the race. This doesn’t prevent the race itself—which of the atomic operations
touches the memory location first is still not specified—but it does bring the program
back into the realm of defined behavior.

 Before we look at atomic operations, there’s one more concept that’s important to
understand about objects and memory locations: modification orders.

5.1.3 Modification orders

Every object in a C++ program has a modification order composed of all the writes to
that object from all threads in the program, starting with the object’s initialization. In
most cases this order will vary between runs, but in any given execution of the pro-
gram all threads in the system must agree on the order. If the object in question isn’t
one of the atomic types described in section 5.2, you’re responsible for making certain
that there’s sufficient synchronization to ensure that threads agree on the modifica-
tion order of each variable. If different threads see distinct sequences of values for a
single variable, you have a data race and undefined behavior (see section 5.1.2). If you
do use atomic operations, the compiler is responsible for ensuring that the necessary
synchronization is in place.

 This requirement means that certain kinds of speculative execution aren’t permit-
ted, because once a thread has seen a particular entry in the modification order, sub-
sequent reads from that thread must return later values, and subsequent writes from
that thread to that object must occur later in the modification order. Also, a read of an
object that follows a write to that object in the same thread must either return the
value written or another value that occurs later in the modification order of that

128 CHAPTER 5 The C++ memory model and operations on atomic types
object. Although all threads must agree on the modification orders of each individual
object in a program, they don’t necessarily have to agree on the relative order of oper-
ations on separate objects. See section 5.3.3 for more on the ordering of operations
between threads.

 So, what constitutes an atomic operation, and how can these be used to enforce
ordering?

5.2 Atomic operations and types in C++
An atomic operation is an indivisible operation. You can’t observe such an operation
half-done from any thread in the system; it’s either done or not done. If the load oper-
ation that reads the value of an object is atomic, and all modifications to that object are
also atomic, that load will retrieve either the initial value of the object or the value
stored by one of the modifications.

 The flip side of this is that a non-atomic operation might be seen as half-done by
another thread. If the non-atomic operation is composed of atomic operations (for
example, assignment to a struct with atomic members), then other threads may
observe some subset of the constituent atomic operations as complete, but others as
not yet started, so you might observe or end up with a value that is a mixed-up combi-
nation of the various values stored. In any case, unsynchronized accesses to non-
atomic variables form a simple problematic race condition, as described in chapter 3,
but at this level it may constitute a data race (see section 5.1) and cause undefined
behavior.

 In C++, you need to use an atomic type to get an atomic operation in most cases, so
let’s look at those.

5.2.1 The standard atomic types

The standard atomic types can be found in the <atomic> header. All operations on such
types are atomic, and only operations on these types are atomic in the sense of the lan-
guage definition, although you can use mutexes to make other operations appear
atomic. In fact, the standard atomic types themselves might use such emulation: they
(almost) all have an is_lock_free() member function, which allows the user to deter-
mine whether operations on a given type are done directly with atomic instructions
(x.is_lock_free() returns true) or done by using a lock internal to the compiler
and library (x.is_lock_free() returns false).

 This is important to know in many cases—the key use case for atomic operations is
as a replacement for an operation that would otherwise use a mutex for synchroniza-
tion; if the atomic operations themselves use an internal mutex then the hoped-for
performance gains will probably not materialize, and you might be better off using
the easier-to-get-right mutex-based implementation instead. This is the case with lock-
free data structures such as those discussed in chapter 7.

 In fact, this is so important that the library provides a set of macros to identify at
compile time whether the atomic types for the various integral types are lock-free.

129Atomic operations and types in C++
Since C++17, all atomic types have a static constexpr member variable, X::is_
always_lock_free, which is true if and only if the atomic type X is lock-free for all
supported hardware that the output of the current compilation might run on. For
example, for a given target platform, std::atomic<int> might always be lock-free, so
std::atomic<int>::is_always_lock_free will be true, but std::atomic<uintmax_t>
might only be lock-free if the hardware the program ends up running on supports the
necessary instructions, so this is a run-time property, and std::atomic<uintmax_t>
::is_always_lock_free would be false when compiling for that platform.

 The macros are ATOMIC_BOOL_LOCK_FREE, ATOMIC_CHAR_LOCK_FREE, ATOMIC_
CHAR16_T_LOCK_FREE, ATOMIC_CHAR32_T_LOCK_FREE, ATOMIC_WCHAR_T_LOCK_FREE,
ATOMIC_SHORT_LOCK_FREE, ATOMIC_INT_LOCK_FREE, ATOMIC_LONG_LOCK_FREE, ATOMIC
_LLONG_LOCK_FREE, and ATOMIC_POINTER_LOCK_FREE. They specify the lock-free status
of the corresponding atomic types for the specified built-in types and their unsigned
counterparts (LLONG refers to long long, and POINTER refers to all pointer types).
They evaluate to the value 0 if the atomic type is never lock-free, to the value 2 if the
atomic type is always lock-free, and to the value 1 if the lock-free status of the corre-
sponding atomic type is a runtime property as described previously.

 The only type that doesn’t provide an is_lock_free() member function is
std::atomic_flag. This type is a simple Boolean flag, and operations on this type are
required to be lock-free; once you have a simple lock-free Boolean flag, you can use that
to implement a simple lock and implement all the other atomic types using that as a
basis. When I said simple, I meant it: objects of the std::atomic_flag type are initial-
ized to clear, and they can then either be queried and set (with the test_and_set()
member function) or cleared (with the clear() member function). That’s it: no
assignment, no copy construction, no test and clear, no other operations at all.

 The remaining atomic types are all accessed through specializations of the
std::atomic<> class template and are a bit more full-featured but may not be lock-
free (as explained previously). On most popular platforms it’s expected that the
atomic variants of all the built-in types (such as std::atomic<int> and std::atomic
<void*>) are indeed lock-free, but it isn’t required. As you’ll see shortly, the inter-
face of each specialization reflects the properties of the type; bitwise operations
such as &= aren’t defined for plain pointers, so they aren’t defined for atomic point-
ers either, for example.

 In addition to using the std::atomic<> class template directly, you can use the set
of names shown in table 5.1 to refer to the implementation-supplied atomic types.
Because of the history of how atomic types were added to the C++ Standard, if you
have an older compiler, these alternative type names may refer either to the corre-
sponding std::atomic<> specialization or to a base class of that specialization,
whereas in a compiler that fully supports C++17, these are always aliases for the corre-
sponding std::atomic<> specializations. Mixing these alternative names with the
direct naming of std::atomic<> specializations in the same program can therefore
lead to nonportable code.

130 CHAPTER 5 The C++ memory model and operations on atomic types
As well as the basic atomic types, the C++ Standard Library also provides a set of
typedefs for the atomic types corresponding to the various non-atomic Standard
Library typedefs such as std::size_t. These are shown in table 5.2.

Table 5.1 The alternative names for the standard atomic types and their corresponding
std::atomic<> specializations

Atomic type Corresponding specialization

atomic_bool std::atomic<bool>

atomic_char std::atomic<char>

atomic_schar std::atomic<signed char>

atomic_uchar std::atomic<unsigned char>

atomic_int std::atomic<int>

atomic_uint std::atomic<unsigned>

atomic_short std::atomic<short>

atomic_ushort std::atomic<unsigned short>

atomic_long std::atomic<long>

atomic_ulong std::atomic<unsigned long>

atomic_llong std::atomic<long long>

atomic_ullong std::atomic<unsigned long long>

atomic_char16_t std::atomic<char16_t>

atomic_char32_t std::atomic<char32_t>

atomic_wchar_t std::atomic<wchar_t>

Table 5.2 The standard atomic typedefs and their corresponding built-in typedefs

Atomic typedef Corresponding Standard Library typedef

atomic_int_least8_t int_least8_t

atomic_uint_least8_t uint_least8_t

atomic_int_least16_t int_least16_t

atomic_uint_least16_t uint_least16_t

atomic_int_least32_t int_least32_t

atomic_uint_least32_t uint_least32_t

atomic_int_least64_t int_least64_t

atomic_uint_least64_t uint_least64_t

atomic_int_fast8_t int_fast8_t

131Atomic operations and types in C++
That’s a lot of types! There’s a rather simple pattern to it; for a standard typedef T, the
corresponding atomic type is the same name with an atomic_ prefix: atomic_T. The
same applies to the built-in types, except that signed is abbreviated as s, unsigned as
u, and long long as llong. It’s generally simpler to say std::atomic<T> for whichever
T you want to work with, rather than use the alternative names.

 The standard atomic types are not copyable or assignable in the conventional
sense, in that they have no copy constructors or copy assignment operators. They do,
however, support assignment from and implicit conversion to the corresponding
built-in types as well as direct load() and store() member functions, exchange(),
compare_exchange_weak(), and compare_exchange_strong(). They also support the
compound assignment operators where appropriate: +=, -=, *=, |=, and so on, and
the integral types and std::atomic<> specializations for ++ and -- pointers support.
These operators also have corresponding named member functions with the same
functionality: fetch_add(), fetch_or(), and so on. The return value from the assign-
ment operators and member functions is either the value stored (in the case of the
assignment operators) or the value prior to the operation (in the case of the named
functions). This avoids the potential problems that could stem from the usual habit of
these assignment operators returning a reference to the object being assigned to. In
order to get the stored value from these references, the code would have to perform a
separate read, allowing another thread to modify the value between the assignment
and the read and opening the door for a race condition.

atomic_uint_fast8_t uint_fast8_t

atomic_int_fast16_t int_fast16_t

atomic_uint_fast16_t uint_fast16_t

atomic_int_fast32_t int_fast32_t

atomic_uint_fast32_t uint_fast32_t

atomic_int_fast64_t int_fast64_t

atomic_uint_fast64_t uint_fast64_t

atomic_intptr_t intptr_t

atomic_uintptr_t uintptr_t

atomic_size_t size_t

atomic_ptrdiff_t ptrdiff_t

atomic_intmax_t intmax_t

atomic_uintmax_t uintmax_t

Table 5.2 The standard atomic typedefs and their corresponding built-in typedefs (continued)

Atomic typedef Corresponding Standard Library typedef

132 CHAPTER 5 The C++ memory model and operations on atomic types
 The std::atomic<> class template isn’t only a set of specializations, though. It
does have a primary template that can be used to create an atomic variant of a user-
defined type. Because it’s a generic class template, the operations are limited to
load(), store() (and assignment from and conversion to the user-defined type),
exchange(), compare_exchange_weak(), and compare_exchange_strong().

 Each of the operations on the atomic types has an optional memory-ordering argu-
ment which is one of the values of the std::memory_order enumeration. This argu-
ment is used to specify the required memory-ordering semantics. The std::memory
_order enumeration has six possible values: std::memory_order_relaxed, std::
memory_order_acquire, std::memory_order_consume, std::memory_order_acq_rel,
std::memory_order_release, and std::memory_order_seq_cst.

 The permitted values for the memory ordering depend on the operation category.
If you don't specify an ordering value, then the default ordering is used, which is the
strongest ordering: std::memory_order_seq_cst. The precise semantics of the mem-
ory-ordering options are covered in section 5.3. For now, it suffices to know that the
operations are divided into three categories:

 Store operations, which can have memory_order_relaxed, memory_order_release,
or memory_order_seq_cst ordering

 Load operations, which can have memory_order_relaxed, memory_order_consume,
memory_order_acquire, or memory_order_seq_cst ordering

 Read-modify-write operations, which can have memory_order_relaxed, memory_
order_consume, memory_order_acquire, memory_order_release, memory_order
_acq_rel, or memory_order_seq_cst ordering

Let’s now look at the operations you can perform on each of the standard atomic
types, starting with std::atomic_flag.

5.2.2 Operations on std::atomic_flag

std::atomic_flag is the simplest standard atomic type, which represents a Boolean
flag. Objects of this type can be in one of two states: set or clear. It’s deliberately basic
and is intended as a building block only. As such, I’d never expect to see it in use,
except under special circumstances. Even so, it will serve as a starting point for discuss-
ing the other atomic types, because it shows some of the general policies that apply to
the atomic types.

 Objects of the std::atomic_flag type must be initialized with ATOMIC_FLAG_INIT.
This initializes the flag to a clear state. There’s no choice in the matter; the flag always
starts clear:

std::atomic_flag f=ATOMIC_FLAG_INIT;

This applies no matter where the object is declared and what scope it has. It’s the only
atomic type to require such special treatment for initialization, but it’s also the only
type guaranteed to be lock-free. If the std::atomic_flag object has static storage

133Atomic operations and types in C++
duration, it’s guaranteed to be statically initialized, which means that there are no
initialization-order issues; it will always be initialized by the time of the first operation
on the flag.

 Once you have your flag object initialized, there are only three things you can do
with it: destroy it, clear it, or set it and query the previous value. These correspond
to the destructor, the clear() member function, and the test_and_set() member
function, respectively. Both the clear() and test_and_set() member functions
can have a memory order specified. clear() is a store operation and so can’t have
memory_order_acquire or memory_order_acq_rel semantics, but test_and_set()
is a read-modify-write operation and so can have any of the memory-ordering tags
applied. As with every atomic operation, the default for both is memory_order_seq_cst.
For example:

f.clear(std::memory_order_release);
bool x=f.test_and_set();

Here, the call to clear() B explicitly requests that the flag is cleared with release
semantics, whereas the call to test_and_set() c uses the default memory ordering
for setting the flag and retrieving the old value.

 You can’t copy-construct another std::atomic_flag object from the first, and
you can’t assign one std::atomic_flag to another. This isn’t something peculiar to
std::atomic_flag but something common with all the atomic types. All operations on
an atomic type are defined as atomic, and assignment and copy-construction involve two
objects. A single operation on two distinct objects can’t be atomic. In the case of copy-
construction or copy-assignment, the value must first be read from one object and then
written to the other. These are two separate operations on two separate objects, and the
combination can’t be atomic. Therefore, these operations aren’t permitted.

 The limited feature set makes std::atomic_flag ideally suited to use as a spin-
lock mutex. Initially, the flag is clear and the mutex is unlocked. To lock the mutex,
loop on test_and_set() until the old value is false, indicating that this thread set the
value to true. Unlocking the mutex is simply a matter of clearing the flag. This imple-
mentation is shown in the following listing.

class spinlock_mutex
{
 std::atomic_flag flag;
public:
 spinlock_mutex():
 flag(ATOMIC_FLAG_INIT)
 {}
 void lock()
 {
 while(flag.test_and_set(std::memory_order_acquire));
 }

Listing 5.1 Implementation of a spinlock mutex using std::atomic_flag

B

c

134 CHAPTER 5 The C++ memory model and operations on atomic types
 void unlock()
 {
 flag.clear(std::memory_order_release);
 }
};

This mutex is basic, but it’s enough to use with std::lock_guard<> (see chapter 3). By
its nature it does a busy-wait in lock(), so it’s a poor choice if you expect there to be any
degree of contention, but it’s enough to ensure mutual exclusion. When we look at the
memory-ordering semantics, you’ll see how this guarantees the necessary enforced
ordering that goes with a mutex lock. This example is covered in section 5.3.6.

 std::atomic_flag is so limited that it can’t even be used as a general Boolean flag,
because it doesn’t have a simple nonmodifying query operation. For that you’re better
off using std::atomic<bool>, so I’ll cover that next.

5.2.3 Operations on std::atomic<bool>

The most basic of the atomic integral types is std::atomic<bool>. This is a more full-
featured Boolean flag than std::atomic_flag, as you might expect. Although it’s still
not copy-constructible or copy-assignable, you can construct it from a non-atomic
bool, so it can be initially true or false, and you can also assign to instances of
std::atomic<bool> from a non-atomic bool:

std::atomic<bool> b(true);
b=false;

One other thing to note about the assignment operator from a non-atomic bool is
that it differs from the general convention of returning a reference to the object it’s
assigned to: it returns a bool with the value assigned instead. This is another common
pattern with the atomic types: the assignment operators they support return values (of
the corresponding non-atomic type) rather than references. If a reference to the
atomic variable was returned, any code that depended on the result of the assignment
would then have to explicitly load the value, potentially getting the result of a modifi-
cation by another thread. By returning the result of the assignment as a non-atomic
value, you can avoid this additional load, and you know that the value obtained is the
value stored.

 Rather than using the restrictive clear() function of std::atomic_flag, writes (of
either true or false) are done by calling store(), although the memory-order
semantics can still be specified. Similarly, test_and_set() has been replaced with the
more general exchange() member function that allows you to replace the stored
value with a new one of your choosing and atomically retrieve the original value.
std::atomic<bool> also supports a plain nonmodifying query of the value with an
implicit conversion to plain bool or with an explicit call to load(). As you might
expect, store() is a store operation, whereas load() is a load operation. exchange()
is a read-modify-write operation:

135Atomic operations and types in C++
std::atomic<bool> b;
bool x=b.load(std::memory_order_acquire);
b.store(true);
x=b.exchange(false,std::memory_order_acq_rel);

exchange() isn’t the only read-modify-write operation supported by std::atomic<bool>;
it also introduces an operation to store a new value if the current value is equal to an
expected value.

STORING A NEW VALUE (OR NOT) DEPENDING ON THE CURRENT VALUE

This new operation is called compare-exchange, and it comes in the form of the
compare_exchange_weak() and compare_exchange_strong() member functions. The
compare-exchange operation is the cornerstone of programming with atomic types;
it compares the value of the atomic variable with a supplied expected value and
stores the supplied desired value if they’re equal. If the values aren’t equal, the
expected value is updated with the value of the atomic variable. The return type of
the compare-exchange functions is a bool, which is true if the store was performed
and false otherwise. The operation is said to succeed if the store was done (because
the values were equal), and fail otherwise; the return value is true for success, and
false for failure.

 For compare_exchange_weak(), the store might not be successful even if the origi-
nal value was equal to the expected value, in which case the value of the variable is
unchanged and the return value of compare_exchange_weak() is false. This is most
likely to happen on machines that lack a single compare-and-exchange instruction, if
the processor can’t guarantee that the operation has been done atomically—possibly
because the thread performing the operation was switched out in the middle of the
necessary sequence of instructions and another thread scheduled in its place by the
operating system where there are more threads than processors. This is called a spuri-
ous failure, because the reason for the failure is a function of timing rather than the
values of the variables.

 Because compare_exchange_weak() can fail spuriously, it must typically be used in
a loop:

bool expected=false;
extern atomic<bool> b; // set somewhere else
while(!b.compare_exchange_weak(expected,true) && !expected);

In this case, you keep looping as long as expected is still false, indicating that the
compare_exchange_weak() call failed spuriously.

 On the other hand, compare_exchange_strong() is guaranteed to return false
only if the value wasn’t equal to the expected value. This can eliminate the need for
loops like the one shown where you want to know whether you successfully changed a
variable or whether another thread got there first.

 If you want to change the variable whatever the initial value is (perhaps with an
updated value that depends on the current value), the update of expected becomes

136 CHAPTER 5 The C++ memory model and operations on atomic types
useful; each time through the loop, expected is reloaded, so if no other thread modi-
fies the value in the meantime, the compare_exchange_weak() or compare_exchange
_strong() call should be successful the next time around the loop. If the calculation
of the value to be stored is simple, it may be beneficial to use compare_exchange
_weak() in order to avoid a double loop on platforms where compare_exchange_weak()
can fail spuriously (and so compare_exchange_strong() contains a loop). On the
other hand, if the calculation of the value to be stored is time-consuming, it may make
sense to use compare_exchange_strong() to avoid having to recalculate the value to
store when the expected value hasn’t changed. For std::atomic<bool> this isn’t so
important—there are only two possible values after all—but for the larger atomic types
this can make a difference.

 The compare-exchange functions are also unusual in that they can take two memory-
ordering parameters. This allows for the memory-ordering semantics to differ in the
case of success and failure; it might be desirable for a successful call to have memory
_order_acq_rel semantics, whereas a failed call has memory_order_relaxed seman-
tics. A failed compare-exchange doesn’t do a store, so it can’t have memory_order
_release or memory_order_acq_rel semantics. It’s therefore not permitted to supply
these values as the ordering for failure. You also can’t supply stricter memory ordering
for failure than for success; if you want memory_order_acquire or memory_order_
seq_cst semantics for failure, you must specify those for success as well.

 If you don’t specify an ordering for failure, it’s assumed to be the same as that for
success, except that the release part of the ordering is stripped: memory_order_release
becomes memory_order_relaxed, and memory_order_acq_rel becomes memory_order
_acquire. If you specify neither, they default to memory_order_seq_cst as usual,
which provides the full sequential ordering for both success and failure. The following
two calls to compare_exchange_weak() are equivalent:

std::atomic<bool> b;
bool expected;
b.compare_exchange_weak(expected,true,
 memory_order_acq_rel,memory_order_acquire);
b.compare_exchange_weak(expected,true,memory_order_acq_rel);

I’ll leave the consequences of the choice of memory ordering to section 5.3.
 One further difference between std::atomic<bool> and std::atomic_flag is

that std::atomic<bool> may not be lock-free; the implementation may have to
acquire a mutex internally in order to ensure the atomicity of the operations. For the
rare case when this matters, you can use the is_lock_free() member function to
check whether operations on std::atomic<bool> are lock-free. This is another fea-
ture common to all atomic types other than std::atomic_flag.

 The next simplest of the atomic types are the atomic pointer specializations
std::atomic<T*>, so we’ll look at those next.

137Atomic operations and types in C++
5.2.4 Operations on std::atomic<T*>: pointer arithmetic

The atomic form of a pointer to some type T is std::atomic<T*>, just as the atomic
form of bool is std::atomic<bool>. The interface is the same, although it operates
on values of the corresponding pointer type rather than bool values. Like
std::atomic<bool>, it’s neither copy-constructible nor copy-assignable, although it
can be both constructed and assigned from the suitable pointer values. As well as the
obligatory is_lock_free() member function, std::atomic<T*> also has load(),
store(), exchange(), compare_exchange_weak(), and compare_exchange_strong()
member functions, with similar semantics to those of std::atomic<bool>, again tak-
ing and returning T* rather than bool.

 The new operations provided by std::atomic<T*> are the pointer arithmetic
operations. The basic operations are provided by the fetch_add() and fetch_sub()
member functions, which do atomic addition and subtraction on the stored address,
and the += and -= operators, and both pre- and post-increment and decrement with
++ and --, which provide convenient wrappers. The operators work as you’d expect
from the built-in types: if x is std::atomic<Foo*> to the first entry of an array of Foo
objects, then x+=3 changes it to point to the fourth entry and returns a plain Foo* that
also points to that fourth entry. fetch_add() and fetch_sub() are slightly different in
that they return the original value (so x.fetch_add(3) will update x to point to the
fourth value but return a pointer to the first value in the array). This operation is also
known as exchange-and-add, and it’s an atomic read-modify-write operation, like
exchange() and compare_exchange_weak()/compare_exchange_strong(). As with
the other operations, the return value is a plain T* value rather than a reference to the
std::atomic<T*> object, so that the calling code can perform actions based on what
the previous value was:

class Foo{};
Foo some_array[5];
std::atomic<Foo*> p(some_array);
Foo* x=p.fetch_add(2);
assert(x==some_array);
assert(p.load()==&some_array[2]);
x=(p-=1);
assert(x==&some_array[1]);
assert(p.load()==&some_array[1]);

The function forms also allow the memory-ordering semantics to be specified as an
additional function call argument:

p.fetch_add(3,std::memory_order_release);

Because both fetch_add() and fetch_sub() are read-modify-write operations, they
can have any of the memory-ordering tags and can participate in a release sequence. Speci-
fying the ordering semantics isn’t possible for the operator forms, because there’s no

Add 2 to p and
return old value

Subtract 1 from p and
return new value

138 CHAPTER 5 The C++ memory model and operations on atomic types
way of providing the information: these forms therefore always have memory_order_
seq_cst semantics.

 The remaining basic atomic types are all the same: they’re all atomic integral types
and have the same interface as each other, except that the associated built-in type is
different. We’ll look at them as a group.

5.2.5 Operations on standard atomic integral types

As well as the usual set of operations (load(), store(), exchange(), compare_
exchange_weak(), and compare_exchange_strong()), the atomic integral types such
as std::atomic<int> or std::atomic<unsigned long long> have quite a comprehen-
sive set of operations available: fetch_add(), fetch_sub(), fetch_and(), fetch_or(),
fetch_xor(), compound-assignment forms of these operations (+=, -=, &=, |=, and
^=), and pre- and post-increment and decrement (++x, x++, --x, and x--). It’s not quite
the full set of compound-assignment operations you could do on a normal integral
type, but it’s close enough: only division, multiplication, and shift operators are miss-
ing. Because atomic integral values are typically used either as counters or as bitmasks,
this isn’t a particularly noticeable loss; additional operations can easily be done using
compare_exchange_weak() in a loop, if required.

 The semantics closely match those of fetch_add() and fetch_sub() for
std::atomic<T*>; the named functions atomically perform their operation and
return the old value, whereas the compound-assignment operators return the new
value. Pre- and post- increment and decrement work as usual: ++x increments the vari-
able and returns the new value, whereas x++ increments the variable and returns the
old value. As you’ll be expecting, the result is a value of the associated integral type in
both cases.

 We’ve now looked at all the basic atomic types; all that remains is the generic
std::atomic<> primary class template rather than the specializations, so let’s look at
that next.

5.2.6 The std::atomic<> primary class template

The presence of the primary template allows a user to create an atomic variant of a
user-defined type, in addition to the standard atomic types. Given a user-defined type
UDT, std::atomic<UDT> provides the same interface as std::atomic<bool> (as
described in section 5.2.3), except that the bool parameters and return types that
relate to the stored value (rather than the success/failure result of the compare-
exchange operations) are UDT instead. You can’t use just any user-defined type with
std::atomic<>, though; the type has to fulfill certain criteria. In order to use
std::atomic<UDT> for some user-defined type UDT,, this type must have a trivial copy-
assignment operator. This means that the type must not have any virtual functions or
virtual base classes and must use the compiler-generated copy-assignment operator.
Not only that, but every base class and non-static data member of a user-defined type
must also have a trivial copy-assignment operator. This permits the compiler to use

139Atomic operations and types in C++
memcpy() or an equivalent operation for assignment operations, because there’s no
user-written code to run.

 Finally, it is worth noting that the compare-exchange operations do bitwise com-
parison as if using memcmp, rather than using any comparison operator that may be
defined for UDT. If the type provides comparison operations that have different seman-
tics, or the type has padding bits that do not participate in normal comparisons, then
this can lead to a compare-exchange operation failing, even though the values com-
pare equally.

 The reasoning behind these restrictions goes back to one of the guidelines from
chapter 3: don’t pass pointers and references to protected data outside the scope of
the lock by passing them as arguments to user-supplied functions. In general, the
compiler isn’t going to be able to generate lock-free code for std::atomic<UDT>, so it
will have to use an internal lock for all the operations. If user-supplied copy-assignment
or comparison operators were permitted, this would require passing a reference to
the protected data as an argument to a user-supplied function, violating the guideline.
Also, the library is entirely at liberty to use a single lock for all atomic operations that
need it, and allowing user-supplied functions to be called while holding that lock
might cause deadlock or cause other threads to block because a comparison opera-
tion took a long time. Finally, these restrictions increase the chance that the compiler
will be able to make use of atomic instructions directly for std::atomic<UDT> (and
make a particular instantiation lock-free), because it can treat the user-defined type as
a set of raw bytes.

 Note that although you can use std::atomic<float> or std::atomic<double>,
because the built-in floating point types do satisfy the criteria for use with memcpy and
memcmp, the behavior may be surprising in the case of compare_exchange_strong
(compare_exchange_weak can always fail for arbitrary internal reasons, as described
previously). The operation may fail even though the old stored value was equal in
value to the comparand, if the stored value had a different representation. Note that
there are no atomic arithmetic operations on floating-point values. You’ll get similar
behavior with compare_exchange_strong if you use std::atomic<> with a user-
defined type that has an equality-comparison operator defined, and that operator
differs from the comparison using memcmp—the operation may fail because the
otherwise-equal values have a different representation.

 If your UDT is the same size as (or smaller than) an int or a void*, most common
platforms will be able to use atomic instructions for std::atomic<UDT>. Some plat-
forms will also be able to use atomic instructions for user-defined types that are twice
the size of an int or void*. These platforms are typically those that support a so-called
double-word-compare-and-swap (DWCAS) instruction corresponding to the compare_
exchange_xxx functions. As you’ll see in chapter 7, such support can be helpful when
writing lock-free code.

 These restrictions mean that you can’t, for example, create std::atomic<std::
vector<int>> (because it has a non-trivial copy constructor and copy assignment

140 CHAPTER 5 The C++ memory model and operations on atomic types
operator), but you can instantiate std::atomic<> with classes containing counters or
flags or pointers or even arrays of simple data elements. This isn’t particularly a prob-
lem; the more complex the data structure, the more likely you’ll want to do opera-
tions on it other than simple assignment and comparison. If that’s the case, you’re
better off using an std::mutex to ensure that the data is appropriately protected for
the desired operations, as described in chapter 3.

 As already mentioned, when instantiated with a user-defined type T, the interface
of std::atomic<T> is limited to the set of operations available for std::atomic<bool>:
load(), store(), exchange(), compare_exchange_weak(), compare_exchange_strong(),
and assignment from and conversion to an instance of type T.

 Table 5.3 shows the operations available on each atomic type.

5.2.7 Free functions for atomic operations

Up until now I’ve limited myself to describing the member function forms of the
operations on the atomic types. But there are also equivalent nonmember functions
for all the operations on the various atomic types. For the most part, the nonmember
functions are named after the corresponding member functions but with an atomic_
prefix (for example, std::atomic_load()). These functions are then overloaded for

Table 5.3 The operations available on atomic types

Operation
atomic_
flag

atomic
<bool>

atomic
<T*>

atomic
<integral
-type>

atomic
<other-
type>

test_and_set Y

clear Y

is_lock_free Y Y Y Y

load Y Y Y Y

store Y Y Y Y

exchange Y Y Y Y

compare_exchange
weak, compare
exchange_strong

Y Y Y Y

fetch_add, += Y Y

fetch_sub, -= Y Y

fetch_or, |= Y

fetch_and, &= Y

fetch_xor, ^= Y

++, -- Y Y

141Atomic operations and types in C++
each of the atomic types. Where there’s opportunity for specifying a memory-ordering
tag, they come in two varieties: one without the tag and one with an _explicit suffix
and an additional parameter or parameters for the memory-ordering tag or tags (for
example, std::atomic_store(&atomic_var,new_value) versus std::atomic_store_
explicit(&atomic_var,new_value,std::memory_order_release). Whereas the atomic
object being referenced by the member functions is implicit, all the free functions
take a pointer to the atomic object as the first parameter.

 For example, std::atomic_is_lock_free() comes in one variety (though over-
loaded for each type), and std::atomic_is_lock_free(&a) returns the same value as
a.is_lock_free() for an object of atomic type a. Likewise, std::atomic_load(&a) is
the same as a.load(), but the equivalent of a.load(std::memory_order_acquire) is
std::atomic_load_explicit(&a, std::memory_order_acquire).

 The free functions are designed to be C-compatible, so they use pointers rather
than references in all cases. For example, the first parameter of the compare_ex-
change_weak() and compare_exchange_strong() member functions (the expected
value) is a reference, whereas the second parameter of std::atomic_compare_
exchange_weak() (the first is the object pointer) is a pointer. std::atomic_compare
_exchange_weak_explicit() also requires both the success and failure memory
orders to be specified, whereas the compare-exchange member functions have both a
single memory order form (with a default of std::memory_order_seq_cst) and an
overload that takes the success and failure memory orders separately.

 The operations on std::atomic_flag buck the trend in that they spell out the
flag part in the names: std::atomic_flag_test_and_set(), std::atomic_flag_
clear(). The additional variants that specify the memory ordering again have the
_explicit suffix: std::atomic_flag_test_and_set_explicit() and std::atomic_
flag_clear_explicit().

 The C++ Standard Library also provides free functions for accessing instances of
std::shared_ptr<> in an atomic fashion. This is a break from the principle that only
the atomic types support atomic operations, because std::shared_ptr<> is quite defi-
nitely not an atomic type (accessing the same std::shared_ptr<T> object from multi-
ple threads without using the atomic access functions from all threads, or using
suitable other external synchronization, is a data race and undefined behavior). But
the C++ Standards Committee felt it was sufficiently important to provide these extra
functions. The atomic operations available are load, store, exchange, and compare-
exchange, which are provided as overloads of the same operations on the standard
atomic types, taking an std::shared_ptr<>* as the first argument:

std::shared_ptr<my_data> p;
void process_global_data()
{
 std::shared_ptr<my_data> local=std::atomic_load(&p);
 process_data(local);
}

142 CHAPTER 5 The C++ memory model and operations on atomic types
void update_global_data()
{
 std::shared_ptr<my_data> local(new my_data);
 std::atomic_store(&p,local);
}

As with the atomic operations on other types, the _explicit variants are also pro-
vided to allow you to specify the desired memory ordering, and the std::atomic_
is_lock_free() function can be used to check whether the implementation uses
locks to ensure the atomicity.

 The Concurrency TS also provides std::experimental::atomic_shared_ptr<T>,
which is an atomic type. To use it you must include the <experimental/atomic>
header. It provides the same set of operations as std::atomic<UDT>: load, store,
exchange, compare-exchange. It is provided as a separate type because that allows for
a lock-free implementation that does not impose an additional cost on plain
std::shared_ptr instances. But as with the std::atomic template, you still need to
check whether it is lock-free on your platform, which can be tested with the is_lock_
free member function. Even if it is not lock-free, std::experimental::atomic_
shared_ptr is to be recommended over using the atomic free functions on a plain
std::shared_ptr, as it is clearer in your code, ensures that all accesses are atomic,
and avoids the potential for data races due to forgetting to use the atomic free func-
tions. As with all uses of atomic types and operations, if you are using them for a
potential speed gain, it is important to profile, and compare with using alternative syn-
chronization mechanisms.

 As described in the introduction, the standard atomic types do more than avoid
the undefined behavior associated with a data race; they allow the user to enforce an
ordering of operations between threads. This enforced ordering is the basis of the
facilities for protecting data and synchronizing operations such as std::mutex and
std::future<>. With that in mind, let’s move on to the real meat of this chapter: the
details of the concurrency aspects of the memory model and how atomic operations
can be used to synchronize data and enforce ordering.

5.3 Synchronizing operations and enforcing ordering
Suppose you have two threads, one of which is populating a data structure to be read
by the second. In order to avoid a problematic race condition, the first thread sets a
flag to indicate that the data is ready, and the second thread doesn’t read the data
until the flag is set. The following listing shows such a scenario.

#include <vector>
#include <atomic>
#include <iostream>
std::vector<int> data;
std::atomic<bool> data_ready(false);

Listing 5.2 Reading and writing variables from different threads

143Synchronizing operations and enforcing ordering
void reader_thread()
{
 while(!data_ready.load())
 {
 std::this_thread::sleep(std::chrono::milliseconds(1));
 }
 std::cout<<”The answer=”<<data[0]<<”\n”;
}
void writer_thread()
{
 data.push_back(42);
 data_ready=true;
}

Setting aside the inefficiency of the loop waiting for the data to be ready B, you
need this to work, because otherwise sharing data between threads becomes impracti-
cal: every item of data is forced to be atomic. You’ve already learned that it’s unde-
fined behavior to have non-atomic reads c and writes d accessing the same data
without an enforced ordering, so for this to work there must be an enforced ordering
somewhere.

 The required enforced ordering comes from the operations on the std::
atomic<bool> variable, data_ready;, they provide the necessary ordering by virtue of
the memory model relations happens-before and synchronizes-with. The write of the data

d happens before the write to the data_ready flag e, and the read of the flag B
happens before the read of the data c. When the value read from data_ready B is
true, the write synchronizes with that read, creating a happens-before relationship.
Because happens-before is transitive, the write to the data d happens before the write
to the flag e, which happens before the read of the true value from the flag B,
which happens before the read of the data c, and you have an enforced ordering: the
write of the data happens before the read of the data and everything is OK. Figure 5.2
shows the important happens-before relationships in the two threads. I’ve added a
couple of iterations of the while loop from the reader thread.

 All this might seem fairly intuitive: the operation that writes a value happens before
an operation that reads that value. With the default atomic operations, that’s indeed
true (which is why this is the default), but it does need spelling out: the atomic opera-
tions also have other options for the ordering requirements, which I’ll come to shortly.

 Now that you’ve seen happens-before and synchronizes-with in action, it’s time to
look at what they mean. I’ll start with synchronizes-with.

5.3.1 The synchronizes-with relationship

The synchronizes-with relationship is something that you can get only between opera-
tions on atomic types. Operations on a data structure (such as locking a mutex) might
provide this relationship if the data structure contains atomic types and the opera-
tions on that data structure perform the appropriate atomic operations internally, but
fundamentally it comes only from operations on atomic types.

b

c

d

e

144 CHAPTER 5 The C++ memory model and operations on atomic types
The basic idea is this: a suitably-tagged atomic write operation, W, on a variable, x, syn-
chronizes with a suitably-tagged atomic read operation on x that reads the value stored
by either that write, W, or a subsequent atomic write operation on x by the same thread
that performed the initial write, W, or a sequence of atomic read-modify-write operations
on x (such as fetch_add() or compare_exchange_weak()) by any thread, where the
value read by the first thread in the sequence is the value written by W (see section 5.3.4).

 Leave the “suitably-tagged” part aside for now, because all operations on atomic
types are suitably tagged by default. This means what you might expect: if thread A
stores a value and thread B reads that value, there’s a synchronizes-with relationship
between the store in thread A and the load in thread B, as in listing 5.2. This is illus-
trated in figure 5.2.

 As I’m sure you’ve guessed, the nuances are all in the “suitably-tagged” part. The
C++ memory model allows various ordering constraints to be applied to the opera-
tions on atomic types, and this is the tagging to which I refer. The various options for
memory ordering and how they relate to the synchronizes-with relationship are cov-
ered in section 5.3.3. First, let’s step back and look at the happens-before relationship.

data.push_back(42)

data_ready=true

data_ready.load()

(returns)false

data_ready.load()

(returns)false

data_ready.load()

(returns)true

data[0]

(returns 42)

Writer thread Reader thread

Figure 5.2 Enforcing an ordering between non-atomic operations using atomic operations

145Synchronizing operations and enforcing ordering
5.3.2 The happens-before relationship

The happens-before and strongly-happens-before relationships are the basic building blocks
of operation ordering in a program; it specifies which operations see the effects of
which other operations. For a single thread, it’s largely straightforward: if one opera-
tion is sequenced before another, then it also happens before it, and strongly-happens-
before it. This means that if one operation (A) occurs in a statement prior to another
(B) in the source code, then A happens before B, and A strongly-happens-before B.
You saw that in listing 5.2: the write to data d happens before the write to
data_ready e. If the operations occur in the same statement, in general there’s no
happens-before relationship between them, because they’re unordered. This is
another way of saying that the ordering is unspecified. You know that the program in
the following listing will output “1,2” or “2,1”, but it’s unspecified which, because
the order of the two calls to get_num()is unspecified.

#include <iostream>
void foo(int a,int b)
{
 std::cout<<a<<”,”<<b<<std::endl;
}
int get_num()
{
 static int i=0;
 return ++i;
}
int main()
{
 foo(get_num(),get_num());
}

There are circumstances where operations within a single statement are sequenced,
such as where the built-in comma operator is used or where the result of one expres-
sion is used as an argument to another expression. But in general, operations within a
single statement are nonsequenced, and there’s no sequenced-before (and thus no
happens-before) relationship between them. All operations in a statement happen
before all of the operations in the next statement.

 This is a restatement of the single-threaded sequencing rules you’re used to, so
what’s new? The new part is the interaction between threads: if operation A on one
thread inter-thread happens before operation B on another thread, then A happens
before B. This doesn’t help much: you’ve added a new relationship (inter-thread
happens-before), but this is an important relationship when you’re writing multi-
threaded code.

 At the basic level, inter-thread happens-before is relatively simple and relies on the
synchronizes-with relationship introduced in section 5.3.1: if operation A in one
thread synchronizes with operation B in another thread, then A inter-thread happens

Listing 5.3 Order of evaluation of arguments to a function call is unspecified

Calls to get_num()
are unordered.

146 CHAPTER 5 The C++ memory model and operations on atomic types
before B. It’s also a transitive relation: if A inter-thread happens before B and B inter-
thread happens before C, then A inter-thread happens before C. You saw this in list-
ing 5.2 as well.

 Inter-thread happens-before also combines with the sequenced-before relation: if
operation A is sequenced before operation B, and operation B inter-thread happens
before operation C, then A inter-thread happens before C. Similarly, if A synchronizes
with B and B is sequenced before C, then A inter-thread happens before C. These two
together mean that if you make a series of changes to data in a single thread, you need
only one synchronizes-with relationship for the data to be visible to subsequent opera-
tions on the thread that executed C.

 The strongly-happens-before relationship is slightly different, but in most cases
comes down the same. The same two rules described above apply: if operation A
synchronizes-with operation B, or operation A is sequenced-before operation B, then
A strongly-happens-before B. Transitive ordering also applies: if A strongly-happens-
before B, and B strongly-happens-before C, then A strongly-happens-before C. The
difference is that operations tagged with memory_order_consume (see section 5.3.3)
participate in inter-thread-happens-before relationships (and thus happens-before
relationships), but not in strongly-happens-before relationships. Since the vast major-
ity of code should not be using memory_order_consume, this distinction is unlikely to
affect you in practice. I will use “happens-before” in the rest of this book for brevity.

 These are the crucial rules that enforce the ordering of operations between
threads and make everything in listing 5.2 work. There are some additional nuances
with data dependency, as you’ll see shortly. In order for you to understand this, I need
to cover the memory-ordering tags used for atomic operations and how they relate to
the synchronizes-with relation.

5.3.3 Memory ordering for atomic operations

There are six memory ordering options that can be applied to operations on atomic
types: memory_order_relaxed, memory_order_consume, memory_order_acquire, memory
_order_release, memory_order_acq_rel, and memory_order_seq_cst. Unless you
specify otherwise for a particular operation, the memory-ordering option for all oper-
ations on atomic types is memory_order_seq_cst, which is the most stringent of the
available options. Although there are six ordering options, they represent three mod-
els: sequentially consistent ordering (memory_order_seq_cst), acquire-release ordering
(memory_order_consume, memory_order_acquire, memory_order_release, and memo-
ry_order_acq_rel), and relaxed ordering (memory_order_relaxed).

 These distinct memory-ordering models can have varying costs on different CPU
architectures. For example, on systems based on architectures with fine control over
the visibility of operations by processors other than the one that made the change,
additional synchronization instructions can be required for sequentially consistent
ordering over acquire-release ordering or relaxed ordering and for acquire-release
ordering over relaxed ordering. If these systems have many processors, these additional

147Synchronizing operations and enforcing ordering
synchronization instructions may take a significant amount of time, reducing the overall
performance of the system. On the other hand, CPUs that use the x86 or x8664 archi-
tectures (such as the Intel and AMD processors common in desktop PCs) don’t require
any additional instructions for acquire-release ordering beyond those necessary for
ensuring atomicity, and even sequentially-consistent ordering doesn’t require any spe-
cial treatment for load operations, although there’s a small additional cost on stores.

 The availability of the distinct memory-ordering models allows experts to take
advantage of the increased performance of the more fine-grained ordering relation-
ships where they’re advantageous while allowing the use of the default sequentially-
consistent ordering (which is considerably easier to reason about than the others) for
those cases that are less critical.

 In order to choose which ordering model to use, or to understand the ordering
relationships in code that uses the different models, it’s important to know how the
choices affect the program behavior. Let’s therefore look at the consequences of each
choice for operation ordering and synchronizes-with.

SEQUENTIALLY CONSISTENT ORDERING

The default ordering is named sequentially consistent because it implies that the behav-
ior of the program is consistent with a simple sequential view of the world. If all oper-
ations on instances of atomic types are sequentially consistent, the behavior of a
multithreaded program is as if all these operations were performed in some particular
sequence by a single thread. This is by far the easiest memory ordering to understand,
which is why it’s the default: all threads must see the same order of operations. This
makes it easy to reason about the behavior of code written with atomic variables. You
can write down all the possible sequences of operations by different threads, eliminate
those that are inconsistent, and verify that your code behaves as expected in the oth-
ers. It also means that operations can’t be reordered; if your code has one operation
before another in one thread, that ordering must be seen by all other threads.

 From the point of view of synchronization, a sequentially consistent store synchro-
nizes with a sequentially consistent load of the same variable that reads the value
stored. This provides one ordering constraint on the operation of two (or more)
threads, but sequential consistency is more powerful than that. Any sequentially con-
sistent atomic operations done after that load must also appear after the store to other
threads in the system using sequentially consistent atomic operations. The example in
listing 5.4 demonstrates this ordering constraint in action. This constraint doesn’t
carry forward to threads that use atomic operations with relaxed memory orderings;
they can still see the operations in a different order, so you must use sequentially con-
sistent operations on all your threads in order to get the benefit.

 This ease of understanding can come at a price, though. On a weakly-ordered
machine with many processors, it can impose a noticeable performance penalty,
because the overall sequence of operations must be kept consistent between the proces-
sors, possibly requiring extensive (and expensive!) synchronization operations between
the processors. That said, some processor architectures (such as the common x86 and

148 CHAPTER 5 The C++ memory model and operations on atomic types
x86-64 architectures) offer sequential consistency relatively cheaply, so if you’re con-
cerned about the performance implications of using sequentially consistent ordering,
check the documentation for your target processor architectures.

 The following listing shows sequential consistency in action. The loads and stores
to x and y are explicitly tagged with memory_order_seq_cst, although this tag could
be omitted in this case because it’s the default.

#include <atomic>
#include <thread>
#include <assert.h>
std::atomic<bool> x,y;
std::atomic<int> z;
void write_x()
{
 x.store(true,std::memory_order_seq_cst);
}
void write_y()
{
 y.store(true,std::memory_order_seq_cst);
}
void read_x_then_y()
{
 while(!x.load(std::memory_order_seq_cst));
 if(y.load(std::memory_order_seq_cst))
 ++z;
}
void read_y_then_x()
{
 while(!y.load(std::memory_order_seq_cst));
 if(x.load(std::memory_order_seq_cst))
 ++z;
}
int main()
{
 x=false;
 y=false;
 z=0;
 std::thread a(write_x);
 std::thread b(write_y);
 std::thread c(read_x_then_y);
 std::thread d(read_y_then_x);
 a.join();
 b.join();
 c.join();
 d.join();
 assert(z.load()!=0);
}

The assert f can never fire, because either the store to x B or the store to y c must
happen first, even though it’s not specified which. If the load of y in read_x_then_y d

Listing 5.4 Sequential consistency implies a total ordering

b

c

d

e

f

149Synchronizing operations and enforcing ordering
returns false, the store to x must occur before the store to y, in which case the load of
x in read_y_then_x e must return true, because the while loop ensures that the y is
true at this point. Because the semantics of memory_order_seq_cst require a single
total ordering over all operations tagged memory_order_seq_cst, there’s an implied
ordering relationship between a load of y that returns false d and the store to y B.
For there to be a single total order, if one thread sees x==true and then subse-
quently sees y==false, this implies that the store to x occurs before the store to y in
this total order.

 Because everything is symmetrical, it could also happen the other way around, with
the load of x e returning false, forcing the load of y d to return true. In both
cases, z is equal to 1. Both loads can return true, leading to z being 2, but under no
circumstances can z be 0.

 The operations and happens-before relationships for the case that read_x_then_y
sees x as true and y as false are shown in figure 5.3. The dashed line from the load of
y in read_x_then_y to the store to y in write_y shows the implied ordering relation-
ship required in order to maintain sequential consistency: the load must occur before
the store in the global order of memory_order_seq_cst operations in order to achieve
the outcomes given here.

Sequential consistency is the most straightforward and intuitive ordering, but it’s also
the most expensive memory ordering because it requires global synchronization
between all threads. On a multiprocessor system this may require extensive and time-
consuming communication between processors.

 In order to avoid this synchronization cost, you need to step outside the world of
sequential consistency and consider using other memory orderings.

NON-SEQUENTIALLY CONSISTENT MEMORY ORDERINGS

Once you step outside the nice sequentially-consistent world, things start to get com-
plicated. The single biggest issue to get to grips with is probably the fact that there’s no

y.store(true)

Initially ,x=false y=false

x.store(true)

x.load()

returns true

y.load()

returns false

y.load()

returns true

x.load()

returns true

write_x read_x_then_y read_y_then_x write_y

Figure 5.3 Sequential consistency and happens-before

150 CHAPTER 5 The C++ memory model and operations on atomic types
longer a single global order of events. This means that different threads can see different
views of the same operations, and any mental model you have of operations from dif-
ferent threads neatly interleaved one after the other must be thrown away. Not only
do you have to account for things happening truly concurrently, but threads don’t have
to agree on the order of events. In order to write (or even to understand) any code that
uses a memory ordering other than the default memory_order_seq_cst, it’s absolutely
vital to get your head around this. It’s not just that the compiler can reorder the
instructions. Even if the threads are running the same bit of code, they can disagree
on the order of events because of operations in other threads in the absence of
explicit ordering constraints, because the different CPU caches and internal buffers
can hold different values for the same memory. It’s so important I’ll say it again:
threads don’t have to agree on the order of events.

 Not only do you have to throw out mental models based on interleaving opera-
tions, you also have to throw out mental models based on the idea of the compiler or
processor reordering the instructions. In the absence of other ordering constraints, the only
requirement is that all threads agree on the modification order of each individual variable. Oper-
ations on distinct variables can appear in different orders on different threads, pro-
vided the values seen are consistent with any additional ordering constraints imposed.

 This is best demonstrated by stepping completely outside the sequentially consis-
tent world and using memory_order_relaxed for all operations. Once you’ve come to
grips with that, you can move back to acquire-release ordering, which allows you to
selectively introduce ordering relationships between operations and claw back some
of your sanity.

RELAXED ORDERING

Operations on atomic types performed with relaxed ordering don’t participate in
synchronizes-with relationships. Operations on the same variable within a single thread
still obey happens-before relationships, but there’s almost no requirement on order-
ing relative to other threads. The only requirement is that accesses to a single atomic
variable from the same thread can’t be reordered; once a given thread has seen a par-
ticular value of an atomic variable, a subsequent read by that thread can’t retrieve
an earlier value of the variable. Without any additional synchronization, the modifi-
cation order of each variable is the only thing shared between threads that are using
memory_order_relaxed.

 To demonstrate how relaxed your relaxed operations can be, you need only two
threads, as shown in the following listing.

#include <atomic>
#include <thread>
#include <assert.h>
std::atomic<bool> x,y;
std::atomic<int> z;
void write_x_then_y()

Listing 5.5 Relaxed operations have few ordering requirements

151Synchronizing operations and enforcing ordering
{
 x.store(true,std::memory_order_relaxed);
 y.store(true,std::memory_order_relaxed);
}
void read_y_then_x()
{
 while(!y.load(std::memory_order_relaxed));
 if(x.load(std::memory_order_relaxed))
 ++z;
}
int main()
{
 x=false;
 y=false;
 z=0;
 std::thread a(write_x_then_y);
 std::thread b(read_y_then_x);
 a.join();
 b.join();
 assert(z.load()!=0);
}

This time the assert f can fire, because the load of x e can read false, even though
the load of y d reads true and the store of x B happens before the store of y c. x
and y are different variables, so there are no ordering guarantees relating to the visi-
bility of values arising from operations on each.

 Relaxed operations on different variables can be freely reordered provided they
obey any happens-before relationships they’re bound by (for example, within the
same thread). They don’t introduce synchronizes-with relationships. The happens-
before relationships from listing 5.5 are shown in figure 5.4, along with a possible out-
come. Even though there’s a happens-before relationship between the stores and

b

c

d

e

f

Initially ,x=false y=false

x.store(true,

relaxed)

y.load(relaxed)

returns true

x.load(relaxed)

returns false

write_x_then_y read_y_then_x

y.store(true,

relaxed)

Figure 5.4 Relaxed atomics
and happens-before

152 CHAPTER 5 The C++ memory model and operations on atomic types
between the loads, there isn’t one between either store and either load, and so the
loads can see the stores out of order.

 Let’s look at the slightly more complex example with three variables and five
threads in the next listing.

#include <thread>
#include <atomic>
#include <iostream>
std::atomic<int> x(0),y(0),z(0);
std::atomic<bool> go(false);
unsigned const loop_count=10;
struct read_values
{
 int x,y,z;
};
read_values values1[loop_count];
read_values values2[loop_count];
read_values values3[loop_count];
read_values values4[loop_count];
read_values values5[loop_count];
void increment(std::atomic<int>* var_to_inc,read_values* values)
{
 while(!go)
 std::this_thread::yield();
 for(unsigned i=0;i<loop_count;++i)
 {
 values[i].x=x.load(std::memory_order_relaxed);
 values[i].y=y.load(std::memory_order_relaxed);
 values[i].z=z.load(std::memory_order_relaxed);
 var_to_inc->store(i+1,std::memory_order_relaxed);
 std::this_thread::yield();
 }
}
void read_vals(read_values* values)
{
 while(!go)
 std::this_thread::yield();
 for(unsigned i=0;i<loop_count;++i)
 {
 values[i].x=x.load(std::memory_order_relaxed);
 values[i].y=y.load(std::memory_order_relaxed);
 values[i].z=z.load(std::memory_order_relaxed);
 std::this_thread::yield();
 }
}
void print(read_values* v)
{
 for(unsigned i=0;i<loop_count;++i)
 {
 if(i)
 std::cout<<",";

Listing 5.6 Relaxed operations on multiple threads

B

c

Spin, waiting
for the signald

e

Spin, waiting
for the signal

f

153Synchronizing operations and enforcing ordering
 std::cout<<"("<<v[i].x<<","<<v[i].y<<","<<v[i].z<<")";
 }
 std::cout<<std::endl;
}
int main()
{
 std::thread t1(increment,&x,values1);
 std::thread t2(increment,&y,values2);
 std::thread t3(increment,&z,values3);
 std::thread t4(read_vals,values4);
 std::thread t5(read_vals,values5);
 go=true;
 t5.join();
 t4.join();
 t3.join();
 t2.join();
 t1.join();
 print(values1);
 print(values2);
 print(values3);
 print(values4);
 print(values5);
}

This is a simple program. You have three shared global atomic variables B and five
threads. Each thread loops 10 times, reading the values of the three atomic variables
using memory_order_relaxed and storing them in an array. Three of the threads each
update one of the atomic variables each time through the loop e, whereas the other
two threads read. Once all the threads have been joined, you print the values from the
arrays stored by each thread h.

 The go atomic variable c is used to ensure that the threads all start the loop as
near to the same time as possible. Launching a thread is an expensive operation, and
without the explicit delay, the first thread may be finished before the last one has
started. Each thread waits for go to become true before entering the main loop d
and f, and go is set to true only once all the threads have started g.

 One possible output from this program is as follows:

(0,0,0),(1,0,0),(2,0,0),(3,0,0),(4,0,0),(5,7,0),(6,7,8),(7,9,8),(8,9,8),
(9,9,10)
(0,0,0),(0,1,0),(0,2,0),(1,3,5),(8,4,5),(8,5,5),(8,6,6),(8,7,9),(10,8,9),
(10,9,10)
(0,0,0),(0,0,1),(0,0,2),(0,0,3),(0,0,4),(0,0,5),(0,0,6),(0,0,7),(0,0,8),
(0,0,9)
(1,3,0),(2,3,0),(2,4,1),(3,6,4),(3,9,5),(5,10,6),(5,10,8),(5,10,10),
(9,10,10),(10,10,10)
(0,0,0),(0,0,0),(0,0,0),(6,3,7),(6,5,7),(7,7,7),(7,8,7),(8,8,7),(8,8,9),
(8,8,9)

The first three lines are the threads doing the updating, and the last two are the
threads doing the reading. Each triplet is a set of the variables x, y, and z, in that

Signal to start
execution of main loopg

Prints the
final valuesh

154 CHAPTER 5 The C++ memory model and operations on atomic types
order, from one pass through the loop. There are a few things to notice from
this output:

 The first set of values shows x increasing by one with each triplet, the second set
has y increasing by one, and the third has z increasing by one.

 The x elements of each triplet only increase within a given set, as do the y and z
elements, but the increments are uneven, and the relative orderings vary
between all threads.

 Thread 3 doesn’t see any of the updates to x or y; it sees only the updates it
makes to z. This doesn’t stop the other threads from seeing the updates to z
mixed in with the updates to x and y, though.

This is a valid outcome for relaxed operations, but it’s not the only valid outcome. Any
set of values that’s consistent with the three variables, each holding the values 0 to 10
in turn, and that has the thread incrementing a given variable printing the values 0 to
9 for that variable, is valid.

UNDERSTANDING RELAXED ORDERING

To understand how this works, imagine that each variable is a man in a cubicle with a
notepad. On his notepad is a list of values. You can phone him and ask him to give you
a value, or you can tell him to write down a new value. If you tell him to write down a
new value, he writes it at the bottom of the list. If you ask him for a value, he reads you
a number from the list.

 The first time you talk to this man, if you ask him for a value, he may give you any
value from the list he has on his pad at the time. If you then ask him for another value,
he may give you the same one again or a value from farther down the list. He’ll never
give you a value from farther up the list. If you tell him to write down a number and
then subsequently ask him for a value, he’ll give you either the number you told him
to write down or a number below that on the list.

 Imagine for a moment that his list starts with the values 5, 10, 23, 3, 1, and 2. If you
ask for a value, you could get any of those. If he gives you 10, then the next time you ask
he could give you 10 again, or any of the later ones, but not 5. If you call him five
times, he could say “10, 10, 1, 2, 2,” for example. If you tell him to write down 42, he’ll
add it to the end of the list. If you ask him for a number again, he’ll keep telling you
“42” until he has another number on his list and he feels like telling it to you.

 Now, imagine your friend Carl also has this man’s number. Carl can also phone
him and either ask him to write down a number or ask for one, and he applies the
same rules to Carl as he does to you. He has only one phone, so he can only deal with
one of you at a time, so the list on his pad is a nice straightforward list. But just
because you got him to write down a new number doesn’t mean he has to tell it to
Carl, and vice versa. If Carl asked him for a number and was told “23,” then just
because you asked the man to write down 42 doesn’t mean he’ll tell that to Carl next
time. He may tell Carl any of the numbers 23, 3, 1, 2, 42, or even the 67 that Fred told
him to write down after you called. He could very well tell Carl “23, 3, 3, 1, 67” without

155Synchronizing operations and enforcing ordering
being inconsistent with what he told you. It’s like he keeps track of which number he
told to whom with a little moveable sticky note for each person, like in figure 5.5.

Now imagine that there’s not just one man in a cubicle but a whole cubicle farm, with
loads of men with phones and notepads. These are all our atomic variables. Each vari-
able has its own modification order (the list of values on the pad), but there’s no rela-
tionship between them at all. If each caller (you, Carl, Anne, Dave, and Fred) is a
thread, then this is what you get when every operation uses memory_order_relaxed.
There are a few additional things you can tell the man in the cubicle, such as “Write
down this number, and tell me what was at the bottom of the list” (exchange) and
“Write down this number if the number on the bottom of the list is that; otherwise tell
me what I should have guessed” (compare_exchange_strong), but that doesn’t affect
the general principle.

 If you think about the program logic from listing 5.5, then write_x_then_y is
like some guy calling up the man in cubicle x and telling him to write true, then
calling up the man in cubicle y and telling him to write true. The thread running
read_y_then_x repeatedly calls up the man in cubicle y asking for a value until he says
true and then calls the man in cubicle x to ask for a value. The man in cubicle x is
under no obligation to tell you any specific value off his list and is quite within his
rights to say false.

 This makes relaxed atomic operations difficult to deal with. They must be used in
combination with atomic operations that feature stronger ordering semantics in order
to be useful for inter-thread synchronization. I strongly recommend avoiding relaxed
atomic operations unless they’re absolutely necessary, and even then using them only
with extreme caution. Given the unintuitive results that can be achieved with only two
threads and two variables in listing 5.5, it’s not hard to imagine the possible complex-
ity when more threads and more variables are involved.

 One way to achieve additional synchronization without the overhead of full-blown
sequential consistency is to use acquire-release ordering.

ACQUIRE-RELEASE ORDERING

Acquire-release ordering is a step up from relaxed ordering; there’s still no total order
of operations, but it does introduce some synchronization. Under this ordering model,
atomic loads are acquire operations (memory_order_acquire), atomic stores are release
operations (memory_order_release), and atomic read-modify-write operations (such

Figure 5.5 The notebook for
the man in the cubicle

156 CHAPTER 5 The C++ memory model and operations on atomic types
as fetch_add() or exchange()) are either acquire, release, or both (memory_order_
acq_rel). Synchronization is pairwise between the thread that does the release and
the thread that does the acquire. A release operation synchronizes-with an acquire operation
that reads the value written. This means that different threads can still see different
orderings, but these orderings are restricted. The following listing is a reworking of
listing 5.4 using acquire-release semantics rather than sequentially-consistent ones.

#include <atomic>
#include <thread>
#include <assert.h>
std::atomic<bool> x,y;
std::atomic<int> z;
void write_x()
{
 x.store(true,std::memory_order_release);
}
void write_y()
{
 y.store(true,std::memory_order_release);
}
void read_x_then_y()
{
 while(!x.load(std::memory_order_acquire));
 if(y.load(std::memory_order_acquire))
 ++z;
}
void read_y_then_x()
{
 while(!y.load(std::memory_order_acquire));
 if(x.load(std::memory_order_acquire))
 ++z;
}
int main()
{
 x=false;
 y=false;
 z=0;
 std::thread a(write_x);
 std::thread b(write_y);
 std::thread c(read_x_then_y);
 std::thread d(read_y_then_x);
 a.join();
 b.join();
 c.join();
 d.join();
 assert(z.load()!=0);
}

In this case the assert d can fire (like in the relaxed-ordering case), because it’s possi-
ble for both the load of x c and the load of y B to read false. x and y are written by

Listing 5.7 Acquire-release doesn’t imply a total ordering

b

c

d

157Synchronizing operations and enforcing ordering
different threads, so the ordering from the release to the acquire in each case has no
effect on the operations in the other threads.

 Figure 5.6 shows the happens-before relationships from listing 5.7, along with a
possible outcome where the two reading threads each have a different view of the
world. This is possible because there’s no happens-before relationship to force an
ordering, as described previously.

In order to see the benefit of acquire-release ordering, you need to consider two
stores from the same thread, like in listing 5.5. If you change the store to y to use mem-
ory_order_release and the load from y to use memory_order_acquire like in the fol-
lowing listing, then you impose an ordering on the operations on x.

#include <atomic>
#include <thread>
#include <assert.h>
std::atomic<bool> x,y;
std::atomic<int> z;
void write_x_then_y()
{
 x.store(true,std::memory_order_relaxed);
 y.store(true,std::memory_order_release);
}
void read_y_then_x()
{
 while(!y.load(std::memory_order_acquire));
 if(x.load(std::memory_order_relaxed))
 ++z;
}

Listing 5.8 Acquire-release operations can impose ordering on relaxed operations

y.store(true,

release)

Initially ,x=false y=false

x.store(true,

release)

x.load(acquire)

returns true

y.load(acquire)

returns false

y.load(acquire)

returns true

x.load(acquire)

returns false

write_x read_x_then_y read_y_then_x write_y

Figure 5.6 Acquire-release and happens-before

B

c

Spin, waiting for y
to be set to true

d

e

158 CHAPTER 5 The C++ memory model and operations on atomic types
int main()
{
 x=false;
 y=false;
 z=0;
 std::thread a(write_x_then_y);
 std::thread b(read_y_then_x);
 a.join();
 b.join();
 assert(z.load()!=0);
}

Eventually, the load from y, d will see true as written by the store c. Because the
store uses memory_order_release and the load uses memory_order_acquire, the store
synchronizes with the load. The store to x B happens before the store to y c because
they’re in the same thread. Because the store to y synchronizes with the load from y,
the store to x also happens before the load from y and by extension happens before
the load from x e. Thus, the load from x must read true, and the assert f can’t fire.
If the load from y wasn’t in a while loop, this wouldn’t necessarily be the case; the
load from y might read false, in which case there’d be no requirement on the value
read from x. In order to provide any synchronization, acquire and release operations
must be paired up. The value stored by a release operation must be seen by an acquire
operation for either to have any effect. If either the store at c or the load at d was a
relaxed operation, there’d be no ordering on the accesses to x, so there’d be no guar-
antee that the load at e would read true, and the assert could fire.

 You can still think about acquire-release ordering in terms of our men with note-
pads in their cubicles, but you have to add more to the model. First, imagine that
every store that’s done is part of some batch of updates, so when you call a man to tell
him to write down a number, you also tell him which batch this update is part of:
“Please write down 99, as part of batch 423.” For the last store in a batch, you tell this
to the man too: “Please write down 147, which is the last store in batch 423.” The
man in the cubicle will then duly write down this information, along with who gave
him the value. This models a store-release operation. The next time you tell some-
one to write down a value, you increase the batch number: “Please write down 41, as
part of batch 424.”

 When you ask for a value, you now have a choice: you can either ask for a value
(which is a relaxed load), in which case the man only gives you the number, or you
can ask for a value and information about whether it’s the last in a batch (which mod-
els a load-acquire). If you ask for the batch information, and the value wasn’t the last
in a batch, the man will tell you something like, “The number is 987, which is a ‘normal’
value,” whereas if it was the last in a batch, he’ll tell you something like “The number is
987, which is the last number in batch 956 from Anne.” Now, here’s where the acquire-
release semantics kick in: if you tell the man all the batches you know about when you
ask for a value, he’ll look down his list for the last value from any of the batches you
know about and either give you that number or one further down the list.

f

159Synchronizing operations and enforcing ordering
 How does this model acquire-release semantics? Let’s look at our example and see.
First off, thread a is running write_x_then_y and says to the man in cubicle x,
“Please write true as part of batch 1 from thread a,” which he duly writes down.
Thread a then says to the man in cubicle y, “Please write true as the last write of
batch 1 from thread a,” which he duly writes down. In the meantime, thread b is
running read_y_then_x. Thread b keeps asking the man in box y for a value with
batch information until he says “true.” It may have to ask many times, but eventually
the man will say “true.” The man in box y doesn’t only say “true” though; he also says,
“This is the last write in batch 1 from thread a.”

 Now, thread b goes on to ask the man in box x for a value, but this time it says,
“Please can I have a value, and by the way I know about batch 1 from thread a.” Now
the man from cubicle x has to look down his list for the last mention of batch 1 from
thread a. The only mention he has is the value true, which is also the last value on his
list, so he must read out that value; otherwise, he’s breaking the rules of the game.

 If you look at the definition of inter-thread happens-before back in section 5.3.2,
one of the important properties is that it’s transitive: if A inter-thread happens before B
and B inter-thread happens before C, then A inter-thread happens before C. This means that
acquire-release ordering can be used to synchronize data across several threads, even
when the “intermediate” threads haven’t touched the data.

TRANSITIVE SYNCHRONIZATION WITH ACQUIRE-RELEASE ORDERING

In order to think about transitive ordering, you need at least three threads. The first
thread modifies some shared variables and does a store-release to one of them. A sec-
ond thread then reads the variable subject to the store-release with a load-acquire and
performs a store-release on a second shared variable. Finally, a third thread does a
load-acquire on that second shared variable. Provided that the load-acquire opera-
tions see the values written by the store-release operations to ensure the synchronizes-
with relationships, this third thread can read the values of the other variables stored
by the first thread, even if the intermediate thread didn’t touch any of them. This sce-
nario is shown in the next listing.

std::atomic<int> data[5];
std::atomic<bool> sync1(false),sync2(false);
void thread_1()
{
 data[0].store(42,std::memory_order_relaxed);
 data[1].store(97,std::memory_order_relaxed);
 data[2].store(17,std::memory_order_relaxed);
 data[3].store(-141,std::memory_order_relaxed);
 data[4].store(2003,std::memory_order_relaxed);
 sync1.store(true,std::memory_order_release);
}
void thread_2()
{
 while(!sync1.load(std::memory_order_acquire));

Listing 5.9 Transitive synchronization using acquire and release ordering

Set sync1B

Loop until
sync1 is set

c

160 CHAPTER 5 The C++ memory model and operations on atomic types
 sync2.store(true,std::memory_order_release);
}
void thread_3()
{
 while(!sync2.load(std::memory_order_acquire));
 assert(data[0].load(std::memory_order_relaxed)==42);
 assert(data[1].load(std::memory_order_relaxed)==97);
 assert(data[2].load(std::memory_order_relaxed)==17);
 assert(data[3].load(std::memory_order_relaxed)==-141);
 assert(data[4].load(std::memory_order_relaxed)==2003);
}

Even though thread_2 only touches the variables sync1 c and sync2 d, this is
enough for synchronization between thread_1 and thread_3 to ensure that the asserts
don’t fire. First off, the stores to data from thread_1 happens before the store to sync1

B because they’re sequenced before it in the same thread. Because the load from
sync1 B is in a while loop, it will eventually see the value stored from thread_1 and
form the second half of the release-acquire pair. Therefore, the store to sync1 happens
before the final load from sync1 in the while loop. This load is sequenced before (and
thus happens before) the store to sync2 d, which forms a release-acquire pair with the
final load from the while loop in thread_3 e. The store to sync2 d thus happens
before the load e, which happens before the loads from data. Because of the transitive
nature of happens-before, you can chain it all together: the stores to data happen
before the store to sync1 B, which happens before the load from sync1 c, which hap-
pens before the store to sync2 d, which happens before the load from sync2 e, which
happens before the loads from data. Thus the stores to data in thread_1 happen
before the loads from data in thread_3, and the asserts can’t fire.

 In this case, you could combine sync1 and sync2 into a single variable by using a
read-modify-write operation with memory_order_acq_rel in thread_2. One option
would be to use compare_exchange_strong() to ensure that the value is updated only
once the store from thread_1 has been seen:

std::atomic<int> sync(0);
void thread_1()
{
 // ...
 sync.store(1,std::memory_order_release);
}
void thread_2()
{
 int expected=1;
 while(!sync.compare_exchange_strong(expected,2,
 std::memory_order_acq_rel))
 expected=1;
}
void thread_3()
{
 while(sync.load(std::memory_order_acquire)<2);
 // ...
}

Set sync2d

Loop until
sync2 is set

e

161Synchronizing operations and enforcing ordering
If you use read-modify-write operations, it’s important to pick which semantics you
desire. In this case, you want both acquire and release semantics, so memory_order
_acq_rel is appropriate, but you can use other orderings too. A fetch_sub operation
with memory_order_acquire semantics doesn’t synchronize with anything, even though
it stores a value, because it isn’t a release operation. Likewise, a store can’t synchronize
with a fetch_or with memory_order_release semantics, because the read part of the
fetch_or isn’t an acquire operation. Read-modify-write operations with memory_order
_acq_rel semantics behave as both an acquire and a release, so a prior store can syn-
chronize with such an operation, and it can synchronize with a subsequent load, as is
the case in this example.

 If you mix acquire-release operations with sequentially consistent operations, the
sequentially consistent loads behave like loads with acquire semantics, and sequen-
tially consistent stores behave like stores with release semantics. Sequentially consis-
tent read-modify-write operations behave as both acquire and release operations.
Relaxed operations are still relaxed but are bound by the additional synchronizes-with
and consequent happens-before relationships introduced through the use of acquire-
release semantics.

 Despite the potentially non-intuitive outcomes, anyone who’s used locks has had to
deal with the same ordering issues: locking a mutex is an acquire operation, and
unlocking the mutex is a release operation. With mutexes, you learn that you must
ensure that the same mutex is locked when you read a value as was locked when you
wrote it, and the same applies here; your acquire and release operations have to be on
the same variable to ensure an ordering. If data is protected with a mutex, the exclu-
sive nature of the lock means that the result is indistinguishable from what it would
have been had the lock and unlock been sequentially consistent operations. Similarly,
if you use acquire and release orderings on atomic variables to build a simple lock,
then from the point of view of code that uses the lock, the behavior will appear
sequentially consistent, even though the internal operations are not.

 If you don’t need the stringency of sequentially consistent ordering for your
atomic operations, the pairwise synchronization of acquire-release ordering has the
potential for a much lower synchronization cost than the global ordering required for
sequentially consistent operations. The trade-off here is the mental cost required to
ensure that the ordering works correctly and that the non-intuitive behavior across
threads isn’t problematic.

DATA DEPENDENCY WITH ACQUIRE-RELEASE ORDERING AND MEMORY_ORDER_CONSUME

In the introduction to this section I said that memory_order_consume was part of the
acquire-release ordering model, but it was conspicuously absent from the preceding
description. This is because memory_order_consume is special: it’s all about data
dependencies, and it introduces the data-dependency nuances to the inter-thread
happens-before relationship mentioned in section 5.3.2. It is also special in that the
C++17 standard explicitly recommends that you do not use it. It is therefore only cov-
ered here for completeness: you should not use memory_order_consume in your code!

162 CHAPTER 5 The C++ memory model and operations on atomic types
 The concept of a data dependency is relatively straightforward: there is a data
dependency between two operations if the second one operates on the result of the
first. There are two new relations that deal with data dependencies: dependency-ordered-
before and carries-a-dependency-to. Like sequenced-before, carries-a-dependency-to applies
strictly within a single thread and models the data dependency between operations; if
the result of an operation (A) is used as an operand for an operation (B), then A car-
ries a dependency to B. If the result of operation A is a value of a scalar type such as an
int, then the relationship still applies if the result of A is stored in a variable, and that
variable is then used as an operand for operation B. This operation is also transitive,
so if A carries a dependency to B, and B carries a dependency to C, then A carries a
dependency to C.

 On the other hand, the dependency-ordered-before relationship can apply
between threads. It’s introduced by using atomic load operations tagged with memory
_order_consume. This is a special case of memory_order_acquire that limits the syn-
chronized data to direct dependencies; a store operation (A) tagged with memory_
order_release, memory_order_acq_rel, or memory_order_seq_cst is dependency-
ordered-before a load operation (B) tagged with memory_order_consume if the consume
reads the value stored. This is as opposed to the synchronizes-with relationship you get
if the load uses memory_order_acquire. If this operation (B) then carries a depen-
dency to some operation (C), then A is also dependency-ordered-before C.

 This wouldn’t do you any good for synchronization purposes if it didn’t affect the
inter-thread happens-before relation, but it does: if A is dependency-ordered-before
B, then A also inter-thread happens-before B.

 One important use for this kind of memory ordering is where the atomic opera-
tion loads a pointer to some data. By using memory_order_consume on the load and
memory_order_release on the prior store, you ensure that the pointed-to data is cor-
rectly synchronized, without imposing any synchronization requirements on any other
nondependent data. The following listing shows an example of this scenario.

struct X
{
 int i;
 std::string s;
};
std::atomic<X*> p;
std::atomic<int> a;
void create_x()
{
 X* x=new X;
 x->i=42;
 x->s=”hello”;
 a.store(99,std::memory_order_relaxed);
 p.store(x,std::memory_order_release);
}

Listing 5.10 Using std::memory_order_consume to synchronize data

B

c

163Synchronizing operations and enforcing ordering
void use_x()
{
 X* x;
 while(!(x=p.load(std::memory_order_consume)))
 std::this_thread::sleep(std::chrono::microseconds(1));
 assert(x->i==42);
 assert(x->s==”hello”);
 assert(a.load(std::memory_order_relaxed)==99);
}
int main()
{
 std::thread t1(create_x);
 std::thread t2(use_x);
 t1.join();
 t2.join();
}

Even though the store to a B is sequenced before the store to p c, and the store to p
is tagged memory_order_release, the load of p d is tagged memory_order_consume.
This means that the store to p only happens before those expressions that are depen-
dent on the value loaded from p. This means that the asserts on the data members
of the X structure (e and f) are guaranteed not to fire, because the load of p car-
ries a dependency to those expressions through the variable x. On the other hand,
the assert on the value of a g may or may not fire; this operation isn’t dependent
on the value loaded from p, and so there’s no guarantee on the value that’s read.
This is particularly apparent because it’s tagged with memory_order_relaxed, as
you’ll see.

 Sometimes, you don’t want the overhead of carrying the dependency around. You
want the compiler to be able to cache values in registers and reorder operations to
optimize the code rather than fussing about the dependencies. In these scenarios, you
can use std::kill_dependency() to explicitly break the dependency chain. std::
kill_dependency() is a simple function template that copies the supplied argument to
the return value but breaks the dependency chain in doing so. For example, if you have
a global read-only array, and you use std::memory_order_consume when retrieving an
index into that array from another thread, you can use std::kill_dependency() to let
the compiler know that it doesn’t need to reread the contents of the array entry, as in
the following example:

int global_data[]={ … };
std::atomic<int> index;
void f()
{
 int i=index.load(std::memory_order_consume);
 do_something_with(global_data[std::kill_dependency(i)]);
}

In real code, you should always use memory_order_acquire where you might be
tempted to use memory_order_consume, and std::kill_dependency is unnecessary.

d

e
f

g

164 CHAPTER 5 The C++ memory model and operations on atomic types
 Now that I’ve covered the basics of the memory orderings, it’s time to look at the
more complex parts of the synchronizes-with relation, which manifest in the form of
release sequences.

5.3.4 Release sequences and synchronizes-with

Back in section 5.3.1, I mentioned that you could get a synchronizes-with relationship
between a store to an atomic variable and a load of that atomic variable from another
thread, even when there’s a sequence of read-modify-write operations between the
store and the load, provided all the operations are suitably tagged. Now that I’ve cov-
ered the possible memory-ordering “tags,” I can elaborate on this. If the store is tagged
with memory_order_release, memory_order_acq_rel, or memory_order_seq_cst, and
the load is tagged with memory_order_consume, memory_order_acquire, or memory
_order_seq_cst, and each operation in the chain loads the value written by the pre-
vious operation, then the chain of operations constitutes a release sequence and the ini-
tial store synchronizes with (for memory_order_acquire or memory_order_seq_cst)
or is dependency-ordered-before (for memory_order_consume) the final load. Any
atomic read-modify-write operations in the chain can have any memory ordering
(even memory_order_relaxed).

 To see what this means and why it’s important, consider atomic<int> being used
as a count of the number of items in a shared queue, as in the following listing.

#include <atomic>
#include <thread>
std::vector<int> queue_data;
std::atomic<int> count;
void populate_queue()
{
 unsigned const number_of_items=20;
 queue_data.clear();
 for(unsigned i=0;i<number_of_items;++i)
 {
 queue_data.push_back(i);
 }

 count.store(number_of_items,std::memory_order_release);
}
void consume_queue_items()
{
 while(true)
 {
 int item_index;
 if((item_index=count.fetch_sub(1,std::memory_order_acquire))<=0)
 {
 wait_for_more_items();
 continue;
 }

Listing 5.11 Reading values from a queue with atomic operations

The initial
store

b

An RMW
operation

c

Wait for
more items.d

165Synchronizing operations and enforcing ordering
 process(queue_data[item_index-1]);
 }
}
int main()
{
 std::thread a(populate_queue);
 std::thread b(consume_queue_items);
 std::thread c(consume_queue_items);
 a.join();
 b.join();
 c.join();
}

One way to handle things would be to have the thread that’s producing the data store
the items in a shared buffer and then do count.store(number_of_items, memory_
order_release) B to let the other threads know that data is available. The threads
consuming the queue items might then do count.fetch_sub(1,memory_order_
acquire) c to claim an item from the queue, prior to reading the shared buffer e.
Once the count becomes zero, there are no more items, and the thread must wait d.

 If there’s one consumer thread, this is fine; fetch_sub() is a read with memory
_order_acquire semantics, and the store had memory_order_release semantics, so
the store synchronizes with the load and the thread can read the item from the buffer.
If there are two threads reading, the second fetch_sub() will see the value written by
the first and not the value written by the store. Without the rule about the release
sequence, this second thread wouldn’t have a happens-before relationship with the
first thread, and it wouldn’t be safe to read the shared buffer unless the first fetch_
sub() also had memory_order_release semantics, which would introduce unnecessary
synchronization between the two consumer threads. Without the release sequence
rule or memory_order_release on the fetch_sub operations, there would be nothing
to require that the stores to the queue_data were visible to the second consumer, and
you would have a data race. Thankfully, the first fetch_sub() does participate in the
release sequence, and so the store() synchronizes with the second fetch_sub().
There’s still no synchronizes-with relationship between the two consumer threads.
This is shown in figure 5.7. The dotted lines in figure 5.7 show the release sequence,
and the solid lines show the happens-before relationships.

 There can be any number of links in the chain, but provided they’re all read-
modify-write operations such as fetch_sub(), the store() will still synchronize with
each one that’s tagged memory_order_acquire. In this example, all the links are the
same, and all are acquire operations, but they could be a mix of different operations
with different memory-ordering semantics.

 Although most of the synchronization relationships come from the memory-
ordering semantics applied to operations on atomic variables, it’s also possible to
introduce additional ordering constraints by using fences.

Reading
queue_data
is safe.e

166 CHAPTER 5 The C++ memory model and operations on atomic types
5.3.5 Fences

An atomic operations library wouldn’t be complete without a set of fences. These are
operations that enforce memory-ordering constraints without modifying any data and
are typically combined with atomic operations that use the memory_order_relaxed
ordering constraints. Fences are global operations and affect the ordering of other
atomic operations in the thread that executed the fence. Fences are also commonly
called memory barriers, and they get their name because they put a line in the code that
certain operations can’t cross. As you may recall from section 5.3.3, relaxed operations
on separate variables can usually be freely reordered by the compiler or the hardware.
Fences restrict this freedom and introduce happens-before and synchronizes-with
relationships that weren’t present before.

 Let’s start by adding a fence between the two atomic operations on each thread in
listing 5.5, as shown in the following listing.

#include <atomic>
#include <thread>
#include <assert.h>
std::atomic<bool> x,y;
std::atomic<int> z;
void write_x_then_y()

Listing 5.12 Relaxed operations can be ordered with fences

count.store()
release

count.fetch_sub()
acquire

Process

queue_data

count.fetch_sub()
acquire

Process

queue_data

populate_queue consume_queue_items consume_queue_items

Populate

queue_data

Figure 5.7 The release sequence for the queue operations from listing 5.11

167Synchronizing operations and enforcing ordering
{
 x.store(true,std::memory_order_relaxed);
 std::atomic_thread_fence(std::memory_order_release);
 y.store(true,std::memory_order_relaxed);
}
void read_y_then_x()
{
 while(!y.load(std::memory_order_relaxed));
 std::atomic_thread_fence(std::memory_order_acquire);
 if(x.load(std::memory_order_relaxed))
 ++z;
}
int main()
{
 x=false;
 y=false;
 z=0;
 std::thread a(write_x_then_y);
 std::thread b(read_y_then_x);
 a.join();
 b.join();
 assert(z.load()!=0);
}

The release fence c synchronizes with the acquire fence f because the load from y
at e reads the value stored at d. This means that the store to x at B happens before
the load from x at g, so the value read must be true and the assert at h won’t fire.
This is in contrast to the original case without the fences where the store to and load
from x weren’t ordered, and so the assert could fire. Note that both fences are neces-
sary: you need a release in one thread and an acquire in another to get a synchronizes-
with relationship.

 In this case, the release fence c has the same effect as if the store to y d was
tagged with memory_order_release rather than memory_order_relaxed. Likewise, the
acquire fence f makes it as if the load from y e was tagged with memory_order_
acquire. This is the general idea with fences: if an acquire operation sees the result of
a store that takes place after a release fence, the fence synchronizes with that acquire
operation; and if a load that takes place before an acquire fence sees the result of a
release operation, the release operation synchronizes with the acquire fence. You can
have fences on both sides, as in the example here, in which case if a load that takes
place before the acquire fence sees a value written by a store that takes place after the
release fence, the release fence synchronizes with the acquire fence.

 Although the fence synchronization depends on the values read or written by
operations before or after the fence, it’s important to note that the synchronization
point is the fence itself. If you take write_x_then_y from listing 5.12 and move the
write to x after the fence as follows, the condition in the assert is no longer guaranteed
to be true, even though the write to x comes before the write to y:

b
c

d

e

f

g

h

168 CHAPTER 5 The C++ memory model and operations on atomic types
void write_x_then_y()
{
 std::atomic_thread_fence(std::memory_order_release);
 x.store(true,std::memory_order_relaxed);
 y.store(true,std::memory_order_relaxed);
}

These two operations are no longer separated by the fence and so are no longer
ordered. It’s only when the fence comes between the store to x and the store to y that
it imposes an ordering. The presence or absence of a fence doesn’t affect any
enforced orderings on happens-before relationships that exist because of other
atomic operations.

 This example, and almost every other example so far in this chapter, is built
entirely from variables with an atomic type. But the real benefit of using atomic opera-
tions to enforce an ordering is that they can enforce an ordering on non-atomic oper-
ations and avoid the undefined behavior of a data race, as you saw back in listing 5.2.

5.3.6 Ordering non-atomic operations with atomics

If you replace x from listing 5.12 with an ordinary non-atomic bool (as in the follow-
ing listing), the behavior is guaranteed to be the same.

#include <atomic>
#include <thread>
#include <assert.h>
bool x=false;
std::atomic<bool> y;
std::atomic<int> z;
void write_x_then_y()
{
 x=true;
 std::atomic_thread_fence(std::memory_order_release);
 y.store(true,std::memory_order_relaxed);
}
void read_y_then_x()
{
 while(!y.load(std::memory_order_relaxed));
 std::atomic_thread_fence(std::memory_order_acquire);
 if(x)
 ++z;
}
int main()
{
 x=false;
 y=false;
 z=0;
 std::thread a(write_x_then_y);
 std::thread b(read_y_then_x);
 a.join();

Listing 5.13 Enforcing ordering on non-atomic operations

x is now a plain
non-atomic variable.

b

Store to x before
the fence

c

Store to y after
the fence

d

Wait until you see
the write from c.

This will read the
value written by B.e

169Synchronizing operations and enforcing ordering
 b.join();
 assert(z.load()!=0);
}

The fences still provide an enforced ordering of the store to x B and the store to y

c, and the load from y d and the load from x e, and there’s still a happens-before
relationship between the store to x and the load from x, so the assert f still won’t fire.
The store to c and load from y d still have to be atomic; otherwise, there would be a
data race on y, but the fences enforce an ordering on the operations on x, once the
reading thread has seen the stored value of y. This enforced ordering means that
there’s no data race on x, even though it’s modified by one thread and read by
another.

 It’s not only fences that can order non-atomic operations. You saw the ordering
effects back in listing 5.10 with a memory_order_release/memory_order_consume pair
ordering non-atomic accesses to a dynamically allocated object, and many of the
examples in this chapter could be rewritten with some of the memory_order_relaxed
operations replaced with plain non-atomic operations instead.

5.3.7 Ordering non-atomic operations

Ordering of non-atomic operations through the use of atomic operations is where the
sequenced-before part of happens-before becomes so important. If a non-atomic
operation is sequenced before an atomic operation, and that atomic operation hap-
pens before an operation in another thread, the non-atomic operation also happens
before that operation in the other thread. This is where the ordering of the opera-
tions on x in listing 5.13 comes from and why the example in listing 5.2 works. This is
also the basis for the higher-level synchronization facilities in the C++ Standard
Library, such as mutexes and condition variables. To see how this works, consider the
simple spinlock mutex from listing 5.1.

 The lock() operation is a loop on flag.test_and_set() using std::memory_
order_acquire ordering, and the unlock() is a call to flag.clear() with std::memory
_order_release ordering. When the first thread calls lock(), the flag is initially clear,
so the first call to test_and_set() will set the flag and return false, indicating that
this thread now has the lock, and terminating the loop. The thread is then free to
modify any data protected by the mutex. Any other thread that calls lock() at this
time will find the flag already set and will be blocked in the test_and_set() loop.

 When the thread with the lock has finished modifying the protected data, it calls
unlock(), which calls flag.clear() with std::memory_order_release semantics.
This then synchronizes (see section 5.3.1) with a subsequent call to flag.test
_and_set() from an invocation of lock() on another thread, because this call has
std::memory_order_acquire semantics. Because the modification of the protected
data is necessarily sequenced before the unlock() call, this modification happens
before the unlock() and thus happens before the subsequent lock() call from the
second thread (because of the synchronizes with relationship between the unlock()

This assert won’t fire.f

170 CHAPTER 5 The C++ memory model and operations on atomic types
and the lock()) and happens before any accesses to that data from this second thread
once it has acquired the lock.

 Although other mutex implementations will have different internal operations,
the basic principle is the same: lock() is an acquire operation on an internal memory
location, and unlock() is a release operation on that same memory location.

 Each of the synchronization mechanisms described in chapters 2, 3, and 4 will pro-
vide ordering guarantees in terms of the synchronizes-with relationship. This is what
enables you to use them to synchronize your data, and provide ordering guarantees.
The following are the synchronization relationships provided by these facilities:

std::thread

 The completion of the std::thread constructor synchronizes with the invoca-
tion of the supplied function or callable object on the new thread.

 The completion of a thread synchronizes with the return from a successful call
to join on the std::thread object that owns that thread.

std::mutex, std::timed_mutex, std::recursive_mutex, std::recursive_timed_mutex

 All calls to lock and unlock, and successful calls to try_lock, try_lock_for, or
try_lock_until, on a given mutex object form a single total order: the lock order
of the mutex.

 A call to unlock on a given mutex object synchronizes with a subsequent call to
lock, or a subsequent successful call to try_lock, try_lock_for, or try_
lock_until, on that object in the lock order of the mutex.

 Failed calls to try_lock, try_lock_for, or try_lock_until do not participate
in any synchronization relationships.

std::shared_mutex, std::shared_timed_mutex

 All calls to lock, unlock, lock_shared, and unlock_shared, and successful calls
to try_lock, try_lock_for, try_lock_until, try_lock_shared, try_lock_
shared_for, or try_lock_shared_until, on a given mutex object form a single
total order: the lock order of the mutex.

 A call to unlock on a given mutex object synchronizes with a subsequent call to
lock or shared_lock, or a successful call to try_lock, try_lock_for, try_
lock_until, try_lock_shared, try_lock_shared_for, or try_lock_shared
_until, on that object in the lock order of the mutex.

 Failed calls to try_lock, try_lock_for, try_lock_until, try_lock_shared,
try_lock_shared_for, or try_lock_shared_until do not participate in any
synchronization relationships.

std::promise, std::future AND std::shared_future

 The successful completion of a call to set_value or set_exception on a given
std::promise object synchronizes with a successful return from a call to wait
or get, or a call to wait_for or wait_until that returns std::future_status::
ready on a future that shares the same asynchronous state as the promise.

171Synchronizing operations and enforcing ordering
 The destructor of a given std::promise object that stores an std::future_error
exception in the shared asynchronous state associated with the promise synchro-
nizes with a successful return from a call to wait or get, or a call to wait_for or
wait_until that returns std::future_status::ready on a future that shares the
same asynchronous state as the promise.

std::packaged_task, std::future AND std::shared_future

 The successful completion of a call to the function call operator of a given
std::packaged_task object synchronizes with a successful return from a call to
wait or get, or a call to wait_for or wait_until that returns std::future
_status::ready on a future that shares the same asynchronous state as the
packaged task.

 The destructor of a given std::packaged_task object that stores an std::
future_error exception in the shared asynchronous state associated with the
packaged task synchronizes with a successful return from a call to wait or get,
or a call to wait_for or wait_until that returns std::future_status::ready
on a future that shares the same asynchronous state as the packaged task.

std::async, std::future AND std::shared_future

 The completion of the thread running a task launched via a call to std::async
with a policy of std::launch::async synchronizes with a successful return from
a call to wait or get, or a call to wait_for or wait_until that returns
std::future_status::ready on a future that shares the same asynchronous
state as the spawned task.

 The completion of a task launched via a call to std::async with a policy of
std::launch::deferred synchronizes with a successful return from a call to wait
or get, or a call to wait_for or wait_until that returns std::future_status
::ready on a future that shares the same asynchronous state as the promise.

std::experimental::future, std::experimental::shared_future AND CONTINUATIONS

 The event that causes an asynchronous shared state to become ready syn-
chronizes with the invocation of a continuation function scheduled on that
shared state.

 The completion of a continuation function synchronizes with a successful
return from a call to wait or get, or a call to wait_for or wait_until that
returns std::future_status::ready on a future that shares the same asyn-
chronous state as the future returned from the call to then that scheduled the
continuation, or the invocation of any continuation scheduled on that future.

std::experimental::latch

 The invocation of each call to count_down or count_down_and_wait on a given
instance of std::experimental::latch synchronizes with the completion of
each successful call to wait or count_down_and_wait on that latch.

172 CHAPTER 5 The C++ memory model and operations on atomic types
std::experimental::barrier

 The invocation of each call to arrive_and_wait or arrive_and_drop on a
given instance of std::experimental::barrier synchronizes with the comple-
tion of each subsequent successful call to arrive_and_wait on that barrier.

std::experimental::flex_barrier

 The invocation of each call to arrive_and_wait or arrive_and_drop on a given
instance of std::experimental::flex_barrier synchronizes with the comple-
tion of each subsequent successful call to arrive_and_wait on that barrier.

 The invocation of each call to arrive_and_wait or arrive_and_drop on a
given instance of std::experimental::flex_barrier synchronizes with the
subsequent invocation of the completion function on that barrier.

 The return from the completion function on a given instance of std::
experimental::flex_barrier synchronizes with the completion of each call to
arrive_and_wait on that barrier that was blocked waiting for that barrier when
the completion function was invoked.

std::condition_variable AND std::condition_variable_any

 Condition variables do not provide any synchronization relationships. They are
optimizations over busy-wait loops, and all the synchronization is provided by
the operations on the associated mutex.

Summary
In this chapter I’ve covered the low-level details of the C++ memory model and the
atomic operations that provide the basis for synchronization between threads. This
includes the basic atomic types provided by specializations of the std::atomic<> class
template as well as the generic atomic interface provided by the primary std::atomic<>
template and the std::experimental::atomic_shared_ptr<> template, the opera-
tions on these types, and the complex details of the various memory-ordering options.

 We’ve also looked at fences and how they can be paired with operations on atomic
types to enforce an ordering. Finally, we’ve come back to the beginning with a look at
how the atomic operations can be used to enforce an ordering between non-atomic
operations on separate threads, and the synchronization relationships provided by the
higher-level facilities.

 In the next chapter we’ll look at using the high-level synchronization facilities
alongside atomic operations to design efficient containers for concurrent access, and
we’ll write algorithms that process data in parallel.

Designing lock-based
concurrent data structures
In the last chapter we looked at the low-level details of atomic operations and the
memory model. In this chapter we’ll take a break from the low-level details (although
we’ll need them for chapter 7) and think about data structures.

 The choice of data structure to use for a programming problem can be a key
part of the overall solution, and parallel programming problems are no exception.
If a data structure is to be accessed from multiple threads, either it must be com-
pletely immutable so the data never changes and no synchronization is necessary,
or the program must be designed to ensure that changes are correctly synchro-
nized between threads. One option is to use a separate mutex and external locking
to protect the data, using the techniques we looked at in chapters 3 and 4, and
another is to design the data structure itself for concurrent access.

This chapter covers
 What it means to design data structures for

concurrency

 Guidelines for doing so

 Example implementations of data structures
designed for concurrency
173

174 CHAPTER 6 Designing lock-based concurrent data structures
 When designing a data structure for concurrency, you can use the basic building
blocks of multithreaded applications from earlier chapters, such as mutexes and con-
dition variables. Indeed, you’ve already seen a couple of examples showing how to
combine these building blocks to write data structures that are safe for concurrent
access from multiple threads.

 In this chapter we’ll start by looking at some general guidelines for designing data
structures for concurrency. We’ll then take the basic building blocks of locks and con-
dition variables and revisit the design of those basic data structures before moving on
to more complex data structures. In chapter 7 we’ll look at how to go right back to
basics and use the atomic operations described in chapter 5 to build data structures
without locks.

 So, without further ado, let’s look at what’s involved in designing a data structure
for concurrency.

6.1 What does it mean to design for concurrency?
At the basic level, designing a data structure for concurrency means that multiple
threads can access the data structure concurrently, either performing the same or dis-
tinct operations, and each thread will see a self-consistent view of the data structure.
No data will be lost or corrupted, all invariants will be upheld, and there’ll be no prob-
lematic race conditions. This data structure is said to be thread-safe. In general, a data
structure will be safe only for particular types of concurrent access. It may be possible
to have multiple threads performing one type of operation on the data structure con-
currently, whereas another operation requires exclusive access by a single thread.
Alternatively, it may be safe for multiple threads to access a data structure concur-
rently if they’re performing different actions, whereas multiple threads performing the
same action would be problematic.

 Truly designing for concurrency means more than that, though: it means provid-
ing the opportunity for concurrency to threads accessing the data structure. By its nature,
a mutex provides mutual exclusion: only one thread can acquire a lock on the mutex at
a time. A mutex protects a data structure by explicitly preventing true concurrent
access to the data it protects.

 This is called serialization: threads take turns accessing the data protected by the
mutex; they must access it serially rather than concurrently. Consequently, you must
put careful thought into the design of the data structure to enable true concurrent
access. Some data structures have more scope for true concurrency than others, but in
all cases the idea is the same: the smaller the protected region, the fewer operations
are serialized, and the greater the potential for concurrency.

 Before we look at some data structure designs, let’s have a quick look at some sim-
ple guidelines for what to consider when designing for concurrency.

175What does it mean to design for concurrency?
6.1.1 Guidelines for designing data structures for concurrency

As I mentioned, you have two aspects to consider when designing data structures for
concurrent access: ensuring that the accesses are safe and enabling genuine concurrent
access. I covered the basics of how to make the data structure thread-safe back in
chapter 3:

 Ensure that no thread can see a state where the invariants of the data structure
have been broken by the actions of another thread.

 Take care to avoid race conditions inherent in the interface to the data structure
by providing functions for complete operations rather than for operation steps.

 Pay attention to how the data structure behaves in the presence of exceptions to
ensure that the invariants are not broken.

 Minimize the opportunities for deadlock when using the data structure by
restricting the scope of locks and avoiding nested locks where possible.

Before you think about any of these details, it’s also important to think about what
constraints you want to put on the users of the data structure; if one thread is access-
ing the data structure through a particular function, which functions are safe to call
from other threads?

 This is a crucial question to consider. Generally, constructors and destructors
require exclusive access to the data structure, but it’s up to the user to ensure that
they’re not accessed before construction is complete or after destruction has started.
If the data structure supports assignment, swap(), or copy construction, then as the
designer of the data structure, you need to decide whether these operations are safe
to call concurrently with other operations or whether they require the user to ensure
exclusive access even though the majority of functions for manipulating the data
structure may be called from multiple threads concurrently without any problems.

 The second aspect to consider is that of enabling genuine concurrent access. I
can’t offer much in the way of guidelines for this; instead, here’s a list of questions to
ask yourself as the data structure designer:

 Can the scope of locks be restricted to allow some parts of an operation to be
performed outside the lock?

 Can different parts of the data structure be protected with different mutexes?
 Do all operations require the same level of protection?
 Can a simple change to the data structure improve the opportunities for con-

currency without affecting the operational semantics?

All these questions are guided by a single idea: how can you minimize the amount of
serialization that must occur and enable the greatest amount of true concurrency?
It’s not uncommon for data structures to allow concurrent access from multiple
threads that merely read the data structure, whereas a thread that can modify the
data structure must have exclusive access. This is supported by using constructs like

176 CHAPTER 6 Designing lock-based concurrent data structures
std::shared_mutex. Likewise, as you’ll see shortly, it’s quite common for a data
structure to support concurrent access from threads performing different operations
while serializing threads that try to perform the same operation.

 The simplest thread-safe data structures typically use mutexes and locks to protect
the data. Although there are issues with this, as you saw in chapter 3, it’s relatively easy
to ensure that only one thread is accessing the data structure at a time. To ease you
into the design of thread-safe data structures, we’ll stick to looking at such lock-based
data structures in this chapter and leave the design of concurrent data structures with-
out locks for chapter 7.

6.2 Lock-based concurrent data structures
The design of lock-based concurrent data structures is all about ensuring that the
right mutex is locked when accessing the data and that the lock is held for the min-
imum amount of time. This is hard enough when there’s just one mutex protecting
a data structure. You need to ensure that data can’t be accessed outside the protec-
tion of the mutex lock and that there are no race conditions inherent in the inter-
face, as you saw in chapter 3. If you use separate mutexes to protect separate parts
of the data structure, these issues are compounded, and there’s now also the possi-
bility of deadlock if the operations on the data structure require more than one
mutex to be locked. You therefore need to consider the design of a data structure
with multiple mutexes even more carefully than the design of a data structure with a
single mutex.

 In this section you’ll apply the guidelines from section 6.1.1 to the design of sev-
eral simple data structures, using mutexes and locks to protect the data. In each case
you’ll seek out opportunities for enabling greater concurrency while ensuring that the
data structure remains thread-safe.

 Let’s start by looking at the stack implementation from chapter 3; it’s one of the
simplest data structures around, and it uses only a single mutex. Is it thread-safe? How
does it fare from the point of view of achieving true concurrency?

6.2.1 A thread-safe stack using locks

The thread-safe stack from chapter 3 is reproduced in the following listing. The intent
is to write a thread-safe data structure akin to std::stack<>, which supports pushing
data items onto the stack and popping them off again.

#include <exception>
struct empty_stack: std::exception
{
 const char* what() const throw();
};
template<typename T>
class threadsafe_stack

Listing 6.1 A class definition for a thread-safe stack

177Lock-based concurrent data structures
{
private:
 std::stack<T> data;
 mutable std::mutex m;
public:
 threadsafe_stack(){}
 threadsafe_stack(const threadsafe_stack& other)
 {
 std::lock_guard<std::mutex> lock(other.m);
 data=other.data;
 }
 threadsafe_stack& operator=(const threadsafe_stack&) = delete;
 void push(T new_value)
 {
 std::lock_guard<std::mutex> lock(m);
 data.push(std::move(new_value));
 }
 std::shared_ptr<T> pop()
 {
 std::lock_guard<std::mutex> lock(m);
 if(data.empty()) throw empty_stack();
 std::shared_ptr<T> const res(
 std::make_shared<T>(std::move(data.top())));
 data.pop();
 return res;
 }
 void pop(T& value)
 {
 std::lock_guard<std::mutex> lock(m);
 if(data.empty()) throw empty_stack();
 value=std::move(data.top());
 data.pop();
 }
 bool empty() const
 {
 std::lock_guard<std::mutex> lock(m);
 return data.empty();
 }
};

Let’s look at each of the guidelines in turn and see how they apply here.
 First, as you can see, the basic thread safety is provided by protecting each member

function with a lock on the mutex, m. This ensures that only one thread is accessing
the data at any one time, so provided each member function maintains the invariants,
no thread can see a broken invariant.

 Second, there’s a potential for a race condition between empty() and either of the
pop() functions, but because the code explicitly checks for the contained stack being
empty while holding the lock in pop(), this race condition isn’t problematic. By
returning the popped data item directly as part of the call to pop(), you avoid a poten-
tial race condition that would be present with separate top() and pop() member
functions such as those in std::stack<>.

b

c

d

e

f
g

178 CHAPTER 6 Designing lock-based concurrent data structures
 Next, there are a few potential sources of exceptions. Locking a mutex may throw
an exception, but not only is this likely to be exceedingly rare (because it indicates a
problem with the mutex or a lack of system resources), it’s also the first operation in
each member function. Because no data has been modified, this is safe. Unlocking a
mutex can’t fail, so that’s always safe, and the use of std::lock_guard<> ensures that
the mutex is never left locked.

 The call to data.push() B may throw an exception if either copying/moving the
data value throws an exception or not enough memory can be allocated to extend the
underlying data structure. Either way, std::stack<> guarantees it will be safe, so
that’s not a problem either.

 In the first overload of pop(), the code itself might throw an empty_stack excep-
tion c, but nothing has been modified, so that’s safe. The creation of res d might
throw an exception, though, for a couple of reasons: the call to std::make_shared
might throw because it can’t allocate memory for the new object and the internal
data required for reference counting, or the copy constructor or move constructor
of the data item to be returned might throw when copying/moving into the freshly-
allocated memory. In both cases, the C++ runtime and Standard Library ensure that
there are no memory leaks and the new object (if any) is correctly destroyed. Because
you still haven’t modified the underlying stack, you’re OK. The call to data.pop() e
is guaranteed not to throw, as is the return of the result, so this overload of pop() is
exception-safe.

 The second overload of pop() is similar, except this time it’s the copy assignment
or move assignment operator that can throw f, rather than the construction of a new
object and an std::shared_ptr instance. Again, you don’t modify the data structure
until the call to data.pop() g, which is still guaranteed not to throw, so this overload
is exception-safe too.

 Finally, empty() doesn’t modify any data, so that’s exception-safe.
 There are a couple of opportunities for deadlock here, because you call user code

while holding a lock: the copy constructor or move constructor (B, d) and copy
assignment or move assignment operator f on the contained data items, as well as
potentially a user-defined operator new. If these functions either call member func-
tions on the stack that the item is being inserted into or removed from or require a
lock of any kind and another lock was held when the stack member function was
invoked, there’s the possibility of deadlock. But it’s sensible to require that users of
the stack be responsible for ensuring this; you can’t reasonably expect to add an item
onto a stack or remove it from a stack without copying it or allocating memory for it.

 Because all the member functions use std::lock_guard<> to protect the data, it’s
safe for any number of threads to call the stack member functions. The only member
functions that aren’t safe are the constructors and destructors, but this isn’t a prob-
lem; the object can be constructed only once and destroyed only once. Calling mem-
ber functions on an incompletely constructed object or a partially destructed object is
never a good idea, whether done concurrently or not. As a consequence, the user must

179Lock-based concurrent data structures
ensure that other threads aren’t able to access the stack until it’s fully constructed and
must ensure that all threads have ceased accessing the stack before it’s destroyed.

 Although it’s safe for multiple threads to call the member functions concurrently,
because of the use of locks, only one thread is ever doing any work in the stack data
structure at a time. This serialization of threads can potentially limit the performance
of an application where there’s significant contention on the stack: while a thread is
waiting for the lock, it isn’t doing any useful work. Also, the stack doesn’t provide any
means of waiting for an item to be added, so if a thread needs to wait, it must periodi-
cally call empty(), or call pop() and catch the empty_stack exceptions. This makes
this stack implementation a poor choice if such a scenario is required, because a wait-
ing thread must either consume precious resources checking for data or the user
must write external wait and notification code (for example, using condition vari-
ables), which might render the internal locking unnecessary and therefore wasteful.
The queue from chapter 4 shows a way of incorporating this waiting into the data struc-
ture itself using a condition variable inside the data structure, so let’s look at that next.

6.2.2 A thread-safe queue using locks and condition variables

The thread-safe queue from chapter 4 is reproduced in listing 6.2. Much like the stack
was modeled after std::stack<>, this queue is modeled after std::queue<>. Again,
the interface differs from that of the standard container adaptor because of the con-
straints of writing a data structure that’s safe for concurrent access from multiple
threads.

template<typename T>
class threadsafe_queue
{
private:
 mutable std::mutex mut;
 std::queue<T> data_queue;
 std::condition_variable data_cond;
public:
 threadsafe_queue()
 {}
 void push(T new_value)
 {
 std::lock_guard<std::mutex> lk(mut);
 data_queue.push(std::move(new_value));
 data_cond.notify_one();
 }
 void wait_and_pop(T& value)
 {
 std::unique_lock<std::mutex> lk(mut);
 data_cond.wait(lk,[this]{return !data_queue.empty();});
 value=std::move(data_queue.front());
 data_queue.pop();
 }

Listing 6.2 The full class definition for a thread-safe queue using condition variables

b

c

180 CHAPTER 6 Designing lock-based concurrent data structures
 std::shared_ptr<T> wait_and_pop()
 {
 std::unique_lock<std::mutex> lk(mut);
 data_cond.wait(lk,[this]{return !data_queue.empty();});
 std::shared_ptr<T> res(
 std::make_shared<T>(std::move(data_queue.front())));
 data_queue.pop();
 return res;
 }
 bool try_pop(T& value)
 {
 std::lock_guard<std::mutex> lk(mut);
 if(data_queue.empty())
 return false;
 value=std::move(data_queue.front());
 data_queue.pop();
 return true;
 }
 std::shared_ptr<T> try_pop()
 {
 std::lock_guard<std::mutex> lk(mut);
 if(data_queue.empty())
 return std::shared_ptr<T>();
 std::shared_ptr<T> res(
 std::make_shared<T>(std::move(data_queue.front())));
 data_queue.pop();
 return res;
 }
 bool empty() const
 {
 std::lock_guard<std::mutex> lk(mut);
 return data_queue.empty();
 }
};

The structure of the queue implementation shown in listing 6.2 is similar to the stack
from listing 6.1, except for the call to data_cond.notify_one() in push() B and the
wait_and_pop() functions, c and d. The two overloads of try_pop() are almost
identical to the pop() functions from listing 6.1, except that they don’t throw an
exception if the queue is empty. Instead, they return either a bool value indicating
whether a value was retrieved or a NULL pointer if no value could be retrieved by the
pointer-returning overload f. This would also have been a valid way of implementing
the stack. If you exclude the wait_and_pop() functions, the analysis you did for the
stack applies just as well here.

 The new wait_and_pop() functions are a solution to the problem of waiting for a
queue entry that you saw with the stack; rather than continuously calling empty(), the
waiting thread can call wait_and_pop() and the data structure will handle the waiting
with a condition variable. The call to data_cond.wait() won’t return until the under-
lying queue has at least one element, so you don’t have to worry about the possibility
of an empty queue at this point in the code, and the data is still protected with the

d

e

f

181Lock-based concurrent data structures
lock on the mutex. These functions don’t therefore add any new race conditions or
possibilities for deadlock, and the invariants will be upheld.

 There’s a slight twist with regard to exception safety in that if more than one
thread is waiting when an entry is pushed onto the queue, only one thread will be
woken by the call to data_cond.notify_one(). But if that thread then throws an
exception in wait_and_pop(), such as when the new std::shared_ptr<> is con-
structed e, none of the other threads will be woken. If this isn’t acceptable, the call is
readily replaced with data_cond.notify_all(), which will wake all the threads but at
the cost of most of them then going back to sleep when they find that the queue is
empty after all. A second alternative is to have wait_and_pop() call notify_one() if
an exception is thrown, so that another thread can attempt to retrieve the stored
value. A third alternative is to move the std::shared_ptr<> initialization to the
push() call and store std::shared_ptr<> instances rather than direct data values.
Copying the std::shared_ptr<> out of the internal std::queue<> then can’t throw
an exception, so wait_and_pop() is safe again. The following listing shows the queue
implementation revised with this in mind.

template<typename T>
class threadsafe_queue
{
private:
 mutable std::mutex mut;
 std::queue<std::shared_ptr<T> > data_queue;
 std::condition_variable data_cond;
public:
 threadsafe_queue()
 {}
 void wait_and_pop(T& value)
 {
 std::unique_lock<std::mutex> lk(mut);
 data_cond.wait(lk,[this]{return !data_queue.empty();});
 value=std::move(*data_queue.front());
 data_queue.pop();
 }
 bool try_pop(T& value)
 {
 std::lock_guard<std::mutex> lk(mut);
 if(data_queue.empty())
 return false;
 value=std::move(*data_queue.front());
 data_queue.pop();
 return true;
 }
 std::shared_ptr<T> wait_and_pop()
 {
 std::unique_lock<std::mutex> lk(mut);
 data_cond.wait(lk,[this]{return !data_queue.empty();});
 std::shared_ptr<T> res=data_queue.front();

Listing 6.3 A thread-safe queue holding std::shared_ptr<> instances

b

c

d

182 CHAPTER 6 Designing lock-based concurrent data structures
 data_queue.pop();
 return res;
 }
 std::shared_ptr<T> try_pop()
 {
 std::lock_guard<std::mutex> lk(mut);
 if(data_queue.empty())
 return std::shared_ptr<T>();
 std::shared_ptr<T> res=data_queue.front();
 data_queue.pop();
 return res;
 }
 void push(T new_value)
 {
 std::shared_ptr<T> data(
 std::make_shared<T>(std::move(new_value)));
 std::lock_guard<std::mutex> lk(mut);
 data_queue.push(data);
 data_cond.notify_one();
 }
 bool empty() const
 {
 std::lock_guard<std::mutex> lk(mut);
 return data_queue.empty();
 }
};

The basic consequences of holding the data by std::shared_ptr<> are straightfor-
ward: the pop functions that take a reference to a variable to receive the new value
now have to dereference the stored pointer, B and c, and the pop functions that
return an std::shared_ptr<> instance can retrieve it from the queue, d and e,
before returning it to the caller.

 If the data is held by std::shared_ptr<>, there’s an additional benefit: the alloca-
tion of the new instance can now be done outside the lock in push() f, whereas in
listing 6.2 it had to be done while holding the lock in pop(). Because memory alloca-
tion is typically quite an expensive operation, this can be beneficial for the perfor-
mance of the queue, because it reduces the time the mutex is held, allowing other
threads to perform operations on the queue in the meantime.

 Just like in the stack example, the use of a mutex to protect the entire data struc-
ture limits the concurrency supported by this queue; although multiple threads might
be blocked on the queue in various member functions, only one thread can be doing
any work at a time. But part of this restriction comes from the use of std::queue<> in
the implementation; by using the standard container you now have one data item
that’s either protected or not. By taking control of the detailed implementation of the
data structure, you can provide more fine-grained locking and allow a higher level of
concurrency.

e

f

183Lock-based concurrent data structures
6.2.3 A thread-safe queue using fine-grained locks and
condition variables

In listings 6.2 and 6.3 you have one protected data item (data_queue) and therefore
one mutex. In order to use finer-grained locking, you need to look inside the queue at
its constituent parts and associate one mutex with each distinct data item.

 The simplest data structure for a queue is a singly linked list, as shown in figure 6.1.
The queue contains a head pointer, which points to the first item in the list, and each
item then points to the next item. Data items are removed from the queue by replac-
ing the head pointer with the pointer to the next item and then returning the data
from the old head.

Items are added to the queue at the other end. In order to do this, the queue also con-
tains a tail pointer, which refers to the last item in the list. New nodes are added by
changing the next pointer of the last item to point to the new node and then updat-
ing the tail pointer to refer to the new item. When the list is empty, both the head
and tail pointers are NULL.

 The following listing shows a simple implementation of this queue based on a cut-
down version of the interface to the queue in listing 6.2; you have only one try_pop()
function and no wait_and_pop() because this queue only supports single-threaded use.

template<typename T>
class queue
{
private:
 struct node
 {
 T data;
 std::unique_ptr<node> next;
 node(T data_):
 data(std::move(data_))
 {}
 };
 std::unique_ptr<node> head;
 node* tail;

Listing 6.4 A simple single-threaded queue implementation

Tail Head

Figure 6.1 A queue represented using a single-linked list

b
c

184 CHAPTER 6 Designing lock-based concurrent data structures
public:
 queue(): tail(nullptr)
 {}
 queue(const queue& other)=delete;
 queue& operator=(const queue& other)=delete;
 std::shared_ptr<T> try_pop()
 {
 if(!head)
 {
 return std::shared_ptr<T>();
 }
 std::shared_ptr<T> const res(
 std::make_shared<T>(std::move(head->data)));
 std::unique_ptr<node> const old_head=std::move(head);
 head=std::move(old_head->next);
 if(!head)
 tail=nullptr;
 return res;
 }
 void push(T new_value)
 {
 std::unique_ptr<node> p(new node(std::move(new_value)));
 node* const new_tail=p.get();
 if(tail)
 {
 tail->next=std::move(p);
 }
 else
 {
 head=std::move(p);
 }
 tail=new_tail;
 }
};

First off, note that listing 6.4 uses std::unique_ptr<node> to manage the nodes,
because this ensures that they (and the data they refer to) get deleted when they’re no
longer needed, without having to write an explicit delete. This ownership chain is
managed from head, with tail being a raw pointer to the last node, as it needs to
refer to a node already owned by std::unique_ptr<node>.

 Although this implementation works fine in a single-threaded context, a couple of
things will cause you problems if you try to use fine-grained locking in a multi-
threaded context. Given that you have two data items (head B and tail c), you
could in principle use two mutexes, one to protect head and one to protect tail, but
there are a couple of problems with that.

 The most obvious problem is that push() can modify both head f and tail g, so
it would have to lock both mutexes. This isn’t too much of a problem, although it’s
unfortunate, because locking both mutexes would be possible. The critical problem
is that both push() and pop() access the next pointer of a node: push() updates
tail->next e, and try_pop() reads head->next d. If there’s a single item in the

d

e

f

g

185Lock-based concurrent data structures
queue, then head==tail, so both head->next and tail->next are the same object,
which therefore requires protection. Because you can’t tell if it’s the same object with-
out reading both head and tail, you now have to lock the same mutex in both push()
and try_pop(), so you’re no better off than before. Is there a way out of this dilemma?

ENABLING CONCURRENCY BY SEPARATING DATA

You can solve this problem by preallocating a dummy node with no data to ensure that
there’s always at least one node in the queue to separate the node being accessed at
the head from that being accessed at the tail. For an empty queue, head and tail now
both point to the dummy node rather than being NULL. This is fine, because
try_pop() doesn’t access head->next if the queue is empty. If you add a node to the
queue (so there’s one real node), then head and tail now point to separate nodes, so
there’s no race on head->next and tail->next. The downside is that you have to add
an extra level of indirection to store the data by pointer in order to allow the dummy
nodes. The following listing shows how the implementation looks now.

template<typename T>
class queue
{
private:
 struct node
 {
 std::shared_ptr<T> data;
 std::unique_ptr<node> next;
 };
 std::unique_ptr<node> head;
 node* tail;
public:
 queue():
 head(new node),tail(head.get())
 {}
 queue(const queue& other)=delete;
 queue& operator=(const queue& other)=delete;
 std::shared_ptr<T> try_pop()
 {
 if(head.get()==tail)
 {
 return std::shared_ptr<T>();
 }
 std::shared_ptr<T> const res(head->data);
 std::unique_ptr<node> old_head=std::move(head);
 head=std::move(old_head->next);
 return res;
 }
 void push(T new_value)
 {
 std::shared_ptr<T> new_data(
 std::make_shared<T>(std::move(new_value)));

Listing 6.5 A simple queue with a dummy node

b

c

d

e

f
g

h

186 CHAPTER 6 Designing lock-based concurrent data structures
 std::unique_ptr<node> p(new node);
 tail->data=new_data;
 node* const new_tail=p.get();
 tail->next=std::move(p);
 tail=new_tail;
 }
};

The changes to try_pop() are fairly minimal. First, you’re comparing head against
tail d, rather than checking for NULL, because the dummy node means that head is
never NULL. Because head is a std::unique_ptr<node>, you need to call head.get()
to do the comparison. Second, because the node now stores the data by pointer B,
you can retrieve the pointer directly e, rather than having to construct a new
instance of T. The big changes are in push(): you must first create a new instance of T
on the heap and take ownership of it in a std::shared_ptr<> h (note the use of
std::make_shared to avoid the overhead of a second memory allocation for the refer-
ence count). The new node you create is going to be the new dummy node, so you
don’t need to supply the new_value to the constructor i. Instead, you set the data on
the old dummy node to your newly allocated copy of the new_value j. Finally, in
order to have a dummy node, you have to create it in the constructor c.

 By now, I’m sure you’re wondering what these changes buy you and how they help
with making the queue thread-safe. Well, push() now accesses only tail, not head,
which is an improvement. try_pop() accesses both head and tail, but tail is needed
only for the initial comparison, so the lock is short-lived. The big gain is that the
dummy node means try_pop() and push() are never operating on the same node, so
you no longer need an overarching mutex. You can have one mutex for head and one
for tail. Where do you put the locks?

 You’re aiming for the maximum number of opportunities for concurrency, so you
want to hold the locks for the shortest possible length of time. push() is easy: the
mutex needs to be locked across all accesses to tail, which means you lock the mutex
after the new node is allocated i, and before you assign the data to the current tail
node j. The lock then needs to be held until the end of the function.

 try_pop() isn’t so easy. First off, you need to lock the mutex on head and hold it
until you’re finished with head. This is the mutex to determine which thread does the
popping, so you want to do that first. Once head is changed f, you can unlock
the mutex; it doesn’t need to be locked when you return the result g. That leaves the
access to tail needing a lock on the tail mutex. Because you need to access tail only
once, you can just acquire the mutex for the time it takes to do the read. This is best
done by wrapping it in a function. In fact, because the code that needs the head
mutex locked is only a subset of the member, it’s clearer to wrap that in a function too.
The final code is shown here.

i
j

187Lock-based concurrent data structures
template<typename T>
class threadsafe_queue
{
private:
 struct node
 {
 std::shared_ptr<T> data;
 std::unique_ptr<node> next;
 };
 std::mutex head_mutex;
 std::unique_ptr<node> head;
 std::mutex tail_mutex;
 node* tail;
 node* get_tail()
 {
 std::lock_guard<std::mutex> tail_lock(tail_mutex);
 return tail;
 }
 std::unique_ptr<node> pop_head()
 {
 std::lock_guard<std::mutex> head_lock(head_mutex);

 if(head.get()==get_tail())
 {
 return nullptr;
 }
 std::unique_ptr<node> old_head=std::move(head);
 head=std::move(old_head->next);
 return old_head;
 }
public:
 threadsafe_queue():
 head(new node),tail(head.get())
 {}
 threadsafe_queue(const threadsafe_queue& other)=delete;
 threadsafe_queue& operator=(const threadsafe_queue& other)=delete;
 std::shared_ptr<T> try_pop()
 {
 std::unique_ptr<node> old_head=pop_head();
 return old_head?old_head->data:std::shared_ptr<T>();
 }
 void push(T new_value)
 {
 std::shared_ptr<T> new_data(
 std::make_shared<T>(std::move(new_value)));
 std::unique_ptr<node> p(new node);
 node* const new_tail=p.get();
 std::lock_guard<std::mutex> tail_lock(tail_mutex);
 tail->data=new_data;
 tail->next=std::move(p);
 tail=new_tail;
 }
};

Listing 6.6 A thread-safe queue with fine-grained locking

188 CHAPTER 6 Designing lock-based concurrent data structures
Let’s look at this code with a critical eye, thinking about the guidelines listed in sec-
tion 6.1.1. Before you look for broken invariants, you should be sure what they are:

 tail->next==nullptr.
 tail->data==nullptr.
 head==tail implies an empty list.
 A single element list has head->next==tail.
 For each node x in the list, where x!=tail, x->data points to an instance of T

and x->next points to the next node in the list. x->next==tail implies x is the
last node in the list.

 Following the next nodes from head will eventually yield tail.

On its own, push() is straightforward: the only modifications to the data structure are
protected by tail_mutex, and they uphold the invariant because the new tail node is
an empty node and data and next are correctly set for the old tail node, which is now
the last real node in the list.

 The interesting part is try_pop(). It turns out that not only is the lock on
tail_mutex necessary to protect the read of tail itself, but it’s also necessary to
ensure that you don’t get a data race reading the data from the head. If you didn’t
have that mutex, it would be quite possible for a thread to call try_pop() and a thread
to call push() concurrently, and there’d be no defined ordering on their operations.
Even though each member function holds a lock on a mutex, they hold locks on differ-
ent mutexes, and they potentially access the same data; all data in the queue originates
from a call to push(), after all. Because the threads would be potentially accessing the
same data without a defined ordering, this would be a data race, as you saw in chapter 5,
and undefined behavior. Thankfully the lock on tail_mutex in get_tail() solves
everything. Because the call to get_tail() locks the same mutex as the call to push(),
there’s a defined order between the two calls. Either the call to get_tail() occurs
before the call to push(), in which case it sees the old value of tail, or it occurs after
the call to push(), in which case it sees the new value of tail and the new data
attached to the previous value of tail.

 It’s also important that the call to get_tail() occurs inside the lock on head_
mutex. If it didn’t, the call to pop_head() could be stuck in between the call to
get_tail() and the lock on the head_mutex, because other threads called try_pop()
(and thus pop_head()) and acquired the lock first, preventing your initial thread
from making progress:

 std::unique_ptr<node> pop_head()
 {
 node* const old_tail=get_tail();
 std::lock_guard<std::mutex> head_lock(head_mutex);

 if(head.get()==old_tail)
 {
 return nullptr;
 }

This is a broken
implementation.

Get old tail value
outside lock on
head_mutexb

c

189Lock-based concurrent data structures
 std::unique_ptr<node> old_head=std::move(head);
 head=std::move(old_head->next);
 return old_head;
 }

In this broken scenario, where the call to get_tail(0) B is made outside the scope
of the lock, you might find that both head and tail have changed by the time your
initial thread can acquire the lock on head_mutex, and not only is the returned tail
node no longer the tail, but it’s no longer even part of the list. This could then
mean that the comparison of head to old_tail c fails, even if head is the last
node. Consequently, when you update head d, you may end up moving head
beyond tail and off the end of the list, destroying the data structure. In the correct
implementation from listing 6.6, you keep the call to get_tail() inside the lock on
head_mutex. This ensures that no other threads can change head, and tail only
ever moves further away (as new nodes are added in calls to push()), which is per-
fectly safe. head can never pass the value returned from get_tail(), so the invari-
ants are upheld.

 Once pop_head() has removed the node from the queue by updating head, the
mutex is unlocked, and try_pop() can extract the data and delete the node if there
was one (and return a NULL instance of std::shared_ptr<> if not), safe in the knowl-
edge that it’s the only thread that can access this node.

 Next up, the external interface is a subset of that from listing 6.2, so the same anal-
ysis applies: there are no race conditions inherent in the interface.

 Exceptions are more interesting. Because you’ve changed the data allocation pat-
terns, the exceptions can now come from different places. The only operations in
try_pop() that can throw exceptions are the mutex locks, and the data isn’t modified
until the locks are acquired. Therefore try_pop() is exception-safe. On the other
hand, push() allocates a new instance of T on the heap and a new instance of node,
either of which might throw an exception. But both of the newly allocated objects are
assigned to smart pointers, so they’ll be freed if an exception is thrown. Once the lock
is acquired, none of the remaining operations in push() can throw an exception, so
again you’re home and dry and push() is exception-safe too.

 Because you haven’t changed the interface, there are no new external opportuni-
ties for deadlock. There are no internal opportunities, either; the only place that two
locks are acquired is in pop_head(), which always acquires the head_mutex, and then
the tail_mutex, so this will never deadlock.

 The remaining question concerns the possibilities for concurrency. This data struc-
ture has considerably more scope for concurrency than that from listing 6.2, because
the locks are more fine-grained and more is done outside the locks. For example, in
push(), the new node and new data item are allocated with no locks held. This means
that multiple threads can be allocating new nodes and data items concurrently with-
out a problem. Only one thread can add its new node to the list at a time, but the code
to do so is only a few simple pointer assignments, so the lock isn’t held for much time

d

190 CHAPTER 6 Designing lock-based concurrent data structures
at all compared to the std::queue<>-based implementation where the lock is held
around all the memory allocation operations internal to the std::queue<>.

 Also, try_pop()holds the tail_mutex for only a short time, to protect a read from
tail. Consequently, almost the entirety of a call to try_pop() can occur concurrently
with a call to push(). Also, the operations performed while holding the head_mutex
are quite minimal; the expensive delete (in the destructor of the node pointer) is out-
side the lock. This will increase the number of calls to try_pop() that can happen
concurrently; only one thread can call pop_head() at a time, but multiple threads can
then delete their old nodes and return the data safely.

WAITING FOR AN ITEM TO POP

OK, so listing 6.6 provides a thread-safe queue with fine-grained locking, but it sup-
ports only try_pop() (and only one overload at that). What about the handy wait_
and_pop() functions back in listing 6.2? Can you implement an identical interface
with your fine-grained locking?

 The answer is yes, but the real question is how. Modifying push() is easy: add the
data_cond.notify_one() call at the end of the function, like in listing 6.2. It’s not
quite that simple; you’re using fine-grained locking because you want the maximum
possible amount of concurrency. If you leave the mutex locked across the call to
notify_one() (as in listing 6.2), then if the notified thread wakes up before the
mutex has been unlocked, it will have to wait for the mutex. On the other hand, if you
unlock the mutex before you call notify_one(), then the mutex is available for the
waiting thread to acquire when it wakes up (assuming no other thread locks it first).
This is a minor improvement, but it might be important in some cases.

 wait_and_pop() is more complicated, because you have to decide where to wait,
what the predicate is, and which mutex needs to be locked. The condition you’re wait-
ing for is “queue not empty,” which is represented by head!=tail. Written like that, it
would require both head_mutex and tail_mutex to be locked, but you’ve already
decided in listing 6.6 that you only need to lock tail_mutex for the read of tail and
not for the comparison itself, so you can apply the same logic here. If you make the
predicate head!=get_tail(), you only need to hold head_mutex, so you can use your
lock on that for the call to data_cond.wait(). Once you’ve added the wait logic, the
implementation is the same as try_pop().

 The second overload of try_pop() and the corresponding wait_and_pop() over-
load require careful thought. If you replace the return of std::shared_ptr<>
retrieved from old_head with a copy assignment to the value parameter, there’s a
potential exception-safety issue. At this point, the data item has been removed from
the queue and the mutex unlocked; all that remains is to return the data to the caller.
But if the copy assignment throws an exception (as it might), the data item is lost
because it can’t be returned to the queue in the same place.

 If the actual type T used for the template argument has a no-throw move-assignment
operator or a no-throw swap operation, you could use that, but you’d prefer a general
solution that could be used for any type T. In this case, you have to move the potential

191Lock-based concurrent data structures
throwing operation inside the locked region before the node is removed from the list.
This means you need an extra overload of pop_head() that retrieves the stored value
prior to modifying the list.

 In comparison, empty() is trivial: lock head_mutex and check for head== get_tail()
(see listing 6.10). The final code for the queue is shown in listings 6.7, 6.8, 6.9, and 6.10.

template<typename T>
class threadsafe_queue
{
private:
 struct node
 {
 std::shared_ptr<T> data;
 std::unique_ptr<node> next;
 };
 std::mutex head_mutex;
 std::unique_ptr<node> head;
 std::mutex tail_mutex;
 node* tail;
 std::condition_variable data_cond;
public:
 threadsafe_queue():
 head(new node),tail(head.get())
 {}
 threadsafe_queue(const threadsafe_queue& other)=delete;
 threadsafe_queue& operator=(const threadsafe_queue& other)=delete;
 std::shared_ptr<T> try_pop();
 bool try_pop(T& value);
 std::shared_ptr<T> wait_and_pop();
 void wait_and_pop(T& value);
 void push(T new_value);
 bool empty();
};

Pushing new nodes onto the queue is fairly straightforward—the implementation
(shown in the following listing) is close to that shown previously.

template<typename T>
void threadsafe_queue<T>::push(T new_value)
{
 std::shared_ptr<T> new_data(
 std::make_shared<T>(std::move(new_value)));
 std::unique_ptr<node> p(new node);
 {
 std::lock_guard<std::mutex> tail_lock(tail_mutex);
 tail->data=new_data;
 node* const new_tail=p.get();
 tail->next=std::move(p);

Listing 6.7 A thread-safe queue with locking and waiting: internals and interface

Listing 6.8 A thread-safe queue with locking and waiting: pushing new values

192 CHAPTER 6 Designing lock-based concurrent data structures
 tail=new_tail;
 }
 data_cond.notify_one();
}

As already mentioned, the complexity is all in the pop side, which makes use of a series
of helper functions to simplify matters. The next listing shows the implementation of
wait_and_pop() and the associated helper functions.

template<typename T>
class threadsafe_queue
{
private:
 node* get_tail()
 {
 std::lock_guard<std::mutex> tail_lock(tail_mutex);
 return tail;
 }
 std::unique_ptr<node> pop_head()
 {
 std::unique_ptr<node> old_head=std::move(head);
 head=std::move(old_head->next);
 return old_head;
 }
 std::unique_lock<std::mutex> wait_for_data()
 {
 std::unique_lock<std::mutex> head_lock(head_mutex);
 data_cond.wait(head_lock,[&]{return head.get()!=get_tail();});
 return std::move(head_lock);
 }
 std::unique_ptr<node> wait_pop_head()
 {
 std::unique_lock<std::mutex> head_lock(wait_for_data());
 return pop_head();
 }
 std::unique_ptr<node> wait_pop_head(T& value)
 {
 std::unique_lock<std::mutex> head_lock(wait_for_data());
 value=std::move(*head->data);
 return pop_head();
 }
public:
 std::shared_ptr<T> wait_and_pop()
 {
 std::unique_ptr<node> const old_head=wait_pop_head();
 return old_head->data;
 }
 void wait_and_pop(T& value)
 {
 std::unique_ptr<node> const old_head=wait_pop_head(value);
 }
};

Listing 6.9 A thread-safe queue with locking and waiting: wait_and_pop()

b

c

d

e

f

193Lock-based concurrent data structures
The implementation of the pop side shown in listing 6.9 has several little helper func-
tions to simplify the code and reduce duplication, such as pop_head() B, which
modifies the list to remove the head item, and wait_for_data() c, which waits for
the queue to have some data to pop. wait_for_data() is particularly noteworthy,
because not only does it wait on the condition variable using a lambda function for
the predicate, but it also returns the lock instance to the caller d. This is to ensure
that the same lock is held while the data is modified by the relevant wait_pop_head()
overload, e and f. pop_head() is also reused by the try_pop() code shown in the
next listing.

template<typename T>
class threadsafe_queue
{
private:
 std::unique_ptr<node> try_pop_head()
 {
 std::lock_guard<std::mutex> head_lock(head_mutex);
 if(head.get()==get_tail())
 {
 return std::unique_ptr<node>();
 }
 return pop_head();
 }
 std::unique_ptr<node> try_pop_head(T& value)
 {
 std::lock_guard<std::mutex> head_lock(head_mutex);
 if(head.get()==get_tail())
 {
 return std::unique_ptr<node>();
 }
 value=std::move(*head->data);
 return pop_head();
 }
public:
 std::shared_ptr<T> try_pop()
 {
 std::unique_ptr<node> old_head=try_pop_head();
 return old_head?old_head->data:std::shared_ptr<T>();
 }
 bool try_pop(T& value)
 {
 std::unique_ptr<node> const old_head=try_pop_head(value);
 return old_head;
 }
 bool empty()
 {
 std::lock_guard<std::mutex> head_lock(head_mutex);
 return (head.get()==get_tail());
 }
};

Listing 6.10 A thread-safe queue with locking and waiting: try_pop() and empty()

194 CHAPTER 6 Designing lock-based concurrent data structures
This queue implementation will serve as the basis for the lock-free queue covered in
chapter 7. It’s an unbounded queue; threads can continue to push new values onto
the queue as long as there’s available memory, even if no values are removed. The
alternative to an unbounded queue is a bounded queue, in which the maximum
length of the queue is fixed when the queue is created. Once a bounded queue is
full, attempts to push further elements onto the queue will either fail or block until
an element has been popped from the queue to make room. Bounded queues can
be useful for ensuring an even spread of work when dividing work between threads
based on tasks to be performed (see chapter 8). This prevents the thread(s) popu-
lating the queue from running too far ahead of the thread(s) reading items from
the queue.

 The unbounded queue implementation shown here can easily be extended to
limit the length of the queue by waiting on the condition variable in push(). Rather
than waiting for the queue to have items (as is done in pop()), you need to wait for
the queue to have fewer than the maximum number of items. Further discussion of
bounded queues is outside the scope of this book; for now, let’s move beyond queues
and on to more complex data structures.

6.3 Designing more complex lock-based data structures
Stacks and queues are simple: the interface is exceedingly limited, and they’re tightly
focused on a specific purpose. Not all data structures are that simple; most data struc-
tures support a variety of operations. In principle, this can then lead to greater oppor-
tunities for concurrency, but it also makes the task of protecting the data that much
harder because the multiple access patterns need to be taken into account. The pre-
cise nature of the various operations that can be performed is important when design-
ing these data structures for concurrent access.

 To see some of the issues involved, let’s look at the design of a lookup table.

6.3.1 Writing a thread-safe lookup table using locks

A lookup table or dictionary associates values of one type (the key type) with values of
either the same or a different type (the mapped type). In general, the intention behind
such a structure is to allow code to query the data associated with a given key. In the C++
Standard Library, this facility is provided by the associative containers: std::map<>,
std::multimap<>, std::unordered_map<>, and std::unordered_multimap<>.

 A lookup table has a different usage pattern than a stack or a queue. Whereas
almost every operation on a stack or a queue modifies it in some way, either to add an
element or remove one, a lookup table might be modified rarely. The simple DNS
cache in listing 3.13 is one example of this scenario, which features a greatly reduced
interface compared to std::map<>. As you saw with the stack and queue, the inter-
faces of the standard containers aren’t suitable when the data structure is to be
accessed from multiple threads concurrently, because there are inherent race condi-
tions in the interface design, so they need to be cut down and revised.

195Designing more complex lock-based data structures
 The biggest problem with the std::map<> interface from a concurrency perspec-
tive is the iterators. Although it’s possible to have an iterator that provides safe access
into a container even when other threads can access (and modify) the container, this
is a tricky proposition. Correctly handling iterators requires you to deal with issues
such as another thread deleting the element that the iterator is referring to, which
can get rather involved. For the first cut at a thread-safe lookup table interface, you’ll
skip the iterators. Given that the interface to std::map<> (and the other associative
containers in the standard library) is so heavily iterator-based, it’s probably worth set-
ting them aside and designing the interface from the ground up.

 There are only a few basic operations on a lookup table:

 Add a new key/value pair.
 Change the value associated with a given key.
 Remove a key and its associated value.
 Obtain the value associated with a given key, if any.

There are also a few container-wide operations that might be useful, such as a check
on whether the container is empty, a snapshot of the complete list of keys, or a snap-
shot of the complete set of key/value pairs.

 If you stick to the simple thread-safety guidelines, such as not returning references,
and put a simple mutex lock around the entirety of each member function, all of
these are safe; they either come before some modification from another thread or
after it. The biggest potential for a race condition is when a new key/value pair is
being added; if two threads add a new value, only one will be first, and the second will
therefore fail. One possibility is to combine add and change into a single member
function, as you did for the DNS cache in listing 3.13.

 The only other interesting point from an interface perspective is the if any part of
obtaining an associated value. One option is to allow the user to provide a “default”
result that’s returned in the case when the key isn’t present:

mapped_type get_value(key_type const& key, mapped_type default_value);

In this case, a default-constructed instance of mapped_type could be used if the
default_value wasn’t explicitly provided. This could also be extended to return an
std::pair<mapped_type,bool> instead of just an instance of mapped_type, where
the bool indicates whether the value was present. Another option is to return a
smart pointer referring to the value; if the pointer value is NULL, there was no value
to return.

 As already mentioned, once the interface has been decided, then (assuming no
interface race conditions) the thread safety could be guaranteed by using a single
mutex and a simple lock around every member function to protect the underlying
data structure. But this would squander the possibilities for concurrency provided by
the separate functions for reading the data structure and modifying it. One option is
to use a mutex that supports multiple reader threads or a single writer thread, such as

196 CHAPTER 6 Designing lock-based concurrent data structures
std::shared_mutex used in listing 3.13. Although this would indeed improve the pos-
sibilities for concurrent access, only one thread could modify the data structure at a
time. Ideally, you’d like to do better than that.

DESIGNING A MAP DATA STRUCTURE FOR FINE-GRAINED LOCKING

As with the queue discussed in section 6.2.3, in order to permit fine-grained locking
you need to look carefully at the details of the data structure rather than wrapping a
pre-existing container such as std::map<>. There are three common ways of imple-
menting an associative container like your lookup table:

 A binary tree, such as a red-black tree
 A sorted array
 A hash table

A binary tree doesn’t provide much scope for extending the opportunities for concur-
rency; every lookup or modification has to start by accessing the root node, which
therefore has to be locked. Although this lock can be released as the accessing thread
moves down the tree, this isn’t much better than a single lock across the whole data
structure.

 A sorted array is even worse, because you can’t tell in advance where in the array a
given data value is going to be, so you need a single lock for the whole array.

 That leaves the hash table. Assuming a fixed number of buckets, which bucket a
key belongs to is purely a property of the key and its hash function. This means you
can safely have a separate lock per bucket. If you again use a mutex that supports mul-
tiple readers or a single writer, you increase the opportunities for concurrency N-fold,
where N is the number of buckets. The downside is that you need a good hash func-
tion for the key. The C++ Standard Library provides the std::hash<> template, which
you can use for this purpose. It’s already specialized for fundamental types such as int
and common library types such as std::string, and the user can easily specialize it
for other key types. If you follow the lead of the standard unordered containers and
take the type of the function object to use for doing the hashing as a template param-
eter, the user can choose whether to specialize std::hash<> for their key type or pro-
vide a separate hash function.

 So, let’s look at some code. What might the implementation of a thread-safe
lookup table look like? One possibility is shown here.

template<typename Key,typename Value,typename Hash=std::hash<Key> >
class threadsafe_lookup_table
{
private:
 class bucket_type
 {
 private:
 typedef std::pair<Key,Value> bucket_value;
 typedef std::list<bucket_value> bucket_data;

Listing 6.11 A thread-safe lookup table

197Designing more complex lock-based data structures
 typedef typename bucket_data::iterator bucket_iterator;
 bucket_data data;
 mutable std::shared_mutex mutex;

 bucket_iterator find_entry_for(Key const& key) const
 {
 return std::find_if(data.begin(),data.end(),
 [&](bucket_value const& item)
 {return item.first==key;});
 }
 public:
 Value value_for(Key const& key,Value const& default_value) const
 {
 std::shared_lock<std::shared_mutex> lock(mutex);
 bucket_iterator const found_entry=find_entry_for(key);
 return (found_entry==data.end())?
 default_value:found_entry->second;
 }
 void add_or_update_mapping(Key const& key,Value const& value)
 {
 std::unique_lock<std::shared_mutex> lock(mutex);
 bucket_iterator const found_entry=find_entry_for(key);
 if(found_entry==data.end())
 {
 data.push_back(bucket_value(key,value));
 }
 else
 {
 found_entry->second=value;
 }
 }
 void remove_mapping(Key const& key)
 {
 std::unique_lock<std::shared_mutex> lock(mutex);
 bucket_iterator const found_entry=find_entry_for(key);
 if(found_entry!=data.end())
 {
 data.erase(found_entry);
 }
 }
 };
 std::vector<std::unique_ptr<bucket_type> > buckets;
 Hash hasher;
 bucket_type& get_bucket(Key const& key) const
 {
 std::size_t const bucket_index=hasher(key)%buckets.size();
 return *buckets[bucket_index];
 }
public:
 typedef Key key_type;
 typedef Value mapped_type;
 typedef Hash hash_type;
 threadsafe_lookup_table(
 unsigned num_buckets=19,Hash const& hasher_=Hash()):
 buckets(num_buckets),hasher(hasher_)

b

c

d

e

f

g

h

198 CHAPTER 6 Designing lock-based concurrent data structures
 {
 for(unsigned i=0;i<num_buckets;++i)
 {
 buckets[i].reset(new bucket_type);
 }
 }
 threadsafe_lookup_table(threadsafe_lookup_table const& other)=delete;
 threadsafe_lookup_table& operator=(
 threadsafe_lookup_table const& other)=delete;
 Value value_for(Key const& key,
 Value const& default_value=Value()) const
 {
 return get_bucket(key).value_for(key,default_value);
 }
 void add_or_update_mapping(Key const& key,Value const& value)
 {
 get_bucket(key).add_or_update_mapping(key,value);
 }
 void remove_mapping(Key const& key)
 {
 get_bucket(key).remove_mapping(key);
 }
};

This implementation uses a std::vector<std::unique_ptr<bucket_type>> g to
hold the buckets, which allows the number of buckets to be specified in the con-
structor. The default is 19, which is an arbitrary prime number; hash tables work
best with a prime number of buckets. Each bucket is protected with an instance of
std::shared_mutex B to allow many concurrent reads or a single call to either of the
modification functions per bucket.

 Because the number of buckets is fixed, the get_bucket() function h can be
called without any locking (i, j, and 1)), and then the bucket mutex can be locked
either for shared (read-only) ownership d, or unique (read/write) ownership, e
and f, as appropriate for each function.

 All three functions make use of the find_entry_for() member function c on the
bucket to determine whether the entry is in the bucket. Each bucket contains just an
std::list<> of key/value pairs, so adding and removing entries is easy.

 I’ve already covered the concurrency angle, and everything is suitably protected
with mutex locks, so what about exception safety? value_for doesn’t modify anything,
so that’s fine; if it throws an exception, it won’t affect the data structure. remove_mapping
modifies the list with the call to erase, but this is guaranteed not to throw, so that’s
safe. This leaves add_or_update_mapping, which might throw in either of the two
branches of if. push_back is exception-safe and will leave the list in the original state
if it throws, so that branch is fine. The only problem is with the assignment in the case
where you’re replacing an existing value; if the assignment throws, you’re relying on it
leaving the original unchanged. But this doesn’t affect the data structure as a whole
and is entirely a property of the user-supplied type, so you can safely leave it up to the
user to handle this.

i

j

1)

199Designing more complex lock-based data structures
 At the beginning of this section, I mentioned that one nice-to-have feature of such
a lookup table would be the option of retrieving a snapshot of the current state into,
for example, a std::map<>. This would require locking the entire container in order
to ensure that a consistent copy of the state is retrieved, which requires locking all the
buckets. Because the “normal” operations on the lookup table require a lock on only
one bucket at a time, this would be the only operation that requires a lock on all the
buckets. Therefore, provided you lock them in the same order every time (for exam-
ple, increasing bucket index), there’ll be no opportunity for deadlock. This imple-
mentation is shown in the following listing.

std::map<Key,Value> threadsafe_lookup_table::get_map() const
{
 std::vector<std::unique_lock<std::shared_mutex> > locks;
 for(unsigned i=0;i<buckets.size();++i)
 {
 locks.push_back(
 std::unique_lock<std::shared_mutex>(buckets[i].mutex));
 }
 std::map<Key,Value> res;
 for(unsigned i=0;i<buckets.size();++i)
 {
 for(bucket_iterator it=buckets[i].data.begin();
 it!=buckets[i].data.end();
 ++it)
 {
 res.insert(*it);
 }
 }
 return res;
}

The lookup table implementation from listing 6.11 increases the opportunity for con-
currency of the lookup table as a whole by locking each bucket separately and by
using a std::shared_mutex to allow reader concurrency on each bucket. But what if
you could increase the potential for concurrency on a bucket by even finer-grained
locking? In the next section, you’ll do exactly that by using a thread-safe list container
with iterator support.

6.3.2 Writing a thread-safe list using locks

A list is one of the most basic data structures, so it should be straightforward to write a
thread-safe one, shouldn’t it? Well, that depends on what facilities you’re after, and
you need one that offers iterator support, something I shied away from adding to your
map on the basis that it was too complicated. The basic issue with STL-style iterator
support is that the iterator must hold some kind of reference into the internal data
structure of the container. If the container can be modified from another thread, this
reference must somehow remain valid, which requires that the iterator hold a lock on

Listing 6.12 Obtaining contents of a threadsafe_lookup_table as std::map<>

200 CHAPTER 6 Designing lock-based concurrent data structures
some part of the structure. Given that the lifetime of an STL-style iterator is com-
pletely outside the control of the container, this is a bad idea.

 The alternative is to provide iteration functions such as for_each as part of the
container itself. This puts the container squarely in charge of the iteration and lock-
ing, but it does fall foul of the deadlock avoidance guidelines from chapter 3. In order
for for_each to do anything useful, it must call user-supplied code while holding the
internal lock. Not only that, but it must also pass a reference to each item to this user-
supplied code in order for the user-supplied code to work on this item. You could
avoid this by passing a copy of each item to the user-supplied code, but that would be
expensive if the data items were large.

 So, for now you’ll leave it up to the user to ensure that they don’t cause deadlock
by acquiring locks in the user-supplied operations and don’t cause data races by stor-
ing the references for access outside the locks. In the case of the list being used by
the lookup table, this is perfectly safe, because you know you’re not going to do any-
thing naughty.

 That leaves you with the question of which operations to supply for your list. If
you cast your eyes back to listings 6.11 and 6.12, you can see the sorts of operations
you require:

 Add an item to the list.
 Remove an item from the list if it meets a certain condition.
 Find an item in the list that meets a certain condition.
 Update an item that meets a certain condition.
 Copy each item in the list to another container.

For this to be a good general-purpose list container, it would be helpful to add further
operations, such as a positional insert, but this is unnecessary for your lookup table, so
I’ll leave it as an exercise for the reader.

 The basic idea with fine-grained locking for a linked list is to have one mutex per
node. If the list gets big, that’s a lot of mutexes! The benefit here is that operations on
separate parts of the list are truly concurrent: each operation holds only the locks on
the nodes it’s interested in and unlocks each node as it moves on to the next. The
next listing shows an implementation of this list.

template<typename T>
class threadsafe_list
{
 struct node
 {
 std::mutex m;
 std::shared_ptr<T> data;
 std::unique_ptr<node> next;
 node():
 next()

Listing 6.13 A thread-safe list with iteration support

b

c

201Designing more complex lock-based data structures
 {}
 node(T const& value):
 data(std::make_shared<T>(value))
 {}
 };
 node head;
public:
 threadsafe_list()
 {}
 ~threadsafe_list()
 {
 remove_if([](node const&){return true;});
 }
 threadsafe_list(threadsafe_list const& other)=delete;
 threadsafe_list& operator=(threadsafe_list const& other)=delete;
 void push_front(T const& value)
 {
 std::unique_ptr<node> new_node(new node(value));
 std::lock_guard<std::mutex> lk(head.m);
 new_node->next=std::move(head.next);
 head.next=std::move(new_node);
 }
 template<typename Function>
 void for_each(Function f)
 {
 node* current=&head;
 std::unique_lock<std::mutex> lk(head.m);
 while(node* const next=current->next.get())
 {
 std::unique_lock<std::mutex> next_lk(next->m);
 lk.unlock();
 f(*next->data);
 current=next;
 lk=std::move(next_lk);
 }
 }
 template<typename Predicate>
 std::shared_ptr<T> find_first_if(Predicate p)
 {
 node* current=&head;
 std::unique_lock<std::mutex> lk(head.m);
 while(node* const next=current->next.get())
 {
 std::unique_lock<std::mutex> next_lk(next->m);
 lk.unlock();
 if(p(*next->data))
 {
 return next->data;
 }
 current=next;
 lk=std::move(next_lk);
 }
 return std::shared_ptr<T>();
 }

d

e

f

g

h

i

j

1)
1!

1@

1#

1$

1%

1^

202 CHAPTER 6 Designing lock-based concurrent data structures
 template<typename Predicate>
 void remove_if(Predicate p)
 {
 node* current=&head;
 std::unique_lock<std::mutex> lk(head.m);
 while(node* const next=current->next.get())
 {
 std::unique_lock<std::mutex> next_lk(next->m);
 if(p(*next->data))
 {
 std::unique_ptr<node> old_next=std::move(current->next);
 current->next=std::move(next->next);
 next_lk.unlock();
 }
 else
 {
 lk.unlock();
 current=next;
 lk=std::move(next_lk);
 }
 }
 }
};

The threadsafe_list<> from listing 6.13 is a singly linked list, where each entry is a
node structure B. A default-constructed node is used for the head of the list, which
starts with a NULL next pointer c. New nodes are added with the push_front() func-
tion; first a new node is constructed e, which allocates the stored data on the heap

d, while leaving the next pointer as NULL. You then need to acquire the lock on the
mutex for the head node in order to get the appropriate next value f and insert the
node at the front of the list by setting head.next to point to your new node g. So far,
so good: you only need to lock one mutex in order to add a new item to the list, so
there’s no risk of deadlock. Also, the slow memory allocation happens outside the
lock, so the lock is only protecting the update of a couple of pointer values that can’t
fail. On to the iterative functions.

 First up, let’s look at for_each() h. This operation takes a Function of some type
to apply to each element in the list; in common with most standard library algorithms,
it takes this function by value and will work with either a genuine function or an
object of a type with a function call operator. In this case, the function must accept a
value of type T as the sole parameter. Here’s where you do the hand-over-hand lock-
ing. To start with, you lock the mutex on the head node i. It’s then safe to obtain the
pointer to the next node (using get() because you’re not taking ownership of the
pointer). If that pointer isn’t NULL j, you lock the mutex on that node 1) in order to
process the data. Once you have the lock on that node, you can release the lock on
the previous node 1! and call the specified function 1@. Once the function completes,
you can update the current pointer to the node you processed and move the owner-
ship of the lock from next_lk out to lk 1#. Because for_each passes each data item

1&

1*

1(
2)

2!

203Summary
directly to the supplied Function, you can use this to update the items if necessary,
or copy them into another container, or whatever. This is entirely safe if the func-
tion is well behaved, because the mutex for the node holding the data item is held
across the call.

 find_first_if() 1$ is similar to for_each(); the crucial difference is that the
supplied Predicate must return true to indicate a match or false to indicate no
match 1%. Once you have a match, you return the found data 1^, rather than continu-
ing to search. You could do this with for_each(), but it would needlessly continue
processing the rest of the list even once a match had been found.

 remove_if() 1& is slightly different, because this function has to update the list;
you can’t use for_each() for this. If the Predicate returns true 1*, you remove the
node from the list by updating current->next 1(. Once you’ve done that, you can
release the lock held on the mutex for the next node. The node is deleted when the
std::unique_ptr<node> you moved it into goes out of scope 2). In this case, you don’t
update current because you need to check the new next node. If the Predicate
returns false, you want to move on as before 2!.

 So, are there any deadlocks or race conditions with all these mutexes? The answer
here is quite definitely no, provided that the supplied predicates and functions are
well behaved. The iteration is always one way, always starting from the head node, and
always locking the next mutex before releasing the current one, so there’s no possibil-
ity of different lock orders in different threads. The only potential candidate for a
race condition is the deletion of the removed node in remove_if() 2), because you
do this after you’ve unlocked the mutex (it’s undefined behavior to destroy a locked
mutex). But a few moments’ thought reveals that this is indeed safe, because you still
hold the mutex on the previous node (current), so no new thread can try to acquire
the lock on the node you’re deleting.

 What about opportunities for concurrency? The whole point of this fine-grained
locking was to improve the possibilities for concurrency over a single mutex, so have
you achieved that? Yes, you have: different threads can be working on different nodes
in the list at the same time, whether they’re processing each item with for_each(),
searching with find_first_if(), or removing items with remove_if(). But because
the mutex for each node must be locked in turn, the threads can’t pass each other. If
one thread is spending a long time processing a particular node, other threads will
have to wait when they reach that particular node.

Summary
This chapter started by looking at what it means to design a data structure for con-
currency and providing some guidelines for doing so. We then worked through sev-
eral common data structures (stack, queue, hash map, and linked list), looking at
how to apply those guidelines to implement them in a way designed for concurrent
access, using locks to protect the data and prevent data races. You should now be

204 CHAPTER 6 Designing lock-based concurrent data structures
able to look at the design of your own data structures to see where the opportunities
for concurrency lie and where there’s potential for race conditions.

 In chapter 7 we’ll look at ways of avoiding locks entirely, using the low-level atomic
operations to provide the necessary ordering constraints, while sticking to the same
set of guidelines.

Designing lock-free
concurrent data structures
In the last chapter we looked at general aspects of designing data structures for
concurrency, with guidelines for thinking about the design to ensure they’re safe.
We then examined several common data structures and looked at example imple-
mentations that used mutexes and locks to protect the shared data. The first cou-
ple of examples used one mutex to protect the entire data structure, but later ones
used more than one to protect various smaller parts of the data structure and allow
greater levels of concurrency in accesses to the data structure.

 Mutexes are powerful mechanisms for ensuring that multiple threads can safely
access a data structure without encountering race conditions or broken invariants.
It’s also relatively straightforward to reason about the behavior of code that uses
them: either the code has the lock on the mutex protecting the data or it doesn’t.
But it’s not all a bed of roses; you saw in chapter 3 how the incorrect use of locks

This chapter covers
 Implementations of data structures designed for

concurrency without using locks

 Techniques for managing memory in lock-free
data structures

 Simple guidelines to aid in the writing of lock-free
data structures
205

206 CHAPTER 7 Designing lock-free concurrent data structures
can lead to deadlock, and you’ve seen with the lock-based queue and lookup table
examples how the granularity of locking can affect the potential for true concurrency.
If you can write data structures that are safe for concurrent access without locks,
there’s the potential to avoid these problems. This data structure is called a lock-free
data structure.

 In this chapter we’ll look at how the memory-ordering properties of the atomic
operations introduced in chapter 5 can be used to build lock-free data structures. It is
vital for the understanding of this chapter that you have read and understood all of
chapter 5. You need to take extreme care when designing these data structures,
because they’re hard to get right, and the conditions that cause the design to fail may
occur very rarely. We’ll start by looking at what it means for data structures to be lock-
free; then we’ll move on to the reasons for using them before working through some
examples and drawing out some general guidelines.

7.1 Definitions and consequences
Algorithms and data structures that use mutexes, condition variables, and futures to
synchronize the data are called blocking data structures and algorithms. The applica-
tion calls library functions that will suspend the execution of a thread until another
thread performs an action. These library calls are termed blocking calls because the
thread can’t progress past this point until the block is removed. Typically, the OS will
suspend a blocked thread completely (and allocate its time slices to another thread)
until it’s unblocked by the appropriate action of another thread, whether that’s unlock-
ing a mutex, notifying a condition variable, or making a future ready.

 Data structures and algorithms that don’t use blocking library functions are said to
be nonblocking. Not all these data structures are lock-free, though, so let’s look at the
various types of nonblocking data structures.

7.1.1 Types of nonblocking data structures

Back in chapter 5, we implemented a basic mutex using std::atomic_flag as a spin
lock. The code is reproduced in the following listing.

class spinlock_mutex
{
 std::atomic_flag flag;
public:
 spinlock_mutex():
 flag(ATOMIC_FLAG_INIT)
 {}
 void lock()
 {
 while(flag.test_and_set(std::memory_order_acquire));
 }
 void unlock()
 {

Listing 7.1 Implementation of a spin-lock mutex using std::atomic_flag

207Definitions and consequences
 flag.clear(std::memory_order_release);
 }
};

This code doesn’t call any blocking functions; lock() keeps looping until the call to
test_and_set() returns false. This is why it gets the name spin lock—the code “spins”
around the loop. There are no blocking calls, so any code that uses this mutex to pro-
tect shared data is consequently nonblocking. It’s not lock-free, though. It’s still a mutex
and can still be locked by only one thread at a time. For that reason, knowing something
is nonblocking is not enough in most circumstances. Instead, you need to know which
(if any) of the more specific terms defined here apply. These are

 Obstruction-Free—If all other threads are paused, then any given thread will com-
plete its operation in a bounded number of steps.

 Lock-Free—If multiple threads are operating on a data structure, then after a
bounded number of steps one of them will complete its operation.

 Wait-Free—Every thread operating on a data structure will complete its opera-
tion in a bounded number of steps, even if other threads are also operating on
the data structure.

For the most part, obstruction-free algorithms aren't particularly useful—it's not often
that all other threads are paused, so this is more useful as a characterization of a failed
lock-free implementation. Let’s look more at what's involved in these characteriza-
tions, starting with lock-free so you can see what kinds of data structures are covered.

7.1.2 Lock-free data structures

For a data structure to qualify as lock-free, more than one thread must be able to
access the data structure concurrently. They don’t have to be able to do the same
operations; a lock-free queue might allow one thread to push and one to pop but
break if two threads try to push new items at the same time. Not only that, but if one of
the threads accessing the data structure is suspended by the scheduler midway
through its operation, the other threads must still be able to complete their opera-
tions without waiting for the suspended thread.

 Algorithms that use compare/exchange operations on the data structure often
have loops in them. The reason for using a compare/exchange operation is that
another thread might have modified the data in the meantime, in which case the code
will need to redo part of its operation before trying the compare/exchange again.
This code can still be lock-free if the compare/exchange would eventually succeed if
the other threads were suspended. If it didn’t, you’d have a spin lock, which is non-
blocking but not lock-free.

 Lock-free algorithms with these loops can result in one thread being subject to star-
vation. If another thread performs operations with the “wrong” timing, the other
thread might make progress but the first thread continually has to retry its operation.
Data structures that avoid this problem are wait-free as well as lock-free.

208 CHAPTER 7 Designing lock-free concurrent data structures
7.1.3 Wait-free data structures

A wait-free data structure is a lock-free data structure with the additional property that
every thread accessing the data structure can complete its operation within a bounded
number of steps, regardless of the behavior of other threads. Algorithms that can
involve an unbounded number of retries because of clashes with other threads are not
wait-free. Most of the examples in this chapter have that property—they have a while
loop on a compare_exchange_weak or compare_exchange_strong operation, with no
upper bound on the number of times the loop can run. The scheduling of threads by
the OS may mean that a given thread can loop an exceedingly large number of times,
but other threads loop very few times. These operations are thus not wait-free.

 Writing wait-free data structures correctly is extremely hard. In order to ensure
that every thread can complete its operations within a bounded number of steps,
you have to ensure that each operation can be performed in a single pass and that
the steps performed by one thread don’t cause an operation on another thread to
fail. This can make the overall algorithms for the various operations considerably
more complex.

 Given how hard it is to get a lock-free or wait-free data structure right, you need
some pretty good reasons to write one; you need to be sure that the benefit outweighs
the cost. Let’s therefore examine the points that affect the balance.

7.1.4 The pros and cons of lock-free data structures

When it comes down to it, the primary reason for using lock-free data structures is to
enable maximum concurrency. With lock-based containers, there’s always the poten-
tial for one thread to have to block and wait for another to complete its operation
before the first thread can proceed; preventing concurrency through mutual exclu-
sion is the entire purpose of a mutex lock. With a lock-free data structure, some thread
makes progress with every step. With a wait-free data structure, every thread can make
forward progress, regardless of what the other threads are doing; there’s no need for
waiting. This is a desirable property to have but hard to achieve. It’s all too easy to end
up writing what’s essentially a spin lock.

 A second reason to use lock-free data structures is robustness. If a thread dies while
holding a lock, that data structure is broken forever. But if a thread dies partway
through an operation on a lock-free data structure, nothing is lost except that thread’s
data; other threads can proceed normally.

 The flip side here is that if you can’t exclude threads from accessing the data struc-
ture, then you must be careful to ensure that the invariants are upheld or choose
alternative invariants that can be upheld. Also, you must pay attention to the ordering
constraints you impose on the operations. To avoid the undefined behavior associated
with a data race, you must use atomic operations for the modifications. But that alone
isn’t enough; you must ensure that changes become visible to other threads in the cor-
rect order. All this means that writing thread-safe data structures without using locks is
considerably harder than writing them with locks.

209Examples of lock-free data structures
 Because there aren’t any locks, deadlocks are impossible with lock-free data struc-
tures, although there is the possibility of live locks instead. A live lock occurs when two
threads each try to change the data structure, but for each thread, the changes made
by the other require the operation to be restarted, so both threads loop and try again.
Imagine two people trying to go through a narrow gap. If they both go at once, they
get stuck, so they have to come out and try again. Unless someone gets there first
(either by agreement, by being faster, or by sheer luck), the cycle will repeat. As in this
simple example, live locks are typically short-lived because they depend on the exact
scheduling of threads. They therefore sap performance rather than cause long-term
problems, but they’re still something to watch out for. By definition, wait-free code
can’t suffer from live lock because there’s always an upper limit on the number of
steps needed to perform an operation. The flip side here is that the algorithm is likely
more complex than the alternative and may require more steps even when no other
thread is accessing the data structure.

 This brings us to another downside of lock-free and wait-free code: although it can
increase the potential for concurrency of operations on a data structure and reduce
the time an individual thread spends waiting, it may well decrease overall performance.
First, the atomic operations used for lock-free code can be much slower than non-
atomic operations, and there’ll likely be more of them in a lock-free data structure than
in the mutex locking code for a lock-based data structure. Not only that, but the hard-
ware must synchronize data between threads that access the same atomic variables. As
you’ll see in chapter 8, the cache ping-pong associated with multiple threads accessing
the same atomic variables can be a significant performance drain. As with everything,
it’s important to check the relevant performance aspects (whether that’s worst-case wait
time, average wait time, overall execution time, or something else) both with a lock-
based data structure and a lock-free one before committing either way.

 Now let’s look at some examples.

7.2 Examples of lock-free data structures
In order to demonstrate some of the techniques used in designing lock-free data
structures, we’ll look at the lock-free implementation of a series of simple data struc-
tures. Not only will each example describe the implementation of a useful data
structure, but I’ll use the examples to highlight particular aspects of lock-free data
structure design.

 As already mentioned, lock-free data structures rely on the use of atomic opera-
tions and the associated memory-ordering guarantees in order to ensure that data
becomes visible to other threads in the correct order. Initially, we’ll use the default
memory_order_seq_cst memory ordering for all atomic operations, because that’s the
easiest to reason about (remember that all memory_order_seq_cst operations form a
total order). But for later examples we’ll look at reducing some of the ordering con-
straints to memory_order_acquire, memory_order_release, or even memory_order_
relaxed. Although none of these examples use mutex locks directly, it’s worth bearing

210 CHAPTER 7 Designing lock-free concurrent data structures
in mind that only std::atomic_flag is guaranteed not to use locks in the implemen-
tation. On some platforms, what appears to be lock-free code might be using locks
internal to the C++ Standard Library implementation (see chapter 5 for more details).
On these platforms, a simple lock-based data structure might be more appropriate,
but there’s more to it than that; before choosing an implementation, you must iden-
tify your requirements and profile the various options that meet those requirements.

 So, back to the beginning with the simplest of data structures: a stack.

7.2.1 Writing a thread-safe stack without locks

The basic premise of a stack is relatively simple: nodes are retrieved in the reverse
order to which they were added—last in, first out (LIFO). It’s therefore important
to ensure that once a value is added to the stack, it can safely be retrieved immedi-
ately by another thread, and it’s also important to ensure that only one thread
returns a given value. The simplest stack is a linked list; the head pointer identifies
the first node (which will be the next to retrieve), and each node then points to the
next node in turn.

 Under this scheme, adding a node is relatively simple:

1 Create a new node.
2 Set its next pointer to the current head node.
3 Set the head node to point to it.

This works fine in a single-threaded context, but if other threads are also modifying
the stack, it’s not enough. Crucially, if two threads are adding nodes, there’s a race
condition between steps 2 and 3: a second thread could modify the value of head
between when your thread reads it in step 2 and you update it in step 3. This would
then result in the changes made by that other thread being discarded or something
even worse. Before we look at addressing this race condition, it’s also important to
note that once head has been updated to point to your new node, another thread
could read that node. It’s therefore vital that your new node is thoroughly prepared
before head is set to point to it; you can’t modify the node afterward.

 OK, so what can you do about this nasty race condition? The answer is to use an
atomic compare/exchange operation at step 3 to ensure that head hasn’t been modi-
fied since you read it in step 2. If it has, you can loop and try again. The following list-
ing shows how you can implement a thread-safe push() without locks.

template<typename T>
class lock_free_stack
{
private:
 struct node
 {
 T data;
 node* next;

Listing 7.2 Implementing push() without locks

211Examples of lock-free data structures
 node(T const& data_):
 data(data_)
 {}
 };
 std::atomic<node*> head;
public:
 void push(T const& data)
 {
 node* const new_node=new node(data);
 new_node->next=head.load();
 while(!head.compare_exchange_weak(new_node->next,new_node));
 }
};

This code neatly matches the preceding three-point plan: create a new node c, set
the node’s next pointer to the current head d, and set the head pointer to the new
node e. By populating the data in the node structure itself from the node construc-
tor B, you’ve ensured that the node is ready to roll as soon as it’s constructed, so
that’s the easy problem solved. Then you use compare_exchange_weak() to ensure
that the head pointer still has the same value as you stored in new_node->next d, and
you set it to new_node if so. This bit of code also uses a nifty part of the com-
pare/exchange functionality: if it returns false to indicate that the comparison
failed (for example, because head was modified by another thread), the value sup-
plied as the first parameter (new_node->next) is updated to the current value of
head. You therefore don’t have to reload head each time through the loop, because
the compiler does that for you. Also, because you’re looping directly on failure, you
can use compare_exchange_weak, which can result in more optimal code than
compare_exchange_strong on some architectures (see chapter 5).

 So, you might not have a pop() operation yet, but you can quickly check push()
for compliance with the guidelines. The only place that can throw an exception is
the construction of the new node B, but this will clean up after itself, and the list
hasn’t been modified yet, so that’s perfectly safe. Because you build the data to be
stored as part of the node, and you use compare_exchange_weak() to update the
head pointer, there are no problematic race conditions here. Once the compare/
exchange succeeds, the node is on the list and ready for the taking. There are no
locks, so there’s no possibility of deadlock, and your push() function passes with fly-
ing colors.

 Now that you have a means of adding data to the stack, you need a way to remove
it. On the face of it, this is quite simple:

1 Read the current value of head.
2 Read head->next.
3 Set head to head->next.
4 Return the data from the retrieved node.
5 Delete the retrieved node.

b

c
d

e

212 CHAPTER 7 Designing lock-free concurrent data structures
But in the presence of multiple threads, this isn’t so simple. If there are two threads
removing items from the stack, they both might read the same value of head at step 1.
If one thread then proceeds all the way through to step 5 before the other gets to
step 2, the second thread will be dereferencing a dangling pointer. This is one of the
biggest issues in writing lock-free code, so for now you’ll leave out step 5 and leak
the nodes.

 This doesn’t resolve all the problems, though. There’s another problem: if two
threads read the same value of head, they’ll return the same node. This violates the
intent of the stack data structure, so you need to avoid this. You can resolve this the
same way you resolved the race in push(): use compare/exchange to update head. If
the compare/exchange fails, either a new node has been pushed on or another
thread popped the node you were trying to pop. Either way, you need to return to step 1
(although the compare/exchange call rereads head for you).

 Once the compare/exchange call succeeds, you know you’re the only thread that’s
popping the given node off the stack, so you can safely execute step 4. Here’s a first try
at pop():

template<typename T>
class lock_free_stack
{
public:
 void pop(T& result)
 {
 node* old_head=head.load();
 while(!head.compare_exchange_weak(old_head,old_head->next));
 result=old_head->data;
 }
};

Although this is nice and succinct, there are still a couple of problems aside from the
leaking node. First, it doesn’t work on an empty list: if head is a null pointer, it will
cause undefined behavior as it tries to read the next pointer. This is easily fixed by
checking for nullptr in the while loop and either throwing an exception on an
empty stack or returning a bool to indicate success or failure.

 The second problem is an exception-safety issue. When we first introduced the
thread-safe stack back in chapter 3, you saw how returning the object by value left you
with an exception safety issue: if an exception is thrown when copying the return
value, the value is lost. In that case, passing in a reference to the result was an accept-
able solution because you could ensure that the stack was left unchanged if an excep-
tion was thrown. Unfortunately, here you don’t have that luxury; you can only safely
copy the data once you know you’re the only thread returning the node, which means
the node has already been removed from the queue. Consequently, passing in the tar-
get for the return value by reference is no longer an advantage: you might as well
return by value. If you want to return the value safely, you have to use the other option
from chapter 3: return a (smart) pointer to the data value.

213Examples of lock-free data structures
 If you return a smart pointer, you can return nullptr to indicate that there’s no
value to return, but this requires that the data be allocated on the heap. If you do the
heap allocation as part of pop(), you’re still no better off, because the heap allocation
might throw an exception. Instead, you can allocate the memory when you push() the
data onto the stack—you have to allocate memory for the node anyway. Returning
std::shared_ptr<> won’t throw an exception, so pop() is now safe. Putting all this
together gives the following listing.

template<typename T>
class lock_free_stack
{
private:
 struct node
 {
 std::shared_ptr<T> data;
 node* next;
 node(T const& data_):
 data(std::make_shared<T>(data_))
 {}
 };
 std::atomic<node*> head;
public:
 void push(T const& data)
 {
 node* const new_node=new node(data);
 new_node->next=head.load();
 while(!head.compare_exchange_weak(new_node->next,new_node));
 }
 std::shared_ptr<T> pop()
 {
 node* old_head=head.load();
 while(old_head &&
 !head.compare_exchange_weak(old_head,old_head->next));
 return old_head ? old_head->data : std::shared_ptr<T>();
 }
};

The data is held by the pointer now B, so you have to allocate the data on the heap in
the node constructor c. You also have to check for a null pointer before you derefer-
ence old_head in the compare_exchange_weak() loop d. Finally, you either return
the data associated with your node, if there is one, or a null pointer if not e. Note that
although this is lock-free, it’s not wait-free, because the while loops in both push() and
pop() could in theory loop forever if the compare_exchange_weak() keeps failing.

 If you have a garbage collector picking up after you (like in managed languages
such as C# or Java), you’re finished; the old node will be collected and recycled once
it’s no longer being accessed by any threads. But not many C++ compilers ship with a
garbage collector, so you generally have to tidy up after yourself.

Listing 7.3 A lock-free stack that leaks nodes

Data is now held
by pointer

b

Create std::shared_ptr
for newly allocated Tc

Check old_head is not
a null pointer before
you dereference it

d

e

214 CHAPTER 7 Designing lock-free concurrent data structures
7.2.2 Stopping those pesky leaks: managing memory in lock-free
data structures

When you first looked at pop(), you opted to leak nodes in order to avoid the race
condition where one thread deletes a node while another thread still holds a pointer
to it that it’s about to dereference. But leaking memory isn’t acceptable in any sensible
C++ program, so you have to do something about that. Now it’s time to look at the
problem and work out a solution.

 The basic problem is that you want to free a node, but you can’t do so until you’re
sure there are no other threads that still hold pointers to it. If only one thread ever
calls pop() on a particular stack instance, you’re home free. Nodes are created in calls
to push(), and push() doesn't access the contents of existing nodes, so the only
threads that can access a given node are the thread that added that node to the stack,
and any threads that call pop(). push() doesn’t touch the node once it’s been added
to the stack, so that leaves the threads that call pop()—if there's only one of them,
then the thread that called pop() must be the only thread that can touch the node,
and it can safely delete it.

 On the other hand, if you need to handle multiple threads calling pop() on the
same stack instance, you need some way to track when it’s safe to delete a node. This
means you need to write a special-purpose garbage collector for nodes. Now, this
might sound scary, and although it’s certainly tricky, it’s not that bad: you’re only
checking for nodes, and you’re only checking for nodes accessed from pop(). You’re
not worried about nodes in push(), because they’re only accessible from one thread
until they’re on the stack, whereas multiple threads might be accessing the same node
in pop().

 If there are no threads calling pop(), it’s perfectly safe to delete all the nodes cur-
rently awaiting deletion. Therefore, if you add the nodes to a “to be deleted” list when
you’ve extracted the data, then you can delete them all when there are no threads call-
ing pop(). How do you know there aren’t any threads calling pop()? Simple—count
them. If you increment a counter on entry and decrement that counter on exit, it’s
safe to delete the nodes from the “to be deleted” list when the counter is zero. It will
have to be an atomic counter so it can safely be accessed from multiple threads. The
following listing shows the amended pop() function, and listing 7.5 shows the sup-
porting functions for this implementation.

template<typename T>
class lock_free_stack
{
private:
 std::atomic<unsigned> threads_in_pop;
 void try_reclaim(node* old_head);
public:
 std::shared_ptr<T> pop()
 {

Listing 7.4 Reclaiming nodes when no threads are in pop()

Atomic
variable

b

215Examples of lock-free data structures
 ++threads_in_pop;
 node* old_head=head.load();
 while(old_head &&
 !head.compare_exchange_weak(old_head,old_head->next));
 std::shared_ptr<T> res;
 if(old_head)
 {
 res.swap(old_head->data);
 }
 try_reclaim(old_head);
 return res;
 }
};

The atomic variable threads_in_pop B is used to count the threads currently trying
to pop an item off the stack. It’s incremented at the start of pop() c, and decre-
mented inside try_reclaim(), which is called once the node has been removed e.
Because you’re going to potentially delay the deletion of the node itself, you can use
swap() to remove the data from the node d rather than copying the pointer, so that
the data will be deleted automatically when you no longer need it rather than it being
kept alive because there’s still a reference in a not-yet-deleted node. The next listing
shows what goes into try_reclaim().

template<typename T>
class lock_free_stack
{
private:
 std::atomic<node*> to_be_deleted;
 static void delete_nodes(node* nodes)
 {
 while(nodes)
 {
 node* next=nodes->next;
 delete nodes;
 nodes=next;
 }
 }
 void try_reclaim(node* old_head)
 {
 if(threads_in_pop==1)
 {
 node* nodes_to_delete=to_be_deleted.exchange(nullptr);
 if(!--threads_in_pop)
 {
 delete_nodes(nodes_to_delete);
 }
 else if(nodes_to_delete)
 {
 chain_pending_nodes(nodes_to_delete);
 }

Listing 7.5 The reference-counted reclamation machinery

Increase counter before
doing anything elsec

Reclaim deleted
nodes if you can

d

Extract data from node
rather than copying pointere

b

Claim list of
to-be-deleted

nodes

c

Are you the only
thread in pop()?d

e

f

g

216 CHAPTER 7 Designing lock-free concurrent data structures
 delete old_head;
 }
 else
 {
 chain_pending_node(old_head);
 --threads_in_pop;
 }
 }
 void chain_pending_nodes(node* nodes)
 {
 node* last=nodes;
 while(node* const next=last->next)
 {
 last=next;
 }
 chain_pending_nodes(nodes,last);
 }
 void chain_pending_nodes(node* first,node* last)
 {
 last->next=to_be_deleted;
 while(!to_be_deleted.compare_exchange_weak(
 last->next,first));
 }
 void chain_pending_node(node* n)
 {
 chain_pending_nodes(n,n);
 }
};

If the count of threads_in_pop is 1 when you’re trying to reclaim the node B,
you’re the only thread currently in pop(), which means it’s safe to delete the node
you just removed h, and it may also be safe to delete the pending nodes. If the count
is not 1, it’s not safe to delete any nodes, so you have to add the node to the pending
list i.

 Assume for a moment that threads_in_pop is 1. You now need to try to reclaim
the pending nodes; if you don’t, they’ll stay pending until you destroy the stack. To do
this, you first claim the list for yourself with an atomic exchange operation c, and
then decrement the count of threads_in_pop d. If the count is zero after the decre-
ment, you know that no other thread can be accessing this list of pending nodes.
There may be new pending nodes, but you’re not bothered about them for now, as
long as it’s safe to reclaim your list. You can then call delete_nodes to iterate down
the list and delete them e.

 If the count is not zero after the decrement, it’s not safe to reclaim the nodes, so if
there are any f, you must chain them back onto the list of nodes pending deletion

g. This can happen if there are multiple threads accessing the data structure concur-
rently. Other threads might have called pop() in between the first test of threads_
in_pop B and the “claiming” of the list c, potentially adding new nodes to the list
that are still being accessed by one or more of those other threads. In figure 7.1, thread
C adds node Y to the to_be_deleted list, even though thread B is still referencing it as

h

i

Follow the next pointer
chain to the end.j

1)

Loop to guarantee that
last->next is correct.1!

1@

217Examples of lock-free data structures
head Z

threads_in_pop == 2

Thread C calls pop() and runs until pop() returns

Ato_be_deleted Y

(Threads A and B. C is done)

X Yhead Z

Ato_be_deleted

Initially

threads_in_pop == 0

Yhead Z

threads_in_pop == 2

old_head

Thread B calls pop() and is preempted after the first read of head

Ato_be_deleted

(Threads A and B)

Yhead Z

threads_in_pop == 1

Ato_be_deleted

(Thread A)

Thread A calls and is preempted inpop() try_reclaim()

threads_in_popafter first read of

threads_in_pop == 2

Anodes_to_delete Y

to_be_deleted nullptr

head Z

Thread A resumes and is then preempted after only executing
to_be_deleted.exchange(nullptr)

If we don't test againnodes Y and A will bedeletedthreads_in_pop

threads_in_pop == 2

Yold_head

head Z

Thread B resumes and reads for theold_head->next

callcompare_exchange_strong()

Node Y is on A's
listto_be_deleted

Figure 7.1 Three threads call pop() concurrently, showing why you
must check threads_in_pop after claiming the nodes to be deleted
in try_reclaim().

218 CHAPTER 7 Designing lock-free concurrent data structures
old_head, and will try and read its next pointer. Thread A can’t therefore delete the
nodes without potentially causing undefined behavior for thread B.

 To chain the nodes that are pending deletion onto the pending list, you reuse the
next pointer from the nodes to link them together. In the case of relinking an existing
chain back onto the list, you traverse the chain to find the end j, replace the next
pointer from the last node with the current to_be_deleted pointer 1), and store the
first node in the chain as the new to_be_deleted pointer 1!. You have to use
compare_exchange_weak in a loop here in order to ensure that you don’t leak any
nodes that have been added by another thread. This has the benefit of updating the
next pointer from the end of the chain if it has been changed. Adding a single node
onto the list is a special case where the first node in the chain to be added is the same
as the last one 1@.

 This works reasonably well in low-load situations, where there are suitable quies-
cent points at which no threads are in pop(). But this is potentially a transient situa-
tion, which is why you need to test that the threads_in_pop count decrements to zero

d before doing the reclaim and why this test occurs before you delete the just-
removed node h. Deleting a node is potentially a time-consuming operation, and you
want the window in which other threads can modify the list to be as small as possible.
The longer the time between when the thread first finds threads_in_pop to be equal
to 1 and the attempt to delete the nodes, the more chance there is that another
thread has called pop(), and that threads_in_pop is no longer equal to 1, preventing
the nodes from being deleted.

 In high-load situations, there may never be this quiescent state, because other
threads have entered pop() before all the threads initially in pop() have left. Under
this scenario, the to_be_deleted list would grow without bounds, and you’d be leak-
ing memory again. If there aren’t going to be any quiescent periods, you need to find
an alternative mechanism for reclaiming the nodes. The key is to identify when no
more threads are accessing a particular node so that it can be reclaimed. By far the
easiest such mechanism to reason about is the use of hazard pointers.

7.2.3 Detecting nodes that can’t be reclaimed using hazard pointers

The term hazard pointers is a reference to a technique discovered by Maged Michael.1

They are so called because deleting a node that might still be referenced by other
threads is hazardous. If other threads do indeed hold references to that node and
proceed to access the node through that reference, you have undefined behavior.
The basic idea is that if a thread is going to access an object that another thread
might want to delete, it first sets a hazard pointer to reference the object, informing
the other thread that deleting the object would indeed be hazardous. Once the
object is no longer needed, the hazard pointer is cleared. If you’ve ever watched the

1 “Safe Memory Reclamation for Dynamic Lock-Free Objects Using Atomic Reads and Writes,” Maged M.
Michael, in PODC ’02: Proceedings of the Twenty-first Annual Symposium on Principles of Distributed Com-
puting (2002), ISBN 1-58113-485-1.

219Examples of lock-free data structures
Oxford/Cambridge boat race, you’ve seen a similar mechanism used when starting
the race: the cox of either boat can raise their hand to indicate that they aren’t ready.
While either cox has their hand raised, the umpire may not start the race. If both
coxes have their hands down, the race may start, but a cox may raise their hand again
if the race hasn’t started and they feel the situation has changed.

 When a thread wants to delete an object, it must first check the hazard pointers
belonging to the other threads in the system. If none of the hazard pointers reference
the object, it can safely be deleted. Otherwise, it must be left until later. Periodically,
the list of objects that have been left until later is checked to see if any of them can
now be deleted.

 Described at such a high level, it sounds relatively straightforward, so how do you
do this in C++?

 Well, first off you need a location in which to store the pointer to the object you’re
accessing, the hazard pointer itself. This location must be visible to all threads, and
you need one of these for each thread that might access the data structure. Allocating
them correctly and efficiently can be a challenge, so you’ll leave that for later and
assume you have a function get_hazard_pointer_for_current_thread() that returns
a reference to your hazard pointer. You then need to set it when you read a pointer
that you intend to dereference—in this case the head value from the list:

std::shared_ptr<T> pop()
{
 std::atomic<void*>& hp=get_hazard_pointer_for_current_thread();
 node* old_head=head.load();
 node* temp;
 do
 {
 temp=old_head;
 hp.store(old_head);
 old_head=head.load();
 } while(old_head!=temp);
 // ...
}

You have to do this in a while loop to ensure that the node hasn’t been deleted
between the reading of the old head pointer B and the setting of the hazard pointer

c. During this window no other thread knows you’re accessing this particular node.
Fortunately, if the old head node is going to be deleted, head itself must have changed,
so you can check this and keep looping until you know that the head pointer still has the
same value you set your hazard pointer to d. Using hazard pointers like this relies on
the fact that it's safe to use the value of a pointer after the object it references has been
deleted. This is technically undefined behavior if you are using the default implementa-
tion of new and delete, so either you need to ensure that your implementation permits
it, or you need to use a custom allocator that permits this usage.

 Now that you’ve set your hazard pointer, you can proceed with the rest of pop(),
safe in the knowledge that no other thread will delete the nodes from under you.

b

c

d

220 CHAPTER 7 Designing lock-free concurrent data structures
Well, almost: every time you reload old_head, you need to update the hazard pointer
before you dereference the freshly read pointer value. Once you’ve extracted a node
from the list, you can clear your hazard pointer. If there are no other hazard pointers
referencing your node, you can safely delete it; otherwise, you have to add it to a list of
nodes to be deleted later. The following listing shows a full implementation of pop()
using this scheme.

std::shared_ptr<T> pop()
{
 std::atomic<void*>& hp=get_hazard_pointer_for_current_thread();
 node* old_head=head.load();
 do
 {
 node* temp;
 do
 {
 temp=old_head;
 hp.store(old_head);
 old_head=head.load();
 } while(old_head!=temp);
 }
 while(old_head &&
 !head.compare_exchange_strong(old_head,old_head->next));
 hp.store(nullptr);
 std::shared_ptr<T> res;
 if(old_head)
 {
 res.swap(old_head->data);
 if(outstanding_hazard_pointers_for(old_head))
 {
 reclaim_later(old_head);
 }
 else
 {
 delete old_head;
 }
 delete_nodes_with_no_hazards();
 }
 return res;
}

First off, you’ve moved the loop that sets the hazard pointer inside the outer loop for
reloading old_head if the compare/exchange fails B. You’re using compare_exchange
_strong() here because you’re doing work inside the while loop: a spurious failure
on compare_exchange_weak() would result in resetting the hazard pointer unneces-
sarily. This ensures that the hazard pointer is correctly set before you dereference
old_head. Once you’ve claimed the node as yours, you can clear your hazard pointer

c. If you did get a node, you need to check the hazard pointers belonging to other
threads to see if they reference it d. If so, you can’t delete it yet, so you must put it on

Listing 7.6 An implementation of pop() using hazard pointers

Loop until you’ve set the
hazard pointer to head.

b

Clear hazard pointer
once you’re finishedc

Check for hazard
pointers referencing
a node before you
delete it.d

e

f

g

221Examples of lock-free data structures
a list to be reclaimed later e; otherwise, you can delete it right away f. Finally, you
put in a call to check for any nodes for which you had to call reclaim_later(). If
there are no longer any hazard pointers referencing those nodes, you can safely
delete them g. Any nodes for which there are still outstanding hazard pointers will be
left for the next thread that calls pop().

 There’s still a lot of detail hidden in these new functions—get_hazard_pointer_

for_current_thread(), reclaim_later(), outstanding_hazard_pointers_for(), and
delete_nodes_with_no_hazards()—so let’s draw back the curtain and look at how
they work.

 The exact scheme for allocating hazard pointer instances to threads used by
get_hazard_pointer_for_current_thread() doesn’t matter for the program logic
(although it can affect the efficiency, as you’ll see later). For now you’ll go with a sim-
ple structure: a fixed-size array of pairs of thread IDs and pointers. get_hazard_
pointer_for_current_thread() then searches through the array to find the first
free slot and sets the ID entry of that slot to the ID of the current thread. When the
thread exits, the slot is freed by resetting the ID entry to a default-constructed
std::thread::id(). This is shown in the following listing.

unsigned const max_hazard_pointers=100;
struct hazard_pointer
{
 std::atomic<std::thread::id> id;
 std::atomic<void*> pointer;
};
hazard_pointer hazard_pointers[max_hazard_pointers];
class hp_owner
{
 hazard_pointer* hp;

public:
 hp_owner(hp_owner const&)=delete;
 hp_owner operator=(hp_owner const&)=delete;
 hp_owner():
 hp(nullptr)
 {
 for(unsigned i=0;i<max_hazard_pointers;++i)
 {
 std::thread::id old_id;
 if(hazard_pointers[i].id.compare_exchange_strong(
 old_id,std::this_thread::get_id()))
 {
 hp=&hazard_pointers[i];
 break;
 }
 }
 if(!hp)
 {

Listing 7.7 A simple implementation of get_hazard_pointer_for_current
_thread()

Try to claim
ownership
of a hazard
pointer.

b

222 CHAPTER 7 Designing lock-free concurrent data structures
 throw std::runtime_error("No hazard pointers available");
 }
 }
 std::atomic<void*>& get_pointer()
 {
 return hp->pointer;
 }
 ~hp_owner()
 {
 hp->pointer.store(nullptr);
 hp->id.store(std::thread::id());
 }
};
std::atomic<void*>& get_hazard_pointer_for_current_thread()
{
 thread_local static hp_owner hazard;
 return hazard.get_pointer();
}

The implementation of get_hazard_pointer_for_current_thread() itself is decep-
tively simple d: it has a thread_local variable of type hp_owner e, which stores the
hazard pointer for the current thread. It then returns the pointer from that object f.
This works as follows: the first time each thread calls this function, a new instance of
hp_owner is created. The constructor for this new instance B then searches through
the table of owner/pointer pairs looking for an entry without an owner. It uses com-
pare_exchange_strong() to check for an entry without an owner and claim it in one
go c. If the compare_exchange_strong() fails, another thread owns that entry, so
you move on to the next. If the exchange succeeds, you’ve successfully claimed the
entry for the current thread, so you store it and stop the search d. If you get to the
end of the list without finding a free entry e, there are too many threads using haz-
ard pointers, so you throw an exception.

 Once the hp_owner instance has been created for a given thread, further accesses
are much faster because the pointer is cached, so the table doesn’t have to be
scanned again.

 When each thread exits, if an instance of hp_owner was created for that thread, then
it’s destroyed. The destructor then resets the pointer to nullptr before setting the
owner ID to std::thread::id(), allowing another thread to reuse the entry later f.

 With this implementation of get_hazard_pointer_for_current_thread(), the
implementation of outstanding_hazard_pointers_for() is simple—scan through
the hazard pointer table looking for entries:

bool outstanding_hazard_pointers_for(void* p)
{
 for(unsigned i=0;i<max_hazard_pointers;++i)
 {
 if(hazard_pointers[i].pointer.load()==p)
 {
 return true;
 }

c

d

Each thread has its
own hazard pointer.e

f

223Examples of lock-free data structures
 }
 return false;
}

It’s not even worth checking whether each entry has an owner: unowned entries
will have a null pointer, so the comparison will return false anyway, and it simpli-
fies the code.

 reclaim_later() and delete_nodes_with_no_hazards() can then work on a sim-
ple linked list; reclaim_later() adds nodes to the list, and delete_nodes_with_no_
hazards() scans through the list, deleting entries with no outstanding hazards. The
next listing shows this implementation.

template<typename T>
void do_delete(void* p)
{
 delete static_cast<T*>(p);
}
struct data_to_reclaim
{
 void* data;
 std::function<void(void*)> deleter;
 data_to_reclaim* next;
 template<typename T>
 data_to_reclaim(T* p):
 data(p),
 deleter(&do_delete<T>),
 next(0)
 {}
 ~data_to_reclaim()
 {
 deleter(data);
 }
};
std::atomic<data_to_reclaim*> nodes_to_reclaim;
void add_to_reclaim_list(data_to_reclaim* node)
{
 node->next=nodes_to_reclaim.load();
 while(!nodes_to_reclaim.compare_exchange_weak(node->next,node));
}
template<typename T>
void reclaim_later(T* data)
{
 add_to_reclaim_list(new data_to_reclaim(data));
}
void delete_nodes_with_no_hazards()
{
 data_to_reclaim* current=nodes_to_reclaim.exchange(nullptr);
 while(current)
 {
 data_to_reclaim* const next=current->next;
 if(!outstanding_hazard_pointers_for(current->data))

Listing 7.8 A simple implementation of the reclaim functions

b

c

d

e

f

g

h

224 CHAPTER 7 Designing lock-free concurrent data structures
 {
 delete current;
 }
 else
 {
 add_to_reclaim_list(current);
 }
 current=next;
 }
}

First off, I expect you’ve spotted that reclaim_later() is a function template rather
than a plain function, e. This is because hazard pointers are a general-purpose util-
ity, so you don’t want to tie yourselves to stack nodes. You’ve been using std::
atomic<void*> to store the pointers already. You therefore need to handle any
pointer type, but you can’t use void* because you want to delete the data items when
you can, and delete requires the real type of the pointer. The constructor of
data_to_reclaim handles that nicely, as you’ll see in a minute; reclaim_later() cre-
ates a new instance of data_to_reclaim for your pointer and adds it to the reclaim list

f. add_to_reclaim_list() itself d is a simple compare_exchange_weak() loop on
the list head like you’ve seen before.

 Back to the constructor of data_to_reclaim B: the constructor is also a tem-
plate. It stores the data to be deleted as a void* in the data member and then stores
a pointer to the appropriate instantiation of do_delete()—a simple function that
casts the supplied void* to the chosen pointer type and then deletes the pointed-to
object. std::function<> wraps this function pointer safely, so that the destructor of
data_to_reclaim can then delete the data by invoking the stored function c.

 The destructor of data_to_reclaim isn’t called when you’re adding nodes to the
list; it’s called when there are no more hazard pointers to that node. This is the respon-
sibility of delete_nodes_with_no_hazards().

 delete_nodes_with_no_hazards() first claims the entire list of nodes to be
reclaimed for itself with a simple exchange() g. This simple but crucial step ensures
that this is the only thread trying to reclaim this particular set of nodes. Other threads
are now free to add further nodes to the list or even try to reclaim them without
impacting the operation of this thread.

 Then, as long as there are still nodes left in the list, you check each node in turn to
see if there are any outstanding hazard pointers h. If there aren’t, you can safely
delete the entry (and clean up the stored data) i. Otherwise, you add the item back
on the list for reclaiming later j.

 Although this simple implementation does indeed safely reclaim the deleted
nodes, it adds quite a bit of overhead to the process. Scanning the hazard pointer
array requires checking max_hazard_pointers atomic variables, and this is done for
every pop() call. Atomic operations are inherently slow—often 100 times slower than
an equivalent non-atomic operation on desktop CPUs—so this makes pop() an expen-
sive operation. Not only do you scan the hazard pointer list for the node you’re about

i

j

225Examples of lock-free data structures
to remove, but you also scan it for each node in the waiting list. Clearly this is a bad
idea. There may well be max_hazard_pointers nodes in the list, and you’re checking
all of them against max_hazard_pointers stored hazard pointers. Ouch! There has to
be a better way.

BETTER RECLAMATION STRATEGIES USING HAZARD POINTERS

There is a better way. What I’ve shown here is a simple and naïve implementation of
hazard pointers to help explain the technique. The first thing you can do is trade
memory for performance. Rather than checking every node on the reclamation list
every time you call pop(), you don’t try to reclaim any nodes at all unless there are
more than max_hazard_pointers nodes on the list. That way you’re guaranteed to be
able to reclaim at least one node. If you wait until there are max_hazard_pointers+1
nodes on the list, you’re not much better off. Once you get to max_hazard_pointers
nodes, you’ll be trying to reclaim nodes for most calls to pop(), so you’re not doing
much better. But if you wait until there are 2*max_hazard_pointers nodes on the list,
then at most max_hazard_pointers of those will still be active, so you’re guaranteed to
be able to reclaim at least max_hazard_pointers nodes, and it will then be at least
max_hazard_pointers calls to pop() before you try to reclaim any nodes again. This is
much better. Rather than checking around max_hazard_pointers nodes every call to
push() (and not necessarily reclaiming any), you’re checking 2*max_hazard_pointers
nodes every max_hazard_pointers calls to pop() and reclaiming at least max_hazard_
pointers nodes. That’s effectively two nodes checked for every pop(), one of which
is reclaimed.

 Even this has a downside (beyond the increased memory usage from the larger
reclamation list, and the larger number of potentially reclaimable nodes): you now
have to count the nodes on the reclamation list, which means using an atomic count,
and you still have multiple threads competing to access the reclamation list itself. If
you have memory to spare, you can trade increased memory usage for an even better
reclamation scheme: each thread keeps its own reclamation list in a thread-local vari-
able. There’s no need for atomic variables for the count or the list access. Instead, you
have max_hazard_pointers*max_hazard_pointers nodes allocated. If a thread exits
before all its nodes have been reclaimed, they can be stored in the global list as before
and added to the local list of the next thread doing a reclamation process.

 Another downside of hazard pointers is that they’re covered by a patent applica-
tion submitted by IBM.2 Though I believe this patent has now expired, if you write
software for use in a country where the patents are valid, it is a good idea to get a pat-
ent lawyer to verify that for you, or you need to make sure you have a suitable licensing
arrangement in place. This is something common to many of the lock-free memory
reclamation techniques; this is an active research area, so large companies are taking
out patents where they can. You may be asking why I’ve devoted so many pages to a

2 Maged M. Michael, U.S. Patent and Trademark Office application number 20040107227, “Method for effi-
cient implementation of dynamic lock-free data structures with safe memory reclamation.”

226 CHAPTER 7 Designing lock-free concurrent data structures
technique that people may be unable to use, and that’s a fair question. First, it may be
possible to use the technique without paying for a license. For example, if you’re
developing free software licensed under the GPL,3 your software may be covered by
IBM’s statement of non-assertion.4 Second, and most important, the explanation of
the techniques shows some of the things that are important to think about when writ-
ing lock-free code, such as the costs of atomic operations. Finally, there is a proposal
to incorporate hazard pointers into a future revision of the C++ Standard,5 so it is
good to know how they work, even if you will hopefully be able to use your compiler
vendor’s implementation in the future.

 So, are there any unpatented memory reclamation techniques that can be used
with lock-free code? Luckily, there are. One such mechanism is reference counting.

7.2.4 Detecting nodes in use with reference counting

Back in section 7.2.2, you saw that the problem with deleting nodes is detecting which
nodes are still being accessed by reader threads. If you could safely identify precisely
which nodes were being referenced and when no threads were accessing these nodes,
you could delete them. Hazard pointers tackle the problem by storing a list of the
nodes in use. Reference counting tackles the problem by storing a count of the num-
ber of threads accessing each node.

 This may seem nice and straightforward, but it’s quite hard to manage in practice.
At first, you might think that something like std::shared_ptr<> would be up to the
task; after all, it’s a reference-counted pointer. Unfortunately, although some opera-
tions on std::shared_ptr<> are atomic, they aren’t guaranteed to be lock-free.
Although by itself this is no different than any of the operations on the atomic types,
std::shared_ptr<> is intended for use in many contexts, and making the atomic
operations lock-free would likely impose an overhead on all uses of the class. If your
platform supplies an implementation for which std::atomic_is_lock_free(&some_
shared_ptr) returns true, the whole memory reclamation issue goes away. Use
std::shared_ptr<node> for the list, as in listing 7.9. Note the need to clear the next
pointer from the popped node in order to avoid the potential for deeply nested
destruction of nodes when the last std::shared_ptr referencing a given node is
destroyed.

3 GNU General Public License http://www.gnu.org/licenses/gpl.html.
4 IBM Statement of Non-Assertion of Named Patents Against OSS, http://www.ibm.com/ibm/licensing/pat-

ents/pledgedpatents.pdf.
5 P0566: Proposed Wording for Concurrent Data Structures: Hazard Pointer and ReadCopyUpdate (RCU),

Michael Wong, Maged M. Michael, Paul McKenney, Geoffrey Romer, Andrew Hunter, Arthur O'Dwyer, David
S. Hollman, JF Bastien, Hans Boehm, David Goldblatt, Frank Birbacher http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2018/p0566r5.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0566r5.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0566r5.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0566r5.pdf
http://www.gnu.org/licenses/gpl.html
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf

227Examples of lock-free data structures
template<typename T>
class lock_free_stack
{
private:
 struct node
 {
 std::shared_ptr<T> data;
 std::shared_ptr<node> next;
 node(T const& data_):
 data(std::make_shared<T>(data_))
 {}
 };
 std::shared_ptr<node> head;
public:
 void push(T const& data)
 {
 std::shared_ptr<node> const new_node=std::make_shared<node>(data);
 new_node->next=std::atomic_load(&head);
 while(!std::atomic_compare_exchange_weak(&head,
 &new_node->next,new_node));
 }
 std::shared_ptr<T> pop()
 {
 std::shared_ptr<node> old_head=std::atomic_load(&head);
 while(old_head && !std::atomic_compare_exchange_weak(&head,
 &old_head,std::atomic_load(&old_head->next)));
 if(old_head) {
 std::atomic_store(&old_head->next,std::shared_ptr<node>());
 return old_head->data;
 }
 return std::shared_ptr<T>();
 }
 ~lock_free_stack(){
 while(pop());
 }
};

Not only is it rare for an implementation to provide lock-free atomic operations on
std::shared_ptr<>, but remembering to use the atomic operations consistently is hard.
The Concurrency TS helps you out, if you have an implementation available, because it
provides std::experimental::atomic_shared_ptr<T> in the <experimental/atomic>
header. This is in many ways equivalent to a theoretical std::atomic<std::shared
_ptr<T>>, except that std::shared_ptr<T> can't be used with std::atomic<>,
because it has nontrivial copy semantics to ensure that the reference count is handled
correctly. std::experimental::atomic_shared_ptr<T> handles the reference count-
ing correctly, while still ensuring atomic operations. Like the other atomic types
described in chapter 5, it may or may not be lock-free on any given implementation.
Listing 7.9 can thus be rewritten as in listing 7.10. See how much simpler it is without
having to remember to include the atomic_load and atomic_store calls.

Listing 7.9 A lock-free stack using a lock-free std::shared_ptr<> implementation

228 CHAPTER 7 Designing lock-free concurrent data structures
template<typename T>
class lock_free_stack
{
private:
 struct node
 {
 std::shared_ptr<T> data;
 std::experimental::atomic_shared_ptr<node> next;
 node(T const& data_):
 data(std::make_shared<T>(data_))
 {}
 };
 std::experimental::atomic_shared_ptr<node> head;
public:
 void push(T const& data)
 {
 std::shared_ptr<node> const new_node=std::make_shared<node>(data);
 new_node->next=head.load();
 while(!head.compare_exchange_weak(new_node->next,new_node));
 }
 std::shared_ptr<T> pop()
 {
 std::shared_ptr<node> old_head=head.load();
 while(old_head && !head.compare_exchange_weak(
 old_head,old_head->next.load()));
 if(old_head) {
 old_head->next=std::shared_ptr<node>();
 return old_head->data;
 }
 return std::shared_ptr<T>();
 }
 ~lock_free_stack(){
 while(pop());
 }
};

In the probable case that your std::shared_ptr<> implementation isn’t lock-free,
and your implementation doesn’t provide a lock-free std::experimental::atomic_
shared_ptr<> either, you need to manage the reference counting manually.

 One possible technique involves the use of not one but two reference counts for
each node: an internal count and an external count. The sum of these values is the
total number of references to the node. The external count is kept alongside the pointer
to the node and is increased every time the pointer is read. When the reader is fin-
ished with the node, it decreases the internal count. A simple operation that reads the
pointer will leave the external count increased by one and the internal count decreased
by one when it’s finished.

 When the external count/pointer pairing is no longer required (the node is no
longer accessible from a location accessible to multiple threads), the internal count is

Listing 7.10 Stack implementation using std::experimental::atomic
_shared_ptr<>

229Examples of lock-free data structures
increased by the value of the external count minus one and the external counter is
discarded. Once the internal count is equal to zero, there are no outstanding refer-
ences to the node and it can be safely deleted. It’s still important to use atomic opera-
tions for updates of shared data. Let’s now look at an implementation of a lock-free
stack that uses this technique to ensure that the nodes are reclaimed only when it’s
safe to do so.

 The following listing shows the internal data structure and the implementation of
push(), which is nice and straightforward.

template<typename T>
class lock_free_stack
{
private:
 struct node;
 struct counted_node_ptr
 {
 int external_count;
 node* ptr;
 };
 struct node
 {
 std::shared_ptr<T> data;
 std::atomic<int> internal_count;
 counted_node_ptr next;
 node(T const& data_):
 data(std::make_shared<T>(data_)),
 internal_count(0)
 {}
 };
 std::atomic<counted_node_ptr> head;
public:
 ~lock_free_stack()
 {
 while(pop());
 }
 void push(T const& data)
 {
 counted_node_ptr new_node;
 new_node.ptr=new node(data);
 new_node.external_count=1;
 new_node.ptr->next=head.load();
 while(!head.compare_exchange_weak(new_node.ptr->next,new_node));
 }
};

First, the external count is wrapped together with the node pointer in the counted_
node_ptr structure B. This can then be used for the next pointer in the node struc-
ture, d alongside the internal count c. Because counted_node_ptr is a simple
struct, you can use it with the std::atomic<> template for the head of the list e.

Listing 7.11 Pushing a node on a lock-free stack using split reference counts

b

c

d

e

f

230 CHAPTER 7 Designing lock-free concurrent data structures
 On those platforms that support a double-word-compare-and-swap operation, this
structure will be small enough for std::atomic<counted_node_ptr> to be lock-free. If
it isn’t on your platform, you might be better off using the std::shared_ptr<> ver-
sion from listing 7.9, because std::atomic<> will use a mutex to guarantee atomicity
when the type is too large for the platform’s atomic instructions (rendering your
“lock-free” algorithm lock-based after all). Alternatively, if you’re willing to limit the
size of the counter, and you know that your platform has spare bits in a pointer (for
example, because the address space is only 48 bits but a pointer is 64 bits), you can
store the count inside the spare bits of the pointer to fit it all back in a single machine
word. These tricks require platform-specific knowledge and are thus outside the scope
of this book.

 push() is relatively simple f. You construct a counted_node_ptr that refers to a
freshly allocated node with associated data and set the next value of the node to the
current value of head. You can then use compare_exchange_weak() to set the value of
head, as in the previous listings. The counts are set up so the internal_count is zero,
and the external_count is one. Because this is a new node, there’s currently only one
external reference to the node (the head pointer itself).

 As usual, the complexities come to light in the implementation of pop(), which is
shown in the following listing.

template<typename T>
class lock_free_stack
{
private:
 // other parts as in listing 7.11
 void increase_head_count(counted_node_ptr& old_counter)
 {
 counted_node_ptr new_counter;
 do
 {
 new_counter=old_counter;
 ++new_counter.external_count;
 }
 while(!head.compare_exchange_strong(old_counter,new_counter));
 old_counter.external_count=new_counter.external_count;
 }
public:
 std::shared_ptr<T> pop()#
 {
 counted_node_ptr old_head=head.load();
 for(;;)
 {
 increase_head_count(old_head);
 node* const ptr=old_head.ptr;
 if(!ptr)
 {
 return std::shared_ptr<T>();
 }

Listing 7.12 Popping a node from a lock-free stack using split reference counts

b

c

231Examples of lock-free data structures
 if(head.compare_exchange_strong(old_head,ptr->next))
 {
 std::shared_ptr<T> res;
 res.swap(ptr->data);
 int const count_increase=old_head.external_count-2;
 if(ptr->internal_count.fetch_add(count_increase)==
 -count_increase)
 {
 delete ptr;
 }
 return res;
 }
 else if(ptr->internal_count.fetch_sub(1)==1)
 {
 delete ptr;
 }
 }
 }
};

This time, once you’ve loaded the value of head, you must first increase the count of
external references to the head node to indicate that you’re referencing it and to
ensure that it’s safe to dereference it. If you dereference the pointer before increasing
the reference count, another thread could free the node before you access it, leaving
you with a dangling pointer. This is the primary reason for using the split reference
count: by incrementing the external reference count, you ensure that the pointer
remains valid for the duration of your access. The increment is done with a compare
_exchange_strong() loop B, which compares and sets the whole structure to ensure
that the pointer hasn’t been changed by another thread in the meantime.

 Once the count has been increased, you can safely dereference the ptr field of
the value loaded from head in order to access the pointed-to node c. If the pointer
is a null pointer, you’re at the end of the list: no more entries. If the pointer isn’t a
null pointer, you can try to remove the node by a compare_exchange_strong() call
on head d.

 If the compare_exchange_strong() succeeds, you’ve taken ownership of the node
and can swap out the data in preparation for returning it e. This ensures that the
data isn’t kept alive just because other threads accessing the stack happen to still have
pointers to its node. Then you can add the external count to the internal count on the
node with an atomic fetch_add g. If the reference count is now zero, the previous
value (which is what fetch_add returns) was the negative of what you added, in which
case you can delete the node. It’s important to note that the value you add is two less
than the external count f; you’ve removed the node from the list, so you drop one
off the count for that, and you’re no longer accessing the node from this thread, so
you drop another off the count for that. Whether or not you deleted the node, you’ve
finished, so you can return the data h.

 If the compare/exchange d fails, another thread removed your node before you
did, or another thread added a new node to the stack. Either way, you need to start

d

e

f

g

h

i

232 CHAPTER 7 Designing lock-free concurrent data structures
again with the fresh value of head returned by the compare/exchange call. But first
you must decrease the reference count on the node you were trying to remove. This
thread won’t access it anymore. If you’re the last thread to hold a reference (because
another thread removed it from the stack), the internal reference count will be 1, so
subtracting 1 will set the count to zero. In this case, you can delete the node here
before you loop i.

 So far, you’ve been using the default std::memory_order_seq_cst memory order-
ing for all your atomic operations. On most systems these are more expensive in terms
of execution time and synchronization overhead than the other memory orderings,
and on some systems considerably so. Now that you have the logic of your data struc-
ture right, you can think about relaxing some of these memory-ordering require-
ments; you don’t want to impose any unnecessary overhead on the users of the stack.
Before leaving your stack behind and moving on to the design of a lock-free queue,
let’s examine the stack operations and ask ourselves, can we use more relaxed mem-
ory orderings for some operations and still get the same level of safety?

7.2.5 Applying the memory model to the lock-free stack

Before you go about changing the memory orderings, you need to examine the oper-
ations and identify the required relationships between them. You can then go back
and find the minimum memory orderings that provide these required relationships.
In order to do this, you’ll have to look at the situation from the point of view of
threads in several different scenarios. The simplest possible scenario has to be where
one thread pushes a data item onto the stack and another thread then pops that data
item off the stack some time later, so we’ll start from there.

 In this simple case, three important pieces of data are involved. First is the count-
ed_node_ptr used for transferring the data: head. Second is the node structure that
head refers to, and third is the data item pointed to by that node.

 The thread doing the push() first constructs the data item and the node and then
sets head. The thread doing the pop() first loads the value of head, then does a com-
pare/exchange loop on head to increase the reference count, and then reads the
node structure to obtain the next value. Right here you can see a required relation-
ship; the next value is a plain non-atomic object, so in order to read this safely, there
must be a happens-before relationship between the store (by the pushing thread) and
the load (by the popping thread). Because the only atomic operation in the push() is
the compare_exchange_weak(), and you need a release operation to get a happens-
before relationship between threads, the compare_exchange_weak() must be std::
memory_order_release or stronger. If the compare_exchange_weak() call fails, noth-
ing has changed and you keep looping, so you need only std::memory_order_
relaxed in that case:

void push(T const& data)
{
 counted_node_ptr new_node;
 new_node.ptr=new node(data);

233Examples of lock-free data structures
 new_node.external_count=1;
 new_node.ptr->next=head.load(std::memory_order_relaxed)
 while(!head.compare_exchange_weak(new_node.ptr->next,new_node,
 std::memory_order_release,std::memory_order_relaxed));
}

What about the pop() code? In order to get the happens-before relationship you
need, you must have an operation that’s std::memory_order_acquire or stronger
before the access to next. The pointer you dereference to access the next field is the
old value read by the compare_exchange_strong() in increase_head_count(), so
you need the ordering on that if it succeeds. As with the call in push(), if the
exchange fails, you just loop again, so you can use relaxed ordering on failure:

void increase_head_count(counted_node_ptr& old_counter)
{
 counted_node_ptr new_counter;
 do
 {
 new_counter=old_counter;
 ++new_counter.external_count;
 }
 while(!head.compare_exchange_strong(old_counter,new_counter,
 std::memory_order_acquire,std::memory_order_relaxed));
 old_counter.external_count=new_counter.external_count;
}

If the compare_exchange_strong() call succeeds, you know that the value read had
the ptr field set to what’s now stored in old_counter. Because the store in push() was
a release operation, and this compare_exchange_strong() is an acquire operation,
the store synchronizes with the load and you have a happens-before relationship. Con-
sequently, the store to the ptr field in the push() happens before the ptr->next
access in pop(), and you’re safe.

 Note that the memory ordering on the initial head.load() didn’t matter to this
analysis, so you can safely use std::memory_order_relaxed for that.

 Next up, let’s consider the compare_exchange_strong() to set head to old_head
.ptr->next. Do you need anything from this operation to guarantee the data integrity
of this thread? If the exchange succeeds, you access ptr->data, so you need to ensure
that the store to ptr->data in the push() thread happens before the load. But you
already have that guarantee: the acquire operation in increase_head_count() ensures
that there’s a synchronizes-with relationship between the store in the push() thread
and that compare/exchange. Because the store to data in the push() thread is
sequenced before the store to head and the call to increase_head_count() is sequenced
before the load of ptr->data, there’s a happens-before relationship, and all is well
even if this compare/exchange in pop() uses std::memory_order_relaxed. The only
other place where ptr->data is changed is the call to swap() that you’re looking at,
and no other thread can be operating on the same node; that’s the whole point of the
compare/exchange.

234 CHAPTER 7 Designing lock-free concurrent data structures
 If the compare_exchange_strong() fails, the new value of old_head isn’t touched
until next time around the loop, and you already decided that the std::memory_order
_acquire in increase_head_count() was enough, so std::memory_order_relaxed is
enough there also.

 What about other threads? Do you need anything stronger here to ensure other
threads are still safe? The answer is no, because head is only ever modified by com-
pare/exchange operations. Because these are read-modify-write operations, they form
part of the release sequence headed by the compare/exchange in push(). Therefore,
the compare_exchange_weak() in push() synchronizes with a call to compare_exchange
_strong() in increase_head_count(), which reads the value stored, even if many
other threads modify head in the meantime.

 You’ve nearly finished: the only remaining operations to deal with are the
fetch_add() operations for modifying the reference count. The thread that got to
return the data from this node can proceed, safe in the knowledge that no other
thread can have modified the node data. But any thread that did not successfully
retrieve the data knows that another thread did modify the node data; the successful
thread used swap() to extract the referenced data item. Therefore you need to ensure
that swap() happens before the delete in order to avoid a data race. The easy way to
do this is to make the fetch_add() in the successful-return branch use std::memory_
order_release and the fetch_add() in the loop-again branch use std::memory_order
_acquire. But this is still overkill: only one thread does the delete (the one that sets
the count to zero), so only that thread needs to do an acquire operation. Thankfully,
because fetch_add() is a read-modify-write operation, it forms part of the release
sequence, so you can do that with an additional load(). If the loop-again branch
decreases the reference count to zero, it can reload the reference count with
std::memory_order_acquire in order to ensure the required synchronizes-with rela-
tionship, and the fetch_add() itself can use std::memory_order_relaxed. The final
stack implementation with the new version of pop() is shown here.

template<typename T>
class lock_free_stack
{
private:
 struct node;
 struct counted_node_ptr
 {
 int external_count;
 node* ptr;
 };
 struct node
 {
 std::shared_ptr<T> data;
 std::atomic<int> internal_count;
 counted_node_ptr next;
 node(T const& data_):

Listing 7.13 A lock-free stack with reference counting and relaxed atomic operations

235Examples of lock-free data structures
 data(std::make_shared<T>(data_)),
 internal_count(0)
 {}
 };
 std::atomic<counted_node_ptr> head;
 void increase_head_count(counted_node_ptr& old_counter)
 {
 counted_node_ptr new_counter;
 do
 {
 new_counter=old_counter;
 ++new_counter.external_count;
 }
 while(!head.compare_exchange_strong(old_counter,new_counter,
 std::memory_order_acquire,
 std::memory_order_relaxed));
 old_counter.external_count=new_counter.external_count;
 }
public:
 ~lock_free_stack()
 {
 while(pop());
 }
 void push(T const& data)
 {
 counted_node_ptr new_node;
 new_node.ptr=new node(data);
 new_node.external_count=1;
 new_node.ptr->next=head.load(std::memory_order_relaxed)
 while(!head.compare_exchange_weak(new_node.ptr->next,new_node,
 std::memory_order_release,
 std::memory_order_relaxed));
 }
 std::shared_ptr<T> pop()
 {
 counted_node_ptr old_head=
 head.load(std::memory_order_relaxed);
 for(;;)
 {
 increase_head_count(old_head);
 node* const ptr=old_head.ptr;
 if(!ptr)
 {
 return std::shared_ptr<T>();
 }
 if(head.compare_exchange_strong(old_head,ptr->next,
 std::memory_order_relaxed))
 {
 std::shared_ptr<T> res;
 res.swap(ptr->data);
 int const count_increase=old_head.external_count-2;
 if(ptr->internal_count.fetch_add(count_increase,
 std::memory_order_release)==-count_increase)
 {
 delete ptr;

236 CHAPTER 7 Designing lock-free concurrent data structures
 }
 return res;
 }
 else if(ptr->internal_count.fetch_add(-1,
 std::memory_order_relaxed)==1)
 {
 ptr->internal_count.load(std::memory_order_acquire);
 delete ptr;
 }
 }
 }
};

That was quite a workout, but you got there in the end, and the stack is better for it. By
using more relaxed operations in a carefully thought-out manner, the performance is
improved without impacting the correctness. As you can see, the implementation of
pop() is now 37 lines rather than the 8 lines of the equivalent pop() in the lock-based
stack of listing 6.1 and the 7 lines of the basic lock-free stack without memory manage-
ment in listing 7.2. As we move on to look at writing a lock-free queue, you’ll see a sim-
ilar pattern: lots of the complexity in lock-free code comes from managing memory.

7.2.6 Writing a thread-safe queue without locks

A queue offers a slightly different challenge to a stack, because the push() and pop()
operations access different parts of the data structure in a queue, whereas they both
access the same head node for a stack. Consequently, the synchronization needs are
different. You need to ensure that changes made to one end are correctly visible to
accesses at the other. But the structure of try_pop() for the queue in listing 6.6 isn’t
that far off that of pop() for the simple lock-free stack in listing 7.2, so you can reason-
ably assume that the lock-free code won’t be that dissimilar. Let’s see how.

 If you take listing 6.6 as a basis, you need two node pointers: one for the head of the
list and one for the tail. You’re going to be accessing these from multiple threads, so
they’d better be atomic in order to allow you to do away with the corresponding
mutexes. Let’s start by making that small change and see where it gets you. The follow-
ing listing shows the result.

template<typename T>
class lock_free_queue
{
private:
 struct node
 {
 std::shared_ptr<T> data;
 node* next;
 node():
 next(nullptr)
 {}
 };

Listing 7.14 A single-producer, single-consumer lock-free queue

237Examples of lock-free data structures
 std::atomic<node*> head;
 std::atomic<node*> tail;
 node* pop_head()
 {
 node* const old_head=head.load();
 if(old_head==tail.load())
 {
 return nullptr;
 }
 head.store(old_head->next);
 return old_head;
 }
public:
 lock_free_queue():
 head(new node),tail(head.load())
 {}
 lock_free_queue(const lock_free_queue& other)=delete;
 lock_free_queue& operator=(const lock_free_queue& other)=delete;
 ~lock_free_queue()
 {
 while(node* const old_head=head.load())
 {
 head.store(old_head->next);
 delete old_head;
 }
 }
 std::shared_ptr<T> pop()
 {
 node* old_head=pop_head();
 if(!old_head)
 {
 return std::shared_ptr<T>();
 }
 std::shared_ptr<T> const res(old_head->data);
 delete old_head;
 return res;
 }
 void push(T new_value)
 {
 std::shared_ptr<T> new_data(std::make_shared<T>(new_value));
 node* p=new node;
 node* const old_tail=tail.load();
 old_tail->data.swap(new_data);
 old_tail->next=p;
 tail.store(p);
 }
};

At first glance, this doesn’t seem too bad, and if there’s only one thread calling push()
at a time, and only one thread calling pop(), then this is perfectly fine. The important
thing in that case is the happens-before relationship between the push() and the
pop() to ensure that it’s safe to retrieve the data. The store to tail h synchronizes
with the load from tail B; the store to the preceding node’s data pointer f is

b

c

d
e

f
g

h

238 CHAPTER 7 Designing lock-free concurrent data structures
sequenced before the store to tail; and the load from tail is sequenced before the
load from the data pointer c, so the store to data happens before the load, and
everything is OK. This is therefore a perfectly serviceable single-producer, single-consumer
(SPSC) queue.

 The problems come when multiple threads call push() concurrently or multiple
threads call pop() concurrently. Let’s look at push() first. If you have two threads call-
ing push() concurrently, they both allocate new nodes to be the new dummy node d,
both read the same value for tail e, and consequently both update the data mem-
bers of the same node when setting the data and next pointers, f and g. This is a
data race!

 There are similar problems in pop_head(). If two threads call concurrently, they
will both read the same value of head, and both then overwrite the old value with the
same next pointer. Both threads will now think they’ve retrieved the same node—a
recipe for disaster. Not only do you have to ensure that only one thread uses pop()on
a given item, but you also need to ensure that other threads can safely access the next
member of the node they read from head. This is exactly the problem you saw with
pop() for your lock-free stack, so any of the solutions for that could be used here.

 So if pop() is a “solved problem,” what about push()? The problem here is that in
order to get the required happens-before relationship between push() and pop(), you
need to set the data items on the dummy node before you update tail. But this
means that concurrent calls to push() are racing over those same data items, because
they’ve read the same tail pointer.

HANDLING MULTIPLE THREADS IN PUSH()
One option is to add a dummy node between the real nodes. This way, the only part of
the current tail node that needs updating is the next pointer, which could therefore
be made atomic. If a thread manages to successfully change the next pointer from
nullptr to its new node, then it has successfully added the pointer; otherwise, it
would have to start again and reread the tail. This would then require a minor
change to pop() in order to discard nodes with a null data pointer and loop again.
The downside here is that every pop() call will typically have to remove two nodes, and
there are twice as many memory allocations.

 A second option is to make the data pointer atomic and set that with a call to com-
pare/exchange. If the call succeeds, this is your tail node, and you can safely set the
next pointer to your new node and then update tail. If the compare/exchange fails
because another thread has stored the data, you loop around, reread tail, and start
again. If the atomic operations on std::shared_ptr<> are lock-free, you’re home
free. If not, you need an alternative. One possibility is to have pop() return
std::unique_ptr<> (after all, it’s the only reference to the object) and store the data
as a plain pointer in the queue. This would allow you to store it as std::atomic<T*>,
which would then support the necessary compare_exchange_strong() call. If you’re
using the reference-counting scheme from listing 7.12 to handle multiple threads in
pop(), push() now looks like this.

239Examples of lock-free data structures
void push(T new_value)
{
 std::unique_ptr<T> new_data(new T(new_value));
 counted_node_ptr new_next;
 new_next.ptr=new node;
 new_next.external_count=1;
 for(;;)
 {
 node* const old_tail=tail.load();
 T* old_data=nullptr;
 if(old_tail->data.compare_exchange_strong(
 old_data,new_data.get()))
 {
 old_tail->next=new_next;
 tail.store(new_next.ptr);
 new_data.release();
 break;
 }
 }
}

Using the reference-counting scheme avoids this particular race, but it’s not the only
race in push(). If you look at the revised version of push() in listing 7.15, you’ll see a
pattern you saw in the stack: load an atomic pointer B and dereference that pointer

c. In the meantime, another thread could update the pointer d, eventually leading
to the node being deallocated (in pop()). If the node is deallocated before you deref-
erence the pointer, you have undefined behavior. Ouch! It’s tempting to add an exter-
nal count in tail the same as you did for head, but each node already has an external
count in the next pointer of the previous node in the queue. Having two external
counts for the same node requires a modification to the reference-counting scheme
to avoid deleting the node too early. You can address this by also counting the number
of external counters inside the node structure and decreasing this number when each
external counter is destroyed (as well as adding the corresponding external count to
the internal count). If the internal count is zero and there are no external counters,
you know the node can safely be deleted. This is a technique I first encountered
through Joe Seigh’s Atomic Ptr Plus Project (http://atomic-ptr-plus.sourceforge.net/).
The following listing shows how push() looks under this scheme.

template<typename T>
class lock_free_queue
{
private:
 struct node;
 struct counted_node_ptr
 {
 int external_count;

Listing 7.15 A (broken) first attempt at revising push()

Listing 7.16 Implementing push() for a lock-free queue with a reference-counted tail

b

c

d

http://atomic-ptr-plus.sourceforge.net/

240 CHAPTER 7 Designing lock-free concurrent data structures
 node* ptr;
 };
 std::atomic<counted_node_ptr> head;
 std::atomic<counted_node_ptr> tail;
 struct node_counter
 {
 unsigned internal_count:30;
 unsigned external_counters:2;
 };
 struct node
 {
 std::atomic<T*> data;
 std::atomic<node_counter> count;
 counted_node_ptr next;
 node()
 {
 node_counter new_count;
 new_count.internal_count=0;
 new_count.external_counters=2;
 count.store(new_count);

 next.ptr=nullptr;
 next.external_count=0;
 }
 };
public:
 void push(T new_value)
 {
 std::unique_ptr<T> new_data(new T(new_value));
 counted_node_ptr new_next;
 new_next.ptr=new node;
 new_next.external_count=1;
 counted_node_ptr old_tail=tail.load();
 for(;;)
 {
 increase_external_count(tail,old_tail);
 T* old_data=nullptr;
 if(old_tail.ptr->data.compare_exchange_strong(
 old_data,new_data.get()))
 {
 old_tail.ptr->next=new_next;
 old_tail=tail.exchange(new_next);
 free_external_counter(old_tail);
 new_data.release();
 break;
 }
 old_tail.ptr->release_ref();
 }
 }
};

In listing 7.16, tail is now atomic<counted_node_ptr>, the same as head B, and the
node structure has a count member to replace the internal_count from before d. This
count is a structure containing the internal_count and an additional external_counters

b

c

d

e

f

g

h

241Examples of lock-free data structures
member c. Note that you need only 2 bits for the external_counters because there
are at most two such counters. By using a bit field for this and specifying internal
_count as a 30-bit value, you keep the total counter size to 32 bits. This gives you plenty
of scope for large internal count values while ensuring that the whole structure fits
inside a machine word on 32-bit and 64-bit machines. It’s important to update these
counts together as a single entity in order to avoid race conditions, as you’ll see shortly.
Keeping the structure within a machine word makes it more likely that the atomic oper-
ations can be lock-free on many platforms.

 The node is initialized with the internal_count set to zero and the external_
counters set to 2 e, because every new node starts out referenced from tail and
from the next pointer of the previous node once you’ve added it to the queue.
push()itself is similar to listing 7.15, except that before you dereference the value
loaded from tail in order to call to compare_exchange_strong() on the data mem-
ber of the node g, you call a new function increase_external_count() to increase
the count f, and then afterward you call free_external_counter() on the old tail
value h.

 With the push() side dealt with, let’s take a look at pop(). This is shown in the fol-
lowing listing and blends the reference-counting logic from the pop() implementa-
tion in listing 7.12 with the queue-pop logic from listing 7.14.

template<typename T>
class lock_free_queue
{
private:
 struct node
 {
 void release_ref();
 };
public:
 std::unique_ptr<T> pop()
 {
 counted_node_ptr old_head=head.load(std::memory_order_relaxed);
 for(;;)
 {
 increase_external_count(head,old_head);
 node* const ptr=old_head.ptr;
 if(ptr==tail.load().ptr)
 {
 ptr->release_ref();
 return std::unique_ptr<T>();
 }
 if(head.compare_exchange_strong(old_head,ptr->next))
 {
 T* const res=ptr->data.exchange(nullptr);
 free_external_counter(old_head);
 return std::unique_ptr<T>(res);
 }

Listing 7.17 Popping a node from a lock-free queue with a reference-counted tail

b

c

d

e

f

242 CHAPTER 7 Designing lock-free concurrent data structures
 ptr->release_ref();
 }
 }
};

You prime the pump by loading the old_head value before you enter the loop B, and
before you increase the external count on the loaded value,c. If the head node is the
same as the tail node, you can release the reference d and return a null pointer
because there’s no data in the queue. If there is data, you want to try to claim it for
yourself, and you do this with the call to compare_exchange_strong() e. As with the
stack in listing 7.12, this compares the external count and pointer as a single entity; if
either changes, you need to loop again, after releasing the reference g. If the
exchange succeeded, you’ve claimed the data in the node as yours, so you can return
that to the caller after you’ve released the external counter to the popped node f.
Once both the external reference counts have been freed and the internal count has
dropped to zero, the node itself can be deleted. The reference-counting functions
that take care of all this are shown in listings 7.18, 7.19, and 7.20.

template<typename T>
class lock_free_queue
{
private:
 struct node
 {
 void release_ref()
 {
 node_counter old_counter=
 count.load(std::memory_order_relaxed);
 node_counter new_counter;
 do
 {
 new_counter=old_counter;
 --new_counter.internal_count;
 }
 while(!count.compare_exchange_strong(
 old_counter,new_counter,
 std::memory_order_acquire,std::memory_order_relaxed));
 if(!new_counter.internal_count &&
 !new_counter.external_counters)
 {
 delete this;
 }
 }
 };
};

The implementation of node::release_ref() is only slightly changed from the equiv-
alent code in the implementation of lock_free_stack::pop() from listing 7.12.

Listing 7.18 Releasing a node reference in a lock-free queue

g

b

c

d

243Examples of lock-free data structures
Whereas the code in listing 7.12 only has to handle a single external count so you
could use a simple fetch_sub, the whole count structure now has to be updated atomi-
cally, even though you only want to modify the internal_count field B. This therefore
requires a compare/exchange loop c. Once you’ve decremented internal_count, if
both the internal and external counts are now zero, this is the last reference, so you
can delete the node d.

template<typename T>
class lock_free_queue
{
private:
 static void increase_external_count(
 std::atomic<counted_node_ptr>& counter,
 counted_node_ptr& old_counter)
 {
 counted_node_ptr new_counter;
 do
 {
 new_counter=old_counter;
 ++new_counter.external_count;
 }
 while(!counter.compare_exchange_strong(
 old_counter,new_counter,
 std::memory_order_acquire,std::memory_order_relaxed));
 old_counter.external_count=new_counter.external_count;
 }
};

Listing 7.19 is the other side. This time, rather than releasing a reference, you’re obtain-
ing a fresh one and increasing the external count. increase_external_count() is simi-
lar to the increase_head_count() function from listing 7.13, except that it has been
made into a static member function that takes the external counter to update as the
first parameter rather than operating on a fixed counter.

template<typename T>
class lock_free_queue
{
private:
 static void free_external_counter(counted_node_ptr &old_node_ptr)
 {
 node* const ptr=old_node_ptr.ptr;
 int const count_increase=old_node_ptr.external_count-2;
 node_counter old_counter=
 ptr->count.load(std::memory_order_relaxed);
 node_counter new_counter;
 do
 {
 new_counter=old_counter;

Listing 7.19 Obtaining a new reference to a node in a lock-free queue

Listing 7.20 Freeing an external counter to a node in a lock-free queue

244 CHAPTER 7 Designing lock-free concurrent data structures
 --new_counter.external_counters;
 new_counter.internal_count+=count_increase;
 }
 while(!ptr->count.compare_exchange_strong(
 old_counter,new_counter,
 std::memory_order_acquire,std::memory_order_relaxed));
 if(!new_counter.internal_count &&
 !new_counter.external_counters)
 {
 delete ptr;
 }
 }
};

The counterpart to increase_external_count() is free_external_counter(). This
is similar to the equivalent code from lock_free_stack::pop() in listing 7.12, but
modified to handle the external_counters count. It updates the two counts using a
single compare_exchange_strong() on the whole count structure d, as you did
when decreasing the internal_count in release_ref(). The internal_count value
is updated as in listing 7.12 c, and the external_counters value is decreased by
one B. If both the values are now zero, there are no more references to the node, so it
can be safely deleted e. This has to be done as a single action (which therefore
requires the compare/exchange loop) to avoid a race condition. If they’re updated
separately, two threads may both think they are the last one and both delete the node,
resulting in undefined behavior.

 Although this now works and is race-free, there’s still a performance issue. Once
one thread has started a push() operation by successfully completing the compare_
exchange_strong() on old_tail.ptr->data (f from listing 7.16), no other thread
can perform a push() operation. Any thread that tries will see the new value rather
than nullptr, which will cause the compare_exchange_strong() call to fail and
make that thread loop again. This is a busy wait, which consumes CPU cycles with-
out achieving anything. Consequently, this is effectively a lock. The first push() call
blocks other threads until it has completed, so this code is no longer lock-free. Not
only that, but whereas the operating system can give priority to the thread that holds
the lock on a mutex if there are blocked threads, it can’t do so in this case, so the
blocked threads will waste CPU cycles until the first thread is done. This calls for the
next trick from the lock-free bag of tricks: the waiting thread can help the thread
that’s doing the push().

MAKING THE QUEUE LOCK-FREE BY HELPING OUT ANOTHER THREAD

In order to restore the lock-free property of the code, you need to find a way for a
waiting thread to make progress even if the thread doing the push() is stalled. One
way to do this is to help the stalled thread by doing its work for it.

 In this case, you know exactly what needs to be done: the next pointer on the tail
node needs to be set to a new dummy node, and then the tail pointer itself must be
updated. The thing about dummy nodes is that they’re all equivalent, so it doesn’t

b
c

d

e

245Examples of lock-free data structures
matter if you use the dummy node created by the thread that successfully pushed the
data or the dummy node from one of the threads that’s waiting to push. If you make
the next pointer in a node atomic, you can then use compare_exchange_strong() to
set the pointer. Once the next pointer is set, you can then use a compare_exchange_
weak() loop to set the tail while ensuring that it’s still referencing the same original
node. If it isn’t, someone else has updated it, and you can stop trying and loop again.
This requires a minor change to pop() as well in order to load the next pointer; this is
shown in the following listing.

template<typename T>
class lock_free_queue
{
private:
 struct node
 {
 std::atomic<T*> data;
 std::atomic<node_counter> count;
 std::atomic<counted_node_ptr> next;
 };
public:
 std::unique_ptr<T> pop()
 {
 counted_node_ptr old_head=head.load(std::memory_order_relaxed);
 for(;;)
 {
 increase_external_count(head,old_head);
 node* const ptr=old_head.ptr;
 if(ptr==tail.load().ptr)
 {
 return std::unique_ptr<T>();
 }
 counted_node_ptr next=ptr->next.load();
 if(head.compare_exchange_strong(old_head,next))
 {
 T* const res=ptr->data.exchange(nullptr);
 free_external_counter(old_head);
 return std::unique_ptr<T>(res);
 }
 ptr->release_ref();
 }
 }
};

As I mentioned, the changes here are simple: the next pointer is now atomic B, so
the load at c is atomic. In this example, you’re using the default memory_order_
seq_cst ordering, so you could omit the explicit call to load() and rely on the load in
the implicit conversion to counted_node_ptr, but putting in the explicit call reminds
you where to add the explicit memory ordering later.

Listing 7.21 pop() modified to allow helping on the push() side

b

c

246 CHAPTER 7 Designing lock-free concurrent data structures
 The code for push() is more involved and is shown here.

template<typename T>
class lock_free_queue
{
private:
 void set_new_tail(counted_node_ptr &old_tail,
 counted_node_ptr const &new_tail)
 {
 node* const current_tail_ptr=old_tail.ptr;
 while(!tail.compare_exchange_weak(old_tail,new_tail) &&
 old_tail.ptr==current_tail_ptr);
 if(old_tail.ptr==current_tail_ptr)
 free_external_counter(old_tail);
 else
 current_tail_ptr->release_ref();
 }
public:
 void push(T new_value)
 {
 std::unique_ptr<T> new_data(new T(new_value));
 counted_node_ptr new_next;
 new_next.ptr=new node;
 new_next.external_count=1;
 counted_node_ptr old_tail=tail.load();
 for(;;)
 {
 increase_external_count(tail,old_tail);
 T* old_data=nullptr;
 if(old_tail.ptr->data.compare_exchange_strong(
 old_data,new_data.get()))
 {
 counted_node_ptr old_next={0};
 if(!old_tail.ptr->next.compare_exchange_strong(
 old_next,new_next))
 {
 delete new_next.ptr;
 new_next=old_next;
 }
 set_new_tail(old_tail, new_next);
 new_data.release();
 break;
 }
 else
 {
 counted_node_ptr old_next={0};
 if(old_tail.ptr->next.compare_exchange_strong(
 old_next,new_next))
 {
 old_next=new_next;
 new_next.ptr=new node;
 }

Listing 7.22 A sample push() with helping for a lock-free queue

b

c

d

e

f

g

h

i

j

1)

1!

1@

1#

247Examples of lock-free data structures
 set_new_tail(old_tail, old_next);
 }
 }
 }
};

This is similar to the original push() from listing 7.16, but there are a few crucial dif-
ferences. If you do set the data pointer g, you need to handle the case where another
thread has helped you, and there’s now an else clause to do the helping 1).

 Having set the data pointer in the node g, this new version of push() updates the
next pointer using compare_exchange_strong() h. You use compare_exchange_
strong() to avoid looping. If the exchange fails, you know that another thread has
already set the next pointer, so you don’t need the new node you allocated at the
beginning, and you can delete it i. You also want to use the next value that the other
thread set for updating tail j.

 The update of the tail pointer has been extracted into set_new_tail() B. This
uses a compare_exchange_weak() loop c to update the tail, because if other threads
are trying to push() a new node, the external_count part may have changed, and
you don’t want to lose it. But you also need to take care that you don’t replace the
value if another thread has successfully changed it already; otherwise, you may end up
with loops in the queue, which would be a rather bad idea. Consequently, you need to
ensure that the ptr part of the loaded value is the same if the compare/exchange
fails. If the ptr is the same once the loop has exited d, then you must have success-
fully set the tail, so you need to free the old external counter e. If the ptr value is
different, then another thread will have freed the counter, so you need to release the
single reference held by this thread f.

 If the thread calling push() failed to set the data pointer this time through the
loop, it can help the successful thread to complete the update. First off, you try to
update the next pointer to the new node allocated on this thread 1!. If this succeeds,
you want to use the node you allocated as the new tail node 1@, and you need to allo-
cate another new node in anticipation of managing to push an item on the queue 1#.
You can then try to set the tail node by calling set_new_tail before looping around
again 1$.

 You may have noticed that there are a lot of new and delete calls for such a small
piece of code, because new nodes are allocated on push() and destroyed in pop().
The efficiency of the memory allocator therefore has a considerable impact on the
performance of this code; a poor allocator can completely destroy the scalability prop-
erties of a lock-free container like this. The selection and implementation of these
allocators are beyond the scope of this book, but it’s important to bear in mind that
the only way to know that an allocator is better is to try it and measure the perfor-
mance of the code before and after. Common techniques for optimizing memory allo-
cation include having a separate memory allocator on each thread and using free lists
to recycle nodes rather than returning them to the allocator.

1$

248 CHAPTER 7 Designing lock-free concurrent data structures
 That’s enough examples for now; instead, let’s look at extracting some guidelines
for writing lock-free data structures from the examples.

7.3 Guidelines for writing lock-free data structures
If you’ve followed through all the examples in this chapter, you’ll appreciate the com-
plexities involved in getting lock-free code right. If you’re going to design your own
data structures, it helps to have some guidelines to focus on. The general guidelines
regarding concurrent data structures from the beginning of chapter 6 still apply, but
you need more than that. I’ve pulled a few useful guidelines out from the examples,
which you can then refer to when designing your own lock-free data structures.

7.3.1 Guideline: use std::memory_order_seq_cst for prototyping

std::memory_order_seq_cst is much easier to reason about than any other memory
ordering because all these operations form a total order. In all the examples in this
chapter, you’ve started with std::memory_order_seq_cst and only relaxed the
memory-ordering constraints once the basic operations were working. In this sense,
using other memory orderings is an optimization, and as such you need to avoid doing
it prematurely. In general, you can only determine which operations can be relaxed
when you can see the full set of code that can operate on the guts of the data struc-
ture. Attempting to do otherwise makes your life harder. This is complicated by the
fact that the code may work when tested but isn’t guaranteed. Unless you have an
algorithm checker that can systematically test all possible combinations of thread visi-
bilities that are consistent with the specified ordering guarantees (and these things do
exist), running the code isn’t enough.

7.3.2 Guideline: use a lock-free memory reclamation scheme

One of the biggest difficulties with lock-free code is managing memory. It’s essential
to avoid deleting objects when other threads might still have references to them, but
you still want to delete the object as soon as possible in order to avoid excessive mem-
ory consumption. In this chapter you’ve seen three techniques for ensuring that mem-
ory can safely be reclaimed:

 Waiting until no threads are accessing the data structure and deleting all objects
that are pending deletion

 Using hazard pointers to identify that a thread is accessing a particular object
 Reference counting the objects so that they aren’t deleted until there are no

outstanding references

In all cases, the key idea is to use some method to keep track of how many threads are
accessing a particular object and only delete each object when it’s no longer refer-
enced from anywhere. There are many other ways of reclaiming memory in lock-free
data structures. For example, this is the ideal scenario for using a garbage collector.
It’s much easier to write the algorithms if you know that the garbage collector will free
the nodes when they’re no longer used, but not before.

249Guidelines for writing lock-free data structures
 Another alternative is to recycle nodes and only free them completely when the
data structure is destroyed. Because the nodes are reused, the memory never
becomes invalid, so some of the difficulties in avoiding undefined behavior go away.
The downside here is that another problem becomes more prevalent. This is the so-
called ABA problem.

7.3.3 Guideline: watch out for the ABA problem

The ABA problem is something to be wary of in any compare/exchange–based algo-
rithm. It goes like this:

1 Thread 1 reads an atomic variable, x, and finds it has value A.
2 Thread 1 performs some operation based on this value, such as dereferencing it

(if it’s a pointer) or doing a lookup, or something.
3 Thread 1 is stalled by the operating system.
4 Another thread performs some operations on x that change its value to B.
5 A thread then changes the data associated with the value A such that the value

held by thread 1 is no longer valid. This may be as drastic as freeing the
pointed-to memory or changing an associated value.

6 A thread then changes x back to A based on this new data. If this is a pointer, it
may be a new object that happens to share the same address as the old one.

7 Thread 1 resumes and performs a compare/exchange on x, comparing against
A. The compare/exchange succeeds (because the value is indeed A), but this is
the wrong A value. The data originally read at step 2 is no longer valid, but
thread 1 has no way of telling and will corrupt the data structure.

None of the algorithms presented here suffer from this problem, but it’s easy to write
lock-free algorithms that do. The most common way to avoid this problem is to
include an ABA counter alongside the variable x. The compare/exchange operation
is then done on the combined structure of x plus the counter as a single unit. Every
time the value is replaced, the counter is incremented, so even if x has the same value,
the compare/exchange will fail if another thread has modified x.

 The ABA problem is particularly prevalent in algorithms that use free lists or other-
wise recycle nodes rather than returning them to the allocator.

7.3.4 Guideline: identify busy-wait loops and help the other thread

In the final queue example, you saw how a thread performing a push operation had
to wait for another thread also performing a push to complete its operation before it
could proceed. Left alone, this would have been a busy-wait loop, with the waiting
thread wasting CPU time while failing to proceed. If you end up with a busy-wait loop,
you effectively have a blocking operation and might as well use mutexes and locks. By
modifying the algorithm so that the waiting thread performs the incomplete steps if
it’s scheduled to run before the original thread completes the operation, you can
remove the busy-wait and the operation is no longer blocking. In the queue example

250 CHAPTER 7 Designing lock-free concurrent data structures
this required changing a data member to be an atomic variable rather than a non-
atomic variable and using compare/exchange operations to set it, but in more com-
plex data structures it might require more extensive changes.

Summary
Following from the lock-based data structures of chapter 6, this chapter has described
simple implementations of various lock-free data structures, starting with a stack and a
queue, as before. You saw how you must take care with the memory ordering on your
atomic operations to ensure that there are no data races and that each thread sees a
coherent view of the data structure. You also saw how memory management becomes
much harder for lock-free data structures than lock-based ones and examined a cou-
ple of mechanisms for handling it. You also saw how to avoid creating wait loops by
helping the thread you’re waiting for to complete its operation.

 Designing lock-free data structures is a difficult task, and it’s easy to make mistakes,
but these data structures have scalability properties that are important in some situa-
tions. Hopefully, by following through the examples in this chapter and reading the
guidelines, you’ll be better equipped to design your own lock-free data structure,
implement one from a research paper, or find the bug in the one your former col-
league wrote before they left the company.

 Wherever data is shared between threads, you need to think about the data struc-
tures used and how the data is synchronized between threads. By designing data struc-
tures for concurrency, you can encapsulate that responsibility in the data structure
itself, so the rest of the code can focus on the task it’s trying to perform with the data
rather than the data synchronization. You’ll see this in action in chapter 8 as we move
on from concurrent data structures to concurrent code in general. Parallel algorithms
use multiple threads to improve their performance, and the choice of concurrent
data structure is crucial where the algorithms need their worker threads to share data.

Designing concurrent code
Most of the preceding chapters have focused on the tools you have in your C++
toolbox for writing concurrent code. In chapters 6 and 7 we looked at how to
use those tools to design basic data structures that are safe for concurrent access
by multiple threads. Much as a carpenter needs to know more than how to build
a hinge or a joint in order to make a cupboard or a table, there’s more to design-
ing concurrent code than the design and use of basic data structures. You now
need to look at the wider context so you can build bigger structures that per-
form useful work. I’ll be using multithreaded implementations of some of the

This chapter covers
 Techniques for dividing data between threads

 Factors that affect the performance of concurrent
code

 How performance factors affect the design of
data structures

 Exception safety in multithreaded code

 Scalability

 Example implementations of several parallel
algorithms
251

252 CHAPTER 8 Designing concurrent code
C++ Standard Library algorithms as examples, but the same principles apply at all
scales of an application.

 Just as with any programming project, it’s vital to think carefully about the design
of concurrent code. But with multithreaded code, there are even more factors to con-
sider than with sequential code. Not only must you think about the usual factors, such
as encapsulation, coupling, and cohesion (which are amply described in the many
books on software design), but you also need to consider which data to share, how to
synchronize accesses to that data, which threads need to wait for which other threads
to complete certain operations, and so on.

 In this chapter we’ll be focusing on these issues, from the high-level (but funda-
mental) considerations of how many threads to use, which code to execute on which
thread, and how this can affect the clarity of the code, to the low-level details of how to
structure the shared data for optimal performance.

 Let’s start by looking at techniques for dividing work between threads.

8.1 Techniques for dividing work between threads
Imagine for a moment that you’ve been tasked with building a house. In order to
complete the job, you’ll need to dig the foundation, build walls, put in plumbing, add
the wiring, and so on. Theoretically, you could do it all yourself with sufficient train-
ing, but it would probably take a long time, and you’d be continually switching tasks as
necessary. Alternatively, you could hire a few other people to help out. You now have
to choose how many people to hire and decide what skills they need. You could, for
example, hire a couple of people with general skills and have everybody chip in with
everything. You’d still all switch tasks as necessary, but now things can be done more
quickly because there are more of you.

 Alternatively, you could hire a team of specialists: a bricklayer, a carpenter, an
electrician, and a plumber, for example. Your specialists do whatever their specialty
is, so if there’s no plumbing needed, your plumber sits around drinking tea or cof-
fee. Things still get done more quickly than before, because there are more of you,
and the plumber can put the toilet in while the electrician wires up the kitchen, but
there’s more waiting around when there’s no work for a particular specialist. Even
with the idle time, you might find that the work is done faster with specialists than
with a team of general handymen. Your specialists don’t need to keep changing
tools, and they can probably each do their tasks quicker than the generalists can.
Whether or not this is the case depends on the particular circumstances—you’d
have to try it and see.

 Even if you hire specialists, you can still choose to hire different numbers of each.
It might make sense to have more bricklayers than electricians, for example. Also, the
makeup of your team and the overall efficiency might change if you had to build more
than one house. Even though your plumber might not have lots of work to do on any
given house, you might have enough work to keep him busy all the time if you’re
building many houses at once. Also, if you don’t have to pay your specialists when

253Techniques for dividing work between threads
there’s no work for them to do, you might be able to afford a larger team overall even
if you have only the same number of people working at any one time.

 OK, enough about building; what does all this have to do with threads? Well, with
threads the same issues apply. You need to decide how many threads to use and what
tasks they should be doing. You need to decide whether to have “generalist” threads
that do whatever work is necessary at any point in time or “specialist” threads that do
one thing well, or some combination. You need to make these choices whatever the
driving reason for using concurrency, and how you do this will have a critical effect on
the performance and clarity of the code. It’s therefore vital to understand the options
so you can make an appropriately informed decision when designing the structure of
your application. In this section, we’ll look at several techniques for dividing the tasks,
starting with dividing data between threads before we do any other work.

8.1.1 Dividing data between threads before processing begins

The easiest algorithms to parallelize are simple algorithms, such as std::for_each,
that perform an operation on each element in a data set. In order to parallelize this
algorithm, you can assign each element to one of the processing threads. How the ele-
ments are best divided for optimal performance depends on the details of the data
structure, as you’ll see later in this chapter when we look at performance issues.

 The simplest means of dividing the data is to allocate the first N elements to one
thread, the next N elements to another thread, and so on, as shown in figure 8.1, but
other patterns could be used too. No matter how the data is divided, each thread then
processes the elements it has been assigned without any communication with the
other threads until it has completed its processing.

 This structure will be familiar to anyone who has programmed using the Message
Passing Interface (MPI, http://www.mpi-forum.org/) or OpenMP (http://www.openmp
.org/) frameworks: a task is split into a set of parallel tasks, the worker threads run these
tasks independently, and the results are combined in a final reduction step. It’s the

Thread 1 Thread 2 Thread m

Figure 8.1 Distributing consecutive chunks of data between threads

http://www.mpi-forum.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

254 CHAPTER 8 Designing concurrent code
approach used by the accumulate example from section 2.4; in this case, both the par-
allel tasks and the final reduction step are accumulations. For a simple for_each, the
final step is a no-op because there are no results to reduce.

 Identifying this final step as a reduction is important; a naive implementation such
as listing 2.9 will perform this reduction as a final serial step. But this step can often be
parallelized as well; accumulate is a reduction operation, so listing 2.9 could be modi-
fied to call itself recursively where the number of threads is larger than the minimum
number of items to process on a thread, for example. Alternatively, the worker threads
could be made to perform some of the reduction steps as each one completes its task,
rather than spawning new threads each time.

 Although this technique is powerful, it can’t be applied to everything. Sometimes
the data can’t be divided neatly up front because the necessary divisions become appar-
ent only as the data is processed. This is particularly apparent with recursive algo-
rithms such as Quicksort; they therefore need a different approach.

8.1.2 Dividing data recursively

The Quicksort algorithm has two basic steps: partition the data into items that come
before or after one of the elements (the pivot) in the final sort order and recursively
sort those two “halves.” You can’t parallelize this by dividing the data up front, because
it’s only by processing the items that you know which “half” they go in. If you’re going
to parallelize this algorithm, you need to make use of the recursive nature. With each
level of recursion there are more calls to the quick_sort function, because you have to
sort both the elements that belong before the pivot and those that belong after it.
These recursive calls are entirely independent, because they access separate sets of
elements, and so are prime candidates for concurrent execution. Figure 8.2 shows this
recursive division.

 In chapter 4, you saw this implementation. Rather than performing two recursive
calls for the higher and lower chunks, you used std::async() to spawn asynchronous

Figure 8.2 Recursively dividing data

255Techniques for dividing work between threads
tasks for the lower chunk at each stage. By using std::async(), you ask the C++
Thread Library to decide when to run the task on a new thread and when to run it
synchronously.

 This is important: if you’re sorting a large set of data, spawning a new thread for
each recursion would quickly result in a lot of threads. As you’ll see when we look at
performance, if you have too many threads, you might slow down the application.
There’s also a possibility of running out of threads if the data set is large. The idea of
dividing the overall task in a recursive fashion like this is a good one; you just need to
keep a tighter rein on the number of threads. std::async() can handle this in simple
cases, but it’s not the only choice.

 One alternative is to use the std::thread::hardware_concurrency() function to
choose the number of threads, as you did with the parallel version of accumulate()
from listing 2.9. Then, rather than starting a new thread for the recursive calls, you
can push the chunk to be sorted onto a thread-safe stack, such as one of those
described in chapters 6 and 7. If a thread has nothing else to do, either because it has
finished processing all its chunks or because it’s waiting for a chunk to be sorted, it
can take a chunk from the stack and sort that.

 The following listing shows a sample implementation that uses this technique. As
with most of the examples, this is intended to demonstrate an idea rather than being
production-ready code. If you're using a C++17 compiler and your library supports it,
you're better off using the parallel algorithms provided by Standard Library, as cov-
ered in chapter 10.

template<typename T>
struct sorter
{
 struct chunk_to_sort
 {
 std::list<T> data;
 std::promise<std::list<T> > promise;
 };
 thread_safe_stack<chunk_to_sort> chunks;
 std::vector<std::thread> threads;
 unsigned const max_thread_count;
 std::atomic<bool> end_of_data;
 sorter():
 max_thread_count(std::thread::hardware_concurrency()-1),
 end_of_data(false)
 {}
 ~sorter()
 {
 end_of_data=true;
 for(unsigned i=0;i<threads.size();++i)
 {
 threads[i].join();
 }

Listing 8.1 Parallel Quicksort using a stack of pending chunks to sort

b

c
d

e

f

g

256 CHAPTER 8 Designing concurrent code
 }
 void try_sort_chunk()
 {
 boost::shared_ptr<chunk_to_sort > chunk=chunks.pop();
 if(chunk)
 {
 sort_chunk(chunk);
 }
 }
 std::list<T> do_sort(std::list<T>& chunk_data)
 {
 if(chunk_data.empty())
 {
 return chunk_data;
 }
 std::list<T> result;
 result.splice(result.begin(),chunk_data,chunk_data.begin());
 T const& partition_val=*result.begin();
 typename std::list<T>::iterator divide_point=
 std::partition(chunk_data.begin(),chunk_data.end(),
 [&](T const& val){return val<partition_val;});
 chunk_to_sort new_lower_chunk;
 new_lower_chunk.data.splice(new_lower_chunk.data.end(),
 chunk_data,chunk_data.begin(),
 divide_point);
 std::future<std::list<T> > new_lower=
 new_lower_chunk.promise.get_future();
 chunks.push(std::move(new_lower_chunk));
 if(threads.size()<max_thread_count)
 {
 threads.push_back(std::thread(&sorter<T>::sort_thread,this));
 }
 std::list<T> new_higher(do_sort(chunk_data));
 result.splice(result.end(),new_higher);
 while(new_lower.wait_for(std::chrono::seconds(0)) !=
 std::future_status::ready)
 {
 try_sort_chunk();
 }
 result.splice(result.begin(),new_lower.get());
 return result;
 }
 void sort_chunk(boost::shared_ptr<chunk_to_sort > const& chunk)
 {
 chunk->promise.set_value(do_sort(chunk->data));
 }
 void sort_thread()
 {
 while(!end_of_data)
 {
 try_sort_chunk();
 std::this_thread::yield();
 }
 }
};

h

i

j

1)

1!
1@

1#

1$

1%

1^

1&
1*

257Techniques for dividing work between threads
template<typename T>
std::list<T> parallel_quick_sort(std::list<T> input)
{
 if(input.empty())
 {
 return input;
 }
 sorter<T> s;
 return s.do_sort(input);
}

Here, the parallel_quick_sort function 1(delegates most of the functionality to
the sorter class B, which provides an easy way of grouping the stack of unsorted
chunks c and the set of threads d. The main work is done in the do_sort member
function j, which does the usual partitioning of the data 1). This time, rather than
spawning a new thread for one chunk, it pushes it onto the stack 1! and spawns a new
thread while you still have processors to spare 1@. Because the lower chunk might be
handled by another thread, you then have to wait for it to be ready 1#. In order to
help things along (in case you’re the only thread or all the others are already busy),
you try to process chunks from the stack on this thread while you’re waiting 1$.
try_sort_chunk pops a chunk off the stack h, and sorts it i, storing the result in the
promise, ready to be picked up by the thread that posted the chunk on the stack 1%.

 Your freshly spawned threads sit in a loop trying to sort chunks off the stack 1&,
while the end_of_data flag isn’t set 1^. In between checking, they yield to other
threads 1* to give them a chance to put some more work on the stack. This code relies
on the destructor of your sorter class e to tidy up these threads. When all the data
has been sorted, do_sort will return (even though the worker threads are still run-
ning), so your main thread will return from parallel_quick_sort 2) and destroy
your sorter object. This sets the end_of_data flag f and waits for the threads to fin-
ish g. Setting the flag terminates the loop in the thread function 1^.

 With this approach you no longer have the problem of unbounded threads that
you have with a spawn_task that launches a new thread, and you’re no longer rely-
ing on the C++ Thread Library to choose the number of threads for you, as it does
with std::async(). Instead, you limit the number of threads to the value of std::
thread::hardware_concurrency() in order to avoid excessive task switching. You do,
however, have another potential problem: the management of these threads and the
communication between them add quite a lot of complexity to the code. Also,
although the threads are processing separate data elements, they all access the stack
to add new chunks and to remove chunks for processing. This heavy contention can
reduce performance, even if you use a lock-free (and hence nonblocking) stack, for
reasons you’ll see shortly.

 This approach is a specialized version of a thread pool—that’s a set of threads that
each take work to do from a list of pending work, do the work, and then go back to
the list for more. Some of the potential problems with thread pools (including the
contention on the work list) and ways of addressing them are covered in chapter 9.

1(

2)

258 CHAPTER 8 Designing concurrent code
The problems of scaling your application to multiple processors are discussed in more
detail later in this chapter (see section 8.2.1).

 Both dividing the data before processing begins and dividing it recursively pre-
sume that the data itself is fixed beforehand, and you’re looking at ways of dividing it.
This isn’t always the case; if the data is dynamically generated or is coming from exter-
nal input, this approach doesn’t work. In this case, it might make more sense to divide
the work by task type rather than dividing based on the data.

8.1.3 Dividing work by task type

Dividing work between threads by allocating different chunks of data to each thread
(whether up front or recursively during processing) still rests on the assumption
that the threads are going to be doing the same work on each chunk of data. An
alternative to dividing the work is to make the threads specialists, where each per-
forms a distinct task, just as plumbers and electricians perform distinct tasks when
building a house. Threads may or may not work on the same data, but if they do, it’s
for different purposes.

 This is the sort of division of work that results from separating concerns with con-
currency; each thread has a different task, which it carries out independently of other
threads. Occasionally other threads may give it data or trigger events that it needs to
handle, but in general each thread focuses on doing one thing well. In itself, this is
basic good design; each piece of code should have a single responsibility.

DIVIDING WORK BY TASK TYPE TO SEPARATE CONCERNS

A single-threaded application has to handle conflicts with the single responsibility
principle where there are multiple tasks that need to be run continuously over a
period of time, or where the application needs to be able to handle incoming events
(such as user key presses or incoming network data) in a timely fashion, even while
other tasks are ongoing. In the single-threaded world you end up manually writing
code that performs a bit of task A, a bit of task B, checks for key presses, checks for
incoming network packets, and then loops back to perform another bit of task A. This
means that the code for task A ends up being complicated by the need to save its state
and return control to the main loop periodically. If you add too many tasks to the
loop, things might slow down too much, and the user may find it takes too long to
respond to the key press. I’m sure you’ve all seen the extreme form of this in action
with some application or other: you set it to doing some task, and the interface freezes
until it has completed the task.

 This is where threads come in. If you run each of the tasks in a separate thread, the
operating system handles this for you. In the code for task A, you can focus on per-
forming the task and not worry about saving state and returning to the main loop or
how long you spend before doing so. The operating system will automatically save the
state and switch to task B or C when appropriate, and if the target system has multiple
cores or processors, tasks A and B may be able to run concurrently. The code for han-
dling the key press or network packet will now be run in a timely fashion, and everybody

259Techniques for dividing work between threads
wins: the user gets timely responses, and you, as the developer, have simpler code
because each thread can focus on doing operations related directly to its responsibili-
ties, rather than getting mixed up with control flow and user interaction.

 That sounds like a nice, rosy vision. Can it be like that? As with everything, it
depends on the details. If everything is independent, and the threads have no need to
communicate with each other, then it can be this easy. Unfortunately, the world is
rarely like that. These nice background tasks are often doing something that the user
requested, and they need to let the user know when they’re done by updating the user
interface in some manner. Alternatively, the user might want to cancel the task, which
therefore requires the user interface to somehow send a message to the background
task telling it to stop. Both these cases require careful thought and design and suit-
able synchronization, but the concerns are still separate. The user interface thread
still handles the user interface, but it might have to update it when asked to do so by
other threads. Likewise, the thread running the background task still focuses on the
operations required for that task; it just happens that one of them is “allow task to
be stopped by another thread.” In neither case do the threads care where the
request came from, only that it was intended for them and relates directly to their
responsibilities.

 There are two big dangers with separating concerns with multiple threads. The
first is that you’ll end up separating the wrong concerns. The symptoms to check for
are that there is a lot of data shared between the threads or the different threads end
up waiting for each other; both cases boil down to too much communication between
threads. If this happens, it’s worth looking at the reasons for the communication. If all
the communication relates to the same issue, maybe that should be the key responsi-
bility of a single thread and extracted from all the threads that refer to it. Alterna-
tively, if two threads are communicating a lot with each other but much less with other
threads, maybe they should be combined into a single thread.

 When dividing work across threads by task type, you don’t have to limit yourself to
completely isolated cases. If multiple sets of input data require the same sequence of
operations to be applied, you can divide the work so each thread performs one stage
from the overall sequence.

DIVIDING A SEQUENCE OF TASKS BETWEEN THREADS

If your task consists of applying the same sequence of operations to many indepen-
dent data items, you can use a pipeline to exploit the available concurrency of your sys-
tem. This is by analogy to a physical pipeline: data flows in at one end through a series
of operations (pipes) and out at the other end.

 To divide the work this way, you create a separate thread for each stage in the
pipeline—one thread for each of the operations in the sequence. When the opera-
tion is completed, the data element is put in a queue to be picked up by the next
thread. This allows the thread performing the first operation in the sequence to
start on the next data element while the second thread in the pipeline is working on
the first element.

260 CHAPTER 8 Designing concurrent code
 This is an alternative to dividing the data between threads, as described in sec-
tion 8.1.1, and is appropriate in circumstances where the input data itself isn’t all
known when the operation is started. For example, the data might be coming in over
a network, or the first operation in the sequence might be to scan a filesystem in order
to identify files to process.

 Pipelines are also good when each operation in the sequence is time-consuming;
by dividing the tasks between threads rather than the data, you change the perfor-
mance profile. Suppose you have 20 data items to process on 4 cores, and each data
item requires 4 steps, which take 3 seconds each. If you divide the data between four
threads, then each thread has five items to process. Assuming there’s no other pro-
cessing that might affect the timings, after 12 seconds you’ll have 4 items processed,
after 24 seconds 8 items processed, and so on. All 20 items will be done after 1 minute.
With a pipeline, things work differently. Each of your four steps can be assigned to a
processing core. Now the first item has to be processed by each core, so it still takes
the full 12 seconds. Indeed, after 12 seconds you only have 1 item processed, which
isn’t as good as with the division by data. But once the pipeline is primed, things pro-
ceed a bit differently; after the first core has processed the first item, it moves on to
the second, so once the final core has processed the first item, it can perform its step
on the second. You now get 1 item processed every 3 seconds rather than having the
items processed in batches of 4 every 12 seconds.

 The overall time to process the entire batch takes longer because you have to wait
nine seconds before the final core starts processing the first item. But smoother, more
regular processing can be beneficial in some circumstances. Consider, for example, a
system for watching high-definition digital videos. In order for the video to be watch-
able, you typically need at least 25 frames per second and ideally more. Also, the
viewer needs these to be evenly spaced to give the impression of continuous move-
ment; an application that can decode 100 frames per second is still of no use if it
pauses for a second, then displays 100 frames, then pauses for another second, and
displays another 100 frames. On the other hand, viewers are probably happy to accept
a delay of a couple of seconds when they start watching a video. In this case, paralleliz-
ing using a pipeline that outputs frames at a nice steady rate is probably preferable.

 Having looked at various techniques for dividing the work between threads, let’s
take a look at the factors affecting the performance of a multithreaded system and
how that can impact your choice of techniques.

8.2 Factors affecting the performance of concurrent code
If you’re using concurrency to improve the performance of your code on systems with
multiple processors, you need to know what factors are going to affect the perfor-
mance. Even if you’re using multiple threads to separate concerns, you need to
ensure that this doesn’t adversely affect the performance. Customers won’t thank you
if your application runs more slowly on their shiny new 16-core machine than it did on
their old single-core one.

261Factors affecting the performance of concurrent code
 As you’ll see shortly, many factors affect the performance of multithreaded code—
even something as simple as changing which data elements are processed by each
thread (while keeping everything else identical) can have a dramatic effect on perfor-
mance. Without further ado, let’s look at some of these factors, starting with the obvi-
ous one: how many processors does your target system have?

8.2.1 How many processors?

The number (and structure) of processors is the first big factor that affects the perfor-
mance of a multithreaded application, and it’s a crucial one. In some cases you know
exactly what the target hardware is and can design with this in mind, taking real mea-
surements on the target system or an exact duplicate. If so, you’re one of the lucky
ones; in general, you don’t have that luxury. You might be developing on a similar sys-
tem, but the differences can be crucial. For example, you might be developing on a
dual- or quad-core system, but your customers’ systems may have one multicore proces-
sor (with any number of cores), or multiple single-core processors, or even multiple
multicore processors. The behavior and performance characteristics of a concurrent
program can vary considerably under these different circumstances, so you need to
think carefully about what the impact may be and test things where possible.

 To a first approximation, a single 16-core processor is the same as 4 quad-core pro-
cessors or 16 single-core processors: in each case the system can run 16 threads con-
currently. If you want to take advantage of this, your application must have at least 16
threads. If it has fewer than 16, you’re leaving processor power on the table (unless
the system is running other applications too, but we’ll ignore that possibility for now).
On the other hand, if you have more than 16 threads ready to run (and not blocked,
waiting for something), your application will waste processor time switching between
the threads, as discussed in chapter 1. When this happens, the situation is called over-
subscription.

 To allow applications to scale the number of threads in line with the number of
threads the hardware can run concurrently, the C++11 Standard Thread Library pro-
vides std::thread::hardware_concurrency(). You’ve already seen how that can be
used to scale the number of threads to the hardware.

 Using std::thread::hardware_concurrency() directly requires care; your code
doesn’t take into account any of the other threads that are running on the system
unless you explicitly share that information. In the worst-case scenario, if multiple
threads call a function that uses std::thread::hardware_concurrency() for scaling
at the same time, there will be huge oversubscription. std::async() avoids this prob-
lem because the library is aware of all calls and can schedule appropriately. Careful
use of thread pools can also avoid this problem.

 But even if you take into account all threads running in your application, you’re
still subject to the impact of other applications running at the same time. Although
the use of multiple CPU-intensive applications simultaneously is rare on single-user
systems, there are some domains where it’s more common. Systems designed to handle

262 CHAPTER 8 Designing concurrent code
this scenario typically offer mechanisms to allow each application to choose an appro-
priate number of threads, although these mechanisms are outside the scope of the
C++ Standard. One option is for a facility like std::async() to take into account the
total number of asynchronous tasks run by all applications when choosing the num-
ber of threads. Another is to limit the number of processing cores that can be used by
a given application. I’d expect this limit to be reflected in the value returned by
std::thread::hardware_concurrency() on these platforms, although this isn’t guar-
anteed. If you need to handle this scenario, consult your system documentation to see
what options are available to you.

 One additional twist to this situation is that the ideal algorithm for a problem can
depend on the size of the problem compared to the number of processing units. If
you have a massively parallel system with many processing units, an algorithm that per-
forms more operations overall may finish more quickly than one that performs fewer
operations, because each processor performs only a few operations.

 As the number of processors increases, so does the likelihood and performance
impact of another problem: that of multiple processors trying to access the same data.

8.2.2 Data contention and cache ping-pong

If two threads are executing concurrently on different processors and they’re both
reading the same data, this usually won’t cause a problem; the data will be copied into
their respective caches, and both processors can proceed. But if one of the threads
modifies the data, this change then has to propagate to the cache on the other core,
which takes time. Depending on the nature of the operations on the two threads, and
the memory orderings used for the operations, this modification may cause the sec-
ond processor to stop in its tracks and wait for the change to propagate through the
memory hardware. In terms of CPU instructions, this can be a phenomenally slow oper-
ation, equivalent to many hundreds of individual instructions, although the exact tim-
ing depends primarily on the physical structure of the hardware.

 Consider the following simple piece of code:

std::atomic<unsigned long> counter(0);
void processing_loop()
{
 while(counter.fetch_add(1,std::memory_order_relaxed)<100000000)
 {
 do_something();
 }
}

The counter is global, so any threads that call processing_loop() are modifying the
same variable. Therefore, for each increment the processor must ensure it has an
up-to-date copy of counter in its cache, modify the value, and publish it to other pro-
cessors. Even though you’re using std::memory_order_relaxed, so the compiler
doesn’t have to synchronize any other data, fetch_add is a read-modify-write opera-
tion and therefore needs to retrieve the most recent value of the variable. If another

263Factors affecting the performance of concurrent code
thread on another processor is running the same code, the data for counter must
therefore be passed back and forth between the two processors and their correspond-
ing caches so that each processor has the latest value for counter when it does the
increment. If do_something() is short enough, or if there are too many processors
running this code, the processors might find themselves waiting for each other; one
processor is ready to update the value, but another processor is currently doing that,
so it has to wait until the second processor has completed its update and the change
has propagated. This situation is called high contention. If the processors rarely have to
wait for each other, you have low contention.

 In a loop like this one, the data for counter will be passed back and forth between
the caches many times. This is called cache ping-pong, and it can seriously impact the
performance of the application. If a processor stalls because it has to wait for a cache
transfer, it can’t do any work in the meantime, even if there are other threads waiting
that could do useful work, so this is bad news for the whole application.

 You might think that this won’t happen to you; after all, you don’t have any loops
like that. Are you sure? What about mutex locks? If you acquire a mutex in a loop,
your code is similar to the previous code from the point of view of data accesses. In
order to lock the mutex, another thread must transfer the data that makes up the
mutex to its processor and modify it. When it’s done, it modifies the mutex again to
unlock it, and the mutex data has to be transferred to the next thread to acquire the
mutex. This transfer time is in addition to any time that the second thread has to wait
for the first to release the mutex:

std::mutex m;
my_data data;
void processing_loop_with_mutex()
{
 while(true)
 {
 std::lock_guard<std::mutex> lk(m);
 if(done_processing(data)) break;
 }
}

Now, here’s the worst part: if the data and mutex are accessed by more than one
thread, then as you add more cores and processors to the system, it becomes more
likely that you will get high contention and one processor having to wait for another.
If you’re using multiple threads to process the same data more quickly, the threads are
competing for the data and thus competing for the same mutex. The more of them
there are, the more likely they’ll try to acquire the mutex at the same time, or access
the atomic variable at the same time, and so forth.

 The effects of contention with mutexes are usually different from the effects of
contention with atomic operations for the simple reason that the use of a mutex natu-
rally serializes threads at the operating system level rather than at the processor level.
If you have enough threads ready to run, the operating system can schedule another

264 CHAPTER 8 Designing concurrent code
thread to run while one thread is waiting for the mutex, whereas a processor stall pre-
vents any threads from running on that processor. But it will still impact the perfor-
mance of those threads that are competing for the mutex; they can only run one at a
time, after all.

 Back in chapter 3, you saw how a rarely updated data structure can be protected
with a single-writer, multiple-reader mutex (see section 3.3.2). Cache ping-pong
effects can nullify the benefits of this mutex if the workload is unfavorable, because all
threads accessing the data (even reader threads) still have to modify the mutex itself.
As the number of processors accessing the data goes up, the contention on the mutex
itself increases, and the cache line holding the mutex must be transferred between
cores, potentially increasing the time taken to acquire and release locks to undesir-
able levels. There are techniques to ameliorate this problem by spreading out the
mutex across multiple cache lines, but unless you implement your own mutex, you are
subject to whatever your system provides.

 If this cache ping-pong is bad, how can you avoid it? As you’ll see later in the chap-
ter, the answer ties in nicely with general guidelines for improving the potential for
concurrency: do what you can to reduce the potential for two threads competing for
the same memory location.

 It’s not quite that simple, though; things never are. Even if a particular memory
location is only ever accessed by one thread, you can still get cache ping-pong due to
an effect known as false sharing.

8.2.3 False sharing

Processor caches don’t generally deal in individual memory locations; instead, they
deal in blocks of memory called cache lines. These blocks of memory are typically 32 or
64 bytes in size, but the exact details depend on the particular processor model being
used. Because the cache hardware only deals in cache-line-sized blocks of memory,
small data items in adjacent memory locations will be in the same cache line. Sometimes
this is good: if a set of data accessed by a thread is in the same cache line, this is better
for the performance of the application than if the same set of data was spread over mul-
tiple cache lines. But if the data items in a cache line are unrelated and need to be
accessed by different threads, this can be a major cause of performance problems.

 Suppose you have an array of int values and a set of threads that each access their
own entry in the array but do so repeatedly, including updates. Because an int is typi-
cally much smaller than a cache line, quite a few of those array entries will be in the
same cache line. Consequently, even though each thread only accesses its own array
entry, the cache hardware still has to play cache ping-pong. Every time the thread
accessing entry 0 needs to update the value, ownership of the cache line needs to be
transferred to the processor running that thread, only to be transferred to the cache
for the processor running the thread for entry 1 when that thread needs to update its
data item. The cache line is shared, even though none of the data is, hence the term
false sharing. The solution here is to structure the data so that data items to be accessed

265Factors affecting the performance of concurrent code
by the same thread are close together in memory (and thus more likely to be in the
same cache line), whereas those that are to be accessed by separate threads are far
apart in memory and thus more likely to be in separate cache lines. You’ll see how this
affects the design of the code and data later in this chapter. The C++17 standard
defines std::hardware_destructive_interference_size in the header <new>, which
specifies the maximum number of consecutive bytes that may be subject to false shar-
ing for the current compilation target. If you ensure that your data is at least this num-
ber of bytes apart, then there will be no false sharing.

 If having multiple threads access data from the same cache line is bad, how does
the memory layout of data accessed by a single thread affect things?

8.2.4 How close is your data?

Although false sharing is caused by having data accessed by one thread too close to
data accessed by another thread, another pitfall associated with data layout directly
impacts the performance of a single thread on its own. The issue is data proximity: if
the data accessed by a single thread is spread out in memory, it’s likely that it lies on
separate cache lines. On the flip side, if the data accessed by a single thread is close
together in memory, it’s more likely to lie on the same cache line. Consequently, if
data is spread out, more cache lines must be loaded from memory onto the processor
cache, which can increase memory access latency and reduce performance compared
to data that’s located close together.

 Also, if the data is spread out, there’s an increased chance that a given cache line
containing data for the current thread also contains data that’s not for the current
thread. At the extreme, there’ll be more data in the cache that you don’t care about
than data that you do. This wastes precious cache space and increases the chance that
the processor will experience a cache miss and have to fetch a data item from main
memory even if it once held it in the cache, because it had to remove the item from
the cache to make room for another.

 Now, this is important with single-threaded code, so why am I bringing it up here?
The reason is task switching. If there are more threads than cores in the system, each
core is going to be running multiple threads. This increases the pressure on the
cache, as you try to ensure that different threads are accessing different cache lines in
order to avoid false sharing. Consequently, when the processor switches threads, it’s
more likely to have to reload the cache lines if each thread uses data spread across
multiple cache lines than if each thread’s data is close together in the same cache line.
The C++17 standard specifies the constant std::hardware_constructive_interfer-
ence_size, also in the header <new>, which is the maximum number of consecutive
bytes guaranteed to be on the same cache line (if suitably aligned). If you can fit data
that is needed together within this number of bytes, it will potentially reduce the num-
ber of cache misses.

 If there are more threads than cores or processors, the operating system might also
choose to schedule a thread on one core for one time slice and then on another core

266 CHAPTER 8 Designing concurrent code
for the next time slice. This will therefore require transferring the cache lines for that
thread’s data from the cache for the first core to the cache for the second; the more
cache lines that need transferring, the more time-consuming this will be. Although
operating systems typically avoid this when they can, it does happen and does impact
performance.

 Task-switching problems are particularly prevalent when lots of threads are ready to
run as opposed to waiting. This is an issue we’ve already touched on: oversubscription.

8.2.5 Oversubscription and excessive task switching

In multithreaded systems, it’s typical to have more threads than processors, unless
you’re running on massively parallel hardware. But threads often spend time waiting
for external I/O to complete, blocked on mutexes, waiting for condition variables, and
so forth, so this isn’t a problem. Having the extra threads enables the application to per-
form useful work rather than having processors sitting idle while the threads wait.

 This isn’t always a good thing. If you have too many additional threads, there will
be more threads ready to run than there are available processors, and the operating
system will have to start task switching quite heavily in order to ensure they all get a
fair time slice. As you saw in chapter 1, this can increase the overhead of the task
switching as well as compound any cache problems resulting from lack of proximity.
Oversubscription can arise when you have a task that repeatedly spawns new threads
without limits, as the recursive quick sort from chapter 4 did, or where the natural
number of threads when you separate by task type is more than the number of proces-
sors and the work is naturally CPU-bound rather than I/O-bound.

 If you’re spawning too many threads because of data division, you can limit the
number of worker threads, as you saw in section 8.1.2. If the oversubscription is due to
the natural division of work, there’s not a lot you can do to ameliorate the problem
save choosing a different division. In that case, choosing the appropriate division may
require more knowledge of the target platform than you have available and is only
worth doing if performance is unacceptable and it can be demonstrated that chang-
ing the division of work does improve performance.

 Other factors can affect the performance of multithreaded code. The cost of cache
ping-pong can vary quite considerably between two single-core processors and a single
dual-core processor, even if they’re the same CPU type and clock speed, for example,
but these are the major ones that will have a visible impact. Let’s now look at how that
affects the design of the code and data structures.

8.3 Designing data structures for multithreaded
performance
In section 8.1 we looked at various ways of dividing work between threads, and in sec-
tion 8.2 we looked at various factors that can affect the performance of your code.
How can you use this information when designing data structures for multithreaded
performance? This is a different question than that addressed in chapters 6 and 7,

267Designing data structures for multithreaded performance
which were about designing data structures that are safe for concurrent access. As
you’ve seen in section 8.2, the layout of the data used by a single thread can have an
impact, even if that data isn’t shared with any other threads.

 The key things to bear in mind when designing your data structures for multi-
threaded performance are contention, false sharing, and data proximity. All three of these
can have a big impact on performance, and you can often improve things by altering
the data layout or changing which data elements are assigned to which thread. First
off, let’s look at an easy win: dividing array elements between threads.

8.3.1 Dividing array elements for complex operations

Suppose you’re doing some heavy-duty math, and you need to multiply two large
square matrices together. To multiply matrices, you multiply each element in the first
row of the first matrix with the corresponding element of the first column of the second
matrix and add up the products to give the top-left element of the result. You then
repeat this with the second row and the first column to give the second element in the
first column of the result, and with the first row and second column to give the first
element in the second column of the result, and so forth. This is shown in figure 8.3;
the highlighting shows that the second row of the first matrix is paired with the third
column of the second matrix to give the entry in the second row of the third column
of the result.

Now let’s assume that these are large matrices with several thousand rows and col-
umns, in order to make it worthwhile to use multiple threads to optimize the multipli-
cation. Typically, a nonsparse matrix is represented by a big array in memory, with all
the elements of the first row followed by all the elements of the second row, and so
forth. To multiply your matrices you have three of these huge arrays. In order to get
optimal performance, you need to pay careful attention to the data access patterns,
particularly the writes to the third array.

 There are many ways you can divide the work between threads. Assuming you have
more rows/columns than available processors, you could have each thread calculate
the values for a number of columns in the result matrix, or have each thread calculate

a1,1 a2,1 a3,1 a4,1 an,1

a1,2 a2,2 a3,2 a4,2 an,2

a1,3 a2,3 a3,3 a4,3 an,3

a1,ma2,ma3,ma4,m an,m

b1,1 b2,1 b3,1 b4,1 bk,1

b1,2 b2,2 b3,2 b4,2 bk,2

b1,3 b2,3 b3,3 b4,3 bk,3

b1,n b2,n b3,n b4,n bk,n

c1,1 c2,1 c3,1 c4,1 ck,1

c1,2 c2,2 c3,2 c4,2 ck,2

c1,3 c2,3 c3,3 c4,3 ck,3

c1,m c2,m c3,m c4,m ck,m

=

Figure 8.3 Matrix multiplication

268 CHAPTER 8 Designing concurrent code
the results for a number of rows, or even have each thread calculate the results for a
rectangular subset of the matrix.

 Back in sections 8.2.3 and 8.2.4, you saw that it’s better to access contiguous ele-
ments from an array rather than values all over the place, because this reduces cache
usage and the chance of false sharing. If you have each thread compute a set of col-
umns, it needs to read every value from the first matrix and the values from the corre-
sponding columns in the second matrix, but you only have to write the column values.
Given that the matrices are stored with the rows contiguous, this means that you’re
accessing N elements from the first row, N elements from the second, and so forth
(where N is the number of columns you’re processing). Because other threads will be
accessing the other elements of each row, it’s clear that you ought to be accessing adja-
cent columns, so the N elements from each row are adjacent, and you minimize false
sharing. If the space occupied by your N elements is an exact number of cache lines,
there’ll be no false sharing because threads will be working on separate cache lines.

 On the other hand, if you have each thread compute a set of rows, then it needs to
read every value from the second matrix and the values from the corresponding rows of
the first matrix, but it only has to write the row values. Because the matrices are stored
with the rows contiguous, you’re now accessing all elements from N rows. If you again
choose adjacent rows, this means that the thread is now the only thread writing to
those N rows; it has a contiguous block of memory that’s not touched by any other
thread. This is likely an improvement over having each thread compute a set of col-
umns, because the only possibility of false sharing is for the last few elements of one
block with the first few of the next, but it’s worth timing it on the target architecture
to confirm.

 What about your third option—dividing into rectangular blocks? This can be
viewed as dividing into columns and then dividing into rows. As such, it has the same
false-sharing potential as division by columns. If you can choose the number of col-
umns in the block to avoid this possibility, there’s an advantage to rectangular division
from the read side: you don’t need to read the entirety of either source matrix. You
only need to read the values corresponding to the rows and columns of the target rect-
angle. To look at this in concrete terms, consider multiplying two matrices that have
1,000 rows and 1,000 columns. That’s 1 million elements. If you have 100 processors,
they can compute 10 rows each for a nice round 10,000 elements. But to calculate the
results of those 10,000 elements, they need to access the entirety of the second matrix
(1 million elements) plus the 10,000 elements from the corresponding rows in the
first matrix, for a grand total of 1,010,000 elements. On the other hand, if they each
compute a block of 100 elements by 100 elements (which is still 10,000 elements
total), they need to access the values from 100 rows of the first matrix (100 x 1,000 =
100,000 elements) and 100 columns of the second matrix (another 100,000). This is
only 200,000 elements, which is a five-fold reduction in the number of elements read.
If you’re reading fewer elements, there’s less chance of a cache miss and the potential
for greater performance.

269Designing data structures for multithreaded performance
 It may therefore be better to divide the result matrix into small, square or almost-
square blocks rather than have each thread compute the entirety of a small number of
rows. You can adjust the size of each block at runtime, depending on the size of the
matrices and the available number of processors. As ever, if performance is important,
it’s vital to profile various options on the target architecture, and check the literature
relevant to the field—I make no claim that these are the only or best options if you are
doing matrix multiplication

 Chances are you’re not doing matrix multiplication, so how does this apply to you?
The same principles apply to any situation where you have large blocks of data to
divide between threads; look at all the aspects of the data access patterns carefully, and
identify the potential causes of performance hits. There may be similar circumstances
in your problem domain where changing the division of work can improve perfor-
mance without requiring any change to the basic algorithm.

 OK, so we’ve looked at how access patterns in arrays can affect performance. What
about other types of data structures?

8.3.2 Data access patterns in other data structures

Fundamentally, the same considerations apply when trying to optimize the data access
patterns of other data structures as when optimizing access to arrays:

 Try to adjust the data distribution between threads so that data that’s close
together is worked on by the same thread.

 Try to minimize the data required by any given thread.
 Try to ensure that data accessed by separate threads is sufficiently far apart to

avoid false sharing using std::hardware_destructive_interference_size as
a guide.

That’s not easy to apply to other data structures. For example, binary trees are inher-
ently difficult to subdivide in any unit other than a subtree, which may or may not be
useful, depending on how balanced the tree is and how many sections you need to
divide it into. Also, the nature of the trees means that the nodes are likely dynamically
allocated and thus end up in different places on the heap.

 Now, having data end up in different places on the heap isn’t a particular problem
in itself, but it does mean that the processor has to keep more things in cache. This
can be beneficial. If multiple threads need to traverse the tree, then they all need to
access the tree nodes, but if the tree nodes only contain pointers to the real data held
at the node, then the processor only has to load the data from memory if it’s
needed. If the data is being modified by the threads that need it, this can avoid the
performance hit of false sharing between the node data itself and the data that pro-
vides the tree structure.

 There’s a similar issue with data protected by a mutex. Suppose you have a simple
class that contains a few data items and a mutex used to protect accesses from multiple
threads. If the mutex and the data items are close together in memory, this is ideal for

270 CHAPTER 8 Designing concurrent code
a thread that acquires the mutex; the data it needs may already be in the processor
cache, because it was loaded in order to modify the mutex. But there’s also a downside:
if other threads try to lock the mutex while it’s held by the first thread, they’ll need
access to that memory. Mutex locks are typically implemented as a read-modify-write
atomic operation on a memory location within the mutex to try to acquire the mutex,
followed by a call to the operating system kernel if the mutex is already locked. This
read-modify-write operation may cause the data held in the cache by the thread that
owns the mutex to be invalidated. As far as the mutex goes, this isn’t a problem; that
thread isn’t going to touch the mutex until it unlocks it. But if the mutex shares a
cache line with the data being used by the thread, the thread that owns the mutex can
take a performance hit because another thread tried to lock the mutex!

 One way to test whether this kind of false sharing is a problem is to add huge
blocks of padding between the data elements that can be concurrently accessed by dif-
ferent threads. For example, you can use

struct protected_data
{
 std::mutex m;
 char padding[std::hardware_destructive_interference_size];
 my_data data_to_protect;
};

to test the mutex contention issue or

struct my_data
{
 data_item1 d1;
 data_item2 d2;
 char padding[std::hardware_destructive_interference_size];
};
my_data some_array[256];

to test for false sharing of array data. If this improves the performance, you know that
false sharing was a problem, and you can either leave the padding in or work to elimi-
nate the false sharing in another way by rearranging the data accesses.

 There’s more than the data access patterns to consider when designing for concur-
rency, so let’s look at some of these additional considerations.

8.4 Additional considerations when designing for
concurrency
So far in this chapter we’ve looked at ways of dividing work between threads, factors
affecting performance, and how these factors affect your choice of data access pat-
terns and data structures. There’s more to designing code for concurrency than that,
though. You also need to consider things such as exception safety and scalability. Code
is said to be scalable if the performance (whether in terms of reduced speed of execution

If std::hardware_destructive_interference_size is
not available with your compiler, you could use
something like 65536 bytes which is likely to be

orders of magnitude larger than a cache line

271Additional considerations when designing for concurrency
or increased throughput) increases as more processing cores are added to the system.
Ideally, the performance increase is linear, so a system with 100 processors performs
100 times better than a system with one processor.

 Although code can work even if it isn’t scalable—a single-threaded application is
certainly not scalable, for example—exception safety is a matter of correctness. If your
code isn’t exception-safe, you can end up with broken invariants or race conditions, or
your application might terminate unexpectedly because an operation threw an excep-
tion. With this in mind, we’ll look at exception safety first.

8.4.1 Exception safety in parallel algorithms

Exception safety is an essential aspect of good C++ code, and code that uses concur-
rency is no exception. In fact, parallel algorithms often require that you take more
care with exceptions than normal sequential algorithms. If an operation in a sequen-
tial algorithm throws an exception, the algorithm only has to worry about ensuring
that it tidies up after itself to avoid resource leaks and broken invariants; it can mer-
rily allow the exception to propagate to the caller for them to handle. By contrast, in
a parallel algorithm many of the operations will be running on separate threads. In
this case, the exception can’t be allowed to propagate because it’s on the wrong call
stack. If a function spawned on a new thread exits with an exception, the application
is terminated.

 As a concrete example, let’s revisit the parallel_accumulate function from list-
ing 2.9, which is reproduced here.

template<typename Iterator,typename T>
struct accumulate_block
{
 void operator()(Iterator first,Iterator last,T& result)
 {
 result=std::accumulate(first,last,result);
 }
};
template<typename Iterator,typename T>
T parallel_accumulate(Iterator first,Iterator last,T init)
{
 unsigned long const length=std::distance(first,last);
 if(!length)
 return init;
 unsigned long const min_per_thread=25;
 unsigned long const max_threads=
 (length+min_per_thread-1)/min_per_thread;
 unsigned long const hardware_threads=
 std::thread::hardware_concurrency();
 unsigned long const num_threads=
 std::min(hardware_threads!=0?hardware_threads:2,max_threads);
 unsigned long const block_size=length/num_threads;
 std::vector<T> results(num_threads);

Listing 8.2 A naive parallel version of std::accumulate (from listing 2.9)

b

c

d

272 CHAPTER 8 Designing concurrent code
 std::vector<std::thread> threads(num_threads-1);
 Iterator block_start=first;
 for(unsigned long i=0;i<(num_threads-1);++i)
 {
 Iterator block_end=block_start;
 std::advance(block_end,block_size);
 threads[i]=std::thread(
 accumulate_block<Iterator,T>(),
 block_start,block_end,std::ref(results[i]));
 block_start=block_end;
 }
 accumulate_block<Iterator,T>()(
 block_start,last,results[num_threads-1]);
 std::for_each(threads.begin(),threads.end(),
 std::mem_fn(&std::thread::join));
 return std::accumulate(results.begin(),results.end(),init);
}

Now let’s go through and identify the places where an exception can be thrown: any-
where where you call a function you know can throw or you perform an operation on
a user-defined type that may throw.

 First up, you have the call to distance c, which performs operations on the user-
supplied iterator type. Because you haven’t yet done any work, and this is on the call-
ing thread, it’s fine. Next up, you have the allocation of the results vector d and the
threads vector e. Again, these are on the calling thread, and you haven’t done any
work or spawned any threads, so this is fine. If the construction of threads throws, the
memory allocated for results will have to be cleaned up, but the destructor will take
care of that for you.

 Skipping over the initialization of block_start f, because that’s similarly safe,
you come to the operations in the thread-spawning loop, g, h, and i. Once you’ve
been through the creation of the first thread at h, you’re in trouble if you throw any
exceptions; the destructors of your new std::thread objects will call std::terminate
and abort your program. This isn’t a good place to be.

 The call to accumulate_block j, can potentially throw, with similar conse-
quences; your thread objects will be destroyed and call std::terminate. On the other
hand, the final call to std::accumulate 1) can throw without causing any hardship,
because all the threads have been joined by this point.

 That’s it for the main thread, but there’s more: the calls to accumulate_block on
the new threads might throw at B. There aren’t any catch blocks, so this exception
will be left unhandled and cause the library to call std::terminate() to abort the
application.

 In case it’s not glaringly obvious, this code isn’t exception-safe.

ADDING EXCEPTION SAFETY

OK, so we’ve identified all the possible throw points and the nasty consequences of
exceptions. What can you do about it? Let’s start by addressing the issue of the excep-
tions thrown on your new threads.

e
f

g

h

i

j

1)

273Additional considerations when designing for concurrency
 You encountered the tool for this job in chapter 4. If you look carefully at what
you’re trying to achieve with new threads, it’s apparent that you’re trying to calculate a
result to return while allowing for the possibility that the code might throw an excep-
tion. This is precisely what the combination of std::packaged_task and std::future
is designed for. If you rearrange your code to use std::packaged_task, you end up
with the following code.

template<typename Iterator,typename T>
struct accumulate_block
{
 T operator()(Iterator first,Iterator last)
 {
 return std::accumulate(first,last,T());
 }
};
template<typename Iterator,typename T>
T parallel_accumulate(Iterator first,Iterator last,T init)
{
 unsigned long const length=std::distance(first,last);
 if(!length)
 return init;
 unsigned long const min_per_thread=25;
 unsigned long const max_threads=
 (length+min_per_thread-1)/min_per_thread;
 unsigned long const hardware_threads=
 std::thread::hardware_concurrency();
 unsigned long const num_threads=
 std::min(hardware_threads!=0?hardware_threads:2,max_threads);
 unsigned long const block_size=length/num_threads;
 std::vector<std::future<T> > futures(num_threads-1);
 std::vector<std::thread> threads(num_threads-1);
 Iterator block_start=first;
 for(unsigned long i=0;i<(num_threads-1);++i)
 {
 Iterator block_end=block_start;
 std::advance(block_end,block_size);
 std::packaged_task<T(Iterator,Iterator)> task(
 accumulate_block<Iterator,T>());
 futures[i]=task.get_future();
 threads[i]=std::thread(std::move(task),block_start,block_end);
 block_start=block_end;
 }
 T last_result=accumulate_block<Iterator,T>()(block_start,last);
 std::for_each(threads.begin(),threads.end(),
 std::mem_fn(&std::thread::join));
 T result=init;
 for(unsigned long i=0;i<(num_threads-1);++i)
 {
 result+=futures[i].get();
 }

Listing 8.3 A parallel version of std::accumulate using std::packaged_task

b

c

d

e

f
g

h

i

j

274 CHAPTER 8 Designing concurrent code
 result += last_result;
 return result;
}

The first change is that the function call operator of accumulate_block now returns
the result directly, rather than taking a reference to somewhere to store it B. You’re
using std::packaged_task and std::future for the exception safety, so you can use it
to transfer the result too. This does require that you explicitly pass a default-constructed
T in the call to std::accumulate c, rather than reusing the supplied result value,
but that’s a minor change.

 The next change is that rather than having a vector of results, you have a vector of
futures d to store an std::future<T> for each spawned thread. In the thread-
spawning loop, you first create a task for accumulate_block e. std::packaged
_task<T(Iterator, Iterator)> declares a task that takes two Iterators and returns
a T, which is what your function does. You then get the future for that task f and run
that task on a new thread, passing in the start and end of the block to process g.
When the task runs, the result will be captured in the future, as will any exception
thrown.

 Because you’ve been using futures, you don’t have a result array, so you must store
the result from the final block in a variable h, rather than in a slot in the array. Also,
because you have to get the values out of the futures, it’s now simpler to use a basic
for loop rather than std::accumulate, starting with the supplied initial value i and
adding in the result from each future j. If the corresponding task threw an excep-
tion, this will have been captured in the future and will now be thrown again by the
call to get(). Finally, you add the result from the last block 1) before returning the
overall result to the caller.

 So, that’s removed one of the potential problems: exceptions thrown in the worker
threads are rethrown in the main thread. If more than one of the worker threads
throws an exception, only one will be propagated, but that’s not too big a deal. If it
matters, you can use something like std::nested_exception to capture all the excep-
tions and throw that instead.

 The remaining problem is the leaking threads if an exception is thrown between
when you spawn the first thread and when you’ve joined with them all. The simplest
solution is to catch any exceptions, join with the threads that are still joinable(), and
rethrow the exception:

try
{
 for(unsigned long i=0;i<(num_threads-1);++i)
 {
 // ... as before
 }
 T last_result=accumulate_block<Iterator,T>()(block_start,last);
 std::for_each(threads.begin(),threads.end(),
 std::mem_fn(&std::thread::join));
}

1)

275Additional considerations when designing for concurrency
catch(...)
{
 for(unsigned long i=0;i<(num_thread-1);++i)
 {
 if(threads[i].joinable())
 thread[i].join();
 }
 throw;
}

Now this works. All the threads will be joined, no matter how the code leaves the
block. But try-catch blocks are ugly, and you have duplicate code. You’re joining
the threads both in the “normal” control flow and in the catch block. Duplicate code
is rarely a good thing, because it means more places to change. Instead, let’s extract
this out into the destructor of an object; it is, after all, the idiomatic way of cleaning up
resources in C++. Here’s your class:

class join_threads
{
 std::vector<std::thread>& threads;
public:
 explicit join_threads(std::vector<std::thread>& threads_):
 threads(threads_)
 {}
 ~join_threads()
 {
 for(unsigned long i=0;i<threads.size();++i)
 {
 if(threads[i].joinable())
 threads[i].join();
 }
 }
};

This is similar to your thread_guard class from listing 2.3, except it’s extended for the
whole vector of threads. You can then simplify your code as follows.

template<typename Iterator,typename T>
T parallel_accumulate(Iterator first,Iterator last,T init)
{
 unsigned long const length=std::distance(first,last);
 if(!length)
 return init;
 unsigned long const min_per_thread=25;
 unsigned long const max_threads=
 (length+min_per_thread-1)/min_per_thread;
 unsigned long const hardware_threads=
 std::thread::hardware_concurrency();
 unsigned long const num_threads=
 std::min(hardware_threads!=0?hardware_threads:2,max_threads);
 unsigned long const block_size=length/num_threads;

Listing 8.4 An exception-safe parallel version of std::accumulate

276 CHAPTER 8 Designing concurrent code
 std::vector<std::future<T> > futures(num_threads-1);
 std::vector<std::thread> threads(num_threads-1);
 join_threads joiner(threads);
 Iterator block_start=first;
 for(unsigned long i=0;i<(num_threads-1);++i)
 {
 Iterator block_end=block_start;
 std::advance(block_end,block_size);
 std::packaged_task<T(Iterator,Iterator)> task(
 accumulate_block<Iterator,T>());
 futures[i]=task.get_future();
 threads[i]=std::thread(std::move(task),block_start,block_end);
 block_start=block_end;
 }
 T last_result=accumulate_block<Iterator,T>()(block_start,last);
 T result=init;
 for(unsigned long i=0;i<(num_threads-1);++i)
 {
 result+=futures[i].get();
 }
 result += last_result;
 return result;
}

Once you’ve created your container of threads, you create an instance of your new
class B to join with all the threads on exit. You can then remove your explicit join
loop, safe in the knowledge that the threads will be joined however the function exits.
Note that the calls to futures[i].get() c will block until the results are ready, so
you don’t need to have explicitly joined with the threads at this point. This is unlike
the original from listing 8.2, where you needed to have joined with the threads to
ensure that the results vector was correctly populated. Not only do you get exception-
safe code, but your function is shorter because you’ve extracted the join code into
your new (reusable) class.

EXCEPTION SAFETY WITH STD::ASYNC()
Now that you’ve seen what’s required for exception safety when explicitly managing
the threads, let’s take a look at the same thing done with std::async(). As you’ve
already seen, in this case the library takes care of managing the threads for you, and
any threads spawned are completed when the future is ready. The key thing to note
for exception safety is that if you destroy the future without waiting for it, the destruc-
tor will wait for the thread to complete. This neatly avoids the problem of leaked
threads that are still executing and holding references to the data. The next listing
shows an exception-safe implementation using std::async().

template<typename Iterator,typename T>
T parallel_accumulate(Iterator first,Iterator last,T init)
{
 unsigned long const length=std::distance(first,last);

Listing 8.5 An exception-safe parallel version of std::accumulate using std::async

b

c

b

277Additional considerations when designing for concurrency
 unsigned long const max_chunk_size=25;
 if(length<=max_chunk_size)
 {
 return std::accumulate(first,last,init);
 }
 else
 {
 Iterator mid_point=first;
 std::advance(mid_point,length/2);
 std::future<T> first_half_result=
 std::async(parallel_accumulate<Iterator,T>,
 first,mid_point,init);
 T second_half_result=parallel_accumulate(mid_point,last,T());
 return first_half_result.get()+second_half_result;
 }
}

This version uses a recursive division of the data rather than pre-calculating the divi-
sion of the data into chunks, but it’s a whole lot simpler than the previous version, and
it’s still exception-safe. As before, you start by finding the length of the sequence B, and
if it’s smaller than the maximum chunk size, you resort to calling std::accumulate
directly c. If there are more elements than your chunk size, you find the midpoint d
and then spawn an asynchronous task to handle that half e. The second half of the
range is handled with a direct recursive call f, and then the results from the two
chunks are added together g. The library ensures that the std::async calls make use
of the hardware threads that are available without creating an overwhelming number
of threads. Some of the “asynchronous” calls will be executed synchronously in the
call to get() g.

 The beauty of this is that not only can it take advantage of the hardware concur-
rency, but it’s also trivially exception-safe. If an exception is thrown by the recursive
call f, the future created from the call to std::async e will be destroyed as the
exception propagates. This will in turn wait for the asynchronous task to finish, avoid-
ing a dangling thread. On the other hand, if the asynchronous call throws, this is cap-
tured by the future, and the call to get() g will rethrow the exception.

 What other considerations do you need to take into account when designing con-
current code? Let’s look at scalability. How much does the performance improve if you
move your code to a system with more processors?

8.4.2 Scalability and Amdahl’s law

Scalability is all about ensuring that your application can take advantage of additional
processors in the system it’s running on. At one extreme you have a single-threaded
application that’s completely unscalable; even if you add 100 processors to your sys-
tem, the performance will remain unchanged. At the other extreme you have some-
thing like the SETI@Home (http://setiathome.ssl.berkeley.edu/) project, which is
designed to take advantage of thousands of additional processors (in the form of indi-
vidual computers added to the network by users) as they become available.

c

d

e

f
g

http://setiathome.ssl.berkeley.edu/

278 CHAPTER 8 Designing concurrent code
 For any given multithreaded program, the number of threads that are performing
useful work will vary as the program runs. Even if every thread is doing useful work for
the entirety of its existence, the application may initially have only one thread, which
will then have the task of spawning all the others. But even that’s a highly unlikely sce-
nario. Threads often spend time waiting for each other or waiting for I/O operations
to complete.

 Every time one thread has to wait for something (whatever that something is),
unless there’s another thread ready to take its place on the processor, you have a pro-
cessor sitting idle that could be doing useful work.

 A simplified way of looking at this is to divide the program into “serial” sections
where only one thread is doing any useful work and “parallel” sections where all the
available processors are doing useful work. If you run your application on a system
with more processors, the “parallel” sections will theoretically be able to complete
more quickly, because the work can be divided between more processors, whereas the
“serial” sections will remain serial. Under such a simplified set of assumptions, you can
therefore estimate the potential performance gain to be achieved by increasing the
number of processors: if the “serial” sections constitute a fraction, fs, of the program,
then the performance gain, P, from using N processors can be estimated as

This is Amdahl’s law, which is often cited when talking about the performance of con-
current code. If everything can be parallelized, so the serial fraction is 0, the speedup
is N. Alternatively, if the serial fraction is one-third, even with an infinite number of
processors you’re not going to get a speedup of more than 3.

 But this paints a naive picture, because tasks are rarely infinitely divisible in the way
that would be required for the equation to hold, and it’s also rare for everything to be
CPU-bound in the way that’s assumed. As you’ve seen, threads may wait for many
things while executing.

 One thing that’s clear from Amdahl’s law is that when you’re using concurrency
for performance, it’s worth looking at the overall design of the application to maxi-
mize the potential for concurrency and ensure that there’s always useful work for the
processors to be doing. If you can reduce the size of the “serial” sections or reduce the
potential for threads to wait, you can improve the potential for performance gains on
systems with more processors. Alternatively, if you can provide more data for the sys-
tem to process, and thus keep the parallel sections primed with work, you can reduce
the serial fraction and increase the performance gain, P.

 Scalability is about reducing the time it takes to perform an action or increasing the amount
of data that can be processed in a given time as more processors are added. Sometimes
these are equivalent (you can process more data if each element is processed faster),
but not always. Before choosing the techniques to use for dividing work between

P 1

fs
1 fs–

N
----------+

--------------------=

279Additional considerations when designing for concurrency
threads, it’s important to identify which of these aspects of scalability are important
to you.

 I mentioned at the beginning of this section that threads don’t always have useful
work to do. Sometimes they have to wait for other threads, or for I/O to complete, or
for something else. If you give the system something useful to do during this wait, you
can effectively “hide” the waiting.

8.4.3 Hiding latency with multiple threads

For most of the discussions of the performance of multithreaded code, we’ve been
assuming that the threads are running “flat out” and always have useful work to do
when they’re running on a processor. This is not true; in application code, threads fre-
quently block while waiting for something. For example, they may be waiting for some
I/O to complete, waiting to acquire a mutex, waiting for another thread to complete
some operation and notify a condition variable or populate a future, or even sleeping
for a period of time.

 Whatever the reason for the waits, if you have only as many threads as there are
physical processing units in the system, having blocked threads means you’re wasting
CPU time. The processor that would otherwise be running a blocked thread is instead
doing nothing. Consequently, if you know that one of your threads is likely to spend a
considerable portion of its time waiting around, you can make use of that spare CPU
time by running one or more additional threads.

 Consider a virus-scanner application, which divides the work across threads using
a pipeline. The first thread searches the filesystem for files to check and puts them
in a queue. Meanwhile, another thread takes filenames from the queue, loads the files,
and scans them for viruses. You know that the thread searching the filesystem for files
to scan is definitely going to be I/O-bound, so you make use of the “spare” CPU time
by running an additional scanning thread. You’d then have one file-searching thread
and as many scanning threads as there are physical cores or processors in the system.
Because the scanning thread may also have to read significant portions of the files off
the disk in order to scan them, it might make sense to have even more scanning
threads. But at some point there’ll be too many threads, and the system will slow down
again as it spends more and more time task switching, as described in section 8.2.5.

 As ever, this is an optimization, so it’s important to measure performance before
and after any change in the number of threads; the optimal number of threads will be
highly dependent on the nature of the work being done and the percentage of time
the thread spends waiting.

 Depending on the application, it might be possible to use up this spare CPU time
without running additional threads. For example, if a thread is blocked because it’s
waiting for an I/O operation to complete, it might make sense to use asynchronous
I/O if that’s available, and then the thread can perform other useful work while the
I/O is performed in the background. In other cases, if a thread is waiting for another
thread to perform an operation, then rather than blocking, the waiting thread might

280 CHAPTER 8 Designing concurrent code
be able to perform that operation itself, as you saw with the lock-free queue in chap-
ter 7. In an extreme case, if a thread is waiting for a task to be completed and that task
hasn’t yet been started by any thread, the waiting thread might perform the task in
entirety itself or another task that’s incomplete. You saw an example of this in listing 8.1,
where the sort function repeatedly tries to sort outstanding chunks as long as the
chunks it needs are not yet sorted.

 Rather than adding threads to ensure that all available processors are being used,
sometimes it pays to add threads to ensure that external events are handled in a timely
manner to increase the responsiveness of the system.

8.4.4 Improving responsiveness with concurrency

Most modern graphical user interface frameworks are event-driven; the user performs
actions on the user interface by pressing keys or moving the mouse, which generate
a series of events or messages that the application then handles. The system may also
generate messages or events on its own. In order to ensure that all events and mes-
sages are correctly handled, the application typically has an event loop that looks
like this:

while(true)
{
 event_data event=get_event();
 if(event.type==quit)
 break;
 process(event);
}

Obviously, the details of the API will vary, but the structure is generally the same: wait
for an event, do whatever processing is necessary to handle it, and then wait for the
next one. If you have a single-threaded application, this can make long-running tasks
hard to write, as described in section 8.1.3. In order to ensure that user input is han-
dled in a timely manner, get_event() and process() must be called with reasonable
frequency, whatever the application is doing. This means that either the task must
periodically suspend itself and return control to the event loop, or the get_event()/
process() code must be called from within the code at convenient points. Either
option complicates the implementation of the task.

 By separating the concerns with concurrency, you can put the lengthy task on a
whole new thread and leave a dedicated GUI thread to process the events. The threads
can then communicate through simple mechanisms rather than having to somehow
mix the event-handling code in with the task code. The following listing shows a sim-
ple outline for this separation.

std::thread task_thread;
std::atomic<bool> task_cancelled(false);
void gui_thread()

Listing 8.6 Separating GUI thread from task thread

281Additional considerations when designing for concurrency
{
 while(true)
 {
 event_data event=get_event();
 if(event.type==quit)
 break;
 process(event);
 }
}
void task()
{
 while(!task_complete() && !task_cancelled)
 {
 do_next_operation();
 }
 if(task_cancelled)
 {
 perform_cleanup();
 }
 else
 {
 post_gui_event(task_complete);
 }
}
void process(event_data const& event)
{
 switch(event.type)
 {
 case start_task:
 task_cancelled=false;
 task_thread=std::thread(task);
 break;
 case stop_task:
 task_cancelled=true;
 task_thread.join();
 break;
 case task_complete:
 task_thread.join();
 display_results();
 break;
 default:
 //...
 }
}

By separating the concerns in this way, the user thread is always able to respond to the
events in a timely fashion, even if the task takes a long time. This responsiveness is
often key to the user experience when using an application; applications that com-
pletely lock up whenever a particular operation is being performed (whatever that
may be) are inconvenient to use. By providing a dedicated event-handling thread, the
GUI can handle GUI-specific messages (such as resizing or repainting the window)
without interrupting the execution of the time-consuming processing, while still pass-
ing on the relevant messages where they do affect the long-running task.

282 CHAPTER 8 Designing concurrent code
 So far in this chapter you’ve had a thorough look at the issues that need to be con-
sidered when designing concurrent code. Taken as a whole, these can be quite over-
whelming, but as you get used to working with your “multithreaded programming
hat” on, most of them will become second nature. If these considerations are new to
you, hopefully they’ll become clearer as you look at how they impact some concrete
examples of multithreaded code.

8.5 Designing concurrent code in practice
When designing concurrent code for a particular task, the extent to which you’ll need
to consider each of the issues described previously will depend on the task. To demon-
strate how they apply, we’ll look at the implementation of parallel versions of three
functions from the C++ Standard Library. This will give you a familiar basis on which
to build, while providing a platform for looking at the issues. As a bonus, we’ll also
have usable implementations of the functions, which could be used to help with paral-
lelizing a larger task.

 I’ve primarily selected these implementations to demonstrate particular tech-
niques rather than to be state-of-the-art implementations; more advanced implemen-
tations that make better use of the available hardware concurrency may be found in
the academic literature on parallel algorithms or in specialist multithreading libraries
such as Intel’s Threading Building Blocks (http://threadingbuildingblocks.org/).

 Conceptually, the simplest parallel algorithm is a parallel version of std::for_
each, so we’ll start with that.

8.5.1 A parallel implementation of std::for_each

std::for_each is simple in concept; it calls a user-supplied function on every ele-
ment in a range in turn. The big difference between a parallel implementation and
the sequential std::for_each is the order of the function calls. std::for_each calls
the function with the first element in the range, then the second, and so on, whereas
with a parallel implementation there’s no guarantee as to the order in which the
elements will be processed, and they may (indeed, we hope they will) be processed
concurrently.

 To implement a parallel version of this, you need to divide the range into sets of ele-
ments to process on each thread. You know the number of elements in advance, so you
can divide the data before processing begins (section 8.1.1). We’ll assume that this is the
only parallel task running, so you can use std::thread::hardware_concurrency() to
determine the number of threads. You also know that the elements can be processed
entirely independently, so you can use contiguous blocks to avoid false sharing (sec-
tion 8.2.3).

 This algorithm is similar in concept to the parallel version of std::accumulate
described in section 8.4.1, but rather than computing the sum of each element, you
merely have to apply the specified function. Although you might imagine this would
greatly simplify the code, because there’s no result to return, if you want to pass on

http://threadingbuildingblocks.org/

283Designing concurrent code in practice
exceptions to the caller, you still need to use the std::packaged_task and std::
future mechanisms to transfer the exception between threads. A sample implementa-
tion is shown here.

template<typename Iterator,typename Func>
void parallel_for_each(Iterator first,Iterator last,Func f)
{
 unsigned long const length=std::distance(first,last);
 if(!length)
 return;
 unsigned long const min_per_thread=25;
 unsigned long const max_threads=
 (length+min_per_thread-1)/min_per_thread;
 unsigned long const hardware_threads=
 std::thread::hardware_concurrency();
 unsigned long const num_threads=
 std::min(hardware_threads!=0?hardware_threads:2,max_threads);
 unsigned long const block_size=length/num_threads;
 std::vector<std::future<void> > futures(num_threads-1);
 std::vector<std::thread> threads(num_threads-1);
 join_threads joiner(threads);
 Iterator block_start=first;
 for(unsigned long i=0;i<(num_threads-1);++i)
 {
 Iterator block_end=block_start;
 std::advance(block_end,block_size);
 std::packaged_task<void(void)> task(
 [=]()
 {
 std::for_each(block_start,block_end,f);
 });
 futures[i]=task.get_future();
 threads[i]=std::thread(std::move(task));
 block_start=block_end;
 }
 std::for_each(block_start,last,f);
 for(unsigned long i=0;i<(num_threads-1);++i)
 {
 futures[i].get();
 }
}

The basic structure of the code is identical to that of listing 8.4, which is unsurprising.
The key difference is that the futures vector stores std::future<void> B, because
the worker threads don’t return a value, and a simple lambda function that invokes
the function f on the range from block_start to block_end is used for the task c.
This avoids having to pass the range into the thread constructor d. Because the
worker threads don’t return a value, the calls to futures[i].get() e provide a
means of retrieving any exceptions thrown on the worker threads; if you don’t want to
pass on the exceptions, you could omit this.

Listing 8.7 A parallel version of std::for_each

b

c

d

e

284 CHAPTER 8 Designing concurrent code
 Just as your parallel implementation of std::accumulate could be simplified using
std::async, so can your parallel_for_each. This implementation follows.

template<typename Iterator,typename Func>
void parallel_for_each(Iterator first,Iterator last,Func f)
{
 unsigned long const length=std::distance(first,last);
 if(!length)
 return;
 unsigned long const min_per_thread=25;
 if(length<(2*min_per_thread))
 {
 std::for_each(first,last,f);
 }
 else
 {
 Iterator const mid_point=first+length/2;
 std::future<void> first_half=
 std::async(¶llel_for_each<Iterator,Func>,
 first,mid_point,f);
 parallel_for_each(mid_point,last,f);
 first_half.get();
 }
}

As with your std::async-based parallel_accumulate from listing 8.5, you split the
data recursively rather than before execution, because you don’t know how many
threads the library will use. As before, you divide the data in half at each stage, run-
ning one half asynchronously c and the other directly d, until the remaining data is
too small to be worth dividing, in which case you defer to std::for_each B. Again,
the use of std::async and the get() member function of std::future e provides
the exception propagation semantics.

 Let’s move on from algorithms that must perform the same operation on each ele-
ment (of which there are several; std::count and std::replace spring to mind, for
starters) to a slightly more complicated example in the shape of std::find.

8.5.2 A parallel implementation of std::find

std::find is a useful algorithm to consider next because it’s one of several algorithms
that can complete without every element having been processed. For example, if the
first element in the range matches the search criterion, there’s no need to examine
any other elements. As you’ll see shortly, this is an important property for performance,
and it has direct consequences for the design of the parallel implementation. It’s a par-
ticular example of how data access patterns can affect the design of your code (section
8.3.2). Other algorithms in this category include std::equal and std::any_of.

 If you and your partner were searching for an old photograph through the boxes
of keepsakes in your attic, you wouldn’t let them continue searching if you found the

Listing 8.8 A parallel version of std::for_each using std::async

b

c

d
e

285Designing concurrent code in practice
photograph. Instead, you’d let them know you’d found the photograph (perhaps by
shouting, “Found it!”), so that they could stop searching and move on to something
else. The nature of many algorithms requires that they process every element, so they
have no equivalent to shouting, “Found it!” For algorithms such as std::find, the
ability to complete “early” is an important property and not something to squander.
You therefore need to design your code to make use of it—to interrupt the other tasks
in some way when the answer is known, so that the code doesn’t have to wait for the
other worker threads to process the remaining elements.

 If you don’t interrupt the other threads, the serial version may outperform your
parallel implementation, because the serial algorithm can stop searching and return
once a match is found. If, for example, the system can support four concurrent
threads, each thread will have to examine one quarter of the elements in the range,
and your naive parallel implementation would take approximately one quarter of the
time a single thread would take to check every element. If the matching element lies
in the first quarter of the range, the sequential algorithm will return first, because it
doesn’t need to check the remainder of the elements.

 One way in which you can interrupt the other threads is by making use of an
atomic variable as a flag and checking the flag after processing every element. If the
flag is set, one of the other threads has found a match, so you can cease processing
and return. By interrupting the threads in this way, you preserve the property that you
don’t have to process every value and improve the performance compared to the
serial version in more circumstances. The downside to this is that atomic loads can be
slow operations, so this can impede the progress of each thread.

 Now you have two choices as to how to return the values and how to propagate any
exceptions. You can use an array of futures, std::packaged_task, for transferring the
values and exceptions, and then process the results back in the main thread; or you
can use std::promise to set the final result directly from the worker threads. It all
depends on how you want to handle exceptions from the worker threads. If you want
to stop on the first exception (even if you haven’t processed all elements), you can use
std::promise to set both the value and the exception. On the other hand, if you want
to allow the other workers to keep searching, you can use std::packaged_task, store
all the exceptions, and then rethrow one of them if a match isn’t found.

 In this case I’ve opted to use std::promise because the behavior matches that of
std::find more closely. One thing to watch out for here is the case where the ele-
ment being searched for isn’t in the supplied range. You therefore need to wait for all
the threads to finish before getting the result from the future. If you block on the
future, you’ll be waiting forever if the value isn’t there. The result is shown here.

template<typename Iterator,typename MatchType>
Iterator parallel_find(Iterator first,Iterator last,MatchType match)
{
 struct find_element

Listing 8.9 An implementation of a parallel find algorithm

b

286 CHAPTER 8 Designing concurrent code
 {
 void operator()(Iterator begin,Iterator end,
 MatchType match,
 std::promise<Iterator>* result,
 std::atomic<bool>* done_flag)
 {
 try
 {
 for(;(begin!=end) && !done_flag->load();++begin)
 {
 if(*begin==match)
 {
 result->set_value(begin);
 done_flag->store(true);
 return;
 }
 }
 }
 catch(...)
 {
 try
 {
 result->set_exception(std::current_exception());
 done_flag->store(true);
 }
 catch(...)
 {}
 }
 }
 };
 unsigned long const length=std::distance(first,last);
 if(!length)
 return last;
 unsigned long const min_per_thread=25;
 unsigned long const max_threads=
 (length+min_per_thread-1)/min_per_thread;
 unsigned long const hardware_threads=
 std::thread::hardware_concurrency();
 unsigned long const num_threads=
 std::min(hardware_threads!=0?hardware_threads:2,max_threads);
 unsigned long const block_size=length/num_threads;
 std::promise<Iterator> result;
 std::atomic<bool> done_flag(false);
 std::vector<std::thread> threads(num_threads-1);
 {
 join_threads joiner(threads);
 Iterator block_start=first;
 for(unsigned long i=0;i<(num_threads-1);++i)
 {
 Iterator block_end=block_start;
 std::advance(block_end,block_size);
 threads[i]=std::thread(find_element(),
 block_start,block_end,match,
 &result,&done_flag);
 block_start=block_end;

c

d
e

f

g

h

i
j

1)

1!

287Designing concurrent code in practice
 }
 find_element()(block_start,last,match,&result,&done_flag);
 }
 if(!done_flag.load())
 {
 return last;
 }
 return result.get_future().get();
}

The main body of listing 8.9 is similar to the previous examples. This time, the work is
done in the function call operator of the local find_element class B. This loops
through the elements in the block it’s been given, checking the flag at each step c. If
a match is found, it sets the final result value in the promise d, and then sets the
done_flag e before returning.

 If an exception is thrown, this is caught by the catchall handler f, and you try to
store the exception in the promise g before setting the done_flag. Setting the value
on the promise might throw an exception if the promise is already set, so you catch
and discard any exceptions that happen here h.

 This means that if a thread calling find_element either finds a match or throws an
exception, all other threads will see done_flag set and will stop. If multiple threads
find a match or throw at the same time, they’ll race to set the result in the promise.
But this is a benign race condition; whichever succeeds is nominally “first” and there-
fore an acceptable result.

 Back in the main parallel_find function itself, you have the promise i and flag

j used to stop the search, both of which are passed in to the new threads along with
the range to search 1!. The main thread also uses find_element to search the remain-
ing elements 1@. As already mentioned, you need to wait for all threads to finish
before you check the result, because there might not be any matching elements. You
do this by enclosing the thread launching-and-joining code in a block 1) so all threads
are joined when you check the flag to see whether a match was found 1#. If a match
was found, you can get the result or throw the stored exception by calling get() on
the std::future<Iterator> you can get from the promise 1$.

 Again, this implementation assumes that you’re going to be using all available
hardware threads or that you have some other mechanism to determine the number
of threads to use for the upfront division of work between threads. As before, you can
use std::async and recursive data division to simplify your implementation, while
using the automatic scaling facility of the C++ Standard Library. An implementation
of parallel_find using std::async is shown in the following listing.

template<typename Iterator,typename MatchType>
Iterator parallel_find_impl(Iterator first,Iterator last,MatchType match,
 std::atomic<bool>& done)
{

Listing 8.10 An implementation of a parallel find algorithm using std::async

1@

1#

1$

b

288 CHAPTER 8 Designing concurrent code
 try
 {
 unsigned long const length=std::distance(first,last);
 unsigned long const min_per_thread=25;
 if(length<(2*min_per_thread))
 {
 for(;(first!=last) && !done.load();++first)
 {
 if(*first==match)
 {
 done=true;
 return first;
 }
 }
 return last;
 }
 else
 {
 Iterator const mid_point=first+(length/2);
 std::future<Iterator> async_result=
 std::async(¶llel_find_impl<Iterator,MatchType>,
 mid_point,last,match,std::ref(done));
 Iterator const direct_result=
 parallel_find_impl(first,mid_point,match,done);
 return (direct_result==mid_point)?
 async_result.get():direct_result;
 }
 }
 catch(...)
 {
 done=true;
 throw;
 }
}
template<typename Iterator,typename MatchType>
Iterator parallel_find(Iterator first,Iterator last,MatchType match)
{
 std::atomic<bool> done(false);
 return parallel_find_impl(first,last,match,done);
}

The desire to finish early if you find a match means that you need to introduce a flag
that is shared between all threads to indicate that a match has been found. This there-
fore needs to be passed in to all recursive calls. The simplest way to achieve this is by
delegating to an implementation function B, which takes an additional parameter—
a reference to the done flag, which is passed in from the main entry point 1@.

 The core implementation then proceeds along familiar lines. In common with
many of the implementations here, you set a minimum number of items to process on
a single thread c; if you can’t cleanly divide into two halves of at least that size, you
run everything on the current thread d. The algorithm is a simple loop through
the specified range, looping until you reach the end of the range or the done flag is
set e. If you do find a match, the done flag is set before returning f. If you stop

c
d

e

f

g

h

i

j

1)

1!

1@

289Designing concurrent code in practice
searching either because you got to the end of the list, or because another thread set
the done flag, you return last to indicate that no match was found here g.

 If the range can be divided, you first find the midpoint h before using
std::async to run the search in the second half of the range i, being careful to use
std::ref to pass a reference to the done flag. In the meantime, you can search in the
first half of the range by doing a direct recursive call j. Both the asynchronous call
and the direct recursion may result in further subdivisions if the original range is
big enough.

 If the direct search returned mid_point, then it failed to find a match, so you need
to get the result of the asynchronous search. If no result was found in that half, the
result will be last, which is the correct return value to indicate that the value was not
found 1). If the “asynchronous” call was deferred rather than truly asynchronous, it
will run here in the call to get(); in these circumstances, the search of the top half of
the range is skipped if the search in the bottom half was successful. If the asynchro-
nous search is running on another thread, the destructor of the async_result vari-
able will wait for the thread to complete, so you don’t have any leaking threads.

 As before, the use of std::async provides you with exception safety and exception-
propagation features. If the direct recursion throws an exception, the future’s
destructor will ensure that the thread running the asynchronous call has terminated
before the function returns, and if the asynchronous call throws, the exception is
propagated through the get() call 1). The use of a try/catch block around the
whole thing is only there to set the done flag on an exception and ensure that all
threads terminate quickly if an exception is thrown 1!. The implementation would
still be correct without it but would keep checking elements until every thread
was finished.

 A key feature that both implementations of this algorithm share with the other
parallel algorithms you’ve seen is that there’s no longer the guarantee that items are
processed in the sequence that you get from std::find. This is essential if you’re
going to parallelize the algorithm. You can’t process elements concurrently if the order
matters. If the elements are independent, it doesn’t matter for things like parallel
_for_each, but it means that your parallel_find might return an element toward
the end of the range even when there’s a match toward the beginning, which might
be surprising if you’re not expecting it.

 OK, so you’ve managed to parallelize std::find. As I stated at the beginning of
this section, there are other similar algorithms that can complete without processing
every data element, and the same techniques can be used for those. We’ll also look
further at the issue of interrupting threads in chapter 9.

 To complete our trio of examples, we’ll go in a different direction and look at
std::partial_sum. This algorithm doesn’t get a lot of press, but it’s an interesting
algorithm to parallelize and highlights some additional design choices.

290 CHAPTER 8 Designing concurrent code
8.5.3 A parallel implementation of std::partial_sum

std::partial_sum calculates the running totals in a range, so each element is replaced
by the sum of that element and all the elements prior to it in the original sequence.
Thus the sequence 1, 2, 3, 4, 5 becomes 1, (1+2)=3, (1+2+3)=6, (1+2+3+4)=10,
(1+2+3+4+5)=15. This is interesting to parallelize because you can’t just divide the
range into chunks and calculate each chunk independently. For example, the initial
value of the first element needs to be added to every other element.

 One approach to determining the partial sum of a range is to calculate the partial
sum of individual chunks and then add the resulting value of the last element in the
first chunk onto the elements in the next chunk, and so forth. If you have the ele-
ments 1, 2, 3, 4, 5, 6, 7, 8, 9 and you’re splitting into three chunks, you get {1, 3, 6},
{4, 9, 15}, {7, 15, 24} in the first instance. If you then add 6 (the sum for the last element
in the first chunk) onto the elements in the second chunk, you get {1, 3, 6}, {10, 15, 21},
{7, 15, 24}. Then you add the last element of the second chunk (21) onto the elements
in the third and final chunk to get the final result: {1, 3, 6}, {10, 15, 21}, {28, 36, 55}.

 As well as the original division into chunks, the addition of the partial sum from
the previous block can also be parallelized. If the last element of each block is
updated first, the remaining elements in a block can be updated by one thread while a
second thread updates the next block, and so forth. This works well when there are
many more elements in the list than processing cores, because each core has a reason-
able number of elements to process at each stage.

 If you have a lot of processing cores (as many or more than the number of ele-
ments), this doesn’t work so well. If you divide the work among the processors, you
end up working in pairs of elements at the first step. Under these conditions, this for-
ward propagation of results means that many processors are left waiting, so you need
to find some work for them to do. You can then take a different approach to the prob-
lem. Rather than doing the full forward propagation of the sums from one chunk to
the next, you do a partial propagation: first sum adjacent elements as before, but then
add those sums to those two elements away, then add the next set of results to the
results from four elements away, and so forth. If you start with the same initial nine
elements, you get 1, 3, 5, 7, 9, 11, 13, 15, 17 after the first round, which gives you the
final results for the first two elements. After the second you then have 1, 3, 6, 10, 14,
18, 22, 26, 30, which is correct for the first four elements. After round three you have
1, 3, 6, 10, 15, 21, 28, 36, 44, which is correct for the first eight elements, and finally
after round four you have 1, 3, 6, 10, 15, 21, 28, 36, 45, which is the final answer.
Although there are more total steps than in the first approach, there’s greater scope
for parallelism if you have many processors; each processor can update one entry with
each step.

 Overall, the second approach takes log2(N) steps of approximately N operations
(one per processor), where N is the number of elements in the list. This compares to
the first algorithm where each thread has to perform N/k operations for the initial
partial sum of the chunk allocated to it and then further N/k operations to do the

291Designing concurrent code in practice
forward propagation, where k is the number of threads. Thus the first approach is
O(N), whereas the second is O(N log(N)) in terms of the total number of operations.
But if you have as many processors as list elements, the second approach requires only
log(N) operations per processor, whereas the first serializes the operations when k gets
large, because of the forward propagation. For small numbers of processing units, the
first approach will therefore finish faster, whereas for massively parallel systems, the sec-
ond will finish faster. This is an extreme example of the issues discussed in section 8.2.1.

 Anyway, efficiency issues aside, let’s look at some code. The following listing shows
the first approach.

template<typename Iterator>
void parallel_partial_sum(Iterator first,Iterator last)
{
 typedef typename Iterator::value_type value_type;

 struct process_chunk
 {
 void operator()(Iterator begin,Iterator last,
 std::future<value_type>* previous_end_value,
 std::promise<value_type>* end_value)
 {
 try
 {
 Iterator end=last;
 ++end;
 std::partial_sum(begin,end,begin);
 if(previous_end_value)
 {
 value_type& addend=previous_end_value->get();
 *last+=addend;
 if(end_value)
 {
 end_value->set_value(*last);
 }
 std::for_each(begin,last,[addend](value_type& item)
 {
 item+=addend;
 });
 }
 else if(end_value)
 {
 end_value->set_value(*last);
 }
 }
 catch(...)
 {
 if(end_value)
 {
 end_value->set_exception(std::current_exception());
 }

Listing 8.11 Calculating partial sums in parallel by dividing the problem

b

c
d

e
f

g

h

i

j

1)

292 CHAPTER 8 Designing concurrent code
 else
 {
 throw;
 }
 }
 }
 };
 unsigned long const length=std::distance(first,last);
 if(!length)
 return;
 unsigned long const min_per_thread=25;
 unsigned long const max_threads=
 (length+min_per_thread-1)/min_per_thread;
 unsigned long const hardware_threads=
 std::thread::hardware_concurrency();
 unsigned long const num_threads=
 std::min(hardware_threads!=0?hardware_threads:2,max_threads);
 unsigned long const block_size=length/num_threads;
 typedef typename Iterator::value_type value_type;
 std::vector<std::thread> threads(num_threads-1);
 std::vector<std::promise<value_type> >
 end_values(num_threads-1);
 std::vector<std::future<value_type> >
 previous_end_values;
 previous_end_values.reserve(num_threads-1);
 join_threads joiner(threads);
 Iterator block_start=first;
 for(unsigned long i=0;i<(num_threads-1);++i)
 {
 Iterator block_last=block_start;
 std::advance(block_last,block_size-1);
 threads[i]=std::thread(process_chunk(),
 block_start,block_last,
 (i!=0)?&previous_end_values[i-1]:0,
 &end_values[i]);
 block_start=block_last;
 ++block_start;
 previous_end_values.push_back(end_values[i].get_future());
 }
 Iterator final_element=block_start;
 std::advance(final_element,std::distance(block_start,last)-1);
 process_chunk()(block_start,final_element,
 (num_threads>1)?&previous_end_values.back():0,
 0);
}

In this instance, the general structure is the same as with the previous algorithms,
dividing the problem into chunks, with a minimum chunk size per thread 1@. In this
case, as well as the vector of threads 1#, you have a vector of promises 1$, which is used
to store the value of the last element in the chunk, and a vector of futures 1%, which is
used to retrieve the last value from the previous chunk. You can reserve the space for
the futures 1^ to avoid a reallocation while spawning threads, because you know how
many you’re going to have.

1!

1@

1#

1$

1%
1^

1&
1*

1(
2)

2!
2@

293Designing concurrent code in practice
 The main loop is the same as before, except this time you want the iterator that
points to the last element in each block, rather than being the usual one past the end

1&, so that you can do the forward propagation of the last element in each range. The
processing is done in the process_chunk function object, which we’ll look at shortly;
the start and end iterators for this chunk are passed in as arguments alongside the
future for the end value of the previous range (if any) and the promise to hold the end
value of this range 1*.

 After you’ve spawned the thread, you can update the block start, remembering to
advance it past that last element 1(, and store the future for the last value in the cur-
rent chunk into the vector of futures so it will be picked up next time around the
loop 2).

 Before you process the final chunk, you need to get an iterator for the last element

2!, which you can pass in to process_chunk 2@. std::partial_sum doesn’t return a
value, so you don’t need to do anything once the final chunk has been processed. The
operation is complete once all the threads have finished.

 OK, now it’s time to look at the process_chunk function object that does all the
work B. You start by calling std::partial_sum for the entire chunk, including the
final element c, but then you need to know if you’re the first chunk or not d. If
you are not the first chunk, then there was a previous_end_value from the previ-
ous chunk, so you need to wait for that e. In order to maximize the parallelism of
the algorithm, you then update the last element first f, so you can pass the value
on to the next chunk (if there is one) g. Once you’ve done that, you can use
std::for_each and a simple lambda function h, to update all the remaining ele-
ments in the range.

 If there was not a previous_end_value, you’re the first chunk, so you can update
the end_value for the next chunk (again, if there is one—you might be the only
chunk) i.

 Finally, if any of the operations threw an exception, you catch it j and store it in
the promise 1) so it will propagate to the next chunk when it tries to get the previous
end value e. This will propagate all exceptions into the final chunk, which then
rethrows 1!, because you know you’re running on the main thread.

 Because of the synchronization between the threads, this code isn’t readily amena-
ble to rewriting with std::async. The tasks wait on results made available partway
through the execution of other tasks, so all tasks must be running concurrently.

 With the block-based, forward-propagation approach out of the way, let’s look at
the second approach to computing the partial sums of a range.

IMPLEMENTING THE INCREMENTAL PAIRWISE ALGORITHM FOR PARTIAL SUMS

This second approach to calculating the partial sums by adding elements increasingly
further away works best where your processors can execute the additions in lockstep.
In this case, no further synchronization is necessary because all the intermediate
results can be propagated directly to the next processor that needs them. But in prac-
tice, you rarely have these systems to work with, except for those cases where a single

294 CHAPTER 8 Designing concurrent code
processor can execute the same instruction across a small number of data elements
simultaneously with so-called Single-Instruction/Multiple-Data (SIMD) instructions.
Therefore, you must design your code for the general case and explicitly synchronize
the threads at each step.

 One way to do this is to use a barrier—a synchronization mechanism that causes
threads to wait until the required number of threads has reached the barrier. Once all
the threads have reached the barrier, they’re all unblocked and may proceed. The
C++11 Thread Library doesn’t offer this facility directly, so you have to design one
yourself.

 Imagine a roller coaster at the fairground. If there’s a reasonable number of peo-
ple waiting, the fairground staff will ensure that every seat is filled before the roller
coaster leaves the platform. A barrier works the same way: you specify up front the
number of “seats,” and threads have to wait until all the “seats” are filled. Once there
are enough waiting threads, they can all proceed; the barrier is reset and starts waiting
for the next batch of threads. Often, this construct is used in a loop, where the same
threads come around and wait until next time. The idea is to keep the threads in lock-
step, so one thread doesn’t run away in front of the others and get out of step. For an
algorithm such as this one, that would be disastrous, because the runaway thread
would potentially modify data that was still being used by other threads or use data
that hadn’t been correctly updated yet.

 The following listing shows a simple implementation of a barrier.

class barrier
{
 unsigned const count;
 std::atomic<unsigned> spaces;
 std::atomic<unsigned> generation;
public:
 explicit barrier(unsigned count_):
 count(count_),spaces(count),generation(0)
 {}
 void wait()
 {
 unsigned const my_generation=generation;
 if(!--spaces)
 {
 spaces=count;
 ++generation;
 }
 else
 {
 while(generation==my_generation)
 std::this_thread::yield();
 }
 }
};

Listing 8.12 A simple barrier class

b

c
d

e

f

g

h

295Designing concurrent code in practice
With this implementation, you construct a barrier with the number of “seats” B,
which is stored in the count variable. Initially, the number of spaces at the barrier is
equal to this count. As each thread waits, the number of spaces is decremented d.
When it reaches zero, the number of spaces is reset back to count e, and the
generation is increased to signal to the other threads that they can continue f. If
the number of free spaces does not reach zero, you have to wait. This implementa-
tion uses a simple spin lock g, checking the generation against the value you retrieved
at the beginning of wait() c. Because the generation is only updated when all the
threads have reached the barrier f, you yield() while waiting h, so the waiting
thread doesn’t hog the CPU in a busy wait.

 When I said this implementation was simple, I meant it: it uses a spin wait, so it’s
not ideal for cases where threads are likely to be waiting a long time, and it doesn’t
work if there’s more than count threads that can potentially call wait() at any one
time. If you need to handle either of those scenarios, you must use a more robust (but
more complex) implementation instead. I’ve also stuck to sequentially consistent
operations on the atomic variables, because that makes everything easier to reason
about, but you could potentially relax some of the ordering constraints. This global
synchronization is expensive on massively parallel architectures, because the cache
line holding the barrier state must be shuttled between all the processors involved
(see the discussion of cache ping-pong in section 8.2.2), so you must take great care to
ensure that this is the best choice here. If your C++ Standard Library provides the
facilities from the Concurrency TS, you could use std::experimental::barrier
here. See chapter 4 for details.

 This is what you need here; you have a fixed number of threads that need to run in
a lockstep loop. Well, it’s almost a fixed number of threads. As you may remember, the
items at the beginning of the list acquire their final values after a couple of steps. This
means that either you have to keep those threads looping until the entire range has
been processed, or you need to allow your barrier to handle threads dropping out and
decreasing count. I opted for the latter option because it avoids having threads doing
unnecessary work, looping until the final step is done.

 This means you have to change count to be an atomic variable, so you can update
it from multiple threads without external synchronization:

std::atomic<unsigned> count;

The initialization remains the same, but now you have to explicitly load() from count
when you reset the number of spaces:

spaces=count.load();

These are all the changes that you need on the wait() front; now you need a new
member function to decrement count. Let’s call it done_waiting(), because a thread
is declaring that it is done with waiting:

296 CHAPTER 8 Designing concurrent code
void done_waiting()
{
 --count;
 if(!--spaces)
 {
 spaces=count.load();
 ++generation;
 }
}

The first thing you do is decrement the count B so that the next time spaces is reset
it reflects the new lower number of waiting threads. Then you need to decrease the
number of free spaces c. If you don’t do this, the other threads will be waiting for-
ever, because spaces was initialized to the old, larger value. If you’re the last thread
through on this batch, you need to reset the counter and increase the generation d,
as you do in wait(). The key difference here is that if you’re the last thread in the
batch, you don’t have to wait.

 You’re now ready to write your second implementation of partial sum. At each
step, every thread calls wait() on the barrier to ensure the threads step through
together, and once each thread is done, it calls done_waiting() on the barrier to dec-
rement the count. If you use a second buffer alongside the original range, the barrier
provides all the synchronization you need. At each step, the threads read from either
the original range or the buffer and write the new value to the corresponding element
of the other. If the threads read from the original range on one step, they read from
the buffer on the next, and vice versa. This ensures there are no race conditions
between the reads and writes by separate threads. Once a thread has finished looping,
it must ensure that the correct final value has been written to the original range. The
following listing pulls this all together.

struct barrier
{
 std::atomic<unsigned> count;
 std::atomic<unsigned> spaces;
 std::atomic<unsigned> generation;
 barrier(unsigned count_):
 count(count_),spaces(count_),generation(0)
 {}
 void wait()
 {
 unsigned const gen=generation.load();
 if(!--spaces)
 {
 spaces=count.load();
 ++generation;
 }
 else
 {

Listing 8.13 A parallel implementation of partial_sum by pairwise updates

b

c

d

297Designing concurrent code in practice
 while(generation.load()==gen)
 {
 std::this_thread::yield();
 }
 }
 }
 void done_waiting()
 {
 --count;
 if(!--spaces)
 {
 spaces=count.load();
 ++generation;
 }
 }
};
template<typename Iterator>
void parallel_partial_sum(Iterator first,Iterator last)
{
 typedef typename Iterator::value_type value_type;
 struct process_element
 {
 void operator()(Iterator first,Iterator last,
 std::vector<value_type>& buffer,
 unsigned i,barrier& b)
 {
 value_type& ith_element=*(first+i);
 bool update_source=false;

 for(unsigned step=0,stride=1;stride<=i;++step,stride*=2)
 {
 value_type const& source=(step%2)?
 buffer[i]:ith_element;
 value_type& dest=(step%2)?
 ith_element:buffer[i];
 value_type const& addend=(step%2)?
 buffer[i-stride]:*(first+i-stride);
 dest=source+addend;
 update_source=!(step%2);
 b.wait();
 }
 if(update_source)
 {
 ith_element=buffer[i];
 }
 b.done_waiting();
 }
 };
 unsigned long const length=std::distance(first,last);
 if(length<=1)
 return;
 std::vector<value_type> buffer(length);
 barrier b(length);
 std::vector<std::thread> threads(length-1);
 join_threads joiner(threads);

b

c

d

e

f

g

h

i

298 CHAPTER 8 Designing concurrent code
 Iterator block_start=first;
 for(unsigned long i=0;i<(length-1);++i)
 {
 threads[i]=std::thread(process_element(),first,last,
 std::ref(buffer),i,std::ref(b));
 }
 process_element()(first,last,buffer,length-1,b);
}

The overall structure of this code is probably becoming familiar by now. You have a
class with a function call operator (process_element) for doing the work B, which
you run on a bunch of threads j stored in a vector i, and which you also call from
the main thread 1). The key difference this time is that the number of threads is
dependent on the number of items in the list rather than on std::thread::hardware
_concurrency. As I said already, unless you’re on a massively parallel machine where
threads are cheap, this is probably a bad idea, but it shows the overall structure. It
would be possible to have fewer threads, with each thread handling several values
from the source range, but there will come a point where there are sufficiently few
threads that this is less efficient than the forward-propagation algorithm.

 The key work is done in the function call operator of process_element. At each
step, you either take the ith element from the original range or the ith element from
the buffer c and add it to the value stride elements prior d, storing it in the buffer
if you started in the original range or back in the original range if you started in the
buffer e. You then wait on the barrier f before starting the next step. You’ve fin-
ished when the stride takes you off the start of the range, in which case you need to
update the element in the original range if your final result was stored in the buffer g.
Finally, you tell the barrier that you’re done_waiting() h.

 Note that this solution isn’t exception-safe. If an exception is thrown in process-
_element on one of the worker threads, it will terminate the application. You could
deal with this by using std::promise to store the exception, as you did for the
parallel_find implementation from listing 8.9, or even using std::exception_ptr
protected by a mutex.

 That concludes our three examples. Hopefully, they’ve helped to crystallize some
of the design considerations highlighted in sections 8.1, 8.2, 8.3, and 8.4, and have
demonstrated how these techniques can be brought to bear in real code.

Summary
We’ve covered quite a lot of ground in this chapter. We started with various tech-
niques for dividing work between threads, such as dividing the data beforehand or
using a number of threads to form a pipeline. We then looked at the issues sur-
rounding the performance of multithreaded code from a low-level perspective, with
a look at false sharing and data contention before moving on to how the patterns of
data access can affect the performance of a bit of code. We then looked at addi-
tional considerations in the design of concurrent code, such as exception safety and

j

1)

299Summary
scalability. Finally, we ended with a number of examples of parallel algorithm imple-
mentations, each of which highlighted particular issues that can occur when design-
ing multithreaded code.

 One item that has cropped up a couple of times in this chapter is the idea of a
thread pool—a preconfigured group of threads that run tasks assigned to the pool.
Quite a lot of thought goes into the design of a good thread pool, so we’ll look at
some of the issues in the next chapter, along with other aspects of advanced thread
management.

Advanced thread
management
In earlier chapters, you’ve been explicitly managing threads by creating std::thread
objects for every thread. In a couple of places you’ve seen how this can be undesir-
able, because you then have to manage the lifetime of the thread objects, deter-
mine the number of threads appropriate to the problem and to the current
hardware, and so forth. The ideal scenario would be that you could divide the code
into the smallest pieces that could be executed concurrently, pass them over to the
compiler and library, and say, “Parallelize this for optimal performance.” As we'll
see in chapter 10, there are cases where you can do this: if your code that requires
parallelization can be expressed as a call to a standard library algorithm, then you
can ask the library to do the parallelization for you in most cases.

 Another recurring theme in several of the examples is that you might use sev-
eral threads to solve a problem but require that they finish early if some condition
is met. This might be because the result has already been determined, or because

This chapter covers
 Thread pools

 Handling dependencies between pool tasks

 Work stealing for pool threads

 Interrupting threads
300

301Thread pools
an error has occurred, or even because the user has explicitly requested that the oper-
ation be aborted. Whatever the reason, the threads need to be sent a “Please stop”
request so that they can give up on the task they were given, tidy up, and finish as soon
as possible.

 In this chapter, we’ll look at mechanisms for managing threads and tasks, starting
with the automatic management of the number of threads and the division of tasks
between them.

9.1 Thread pools
In many companies, employees who would normally spend their time in the office are
occasionally required to visit clients or suppliers or to attend a trade show or confer-
ence. Although these trips might be necessary, and on any given day there might be
several people making this trip, it may well be months or even years between these
trips for any particular employee. Because it would therefore be rather expensive and
impractical for each employee to have a company car, companies often offer a car pool
instead; they have a limited number of cars that are available to all employees. When
an employee needs to make an off-site trip, they book one of the pool cars for the
appropriate time and return it for others to use when they return to the office. If
there are no pool cars free on a given day, the employee will have to reschedule their
trip for a subsequent date.

 A thread pool is a similar idea, except that threads are being shared rather than
cars. On most systems, it’s impractical to have a separate thread for every task that
can potentially be done in parallel with other tasks, but you’d still like to take advan-
tage of the available concurrency where possible. A thread pool allows you to accom-
plish this; tasks that can be executed concurrently are submitted to the pool, which
puts them on a queue of pending work. Each task is then taken from the queue by
one of the worker threads, which executes the task before looping back to take another
from the queue.

 There are several key design issues when building a thread pool, such as how many
threads to use, the most efficient way to allocate tasks to threads, and whether or not
you can wait for a task to complete. In this section we’ll look at some thread pool
implementations that address these design issues, starting with the simplest possible
thread pool.

9.1.1 The simplest possible thread pool

At its simplest, a thread pool is a fixed number of worker threads (typically the same
number as the value returned by std::thread::hardware_concurrency()) that pro-
cess work. When you have work to do, you call a function to put it on the queue of
pending work. Each worker thread takes work off the queue, runs the specified task,
and then goes back to the queue for more work. In the simplest case there’s no way to
wait for the task to complete. If you need to do this, you have to manage the synchro-
nization yourself.

302 CHAPTER 9 Advanced thread management
 The following listing shows a sample implementation of this thread pool.

class thread_pool
{
 std::atomic_bool done;
 threadsafe_queue<std::function<void()> > work_queue;
 std::vector<std::thread> threads;
 join_threads joiner;
 void worker_thread()
 {
 while(!done)
 {
 std::function<void()> task;
 if(work_queue.try_pop(task))
 {
 task();
 }
 else
 {
 std::this_thread::yield();
 }
 }
 }
public:
 thread_pool():
 done(false),joiner(threads)
 {
 unsigned const thread_count=std::thread::hardware_concurrency();
 try
 {
 for(unsigned i=0;i<thread_count;++i)
 {
 threads.push_back(
 std::thread(&thread_pool::worker_thread,this));
 }
 }
 catch(...)
 {
 done=true;
 throw;
 }
 }
 ~thread_pool()
 {
 done=true;
 }
 template<typename FunctionType>
 void submit(FunctionType f)
 {
 work_queue.push(std::function<void()>(f));
 }
};

Listing 9.1 Simple thread pool

b
c

d

e

f

g

h

i

j

1)

1!

1@

303Thread pools
This implementation has a vector of worker threads c and uses one of the thread-safe
queues from chapter 6 B to manage the queue of work. In this case, users can’t wait for
the tasks, and they can’t return any values, so you can use std::function<void()> to
encapsulate your tasks. The submit() function then wraps whatever function or call-
able object is supplied inside an std::function<void()> instance and pushes it on
the queue 1@.

 The threads are started in the constructor: you use std::thread::hardware_
concurrency() to tell you how many concurrent threads the hardware can support

i, and you create that many threads running your worker_thread() member func-
tion j.

 Starting a thread can fail by throwing an exception, so you need to ensure that any
threads you’ve already started are stopped and cleaned up nicely in this case. This is
achieved with a try-catch block that sets the done flag when an exception is thrown

1), alongside an instance of the join_threads class from chapter 8 d to join all the
threads. This also works with the destructor: you can set the done flag 1!, and the
join_threads instance will ensure that all the threads have completed before the
pool is destroyed. Note that the order of declaration of the members is important:
both the done flag and the worker_queue must be declared before the threads vector,
which must in turn be declared before the joiner. This ensures that the members are
destroyed in the right order; you can’t destroy the queue safely until all the threads
have stopped, for example.

 The worker_thread function itself is quite simple: it sits in a loop waiting until the
done flag is set e, pulling tasks off the queue f and executing them g in the mean-
time. If there are no tasks on the queue, the function calls std::this_thread::
yield() to take a small break h and give another thread a chance to put some work
on the queue before it tries to take some off again the next time around.

 For many purposes this simple thread pool will suffice, especially if the tasks are
entirely independent and don’t return any values or perform any blocking opera-
tions. But there are also many circumstances where this simple thread pool may not
adequately address your needs, and yet others where it can cause problems such as
deadlock. Also, in simple cases you may be better served using std::async as in
many of the examples in chapter 8. Throughout this chapter, we’ll look at more com-
plex thread pool implementations that have additional features either to address
user needs or reduce the potential for problems. First up: waiting for the tasks we’ve
submitted.

9.1.2 Waiting for tasks submitted to a thread pool

In the examples in chapter 8 that explicitly spawned threads, after dividing the work
between threads, the master thread always waited for the newly spawned threads to
finish, to ensure that the overall task was complete before returning to the caller. With
thread pools, you’d need to wait for the tasks submitted to the thread pool to com-
plete, rather than the worker threads themselves. This is similar to the way that the

304 CHAPTER 9 Advanced thread management
std::async-based examples in chapter 8 waited for the futures. With the simple
thread pool from listing 9.1, you’d have to do this manually using the techniques from
chapter 4: condition variables and futures. This adds complexity to the code; it would
be better if you could wait for the tasks directly.

 By moving that complexity into the thread pool itself, you can wait for the tasks
directly. You can have the submit() function return a task handle of some description
that you can then use to wait for the task to complete. This task handle would wrap the
use of condition variables or futures, simplifying the code that uses the thread pool.

 A special case of having to wait for the spawned task to finish occurs when the main
thread needs a result computed by the task. You’ve seen this in examples throughout
the book, such as the parallel_accumulate() function from chapter 2. In this case,
you can combine the waiting with the result transfer through the use of futures. List-
ing 9.2 shows the changes required to the simple thread pool that allow you to wait
for tasks to complete and then pass return values from the task to the waiting
thread. Because std::packaged_task<> instances are not copyable, just movable, you
can no longer use std::function<> for the queue entries, because std::function<>
requires that the stored function objects are copy-constructible. Instead, you must
use a custom function wrapper that can handle move-only types. This is a simple
type-erasure class with a function call operator. You only need to handle functions
that take no parameters and return void, so this is a straightforward virtual call in
the implementation.

class function_wrapper
{
 struct impl_base {
 virtual void call()=0;
 virtual ~impl_base() {}
 };
 std::unique_ptr<impl_base> impl;
 template<typename F>
 struct impl_type: impl_base
 {
 F f;
 impl_type(F&& f_): f(std::move(f_)) {}
 void call() { f(); }
 };
public:
 template<typename F>
 function_wrapper(F&& f):
 impl(new impl_type<F>(std::move(f)))
 {}
 void operator()() { impl->call(); }
 function_wrapper() = default;
 function_wrapper(function_wrapper&& other):
 impl(std::move(other.impl))
 {}

Listing 9.2 A thread pool with waitable tasks

305Thread pools
 function_wrapper& operator=(function_wrapper&& other)
 {
 impl=std::move(other.impl);
 return *this;
 }
 function_wrapper(const function_wrapper&)=delete;
 function_wrapper(function_wrapper&)=delete;
 function_wrapper& operator=(const function_wrapper&)=delete;
};
class thread_pool
{
 thread_safe_queue<function_wrapper> work_queue;
 void worker_thread()
 {
 while(!done)
 {
 function_wrapper task;
 if(work_queue.try_pop(task))
 {
 task();
 }
 else
 {
 std::this_thread::yield();
 }
 }
 }
public:
 template<typename FunctionType>
 std::future<typename std::result_of<FunctionType()>::type>
 submit(FunctionType f)
 {
 typedef typename std::result_of<FunctionType()>::type
 result_type;
 std::packaged_task<result_type()> task(std::move(f));
 std::future<result_type> res(task.get_future());
 work_queue.push(std::move(task));
 return res;
 }
 // rest as before
};

First, the modified submit() function B returns a std::future<> to hold the return
value of the task and allow the caller to wait for the task to complete. This requires
that you know the return type of the supplied function f, which is where std::
result_of<> comes in: std::result_of<FunctionType()>::type is the type of the
result of invoking an instance of type FunctionType (such as f) with no arguments.
You use the same std::result_of<> expression for the result_type typedef c
inside the function.

 You then wrap the function f in a std::packaged_task<result_type()> d,
because f is a function or callable object that takes no parameters and returns an
instance of type result_type, as we deduced. You can now get your future from the

Use function_
wrapper rather
than std::function

 b

c d

 e

fg

306 CHAPTER 9 Advanced thread management
std::packaged_task<> e before pushing the task onto the queue f and returning
the future g. Note that you have to use std::move() when pushing the task onto
the queue, because std::packaged_task<> isn’t copyable. The queue now stores
function_wrapper objects rather than std::function<void()> objects in order to
handle this.

 This pool allows you to wait for your tasks and have them return results. The next
listing shows what the parallel_accumulate function looks like with this thread pool.

template<typename Iterator,typename T>
T parallel_accumulate(Iterator first,Iterator last,T init)
{
 unsigned long const length=std::distance(first,last);
 if(!length)
 return init;
 unsigned long const block_size=25;
 unsigned long const num_blocks=(length+block_size-1)/block_size;
 std::vector<std::future<T> > futures(num_blocks-1);
 thread_pool pool;
 Iterator block_start=first;
 for(unsigned long i=0;i<(num_blocks-1);++i)
 {
 Iterator block_end=block_start;
 std::advance(block_end,block_size);
 futures[i]=pool.submit([=]{
 accumulate_block<Iterator,T>()(block_start,block_end);
 });
 block_start=block_end;
 }
 T last_result=accumulate_block<Iterator,T>()(block_start,last);
 T result=init;
 for(unsigned long i=0;i<(num_blocks-1);++i)
 {
 result+=futures[i].get();
 }
 result += last_result;
 return result;
}

When you compare this against listing 8.4, there are a couple of things to notice. First,
you’re working in terms of the number of blocks to use (num_blocks) B rather than
the number of threads. In order to make the most use of the scalability of your thread
pool, you need to divide the work into the smallest blocks that it’s worth working with
concurrently. When there are only a few threads in the pool, each thread will process
many blocks, but as the number of threads grows with the hardware, the number of
blocks processed in parallel will also grow.

 You need to be careful when choosing the “smallest blocks worth working with con-
currently.” There’s an inherent overhead to submitting a task to a thread pool, having
the worker thread run it, and passing the return value through a std::future<>, and

Listing 9.3 parallel_accumulate using a thread pool with waitable tasks

b

c

307Thread pools
for small tasks it’s not worth the payoff. If you choose too small a task size, the code
may run more slowly with a thread pool than with one thread.

 Assuming the block size is sensible, you don’t have to worry about packaging the
tasks, obtaining the futures, or storing the std::thread objects so you can join with
the threads later; the thread pool takes care of that. All you need to do is call submit()
with your task c.

 The thread pool takes care of the exception safety too. Any exception thrown by
the task gets propagated through the future returned from submit(), and if the func-
tion exits with an exception, the thread pool destructor abandons any not-yet-completed
tasks and waits for the pool threads to finish.

 This works well for simple cases like this, where the tasks are independent. But it’s
not so good for situations where the tasks depend on other tasks also submitted to the
thread pool.

9.1.3 Tasks that wait for other tasks

The Quicksort algorithm is an example that I’ve used throughout this book. It’s sim-
ple in concept: the data to be sorted is partitioned into those items that go before a
pivot item and those that go after it in the sorted sequence. These two sets of items are
recursively sorted and then stitched back together to form a fully sorted set. When
parallelizing this algorithm, you need to ensure that these recursive calls make use of
the available concurrency.

 Back in chapter 4, when I first introduced this example, you used std::async to
run one of the recursive calls at each stage, letting the library choose between running
it on a new thread and running it synchronously when the relevant get() was called.
This works well, because each task is either running on its own thread or will be
invoked when required.

 When we revisited the implementation in chapter 8, you saw an alternative struc-
ture that used a fixed number of threads related to the available hardware concur-
rency. In this case, you used a stack of pending chunks that needed sorting. As each
thread partitioned the data it was sorting, it added a new chunk to the stack for one of
the sets of data and then sorted the other one directly. At this point, a straightforward
wait for the sorting of the other chunk to complete would potentially deadlock,
because you’d be consuming one of your limited number of threads waiting. It would
be easy to end up in a situation where all of the threads were waiting for chunks to be
sorted and no threads were doing any sorting. We addressed this issue by having the
threads pull chunks off the stack and sort them while the particular chunk they were
waiting for was unsorted.

 You’d get the same problem if you substituted a simple thread pool like the ones
you’ve seen so far in this chapter, instead of std::async in the example from chapter 4.
There are now only a limited number of threads, and they might end up all waiting
for tasks that haven’t been scheduled because there are no free threads. You therefore
need to use a solution similar to the one you used in chapter 8: process outstanding

308 CHAPTER 9 Advanced thread management
chunks while you’re waiting for your chunk to complete. If you’re using the thread
pool to manage the list of tasks and their association with threads—which is, after all,
the whole point of using a thread pool—you don’t have access to the task list to do
this. What you need to do is modify the thread pool to do this automatically.

 The simplest way to do this is to add a new function on thread_pool to run a task
from the queue and manage the loop yourself, so we’ll go with that. Advanced thread
pool implementations might add logic into the wait function or additional wait func-
tions to handle this case, possibly prioritizing the task being waited for. The following
listing shows the new run_pending_task() function, and a modified Quicksort to
make use of it is shown in listing 9.5.

void thread_pool::run_pending_task()
{
 function_wrapper task;
 if(work_queue.try_pop(task))
 {
 task();
 }
 else
 {
 std::this_thread::yield();
 }
}

This implementation of run_pending_task() is lifted straight out of the main loop of
the worker_thread() function, which can now be modified to call the extracted
run_pending_task(). This tries to take a task off the queue and run it if there is one;
otherwise, it yields to allow the OS to reschedule the thread. The Quicksort imple-
mentation in listing 9.5 is a lot simpler than the corresponding version from listing
8.1, because all the thread-management logic has been moved to the thread pool.

template<typename T>
struct sorter
{
 thread_pool pool;

 std::list<T> do_sort(std::list<T>& chunk_data)
 {
 if(chunk_data.empty())
 {
 return chunk_data;
 }
 std::list<T> result;
 result.splice(result.begin(),chunk_data,chunk_data.begin());
 T const& partition_val=*result.begin();

Listing 9.4 An implementation of run_pending_task()

Listing 9.5 A thread-pool–based implementation of Quicksort

b

c

309Thread pools
 typename std::list<T>::iterator divide_point=
 std::partition(chunk_data.begin(),chunk_data.end(),
 [&](T const& val){return val<partition_val;});
 std::list<T> new_lower_chunk;
 new_lower_chunk.splice(new_lower_chunk.end(),
 chunk_data,chunk_data.begin(),
 divide_point);
 std::future<std::list<T> > new_lower=
 pool.submit(std::bind(&sorter::do_sort,this,
 std::move(new_lower_chunk)));
 std::list<T> new_higher(do_sort(chunk_data));
 result.splice(result.end(),new_higher);
 while(new_lower.wait_for(std::chrono::seconds(0)) ==
 std::future_status::timeout)
 {
 pool.run_pending_task();
 }
 result.splice(result.begin(),new_lower.get());
 return result;
 }
};
template<typename T>
std::list<T> parallel_quick_sort(std::list<T> input)
{
 if(input.empty())
 {
 return input;
 }
 sorter<T> s;
 return s.do_sort(input);
}

As in listing 8.1, you’ve delegated the real work to the do_sort() member function of
the sorter class template B, although in this case the class is only there to wrap the
thread_pool instance c.

 Your thread and task management are now reduced to submitting a task to the
pool d and running pending tasks while waiting e. This is much simpler than in list-
ing 8.1, where you had to explicitly manage the threads and the stack of chunks to
sort. When submitting the task to the pool, you use std::bind() to bind the this
pointer to do_sort() and to supply the chunk to sort. In this case, you call std::move()
on new_lower_chunk as you pass it in, to ensure that the data is moved rather than
copied.

 Although this has now addressed the crucial deadlock-causing problem with tasks
that wait for other tasks, this thread pool is still far from ideal. For starters, every call to
submit() and every call to run_pending_task()accesses the same queue. You saw in
chapter 8 how having a single set of data modified by multiple threads can have a det-
rimental effect on performance, so you need to address this problem.

d

e

310 CHAPTER 9 Advanced thread management
9.1.4 Avoiding contention on the work queue

Every time a thread calls submit() on a particular instance of the thread pool, it has
to push a new item onto the single shared work queue. Likewise, the worker threads
are continually popping items off the queue in order to run the tasks. This means that
as the number of processors increases, there’s increasing contention on the queue.
This can be a real performance drain; even if you use a lock-free queue so there’s no
explicit waiting, cache ping-pong can be a substantial time sink.

 One way to avoid cache ping-pong is to use a separate work queue per thread.
Each thread then posts new items to its own queue and takes work from the global
work queue only if there’s no work on its own individual queue. The following listing
shows an implementation that makes use of a thread_local variable to ensure that
each thread has its own work queue, as well as the global one.

class thread_pool
{
 threadsafe_queue<function_wrapper> pool_work_queue;
 typedef std::queue<function_wrapper> local_queue_type;
 static thread_local std::unique_ptr<local_queue_type>
 local_work_queue;
 void worker_thread()
 {
 local_work_queue.reset(new local_queue_type);

 while(!done)
 {
 run_pending_task();
 }
 }
public:
 template<typename FunctionType>
 std::future<typename std::result_of<FunctionType()>::type>
 submit(FunctionType f)
 {
 typedef typename std::result_of<FunctionType()>::type result_type;
 std::packaged_task<result_type()> task(f);
 std::future<result_type> res(task.get_future());
 if(local_work_queue)
 {
 local_work_queue->push(std::move(task));
 }
 else
 {
 pool_work_queue.push(std::move(task));
 }
 return res;
 }
 void run_pending_task()
 {
 function_wrapper task;

Listing 9.6 A thread pool with thread-local work queues

b

c

d

e

f

311Thread pools
 if(local_work_queue && !local_work_queue->empty())
 {
 task=std::move(local_work_queue->front());
 local_work_queue->pop();
 task();
 }
 else if(pool_work_queue.try_pop(task))
 {
 task();
 }
 else
 {
 std::this_thread::yield();
 }
 }
 // rest as before
};

You’ve used a std::unique_ptr<> to hold the thread-local work queue c because
you don’t want other threads that aren't part of your thread pool to have one; this is
initialized in the worker_thread() function before the processing loop d. The destruc-
tor of std::unique_ptr<> will ensure that the work queue is destroyed when the
thread exits.

 submit() then checks to see if the current thread has a work queue e. If it does,
it’s a pool thread, and you can put the task on the local queue; otherwise, you need to
put the task on the pool queue as before f.

 There’s a similar check in run_pending_task() g, except this time you also need
to check to see if there are any items on the local queue. If there are, you can take the
front one and process it; notice that the local queue can be a plain std::queue< B
because it’s only ever accessed by the one thread. If there are no tasks on the local
queue, you try the pool queue as before h.

 This works fine for reducing contention, but when the distribution of work is
uneven, it can easily result in one thread having a lot of work in its queue while the
others have no work do to. For example, with the Quicksort example, only the top-
most chunk would make it to the pool queue, because the remaining chunks would
end up on the local queue of the worker thread that processed that one. This defeats
the purpose of using a thread pool.

 Thankfully, there is a solution to this: allow the threads to steal work from each
other’s queues if there’s no work in their queue and no work in the global queue.

9.1.5 Work stealing

In order to allow a thread with no work to do to take work from another thread with a
full queue, the queue must be accessible to the thread doing the stealing from run_
pending_tasks(). This requires that each thread register its queue with the thread
pool or be given one by the thread pool. Also, you must ensure that the data in the work
queue is suitably synchronized and protected so that your invariants are protected.

g

h

312 CHAPTER 9 Advanced thread management
 It’s possible to write a lock-free queue that allows the owner thread to push and
pop at one end while other threads can steal entries from the other, but the imple-
mentation of this queue is beyond the scope of this book. In order to demonstrate the
idea, we’ll stick to using a mutex to protect the queue’s data. We hope work stealing is
a rare event, so there should be little contention on the mutex, and this simple queue
should therefore have minimal overhead. A simple lock-based implementation is
shown here.

class work_stealing_queue
{
private:
 typedef function_wrapper data_type;
 std::deque<data_type> the_queue;
 mutable std::mutex the_mutex;
public:
 work_stealing_queue()
 {}
 work_stealing_queue(const work_stealing_queue& other)=delete;
 work_stealing_queue& operator=(
 const work_stealing_queue& other)=delete;
 void push(data_type data)
 {
 std::lock_guard<std::mutex> lock(the_mutex);
 the_queue.push_front(std::move(data));
 }
 bool empty() const
 {
 std::lock_guard<std::mutex> lock(the_mutex);
 return the_queue.empty();
 }
 bool try_pop(data_type& res)
 {
 std::lock_guard<std::mutex> lock(the_mutex);
 if(the_queue.empty())
 {
 return false;
 }
 res=std::move(the_queue.front());
 the_queue.pop_front();
 return true;
 }
 bool try_steal(data_type& res)
 {
 std::lock_guard<std::mutex> lock(the_mutex);
 if(the_queue.empty())
 {
 return false;
 }
 res=std::move(the_queue.back());
 the_queue.pop_back();
 return true;

Listing 9.7 Lock-based queue for work stealing

b

c

d

e

313Thread pools
 }
};

This queue is a simple wrapper around a std::deque<function_wrapper> B that
protects all accesses with a mutex lock. Both push() c and try_pop() d work on the
front of the queue, while try_steal() e works on the back.

 This means that this “queue” is a last-in-first-out stack for its own thread; the task
most recently pushed on is the first one off again. This can help improve performance
from a cache perspective, because the data related to that task is more likely to still be
in the cache than the data related to a task pushed on the queue previously. Also, it
maps nicely to algorithms such as Quicksort. In the previous implementation, each
call to do_sort() pushes one item on the stack and then waits for it. By processing the
most recent item first, you ensure that the chunk needed for the current call to com-
plete is processed before the chunks needed for the other branches, reducing the
number of active tasks and the total stack usage. try_steal() takes items from the
opposite end of the queue to try_pop() in order to minimize contention; you could
potentially use the techniques discussed in chapters 6 and 7 to enable concurrent calls
to try_pop() and try_steal().

 OK, so you have your nice sparkly work queue that permits stealing; how do you
use it in your thread pool? Here’s one potential implementation.

class thread_pool
{
 typedef function_wrapper task_type;
 std::atomic_bool done;
 threadsafe_queue<task_type> pool_work_queue;
 std::vector<std::unique_ptr<work_stealing_queue> > queues;
 std::vector<std::thread> threads;
 join_threads joiner;
 static thread_local work_stealing_queue* local_work_queue;
 static thread_local unsigned my_index;
 void worker_thread(unsigned my_index_)
 {
 my_index=my_index_;
 local_work_queue=queues[my_index].get();
 while(!done)
 {
 run_pending_task();
 }
 }
 bool pop_task_from_local_queue(task_type& task)
 {
 return local_work_queue && local_work_queue->try_pop(task);
 }
 bool pop_task_from_pool_queue(task_type& task)
 {
 return pool_work_queue.try_pop(task);
 }

Listing 9.8 A thread pool that uses work stealing

b

c

d

314 CHAPTER 9 Advanced thread management
 bool pop_task_from_other_thread_queue(task_type& task)
 {
 for(unsigned i=0;i<queues.size();++i)
 {
 unsigned const index=(my_index+i+1)%queues.size();
 if(queues[index]->try_steal(task))
 {
 return true;
 }
 }
 return false;
 }
public:
 thread_pool():
 done(false),joiner(threads)
 {
 unsigned const thread_count=std::thread::hardware_concurrency();
 try
 {
 for(unsigned i=0;i<thread_count;++i)
 {
 queues.push_back(std::unique_ptr<work_stealing_queue>(
 new work_stealing_queue));
 }
 for(unsigned i=0;i<thread_count;++i)
 {
 threads.push_back(
 std::thread(&thread_pool::worker_thread,this,i));
 }
 }
 catch(...)
 {
 done=true;
 throw;
 }
 }
 ~thread_pool()
 {
 done=true;
 }
 template<typename FunctionType>
 std::future<typename std::result_of<FunctionType()>::type> submit(
 FunctionType f)
 {
 typedef typename std::result_of<FunctionType()>::type result_type;
 std::packaged_task<result_type()> task(f);
 std::future<result_type> res(task.get_future());
 if(local_work_queue)
 {
 local_work_queue->push(std::move(task));
 }
 else
 {
 pool_work_queue.push(std::move(task));
 }

e

f

g

315Interrupting threads
 return res;
 }
 void run_pending_task()
 {
 task_type task;
 if(pop_task_from_local_queue(task) ||
 pop_task_from_pool_queue(task) ||
 pop_task_from_other_thread_queue(task))
 {
 task();
 }
 else
 {
 std::this_thread::yield();
 }
 }
};

This code is similar to listing 9.6. The first difference is that each thread has a
work_stealing_queue rather than a plain std::queue<> c. When each thread is cre-
ated, rather than allocating its own work queue, the pool constructor allocates one g,
which is then stored in the list of work queues for this pool B. The index of the queue
in the list is then passed in to the thread function and used to retrieve the pointer to
the queue d. This means that the thread pool can access the queue when trying to
steal a task for a thread that has no work to do. run_pending_task() will now try to
take a task from its thread’s own queue h, take a task from the pool queue i, or take
a task from the queue of another thread j.

 pop_task_from_other_thread_queue() e iterates through the queues belonging
to all the threads in the pool, trying to steal a task from each in turn. In order to
avoid every thread trying to steal from the first thread in the list, each thread starts
at the next thread in the list by offsetting the index of the queue to check by its own
index f.

 Now you have a working thread pool that’s good for many potential uses. There
are still a myriad of ways to improve it for any particular usage, but that’s left as an
exercise for the reader. One aspect that hasn’t been explored is the idea of dynami-
cally resizing the thread pool to ensure that there’s optimal CPU usage even when
threads are blocked waiting for something such as I/O or a mutex lock.

 Next on the list of “advanced” thread-management techniques is interrupting
threads.

9.2 Interrupting threads
In many situations it’s desirable to signal to a long-running thread that it’s time to
stop. This might be because it’s a worker thread for a thread pool and the pool is
now being destroyed, or because the work being done by the thread has been explic-
itly canceled by the user, or a myriad of other reasons. Whatever the reason, the idea
is the same: you need to signal from one thread that another should stop before it

h

i
j

316 CHAPTER 9 Advanced thread management
reaches the natural end of its processing, and you need to do this in a way that
allows that thread to terminate nicely rather than abruptly pulling the rug out from
under it.

 You could potentially design a separate mechanism for every case where you need
to do this, but that would be overkill. Not only does a common mechanism make it
easier to write the code on subsequent occasions, but it can allow you to write code
that can be interrupted, without having to worry about where that code is being used.
The C++11 Standard doesn’t provide this mechanism (though there is an active pro-
posal for adding interrupt support to a future C++ standard1), but it’s relatively
straightforward to build one. Let’s look at how you can do that, starting from the
point of view of the interface for launching and interrupting a thread rather than that
of the thread being interrupted.

9.2.1 Launching and interrupting another thread

To start with, let’s look at the external interface. What do you need from an interrupt-
ible thread? At the basic level, all you need is the same interface as you have for
std::thread, with an additional interrupt() function:

class interruptible_thread
{
public:
 template<typename FunctionType>
 interruptible_thread(FunctionType f);
 void join();
 void detach();
 bool joinable() const;
 void interrupt();
};

Internally, you can use std::thread to manage the thread itself and use some custom
data structure to handle the interruption. Now, what about from the point of view of
the thread itself? At the most basic level you want to be able to say “I can be inter-
rupted here”—you want an interruption point. For this to be usable without having to
pass down additional data, it needs to be a simple function that can be called without
any parameters: interruption_point(). This implies that the interruption-specific
data structure needs to be accessible through a thread_local variable that’s set when
the thread is started, so that when a thread calls your interruption_point() func-
tion, it checks the data structure for the currently-executing thread. We’ll look at the
implementation of interruption_point() later.

 This thread_local flag is the primary reason you can’t use plain std::thread to
manage the thread; it needs to be allocated in a way that the interruptible_thread
instance can access, as well as the newly started thread. You can do this by wrapping

1 P0660: A Cooperatively Interruptible Joining Thread, Rev 3, Nicolai Josuttis, Herb Sutter, Anthony Williams
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0660r3.pdf.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0660r3.pdf

317Interrupting threads
the supplied function before you pass it to std::thread to launch the thread in the
constructor, as shown in the next listing.

class interrupt_flag
{
public:
 void set();
 bool is_set() const;
};
thread_local interrupt_flag this_thread_interrupt_flag;
class interruptible_thread
{
 std::thread internal_thread;
 interrupt_flag* flag;
public:
 template<typename FunctionType>
 interruptible_thread(FunctionType f)
 {
 std::promise<interrupt_flag*> p;
 internal_thread=std::thread([f,&p]{
 p.set_value(&this_thread_interrupt_flag);
 f();
 });
 flag=p.get_future().get();
 }
 void interrupt()
 {
 if(flag)
 {
 flag->set();
 }
 }
};

The supplied function f is wrapped in a lambda function d, which holds a copy of f
and a reference to the local promise, p c. The lambda sets the value of the promise
to the address of the this_thread_interrupt_flag (which is declared thread_local

B) for the new thread before invoking the copy of the supplied function e. The
calling thread then waits for the future associated with the promise to become ready
and stores the result in the flag member variable f. Note that even though the
lambda is running on the new thread and has a dangling reference to the local vari-
able, p, this is OK because the interruptible_thread constructor waits until p is no
longer referenced by the new thread before returning. Note that this implementa-
tion doesn’t take account of handling joining with the thread, or detaching it. You
need to ensure that the flag variable is cleared when the thread exits, or is detached,
to avoid a dangling pointer.

 The interrupt() function is then relatively straightforward: if you have a valid
pointer to an interrupt flag, you have a thread to interrupt, so you can set the flag g.

Listing 9.9 Basic implementation of interruptible_thread

b

c
d

e

f

g

318 CHAPTER 9 Advanced thread management
It’s then up to the interrupted thread what it does with the interruption. Let’s explore
that next.

9.2.2 Detecting that a thread has been interrupted

You can now set the interruption flag, but that doesn’t do you any good if the thread
doesn’t check whether it’s being interrupted. In the simplest case you can do this with
an interruption_point() function; you can call this function at a point where it’s
safe to be interrupted, and it throws a thread_interrupted exception if the flag is set:

void interruption_point()
{
 if(this_thread_interrupt_flag.is_set())
 {
 throw thread_interrupted();
 }
}

You can use this function by calling it at convenient points within your code:

void foo()
{
 while(!done)
 {
 interruption_point();
 process_next_item();
 }
}

Although this works, it’s not ideal. Some of the best places for interrupting a thread
are where it’s blocked waiting for something, which means that the thread isn’t run-
ning in order to call interruption_point()! What you need here is a means for wait-
ing for something in an interruptible fashion.

9.2.3 Interrupting a condition variable wait

OK, so you can detect interruptions at carefully chosen places in your code, with
explicit calls to interruption_point(), but that doesn’t help when you want to do a
blocking wait, such as waiting for a condition variable to be notified. You need a new
function—interruptible_wait()—which you can then overload for the various
things you might want to wait for, and you can work out how to interrupt the waiting.
I’ve already mentioned that one thing you might be waiting for is a condition variable,
so let’s start there: what do you need to do in order to be able to interrupt a wait on a
condition variable? The simplest thing that would work is to notify the condition vari-
able once you’ve set the interrupt flag, and put an interruption point immediately
after the wait. But for this to work, you’d have to notify all threads waiting on the con-
dition variable in order to ensure that your thread of interest wakes up. Waiters have
to handle spurious wake-ups anyway, so other threads would handle this the same as a
spurious wake-up—they wouldn’t be able to tell the difference. The interrupt_flag

319Interrupting threads
structure would need to be able to store a pointer to a condition variable so that it can
be notified in a call to set(). One possible implementation of interruptible_wait()
for condition variables might look like the following listing.

void interruptible_wait(std::condition_variable& cv,
 std::unique_lock<std::mutex>& lk)
{
 interruption_point();
 this_thread_interrupt_flag.set_condition_variable(cv);
 cv.wait(lk);
 this_thread_interrupt_flag.clear_condition_variable();
 interruption_point();
}

Assuming the presence of some functions for setting and clearing an association of a
condition variable with an interrupt flag, this code is nice and simple. It checks for
interruption, associates the condition variable with interrupt_flag for the current
thread B, waits on the condition variable c, clears the association with the condition
variable d, and checks for interruption again. If the thread is interrupted during the
wait on the condition variable, the interrupting thread will broadcast the condition
variable and wake you from the wait, so you can check for interruption. Unfortunately,
this code is broken: there are two problems with it. The first problem is relatively obvi-
ous if you have your exception safety hat on: std::condition_variable::wait() can
throw an exception, so you might exit the function without removing the association
of the interrupt flag with the condition variable. This is easily fixed with a structure
that removes the association in its destructor.

 The second, less obvious problem is that there’s a race condition. If the thread is
interrupted after the initial call to interruption_point(), but before the call to
wait(), then it doesn’t matter whether the condition variable has been associated with
the interrupt flag, because the thread isn’t waiting and so can’t be woken by a notify on the
condition variable. You need to ensure that the thread can’t be notified between the last
check for interruption and the call to wait(). Without delving into the internals of
std::condition_variable, you have only one way of doing that: use the mutex held
by lk to protect this too, which requires passing it in on the call to set_condition
_variable(). Unfortunately, this creates its own problems: you’d be passing a refer-
ence to a mutex whose lifetime you don’t know to another thread (the thread doing
the interrupting) for that thread to lock (in the call to interrupt()), without know-
ing whether that thread has locked the mutex already when it makes the call. This has
the potential for deadlock and the potential to access a mutex after it has already been
destroyed, so it’s a nonstarter. It would be rather too restrictive if you couldn’t reliably
interrupt a condition variable wait—you can do almost as well without a special
interruptible_wait()—so what other options do you have? One option is to put a

Listing 9.10 A broken version of interruptible_wait for std::condition
_variable

b
c

d

320 CHAPTER 9 Advanced thread management
timeout on the wait; use wait_for() rather than wait() with a small timeout value
(such as 1 ms). This puts an upper limit on how long the thread will have to wait
before it sees the interruption (subject to the tick granularity of the clock). If you do
this, the waiting thread will see more “spurious” wakes resulting from the timeout, but
it can’t easily be helped. This implementation is shown in the next listing, along with
the corresponding implementation of interrupt_flag.

class interrupt_flag
{
 std::atomic<bool> flag;
 std::condition_variable* thread_cond;
 std::mutex set_clear_mutex;
public:
 interrupt_flag():
 thread_cond(0)
 {}
 void set()
 {
 flag.store(true,std::memory_order_relaxed);
 std::lock_guard<std::mutex> lk(set_clear_mutex);
 if(thread_cond)
 {
 thread_cond->notify_all();
 }
 }
 bool is_set() const
 {
 return flag.load(std::memory_order_relaxed);
 }
 void set_condition_variable(std::condition_variable& cv)
 {
 std::lock_guard<std::mutex> lk(set_clear_mutex);
 thread_cond=&cv;
 }
 void clear_condition_variable()
 {
 std::lock_guard<std::mutex> lk(set_clear_mutex);
 thread_cond=0;
 }
 struct clear_cv_on_destruct
 {
 ~clear_cv_on_destruct()
 {
 this_thread_interrupt_flag.clear_condition_variable();
 }
 };
};
void interruptible_wait(std::condition_variable& cv,
 std::unique_lock<std::mutex>& lk)
{

Listing 9.11 Using a timeout in interruptible_wait for std::condition
_variable

321Interrupting threads
 interruption_point();
 this_thread_interrupt_flag.set_condition_variable(cv);
 interrupt_flag::clear_cv_on_destruct guard;
 interruption_point();
 cv.wait_for(lk,std::chrono::milliseconds(1));
 interruption_point();
}

If you have the predicate that’s being waited for, then the 1 ms timeout can be com-
pletely hidden inside the predicate loop:

template<typename Predicate>
void interruptible_wait(std::condition_variable& cv,
 std::unique_lock<std::mutex>& lk,
 Predicate pred)
{
 interruption_point();
 this_thread_interrupt_flag.set_condition_variable(cv);
 interrupt_flag::clear_cv_on_destruct guard;
 while(!this_thread_interrupt_flag.is_set() && !pred())
 {
 cv.wait_for(lk,std::chrono::milliseconds(1));
 }
 interruption_point();
}

This will result in the predicate being checked more often than it might otherwise be,
but it’s easily used in place of a plain call to wait(). The variants with timeouts are eas-
ily implemented: wait either for the time specified, or 1 ms, whichever is shortest. OK,
so std::condition_variable waits are now taken care of; what about std::condition
_variable_any? Is this the same, or can you do better?

9.2.4 Interrupting a wait on std::condition_variable_any

std::condition_variable_any differs from std::condition_variable in that it works
with any lock type rather than just std::unique_lock<std::mutex>. It turns out that
this makes things much easier, and you can do better with std::condition_variable
_any than you could with std::condition_variable. Because it works with any lock
type, you can build your own lock type that locks/unlocks both the internal set_clear
_mutex in your interrupt_flag and the lock supplied to the wait call, as shown here.

class interrupt_flag
{
 std::atomic<bool> flag;
 std::condition_variable* thread_cond;
 std::condition_variable_any* thread_cond_any;
 std::mutex set_clear_mutex;
public:
 interrupt_flag():

Listing 9.12 interruptible_wait for std::condition_variable_any

322 CHAPTER 9 Advanced thread management
 thread_cond(0),thread_cond_any(0)
 {}
 void set()
 {
 flag.store(true,std::memory_order_relaxed);
 std::lock_guard<std::mutex> lk(set_clear_mutex);
 if(thread_cond)
 {
 thread_cond->notify_all();
 }
 else if(thread_cond_any)
 {
 thread_cond_any->notify_all();
 }
 }
 template<typename Lockable>
 void wait(std::condition_variable_any& cv,Lockable& lk)
 {
 struct custom_lock
 {
 interrupt_flag* self;
 Lockable& lk;
 custom_lock(interrupt_flag* self_,
 std::condition_variable_any& cond,
 Lockable& lk_):
 self(self_),lk(lk_)
 {
 self->set_clear_mutex.lock();
 self->thread_cond_any=&cond;
 }
 void unlock()
 {
 lk.unlock();
 self->set_clear_mutex.unlock();
 }
 void lock()
 {
 std::lock(self->set_clear_mutex,lk);
 }
 ~custom_lock()
 {
 self->thread_cond_any=0;
 self->set_clear_mutex.unlock();
 }
 };
 custom_lock cl(this,cv,lk);
 interruption_point();
 cv.wait(cl);
 interruption_point();
 }
 // rest as before
};
template<typename Lockable>
void interruptible_wait(std::condition_variable_any& cv,
 Lockable& lk)

B

c

d

e

f

323Interrupting threads
{
 this_thread_interrupt_flag.wait(cv,lk);
}

Your custom lock type acquires the lock on the internal set_clear_mutex when it’s
constructed B, and then sets the thread_cond_any pointer to refer to the std:: con-
dition_variable_any passed in to the constructor c. The Lockable reference is
stored for later; this must already be locked. You can now check for an interruption
without worrying about races. If the interrupt flag is set at this point, it was set before
you acquired the lock on set_clear_mutex. When the condition variable calls your
unlock() function inside wait(), you unlock the Lockable object and the internal
set_clear_mutex d. This allows threads that are trying to interrupt you to acquire
the lock on set_clear_mutex and check the thread_cond_any pointer once you’re
inside the wait() call but not before. This is exactly what you were after (but couldn’t
manage) with std::condition_variable. Once wait() has finished waiting (either
because it was notified or because of a spurious wake), it will call your lock() func-
tion, which again acquires the lock on the internal set_clear_mutex and the lock on
the Lockable object e. You can now check again for interruptions that happened
during the wait() call before clearing the thread_cond_any pointer in your cus-
tom_lock destructor f, where you also unlock the set_clear_mutex.

9.2.5 Interrupting other blocking calls

That rounds up interrupting condition variable waits, but what about other blocking
waits: mutex locks, waiting for futures, and the like? In general you have to go for the
timeout option you used for std::condition_variable because there’s no way to
interrupt the wait short of fulfilling the condition being waited for, without access to
the internals of the mutex or future. But with those other things, you do know what
you’re waiting for, so you can loop within the interruptible_wait() function. As an
example, here’s an overload of interruptible_wait() for std::future<>:

template<typename T>
void interruptible_wait(std::future<T>& uf)
{
 while(!this_thread_interrupt_flag.is_set())
 {
 if(uf.wait_for(lk,std::chrono::milliseconds(1))==
 std::future_status::ready)
 break;
 }
 interruption_point();
}

This waits until either the interrupt flag is set or the future is ready but does a block-
ing wait on the future for 1 ms at a time. This means that on average it will be around
0.5 ms before an interrupt request is acknowledged, assuming a high-resolution clock.
The wait_for will typically wait at least a whole clock tick, so if your clock ticks every

324 CHAPTER 9 Advanced thread management
15 ms, you’ll end up waiting around 15 ms rather than 1 ms. This may or may not be
acceptable, depending on the circumstances. You can always reduce the timeout if
necessary (and if the clock supports it). The downside of reducing the timeout is that
the thread will wake more often to check the flag, and this will increase the task-
switching overhead.

 OK, we’ve looked at how you might detect interruption with the interruption
_point() and interruptible_wait() functions, but how do you handle that?

9.2.6 Handling interruptions

From the point of view of the thread being interrupted, an interruption is a thread
_interrupted exception, which can therefore be handled like any other exception. In
particular, you can catch it in a standard catch block:

try
{
 do_something();
}
catch(thread_interrupted&)
{
 handle_interruption();
}

This means that you could catch the interruption, handle it in some way, and then
carry on regardless. If you do this, and another thread calls interrupt() again, your
thread will be interrupted again the next time it calls an interruption point. You might
want to do this if your thread is performing a series of independent tasks; interrupting
one task will cause that task to be abandoned, and the thread can then move on to
performing the next task in the list.

 Because thread_interrupted is an exception, all the usual exception-safety precau-
tions must also be taken when calling code that can be interrupted, in order to ensure
that resources aren’t leaked, and your data structures are left in a coherent state. Often,
it will be desirable to let the interruption terminate the thread, so you can let the excep-
tion propagate up. But if you let exceptions propagate out of the thread function
passed to the std::thread constructor, std::terminate() will be called, and the
whole program will be terminated. In order to avoid having to remember to put a catch
(thread_interrupted) handler in every function you pass to interruptible_thread,
you can instead put that catch block inside the wrapper you use for initializing the
interrupt_flag. This makes it safe to allow the interruption exception to propagate
unhandled, because it will then terminate that individual thread. The initialization of
the thread in the interruptible_thread constructor now looks like this:

internal_thread=std::thread([f,&p]{
 p.set_value(&this_thread_interrupt_flag);
 try
 {
 f();

325Interrupting threads
 }
 catch(thread_interrupted const&)
 {}
 });

Let’s now look at a concrete example where interruption is useful.

9.2.7 Interrupting background tasks on application exit

Consider for a moment a desktop search application. As well as interacting with the
user, the application needs to monitor the state of the filesystem, identifying any
changes and updating its index. This processing is typically left to a background
thread in order to avoid affecting the responsiveness of the GUI. This background
thread needs to run for the entire lifetime of the application; it will be started as part
of the application initialization and left to run until the application is shut down. For
such an application this is typically only when the machine itself is being shut down,
because the application needs to run the whole time in order to maintain an up-to-
date index. In any case, when the application is being shut down, you need to close
down the background threads in an orderly manner; one way to do this is by inter-
rupting them.

 The following listing shows a sample implementation of the thread-management
parts of this system.

std::mutex config_mutex;
std::vector<interruptible_thread> background_threads;
void background_thread(int disk_id)
{
 while(true)
 {
 interruption_point();
 fs_change fsc=get_fs_changes(disk_id);
 if(fsc.has_changes())
 {
 update_index(fsc);
 }
 }
}
void start_background_processing()
{
 background_threads.push_back(
 interruptible_thread(background_thread,disk_1));
 background_threads.push_back(
 interruptible_thread(background_thread,disk_2));
}
int main()
{
 start_background_processing();
 process_gui_until_exit();
 std::unique_lock<std::mutex> lk(config_mutex);

Listing 9.13 Monitoring the filesystem in the background

B

c

d

e
f

326 CHAPTER 9 Advanced thread management
 for(unsigned i=0;i<background_threads.size();++i)
 {
 background_threads[i].interrupt();
 }
 for(unsigned i=0;i<background_threads.size();++i)
 {
 background_threads[i].join();
 }
}

At startup, the background threads are launched d. The main thread then proceeds
with handling the GUI e. When the user has requested that the application exit, the
background threads are interrupted f, and then the main thread waits for each back-
ground thread to complete before exiting g. The background threads sit in a loop,
checking for disk changes h and updating the index c. Every time around the loop
they check for interruption by calling interruption_point() B.

 Why do you interrupt all the threads before waiting for any? Why not interrupt
each and then wait for it before moving on to the next? The answer is concurrency.
Threads will likely not finish immediately when they’re interrupted, because they have
to proceed to the next interruption point and then run any destructor calls and
exception-handling code necessary before they exit. By joining with each thread
immediately, you therefore cause the interrupting thread to wait, even though it still
has useful work it could do—interrupt the other threads. Only when you have no
more work to do (all the threads have been interrupted) do you wait. This also allows
all the threads being interrupted to process their interruptions in parallel and poten-
tially finish sooner.

 This interruption mechanism could easily be extended to add further interrupt-
ible calls or to disable interruptions across a specific block of code, but this is left as an
exercise for the reader.

Summary
In this chapter, we’ve looked at various advanced thread-management techniques:
thread pools and interrupting threads. You’ve seen how the use of local work queues
and work stealing can reduce the synchronization overhead and potentially improve
the throughput of the thread pool and how running other tasks from the queue while
waiting for a subtask to complete can eliminate the potential for deadlock.

 We’ve also looked at various ways of allowing one thread to interrupt the process-
ing of another, such as the use of specific interruption points and functions that per-
form what would otherwise be a blocking wait in a way that can be interrupted.

g

h

Parallel algorithms
In the last chapter we looked at advanced thread management and thread pools,
and in chapter 8 we looked at designing concurrent code, using parallel versions of
some algorithms as examples. In this chapter, we’ll look at the parallel algorithms
provided by the C++17 standard, so let’s start, without further ado.

10.1 Parallelizing the standard library algorithms
The C++17 standard added the concept of parallel algorithms to the C++ Standard
Library. These are additional overloads of many of the functions that operate on
ranges, such as std::find, std::transform and std::reduce. The parallel ver-
sions have the same signature as the “normal” single-threaded versions, except for
the addition of a new first parameter, which specifies the execution policy to use. For
example:

std::vector<int> my_data;
std::sort(std::execution::par,my_data.begin(),my_data.end());

The execution policy of std::execution::par indicates to the standard library that
it is allowed to perform this call as a parallel algorithm, using multiple threads. Note

This chapter covers
 Using the C++17 parallel algorithms
327

328 CHAPTER 10 Parallel algorithms
that this is permission, not a requirement—the library may still execute the code on a sin-
gle thread if it wishes. It is also important to note that by specifying an execution pol-
icy, the requirements on the algorithm complexity have changed, and are usually
slacker than the requirements for the normal serial algorithm. This is because parallel
algorithms often do more total work in order to take advantage of the parallelism of
the system — if you can divide the work across 100 processors, then you can still get an
overall speed up to 50, even if the implementation does twice as much total work.

 Before we get onto the algorithms themselves, let’s take a look at the execution
policies.

10.2 Execution policies
The standard specifies three execution policies:

 std::execution::sequenced_policy
 std::execution::parallel_policy
 std::execution::parallel_unsequenced_policy

These are classes defined in the <execution> header. The header also defines three
corresponding policy objects to pass to the algorithms:

 std::execution::seq
 std::execution::par
 std::execution::par_unseq

You cannot rely on being able to construct objects from these policy classes yourself,
except by copying these three objects, because they might have special initialization
requirements. Implementations may also define additional execution policies that have
implementation-specific behavior. You cannot define your own execution policies.

 The consequences of these policies on the behavior of the algorithms are described
in section 10.2.1. Any given implementation is also allowed to provide additional exe-
cution policies, with whatever semantics they want. Let’s now take a look at the conse-
quences of using one of the standard execution policies, starting with the general
changes for all algorithm overloads that take an exception policy.

10.2.1 General effects of specifying an execution policy

If you pass an execution policy to one of the standard library algorithms, then the
behavior of that algorithm is now governed by the execution policy. This affects sev-
eral aspects of the behavior:

 The algorithm’s complexity
 The behavior when an exception is thrown
 Where, how, and when the steps of the algorithm are executed

EFFECTS ON ALGORITHM COMPLEXITY

If an execution policy is supplied to an algorithm, then that algorithm’s complexity
may be changed: in addition to the scheduling overhead of managing the parallel

329Execution policies
execution, many parallel algorithms will perform more of the core operations of the
algorithm (whether swaps, comparisons, or applications of a supplied function object), with
the intention that this provides an overall improvement in the performance in terms
of total elapsed time.

 The precise details of the complexity change will vary with each algorithm, but the
general policy is that if an algorithm specifies something will happen exactly some-
expression times, or at most some-expression times, then the overload with an execution
policy will slacken that requirement to O(some-expression). This means that the overload
with an execution policy may perform some multiple of the number of operations
performed by its counterpart without an execution policy, where that multiple will
depend on the internals of the library and the platform, rather than the data supplied
to the algorithm.

EXCEPTIONAL BEHAVIOR

If an exception is thrown during execution of an algorithm with an execution policy,
then the consequences are determined by the execution policy. All the standard-
supplied execution policies will call std::terminate if there are any uncaught excep-
tions. The only exception that may be thrown by a call to a standard library algorithm
with one of the standard execution policies is std::bad_alloc, which is thrown if the
library cannot obtain sufficient memory resources for its internal operations. For
example, the following call to std::for_each, without an execution policy, will propa-
gate the exception

std::for_each(v.begin(),v.end(),[](auto x){ throw my_exception(); });

whereas the corresponding call with an execution policy will terminate the program:

std::for_each(
 std::execution::seq,v.begin(),v.end(),
 [](auto x){ throw my_exception(); });

This is one of the key differences between using std::execution::seq and not pro-
viding an execution policy.

WHERE AND WHEN ALGORITHM STEPS ARE EXECUTED

This is the fundamental aspect of an execution policy, and is the only aspect that dif-
fers between the standard execution policies. The policy specifies which execution
agents are used to perform the steps of the algorithm, be they “normal” threads, vec-
tor streams, GPU threads, or anything else. The execution policy will also specify
whether there are any ordering constraints on how the algorithm steps are run:
whether or not they are run in any particular order, whether or not parts of separate
algorithm steps may be interleaved with each other, or run in parallel with each other,
and so forth.

 The details for each of the standard execution policies are given in sections 10.2.2,
10.2.3, and 10.2.4, starting with the most basic policy: std::execution::sequenced
_policy.

330 CHAPTER 10 Parallel algorithms
10.2.2 std::execution::sequenced_policy

The sequenced policy is not a policy for parallelism: using it forces the implementa-
tion to perform all operations on the thread that called the function, so there is no
parallelism. But it is still an execution policy, and therefore has the same conse-
quences on algorithmic complexity and the effect of exceptions as the other stan-
dard policies.

 Not only must all operations be performed on the same thread, but they must be
performed in some definite order, so they are not interleaved. The precise order is
unspecified, and may be different between different invocations of the function. In
particular, the order of execution of the operations is not guaranteed to be the same
as that of the corresponding overload without an execution policy. For example, the
following call to std::for_each will populate the vector with the numbers 1-1,000, in
an unspecified order. This is in contrast to the overload without an execution policy,
which will store the numbers in order:

std::vector<int> v(1000);
int count=0;
std::for_each(std::execution::seq,v.begin(),v.end(),
 [&](int& x){ x=++count; });

The numbers may be stored in order, but you cannot rely on it.
 This means that the sequenced policy imposes few requirements on the iterators,

values, and callable objects used with the algorithm: they may freely use synchroniza-
tion mechanisms, and may rely on all operations being invoked on the same thread,
though they cannot rely on the order of these operations.

10.2.3 std::execution::parallel_policy

The parallel policy provides basic parallel execution across a number of threads.
Operations may be performed either on the thread that invoked the algorithm, or on
threads created by the library. Operations performed on a given thread must be per-
formed in a definite order, and not interleaved, but the precise order is unspecified,
and may vary between invocations. A given operation will run on a fixed thread for its
entire duration.

 This imposes additional requirements on the iterators, values, and callable objects
used with the algorithm over the sequenced policy: they must not cause data races if
invoked in parallel, and must not rely on being run on the same thread as any other
operation, or indeed rely on not being run on the same thread as any other operation.

 You can use the parallel execution policy for the vast majority of cases where you
would have used a standard library algorithm without an execution policy. It’s only
where there is specific ordering between elements that is required, or unsynchronized
access to shared data, that is problematic. Incrementing all the values in a vector can
be done in parallel:

std::for_each(std::execution::par,v.begin(),v.end(),[](auto& x){++x;});

331The parallel algorithms from the C++ Standard Library
The previous example of populating a vector is not OK if done with the parallel exe-
cution policy; specifically, it is undefined behavior:

std::for_each(std::execution::par,v.begin(),v.end(),
 [&](int& x){ x=++count; });

Here, the variable count is modified from every invocation of the lambda, so if the
library were to execute the lambdas across multiple threads, this would be a data race,
and thus undefined behavior. The requirements for std::execution::parallel_
policy pre-empt this: it is undefined behavior to make the preceding call, even if the
library doesn’t use multiple threads for this call. Whether or not something exhibits
undefined behavior is a static property of the call, rather than dependent on imple-
mentation details of the library. Synchronization between the function invocations is
permitted, however, so you could make this defined behavior again either by making
count an std::atomic<int> rather than a plain int, or by using a mutex. In this case,
that would likely defeat the point of using the parallel execution policy, because that
would serialize all the calls, but in the general case it would allow for synchronized
access to a shared state.

10.2.4 std::execution::parallel_unsequenced_policy

The parallel unsequenced policy provides the library with the greatest scope for paral-
lelizing the algorithm in exchange for imposing the strictest requirements on the iter-
ators, values, and callable objects used with the algorithm.

 An algorithm invoked with the parallel unsequenced policy may perform the
algorithm steps on unspecified threads of execution, unordered and unsequenced
with respect to one another. This means that operations may now be interleaved with
each other on a single thread, such that a second operation is started on the same
thread before the first has finished, and may be migrated between threads, so a given
operation may start on one thread, run further on a second thread, and complete on
a third.

 If you use the parallel unsequenced policy, then the operations invoked on the
iterators, values, and callable objects supplied to the algorithm must not use any form
of synchronization or call any function that synchronizes with another, or any func-
tion such that some other code synchronizes with it.

 This means that the operations must only operate on the relevant element, or any
data that can be accessed based on that element, and must not modify any state shared
between threads, or between elements.

 We’ll flesh these out with some examples later. For now, let’s take a look at the par-
allel algorithms themselves.

10.3 The parallel algorithms from the C++ Standard Library
Most of the algorithms from the <algorithm> and <numeric> headers have overloads
that take an execution policy. This comprises: all_of, any_of, none_of, for_each,

332 CHAPTER 10 Parallel algorithms
for_each_n, find, find_if, find_end, find_first_of, adjacent_find, count, count_if,
mismatch, equal, search, search_n, copy, copy_n, copy_if, move, swap_ranges,
transform, replace, replace_if, replace_copy, replace_copy_if, fill, fill_n,
generate, generate_n, remove, remove_if, remove_copy, remove_copy_if, unique,
unique_copy, reverse, reverse_copy, rotate, rotate_copy, is_partitioned,
partition, stable_partition, partition_copy, sort, stable_sort, partial_sort,
partial_sort_copy, is_sorted, is_sorted_until, nth_element, merge, inplace
_merge, includes, set_union, set_intersection, set_difference, set_symmetric
_difference, is_heap, is_heap_until, min_element, max_element, minmax_element,
lexicographical_compare, reduce, transform_reduce, exclusive_scan, inclusive
_scan, transform_exclusive_scan, transform_inclusive_scan, and adjacent_

difference.
 That’s quite a list; pretty much every algorithm in the C++ Standard Library that

could be parallelized is in this list. Notable exceptions are things like std::accumulate,
which is strictly a serial accumulation, but its generalized counterpart in std::reduce
does appear in the list — with a suitable warning in the standard that if the reduction
operation is not both associative and commutative, then the result may be nondeter-
ministic due to the unspecified order of operations.

 For each of the algorithms in the list, every “normal” overload has a new variant
which takes an execution policy as the first argument—the corresponding arguments
for the “normal” overload then come after this execution policy. For example,
std::sort has two “normal” overloads without an execution policy:

template<class RandomAccessIterator>
void sort(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void sort(
 RandomAccessIterator first, RandomAccessIterator last, Compare comp);

It therefore also has two overloads with an execution policy:

template<class ExecutionPolicy, class RandomAccessIterator>
void sort(
 ExecutionPolicy&& exec,
 RandomAccessIterator first, RandomAccessIterator last);

template<class ExecutionPolicy, class RandomAccessIterator, class Compare>
void sort(
 ExecutionPolicy&& exec,
 RandomAccessIterator first, RandomAccessIterator last, Compare comp);

There is one important difference between the signatures with and without the execu-
tion policy argument, which only impacts some algorithms: if the “normal” algorithm
allows Input Iterators or Output Iterators, then the overloads with an execution policy
require Forward Iterators instead. This is because Input Iterators are fundamentally
single-pass: you can only access the current element, and you cannot store iterators to

333The parallel algorithms from the C++ Standard Library
previous elements. Similarly, Output Iterators only allow writing to the current ele-
ment: you cannot advance them to write a later element, and then backtrack to write a
previous one.

Thus, given the “normal” signature for std::copy

template<class InputIterator, class OutputIterator>
OutputIterator copy(
 InputIterator first, InputIterator last, OutputIterator result);

the overload with an execution policy is

template<class ExecutionPolicy,
 class ForwardIterator1, class ForwardIterator2>
ForwardIterator2 copy(
 ExecutionPolicy&& policy,
 ForwardIterator1 first, ForwardIterator1 last,
 ForwardIterator2 result);

Though the naming of the template parameters doesn’t carry any direct consequence
from the compiler’s perspective, it does from the C++ Standard’s perspective: the
names of the template parameters for Standard Library algorithms denote semantic
constraints on the types, and the algorithms will rely on the operations implied by

Iterator categories in the C++ Standard Library
The C++ Standard Library defines five categories of iterators: Input Iterators, Output
Iterators, Forward Iterators, Bidirectional Iterators, and Random Access Iterators.

Input Iterators are single-pass iterators for retrieving values. They are typically used
for things like input from a console or network, or generated sequences. Advancing
an Input Iterator invalidates any copies of that iterator.

Output Iterators are single-pass iterators for writing values. They are typically used for
output to files, or adding values to a container. Advancing an Output Iterator invali-
dates any copies of that iterator.

Forward Iterators are multipass iterators for one-way iteration through persistent
data. Though you can't make an iterator go back to a previous element, you can store
copies and use them to reference earlier elements. Forward Iterators return real ref-
erences to the elements, and so can be used for both reading and writing (if the tar-
get is non-const).

Bidirectional Iterators are multipass iterators like Forward Iterators, but they can also
be made to go backward to access previous elements.

Random Access Iterators are multipass iterators that can go forward and backward
like Bidirectional Iterators, but they can go forward and backward in steps larger than
a single element, and you can directly access elements at an offset, using the array
index operator.

334 CHAPTER 10 Parallel algorithms
those constraints existing, with the specified semantics. In the case of Input Iterators
vs. Forward Iterators, the former allows dereferencing the iterator to return a proxy
type, which is convertible to the value type of the iterator, whereas the latter requires
that dereferencing the iterator returns a real reference to the value and that all equal
iterators return a reference to the same value.

 This is important for parallelism: it means that the iterators can be freely copied
around, and used equivalently. Also, the requirement that incrementing a Forward
Iterator does not invalidate other copies is important, as it means that separate
threads can operate on their own copies of the iterators, incrementing them when
required, without concern about invalidating the iterators held by the other threads.
If the overload with an execution policy allowed use of Input Iterators, this would
force any threads to serialize access to the one and only iterator that was used for read-
ing from the source sequence, which obviously limits the potential for parallelism.

 Let’s have a look at some concrete examples.

10.3.1 Examples of using parallel algorithms

The simplest possible example surely has to be the parallel loop: do something for
each element of a container. This is the classic example of an embarrassingly parallel
scenario: each item is independent, so you have the maximum possibility of parallel-
ism. With a compiler that supports OpenMP, you might write

#pragma omp parallel for
for(unsigned i=0;i<v.size();++i){
 do_stuff(v[i]);
}

With the C++ Standard Library algorithms, you can instead write

std::for_each(std::execution::par,v.begin(),v.end(),do_stuff);

This will divide the elements of the range between the internal threads created by the
library, and invoke do_stuff(x) on each element x in the range. How those elements
are divided between the threads is an implementation detail.

CHOICE OF EXECUTION POLICY

std::execution::par is the policy that you’ll want to use most often, unless your
implementation provides a nonstandard policy better suited to your needs. If your
code is suitable for parallelization, then it should work with std::execution::par. In
some circumstances, you may be able to use std::execution::par_unseq instead.
This may do nothing at all (none of the standard execution policies make a guarantee
about the level of parallelism that will be attained), but it may give the library addi-
tional scope to improve the performance of the code by reordering and interleaving
the tasks, in exchange for the tighter requirements on your code. Most notable of
these tighter requirements is that there is no synchronization used in accessing the
elements, or performing the operations on the elements. This means that you cannot

335The parallel algorithms from the C++ Standard Library
use mutexes or atomic variables, or any of the other mechanisms described in previ-
ous chapters, to ensure that accesses from multiple threads are safe; instead, you must
rely on the algorithm itself not accessing the same element from multiple threads,
and use external synchronization outside the call to the parallel algorithm to prevent
other threads accessing the data.

 The example from listing 10.1 shows some code that can be used with std::
execution::par, but not std::execution::par_unseq. The use of the internal mutex
for synchronization means that attempting to use std::execution::par_unseq would
be undefined behavior.

class X{
 mutable std::mutex m;
 int data;
public:
 X():data(0){}
 int get_value() const{
 std::lock_guard guard(m);
 return data;
 }
 void increment(){
 std::lock_guard guard(m);
 ++data;
 }
};
void increment_all(std::vector<X>& v){
 std::for_each(std::execution::par,v.begin(),v.end(),
 [](X& x){
 x.increment();
 });
}

The next listing shows an alternative that can be used with std::execution::par_un-
seq. In this case, the internal per-element mutex has been replaced with a whole-con-
tainer mutex.

class Y{
 int data;
public:
 Y():data(0){}
 int get_value() const{
 return data;
 }
 void increment(){
 ++data;
 }
};

Listing 10.1 Parallel algorithms on a class with internal synchronization

Listing 10.2 Parallel algorithms on a class without internal synchronization

336 CHAPTER 10 Parallel algorithms
class ProtectedY{
 std::mutex m;
 std::vector<Y> v;
public:
 void lock(){
 m.lock();
 }
 void unlock(){
 m.unlock();
 }
 std::vector<Y>& get_vec(){
 return v;
 }
};
void increment_all(ProtectedY& data){
 std::lock_guard guard(data);
 auto& v=data.get_vec();
 std::for_each(std::execution::par_unseq,v.begin(),v.end(),
 [](Y& y){
 y.increment();
 });
}

The element accesses in listing 10.2 now have no synchronization, and it is safe to use
std::execution::par_unseq. The downside is that concurrent accesses from other
threads outside the parallel algorithm invocation must now wait for the entire opera-
tion to complete, rather than the per-element granularity of listing 10.1.

 Let’s now take a look at a more realistic example of how the parallel algorithms
might be used: counting visits to a website.

10.3.2 Counting visits

Suppose you run a busy website, such that the logs contain millions of entries, and you
want to process those logs to see aggregate data: how many visits per page, where do
those visits come from, which browsers were used to access the website, and so forth.
Analyzing these logs has two parts: processing each line to extract the relevant infor-
mation, and aggregating the results together. This is an ideal scenario for using paral-
lel algorithms, because processing each individual line is entirely independent of
everything else, and aggregating the results can be done piecemeal, provided the final
totals are correct.

 In particular, this is the sort of task that transform_reduce is designed for. The
following listing shows how this could be used for this task.

#include <vector>
#include <string>
#include <unordered_map>
#include <numeric>

Listing 10.3 Using transform_reduce to count visits to pages of a website

337The parallel algorithms from the C++ Standard Library
struct log_info {
 std::string page;
 time_t visit_time;
 std::string browser;
 // any other fields
};

extern log_info parse_log_line(std::string const &line);

using visit_map_type= std::unordered_map<std::string, unsigned long long>;

visit_map_type
count_visits_per_page(std::vector<std::string> const &log_lines) {

 struct combine_visits {
 visit_map_type
 operator()(visit_map_type lhs, visit_map_type rhs) const {
 if(lhs.size() < rhs.size())
 std::swap(lhs, rhs);
 for(auto const &entry : rhs) {
 lhs[entry.first]+= entry.second;
 }
 return lhs;
 }

 visit_map_type operator()(log_info log,visit_map_type map) const{
 ++map[log.page];
 return map;
 }
 visit_map_type operator()(visit_map_type map,log_info log) const{
 ++map[log.page];
 return map;
 }
 visit_map_type operator()(log_info log1,log_info log2) const{
 visit_map_type map;
 ++map[log1.page];
 ++map[log2.page];
 return map;
 }
 };

 return std::transform_reduce(
 std::execution::par, log_lines.begin(), log_lines.end(),
 visit_map_type(), combine_visits(), parse_log_line);
}

Assuming you’ve got some function parse_log_line to extract the relevant informa-
tion from a log entry B, your count_visits_per_page function is a simple wrapper
around a call to std::transform_reduce c. The complexity comes from the reduction
operation: you need to be able to combine two log_info structures to produce a map,
a log_info structure and a map (either way around), and two maps. This therefore
means that your combine_visits function object needs four overloads of the function

b

d

e

f

g

c

338 CHAPTER 10 Parallel algorithms
call operator, d, e, f, and g, which precludes doing it with a simple lambda, even
though the implementation of these four overloads is simple.

 The implementation of std::transform_reduce will therefore use the available
hardware to perform this calculation in parallel (because you passed std::execution
::par). Writing this algorithm manually is nontrivial, as we saw in the previous chap-
ter, so this allows you to delegate the hard work of implementing the parallelism to
the Standard Library implementers, so you can focus on the required outcome.

Summary
In this chapter we looked at the parallel algorithms available in the C++ Standard
Library and how to use them. We looked at the various execution policies, the impact
your choice of execution policy has on the behavior of the algorithm, and the restric-
tions it imposes on your code. We then looked at an example of how this algorithm
might be used in real code.

Testing and debugging
multithreaded applications
Up to now, I’ve focused on what’s involved in writing concurrent code—the tools that
are available, how to use them, and the overall design and structure of the code. But
there’s a crucial part of software development that I haven’t addressed yet: testing
and debugging. If you’re reading this chapter hoping for an easy way to test concur-
rent code, you’re going to be sorely disappointed. Testing and debugging concurrent
code is hard. What I am going to give you are some techniques that will make things
easier, alongside some issues that are important to think about.

 Testing and debugging are like two sides of a coin—you subject your code to
tests in order to find any bugs that might be there, and you debug it to remove
those bugs. With any luck, you only have to remove the bugs found by your own
tests rather than bugs found by the end users of your application. Before we look at
either testing or debugging, it’s important to understand the problems that might
arise, so let’s look at those.

This chapter covers
 Concurrency-related bugs

 Locating bugs through testing and code review

 Designing multithreaded tests

 Testing the performance of multithreaded code
339

340 CHAPTER 11 Testing and debugging multithreaded applications
11.1 Types of concurrency-related bugs
You can get any sort of bug in concurrent code; it’s not special in that regard. But
some types of bugs are directly related to the use of concurrency and therefore of par-
ticular relevance to this book. Typically, these concurrency-related bugs fall into two
categories:

 Unwanted blocking
 Race conditions

These are broad categories, so let’s divide them up a bit. First, let’s look at unwanted
blocking.

11.1.1 Unwanted blocking

What do I mean by unwanted blocking? A thread is blocked when it’s unable to proceed
because it’s waiting for something. This is typically something like a mutex, a condi-
tion variable, or a future, but it could be waiting for I/O. This is a natural part of
multithreaded code, but it’s not always desirable—hence the problem of unwanted
blocking. This leads us to the next question: why is this blocking unwanted? Typi-
cally, this is because some other thread is also waiting for the blocked thread to per-
form some action, and so that thread in turn is blocked. There are several variations
on this theme:

 Deadlock—As you saw in chapter 3, in the case of deadlock, one thread is waiting
for another, which is in turn waiting for the first. If your threads deadlock, the
tasks they’re supposed to be doing won’t get done. In the most visible cases, one
of the threads involved is the thread responsible for the user interface, in which
case the interface will cease to respond. In other cases, the interface will remain
responsive, but some required tasks won’t complete, such as a search not
returning or a document not printing.

 Livelock—Livelock is similar to deadlock in that one thread is waiting for
another, which is in turn waiting for the first. The key difference here is that the
wait is not a blocking wait but an active checking loop, such as a spin lock. In
serious cases, the symptoms are the same as deadlock (the app doesn’t make
any progress), except that the CPU usage is high because threads are still run-
ning but blocking each other. In not-so-serious cases, the livelock will eventually
resolve because of the random scheduling, but there will be a long delay in the
task that got livelocked, with a high CPU usage during that delay.

 Blocking on I/O or other external input—If your thread is blocked waiting for exter-
nal input, it can’t proceed, even if the waited-for input is never going to come.
It’s therefore undesirable to block on external input from a thread that also
performs tasks that other threads may be waiting for.

That briefly covers unwanted blocking. What about race conditions?

341Types of concurrency-related bugs
11.1.2 Race conditions

Race conditions are the most common cause of problems in multithreaded code—
many deadlocks and livelocks only manifest because of a race condition. Not all race
conditions are problematic—a race condition occurs any time the behavior depends
on the relative scheduling of operations in separate threads. A large number of race
conditions are entirely benign; for example, which worker thread processes the next
task in the task queue is largely irrelevant. But many concurrency bugs are due to race
conditions. In particular, race conditions often cause the following types of problems:

 Data races—A data race is the specific type of race condition that results in
undefined behavior because of unsynchronized concurrent access to a shared
memory location. I introduced data races in chapter 5 when we looked at the
C++ memory model. Data races usually occur through incorrect usage of atomic
operations to synchronize threads or through access to shared data without
locking the appropriate mutex.

 Broken invariants—These can manifest as dangling pointers (because another
thread deleted the data being accessed), random memory corruption (due to a
thread reading inconsistent values resulting from partial updates), and double-
free (such as when two threads pop the same value from a queue, and so both
delete some associated data), among others. The invariants being broken can
be temporal- as well as value-based. If operations on separate threads are required
to execute in a particular order, incorrect synchronization can lead to a race
condition in which the required order is sometimes violated.

 Lifetime issues—Although you could bundle these problems in with broken
invariants, this is a separate category. The basic problem with bugs in this cate-
gory is that the thread outlives the data that it accesses, so it is accessing data
that has been deleted or otherwise destroyed, and potentially the storage is
even reused for another object. You typically get lifetime issues where a thread
references local variables that go out of scope before the thread function has
completed, but they aren’t limited to that scenario. Whenever the lifetime of
the thread and the data it operates on aren’t tied together in some way, there’s
the potential for the data to be destroyed before the thread has finished and for
the thread function to have the rug pulled out from under its feet. If you manu-
ally call join() in order to wait for the thread to complete, you need to ensure
that the call to join() can’t be skipped if an exception is thrown. This is basic
exception safety applied to threads.

It’s the problematic race conditions that are the killers. With deadlock and livelock,
the application appears to hang and become completely unresponsive or takes too
long to complete a task. Often, you can attach a debugger to the running process to
identify which threads are involved in the deadlock or livelock and which synchroniza-
tion objects they’re fighting over. With data races, broken invariants, and lifetime
issues, the visible symptoms of the problem (such as random crashes or incorrect

342 CHAPTER 11 Testing and debugging multithreaded applications
output) can manifest anywhere in the code—the code may overwrite memory used by
another part of the system that isn’t touched until much later. The fault will then man-
ifest in code completely unrelated to the location of the buggy code, possibly much
later in the execution of the program. This is the true curse of shared memory sys-
tems—however much you try to limit which data is accessible by which thread, and try
to ensure that correct synchronization is used, any thread can overwrite the data
being used by any other thread in the application.

 Now that we’ve briefly identified the sorts of problems we’re looking for, let’s look
at what you can do to locate any instances in your code so you can fix them.

11.2 Techniques for locating concurrency-related bugs
In the previous section we looked at the types of concurrency-related bugs you might
see and how they might manifest in your code. With that information in mind, you
can then look at your code to see where bugs might lie and how you can attempt to
determine whether there are any bugs in a particular section.

 Perhaps the most obvious and straightforward thing to do is look at the code.
Although this might seem obvious, it’s difficult to do in a thorough way. When you
read code you’ve written, it’s all too easy to read what you intended to write rather
than what’s there. Likewise, when reviewing code that others have written, it’s tempt-
ing to give it a quick read-through, check it off against your local coding standards,
and highlight any glaringly obvious problems. What’s needed is to spend the time
going through the code with a fine-tooth comb, thinking about the concurrency
issues—and the nonconcurrency issues as well. (You might as well, while you’re doing
it. After all, a bug is a bug.) We’ll cover specific things to think about when reviewing
code shortly.

 Even after thoroughly reviewing your code, you still might have missed some bugs,
and in any case, you need to confirm that it does work, for peace of mind if nothing
else. Consequently, we’ll continue on from reviewing the code to a few techniques to
employ when testing multithreaded code.

11.2.1 Reviewing code to locate potential bugs

As I’ve already mentioned, when reviewing multithreaded code to check for concurrency-
related bugs, it’s important to review it thoroughly. If possible, get someone else to
review it. Because they haven’t written the code, they’ll have to think through how it
works, and this will help to uncover any bugs that may be there. It’s important that the
reviewer have the time to do the review properly—not a casual two-minute quick
glance, but a proper, considered review. Most concurrency bugs require more than a
quick glance to spot—they usually rely on subtle timing issues to manifest.

 If you get one of your colleagues to review the code, they’ll be coming at it fresh.
They’ll therefore see things from a different point of view and may spot things that
you can’t. If you don’t have colleagues you can ask, ask a friend, or even post the
code on the internet (taking care not to upset your company lawyers). If you can’t

343Techniques for locating concurrency-related bugs
get anybody to review your code for you, or they don’t find anything, don’t worry—
there’s still more you can do. For starters, it might be worth leaving the code alone
for a while—work on another part of the application, read a book, or go for a walk.
If you take a break, your subconscious can work on the problem in the background
while you’re consciously focused on something else. Also, the code will be less famil-
iar when you come back to it—you might manage to look at it from a different per-
spective yourself.

 An alternative to getting someone else to review your code is to do it yourself. One
useful technique is to try to explain how it works in detail to someone else. They don’t
even have to be physically there—many teams have a bear or rubber chicken for this
purpose, and I personally find that writing detailed notes can be hugely beneficial. As
you explain, think about each line, what could happen, which data it accesses, and so
forth. Ask yourself questions about the code, and explain the answers. I find this to be
an incredibly powerful technique—by asking myself these questions and thinking
carefully about the answers, the problem often reveals itself. These questions can be
helpful for any code review, not just when reviewing your own code.

QUESTIONS TO THINK ABOUT WHEN REVIEWING MULTITHREADED CODE

As I’ve already mentioned, it can be useful for a reviewer (whether the code’s author
or someone else) to think about specific questions relating to the code being
reviewed. These questions can focus the reviewer’s mind on the relevant details of the
code and can help identify potential problems. The questions I like to ask include the
following, though this is most definitely not an exhaustive list. You might find other
questions that help you to focus better. Here are my questions:

 Which data needs to be protected from concurrent access?
 How do you ensure that the data is protected?
 Where in the code could other threads be at this time?
 Which mutexes does this thread hold?
 Which mutexes might other threads hold?
 Are there any ordering requirements between the operations done in this

thread and those done in another? How are those requirements enforced?
 Is the data loaded by this thread still valid? Could it have been modified by

other threads?
 If you assume that another thread could be modifying the data, what would that

mean and how could you ensure that this never happens?

This last question is my favorite, because it makes me think about the relationships
between the threads. By assuming the existence of a bug related to a particular line of
code, you can then act as a detective and track down the cause. In order to convince
yourself that there’s no bug, you have to consider every corner case and possible
ordering. This is particularly useful where the data is protected by more than one
mutex over its lifetime, such as with the thread-safe queue from chapter 6 where you
had separate mutexes for the head and tail of the queue: in order to be sure that an

344 CHAPTER 11 Testing and debugging multithreaded applications
access is safe while holding one mutex, you have to be certain that a thread holding
the other mutex can’t also access the same element. It also makes it obvious that public
data, or data for which other code can readily obtain a pointer or reference, has to
come under particular scrutiny.

 The penultimate question in the list is also important, because it addresses a mis-
take that is easy to make: if you release and then reacquire a mutex, you must assume
that other threads may have modified the shared data. Although this is obvious, if the
mutex locks aren’t immediately visible—perhaps because they’re internal to an
object—you may unwittingly be doing exactly that. In chapter 6 you saw how this can
lead to race conditions and bugs where the functions provided on a thread-safe data
structure are too fine-grained. Whereas for a non-thread-safe stack it makes sense to
have separate top() and pop() operations, for a stack that may be accessed by multi-
ple threads concurrently, this is no longer the case because the lock on the internal
mutex is released between the two calls, and so another thread can modify the stack.
As you saw in chapter 6, the solution is to combine the two operations so they are both
performed under the protection of the same mutex lock, eliminating the potential
race condition.

 OK, so you’ve reviewed your code (or got someone else to review it). You’re sure
there are no bugs. The proof of the pudding is, as they say, in the eating—how can
you test your code to confirm or disprove your belief in its lack of bugs?

11.2.2 Locating concurrency-related bugs by testing

When developing single-threaded applications, testing your applications is relatively
straightforward, if time-consuming. You could, in principle, identify all the possible
sets of input data (or at least all the interesting cases) and run them through the
application. If the application produced the correct behavior and output, you’d know
it works for that given set of input. Testing for error states such as the handling of disk-
full errors is more complicated than that, but the idea is the same: set up the initial
conditions and allow the application to run.

 Testing multithreaded code is an order of magnitude harder, because the precise
scheduling of the threads is indeterminate and may vary from run to run. Conse-
quently, even if you run the application with the same input data, it might work cor-
rectly some of the time, and fail at other times if there’s a race condition lurking in
the code. Having a potential race condition doesn’t mean the code will fail always, just
that it might fail sometimes.

 Given the inherent difficulty of reproducing concurrency-related bugs, it pays to
design your tests carefully. You want each test to run the smallest amount of code that
could potentially demonstrate a problem, so that you can best isolate the code that’s
faulty if the test fails—it’s better to test a concurrent queue directly to verify that con-
current pushes and pops work rather than testing it through a whole chunk of code
that uses the queue. It can help if you think about how code should be tested when
designing it—see the section on designing for testability later in this chapter.

345Techniques for locating concurrency-related bugs
 It’s also worth eliminating the concurrency from the test in order to verify that the
problem is concurrency-related. If you have a problem when everything is running in
a single thread, it’s a common, or garden-variety, bug rather than a concurrency-
related bug. This is particularly important when trying to track down a bug that occurs
“in the wild” as opposed to being detected in your test harness. Just because a bug
occurs in the multithreaded portion of your application doesn’t mean it’s automati-
cally concurrency-related. If you’re using thread pools to manage the level of concur-
rency, there’s usually a configuration parameter you can set to specify the number of
worker threads. If you’re managing threads manually, you’ll have to modify the code
to use a single thread for the test. Either way, if you can reduce your application to a
single thread, you can eliminate concurrency as a cause. On the flip side, if the prob-
lem goes away on a single-core system (even with multiple threads running) but is pres-
ent on multicore systems or multiprocessor systems, you have a race condition and
possibly a synchronization or memory-ordering issue.

 There’s more to testing concurrent code than the structure of the code being
tested; the structure of the test is just as important, as is the test environment. If you
continue on with the example of testing a concurrent queue, you have to think about
various scenarios:

 One thread calling push() or pop() on its own to verify that the queue works at
a basic level

 One thread calling push() on an empty queue while another thread calls pop()
 Multiple threads calling push() on an empty queue
 Multiple threads calling push() on a full queue
 Multiple threads calling pop() on an empty queue
 Multiple threads calling pop() on a full queue
 Multiple threads calling pop() on a partially full queue with insufficient items

for all threads
 Multiple threads calling push() while one thread calls pop() on an empty queue
 Multiple threads calling push() while one thread calls pop() on a full queue
 Multiple threads calling push() while multiple threads call pop() on an empty

queue
 Multiple threads calling push() while multiple threads call pop() on a full queue

Having thought about all these scenarios and more, you then need to consider addi-
tional factors about the test environment:

 What you mean by “multiple threads” in each case (3, 4, 1,024?)
 Whether there are enough processing cores in the system for each thread to

run on its own core
 Which processor architectures the tests should be run on
 How you ensure suitable scheduling for the “while” parts of your tests

346 CHAPTER 11 Testing and debugging multithreaded applications
There are additional factors to think about specific to your particular situation. Of
these four environmental considerations, the first and last affect the structure of the
test itself (and are covered in section 11.2.5), whereas the other two are related to the
physical test system being used. The number of threads to use relates to the particular
code being tested, but there are various ways of structuring tests to obtain suitable
scheduling. Before we look at these techniques, let’s look at how you can design your
application code to be easier to test.

11.2.3 Designing for testability

Testing multithreaded code is difficult, so you want to do what you can to make it eas-
ier. One of the most important things you can do is design the code for testability. A lot
has been written about designing single-threaded code for testability, and much of the
advice still applies. In general, code is easier to test if the following factors apply:

 The responsibilities of each function and class are clear
 The functions are short and to the point
 Your tests can take complete control of the environment surrounding the code

being tested
 The code that performs the particular operation being tested is close together

rather than spread throughout the system
 You thought about how to test the code before you wrote it

All of these are still true for multithreaded code. In fact, I’d argue that it’s even more
important to pay attention to the testability of multithreaded code than for single-
threaded code, because it’s inherently that much harder to test. That last point is
important: even if you don’t go as far as writing your tests before the code, it’s well
worth thinking about how you can test the code before you write it—what inputs to
use, which conditions are likely to be problematic, how to stimulate the code in poten-
tially problematic ways, and so on.

 One of the best ways to design concurrent code for testing is to eliminate the con-
currency. If you can break down the code into those parts that are responsible for the
communication paths between threads and those parts that operate on the communi-
cated data within a single thread, then you’ve greatly reduced the problem. Those
parts of the application that operate on data that’s being accessed by only that one
thread can then be tested using the normal single-threaded techniques. The hard-to-
test concurrent code that deals with communicating between threads and ensuring
that only one thread at a time is accessing a particular block of data is now much
smaller and the testing more tractable.

 For example, if your application is designed as a multithreaded state machine, you
could split it into several parts. The state logic for each thread, which ensures that the
transitions and operations are correct for each possible set of input events, can be
tested independently with single-threaded techniques, with the test harness providing
the input events that would be coming from other threads. Then, the core state

347Techniques for locating concurrency-related bugs
machine and message routing code that ensures that events are correctly delivered to
the right thread in the right order can be tested independently, but with multiple con-
current threads and simple state logic designed specifically for the tests.

 Alternatively, if you can divide your code into multiple blocks of read shared
data/transform data/update shared data, you can test the transform data portions using
all the usual single-threaded techniques, because this is now single-threaded code.
The hard problem of testing a multithreaded transformation will be reduced to test-
ing the reading and updating of the shared data, which is much simpler.

 One thing to watch out for is that library calls can use internal variables to store state,
which then becomes shared if multiple threads use the same set of library calls. This can
be a problem because it’s not immediately apparent that the code accesses shared data.
But with time you learn which library calls these are, and they stick out like sore thumbs.
You can then either add appropriate protection and synchronization or use an alternate
function that’s safe for concurrent access from multiple threads.

 There’s more to designing multithreaded code for testability than structuring your
code to minimize the amount of code that needs to deal with concurrency-related
issues and paying attention to the use of non-thread-safe library calls. It’s also helpful
to bear in mind the same set of questions you ask yourself when reviewing the code,
from section 11.2.1. Although these questions aren’t directly about testing and test-
ability, if you think about the issues with your “testing hat” on and consider how to test
the code, it will affect which design choices you make and will make testing easier.

 Now that we’ve looked at designing code to make testing easier, and potentially
modified the code to separate the “concurrent” parts (such as the thread-safe contain-
ers or state machine event logic) from the “single-threaded” parts (which may still
interact with other threads through the concurrent chunks), let’s look at the tech-
niques for testing concurrency-aware code.

11.2.4 Multithreaded testing techniques

So, you’ve thought through the scenario you want to test and written a small amount
of code that exercises the functions being tested. How do you ensure that any poten-
tially problematic scheduling sequences are exercised in order to flush out the bugs?

 Well, there are a few ways of approaching this, starting with brute-force testing, or
stress testing.

BRUTE-FORCE TESTING

The idea behind brute-force testing is to stress the code to see if it breaks. This typi-
cally means running the code many times, possibly with many threads running at
once. If there’s a bug that manifests only when the threads are scheduled in a particu-
lar fashion, then the more times the code is run, the more likely the bug is to appear.
If you run the test once and it passes, you might feel a bit of confidence that the code
works. If you run it ten times in a row and it passes every time, you’ll likely feel more
confident. If you run the test a billion times and it passes every time, you’ll feel more
confident still.

348 CHAPTER 11 Testing and debugging multithreaded applications
 The confidence you have in the results does depend on the amount of code being
tested by each test. If your tests are quite fine-grained, like the tests outlined previ-
ously for a thread-safe queue, this brute-force testing can give you a high degree of
confidence in your code. On the other hand, if the code being tested is considerably
larger, the number of possible scheduling permutations is so vast that even a billion
test runs might yield a low level of confidence.

 The downside to brute-force testing is that it might give you false confidence. If the
way you’ve written the test means that the problematic circumstances can’t occur, you
can run the test as many times as you like and it won’t fail, even if it would fail every
time in slightly different circumstances. The worst example is where the problematic
circumstances can’t occur on your test system because of the way the particular system
you’re testing on happens to run. Unless your code is to run only on systems identical
to the one being tested, the particular hardware and operating system combination
may not allow the circumstances that would cause a problem to arise.

 The classic example here is testing a multithreaded application on a single-processor
system. Because every thread has to run on the same processor, everything is auto-
matically serialized, and many race conditions and cache ping-pong problems that
you may get with a true multiprocessor system evaporate. This isn’t the only variable,
though; different processor architectures provide different synchronization and
ordering facilities. For example, on x86 and x86-64 architectures, atomic load opera-
tions are always the same, whether tagged memory_order_relaxed or memory_order
_seq_cst (see section 5.3.3). This means that code written using relaxed memory
ordering may work on systems with an x86 architecture, where it would fail on a sys-
tem with a finer-grained set of memory-ordering instructions, such as SPARC.

 If you need your application to be portable across a range of target systems, it’s
important to test it on representative instances of those systems. This is why I listed the
processor architectures being used for testing as a consideration in section 11.2.2.

 Avoiding the potential for false confidence is crucial to successful brute-force test-
ing. This requires careful thought over test design, not just with respect to the choice
of unit for the code being tested but also with respect to the design of the test harness
and the choice of testing environment. You need to ensure that you test as many of
the code paths and the possible thread interactions as feasible. Not only that, but you
need to know which options are covered and which are left untested.

 Although brute-force testing does give you some degree of confidence in your
code, it’s not guaranteed to find all the problems. There’s one technique that is guar-
anteed to find the problems, if you have the time to apply it to your code and the
appropriate software. I call it combination simulation testing.

COMBINATION SIMULATION TESTING

That’s a bit of a mouthful, so I’ll explain what I mean. The idea is that you run your
code with a special piece of software that simulates the real runtime environment of
the code. You may be aware of software that allows you to run multiple virtual machines
on a single physical computer, where the characteristics of the virtual machine and its

349Techniques for locating concurrency-related bugs
hardware are emulated by the supervisor software. The idea here is similar, except
rather than emulating the system, the simulation software records the sequences of
data accesses, locks, and atomic operations from each thread. It then uses the rules of
the C++ memory model to repeat the run with every permitted combination of opera-
tions and identify race conditions and deadlocks.

 Although this exhaustive combination testing is guaranteed to find all the prob-
lems the system is designed to detect, for anything but the most trivial of programs it
will take a huge amount of time, because the number of combinations increases
exponentially with the number of threads and the number of operations performed
by each thread. This technique is best reserved for fine-grained tests of individual
pieces of code rather than an entire application. The other obvious downside is that
it relies on the availability of simulation software that can handle the operations used
in your code.

 So, you have a technique that involves running your test many times under normal
conditions but that might miss problems, and you have a technique that involves run-
ning your test many times under special conditions but that’s more likely to find any
problems that exist. Are there any other options?

 A third option is to use a library that detects problems as they occur in the running
of the tests.

DETECTING PROBLEMS EXPOSED BY TESTS WITH A SPECIAL LIBRARY

Although this option doesn’t provide the exhaustive checking of a combination simu-
lation test, you can identify many problems by using a special implementation of the
library synchronization primitives such as mutexes, locks, and condition variables. For
example, it’s common to require that all accesses to a piece of shared data be done
with a particular mutex locked. If you could check which mutexes were locked when
the data was accessed, you could verify that the appropriate mutex was indeed locked
by the calling thread when the data was accessed and report a failure if this was not
the case. By marking your shared data in some way, you can allow the library to check
this for you.

 This library implementation can also record the sequence of locks if more than
one mutex is held by a particular thread at once. If another thread locks the same
mutexes in a different order, this could be recorded as a potential deadlock even if the
test didn’t deadlock while running.

 Another type of special library that could be used when testing multithreaded
code is one where the implementations of the threading primitives such as mutexes
and condition variables give the test writer control over which thread gets the lock
when multiple threads are waiting or which thread is notified by a notify_one() call
on a condition variable. This would allow you to set up particular scenarios and verify
that your code works as expected in those scenarios.

 Some of these testing facilities would have to be supplied as part of the C++ Stan-
dard Library implementation, whereas others can be built on top of the Standard
Library as part of your test harness.

350 CHAPTER 11 Testing and debugging multithreaded applications
 Having looked at various ways of executing test code, let’s now look at ways of
structuring the code to achieve the scheduling you want.

11.2.5 Structuring multithreaded test code

Back in section 11.2.2, I said that you need to find ways of providing suitable scheduling
for the “while” part of your tests. Now it’s time to look at the issues involved in that.

 The basic issue is that you need to arrange for a set of threads to each be executing
a chosen piece of code at a time that you specify. In the most basic case you have two
threads, but this could easily be extended to more. In the first step, you need to iden-
tify the distinct parts of each test:

 The general setup code that must be executed before anything else
 The thread-specific setup code that must run on each thread
 The code for each thread that you want to run concurrently
 The code to be run after the concurrent execution has finished, possibly

including assertions on the state of the code

To explain further, let’s consider a specific example from the test list in section 11.2.2:
one thread calling push() on an empty queue while another thread calls pop().

 The general setup code is simple: you must create the queue. The thread executing
pop() has no thread-specific setup code. The thread-specific setup code for the thread
executing push() depends on the interface to the queue and the type of object being
stored. If the object being stored is expensive to construct or must be heap-allocated,
you want to do this as part of the thread-specific setup, so that it doesn’t affect the test.
On the other hand, if the queue is just storing plain ints, there’s nothing to be gained
by constructing an int in the setup code. The code being tested is relatively straight-
forward—a call to push() from one thread and a call to pop() from another—but
what about the “after completion” code?

 In this case, it depends on what you want pop() to do. If it’s supposed to block
until there is data, then clearly you want to see that the returned data is what was sup-
plied to the push() call and that the queue is empty afterward. If pop() is not blocking
and may complete even when the queue is empty, you need to test for two possibilities:
either the pop() returned the data item supplied to the push() and the queue is
empty or the pop() signaled that there was no data and the queue has one element.
One or the other must be true; what you want to avoid is the scenario that pop() sig-
naled “no data” but the queue is empty, or that pop() returned the value and the
queue is still not empty. In order to simplify the test, assume you have a blocking
pop(). The final code is therefore an assertion that the popped value is the pushed
value and that the queue is empty.

 Now, having identified the various chunks of code, you need to do the best you can
to ensure that everything runs as planned. One way to do this is to use a set of
std::promises to indicate when everything is ready. Each thread sets a promise to
indicate that it’s ready and then waits on a (copy of a) std::shared_future obtained

351Techniques for locating concurrency-related bugs
from a third std::promise; the main thread waits for all the promises from all the
threads to be set and then triggers the threads to go. This ensures that each thread has
started and comes before the chunk of code that should be run concurrently; any
thread-specific setup should be done before setting that thread’s promise. Finally, the
main thread waits for the threads to complete and checks the final state. You also need
to be aware of exceptions and make sure you don’t have any threads left waiting for
the go signal when that’s not going to happen. The following listing shows one way of
structuring this test.

void test_concurrent_push_and_pop_on_empty_queue()
{
 threadsafe_queue<int> q;
 std::promise<void> go,push_ready,pop_ready;
 std::shared_future<void> ready(go.get_future());
 std::future<void> push_done;
 std::future<int> pop_done;
 try
 {
 push_done=std::async(std::launch::async,
 [&q,ready,&push_ready]()
 {
 push_ready.set_value();
 ready.wait();
 q.push(42);
 }
);
 pop_done=std::async(std::launch::async,
 [&q,ready,&pop_ready]()
 {
 pop_ready.set_value();
 ready.wait();
 return q.pop();
 }
);
 push_ready.get_future().wait();
 pop_ready.get_future().wait();
 go.set_value();
 push_done.get();
 assert(pop_done.get()==42);
 assert(q.empty());
 }
 catch(...)
 {
 go.set_value();
 throw;
 }
}

The structure is pretty much as described previously. First, you create your empty
queue as part of the general setup B. Then, you create all your promises for the

Listing 11.1 An example test for concurrent push() and pop() calls on a queue

B

c
d

e

f

g

h

i

j
1)

1!

1@

352 CHAPTER 11 Testing and debugging multithreaded applications
“ready” signals c and get std::shared_future for the go signal d. Then, you create
the futures you’ll use to indicate that the threads have finished e. These have to go
outside the try block so that you can set the go signal on an exception without waiting
for the test threads to complete (which would deadlock—a deadlock in the test code
would be less than ideal).

 Inside the try block you can then start the threads, f and g—you use std::
launch::async to guarantee that the tasks are each running on their own thread.
Note that the use of std::async makes your exception-safety task easier than it would
be with plain std::thread because the destructor for the future will join with the
thread. The lambda captures specify that each task will reference the queue and the
relevant promise for signaling readiness, while taking a copy of the ready future you
got from the go promise.

 As described previously, each task sets its own ready signal and then waits for the
general ready signal before running the test code. The main thread does the
reverse—it waits for the signals from both threads i before signaling them to start
the real test j.

 Finally, the main thread calls get() on the futures from the async calls to wait for
the tasks to finish, 1) and 1!, and checks the results. Note that the pop task returns the
retrieved value through the future h, so you can use that to get the result for the
assert 1!.

 If an exception is thrown, you set the go signal to avoid any chance of a dangling
thread and rethrow the exception 1@. The futures corresponding to the tasks e were
declared last, so they’ll be destroyed first, and their destructors will wait for the tasks
to complete, if they haven’t already.

 Although this seems like quite a lot of boilerplate to test two simple calls, it’s neces-
sary to use something similar in order to have the best chance of testing what you want
to test. For example, starting a thread can be quite a time-consuming process, so if you
didn’t make the threads wait for the go signal, then the push thread may have com-
pleted before the pop thread even started, which would completely defeat the point
of the test. Using the futures in this way ensures that both threads are running and
blocked on the same future. Unblocking the future then allows both threads to run.
Once you’re familiar with the structure, it should be relatively straightforward to cre-
ate new tests in the same pattern. For tests that require more than two threads, this
pattern is readily extended to additional threads.

 So far, we’ve been looking at the correctness of multithreaded code. Although this is
the most important issue, it’s not the only reason you test: it’s also important to test
the performance of multithreaded code, so let’s look at that next.

11.2.6 Testing the performance of multithreaded code

One of the main reasons you might choose to use concurrency in an application is
to make use of the increasing prevalence of multicore processors to improve the
performance of your applications. It’s therefore important to test your code to

353Summary
confirm that the performance does indeed improve, as you’d do with any other
attempt at optimization.

 The particular issue with using concurrency for performance is the scalability—you
want code that runs approximately 24 times faster or processes 24 times as much data
on a 24-core machine as on a single-core machine, all else being equal. You don’t want
code that runs twice as fast on a dual-core machine but is slower on a 24-core
machine. As you saw in section 8.4.2, if a significant section of your code runs on only
one thread, this can limit the potential performance gain. It’s therefore worth looking
at the overall design of the code before you start testing, so you know whether you’re
hoping for a factor-of-24 improvement, or whether the serial portion of your code
means you’re limited to a maximum of a factor of 3.

 As you’ve already seen in previous chapters, contention between processors for access
to a data structure can have a big performance impact. Something that scales nicely with
the number of processors when that number is small may perform badly when the num-
ber of processors is much larger because of the huge increase in contention.

 Consequently, when testing for the performance of multithreaded code, it’s best to
check the performance on systems with as many different configurations as possible, so
you get a picture of the scalability graph. At the very least, you ought to test on a single-
processor system and a system with as many processing cores as are available to you.

Summary
In this chapter, we looked at the various types of concurrency-related bugs that you
might encounter, from deadlocks and livelocks to data races and other problematic race
conditions. We followed that with techniques for locating bugs. These included issues to
think about during code reviews, guidelines for writing testable code, and how to struc-
ture tests for concurrent code. Finally, we looked at some utility components that can
help with testing.

appendix A
Brief reference for some

C++11 language features

The new C++ Standard brings more than just concurrency support; there are a host
of other language features and new libraries as well. In this appendix I give a brief
overview of the new language features that are used in the Thread Library and the
rest of the book. Aside from thread_local (which is covered in section A.8), none
of them are directly related to concurrency, though they are important and/or use-
ful for multithreaded code. I’ve limited this list to those that are either necessary
(such as rvalue references) or serve to make the code simpler or easier to under-
stand. Code that uses these features may be difficult to understand at first because of
lack of familiarity, but as you become familiar with them, they should generally make
code easier to understand. As the use of C++11 becomes more widespread, code mak-
ing use of these features will become more common.

 Without further ado, let’s start by looking at rvalue references, which are used
extensively by the Thread Library to facilitate the transfer of ownership (of threads,
locks, or whatever) between objects.

A.1 Rvalue references
If you’ve been doing C++ programming for any time, you’ll be familiar with refer-
ences; C++ references allow you to create a new name for an existing object. All
accesses and modifications done through the new reference affect the original; for
example:

int var=42;
int& ref=var;
ref=99;
assert(var==99);

Create a reference
to var.

Original updated because
of assignment to reference
354

355Rvalue references
The only references that existed prior to C++11 are lvalue references—references to lval-
ues. The term lvalue comes from C and refers to things that can be on the left side of
an assignment expression, named objects, objects allocated on the stack or heap, or
members of other objects, all things with a defined storage location. The term rvalue
also comes from C and refers to things that can occur only on the right side of an
assignment expression—literals and temporaries, for example. Lvalue references can
only be bound to lvalues, not rvalues. You can’t write

int& i=42;

for example, because 42 is an rvalue. OK, that’s not quite true; you’ve always been able
to bind an rvalue to a const lvalue reference:

int const& i=42;

But this is a deliberate exception on the part of the standard, introduced before we
had rvalue references in order to allow you to pass temporaries to functions taking ref-
erences. This allows implicit conversions, so you can write things like this:

void print(std::string const& s);
print("hello");

The C++11 Standard introduced rvalue references, which bind only to rvalues, not to lval-
ues, and are declared with two ampersands rather than one:

int&& i=42;
int j=42;
int&& k=j;

You can use function overloading to determine whether function parameters are lval-
ues or rvalues by having one overload take an lvalue reference and another take an
rvalue reference. This is the cornerstone of move semantics.

A.1.1 Move semantics

Rvalues are typically temporary and so can be freely modified; if you know that your
function parameter is an rvalue, you can use it as temporary storage, or “steal” its con-
tents without affecting program correctness. This means that rather than copying the
contents of an rvalue parameter, you can move the contents. For large dynamic struc-
tures, this saves a lot of memory allocation and provides a lot of scope for optimiza-
tion. Consider a function that takes an std::vector<int> as a parameter and needs
to have an internal copy for modification, without touching the original. The old way
of doing this would be to take the parameter as a const lvalue reference and make the
copy internally:

void process_copy(std::vector<int> const& vec_)
{

Won’t compile

Create temporary
std::string object

Won’t
compile

356 APPENDIX A Brief reference for some C++11 language features
 std::vector<int> vec(vec_);
 vec.push_back(42);
}

This allows the function to take both lvalues and rvalues but forces the copy in every
case. If you overload the function with a version that takes an rvalue reference, you
can avoid the copy in the rvalue case, because you know you can freely modify the
original:

void process_copy(std::vector<int> && vec)
{
 vec.push_back(42);
}

Now, if the function in question is the constructor of your class, you can pilfer the
innards of the rvalue and use them for your new instance. Consider the class in the
following listing. In the default constructor it allocates a large chunk of memory,
which is freed in the destructor.

class X
{
private:
 int* data;
public:
 X():
 data(new int[1000000])
 {}
 ~X()
 {
 delete [] data;
 }
 X(const X& other):
 data(new int[1000000])
 {
 std::copy(other.data,other.data+1000000,data);
 }
 X(X&& other):
 data(other.data)
 {
 other.data=nullptr;
 }
};

The copy constructor B is defined as you might expect: allocate a new block of memory
and copy the data across. But you also have a new constructor that takes the old value
by rvalue reference c. This is the move constructor. In this case you copy the pointer to
the data and leave the other instance with a null pointer, saving yourself a huge chunk
of memory and time when creating variables from rvalues.

Listing A.1 A class with a move constructor

B

c

357Rvalue references
 For class X the move constructor is an optimization, but in some cases it makes
sense to provide a move constructor even when it doesn’t make sense to provide a
copy constructor. For example, the whole point of std::unique_ptr<> is that each
non-null instance is the one and only pointer to its object, so a copy constructor
makes no sense. But a move constructor allows ownership of the pointer to be trans-
ferred between instances and permits std::unique_ptr<> to be used as a function
return value—the pointer is moved rather than copied.

 If you want to explicitly move from a named object that you know you’ll no longer
use, you can cast it to an rvalue either by using static_cast<X&&> or by calling
std::move():

X x1;
X x2=std::move(x1);
X x3=static_cast<X&&>(x2);

This can be beneficial when you want to move the parameter value into a local or
member variable without copying, because although an rvalue reference parameter
can bind to rvalues, within the function it is treated as an lvalue:

void do_stuff(X&& x_)
{
 X a(x_);
 X b(std::move(x_));
}
do_stuff(X());
X x;
do_stuff(x);

Move semantics are used extensively in the Thread Library, both where copies make
no semantic sense but resources can be transferred, and as an optimization to avoid
expensive copies where the source is going to be destroyed anyway. You saw an example
of this in section 2.2 where you used std::move() to transfer an std::unique_ptr<>
instance into a newly constructed thread, and then again in section 2.3 where we
looked at transferring the ownership of threads between std::thread instances.

 std::thread, std::unique_lock<>, std::future<>, std::promise<>, and std::
packaged_task<> can’t be copied, but they all have move constructors to allow the
associated resource to be transferred between instances and support their use as func-
tion return values. std::string and std::vector<> both can be copied as always, but
they also have move constructors and move-assignment operators to avoid copying
large quantities of data from an rvalue.

 The C++ Standard Library never does anything with an object that has been explic-
itly moved into another object, except destroy it or assign to it (either with a copy or,
more likely, a move). But it’s good practice to ensure that the invariant of the class
encompasses the moved-from state. An std::thread instance that has been used as
the source of a move is equivalent to a default-constructed std::thread instance, for
example, and an instance of std::string that has been used as the source of a move

Copies

Moves
OK; rvalue binds to
rvalue reference

Error; lvalue can’t bind
to rvalue reference

358 APPENDIX A Brief reference for some C++11 language features
will still have a valid state, although no guarantees are made as to what that state is (in
terms of how long the string is or what characters it contains).

A.1.2 Rvalue references and function templates

There’s a final nuance when you use rvalue references for parameters to a function
template: if the function parameter is an rvalue reference to a template parameter,
automatic template argument type deduction deduces the type to be an lvalue refer-
ence if an lvalue is supplied or a plain unadorned type if an rvalue is supplied. That’s
a bit of a mouthful, so let’s look at an example. Consider the following function:

template<typename T>
void foo(T&& t)
{}

If you call it with an rvalue as follows, then T is deduced to be the type of the value:

foo(42);
foo(3.14159);
foo(std::string());

But if you call foo with an lvalue, T is deduced to be an lvalue reference:

int i=42;
foo(i);

Because the function parameter is declared as T&&, this is therefore a reference to a ref-
erence, which is treated as the original reference type. The signature of foo<int&>() is

void foo<int&>(int& t);

This allows a single function template to accept both lvalue and rvalue parameters
and is used by the std::thread constructor (sections 2.1 and 2.2) so that the supplied
callable object can be moved into internal storage rather than copied if the parameter
is an rvalue.

A.2 Deleted functions
Sometimes it doesn’t make sense to allow a class to be copied. std::mutex is a prime
example of this—what would it mean if you did copy a mutex? std::unique_lock<> is
another—an instance is the one and only owner of the lock it holds. To truly copy it
would mean that the copy also held the lock, which doesn’t make sense. Moving own-
ership between instances, as described in section A.1.2, makes sense, but that’s not
copying. I’m sure you’ve seen other examples.

 The standard idiom for preventing copies of a class used to be declaring the copy
constructor and copy assignment operator private and then not providing an imple-
mentation. This would cause a compile error if any code outside the class in question

Calls foo<int>(42)

Calls foo<double>(3.14159)

Calls foo<std::string>(std::string())

Calls foo<int&>(i)

359Deleted functions
tried to copy an instance and a link-time error (due to lack of an implementation) if
any of the class’s member functions or friends tried to copy an instance:

class no_copies
{
public:
 no_copies(){}
private:
 no_copies(no_copies const&);
 no_copies& operator=(no_copies const&);
};
no_copies a;
no_copies b(a);

With C++11, the committee realized that this was a common idiom but also realized
that it’s a bit of a hack. The committee therefore provided a more general mechanism
that can be applied in other cases too: you can declare a function as deleted by adding =
delete to the function declaration. no_copies can be written as

class no_copies
{
public:
 no_copies(){}
 no_copies(no_copies const&) = delete;
 no_copies& operator=(no_copies const&) = delete;
};

This is much more descriptive than the original code and clearly expresses the intent.
It also allows the compiler to give more descriptive error messages and moves the
error from link time to compile time if you try to perform the copy within a member
function of your class.

 If, in addition to deleting the copy constructor and copy-assignment operator, you
also explicitly write a move constructor and move-assignment operator, your class
becomes move-only, the same as std::thread and std::unique_lock<>. The follow-
ing listing shows an example of this move-only type.

class move_only
{
 std::unique_ptr<my_class> data;
public:
 move_only(const move_only&) = delete;
 move_only(move_only&& other):
 data(std::move(other.data))
 {}
 move_only& operator=(const move_only&) = delete;
 move_only& operator=(move_only&& other)
 {
 data=std::move(other.data);
 return *this;

Listing A.2 A simple move-only type

No implementation

Won’t compile

360 APPENDIX A Brief reference for some C++11 language features
 }
};
move_only m1;
move_only m2(m1);
move_only m3(std::move(m1));

Move-only objects can be passed as function parameters and returned from functions,
but if you want to move from an lvalue, you always have to be explicit and use
std::move() or a static_cast<T&&>.

 You can apply the = delete specifier to any function, not just copy constructors
and assignment operators. This makes it clear that the function isn’t available. It does
a bit more than that too, though; a deleted function participates in overload resolu-
tion in the normal way and only causes a compilation error if it’s selected. This can be
used to remove specific overloads. For example, if your function takes a short param-
eter, you can prevent the narrowing of int values by writing an overload that takes an
int and declaring it deleted:

void foo(short);
void foo(int) = delete;

Any attempts to call foo with an int will now be met with a compilation error, and the
caller will have to explicitly cast supplied values to short:

foo(42);
foo((short)42);

A.3 Defaulted functions
Whereas deleted functions allow you to explicitly declare that a function isn’t imple-
mented, defaulted functions are the opposite extreme: they allow you to specify that
the compiler should write the function for you, with its “default” implementation. You
can only do this for functions that the compiler can autogenerate anyway: default con-
structors, destructors, copy constructors, move constructors, copy-assignment opera-
tors, and move-assignment operators.

 Why would you want to do that? There are several reasons why you might:

■ In order to change the accessibility of the function—By default, the compiler-generated
functions are public. If you want to make them protected or even private,
you must write them yourself. By declaring them as defaulted, you can get the
compiler to write the function and change the access level.

■ As documentation—If the compiler-generated version is sufficient, it might be
worth explicitly declaring it as such so that when you or someone else looks at
the code later, it’s clear that this was intended.

■ In order to force the compiler to generate the function when it would not otherwise have
done so—This is typically done with default constructors, which are only normally

Error; copy constructor
is declared deleted

OK; move constructor found

Error; int overload
declared deleted

OK

361Defaulted functions
compiler-generated if there are no user-defined constructors. If you need to
define a custom copy constructor (for example), you can still get a compiler-
generated default constructor by declaring it as defaulted.

■ In order to make a destructor virtual while leaving it as compiler-generated.
■ To force a particular declaration of the copy constructor, such as having it take the source

parameter by a non-const reference rather than by a const reference.
■ To take advantage of the special properties of the compiler-generated function, which are

lost if you provide an implementation—More on this in a moment.

Just as deleted functions are declared by following the declaration with = delete,
defaulted functions are declared by following the declaration by = default; for example:

class Y
{
private:
 Y() = default;
public:
 Y(Y&) = default;
 T& operator=(const Y&) = default;
protected:
 virtual ~Y() = default;
};

I mentioned previously that compiler-generated functions can have special properties
that you can’t get from a user-defined version. The biggest difference is that a compiler-
generated function can be trivial. This has a few consequences, including the following:

■ Objects with trivial copy constructors, trivial copy assignment operators, and
trivial destructors can be copied with memcpy or memmove.

■ Literal types used for constexpr functions (see section A.4) must have a trivial
constructor, copy constructor, and destructor.

■ Classes with a trivial default constructor, copy constructor, copy assignment
operator, and destructor can be used in a union with a user-defined constructor
and destructor.

■ Classes with trivial copy assignment operators can be used with the std::atomic<>
class template (see section 5.2.6) in order to provide a value of that type with
atomic operations.

Just declaring the function as = default doesn’t make it trivial—it will only be trivial if
the class also supports all the other criteria for the corresponding function to be triv-
ial—but explicitly writing the function in user code does prevent it from being trivial.

 The second difference between classes with compiler-generated functions and
user-supplied equivalents is that a class with no user-supplied constructors can be an
aggregate and thus can be initialized with an aggregate initializer:

struct aggregate
{
 aggregate() = default;

Change access

Take a non-const
reference

Declare as defaulted
for documentation

Change access
and add virtual

362 APPENDIX A Brief reference for some C++11 language features
 aggregate(aggregate const&) = default;
 int a;
 double b;
};
aggregate x={42,3.141};

In this case, x.a is initialized to 42 and x.b is initialized to 3.141.
 The third difference between a compiler-generated function and a user-supplied

equivalent is quite esoteric and applies only to the default constructor and only to the
default constructor of classes that meet certain criteria. Consider the following class:

struct X
{
 int a;
};

If you create an instance of class X without an initializer, the contained int (a) is
default initialized. If the object has static storage duration, it’s initialized to zero; other-
wise, it has an indeterminate value that can potentially cause undefined behavior if it’s
accessed before being assigned a new value:

X x1;

If, on the other hand, you initialize your instance of X by explicitly invoking the
default constructor, then a is initialized to zero:

X x2=X();

This bizarre property also extends to base classes and members. If your class has a
compiler-generated default constructor and any of your data members and base
classes also have a compiler-generated default constructor, data members of those
bases and members that are built-in types are also either left with an indeterminate
value or initialized to zero, depending on whether or not the outer class has its default
constructor explicitly invoked.

 Although this rule is confusing and potentially error-prone, it does have its uses,
and if you write the default constructor yourself, you lose this property; either data
members like a are always initialized (because you specify a value or explicitly default
construct) or always uninitialized (because you don’t):

X::X():a(){}
X::X():a(42){}
X::X(){}

If you omit the initialization of a from the constructor of X as in the third example B,
then a is left uninitialized for nonstatic instances of X and initialized to zero for
instances of X with static storage duration.

x1.a has an
indeterminate value.

x2.a==0

a==0 always.

a==42 always.

b

363constexpr functions
 Under normal circumstances, if you write any other constructor manually, the
compiler will no longer generate the default constructor for you, so if you want one
you have to write it, which means you lose this bizarre initialization property. But by
explicitly declaring the constructor as defaulted, you can force the compiler to gener-
ate the default constructor for you, and this property is retained:

X::X() = default;

This property is used for the atomic types (see section 5.2), which have their default
constructor explicitly defaulted. Their initial value is always undefined unless either
(a) they have static storage duration (and thus are statically initialized to zero), (b)
you explicitly invoke the default constructor to request zero initialization, or (c) you
explicitly specify a value. Note that in the case of the atomic types, the constructor for
initialization with a value is declared constexpr (see section A.4) in order to allow
static initialization.

A.4 constexpr functions
Integer literals such as 42 are constant expressions, as are simple arithmetic expressions
such as 23*2-4. You can even use const variables of integral type that are themselves
initialized with constant expressions as part of a new constant expression:

const int i=23;
const int two_i=i*2;
const int four=4;
const int forty_two=two_i-four;

Aside from using constant expressions to create variables that can be used in other
constant expressions, there are a few things you can only do with constant expressions:

■ Specify the bounds of an array:

int bounds=99;
int array[bounds];
const int bounds2=99;
int array2[bounds2];

■ Specify the value of a nontype template parameter:

template<unsigned size>
struct test
{};
test<bounds> ia;
test<bounds2> ia2;

■ Provide an initializer for a static const class data member of integral type in
the class definition:

Default initialization
rules for a apply

Error bounds is not a
constant expression

OK, bounds2 is a
constant expression.

Error bounds is not a
constant expression

OK, bounds2 is a
constant expression.

364 APPENDIX A Brief reference for some C++11 language features
class X
{
 static const int the_answer=forty_two;
};

■ Provide an initializer for a built-in type or aggregate that can be used for static
initialization:

struct my_aggregate
{
 int a;
 int b;
};
static my_aggregate ma1={forty_two,123};
int dummy=257;
static my_aggregate ma2={dummy,dummy};

■ Static initialization like this can be used to avoid order-of-initialization prob-
lems and race conditions.

None of this is new—you could do all that with the 1998 edition of the C++ Stan-
dard. But with the C++11 Standard what constitutes a constant expression has been
extended with the introduction of the constexpr keyword. The C++14 and C++17
standards extend the constexpr facility further; a full primer is beyond the scope of
this appendix.

 The constexpr keyword is primarily a function modifier. If the parameter and
return type of a function meet certain requirements and the body is sufficiently sim-
ple, a function can be declared constexpr, in which case it can be used in constant
expressions; for example:

constexpr int square(int x)
{
 return x*x;
}
int array[square(5)];

In this case, array will have 25 entries, because square is declared constexpr. Just
because the function can be used in a constant expression doesn’t mean that all uses
are automatically constant expressions:

int dummy=4;
int array[square(dummy)];

In this example, dummy is not a constant expression B, so square(dummy) isn’t either—
it’s a normal function call—and thus can’t be used to specify the bounds of array.

Static initialization

Dynamic
initialization

Error, dummy is not a
constant expression

b

365constexpr functions
A.4.1 constexpr and user-defined types

Up to now, all the examples have been with built-in types such as int. But the new C++
Standard allows constant expressions to be of any type that satisfies the requirements
for a literal type. For a class type to be classified as a literal type, the following must all
be true:

■ It must have a trivial copy constructor.
■ It must have a trivial destructor.
■ All non-static data members and base classes must be trivial types.
■ It must have either a trivial default constructor or a constexpr constructor

other than the copy constructor.

We’ll look at constexpr constructors shortly. For now, we’ll focus on classes with a triv-
ial default constructor, such as class CX in the following listing.

class CX
{
private:
 int a;
 int b;
public:
 CX() = default;
 CX(int a_, int b_):
 a(a_),b(b_)
 {}
 int get_a() const
 {
 return a;
 }
 int get_b() const
 {
 return b;
 }
 int foo() const
 {
 return a+b;
 }
};

Note that we’ve explicitly declared the default constructor B as defaulted (see section
A.3) in order to preserve it as trivial in the face of the user-defined constructor c.
This type therefore fits all the qualifications for being a literal type, and you can use it
in constant expressions. You can, for example, provide a constexpr function that cre-
ates new instances:

constexpr CX create_cx()
{
 return CX();
}

Listing A.3 A class with a trivial default constructor

B

c

366 APPENDIX A Brief reference for some C++11 language features
You can also create a simple constexpr function that copies its parameter:

constexpr CX clone(CX val)
{
 return val;
}

But that’s about all you can do in C++11—a constexpr function can only call other
constexpr functions. In C++14, this restriction is lifted, and you can do almost any-
thing in a constexpr function, provided it doesn’t modify any objects with non-local
scope. What you can do, even in C++11, is apply constexpr to the member functions
and constructor of CX:

class CX
{
private:
 int a;
 int b;
public:
 CX() = default;
 constexpr CX(int a_, int b_):
 a(a_),b(b_)
 {}
 constexpr int get_a() const
 {
 return a;
 }
 constexpr int get_b()
 {
 return b;
 }
 constexpr int foo()
 {
 return a+b;
 }
};

In C++11, the const qualification on get_a() B is now superfluous, because it’s
implied by the use of constexpr, and get_b() is thus const even though the const
qualification is omitted c. In C++14, this is changed (due to the extended capabilities
of constexpr functions), so get_b() is no longer implicitly const. This now allows
more complex constexpr functions such as the following:

constexpr CX make_cx(int a)
{
 return CX(a,1);
}
constexpr CX half_double(CX old)
{
 return CX(old.get_a()/2,old.get_b()*2);
}
constexpr int foo_squared(CX val)

b

c

367constexpr functions
{
 return square(val.foo());
}
int array[foo_squared(half_double(make_cx(10)))];

Interesting though this is, it’s a lot of effort to go to if all you get is a fancy way of com-
puting some array bounds or an integral constant. The key benefit of constant expres-
sions and constexpr functions involving user-defined types is that objects of a literal
type initialized with a constant expression are statically initialized, and so their initial-
ization is free from race conditions and initialization order issues:

CX si=half_double(CX(42,19));

This covers constructors too. If the constructor is declared constexpr and the con-
structor parameters are constant expressions, the initialization is constant initialization
and happens as part of the static initialization phase. This is one of the most important
changes in C++11 as far as concurrency goes: by allowing user-defined constructors that
can still undergo static initialization, you can avoid any race conditions over their ini-
tialization, because they’re guaranteed to be initialized before any code is run.

 This is particularly relevant for things like std::mutex (see section 3.2.1) or
std::atomic<> (see section 5.2.6) where you might want to use a global instance to
synchronize access to other variables and avoid race conditions in that access. This
wouldn’t be possible if the constructor of the mutex was subject to race conditions, so
the default constructor of std::mutex is declared constexpr to ensure that mutex ini-
tialization is always done as part of the static initialization phase.

A.4.2 constexpr objects

So far, we’ve looked at constexpr as applied to functions. constexpr can also be
applied to objects. This is primarily for diagnostic purposes; it verifies that the object
is initialized with a constant expression, constexpr constructor, or aggregate initial-
izer made of constant expressions. It also declares the object as const:

constexpr int i=45;
constexpr std::string s(“hello”);
int foo();
constexpr int j=foo();

A.4.3 constexpr function requirements

In order to declare a function as constexpr it must meet a few requirements; if it
doesn’t meet these requirements, declaring it constexpr is a compilation error. In
C++11, the requirements for a constexpr function were as follows:

■ All parameters must be of a literal type.
■ The return type must be a literal type.
■ The function body must consist of a single return statement.

49 elements

Statically initialized

OK
Error; std::string
isn’t a literal type

Error; foo() isn’t
declared constexpr

368 APPENDIX A Brief reference for some C++11 language features
■ The expression in the return statement must qualify as a constant expression.
■ Any constructor or conversion operator used to construct the return value from

the expression must be constexpr.

This is straightforward; you must be able to inline the function into a constant expres-
sion and it will still be a constant expression, and you must not modify anything.
constexpr functions are pure functions with no side effects.

 In C++14, the requirements were slackened quite considerably. Though the overall
idea of a pure function with no side effects is preserved, the body is allowed to contain
considerably more:

■ Multiple return statements are allowed.
■ Objects created within the function can be modified.
■ Loops, conditionals, and switch statements are allowed.

For constexpr class member functions there are additional requirements:

■ constexpr member functions can’t be virtual.
■ The class for which the function is a member must be a literal type.

The rules are different for constexpr constructors:

■ The constructor body must be empty for a C++11 compiler; for a C++14 or later
compiler it must satisfy the requirements for a constexpr function.

■ Every base class must be initialized.
■ Every non-static data member must be initialized.
■ Any expressions used in the member initialization list must qualify as constant

expressions.
■ The constructors chosen for the initialization of the data members and base

classes must be constexpr constructors.
■ Any constructor or conversion operator used to construct the data members

and base classes from their corresponding initialization expression must be
constexpr.

This is the same set of rules as for functions, except that there’s no return value, so no
return statement. Instead, the constructor initializes all the bases and data members
in the member initialization list. Trivial copy constructors are implicitly constexpr.

A.4.4 constexpr and templates

When constexpr is applied to a function template, or to a member function of a class
template, it’s ignored if the parameters and return types of a particular instantiation
of the template aren’t literal types. This allows you to write function templates that are
constexpr if the type of the template parameters is appropriate and just plain inline
functions otherwise, for example:

template<typename T>
constexpr T sum(T a,T b)

369Lambda functions
{
 return a+b;
}
constexpr int i=sum(3,42);
std::string s=
 sum(std::string("hello"),
 std::string(" world"));

The function must satisfy all the other requirements for a constexpr function. You
can’t declare a function with multiple statements constexpr just because it’s a func-
tion template; that’s still a compilation error.

A.5 Lambda functions
Lambda functions are one of the most exciting features of the C++11 Standard,
because they have the potential to greatly simplify code and eliminate much of the
boilerplate associated with writing callable objects. The C++11 lambda function syntax
allows a function to be defined at the point where it’s needed in another expression.
This works well for things like predicates provided to the wait functions of std::
condition_variable (as in the example in section 4.1.1), because it allows the seman-
tics to be quickly expressed in terms of the accessible variables rather than capturing
the necessary state in the member variables of a class with a function call operator.

 At its simplest, a lambda expression defines a self-contained function that takes no
parameters and relies only on global variables and functions. It doesn’t even have to
return a value. This lambda expression is a series of statements enclosed in brackets,
prefixed with square brackets (the lambda introducer):

[]{
 do_stuff();
 do_more_stuff();
}();

In this example, the lambda expression is called by following it with parentheses, but
this is unusual. For one thing, if you’re going to call it directly, you could usually do
away with the lambda and write the statements directly in the source. It’s more com-
mon to pass it as a parameter to a function template that takes a callable object as one
of its parameters, in which case it likely needs to take parameters or return a value or
both. If you need to take parameters, you can do this by following the lambda intro-
ducer with a parameter list like for a normal function. For example, the following
code writes all the elements of the vector to std::cout separated by newlines:

std::vector<int> data=make_data();
std::for_each(data.begin(),data.end(),[](int i){std::cout<<i<<"\n";});

Return values are almost as easy. If your lambda function body consists of a single
return statement, the return type of the lambda is the type of the expression being

OK; sum<int>
is constexpr.

OK, but sum<std::string>
isn’t constexpr.

Start the lambda
expression with [].

Finish the lambda,
and call it.

370 APPENDIX A Brief reference for some C++11 language features
returned. For example, you might use a simple lambda like this to wait for a flag to be
set with std::condition_variable (see section 4.1.1), as in the following listing.

std::condition_variable cond;
bool data_ready;
std::mutex m;
void wait_for_data()
{
 std::unique_lock<std::mutex> lk(m);
 cond.wait(lk,[]{return data_ready;});
}

The return type of the lambda passed to cond.wait() B is deduced from the type of
data_ready and is thus bool. Whenever the condition variable wakes from waiting, it
then calls the lambda with the mutex locked and only returns from the call to wait()
once data_ready is true.

 What if you can’t write your lambda body as a single return statement? In that case
you have to specify the return type explicitly. You can do this even if your body is a sin-
gle return statement, but you have to do it if your lambda body is more complex. The
return type is specified by following the lambda parameter list with an arrow (->) and
the return type. If your lambda doesn’t take any parameters, you must still include the
(empty) parameter list in order to specify the return value explicitly. Your condition
variable predicate can be written

cond.wait(lk,[]()->bool{return data_ready;});

By specifying the return type, you can expand the lambda to log messages or do some
more complex processing:

cond.wait(lk,[]()->bool{
 if(data_ready)
 {
 std::cout<<”Data ready”<<std::endl;
 return true;
 }
 else
 {
 std::cout<<”Data not ready, resuming wait”<<std::endl;
 return false;
 }
});

Although simple lambdas like this are powerful and can simplify code quite a lot, the
real power of lambdas comes when they capture local variables.

Listing A.4 A simple lambda with a deduced return type

b

371Lambda functions
A.5.1 Lambda functions that reference local variables

Lambda functions with a lambda introducer of [] can’t reference any local variables
from the containing scope; they can only use global variables and anything passed in
as a parameter. If you want to access a local variable, you need to capture it. The sim-
plest way to do this is to capture the entire set of variables within the local scope by
using a lambda introducer of [=]. That’s all there is to it—your lambda can now
access copies of the local variables at the time the lambda was created.

 To see this in action, consider the following simple function:

std::function<int(int)> make_offseter(int offset)
{
 return [=](int j){return offset+j;};
}

Every call to make_offseter returns a new lambda function object through the
std::function<> function wrapper. This returned function adds the supplied offset
to any parameter supplied. For example,

int main()
{
 std::function<int(int)> offset_42=make_offseter(42);
 std::function<int(int)> offset_123=make_offseter(123);
 std::cout<<offset_42(12)<<”,“<<offset_123(12)<<std::endl;
 std::cout<<offset_42(12)<<”,“<<offset_123(12)<<std::endl;
}

will write out 54,135 twice because the function returned from the first call to make_
offseter always adds 42 to the supplied argument, whereas the function returned
from the second call to make_offseter always adds 123 to the supplied argument.

 This is the safest form of local variable capture; everything is copied, so you can
return the lambda and call it outside the scope of the original function. It’s not the
only choice though; you can choose to capture everything by reference instead. In this
case it’s undefined behavior to call the lambda once the variables it references have
been destroyed by exiting the function or block scope to which they belong, just as it’s
undefined behavior to reference a variable that has already been destroyed in any
other circumstance.

 A lambda function that captures all the local variables by reference is introduced
using [&], as in the following example:

int main()
{
 int offset=42;
 std::function<int(int)> offset_a=[&](int j){return offset+j;};
 offset=123;
 std::function<int(int)> offset_b=[&](int j){return offset+j;};
 std::cout<<offset_a(12)<<”,”<<offset_b(12)<<std::endl;
 offset=99;
 std::cout<<offset_a(12)<<”,”<<offset_b(12)<<std::endl;
}

B

c
d

e

fg
h

372 APPENDIX A Brief reference for some C++11 language features
Whereas in the make_offseter function from the previous example you used the [=]
lambda introducer to capture a copy of the offset, the offset_a function in this exam-
ple uses the [&] lambda introducer to capture offset by reference c. It doesn’t mat-
ter that the initial value of offset is 42 B; the result of calling offset_a(12) will
always depend on the current value of offset. Even though the value of offset is
then changed to 123 d, before you produce the second (identical) lambda function,
offset_b e, this second lambda again captures by reference, so the result depends
on the current value of offset.

 Now, when you print the first line of output f, offset is still 123, so the output is
135,135. But at the second line of output h, offset has been changed to 99 g, so
this time the output is 111,111. Both offset_a and offset_b add the current value of
offset (99) to the supplied argument (12).

 Now, C++ being C++, you’re not stuck with these all-or-nothing options; you
can choose to capture some variables by copy and some by reference, and you can
choose to capture only those variables you have explicitly chosen by tweaking the
lambda introducer. If you want to copy all the used variables except for one or two,
you can use the [=] form of the lambda introducer but follow the equals sign with a
list of variables to capture by reference preceded with ampersands. The following
example will print 1239, because i is copied into the lambda, but j and k are cap-
tured by reference:

int main()
{
 int i=1234,j=5678,k=9;
 std::function<int()> f=[=,&j,&k]{return i+j+k;};
 i=1;
 j=2;
 k=3;
 std::cout<<f()<<std::endl;
}

Alternatively, you can capture by reference by default but capture a specific subset of
variables by copying. In this case, you use the [&] form of the lambda introducer but
follow the ampersand with a list of variables to capture by copy. The following exam-
ple prints 5688 because i is captured by reference, but j and k are copied:

int main()
{
 int i=1234,j=5678,k=9;
 std::function<int()> f=[&,j,k]{return i+j+k;};
 i=1;
 j=2;
 k=3;
 std::cout<<f()<<std::endl;
}

If you only want to capture the named variables, then you can omit the leading = or &
and just list the variables to be captured, prefixing them with an ampersand to capture

373Lambda functions
by reference rather than copy. The following code will print 5682 because i and k are
captured by reference, but j is copied:

int main()
{
 int i=1234,j=5678,k=9;
 std::function<int()> f=[&i,j,&k]{return i+j+k;};
 i=1;
 j=2;
 k=3;
 std::cout<<f()<<std::endl;
}

This final variant allows you to ensure that only the intended variables are being cap-
tured, because any reference to a local variable not in the capture list will cause a com-
pilation error. If you choose this option, you have to be careful when accessing class
members if the function containing the lambda is a member function. Class members
can’t be captured directly; if you want to access class members from your lambda, you
have to capture the this pointer by adding it to the capture list. In the following
example, the lambda captures this to allow access to the some_data class member:

struct X
{
 int some_data;
 void foo(std::vector<int>& vec)
 {
 std::for_each(vec.begin(),vec.end(),
 [this](int& i){i+=some_data;});
 }
};

In the context of concurrency, lambdas are most useful as predicates for std::condition
_variable::wait() (section 4.1.1) and with std::packaged_task<> (section 4.2.1)
or thread pools for packaging small tasks. They can also be passed to the std::thread
constructor as a thread function (section 2.1.1) and as the function when using paral-
lel algorithms such as parallel_for_each() (from section 8.5.1).

 Since C++14, lambdas can also be generic lamdas, where the parameter types are
declared as auto rather than a specified type. In this case, the function call operator is
implicitly a template, and the type of the parameter is deduced from the supplied
argument when the lambda is invoked; for example:

auto f=[](auto x){ std::cout<<”x=”<<x<<std::endl;};
f(42); // x is of type int; outputs “x=42”
f(“hello”); // x is of type const char*; outputs “x=hello”

C++14 also adds the concept of generalized captures, so you can capture the results of
expressions, rather than a direct copy of or reference to a local variable. Most com-
monly this can be used to capture move-only types by moving them, rather than hav-
ing to capture by reference; for example:

374 APPENDIX A Brief reference for some C++11 language features
std::future<int> spawn_async_task(){
 std::promise<int> p;
 auto f=p.get_future();
 std::thread t([p=std::move(p)](){ p.set_value(find_the_answer());});
 t.detach();
 return f;
}

Here, the promise is moved into the lambda by the p=std::move(p) generalized cap-
ture, so it is safe to detach the thread, without the worry of a dangling reference to a
local variable that has been destroyed. After the construction of the lambda, the origi-
nal p is now in a moved-from state, which is why you had to get the future beforehand.

A.6 Variadic templates
Variadic templates are templates with a variable number of parameters. Just as you’ve
always been able to have variadic functions, such as printf, that take a variable num-
ber of parameters, you can now have variadic templates that have a variable number of
template parameters. Variadic templates are used throughout the C++ Thread Library.
For example, the std::thread constructor for starting a thread (section 2.1.1) is a
variadic function template, and std::packaged_task<> (section 4.2.2) is a variadic
class template. From a user’s point of view, it’s enough to know that the template takes
an unbounded number of parameters, but if you want to write this template, or if
you’re interested in how it all works, you need to know the details.

 Just as variadic functions are declared with an ellipsis (...) in the function param-
eter list, variadic templates are declared with an ellipsis in the template parameter list:

template<typename ... ParameterPack>
class my_template
{};

You can use variadic templates for a partial specialization of a template too, even if the
primary template isn’t variadic. For example, the primary template for std::packaged
_task<> (section 4.2.1) is a simple template with a single template parameter:

template<typename FunctionType>
class packaged_task;

But this primary template is never defined anywhere; it’s a placeholder for the partial
specialization:

template<typename ReturnType,typename ... Args>
class packaged_task<ReturnType(Args...)>;

It’s this partial specialization that contains the real definition of the class; you saw in
chapter 4 that you can write std::packaged_task<int(std::string,double)> to
declare a task that takes an std::string and a double as parameters when you call it
and that provides the result through an std::future<int>.

375Variadic templates
 This declaration shows two additional features of variadic templates. The first
feature is relatively simple: you can have normal template parameters (such as
ReturnType) as well as variadic ones (Args) in the same declaration. The second fea-
ture demonstrated is the use of Args... in the template argument list of the special-
ization to show that the types that make up Args when the template is instantiated
are to be listed here. Because this is a partial specialization, it works as a pattern
match; the types that occur in this context in the instantiation are captured as Args.
The variadic parameter Args is called a parameter pack, and the use of Args... is
called a pack expansion.

 Like with variadic functions, the variadic part may be an empty list or may have
many entries. For example, with std::packaged_task<my_class()> the ReturnType
parameter is my_class, and the Args parameter pack is empty, whereas with
std::packaged_task<void(int,double,my_class&,std::string*)> the ReturnType
is void, and Args is the list int, double, my_class&, std::string*.

A.6.1 Expanding the parameter pack

The power of variadic templates comes from what you can do with that pack expan-
sion: you aren’t limited to expanding the list of types as is. First off, you can use a pack
expansion directly anywhere a list of types is required, such as in the argument list for
another template:

template<typename ... Params>
struct dummy
{
 std::tuple<Params...> data;
};

In this case the single member variable data is an instantiation of std::tuple<>
containing all the types specified, so dummy<int,double,char> has a member of
type std::tuple<int,double,char>. You can combine pack expansions with nor-
mal types:

template<typename ... Params>
struct dummy2
{
 std::tuple<std::string,Params...> data;
};

This time, the tuple has an additional (first) member of type std::string. The nifty
part is that you can create a pattern with the pack expansion, which is then copied for
each element in the expansion. You do this by putting the ... that marks the pack
expansion at the end of the pattern. For example, rather than just creating a tuple of
the elements supplied in your parameter pack, you can create a tuple of pointers to
the elements or even a tuple of std::unique_ptr<> to your elements:

template<typename ... Params>
struct dummy3

376 APPENDIX A Brief reference for some C++11 language features
{
 std::tuple<Params* ...> pointers;
 std::tuple<std::unique_ptr<Params> ...> unique_pointers;
};

The type expression can be as complex as you like, provided the parameter pack
occurs in the type expression, and provided the expression is followed by the ... that
marks the expansion. When the parameter pack is expanded, for each entry in the pack
that type is substituted into the type expression to generate the corresponding entry in
the resulting list. If your parameter pack Params contains the types int,int,char, then
the expansion of std::tuple<std::pair<std::unique_ptr<Params>,double> ... > is
std::tuple<std::pair<std::unique_ptr<int>,double>, std::pair<std::unique_
ptr<int>,double>, std::pair<std::unique_ptr<char>,double> >. If the pack expan-
sion is used as a template argument list, that template doesn’t have to have variadic
parameters, but if it doesn’t, the size of the pack must exactly match the number of
template parameters required:

template<typename ... Types>
struct dummy4
{
 std::pair<Types...> data;
};
dummy4<int,char> a;
dummy4<int> b;
dummy4<int,int,int> c;

The second thing you can do with a pack expansion is use it to declare a list of func-
tion parameters:

template<typename ... Args>
void foo(Args ... args);

This creates a new parameter pack, args, which is a list of the function parameters
rather than a list of types, which you can expand with ... as before. Now, you can use
a pattern with the pack expansion for declaring the function parameters, just as you
can use a pattern when you expand the pack elsewhere. For example, this is used by
the std::thread constructor to take all the function arguments by rvalue reference
(see section A.1):

template<typename CallableType,typename ... Args>
thread::thread(CallableType&& func,Args&& ... args);

The function parameter pack can then be used to call another function, by specifying
the pack expansion in the argument list of the called function. As with the type expan-
sions, you can use a pattern for each expression in the resulting argument list. For
example, one common idiom with rvalue references is to use std::forward<> to pre-
serve the rvalue-ness of the supplied function arguments:

OK, data is
std::pair<int,char>.

Error; no second type.

Error; too many types.

377Automatically deducing the type of a variable
template<typename ... ArgTypes>
void bar(ArgTypes&& ... args)
{
 foo(std::forward<ArgTypes>(args)...);
}

Note that in this case, the pack expansion contains both the type pack ArgTypes and
the function parameter pack args, and the ellipsis follows the whole expression. If you
call bar like this,

int i;
bar(i,3.141,std::string("hello "));

then the expansion becomes

template<>
void bar<int&,double,std::string>(
 int& args_1,
 double&& args_2,
 std::string&& args_3)
{
 foo(std::forward<int&>(args_1),
 std::forward<double>(args_2),
 std::forward<std::string>(args_3));
}

which correctly passes the first argument on to foo as an lvalue reference, while pass-
ing the others as rvalue references.

 The final thing you can do with a parameter pack is find its size with the sizeof...
operator. This is quite simple: sizeof...(p) is the number of elements in the param-
eter pack p. It doesn’t matter whether this is a type parameter pack or a function argu-
ment parameter pack; the result is the same. This is probably the only case where you
can use a parameter pack and not follow it with an ellipsis; the ellipsis is already part
of the sizeof... operator. The following function returns the number of arguments
supplied to it:

template<typename ... Args>
unsigned count_args(Args ... args)
{
 return sizeof... (Args);
}

As with the normal sizeof operator, the result of sizeof... is a constant expression,
so it can be used for specifying array bounds and so forth.

A.7 Automatically deducing the type of a variable
C++ is a statically typed language: the type of every variable is known at compile time.
Not only that, but as a programmer you have to specify the type of each variable. In
some cases this can lead to quite unwieldy names; for example:

378 APPENDIX A Brief reference for some C++11 language features
std::map<std::string,std::unique_ptr<some_data>> m;
std::map<std::string,std::unique_ptr<some_data>>::iterator
 iter=m.find("my key");

Traditionally, the solution has been to use typedefs to reduce the length of a type
identifier and potentially eliminate problems due to inconsistent types. This still
works in C++11, but there’s now a new way: if a variable is initialized in its declaration
from a value of the same type, then you can specify the type as auto. In this case, the
compiler will automatically deduce the type of the variable to be the same as the ini-
tializer. The iterator example can be written as

auto iter=m.find("my key");

Now, you’re not restricted to plain auto; you can embellish it to declare const vari-
ables or pointer or reference variables too. Here are a few variable declarations using
auto and the corresponding type of the variable:

auto i=42; // int
auto& j=i; // int&
auto const k=i; // int const
auto* const p=&i; // int * const

The rules for deducing the type of the variable are based on the rules for the only
other place in the language where types are deduced: parameters of function tem-
plates. In a declaration of the form

some-type-expression-involving-auto var=some-expression;

the type of var is the same as the type deduced for the parameter of a function tem-
plate declared with the same type expression, except replacing auto with the name of
a template type parameter:

template<typename T>
void f(type-expression var);
f(some-expression);

This means that array types decay to pointers, and references are dropped unless the
type expression explicitly declares the variable as a reference; for example:

int some_array[45];
auto p=some_array; // int*
int& r=*p;
auto x=r; // int
auto& y=r; // int&

This can greatly simplify the declaration of variables, particularly where the full type
identifier is long or possibly not even known (for example, the type of the result of a
function call in a template).

379Thread-local variables
A.8 Thread-local variables
Thread-local variables allow you to have a separate instance of a variable for each thread
in your program. You mark a variable as being thread-local by declaring it with the
thread_local keyword. Variables at namespace scope, static data members of classes,
and local variables can be declared thread-local, and are said to have thread storage
duration:

thread_local int x;
class X
{
 static thread_local std::string s;
};
static thread_local std::string X::s;
void foo()
{
 thread_local std::vector<int> v;
}

Thread-local variables at namespace scope and thread-local static class data members
are constructed before the first use of a thread-local variable from the same transla-
tion unit, but it isn’t specified how much before. Some implementations may construct
thread-local variables when the thread is started; others may construct them immedi-
ately before their first use on each thread, and others may construct them at other
times, or in some combination depending on their usage context. Indeed, if none of
the thread-local variables from a given translation unit is used, there’s no guarantee
that they will be constructed at all. This allows for the dynamic loading of modules
containing thread-local variables—these variables can be constructed on a given
thread the first time that thread references a thread-local variable from the dynami-
cally-loaded module.

 Thread-local variables declared inside a function are initialized the first time the
flow of control passes through their declaration on a given thread. If the function is
not called by a given thread, any thread-local variables declared in that function are
not constructed. This is the same as the behavior for local static variables, except it
applies separately to each thread.

 Thread-local variables share other properties with static variables—they’re zero-
initialized prior to any further initialization (such as dynamic initialization), and if the
construction of a thread-local variable throws an exception, std::terminate() is called
to abort the application.

 The destructors for all thread-local variables that have been constructed on a given
thread are run when the thread function returns, in the reverse order of construction.
Because the order of initialization is unspecified, it’s important to ensure that there
are no interdependencies between the destructors of these variables. If the destructor
of a thread-local variable exits with an exception, std::terminate() is called, as for
construction.

A thread-local variable
at namespace scope A thread-local static

class data member

The definition of X::s is
required.

A thread-local
local variable

380 APPENDIX A Brief reference for some C++11 language features
 Thread-local variables are also destroyed for a thread if that thread calls
std::exit() or returns from main() (which is equivalent to calling std::exit() with
the return value of main()). If any other threads are still running when the applica-
tion exits, the destructors of thread-local variables on those threads are not called.

 Though thread-local variables have a different address on each thread, you can
still obtain a normal pointer to this variable. The pointer then references the object in
the thread that took the address, and can be used to allow other threads to access that
object. It’s undefined behavior to access an object after it’s been destroyed (as always),
so if you pass a pointer to a thread-local variable to another thread, you need to
ensure it’s not dereferenced once the owning thread has finished.

A.9 Class Template Argument Deduction
C++17 extends the idea of automatically deducing types to template parameters: if you
are declaring an object of a templated type, then in many cases the type of the tem-
plate parameters can be deduced from the object initializer.

 Specifically, if an object is declared with the name of a class template, without spec-
ifying a template argument list, then constructors specified in the class template are
used to deduce the template arguments from the object's initializer, as per the normal
type deduction rules for function templates.

 For example, std::lock_guard takes a single template parameter, which is the
type of the mutex. The constructor also takes a single parameter, which is a reference
to that type. If you declare an object to be of type std::lock_guard, then the type
parameter can be deduced from the type of the supplied mutex:

std::mutex m;
std::lock_guard guard(m); // deduces std::lock_guard<std::mutex>

The same applies to std::scoped_lock, except that it has multiple template parame-
ters, which can be deduced from multiple mutex arguments:

std::mutex m1;
std::shared_mutex m2;
std::scoped_lock guard(m1,m2);
// deduces std::scoped_lock<std::mutex,std::shared_mutex>

For those templates where the constructors would lead to the wrong types being
deduced, the template author can write explicit deduction guides to ensure the cor-
rect types are deduced. But these are beyond the scope of this book.

Summary
This appendix has only scratched the surface of the new language features introduced
with the C++11 Standard, because we’ve only looked at those features that actively
affect the usage of the Thread Library. Other new language features include static
assertions, strongly typed enumerations, delegating constructors, Unicode support,
template aliases, and a new uniform initialization sequence, along with a host of

381Summary
smaller changes. Describing all the new features in detail is outside the scope of this
book; it would probably require a book in itself. There are also a considerable number
of changes added with C++14 and C++17, but again these are outside the scope of this
book. The best overview of the entire set of changes to the standard at the time of writ-
ing is probably the documentation at cppreference.com,1 as well as Bjarne Strous-
trup’s C++11 FAQ,2 though popular C++ reference books will be revised to cover it in
due course.

 Hopefully the brief introduction to the new features covered in this appendix has
provided enough depth to show how they relate to the Thread Library and to enable
you to write and understand multithreaded code that uses these new features.
Although this appendix should provide enough depth for simple uses of the features
covered, this is still only a brief introduction and not a complete reference or tutorial
for the use of these features. If you intend to make extensive use of them, I recom-
mend acquiring a reference or tutorial in order to gain the most benefit from them.

1 http://www.cppreference.com
2 http://www.research.att.com/~bs/C++0xFAQ.html

http://www.cppreference.com
http://www.research.att.com/~bs/C++0xFAQ.html

appendix B
Brief comparison of

concurrency libraries

Concurrency and multithreading support in programming languages and libraries
aren’t something new, even though standardized support in C++ is new. For exam-
ple, Java has had multithreading support since it was first released, platforms that
conform to the POSIX standard provide a C interface for multithreading, and
Erlang provides support for message-passing concurrency. There are even C++ class
libraries, such as Boost, that wrap the underlying programming interface for multi-
threading used on any given platform (whether it’s the POSIX C interface or some-
thing else) to provide a portable interface across the supported platforms.

 For those who are already experienced in writing multithreaded applications
and would like to use that experience to write code using the new C++ multithread-
ing facilities, this appendix provides a comparison between the facilities available in
Java, POSIX C, C++ with the Boost Thread Library, and C++11, along with cross-
references to the relevant chapters of this book.

382

383
Fe
at

ur
e

Ja
va

P
O

S
IX

 C
B

oo
st

 t
hr

ea
ds

C
+

+
1

1
C

ha
pt

er
re

fe
re

nc
e

S
ta

rt
in

g
th

re
ad

s
j
a
v
a
.
l
a
n
g
.
t
h
r
e
a
d

cl
as

s
p
t
h
r
e
a
d
_
t

ty
pe

 a
nd

as
so

ci
at

ed
 A

PI
 f

un
ct

io
ns

:
p
t
h
r
e
a
d
_
c
r
e
a
t
e
(
)

,
p
t
h
r
e
a
d
_
d
e
t
a
c
h
(
)

, a
nd

p
t
h
r
e
a
d
_
j
o
i
n
(
)

b
o
o
s
t
:
:
t
h
r
e
a
d

cl
as

s
an

d
m

em
be

r
fu

nc
tio

ns
s
t
d
:
:
t
h
r
e
a
d

cl
as

s
an

d
m

em
be

r
fu

nc
tio

ns
C

ha
pt

er
 2

M
ut

ua
l

ex
cl

us
io

n
s
y
n
c
h
r
o
n
i
z
e
d

bl
oc

ks
p
t
h
r
e
a
d
_
m
u
t
e
x
_
t

ty
pe

an
d

as
so

ci
at

ed
 A

PI
 f

un
ct

io
ns

:
p
t
h
r
e
a
d
_
m
u
t
e
x
_
l
o
c
k
(
)

,
p
t
h
r
e
a
d
_
m
u
t
e
x
_
u
n
l
o
c
k
(
)

,
et

c.

b
o
o
s
t
:
:
m
u
t
e
x

cl
as

s
an

d
m

em
be

r
fu

nc
tio

ns
,

b
o
o
s
t
:
:
l
o
c
k
_
g
u
a
r
d
<
>

an
d
b
o
o
s
t
:
:
u
n
i
q
u
e
_
l
o
c
k
<
>

te
m

pl
at

es

s
t
d
:
:
m
u
t
e
x

cl
as

s
an

d
m

em
be

r
fu

nc
tio

ns
,

s
t
d
:
:
l
o
c
k
_
g
u
a
r
d
<
>

an
d

s
t
d
:
:
u
n
i
q
u
e
_
l
o
c
k
<
>

te
m

pl
at

es

C
ha

pt
er

 3

M
on

ito
rs

/
w

ai
ts

 f
or

 a
pr

ed
ic

at
e

w
a
i
t
(
)

n
o
t
i
f
y
(
)

an
d

m
et

ho
ds

 o
f

th
e

j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t

cl
as

s,
us

ed
 in

si
de

s
y
n
c
h
r
o
n
i
z
e
d

bl
oc

ks

p
t
h
r
e
a
d
_
c
o
n
d
_
t

ty
pe

an
d

as
so

ci
at

ed
 A

PI
 f

un
ct

io
ns

:
p
t
h
r
e
a
d
_
c
o
n
d
_
w
a
i
t
(
)

,
p
t
h
r
e
a
d
_
c
o
n
d
_
t
i
m
e
d
_

w
a
i
t
(
)

, e
tc

.

b
o
o
s
t
:
:
c
o
n
d
i
t
i
o
n
_

v
a
r
i
a
b
l
e

an
d

b
o
o
s
t
:
:
c
o
n
d
i
t
i
o
n
_

v
a
r
i
a
b
l
e
_
a
n
y

cl
as

se
s

an
d

m
em

be
r

fu
nc

tio
ns

s
t
d
:
:
c
o
n
d
i
t
i
o
n
_

v
a
r
i
a
b
l
e

an
d

s
t
d
:
:
c
o
n
d
i
t
i
o
n
_

v
a
r
i
a
b
l
e
_
a
n
y

cl
as

se
s

an
d

m
em

be
r

fu
nc

tio
ns

C
ha

pt
er

 4

At
om

ic
 o

pe
ra

-
tio

ns
 a

nd
co

nc
ur

re
nc

y-
aw

ar
e

m
em

-
or

y
m

od
el

v
o
l
a
t
i
l
e

va
ria

bl
es

,
th

e
ty

pe
s

in
 t

he
j
a
v
a
.
u
t
i
l
.
c
o
n
c
u
r
r
e
n
t

.
a
t
o
m
i
c

pa
ck

ag
e

N
/A

N
/A

s
t
d
:
:
a
t
o
m
i
c
_
x
x
x

ty
pe

s,
s
t
d
:
:
a
t
o
m
i
c
<
>

cl
as

s
te

m
pl

at
e,

s
t
d
:
:
a
t
o
m
i
c
_
t
h
r
e
a
d
_

f
e
n
c
e
(
)

fu
nc

tio
n

C
ha

pt
er

 5

Th
re

ad
-s

af
e

co
nt

ai
ne

rs
Th

e
co

nt
ai

ne
r s

 in
 t

he
j
a
v
a
.
u
t
i
l
.
c
o
n
c
u
r
r
e
n
t

pa
ck

ag
e

N
/A

N
/A

N
/A

C
ha

pt
er

s
6

an
d

7

Fu
tu

re
s

j
a
v
a
.
u
t
i
l
.
c
o
n
c
u
r
r
e
n
t

.
f
u
t
u
r
e

in
te

rf
ac

e
an

d
as

so
ci

at
ed

 c
la

ss
es

N
/A

b
o
o
s
t
:
:
u
n
i
q
u
e
_
f
u
t
u
r
e
<
>

an
d

b
o
o
s
t
:
:
s
h
a
r
e
d
_
f
u
t
u
r
e
<
>

cl
as

s
te

m
pl

at
es

s
t
d
:
:
f
u
t
u
r
e
<
>
,

s
t
d
:
:
s
h
a
r
e
d
_
f
u
t
u
r
e
<
>

an
d

s
t
d
:
:
a
t
o
m
i
c
_
f
u
t
u
r
e
<
>

cl
as

s
te

m
pl

at
es

C
ha

pt
er

 4

Th
re

ad
po

ol
s

j
a
v
a
.
u
t
i
l
.
c
o
n
c
u
r
r
e
n
t

.
T
h
r
e
a
d
P
o
o
l
E
x
e
c
u
t
o
r

cl
as

s

N
/A

N
/A

N
/A

C
ha

pt
er

 9

Th
re

ad
in

te
rr

up
tio

n
i
n
t
e
r
r
u
p
t
(
)

m
et

ho
d

of
j
a
v
a
.
l
a
n
g
.
T
h
r
e
a
d

p
t
h
r
e
a
d
_
c
a
n
c
e
l
(
)

i
n
t
e
r
r
u
p
t
(
)

m
em

be
r

fu
nc

tio
n

of
cl

as
s

b
o
o
s
t
:
:
t
h
r
e
a
d

N
/A

C
ha

pt
er

 9

appendix C
A message-passing

framework and complete
ATM example

Back in chapter 4, I presented an example of sending messages between threads
using a message-passing framework, using a simple implementation of the code in
an ATM as an example. What follows is the complete code for this example, includ-
ing the message-passing framework.

 Listing C.1 shows the message queue. It stores a list of messages as pointers to a
base class; the specific message type is handled with a template class derived from
that base class. Pushing an entry constructs an appropriate instance of the wrapper
class and stores a pointer to it; popping an entry returns that pointer. Because the
message_base class doesn’t have any member functions, the popping thread will
need to cast the pointer to a suitable wrapped_message<T> pointer before it can
access the stored message.

#include <mutex>
#include <condition_variable>
#include <queue>
#include <memory>
namespace messaging
{
 struct message_base
 {
 virtual ~message_base()
 {}
 };

Listing C.1 A simple message queue

Base class of your
queue entries
384

385
 template<typename Msg>
 struct wrapped_message:
 message_base
 {
 Msg contents;
 explicit wrapped_message(Msg const& contents_):
 contents(contents_)
 {}
 };
 class queue
 {
 std::mutex m;
 std::condition_variable c;
 std::queue<std::shared_ptr<message_base> > q;
 public:
 template<typename T>
 void push(T const& msg)
 {
 std::lock_guard<std::mutex> lk(m);
 q.push(std::make_shared<wrapped_message<T> >(msg));
 c.notify_all();
 }
 std::shared_ptr<message_base> wait_and_pop()
 {
 std::unique_lock<std::mutex> lk(m);
 c.wait(lk,[&]{return !q.empty();});
 auto res=q.front();
 q.pop();
 return res;
 }
 };
}

Sending messages is handled through an instance of the sender class shown in list-
ing C.2. This is a thin wrapper around a message queue that only allows messages to
be pushed. Copying instances of sender copies the pointer to the queue rather than
the queue itself.

namespace messaging
{
 class sender
 {
 queue*q;
 public:
 sender():
 q(nullptr)
 {}
 explicit sender(queue*q_):
 q(q_)
 {}
 template<typename Message>
 void send(Message const& msg)

Listing C.2 The sender class

Each message type
has a specialization.

Your message
queue

Internal queue stores
pointers to message_base

Wrap posted
message and
store pointer

Block until queue
isn’t empty

sender is a wrapper
around the queue pointer.

Default-constructed
sender has no queue

Allow construction
from pointer to queue

386 APPENDIX C A message-passing framework and complete ATM example
 {
 if(q)
 {
 q->push(msg);
 }
 }
 };
}

Receiving messages is a bit more complicated. Not only do you have to wait for a mes-
sage from the queue, but you also have to check to see if the type matches any of the
message types being waited on and call the appropriate handler function. This all
starts with the receiver class, shown in the following listing.

namespace messaging
{
 class receiver
 {
 queue q;
 public:
 operator sender()
 {
 return sender(&q);
 }
 dispatcher wait()
 {
 return dispatcher(&q);
 }
 };
}

Whereas a sender references a message queue, a receiver owns it. You can obtain a
sender that references the queue by using the implicit conversion. The complexity of
doing the message dispatch starts with a call to wait(). This creates a dispatcher
object that references the queue from the receiver. The dispatcher class is shown in
the next listing; as you can see, the work is done in the destructor. In this case, that
work consists of waiting for a message and dispatching it.

namespace messaging
{
 class close_queue
 {};
 class dispatcher
 {
 queue* q;
 bool chained;
 dispatcher(dispatcher const&)=delete;
 dispatcher& operator=(dispatcher const&)=delete;

Listing C.3 The receiver class

Listing C.4 The dispatcher class

Sending pushes
message on the queue

A receiver owns
the queue.

Allow implicit conversion
to a sender that
references the queue.

Waiting for a queue
creates a dispatcher

The message for
closing the queue

dispatcher instances
cannot be copied.

387
 template<
 typename Dispatcher,
 typename Msg,
 typename Func>
 friend class TemplateDispatcher;
 void wait_and_dispatch()
 {
 for(;;)
 {
 auto msg=q->wait_and_pop();
 dispatch(msg);
 }
 }
 bool dispatch(
 std::shared_ptr<message_base> const& msg)
 {
 if(dynamic_cast<wrapped_message<close_queue>*>(msg.get()))
 {
 throw close_queue();
 }
 return false;
 }
 public:
 dispatcher(dispatcher&& other):
 q(other.q),chained(other.chained)
 {
 other.chained=true;
 }
 explicit dispatcher(queue* q_):
 q(q_),chained(false)
 {}
 template<typename Message,typename Func>
 TemplateDispatcher<dispatcher,Message,Func>
 handle(Func&& f)
 {
 return TemplateDispatcher<dispatcher,Message,Func>(
 q,this,std::forward<Func>(f));
 }
 ~dispatcher() noexcept(false)
 {
 if(!chained)
 {
 wait_and_dispatch();
 }
 }
 };
}

The dispatcher instance that’s returned from wait() will be destroyed immediately,
because it’s temporary, and as mentioned, the destructor does the work. The destruc-
tor calls wait_and_dispatch(), which is a loop B that waits for a message and passes it
to dispatch(). dispatch() itself c is rather simple, it checks whether the message
is a close_queue message and throws an exception if it is; otherwise, it returns false
to indicate that the message was unhandled. This close_queue exception is why the

Allow TemplateDispatcher
instances to access the
internals.

Loop, waiting for, and
dispatching messages

b

dispatch() checks
for a close_queue
message, and throws.

c

Dispatcher instances
can be moved.

The source shouldn’t
wait for messages.

Handle a specific type
of message with a
TemplateDispatcher.

d

The destructor might
throw exceptions.e

388 APPENDIX C A message-passing framework and complete ATM example
destructor is marked noexcept(false); without this annotation, the default exception
specification for the destructor would be noexcept(true) e, indicating that no excep-
tions can be thrown, and the close_queue exception would terminate the program.

 It’s not often that you’re going to call wait() on its own, though; most of the time
you’ll want to handle a message. This is where the handle() member function d
comes in. It’s a template, and the message type isn’t deducible, so you must specify
which message type to handle and pass in a function (or callable object) to handle it.
handle() itself passes the queue, the current dispatcher object, and the handler
function to a new instance of the TemplateDispatcher class template, to handle mes-
sages of the specified type, shown in listing C.5. This is why you test the chained value
in the destructor before waiting for messages; not only does it prevent moved-from
objects waiting for messages, but it also allows you to transfer the responsibility of wait-
ing to your new TemplateDispatcher instance.

namespace messaging
{
 template<typename PreviousDispatcher,typename Msg,typename Func>
 class TemplateDispatcher
 {
 queue* q;
 PreviousDispatcher* prev;
 Func f;
 bool chained;
 TemplateDispatcher(TemplateDispatcher const&)=delete;
 TemplateDispatcher& operator=(TemplateDispatcher const&)=delete;
 template<typename Dispatcher,typename OtherMsg,typename OtherFunc>
 friend class TemplateDispatcher;
 void wait_and_dispatch()
 {
 for(;;)
 {
 auto msg=q->wait_and_pop();
 if(dispatch(msg))
 break;
 }
 }
 bool dispatch(std::shared_ptr<message_base> const& msg)
 {
 if(wrapped_message<Msg>* wrapper=
 dynamic_cast<wrapped_message<Msg>*>(msg.get()))
 {
 f(wrapper->contents);
 return true;
 }
 else
 {
 return prev->dispatch(msg);
 }
 }

Listing C.5 The TemplateDispatcher class template

TemplateDispatcher
instantiations are
friends of each other.

If you handle the message,
break out of the loop.B

Check the message type
and call the function. c

Chain to the
previous dispatcher.

d

389
 public:
 TemplateDispatcher(TemplateDispatcher&& other):
 q(other.q),prev(other.prev),f(std::move(other.f)),
 chained(other.chained)
 {
 other.chained=true;
 }
 TemplateDispatcher(queue* q_,PreviousDispatcher* prev_,Func&& f_):
 q(q_),prev(prev_),f(std::forward<Func>(f_)),chained(false)
 {
 prev_->chained=true;
 }
 template<typename OtherMsg,typename OtherFunc>
 TemplateDispatcher<TemplateDispatcher,OtherMsg,OtherFunc>
 handle(OtherFunc&& of)
 {
 return TemplateDispatcher<
 TemplateDispatcher,OtherMsg,OtherFunc>(
 q,this,std::forward<OtherFunc>(of));
 }
 ~TemplateDispatcher() noexcept(false)
 {
 if(!chained)
 {
 wait_and_dispatch();
 }
 }
 };
}

The TemplateDispatcher<> class template is modeled on the dispatcher class and is
almost identical. In particular, the destructor still calls wait_and_dispatch() to wait
for a message.

 Because you don’t throw exceptions if you handle the message, you now need to
check whether you did handle the message in your message loop B. Your message
processing stops when you’ve successfully handled a message, so that you can wait for
a different set of messages next time. If you do get a match for the specified message
type, the supplied function is called c rather than throwing an exception (although
the handler function may throw an exception itself). If you don’t get a match, you
chain to the previous dispatcher d. In the first instance, this will be a dispatcher, but
if you chain calls to handle() e to allow multiple types of messages to be handled, this
may be a prior instantiation of TemplateDispatcher<>, which will in turn chain to the
previous handler if the message doesn’t match. Because any of the handlers might
throw an exception (including the dispatcher’s default handler for close_queue mes-
sages), the destructor must once again be declared noexcept(false) f.

 This simple framework allows you to push any type of message on the queue and
then selectively match against messages you can handle on the receiving end. It also
allows you to pass around a reference to the queue for pushing messages on, while
keeping the receiving end private.

Additional handlers
can be chained.e

The destructor is
noexcept(false)
again.f

390 APPENDIX C A message-passing framework and complete ATM example
 To complete the example from chapter 4, the messages are given in listing C.6, the
various state machines in listings C.7, C.8, and C.9, and the driving code in listing C.10.

struct withdraw
{
 std::string account;
 unsigned amount;
 mutable messaging::sender atm_queue;
 withdraw(std::string const& account_,
 unsigned amount_,
 messaging::sender atm_queue_):
 account(account_),amount(amount_),
 atm_queue(atm_queue_)
 {}
};
struct withdraw_ok
{};
struct withdraw_denied
{};
struct cancel_withdrawal
{
 std::string account;
 unsigned amount;
 cancel_withdrawal(std::string const& account_,
 unsigned amount_):
 account(account_),amount(amount_)
 {}
};
struct withdrawal_processed
{
 std::string account;
 unsigned amount;
 withdrawal_processed(std::string const& account_,
 unsigned amount_):
 account(account_),amount(amount_)
 {}
};
struct card_inserted
{
 std::string account;
 explicit card_inserted(std::string const& account_):
 account(account_)
 {}

};
struct digit_pressed
{
 char digit;
 explicit digit_pressed(char digit_):
 digit(digit_)
 {}

};

Listing C.6 ATM messages

391
struct clear_last_pressed
{};
struct eject_card
{};
struct withdraw_pressed
{
 unsigned amount;
 explicit withdraw_pressed(unsigned amount_):
 amount(amount_)
 {}

};
struct cancel_pressed
{};
struct issue_money
{
 unsigned amount;
 issue_money(unsigned amount_):
 amount(amount_)
 {}
};
struct verify_pin
{
 std::string account;
 std::string pin;
 mutable messaging::sender atm_queue;
 verify_pin(std::string const& account_,std::string const& pin_,
 messaging::sender atm_queue_):
 account(account_),pin(pin_),atm_queue(atm_queue_)
 {}
};
struct pin_verified
{};
struct pin_incorrect
{};
struct display_enter_pin
{};
struct display_enter_card
{};
struct display_insufficient_funds
{};
struct display_withdrawal_cancelled
{};
struct display_pin_incorrect_message
{};
struct display_withdrawal_options
{};
struct get_balance
{
 std::string account;
 mutable messaging::sender atm_queue;
 get_balance(std::string const& account_,messaging::sender atm_queue_):
 account(account_),atm_queue(atm_queue_)
 {}
};

392 APPENDIX C A message-passing framework and complete ATM example
struct balance
{
 unsigned amount;

 explicit balance(unsigned amount_):
 amount(amount_)
 {}
};
struct display_balance
{
 unsigned amount;
 explicit display_balance(unsigned amount_):
 amount(amount_)
 {}
};
struct balance_pressed
{};

class atm
{
 messaging::receiver incoming;
 messaging::sender bank;
 messaging::sender interface_hardware;
 void (atm::*state)();
 std::string account;
 unsigned withdrawal_amount;
 std::string pin;
 void process_withdrawal()
 {
 incoming.wait()
 .handle<withdraw_ok>(
 [&](withdraw_ok const& msg)
 {
 interface_hardware.send(
 issue_money(withdrawal_amount));
 bank.send(
 withdrawal_processed(account,withdrawal_amount));
 state=&atm::done_processing;
 }
)
 .handle<withdraw_denied>(
 [&](withdraw_denied const& msg)
 {
 interface_hardware.send(display_insufficient_funds());
 state=&atm::done_processing;
 }
)
 .handle<cancel_pressed>(
 [&](cancel_pressed const& msg)
 {
 bank.send(
 cancel_withdrawal(account,withdrawal_amount));
 interface_hardware.send(

Listing C.7 The ATM state machine

393
 display_withdrawal_cancelled());
 state=&atm::done_processing;
 }
);
 }
 void process_balance()
 {
 incoming.wait()
 .handle<balance>(
 [&](balance const& msg)
 {
 interface_hardware.send(display_balance(msg.amount));
 state=&atm::wait_for_action;
 }
)
 .handle<cancel_pressed>(
 [&](cancel_pressed const& msg)
 {
 state=&atm::done_processing;
 }
);
 }
 void wait_for_action()
 {
 interface_hardware.send(display_withdrawal_options());
 incoming.wait()
 .handle<withdraw_pressed>(
 [&](withdraw_pressed const& msg)
 {
 withdrawal_amount=msg.amount;
 bank.send(withdraw(account,msg.amount,incoming));
 state=&atm::process_withdrawal;
 }
)
 .handle<balance_pressed>(
 [&](balance_pressed const& msg)
 {
 bank.send(get_balance(account,incoming));
 state=&atm::process_balance;
 }
)
 .handle<cancel_pressed>(
 [&](cancel_pressed const& msg)
 {
 state=&atm::done_processing;
 }
);
 }
 void verifying_pin()
 {
 incoming.wait()
 .handle<pin_verified>(
 [&](pin_verified const& msg)
 {
 state=&atm::wait_for_action;

394 APPENDIX C A message-passing framework and complete ATM example
 }
)
 .handle<pin_incorrect>(
 [&](pin_incorrect const& msg)
 {
 interface_hardware.send(
 display_pin_incorrect_message());
 state=&atm::done_processing;
 }
)
 .handle<cancel_pressed>(
 [&](cancel_pressed const& msg)
 {
 state=&atm::done_processing;
 }
);
 }
 void getting_pin()
 {
 incoming.wait()
 .handle<digit_pressed>(
 [&](digit_pressed const& msg)
 {
 unsigned const pin_length=4;
 pin+=msg.digit;
 if(pin.length()==pin_length)
 {
 bank.send(verify_pin(account,pin,incoming));
 state=&atm::verifying_pin;
 }
 }
)
 .handle<clear_last_pressed>(
 [&](clear_last_pressed const& msg)
 {
 if(!pin.empty())
 {
 pin.pop_back();
 }
 }
)
 .handle<cancel_pressed>(
 [&](cancel_pressed const& msg)
 {
 state=&atm::done_processing;
 }
);
 }
 void waiting_for_card()
 {
 interface_hardware.send(display_enter_card());
 incoming.wait()
 .handle<card_inserted>(
 [&](card_inserted const& msg)
 {

395
 account=msg.account;
 pin="";
 interface_hardware.send(display_enter_pin());
 state=&atm::getting_pin;
 }
);
 }
 void done_processing()
 {
 interface_hardware.send(eject_card());
 state=&atm::waiting_for_card;
 }
 atm(atm const&)=delete;
 atm& operator=(atm const&)=delete;
public:
 atm(messaging::sender bank_,
 messaging::sender interface_hardware_):
 bank(bank_),interface_hardware(interface_hardware_)
 {}
 void done()
 {
 get_sender().send(messaging::close_queue());
 }
 void run()
 {
 state=&atm::waiting_for_card;
 try
 {
 for(;;)
 {
 (this->*state)();
 }
 }
 catch(messaging::close_queue const&)
 {
 }
 }
 messaging::sender get_sender()
 {
 return incoming;
 }
};

class bank_machine
{
 messaging::receiver incoming;
 unsigned balance;
public:
 bank_machine():
 balance(199)
 {}
 void done()
 {

Listing C.8 The bank state machine

396 APPENDIX C A message-passing framework and complete ATM example
 get_sender().send(messaging::close_queue());
 }
 void run()
 {
 try
 {
 for(;;)
 {
 incoming.wait()
 .handle<verify_pin>(
 [&](verify_pin const& msg)
 {
 if(msg.pin=="1937")
 {
 msg.atm_queue.send(pin_verified());
 }
 else
 {
 msg.atm_queue.send(pin_incorrect());
 }
 }
)
 .handle<withdraw>(
 [&](withdraw const& msg)
 {
 if(balance>=msg.amount)
 {
 msg.atm_queue.send(withdraw_ok());
 balance-=msg.amount;
 }
 else
 {
 msg.atm_queue.send(withdraw_denied());
 }
 }
)
 .handle<get_balance>(
 [&](get_balance const& msg)
 {
 msg.atm_queue.send(::balance(balance));
 }
)
 .handle<withdrawal_processed>(
 [&](withdrawal_processed const& msg)
 {
 }
)
 .handle<cancel_withdrawal>(
 [&](cancel_withdrawal const& msg)
 {
 }
);
 }
 }
 catch(messaging::close_queue const&)

397
 {
 }
 }

 messaging::sender get_sender()
 {
 return incoming;
 }
};

class interface_machine
{
 messaging::receiver incoming;
public:
 void done()
 {
 get_sender().send(messaging::close_queue());
 }
 void run()
 {
 try
 {
 for(;;)
 {
 incoming.wait()
 .handle<issue_money>(
 [&](issue_money const& msg)
 {
 {
 std::lock_guard<std::mutex> lk(iom);
 std::cout<<"Issuing "
 <<msg.amount<<std::endl;
 }
 }
)
 .handle<display_insufficient_funds>(
 [&](display_insufficient_funds const& msg)
 {
 {
 std::lock_guard<std::mutex> lk(iom);
 std::cout<<"Insufficient funds"<<std::endl;
 }
 }
)
 .handle<display_enter_pin>(
 [&](display_enter_pin const& msg)
 {
 {
 std::lock_guard<std::mutex> lk(iom);
 std::cout
 <<"Please enter your PIN (0-9)"
 <<std::endl;
 }

Listing C.9 The user-interface state machine

398 APPENDIX C A message-passing framework and complete ATM example
 }
)
 .handle<display_enter_card>(
 [&](display_enter_card const& msg)
 {
 {
 std::lock_guard<std::mutex> lk(iom);
 std::cout<<"Please enter your card (I)"
 <<std::endl;
 }
 }
)
 .handle<display_balance>(
 [&](display_balance const& msg)
 {
 {
 std::lock_guard<std::mutex> lk(iom);
 std::cout
 <<"The balance of your account is "
 <<msg.amount<<std::endl;
 }
 }
)
 .handle<display_withdrawal_options>(
 [&](display_withdrawal_options const& msg)
 {
 {
 std::lock_guard<std::mutex> lk(iom);
 std::cout<<"Withdraw 50? (w)"<<std::endl;
 std::cout<<"Display Balance? (b)"
 <<std::endl;
 std::cout<<"Cancel? (c)"<<std::endl;
 }
 }
)
 .handle<display_withdrawal_cancelled>(
 [&](display_withdrawal_cancelled const& msg)
 {
 {
 std::lock_guard<std::mutex> lk(iom);
 std::cout<<"Withdrawal cancelled"
 <<std::endl;
 }
 }
)
 .handle<display_pin_incorrect_message>(
 [&](display_pin_incorrect_message const& msg)
 {
 {
 std::lock_guard<std::mutex> lk(iom);
 std::cout<<"PIN incorrect"<<std::endl;
 }
 }
)
 .handle<eject_card>(

399
 [&](eject_card const& msg)
 {
 {
 std::lock_guard<std::mutex> lk(iom);
 std::cout<<"Ejecting card"<<std::endl;
 }
 }
);
 }
 }
 catch(messaging::close_queue&)
 {
 }
 }
 messaging::sender get_sender()
 {
 return incoming;
 }
};

int main()
{
 bank_machine bank;
 interface_machine interface_hardware;
 atm machine(bank.get_sender(),interface_hardware.get_sender());
 std::thread bank_thread(&bank_machine::run,&bank);
 std::thread if_thread(&interface_machine::run,&interface_hardware);
 std::thread atm_thread(&atm::run,&machine);
 messaging::sender atmqueue(machine.get_sender());
 bool quit_pressed=false;
 while(!quit_pressed)
 {
 char c=getchar();
 switch(c)
 {
 case '0':
 case '1':
 case '2':
 case '3':
 case '4':
 case '5':
 case '6':
 case '7':
 case '8':
 case '9':
 atmqueue.send(digit_pressed(c));
 break;
 case 'b':
 atmqueue.send(balance_pressed());
 break;
 case 'w':
 atmqueue.send(withdraw_pressed(50));
 break;

Listing C.10 The driving code

400 APPENDIX C A message-passing framework and complete ATM example
 case 'c':
 atmqueue.send(cancel_pressed());
 break;
 case 'q':
 quit_pressed=true;
 break;
 case 'i':
 atmqueue.send(card_inserted("acc1234"));
 break;
 }
 }
 bank.done();
 machine.done();
 interface_hardware.done();
 atm_thread.join();
 bank_thread.join();
 if_thread.join();
}

appendix D
C++ Thread

Library reference

D.1 The <chrono> header
The <chrono> header provides classes for representing points in time, durations,
and clock classes, which act as a source of time_points. Each clock has an is_steady
static data member, which indicates whether it’s a steady clock that advances at a
uniform rate (and can’t be adjusted). The std::chrono::steady_clock class is the
only clock guaranteed to be steady.

Header contents
namespace std
{
 namespace chrono
 {
 template<typename Rep,typename Period = ratio<1>>
 class duration;
 template<
 typename Clock,
 typename Duration = typename Clock::duration>
 class time_point;
 class system_clock;
 class steady_clock;
 typedef unspecified-clock-type high_resolution_clock;
 }
}

D.1.1 std::chrono::duration class template

The std::chrono::duration class template provides a facility for representing
durations. The template parameters Rep and Period are the data type to store the
duration value and an instantiation of the std::ratio class template indicating the
401

402 APPENDIX D C++ Thread Library reference
length of time (as a fraction of a second) between successive “ticks,” respectively. Thus
std::chrono::duration<int, std::milli> is a count of milliseconds stored in a value
of type int, whereas std::chrono::duration<short, std::ratio<1,50>> is a count of
fiftieths of a second stored in a value of type short, and std::chrono:: d-uration
<long long, std::ratio<60,1>> is a count of minutes stored in a value of type long
long.

Class definition
template <class Rep, class Period=ratio<1> >
class duration
{
public:
 typedef Rep rep;
 typedef Period period;

 constexpr duration() = default;
 ~duration() = default;

 duration(const duration&) = default;
 duration& operator=(const duration&) = default;

 template <class Rep2>
 constexpr explicit duration(const Rep2& r);

 template <class Rep2, class Period2>
 constexpr duration(const duration<Rep2, Period2>& d);

 constexpr rep count() const;
 constexpr duration operator+() const;
 constexpr duration operator-() const;
 duration& operator++();
 duration operator++(int);
 duration& operator--();
 duration operator--(int);
 duration& operator+=(const duration& d);
 duration& operator-=(const duration& d);
 duration& operator*=(const rep& rhs);
 duration& operator/=(const rep& rhs);
 duration& operator%=(const rep& rhs);
 duration& operator%=(const duration& rhs);
 static constexpr duration zero();
 static constexpr duration min();
 static constexpr duration max();
};

template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator==(
 const duration<Rep1, Period1>& lhs,
 const duration<Rep2, Period2>& rhs);

template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator!=(
 const duration<Rep1, Period1>& lhs,
 const duration<Rep2, Period2>& rhs);

403The <chrono> header
template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator<(
 const duration<Rep1, Period1>& lhs,
 const duration<Rep2, Period2>& rhs);

template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator<=(
 const duration<Rep1, Period1>& lhs,
 const duration<Rep2, Period2>& rhs);

template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator>(
 const duration<Rep1, Period1>& lhs,
 const duration<Rep2, Period2>& rhs);

template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator>=(
 const duration<Rep1, Period1>& lhs,
 const duration<Rep2, Period2>& rhs);

template <class ToDuration, class Rep, class Period>
constexpr ToDuration duration_cast(const duration<Rep, Period>& d);

Requirements
Rep must be a built-in numeric type, or a number-like user-defined type. Period
must be an instantiation of std::ratio<>.

STD::CHRONO::DURATION::REP TYPEDEF
This is a typedef for the type used to hold the number of ticks in a duration value.

Declaration
typedef Rep rep;

rep is the type of value used to hold the internal representation of the duration
object.

STD::CHRONO::DURATION::PERIOD TYPEDEF
This typedef is for an instantiation of the std::ratio class template that specifies the
fraction of a second represented by the duration count. For example, if period is
std::ratio<1,50>, a duration value with a count() of N represents N fiftieths of
a second.

Declaration
typedef Period period;

STD::CHRONO::DURATION DEFAULT CONSTRUCTOR

Constructs an std::chrono::duration instance with a default value.

Declaration
constexpr duration() = default;

Effects
The internal value of the duration (of type rep) is default initialized.

404 APPENDIX D C++ Thread Library reference
STD::CHRONO::DURATION CONVERTING CONSTRUCTOR FROM A COUNT VALUE

Constructs an std::chrono::duration instance with a specified count.

Declaration
template <class Rep2>
constexpr explicit duration(const Rep2& r);

Effects
The internal value of the duration object is initialized with static_cast<rep>(r).

Requirements
This constructor only participates in overload resolution if Rep2 is implicitly convert-
ible to Rep and either Rep is a floating point type or Rep2 is not a floating point type.

Postcondition
this->count()==static_cast<rep>(r)

STD::CHRONO::DURATION CONVERTING CONSTRUCTOR FROM ANOTHER STD::CHRONO::DURATION VALUE

Constructs an std::chrono::duration instance by scaling the count value of another
std::chrono::duration object.

Declaration
template <class Rep2, class Period2>
constexpr duration(const duration<Rep2,Period2>& d);

Effects
The internal value of the duration object is initialized with duration_cast<duration
<Rep,Period>>(d).count().

Requirements
This constructor only participates in overload resolution if Rep is a floating point
type or Rep2 is not a floating point type and Period2 is a whole number multiple of
Period (that is, ratio_divide<Period2,Period>::den==1). This avoids accidental
truncation (and corresponding loss of precision) from storing a duration with
small periods in a variable representing a duration with a longer period.

Postcondition
this->count()==duration_cast<duration<Rep,Period>>(d).count()

Examples
duration<int,ratio<1,1000>> ms(5);
duration<int,ratio<1,1>> s(ms);
duration<double,ratio<1,1>> s2(ms);
duration<int,ratio<1,1000000>> us(ms);

STD::CHRONO::DURATION::COUNT MEMBER FUNCTION

Retrieves the value of the duration.

Declaration
constexpr rep count() const;

Returns
The internal value of the duration object, as a value of type rep.

Five milliseconds Error: can’t store ms
as integral seconds

OK: s2.count()==0.005

OK: us.count()==5000

405The <chrono> header
STD::CHRONO::DURATION::OPERATOR+ UNARY PLUS OPERATOR

This is a no-op: it just returns a copy of *this.

Declaration
constexpr duration operator+() const;

Returns
*this

STD::CHRONO::DURATION::OPERATOR- UNARY MINUS OPERATOR

Returns a duration such that the count() value is the negative value of this->
count().

Declaration
constexpr duration operator-() const;

Returns
duration(-this->count());

STD::CHRONO::DURATION::OPERATOR++ PRE-INCREMENT OPERATOR

Increments the internal count.

Declaration
duration& operator++();

Effects
++this->internal_count;

Returns
*this

STD::CHRONO::DURATION::OPERATOR++ POST-INCREMENT OPERATOR

Increments the internal count and returns the value of *this prior to the increment.

Declaration
duration operator++(int);

Effects
duration temp(*this);
++(*this);
return temp;

STD::CHRONO::DURATION::OPERATOR-- PRE-DECREMENT OPERATOR

Decrements the internal count.

Declaration
duration& operator--();

Effects
--this->internal_count;

Returns
*this

406 APPENDIX D C++ Thread Library reference
STD::CHRONO::DURATION::OPERATOR-- POST-DECREMENT OPERATOR

Decrements the internal count and returns the value of *this prior to the decrement.

Declaration
duration operator--(int);

Effects
duration temp(*this);
--(*this);
return temp;

STD::CHRONO::DURATION::OPERATOR+= COMPOUND ASSIGNMENT OPERATOR

Adds the count for another duration object to the internal count for *this.

Declaration
duration& operator+=(duration const& other);

Effects
internal_count+=other.count();

Returns
*this

STD::CHRONO::DURATION::OPERATOR-= COMPOUND ASSIGNMENT OPERATOR

Subtracts the count for another duration object from the internal count for *this.

Declaration
duration& operator-=(duration const& other);

Effects
internal_count-=other.count();

Returns
*this

STD::CHRONO::DURATION::OPERATOR*= COMPOUND ASSIGNMENT OPERATOR

Multiplies the internal count for *this by the specified value.

Declaration
duration& operator*=(rep const& rhs);

Effects
internal_count*=rhs;

Returns
*this

STD::CHRONO::DURATION::OPERATOR/= COMPOUND ASSIGNMENT OPERATOR

Divides the internal count for *this by the specified value.

Declaration
duration& operator/=(rep const& rhs);

407The <chrono> header
Effects
internal_count/=rhs;

Returns
*this

STD::CHRONO::DURATION::OPERATOR%= COMPOUND ASSIGNMENT OPERATOR

Adjusts the internal count for *this to be the remainder when divided by the speci-
fied value.

Declaration
duration& operator%=(rep const& rhs);

Effects
internal_count%=rhs;

Returns
*this

STD::CHRONO::DURATION::OPERATOR%= COMPOUND ASSIGNMENT OPERATOR

Adjusts the internal count for *this to be the remainder when divided by the count of
the other duration object.

Declaration
duration& operator%=(duration const& rhs);

Effects
internal_count%=rhs.count();

Returns
*this

STD::CHRONO::DURATION::ZERO STATIC MEMBER FUNCTION

Returns a duration object representing a value of zero.

Declaration
constexpr duration zero();

Returns
duration(duration_values<rep>::zero());

STD::CHRONO::DURATION::MIN STATIC MEMBER FUNCTION

Returns a duration object holding the minimum possible value for the specified
instantiation.

Declaration
constexpr duration min();

Returns
duration(duration_values<rep>::min());

408 APPENDIX D C++ Thread Library reference
STD::CHRONO::DURATION::MAX STATIC MEMBER FUNCTION

Returns a duration object holding the maximum possible value for the specified
instantiation.

Declaration
constexpr duration max();

Returns
duration(duration_values<rep>::max());

STD::CHRONO::DURATION EQUALITY COMPARISON OPERATOR

Compares two duration objects for equality, even if they have distinct representations
and/or periods.

Declaration
template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator==(
 const duration<Rep1, Period1>& lhs,
 const duration<Rep2, Period2>& rhs);

Requirements
Either lhs must be implicitly convertible to rhs, or vice versa. If neither can be
implicitly converted to the other, or they are distinct instantiations of duration but
each can implicitly convert to the other, the expression is ill-formed.

Effects
If CommonDuration is a synonym for std::common_type< duration< Rep1, Period1>,
duration< Rep2, Period2>>::type, then lhs==rhs returns CommonDuration(lhs)
.count()==CommonDuration(rhs).count().

STD::CHRONO::DURATION INEQUALITY COMPARISON OPERATOR

Compares two duration objects for inequality, even if they have distinct representa-
tions and/or periods.

Declaration
template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator!=(
 const duration<Rep1, Period1>& lhs,
 const duration<Rep2, Period2>& rhs);

Requirements
Either lhs must be implicitly convertible to rhs, or vice versa. If neither can be
implicitly converted to the other, or they are distinct instantiations of duration but
each can implicitly convert to the other, the expression is ill-formed.

Returns
!(lhs==rhs)

STD::CHRONO::DURATION LESS-THAN COMPARISON OPERATOR

Compares two duration objects to see if one is less than the other, even if they have
distinct representations and/or periods.

409The <chrono> header
Declaration
template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator<(
 const duration<Rep1, Period1>& lhs,
 const duration<Rep2, Period2>& rhs);

Requirements
Either lhs must be implicitly convertible to rhs, or vice versa. If neither can be
implicitly converted to the other, or they are distinct instantiations of duration but
each can implicitly converted to the other, the expression is ill-formed.

Effects
If CommonDuration is a synonym for std::common_type< duration< Rep1, Period1>,
duration< Rep2, Period2>>::type, then lhs<rhs returns CommonDuration(lhs)
.count()<CommonDuration(rhs).count().

STD::CHRONO::DURATION GREATER-THAN COMPARISON OPERATOR

Compares two duration objects to see if one is greater than the other, even if they
have distinct representations and/or periods.

Declaration
template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator>(
 const duration<Rep1, Period1>& lhs,
 const duration<Rep2, Period2>& rhs);

Requirements
Either lhs must be implicitly convertible to rhs, or vice versa. If neither can be
implicitly converted to the other, or they are distinct instantiations of duration but
each can implicitly convert to the other, the expression is ill-formed.

Returns
rhs<lhs

STD::CHRONO::DURATION LESS-THAN-OR-EQUALS COMPARISON OPERATOR

Compares two duration objects to see if one is less than or equal to the other, even if
they have distinct representations and/or periods.

Declaration
template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator<=(
 const duration<Rep1, Period1>& lhs,
 const duration<Rep2, Period2>& rhs);

Requirements
Either lhs must be implicitly convertible to rhs, or vice versa. If neither can be
implicitly converted to the other, or they are distinct instantiations of duration but
each can implicitly convert to the other, the expression is ill-formed.

Returns
!(rhs<lhs)

410 APPENDIX D C++ Thread Library reference
STD::CHRONO::DURATION GREATER-THAN-OR-EQUALS COMPARISON OPERATOR

Compares two duration objects to see if one is greater than or equal to the other,
even if they have distinct representations and/or periods.

Declaration
template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator>=(
 const duration<Rep1, Period1>& lhs,
 const duration<Rep2, Period2>& rhs);

Requirements
Either lhs must be implicitly convertible to rhs, or vice versa. If neither can be
implicitly converted to the other, or they are distinct instantiations of duration but
each can implicitly convert to the other, the expression is ill-formed.

Returns
!(lhs<rhs)

STD::CHRONO::DURATION_CAST NONMEMBER FUNCTION

Explicitly converts an std::chrono::duration object to a specific std::chrono::
duration instantiation.

Declaration
template <class ToDuration, class Rep, class Period>
constexpr ToDuration duration_cast(const duration<Rep, Period>& d);

Requirements
ToDuration must be an instantiation of std::chrono::duration.

Returns
The duration, d converted to the duration type specified by ToDuration. This is
done in such a way as to minimize any loss of precision resulting from conversions
between different scales and representation types.

D.1.2 std::chrono::time_point class template

The std::chrono::time_point class template represents a point in time, as measured by
a particular clock. It’s specified as a duration since the epoch of that particular clock. The
template parameter Clock identifies the clock (each distinct clock must have a unique
type), whereas the Duration template parameter is the type to use for measuring the
duration since the epoch and must be an instantiation of the std::chrono::duration
class template. The Duration defaults to the default duration type of the Clock.

Class definition
template <class Clock,class Duration = typename Clock::duration>
class time_point
{
public:
 typedef Clock clock;
 typedef Duration duration;
 typedef typename duration::rep rep;
 typedef typename duration::period period;

411The <chrono> header
 time_point();
 explicit time_point(const duration& d);

 template <class Duration2>
 time_point(const time_point<clock, Duration2>& t);

 duration time_since_epoch() const;

 time_point& operator+=(const duration& d);
 time_point& operator-=(const duration& d);

 static constexpr time_point min();
 static constexpr time_point max();
};

STD::CHRONO::TIME_POINT DEFAULT CONSTRUCTOR

Constructs a time_point representing the epoch of the associated Clock; the internal
duration is initialized with Duration::zero().

Declaration
time_point();

Postcondition
For a newly default-constructed time_point object, tp, tp.time_since_epoch() ==
tp::duration::zero().

STD::CHRONO::TIME_POINT DURATION CONSTRUCTOR

Constructs a time_point representing the specified duration since the epoch of the
associated Clock.

Declaration
explicit time_point(const duration& d);

Postcondition
For a time_point object, tp, constucted with tp(d) for some duration, d, tp.time_
since_epoch()==d.

STD::CHRONO::TIME_POINT CONVERSION CONSTRUCTOR

Constructs a time_point object from another time_point object with the same Clock
but a distinct Duration.

Declaration
template <class Duration2>
time_point(const time_point<clock, Duration2>& t);

Requirements
Duration2 shall be implicitly convertible to Duration.

Effects
As-if time_point(t.time_since_epoch())

The value returned from t.time_since_epoch() is implicitly converted to an
object of the Duration type, and that value is stored in the newly constructed time_
point object.

412 APPENDIX D C++ Thread Library reference
STD::CHRONO::TIME_POINT::TIME_SINCE_EPOCH MEMBER FUNCTION

Retrieves the duration since the clock epoch for a particular time_point object.

Declaration
duration time_since_epoch() const;

Returns
The duration value stored in *this.

STD::CHRONO::TIME_POINT::OPERATOR+= COMPOUND ASSIGNMENT OPERATOR

Adds the specified duration to the value stored in the specified time_point object.

Declaration
time_point& operator+=(const duration& d);

Effects
Adds d to the internal duration object of *this, as-if

this->internal_duration += d;

Returns
*this

STD::CHRONO::TIME_POINT::OPERATOR-= COMPOUND ASSIGNMENT OPERATOR

Subtracts the specified duration from the value stored in the specified time_point
object.

Declaration
time_point& operator-=(const duration& d);

Effects
Subtracts d from the internal duration object of *this, as-if

this->internal_duration -= d;

Returns
*this

STD::CHRONO::TIME_POINT::MIN STATIC MEMBER FUNCTION

Obtains a time_point object representing the minimum possible value for its type.

Declaration
static constexpr time_point min();

Returns
time_point(time_point::duration::min()) (see 11.1.1.15)

STD::CHRONO::TIME_POINT::MAX STATIC MEMBER FUNCTION

Obtains a time_point object representing the maximum possible value for its type.

Declaration
static constexpr time_point max();

Returns
time_point(time_point::duration::max()) (see 11.1.1.16)

413The <chrono> header
D.1.3 std::chrono::system_clock class

The std::chrono::system_clock class provides a means of obtaining the current
wall-clock time from the system-wide real-time clock. The current time can be obtained
by calling std::chrono::system_clock::now(). Instances of std::chrono::system_
clock::time_point can be converted to and from time_t with the std::chrono::
system_clock::to_time_t() and std::chrono::system_clock::to_time_point()
functions. The system clock isn’t steady, so a subsequent call to std::chrono::system_
clock::now() may return an earlier time than a previous call (for example, if the
operating system clock is manually adjusted or synchronized with an external clock).

Class definition
class system_clock
{
public:
 typedef unspecified-integral-type rep;
 typedef std::ratio<unspecified,unspecified> period;
 typedef std::chrono::duration<rep,period> duration;
 typedef std::chrono::time_point<system_clock> time_point;
 static const bool is_steady=unspecified;

 static time_point now() noexcept;

 static time_t to_time_t(const time_point& t) noexcept;
 static time_point from_time_t(time_t t) noexcept;
};

STD::CHRONO::SYSTEM_CLOCK::REP TYPEDEF
A typedef for an integral type used to hold the number of ticks in a duration value.

Declaration
typedef unspecified-integral-type rep;

STD::CHRONO::SYSTEM_CLOCK::PERIOD TYPEDEF
A typedef for an instantiation of the std::ratio class template that specifies the
smallest number of seconds (or fractions of a second) between distinct values of
duration or time_point. The period specifies the precision of the clock, not the tick
frequency.

Declaration
typedef std::ratio<unspecified,unspecified> period;

STD::CHRONO::SYSTEM_CLOCK::DURATION TYPEDEF
An instantiation of the std::chrono::duration class template that can hold the dif-
ference between any two time points returned by the system-wide real-time clock.

Declaration
typedef std::chrono::duration<
 std::chrono::system_clock::rep,
 std::chrono::system_clock::period> duration;

414 APPENDIX D C++ Thread Library reference
STD::CHRONO::SYSTEM_CLOCK::TIME_POINT TYPEDEF
An instantiation of the std::chrono::time_point class template that can hold time
points returned by the system-wide real-time clock.

Declaration
typedef std::chrono::time_point<std::chrono::system_clock> time_point;

STD::CHRONO::SYSTEM_CLOCK::NOW STATIC MEMBER FUNCTION
Obtains the current wall-clock time from the system-wide real-time clock.

Declaration
time_point now() noexcept;

Returns
A time_point representing the current time of the system-wide real-time clock.

Throws
An exception of type std::system_error if an error occurs.

STD::CHRONO::SYSTEM_CLOCK::TO_TIME_T STATIC MEMBER FUNCTION
Converts an instance of time_point to time_t.

Declaration
time_t to_time_t(time_point const& t) noexcept;

Returns
A time_t value that represents the same point in time as t, rounded or truncated
to seconds precision.

Throws
An exception of type std::system_error if an error occurs.

STD::CHRONO::SYSTEM_CLOCK::FROM_TIME_T STATIC MEMBER FUNCTION
Converts an instance of time_t to time_point.

Declaration
time_point from_time_t(time_t const& t) noexcept;

Returns
A time_point value that represents the same point in time as t.

Throws
An exception of type std::system_error if an error occurs.

D.1.4 std::chrono::steady_clock class

The std::chrono::steady_clock class provides access to the system-wide steady clock.
The current time can be obtained by calling std::chrono::steady_clock::now().
There is no fixed relationship between values returned by std::chrono::steady_
clock::now() and wall-clock time. A steady clock can’t go backwards, so if one call to
std::chrono::steady_clock::now() happens-before another call to std::chrono
::steady_clock::now(), the second call must return a time point equal to or later
than the first. The clock advances at a uniform rate as far as possible.

415The <chrono> header
Class definition
class steady_clock
{
public:
 typedef unspecified-integral-type rep;
 typedef std::ratio<
 unspecified,unspecified> period;
 typedef std::chrono::duration<rep,period> duration;
 typedef std::chrono::time_point<steady_clock>
 time_point;
 static const bool is_steady=true;

 static time_point now() noexcept;
};

STD::CHRONO::STEADY_CLOCK::REP TYPEDEF
This typedef is for an integral type used to hold the number of ticks in a duration
value.

Declaration
typedef unspecified-integral-type rep;

STD::CHRONO::STEADY_CLOCK::PERIOD TYPEDEF
This is a typedef for an instantiation of the std::ratio class template that specifies
the smallest number of seconds (or fractions of a second) between distinct values of
duration or time_point. The period specifies the precision of the clock, not the tick
frequency.

Declaration
typedef std::ratio<unspecified,unspecified> period;

STD::CHRONO::STEADY_CLOCK::DURATION TYPEDEF
This is an instantiation of the std::chrono::duration class template that can hold
the difference between any two time points returned by the system-wide steady clock.

Declaration
typedef std::chrono::duration<
 std::chrono::steady_clock::rep,
 std::chrono::steady_clock::period> duration;

STD::CHRONO::STEADY_CLOCK::TIME_POINT TYPEDEF
This instantiation of the std::chrono::time_point class template can hold time
points returned by the system-wide steady clock.

Declaration
typedef std::chrono::time_point<std::chrono::steady_clock> time_point;

STD::CHRONO::STEADY_CLOCK::NOW STATIC MEMBER FUNCTION
Obtains the current time from the system-wide steady clock.

Declaration
time_point now() noexcept;

416 APPENDIX D C++ Thread Library reference
Returns
A time_point representing the current time of the system-wide steady clock.

Throws
An exception of type std::system_error if an error occurs.

Synchronization
If one call to std::chrono::steady_clock::now() happens-before another, the
time_point returned by the first call shall compare less-than or equal-to the time_
point returned by the second call.

D.1.5 std::chrono::high_resolution_clock typedef

The std::chrono::high_resolution_clock class provides access to the system-wide
clock with the highest resolution. As for all clocks, the current time can be obtained
by calling std::chrono::high_resolution_clock::now(). std::chrono::high_

resolution_clock may be a typedef for the std::chrono::system_clock class or the
std::chrono::steady_clock class, or it may be a separate type.

 Although std::chrono::high_resolution_clock has the highest resolution of all
the library-supplied clocks, std::chrono::high_resolution_clock::now() still takes
a finite amount of time. You must take care to account for the overhead of calling
std::chrono::high_resolution_clock::now() when timing short operations.

Class definition
class high_resolution_clock
{
public:
 typedef unspecified-integral-type rep;
 typedef std::ratio<
 unspecified,unspecified> period;
 typedef std::chrono::duration<rep,period> duration;
 typedef std::chrono::time_point<
 unspecified> time_point;
 static const bool is_steady=unspecified;

 static time_point now() noexcept;
};

D.2 <condition_variable> header
The <condition_variable> header provides condition variables. These are basic-
level synchronization mechanisms that allow a thread to block until notified that some
condition is true or a timeout period has elapsed.

Header contents
namespace std
{
 enum class cv_status { timeout, no_timeout };

 class condition_variable;
 class condition_variable_any;
}

417<condition_variable> header
D.2.1 std::condition_variable class

The std::condition_variable class allows a thread to wait for a condition to become
true. Instances of std::condition_variable aren’t CopyAssignable, CopyConstruct-
ible, MoveAssignable, or MoveConstructible.

Class definition
class condition_variable
{
public:
 condition_variable();
 ~condition_variable();

 condition_variable(condition_variable const&) = delete;
 condition_variable& operator=(condition_variable const&) = delete;

 void notify_one() noexcept;
 void notify_all() noexcept;

 void wait(std::unique_lock<std::mutex>& lock);

 template <typename Predicate>
 void wait(std::unique_lock<std::mutex>& lock,Predicate pred);

 template <typename Clock, typename Duration>
 cv_status wait_until(
 std::unique_lock<std::mutex>& lock,
 const std::chrono::time_point<Clock, Duration>& absolute_time);

 template <typename Clock, typename Duration, typename Predicate>
 bool wait_until(
 std::unique_lock<std::mutex>& lock,
 const std::chrono::time_point<Clock, Duration>& absolute_time,
 Predicate pred);

 template <typename Rep, typename Period>
 cv_status wait_for(
 std::unique_lock<std::mutex>& lock,
 const std::chrono::duration<Rep, Period>& relative_time);

 template <typename Rep, typename Period, typename Predicate>
 bool wait_for(
 std::unique_lock<std::mutex>& lock,
 const std::chrono::duration<Rep, Period>& relative_time,
 Predicate pred);
};

void notify_all_at_thread_exit(condition_variable&,unique_lock<mutex>);

STD::CONDITION_VARIABLE DEFAULT CONSTRUCTOR
Constructs an std::condition_variable object.

Declaration
condition_variable();

Effects
Constructs a new std::condition_variable instance.

418 APPENDIX D C++ Thread Library reference
Throws
An exception of type std::system_error if the condition variable could not be
constructed.

STD::CONDITION_VARIABLE DESTRUCTOR
Destroys an std::condition_variable object.

Declaration
~condition_variable();

Preconditions
There are no threads blocked on *this in a call to wait(), wait_for(), or
wait_until().

Effects
Destroys *this.

Throws
Nothing.

STD::CONDITION_VARIABLE::NOTIFY_ONE MEMBER FUNCTION
Wakes one of the threads currently waiting on a std::condition_variable.

Declaration
void notify_one() noexcept;

Effects
Wakes one of the threads waiting on *this at the point of the call. If there are no
threads waiting, the call has no effect.

Throws
std::system_error if the effects can’t be achieved.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for(), and wait_until() on
a single std::condition_variable instance are serialized. A call to notify_one()
or notify_all() will only wake threads that started waiting prior to that call.

STD::CONDITION_VARIABLE::NOTIFY_ALL MEMBER FUNCTION
Wake all of the threads currently waiting on a std::condition_variable.

Declaration
void notify_all() noexcept;

Effects
Wakes all of the threads waiting on *this at the point of the call. If there are no
threads waiting, the call has no effect.

Throws
std::system_error if the effects can’t be achieved.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for(), and wait_until() on
a single std::condition_variable instance are serialized. A call to notify_one()
or notify_all() will only wake threads that started waiting prior to that call.

419<condition_variable> header
STD::CONDITION_VARIABLE::WAIT MEMBER FUNCTION
Waits until std::condition_variable is woken by a call to notify_one(), a call to
notify_all(), or a spurious wakeup.

Declaration
void wait(std::unique_lock<std::mutex>& lock);

Preconditions
lock.owns_lock()is true, and the lock is owned by the calling thread.

Effects
Atomically unlocks the supplied lock object and block until the thread is woken by
a call to notify_one()or notify_all()by another thread, or the thread is woken
spuriously. The lock object is locked again before the call to wait() returns.

Throws
std::system_error if the effects can’t be achieved. If the lock object is unlocked
during the call to wait(), it’s locked again on exit, even if the function exits via an
exception.

NOTE The spurious wakeups mean that a thread calling wait() may wake
even though no thread has called notify_one() or notify_all(). It’s there-
fore recommended that the overload of wait() that takes a predicate is used
in preference where possible. Otherwise, it’s recommended that wait() be
called in a loop that tests the predicate associated with the condition variable.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for(), and wait_until() on
a single std::condition_variable instance are serialized. A call to notify_one()
or notify_all() will only wake threads that started waiting prior to that call.

STD::CONDITION_VARIABLE::WAIT MEMBER FUNCTION OVERLOAD THAT TAKES A PREDICATE
Waits until std::condition_variable is woken by a call to notify_one() or notify_
all(), and the predicate is true.

Declaration
template<typename Predicate>
void wait(std::unique_lock<std::mutex>& lock,Predicate pred);

Preconditions
The expression pred() shall be valid and shall return a value convertible to bool.
lock.owns_lock() shall be true, and the lock shall be owned by the thread calling
wait().

Effects
As-if

while(!pred())
{
 wait(lock);
}

420 APPENDIX D C++ Thread Library reference
Throws
Any exception thrown by a call to pred, or std::system_error if the effects couldn’t
be achieved.

NOTE The potential for spurious wakeups means that it’s unspecified how
many times pred will be called. pred will always be invoked with the mutex ref-
erenced by lock locked, and the function shall return if (and only if) an eval-
uation of (bool)pred() returns true.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for() and wait_until() on a
single std::condition_variable instance are serialized. A call to notify_one() or
notify_all() will only wake threads that started waiting prior to that call.

STD::CONDITION_VARIABLE::WAIT_FOR MEMBER FUNCTION
Waits until std::condition_variable is notified by a call to notify_one() or noti-
fy_all(), or until a specified time period has elapsed or the thread is woken spuri-
ously.

Declaration
template<typename Rep,typename Period>
cv_status wait_for(
 std::unique_lock<std::mutex>& lock,
 std::chrono::duration<Rep,Period> const& relative_time);

Preconditions
lock.owns_lock() is true, and the lock is owned by the calling thread.

Effects
Atomically unlocks the supplied lock object and block until the thread is woken by
a call to notify_one() or notify_all() by another thread, or the time period
specified by relative_time has elapsed, or the thread is woken spuriously. The
lock object is locked again before the call to wait_for() returns.

Returns
std::cv_status::no_timeout if the thread was woken by a call to notify_one(), a
call to notify_all(), or a spurious wakeup, std::cv_status::timeout otherwise.

Throws
std::system_error if the effects can’t be achieved. If the lock object is unlocked
during the call to wait_for(), it’s locked again on exit, even if the function exits
via an exception.

NOTE The spurious wakeups mean that a thread calling wait_for() may
wake even though no thread has called notify_one() or notify_all(). It’s
therefore recommended that the overload of wait_for() that takes a predi-
cate is used in preference where possible. Otherwise, it’s recommended that
wait_for() be called in a loop that tests the predicate associated with the con-
dition variable. Care must be taken when doing this to ensure that the timeout
is still valid; wait_until() may be more appropriate in many circumstances.

421<condition_variable> header
The thread may be blocked for longer than the specified duration. Where
possible, the elapsed time is determined by a steady clock.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for(), and wait_until() on
a single std::condition_variable instance are serialized. A call to notify_one()
or notify_all() will only wake threads that started waiting prior to that call.

STD::CONDITION_VARIABLE::WAIT_FOR MEMBER FUNCTION OVERLOAD THAT TAKES A PREDICATE
Wait until std::condition_variable is woken by a call to notify_one() or notify_
all() and the predicate is true, or until the specified time period has elapsed.

Declaration
template<typename Rep,typename Period,typename Predicate>
bool wait_for(
 std::unique_lock<std::mutex>& lock,
 std::chrono::duration<Rep,Period> const& relative_time,
 Predicate pred);

Preconditions
The expression pred() shall be valid and shall return a value that’s convertible to
bool. lock.owns_lock() shall be true, and the lock shall be owned by the thread
calling wait().

Effects
As-if

internal_clock::time_point end=internal_clock::now()+relative_time;
while(!pred())
{
 std::chrono::duration<Rep,Period> remaining_time=
 end-internal_clock::now();
 if(wait_for(lock,remaining_time)==std::cv_status::timeout)
 return pred();
}
return true;

Returns
true if the most recent call to pred() returned true, false if the time period spec-
ified by relative_time has elapsed and pred() returned false.

NOTE The potential for spurious wakeups means that it’s unspecified how
many times pred will be called. pred will always be invoked with the mutex
referenced by lock locked, and the function shall return if (and only if) an
evaluation of (bool)pred() returns true or the time period specified by
relative_time has elapsed. The thread may be blocked for longer than the
specified duration. Where possible, the elapsed time is determined by a
steady clock.

Throws
Any exception thrown by a call to pred, or std::system_error if the effects couldn’t
be achieved.

422 APPENDIX D C++ Thread Library reference
Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for(), and wait_until() on
a single std::condition_variable instance are serialized. A call to notify_one()
or notify_all() will only wake threads that started waiting prior to that call.

STD::CONDITION_VARIABLE::WAIT_UNTIL MEMBER FUNCTION
Waits until std::condition_variable is notified by a call to notify_one() or notify
_all(), until a specified time has been reached, or the thread is woken spuriously.

Declaration
template<typename Clock,typename Duration>
cv_status wait_until(
 std::unique_lock<std::mutex>& lock,
 std::chrono::time_point<Clock,Duration> const& absolute_time);

Preconditions
lock.owns_lock() is true, and the lock is owned by the calling thread.

Effects
Atomically unlocks the supplied lock object and block until the thread is woken by a
call to notify_one() or notify_all() by another thread, or Clock::now() returns a
time equal to or later than absolute_time or the thread is woken spuriously. The
lock object is locked again before the call to wait_until() returns.

Returns
std::cv_status::no_timeout if the thread was woken by a call to notify_one(), a
call to notify_all(), or a spurious wakeup, std::cv_status::timeout otherwise.

Throws
std::system_error if the effects can’t be achieved. If the lock object is unlocked
during the call to wait_until(), it’s locked again on exit, even if the function exits
via an exception.

NOTE The spurious wakeups mean that a thread calling wait_until() may
wake even though no thread has called notify_one() or notify_all(). It’s
therefore recommended that the overload of wait_until() that takes a pred-
icate is used in preference where possible. Otherwise, it’s recommended that
wait_until() be called in a loop that tests the predicate associated with the
condition variable. There’s no guarantee as to how long the calling thread
will be blocked, only that if the function returns false, then Clock::now()
returns a time equal to or later than absolute_time at the point at which the
thread became unblocked.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for(), and wait_until() on
a single std::condition_variable instance are serialized. A call to notify_one()
or notify_all() will only wake threads that started waiting prior to that call.

423<condition_variable> header
STD::CONDITION_VARIABLE::WAIT_UNTIL MEMBER FUNCTION OVERLOAD THAT TAKES A PREDICATE
Wait until std::condition_variable is woken by a call to notify_one() or notify_
all() and the predicate is true, or until the specified time has been reached.

Declaration
template<typename Clock,typename Duration,typename Predicate>
bool wait_until(
 std::unique_lock<std::mutex>& lock,
 std::chrono::time_point<Clock,Duration> const& absolute_time,
 Predicate pred);

Preconditions
The expression pred() shall be valid and shall return a value convertible to bool.
lock.owns_lock() shall be true, and the lock shall be owned by the thread calling
wait().

Effects
As-if

while(!pred())
{
 if(wait_until(lock,absolute_time)==std::cv_status::timeout)
 return pred();
}
return true;

Returns
true if the most recent call to pred() returned true, false if a call to Clock::now()
returned a time equal to or later than the time specified by absolute_time and
pred() returned false.

NOTE The potential for spurious wakeups means that it’s unspecified how
many times pred will be called. pred will always be invoked with the mutex ref-
erenced by lock locked, and the function shall return if (and only if) an eval-
uation of (bool)pred() returns true or Clock::now() returns a time equal to
or later than absolute_time. There’s no guarantee as to how long the calling
thread will be blocked, only that if the function returns false, then Clock::
now() returns a time equal to or later than absolute_time at the point at
which the thread became unblocked.

Throws
Any exception thrown by a call to pred, or std::system_error if the effects couldn’t
be achieved.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_until(), and wait_until() on
a single std::condition_variable instance are serialized. A call to notify_one() or
notify_all() will wake only threads that started waiting prior to that call.

424 APPENDIX D C++ Thread Library reference
STD::NOTIFY_ALL_AT_THREAD_EXIT NONMEMBER FUNCTION
Wake all of the threads waiting on a specific a std::condition_variable when the
current thread exits.

Declaration
void notify_all_at_thread_exit(
 condition_variable& cv,unique_lock<mutex> lk);

Preconditions
lk.owns_lock() is true, and the lock is owned by the calling thread. lk.mutex()
shall return the same value as for any of the lock objects supplied to wait(),
wait_for(), or wait_until() on cv from concurrently waiting threads.

Effects
Transfers ownership of the lock held by lk into internal storage and schedules cv
to be notified when the calling thread exits. This notification shall be as-if

lk.unlock();
cv.notify_all();

Throws
std::system_error if the effects can’t be achieved.

NOTE The lock is held until the thread exits, so care must be taken to avoid
deadlock. It’s recommended that the calling thread should exit as soon as
possible and that no blocking operations be performed on this thread.

The user should ensure that waiting threads don’t erroneously assume that the
thread has exited when they are woken, particularly with the potential for spurious
wakeups. This can be achieved by testing a predicate on the waiting thread that’s
only made true by the notifying thread under the protection of the mutex and
without releasing the lock on the mutex prior to the call of notify_all_at_thread
_exit.std::condition_variable_any class.

D.2.2 std::condition_variable_any class

The std::condition_variable_any class allows a thread to wait for a condition to
become true. Whereas std::condition_variable can be used only with std::unique_
lock<std::mutex>, std::condition_variable_any can be used with any type that
meets the Lockable requirements.

 Instances of std::condition_variable_any aren’t CopyAssignable, Copy-
Constructible, MoveAssignable, or MoveConstructible.

Class definition
class condition_variable_any
{
public:
 condition_variable_any();
 ~condition_variable_any();

 condition_variable_any(
 condition_variable_any const&) = delete;

425<condition_variable> header
 condition_variable_any& operator=(
 condition_variable_any const&) = delete;

 void notify_one() noexcept;
 void notify_all() noexcept;

 template<typename Lockable>
 void wait(Lockable& lock);

 template <typename Lockable, typename Predicate>
 void wait(Lockable& lock, Predicate pred);

 template <typename Lockable, typename Clock,typename Duration>
 std::cv_status wait_until(
 Lockable& lock,
 const std::chrono::time_point<Clock, Duration>& absolute_time);

 template <
 typename Lockable, typename Clock,
 typename Duration, typename Predicate>
 bool wait_until(
 Lockable& lock,
 const std::chrono::time_point<Clock, Duration>& absolute_time,
 Predicate pred);

 template <typename Lockable, typename Rep, typename Period>
 std::cv_status wait_for(
 Lockable& lock,
 const std::chrono::duration<Rep, Period>& relative_time);

 template <
 typename Lockable, typename Rep,
 typename Period, typename Predicate>
 bool wait_for(
 Lockable& lock,
 const std::chrono::duration<Rep, Period>& relative_time,
 Predicate pred);
};

STD::CONDITION_VARIABLE_ANY DEFAULT CONSTRUCTOR
Constructs an std::condition_variable_any object.

Declaration
condition_variable_any();

Effects
Constructs a new std::condition_variable_any instance.

Throws
An exception of type std::system_error if the condition variable couldn’t be con-
structed.

STD::CONDITION_VARIABLE_ANY DESTRUCTOR
Destroys an std::condition_variable_any object.

Declaration
~condition_variable_any();

426 APPENDIX D C++ Thread Library reference
Preconditions
There are no threads blocked on *this in a call to wait(), wait_for(), or wait_
until().

Effects
Destroys *this.

Throws
Nothing.

STD::CONDITION_VARIABLE_ANY::NOTIFY_ONE MEMBER FUNCTION
Wakes one of the threads currently waiting on a specific a std::condition_variable
_any.

Declaration
void notify_one() noexcept;

Effects
Wakes one of the threads waiting on *this at the point of the call. If there are no
threads waiting, the call has no effect.

Throws
std::system_error if the effects can’t be achieved.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for(), and wait_until() on
a single std::condition_variable_any instance are serialized. A call to notify_
one() or notify_all() will only wake threads that started waiting prior to that call.

STD::CONDITION_VARIABLE_ANY::NOTIFY_ALL MEMBER FUNCTION
Wakes all of the threads currently waiting on a specific a std::condition_variable
_any.

Declaration
void notify_all() noexcept;

Effects
Wakes all of the threads waiting on *this at the point of the call. If there are no
threads waiting, the call has no effect.

Throws
std::system_error if the effects can’t be achieved.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for(), and wait_until() on
a single std::condition_variable_any instance are serialized. A call to notify_
one() or notify_all() will only wake threads that started waiting prior to that call.

STD::CONDITION_VARIABLE_ANY::WAIT MEMBER FUNCTION
Waits until std::condition_variable_any is woken by a call to notify_one(), a call
to notify_all(), or a spurious wakeup.

Declaration
template<typename Lockable>
void wait(Lockable& lock);

427<condition_variable> header
Preconditions
Lockable meets the Lockable requirements, and lock owns a lock.

Effects
Atomically unlocks the supplied lock object and block until the thread is woken by
a call to notify_one() or notify_all() by another thread, or the thread is woken
spuriously. The lock object is locked again before the call to wait() returns.

Throws
std::system_error if the effects can’t be achieved. If the lock object is unlocked
during the call to wait(), it’s locked again on exit, even if the function exits via an
exception.

NOTE The spurious wakeups mean that a thread calling wait() may wake
even though no thread has called notify_one() or notify_all(). It’s there-
fore recommended that the overload of wait() that takes a predicate is used
in preference where possible. Otherwise, it’s recommended that wait() be
called in a loop that tests the predicate associated with the condition variable.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for(), and wait_until() on
a single std::condition_variable_any instance are serialized. A call to notify_
one() or notify_all() will only wake threads that started waiting prior to that call.

STD::CONDITION_VARIABLE_ANY::WAIT MEMBER FUNCTION OVERLOAD THAT TAKES A PREDICATE
Waits until std::condition_variable_any is woken by a call to notify_one() or
notify_all() and the predicate is true.

Declaration
template<typename Lockable,typename Predicate>
void wait(Lockable& lock,Predicate pred);

Preconditions
The expression pred() shall be valid and shall return a value that’s convertible to
bool. Lockable meets the Lockable requirements, and lock owns a lock.

Effects
As-if

while(!pred())
{
 wait(lock);
}

Throws
Any exception thrown by a call to pred, or std::system_error if the effects could
not be achieved.

NOTE The potential for spurious wakeups means that it’s unspecified how
many times pred will be called. pred will always be invoked with the mutex ref-
erenced by lock locked, and the function shall return if (and only if) an eval-
uation of (bool)pred() returns true.

428 APPENDIX D C++ Thread Library reference
Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for(), and wait_until() on
a single std::condition_variable_any instance are serialized. A call to notify_
one() or notify_all() will only wake threads that started waiting prior to that call.

STD::CONDITION_VARIABLE_ANY::WAIT_FOR MEMBER FUNCTION
Waits until std::condition_variable_any is notified by a call to notify_one() or
notify_all(), until a specified time period has elapsed, or the thread is woken spu-
riously.

Declaration
template<typename Lockable,typename Rep,typename Period>
std::cv_status wait_for(
 Lockable& lock,
 std::chrono::duration<Rep,Period> const& relative_time);

Preconditions
Lockable meets the Lockable requirements, and lock owns a lock.

Effects
Atomically unlocks the supplied lock object and block until the thread is woken by
a call to notify_one() or notify_all() by another thread or the time period spec-
ified by relative_time has elapsed or the thread is woken spuriously. The lock
object is locked again before the call to wait_for() returns.

Returns
std::cv_status::no_timeout if the thread was woken by a call to notify_one(), a
call to notify_all(), or a spurious wakeup, std::cv_status::timeout otherwise.

Throws
std::system_error if the effects can’t be achieved. If the lock object is unlocked
during the call to wait_for(), it’s locked again on exit, even if the function exits
via an exception.

NOTE The spurious wakeups mean that a thread calling wait_for() may
wake even though no thread has called notify_one() or notify_all(). It’s
therefore recommended that the overload of wait_for() that takes a predi-
cate is used in preference where possible. Otherwise, it’s recommended that
wait_for() be called in a loop that tests the predicate associated with the
condition variable. Care must be taken when doing this to ensure that the
timeout is still valid; wait_until() may be more appropriate in many circum-
stances. The thread may be blocked for longer than the specified duration.
Where possible, the elapsed time is determined by a steady clock.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for(), and wait_until() on
a single std::condition_variable_any instance are serialized. A call to notify_
one() or notify_all() will only wake threads that started waiting prior to that call.

429<condition_variable> header
STD::CONDITION_VARIABLE_ANY::WAIT_FOR MEMBER FUNCTION OVERLOAD THAT TAKES A PREDICATE
Waits until std::condition_variable_any is woken by a call to notify_one() or notify
_all() and the predicate is true, or until the specified time period has elapsed.

Declaration
template<typename Lockable,typename Rep,
 typename Period, typename Predicate>
bool wait_for(
 Lockable& lock,
 std::chrono::duration<Rep,Period> const& relative_time,
 Predicate pred);

Preconditions
The expression pred() shall be valid and shall return a value that’s convertible to
bool. Lockable meets the Lockable requirements, and lock owns a lock.

Effects
As-if

internal_clock::time_point end=internal_clock::now()+relative_time;
while(!pred())
{
 std::chrono::duration<Rep,Period> remaining_time=
 end-internal_clock::now();
 if(wait_for(lock,remaining_time)==std::cv_status::timeout)
 return pred();
}
return true;

Returns
true if the most recent call to pred() returned true, false if the time period spec-
ified by relative_time has elapsed and pred() returned false.

NOTE The potential for spurious wakeups means that it’s unspecified how
many times pred will be called. pred will always be invoked with the mutex
referenced by lock locked, and the function shall return if (and only if) an
evaluation of (bool)pred() returns true or the time period specified by
relative_time has elapsed. The thread may be blocked for longer than the
specified duration. Where possible, the elapsed time is determined by a
steady clock.

Throws
Any exception thrown by a call to pred, or std::system_error if the effects couldn’t
be achieved.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for(), and wait_until() on
a single std::condition_variable_any instance are serialized. A call to notify_
one() or notify_all() will only wake threads that started waiting prior to that call.

430 APPENDIX D C++ Thread Library reference
STD::CONDITION_VARIABLE_ANY::WAIT_UNTIL MEMBER FUNCTION
Waits until std::condition_variable_any is notified by a call to notify_one() or
notify_all(), until a specified time has been reached, or the thread is woken
spuriously.

Declaration
template<typename Lockable,typename Clock,typename Duration>
std::cv_status wait_until(
 Lockable& lock,
 std::chrono::time_point<Clock,Duration> const& absolute_time);

Preconditions
Lockable meets the Lockable requirements, and lock owns a lock.

Effects
Atomically unlocks the supplied lock object and block until the thread is woken by
a call to notify_one() or notify_all() by another thread, Clock::now() returns
a time equal to or later than absolute_time, or the thread is woken spuriously. The
lock object is locked again before the call to wait_until() returns.

Returns
std::cv_status::no_timeout if the thread was woken by a call to notify_one(), a
call to notify_all(), or a spurious wakeup, std::cv_status::timeout otherwise.

Throws
std::system_error if the effects can’t be achieved. If the lock object is unlocked
during the call to wait_until(), it’s locked again on exit, even if the function exits
via an exception.

NOTE The spurious wakeups mean that a thread calling wait_until() may
wake even though no thread has called notify_one() or notify_all(). It’s
therefore recommended that the overload of wait_until() that takes a pred-
icate is used in preference where possible. Otherwise, it’s recommended that
wait_until() be called in a loop that tests the predicate associated with the
condition variable. There’s no guarantee as to how long the calling thread
will be blocked, only that if the function returns false, then Clock::now()
returns a time equal to or later than absolute_time at the point at which the
thread became unblocked.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for(), and wait_until() on
a single std::condition_variable_any instance are serialized. A call to notify_
one() or notify_all() will only wake threads that started waiting prior to that call.

STD::CONDITION_VARIABLE_ANY::WAIT_UNTIL MEMBER FUNCTION OVERLOAD THAT TAKES A PREDICATE
Waits until std::condition_variable_any is woken by a call to notify_one() or
notify_all() and the predicate is true, or until the specified time has been reached.

Declaration
template<typename Lockable,typename Clock,
 typename Duration, typename Predicate>

431<atomic> header
bool wait_until(
 Lockable& lock,
 std::chrono::time_point<Clock,Duration> const& absolute_time,
 Predicate pred);

Preconditions
The expression pred() shall be valid, and shall return a value that’s convertible to
bool. Lockable meets the Lockable requirements, and lock owns a lock.

Effects
As-if

while(!pred())
{
 if(wait_until(lock,absolute_time)==std::cv_status::timeout)
 return pred();
}
return true;

Returns
true if the most recent call to pred() returned true, false if a call to Clock::
now() returned a time equal to or later than the time specified by absolute_time,
and pred() returned false.

NOTE The potential for spurious wakeups means that it’s unspecified how
many times pred will be called. pred will always be invoked with the mutex ref-
erenced by lock locked, and the function shall return if (and only if) an eval-
uation of (bool)pred() returns true or Clock::now() returns a time equal to
or later than absolute_time. There’s no guarantee as to how long the calling
thread will be blocked, only that if the function returns false, then Clock::
now() returns a time equal to or later than absolute_time at the point at
which the thread became unblocked.

Throws
Any exception thrown by a call to pred, or std::system_error if the effects couldn’t
be achieved.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_until(), and wait_until()
on a single std::condition_variable_any instance are serialized. A call to notify_
one() or notify_all() will only wake threads that started waiting prior to that call.

D.3 <atomic> header
The <atomic> header provides the set of basic atomic types and operations on those
types and a class template for constructing an atomic version of a user-defined type
that meets certain criteria.

Header contents
#define ATOMIC_BOOL_LOCK_FREE see description
#define ATOMIC_CHAR_LOCK_FREE see description
#define ATOMIC_SHORT_LOCK_FREE see description

432 APPENDIX D C++ Thread Library reference
#define ATOMIC_INT_LOCK_FREE see description
#define ATOMIC_LONG_LOCK_FREE see description
#define ATOMIC_LLONG_LOCK_FREE see description
#define ATOMIC_CHAR16_T_LOCK_FREE see description
#define ATOMIC_CHAR32_T_LOCK_FREE see description
#define ATOMIC_WCHAR_T_LOCK_FREE see description
#define ATOMIC_POINTER_LOCK_FREE see description

#define ATOMIC_VAR_INIT(value) see description

namespace std
{
 enum memory_order;

 struct atomic_flag;
 typedef see description atomic_bool;
 typedef see description atomic_char;
 typedef see description atomic_char16_t;
 typedef see description atomic_char32_t;
 typedef see description atomic_schar;
 typedef see description atomic_uchar;
 typedef see description atomic_short;
 typedef see description atomic_ushort;
 typedef see description atomic_int;
 typedef see description atomic_uint;
 typedef see description atomic_long;
 typedef see description atomic_ulong;
 typedef see description atomic_llong;
 typedef see description atomic_ullong;
 typedef see description atomic_wchar_t;

 typedef see description atomic_int_least8_t;
 typedef see description atomic_uint_least8_t;
 typedef see description atomic_int_least16_t;
 typedef see description atomic_uint_least16_t;
 typedef see description atomic_int_least32_t;
 typedef see description atomic_uint_least32_t;
 typedef see description atomic_int_least64_t;
 typedef see description atomic_uint_least64_t;
 typedef see description atomic_int_fast8_t;
 typedef see description atomic_uint_fast8_t;
 typedef see description atomic_int_fast16_t;
 typedef see description atomic_uint_fast16_t;
 typedef see description atomic_int_fast32_t;
 typedef see description atomic_uint_fast32_t;
 typedef see description atomic_int_fast64_t;
 typedef see description atomic_uint_fast64_t;
 typedef see description atomic_int8_t;
 typedef see description atomic_uint8_t;
 typedef see description atomic_int16_t;
 typedef see description atomic_uint16_t;
 typedef see description atomic_int32_t;
 typedef see description atomic_uint32_t;
 typedef see description atomic_int64_t;
 typedef see description atomic_uint64_t;
 typedef see description atomic_intptr_t;
 typedef see description atomic_uintptr_t;

433<atomic> header
 typedef see description atomic_size_t;
 typedef see description atomic_ssize_t;
 typedef see description atomic_ptrdiff_t;
 typedef see description atomic_intmax_t;
 typedef see description atomic_uintmax_t;

 template<typename T>
 struct atomic;

 extern "C" void atomic_thread_fence(memory_order order);
 extern "C" void atomic_signal_fence(memory_order order);

 template<typename T>
 T kill_dependency(T);
}

D.3.1 std::atomic_xxx typedefs

For compatibility with the forthcoming C Standard, typedefs for the atomic integral
types are provided. For C++17, these must be typedefs to the corresponding std::
atomic<T> specialization; for prior C++ standards, they may instead be a base class of
that specialization with the same interface.

Table D.1 Atomic typedefs and their corresponding std::atomic<> specializations

std::atomic_itype std::atomic<> specialization

std::atomic_char std::atomic<char>

std::atomic_schar std::atomic<signed char>

std::atomic_uchar std::atomic<unsigned char>

std::atomic_short std::atomic<short>

std::atomic_ushort std::atomic<unsigned short>

std::atomic_int std::atomic<int>

std::atomic_uint std::atomic<unsigned int>

std::atomic_long std::atomic<long>

std::atomic_ulong std::atomic<unsigned long>

std::atomic_llong std::atomic<long long>

std::atomic_ullong std::atomic<unsigned long long>

std::atomic_wchar_t std::atomic<wchar_t>

std::atomic_char16_t std::atomic<char16_t>

std::atomic_char32_t std::atomic<char32_t>

434 APPENDIX D C++ Thread Library reference
D.3.2 ATOMIC_xxx_LOCK_FREE macros

These macros specify whether the atomic types corresponding to particular built-in
types are lock-free.

Macro declarations
#define ATOMIC_BOOL_LOCK_FREE see description
#define ATOMIC_CHAR_LOCK_FREE see description
#define ATOMIC_SHORT_LOCK_FREE see description
#define ATOMIC_INT_LOCK_FREE see description
#define ATOMIC_LONG_LOCK_FREE see description
#define ATOMIC_LLONG_LOCK_FREE see description
#define ATOMIC_CHAR16_T_LOCK_FREE see description
#define ATOMIC_CHAR32_T_LOCK_FREE see description
#define ATOMIC_WCHAR_T_LOCK_FREE see description
#define ATOMIC_POINTER_LOCK_FREE see description

The value of ATOMIC_xxx_LOCK_FREE is either 0, 1, or 2. A value of 0 means that
operations on both the signed and unsigned atomic types corresponding to the
named type are never lock-free, a value of 1 means that the operations may be lock-
free for particular instances of those types and not for others, and a value of 2
means that the operations are always lock-free. For example, if ATOMIC_INT_
LOCK_FREE is 2, operations on instances of std::atomic<int> and std::atomic
<unsigned> are always lock-free.

The ATOMIC_POINTER_LOCK_FREE macro describes the lock-free property of oper-
ations on the atomic pointer specializations std::atomic<T*>.

D.3.3 ATOMIC_VAR_INIT macro

The ATOMIC_VAR_INIT macro provides a means of initializing an atomic variable to a
particular value.

Declaration
#define ATOMIC_VAR_INIT(value) see description

The macro expands to a token sequence that can be used to initialize one of the stan-
dard atomic types with the specified value in an expression of the following form:

std::atomic<type> x = ATOMIC_VAR_INIT(val);

The specified value must be compatible with the nonatomic type corresponding to
the atomic variable; for example:

std::atomic<int> i = ATOMIC_VAR_INIT(42);
std::string s;
std::atomic<std::string*> p = ATOMIC_VAR_INIT(&s);

This initialization is not atomic, and any access by another thread to the variable
being initialized where the initialization doesn’t happen-before that access is a data
race and thus undefined behavior.

435<atomic> header
D.3.4 std::memory_order enumeration

The std::memory_order enumeration is used to specify the ordering constraints of
atomic operations.

Declaration
typedef enum memory_order
{
 memory_order_relaxed,memory_order_consume,
 memory_order_acquire,memory_order_release,
 memory_order_acq_rel,memory_order_seq_cst
} memory_order;

Operations tagged with the various memory order values behave as follows (see
chapter 5 for detailed descriptions of the ordering constraints).

STD::MEMORY_ORDER_RELAXED
The operation doesn’t provide any additional ordering constraints.

STD::MEMORY_ORDER_RELEASE
The operation is a release operation on the specified memory location. This therefore
synchronizes-with an acquire operation on the same memory location that reads the
stored value.

STD::MEMORY_ORDER_ACQUIRE
The operation is an acquire operation on the specified memory location. If the stored
value was written by a release operation, that store synchronizes-with this operation.

STD::MEMORY_ORDER_ACQ_REL
The operation must be a read-modify-write operation, and it behaves as both std::
memory_order_acquire and std::memory_order_release on the specified location.

STD::MEMORY_ORDER_SEQ_CST
The operation forms part of the single global total order of sequentially consistent
operations. In addition, if it’s a store, it behaves like an std::memory_order_release
operation; if it’s a load, it behaves like an std::memory_order_acquire operation;
and if it’s a read-modify-write operation, it behaves as both std::memory_order_
acquire and std::memory_order_release. This is the default for all operations.

STD::MEMORY_ORDER_CONSUME
The operation is a consume operation on the specified memory location. The C++17
Standard states that this memory ordering should not be used.

D.3.5 std::atomic_thread_fence function

The std::atomic_thread_fence() function inserts a “memory barrier” or “fence” in
the code to force memory-ordering constraints between operations.

Declaration
extern "C" void atomic_thread_fence(std::memory_order order);

436 APPENDIX D C++ Thread Library reference
Effects
Inserts a fence with the required memory-ordering constraints.

A fence with an order of std::memory_order_release, std::memory_order_
acq_rel, or std::memory_order_seq_cst synchronizes-with an acquire operation
on the same memory location if that acquire operation reads a value stored by an
atomic operation following the fence on the same thread as the fence.

A release operation synchronizes-with a fence with an order of std::memory
_order_acquire, std::memory_order_acq_rel, or std::memory_order_seq_cst if
that release operation stores a value that’s read by an atomic operation prior to the
fence on the same thread as the fence.

Throws
Nothing.

D.3.6 std::atomic_signal_fence function

The std::atomic_signal_fence() function inserts a memory barrier or fence in the
code to force memory ordering constraints between operations on a thread and oper-
ations in a signal handler on that thread.

Declaration
extern "C" void atomic_signal_fence(std::memory_order order);

Effects
Inserts a fence with the required memory-ordering constraints. This is equivalent to
std::atomic_thread_fence(order) except that the constraints apply only between
a thread and a signal handler on the same thread.

Throws
Nothing.

D.3.7 std::atomic_flag class

The std::atomic_flag class provides a simple bare-bones atomic flag. It’s the only
data type that’s guaranteed to be lock-free by the C++11 Standard (although many
atomic types will be lock-free in most implementations).

 An instance of std::atomic_flag is either set or clear.

Class definition
struct atomic_flag
{
 atomic_flag() noexcept = default;
 atomic_flag(const atomic_flag&) = delete;
 atomic_flag& operator=(const atomic_flag&) = delete;
 atomic_flag& operator=(const atomic_flag&) volatile = delete;

 bool test_and_set(memory_order = memory_order_seq_cst) volatile
noexcept;

 bool test_and_set(memory_order = memory_order_seq_cst) noexcept;
 void clear(memory_order = memory_order_seq_cst) volatile noexcept;
 void clear(memory_order = memory_order_seq_cst) noexcept;
};

437<atomic> header
bool atomic_flag_test_and_set(volatile atomic_flag*) noexcept;
bool atomic_flag_test_and_set(atomic_flag*) noexcept;
bool atomic_flag_test_and_set_explicit(
 volatile atomic_flag*, memory_order) noexcept;
bool atomic_flag_test_and_set_explicit(
 atomic_flag*, memory_order) noexcept;
void atomic_flag_clear(volatile atomic_flag*) noexcept;
void atomic_flag_clear(atomic_flag*) noexcept;
void atomic_flag_clear_explicit(
 volatile atomic_flag*, memory_order) noexcept;
void atomic_flag_clear_explicit(
 atomic_flag*, memory_order) noexcept;

#define ATOMIC_FLAG_INIT unspecified

STD::ATOMIC_FLAG DEFAULT CONSTRUCTOR
It’s unspecified whether a default-constructed instance of std::atomic_flag is clear
or set. For objects of static storage duration, initialization shall be static initialization.

Declaration
std::atomic_flag() noexcept = default;

Effects
Constructs a new std::atomic_flag object in an unspecified state.

Throws
Nothing.

STD::ATOMIC_FLAG INITIALIZATION WITH ATOMIC_FLAG_INIT
An instance of std::atomic_flag may be initialized using the ATOMIC_FLAG_INIT
macro, in which case it’s initialized into the clear state. For objects of static storage
duration, initialization shall be static initialization.

Declaration
#define ATOMIC_FLAG_INIT unspecified

Usage
std::atomic_flag flag=ATOMIC_FLAG_INIT;

Effects
Constructs a new std::atomic_flag object in the clear state.

Throws
Nothing.

STD::ATOMIC_FLAG::TEST_AND_SET MEMBER FUNCTION
Atomically sets the flag and checks whether or not it was set.

Declaration
bool test_and_set(memory_order order = memory_order_seq_cst) volatile

noexcept;
bool test_and_set(memory_order order = memory_order_seq_cst) noexcept;

Effects
Atomically sets the flag.

438 APPENDIX D C++ Thread Library reference
Returns
true if the flag was set at the point of the call, false if the flag was clear.

Throws
Nothing.

NOTE This is an atomic read-modify-write operation for the memory location
comprising *this.

STD::ATOMIC_FLAG_TEST_AND_SET NONMEMBER FUNCTION
Atomically sets the flag and checks whether or not it was set.

Declaration
bool atomic_flag_test_and_set(volatile atomic_flag* flag) noexcept;
bool atomic_flag_test_and_set(atomic_flag* flag) noexcept;

Effects
return flag->test_and_set();

STD::ATOMIC_FLAG_TEST_AND_SET_EXPLICIT NONMEMBER FUNCTION
Atomically sets the flag and checks whether or not it was set.

Declaration
bool atomic_flag_test_and_set_explicit(
 volatile atomic_flag* flag, memory_order order) noexcept;
bool atomic_flag_test_and_set_explicit(
 atomic_flag* flag, memory_order order) noexcept;

Effects
return flag->test_and_set(order);

STD::ATOMIC_FLAG::CLEAR MEMBER FUNCTION
Atomically clears the flag.

Declaration
void clear(memory_order order = memory_order_seq_cst) volatile noexcept;
void clear(memory_order order = memory_order_seq_cst) noexcept;

Preconditions
The supplied order must be one of std::memory_order_relaxed, std::memory_
order_release, or std::memory_order_seq_cst.

Effects
Atomically clears the flag.

Throws
Nothing.

NOTE This is an atomic store operation for the memory location comprising
*this.

439<atomic> header
STD::ATOMIC_FLAG_CLEAR NONMEMBER FUNCTION
Atomically clears the flag.

Declaration
void atomic_flag_clear(volatile atomic_flag* flag) noexcept;
void atomic_flag_clear(atomic_flag* flag) noexcept;

Effects
flag->clear();

STD::ATOMIC_FLAG_CLEAR_EXPLICIT NONMEMBER FUNCTION
Atomically clears the flag.

Declaration
void atomic_flag_clear_explicit(
 volatile atomic_flag* flag, memory_order order) noexcept;
void atomic_flag_clear_explicit(
 atomic_flag* flag, memory_order order) noexcept;

Effects
return flag->clear(order);

D.3.8 std::atomic class template

The std::atomic class provides a wrapper with atomic operations for any type that
satisfies the following requirements.

 The template parameter BaseType must

■ Have a trivial default constructor
■ Have a trivial copy-assignment operator
■ Have a trivial destructor
■ Be bitwise-equality comparable

This means that std::atomic<some-built-in-type> is fine, as is std::atomic<some-
simple-struct>, but things like std::atomic<std::string> are not.

 In addition to the primary template, there are specializations for the built-in inte-
gral types and pointers to provide additional operations, such as x++.

 Instances of std::atomic are not CopyConstructible or CopyAssignable, because
these operations can’t be performed as a single atomic operation.

Class definition
template<typename BaseType>
struct atomic
{
 using value_type = T;
 static constexpr bool is_always_lock_free = implementation-defined ;
 atomic() noexcept = default;
 constexpr atomic(BaseType) noexcept;
 BaseType operator=(BaseType) volatile noexcept;
 BaseType operator=(BaseType) noexcept;

 atomic(const atomic&) = delete;
 atomic& operator=(const atomic&) = delete;
 atomic& operator=(const atomic&) volatile = delete;

440 APPENDIX D C++ Thread Library reference
 bool is_lock_free() const volatile noexcept;
 bool is_lock_free() const noexcept;
 void store(BaseType,memory_order = memory_order_seq_cst)
 volatile noexcept;
 void store(BaseType,memory_order = memory_order_seq_cst) noexcept;
 BaseType load(memory_order = memory_order_seq_cst)
 const volatile noexcept;
 BaseType load(memory_order = memory_order_seq_cst) const noexcept;
 BaseType exchange(BaseType,memory_order = memory_order_seq_cst)
 volatile noexcept;
 BaseType exchange(BaseType,memory_order = memory_order_seq_cst)
 noexcept;

 bool compare_exchange_strong(
 BaseType & old_value, BaseType new_value,
 memory_order order = memory_order_seq_cst) volatile noexcept;
 bool compare_exchange_strong(
 BaseType & old_value, BaseType new_value,
 memory_order order = memory_order_seq_cst) noexcept;
 bool compare_exchange_strong(
 BaseType & old_value, BaseType new_value,
 memory_order success_order,
 memory_order failure_order) volatile noexcept;
 bool compare_exchange_strong(
 BaseType & old_value, BaseType new_value,
 memory_order success_order,
 memory_order failure_order) noexcept;
 bool compare_exchange_weak(
 BaseType & old_value, BaseType new_value,
 memory_order order = memory_order_seq_cst)
 volatile noexcept;
 bool compare_exchange_weak(
 BaseType & old_value, BaseType new_value,
 memory_order order = memory_order_seq_cst) noexcept;
 bool compare_exchange_weak(
 BaseType & old_value, BaseType new_value,
 memory_order success_order,
 memory_order failure_order) volatile noexcept;
 bool compare_exchange_weak(
 BaseType & old_value, BaseType new_value,
 memory_order success_order,
 memory_order failure_order) noexcept;

 operator BaseType () const volatile noexcept;
 operator BaseType () const noexcept;
};

template<typename BaseType>
bool atomic_is_lock_free(volatile const atomic<BaseType>*) noexcept;
template<typename BaseType>
bool atomic_is_lock_free(const atomic<BaseType>*) noexcept;
template<typename BaseType>
void atomic_init(volatile atomic<BaseType>*, void*) noexcept;
template<typename BaseType>
void atomic_init(atomic<BaseType>*, void*) noexcept;
template<typename BaseType>

441<atomic> header
BaseType atomic_exchange(volatile atomic<BaseType>*, memory_order)
 noexcept;
template<typename BaseType>
BaseType atomic_exchange(atomic<BaseType>*, memory_order) noexcept;
template<typename BaseType>
BaseType atomic_exchange_explicit(
 volatile atomic<BaseType>*, memory_order) noexcept;
template<typename BaseType>
BaseType atomic_exchange_explicit(
 atomic<BaseType>*, memory_order) noexcept;
template<typename BaseType>
void atomic_store(volatile atomic<BaseType>*, BaseType) noexcept;
template<typename BaseType>
void atomic_store(atomic<BaseType>*, BaseType) noexcept;
template<typename BaseType>
void atomic_store_explicit(
 volatile atomic<BaseType>*, BaseType, memory_order) noexcept;
template<typename BaseType>
void atomic_store_explicit(
 atomic<BaseType>*, BaseType, memory_order) noexcept;
template<typename BaseType>
BaseType atomic_load(volatile const atomic<BaseType>*) noexcept;
template<typename BaseType>
BaseType atomic_load(const atomic<BaseType>*) noexcept;
template<typename BaseType>
BaseType atomic_load_explicit(
 volatile const atomic<BaseType>*, memory_order) noexcept;
template<typename BaseType>
BaseType atomic_load_explicit(
 const atomic<BaseType>*, memory_order) noexcept;
template<typename BaseType>
bool atomic_compare_exchange_strong(
 volatile atomic<BaseType>*,BaseType * old_value,
 BaseType new_value) noexcept;
template<typename BaseType>
bool atomic_compare_exchange_strong(
 atomic<BaseType>*,BaseType * old_value,
 BaseType new_value) noexcept;
template<typename BaseType>
bool atomic_compare_exchange_strong_explicit(
 volatile atomic<BaseType>*,BaseType * old_value,
 BaseType new_value, memory_order success_order,
 memory_order failure_order) noexcept;
template<typename BaseType>
bool atomic_compare_exchange_strong_explicit(
 atomic<BaseType>*,BaseType * old_value,
 BaseType new_value, memory_order success_order,
 memory_order failure_order) noexcept;
template<typename BaseType>
bool atomic_compare_exchange_weak(
 volatile atomic<BaseType>*,BaseType * old_value,BaseType new_value)
 noexcept;
template<typename BaseType>
bool atomic_compare_exchange_weak(
 atomic<BaseType>*,BaseType * old_value,BaseType new_value) noexcept;

442 APPENDIX D C++ Thread Library reference
template<typename BaseType>
bool atomic_compare_exchange_weak_explicit(
 volatile atomic<BaseType>*,BaseType * old_value,
 BaseType new_value, memory_order success_order,
 memory_order failure_order) noexcept;
template<typename BaseType>
bool atomic_compare_exchange_weak_explicit(
 atomic<BaseType>*,BaseType * old_value,
 BaseType new_value, memory_order success_order,
 memory_order failure_order) noexcept;

NOTE Although the nonmember functions are specified as templates, they
may be provided as an overloaded set of functions, and explicit specification
of the template arguments shouldn’t be used.

STD::ATOMIC DEFAULT CONSTRUCTOR
Constructs an instance of std::atomic with a default-initialized value.

Declaration
atomic() noexcept;

Effects
Constructs a new std::atomic object with a default-initialized value. For objects
with static storage duration, this is static initialization.

NOTE Instances of std::atomic with nonstatic storage duration initialized
with the default constructor can’t be relied on to have a predictable value.

Throws
Nothing.

STD::ATOMIC_INIT NONMEMBER FUNCTION
Nonatomically stores the supplied value in an instance of std::atomic<BaseType>.

Declaration
template<typename BaseType>
void atomic_init(atomic<BaseType> volatile* p, BaseType v) noexcept;
template<typename BaseType>
void atomic_init(atomic<BaseType>* p, BaseType v) noexcept;

Effects
Nonatomically stores the value of v in *p. Invoking atomic_init() on an instance
of atomic<BaseType> that hasn’t been default constructed, or that has had any
operations performed on it since construction, is undefined behavior.

NOTE Because this store is nonatomic, any concurrent access to the object
pointed to by p from another thread (even with atomic operations) consti-
tutes a data race.

Throws
Nothing.

443<atomic> header
STD::ATOMIC CONVERSION CONSTRUCTOR
Constructs an instance of std::atomic with the supplied BaseType value.

Declaration
constexpr atomic(BaseType b) noexcept;

Effects
Constructs a new std::atomic object with a value of b. For objects with static stor-
age duration, this is static initialization.

Throws
Nothing.

STD::ATOMIC CONVERSION ASSIGNMENT OPERATOR
Stores a new value in *this.

Declaration
BaseType operator=(BaseType b) volatile noexcept;
BaseType operator=(BaseType b) noexcept;

Effects
return this->store(b);

STD::ATOMIC::IS_LOCK_FREE MEMBER FUNCTION
Determines if operations on *this are lock-free.

Declaration
bool is_lock_free() const volatile noexcept;
bool is_lock_free() const noexcept;

Returns
true if operations on *this are lock-free, false otherwise.

Throws
Nothing.

STD::ATOMIC_IS_LOCK_FREE NONMEMBER FUNCTION
Determines if operations on *this are lock-free.

Declaration
template<typename BaseType>
bool atomic_is_lock_free(volatile const atomic<BaseType>* p) noexcept;
template<typename BaseType>
bool atomic_is_lock_free(const atomic<BaseType>* p) noexcept;

Effects
return p->is_lock_free();

STD::ATOMIC::IS_ALWAYS_LOCK_FREE STATIC DATA MEMBER
Determines if operations on all objects of this type are always lock-free.

Declaration
static constexpr bool is_always_lock_free() = implementation-defined;

Value
true if operations on all objects of this type are always lock-free, false otherwise.

444 APPENDIX D C++ Thread Library reference
STD::ATOMIC::LOAD MEMBER FUNCTION
Atomically loads the current value of the std::atomic instance.

Declaration
BaseType load(memory_order order = memory_order_seq_cst)
 const volatile noexcept;
BaseType load(memory_order order = memory_order_seq_cst) const noexcept;

Preconditions
The supplied order must be one of std::memory_order_relaxed, std::memory_
order_acquire, std::memory_order_consume, or std::memory_order_seq_cst.

Effects
Atomically loads the value stored in *this.

Returns
The value stored in *this at the point of the call.

Throws
Nothing.

NOTE This is an atomic load operation for the memory location comprising
*this.

STD::ATOMIC_LOAD NONMEMBER FUNCTION
Atomically loads the current value of the std::atomic instance.

Declaration
template<typename BaseType>
BaseType atomic_load(volatile const atomic<BaseType>* p) noexcept;
template<typename BaseType>
BaseType atomic_load(const atomic<BaseType>* p) noexcept;

Effects
return p->load();

STD::ATOMIC_LOAD_EXPLICIT NONMEMBER FUNCTION
Atomically loads the current value of the std::atomic instance.

Declaration
template<typename BaseType>
BaseType atomic_load_explicit(
 volatile const atomic<BaseType>* p, memory_order order) noexcept;
template<typename BaseType>
BaseType atomic_load_explicit(
 const atomic<BaseType>* p, memory_order order) noexcept;

Effects
return p->load(order);

STD::ATOMIC::OPERATOR BASETYPE CONVERSION OPERATOR
Loads the value stored in *this.

Declaration
operator BaseType() const volatile noexcept;
operator BaseType() const noexcept;

445<atomic> header
Effects
return this->load();

STD::ATOMIC::STORE MEMBER FUNCTION
Atomically stores a new value in an atomic<BaseType> instance.

Declaration
void store(BaseType new_value,memory_order order = memory_order_seq_cst)
 volatile noexcept;
void store(BaseType new_value,memory_order order = memory_order_seq_cst)
 noexcept;

Preconditions
The supplied order must be one of std::memory_order_relaxed, std::memory_
order_release, or std::memory_order_seq_cst.

Effects
Atomically stores new_value in *this.

Throws
Nothing.

NOTE This is an atomic store operation for the memory location comprising
*this.

STD::ATOMIC_STORE NONMEMBER FUNCTION
Atomically stores a new value in an atomic<BaseType> instance.

Declaration
template<typename BaseType>
void atomic_store(volatile atomic<BaseType>* p, BaseType new_value)
 noexcept;
template<typename BaseType>
void atomic_store(atomic<BaseType>* p, BaseType new_value) noexcept;

Effects
p->store(new_value);

STD::ATOMIC_STORE_EXPLICIT NONMEMBER FUNCTION
Atomically stores a new value in an atomic<BaseType> instance.

Declaration
template<typename BaseType>
void atomic_store_explicit(
 volatile atomic<BaseType>* p, BaseType new_value, memory_order order)
 noexcept;
template<typename BaseType>
void atomic_store_explicit(
 atomic<BaseType>* p, BaseType new_value, memory_order order) noexcept;

Effects
p->store(new_value,order);

446 APPENDIX D C++ Thread Library reference
STD::ATOMIC::EXCHANGE MEMBER FUNCTION
Atomically stores a new value and reads the old one.

Declaration
BaseType exchange(
 BaseType new_value,
 memory_order order = memory_order_seq_cst)
 volatile noexcept;

Effects
Atomically stores new_value in *this and retrieves the existing value of *this.

Returns
The value of *this immediately prior to the store.

Throws
Nothing.

NOTE This is an atomic read-modify-write operation for the memory location
comprising *this.

STD::ATOMIC_EXCHANGE NONMEMBER FUNCTION
Atomically stores a new value in an atomic<BaseType> instance and reads the prior
value.

Declaration
template<typename BaseType>
BaseType atomic_exchange(volatile atomic<BaseType>* p, BaseType new_value)
 noexcept;
template<typename BaseType>
BaseType atomic_exchange(atomic<BaseType>* p, BaseType new_value) noexcept;

Effects
return p->exchange(new_value);

STD::ATOMIC_EXCHANGE_EXPLICIT NONMEMBER FUNCTION
Atomically stores a new value in an atomic<BaseType> instance and reads the prior
value.

Declaration
template<typename BaseType>
BaseType atomic_exchange_explicit(
 volatile atomic<BaseType>* p, BaseType new_value, memory_order order)
 noexcept;
template<typename BaseType>
BaseType atomic_exchange_explicit(
 atomic<BaseType>* p, BaseType new_value, memory_order order) noexcept;

Effects
return p->exchange(new_value,order);

447<atomic> header
STD::ATOMIC::COMPARE_EXCHANGE_STRONG MEMBER FUNCTION
Atomically compares the value to an expected value and stores a new value if the values
are equal. If the values aren’t equal, updates the expected value with the value read.

Declaration
bool compare_exchange_strong(
 BaseType& expected,BaseType new_value,
 memory_order order = std::memory_order_seq_cst) volatile noexcept;
bool compare_exchange_strong(
 BaseType& expected,BaseType new_value,
 memory_order order = std::memory_order_seq_cst) noexcept;
bool compare_exchange_strong(
 BaseType& expected,BaseType new_value,
 memory_order success_order,memory_order failure_order)
 volatile noexcept;
bool compare_exchange_strong(
 BaseType& expected,BaseType new_value,
 memory_order success_order,memory_order failure_order) noexcept;

Preconditions
failure_order shall not be std::memory_order_release or std::memory_order
_acq_rel.

Effects
Atomically compares expected to the value stored in *this using bitwise compari-
son and stores new_value in *this if equal; otherwise updates expected to the
value read.

Returns
true if the existing value of *this was equal to expected, false otherwise.

Throws
Nothing.

NOTE The three-parameter overload is equivalent to the four-parameter
overload with success_order==order and failure_order==order, except
that if order is std::memory_order_acq_rel, then failure_order is std::
memory_order_acquire, and if order is std::memory_order_release, then
failure_order is std::memory_order_relaxed.

NOTE This is an atomic read-modify-write operation for the memory location
comprising *this if the result is true, with memory ordering success_order;
otherwise, it’s an atomic load operation for the memory location comprising
*this with memory ordering failure_order.

STD::ATOMIC_COMPARE_EXCHANGE_STRONG NONMEMBER FUNCTION
Atomically compares the value to an expected value and stores a new value if the values
are equal. If the values aren’t equal, updates the expected value with the value read.

Declaration
template<typename BaseType>
bool atomic_compare_exchange_strong(

448 APPENDIX D C++ Thread Library reference
 volatile atomic<BaseType>* p,BaseType * old_value,BaseType new_value)
 noexcept;
template<typename BaseType>
bool atomic_compare_exchange_strong(
 atomic<BaseType>* p,BaseType * old_value,BaseType new_value) noexcept;

Effects
return p->compare_exchange_strong(*old_value,new_value);

STD::ATOMIC_COMPARE_EXCHANGE_STRONG_EXPLICIT NONMEMBER FUNCTION
Atomically compares the value to an expected value and stores a new value if the values
are equal. If the values aren’t equal, updates the expected value with the value read.

Declaration
template<typename BaseType>
bool atomic_compare_exchange_strong_explicit(
 volatile atomic<BaseType>* p,BaseType * old_value,
 BaseType new_value, memory_order success_order,
 memory_order failure_order) noexcept;
template<typename BaseType>
bool atomic_compare_exchange_strong_explicit(
 atomic<BaseType>* p,BaseType * old_value,
 BaseType new_value, memory_order success_order,
 memory_order failure_order) noexcept;

Effects
return p->compare_exchange_strong(
 *old_value,new_value,success_order,failure_order) noexcept;

STD::ATOMIC::COMPARE_EXCHANGE_WEAK MEMBER FUNCTION
Atomically compares the value to an expected value and stores a new value if the val-
ues are equal and the update can be done atomically. If the values aren’t equal or the
update can’t be done atomically, updates the expected value with the value read.

Declaration
bool compare_exchange_weak(
 BaseType& expected,BaseType new_value,
 memory_order order = std::memory_order_seq_cst) volatile noexcept;
bool compare_exchange_weak(
 BaseType& expected,BaseType new_value,
 memory_order order = std::memory_order_seq_cst) noexcept;
bool compare_exchange_weak(
 BaseType& expected,BaseType new_value,
 memory_order success_order,memory_order failure_order)
 volatile noexcept;
bool compare_exchange_weak(
 BaseType& expected,BaseType new_value,
 memory_order success_order,memory_order failure_order) noexcept;

Preconditions
failure_order shall not be std::memory_order_release or std::memory_order
_acq_rel.

449<atomic> header
Effects
Atomically compares expected to the value stored in *this using bitwise compari-
son and stores new_value in *this if equal. If the values aren’t equal or the update
can’t be done atomically, updates expected to the value read.

Returns
true if the existing value of *this was equal to expected and new_value was suc-
cessfully stored in *this, false otherwise.

Throws
Nothing.

NOTE The three-parameter overload is equivalent to the four-parameter
overload with success_order==order and failure_order==order, except
that if order is std::memory_order_acq_rel, then failure_order is std::
memory_order_acquire, and if order is std::memory_order_release, then
failure_order is std::memory_order_relaxed.

NOTE This is an atomic read-modify-write operation for the memory location
comprising *this if the result is true, with memory ordering success_order;
otherwise, it’s an atomic load operation for the memory location comprising
*this with memory ordering failure_order.

STD::ATOMIC_COMPARE_EXCHANGE_WEAK NONMEMBER FUNCTION
Atomically compares the value to an expected value and stores a new value if the val-
ues are equal and the update can be done atomically. If the values aren’t equal or the
update can’t be done atomically, updates the expected value with the value read.

Declaration
template<typename BaseType>
bool atomic_compare_exchange_weak(
 volatile atomic<BaseType>* p,BaseType * old_value,BaseType new_value)
 noexcept;
template<typename BaseType>
bool atomic_compare_exchange_weak(
 atomic<BaseType>* p,BaseType * old_value,BaseType new_value) noexcept;

Effects
return p->compare_exchange_weak(*old_value,new_value);

STD::ATOMIC_COMPARE_EXCHANGE_WEAK_EXPLICIT NONMEMBER FUNCTION
Atomically compares the value to an expected value and stores a new value if the val-
ues are equal and the update can be done atomically. If the values aren’t equal or the
update can’t be done atomically, updates the expected value with the value read.

Declaration
template<typename BaseType>
bool atomic_compare_exchange_weak_explicit(
 volatile atomic<BaseType>* p,BaseType * old_value,
 BaseType new_value, memory_order success_order,
 memory_order failure_order) noexcept;
template<typename BaseType>

450 APPENDIX D C++ Thread Library reference
bool atomic_compare_exchange_weak_explicit(
 atomic<BaseType>* p,BaseType * old_value,
 BaseType new_value, memory_order success_order,
 memory_order failure_order) noexcept;

Effects
return p->compare_exchange_weak(
 *old_value,new_value,success_order,failure_order);

D.3.9 Specializations of the std::atomic template

Specializations of the std::atomic class template are provided for the integral types
and pointer types. For the integral types, these specializations provide atomic addi-
tion, subtraction, and bitwise operations in addition to the operations provided by the
primary template. For pointer types, the specializations provide atomic pointer arith-
metic in addition to the operations provided by the primary template.

 Specializations are provided for the following integral types:

std::atomic<bool>
std::atomic<char>
std::atomic<signed char>
std::atomic<unsigned char>
std::atomic<short>
std::atomic<unsigned short>
std::atomic<int>
std::atomic<unsigned>
std::atomic<long>
std::atomic<unsigned long>
std::atomic<long long>
std::atomic<unsigned long long>
std::atomic<wchar_t>
std::atomic<char16_t>
std::atomic<char32_t>

and std::atomic<T*> for all types T.

D.3.10 std::atomic<integral-type> specializations

The std::atomic<integral-type> specializations of the std::atomic class template
provide an atomic integral data type for each fundamental integer type, with a com-
prehensive set of operations.

 The following description applies to these specializations of the std::atomic<>
class template:

std::atomic<char>
std::atomic<signed char>
std::atomic<unsigned char>
std::atomic<short>
std::atomic<unsigned short>
std::atomic<int>
std::atomic<unsigned>
std::atomic<long>

451<atomic> header
std::atomic<unsigned long>
std::atomic<long long>
std::atomic<unsigned long long>
std::atomic<wchar_t>
std::atomic<char16_t>
std::atomic<char32_t>

Instances of these specializations are not CopyConstructible or CopyAssignable,
because these operations can’t be performed as a single atomic operation.

Class definition
template<>
struct atomic<integral-type>
{
 atomic() noexcept = default;
 constexpr atomic(integral-type) noexcept;
 bool operator=(integral-type) volatile noexcept;

 atomic(const atomic&) = delete;
 atomic& operator=(const atomic&) = delete;
 atomic& operator=(const atomic&) volatile = delete;

 bool is_lock_free() const volatile noexcept;
 bool is_lock_free() const noexcept;

 void store(integral-type,memory_order = memory_order_seq_cst)
 volatile noexcept;
 void store(integral-type,memory_order = memory_order_seq_cst) noexcept;
 integral-type load(memory_order = memory_order_seq_cst)
 const volatile noexcept;
 integral-type load(memory_order = memory_order_seq_cst) const noexcept;
 integral-type exchange(
 integral-type,memory_order = memory_order_seq_cst)
 volatile noexcept;
 integral-type exchange(
 integral-type,memory_order = memory_order_seq_cst) noexcept;

 bool compare_exchange_strong(
 integral-type & old_value,integral-type new_value,
 memory_order order = memory_order_seq_cst) volatile noexcept;
 bool compare_exchange_strong(
 integral-type & old_value,integral-type new_value,
 memory_order order = memory_order_seq_cst) noexcept;
 bool compare_exchange_strong(
 integral-type & old_value,integral-type new_value,
 memory_order success_order,memory_order failure_order)
 volatile noexcept;
 bool compare_exchange_strong(
 integral-type & old_value,integral-type new_value,
 memory_order success_order,memory_order failure_order) noexcept;
 bool compare_exchange_weak(
 integral-type & old_value,integral-type new_value,
 memory_order order = memory_order_seq_cst) volatile noexcept;
 bool compare_exchange_weak(
 integral-type & old_value,integral-type new_value,
 memory_order order = memory_order_seq_cst) noexcept;

452 APPENDIX D C++ Thread Library reference
 bool compare_exchange_weak(
 integral-type & old_value,integral-type new_value,
 memory_order success_order,memory_order failure_order)
 volatile noexcept;
 bool compare_exchange_weak(
 integral-type & old_value,integral-type new_value,
 memory_order success_order,memory_order failure_order) noexcept;

 operator integral-type() const volatile noexcept;
 operator integral-type() const noexcept;

 integral-type fetch_add(
 integral-type,memory_order = memory_order_seq_cst)
 volatile noexcept;
 integral-type fetch_add(
 integral-type,memory_order = memory_order_seq_cst) noexcept;
 integral-type fetch_sub(
 integral-type,memory_order = memory_order_seq_cst)
 volatile noexcept;
 integral-type fetch_sub(
 integral-type,memory_order = memory_order_seq_cst) noexcept;
 integral-type fetch_and(
 integral-type,memory_order = memory_order_seq_cst)
 volatile noexcept;
 integral-type fetch_and(
 integral-type,memory_order = memory_order_seq_cst) noexcept;
 integral-type fetch_or(
 integral-type,memory_order = memory_order_seq_cst)
 volatile noexcept;
 integral-type fetch_or(
 integral-type,memory_order = memory_order_seq_cst) noexcept;
 integral-type fetch_xor(
 integral-type,memory_order = memory_order_seq_cst)
 volatile noexcept;
 integral-type fetch_xor(
 integral-type,memory_order = memory_order_seq_cst) noexcept;

 integral-type operator++() volatile noexcept;
 integral-type operator++() noexcept;
 integral-type operator++(int) volatile noexcept;
 integral-type operator++(int) noexcept;
 integral-type operator--() volatile noexcept;
 integral-type operator--() noexcept;
 integral-type operator--(int) volatile noexcept;
 integral-type operator--(int) noexcept;

 integral-type operator+=(integral-type) volatile noexcept;
 integral-type operator+=(integral-type) noexcept;
 integral-type operator-=(integral-type) volatile noexcept;
 integral-type operator-=(integral-type) noexcept;
 integral-type operator&=(integral-type) volatile noexcept;
 integral-type operator&=(integral-type) noexcept;
 integral-type operator|=(integral-type) volatile noexcept;
 integral-type operator|=(integral-type) noexcept;
 integral-type operator^=(integral-type) volatile noexcept;
 integral-type operator^=(integral-type) noexcept;
};

453<atomic> header
bool atomic_is_lock_free(volatile const atomic<integral-type>*) noexcept;
bool atomic_is_lock_free(const atomic<integral-type>*) noexcept;
void atomic_init(volatile atomic<integral-type>*,integral-type) noexcept;
void atomic_init(atomic<integral-type>*,integral-type) noexcept;
integral-type atomic_exchange(
 volatile atomic<integral-type>*,integral-type) noexcept;
integral-type atomic_exchange(
 atomic<integral-type>*,integral-type) noexcept;
integral-type atomic_exchange_explicit(
 volatile atomic<integral-type>*,integral-type, memory_order) noexcept;
integral-type atomic_exchange_explicit(
 atomic<integral-type>*,integral-type, memory_order) noexcept;
void atomic_store(volatile atomic<integral-type>*,integral-type) noexcept;
void atomic_store(atomic<integral-type>*,integral-type) noexcept;
void atomic_store_explicit(
 volatile atomic<integral-type>*,integral-type, memory_order) noexcept;
void atomic_store_explicit(
 atomic<integral-type>*,integral-type, memory_order) noexcept;
integral-type atomic_load(volatile const atomic<integral-type>*) noexcept;
integral-type atomic_load(const atomic<integral-type>*) noexcept;
integral-type atomic_load_explicit(
 volatile const atomic<integral-type>*,memory_order) noexcept;
integral-type atomic_load_explicit(
 const atomic<integral-type>*,memory_order) noexcept;
bool atomic_compare_exchange_strong(
 volatile atomic<integral-type>*,
 integral-type * old_value,integral-type new_value) noexcept;
bool atomic_compare_exchange_strong(
 atomic<integral-type>*,
 integral-type * old_value,integral-type new_value) noexcept;
bool atomic_compare_exchange_strong_explicit(
 volatile atomic<integral-type>*,
 integral-type * old_value,integral-type new_value,
 memory_order success_order,memory_order failure_order) noexcept;
bool atomic_compare_exchange_strong_explicit(
 atomic<integral-type>*,
 integral-type * old_value,integral-type new_value,
 memory_order success_order,memory_order failure_order) noexcept;
bool atomic_compare_exchange_weak(
 volatile atomic<integral-type>*,
 integral-type * old_value,integral-type new_value) noexcept;
bool atomic_compare_exchange_weak(
 atomic<integral-type>*,
 integral-type * old_value,integral-type new_value) noexcept;
bool atomic_compare_exchange_weak_explicit(
 volatile atomic<integral-type>*,
 integral-type * old_value,integral-type new_value,
 memory_order success_order,memory_order failure_order) noexcept;
bool atomic_compare_exchange_weak_explicit(
 atomic<integral-type>*,
 integral-type * old_value,integral-type new_value,
 memory_order success_order,memory_order failure_order) noexcept;

integral-type atomic_fetch_add(
 volatile atomic<integral-type>*,integral-type) noexcept;

454 APPENDIX D C++ Thread Library reference
integral-type atomic_fetch_add(
 atomic<integral-type>*,integral-type) noexcept;
integral-type atomic_fetch_add_explicit(
 volatile atomic<integral-type>*,integral-type, memory_order) noexcept;
integral-type atomic_fetch_add_explicit(
 atomic<integral-type>*,integral-type, memory_order) noexcept;
integral-type atomic_fetch_sub(
 volatile atomic<integral-type>*,integral-type) noexcept;
integral-type atomic_fetch_sub(
 atomic<integral-type>*,integral-type) noexcept;
integral-type atomic_fetch_sub_explicit(
 volatile atomic<integral-type>*,integral-type, memory_order) noexcept;
integral-type atomic_fetch_sub_explicit(
 atomic<integral-type>*,integral-type, memory_order) noexcept;
integral-type atomic_fetch_and(
 volatile atomic<integral-type>*,integral-type) noexcept;
integral-type atomic_fetch_and(
 atomic<integral-type>*,integral-type) noexcept;
integral-type atomic_fetch_and_explicit(
 volatile atomic<integral-type>*,integral-type, memory_order) noexcept;
integral-type atomic_fetch_and_explicit(
 atomic<integral-type>*,integral-type, memory_order) noexcept;
integral-type atomic_fetch_or(
 volatile atomic<integral-type>*,integral-type) noexcept;
integral-type atomic_fetch_or(
 atomic<integral-type>*,integral-type) noexcept;
integral-type atomic_fetch_or_explicit(
 volatile atomic<integral-type>*,integral-type, memory_order) noexcept;
integral-type atomic_fetch_or_explicit(
 atomic<integral-type>*,integral-type, memory_order) noexcept;
integral-type atomic_fetch_xor(
 volatile atomic<integral-type>*,integral-type) noexcept;
integral-type atomic_fetch_xor(
 atomic<integral-type>*,integral-type) noexcept;
integral-type atomic_fetch_xor_explicit(
 volatile atomic<integral-type>*,integral-type, memory_order) noexcept;
integral-type atomic_fetch_xor_explicit(
 atomic<integral-type>*,integral-type, memory_order) noexcept;

Those operations that are also provided by the primary template (see D.3.8) have
the same semantics.

STD::ATOMIC<INTEGRAL-TYPE>::FETCH_ADD MEMBER FUNCTION
Atomically loads a value and replaces it with the sum of that value and the supplied
value i.

Declaration
integral-type fetch_add(
 integral-type i,memory_order order = memory_order_seq_cst)
 volatile noexcept;
integral-type fetch_add(
 integral-type i,memory_order order = memory_order_seq_cst) noexcept;

455<atomic> header
Effects
Atomically retrieves the existing value of *this and stores old-value + i in *this.

Returns
The value of *this immediately prior to the store.

Throws
Nothing.

NOTE This is an atomic read-modify-write operation for the memory location
comprising *this.

STD::ATOMIC_FETCH_ADD NONMEMBER FUNCTION
Atomically reads the value from an atomic<integral-type> instance and replaces it
with that value plus the supplied value i.

Declaration
integral-type atomic_fetch_add(
 volatile atomic<integral-type>* p, integral-type i) noexcept;
integral-type atomic_fetch_add(
 atomic<integral-type>* p, integral-type i) noexcept;

Effects
return p->fetch_add(i);

STD::ATOMIC_FETCH_ADD_EXPLICIT NONMEMBER FUNCTION
Atomically reads the value from an atomic<integral-type> instance and replaces it
with that value plus the supplied value i.

Declaration
integral-type atomic_fetch_add_explicit(
 volatile atomic<integral-type>* p, integral-type i,
 memory_order order) noexcept;
integral-type atomic_fetch_add_explicit(
 atomic<integral-type>* p, integral-type i, memory_order order)
 noexcept;

Effects
return p->fetch_add(i,order);

STD::ATOMIC<INTEGRAL-TYPE>::FETCH_SUB MEMBER FUNCTION
Atomically loads a value and replaces it with the sum of that value and the supplied
value i.

Declaration
integral-type fetch_sub(
 integral-type i,memory_order order = memory_order_seq_cst)
 volatile noexcept;
integral-type fetch_sub(
 integral-type i,memory_order order = memory_order_seq_cst) noexcept;

Effects
Atomically retrieves the existing value of *this and stores old-value - i in *this.

456 APPENDIX D C++ Thread Library reference
Returns
The value of *this immediately prior to the store.

Throws
Nothing.

NOTE This is an atomic read-modify-write operation for the memory location
comprising *this.

STD::ATOMIC_FETCH_SUB NONMEMBER FUNCTION
Atomically reads the value from an atomic<integral-type> instance and replaces it
with that value minus the supplied value i.

Declaration
integral-type atomic_fetch_sub(
 volatile atomic<integral-type>* p, integral-type i) noexcept;
integral-type atomic_fetch_sub(
 atomic<integral-type>* p, integral-type i) noexcept;

Effects
return p->fetch_sub(i);

STD::ATOMIC_FETCH_SUB_EXPLICIT NONMEMBER FUNCTION
Atomically reads the value from an atomic<integral-type> instance and replaces it
with that value minus the supplied value i.

Declaration
integral-type atomic_fetch_sub_explicit(
 volatile atomic<integral-type>* p, integral-type i,
 memory_order order) noexcept;
integral-type atomic_fetch_sub_explicit(
 atomic<integral-type>* p, integral-type i, memory_order order)
 noexcept;

Effects
return p->fetch_sub(i,order);

STD::ATOMIC<INTEGRAL-TYPE>::FETCH_AND MEMBER FUNCTION
Atomically loads a value and replaces it with the bitwise-and of that value and the sup-
plied value i.

Declaration
integral-type fetch_and(
 integral-type i,memory_order order = memory_order_seq_cst)
 volatile noexcept;
integral-type fetch_and(
 integral-type i,memory_order order = memory_order_seq_cst) noexcept;

Effects
Atomically retrieves the existing value of *this and stores old-value & i in *this.

Returns
The value of *this immediately prior to the store.

457<atomic> header
Throws
Nothing.

NOTE This is an atomic read-modify-write operation for the memory location
comprising *this.

STD::ATOMIC_FETCH_AND NONMEMBER FUNCTION
Atomically reads the value from an atomic<integral-type> instance and replaces it
with the bitwise-and of that value and the supplied value i.

Declaration
integral-type atomic_fetch_and(
 volatile atomic<integral-type>* p, integral-type i) noexcept;
integral-type atomic_fetch_and(
 atomic<integral-type>* p, integral-type i) noexcept;

Effects
return p->fetch_and(i);

STD::ATOMIC_FETCH_AND_EXPLICIT NONMEMBER FUNCTION
Atomically reads the value from an atomic<integral-type> instance and replaces it
with the bitwise-and of that value and the supplied value i.

Declaration
integral-type atomic_fetch_and_explicit(
 volatile atomic<integral-type>* p, integral-type i,
 memory_order order) noexcept;
integral-type atomic_fetch_and_explicit(
 atomic<integral-type>* p, integral-type i, memory_order order)
 noexcept;

Effects
return p->fetch_and(i,order);

STD::ATOMIC<INTEGRAL-TYPE>::FETCH_OR MEMBER FUNCTION
Atomically loads a value and replaces it with the bitwise-or of that value and the sup-
plied value i.

Declaration
integral-type fetch_or(
 integral-type i,memory_order order = memory_order_seq_cst)
 volatile noexcept;
integral-type fetch_or(
 integral-type i,memory_order order = memory_order_seq_cst) noexcept;

Effects
Atomically retrieves the existing value of *this and stores old-value | i in *this.

Returns
The value of *this immediately prior to the store.

458 APPENDIX D C++ Thread Library reference
Throws
Nothing.

NOTE This is an atomic read-modify-write operation for the memory location
comprising *this.

STD::ATOMIC_FETCH_OR NONMEMBER FUNCTION
Atomically reads the value from an atomic<integral-type> instance and replaces it
with the bitwise-or of that value and the supplied value i.

Declaration
integral-type atomic_fetch_or(
 volatile atomic<integral-type>* p, integral-type i) noexcept;
integral-type atomic_fetch_or(
 atomic<integral-type>* p, integral-type i) noexcept;

Effects
return p->fetch_or(i);

STD::ATOMIC_FETCH_OR_EXPLICIT NONMEMBER FUNCTION
Atomically reads the value from an atomic<integral-type> instance and replaces it
with the bitwise-or of that value and the supplied value i.

Declaration
integral-type atomic_fetch_or_explicit(
 volatile atomic<integral-type>* p, integral-type i,
 memory_order order) noexcept;
integral-type atomic_fetch_or_explicit(
 atomic<integral-type>* p, integral-type i, memory_order order)
 noexcept;

Effects
return p->fetch_or(i,order);

STD::ATOMIC<INTEGRAL-TYPE>::FETCH_XOR MEMBER FUNCTION
Atomically loads a value and replaces it with the bitwise-xor of that value and the sup-
plied value i.

Declaration
integral-type fetch_xor(
 integral-type i,memory_order order = memory_order_seq_cst)
 volatile noexcept;
integral-type fetch_xor(
 integral-type i,memory_order order = memory_order_seq_cst) noexcept;

Effects
Atomically retrieves the existing value of *this and stores old-value ^ i in *this.

Returns
The value of *this immediately prior to the store.

Throws
Nothing.

459<atomic> header
NOTE This is an atomic read-modify-write operation for the memory location
comprising *this.

STD::ATOMIC_FETCH_XOR NONMEMBER FUNCTION
Atomically reads the value from an atomic<integral-type> instance and replaces it
with the bitwise-xor of that value and the supplied value i.

Declaration
integral-type atomic_fetch_xor(
 volatile atomic<integral-type>* p, integral-type i) noexcept;
integral-type atomic_fetch_xor(
 atomic<integral-type>* p, integral-type i) noexcept;

Effects
return p->fetch_xor(i);

STD::ATOMIC_FETCH_XOR_EXPLICIT NONMEMBER FUNCTION
Atomically reads the value from an atomic<integral-type> instance and replaces it
with the bitwise-xor of that value and the supplied value i.

Declaration
integral-type atomic_fetch_xor_explicit(
 volatile atomic<integral-type>* p, integral-type i,
 memory_order order) noexcept;
integral-type atomic_fetch_xor_explicit(
 atomic<integral-type>* p, integral-type i, memory_order order)
 noexcept;

Effects
return p->fetch_xor(i,order);

STD::ATOMIC<INTEGRAL-TYPE>::OPERATOR++ PREINCREMENT OPERATOR
Atomically increments the value stored in *this and returns the new value.

Declaration
integral-type operator++() volatile noexcept;
integral-type operator++() noexcept;

Effects
return this->fetch_add(1) + 1;

STD::ATOMIC<INTEGRAL-TYPE>::OPERATOR++ POSTINCREMENT OPERATOR
Atomically increments the value stored in *this and returns the old value.

Declaration
integral-type operator++(int) volatile noexcept;
integral-type operator++(int) noexcept;

Effects
return this->fetch_add(1);

460 APPENDIX D C++ Thread Library reference
STD::ATOMIC<INTEGRAL-TYPE>::OPERATOR-- PREDECREMENT OPERATOR
Atomically decrements the value stored in *this and returns the new value.

Declaration
integral-type operator--() volatile noexcept;
integral-type operator--() noexcept;

Effects
return this->fetch_sub(1) – 1;

STD::ATOMIC<INTEGRAL-TYPE>::OPERATOR-- POSTDECREMENT OPERATOR
Atomically decrements the value stored in *this and returns the old value.

Declaration
integral-type operator--(int) volatile noexcept;
integral-type operator--(int) noexcept;

Effects
return this->fetch_sub(1);

STD::ATOMIC<INTEGRAL-TYPE>::OPERATOR+= COMPOUND ASSIGNMENT OPERATOR
Atomically adds the supplied value to the value stored in *this and returns the new
value.

Declaration
integral-type operator+=(integral-type i) volatile noexcept;
integral-type operator+=(integral-type i) noexcept;

Effects
return this->fetch_add(i) + i;

STD::ATOMIC<INTEGRAL-TYPE>::OPERATOR-= COMPOUND ASSIGNMENT OPERATOR
Atomically subtracts the supplied value from the value stored in *this and returns the
new value.

Declaration
integral-type operator-=(integral-type i) volatile noexcept;
integral-type operator-=(integral-type i) noexcept;

Effects
return this->fetch_sub(i,std::memory_order_seq_cst) – i;

STD::ATOMIC<INTEGRAL-TYPE>::OPERATOR&= COMPOUND ASSIGNMENT OPERATOR
Atomically replaces the value stored in *this with the bitwise-and of the supplied
value and the value stored in *this and returns the new value.

Declaration
integral-type operator&=(integral-type i) volatile noexcept;
integral-type operator&=(integral-type i) noexcept;

Effects
return this->fetch_and(i) & i;

461<atomic> header
STD::ATOMIC<INTEGRAL-TYPE>::OPERATOR|= COMPOUND ASSIGNMENT OPERATOR
Atomically replaces the value stored in *this with the bitwise-or of the supplied value
and the value stored in *this and returns the new value.

Declaration
integral-type operator|=(integral-type i) volatile noexcept;
integral-type operator|=(integral-type i) noexcept;

Effects
return this->fetch_or(i,std::memory_order_seq_cst) | i;

STD::ATOMIC<INTEGRAL-TYPE>::OPERATOR^= COMPOUND ASSIGNMENT OPERATOR
Atomically replaces the value stored in *this with the bitwise-xor of the supplied
value and the value stored in *this and returns the new value.

Declaration
integral-type operator^=(integral-type i) volatile noexcept;
integral-type operator^=(integral-type i) noexcept;

Effects
return this->fetch_xor(i,std::memory_order_seq_cst) ^ i;

STD::ATOMIC<T*> PARTIAL SPECIALIZATION
The std::atomic<T*> partial specialization of the std::atomic class template provides
an atomic data type for each pointer type, with a comprehensive set of operations.

 Instances of std::atomic<T*> are not CopyConstructible or CopyAssignable,
because these operations can’t be performed as a single atomic operation.

Class definition
template<typename T>
struct atomic<T*>
{
 atomic() noexcept = default;
 constexpr atomic(T*) noexcept;
 bool operator=(T*) volatile;
 bool operator=(T*);

 atomic(const atomic&) = delete;
 atomic& operator=(const atomic&) = delete;
 atomic& operator=(const atomic&) volatile = delete;

 bool is_lock_free() const volatile noexcept;
 bool is_lock_free() const noexcept;
 void store(T*,memory_order = memory_order_seq_cst) volatile noexcept;
 void store(T*,memory_order = memory_order_seq_cst) noexcept;
 T* load(memory_order = memory_order_seq_cst) const volatile noexcept;
 T* load(memory_order = memory_order_seq_cst) const noexcept;
 T* exchange(T*,memory_order = memory_order_seq_cst) volatile noexcept;
 T* exchange(T*,memory_order = memory_order_seq_cst) noexcept;

 bool compare_exchange_strong(
 T* & old_value, T* new_value,
 memory_order order = memory_order_seq_cst) volatile noexcept;

462 APPENDIX D C++ Thread Library reference
 bool compare_exchange_strong(
 T* & old_value, T* new_value,
 memory_order order = memory_order_seq_cst) noexcept;
 bool compare_exchange_strong(
 T* & old_value, T* new_value,
 memory_order success_order,memory_order failure_order)
 volatile noexcept;
 bool compare_exchange_strong(
 T* & old_value, T* new_value,
 memory_order success_order,memory_order failure_order) noexcept;
 bool compare_exchange_weak(
 T* & old_value, T* new_value,
 memory_order order = memory_order_seq_cst) volatile noexcept;
 bool compare_exchange_weak(
 T* & old_value, T* new_value,
 memory_order order = memory_order_seq_cst) noexcept;
 bool compare_exchange_weak(
 T* & old_value, T* new_value,
 memory_order success_order,memory_order failure_order)
 volatile noexcept;
 bool compare_exchange_weak(
 T* & old_value, T* new_value,
 memory_order success_order,memory_order failure_order) noexcept;

 operator T*() const volatile noexcept;
 operator T*() const noexcept;

 T* fetch_add(
 ptrdiff_t,memory_order = memory_order_seq_cst) volatile noexcept;
 T* fetch_add(
 ptrdiff_t,memory_order = memory_order_seq_cst) noexcept;
 T* fetch_sub(
 ptrdiff_t,memory_order = memory_order_seq_cst) volatile noexcept;
 T* fetch_sub(
 ptrdiff_t,memory_order = memory_order_seq_cst) noexcept;

 T* operator++() volatile noexcept;
 T* operator++() noexcept;
 T* operator++(int) volatile noexcept;
 T* operator++(int) noexcept;
 T* operator--() volatile noexcept;
 T* operator--() noexcept;
 T* operator--(int) volatile noexcept;
 T* operator--(int) noexcept;

 T* operator+=(ptrdiff_t) volatile noexcept;
 T* operator+=(ptrdiff_t) noexcept;
 T* operator-=(ptrdiff_t) volatile noexcept;
 T* operator-=(ptrdiff_t) noexcept;
};

bool atomic_is_lock_free(volatile const atomic<T*>*) noexcept;
bool atomic_is_lock_free(const atomic<T*>*) noexcept;
void atomic_init(volatile atomic<T*>*, T*) noexcept;
void atomic_init(atomic<T*>*, T*) noexcept;
T* atomic_exchange(volatile atomic<T*>*, T*) noexcept;
T* atomic_exchange(atomic<T*>*, T*) noexcept;

463<atomic> header
T* atomic_exchange_explicit(volatile atomic<T*>*, T*, memory_order)
 noexcept;
T* atomic_exchange_explicit(atomic<T*>*, T*, memory_order) noexcept;
void atomic_store(volatile atomic<T*>*, T*) noexcept;
void atomic_store(atomic<T*>*, T*) noexcept;
void atomic_store_explicit(volatile atomic<T*>*, T*, memory_order)
 noexcept;
void atomic_store_explicit(atomic<T*>*, T*, memory_order) noexcept;
T* atomic_load(volatile const atomic<T*>*) noexcept;
T* atomic_load(const atomic<T*>*) noexcept;
T* atomic_load_explicit(volatile const atomic<T*>*, memory_order) noexcept;
T* atomic_load_explicit(const atomic<T*>*, memory_order) noexcept;
bool atomic_compare_exchange_strong(
 volatile atomic<T*>*,T* * old_value,T* new_value) noexcept;
bool atomic_compare_exchange_strong(
 volatile atomic<T*>*,T* * old_value,T* new_value) noexcept;
bool atomic_compare_exchange_strong_explicit(
 atomic<T*>*,T* * old_value,T* new_value,
 memory_order success_order,memory_order failure_order) noexcept;
bool atomic_compare_exchange_strong_explicit(
 atomic<T*>*,T* * old_value,T* new_value,
 memory_order success_order,memory_order failure_order) noexcept;
bool atomic_compare_exchange_weak(
 volatile atomic<T*>*,T* * old_value,T* new_value) noexcept;
bool atomic_compare_exchange_weak(
 atomic<T*>*,T* * old_value,T* new_value) noexcept;
bool atomic_compare_exchange_weak_explicit(
 volatile atomic<T*>*,T* * old_value, T* new_value,
 memory_order success_order,memory_order failure_order) noexcept;
bool atomic_compare_exchange_weak_explicit(
 atomic<T*>*,T* * old_value, T* new_value,
 memory_order success_order,memory_order failure_order) noexcept;

T* atomic_fetch_add(volatile atomic<T*>*, ptrdiff_t) noexcept;
T* atomic_fetch_add(atomic<T*>*, ptrdiff_t) noexcept;
T* atomic_fetch_add_explicit(
 volatile atomic<T*>*, ptrdiff_t, memory_order) noexcept;
T* atomic_fetch_add_explicit(
 atomic<T*>*, ptrdiff_t, memory_order) noexcept;
T* atomic_fetch_sub(volatile atomic<T*>*, ptrdiff_t) noexcept;
T* atomic_fetch_sub(atomic<T*>*, ptrdiff_t) noexcept;
T* atomic_fetch_sub_explicit(
 volatile atomic<T*>*, ptrdiff_t, memory_order) noexcept;
T* atomic_fetch_sub_explicit(
 atomic<T*>*, ptrdiff_t, memory_order) noexcept;

Those operations that are also provided by the primary template (see 11.3.8) have
the same semantics.

STD::ATOMIC<T*>::FETCH_ADD MEMBER FUNCTION
Atomically loads a value and replaces it with the sum of that value and the supplied
value i using standard pointer arithmetic rules, and returns the old value.

Declaration
T* fetch_add(

464 APPENDIX D C++ Thread Library reference
 ptrdiff_t i,memory_order order = memory_order_seq_cst)
 volatile noexcept;
T* fetch_add(
 ptrdiff_t i,memory_order order = memory_order_seq_cst) noexcept;

Effects
Atomically retrieves the existing value of *this and stores old-value + i in *this.

Returns
The value of *this immediately prior to the store.

Throws
Nothing.

NOTE This is an atomic read-modify-write operation for the memory location
comprising *this.

STD::ATOMIC_FETCH_ADD NONMEMBER FUNCTION
Atomically reads the value from an atomic<T*> instance and replaces it with that
value plus the supplied value i using standard pointer arithmetic rules.

Declaration
T* atomic_fetch_add(volatile atomic<T*>* p, ptrdiff_t i) noexcept;
T* atomic_fetch_add(atomic<T*>* p, ptrdiff_t i) noexcept;

Effects
return p->fetch_add(i);

STD::ATOMIC_FETCH_ADD_EXPLICIT NONMEMBER FUNCTION
Atomically reads the value from an atomic<T*> instance and replaces it with that
value plus the supplied value i using standard pointer arithmetic rules.

Declaration
T* atomic_fetch_add_explicit(
 volatile atomic<T*>* p, ptrdiff_t i,memory_order order) noexcept;
T* atomic_fetch_add_explicit(
 atomic<T*>* p, ptrdiff_t i, memory_order order) noexcept;

Effects
return p->fetch_add(i,order);

STD::ATOMIC<T*>::FETCH_SUB MEMBER FUNCTION
Atomically loads a value and replaces it with that value minus the supplied value i
using standard pointer arithmetic rules, and returns the old value.

Declaration
T* fetch_sub(
 ptrdiff_t i,memory_order order = memory_order_seq_cst)
 volatile noexcept;
T* fetch_sub(
 ptrdiff_t i,memory_order order = memory_order_seq_cst) noexcept;

Effects
Atomically retrieves the existing value of *this and stores old-value - i in *this.

465<atomic> header
Returns
The value of *this immediately prior to the store.

Throws
Nothing.

NOTE This is an atomic read-modify-write operation for the memory location
comprising *this.

STD::ATOMIC_FETCH_SUB NONMEMBER FUNCTION
Atomically reads the value from an atomic<T*> instance and replaces it with that
value minus the supplied value i using standard pointer arithmetic rules.

Declaration
T* atomic_fetch_sub(volatile atomic<T*>* p, ptrdiff_t i) noexcept;
T* atomic_fetch_sub(atomic<T*>* p, ptrdiff_t i) noexcept;

Effects
return p->fetch_sub(i);

STD::ATOMIC_FETCH_SUB_EXPLICIT NONMEMBER FUNCTION
Atomically reads the value from an atomic<T*> instance and replaces it with that
value minus the supplied value i using standard pointer arithmetic rules.

Declaration
T* atomic_fetch_sub_explicit(
 volatile atomic<T*>* p, ptrdiff_t i,memory_order order) noexcept;
T* atomic_fetch_sub_explicit(
 atomic<T*>* p, ptrdiff_t i, memory_order order) noexcept;

Effects
return p->fetch_sub(i,order);

STD::ATOMIC<T*>::OPERATOR++ PREINCREMENT OPERATOR
Atomically increments the value stored in *this using standard pointer arithmetic
rules and returns the new value.

Declaration
T* operator++() volatile noexcept;
T* operator++() noexcept;

Effects
return this->fetch_add(1) + 1;

STD::ATOMIC<T*>::OPERATOR++ POSTINCREMENT OPERATOR
Atomically increments the value stored in *this and returns the old value.

Declaration
T* operator++(int) volatile noexcept;
T* operator++(int) noexcept;

Effects
return this->fetch_add(1);

466 APPENDIX D C++ Thread Library reference
STD::ATOMIC<T*>::OPERATOR-- PREDECREMENT OPERATOR
Atomically decrements the value stored in *this using standard pointer arithmetic
rules and returns the new value.

Declaration
T* operator--() volatile noexcept;
T* operator--() noexcept;

Effects
return this->fetch_sub(1) - 1;

STD::ATOMIC<T*>::OPERATOR-- POSTDECREMENT OPERATOR
Atomically decrements the value stored in *this using standard pointer arithmetic
rules and returns the old value.

Declaration
T* operator--(int) volatile noexcept;
T* operator--(int) noexcept;

Effects
return this->fetch_sub(1);

STD::ATOMIC<T*>::OPERATOR+= COMPOUND ASSIGNMENT OPERATOR
Atomically adds the supplied value to the value stored in *this using standard pointer
arithmetic rules and returns the new value.

Declaration
T* operator+=(ptrdiff_t i) volatile noexcept;
T* operator+=(ptrdiff_t i) noexcept;

Effects
return this->fetch_add(i) + i;

STD::ATOMIC<T*>::OPERATOR-= COMPOUND ASSIGNMENT OPERATOR
Atomically subtracts the supplied value from the value stored in *this using standard
pointer arithmetic rules and returns the new value.

Declaration
T* operator-=(ptrdiff_t i) volatile noexcept;
T* operator-=(ptrdiff_t i) noexcept;

Effects
return this->fetch_sub(i) - i;

D.4 <future> header
The <future> header provides facilities for handling asynchronous results from oper-
ations that may be performed on another thread.

Header contents
namespace std
{
 enum class future_status {
 ready, timeout, deferred };

467<future> header
 enum class future_errc
 {

 broken_promise,
 future_already_retrieved,
 promise_already_satisfied,
 no_state
 };

 class future_error;

 const error_category& future_category();
 error_code make_error_code(future_errc e);
 error_condition make_error_condition(future_errc e);

 template<typename ResultType>
 class future;

 template<typename ResultType>
 class shared_future;

 template<typename ResultType>
 class promise;

 template<typename FunctionSignature>
 class packaged_task; // no definition provided

 template<typename ResultType,typename ... Args>
 class packaged_task<ResultType (Args...)>;

 enum class launch {
 async, deferred
 };

 template<typename FunctionType,typename ... Args>
 future<result_of<FunctionType(Args...)>::type>
 async(FunctionType&& func,Args&& ... args);

 template<typename FunctionType,typename ... Args>
 future<result_of<FunctionType(Args...)>::type>
 async(std::launch policy,FunctionType&& func,Args&& ... args);

}

D.4.1 std::future class template

The std::future class template provides a means of waiting for an asynchronous
result from another thread, in conjunction with the std::promise and std:: pack-
aged_task class templates and the std::async function template, which can be used
to provide that asynchronous result. Only one std::future instance references any
given asynchronous result at any time.

 Instances of std::future are MoveConstructible and MoveAssignable but not
CopyConstructible or CopyAssignable.

Class definition
template<typename ResultType>
class future
{

468 APPENDIX D C++ Thread Library reference
public:
 future() noexcept;
 future(future&&) noexcept;
 future& operator=(future&&) noexcept;
 ~future();

 future(future const&) = delete;
 future& operator=(future const&) = delete;

 shared_future<ResultType> share();

 bool valid() const noexcept;

 see description get();

 void wait();

 template<typename Rep,typename Period>
 future_status wait_for(
 std::chrono::duration<Rep,Period> const& relative_time);

 template<typename Clock,typename Duration>
 future_status wait_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time);
};

STD::FUTURE DEFAULT CONSTRUCTOR
Constructs an std::future object without an associated asynchronous result.

Declaration
future() noexcept;

Effects
Constructs a new std::future instance.

Postconditions
valid() returns false.

Throws
Nothing.

STD::FUTURE MOVE CONSTRUCTOR
Constructs one std::future object from another, transferring ownership of the asyn-
chronous result associated with the other std::future object to the newly con-
structed instance.

Declaration
future(future&& other) noexcept;

Effects
Move-constructs a new std::future instance from other.

Postconditions
The asynchronous result associated with other prior to the invocation of the con-
structor is associated with the newly constructed std::future object. other has
no associated asynchronous result. this->valid() returns the same value that
other.valid() returned before the invocation of this constructor. other

.valid() returns false.

469<future> header
Throws
Nothing.

STD::FUTURE MOVE ASSIGNMENT OPERATOR
Transfers ownership of the asynchronous result associated with the one std::future
object to another.

Declaration
future(future&& other) noexcept;

Effects
Transfers ownership of an asynchronous state between std::future instances.

Postconditions
The asynchronous result associated with other prior to the invocation of the con-
structor is associated with *this. other has no associated asynchronous result. The
ownership of the asynchronous state (if any) associated with *this prior to the call
is released, and the state destroyed if this is the last reference. this->valid()
returns the same value that other.valid() returned before the invocation of this
constructor. other.valid() returns false.

Throws
Nothing.

STD::FUTURE DESTRUCTOR
Destroys an std::future object.

Declaration
~future();

Effects
Destroys *this. If this is the last reference to the asynchronous result associated
with *this (if any), then destroy that asynchronous result.

Throws
Nothing.

STD::FUTURE::SHARE MEMBER FUNCTION
Constructs a new std::shared_future instance and transfers ownership of the asyn-
chronous result associated with *this to this newly constructed std::shared_future
instance.

Declaration
shared_future<ResultType> share();

Effects
As-if shared_future<ResultType>(std::move(*this)).

Postconditions
The asynchronous result associated with *this prior to the invocation of share()
(if any) is associated with the newly constructed std::shared_future instance.
this->valid() returns false.

470 APPENDIX D C++ Thread Library reference
Throws
Nothing.

STD::FUTURE::VALID MEMBER FUNCTION
Checks if an std::future instance is associated with an asynchronous result.

Declaration
bool valid() const noexcept;

Returns
true if *this has an associated asynchronous result, false otherwise.

Throws
Nothing.

STD::FUTURE::WAIT MEMBER FUNCTION
If the state associated with *this contains a deferred function, invokes the deferred
function. Otherwise, waits until the asynchronous result associated with an instance of
std::future is ready.

Declaration
void wait();

Preconditions
this->valid() would return true.

Effects
If the associated state contains a deferred function, invokes the deferred function
and stores the returned value or thrown exception as the asynchronous result. Oth-
erwise, blocks until the asynchronous result associated with *this is ready.

Throws
Nothing.

STD::FUTURE::WAIT_FOR MEMBER FUNCTION
Waits until the asynchronous result associated with an instance of std::future is
ready or until a specified time period has elapsed.

Declaration
template<typename Rep,typename Period>
future_status wait_for(
 std::chrono::duration<Rep,Period> const& relative_time);

Preconditions
this->valid() would return true.

Effects
If the asynchronous result associated with *this contains a deferred function arising
from a call to std::async that hasn’t yet started execution, returns immediately with-
out blocking. Otherwise blocks until the asynchronous result associated with *this is
ready or the time period specified by relative_time has elapsed.

Returns
std::future_status::deferred if the asynchronous result associated with *this
contains a deferred function arising from a call to std::async that hasn’t yet

471<future> header
started execution, std::future_status::ready if the asynchronous result associ-
ated with *this is ready, std::future_status::timeout if the time period speci-
fied by relative_time has elapsed.

NOTE The thread may be blocked for longer than the specified duration.
Where possible, the elapsed time is determined by a steady clock.

Throws
Nothing.

STD::FUTURE::WAIT_UNTIL MEMBER FUNCTION
Waits until the asynchronous result associated with an instance of std::future is
ready or until a specified time period has elapsed.

Declaration
template<typename Clock,typename Duration>
future_status wait_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time);

Preconditions
this->valid() would return true.

Effects
If the asynchronous result associated with *this contains a deferred function aris-
ing from a call to std::async that hasn’t yet started execution, returns immediately
without blocking. Otherwise blocks until the asynchronous result associated with
*this is ready or Clock::now() returns a time equal to or later than absolute_
time.

Returns
std::future_status::deferred if the asynchronous result associated with *this
contains a deferred function arising from a call to std::async that hasn’t yet
started execution, std::future_status::ready if the asynchronous result associ-
ated with *this is ready, std::future_status::timeout if Clock::now() returns a
time equal to or later than absolute_time.

NOTE There’s no guarantee as to how long the calling thread will be
blocked, only that if the function returns std::future_status::timeout,
then Clock::now() returns a time equal to or later than absolute_time at
the point at which the thread became unblocked.

Throws
Nothing.

STD::FUTURE::GET MEMBER FUNCTION
If the associated state contains a deferred function from a call to std::async, invokes
that function and returns the result; otherwise, waits until the asynchronous result
associated with an instance of std::future is ready, and then returns the stored value
or throws the stored exception.

472 APPENDIX D C++ Thread Library reference
Declaration
void future<void>::get();
R& future<R&>::get();
R future<R>::get();

Preconditions
this->valid() would return true.

Effects
If the state associated with *this contains a deferred function, invokes the deferred
function and returns the result or propagates any thrown exception.

Otherwise, blocks until the asynchronous result associated with *this is ready.
If the result is a stored exception, throws that exception. Otherwise, returns the
stored value.

Returns
If the associated state contains a deferred function, the result of the function invo-
cation is returned. Otherwise, if ResultType is void, the call returns normally. If
ResultType is R& for some type R, the stored reference is returned. Otherwise, the
stored value is returned.

Throws
The exception thrown by the deferred exception or stored in the asynchronous
result, if any.

Postcondition
this->valid()==false

D.4.2 std::shared_future class template

The std::shared_future class template provides a means of waiting for an asynchro-
nous result from another thread, in conjunction with the std::promise and std::
packaged_task class templates and the std::async function template, which can be
used to provide that asynchronous result. Multiple std::shared_future instances can
reference the same asynchronous result.

 Instances of std::shared_future are CopyConstructible and CopyAssignable.
You can also move-construct a std::shared_future from a std::future with the
same ResultType.

 Accesses to a given instance of std::shared_future aren’t synchronized. It’s
therefore not safe for multiple threads to access the same std::shared_future
instance without external synchronization. But accesses to the associated state are syn-
chronized, so it is safe for multiple threads to each access separate instances of std::
shared_future that share the same associated state without external synchronization.

Class definition
template<typename ResultType>
class shared_future
{
public:
 shared_future() noexcept;
 shared_future(future<ResultType>&&) noexcept;

473<future> header
 shared_future(shared_future&&) noexcept;
 shared_future(shared_future const&);
 shared_future& operator=(shared_future const&);
 shared_future& operator=(shared_future&&) noexcept;
 ~shared_future();

 bool valid() const noexcept;

 see description get() const;

 void wait() const;

 template<typename Rep,typename Period>
 future_status wait_for(
 std::chrono::duration<Rep,Period> const& relative_time) const;

 template<typename Clock,typename Duration>
 future_status wait_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time) const;
};

STD::SHARED_FUTURE DEFAULT CONSTRUCTOR
Constructs an std::shared_future object without an associated asynchronous result.

Declaration
shared_future() noexcept;

Effects
Constructs a new std::shared_future instance.

Postconditions
valid() returns false for the newly constructed instance.

Throws
Nothing.

STD::SHARED_FUTURE MOVE CONSTRUCTOR
Constructs one std::shared_future object from another, transferring ownership of
the asynchronous result associated with the other std::shared_future object to the
newly constructed instance.

Declaration
shared_future(shared_future&& other) noexcept;

Effects
Constructs a new std::shared_future instance.

Postconditions
The asynchronous result associated with other prior to the invocation of the con-
structor is associated with the newly constructed std::shared_future object. other
has no associated asynchronous result.

Throws
Nothing.

474 APPENDIX D C++ Thread Library reference
STD::SHARED_FUTURE MOVE-FROM-STD::FUTURE CONSTRUCTOR
Constructs an std::shared_future object from astd::future, transferring owner-
ship of the asynchronous result associated with the std::future object to the newly
constructed std::shared_future.

Declaration
shared_future(std::future<ResultType>&& other) noexcept;

Effects
Constructs a new std::shared_future instance.

Postconditions
The asynchronous result associated with other prior to the invocation of the con-
structor is associated with the newly constructed std::shared_future object. other
has no associated asynchronous result.

Throws
Nothing.

STD::SHARED_FUTURE COPY CONSTRUCTOR
Constructs one std::shared_future object from another, so that both the source and
the copy refer to the asynchronous result associated with the source std::shared_
future object, if any.

Declaration
shared_future(shared_future const& other);

Effects
Constructs a new std::shared_future instance.

Postconditions
The asynchronous result associated with other prior to the invocation of the con-
structor is associated with the newly constructed std::shared_future object and
other.

Throws
Nothing.

STD::SHARED_FUTURE DESTRUCTOR
Destroys an std::shared_future object.

Declaration
~shared_future();

Effects
Destroys *this. If there’s no longer an std::promise or std::packaged_task
instance associated with the asynchronous result associated with *this, and this is
the last std::shared_future instance associated with that asynchronous result,
destroys that asynchronous result.

Throws
Nothing.

475<future> header
STD::SHARED_FUTURE::VALID MEMBER FUNCTION
Checks if an std::shared_future instance is associated with an asynchronous result.

Declaration
bool valid() const noexcept;

Returns
true if *this has an associated asynchronous result, false otherwise.

Throws
Nothing.

STD::SHARED_FUTURE::WAIT MEMBER FUNCTION
If the state associated with *this contains a deferred function, invokes the deferred
function. Otherwise, waits until the asynchronous result associated with an instance of
std::shared_future is ready.

Declaration
void wait() const;

Preconditions
this->valid() would return true.

Effects
Calls to get() and wait() from multiple threads on std::shared_future instances
that share the same associated state are serialized. If the associated state contains a
deferred function, the first call to get() or wait() invokes the deferred function
and stores the returned value or thrown exception as the asynchronous result.

Blocks until the asynchronous result associated with *this is ready.

Throws
Nothing.

STD::SHARED_FUTURE::WAIT_FOR MEMBER FUNCTION
Waits until the asynchronous result associated with an instance of std::shared_
future is ready or until a specified time period has elapsed.

Declaration
template<typename Rep,typename Period>
future_status wait_for(
 std::chrono::duration<Rep,Period> const& relative_time) const;

Preconditions
this->valid() would return true.

Effects
If the asynchronous result associated with *this contains a deferred function aris-
ing from a call to std::async that has not yet started execution, returns immedi-
ately without blocking. Otherwise, blocks until the asynchronous result associated
with *this is ready or the time period specified by relative_time has elapsed.

Returns
std::future_status::deferred if the asynchronous result associated with *this
contains a deferred function arising from a call to std::async that hasn’t yet

476 APPENDIX D C++ Thread Library reference
started execution, std::future_status::ready if the asynchronous result associ-
ated with *this is ready, std::future_status::timeout if the time period speci-
fied by relative_time has elapsed.

NOTE The thread may be blocked for longer than the specified duration.
Where possible, the elapsed time is determined by a steady clock.

Throws
Nothing.

STD::SHARED_FUTURE::WAIT_UNTIL MEMBER FUNCTION
Waits until the asynchronous result associated with an instance of std::shared_
future is ready or until a specified time period has elapsed.

Declaration
template<typename Clock,typename Duration>
bool wait_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time) const;

Preconditions
this->valid() would return true.

Effects
If the asynchronous result associated with *this contains a deferred function aris-
ing from a call to std::async that hasn’t yet started execution, returns immediately
without blocking. Otherwise, blocks until the asynchronous result associated with
*this is ready or Clock::now() returns a time equal to or later than absolute_
time.

Returns
std::future_status::deferred if the asynchronous result associated with *this
contains a deferred function arising from a call to std::async that hasn’t yet
started execution, std::future_status::ready if the asynchronous result associ-
ated with *this is ready, std::future_status::timeout if Clock::now() returns a
time equal to or later than absolute_time.

NOTE There’s no guarantee as to how long the calling thread will be
blocked, only that if the function returns std::future_status::timeout,
then Clock::now() returns a time equal to or later than absolute_time at
the point at which the thread became unblocked.

Throws
Nothing.

STD::SHARED_FUTURE::GET MEMBER FUNCTION
If the associated state contains a deferred function from a call to std::async, invokes
that function and return the result. Otherwise, waits until the asynchronous result
associated with an instance of std::shared_future is ready, and then returns the
stored value or throws the stored exception.

477<future> header
Declaration
void shared_future<void>::get() const;
R& shared_future<R&>::get() const;
R const& shared_future<R>::get() const;

Preconditions
this->valid() would return true.

Effects
Calls to get() and wait() from multiple threads on std::shared_future instances
that share the same associated state are serialized. If the associated state contains a
deferred function, the first call to get() or wait() invokes the deferred function
and stores the returned value or thrown exception as the asynchronous result.

Blocks until the asynchronous result associated with *this is ready. If the asyn-
chronous result is a stored exception, throws that exception. Otherwise, returns the
stored value.

Returns
If ResultType is void, returns normally. If ResultType is R& for some type R, returns
the stored reference. Otherwise, returns a const reference to the stored value.

Throws
The stored exception, if any.

D.4.3 std::packaged_task class template

The std::packaged_task class template packages a function or other callable object
so that when the function is invoked through the std::packaged_task instance, the
result is stored as an asynchronous result for retrieval through an instance of
std::future.

 Instances of std::packaged_task are MoveConstructible and MoveAssignable
but not CopyConstructible or CopyAssignable.

Class definition
template<typename FunctionType>
class packaged_task; // undefined

template<typename ResultType,typename... ArgTypes>
class packaged_task<ResultType(ArgTypes...)>
{
public:

 packaged_task() noexcept;
 packaged_task(packaged_task&&) noexcept;
 ~packaged_task();

 packaged_task& operator=(packaged_task&&) noexcept;

 packaged_task(packaged_task const&) = delete;
 packaged_task& operator=(packaged_task const&) = delete;

 void swap(packaged_task&) noexcept;

478 APPENDIX D C++ Thread Library reference
 template<typename Callable>
 explicit packaged_task(Callable&& func);

 template<typename Callable,typename Allocator>
 packaged_task(std::allocator_arg_t, const Allocator&,Callable&&);

 bool valid() const noexcept;
 std::future<ResultType> get_future();
 void operator()(ArgTypes...);
 void make_ready_at_thread_exit(ArgTypes...);
 void reset();
};

STD::PACKAGED_TASK DEFAULT CONSTRUCTOR
Constructs an std::packaged_task object.

Declaration
packaged_task() noexcept;

Effects
Constructs an std::packaged_task instance with no associated task or asynchro-
nous result.

Throws
Nothing.

STD::PACKAGED_TASK CONSTRUCTION FROM A CALLABLE OBJECT
Constructs an std::packaged_task object with an associated task and asynchronous
result.

Declaration
template<typename Callable>
packaged_task(Callable&& func);

Preconditions
The expression func(args...) shall be valid, where each element args-i in args...
shall be a value of the corresponding type ArgTypes-i in ArgTypes.... The return
value shall be convertible to ResultType.

Effects
Constructs an std::packaged_task instance with an associated asynchronous
result of type ResultType that isn’t ready and an associated task of type Callable
that’s a copy of func.

Throws
An exception of type std::bad_alloc if the constructor is unable to allocate mem-
ory for the asynchronous result. Any exception thrown by the copy or move con-
structor of Callable.

STD::PACKAGED_TASK CONSTRUCTION FROM A CALLABLE OBJECT WITH AN ALLOCATOR

Constructs an std::packaged_task object with an associated task and asynchronous
result, using the supplied allocator to allocate memory for the associated asynchro-
nous result and task.

479<future> header
Declaration
template<typename Allocator,typename Callable>
packaged_task(
 std::allocator_arg_t, Allocator const& alloc,Callable&& func);

Preconditions
The expression func(args...) shall be valid, where each element args-i in args...
shall be a value of the corresponding type ArgTypes-i in ArgTypes.... The return
value shall be convertible to ResultType.

Effects
Constructs an std::packaged_task instance with an associated asynchronous
result of type ResultType that isn’t ready and an associated task of type Callable
that’s a copy of func. The memory for the asynchronous result and task is allocated
through the allocator alloc or a copy thereof.

Throws
Any exception thrown by the allocator when trying to allocate memory for the asyn-
chronous result or task. Any exception thrown by the copy or move constructor of
Callable.

STD::PACKAGED_TASK MOVE CONSTRUCTOR
Constructs one std::packaged_task object from another, transferring ownership of
the asynchronous result and task associated with the other std::packaged_task
object to the newly constructed instance.

Declaration
packaged_task(packaged_task&& other) noexcept;

Effects
Constructs a new std::packaged_task instance.

Postconditions
The asynchronous result and task associated with other prior to the invocation of
the constructor is associated with the newly constructed std::packaged_task
object. other has no associated asynchronous result.

Throws
Nothing.

STD::PACKAGED_TASK MOVE-ASSIGNMENT OPERATOR
Transfers ownership of the asynchronous result associated with one std::packaged_
task object to another.

Declaration
packaged_task& operator=(packaged_task&& other) noexcept;

Effects
Transfers ownership of the asynchronous result and task associated with other to
*this, and discards any prior asynchronous result, as-if std::packaged_task(other)
.swap(*this).

480 APPENDIX D C++ Thread Library reference
Postconditions
The asynchronous result and task associated with other prior to the invocation of
the move-assignment operator is associated with *this. other has no associated
asynchronous result.

Returns
*this

Throws
Nothing.

STD::PACKAGED_TASK::SWAP MEMBER FUNCTION
Exchanges ownership of the asynchronous results associated with two std::packaged
_task objects.

Declaration
void swap(packaged_task& other) noexcept;

Effects
Exchanges ownership of the asynchronous results and tasks associated with other
and *this.

Postconditions
The asynchronous result and task associated with other prior to the invocation of
swap (if any) is associated with *this. The asynchronous result and task associated
with *this prior to the invocation of swap (if any) is associated with other.

Throws
Nothing.

STD::PACKAGED_TASK DESTRUCTOR
Destroys an std::packaged_task object.

Declaration
~packaged_task();

Effects
Destroys *this. If *this has an associated asynchronous result, and that result
doesn’t have a stored task or exception, then that result becomes ready with an
std::future_error exception with an error code of std::future_errc::broken
_promise.

Throws
Nothing.

STD::PACKAGED_TASK::GET_FUTURE MEMBER FUNCTION
Retrieves an std::future instance for the asynchronous result associated with *this.

Declaration
std::future<ResultType> get_future();

Preconditions
*this has an associated asynchronous result.

481<future> header
Returns
An std::future instance for the asynchronous result associated with *this.

Throws
An exception of type std::future_error with an error code of std::future_
errc::future_already_retrieved if a std::future has already been obtained for
this asynchronous result through a prior call to get_future().

STD::PACKAGED_TASK::RESET MEMBER FUNCTION
Associates an std::packaged_task instance with a new asynchronous result for the
same task.

Declaration
void reset();

Preconditions
*this has an associated asynchronous task.

Effects
As-if *this=packaged_task(std::move(f)), where f is the stored task associated
with *this.

Throws
An exception of type std::bad_alloc if memory couldn’t be allocated for the new
asynchronous result.

STD::PACKAGED_TASK::VALID MEMBER FUNCTION
Checks whether *this has an associated task and asynchronous result.

Declaration
bool valid() const noexcept;

Returns
true if *this has an associated task and asynchronous result, false otherwise.

Throws
Nothing.

STD::PACKAGED_TASK::OPERATOR() FUNCTION CALL OPERATOR
Invokes the task associated with an std::packaged_task instance, and stores the return
value or exception in the associated asynchronous result.

Declaration
void operator()(ArgTypes... args);

Preconditions
*this has an associated task.

Effects
Invokes the associated task func as-if INVOKE(func,args...). If the invocation
returns normally, stores the return value in the asynchronous result associated with
*this. If the invocation returns with an exception, stores the exception in the asyn-
chronous result associated with *this.

482 APPENDIX D C++ Thread Library reference
Postconditions
The asynchronous result associated with *this is ready with a stored value or excep-
tion. Any threads blocked waiting for the asynchronous result are unblocked.

Throws
An exception of type std::future_error with an error code of std::future_errc::
promise_already_satisfied if the asynchronous result already has a stored value
or exception.

Synchronization
A successful call to the function call operator synchronizes-with a call to std::
future<ResultType>::get() or std::shared_future<ResultType>::get(), which
retrieves the value or exception stored.

STD::PACKAGED_TASK::MAKE_READY_AT_THREAD_EXIT MEMBER FUNCTION
Invokes the task associated with an std::packaged_task instance, and stores the
return value or exception in the associated asynchronous result without making the
associated asynchronous result ready until thread exit.

Declaration
void make_ready_at_thread_exit(ArgTypes... args);

Preconditions
*this has an associated task.

Effects
Invokes the associated task func as-if INVOKE(func,args...). If the invocation
returns normally, stores the return value in the asynchronous result associated with
*this. If the invocation returns with an exception, stores the exception in the asyn-
chronous result associated with *this. Schedules the associated asynchronous state
to be made ready when the current thread exits.

Postconditions
The asynchronous result associated with *this has a stored value or exception but
isn’t ready until the current thread exits. Threads blocked waiting for the asynchro-
nous result will be unblocked when the current thread exits.

Throws
An exception of type std::future_error with an error code of std::future_
errc::promise_already_satisfied if the asynchronous result already has a stored
value or exception. An exception of type std::future_error with an error code of
std::future_errc::no_state if *this has no associated asynchronous state.

Synchronization
The completion of the thread that made a successful call to make_ready_at_thread_
exit() synchronizes-with a call to std::future<ResultType>::get() or std::shared
_future<ResultType>::get(), which retrieves the value or exception stored.

483<future> header
D.4.4 std::promise class template

The std::promise class template provides a means of setting an asynchronous result,
which may be retrieved from another thread through an instance of std::future.

 The ResultType template parameter is the type of the value that can be stored in
the asynchronous result.

 A std::future associated with the asynchronous result of a particular std::promise
instance can be obtained by calling the get_future() member function. The asyn-
chronous result is set either to a value of type ResultType with the set_value() mem-
ber function or to an exception with the set_exception() member function.

 Instances of std::promise are MoveConstructible and MoveAssignable but not
CopyConstructible or CopyAssignable.

Class definition
template<typename ResultType>
class promise
{
public:
 promise();
 promise(promise&&) noexcept;
 ~promise();
 promise& operator=(promise&&) noexcept;

 template<typename Allocator>
 promise(std::allocator_arg_t, Allocator const&);

 promise(promise const&) = delete;
 promise& operator=(promise const&) = delete;

 void swap(promise&) noexcept;

 std::future<ResultType> get_future();

 void set_value(see description);
 void set_exception(std::exception_ptr p);
};

STD::PROMISE DEFAULT CONSTRUCTOR
Constructs an std::promise object.

Declaration
promise();

Effects
Constructs an std::promise instance with an associated asynchronous result of
type ResultType that’s not ready.

Throws
An exception of type std::bad_alloc if the constructor is unable to allocate mem-
ory for the asynchronous result.

STD::PROMISE ALLOCATOR CONSTRUCTOR
Constructs an std::promise object, using the supplied allocator to allocate memory
for the associated asynchronous result.

484 APPENDIX D C++ Thread Library reference
Declaration
template<typename Allocator>
promise(std::allocator_arg_t, Allocator const& alloc);

Effects
Constructs an std::promise instance with an associated asynchronous result of
type ResultType that isn’t ready. The memory for the asynchronous result is allo-
cated through the allocator alloc.

Throws
Any exception thrown by the allocator when attempting to allocate memory for the
asynchronous result.

STD::PROMISE MOVE CONSTRUCTOR
Constructs one std::promise object from another, transferring ownership of the
asynchronous result associated with the other std::promise object to the newly con-
structed instance.

Declaration
promise(promise&& other) noexcept;

Effects
Constructs a new std::promise instance.

Postconditions
The asynchronous result associated with other prior to the invocation of the con-
structor is associated with the newly constructed std::promise object. other has
no associated asynchronous result.

Throws
Nothing.

STD::PROMISE MOVE-ASSIGNMENT OPERATOR
Transfers ownership of the asynchronous result associated with one std::promise
object to another.

Declaration
promise& operator=(promise&& other) noexcept;

Effects
Transfers ownership of the asynchronous result associated with other to *this. If
*this already had an associated asynchronous result, that asynchronous result is
made ready with an exception of type std::future_error and an error code of
std::future_errc::broken_promise.

Postconditions
The asynchronous result associated with other prior to the invocation of the move-
assignment operator is associated with *this. other has no associated asynchro-
nous result.

Returns
*this

485<future> header
Throws
Nothing.

STD::PROMISE::SWAP MEMBER FUNCTION
Exchanges ownership of the asynchronous results associated with two std::promise
objects.

Declaration
void swap(promise& other);

Effects
Exchanges ownership of the asynchronous results associated with other and *this.

Postconditions
The asynchronous result associated with other prior to the invocation of swap (if
any) is associated with *this. The asynchronous result associated with *this prior
to the invocation of swap (if any) is associated with other.

Throws
Nothing.

STD::PROMISE DESTRUCTOR
Destroys an std::promise object.

Declaration
~promise();

Effects
Destroys *this. If *this has an associated asynchronous result, and that result doesn’t
have a stored value or exception, that result becomes ready with an std::future_
error exception with an error code of std::future_errc::broken_promise.

Throws
Nothing.

STD::PROMISE::GET_FUTURE MEMBER FUNCTION
Retrieves an std::future instance for the asynchronous result associated with *this.

Declaration
std::future<ResultType> get_future();

Preconditions
*this has an associated asynchronous result.

Returns
An std::future instance for the asynchronous result associated with *this.

Throws
An exception of type std::future_error with an error code of std::future_
errc::future_already_retrieved if a std::future has already been obtained for
this asynchronous result through a prior call to get_future().

486 APPENDIX D C++ Thread Library reference
STD::PROMISE::SET_VALUE MEMBER FUNCTION
Stores a value in the asynchronous result associated with *this.

Declaration
void promise<void>::set_value();
void promise<R&>::set_value(R& r);
void promise<R>::set_value(R const& r);
void promise<R>::set_value(R&& r);

Preconditions
*this has an associated asynchronous result.

Effects
Stores r in the asynchronous result associated with *this if ResultType isn’t void.

Postconditions
The asynchronous result associated with *this is ready with a stored value. Any
threads blocked waiting for the asynchronous result are unblocked.

Throws
An exception of type std::future_error with an error code of std::future_
errc::promise_already_satisfied if the asynchronous result already has a stored
value or exception. Any exceptions thrown by the copy-constructor or move-con-
structor of r.

Synchronization
Multiple concurrent calls to set_value(), set_value_at_thread_exit(), set_
exception(), and set_exception_at_thread_exit() are serialized. A successful
call to set_value() happens-before a call to std::future<ResultType>::get() or
std::shared_future<ResultType>::get(), which retrieves the value stored.

STD::PROMISE::SET_VALUE_AT_THREAD_EXIT MEMBER FUNCTION
Stores a value in the asynchronous result associated with *this without making that
result ready until the current thread exits.

Declaration
void promise<void>::set_value_at_thread_exit();
void promise<R&>::set_value_at_thread_exit(R& r);
void promise<R>::set_value_at_thread_exit(R const& r);
void promise<R>::set_value_at_thread_exit(R&& r);

Preconditions
*this has an associated asynchronous result.

Effects
Stores r in the asynchronous result associated with *this if ResultType isn’t void.
Marks the asynchronous result as having a stored value. Schedules the associated
asynchronous result to be made ready when the current thread exits.

Postconditions
The asynchronous result associated with *this has a stored value but isn’t ready
until the current thread exits. Threads blocked waiting for the asynchronous result
will be unblocked when the current thread exits.

487<future> header
Throws
An exception of type std::future_error with an error code of std::future_
errc::promise_already_satisfied if the asynchronous result already has a stored
value or exception. Any exceptions thrown by the copy-constructor or move-
constructor of r.

Synchronization
Multiple concurrent calls to set_value(), set_value_at_thread_exit(), set_
exception(), and set_exception_at_thread_exit() are serialized. The comple-
tion of the thread that made a successful call to set_value_at_thread_exit() hap-
pens-before a call to std::future<ResultType>::get() or std::shared_future
<ResultType>::get(), which retrieves the stored exception.

STD::PROMISE::SET_EXCEPTION MEMBER FUNCTION
Stores an exception in the asynchronous result associated with *this.

Declaration
void set_exception(std::exception_ptr e);

Preconditions
*this has an associated asynchronous result. (bool)e is true.

Effects
Stores e in the asynchronous result associated with *this.

Postconditions
The asynchronous result associated with *this is ready with a stored exception.
Any threads blocked waiting for the asynchronous result are unblocked.

Throws
An exception of type std::future_error with an error code of std::future_
errc::promise_already_satisfied if the asynchronous result already has a stored
value or exception.

Synchronization
Multiple concurrent calls to set_value() and set_exception() are serialized. A
successful call to set_exception() happens-before a call to std::future<Result-
Type>::get() or std::shared_future<ResultType>::get(), which retrieves the
stored exception.

STD::PROMISE::SET_EXCEPTION_AT_THREAD_EXIT MEMBER FUNCTION
Stores an exception in the asynchronous result associated with *this without making
that result ready until the current thread exits.

Declaration
void set_exception_at_thread_exit(std::exception_ptr e);

Preconditions
*this has an associated asynchronous result. (bool)e is true.

Effects
Stores e in the asynchronous result associated with *this. Schedules the associated
asynchronous result to be made ready when the current thread exits.

488 APPENDIX D C++ Thread Library reference
Postconditions
The asynchronous result associated with *this has a stored exception but isn’t
ready until the current thread exits. Threads blocked waiting for the asynchronous
result will be unblocked when the current thread exits.

Throws
An exception of type std::future_error with an error code of std::future_
errc::promise_already_satisfied if the asynchronous result already has a stored
value or exception.

Synchronization
Multiple concurrent calls to set_value(), set_value_at_thread_exit(), set_
exception(), and set_exception_at_thread_exit() are serialized. The comple-
tion of the thread that made a successful call to set_exception_at_thread_exit()
happens-before a call to std::future<ResultType>::get() or std::shared_
future<ResultType>::get(), which retrieves the exception stored.

D.4.5 std::async function template

std::async is a simple way of running self-contained asynchronous tasks to make use
of the available hardware concurrency. A call to std::async returns a std::future
that will contain the result of the task. Depending on the launch policy, the task is
either run asynchronously on its own thread or synchronously on whichever thread
calls the wait() or get() member functions on that future.

Declaration
enum class launch
{
 async,deferred
};

template<typename Callable,typename ... Args>
future<result_of<Callable(Args...)>::type>
async(Callable&& func,Args&& ... args);

template<typename Callable,typename ... Args>
future<result_of<Callable(Args...)>::type>
async(launch policy,Callable&& func,Args&& ... args);

Preconditions
The expression INVOKE(func,args) is valid for the supplied values of func and
args. Callable and every member of Args are MoveConstructible.

Effects
Constructs copies of func and args... in internal storage (denoted by fff and
xyz..., respectively).

If policy is std::launch::async, runs INVOKE(fff,xyz...) on its own thread.
The returned std::future will become ready when this thread is complete and will
hold either the return value or the exception thrown by the function invocation.
The destructor of the last future object associated with the asynchronous state of
the returned std::future blocks until the future is ready.

489<mutex> header
If policy is std::launch::deferred, fff and xyz... are stored in the returned
std::future as a deferred function call. The first call to the wait() or get() mem-
ber functions on a future that shares the same associated state will execute INVOKE
(fff,xyz...) synchronously on the thread that called wait() or get().

The value returned or exception thrown by the execution of INVOKE(fff,
xyz...) will be returned from a call to get() on that std::future.

If policy is std::launch::async | std::launch::deferred or the policy
argument is omitted, the behavior is as-if either std::launch::async or std::
launch::deferred had been specified. The implementation will choose the behav-
ior on a call-by-call basis in order to take advantage of the available hardware con-
currency without excessive oversubscription.

In all cases, the std::async call returns immediately.

Synchronization
The completion of the function invocation happens-before a successful return
from a call to wait(), get(), wait_for(), or wait_until() on any std::future or
std::shared_future instance that references the same associated state as the
std:: future object returned from the std::async call. In the case of a policy of
std::launch::async, the completion of the thread on which the function invoca-
tion occurs also happens-before the successful return from these calls.

Throws
std::bad_alloc if the required internal storage can’t be allocated, otherwise
std::future_error when the effects can’t be achieved, or any exception thrown
during the construction of fff or xyz....

D.5 <mutex> header
The <mutex> header provides facilities for ensuring mutual exclusion: mutex types,
lock types and functions, and a mechanism for ensuring an operation is performed
exactly once.

Header contents
namespace std
{
 class mutex;
 class recursive_mutex;
 class timed_mutex;
 class recursive_timed_mutex;
 class shared_mutex;
 class shared_timed_mutex;

 struct adopt_lock_t;
 struct defer_lock_t;
 struct try_to_lock_t;

 constexpr adopt_lock_t adopt_lock{};
 constexpr defer_lock_t defer_lock{};
 constexpr try_to_lock_t try_to_lock{};

 template<typename LockableType>
 class lock_guard;

490 APPENDIX D C++ Thread Library reference
 template<typename LockableType>
 class unique_lock;

 template<typename LockableType>
 class shared_lock;

 template<typename ... LockableTypes>
 class scoped_lock;

 template<typename LockableType1,typename... LockableType2>
 void lock(LockableType1& m1,LockableType2& m2...);

 template<typename LockableType1,typename... LockableType2>
 int try_lock(LockableType1& m1,LockableType2& m2...);

 struct once_flag;

 template<typename Callable,typename... Args>
 void call_once(once_flag& flag,Callable func,Args args...);
}

D.5.1 std::mutex class

The std::mutex class provides a basic mutual exclusion and synchronization facility
for threads that can be used to protect shared data. Prior to accessing the data pro-
tected by the mutex, the mutex must be locked by calling lock() or try_lock(). Only
one thread may hold the lock at a time, so if another thread also tries to lock the
mutex, it will fail (try_lock()) or block (lock()) as appropriate. Once a thread is
done accessing the shared data, it then must call unlock() to release the lock and
allow other threads to acquire it.

 std::mutex meets the Lockable requirements.

Class definition
class mutex
{
public:
 mutex(mutex const&)=delete;
 mutex& operator=(mutex const&)=delete;

 constexpr mutex() noexcept;
 ~mutex();

 void lock();
 void unlock();
 bool try_lock();
};

STD::MUTEX DEFAULT CONSTRUCTOR
Constructs an std::mutex object.

Declaration
constexpr mutex() noexcept;

Effects
Constructs an std::mutex instance.

491<mutex> header
Postconditions
The newly constructed std::mutex object is initially unlocked.

Throws
Nothing.

STD::MUTEX DESTRUCTOR
Destroys an std::mutex object.

Declaration
~mutex();

Preconditions
*this must not be locked.

Effects
Destroys *this.

Throws
Nothing.

STD::MUTEX::LOCK MEMBER FUNCTION
Acquires a lock on an std::mutex object for the current thread.

Declaration
void lock();

Preconditions
The calling thread must not hold a lock on *this.

Effects
Blocks the current thread until a lock on *this can be obtained.

Postconditions
*this is locked by the calling thread.

Throws
An exception of type std::system_error if an error occurs.

STD::MUTEX::TRY_LOCK MEMBER FUNCTION
Attempts to acquire a lock on an std::mutex object for the current thread.

Declaration
bool try_lock();

Preconditions
The calling thread must not hold a lock on *this.

Effects
Attempts to acquire a lock on *this for the calling thread without blocking.

Returns
true if a lock was obtained for the calling thread, false otherwise.

Postconditions
*this is locked by the calling thread if the function returns true.

492 APPENDIX D C++ Thread Library reference
Throws
Nothing.

NOTE The function may fail to acquire the lock (and return false) even if
no other thread holds a lock on *this.

STD::MUTEX::UNLOCK MEMBER FUNCTION
Releases a lock on an std::mutex object held by the current thread.

Declaration
void unlock();

Preconditions
The calling thread must hold a lock on *this.

Effects
Releases the lock on *this held by the current thread. If any threads are blocked
waiting to acquire a lock on *this, unblocks one of them.

Postconditions
*this is not locked by the calling thread.

Throws
Nothing.

D.5.2 std::recursive_mutex class

The std::recursive_mutex class provides a basic mutual exclusion and synchroniza-
tion facility for threads that can be used to protect shared data. Prior to accessing the
data protected by the mutex, the mutex must be locked by calling lock() or
try_lock(). Only one thread may hold the lock at a time, so if another thread also
tries to lock the recursive_mutex, it will fail (try_lock) or block (lock) as appropri-
ate. Once a thread is done accessing the shared data, it then must call unlock() to
release the lock and allow other threads to acquire it.

 This mutex is recursive so a thread that holds a lock on a particular std::recursive
_mutex instance may make further calls to lock() or try_lock() to increase the lock
count. The mutex can’t be locked by another thread until the thread that acquired
the locks has called unlock once for each successful call to lock() or try_lock().

 std::recursive_mutex meets the Lockable requirements.

Class definition
class recursive_mutex
{
public:
 recursive_mutex(recursive_mutex const&)=delete;
 recursive_mutex& operator=(recursive_mutex const&)=delete;

 recursive_mutex() noexcept;
 ~recursive_mutex();

 void lock();
 void unlock();
 bool try_lock() noexcept;
};

493<mutex> header
STD::RECURSIVE_MUTEX DEFAULT CONSTRUCTOR
Constructs an std::recursive_mutex object.

Declaration
recursive_mutex() noexcept;

Effects
Constructs an std::recursive_mutex instance.

Postconditions
The newly constructed std::recursive_mutex object is initially unlocked.

Throws
An exception of type std::system_error if unable to create a new std::recursive
_mutex instance.

STD::RECURSIVE_MUTEX DESTRUCTOR
Destroys an std::recursive_mutex object.

Declaration
~recursive_mutex();

Preconditions
*this must not be locked.

Effects
Destroys *this.

Throws
Nothing.

STD::RECURSIVE_MUTEX::LOCK MEMBER FUNCTION
Acquires a lock on an std::recursive_mutex object for the current thread.

Declaration
void lock();

Effects
Blocks the current thread until a lock on *this can be obtained.

Postconditions
*this is locked by the calling thread. If the calling thread already held a lock on
*this, the lock count is increased by one.

Throws
An exception of type std::system_error if an error occurs.

STD::RECURSIVE_MUTEX::TRY_LOCK MEMBER FUNCTION
Attempts to acquire a lock on an std::recursive_mutex object for the current thread.

Declaration
bool try_lock() noexcept;

Effects
Attempts to acquire a lock on *this for the calling thread without blocking.

494 APPENDIX D C++ Thread Library reference
Returns
true if a lock was obtained for the calling thread, false otherwise.

Postconditions
A new lock on *this has been obtained for the calling thread if the function
returns true.

Throws
Nothing.

NOTE If the calling thread already holds the lock on *this, the function
returns true and the count of locks on *this held by the calling thread is
increased by one. If the current thread doesn’t already hold a lock on *this,
the function may fail to acquire the lock (and return false) even if no other
thread holds a lock on *this.

STD::RECURSIVE_MUTEX::UNLOCK MEMBER FUNCTION
Releases a lock on an std::recursive_mutex object held by the current thread.

Declaration
void unlock();

Preconditions
The calling thread must hold a lock on *this.

Effects
Releases a lock on *this held by the current thread. If this is the last lock on *this
held by the calling thread, any threads are blocked waiting to acquire a lock on
*this. Unblocks one of them.

Postconditions
The number of locks on *this held by the calling thread is reduced by one.

Throws
Nothing.

D.5.3 std::timed_mutex class

The std::timed_mutex class provides support for locks with timeouts on top of the
basic mutual exclusion and synchronization facility provided by std::mutex. Prior to
accessing the data protected by the mutex, the mutex must be locked by calling lock(),
try_lock(), try_lock_for(), or try_lock_until(). If a lock is already held by
another thread, an attempt to acquire the lock will fail (try_lock()), block until the
lock can be acquired (lock()), or block until the lock can be acquired or the lock
attempt times out (try_lock_for() or try_lock_until()). Once a lock has been
acquired (whichever function was used to acquire it), it must be released, by calling
unlock(), before another thread can acquire the lock on the mutex.

 std::timed_mutex meets the TimedLockable requirements.

Class definition
class timed_mutex
{

495<mutex> header
public:
 timed_mutex(timed_mutex const&)=delete;
 timed_mutex& operator=(timed_mutex const&)=delete;

 timed_mutex();
 ~timed_mutex();

 void lock();
 void unlock();
 bool try_lock();

 template<typename Rep,typename Period>
 bool try_lock_for(
 std::chrono::duration<Rep,Period> const& relative_time);

 template<typename Clock,typename Duration>
 bool try_lock_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time);
};

STD::TIMED_MUTEX DEFAULT CONSTRUCTOR
Constructs an std::timed_mutex object.

Declaration
timed_mutex();

Effects
Constructs an std::timed_mutex instance.

Postconditions
The newly constructed std::timed_mutex object is initially unlocked.

Throws
An exception of type std::system_error if unable to create a new std::timed
_mutex instance.

STD::TIMED_MUTEX DESTRUCTOR
Destroys an std::timed_mutex object.

Declaration
~timed_mutex();

Preconditions
*this must not be locked.

Effects
Destroys *this.

Throws
Nothing.

STD::TIMED_MUTEX::LOCK MEMBER FUNCTION
Acquires a lock on an std::timed_mutex object for the current thread.

Declaration
void lock();

496 APPENDIX D C++ Thread Library reference
Preconditions
The calling thread must not hold a lock on *this.

Effects
Blocks the current thread until a lock on *this can be obtained.

Postconditions
*this is locked by the calling thread.

Throws
An exception of type std::system_error if an error occurs.

STD::TIMED_MUTEX::TRY_LOCK MEMBER FUNCTION
Attempts to acquire a lock on an std::timed_mutex object for the current thread.

Declaration
bool try_lock();

Preconditions
The calling thread must not hold a lock on *this.

Effects
Attempts to acquire a lock on *this for the calling thread without blocking.

Returns
true if a lock was obtained for the calling thread, false otherwise.

Postconditions
*this is locked by the calling thread if the function returns true.

Throws
Nothing.

NOTE The function may fail to acquire the lock (and return false) even if
no other thread holds a lock on *this.

STD::TIMED_MUTEX::TRY_LOCK_FOR MEMBER FUNCTION
Attempts to acquire a lock on an std::timed_mutex object for the current thread.

Declaration
template<typename Rep,typename Period>
bool try_lock_for(
 std::chrono::duration<Rep,Period> const& relative_time);

Preconditions
The calling thread must not hold a lock on *this.

Effects
Attempts to acquire a lock on *this for the calling thread within the time specified
by relative_time. If relative_time.count() is zero or negative, the call will
return immediately, as if it was a call to try_lock(). Otherwise, the call blocks until
either the lock has been acquired or the time period specified by relative_time
has elapsed.

Returns
true if a lock was obtained for the calling thread, false otherwise.

497<mutex> header
Postconditions
*this is locked by the calling thread if the function returns true.

Throws
Nothing.

NOTE The function may fail to acquire the lock (and return false) even if
no other thread holds a lock on *this. The thread may be blocked for longer
than the specified duration. Where possible, the elapsed time is determined
by a steady clock.

STD::TIMED_MUTEX::TRY_LOCK_UNTIL MEMBER FUNCTION
Attempts to acquire a lock on an std::timed_mutex object for the current thread.

Declaration
template<typename Clock,typename Duration>
bool try_lock_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time);

Preconditions
The calling thread must not hold a lock on *this.

Effects
Attempts to acquire a lock on *this for the calling thread before the time specified
by absolute_time. If absolute_time<=Clock::now() on entry, the call will return
immediately, as if it was a call to try_lock(). Otherwise, the call blocks until either
the lock has been acquired or Clock::now() returns a time equal to or later than
absolute_time.

Returns
true if a lock was obtained for the calling thread, false otherwise.

Postconditions
*this is locked by the calling thread if the function returns true.

Throws
Nothing.

NOTE The function may fail to acquire the lock (and return false) even if
no other thread holds a lock on *this. There’s no guarantee as to how long
the calling thread will be blocked, only that if the function returns false,
then Clock::now() returns a time equal to or later than absolute_time at
the point at which the thread became unblocked.

STD::TIMED_MUTEX::UNLOCK MEMBER FUNCTION
Releases a lock on an std::timed_mutex object held by the current thread.

Declaration
void unlock();

Preconditions
The calling thread must hold a lock on *this.

498 APPENDIX D C++ Thread Library reference
Effects
Releases the lock on *this held by the current thread. If any threads are blocked
waiting to acquire a lock on *this, unblocks one of them.

Postconditions
*this is not locked by the calling thread.

Throws
Nothing.

D.5.4 std::recursive_timed_mutex class

The std::recursive_timed_mutex class provides support for locks with timeouts on
top of the mutual exclusion and synchronization facility provided by std::recursive_
mutex. Prior to accessing the data protected by the mutex, the mutex must be locked by
calling lock(), try_lock(), try_lock_for(), or try_lock_until(). If a lock is already
held by another thread, an attempt to acquire the lock will fail (try_lock()), block
until the lock can be acquired (lock()), or block until the lock can be acquired or the
lock attempt times out (try_lock_for() or try_lock_until()). Once a lock has
been acquired (whichever function was used to acquire it), it must be released by call-
ing unlock() before another thread can acquire the lock on the mutex.

 This mutex is recursive, so a thread that holds a lock on a particular instance of
std::recursive_timed_mutex may acquire additional locks on that instance through
any of the lock functions. All of these locks must be released by a corresponding call
to unlock() before another thread can acquire a lock on that instance.

 std::recursive_timed_mutex meets the TimedLockable requirements.

Class definition
class recursive_timed_mutex
{
public:
 recursive_timed_mutex(recursive_timed_mutex const&)=delete;
 recursive_timed_mutex& operator=(recursive_timed_mutex const&)=delete;

 recursive_timed_mutex();
 ~recursive_timed_mutex();

 void lock();
 void unlock();
 bool try_lock() noexcept;

 template<typename Rep,typename Period>
 bool try_lock_for(
 std::chrono::duration<Rep,Period> const& relative_time);

 template<typename Clock,typename Duration>
 bool try_lock_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time);
};

499<mutex> header
STD::RECURSIVE_TIMED_MUTEX DEFAULT CONSTRUCTOR
Constructs an std::recursive_timed_mutex object.

Declaration
recursive_timed_mutex();

Effects
Constructs an std::recursive_timed_mutex instance.

Postconditions
The newly constructed std::recursive_timed_mutex object is initially unlocked.

Throws
An exception of type std::system_error if unable to create a new std::recursive
_timed_mutex instance.

STD::RECURSIVE_TIMED_MUTEX DESTRUCTOR
Destroys an std::recursive_timed_mutex object.

Declaration
~recursive_timed_mutex();

Preconditions
*this must not be locked.

Effects
Destroys *this.

Throws
Nothing.

STD::RECURSIVE_TIMED_MUTEX::LOCK MEMBER FUNCTION
Acquires a lock on an std::recursive_timed_mutex object for the current thread.

Declaration
void lock();

Preconditions
The calling thread must not hold a lock on *this.

Effects
Blocks the current thread until a lock on *this can be obtained.

Postconditions
*this is locked by the calling thread. If the calling thread already held a lock on
*this, the lock count is increased by one.

Throws
An exception of type std::system_error if an error occurs.

STD::RECURSIVE_TIMED_MUTEX::TRY_LOCK MEMBER FUNCTION
Attempts to acquire a lock on an std::recursive_timed_mutex object for the current
thread.

Declaration
bool try_lock() noexcept;

500 APPENDIX D C++ Thread Library reference
Effects
Attempts to acquire a lock on *this for the calling thread without blocking.

Returns
true if a lock was obtained for the calling thread, false otherwise.

Postconditions
*this is locked by the calling thread if the function returns true.

Throws
Nothing.

NOTE If the calling thread already holds the lock on *this, the function
returns true and the count of locks on *this held by the calling thread is
increased by one. If the current thread doesn’t already hold a lock on *this,
the function may fail to acquire the lock (and return false) even if no other
thread holds a lock on *this.

STD::RECURSIVE_TIMED_MUTEX::TRY_LOCK_FOR MEMBER FUNCTION
Attempts to acquire a lock on an std::recursive_timed_mutex object for the current
thread.

Declaration
template<typename Rep,typename Period>
bool try_lock_for(
 std::chrono::duration<Rep,Period> const& relative_time);

Effects
Attempts to acquire a lock on *this for the calling thread within the time specified
by relative_time. If relative_time.count() is zero or negative, the call will
return immediately, as if it was a call to try_lock(). Otherwise, the call blocks until
either the lock has been acquired or the time period specified by relative_time
has elapsed.

Returns
true if a lock was obtained for the calling thread, false otherwise.

Postconditions
*this is locked by the calling thread if the function returns true.

Throws
Nothing.

NOTE If the calling thread already holds the lock on *this, the function
returns true and the count of locks on *this held by the calling thread is
increased by one. If the current thread doesn’t already hold a lock on *this,
the function may fail to acquire the lock (and return false) even if no other
thread holds a lock on *this. The thread may be blocked for longer than the
specified duration. Where possible, the elapsed time is determined by a
steady clock.

501<mutex> header
STD::RECURSIVE_TIMED_MUTEX::TRY_LOCK_UNTIL MEMBER FUNCTION
Attempts to acquire a lock on an std::recursive_timed_mutex object for the current
thread.

Declaration
template<typename Clock,typename Duration>
bool try_lock_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time);

Effects
Attempts to acquire a lock on *this for the calling thread before the time specified
by absolute_time. If absolute_time<=Clock::now() on entry, the call will return
immediately, as if it was a call to try_lock(). Otherwise, the call blocks until either
the lock has been acquired or Clock::now() returns a time equal to or later than
absolute_time.

Returns
true if a lock was obtained for the calling thread, false otherwise.

Postconditions
*this is locked by the calling thread if the function returns true.

Throws
Nothing.

NOTE If the calling thread already holds the lock on *this, the function
returns true and the count of locks on *this held by the calling thread is
increased by one. If the current thread doesn’t already hold a lock on *this,
the function may fail to acquire the lock (and return false) even if no other
thread holds a lock on *this. There’s no guarantee as to how long the calling
thread will be blocked, only that if the function returns false, then
Clock::now() returns a time equal to or later than absolute_time at the
point at which the thread became unblocked.

STD::RECURSIVE_TIMED_MUTEX::UNLOCK MEMBER FUNCTION
Releases a lock on an std::recursive_timed_mutex object held by the current
thread.

Declaration
void unlock();

Preconditions
The calling thread must hold a lock on *this.

Effects
Releases a lock on *this held by the current thread. If this is the last lock on *this
held by the calling thread, any threads are blocked waiting to acquire a lock on
*this. Unblocks one of them.

Postconditions
The number of locks on *this held by the calling thread is reduced by one.

Throws
Nothing.

502 APPENDIX D C++ Thread Library reference
D.5.5 std::shared_mutex class

The std::shared_mutex class provides a mutual exclusion and synchronization facil-
ity for threads that can be used to protect shared data that is frequently read and
rarely modified. It allows one thread to hold an exclusive lock, or one or more threads
to hold a shared lock. Prior to modifying the data protected by the mutex, the mutex
must be locked with an exclusive lock by calling lock() or try_lock(). Only one
thread may hold an exclusive lock at a time, so if another thread also tries to lock the
mutex, it will fail (try_lock()) or block (lock()) as appropriate. Once a thread is
done modifying the shared data, it then must call unlock() to release the lock and
allow other threads to acquire it. Threads that only want to read the protected data
may obtain a shared lock by calling lock_shared() or try_lock_shared(). Multiple
threads may hold a shared lock at a time, so if one thread holds a shared lock, then
another thread may also acquire a shared lock. If a thread tries to acquire an exclusive
lock, that thread will wait. Once a thread that has acquired a shared lock is done
accessing the protected data, it must call unlock_shared() to release the shared lock.

 std::shared_mutex meets the Lockable requirements.

Class definition
class shared_mutex
{
public:
 shared_mutex(shared_mutex const&)=delete;
 shared_mutex& operator=(shared_mutex const&)=delete;

 shared_mutex() noexcept;
 ~shared_mutex();

 void lock();
 void unlock();
 bool try_lock();

 void lock_shared();
 void unlock_shared();
 bool try_lock_shared();
};

STD::SHARED_MUTEX DEFAULT CONSTRUCTOR
Constructs an std::shared_mutex object.

Declaration
shared_mutex() noexcept;

Effects
Constructs an std::shared_mutex instance.

Postconditions
The newly constructed std::shared_mutex object is initially unlocked.

Throws
Nothing.

503<mutex> header
STD::SHARED_MUTEX DESTRUCTOR
Destroys an std::shared_mutex object.

Declaration
~shared_mutex();

Preconditions
*this must not be locked.

Effects
Destroys *this.

Throws
Nothing.

STD::SHARED_MUTEX::LOCK MEMBER FUNCTION
Acquires an exclusive lock on an std::shared_mutex object for the current thread.

Declaration
void lock();

Preconditions
The calling thread must not hold a lock on *this.

Effects
Blocks the current thread until an exclusive lock on *this can be obtained.

Postconditions
*this is locked by the calling thread with an exclusive lock.

Throws
An exception ofif an error occurs.

STD::SHARED_MUTEX::TRY_LOCK MEMBER FUNCTION
Attempts to acquire an exclusive lock on an std::shared_mutex object for the cur-
rent thread.

Declaration
bool try_lock();

Preconditions
The calling thread must not hold a lock on *this.

Effects
Attempts to acquire an exclusive lock on *this for the calling thread without
blocking.

Returns
true if a lock was obtained for the calling thread, false otherwise.

Postconditions
*this is locked by the calling thread with an exclusive lock if the function returns
true.

504 APPENDIX D C++ Thread Library reference
Throws
Nothing.

NOTE The function may fail to acquire the lock (and return false) even if
no other thread holds a lock on *this.

STD::SHARED_MUTEX::UNLOCK MEMBER FUNCTION
Releases an exclusive lock on an std::shared_mutex object held by the current
thread.

Declaration
void unlock();

Preconditions
The calling thread must hold an exclusive lock on *this.

Effects
Releases the exclusive lock on *this held by the current thread. If any threads are
blocked waiting to acquire a lock on *this, unblocks one thread waiting for an
exclusive lock or some number of threads waiting for a shared lock.

Postconditions
*this is not locked by the calling thread.

Throws
Nothing.

STD::SHARED_MUTEX::LOCK_SHARED MEMBER FUNCTION
Acquires a shared lock on an std::shared_mutex object for the current thread.

Declaration
void lock_shared();

Preconditions
The calling thread must not hold a lock on *this.

Effects
Blocks the current thread until a shared lock on *this can be obtained.

Postconditions
*this is locked by the calling thread with a shared lock.

Throws
An exception ofif an error occurs.

STD::SHARED_MUTEX::TRY_LOCK_SHARED MEMBER FUNCTION
Attempts to acquire a shared lock on an std::shared_mutex object for the current
thread.

Declaration
bool try_lock_shared();

Preconditions
The calling thread must not hold a lock on *this.

505<mutex> header
Effects
Attempts to acquire a shared lock on *this for the calling thread without blocking.

Returns
true if a lock was obtained for the calling thread, false otherwise.

Postconditions
*this is locked by the calling thread with a shared lock if the function returns
true.

Throws
Nothing.

NOTE The function may fail to acquire the lock (and return false) even if
no other thread holds a lock on *this.

STD::SHARED_MUTEX::UNLOCK_SHARED MEMBER FUNCTION
Releases a shared lock on an std::shared_mutex object held by the current thread.

Declaration
void unlock_shared();

Preconditions
The calling thread must hold a shared lock on *this.

Effects
Releases the shared lock on *this held by the current thread. If this is the last
shared lock on *this, and any threads are blocked waiting to acquire a lock on
*this, unblocks one thread waiting for an exclusive lock or some number of
threads waiting for a shared lock.

Postconditions
*this is not locked by the calling thread.

Throws
Nothing.

D.5.6 std::shared_timed_mutex class

The std::shared_timed_mutex class provides a mutual exclusion and synchroniza-
tion facility for threads that can be used to protect shared data that is frequently read
and rarely modified. It allows one thread to hold an exclusive lock, or one or more
threads to hold a shared lock. Prior to modifying the data protected by the mutex, the
mutex must be locked with an exclusive lock by calling lock() or try_lock(). Only
one thread may hold an exclusive lock at a time, so if another thread also tries to lock
the mutex, it will fail (try_lock()) or block (lock()) as appropriate. Once a thread is
done modifying the shared data, it then must call unlock() to release the lock and
allow other threads to acquire it. Threads that only want to read the protected data
may obtain a shared lock by calling lock_shared() or try_lock_shared(). Multiple
threads may hold a shared lock at a time, so if one thread holds a shared lock, then
another thread may also acquire a shared lock. If a thread tries to acquire an exclusive

506 APPENDIX D C++ Thread Library reference
lock, that thread will wait. Once a thread that has acquired a shared lock is done
accessing the protected data, it must call unlock_shared() to release the shared lock.

 std::shared_timed_mutex meets the Lockable requirements.

Class definition
class shared_timed_mutex
{
public:
 shared_timed_mutex(shared_timed_mutex const&)=delete;
 shared_timed_mutex& operator=(shared_timed_mutex const&)=delete;

 shared_timed_mutex() noexcept;
 ~shared_timed_mutex();

 void lock();
 void unlock();
 bool try_lock();

 template<typename Rep,typename Period>
 bool try_lock_for(
 std::chrono::duration<Rep,Period> const& relative_time);

 template<typename Clock,typename Duration>
 bool try_lock_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time);

 void lock_shared();
 void unlock_shared();
 bool try_lock_shared();

 template<typename Rep,typename Period>
 bool try_lock_shared_for(
 std::chrono::duration<Rep,Period> const& relative_time);

 template<typename Clock,typename Duration>
 bool try_lock_shared_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time);
};

STD::SHARED_TIMED_MUTEX DEFAULT CONSTRUCTOR
Constructs an std::shared_timed_mutex object.

Declaration
shared_timed_mutex() noexcept;

Effects
Constructs an std::shared_timed_mutex instance.

Postconditions
The newly constructed std::shared_timed_mutex object is initially unlocked.

Throws
Nothing.

507<mutex> header
STD::SHARED_TIMED_MUTEX DESTRUCTOR
Destroys an std::shared_timed_mutex object.

Declaration
~shared_timed_mutex();

Preconditions
*this must not be locked.

Effects
Destroys *this.

Throws
Nothing.

STD::SHARED_TIMED_MUTEX::LOCK MEMBER FUNCTION
Acquires an exclusive lock on an std::shared_timed_mutex object for the current
thread.

Declaration
void lock();

Preconditions
The calling thread must not hold a lock on *this.

Effects
Blocks the current thread until an exclusive lock on *this can be obtained.

Postconditions
*this is locked by the calling thread with an exclusive lock.

Throws
An exception of type std::system_error if an error occurs.

STD::SHARED_TIMED_MUTEX::TRY_LOCK MEMBER FUNCTION
Attempts to acquire an exclusive lock on an std::shared_timed_mutex object for the
current thread.

Declaration
bool try_lock();

Preconditions
The calling thread must not hold a lock on *this.

Effects
Attempts to acquire an exclusive lock on *this for the calling thread without
blocking.

Returns
true if a lock was obtained for the calling thread, false otherwise.

Postconditions
*this is locked by the calling thread with an exclusive lock if the function returns
true.

Throws
Nothing.

508 APPENDIX D C++ Thread Library reference
NOTE The function may fail to acquire the lock (and return false) even if
no other thread holds a lock on *this.

STD::SHARED_TIMED_MUTEX::TRY_LOCK_FOR MEMBER FUNCTION
Attempts to acquire an exclusive lock on an std::shared_timed_mutex object for the
current thread.

Declaration
template<typename Rep,typename Period>
bool try_lock_for(
 std::chrono::duration<Rep,Period> const& relative_time);

Preconditions
The calling thread must not hold a lock on *this.

Effects
Attempts to acquire an exclusive lock on *this for the calling thread within the
time specified by relative_time. If relative_time.count() is zero or negative,
the call will return immediately, as if it was a call to try_lock(). Otherwise, the call
blocks until either the lock has been acquired or the time period specified by
relative_time has elapsed.

Returns
true if a lock was obtained for the calling thread, false otherwise.

Postconditions
*this is locked by the calling thread if the function returns true.

Throws
Nothing.

NOTE The function may fail to acquire the lock (and return false) even if
no other thread holds a lock on *this. The thread may be blocked for longer
than the specified duration. Where possible, the elapsed time is determined
by a steady clock.

STD::SHARED_TIMED_MUTEX::TRY_LOCK_UNTIL MEMBER FUNCTION
Attempts to acquire an exclusive lock on an std::shared_timed_mutex object for the
current thread.

Declaration
template<typename Clock,typename Duration>
bool try_lock_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time);

Preconditions
The calling thread must not hold a lock on *this.

Effects
Attempts to acquire an exclusive lock on *this for the calling thread before the
time specified by absolute_time. If absolute_time<=Clock::now() on entry, the
call will return immediately, as if it was a call to try_lock(). Otherwise, the call

509<mutex> header
blocks until either the lock has been acquired or Clock::now() returns a time equal
to or later than absolute_time.

Returns
true if a lock was obtained for the calling thread, false otherwise.

Postconditions
*this is locked by the calling thread if the function returns true.

Throws
Nothing.

NOTE The function may fail to acquire the lock (and return false) even if
no other thread holds a lock on *this. There’s no guarantee as to how long
the calling thread will be blocked, only that if the function returns false,
then Clock::now() returns a time equal to or later than absolute_time at
the point at which the thread became unblocked.

STD::SHARED_TIMED_MUTEX::UNLOCK MEMBER FUNCTION
Releases an exclusive lock on an std::shared_timed_mutex object held by the cur-
rent thread.

Declaration
void unlock();

Preconditions
The calling thread must hold an exclusive lock on *this.

Effects
Releases the exclusive lock on *this held by the current thread. If any threads are
blocked waiting to acquire a lock on *this, unblocks one thread waiting for an
exclusive lock or some number of threads waiting for a shared lock.

Postconditions
*this is not locked by the calling thread.

Throws
Nothing.

STD::SHARED_TIMED_MUTEX::LOCK_SHARED MEMBER FUNCTION
Acquires a shared lock on an std::shared_timed_mutex object for the current thread.

Declaration
void lock_shared();

Preconditions
The calling thread must not hold a lock on *this.

Effects
Blocks the current thread until a shared lock on *this can be obtained.

Postconditions
*this is locked by the calling thread with a shared lock.

Throws
An exception of type std::system_error if an error occurs.

510 APPENDIX D C++ Thread Library reference
STD::SHARED_TIMED_MUTEX::TRY_LOCK_SHARED MEMBER FUNCTION
Attempts to acquire a shared lock on an std::shared_timed_mutex object for the cur-
rent thread.

Declaration
bool try_lock_shared();

Preconditions
The calling thread must not hold a lock on *this.

Effects
Attempts to acquire a shared lock on *this for the calling thread without blocking.

Returns
true if a lock was obtained for the calling thread, false otherwise.

Postconditions
*this is locked by the calling thread with a shared lock if the function returns true.

Throws
Nothing.

NOTE The function may fail to acquire the lock (and return false) even if
no other thread holds a lock on *this.

STD::SHARED_TIMED_MUTEX::TRY_LOCK_SHARED_FOR MEMBER FUNCTION
Attempts to acquire a shared lock on an std::shared_timed_mutex object for the cur-
rent thread.

Declaration
template<typename Rep,typename Period>
bool try_lock_for(
 std::chrono::duration<Rep,Period> const& relative_time);

Preconditions
The calling thread must not hold a lock on *this.

Effects
Attempts to acquire a shared lock on *this for the calling thread within the time
specified by relative_time. If relative_time.count() is zero or negative, the call
will return immediately, as if it was a call to try_lock(). Otherwise, the call blocks
until either the lock has been acquired or the time period specified by relative
_time has elapsed.

Returns
true if a lock was obtained for the calling thread, false otherwise.

Postconditions
*this is locked by the calling thread if the function returns true.

Throws
Nothing.

NOTE The function may fail to acquire the lock (and return false) even if
no other thread holds a lock on *this. The thread may be blocked for longer

511<mutex> header
than the specified duration. Where possible, the elapsed time is determined
by a steady clock.

STD::SHARED_TIMED_MUTEX::TRY_LOCK_UNTIL MEMBER FUNCTION
Attempts to acquire a shared lock on an std::shared_timed_mutex object for the cur-
rent thread.

Declaration
template<typename Clock,typename Duration>
bool try_lock_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time);

Preconditions
The calling thread must not hold a lock on *this.

Effects
Attempts to acquire a shared lock on *this for the calling thread before the time
specified by absolute_time. If absolute_time<=Clock::now() on entry, the call
will return immediately, as if it was a call to try_lock(). Otherwise, the call blocks
until either the lock has been acquired or Clock::now() returns a time equal to or
later than absolute_time.

Returns
true if a lock was obtained for the calling thread, false otherwise.

Postconditions
*this is locked by the calling thread if the function returns true.

Throws
Nothing.

NOTE The function may fail to acquire the lock (and return false) even if
no other thread holds a lock on *this. There’s no guarantee as to how long
the calling thread will be blocked, only that if the function returns false,
then Clock::now() returns a time equal to or later than absolute_time at
the point at which the thread became unblocked.

STD::SHARED_TIMED_MUTEX::UNLOCK_SHARED MEMBER FUNCTION
Releases a shared lock on an std::shared_timed_mutex object held by the current
thread.

Declaration
void unlock_shared();

Preconditions
The calling thread must hold a shared lock on *this.

Effects
Releases the shared lock on *this held by the current thread. If this is the last shared
lock on *this, and any threads are blocked waiting to acquire a lock on *this,
unblocks one thread waiting for an exclusive lock or some number of threads wait-
ing for a shared lock.

512 APPENDIX D C++ Thread Library reference
Postconditions
*this is not locked by the calling thread.

Throws
Nothing.

D.5.7 std::lock_guard class template

The std::lock_guard class template provides a basic lock ownership wrapper. The
type of mutex being locked is specified by template parameter Mutex and must meet
the Lockable requirements. The specified mutex is locked in the constructor and
unlocked in the destructor. This provides a simple means of locking a mutex for a
block of code and ensuring that the mutex is unlocked when the block is left, whether
that’s by running off the end, by the use of a control flow statement such as break or
return, or by throwing an exception.

 Instances of std::lock_guard are not MoveConstructible, CopyConstructible,
or CopyAssignable.

Class definition
template <class Mutex>
class lock_guard
{
public:
 typedef Mutex mutex_type;

 explicit lock_guard(mutex_type& m);
 lock_guard(mutex_type& m, adopt_lock_t);
 ~lock_guard();

 lock_guard(lock_guard const&) = delete;
 lock_guard& operator=(lock_guard const&) = delete;
};

STD::LOCK_GUARD LOCKING CONSTRUCTOR
Constructs an std::lock_guard instance that locks the supplied mutex.

Declaration
explicit lock_guard(mutex_type& m);

Effects
Constructs an std::lock_guard instance that references the supplied mutex. Calls
m.lock().

Throws
Any exceptions thrown by m.lock().

Postconditions
*this owns a lock on m.

STD::LOCK_GUARD LOCK-ADOPTING CONSTRUCTOR
Constructs an std::lock_guard instance that owns the lock on the supplied mutex.

Declaration
lock_guard(mutex_type& m,std::adopt_lock_t);

513<mutex> header
Preconditions
The calling thread must own a lock on m.

Effects
Constructs an std::lock_guard instance that references the supplied mutex and
takes ownership of the lock on m held by the calling thread.

Throws
Nothing.

Postconditions
*this owns the lock on m held by the calling thread.

STD::LOCK_GUARD DESTRUCTOR
Destroys an std::lock_guard instance and unlocks the corresponding mutex.

Declaration
~lock_guard();

Effects
Calls m.unlock() for the mutex instance, m, supplied when *this was constructed.

Throws
Nothing.

D.5.8 std::scoped_lock class template

The std::scoped_lock class template provides a basic lock ownership wrapper for
multiple mutexes at once. The type of mutex being locked is specified by the template
parameter pack Mutexes and each must meet the Lockable requirements. The speci-
fied mutexes are locked in the constructor and unlocked in the destructor. This pro-
vides a simple means of locking a set of mutexes for a block of code and ensuring that
the mutexes are unlocked when the block is left, whether that’s by running off the
end, by the use of a control flow statement such as break or return, or by throwing an
exception.

 Instances of std::scoped_lock are not MoveConstructible, CopyConstructible,
or CopyAssignable.

Class definition
template <class ... Mutexes>
class scoped_lock
{
public:

 explicit scoped_lock(Mutexes& ... m);
 scoped_lock(Mutexes& ... m, adopt_lock_t);
 ~scoped_lock();

 scoped_lock(scoped_lock const&) = delete;
 scoped_lock& operator=(scoped_lock const&) = delete;
};

STD::SCOPED_LOCK LOCKING CONSTRUCTOR
Constructs an std::scoped_lock instance that locks the supplied mutexes.

514 APPENDIX D C++ Thread Library reference
Declaration
explicit scoped_lock(Mutexes& ... m);

Effects
Constructs an std::scoped_lock instance that references the supplied mutexes.
Uses a combination of calls to m.lock(), m.try_lock(), and m.unlock() on each
of the mutexes, in order to avoid deadlock, using the same algorithm as the
std::lock() free function.

Throws
Any exceptions thrown by the m.lock() and m.try_lock() calls.

Postconditions
*this owns a lock on the supplied mutexes.

STD::SCOPED_LOCK LOCK-ADOPTING CONSTRUCTOR
Constructs an std::scoped_lock instance that owns the lock on the supplied mutexes;
they must already be locked by the calling thread.

Declaration
scoped_lock(Mutexes& ... m,std::adopt_lock_t);

Preconditions
The calling thread must own a lock on the mutexes in m.

Effects
Constructs an std::scoped_lock instance that references the supplied mutexes
and takes ownership of the lock on the mutexes in m held by the calling thread.

Throws
Nothing.

Postconditions
*this owns the lock on the supplied mutexes held by the calling thread.

STD::SCOPED_LOCK DESTRUCTOR
Destroys an std::scoped_lock instance and unlocks the corresponding mutexes.

Declaration
~scoped_lock();

Effects
Calls m.unlock() for each of the mutex instances m supplied when *this was con-
structed.

Throws
Nothing.

D.5.9 std::unique_lock class template

The std::unique_lock class template provides a more general lock ownership wrap-
per than std::lock_guard. The type of mutex being locked is specified by the template
parameter Mutex, which must meet the BasicLockable requirements. In general, the
specified mutex is locked in the constructor and unlocked in the destructor, although

515<mutex> header
additional constructors and member functions are provided to allow other possibili-
ties. This provides a means of locking a mutex for a block of code and ensuring that
the mutex is unlocked when the block is left, whether that’s by running off the end, by
the use of a control flow statement such as break or return, or by throwing an excep-
tion. The wait functions of std::condition_variable require an instance of std::
unique_lock<std::mutex>, and all instantiations of std::unique_lock are suitable
for use with the Lockable parameter for the std::condition_variable_any wait
functions.

 If the supplied Mutex type meets the Lockable requirements, then std::unique_
lock<Mutex> also meets the Lockable requirements. If, in addition, the supplied
Mutex type meets the TimedLockable requirements, then std::unique_lock<Mutex>
also meets the TimedLockable requirements.

 Instances of std::unique_lock are MoveConstructible and MoveAssignable but
not CopyConstructible or CopyAssignable.

Class definition
template <class Mutex>
class unique_lock
{
public:
 typedef Mutex mutex_type;

 unique_lock() noexcept;
 explicit unique_lock(mutex_type& m);
 unique_lock(mutex_type& m, adopt_lock_t);
 unique_lock(mutex_type& m, defer_lock_t) noexcept;
 unique_lock(mutex_type& m, try_to_lock_t);

 template<typename Clock,typename Duration>
 unique_lock(
 mutex_type& m,
 std::chrono::time_point<Clock,Duration> const& absolute_time);

 template<typename Rep,typename Period>
 unique_lock(
 mutex_type& m,
 std::chrono::duration<Rep,Period> const& relative_time);

 ~unique_lock();

 unique_lock(unique_lock const&) = delete;
 unique_lock& operator=(unique_lock const&) = delete;

 unique_lock(unique_lock&&);
 unique_lock& operator=(unique_lock&&);

 void swap(unique_lock& other) noexcept;

 void lock();
 bool try_lock();
 template<typename Rep, typename Period>
 bool try_lock_for(
 std::chrono::duration<Rep,Period> const& relative_time);
 template<typename Clock, typename Duration>
 bool try_lock_until(

516 APPENDIX D C++ Thread Library reference
 std::chrono::time_point<Clock,Duration> const& absolute_time);
 void unlock();

 explicit operator bool() const noexcept;
 bool owns_lock() const noexcept;
 Mutex* mutex() const noexcept;
 Mutex* release() noexcept;
};

STD::UNIQUE_LOCK DEFAULT CONSTRUCTOR
Constructs an std::unique_lock instance with no associated mutex.

Declaration
unique_lock() noexcept;

Effects
Constructs an std::unique_lock instance that has no associated mutex.

Postconditions
this->mutex()==NULL, this->owns_lock()==false.

STD::UNIQUE_LOCK LOCKING CONSTRUCTOR
Constructs an std::unique_lock instance that locks the supplied mutex.

Declaration
explicit unique_lock(mutex_type& m);

Effects
Constructs an std::unique_lock instance that references the supplied mutex.
Calls m.lock().

Throws
Any exceptions thrown by m.lock().

Postconditions
this->owns_lock()==true, this->mutex()==&m.

STD::UNIQUE_LOCK LOCK-ADOPTING CONSTRUCTOR
Constructs an std::unique_lock instance that owns the lock on the supplied mutex.

Declaration
unique_lock(mutex_type& m,std::adopt_lock_t);

Preconditions
The calling thread must own a lock on m.

Effects
Constructs an std::unique_lock instance that references the supplied mutex and
takes ownership of the lock on m held by the calling thread.

Throws
Nothing.

Postconditions
this->owns_lock()==true, this->mutex()==&m.

517<mutex> header
STD::UNIQUE_LOCK DEFERRED-LOCK CONSTRUCTOR
Constructs an std::unique_lock instance that doesn’t own the lock on the supplied
mutex.

Declaration
unique_lock(mutex_type& m,std::defer_lock_t) noexcept;

Effects
Constructs an std::unique_lock instance that references the supplied mutex.

Throws
Nothing.

Postconditions
this->owns_lock()==false, this->mutex()==&m.

STD::UNIQUE_LOCK TRY-TO-LOCK CONSTRUCTOR
Constructs an std::unique_lock instance associated with the supplied mutex and
tries to acquire a lock on that mutex.

Declaration
unique_lock(mutex_type& m,std::try_to_lock_t);

Preconditions
The Mutex type used to instantiate std::unique_lock must meet the Lockable
requirements.

Effects
Constructs an std::unique_lock instance that references the supplied mutex.
Calls m.try_lock().

Throws
Nothing.

Postconditions
this->owns_lock() returns the result of the m.try_lock() call, this->mutex()==&m.

STD::UNIQUE_LOCK TRY-TO-LOCK CONSTRUCTOR WITH A DURATION TIMEOUT
Constructs an std::unique_lock instance associated with the supplied mutex and
tries to acquire a lock on that mutex.

Declaration
template<typename Rep,typename Period>
unique_lock(
 mutex_type& m,
 std::chrono::duration<Rep,Period> const& relative_time);

Preconditions
The Mutex type used to instantiate std::unique_lock must meet the Timed-Lockable
requirements.

Effects
Constructs an std::unique_lock instance that references the supplied mutex. Calls
m.try_lock_for(relative_time).

518 APPENDIX D C++ Thread Library reference
Throws
Nothing.

Postconditions
this->owns_lock() returns the result of the m.try_lock_for() call, this->mutex()
==&m.

STD::UNIQUE_LOCK TRY-TO-LOCK CONSTRUCTOR WITH A TIME_POINT TIMEOUT
Constructs an std::unique_lock instance associated with the supplied mutex and
tries to acquire a lock on that mutex.

Declaration
template<typename Clock,typename Duration>
unique_lock(
 mutex_type& m,
 std::chrono::time_point<Clock,Duration> const& absolute_time);

Preconditions
The Mutex type used to instantiate std::unique_lock must meet the Timed-Lockable
requirements.

Effects
Constructs an std::unique_lock instance that references the supplied mutex. Calls
m.try_lock_until(absolute_time).

Throws
Nothing.

Postconditions
this->owns_lock() returns the result of the m.try_lock_until() call, this->
mutex()==&m.

STD::UNIQUE_LOCK MOVE-CONSTRUCTOR
Transfers ownership of a lock from one std::unique_lock object to a newly-created
std::unique_lock object.

Declaration
unique_lock(unique_lock&& other) noexcept;

Effects
Constructs an std::unique_lock instance. If other owned a lock on a mutex prior
to the constructor invocation, that lock is now owned by the newly created
std::unique_lock object.

Postconditions
For a newly constructed std::unique_lock object, x, x.mutex() is equal to the value
of other.mutex() prior to the constructor invocation, and x.owns_lock() is equal to
the value of other.owns_lock() prior to the constructor invocation. other.mutex()
==NULL, other.owns_lock()==false.

Throws
Nothing.

519<mutex> header
NOTE std::unique_lock objects are not CopyConstructible, so there’s no
copy constructor, only this move constructor.

STD::UNIQUE_LOCK MOVE-ASSIGNMENT OPERATOR
Transfers ownership of a lock from one std::unique_lock object to another std::
unique_lock object.

Declaration
unique_lock& operator=(unique_lock&& other) noexcept;

Effects
If this->owns_lock()returns true prior to the call, calls this->unlock(). If other
owned a lock on a mutex prior to the assignment, that lock is now owned by *this.

Postconditions
this->mutex() is equal to the value of other.mutex() prior to the assignment, and
this->owns_lock() is equal to the value of other.owns_lock() prior to the assign-
ment. other.mutex()==NULL, other.owns_lock()==false.

Throws
Nothing.

NOTE std::unique_lock objects are not CopyAssignable, so there’s no copy-
assignment operator, only this move-assignment operator.

STD::UNIQUE_LOCK DESTRUCTOR
Destroys an std::unique_lock instance and unlocks the corresponding mutex if it’s
owned by the destroyed instance.

Declaration
~unique_lock();

Effects
If this->owns_lock()returns true, calls this->mutex()->unlock().

Throws
Nothing.

STD::UNIQUE_LOCK::SWAP MEMBER FUNCTION
Exchanges ownership of their associated unique_locks of execution between two
std::unique_lock objects.

Declaration
void swap(unique_lock& other) noexcept;

Effects
If other owns a lock on a mutex prior to the call, that lock is now owned by *this.
If *this owns a lock on a mutex prior to the call, that lock is now owned by other.

Postconditions
this->mutex() is equal to the value of other.mutex() prior to the call. other
.mutex() is equal to the value of this->mutex() prior to the call. this->owns_lock()

520 APPENDIX D C++ Thread Library reference
is equal to the value of other.owns_lock() prior to the call. other.owns_lock() is
equal to the value of this->owns_lock() prior to the call.

Throws
Nothing.

SWAP NONMEMBER FUNCTION FOR STD::UNIQUE_LOCK

Exchanges ownership of their associated mutex locks between two std::unique_lock
objects.

Declaration
void swap(unique_lock& lhs,unique_lock& rhs) noexcept;

Effects
lhs.swap(rhs)

Throws
Nothing.

STD::UNIQUE_LOCK::LOCK MEMBER FUNCTION
Acquires a lock on the mutex associated with *this.

Declaration
void lock();

Preconditions
this->mutex()!=NULL, this->owns_lock()==false.

Effects
Calls this->mutex()->lock().

Throws
Any exceptions thrown by this->mutex()->lock(). std::system_error with an
error code of std::errc::operation_not_permitted if this->mutex()==NULL.
std::system_error with an error code of std::errc::resource_deadlock_would
_occur if this->owns_lock()==true on entry.

Postconditions
this->owns_lock()==true.

STD::UNIQUE_LOCK::TRY_LOCK MEMBER FUNCTION
Attempts to acquire a lock on the mutex associated with *this.

Declaration
bool try_lock();

Preconditions
The Mutex type used to instantiate std::unique_lock must meet the Lockable
requirements. this->mutex()!=NULL, this->owns_lock()==false.

Effects
Calls this->mutex()->try_lock().

521<mutex> header
Returns
true if the call to this->mutex()->try_lock() returned true, false otherwise.

Throws
Any exceptions thrown by this->mutex()->try_lock(). std::system_error with
an error code of std::errc::operation_not_permitted if this->mutex()==NULL.
std::system_error with an error code of std::errc::resource_deadlock_would
_occur if this->owns_lock()==true on entry.

Postconditions
If the function returns true, this->owns_lock()==true, otherwise this->owns_
lock()==false.

STD::UNIQUE_LOCK::UNLOCK MEMBER FUNCTION
Releases a lock on the mutex associated with *this.

Declaration
void unlock();

Preconditions
this->mutex()!=NULL, this->owns_lock()==true.

Effects
Calls this->mutex()->unlock().

Throws
Any exceptions thrown by this->mutex()->unlock(). std::system_error with an
error code of std::errc::operation_not_permitted if this->owns_lock()==false
on entry.

Postconditions
this->owns_lock()==false.

STD::UNIQUE_LOCK::TRY_LOCK_FOR MEMBER FUNCTION
Attempts to acquire a lock on the mutex associated with *this within the time specified.

Declaration
template<typename Rep, typename Period>
bool try_lock_for(
 std::chrono::duration<Rep,Period> const& relative_time);

Preconditions
The Mutex type used to instantiate std::unique_lock must meet the TimedLock-
able requirements. this->mutex()!=NULL, this->owns_lock()==false.

Effects
Calls this->mutex()->try_lock_for(relative_time).

Returns
true if the call to this->mutex()->try_lock_for() returned true, false otherwise.

Throws
Any exceptions thrown by this->mutex()->try_lock_for(). std::system_error
with an error code of std::errc::operation_not_permitted if this->mutex()==

522 APPENDIX D C++ Thread Library reference
NULL. std::system_error with an error code of std::errc::resource_deadlock_
would_occur if this->owns_lock()==true on entry.

Postconditions
If the function returns true, this->owns_lock()==true, otherwise this->owns_
lock()==false.

STD::UNIQUE_LOCK::TRY_LOCK_UNTIL MEMBER FUNCTION
Attempts to acquire a lock on the mutex associated with *this within the time speci-
fied.

Declaration
template<typename Clock, typename Duration>
bool try_lock_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time);

Preconditions
The Mutex type used to instantiate std::unique_lock must meet the Timed-Lockable
requirements. this->mutex()!=NULL, this->owns_lock()==false.

Effects
Calls this->mutex()->try_lock_until(absolute_time).

Returns
true if the call to this->mutex()->try_lock_until() returned true, false other-
wise.

Throws
Any exceptions thrown by this->mutex()->try_lock_until(). std::system_error
with an error code of std::errc::operation_not_permitted if this-> mutex()==
NULL. std::system_error with an error code of std::errc::resource_deadlock
_would_occur if this->owns_lock()==true on entry.

Postcondition
If the function returns true, this->owns_lock()==true, otherwise this->owns_
lock()==false.

STD::UNIQUE_LOCK::OPERATOR BOOL MEMBER FUNCTION
Checks whether or not *this owns a lock on a mutex.

Declaration
explicit operator bool() const noexcept;

Returns
this->owns_lock().

Throws
Nothing.

NOTE This is an explicit conversion operator, so it’s only implicitly called
in contexts where the result is used as a Boolean and not where the result
would be treated as an integer value of 0 or 1.

523<mutex> header
STD::UNIQUE_LOCK::OWNS_LOCK MEMBER FUNCTION
Checks whether or not *this owns a lock on a mutex.

Declaration
bool owns_lock() const noexcept;

Returns
true if *this owns a lock on a mutex, false otherwise.

Throws
Nothing.

STD::UNIQUE_LOCK::MUTEX MEMBER FUNCTION
Returns the mutex associated with *this if any.

Declaration
mutex_type* mutex() const noexcept;

Returns
A pointer to the mutex associated with *this if any, NULL otherwise.

Throws
Nothing.

STD::UNIQUE_LOCK::RELEASE MEMBER FUNCTION
Returns the mutex associated with *this if any, and releases that association.

Declaration
mutex_type* release() noexcept;

Effects
Breaks the association of the mutex with *this without unlocking any locks held.

Returns
A pointer to the mutex associated with *this prior to the call if any, NULL otherwise.

Postconditions
this->mutex()==NULL, this->owns_lock()==false.

Throws
Nothing.

NOTE If this->owns_lock() would have returned true prior to the call, the
caller would now be responsible for unlocking the mutex.

D.5.10 std::shared_lock class template

The std::shared_lock class template provides an equivalent to std::unique_lock,
except that it acquires a shared lock rather than an exclusive lock. The type of mutex
being locked is specified by the template parameter Mutex, which must meet the
SharedLockable requirements. In general, the specified mutex is locked in the con-
structor and unlocked in the destructor, although additional constructors and mem-
ber functions are provided to allow other possibilities. This provides a means of
locking a mutex for a block of code and ensuring that the mutex is unlocked when

524 APPENDIX D C++ Thread Library reference
the block is left, whether that’s by running off the end, by the use of a control flow
statement such as break or return, or by throwing an exception. All instantiations of
std::shared_lock are suitable for use with the Lockable parameter for the std::
condition_variable_any wait functions.

 Every std::shared_lock<Mutex> meets the Lockable requirements. If, in addi-
tion, the supplied Mutex type meets the SharedTimedLockable requirements, then
std::shared_lock<Mutex> also meets the TimedLockable requirements.

 Instances of std::shared_lock are MoveConstructible and MoveAssignable but
not CopyConstructible or CopyAssignable.

Class definition
template <class Mutex>
class shared_lock
{
public:
 typedef Mutex mutex_type;

 shared_lock() noexcept;
 explicit shared_lock(mutex_type& m);
 shared_lock(mutex_type& m, adopt_lock_t);
 shared_lock(mutex_type& m, defer_lock_t) noexcept;
 shared_lock(mutex_type& m, try_to_lock_t);

 template<typename Clock,typename Duration>
 shared_lock(
 mutex_type& m,
 std::chrono::time_point<Clock,Duration> const& absolute_time);

 template<typename Rep,typename Period>
 shared_lock(
 mutex_type& m,
 std::chrono::duration<Rep,Period> const& relative_time);

 ~shared_lock();

 shared_lock(shared_lock const&) = delete;
 shared_lock& operator=(shared_lock const&) = delete;

 shared_lock(shared_lock&&);
 shared_lock& operator=(shared_lock&&);

 void swap(shared_lock& other) noexcept;

 void lock();
 bool try_lock();
 template<typename Rep, typename Period>
 bool try_lock_for(
 std::chrono::duration<Rep,Period> const& relative_time);
 template<typename Clock, typename Duration>
 bool try_lock_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time);
 void unlock();

 explicit operator bool() const noexcept;
 bool owns_lock() const noexcept;
 Mutex* mutex() const noexcept;

525<mutex> header
 Mutex* release() noexcept;
};

STD::SHARED_LOCK DEFAULT CONSTRUCTOR
Constructs an std::shared_lock instance with no associated mutex.

Declaration
shared_lock() noexcept;

Effects
Constructs an std::shared_lock instance that has no associated mutex.

Postconditions
this->mutex()==NULL, this->owns_lock()==false.

STD::SHARED_LOCK LOCKING CONSTRUCTOR
Constructs an std::shared_lock instance that acquires a shared lock on the supplied
mutex.

Declaration
explicit shared_lock(mutex_type& m);

Effects
Constructs an std::shared_lock instance that references the supplied mutex. Calls
m.lock_shared().

Throws
Any exceptions thrown by m.lock_shared().

Postconditions
this->owns_lock()==true, this->mutex()==&m.

STD::SHARED_LOCK LOCK-ADOPTING CONSTRUCTOR
Constructs an std::shared_lock instance that owns the lock on the supplied mutex.

Declaration
shared_lock(mutex_type& m,std::adopt_lock_t);

Preconditions
The calling thread must own a shared lock on m.

Effects
Constructs an std::shared_lock instance that references the supplied mutex and
takes ownership of the shared lock on m held by the calling thread.

Throws
Nothing.

Postconditions
this->owns_lock()==true, this->mutex()==&m.

STD::SHARED_LOCK DEFERRED-LOCK CONSTRUCTOR
Constructs an std::shared_lock instance that doesn’t own the lock on the supplied
mutex.

526 APPENDIX D C++ Thread Library reference
Declaration
shared_lock(mutex_type& m,std::defer_lock_t) noexcept;

Effects
Constructs an std::shared_lock instance that references the supplied mutex.

Throws
Nothing.

Postconditions
this->owns_lock()==false, this->mutex()==&m.

STD::SHARED_LOCK TRY-TO-LOCK CONSTRUCTOR
Constructs an std::shared_lock instance associated with the supplied mutex and
tries to acquire a shared lock on that mutex.

Declaration
shared_lock(mutex_type& m,std::try_to_lock_t);

Preconditions
The Mutex type used to instantiate std::shared_lock must meet the Lockable
requirements.

Effects
Constructs an std::shared_lock instance that references the supplied mutex.
Calls m.try_lock_shared().

Throws
Nothing.

Postconditions
this->owns_lock() returns the result of the m.try_lock_shared() call, this->
mutex()==&m.

STD::SHARED_LOCK TRY-TO-LOCK CONSTRUCTOR WITH A DURATION TIMEOUT
Constructs an std::shared_lock instance associated with the supplied mutex and
tries to acquire a shared lock on that mutex.

Declaration
template<typename Rep,typename Period>
shared_lock(
 mutex_type& m,
 std::chrono::duration<Rep,Period> const& relative_time);

Preconditions
The Mutex type used to instantiate std::shared_lock must meet the SharedTimed-
Lockable requirements.

Effects
Constructs an std::shared_lock instance that references the supplied mutex.
Calls m.try_lock_shared_for(relative_time).

Throws
Nothing.

527<mutex> header
Postconditions
this->owns_lock() returns the result of the m.try_lock_shared_for() call, this->
mutex()==&m.

STD::SHARED_LOCK TRY-TO-LOCK CONSTRUCTOR WITH A TIME_POINT TIMEOUT
Constructs an std::shared_lock instance associated with the supplied mutex and
tries to acquire a shared lock on that mutex.

Declaration
template<typename Clock,typename Duration>
shared_lock(
 mutex_type& m,
 std::chrono::time_point<Clock,Duration> const& absolute_time);

Preconditions
The Mutex type used to instantiate std::shared_lock must meet the SharedTimed-
Lockable requirements.

Effects
Constructs an std::shared_lock instance that references the supplied mutex.
Calls m.try_lock_shared_until(absolute_time).

Throws
Nothing.

Postconditions
this->owns_lock() returns the result of the m.try_lock_shared_until() call, this
->mutex()==&m.

STD::SHARED_LOCK MOVE-CONSTRUCTOR
Transfers ownership of a shared lock from one std::shared_lock object to a newly
created std::shared_lock object.

Declaration
shared_lock(shared_lock&& other) noexcept;

Effects
Constructs an std::shared_lock instance. If other owned a shared lock on a
mutex prior to the constructor invocation, that lock is now owned by the newly cre-
ated std::shared_lock object.

Postconditions
For a newly-constructed std::shared_lock object, x, x.mutex() is equal to the value
of other.mutex() prior to the constructor invocation, and x.owns_lock() is equal to
the value of other.owns_lock() prior to the constructor invocation. other.mutex()
==NULL, other.owns_lock()==false.

Throws
Nothing.

NOTE std::shared_lock objects are not CopyConstructible, so there’s no
copy constructor, only this move constructor.

528 APPENDIX D C++ Thread Library reference
STD::SHARED_LOCK MOVE-ASSIGNMENT OPERATOR
Transfers ownership of a shared lock from one std::shared_lock object to another
std::shared_lock object.

Declaration
shared_lock& operator=(shared_lock&& other) noexcept;

Effects
If this->owns_lock()returns true prior to the call, calls this->unlock(). If other
owned a shared lock on a mutex prior to the assignment, that lock is now owned by
*this.

Postconditions
this->mutex() is equal to the value of other.mutex() prior to the assignment, and
this->owns_lock() is equal to the value of other.owns_lock() prior to the assign-
ment. other.mutex()==NULL, other.owns_lock()==false.

Throws
Nothing.

NOTE std::shared_lock objects are not CopyAssignable, so there’s no copy-
assignment operator, only this move-assignment operator.

STD::SHARED_LOCK DESTRUCTOR
Destroys an std::shared_lock instance and unlocks the corresponding mutex if it’s
owned by the destroyed instance.

Declaration
~shared_lock();

Effects
If this->owns_lock()returns true, calls this->mutex()->unlock_shared().

Throws
Nothing.

STD::SHARED_LOCK::SWAP MEMBER FUNCTION
Exchanges ownership of their associated shared_locks of execution between two
std::shared_lock objects.

Declaration
void swap(shared_lock& other) noexcept;

Effects
If other owns a lock on a mutex prior to the call, that lock is now owned by *this.
If *this owns a lock on a mutex prior to the call, that lock is now owned by other.

Postconditions
this->mutex() is equal to the value of other.mutex() prior to the call. other
.mutex() is equal to the value of this->mutex() prior to the call. this->owns
_lock() is equal to the value of other.owns_lock() prior to the call. other.owns
_lock() is equal to the value of this->owns_lock() prior to the call.

529<mutex> header
Throws
Nothing.

SWAP NONMEMBER FUNCTION FOR STD::SHARED_LOCK

Exchanges ownership of their associated mutex locks between two std::shared_lock
objects.

Declaration
void swap(shared_lock& lhs,shared_lock& rhs) noexcept;

Effects
lhs.swap(rhs)

Throws
Nothing.

STD::SHARED_LOCK::LOCK MEMBER FUNCTION
Acquires a shared lock on the mutex associated with *this.

Declaration
void lock();

Preconditions
this->mutex()!=NULL, this->owns_lock()==false.

Effects
Calls this->mutex()->lock_shared().

Throws
Any exceptions thrown by this->mutex()->lock_shared(). std::system_error
with an error code of std::errc::operation_not_permitted if this->mutex()
==NULL. std::system_error with an error code of std::errc::resource_deadlock
_would_occur if this->owns_lock()==true on entry.

Postconditions
this->owns_lock()==true.

STD::SHARED_LOCK::TRY_LOCK MEMBER FUNCTION
Attempts to acquire a shared lock on the mutex associated with *this.

Declaration
bool try_lock();

Preconditions
The Mutex type used to instantiate std::shared_lock must meet the Lockable
requirements. this->mutex()!=NULL, this->owns_lock()==false.

Effects
Calls this->mutex()->try_lock_shared().

Returns
true if the call to this->mutex()->try_lock_shared() returned true, false
otherwise.

530 APPENDIX D C++ Thread Library reference
Throws
Any exceptions thrown by this->mutex()->try_lock_shared(). std::system_error
with an error code of std::errc::operation_not_permitted if this->mutex()==
NULL. std::system_error with an error code of std::errc::resource_deadlock
_would_occur if this->owns_lock()==true on entry.

Postconditions
If the function returns true, this->owns_lock()==true, otherwise this->owns_
lock()==false.

STD::SHARED_LOCK::UNLOCK MEMBER FUNCTION
Releases a shared lock on the mutex associated with *this.

Declaration
void unlock();

Preconditions
this->mutex()!=NULL, this->owns_lock()==true.

Effects
Calls this->mutex()->unlock_shared().

Throws
Any exceptions thrown by this->mutex()->unlock_shared(). std::system_error
with an error code of std::errc::operation_not_permitted if this->owns_lock()
== false on entry.

Postconditions
this->owns_lock()==false.

STD::SHARED_LOCK::TRY_LOCK_FOR MEMBER FUNCTION
Attempts to acquire a shared lock on the mutex associated with *this within the time
specified.

Declaration
template<typename Rep, typename Period>
bool try_lock_for(
 std::chrono::duration<Rep,Period> const& relative_time);

Preconditions
The Mutex type used to instantiate std::shared_lock must meet the SharedTimed-
Lockable requirements. this->mutex()!=NULL, this->owns_lock()==false.

Effects
Calls this->mutex()->try_lock_shared_for(relative_time).

Returns
true if the call to this->mutex()->try_lock_shared_for() returned true, false
otherwise.

Throws
Any exceptions thrown by this->mutex()->try_lock_shared_for(). std::system
_error with an error code of std::errc::operation_not_permitted if this->

531<mutex> header
mutex()==NULL. std::system_error with an error code of std::errc::resource
_deadlock_would_occur if this->owns_lock()==true on entry.

Postconditions
If the function returns true, this->owns_lock()==true, otherwise this->owns_
lock()==false.

STD::SHARED_LOCK::TRY_LOCK_UNTIL MEMBER FUNCTION
Attempts to acquire a shared lock on the mutex associated with *this within the time
specified.

Declaration
template<typename Clock, typename Duration>
bool try_lock_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time);

Preconditions
The Mutex type used to instantiate std::shared_lock must meet the SharedTimed-
Lockable requirements. this->mutex()!=NULL, this->owns_lock()==false.

Effects
Calls this->mutex()->try_lock_shared_until(absolute_time).

Returns
true if the call to this->mutex()->try_lock_shared_until() returned true, false
otherwise.

Throws
Any exceptions thrown by this->mutex()->try_lock_shared_until(). std::system
_error with an error code of std::errc::operation_not_permitted if this->
mutex()==NULL. std::system_error with an error code of std::errc::resource_
deadlock_would_occur if this->owns_lock()==true on entry.

Postcondition
If the function returns true, this->owns_lock()==true, otherwise this->owns_
lock()==false.

STD::SHARED_LOCK::OPERATOR BOOL MEMBER FUNCTION
Checks whether or not *this owns a shared lock on a mutex.

Declaration
explicit operator bool() const noexcept;

Returns
this->owns_lock().

Throws
Nothing.

NOTE This is an explicit conversion operator, so it’s only implicitly called
in contexts where the result is used as a Boolean and not where the result
would be treated as an integer value of 0 or 1.

532 APPENDIX D C++ Thread Library reference
STD::SHARED_LOCK::OWNS_LOCK MEMBER FUNCTION
Checks whether or not *this owns a shared lock on a mutex.

Declaration
bool owns_lock() const noexcept;

Returns
true if *this owns a shared lock on a mutex, false otherwise.

Throws
Nothing.

STD::SHARED_LOCK::MUTEX MEMBER FUNCTION
Returns the mutex associated with *this if any.

Declaration
mutex_type* mutex() const noexcept;

Returns
A pointer to the mutex associated with *this if any, NULL otherwise.

Throws
Nothing.

STD::SHARED_LOCK::RELEASE MEMBER FUNCTION
Returns the mutex associated with *this if any, and releases that association.

Declaration
mutex_type* release() noexcept;

Effects
Breaks the association of the mutex with *this without unlocking any locks held.

Returns
A pointer to the mutex associated with *this prior to the call if any, NULL otherwise.

Postconditions
this->mutex()==NULL, this->owns_lock()==false.

Throws
Nothing.

NOTE If this->owns_lock() would have returned true prior to the call, the
caller would now be responsible for unlocking the mutex.

533<mutex> header
D.5.11 std::lock function template

The std::lock function template provides a means of locking more than one mutex
at the same time, without risk of deadlock resulting from inconsistent lock orders.

Declaration
template<typename LockableType1,typename... LockableType2>
void lock(LockableType1& m1,LockableType2& m2...);

Preconditions
The types of the supplied lockable objects, LockableType1, LockableType2, ...,
shall conform to the Lockable requirements.

Effects
Acquires a lock on each of the supplied lockable objects, m1, m2, ..., by an unspeci-
fied sequence of calls to the lock(), try_lock(), and unlock() members of those
types that avoid deadlock.

Postconditions
The current thread owns a lock on each of the supplied lockable objects.

Throws
Any exceptions thrown by the calls to lock(), try_lock(), and unlock().

NOTE If an exception propagates out of the call to std::lock, then
unlock() shall have been called for any of the objects m1, m2, ... for which a
lock has been acquired in the function by a call to lock() or try_lock().

D.5.12 std::try_lock function template

The std::try_lock function template allows you to try to lock a set of lockable
objects in one go, so either they are all locked or none are locked.

Declaration
template<typename LockableType1,typename... LockableType2>
int try_lock(LockableType1& m1,LockableType2& m2...);

Preconditions
The types of the supplied lockable objects, LockableType1, LockableType2, ...,
shall conform to the Lockable requirements.

Effects
Tries to acquires a lock on each of the supplied lockable objects, m1, m2, ..., by call-
ing try_lock() on each in turn. If a call to try_lock() returns false or throws an
exception, locks already acquired are released by calling unlock() on the corre-
sponding lockable object.

Returns
-1 if all locks were acquired (each call to try_lock() returned true), otherwise the
zero-based index of the object for which the call to try_lock() returned false.

Postconditions
If the function returns -1, the current thread owns a lock on each of the supplied
lockable objects. Otherwise, any locks acquired by this call have been released.

534 APPENDIX D C++ Thread Library reference
Throws
Any exceptions thrown by the calls to try_lock().

NOTE If an exception propagates out of the call to std::try_lock, then
unlock() shall have been called for any of the objects, m1, m2, ..., for which a
lock has been acquired in the function by a call to try_lock().

D.5.13 std::once_flag class

Instances of std::once_flag are used with std::call_once to ensure that a particular
function is called exactly once, even if multiple threads invoke the call concurrently.

 Instances of std::once_flag are not CopyConstructible, CopyAssignable, Move-
Constructible, or MoveAssignable.

Class definition
struct once_flag
{
 constexpr once_flag() noexcept;

 once_flag(once_flag const&) = delete;
 once_flag& operator=(once_flag const&) = delete;
};

STD::ONCE_FLAG DEFAULT CONSTRUCTOR
The std::once_flag default constructor creates a new std::once_flag instance in a
state, which indicates that the associated function hasn’t been called.

Declaration
constexpr once_flag() noexcept;

Effects
Constructs a new std::once_flag instance in a state, which indicates that the asso-
ciated function hasn’t been called. Because this is a constexpr constructor, an
instance with static storage duration is constructed as part of the static initialization
phase, which avoids race conditions and order-of-initialization problems.

D.5.14 std::call_once function template

std::call_once is used with an instance of std::once_flag to ensure that a particular
function is called exactly once, even if multiple threads invoke the call concurrently.

Declaration
template<typename Callable,typename... Args>
void call_once(std::once_flag& flag,Callable func,Args args...);

Preconditions
The expression INVOKE(func,args) is valid for the supplied values of func and
args. Callable and every member of Args are MoveConstructible.

Effects
Invocations of std::call_once on the same std::once_flag object are serialized.
If there has been no prior effective std::call_once invocation on the same

535<ratio> header
std::once_flag object, the argument func (or a copy thereof) is called as-if by
INVOKE(func,args), and the invocation of std::call_once is effective if and only
if the invocation of func returns without throwing an exception. If an exception is
thrown, the exception is propagated to the caller. If there has been a prior effective
std::call_once on the same std::once_flag object, the invocation of std::
call_once returns without invoking func.

Synchronization
The completion of an effective std::call_once invocation on an std::once_flag
object happens-before all subsequent std::call_once invocations on the same
std::once_flag object.

Throws
std::system_error when the effects can’t be achieved or for any exception propa-
gated from the invocation of func.

D.6 <ratio> header
The <ratio> header provides support for compile-time rational arithmetic.

Header contents
namespace std
{
 template<intmax_t N,intmax_t D=1>
 class ratio;

 // ratio arithmetic
 template <class R1, class R2>
 using ratio_add = see description;

 template <class R1, class R2>
 using ratio_subtract = see description;

 template <class R1, class R2>
 using ratio_multiply = see description;

 template <class R1, class R2>
 using ratio_divide = see description;

 // ratio comparison
 template <class R1, class R2>
 struct ratio_equal;

 template <class R1, class R2>
 struct ratio_not_equal;

 template <class R1, class R2>
 struct ratio_less;

 template <class R1, class R2>
 struct ratio_less_equal;

 template <class R1, class R2>
 struct ratio_greater;

 template <class R1, class R2>
 struct ratio_greater_equal;

536 APPENDIX D C++ Thread Library reference
 typedef ratio<1, 1000000000000000000> atto;
 typedef ratio<1, 1000000000000000> femto;
 typedef ratio<1, 1000000000000> pico;
 typedef ratio<1, 1000000000> nano;
 typedef ratio<1, 1000000> micro;
 typedef ratio<1, 1000> milli;
 typedef ratio<1, 100> centi;
 typedef ratio<1, 10> deci;
 typedef ratio<10, 1> deca;
 typedef ratio<100, 1> hecto;
 typedef ratio<1000, 1> kilo;
 typedef ratio<1000000, 1> mega;
 typedef ratio<1000000000, 1> giga;
 typedef ratio<1000000000000, 1> tera;
 typedef ratio<1000000000000000, 1> peta;
 typedef ratio<1000000000000000000, 1> exa;
}

D.6.1 std::ratio class template

The std::ratio class template provides a mechanism for compile-time arithmetic
involving rational values such as one half (std::ratio<1,2>), two thirds (std::
ratio<2,3>), or fifteen forty-thirds (std::ratio<15,43>). It’s used within the C++
Standard Library for specifying the period for instantiating the std::chrono::duration
class template.

Class definition
template <intmax_t N, intmax_t D = 1>
class ratio
{
public:
 typedef ratio<num, den> type;
 static constexpr intmax_t num= see below;
 static constexpr intmax_t den= see below;
};

Requirements
D may not be zero.

Description
num and den are the numerator and denominator of the fraction N/D reduced to
lowest terms. den is always positive. If N and D are the same sign, num is positive;
otherwise num is negative.

Examples
ratio<4,6>::num == 2
ratio<4,6>::den == 3
ratio<4,-6>::num == -2
ratio<4,-6>::den == 3

537<ratio> header
D.6.2 std::ratio_add template alias

The std::ratio_add template alias provides a mechanism for adding two std::ratio
values at compile time, using rational arithmetic.

Definition
template <class R1, class R2>
using ratio_add = std::ratio<see below>;

Preconditions
R1 and R2 must be instantiations of the std::ratio class template.

Effects
ratio_add<R1,R2> is defined as an alias for an instantiation of std::ratio that
represents the sum of the fractions represented by R1 and R2 if that sum can be cal-
culated without overflow. If the calculation of the result overflows, the program is
ill-formed. In the absence of arithmetic overflow, std::ratio_add<R1,R2> shall
have the same num and den values as std::ratio<R1::num * R2::den + R2::num *
R1::den, R1::den * R2::den>.

Examples
std::ratio_add<std::ratio<1,3>, std::ratio<2,5> >::num == 11
std::ratio_add<std::ratio<1,3>, std::ratio<2,5> >::den == 15

std::ratio_add<std::ratio<1,3>, std::ratio<7,6> >::num == 3
std::ratio_add<std::ratio<1,3>, std::ratio<7,6> >::den == 2

D.6.3 std::ratio_subtract template alias

The std::ratio_subtract template alias provides a mechanism for subtracting two
std::ratio values at compile time, using rational arithmetic.

Definition
template <class R1, class R2>
using ratio_subtract = std::ratio<see below>;

Preconditions
R1 and R2 must be instantiations of the std::ratio class template.

Effects
ratio_subtract<R1,R2> is defined as an alias for an instantiation of std::ratio
that represents the difference of the fractions represented by R1 and R2 if that dif-
ference can be calculated without overflow. If the calculation of the result over-
flows, the program is ill-formed. In the absence of arithmetic overflow, std::ratio
_subtract<R1,R2> shall have the same num and den values as std::ratio<R1::num
* R2::den - R2::num * R1::den, R1::den * R2::den>.

Examples
std::ratio_subtract<std::ratio<1,3>, std::ratio<1,5> >::num == 2
std::ratio_subtract<std::ratio<1,3>, std::ratio<1,5> >::den == 15

std::ratio_subtract<std::ratio<1,3>, std::ratio<7,6> >::num == -5
std::ratio_subtract<std::ratio<1,3>, std::ratio<7,6> >::den == 6

538 APPENDIX D C++ Thread Library reference
D.6.4 std::ratio_multiply template alias

The std::ratio_multiply template alias provides a mechanism for multiplying two
std::ratio values at compile time, using rational arithmetic.

Definition
template <class R1, class R2>
using ratio_multiply = std::ratio<see below>;

Preconditions
R1 and R2 must be instantiations of the std::ratio class template.

Effects
ratio_multiply<R1,R2> is defined as an alias for an instantiation of std::ratio
that represents the product of the fractions represented by R1 and R2 if that prod-
uct can be calculated without overflow. If the calculation of the result overflows, the
program is ill-formed. In the absence of arithmetic overflow, std::ratio_multiply
<R1,R2> shall have the same num and den values as std::ratio<R1::num * R2::num,
R1::den * R2::den>.

Examples
std::ratio_multiply<std::ratio<1,3>, std::ratio<2,5> >::num == 2
std::ratio_multiply<std::ratio<1,3>, std::ratio<2,5> >::den == 15

std::ratio_multiply<std::ratio<1,3>, std::ratio<15,7> >::num == 5
std::ratio_multiply<std::ratio<1,3>, std::ratio<15,7> >::den == 7

D.6.5 std::ratio_divide template alias

The std::ratio_divide template alias provides a mechanism for dividing two std::
ratio values at compile time, using rational arithmetic.

Definition
template <class R1, class R2>
using ratio_divide = std::ratio<see below>;

Preconditions
R1 and R2 must be instantiations of the std::ratio class template.

Effects
ratio_divide<R1,R2> is defined as an alias for an instantiation of std::ratio that
represents the result of dividing the fractions represented by R1 and R2 if that result
can be calculated without overflow. If the calculation overflows, the program is ill-
formed. In the absence of arithmetic overflow, std::ratio_divide<R1,R2> shall
have the same num and den values as std::ratio<R1::num * R2::den, R1::den *
R2::num>.

Examples
std::ratio_divide<std::ratio<1,3>, std::ratio<2,5> >::num == 5
std::ratio_divide<std::ratio<1,3>, std::ratio<2,5> >::den == 6

std::ratio_divide<std::ratio<1,3>, std::ratio<15,7> >::num == 7
std::ratio_divide<std::ratio<1,3>, std::ratio<15,7> >::den == 45

539<ratio> header
D.6.6 std::ratio_equal class template

The std::ratio_equal class template provides a mechanism for comparing two std::
ratio values for equality at compile time, using rational arithmetic.

Class definition
template <class R1, class R2>
class ratio_equal:
 public std::integral_constant<
 bool,(R1::num == R2::num) && (R1::den == R2::den)>
{};

Preconditions
R1 and R2 must be instantiations of the std::ratio class template.

Examples
std::ratio_equal<std::ratio<1,3>, std::ratio<2,6> >::value == true
std::ratio_equal<std::ratio<1,3>, std::ratio<1,6> >::value == false
std::ratio_equal<std::ratio<1,3>, std::ratio<2,3> >::value == false
std::ratio_equal<std::ratio<1,3>, std::ratio<1,3> >::value == true

D.6.7 std::ratio_not_equal class template

The std::ratio_not_equal class template provides a mechanism for comparing two
std::ratio values for inequality at compile time, using rational arithmetic.

Class definition
template <class R1, class R2>
class ratio_not_equal:
 public std::integral_constant<bool,!ratio_equal<R1,R2>::value>
{};

Preconditions
R1 and R2 must be instantiations of the std::ratio class template.

Examples
std::ratio_not_equal<std::ratio<1,3>, std::ratio<2,6> >::value == false
std::ratio_not_equal<std::ratio<1,3>, std::ratio<1,6> >::value == true
std::ratio_not_equal<std::ratio<1,3>, std::ratio<2,3> >::value == true
std::ratio_not_equal<std::ratio<1,3>, std::ratio<1,3> >::value == false

D.6.8 std::ratio_less class template

The std::ratio_less class template provides a mechanism for comparing two std::
ratio values at compile time, using rational arithmetic.

Class definition
template <class R1, class R2>
class ratio_less:
 public std::integral_constant<bool,see below>
{};

Preconditions
R1 and R2 must be instantiations of the std::ratio class template.

540 APPENDIX D C++ Thread Library reference
Effects
std::ratio_less<R1,R2> derives from std::integral_constant<bool, value >,
where value is (R1::num * R2::den) < (R2::num * R1::den). Where possible, imple-
mentations shall use a method of calculating the result that avoids overflow. If over-
flow occurs, the program is ill-formed.

Examples
std::ratio_less<std::ratio<1,3>, std::ratio<2,6> >::value == false
std::ratio_less<std::ratio<1,6>, std::ratio<1,3> >::value == true
std::ratio_less<
 std::ratio<999999999,1000000000>,
 std::ratio<1000000001,1000000000> >::value == true
std::ratio_less<
 std::ratio<1000000001,1000000000>,
 std::ratio<999999999,1000000000> >::value == false

D.6.9 std::ratio_greater class template

The std::ratio_greater class template provides a mechanism for comparing two
std::ratio values at compile time, using rational arithmetic.

Class definition
template <class R1, class R2>
class ratio_greater:
 public std::integral_constant<bool,ratio_less<R2,R1>::value>
{};

Preconditions
R1 and R2 must be instantiations of the std::ratio class template.

D.6.10 std::ratio_less_equal class template

The std::ratio_less_equal class template provides a mechanism for comparing two
std::ratio values at compile time, using rational arithmetic.

Class definition
template <class R1, class R2>
class ratio_less_equal:
 public std::integral_constant<bool,!ratio_less<R2,R1>::value>
{};

Preconditions
R1 and R2 must be instantiations of the std::ratio class template.

D.6.11 std::ratio_greater_equal class template

The std::ratio_greater_equal class template provides a mechanism for comparing
two std::ratio values at compile time, using rational arithmetic.

Class definition
template <class R1, class R2>
class ratio_greater_equal:
 public std::integral_constant<bool,!ratio_less<R1,R2>::value>
{};

541<thread> header
Preconditions
R1 and R2 must be instantiations of the std::ratio class template.

D.7 <thread> header
The <thread> header provides facilities for managing and identifying threads and
provides functions for making the current thread sleep.

Header contents
namespace std
{
 class thread;

 namespace this_thread
 {
 thread::id get_id() noexcept;

 void yield() noexcept;

 template<typename Rep,typename Period>
 void sleep_for(
 std::chrono::duration<Rep,Period> sleep_duration);

 template<typename Clock,typename Duration>
 void sleep_until(
 std::chrono::time_point<Clock,Duration> wake_time);
 }
}

D.7.1 std::thread class

The std::thread class is used to manage a thread of execution. It provides a means of
starting a new thread of execution and waiting for the completion of a thread of exe-
cution. It also provides a means for identifying and provides other functions for man-
aging threads of execution.

Class definition
class thread
{
public:
 // Types
 class id;
 typedef implementation-defined native_handle_type; // optional

 // Construction and Destruction
 thread() noexcept;

 ~thread();

 template<typename Callable,typename Args...>
 explicit thread(Callable&& func,Args&&... args);

 // Copying and Moving
 thread(thread const& other) = delete;
 thread(thread&& other) noexcept;

 thread& operator=(thread const& other) = delete;
 thread& operator=(thread&& other) noexcept;

542 APPENDIX D C++ Thread Library reference
 void swap(thread& other) noexcept;

 void join();
 void detach();
 bool joinable() const noexcept;

 id get_id() const noexcept;

 native_handle_type native_handle();

 static unsigned hardware_concurrency() noexcept;
};

void swap(thread& lhs,thread& rhs);

STD::THREAD::ID CLASS
An instance of std::thread::id identifies a particular thread of execution.

Class definition
class thread::id
{
public:
 id() noexcept;
};

bool operator==(thread::id x, thread::id y) noexcept;
bool operator!=(thread::id x, thread::id y) noexcept;
bool operator<(thread::id x, thread::id y) noexcept;
bool operator<=(thread::id x, thread::id y) noexcept;
bool operator>(thread::id x, thread::id y) noexcept;
bool operator>=(thread::id x, thread::id y) noexcept;

template<typename charT, typename traits>
basic_ostream<charT, traits>&
operator<< (basic_ostream<charT, traits>&& out, thread::id id);

Notes
The std::thread::id value that identifies a particular thread of execution shall be
distinct from the value of a default-constructed std::thread::id instance and
from any value that represents another thread of execution.

The std::thread::id values for particular threads aren’t predictable and may
vary between executions of the same program.

std::thread::id is CopyConstructible and CopyAssignable, so instances of
std::thread::id may be freely copied and assigned.

STD::THREAD::ID DEFAULT CONSTRUCTOR
Constructs an std::thread::id object that doesn’t represent any thread of execution.

Declaration
id() noexcept;

Effects
Constructs an std::thread::id instance that has the singular not any thread value.

Throws
Nothing.

543<thread> header
NOTE All default-constructed std::thread::id instances store the same value.

STD::THREAD::ID EQUALITY COMPARISON OPERATOR
Compares two instances of std::thread::id to see if they represent the same thread
of execution.

Declaration
bool operator==(std::thread::id lhs,std::thread::id rhs) noexcept;

Returns
true if both lhs and rhs represent the same thread of execution or both have the
singular not any thread value. false if lhs and rhs represent different threads of
execution or one represents a thread of execution and the other has the singular
not any thread value.

Throws
Nothing.

STD::THREAD::ID INEQUALITY COMPARISON OPERATOR
Compares two instances of std::thread::id to see if they represent different threads
of execution.

Declaration
bool operator!=(std::thread::id lhs,std::thread::id rhs) noexcept;

Returns
!(lhs==rhs)

Throws
Nothing.

STD::THREAD::ID LESS-THAN COMPARISON OPERATOR
Compares two instances of std::thread::id to see if one lies before the other in the
total ordering of thread ID values.

Declaration
bool operator<(std::thread::id lhs,std::thread::id rhs) noexcept;

Returns
true if the value of lhs occurs before the value of rhs in the total ordering of
thread ID values. If lhs!=rhs, exactly one of lhs<rhs or rhs<lhs returns true and
the other returns false. If lhs==rhs, lhs<rhs and rhs<lhs both return false.

Throws
Nothing.

NOTE The singular not any thread value held by a default-constructed std::
thread::id instance compares less than any std::thread::id instance that
represents a thread of execution. If two instances of std::thread::id are
equal, neither is less than the other. Any set of distinct std::thread::id val-
ues forms a total order, which is consistent throughout an execution of a pro-
gram. This order may vary between executions of the same program.

544 APPENDIX D C++ Thread Library reference
STD::THREAD::ID LESS-THAN OR EQUAL COMPARISON OPERATOR
Compares two instances of std::thread::id to see if one lies before the other in the
total ordering of thread ID values or is equal to it.

Declaration
bool operator<=(std::thread::id lhs,std::thread::id rhs) noexcept;

Returns
!(rhs<lhs)

Throws
Nothing.

STD::THREAD::ID GREATER-THAN COMPARISON OPERATOR
Compares two instances of std::thread::id to see if one lies after the other in the
total ordering of thread ID values.

Declaration
bool operator>(std::thread::id lhs,std::thread::id rhs) noexcept;

Returns
rhs<lhs

Throws
Nothing.

STD::THREAD::ID GREATER-THAN OR EQUAL COMPARISON OPERATOR
Compares two instances of std::thread::id to see if one lies after the other in the
total ordering of thread ID values or is equal to it.

Declaration
bool operator>=(std::thread::id lhs,std::thread::id rhs) noexcept;

Returns
!(lhs<rhs)

Throws
Nothing.

STD::THREAD::ID STREAM INSERTION OPERATOR
Writes a string representation of the std::thread::id value into the specified stream.

Declaration
template<typename charT, typename traits>
basic_ostream<charT, traits>&
operator<< (basic_ostream<charT, traits>&& out, thread::id id);

Effects
Inserts a string representation of the std::thread::id value into the specified stream.

Returns
out

Throws
Nothing.

545<thread> header
NOTE The format of the string representation isn’t specified. Instances of
std::thread::id that compare equal have the same representation, and
instances that aren’t equal have distinct representations.

STD::THREAD::NATIVE_HANDLE_TYPE TYPEDEF
native_handle_type is a typedef to a type that can be used with platform-specific APIs.

Declaration
typedef implementation-defined native_handle_type;

NOTE This typedef is optional. If present, the implementation should provide
a type that’s suitable for use with native platform-specific APIs.

STD::THREAD::NATIVE_HANDLE MEMBER FUNCTION
Returns a value of type native_handle_type that represents the thread of execution
associated with *this.

Declaration
native_handle_type native_handle();

NOTE This function is optional. If present, the value returned should be suit-
able for use with the native platform-specific APIs.

STD::THREAD DEFAULT CONSTRUCTOR
Constructs an std::thread object without an associated thread of execution.

Declaration
thread() noexcept;

Effects
Constructs an std::thread instance that has no associated thread of execution.

Postconditions
For a newly constructed std::thread object, x, x.get_id()==id().

Throws
Nothing.

STD::THREAD CONSTRUCTOR
Constructs an std::thread object associated with a new thread of execution.

Declaration
template<typename Callable,typename Args...>
explicit thread(Callable&& func,Args&&... args);

Preconditions
func and each element of args must be MoveConstructible.

Effects
Constructs an std::thread instance and associates it with a newly created thread of
execution. Copies or moves func and each element of args into internal storage
that persists for the lifetime of the new thread of execution. Performs INVOKE
(copy-of-func,copy-of-args) on the new thread of execution.

546 APPENDIX D C++ Thread Library reference
Postconditions
For a newly constructed std::thread object, x, x.get_id()!=id().

Throws
An exception of type std::system_error if unable to start the new thread. Any
exception thrown by copying func or args into internal storage.

Synchronization
The invocation of the constructor happens-before the execution of the supplied
function on the newly created thread of execution.

STD::THREAD MOVE-CONSTRUCTOR
Transfers ownership of a thread of execution from one std::thread object to a newly
created std::thread object.

Declaration
thread(thread&& other) noexcept;

Effects
Constructs an std::thread instance. If other has an associated thread of execution
prior to the constructor invocation, that thread of execution is now associated with
the newly created std::thread object. Otherwise, the newly created std::thread
object has no associated thread of execution.

Postconditions
For a newly constructed std::thread object, x, x.get_id() is equal to the value of
other.get_id() prior to the constructor invocation. other.get_id()==id().

Throws
Nothing.

NOTE std::thread objects are not CopyConstructible, so there’s no copy
constructor, only this move constructor.

STD::THREAD DESTRUCTOR
Destroys an std::thread object.

Declaration
~thread();

Effects
Destroys *this. If *this has an associated thread of execution (this->joinable()
would return true), calls std::terminate() to abort the program.

Throws
Nothing.

STD::THREAD MOVE-ASSIGNMENT OPERATOR
Transfers ownership of a thread of execution from one std::thread object to another
std::thread object.

Declaration
thread& operator=(thread&& other) noexcept;

547<thread> header
Effects
If this->joinable()returns true prior to the call, calls std::terminate() to abort
the program. If other has an associated thread of execution prior to the assign-
ment, that thread of execution is now associated with *this. Otherwise *this has
no associated thread of execution.

Postconditions
this->get_id() is equal to the value of other.get_id() prior to the call. other
.get_id()==id().

Throws
Nothing.

NOTE std::thread objects are not CopyAssignable, so there’s no copy-
assignment operator, only this move-assignment operator.

STD::THREAD::SWAP MEMBER FUNCTION
Exchanges ownership of their associated threads of execution between two std::
thread objects.

Declaration
void swap(thread& other) noexcept;

Effects
If other has an associated thread of execution prior to the call, that thread of exe-
cution is now associated with *this. Otherwise *this has no associated thread of
execution. If *this has an associated thread of execution prior to the call, that
thread of execution is now associated with other. Otherwise other has no associ-
ated thread of execution.

Postconditions
this->get_id() is equal to the value of other.get_id() prior to the call. other
.get_id() is equal to the value of this->get_id() prior to the call.

Throws
Nothing.

SWAP NONMEMBER FUNCTION FOR STD::THREADS
Exchanges ownership of their associated threads of execution between two std::
thread objects.

Declaration
void swap(thread& lhs,thread& rhs) noexcept;

Effects
lhs.swap(rhs)

Throws
Nothing.

STD::THREAD::JOINABLE MEMBER FUNCTION
Queries whether or not *this has an associated thread of execution.

548 APPENDIX D C++ Thread Library reference
Declaration
bool joinable() const noexcept;

Returns
true if *this has an associated thread of execution, false otherwise.

Throws
Nothing.

STD::THREAD::JOIN MEMBER FUNCTION
Waits for the thread of execution associated with *this to finish.

Declaration
void join();

Preconditions
this->joinable() would return true.

Effects
Blocks the current thread until the thread of execution associated with *this has
finished.

Postconditions
this->get_id()==id(). The thread of execution associated with *this prior to the
call has finished.

Synchronization
The completion of the thread of execution associated with *this prior to the call
happens-before the call to join() returns.

Throws
std::system_error if the effects can’t be achieved or this->joinable() returns
false.

STD::THREAD::DETACH MEMBER FUNCTION
Detaches the thread of execution associated with *this to finish.

Declaration
void detach();

Preconditions
this->joinable()returns true.

Effects
Detaches the thread of execution associated with *this.

Postconditions
this->get_id()==id(), this->joinable()==false

The thread of execution associated with *this prior to the call is detached and no
longer has an associated std::thread object.

Throws
std::system_error if the effects can’t be achieved or this->joinable()returns
false on invocation.

549<thread> header
STD::THREAD::GET_ID MEMBER FUNCTION
Returns a value of type std::thread::id that identifies the thread of execution asso-
ciated with *this.

Declaration
thread::id get_id() const noexcept;

Returns
If *this has an associated thread of execution, returns an instance of std::
thread::id that identifies that thread. Otherwise returns a default-constructed
std::thread::id.

Throws
Nothing.

STD::THREAD::HARDWARE_CONCURRENCY STATIC MEMBER FUNCTION
Returns a hint as to the number of threads that can run concurrently on the current
hardware.

Declaration
unsigned hardware_concurrency() noexcept;

Returns
The number of threads that can run concurrently on the current hardware. This
may be the number of processors in the system, for example. Where this informa-
tion is not available or well-defined, this function returns 0.

Throws
Nothing.

D.7.2 Namespace this_thread

The functions in the std::this_thread namespace operate on the calling thread.

STD::THIS_THREAD::GET_ID NONMEMBER FUNCTION
Returns a value of type std::thread::id that identifies the current thread of execution.

Declaration
thread::id get_id() noexcept;

Returns
An instance of std::thread::id that identifies the current thread.

Throws
Nothing.

STD::THIS_THREAD::YIELD NONMEMBER FUNCTION
Used to inform the library that the thread that invoked the function doesn’t need to
run at the point of the call. Commonly used in tight loops to avoid consuming exces-
sive CPU time.

Declaration
void yield() noexcept;

550 APPENDIX D C++ Thread Library reference
Effects
Provides the library an opportunity to schedule something else in place of the cur-
rent thread.

Throws
Nothing.

STD::THIS_THREAD::SLEEP_FOR NONMEMBER FUNCTION
Suspends execution of the current thread for the specified duration.

Declaration
template<typename Rep,typename Period>
void sleep_for(std::chrono::duration<Rep,Period> const& relative_time);

Effects
Blocks the current thread until the specified relative_time has elapsed.

NOTE The thread may be blocked for longer than the specified duration.
Where possible, the elapsed time is determined by a steady clock.

Throws
Nothing.

STD::THIS_THREAD::SLEEP_UNTIL NONMEMBER FUNCTION
Suspends execution of the current thread until the specified time point has been
reached.

Declaration
template<typename Clock,typename Duration>
void sleep_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time);

Effects
Blocks the current thread until the specified absolute_time has been reached for
the specified Clock.

NOTE There’s no guarantee as to how long the calling thread will be blocked
for, only that Clock::now() returned a time equal to or later than abso-
lute_time at the point at which the thread became unblocked.

Throws
Nothing.

index
A

ABA problem 249
absolute_time function 550
abstraction penalty 12
accumulate operation 254
acquire-release ordering 155–159

data dependency with 161–164
overview of 146
transitive synchronization with 159–161

Actor model 107
add_or_update_mapping 198
add_to_list() function 41
algorithms

effects of execution policies on complexity
of 328–329

incremental pairwise algorithms 293–299
overview of 8
parallelizing standard library algorithms

327–328
where and when steps are executed 329

allocators 478
Amdahl’s law 277–279
Args 375
ArgTypes 377
arguments, passing to thread functions

24–27
array elements 267–269
arrive_and_drop function 120
asynchronous tasks 82
atomic operations 128–142

free functions for 140–142
memory ordering for 146–164

acquire-release ordering 155–164
data dependency with

memory_order_consume 161–164

non-sequentially consistent memory
orderings 149–150

relaxed ordering 150–155
sequentially consistent ordering 147–149

on standard atomic integral types 138
on std::atomic 134–137
on std::atomic_flag 132–134
on std::atomic<T*> 137–138
overview of 127, 144
std::atomic<> primary class templates

138–140
Atomic Ptr Plus Project 239
atomic types 128, 130, 132–142
atomic variables 155
<atomic> headers 431–466

ATOMIC_VAR_INIT macro 434
specializations of std::atomic templates 450
std::atomic class templates 439–449
std::atomic specializations 450–466
std::atomic_flag classes 436–439
std::atomic_signal_fence functions 436
std::atomic_thread_fence functions 435
std::atomic_xxx typedefs 433
std::memory_order enumeration 435

atomic_flag_init 437
atomic_load function 227
atomics 168–169
atomic_store function 227
ATOMIC_VAR_INIT macro 434

B

back() function 77
background tasks

interrupting on application exit 325–326
returning values from 82–84
551

INDEX552
barrier class 294
barriers in Concurrency TS 118
Bidirectional Iterators 333
blocked threads 340
blocking calls 323–324
blocking, unwanted 340
Boost Thread Library 11, 382
bounded queue 194
broken invariants 37, 341
brute-force testing 347–348
busy-wait loops 249–250

C

C++ programming language
C++11 11
C++14 12
C++17 12
efficiency in Thread Library 12–13
history of multithreading in 10–11

C++ Standard Library, parallel algorithms
from 331–338

counting visits 336–338
examples of using 334–336

C++ Standards Committee 12
C++ Thread Library 384, 401–550

<atomic> header 431–466
<chrono> header 401–416
<condition_variable> header 416–431
efficiency in 12–13
<future> header 466–489
<mutex> header 489–535
<ratio> header 535–540
<thread> header 541–549

cache ping-pong 262, 264
callable objects 478
carries-a-dependency-to 162
chaining continuations 110–113
char const 24
check_for_hierarchy_violation() function 58
<chrono> headers 401–416

std::chrono::duration class templates 401–410
std::chrono::high_resolution_clock

typedefs 416
std::chrono::steady_clock classes 414–416
std::chrono::system_clock classes 413–414
std::chrono::time_point class templates 410–412

class template argument deduction 380–381
clear() function 133–134
clocks 93–94
close_queue exception 387
code

reviewing to locate potential bugs 342–344
simplifying with synchronization of

operations 99–123

barriers in Concurrency TS 118
chaining continuations 110–113
continuation-style concurrency with Concur-

rency TS 108–110
FP with futures 99–104
latches in Concurrency TS 118
std::experimental::barrier 120–121
std::experimental::flex_barrier 121–123
std::experimental::latch 118–119
synchronizing operations with message

passing 104–108
waiting for first future in set with

when_any 115–118
waiting for more than one future 114–115

structuring for protecting shared data 42–43
combine_visits function 337
CommonDuration 409
compare_exchange_strong() function 135, 160,

208, 220
compare_exchange_weak() function 135, 138,

208, 211
compiler vendors 10
concerns, separating 7–8
concurrency 126–127

approaches to 4–6
comparison of libraries 382
concurrent operations, synchronizing 72–123

to simplify code 99–123
waiting for conditions 73–81
waiting for events 73–81
waiting for one-off events with futures

81–93
waiting with time limits 93–99

continuation-style 108–110
designing concurrent code 251–270,

282–299
designing data structures for multithreaded

performance 266–270
exception safety in parallel algorithms

271–277
hiding latency with multiple threads

279–280
improving responsiveness with

concurrency 280–282
parallel implementation of std::find

284–289
parallel implementation of std::for_each

282
parallel implementation of

std::partial_sum 290–299
scalability and Amdahl’s law 277–279
techniques for dividing work between

threads 252–260
designing data structures for 175–176
designing for 174–176

INDEX 553
concurrency (continued)
disadvantages of 9–10
enabling by separating data 185–190
improving responsiveness with 280–282
in computer systems 2–4
overview of 2–7
parallelism vs. 6–7
performance of concurrent code, factors

affecting 260–266
cache ping-pong 262–264
contending data 262–264
data proximity 265–266
excessive task switching 266
false sharing 264–265
number of processors 261–262
oversubscription 266

support in C++11 11
support in C++14 12
support in C++17 12
Technical Specification for 12
uses for 7–10

separating concerns 7–8
task and data parallelism 8–9

with multiple processes 5
with multiple threads 6

Concurrency TS
barriers in 118
continuation-style concurrency with

108–110
latches in 118

condition variables
building thread-safe queues with 76–81
fine-grained 183–194
interrupting condition variable wait

318–321
overview of 72, 172
thread-safe queues using 179–182
waiting for conditions with 74–76

conditions, waiting for 73–81
building thread-safe queues with condition

variables 76–81
with condition variables 74–76

<condition_variable> headers 416–431
std::condition_variable classes 417–424
std::condition_variable_any classes 424–431

constant initialization 367
constexpr functions 363–369

overview of 361
requirements 367–368
templates and 368–369
user-defined types and 365–367

constexpr keyword 364
constexpr objects 367
contention 262–264, 310–311
context switch 3

continuations, chaining 110–113
continuation-style concurrency 108–110
conveniently concurrent algorithms 8
converting std::chrono::duration constructors

from count value 404
from std::chrono::duration value 404

copy constructor 356
copyable types 61
CopyAssignable 542
copy-assignment operator 138
CopyConstructible 542, 546
count values 404
count_down function 118
count_down_and_wait function 119
counted_node_ptr 232, 245
counting

references 226–232
visits 336–338

count_visits_per_page function 337
CPU cycles 244, 279
custom_lock destructor 323

D

daemon threads 23
data

access patterns in data structures 269–270
contending 262–264
dividing between threads before processing

begins 253–254
dividing recursively 254–260
parallelism of 8–9
proximity of 265–266
separating to enable concurrency 185–190
sharing between threads 36–71

problems with 37–40
protecting shared data with mutexes

40–64
data dependency

with acquire-release ordering 161–164
with memory_order_consume 161–164

data parallelism 8–9
data proximity 267
data race 39, 66, 90, 341
data structures

data access patterns in 269–270
designing for concurrency 175–176
designing for multithreaded performance

266–270
map data structures 196–199
rarely updated 68–70
thread-safe 174

data_cond.notify_all() function 181
data_cond.notify_one() function 180, 190
data.pop() function 178

INDEX554
data_ready flag 143
deadlocks 51–53

guidelines for avoiding 53–59
acquiring locks in fixed order 54–55
avoiding calling user-supplied code while

holding locks 53–54
avoiding nested locks 53
using lock hierarchy 55–59

overview of 51, 340
debugging 339–353

techniques for locating bugs 342–353
by reviewing code 342–344
by testing 344–346
designing for testability 346–347
multithreaded testing techniques

347–350
structuring multithreaded test code

350–352
testing performance of multithreaded

code 352–353
types of bugs 340–342

race conditions 341–342
unwanted blocking 340

default-constructible 33
delete_nodes_with_no_hazards() function

221, 224
dependency-ordered-before 162
detach() function 20, 23
detached threads 23
dispatcher class 386
dividing

data between threads before processing
begins 253–254

data recursively 254–260
sequence of tasks between threads

259–260
work between threads, techniques for

252–260
work by task type 258–260

documentation 360
do_delete() function 224
done flag 303
done() function 88
DoneCheck function 117
done_waiting() function 295–296
do_something() function 45
do_sort() function 257, 309
double-checked locking pattern 65
double-word-compare-and-swap (DWCAS) 139
Duration template parameter 410
duration timeouts

std::shared_lock try-to-lock constructors
with 526

std::unique_lock try-to-lock constructors
with 517

Duration::zero() function 411
duration-based timeout 93
durations 94–96
DWCAS (double-word-compare-and-swap) 139

E

edit_document function 24
emplace() function 77
empty() function 44, 49, 177
empty_stack exception 178
end_of_data flag 257
enforcing ordering 142–172

fences 166–168
memory ordering for atomic operations

146–164
ordering non-atomic operations 169–172
ordering non-atomic operations with

atomics 168–169
release sequences and synchronizes-with

164–165
Erlang 5, 104
event driven frameworks 280
events

waiting for 73–81
waiting for one-off events with futures

81–93
associating tasks with futures 84–87
promises 87–89
returning values from background

tasks 82–84
saving exceptions for future 89–90
waiting for multiple threads 90–93

exception safety
adding 272–276
in parallel algorithms 271–277
overview of 277
with std::async() 276–277

exceptions 89–90
exchange() function 131
exchange-and-add operation 137
execution policies 328–331

choosing 334–336
general effects of specifying 328–329

effects on algorithm complexity
328–329

exceptional behavior 329
where and when algorithm steps are

executed 329
overview of 327
std::execution::parallel_policy 330–331
std::execution::parallel_unsequenced_policy

331
std::execution::sequenced_policy 330

exiting applications 325–326

INDEX 555
external input 340
external_count 230

F

f() function 21
facilities

for protecting shared data 64–71
platform-specific 13

false sharing 264–265
fences 166–168
fetch_add() function 131, 137–138, 234
fetch_or() function 131
fetch_sub() function 137–138, 165
f.get() function 89
find_element class 287
find_entry() function 70
find_entry_for() function 198
find_first_if() function 203
find_the_answer function 109
find_the_question function 109
fine-grained condition variables, thread-safe

queues using 183–194
enabling concurrency by separating

data 185–190
waiting for items to pop 190–194

fine-grained locks
designing map data structures for 196–199
thread-safe queues using 183–194

enabling concurrency by separating
data 185–190

waiting for items to pop 190–194
Finite State Machine model 104
flag.clear() function 169
flag.test_and_set() function 169
flexible locking 59–60
foo() function 43
for_each() function 200, 203
forward iterators 33, 333
FP (functional programming), with futures

99–104
parallel Quicksort 102–104
Quicksort 100–102

frameworks, event driven 280
free_external_counter() function 241
front() function 77
func function 43
function templates 358
functions

accepting timeouts 98–99
defaulted 360–363
deleted 358–360
free functions for atomic operations

140–142
fut.get() function 109

fut.then() function 109
<future> headers 466–489

std::async function templates 488
std::future class templates 467–472
std::packaged_task class templates 477–482
std::promise class templates 483–488
std::shared_future class templates 472–477

futures
associating tasks with 84–87
FP with 99–104

parallel Quicksort 102–104
Quicksort 100–102

waiting for first in set with when_any 115–118
waiting for more than one 114–115
waiting for one-off events with 81–93

promises 87–89
returning values from background

tasks 82–84
saving exceptions for future 89–90
waiting for multiple threads 90–93

G

generalized captures 373
generic lamdas 373
get() function 274, 307
get_bucket() function 198
get_detail() function 64
get_event() function 280
get_future() function 85–86, 92
get_hazard_pointer_for_current_thread()

function 219, 222
get_id() function 34
get_lock() function 61
get_my_class_instance() function 68
get_num() function 145
get_tail() function 188
go atomic variable 153

H

handle() function 107–108, 388, 405
happens-before relationships 145–146
hardware concurrency 3
hardware threads 4
Haskell 100
hazard pointers

for detecting nodes 218–226
reclamation strategies with 225–226

hazard_pointer_for_current_thread()
function 221

head pointer 183, 210
head.load() function 233
Hello World program 14–15
hello() function 14

INDEX556
hierarchical_mutex type 55–56, 58
high contention 263

I

I/O operations 278
impure functions 100
increase_external_count() function 241, 243
increase_head_count() function 243
incremental pairwise algorithms 293–299
info_to_display.get() function 112
init parameter value 32
initial function 14
initialization

of std::atomic_flag 437
overview of 367
protecting shared data during 65–68

input iterators 33, 332
interfaces, race conditions inherent in 44–50

passing references 47
returning pointers to popped items 47–48
thread-safe stacks 48–50

internal_count 230
interrupt() function 316–317, 319
interruptible_wait() function 318, 323
interrupting

background tasks on application exit
325–326

blocking calls 323–324
condition variable wait 318–321
threads 315–316, 318–326

detecting interrupted threads 318
handling interruptions 324–325
launching threads 316–318

wait on std::condition_variable_any 321–323
interruption_point() function 316, 318, 324
inter-thread happens-before 159
ints 63, 350
invariants 37
is_lock_free() function 128–129

J

join() function 20–22, 341
joinable() function 20, 22, 274
joining_thread class 29, 121
join_threads class 303

L

lambda expression 18
lambda functions 369–374
last in, first out (LIFO) 210
latches in Concurrency TS 118
latency 279–280

lazy initialization 65
lhs.some_detail 64
libraries 382
lifetime issues 341
LIFO (last in, first out) 210
list_contains() function 41
livelock 209, 340
load() function 131–132
lock() function 41, 70, 169
lock-based concurrent data structures 176–194

designing 173–194, 204
for concurrency 174–176
writing thread-safe lists using locks

199–204
writing thread-safe lookup tables using

locks 194–196
thread-safe queues using fine-grained locks

and condition variables 183–194
enabling concurrency by separating

data 185–190
waiting for items to pop 190–194

thread-safe queues using locks and condition
variables 179–182

thread-safe stacks using locks 176–179
lock-free concurrent data structures 205–250

advantages and disadvantages of 208–209
definitions and consequences 206–209

types of nonblocking data structures
206–207

wait-free data structures 208
examples of 209–248

applying memory models to lock-free
stacks 232–236

detecting nodes in use with reference
counting 226–232

detecting nodes using hazard pointers
218–226

managing memory in lock-free data
structures 214–218

writing thread-safe queues without
locks 236–248

writing thread-safe stacks without
locks 210–213

guidelines for writing 248–250
ABA problem 249
help other threads 249–250
identifying busy-wait loops 249–250
lock-free memory reclamation schemes

248–249
std::memory_order_seq_cst for

prototyping 248
managing memory in 214–218

lock-free memory reclamation schemes
248–249

lock-free queues 244–248

INDEX 557
lock-free stacks 232–236
locking

flexible 59–60
recursive 70–71

locks
acquiring in fixed order 54–55
calling user-supplied code while holding

53–54
fine-grained

designing map data structures for 196–199
thread-safe queues using 183–194

hierarchy of 55–59
nested 53
thread-safe queues using 179–182
thread-safe stacks using 176–179
writing thread-safe lists using 199–204
writing thread-safe lookup tables using

194–199
writing thread-safe queues without 236–248

handling multiple threads in push()
238–244

making queues lock-free by helping other
threads 244–248

writing thread-safe stacks without 210–213
log(N) operations 291
low contention 263
lvalue 61, 355

M

main() function 14, 17
make_offseter function 371
malicious_function 43
map data structures 196–199
mathematical functions 99
matrix multiplication 267
max_hazard_pointers atomic variables 224
max_hazard_pointers nodes 225
memcpy() function 139
memory

in lock-free data structures 214–218
locations of 125–127

memory barriers 166
memory locations 125
memory models 125–128

applying to lock-free stacks 232–236
concurrency 126–127
memory locations 125–127
modification orders 127–128
objects 125–127

memory ordering for atomic operations
146–164

acquire-release ordering 155–164
data dependency with

memory_order_consume 161–164

non-sequentially consistent memory
orderings 149–150

relaxed ordering 150–155
sequentially consistent ordering 147–149

memory_order_acq_rel 136, 146
memory_order_acquire 136, 146, 157
memory_order_consume 146, 161–164
memory-ordering parameters 136
memory_order_relaxed 136, 146, 150, 153, 348
memory_order_release 146, 157
memory_order_seq_cst 133, 146, 149, 245, 348
message passing

frameworks for 384–401
synchronizing operations with 104–108

Message Passing Interface (MPI) 104, 253
message_base class 384
modification orders 127–128
move assignment operator 26
move constructors 26
move semantics 355–358
moveable types 61
MoveConstructible 545
move-from-std::future constructor 474
MPI (Message Passing Interface) 104, 253
multithreading

concurrency and 10–13
concurrency support in C++11 11
efficiency in C++ Thread Library 12–13
platform-specific facilities 13
support for concurrency and parallelism in

C++14 and C++17 12
history of 10–11
reviewing multithreaded code 343–344
structuring test code 350–352
testing performance of multithreaded

code 352–353
testing techniques 347–350

brute-force testing 347–348
combination simulation testing 348–349
detecting problems exposed by tests with

special library 349–350
<mutex> headers 489–535

std::call_once function templates 534–535
std::lock function templates 533
std::lock_guard class templates 512–513
std::mutex classes 490–492
std::once_flag classes 534
std::recursive_mutex classes 492–494
std::recursive_timed_mutex classes

498–501
std::scoped_lock class templates 513–514
std::shared_lock class templates 523–532
std::shared_mutex classes 502–505
std::shared_timed_mutex classes

505–512

INDEX558
<mutex> headers (continued)
std::timed_mutex classes 494–498
std::try_lock function templates 533
std::unique_lock class templates 514–523

mutexes 41–42
locking 40
protecting shared data with 40–64

deadlock 51–59
flexible locking with std::unique_lock

59–60
locking at appropriate granularity

62–64
race conditions inherent in interfaces

44–50
structuring code for protecting shared

data 42–43
transferring ownership between scopes

61–62
unlocking 40

mutual exclusion 174
my_thread function 18–19

N

N elements 253
N/k operations 290
namespace this_thread 549–550
native_handle() function 13
naturally parallel algorithms 8
nested locks 53
new_higher values 102
new_lower values 102
next pointer 183
no_copies class 359
node pointer 190
nodes

detecting with hazard pointers
218–226

detecting with reference counting
226–232

non-atomic operations, ordering 168–172
nonblocking data structures 206–207
nonmember functions

swap for std::shared_lock 529
swap for std::threads 547
swap for std::unique_lock 520

nonmodifying query operations 134
non-sequentially consistent memory

orderings 149–150
non-static data members 125
nonwaiting functions 96
notify_all() function 76, 81
notify_one() function 75–76, 81, 349
now() function 93
nullptr 212, 238

O

objects
callable 478
constexpr 367
overview of 125–127

obstruction-free 207
OpenMP 253
operations

dividing array elements for 267–269
non-atomic

ordering 169–172
ordering with atomics 168–169

on standard atomic integral types 138
on std::atomic 134–137
on std::atomic_flag 132–134
on std::atomic<T*> 137–138
synchronizing 142–172

happens-before relationships 145–146
release sequences and synchronizes-with

164–165
synchronizes-with relationships 143–144
with message passing 104–108

ordering
acquire-release 155–159

data dependency with 161–164
transitive synchronization with 159–161

enforcing 142–172
fences 166–168
memory ordering for atomic operations

146–164
release sequences and synchronizes-with

164–165
non-atomic operations 168–172
relaxed 150–155
sequentially consistent 147–149

Output Iterators 332
outstanding_ hazard_pointers_for()

function 221–222
oversubscription 32, 261, 266
ownership

of mutexes, transferring 61–62
of threads, transferring 27–31

P

pack expansion 375
parallel algorithms 327–338

exception safety in 271–277
adding exception safety 272–276
exception safety with std::async()

276–277
execution policies 328–331

general effects of specifying 328–329
std::execution::parallel_policy 330–331

INDEX 559
parallel algorithms (continued)
std::execution::parallel_unsequenced_policy

331
std::execution::sequenced_policy 330

from C++ Standard Library 331–338
counting visits 336–338
examples of using 334–336

parallelizing standard library algorithms
327–328

parallel implementation
of std::find 284–289
of std::for_each 282
of std::partial_sum 290, 293–299

parallel Quicksort 102–104
parallel_ quick_sort() function 102
parallel_accumulate() function 33, 271, 304, 306
parallel_find function 287
parallel_for_each function 289
parallelism

concurrency vs. 6–7
of data 8–9
of standard library algorithms 327–328
of tasks 8–9
support in C++14 12
support in C++17 12

parallel_quick_sort function 257
parameter packs 375–377
parse_log_line function 337
pointers

hazard pointers
for detecting nodes 218–226
reclamation strategies with 225–226

returning to popped items 47–48
pop() function 44, 48, 50, 77, 177, 182, 214, 236,

344–345
pop_head() function 188
popped items

returning pointers to 47–48
waiting for 190–194

pop_task_from_other_thread_queue()
function 315

POSIX C interface 382
predicates

std::condition_variable::wait member function
overloads taking 419

std::condition_variable::wait_for member
function overloads taking 421

std::condition_variable::wait_until member
function overloads taking 423

std::condition_variable_any::wait member
function overloads taking 427

std::condition_variable_any::wait_for member
function overloads taking 429

std::condition_variable_any::wait_until member
function overloads taking 430

previous_end_value 293
primed pipelines 260
printf function 374
private functions 360
problematic race condition 39
process() function 63, 280
process_chunk function 293
process_connections() function 88
process_data() function 61
processing_loop() function 262
processors, number of 261–262
protected data 43
protected functions 360
prototyping 248
proximity of data 265–266
ptr value 247
public functions 360
pure functions 100, 368
push() function 44, 48, 77, 182, 210, 214, 236,

238–244, 345
push_front() function 202

Q

queues
avoiding contention on 310–311
lock-free by helping other threads

244–248
Quicksort

FP-style 100–102
parallel Quicksort 102–104

quick_sort function 254

R

race conditions 38–39, 341–342
inherent in interfaces 44–50

passing references 47
requiring no-throw copy constructors 47
returning pointers to popped items 47–48
thread-safe stacks 48–50

problematic 39–40
RAII (Resource Acquisition Is Initialization)

11, 21
Random Access Iterators 333
<ratio> headers 535–540
reader-writer mutex 68
read-modify-write operations 132
receive_data() function 67
receiver class 386
reclaim_later() function 221, 224
reclamation strategies with hazard pointers

225–226
recursive locking 70–71
reference counting 226–232

INDEX560
references
passing 47
Rvalue references 354–358

function templates and 358
move semantics 355–358

relaxed ordering 146, 150–155
release operation 232
release sequences 164–165
remove_if() function 203
Resource Acquisition Is Initialization (RAII)

11, 21
responsiveness, improving 280–282
results vector 33, 272, 276
return statement 368
rhs.some_detail 64
run() function 107
run_pending_task() function 308–309, 311
runtime 31–33
Rvalue references 354–358

function templates and 358
move semantics 355–358

rvalues 25, 47, 61, 83

S

same memory locations 126
scalability 277–279, 353
scoped_thread class 28
scopes 61–62
send_data() function 67
sender class 385
separate memory locations 126
separating

concerns 7–8, 259
data 185–190

sequentially consistent ordering 147–149
serialization 174, 179
set_ condition_variable() function 319
set_clear_mutex 323
set_exception() function 89
set_exception_at_thread_exit 110
set_new_tail() function 247
set_value() function 89
set_value_at_thread_exit 110
shared access 69
shared data

alternative facilities for protecting 64–71
protecting rarely updated data structures

68–70
recursive locking 70–71

protecting during initialization 65–68
protecting with mutexes 40–64

deadlock 51–59
flexible locking with std::unique_lock

59–60

locking at appropriate granularity 62–64
race conditions inherent in interfaces 44–50
transferring mutex ownership between

scopes 61–62
using mutexes in C++ 41–42

structuring code for protecting 42–43
shared futures 81
shared_timed_mutex 170
SIMD (Single-Instruction/Multiple-Data) 294
simple state machine model 105
simulation testing 348–349
single-core system 345
Single-Instruction/Multiple-Data (SIMD) 294
single-producer, single-consumer (SPSC) 238
size() function 44
sizeof operator 377
sleep_for() function 98
sleep_until() function 98
slow operations 262
software transactional memory (STM) 40
some-expression times 328
sort function 280
spawn_task() function 103
splice() function 101
split reference count 231
SPSC (single-producer, single-consumer) 238
spurious failure 135
spurious wake 76
square_root() function 89
sstd::thread::hardware_concurrency()

function 255
static constexpr member variable 129
std::accumulate 31
std::adopt_lock parameter 52, 59
std::async function templates 488
std::async() function 82, 171, 254, 276–277
std::atomic 134–137

class templates 439–449
conversion assignment operators 443
conversion constructors 443
default constructors 442
template specializations 450

std::atomic_ is_lock_free() function 142
std::atomic specializations 450
std::atomic::compare_exchange_strong member

function 447
std::atomic::compare_exchange_weak member

function 448
std::atomic::exchange member function 446
std::atomic::is_always_lock_free static data

member 443
std::atomic::is_lock_free member function 443
std::atomic::load member function 444
std::atomic::operator basetype conversion

operator 444

INDEX 561
std::atomic::store member function 445
std::atomic<> primary class template 138–140
std::atomic_compare_exchange_strong

nonmember function 447
std::atomic_compare_exchange_strong_explicit

nonmember function 448
std::atomic_compare_exchange_weak

nonmember function 449
std::atomic_compare_exchange_weak_explicit

nonmember function 449
std::atomic_exchange nonmember function 446
std::atomic_exchange_explicit nonmember

function 446
std::atomic_fetch_add nonmember function 455,

464
std::atomic_fetch_add_explicit nonmember

function 455, 464
std::atomic_fetch_and nonmember function 457
std::atomic_fetch_and_explicit nonmember

function 457
std::atomic_fetch_or nonmember function 458
std::atomic_fetch_or_explicit nonmember

function 458
std::atomic_fetch_sub nonmember function 456,

465
std::atomic_fetch_sub_explicit nonmember

function 456, 465
std::atomic_fetch_xor nonmember function 459
std::atomic_fetch_xor_explicit nonmember

function 459
std::atomic_flag

classes 436–439
default constructors 437
initialization with atomic_flag_init 437
operations on 132–134
overview of 129, 206

std::atomic_flag::clear member function 438
std::atomic_flag::test_and_set member

function 437
std::atomic_flag_clear nonmember

function 439
std::atomic_flag_clear_explicit nonmember

function 439
std::atomic_flag_test_and_set nonmember

function 438
std::atomic_flag_test_and_set_explicit

nonmember function 438
std::atomic_init nonmember function 442
std::atomic<integral-type> specializations 466
std::atomic<integral-type>::fetch_add member

function 454
std::atomic<integral-type>::fetch_and member

function 456
std::atomic<integral-type>::fetch_or member

function 457

std::atomic<integral-type>::fetch_sub member
function 455

std::atomic<integral-type>::fetch_xor member
function 458

std::atomic<integral-type>::operator--
postdecrement operators 460
predecrement operators 460

std::atomic<integral-type>::operator&=
compound assignment operator 460

std::atomic<integral-type>::operator++
postincrement operators 459
preincrement operators 459

std::atomic<integral-type>::operator+= compound
assignment operator 460

std::atomic<integral-type>::operator-= compound
assignment operator 460

std::atomic<integral-type>::operator= compound
assignment operator 461

std::atomic<integral-type>::operator|= compound
assignment operator 461

std::atomic_is_lock_free nonmember
function 443

std::atomic_load nonmember function 444
std::atomic_load_explicit nonmember

function 444
std::atomic_signal_fence function 436
std::atomic_store nonmember function 445
std::atomic_store_explicit nonmember

function 445
std::atomic<T*> 137–138
std::atomic<t*> partial specialization 461–463
std::atomic<t*>::fetch_add member function 463
std::atomic<t*>::fetch_sub member function 464
std::atomic<t*>::operator--

postdecrement operators 466
predecrement operators 466

std::atomic<t*>::operator++
postincrement operators 465
preincrement operators 465

std::atomic<t*>::operator+= compound assign-
ment operator 466

std::atomic<t*>::operator-= compound assignment
operator 466

std::atomic_thread_fence function 435
std::atomic_xxx typedefs 433
std::bad_alloc exception 46, 329
std::bind() function 26, 309
std::call_once function template 534–535
std::chrono::duration

class templates 401–410
converting constructors

from count value 404
from std::chrono::duration value 404

default constructors 403
equality comparison operators 408

INDEX562
std::chrono::duration (continued)
greater-than comparison operators 409
greater-than-or-equals comparison

operators 410
inequality comparison operators 408
less-than comparison operator 408
less-than-or-equals comparison operator 409
values 404

std::chrono::duration::count member
function 404

std::chrono::duration::max static member
function 408

std::chrono::duration::min static member
function 407

std::chrono::duration::operator--
post-decrement operators 406
pre-decrement operators 405

std::chrono::duration::operator- unary minus
operator 405

std::chrono::duration::operator*= compound
assignment operator 406

std::chrono::duration::operator/= compound
assignment operators 406

std::chrono::duration::operator%= compound
assignment operator 407

std::chrono::duration::operator+ unary plus
operator 405

std::chrono::duration::operator++
post-increment operators 405
pre-increment operators 388, 405

std::chrono::duration::operator+= compound
assignment operator 406

std::chrono::duration::operator-= compound
assignment operator 406

std::chrono::duration::period typedef 403
std::chrono::duration::rep typedef 403
std::chrono::duration::zero static member

function 407
std::chrono::duration_cast nonmember

function 410
std::chrono::high_resolution_clock typedef 416
std::chrono::steady_clock class 94, 401, 414–416
std::chrono::steady_clock::duration typedef 415
std::chrono::steady_clock::now static member

function 415
std::chrono::steady_clock::period typedef 415
std::chrono::steady_clock::rep typedef 415
std::chrono::steady_clock::time_point

typedef 415
std::chrono::system_clock class 94, 413–414
std::chrono::system_clock::duration typedef 413
std::chrono::system_clock::from_time_t static

member function 414
std::chrono::system_clock::now static member

function 414

std::chrono::system_clock::period typedef 413
std::chrono::system_clock::rep typedef 413
std::chrono::system_clock::time_point

typedef 414
std::chrono::system_clock::to_time_t static

member function 414
std::chrono::time_point

class templates 410–412
conversion constructors 411
default constructors 411
duration constructors 411

std::chrono::time_point::max static member
function 412

std::chrono::time_point::min static member
function 412

std::chrono::time_point::operator+= compound
assignment operator 412

std::chrono::time_point::operator-= compound
assignment operator 412

std::chrono::time_point::time_since_epoch
member function 412

std::chrono_literals namespace 95
std::condition_variable

classes 417–424
default constructors 417
destructors 418
overview of 74, 93, 172, 369

std::condition_variable::notify_all member
function 418

std::condition_variable::notify_one member
function 418

std::condition_variable::wait member
function 419

std::condition_variable::wait_for member
function 420–421

std::condition_variable::wait_until member
function 422–423

std::condition_variable_any
classes 424–431
default constructors 425
destructors 425
interrupting wait on 321–323
overview of 74, 172

std::condition_variable_any::notify_all member
function 426

std::condition_variable_any::notify_one member
function 426

std::condition_variable_any::wait member
function 426–427

std::condition_variable_any::wait_for member
function 428–429

std::condition_variable_any::wait_until member
function 430

std::defer_lock argument 59
std::execution::par 327–328

INDEX 563
std::execution::parallel_policy 328, 330–331
std::execution::parallel_unsequenced_policy 328,

331
std::execution::par_unseq 328, 334
std::execution::seq 328
std::execution::sequenced_policy 328–330
std::experimental::atomic_shared_ptr 142, 172,

227–228
std::experimental::barrier 120–121, 172, 295
std::experimental::flex_barrier 120–123, 172
std::experimental::future 108, 113, 171
std::experimental::latch 118–119, 171
std::experimental::shared_future 113, 171
std::experimental::when_all 114
std::experimental::when_any 116
std::find 284–289
std::future

class templates 467–472
default constructors 468
destructors 469
move assignment operators 469
move constructors 468
overview of 170

std::future::get member function 471
std::future::share member function 469
std::future::valid member function 470
std::future::wait member function 470
std::future::wait_for member function 470
std::future::wait_until member function 471
std::hardware_constructive_interference_size 265
std::hardware_destructive_interference_size 265,

269
std::hash 196
std::ifstream 27
std::is_nothrow_copy_constructible 47
std::is_nothrow_move_ constructible 47
std::kill_dependency() function 163
std::launch::async function 84, 103
std::launch::deferred function 103
std::lock function template 51, 54, 533
std::lock_guard class 41, 59, 380

class templates 512–513
destructors 513
lock-adapting constructors 512
locking constructors 512

std::map<> interface 195
std::memory_order enumeration 132, 435
std::memory_order_acq_rel 435
std::memory_order_acquire 233, 435
std::memory_order_consume 163, 435
std::memory_order_relaxed 435
std::memory_order_release 435
std::memory_order_seq_cst 232, 248
std::move() function 26, 309, 360
std::mutex 170

classes 490–492
default constructors 490
destructors 491

std::mutex::lock member function 491
std::mutex::try_lock member function 491
std::mutex::unlock member function 492
std::notify_all_at_thread_exit nonmember

function 424
std::once_flag

classes 534
default constructors 534
overview of 66

std::packaged_task
class templates 477–482
construction from callable objects 478
construction from callable objects with

allocators 478
default constructors 478
destructors 480
move constructors 479
move-assignment operators 479
overview of 171, 273, 285

std::packaged_task::get_future member
function 480

std::packaged_task::make_ready_at_thread_exit
member function 482

std::packaged_task::operator() function call
operator 481

std::packaged_task::reset member function 481
std::packaged_task::swap member function 480
std::packaged_task::valid member function 481
std::partial_sum 290–299
std::partition() function 101
std::promise 87–89

allocator constructors 483
class templates 483–488
default constructors 483
destructors 485
move constructors 484
move-assignment operators 484

std::promise::get_future member function 485
std::promise::set_exception member

function 487
std::promise::set_exception_at_thread_exit

member function 487
std::promise::set_value member function 486
std::promise::set_value_at_thread_exit member

function 486
std::promise::swap member function 485
std::ratio class template 401, 536
std::ratio_add template alias 537
std::ratio_divide template alias 538
std::ratio_equal class template 539
std::ratio_greater class template 540
std::ratio_greater_equal class template 540

INDEX564
std::ratio_less class template 539
std::ratio_less_equal class template 540
std::ratio_multiply template alias 538
std::ratio_not_equal class template 539
std::ratio_subtract template alias 537
std::recursive_mutex

classes 492–494
default constructors 493
destructors 493
overview of 52, 170

std::recursive_mutex::lock member function 493
std::recursive_mutex::try_lock member

function 493
std::recursive_mutex::unlock member

function 494
std::recursive_timed_mutex

classes 498–501
default constructors 499
destructors 499
overview of 98, 170

std::recursive_timed_mutex::lock member
function 499

std::recursive_timed_mutex::try_lock member
function 499

std::recursive_timed_mutex::try_lock_for member
function 500

std::recursive_timed_mutex::try_lock_until mem-
ber function 501

std::recursive_timed_mutex::unlock member
function 501

std::reduce 31
std::scoped_lock

class templates 513–514
destructors 514
lock-adopting constructors 514
locking constructors 513
overview of 52, 60, 380

std::shared_future
class templates 472–477
copy constructors 474
default constructors 473
destructors 474
move constructors 473
move-from-std::future constructor 474
overview of 90, 170

std::shared_future::get member function 476
std::shared_future::valid member function 475
std::shared_future::wait member function 475
std::shared_future::wait_for member

function 475
std::shared_future::wait_until member

function 476
std::shared_lock

class templates 523–532
default constructors 525

deferred-lock constructors 525
destructors 528
lock-adopting constructors 525
locking constructors 525
move constructors 527
move-assignment operators 528
swap nonmember functions for 529
try-to-lock constructors

with duration timeout 526
with time_point timeout 527

std::shared_lock::lock member function 529
std::shared_lock::mutex member function 532
std::shared_lock::operator bool member

function 531
std::shared_lock::owns_lock member

function 532
std::shared_lock::release member function 532
std::shared_lock::swap member function 528
std::shared_lock::try_lock member function 529
std::shared_lock::try_lock_for member

function 530
std::shared_lock::try_lock_until member

function 531
std::shared_lock::unlock member function 530
std::shared_mutex

classes 502–505
default constructors 502
destructors 503
overview of 68, 170, 176, 196

std::shared_mutex::lock member function 503
std::shared_mutex::lock_shared member

function 504
std::shared_mutex::try_lock member

function 503
std::shared_mutex::try_lock_shared member

function 504
std::shared_mutex::unlock member function 504
std::shared_mutex::unlock_shared member

function 505
std::shared_ptr 48
std::shared_timed_mutex

classes 505–512
default constructors 506
destructors 507
overview of 68

std::shared_timed_mutex::lock member
function 507

std::shared_timed_mutex::lock_shared member
function 509

std::shared_timed_mutex::try_lock member
function 507

std::shared_timed_mutex::try_lock_for member
function 508

std::shared_timed_mutex::try_lock_shared
member function 510

INDEX 565
std::shared_timed_mutex::try_lock_shared_for
member function 510

std::shared_timed_mutex::try_lock_until member
function 508, 511

std::shared_timed_mutex::unlock member
function 509

std::shared_timed_mutex::unlock_shared mem-
ber function 511

std::sort() function 101
std::stack container adapter 44
std::string object 25
std::terminate() function 22, 27, 272, 379
std::this_thread::get_id nonmember function 549
std::this_thread::sleep_for nonmember

function 550
std::this_thread::sleep_until nonmember

function 550
std::this_thread::yield nonmember function 549
std::thread

classes 541–549
constructors 545
default constructors 545
destructors 546
move constructors 546
move-assignment operators 546
swap nonmember functions for 547

std::thread::detach member function 548
std::thread::get_id member function 549
std::thread::hardware_ concurrency()

function 31–32, 257, 261, 282, 301, 549
std::thread::id

classes 542
default constructors 542
equality comparison operators 543
greater-than comparison operators 544
greater-than or equal comparison

operators 544
inequality comparison operators 543
less-than comparison operators 543
less-than-or-equals comparison operator 544
stream insertion operators 544

std::thread::join member function 548
std::thread::joinable member function 547
std::thread::native_handle member

functions 545
std::thread::native_handle_type typedef 545
std::thread::swap member function 547
std::timed_mutex

classes 494–498
default constructors 495
destructors 495

std::timed_mutex::lock member function 495
std::timed_mutex::try_lock member function 496
std::timed_mutex::try_lock_for member

function 496

std::timed_mutex::try_lock_until member
function 497

std::timed_mutex::unlock member function 497
std::try_lock function template 533
std::unique_lock

class templates 514–523
default constructors 516
deferred-lock constructors 517
destructors 519
flexible locking with 59–60
lock-adopting constructors 516
locking constructors 516
move constructors 518
move-assignment operators 519
swap nonmember functions for 520
try-to-lock constructors 517

with duration timeout 517
with time_point timeout 518

std::unique_lock::mutex member function 523
std::unique_lock::operator bool member

function 522
std::unique_lock::owns_lock member

function 523
std::unique_lock::release member function 523
std::unique_lock::swap member function 519
std::unique_lock::try_lock member

function 520
std::unique_lock::try_lock_until member

function 522
std::unique_lock::unlock member function 521
std::unique_ptr 26–27
std::vector 31
std::vector<int> parameter 355
STM (software transactional memory) 40
store operations 132
store() function 131, 134, 165
strongly-happens-before relationship 145
struct, division of 126
submit() function 303–305, 307, 310
sums, partial 293–299
swap() function 48, 52, 175, 215, 234
swapping nonmember functions

for std::shared_lock 529
for std::threads 547
for std::unique_lock 520

switching 265
synchronizes-with relationships 143–144,

164–165
synchronizing

concurrent operations
to simplify code 99–123
waiting for conditions 73–81
waiting for events 73–81
waiting for one-off events with futures 81–93
waiting with time limits 93–99

INDEX566
synchronizing (continued)
operations 142–172

happens-before relationships 145–146
release sequences and synchronizes-with

164–165
synchronizes-with relationships 143–144
with message passing 104–108

transitive synchronization with acquire-release
ordering 159–161

T

tail pointer 183
task parallelism 8
task switching 3, 265
tasks

associating with futures 84–87
background tasks

interrupting on application exit 325–326
returning values from 82–84

dividing sequence of 259–260
dividing work by types of 258–260

dividing sequence of tasks between
threads 259–260

to separate concerns 258–259
excessive switching 266
parallelism of 8–9
passing between threads 85–87
submitted to thread pools 303–307
waiting for other tasks 307–309

TemplateDispatcher class 388–389
templates

constexpr functions and 368–369
function templates and Rvalue references 358
variadic templates 374–377

test_and_set() function 129, 133–134, 207
testing

designing for 346–347
locating bugs by 344–346
multithreaded testing techniques 347–350

brute-force testing 347–348
combination simulation testing 348–349
detecting problems exposed by tests with

special library 349–350
performance of multithreaded code

352–353
structuring multithreaded test code

350–352
then() function 110
this_thread_hierarchy_value 58
this_thread_interrupt_flag 317
thread pools 301–315

avoiding contention on work queues
310–311

simple 301–303

tasks waiting for other tasks 307–309
waiting for tasks submitted to 303–307
work stealing 311–315

thread storage duration 379
<thread> headers 541–549

namespace this_thread 549–550
std::thread class 541–549

thread_cond_any pointer 323
thread_guard class 22, 29, 275
Threading Building Blocks, Intel 282
thread_local flag 316
thread_local variable 110, 222, 310, 316
thread-local variables 379–380
threads 16

blocked 340
choosing number of at runtime 31–33
designing data structures for multithreaded

performance 266–270
data access patterns in data structures

269–270
dividing array elements for complex

operations 267–269
dividing data between before processing

begins 253–254
dividing sequence of tasks between

259–260
handling multiple in push() 238–244
helping 249–250
identifying 34–35
interrupting 315–316, 318–326

background tasks on application exit
325–326

blocking calls 323–324
condition variable wait 318–321
detecting interrupted threads 318
handling interruptions 324–325
wait on std::condition_variable_any

321–323
launching 17–20, 316–318
making queues lock-free by helping

244–248
managing 17–24, 300–326
multiple

concurrency with 6
hiding latency with 279–280
waiting from 90–93

passing arguments to thread function 24–27
passing tasks between 85–87
running in background 22–24
serialization of 179
sharing data between 36–71

alternative facilities for protecting shared
data 64–71

problems with 37–40
protecting shared data with mutexes 40–64

INDEX 567
threads (continued)
techniques for dividing work between

252–260
dividing data recursively 254–260
dividing work by task type 258–260

transferring ownership of 27–31
waiting to complete 20–22

threads vector 272
thread-safe data structures 174
thread-safe lists 199–204
thread-safe lookup tables 194–199
thread-safe queues

building with condition variables 76–81
using condition variables 179–182
using fine-grained condition variables

183–194
enabling concurrency by separating

data 185–190
waiting for items to pop 190–194

using fine-grained locks 183–194
enabling concurrency by separating

data 185–190
waiting for items to pop 190–194

using locks 179–182
writing without locks 236–248

handling multiple threads in push()
238–244

making queues lock-free by helping other
threads 244–248

thread-safe stacks
example definitions of 48–50
using locks 176–179
writing without locks 210–213

threads_in_pop variable 215, 218
thread-specific setup code 350
time limits, waiting with 93–99

clocks 93–94
durations 94–96
functions accepting timeouts 98–99
time points 96–97

time points 96–97
timeouts 98–99
time_point timeouts

std::shared_lock try-to-lock constructors
with 527

std::unique_lock try-to-lock constructors
with 518

time_since_ epoch() function 96
to_be_deleted pointer 218
top() function 44, 50, 344
transform_reduce function 336
transitive synchronization 159–161
trivial copy-assignment operator 138
try/catch blocks 21
try_lock() function 57

try_lock_for() function 98
try_lock_until() function 98
try_pop() function 78, 183, 188, 236,

313
try_reclaim() function 215, 217
try_steal() function 313
try-to-lock constructors, std::shared_lock

with duration timeouts 517, 526
with time_point timeouts 518, 527

t.time_since_epoch() function 411
typedefs 94, 130

U

unbounded queue 194
undefined behavior 39, 70
uniform rate 94
unique futures 81
unlock() function 41, 70, 169
unlocking mutexes 40
unsequenced policy 331
update_data_for_widget 25
update_or_add_entry() function 70
user-defined types 365–367
user-interface state machine 397
user-supplied code 53–54

V

values
returning from background tasks

82–84
storing new depending on current

135–136
variables

automatically deducing type of
377–378

local 371–374
thread-local 379–380

variadic templates 52, 374–377
vectors 46
visits, counting 336–338
void() function 84

W

wait() function 75, 81, 108, 295–296,
387

wait_and_dispatch() function 387, 389
wait_and_pop() function 180, 183
wait_for() function 93, 97, 109
wait_for_data() function 193
wait_for_pop() function 78
wait-free 207, 213
wait-free data structures 208

INDEX568
waiting
for conditions 73–81

building thread-safe queues with condition
variables 76–81

with condition variables 74–76
for events 73–81
for first future in set with when_any

115–118
for items to pop 190–194
for more than one future 114–115
for multiple threads 90–93
for one-off events with futures 81–93

associating tasks with futures 84–87
promises 87–89
returning values from background tasks

82–84
saving exceptions for future 89–90

for tasks 307–309
for tasks submitted to thread pools 303–307

interrupting condition variable wait 318–321
interrupting wait on

std::condition_variable_any 321–323
with time limits 93–99

clocks 93–94
durations 94–96
functions accepting timeouts 98–99
time points 96–97

wait_until() function 93, 109
when_all function 115
when_any function 115–118
while loop 158, 160, 212–213
work stealing 311–315
worker_thread() function 301, 303, 308, 311
wrapped_message pointer 384

X

x.is_lock_free() function 128

Anthony Williams

Y
ou choose C++ when your applications need to run fast.
Well-designed concurrency makes them go even faster.
C++17 delivers strong support for the multithreaded,

multiprocessor programming required for fast graphic process-
ing, machine learning, and other performance-sensitive tasks.
This exceptional book unpacks the features, patterns, and best
practices of production-grade C++ concurrency.

C++ Concurrency in Action, Second Edition is the defi nitive guide
to writing elegant multithreaded applications in C++. Updated
for C++17, it carefully addresses every aspect of concurrent
development, from starting new threads to designing fully
functional multithreaded algorithms and data structures.
Concurrency master Anthony Williams presents examples and
practical tasks in every chapter, including insights that will
delight even the most experienced developer.

What’s Inside
● Full coverage of new C++17 features
● Starting and managing threads
● Synchronizing concurrent operations
● Designing concurrent code
● Debugging multithreaded applications

Written for intermediate C and C++ developers. No prior
experience with concurrency required.

Anthony Williams has been an active member of the BSI C++
Panel since 2001 and is the developer of the just::thread Pro
extensions to the C++11 thread library.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/c-plus-plus-concurrency-in-action-second-edition

$69.99 / Can $92.99 [INCLUDING eBOOK]

C++ Concurrency IN ACTION

PROGRAMMING LANGUAGES

M A N N I N G

“This book should be on
every C++ programmer’s
desk. It’s clear, concise,

and valuable.”
—Rob Green

Bowling Green State University

“A thorough presentation
of C++ concurrency

capabilities.”—Maurizio Tomasi
University of Milan

“Highly recommended for
programmers who want to
further their knowledge of
the latest C++ standard.”

—Frédéric Flayol, 4Pro Web C++

“The guide contains
snippets for everyday use in
your own projects and to

help take your concurrency
C++ skills from the Padawan

to the Jedi level.”
—Jura Shikin, IVI Technologies

See first page

	C++ Concurrency in Action
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Roadmap
	Who should read this book
	How to use this book
	Code conventions and downloads
	Software requirements
	Book forum

	about the author
	about the cover illustration
	1 Hello, world of concurrency in C++!
	1.1 What is concurrency?
	1.1.1 Concurrency in computer systems
	1.1.2 Approaches to concurrency
	1.1.3 Concurrency vs. parallelism

	1.2 Why use concurrency?
	1.2.1 Using concurrency for separation of concerns
	1.2.2 Using concurrency for performance: task and data parallelism
	1.2.3 When not to use concurrency

	1.3 Concurrency and multithreading in C++
	1.3.1 History of multithreading in C++
	1.3.2 Concurrency support in the C++11 standard
	1.3.3 More support for concurrency and parallelism in C++14 and C++17
	1.3.4 Efficiency in the C++ Thread Library
	1.3.5 Platform-specific facilities

	1.4 Getting started
	1.4.1 Hello, Concurrent World

	Summary

	2 Managing threads
	2.1 Basic thread management
	2.1.1 Launching a thread
	2.1.2 Waiting for a thread to complete
	2.1.3 Waiting in exceptional circumstances
	2.1.4 Running threads in the background

	2.2 Passing arguments to a thread function
	2.3 Transferring ownership of a thread
	2.4 Choosing the number of threads at runtime
	2.5 Identifying threads
	Summary

	3 Sharing data between threads
	3.1 Problems with sharing data between threads
	3.1.1 Race conditions
	3.1.2 Avoiding problematic race conditions

	3.2 Protecting shared data with mutexes
	3.2.1 Using mutexes in C++
	3.2.2 Structuring code for protecting shared data
	3.2.3 Spotting race conditions inherent in interfaces
	3.2.4 Deadlock: the problem and a solution
	3.2.5 Further guidelines for avoiding deadlock
	3.2.6 Flexible locking with std::unique_lock
	3.2.7 Transferring mutex ownership between scopes
	3.2.8 Locking at an appropriate granularity

	3.3 Alternative facilities for protecting shared data
	3.3.1 Protecting shared data during initialization
	3.3.2 Protecting rarely updated data structures
	3.3.3 Recursive locking

	Summary

	4 Synchronizing concurrent operations
	4.1 Waiting for an event or other condition
	4.1.1 Waiting for a condition with condition variables
	4.1.2 Building a thread-safe queue with condition variables

	4.2 Waiting for one-off events with futures
	4.2.1 Returning values from background tasks
	4.2.2 Associating a task with a future
	4.2.3 Making (std::)promises
	4.2.4 Saving an exception for the future
	4.2.5 Waiting from multiple threads

	4.3 Waiting with a time limit
	4.3.1 Clocks
	4.3.2 Durations
	4.3.3 Time points
	4.3.4 Functions that accept timeouts

	4.4 Using synchronization of operations to simplify code
	4.4.1 Functional programming with futures
	4.4.2 Synchronizing operations with message passing
	4.4.3 Continuation-style concurrency with the Concurrency TS
	4.4.4 Chaining continuations
	4.4.5 Waiting for more than one future
	4.4.6 Waiting for the first future in a set with when_any
	4.4.7 Latches and barriers in the Concurrency TS
	4.4.8 A basic latch type: std::experimental::latch
	4.4.9 std::experimental::barrier: a basic barrier
	4.4.10 std::experimental::flex_barrier?std::experimental::barrier?s flexible friend

	Summary

	5 The C++ memory model and operations on atomic types
	5.1 Memory model basics
	5.1.1 Objects and memory locations
	5.1.2 Objects, memory locations, and concurrency
	5.1.3 Modification orders

	5.2 Atomic operations and types in C++
	5.2.1 The standard atomic types
	5.2.2 Operations on std::atomic_flag
	5.2.3 Operations on std::atomic<bool>
	5.2.4 Operations on std::atomic<T*>: pointer arithmetic
	5.2.5 Operations on standard atomic integral types
	5.2.6 The std::atomic<> primary class template
	5.2.7 Free functions for atomic operations

	5.3 Synchronizing operations and enforcing ordering
	5.3.1 The synchronizes-with relationship
	5.3.2 The happens-before relationship
	5.3.3 Memory ordering for atomic operations
	5.3.4 Release sequences and synchronizes-with
	5.3.5 Fences
	5.3.6 Ordering non-atomic operations with atomics
	5.3.7 Ordering non-atomic operations

	Summary

	6 Designing lock-based concurrent data structures
	6.1 What does it mean to design for concurrency?
	6.1.1 Guidelines for designing data structures for concurrency

	6.2 Lock-based concurrent data structures
	6.2.1 A thread-safe stack using locks
	6.2.2 A thread-safe queue using locks and condition variables
	6.2.3 A thread-safe queue using fine-grained locks and condition variables

	6.3 Designing more complex lock-based data structures
	6.3.1 Writing a thread-safe lookup table using locks
	6.3.2 Writing a thread-safe list using locks

	Summary

	7 Designing lock-free concurrent data structures
	7.1 Definitions and consequences
	7.1.1 Types of nonblocking data structures
	7.1.2 Lock-free data structures
	7.1.3 Wait-free data structures
	7.1.4 The pros and cons of lock-free data structures

	7.2 Examples of lock-free data structures
	7.2.1 Writing a thread-safe stack without locks
	7.2.2 Stopping those pesky leaks: managing memory in lock-free data structures
	7.2.3 Detecting nodes that can?t be reclaimed using hazard pointers
	7.2.4 Detecting nodes in use with reference counting
	7.2.5 Applying the memory model to the lock-free stack
	7.2.6 Writing a thread-safe queue without locks

	7.3 Guidelines for writing lock-free data structures
	7.3.1 Guideline: use std::memory_order_seq_cst for prototyping
	7.3.2 Guideline: use a lock-free memory reclamation scheme
	7.3.3 Guideline: watch out for the ABA problem
	7.3.4 Guideline: identify busy-wait loops and help the other thread

	Summary

	8 Designing concurrent code
	8.1 Techniques for dividing work between threads
	8.1.1 Dividing data between threads before processing begins
	8.1.2 Dividing data recursively
	8.1.3 Dividing work by task type

	8.2 Factors affecting the performance of concurrent code
	8.2.1 How many processors?
	8.2.2 Data contention and cache ping-pong
	8.2.3 False sharing
	8.2.4 How close is your data?
	8.2.5 Oversubscription and excessive task switching

	8.3 Designing data structures for multithreaded performance
	8.3.1 Dividing array elements for complex operations
	8.3.2 Data access patterns in other data structures

	8.4 Additional considerations when designing for concurrency
	8.4.1 Exception safety in parallel algorithms
	8.4.2 Scalability and Amdahl?s law
	8.4.3 Hiding latency with multiple threads
	8.4.4 Improving responsiveness with concurrency

	8.5 Designing concurrent code in practice
	8.5.1 A parallel implementation of std::for_each
	8.5.2 A parallel implementation of std::find
	8.5.3 A parallel implementation of std::partial_sum

	Summary

	9 Advanced thread management
	9.1 Thread pools
	9.1.1 The simplest possible thread pool
	9.1.2 Waiting for tasks submitted to a thread pool
	9.1.3 Tasks that wait for other tasks
	9.1.4 Avoiding contention on the work queue
	9.1.5 Work stealing

	9.2 Interrupting threads
	9.2.1 Launching and interrupting another thread
	9.2.2 Detecting that a thread has been interrupted
	9.2.3 Interrupting a condition variable wait
	9.2.4 Interrupting a wait on std::condition_variable_any
	9.2.5 Interrupting other blocking calls
	9.2.6 Handling interruptions
	9.2.7 Interrupting background tasks on application exit

	Summary

	10 Parallel algorithms
	10.1 Parallelizing the standard library algorithms
	10.2 Execution policies
	10.2.1 General effects of specifying an execution policy
	10.2.2 std::execution::sequenced_policy
	10.2.3 std::execution::parallel_policy
	10.2.4 std::execution::parallel_unsequenced_policy

	10.3 The parallel algorithms from the C++ Standard Library
	10.3.1 Examples of using parallel algorithms
	10.3.2 Counting visits

	Summary

	11 Testing and debugging multithreaded applications
	11.1 Types of concurrency-related bugs
	11.1.1 Unwanted blocking
	11.1.2 Race conditions

	11.2 Techniques for locating concurrency-related bugs
	11.2.1 Reviewing code to locate potential bugs
	11.2.2 Locating concurrency-related bugs by testing
	11.2.3 Designing for testability
	11.2.4 Multithreaded testing techniques
	11.2.5 Structuring multithreaded test code
	11.2.6 Testing the performance of multithreaded code

	Summary

	Appendix A?Brief reference for some C++11 language features
	A.1 Rvalue references
	A.1.1 Move semantics
	A.1.2 Rvalue references and function templates

	A.2 Deleted functions
	A.3 Defaulted functions
	A.4 constexpr functions
	A.4.1 constexpr and user-defined types
	A.4.2 constexpr objects
	A.4.3 constexpr function requirements
	A.4.4 constexpr and templates

	A.5 Lambda functions
	A.5.1 Lambda functions that reference local variables

	A.6 Variadic templates
	A.6.1 Expanding the parameter pack

	A.7 Automatically deducing the type of a variable
	A.8 Thread-local variables
	A.9 Class Template Argument Deduction
	Summary

	Appendix B?Brief comparison of concurrency libraries
	Appendix C?A message-passing framework and complete ATM example
	Appendix D?C++ Thread Library reference
	D.1 The <chrono> header
	D.1.1 std::chrono::duration class template
	D.1.2 std::chrono::time_point class template
	D.1.3 std::chrono::system_clock class
	D.1.4 std::chrono::steady_clock class
	D.1.5 std::chrono::high_resolution_clock typedef

	D.2 <condition_variable> header
	D.2.1 std::condition_variable class
	D.2.2 std::condition_variable_any class

	D.3 <atomic> header
	D.3.1 std::atomic_xxx typedefs
	D.3.2 ATOMIC_xxx_LOCK_FREE macros
	D.3.3 ATOMIC_VAR_INIT macro
	D.3.4 std::memory_order enumeration
	D.3.5 std::atomic_thread_fence function
	D.3.6 std::atomic_signal_fence function
	D.3.7 std::atomic_flag class
	D.3.8 std::atomic class template
	D.3.9 Specializations of the std::atomic template
	D.3.10 std::atomic<integral-type> specializations

	D.4 <future> header
	D.4.1 std::future class template
	D.4.2 std::shared_future class template
	D.4.3 std::packaged_task class template
	D.4.4 std::promise class template
	D.4.5 std::async function template

	D.5 <mutex> header
	D.5.1 std::mutex class
	D.5.2 std::recursive_mutex class
	D.5.3 std::timed_mutex class
	D.5.4 std::recursive_timed_mutex class
	D.5.5 std::shared_mutex class
	D.5.6 std::shared_timed_mutex class
	D.5.7 std::lock_guard class template
	D.5.8 std::scoped_lock class template
	D.5.9 std::unique_lock class template
	D.5.10 std::shared_lock class template
	D.5.11 std::lock function template
	D.5.12 std::try_lock function template
	D.5.13 std::once_flag class
	D.5.14 std::call_once function template

	D.6 <ratio> header
	D.6.1 std::ratio class template
	D.6.2 std::ratio_add template alias
	D.6.3 std::ratio_subtract template alias
	D.6.4 std::ratio_multiply template alias
	D.6.5 std::ratio_divide template alias
	D.6.6 std::ratio_equal class template
	D.6.7 std::ratio_not_equal class template
	D.6.8 std::ratio_less class template
	D.6.9 std::ratio_greater class template
	D.6.10 std::ratio_less_equal class template
	D.6.11 std::ratio_greater_equal class template

	D.7 <thread> header
	D.7.1 std::thread class
	D.7.2 Namespace this_thread

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	C++ Concurrency in Action?back cover

