

C++20

Rainer Grimm

This book is for sale at http://leanpub.com/c20

This version was published on 2023-09-13

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process.
Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many
iterations to get reader feedback, pivot until you have the right book and build traction once you do.

© 2020 - 2023 Rainer Grimm

http://leanpub.com/c20
https://leanpub.com/
https://leanpub.com/manifesto

Contents

Reader Testimonials . i

Introduction . ii
Conventions . ii

Special Fonts . ii
Special Boxes . iii

Source Code . iii
Compilation of the Programs . iii

How should you read the Book? . v
Personal Notes . v

Acknowledgments . v
About Me . vi

About C++ . 1

1. Historical Context . 2
1.1 C++98 . 2
1.2 C++03 . 2
1.3 TR1 . 3
1.4 C++11 . 3
1.5 C++14 . 3
1.6 C++17 . 3

2. Standardization . 4
2.1 Stage 3 . 4
2.2 Stage 2 . 5
2.3 Stage 1 . 5

A Quick Overview of C++20 . 7

3. C++20 . 8

CONTENTS

3.1 The Big Four . 9
3.1.1 Concepts . 9
3.1.2 Modules . 10
3.1.3 The Ranges Library . 11
3.1.4 Coroutines . 12

3.2 Core Language . 14
3.2.1 Three-Way Comparison Operator . 14
3.2.2 Designated Initialization . 14
3.2.3 consteval and constinit . 17
3.2.4 Template Improvements . 18
3.2.5 Lambda Improvements . 19
3.2.6 New Attributes . 19

3.3 The Standard Library . 20
3.3.1 std::span . 20
3.3.2 Container Improvements . 21
3.3.3 Arithmetic Utilities . 21
3.3.4 Formatting Library . 21
3.3.5 Calendar and Time Zones . 22

3.4 Concurrency . 24
3.4.1 Atomics . 24
3.4.2 Semaphores . 25
3.4.3 Latches and Barriers . 25
3.4.4 Cooperative Interruption . 26
3.4.5 std::jthread . 27
3.4.6 Synchronized Outputstreams . 29

The Details . 32

4. Core Language . 33
4.1 Concepts . 34

4.1.1 Two Wrong Approaches . 34
4.1.2 Advantages of Concepts . 41
4.1.3 The long, long History . 42
4.1.4 Use of Concepts . 42
4.1.5 Constrained and Unconstrained Placeholders 54
4.1.6 Abbreviated Function Templates . 57
4.1.7 Predefined Concepts . 61
4.1.8 Define Concepts . 69
4.1.9 Requires Expressions . 77
4.1.10 User-Defined Concepts . 81

4.2 Modules . 94
4.2.1 A First Example . 94

CONTENTS

4.2.2 Advantages . 97
4.2.3 The Details . 104
4.2.4 Further Aspects . 134

4.3 Equality Comparison and Three-Way Comparison 140
4.3.1 Comparison before C++20 . 140
4.3.2 Comparison since C++20 . 142
4.3.3 Comparison Categories . 146
4.3.4 Compiler-Generated Equality and Spaceship Operator 150
4.3.5 Rewriting Expressions . 154
4.3.6 User-Defined and Auto-Generated Comparison Operators 158

4.4 Designated Initialization . 160
4.4.1 Aggregate Initialization . 160
4.4.2 Named Initialization of Class Members . 161

4.5 consteval and constinit . 167
4.5.1 consteval . 167
4.5.2 constinit . 170
4.5.3 Comparison of const, constexpr, consteval, and constinit 171
4.5.4 Solving the Static Initialization Order Fiasco 174

4.6 Template Improvements . 180
4.6.1 Conditionally Explicit Constructor . 180
4.6.2 Non-Type Template Parameters (NTTP) . 183

4.7 Lambda Improvements . 188
4.7.1 Template Parameter for Lambdas . 188
4.7.2 Detection of the Implicit Copy of the this Pointer 192
4.7.3 Lambdas in an Unevaluated Context and Stateless Lambdas can be Default-

Constructed and Copy-Assigned . 194
4.7.4 consteval Lambdas . 198
4.7.5 Pack Expansion in Init-Capture . 199

4.8 New Attributes . 203
4.8.1 [[nodiscard("reason")]] . 204
4.8.2 [[likely]] and [[unlikely]] . 209
4.8.3 [[no_unique_address]] . 210

4.9 Further Improvements . 213
4.9.1 volatile . 213
4.9.2 Range-based for loop with Initializers . 215
4.9.3 Virtual constexpr function . 216
4.9.4 The new Character Type of UTF-8 Strings: char8_t 217
4.9.5 using enum in Local Scopes . 219
4.9.6 Default Member Initializers for Bit Fields 220

5. The Standard Library . 223
5.1 The Ranges Library . 224

5.1.1 Ranges . 225

CONTENTS

5.1.2 Views . 230
5.1.3 Range Adaptors . 233
5.1.4 Direct on the Container . 243
5.1.5 Function Composition . 249
5.1.6 Lazy Evaluation . 251
5.1.7 Define a View . 255
5.1.8 std Algorithms versus std::ranges Algorithms 260
5.1.9 Design Choices . 273

5.2 std::span . 281
5.2.1 Static versus Dynamic Extent . 281
5.2.2 Creation . 283
5.2.3 Automatically Deduces the Size of a Contiguous Sequence of Objects 288
5.2.4 Modifying the Referenced Objects . 289
5.2.5 std::span’s Operations . 291
5.2.6 A Constant Range of Modifiable Elements 293
5.2.7 Dangers of std::span . 295

5.3 Container and Algorithm Improvements . 298
5.3.1 constexpr Containers and Algorithms . 298
5.3.2 std::array . 301
5.3.3 Consistent Container Erasure . 303
5.3.4 contains for Associative Containers . 308
5.3.5 Shift the Content of a Container . 311
5.3.6 String prefix and suffix checking . 313
5.3.7 Vectorized Execution Policy: std::execution::unseq 315

5.4 Arithmetic Utilities . 317
5.4.1 Safe Comparison of Integers . 317
5.4.2 Mathematical Constants . 322
5.4.3 Midpoint and Linear Interpolation . 324
5.4.4 Bit Manipulation . 327

5.5 Formatting Library . 333
5.5.1 Formatting Functions . 333
5.5.2 Format String . 336
5.5.3 User-Defined Types . 346
5.5.4 Internationalization . 353

5.6 Calendar and Time Zones . 357
5.6.1 Basic Chrono Terminology . 357
5.6.2 Basic Types and Literals . 358
5.6.3 Time of Day . 365
5.6.4 Calendar Dates . 368
5.6.5 Time Zones . 389
5.6.6 Chrono I/O . 396

5.7 Further Improvements . 411
5.7.1 std::bind_front . 411

CONTENTS

5.7.2 std::is_constant_evaluated . 413
5.7.3 std::ssize . 415
5.7.4 std::source_location . 416
5.7.5 std::to_address . 418

6. Concurrency . 420
6.1 Coroutines . 421

6.1.1 A Generator Function . 422
6.1.2 Characteristics . 425
6.1.3 The Framework . 427
6.1.4 Awaitables and Awaiters . 438
6.1.5 The Workflows . 445
6.1.6 co_return . 448
6.1.7 co_yield . 450
6.1.8 co_await . 453

6.2 Atomics . 462
6.2.1 std::atomic_ref . 462
6.2.2 Atomic Smart Pointer . 470
6.2.3 std::atomic_flag Extensions . 474
6.2.4 std::atomic Extensions . 482

6.3 Semaphores . 486
6.4 Latches and Barriers . 491

6.4.1 std::latch . 491
6.4.2 std::barrier . 496

6.5 Cooperative Interruption . 501
6.5.1 std::stop_source . 502
6.5.2 std::stop_token . 503
6.5.3 std::stop_callback . 504
6.5.4 A General Mechanism to Send Signals . 507
6.5.5 Joining Threads . 510
6.5.6 New wait Overloads for the condition_variable_any 510

6.6 std::jthread . 515
6.6.1 Automatically Joining . 516
6.6.2 Cooperative Interruption of a std::jthread 519

6.7 Synchronized Output Streams . 522

7. Case Studies . 532
7.1 A Flavor of Python . 533

7.1.1 filter . 533
7.1.2 map . 535
7.1.3 List Comprehension . 536

7.2 Variations of Futures . 539
7.2.1 A Lazy Future . 541

CONTENTS

7.2.2 Execution on Another Thread . 545
7.3 Modification and Generalization of a Generator . 550

7.3.1 Modifications . 554
7.3.2 Generalization . 557
7.3.3 Iterator Protocol . 560

7.4 Various Job Workflows . 564
7.4.1 The Transparent Awaiter Workflow . 564
7.4.2 Automatically Resuming the Awaiter . 567
7.4.3 Automatically Resuming the Awaiter on a Separate Thread 570

7.5 Fast Synchronization of Threads . 574
7.5.1 Condition Variables . 575
7.5.2 std::atomic_flag . 577
7.5.3 std::atomic<bool> . 581
7.5.4 Semaphores . 583
7.5.5 All Numbers . 585

Epilogue . 587

Further Information .588

8. C++23 and Beyond . 589
8.1 C++23 . 590

8.1.1 Core Language . 590
8.1.2 The Standard Library . 597

8.2 Beyond C++23 . 614
8.2.1 Contracts . 614
8.2.2 Reflection . 618
8.2.3 Pattern Matching . 622

9. Feature Testing . 625

10. Glossary . 637
10.1 Aggregate . 637
10.2 Automatic Storage Duration . 637
10.3 Awaitable . 637
10.4 Awaiter . 637
10.5 Callable . 638
10.6 Callable Unit . 638
10.7 Concurrency . 638
10.8 Critical Section . 638
10.9 Data Race . 638

CONTENTS

10.10 Deadlock . 639
10.11 Dynamic Storage Duration . 639
10.12 Eager Evaluation . 639
10.13 Executor . 639
10.14 Function Objects . 639
10.15 Lambda Expressions . 640
10.16 Lazy Evaluation . 640
10.17 Literal Type . 640
10.18 Lock-free . 641
10.19 Lost Wakeup . 641
10.20 Math Laws . 641
10.21 Memory Location . 641
10.22 Memory Model . 642
10.23 Non-blocking . 642
10.24 Object . 642
10.25 Parallelism . 642
10.26 POD (Plain Old Data) . 642
10.27 Predicate . 642
10.28 RAII . 642
10.29 Race Conditions . 643
10.30 Regular Type . 643
10.31 Scalar Type . 643
10.32 SemiRegular . 643
10.33 Short-Circuit Evaluation . 643
10.34 Standard-Layout Type . 643
10.35 Static Storage Duration . 644
10.36 Spurious Wakeup . 644
10.37 The Big Four . 644
10.38 The Big Six . 645
10.39 Thread . 645
10.40 Thread Storage Duration . 645
10.41 Time Complexity . 645
10.42 Translation Unit . 645
10.43 Trivial Type . 646
10.44 Type Erasure . 646
10.45 Undefined Behavior . 646

Index . 647
A . 649
B . 650
C . 651
DE . 652
FG . 653

CONTENTS

HIJKL . 654
M . 655
NOPR . 656
S . 657
T . 658
UV . 659
WYZ . 660

Reader Testimonials
Sandor Dargo

Senior Software Development Engineer at Amadeus

”’C++ 20: Get the details’ is exactly the book you need right now if you want to
immerse yourself in the latest version of C++. It’s a complete guide, Rainer doesn’t
only discuss the flagship features of C++20, but also every minor addition to the
language. Luckily, the book includes tons of example code, so even if you don’t have
direct access yet to the latest compilers, you will have a very good idea of what you
can expect from the different features. A highly recommended read!”

Adrian Tam

Director of Data Science, Synechron Inc.

”C++ has evolved a lot from its birth. With C++20, it is like a new language now. Surely
this book is not a primer to teach you inheritance or overloading, but if you need to
bring your C++ knowledge up to date, this is the right book. You will be surprised about
the new features C++20 brought into C++. This book gives you clear explanations with
concise examples. Its organization allows you to use it as a reference later. It can help
you unleash the old language into its powerful future.”

Introduction
My book C++20 is both a tutorial and a reference. It teaches you C++20 and provides you with the
details of this new thrilling C++ standard. The thrill factor is mainly due to the big four of C++20:

• Concepts change the way we think about and program with templates. They are semantic
categories for template parameters. They enable you to express your intention directly in the
type system. If something goes wrong, the compiler gives you a clear error message.

• Modules overcome the restrictions of header files. They promise a lot. For example, the
separation of header and source files becomes as obsolete as the preprocessor. In the end, we
have faster build times and an easier way to build packages.

• The new ranges library supports performing algorithms directly on the containers, composing
algorithms with the pipe symbol, and applying algorithms lazily on infinite data streams.

• Thanks to coroutines, asynchronous programming in C++ becomes mainstream. Coroutines
are the basis for cooperative tasks, event loops, infinite data streams, or pipelines.

Of course, this is not the end of the story. Here are more C++20 features:
• Auto-generated comparison operators

• Calendar and time-zone libraries

• Format library

• Views on contiguous memory blocks

• Improved, interruptible threads

• Atomic smart pointers

• Semaphores

• Coordination primitives such as latches and barriers

Conventions

Here are only a few conventions.

Special Fonts

Italic: I use Italic to emphasize a quote.

Bold: I use Bold to emphasize a name.

Monospace: I use Monospace for code, instructions, keywords, and names of types, variables, functions,
and classes.

Introduction iii

Special Boxes

Boxes contain tips, warnings, and distilled information.

Tip Headline
This box provides tips and additional information about the presented material.

Warning Headline
Warning boxes should help you to avoid pitfalls.

Distilled Information
This box summarizes at the end of each main section the important things to remember.

Source Code

The source code examples–starting with the details part–shown in the book are complete. That means
assuming you have a conforming compiler, you can compile and run them. I put the name of the source
file in the title of each source code example. The source code uses four whitespaces for indentation.
Only for layout reasons, I sometimes use two whitespaces.

Furthermore, I’m not a fan of namespace directives such as using namespace std because theymake the
code more difficult to read and pollute namespaces. Consequently, I use them only when it improves
the code’s readability (e.g.: using namespaces std::chrono_literals or using namespace std::chrono).

When necessary for layout reasons, I indent two characters instead of four, and I apply using directives
such as using std::chrono::Monday. Using directives allows it to use the names unqualified: constexpr
auto monday = Monday instead of constexpr auto monday = std::chrono::Monday.

Compilation of the Programs

As the C++20 standard is brand-new, many examples can only be compiled and executed with a
specific compiler. I use the newest GCC¹, Clang², and MSVC³ compilers. When you compile the

¹https://gcc.gnu.org/
²https://clang.llvm.org/
³https://en.wikipedia.org/wiki/Microsoft_Visual_C%2B%2B

https://gcc.gnu.org/
https://clang.llvm.org/
https://en.wikipedia.org/wiki/Microsoft_Visual_C++
https://gcc.gnu.org/
https://clang.llvm.org/
https://en.wikipedia.org/wiki/Microsoft_Visual_C++

Introduction iv

program, you must specify the applied C++ standard. This means, with GCC or Clang you must
provide the flag -std=c++20, and with MSVC /std:c++latest. When using concurrency features,
unlike with MSVC, the GCC and Clang compilers require that you link the pthread library using
-pthread.

If you don’t have an appropriate C++ compiler at your disposal, use an online compiler such as
Wandbox⁴ or Compiler Explorer⁵. If you use Compiler Explorer with GCC or Clang, you can also
execute the program. First, you should enable Run the compiled output (1) and, second, open the
Output window (2).

Run code in the Compiler Explorer

You can get more details about the C++20 conformity of various C++ compilers at cppreference.com⁶.

⁴https://wandbox.org/
⁵https://godbolt.org/
⁶https://en.cppreference.com/w/cpp/compiler_support

https://wandbox.org/
https://godbolt.org/
https://en.cppreference.com/w/cpp/compiler_support
https://wandbox.org/
https://godbolt.org/
https://en.cppreference.com/w/cpp/compiler_support

Introduction v

How should you read the Book?

If you are not familiar with C++20, start at the very beginning with a quick overview to get the big
picture.

Once you get the big picture, you can proceed with the core language. The presentation of each feature
should be self-contained, but reading the book from the beginning to the end would be the preferable
way. On first reading, you can skip the features not mentioned in the quick overview chapter.

Personal Notes

Acknowledgments

I started a request for proofreading on my English blog: ModernesCpp Cpp⁷, and received more
responses than I expected. Special thanks to all of you. Here are the names of the proofreaders in
alphabetic order: Bob Bird, Nicola Bombace, Dave Burchill, Sandor Dargo, James Drobina, Frank
Grimm, Kilian Henneberger, Nicola Jaud-Stoll, Ivan “espkk” Kondakov, Péter Kardos, Rakesh Mane,
Jonathan O’Connor, John Plaice, Iwan Smith, Paul Targosz, Steve Vinoski, and Greg Wagner.

Special thanks also to my daughter Juliette, and my wife Beatrix. Juliette improved my wording and
fixed many of my typos. Beatrix created Cippi and illustrated the book.

Cippi

Let me introduce Cippi. Cippi will accompany you in this book. I hope, you like her.

⁷http://www.modernescpp.com

http://www.modernescpp.com/
http://www.modernescpp.com/

Introduction vi

I’m Cippi, the C ++ Pippi Longstocking: curious, clever and - yes - feminine!

About Me

I’ve worked as a software architect, team lead, and instructor since 1999. In 2002, I created company-
intern meetings for further education. I have given training courses since 2002. My first tutorials were
about proprietary management software, but I began teaching Python and C++ soon after. In my
spare time, I like to write articles about C++, Python, and Haskell. I also like to speak at conferences. I
publish weekly on my English blog Modernes Cpp⁸ and the German blog⁹, hosted by Heise Developer.

Since 2016, I have been an independent instructor giving seminars about modern C++ and Python.
I have published several books in various languages about modern C++ and, in particular, about
concurrency. Due to my profession, I always search for the best way to teach modern C++.

⁸https://www.modernescpp.com/
⁹https://www.grimm-jaud.de/index.php/blog

https://www.modernescpp.com/
https://www.grimm-jaud.de/index.php/blog
https://www.modernescpp.com/
https://www.grimm-jaud.de/index.php/blog

Introduction vii

Rainer Grimm

About C++

1. Historical Context
C++20 is the next big C++ standard after C++11. Like C++11, C++20 changes the way we program
in modern C++. This change mainly results from the addition of Concepts, Modules, Ranges, and
Coroutines to the language. To understand this next big step in the evolution of C++, let me write a
few words about the historical context of C++20.

C++ History

C++ is about 40 years old. Here is a brief overview of what has changed in the previous years.

1.1 C++98

At the end of the ’80s, Bjarne Stroustrup and Margaret A. Ellis wrote their famous book Annotated
C++ Reference Manual ¹(ARM). This book served two purposes, to define the functionality of C++ in a
world with many implementations and to provide the basis for the first C++ standard C++98 (ISO/IEC
14882). Some of the essential features of C++98 were: templates, the Standard Template Library (STL)
with its containers and algorithms, strings, and IO streams.

1.2 C++03

With C++03 (14882:2003), C++98 received a technical correction, so small that is doesn’t fit the timeline
above. In the community, C++03, which includes C++98, is called legacy C++.

¹https://www.stroustrup.com/arm.html

https://www.stroustrup.com/arm.html
https://www.stroustrup.com/arm.html
https://www.stroustrup.com/arm.html

Historical Context 3

1.3 TR1

In 2005, something exciting happened. The so-called Technical Teport 1 (TR1) was published. TR1 was
a big step toward C++11 and, therefore, towards Modern C++. TR1 (TR 19768) is based on the Boost
project², founded by members of the C++ standardization committee. TR1 had 13 libraries destined to
become part of the C++11 standard: For example, the regular expression library, the random number
library, smart pointers, and hashtables. Only the so-called special mathematical functions had to wait
until C++17.

1.4 C++11

We call the C++11 standard Modern C++. The name Modern C++ is also used for C++14 and C++17.
C++11 introduced many features that fundamentally changed the way we program in C++. For
example, C++11 had the additions of TR1 but also move semantics, perfect forwarding, variadic
templates, and constexpr. But that was not all. With C++11, we also got, for the first time, a memory
model as the fundamental basis of threading and the standardization of a threading API.

1.5 C++14

C++14 is a small C++ standard. It brought read-writer locks, generalized lambdas, and extended
constexpr functions.

1.6 C++17

C++17 is neither a big nor a small C++ standard. It has two outstanding features: the parallel STL
and the standardized filesystem API. About 80 algorithms of the Standard Template Library can
be executed in parallel or vectorized. As with C++11, the boost libraries were highly influential for
C++17. Boost provided the filesystem library and new data types: std::string_view, std::optional,
std::variant, and std::any.

²https://www.boost.org/

https://www.boost.org/
https://www.boost.org/
https://www.boost.org/

2. Standardization
The C++ standardization process is democratic. The committee called WG21 (Working Group 21) was
formed in 1990-91. The officers of WG 21 are:

• Convener: chairs the WG21, sets the meeting schedule, and appoints Study Groups

• Project Editor: applies changes to the working draft of the C++ standard

• Secretary: assigns minutes of the WG21 meetings
The image shows you the various subgroups and Study Groups of the committee.

Study groups in the C++ standardization process

The committee is organized into a three-stage pipeline consisting of several subgroups. SG stands for
Study Group.

2.1 Stage 3

Stage 3 for the wording and the change proposal’s consistency has two groups: core language wording
(CWG) and library wording (LWG).

Standardization 5

2.2 Stage 2

Stage 2 has two groups: core language evolution (EWG) and library evolution (LEWG). EWG and
LEWG are responsible for new features that involve language and standard library extensions,
respectively.

2.3 Stage 1

Stage 1 aims for domain-specific investigation and incubation. The study groups’ members meet in
face-to-face meetings, between the meeting by telephone or video conferences. Central groups may
review the work of the study groups to ensure consistency.

These are the domain-specific Study Groups:

• SG1, Concurrency: Concurrency and parallelism topics, including the memory model

• SG2, Modules: Modules-related topics

• SG3, File System

• SG4, Networking: Networking library development

• SG5, Transactional Memory: Transactional memory constructs for future addition

• SG6, Numerics: Numerics topics such as fixed-point numbers, floating-point numbers, and
fractions

• SG7, Compile time programming: compile time programming in general

• SG8, Concepts

• SG9, Ranges

• SG10, Feature Test: Portable checks to test whether a particular C++ supports a specific feature

• SG11, Databases: Database-related library interfaces

• SG12, UB & Vulnerabilities: Improvements against vulnerabilities and undefined/unspecified
behavior in the standard

• SG13, HMI & I/O (Human/Machine Interface): Support for output and input devices

• SG14, Game Development & Low Latency: Game developers and (other) low-latency pro-
gramming requirements

• SG15, Tooling: Developer tools, including modules and packages

• SG16, Unicode: Unicode text processing in C++

• SG17, EWG Incubator: Early discussion about the core language evolution

• SG18, LEWG Incubator: Early discussions about the library language evolution

• SG19, Machine Learning: Artificial intelligence (AI) specific topics but also linear algebra

• SG20, Education: Guidance for modern course materials for C++ education

Standardization 6

• SG21, Contracts: Language support for Design by Contract

• SG22, C/C++ Liaison: Discussion of C and C++ coordination

This section provided you with a concise overview of the standardization in C++ and, in particular,
the C++ committee. You can find more details about the standardization at https://isocpp.org/std¹.

¹https://isocpp.org/std

https://isocpp.org/std
https://isocpp.org/std

A Quick Overview of C++20

3. C++20
Before I dive into the details of C++20, I want to give a quick overview of C++20’s features. This
overview should serve two purposes; to give a first impression and to provide links to the relevant
sections you can use to dive directly into the details. Consequently, this chapter has only code snippets
but no complete programs.

My book starts with a short historical detour into the previous C++ standards. This detour provides
context when comparing C++20 to previous revisions and demonstrates the importance of C++20 by
providing a historical context.

C++20 has four outstanding features: concepts, ranges, coroutines, and modules. Each deserves its
own subsection.

C++20 9

3.1 The Big Four

Each feature of the Big Four changes the way we program in modern C++. Let me start with concepts.

3.1.1 Concepts

Generic programmingwith templates enables it to define functions and classes which can be usedwith
various types. As a result, it is not uncommon for you to instantiate a template with the wrong type.
The result can be many pages of cryptic error messages. This problem ends with concepts. Concepts
empower you to write requirements for template parameters that are checked by the compiler and
revolutionize how we think about and write generic code. Here is why:

• Requirements for template parameters become part of their public interface.

• The overloading of functions or specializations of class templates can be based on concepts.

• We get improved error messages because the compiler checks the defined template parameter
requirements against the given template arguments.

Additionally, this is not the end of the story.

• You can use predefined concepts or define your own.

• The usage of auto and concepts is unified. Instead of auto, you can use a concept.

• If a function declaration uses a concept, it automatically becomes a function template. Writing
function templates is, therefore, as easy as writing a function.

The following code snippet demonstrates the definition and the use of the straightforward concept
Integral:

C++20 10

Definition and use of the Integral concept

template <typename T>

concept Integral = std::is_integral<T>::value;

Integral auto gcd(Integral auto a, Integral auto b) {

if(b == 0) return a;

else return gcd(b, a % b);

}

The Integral concept requires from its type parameter T that std::is_integral<T>::value evaluates
to true. std::is_integral<T>::value is a function from the type traits library¹ checking at compile
time if T is integral. If std::is_integral<T>::value evaluates to true, all is fine; otherwise, you get a
compile-time error.

The gcd algorithm determines the greatest common divisor based on the Euclidean² algorithm. The
code uses the so-called abbreviated function template syntax to define gcd. Here, gcd requires that its
arguments and return type support the concept Integral. In other words, gcd is a function template
that puts requirements on its arguments and return value. When I remove the syntactic sugar, you
can see the real nature of gcd.

The semantically equivalent gcd algorithm using a requires clause.

Use of the concept Integral in the requires clause

template<typename T>

requires Integral<T>

T gcd(T a, T b) {

if(b == 0) return a;

else return gcd(b, a % b);

}

The requires clause states the requirements on the type parameters of gcd.

3.1.2 Modules

Modules promise a lot:
• Faster compile times

• Reduce the need to define macros

• Express the logical structure of the code

• Make header files obsolete

• Get rid of ugly macro workarounds
Here is the first simple math module:

¹https://en.cppreference.com/w/cpp/header/type_traits
²https://en.wikipedia.org/wiki/Euclid

https://en.cppreference.com/w/cpp/header/type_traits
https://en.wikipedia.org/wiki/Euclid
https://en.cppreference.com/w/cpp/header/type_traits
https://en.wikipedia.org/wiki/Euclid

C++20 11

The math module

1 export module math;

2

3 export int add(int fir, int sec) {

4 return fir + sec;

5 }

The expression export module math (line 1) is the module declaration. Putting export before the
function add (line 3) exports the function. Now, it can be used by a consumer of the module.

Use of the math module

import math;

int main() {

add(2000, 20);

}

The expression import math imports the math module and makes the exported names visible in the
current scope.

3.1.3 The Ranges Library

The ranges library supports algorithms which

• can operate directly on containers; you don’t need iterators to specify a range

• can be evaluated lazily

• can be composed

To make it short: The ranges library supports functional patterns.

The following example demonstrates function composition using the pipe symbol.

C++20 12

Function composition with the pipe symbol

1 int main() {

2 std::vector<int> ints{0, 1, 2, 3, 4, 5};

3 auto even = [](int i){ return i % 2 == 0; };

4 auto square = [](int i) { return i * i; };

5

6 for (int i : ints | std::views::filter(even) |

7 std::views::transform(square)) {

8 std::cout << i << ' '; // 0 4 16

9 }

10 }

Lambda expression even (line 3) is a lambda expression that returns true if an argument i is
even. Lambda expression square (line 4) maps the argument i to its square. Lines 6 and 7 demon-
strate function composition, which you have to read from left to right: for (int i : ints

| std::views::filter(even) | std::views::transform(square)). Apply on each element of ints

the even filter and map each remaining element to its square. If you are familiar with functional
programming, this reads like prose.

3.1.4 Coroutines

Coroutines are generalized functions that can be suspended and resumed later while maintaining their
state. Coroutines are a convenient way to write event-driven applications. Event-driven applications
can be simulations, games, servers, user interfaces, or even algorithms. Coroutines are also typically
used for cooperative multitasking.

C++20 does not provide concrete coroutines, but C++20 provides a framework for implementing
coroutines. This framework consists of more than 20 functions, and some of which you must
implement, some of which you can override. Therefore, you can tailor coroutines to your needs.

The following code snippet uses a generator to create a potentially infinite data stream. The coroutines
chapter provides the implemenation of the Generator.

A generator for an infinite data-stream

1 Generator<int> getNext(int start = 0, int step = 1){

2 auto value = start;

3 while (true) {

4 co_yield value;

5 value += step;

6 }

7 }

8

9 int main() {

10

C++20 13

11 std::cout << '\n';

12

13 std::cout << "getNext():";

14 auto gen1 = getNext();

15 for (int i = 0; i <= 10; ++i) {

16 gen1.next();

17 std::cout << " " << gen1.getValue();

18 }

19

20 std::cout << "\n\n";

21

22 std::cout << "getNext(100, -10):";

23 auto gen2 = getNext(100, -10);

24 for (int i = 0; i <= 20; ++i) {

25 gen2.next();

26 std::cout << " " << gen2.getValue();

27 }

28

29 std::cout << "\n";

30

31 }

The function getNext is a coroutine because it uses the keyword co_yield. There is an infinite loop that
returns the value at co_yield (line 4). A call to next (lines 16 and 25) resumes the coroutine and the
following getValue call gets the value. After the getNext call returns, the coroutine pauses once again
until the next call next. There is one big unknown in this example: the return value Generator<int>

of the getNext function. This is where the complication begins, which I describe in full depth in the
coroutines section.

An infinite data-generator

C++20 14

3.2 Core Language

3.2.1 Three-Way Comparison Operator

The three-way comparison operator <=>, or spaceship operator, determines, for two values A and
B, whether A < B, A == B, or A > B.

By declaring the three-way comparison operator default, the compiler will attempt to generate a
consistent relational operator for the class. In this case, you get all six comparison operators: ==, !=, <,
<=, >, and >=.

Auto-generating the three-way comparison operator

struct MyInt {

int value;

MyInt(int value): value{value} { }

auto operator<=>(const MyInt&) const = default;

};

The compiler-generated operator <=> performs a lexicographical comparison, starting with the base
classes and taking into account all the non-static data members in their declaration order. Here is a
quite sophisticated example from the Microsoft blog: Simplify Your Code with Rocket Science: C++
20’s Spaceship Operator³.

3.2.2 Designated Initialization

³https://devblogs.microsoft.com/cppblog/simplify-your-code-with-rocket-science-c20s-spaceship-operator/

https://devblogs.microsoft.com/cppblog/simplify-your-code-with-rocket-science-c20s-spaceship-operator/
https://devblogs.microsoft.com/cppblog/simplify-your-code-with-rocket-science-c20s-spaceship-operator/
https://devblogs.microsoft.com/cppblog/simplify-your-code-with-rocket-science-c20s-spaceship-operator/

C++20 15

Spaceship operator for derived classes

struct Basics {

int i;

char c;

float f;

double d;

auto operator<=>(const Basics&) const = default;

};

struct Arrays {

int ai[1];

char ac[2];

float af[3];

double ad[2][2];

auto operator<=>(const Arrays&) const = default;

};

struct Bases : Basics, Arrays {

auto operator<=>(const Bases&) const = default;

};

int main() {

constexpr Bases a = { { 0, 'c', 1.f, 1. },

{ { 1 }, { 'a', 'b' }, { 1.f, 2.f, 3.f }, { { 1., 2. }, { 3., 4. } } } };

constexpr Bases b = { { 0, 'c', 1.f, 1. },

{ { 1 }, { 'a', 'b' }, { 1.f, 2.f, 3.f }, { { 1., 2. }, { 3., 4. } } } };

static_assert(a == b);

static_assert(!(a != b));

static_assert(!(a < b));

static_assert(a <= b);

static_assert(!(a > b));

static_assert(a >= b);

}

I assume the most complicated stuff in this code snippet is not the spaceship operator but the
initialization of Base using aggregate initialization. Aggregate initialization essentially means that
you can directly initialize the members of class types (class, struct, or union) if all members are
public. In this case, you can use a braced initialization list, as in the example.

Before I discuss designated initialization, let me show more about aggregate initialization. Here is a
straightforward example.

C++20 16

Aggregate initialization

struct Point2D{

int x;

int y;

};

class Point3D{

public:

int x;

int y;

int z;

};

int main(){

std::cout << "\n";

Point2D point2D {1, 2};

Point3D point3D {1, 2, 3};

std::cout << "point2D: " << point2D.x << " " << point2D.y << "\n";

std::cout << "point3D: " << point3D.x << " "

<< point3D.y << " " << point3D.z << "\n";

std::cout << '\n';

}

This is the output of the program:

Aggregate initialization

The aggregate initialization is quite error-prone, because you can swap the constructor arguments
without realizing it. Explicit is better than implicit. Let’s see what that means. Take a look at how
designated initializers from C99⁴, now part of the C++ standard, intervene.

⁴https://en.wikipedia.org/wiki/C99

https://en.wikipedia.org/wiki/C99
https://en.wikipedia.org/wiki/C99

C++20 17

Designated initialization

1 struct Point2D{

2 int x;

3 int y;

4 };

5

6 class Point3D{

7 public:

8 int x;

9 int y;

10 int z;

11 };

12

13 int main(){

14

15 Point2D point2D {.x = 1, .y = 2};

16 // Point2D point2d {.y = 2, .x = 1}; // error

17 Point3D point3D {.x = 1, .y = 2, .z = 2};

18 // Point3D point3D {.x = 1, .z = 2} // {1, 0, 2}

19

20

21 std::cout << "point2D: " << point2D.x << " " << point2D.y << "\n";

22 std::cout << "point3D: " << point3D.x << " " << point3D.y << " " << point3D.z

23 << "\n";

24

25 }

The arguments for the instances of Point2 and Point3D are explicitly named. The output of the
program is identical to the output of the previous one. The commented-out lines 16 and 18 are quite
interesting. Line 16 would give an error because the order of the designators does not match the
declaration order of the data members. As for line 18, the designator for y is missing. In this case, y is
initialized to 0, such as when using braced initialization list {1, 0, 3}.

3.2.3 consteval and constinit

The new consteval specifier added in C++20 creates an immediate function. For an immediate
function, each invocation of the function must produce a compile-time constant expression. An
immediate function is implicitly a constexpr function but not necessarily the other way around.

C++20 18

An immediate function

consteval int sqr(int n) {

return n*n;

}

constexpr int r = sqr(100); // OK

int x = 100;

int r2 = sqr(x); // Error

The final assignment gives an error because x is not a constant expression and, therefore, sqr(x)
cannot be performed at compile time.

constinit ensures that the variable with static storage duration or thread storage duration is initialized
at compile time. Static storage duration means that the object is allocated when the program begins
and is deallocated when the program ends. Thread storage duration means that the object’s lifetime
is bound to the lifetime of the thread.

constinit ensures for this kind of variable (static storage duration or thread storage duration) that
they are initialized at compile time. constinit does not imply constness.

3.2.4 Template Improvements

C++20 offers various improvements to programming with templates. A generic constructor is a
catch-all constructor because you can invoke it with any type.

An implicit and explicit generic constructor

struct Implicit {

template <typename T>

Implicit(T t) {

std::cout << t << '\n';

}

};

struct Explicit {

template <typename T>

explicit Explicit(T t) {

std::cout << t << '\n';

}

};

Explicit exp1 = "implicit"; // Error

Explicit exp2{"explicit"};

C++20 19

The generic constructor of the class Implicit is way too generic. By putting the keyword explicit in
front of the constructor, as for Explicit, the constructor becomes explicit. This means that implicit
conversions are not valid anymore.

3.2.5 Lambda Improvements

Lambdas get many improvements in C++20. They can have template parameters and can be used
in unevaluated contexts, and stateless lambdas can also be default-constructed and copy-assigned.
Furthermore, the compiler can now detect when you implicitly copy the this pointer, which means
a significant cause of undefined behavior with lambdas is gone.

If you want to define a lambda that accepts only a std::vector, template parameters for lambdas
enable this:

Template parameters for lambdas

auto foo = []<typename T>(std::vector<T> const& vec) {

// do vector-specific stuff

};

3.2.6 New Attributes

C++20 has new attributes, including [[likely]] and [[unlikely]]. Both attributes allow us to give
the optimizer a hint, specifying which path of execution is more or less likely.

The attribute [[likely]]

for(size_t i=0; i < v.size(); ++i){

if (v[i] < 0) [[likely]] sum -= sqrt(-v[i]);

else sum += sqrt(v[i]);

}

C++20 20

3.3 The Standard Library

3.3.1 std::span

A std::span represents an object that can refer to a contiguous sequence of objects. A std::span,
sometimes also called a view, is never an owner. This view can be a C-array, a std::array, a pointer
with a size, or a std::vector. A typical implementation of a std::span needs a pointer to its first
element and a size. The main reason for having a std::span is that a plain array will decay to a
pointer if passed to a function; therefore, its size is lost. std::span automatically deduces the size of
an array, a std::array, or a std::vector. If you use a pointer to initialize a std::span, you have to
provide the size in the constructor.

std::span as function argument

void copy_n(const int* src, int* des, int n){}

void copy(std::span<const int> src, std::span<int> des){}

int main(){

int arr1[] = {1, 2, 3};

int arr2[] = {3, 4, 5};

copy_n(arr1, arr2, 3);

copy(arr1, arr2);

}

Compared to the function copy_n, copy doesn’t need the number of elements. Hence, a common cause
of errors is gone with std::span<T>.

C++20 21

3.3.2 Container Improvements

C++20 has many improvements regarding containers of the Standard Template Library. First of all,
std::vector and std::string have constexpr constructors and can, therefore, be used at compile
time. All standard library containers support consistent container erasure, and the associative
containers support a contains member function. Additionally, std::string allows checking for a
prefix or suffix.

3.3.3 Arithmetic Utilities

The comparison of signed and unsigned integers is a subtle cause of unexpected behavior and,
therefore, of bugs. Thanks to the new safe comparison functions for integers, std::cmp_*, a subtle
source of bugs is gone.

Safe comparison of integers

int x = -3;

unsigned int y = 7;

if (x < y) std::cout << "expected";

else std::cout << "not expected"; // not expected

if (std::cmp_less(x, y)) std::cout << "expected"; // expected

else std::cout << "not expected";

Additionally, C++20 includes mathematical constants, including e, π, or ϕ in the namespace
std::numbers.

The new bit manipulation enables accessing individual bits and bit sequences and reinterpreting them.

Accessing individual bits and bit sequences

std::uint8_t num= 0b10110010;

std::cout << std::has_single_bit(num) << '\n'; // false

std::cout << std::bit_width(unsigned(5)) << '\n'; // 3

std::cout << std::bitset<8>(std::rotl(num, 2)) << '\n'; // 11001010

std::cout << std::bitset<8>(std::rotr(num, 2)) << '\n'; // 10101100

3.3.4 Formatting Library

The new formatting library provides a safe and extensible alternative to the printf functions.
It’s intended to complement the existing I/O streams and reuse some of its infrastructure, such as
overloaded insertion operators for user-defined types.

C++20 22

std::string message = std::format("The answer is {}.", 42);

std::format uses Python’s syntax for formatting. The following examples show a few typical use
cases:

• Format and use positional arguments

std::string s = std::format("I'd rather be {1} than {0}.", "right", "happy");

// s == "I'd rather be happy than right."

• Convert an integer to a string in a safe way

memory_buffer buf;

std::format_to(buf, "{}", 42); // replaces itoa(42, buffer, 10)

std::format_to(buf, "{:x}", 42); // replaces itoa(42, buffer, 16)

• Format user-defined types

3.3.5 Calendar and Time Zones

The chrono library⁵ fromC++11 is extended with calendar and time-zone functionality. The calendar
consists of types representing a year, a month, a day of the week, and an n-th weekday of a month.
These elementary types can be combined into complex types such as year_month, year_month_day,
year_month_day_last, year_month_weekday, and year_month_weekday_last. The operator “/” is over-
loaded for the convenient specification of time points. Additionally, we get new literals: d for a day
and y for a year.

Time points can be displayed in various time zones. Due to the extended chrono library, the following
use cases are now trivial to implement:

• representing dates in specific formats

• get the last day of a month

• get the number of days between two dates

• printing the current time in various time zones

The following program presents the local time in different time zones.

⁵https://en.cppreference.com/w/cpp/chrono

https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono

C++20 23

The local time in various time zones

using namespace std::chrono;

auto time = floor<milliseconds>(system_clock::now());

auto localTime = zoned_time<milliseconds>(current_zone(), time);

auto berlinTime = zoned_time<milliseconds>("Europe/Berlin", time);

auto newYorkTime = zoned_time<milliseconds>("America/New_York", time);

auto tokyoTime = zoned_time<milliseconds>("Asia/Tokyo", time);

std::cout << time << '\n'; // 2020-05-23 19:07:20.290

std::cout << localTime << '\n'; // 2020-05-23 21:07:20.290 CEST

std::cout << berlinTime << '\n'; // 2020-05-23 21:07:20.290 CEST

std::cout << newYorkTime << '\n'; // 2020-05-23 15:07:20.290 EDT

std::cout << tokyoTime << '\n'; // 2020-05-24 04:07:20.290 JST

C++20 24

3.4 Concurrency

3.4.1 Atomics

The class template std::atomic_ref applies atomic operations to the referenced non-atomic object.
Concurrent writing and reading of the referenced object can take place, therefore, with no data race.
The lifetime of the referenced object must exceed the lifetime of the std::atomic_ref. Accessing a
subobject of the referenced object with std::atomic_ref is not thread-safe.

According to std::atomic⁶, std::atomic_ref can be specialized and supports specializations for the
built-in data types.

struct Counter {

int a;

int b;

};

Counter counter;

std::atomic_ref<Counter> cnt(counter);

With C++20, we get two atomic smart pointers that are partial specializations of std::atomic:
there are std::atomic<std::shared_ptr<T>> and std::atomic<std::weak_ptr<T>>. Both atomic smart
pointers guarantee that not only the control block, as in the case of std::shared_ptr⁷, is thread-safe,
but also the associated object.

std::atomic gets more extensions. C++20 provides specializations for atomic floating-point types.
This is quite convenient when you have a concurrently incremented floating-point type.

⁶https://en.cppreference.com/w/cpp/atomic/atomic
⁷https://en.cppreference.com/w/cpp/memory/shared_ptr

https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/memory/shared_ptr

C++20 25

A value of type std::atomic_flag⁸ is a kind of atomic boolean. It has a cleared and set state. For
simplicity reasons, I call the clear state false and the set state true. The clear() member function
enables you to set its value to false. With the test_and_set()member function, you can set the value
to true and get the previous value. There is no member function to ask for the current value. This will
change with C++20 because std::atomic_flag has a test() method.

Furthermore, std::atomic_flag can be used for thread synchronization via the member functions
notify_one(), notify_all(), and wait().With C++20, notifying andwaiting are available on all partial
and full specializations of std::atomic and std::atomic_ref. Specializations are available for bools,
integrals, floats, and pointers.

3.4.2 Semaphores

Semaphores are a synchronization mechanism used to control concurrent access to a shared resource.
A counting semaphore, such as the onewhichwas added in C++20, is a special semaphorewhose initial
counter is bigger than zero. The counter is initialized in the constructor. Acquiring the semaphore
decreases the counter, and releasing the semaphore increases the counter. If a thread tries to acquire
the semaphore when the counter is zero, the thread blocks until another thread increments the counter
by releasing the semaphore.

3.4.3 Latches and Barriers

Latches and barriers are straightforward thread synchronization mechanisms that enable some
threads to block until a counter becomes zero. What are the differences between these two mech-
anisms to synchronize threads? You can use a std::latch only once, but you can use a std::barrier

more than once. A std::latch is useful for managing one task by multiple threads; a std::barrier is
useful for managing repeated tasks by multiple threads. Furthermore, a std::barrier can adjust the
counter in each iteration.

The following is based on a code snippet from proposal N4204⁹. I fixed a few typos and reformatted
it.

Thread-synchronization with a std::latch

1 void DoWork(threadpool* pool) {

2

3 std::latch completion_latch(NTASKS);

4 for (int i = 0; i < NTASKS; ++i) {

5 pool->add_task([&] {

6 // perform work

7 ...

8 completion_latch.count_down();

9 });

⁸https://en.cppreference.com/w/cpp/atomic/atomic_flag
⁹http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4204.html

https://en.cppreference.com/w/cpp/atomic/atomic_flag
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4204.html
https://en.cppreference.com/w/cpp/atomic/atomic_flag
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4204.html

C++20 26

10 }

11 // Block until work is done

12 completion_latch.wait();

13 }

The counter of the std::latch completion_latch is set to NTASKS (line 3). The thread pool executes
NTASKS jobs (lines 4 - 10). At the end of each job, the counter is decremented (line 8). The thread
running function DoWork blocks in line 12 until all tasks are done.

3.4.4 Cooperative Interruption

Thanks to std::stop_token, a std::jthread can be interrupted cooperatively.

Interrupting a std::jthread

1 int main() {

2

3 std::cout << '\n';

4

5 std::jthread nonInterruptible([]{

6 int counter{0};

7 while (counter < 10){

8 std::this_thread::sleep_for(0.2s);

9 std::cerr << "nonInterruptible: " << counter << '\n';

10 ++counter;

11 }

12 });

13

14 std::jthread interruptible([](std::stop_token stoken){

15 int counter{0};

16 while (counter < 10){

17 std::this_thread::sleep_for(0.2s);

18 if (stoken.stop_requested()) return;

19 std::cerr << "interruptible: " << counter << '\n';

20 ++counter;

21 }

22 });

23

24 std::this_thread::sleep_for(1s);

25

26 std::cerr << '\n';

27 std::cerr << "Main thread interrupts both jthreads" << std:: endl;

28 nonInterruptible.request_stop();

29 interruptible.request_stop();

30

C++20 27

31 std::cout << '\n';

32

33 }

The main program starts two threads, nonInterruptible and interruptible (lines 5 and 14). Only
thread interruptible gets a std::stop_token, which it uses in line 18 to check if it is interrupted. The
lambda immediately returns in case of an interruption. The call to interruptible.request_stop()

triggers the cancellation of the thread. Calling nonInterruptible.request_stop() has no effect.

Cooperative interruption of a thread

3.4.5 std::jthread

std::jthread stands for joining thread. std::jthread extends std::thread¹⁰ by automatically joining
the started thread. std::jthread can also be interrupted.

¹⁰https://en.cppreference.com/w/cpp/thread/thread

https://en.cppreference.com/w/cpp/thread/thread
https://en.cppreference.com/w/cpp/thread/thread

C++20 28

std::jthread is added to the C++20 standard because of the non-intuitive behavior of std::thread.
If a std::thread is still joinable, std::terminate¹¹ is called in its destructor. A thread thr is joinable if
neither thr.join() nor thr.detach() was called.

Thread thr is still joinable

int main() {

std::cout << '\n';

std::cout << std::boolalpha;

std::thread thr{[]{ std::cout << "Joinable std::thread" << '\n'; }};

std::cout << "thr.joinable(): " << thr.joinable() << '\n';

std::cout << '\n';

}

std::terminate with a still joinable thread

Both executions of the program terminate. In the second run, the thread thr has enough time to display
its message: “Joinable std::thread”.

In the modified example, I use std::jthread from the C++20 standard.

¹¹https://en.cppreference.com/w/cpp/error/terminate

https://en.cppreference.com/w/cpp/error/terminate
https://en.cppreference.com/w/cpp/error/terminate

C++20 29

Thread thr joins automatically

int main() {

std::cout << '\n';

std::cout << std::boolalpha;

std::jthread thr{[]{ std::cout << "Joinable std::jthread" << '\n'; }};

std::cout << "thr.joinable(): " << thr.joinable() << '\n';

std::cout << '\n';

}

Now, thread thr automatically joins in its destructor if necessary.

Thread thr joins automatically

3.4.6 Synchronized Outputstreams

With C++20, we get synchronized outputstreams. What happens when more threads write concur-
rently to std::cout without synchronization?

Unsynchronized writing to std::cout

void sayHello(std::string name) {

std::cout << "Hello from " << name << '\n';

}

int main() {

std::cout << "\n";

std::jthread t1(sayHello, "t1");

std::jthread t2(sayHello, "t2");

std::jthread t3(sayHello, "t3");

C++20 30

std::jthread t4(sayHello, "t4");

std::jthread t5(sayHello, "t5");

std::jthread t6(sayHello, "t6");

std::jthread t7(sayHello, "t7");

std::jthread t8(sayHello, "t8");

std::jthread t9(sayHello, "t9");

std::jthread t10(sayHello, "t10");

std::cout << '\n';

}

You may get a mess.

Unsynchronized writing to std::cout

Switching from std::cout in the function sayHello to std::osyncstream(std::cout) turns the mess
into harmony.

Synchronized writing to std::cout

void sayHello(std::string name) {

std::osyncstream(std::cout) << "Hello from " << name << '\n';

}

C++20 31

Synchronized writing to std::cout

The Details

4. Core Language

Concepts are one of the most impactful features of C++20. Consequently, it is an ideal starting point
to present the core language features of C++20.

Core Language 34

4.1 Concepts

Cippi studies the stars

To appreciate the impact of concepts to their full extent, I want to start with a short motivation for
concepts.

4.1.1 Two Wrong Approaches

Before C++20, we had two opposed ways to think about functions or classes: defining them for specific
types or defining them for generic types. In the latter case, we call them function templates or class
templates. Both approaches have their own set of problems:

4.1.1.1 Too Specific

It’s tedious work to overload a function or reimplement a class for each type. To avoid that burden,
type conversion often comes to our rescue. What seems like rescue is often a curse.

Core Language 35

Implicit conversions

1 // tooSpecific.cpp

2

3 #include <iostream>

4

5 void needInt(int i){

6 std::cout << "int: " << i << '\n';

7 }

8

9 int main(){

10

11 std::cout << std::boolalpha << '\n';

12

13 double d{1.234};

14 std::cout << "double: " << d << '\n';

15 needInt(d);

16

17 std::cout << '\n';

18

19 bool b{true};

20 std::cout << "bool: " << b << '\n';

21 needInt(b);

22

23 std::cout << '\n';

24

25 }

In the first case (line 13), I start with a double and end with an int (line 15). In the second case, I start
with a bool (line 19) and nd with an int (line 21).

Implicit conversions

The program exemplifies two implicit conversions.

Core Language 36

4.1.1.1.1 Narrowing Conversion

Invoking getInt(int a) with a double gives you a narrowing conversion. Narrowing conversion is a
conversion, including a loss of accuracy. I assume this is not what you want.

4.1.1.1.2 Integral Promotion

But the other way around is also not better. Invoking getInt(int a) with a bool promotes the bool

to an int. Surprised? Many C++ developers don’t know which data type they get when they add two
bools.

Adding two bools

template <typename T>

auto add(T first, T second){

return first + second;

}

int main(){

add(true, false);

}

C++ Insights¹ visualizes the source code above after the compiler transformed the function template
in an instantiation.

¹https://cppinsights.io/s/9bd14f99

https://cppinsights.io/s/9bd14f99
https://cppinsights.io/s/9bd14f99

Core Language 37

bool to int promotion

Lines 6 - 12 are the crucial ones in this screenshot of C++ Insights². The template instantiation of the
function template add creates a full specialization with the return type int. Both bools are implicitly
promoted to int.

My belief is that we rely for convenience on the magic of conversions because we don’t want
to overload a function or reimplement a class for each type.

Let me try the other way and use a generic function. Maybe this is our rescue?

4.1.1.2 Too Generic

Sorting a container is a general idea. It should work for each container if its elements support
ordering. In the following example, I apply the standard algorithm std::sort to the standard container
std::list.

²https://cppinsights.io/

https://cppinsights.io/
https://cppinsights.io/

Core Language 38

Sorting a std::list

// tooGeneric.cpp

#include <algorithm>

#include <list>

int main(){

std::list<int> myList{1, 10, 3, 2, 5};

std::sort(myList.begin(), myList.end());

}

A compiler error when trying to sort a std::list

I don’t even want to decipher this long message. What’s gone wrong? Let’s take a look at the signature
of the specific overload of std::sort³ used in this example.

³https://en.cppreference.com/w/cpp/algorithm/sort

https://en.cppreference.com/w/cpp/algorithm/sort
https://en.cppreference.com/w/cpp/algorithm/sort

Core Language 39

template< class RandomIt >

constexpr void sort(RandomIt first, RandomIt last);

std::sort uses strange-named argument types such as RandomIt. RandomIt stands for a random-access
iterator and gives the decisive hint for the overwhelming error message. A std::list only provides
a bidirectional iterator, but std:sort requires a random-access iterator. The following graphic shows
why a std::list does not support a random access iterator.

The structure of a std::list

If you study the std::sort documentation on cppreference.com, you will find something exciting:
type requirements on template parameters. They place conceptual requirements on the types that
have been formalized into the C++20 feature: concepts.

4.1.1.3 Concepts to the Rescue

Concepts are compile-time predicates. They put semantic constraints on template parameters. std::sort
has overloads that accept a comparator.

template< class RandomIt, class Compare >

constexpr void sort(RandomIt first, RandomIt last, Compare comp);

These are the type requirements for the more powerful overload of std::sort:

• RandomIt must meet the requirements of ValueSwappable and LegacyRandomAccessIterator.

• The type of the dereferenced RandomIt must meet the requirements of MoveAssignable and
MoveConstructible.

• The type of the dereferenced RandomIt must meet the requirements of Compare.

Requirements such as ValueSwappable or LegacyRandomAccessIterator are so-called named require-
ments. Some of these requirements are formalized in C++20 in concepts⁴.

In particular, std::sort requires a LegacyRandomAccessIterator. Let’s have a closer look at the named
requirement LegacyRandomAccessIterator that is called random_access_iterator (part of <iterator>)
in C++20:

⁴https://en.cppreference.com/w/cpp/language/constraints

https://en.cppreference.com/w/cpp/language/constraints
https://en.cppreference.com/w/cpp/language/constraints

Core Language 40

std::random_access_iterator

template<class I>

concept random_access_iterator =

bidirectional_iterator<I> &&

derived_from<ITER_CONCEPT(I), random_access_iterator_tag> &&

totally_ordered<I> &&

sized_sentinel_for<I, I> &&

requires(I i, const I j, const iter_difference_t<I> n) {

{ i += n } -> same_as<I&>;

{ j + n } -> same_as<I>;

{ n + j } -> same_as<I>;

{ i -= n } -> same_as<I&>;

{ j - n } -> same_as<I>;

{ j[n] } -> same_as<iter_reference_t<I>>;

};

A type I supports the concept random_access_iterator if it supports the bidirectional_iterator

concept and all the following requirements. For example, the requirement { i += n } -> same_as<I&>

as part of the requires expression means that for a value of type I, { i += n } is a valid
expression, and it returns a value of type I&. To complete the sorting story, std::list does support a
bidirectional_iterator and not a random_access_iterator that std::sort requires.

When you now use an algorithm that requires a random_access_iterator, but you only provide a
birectional_iterator, you get a concise and readable error message saying that your iterator does
not satisfy the concept random_access_iterator.

The Standard Template Library

Core Language 41

The Essence of Generic Programming
I want to start this short historical detour with a quote from the invaluable book From
Mathematics to Generic Programming⁵, written by Alexander Stepanov (creator of
the Standard Template Library) and Daniel Rose (information retrieval researcher): “The
essence of generic programming lies in the idea of concepts. A concept is a way of describing
a family of related object types.” These related object types can be integral types such as
bool, char, or int. A concept embodies a set of requirements on related types such as their
supported operations, their semantics, and their time and space complexity. For example,
on average, accessing an unordered associative container’s elements has constant-time
complexity.

The Standard Template Library (STL) as a generic library is based on concepts. From a
bird’s-eye view, the STL consists of three components. Those are containers, algorithms
that run on containers, and iterators that connect both of them.

Each container provides iterators that respect its structure, and the algorithms operate
on these iterators. A container, such as a sequence container or an associative container,
models a semi-open range. The elements of the container are accessed via iterators, as
well as iterating through them, and comparing their equality. The abstraction of the STL
is based on concepts such as semi-open range and iterator and allows for transparent use
of the containers and algorithms of the STL.

More generally, what are the advantages of concepts?

4.1.2 Advantages of Concepts

• Requirements for template parameters are part of the interface.

• Concepts are executable documentation. They document the restrictions on the generic code
that the compiler verifies.

• The overloading of functions and specialization of class templates can be based on concepts.

• Concepts can be used for function templates, class templates, and generic member functions of
classes or class templates, but also variable templates⁶ and alias templates⁷

• You get improved error messages because the compiler compares the requirements of the
template parameters with the given template arguments.

• You can use predefined concepts or define your own.

• The usage of auto and concepts is unified. Instead of auto, you can use a concept.

• If a function declaration uses a concept, it automatically becomes a function template. Writing
function templates is, therefore, as easy as writing a function.

⁵https://www.fm2gp.com/
⁶https://en.cppreference.com/w/cpp/language/variable_template
⁷https://en.cppreference.com/w/cpp/language/type_alias

https://www.fm2gp.com/
https://www.fm2gp.com/
https://en.cppreference.com/w/cpp/language/variable_template
https://en.cppreference.com/w/cpp/language/type_alias
https://www.fm2gp.com/
https://en.cppreference.com/w/cpp/language/variable_template
https://en.cppreference.com/w/cpp/language/type_alias

Core Language 42

4.1.3 The long, long History

The first time I heard about concepts was around 2005 - 2006. They reminded me of Haskell type
classes. Type classes in Haskell are interfaces for similar types. Here is a part of Haskell’s⁸ type classes
hierarchy.

Haskell Type Classes Hierarchy

But C++ concepts are different. Here are a few observations.
• In Haskell, any type has to be an instance of a type class. In C++20, a type has to fulfill the
requirements of a concept.

• Concepts can be used on non-type arguments of templates in C++. For example, numbers such
as the value 5 are non-type arguments. For example, when you want to have a std::array of
ints with 5 elements, you use the non-type argument 5: std::array<int, 5> myArray .

• Concepts add no run-time costs.
Originally, concepts were going to be the main feature of C++11, but they were removed during a
standardization meeting in July 2009 in Frankfurt. The quote from Bjarne Stroustrup speaks for itself:
“The C++0x concept design evolved into a monster of complexity.”⁹. A few years later, the next try was
also not successful: concepts lite was removed from the C++17 standard. They finally became part of
C++20.

4.1.4 Use of Concepts

Essentially, there are four ways to use a concept.

⁸https://en.wikipedia.org/wiki/Haskell_(programming_language)
⁹https://isocpp.org/blog/2013/02/concepts-lite-constraining-templates-with-predicates-andrew-sutton-bjarne-s

https://en.wikipedia.org/wiki/Haskell_(programming_language)
https://isocpp.org/blog/2013/02/concepts-lite-constraining-templates-with-predicates-andrew-sutton-bjarne-s
https://en.wikipedia.org/wiki/Haskell_(programming_language)
https://isocpp.org/blog/2013/02/concepts-lite-constraining-templates-with-predicates-andrew-sutton-bjarne-s

Core Language 43

4.1.4.1 Four Ways to use a Concept

I apply the predefined concept std::integral in the program conceptsIntegralVariations.cpp in all
four ways.

Four variations using the concept std::integral

1 // conceptsIntegralVariations.cpp

2

3 #include <concepts>

4 #include <iostream>

5

6 template<typename T>

7 requires std::integral<T>

8 auto gcd(T a, T b) {

9 if(b == 0) return a;

10 else return gcd(b, a % b);

11 }

12

13 template<typename T>

14 auto gcd1(T a, T b) requires std::integral<T> {

15 if(b == 0) return a;

16 else return gcd1(b, a % b);

17 }

18

19 template<std::integral T>

20 auto gcd2(T a, T b) {

21 if(b == 0) return a;

22 else return gcd2(b, a % b);

23 }

24

25 auto gcd3(std::integral auto a, std::integral auto b) {

26 if(b == 0) return a;

27 else return gcd3(b, a % b);

28 }

29

30 int main(){

31

32 std::cout << '\n';

33

34 std::cout << "gcd(100, 10)= " << gcd(100, 10) << '\n';

35 std::cout << "gcd1(100, 10)= " << gcd1(100, 10) << '\n';

36 std::cout << "gcd2(100, 10)= " << gcd2(100, 10) << '\n';

37 std::cout << "gcd3(100, 10)= " << gcd3(100, 10) << '\n';

38

39 std::cout << '\n';

Core Language 44

40

41 }

Thanks to the header <concepts> in line 3, I can use the concept std::integral. The concept is fulfilled
if T is integral¹⁰. The function name gcd stands for the greatest-common-divisor algorithm based on
the Euclidean¹¹ algorithm.

Here are the four ways to use concepts:

• Requires clause (line 6)

• Trailing requires clause (line 13)

• Constrained template parameter (line 19)

• Abbreviated function template (line 25)

For simplicity reasons, each function template returns auto. There is a semantic difference between the
function templates gcd, gcd1, gcd2, and the function gcd3. In the case of gcd, gcd1, or gcd2, arguments
a and b must have the same type. This does not hold for the function gcd3. Parameters a and b can
have different types but must both fulfill the concept integral.

Use of the concept std::integral

The functions gcd and gcd1 use requires clauses. Requires clauses are more powerful than you may
think. Let me discuss more details to requires clauses.

4.1.4.2 Requires Clause

The previous program, conceptsIntegralVariations.cpp, exemplifies that you can use a concept to
define a function or function template. Of course, there are more use cases. For completeness, I want
to add that you can specify the return type of a function or a function template using concepts.

The keyword requires introduces a requires clause that specifies constraints on a template argument
(gcd) or on a function declaration (gcd1). requires must be followed by a compile-time predicate, a
named concept (gcd), or a requires expression. Of course, you can combine all of the three mentioned.

The compile-time predicate can also be an expression:

¹⁰https://en.cppreference.com/w/cpp/types/is_integral
¹¹https://en.wikipedia.org/wiki/Euclid

https://en.cppreference.com/w/cpp/types/is_integral
https://en.wikipedia.org/wiki/Euclid
https://en.cppreference.com/w/cpp/types/is_integral
https://en.wikipedia.org/wiki/Euclid

Core Language 45

Using a compile-time predicate in a requires clause

1 // requiresClause.cpp

2

3 #include <iostream>

4

5 template <unsigned int i>

6 requires (i <= 20)

7 int sum(int j) {

8 return i + j;

9 }

10

11

12 int main() {

13

14 std::cout << '\n';

15

16 std::cout << "sum<20>(2000): " << sum<20>(2000) << '\n',

17 // std::cout << "sum<23>(2000): " << sum<23>(2000) << '\n', // ERROR

18

19 std::cout << '\n';

20

21 }

The compile-time predicate used in line 6 exemplifies an interesting point: the requirement is applied
to the non-type i, and not on a type as usual.

Compile-time predicates in a requires clause

When you use line 17, the clang compiler reports the following error:

Failing compile time predicates in a requires clauses

Core Language 46

Avoid Compile-Time Predicates in Requires Clauses
When you constrain template parameters or function templates using concepts, you
should use named concepts or combinations of them. Concepts are meant to be semantic
categories, but not syntactic constraints like i <= 20. Giving concepts a name enables their
reuse.

4.1.4.3 Concepts as Return Type of a Function

Here are the definitions of the function template gcd and the function gcd1 using concepts as return
types.

Using a concept as return type

template<typename T>

requires std::integral<T>

std::integral auto gcd(T a, T b) {

if(b == 0) return a;

else return gcd(b, a % b);

}

std::integral auto gcd1(std::integral auto a, std::integral auto b) {

if(b == 0)return a;

else return gcd1(b, a % b);

}

4.1.4.4 Use-Cases for Concepts

First and foremost, concepts are compile-time predicates. A compile-time predicate is a function that
is executed at compile time and returns a boolean. Before I dive into the various use cases of concepts,
I want to demystify concepts and present them simply as functions returning a boolean at compile
time.

4.1.4.4.1 Compile-Time Predicates

A concept can be used in a control structure, which is executed at run time or compile time.

Core Language 47

Concepts as compile-time predicates

1 // compileTimePredicate.cpp

2

3 #include <compare>

4 #include <iostream>

5 #include <string>

6 #include <vector>

7

8 struct Test{};

9

10 int main() {

11

12 std::cout << '\n';

13

14 std::cout << std::boolalpha;

15

16 std::cout << "std::three_way_comparable<int>: "

17 << std::three_way_comparable<int> << "\n";

18

19 std::cout << "std::three_way_comparable<double>: ";

20 if (std::three_way_comparable<double>) std::cout << "True";

21 else std::cout << "False";

22

23 std::cout << "\n\n";

24

25 static_assert(std::three_way_comparable<std::string>);

26

27 std::cout << "std::three_way_comparable<Test>: ";

28 if constexpr(std::three_way_comparable<Test>) std::cout << "True";

29 else std::cout << "False";

30

31 std::cout << '\n';

32

33 std::cout << "std::three_way_comparable<std::vector<int>>: ";

34 if constexpr(std::three_way_comparable<std::vector<int>>) std::cout << "True";

35 else std::cout << "False";

36

37 std::cout << '\n';

38

39 }

In the program above, I use the concept std::three_way_comparable<T>, which checks at compile time
if T supports the six comparison operators. Being a compile-time predicate means, that std::three_-

Core Language 48

way_comparable can be used at run time (lines 16 and 20) or at compile time. static_assert (line 25)
and constepr if¹² (lines 28 and 34) are evaluated at compile time.

Concepts as compile-time predicates

Test of Concepts
Using a concept in static_assert(Concept<T>) is essentially the test if the type T fulfills
the concept. The following short program checks, if int is a regular type. A regular type
behaves such as an int. The formal definition of regular is provided in the define concepts
section.

Test if int models the concept regular
#include <concepts>

int main() {

static_assert(std::regular<int>); // int is a regular type

}

After

this short detour on concepts as compile-time predicates, let me continue this section with the various
use cases of concepts. The concepts’ applications are not too elaborate, and I mainly use predefined
concepts, which I describe in more depth in the section predefined concepts.

4.1.4.4.2 Class Templates

The class template MyVector requires that its template parameter T be regular.

¹²https://en.cppreference.com/w/cpp/language/if

https://en.cppreference.com/w/cpp/language/if
https://en.cppreference.com/w/cpp/language/if

Core Language 49

Using a concept in a class definition

// conceptsClassTemplate.cpp

#include <concepts>

#include <iostream>

template <std::regular T>

class MyVector{};

int main() {

MyVector<int> myVec1;

MyVector<int&> myVec2; // ERROR because a reference is not regular

}

Line 12 causes a compile-time error because a reference is not regular. Here is the essential part of
the GCC compiler message:

A reference is not regular

4.1.4.4.3 Generic Member Functions

In this example, I add a generic push_back member function to the class MyVector. The push_back

requires that its arguments be copyable.

Using a concept in a generic member function

1 // conceptMemberFunction.cpp

2

3 #include <concepts>

4 #include <iostream>

5

6 struct NotCopyable {

7 NotCopyable() = default;

8 NotCopyable(const NotCopyable&) = delete;

9 };

10

11 template <typename T>

12 struct MyVector{

13 void push_back(const T&) requires std::copyable<T> {}

14 };

Core Language 50

15

16 int main() {

17

18 MyVector<int> myVec1;

19 myVec1.push_back(2020);

20

21 MyVector<NotCopyable> myVec2;

22 myVec2.push_back(NotCopyable()); // ERROR because not copyable

23

24 }

The compilation fails intentionally in line 22. Instances of NotCopyable are not copyable because the
copy constructor is declared as deleted.

4.1.4.4.4 Variadic Templates

You can use concepts in variadic templates.

Applying concepts to variadic templates

1 // allAnyNone.cpp

2

3 #include <concepts>

4 #include <iostream>

5

6 template<std::integral... Args>

7 bool all(Args... args) { return (... && args); }

8

9 template<std::integral... Args>

10 bool any(Args... args) { return (... || args); }

11

12 template<std::integral... Args>

13 bool none(Args... args) { return not(... || args); }

14

15 int main(){

16

17 std::cout << std::boolalpha << '\n';

18

19 std::cout << "all(5, true, false): " << all(5, true, false) << '\n';

20

21 std::cout << "any(5, true, false): " << any(5, true, false) << '\n';

22

23 std::cout << "none(5, true, false): " << none(5, true, false) << '\n';

24

25 }

Core Language 51

The definitions of the function templates above are based on fold expressions. C++11 supports variadic
templates that can accept an arbitrary number of template arguments. Any number of template
parameters is held by a so-called parameter pack. Additionally, with C++17, you can directly reduce
a parameter pack with a binary operator. This reduction is called a fold expression¹³. In this example,
the logical and && (line 7), the logical or || (line 10), and the negation of the logical or (line 13) are
applied as binary operators. Furthermore, all, any, and none requires from their type parameters that
they have to support the concept std::integral.

Applying concepts onto a fold expression

4.1.4.4.5 Overloading

std::advance¹⁴ is an algorithm of the Standard Template Library. It increments a given iterator
iter by n elements. Based on the capabilities of the given iterator, a different advance strategy
could be used. For example, a std::forward_list supports an iterator that can only advance in
one direction, while a std::list supports a bidirectional iterator, and a std::vector supports a
random access iterator. Consequently, for an iterator provided by a std::forward_list or std::list,
a call to std::advance(iter, n) has to be incremented n times (see the structure of a std::list).
This time complexity does not hold for a std::random_access_iterator provided by a std::vector.
The number n can just be added to the iterator. A linear time complexity O(n) becomes, therefore,
a constant complexity O(1). To distinguish iterator types, concepts can be used. The program
conceptsOverloadingFunctionTemplates.cpp should give you the general idea.

Overloading function templates on concepts

1 // conceptsOverloadingFunctionTemplates.cpp

2

3 #include <concepts>

4 #include <iostream>

5 #include <forward_list>

6 #include <list>

7 #include <vector>

8

9 template<std::forward_iterator I>

10 void advance(I& iter, int n){

11 std::cout << "forward_iterator" << '\n';

12 }

13

¹³https://www.modernescpp.com/index.php/fold-expressions
¹⁴https://en.cppreference.com/w/cpp/iterator/advance

https://www.modernescpp.com/index.php/fold-expressions
https://en.cppreference.com/w/cpp/iterator/advance
https://www.modernescpp.com/index.php/fold-expressions
https://en.cppreference.com/w/cpp/iterator/advance

Core Language 52

14 template<std::bidirectional_iterator I>

15 void advance(I& iter, int n){

16 std::cout << "bidirectional_iterator" << '\n';

17 }

18

19 template<std::random_access_iterator I>

20 void advance(I& iter, int n){

21 std::cout << "random_access_iterator" << '\n';

22 }

23

24 int main() {

25

26 std::cout << '\n';

27

28 std::forward_list forwList{1, 2, 3};

29 std::forward_list<int>::iterator itFor = forwList.begin();

30 advance(itFor, 2);

31

32 std::list li{1, 2, 3};

33 std::list<int>::iterator itBi = li.begin();

34 advance(itBi, 2);

35

36 std::vector vec{1, 2, 3};

37 std::vector<int>::iterator itRa = vec.begin();

38 advance(itRa, 2);

39

40 std::cout << '\n';

41 }

The three variations of the function advance are overloaded on the concepts std::forward_iterator
(line 9), std::bidirectional_iterator (line 14), and std::random_access_iterator (line 19). The
compiler chooses the best-fitting overload. It means that for a std::forward_list (line 28) the overload
based on the concept std::forward_list, for a std::list (line 32) the overload based on the concept
std::bidirectional_iterator, and for a std::vector (line 36) the overload based on the concept
std::random_access_iterator is used.

Overloading function templates on concepts

A std::random_access_iterator is a std::bidirectional_iterator, and std::bidirectional_iterator
is a std::forward_iterator.

Core Language 53

4.1.4.4.6 Template Specialization

You can also specialize templates using concepts.

Template specialization on concepts

1 // conceptsSpecialization.cpp

2

3 #include <concepts>

4 #include <iostream>

5

6 template <typename T>

7 struct Vector {

8 Vector() {

9 std::cout << "Vector<T>" << '\n';

10 }

11 };

12

13 template <std::regular Reg>

14 struct Vector<Reg> {

15 Vector() {

16 std::cout << "Vector<std::regular>" << '\n';

17 }

18 };

19

20 int main() {

21

22 std::cout << '\n';

23

24 Vector<int> myVec1;

25 Vector<int&> myVec2;

26

27 std::cout << '\n';

28

29 }

When instantiating the class template, the compiler chooses the most specialized one. This means for
the call Vector<int> myVec (line 24), the partial template specialization for std::regular (line 13) is
chosen. A reference Vector<int&> myVec2 (line 25) is not regular. Consequently, the primary template
(line 6) is chosen.

Core Language 54

Partial template specialization of concepts

4.1.4.4.7 Using More than One Concept

So far, using the concepts has been easy, but most of the time more than one concept is used at a time.

Using more than one concept

template<typename Iter, typename Val>

requires std::input_iterator<Iter>

&& std::equality_comparable<Value_type<Iter>, Val>

Iter find(Iter b, Iter e, Val v)

find requires for the iterator Iter and its comparison with Val that

• the Iterator has to be an input iterator;

• the Iterator’s value type must be equality comparable with Val.

The same restriction on the iterator can also be expressed as a constrained template parameter.

Using more than one concept

template<std::input_iterator Iter, typename Val>

requires std::equality_comparable<Value_type<Iter>, Val>

Iter find(Iter b, Iter e, Val v)

4.1.5 Constrained and Unconstrained Placeholders

First, let me tell you about an asymmetry in C++14.

4.1.5.1 The Big Asymmetry in C++14

I often have a discussion in my classes that goes the following way. With C++14, we had generic
lambdas. Generic lambdas are lambdas that use auto instead of a concrete type.

Core Language 55

Comparison of a generic lambda and a function template

1 // genericLambdaTemplate.cpp

2

3 #include <iostream>

4 #include <string>

5

6 auto addLambda = [](auto fir, auto sec){ return fir + sec; };

7

8 template <typename T, typename T2>

9 auto addTemplate(T fir, T2 sec){ return fir + sec; }

10

11 int main(){

12

13 std::cout << std::boolalpha << '\n';

14

15 std::cout << addLambda(1, 5) << " " << addTemplate(1, 5) << '\n';

16 std::cout << addLambda(true, 5) << " " << addTemplate(true, 5) << '\n';

17 std::cout << addLambda(1, 5.5) << " " << addTemplate(1, 5.5) << '\n';

18

19 const std::string fir{"ge"};

20 const std::string sec{"neric"};

21 std::cout << addLambda(fir, sec) << " " << addTemplate(fir, sec) << '\n';

22

23 std::cout << '\n';

24

25 }

The generic lambda (line 6) and the function template (line 8) produce the same results.

Use of a generic lambda and a function template

Generic lambdas introduce a new way to define function templates. In my classes, I’m often asked:
Can we use auto in functions to get function templates? Not with C++14, but you can with C++20.

Core Language 56

In C++20, you can use unconstrained placeholders (auto) or constrained placeholders (concepts) in
function declarations to automatically get function templates. The rule for applying is as simple as it
can be. Any place where you can use an unconstrained placeholder auto, you can use a concept. I will
explain this in detail in the section on abbreviated function templates.

4.1.5.2 Placeholders

Use of constrained placeholders instead of unconstrained placeholders

1 // placeholders.cpp

2

3 #include <concepts>

4 #include <iostream>

5 #include <vector>

6

7 std::integral auto getIntegral(int val){

8 return val;

9 }

10

11 int main(){

12

13 std::cout << std::boolalpha << '\n';

14

15 std::vector<int> vec{1, 2, 3, 4, 5};

16 for (std::integral auto i: vec) std::cout << i << " ";

17 std::cout << '\n';

18

19 std::integral auto b = true;

20 std::cout << b << '\n';

21

22 std::integral auto integ = getIntegral(10);

23 std::cout << integ << '\n';

24

25 auto integ1 = getIntegral(10);

26 std::cout << integ1 << '\n';

27

28 std::cout << '\n';

29

30 }

The concept std::integral can be used as a return type (line 7), in a range-based for loop (line 16),
or as a type for variable b (line 19), or variable integ (line 22). To see the symmetry between auto

and concepts, line 25 uses auto alone instead of std::integral auto, which is used on line 22. Hence,
integ1 can accept a value of any type.

Core Language 57

Constrained placeholders instead of unconstrained placeholders in action

4.1.6 Abbreviated Function Templates

With C++20, you can use an unconstrained placeholder (auto) or a constrained placeholder (concept)
in a function declaration including member functions and operators. This function declaration
automatically becomes a function template.

Abbreviated function templates

1 // abbreviatedFunctionTemplates.cpp

2

3 #include <concepts>

4 #include <iostream>

5

6 template<typename T>

7 requires std::integral<T>

8 T gcd(T a, T b) {

9 if(b == 0) return a;

10 else return gcd(b, a % b);

11 }

12

13 template<typename T>

14 T gcd1(T a, T b) requires std::integral<T> {

15 if(b == 0) return a;

16 else return gcd1(b, a % b);

17 }

18

19 template<std::integral T>

20 T gcd2(T a, T b) {

21 if(b == 0) return a;

22 else return gcd2(b, a % b);

23 }

24

25 std::integral auto gcd3(std::integral auto a, std::integral auto b) {

26 if(b == 0) return a;

27 else return gcd3(b, a % b);

28 }

29

Core Language 58

30 auto gcd4(auto a, auto b){

31 if(b == 0) return a;

32 return gcd4(b, a % b);

33 }

34

35 int main() {

36

37 std::cout << '\n';

38

39 std::cout << "gcd(100, 10)= " << gcd(100, 10) << '\n';

40 std::cout << "gcd1(100, 10)= " << gcd1(100, 10) << '\n';

41 std::cout << "gcd2(100, 10)= " << gcd2(100, 10) << '\n';

42 std::cout << "gcd3(100, 10)= " << gcd3(100, 10) << '\n';

43 std::cout << "gcd4(100, 10)= " << gcd4(100, 10) << '\n';

44

45 std::cout << '\n';

46

47 }

The definitions of the function templates gcd (line 6), gcd1 (line 13), and gcd2 (line 19) are the ones
I already presented in section Four ways to use a concept. gcd uses a requires clause, gcd1 a trailing
requires clause and gcd2 a constrained template parameter. Now to something new. Function template
gcd3 has the concept std::integral as a type parameter and thus becomes a function template with
restricted type parameters. In contrast, gcd4 is equivalent to function templates with no restriction
on its type parameters. The syntax used in gcd3 and gcd4 to create a function template is called
abbreviated function template syntax.

Constrained

Let me stress this symmetry by demonstaiting it in another example below.

Using auto as a type parameter, the function add becomes a function template and is equivalent to the
equally-named function template add.

Core Language 59

The equivalent function and function template add

template<typename T, typename T2>

auto add(T fir, T2 sec) {

return fir + sec;

}

auto add(auto fir, auto sec) {

return fir + sec;

}

Accordingly, due to the usage of the concept std::integral, the function sub is equivalent to the
function template sub.

The equivalent function and function template sub

template<std::integral T, std::integral T2>

std::integral auto sub(T fir, T2 sec) {

return fir - sec;

}

std::integral auto sub(std::integral auto fir, std::integral auto sec) {

return fir - sec;

}

The function and the function template can have arbitrary types. This means both types can be
different but must be integral. For example, a call sub(100, 10) and also sub(100, true) would be
valid.

Additionally, you can also explicitly specify the template parameter:

Explicit template parameters

add<int>(100, 10); // equivalent to add(100, 10)

sub<int>(100, 10); // equivalent to sub(100, 10)

There is one interesting feature still missing in the abbreviated function templates syntax: you can
overload on auto or concepts.

4.1.6.1 Overloading

The following functions overload are overloaded on auto, the concept std::integral, and the type
long.

Core Language 60

Abbreviated function templates and overloading

1 // conceptsOverloading.cpp

2

3 #include <concepts>

4 #include <iostream>

5

6 void overload(auto t){

7 std::cout << "auto : " << t << '\n';

8 }

9

10 void overload(std::integral auto t){

11 std::cout << "Integral : " << t << '\n';

12 }

13

14 void overload(long t){

15 std::cout << "long : " << t << '\n';

16 }

17

18 int main(){

19

20 std::cout << '\n';

21

22 overload(3.14);

23 overload(2010);

24 overload(2020L);

25

26 std::cout << '\n';

27

28 }

The compiler chooses the overload on auto (line 6) with a double, the overload on the concept
std::integral (line 10) with an int, and the overload on long (line 14) with a long.

Abbreviated function templates and overloading

Core Language 61

What we don’t get: Template Introduction
Maybe you are missing one feature in this chapter on concepts: template introduction.
Template introduction was part of the technical specification on concepts, TS ISO/IEC
TS 19217:2015¹⁵, and was an experimental implementation of concepts. GCC 6¹⁶ fully
implemented the concepts TS. Aside the syntactic differences to concepts in C++20, the
concepts TS supports a concise way of defining templates.

In the example below, assume that Integral is a concept.

Template introduction in the concepts TS
Integral{T}

Integral gcd(T a, T b){

if(b == 0){ return a; }

else{

return gcd(b, a % b);

}

}

Integral{T}

class ConstrainedClass{};

This small code snippet above used template introduction in two ways. First, to define
a function template with a constrained template parameter; second, to define a class
template with a constrained template parameter. Template introduction had one limitation.
You could only use it with a constrained template parameter (concept), but not with an
unconstrained template parameter (auto). This asymmetry could easily be overcome by
defining a concept that always returns true:

The concept Generic is always fulfilled
template<typename T>

concept bool Generic(){

return true;

}

Don’t be irritated, I used in the example the concepts TS syntax to define the Generic

concept. The C++20 syntax is slightly more concise. Readmore details of the C++20 syntax
in section Defining Concepts.

4.1.7 Predefined Concepts

The golden rule “Don’t reinvent the wheel” also applies to concepts. The C++ Core Guidelines¹⁷ are
very clear about this rule: T.11:Whenever possible, use standard concepts. Consequently, I want to give

¹⁵https://www.iso.org/standard/64031.html
¹⁶https://en.wikipedia.org/wiki/GNU_Compiler_Collection
¹⁷https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

https://www.iso.org/standard/64031.html
https://www.iso.org/standard/64031.html
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://www.iso.org/standard/64031.html
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

Core Language 62

you an overview of the important predefined concepts. I intentionally ignore any special or auxiliary
concepts.

All predefined concepts are detailed in the latest C++ working draft. In April 2023, this is the C++23
standard draft N4928¹⁸. Finding them all can be quite a challenge! Most concepts are in chapter 18
(concepts library) and chapter 24 (ranges library). Additionally, a few concepts are in chapter 17
(language support library), chapter 20 (general utilities library), chapter 23 (iterators library), and
chapter 26 (numerics library). The C++20 draft N4928 also has an index of all library concepts and
shows how the concepts are implemented.

4.1.7.1 Language Support Library

This section discusses an interesting concept, three_way_comparable. It is used to support the three-
way comparison operator. It is specified in the header <compare>.

More formally, let a and b be values of type T. These values are three_way_comparable only if:

• (a <=> b == 0) == bool(a == b) is true

• (a <=> b != 0) == bool(a != b) is true

• ((a <=> b) <=> 0) and (0 <=> (b <=> a)) are equal

• (a <=> b < 0) == bool(a < b) is true

• (a <=> b > 0) == bool(a > b) is true

• (a <=> b <= 0) == bool(a <= b) is true

• (a <=> b >= 0) == bool(a >= b) is true

4.1.7.2 Concepts Library

The most frequently used concepts can be found in the concepts library. They are defined in the
<concepts> header.

4.1.7.2.1 Language-related concepts

This section has about 15 concepts that should be self-explanatory. These concepts express relation-
ships between types, type classifications, and fundamental type properties. Their implementation
is often directly based on the corresponding function from the type-traits library¹⁹. Where deemed
necessary, I provide additional explanation.

• std::default_initializable: std::default_initializable<T> guarantees the T can be default
constructed

• std::same_as

• std::derived_from

¹⁸https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/n4928.pdf
¹⁹https://en.cppreference.com/w/cpp/header/type_traits

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/n4928.pdf
https://en.cppreference.com/w/cpp/header/type_traits
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/n4928.pdf
https://en.cppreference.com/w/cpp/header/type_traits

Core Language 63

• std::convertible_to: std::convertible_to<T, U> guarantees that T is implicitly or explicitly
convertible to U

• std::common_reference_with: std::common_reference_with<T, U> must be well-formed and T

and Umust be convertible to a reference type C, where C is the same as std::common_reference_-
t<T, U>

• std::common_with: similar to std::common_reference_with, but the common type C is the same
as common_type_t<T, U> and may not be a reference type

• std::assignable_from

• std::swappable

4.1.7.2.2 Arithmetic Concepts

• std::integral

• std::signed_integral

• std::unsigned_integral

• std::floating_point

The standard’s definition of the arithmetic concepts is straightforward:

template<class T>

concept integral = is_integral_v<T>;

template<class T>

concept signed_integral = integral<T> && is_signed_v<T>;

template<class T>

concept unsigned_integral = integral<T> && !signed_integral<T>;

template<class T>

concept floating_point = is_floating_point_v<T>;

4.1.7.2.3 Lifetime Concepts

• std::destructible

• std::constructible_from

• std::default_constructible

• std::move_constructible

• std::copy_constructible

Core Language 64

4.1.7.2.4 Comparison Concepts

• std::equality_comparable

• std::totally_ordered

Maybe you know it from your mathematics studies: For values a, b, and c of type T, T models
std::totally_ordered if and only if

• Exactly one of bool(a < b), bool(a > b), or bool(a == b) is true

• If bool(a < b) and bool(b < c), then bool(a < c)

• bool(a > b) == bool(b < a)

• bool(a <= b) == !bool(b < a)

• bool(a >= b) == !bool(a < b)

4.1.7.2.5 Object Concepts

• std::movable

• std::copyable

• std::semiregular

• std::regular

Here are the concise definitions of the four concepts:

template<class T>

concept movable = is_object_v<T> && move_constructible<T> &&

assignable_from<T&, T> && swappable<T>;

template<class T>

concept copyable = copy_constructible<T> && movable<T> &&

assignable_from<T&, T&> &&

assignable_from<T&, const T&> && assignable_from<T&, const T>;

template<class T>

concept semiregular = copyable<T> && default_initializable<T>;

template<class T>

concept regular = semiregular<T> && equality_comparable<T>;

I have to add a few words. The concept std::movable requires for T that std::is_object_v<T> holds.
From the definition of the type-trait std::is_object_v<T>, this means that T is either a scalar, an array,
a union, or a class.

I implement the concept semiregular and regular in the section define concepts. Informally, a
semiregular type behaves similarly to an int, and a regular type behaves similarly to an int and
can be compared using ==.

Core Language 65

4.1.7.2.6 Callable Concepts

• std::invocable

• std::regular_invocable: a type models std::invocable and equality-preserving, and does not
modify the function arguments; equality-preserving means the it produces the same output
when given the same input

• std::predicate: a type models a predicate if it models std::invocable and returns a boolean

4.1.7.3 General Utilities Library

This chapter in the standard has only special memory concepts; therefore I don’t refer to them here.

4.1.7.4 Iterators Library

The iterators library has many important concepts. They are defined in the <iterator> header. Here
are the iterator categories:

• std::input_output_iterator

• std::input_iterator

• std::output_iterator

• std::forward_iterator

• std::bidirectional_iterator

• std::random_access_iterator

• std::contiguous_iterator

The six categories of iterators correspond to the respective iterator concepts. The table below provides
two interesting pieces of information. For the four most prominent iterator categories, the table shows
their properties and the associated standard library containers.

Properties and Containers of each iterator category

Iterator Category Properties Containers

std::forward_iterator ++It, It++ , *It std::unordered_set

It == It2, It != It2 std::unordered_map

std::unordered_multiset

std::unordered_multimap

std::forward_list

std::bidirectional_iterator --It, It-- std::set

std::map

std::multiset

std::multimap

Core Language 66

Properties and Containers of each iterator category

Iterator Category Properties Containers
std::list

std::random_access_iterator It[i] std::deque

It += n, It -= n

It + n , It - n

n + It

It - It2

It < It2, It <= It2

It > It2, It >= It2

std::contiguous_iterator It[i] std::array

It += n, It -= n std::vector

It + n , It - n std::string

n + It

It - It2

It < It2, It <= It2

It > It2, It >= It2

A std::input_output_iterator support the operations ++It, It++, and *It. std::input_iterator and
std::output_iterator are std::input_output_iterator. The following relation holds: A contiguous
iterator is a random-access iterator, a random-access iterator is a bidirectional iterator, and a
bidirectional iterator is a forward iterator. A contiguous iterator requires that the elements of the
container are stored contiguously in memory.

4.1.7.4.1 Algorithm Concepts

• std::permutable: in-place reordering of elements is possible

• std::mergeable: merging sorted sequences into an output sequence is possible

• std::sortable: permuting a sequence into an ordered sequence is possible

4.1.7.5 Ranges Library

The ranges library contains the concepts critical to the ranges and views features. They are similar to
the concepts in the iterators library and are defined in the <ranges> header.

4.1.7.5.1 Ranges

• std::ranges::range: A range specifies a group of items that you can iterate over. It provides a
begin iterator and an end sentinel. Of course, the containers of the STL are ranges.

Core Language 67

The concept range

template<typename T>

concept range = requires(T& t) {

ranges::begin(t);

ranges::end(t);

};

There are further refinements for std::ranges::range.

• std::ranges::input_range: specifies a range whose iterator type satisfies std::input_iterator
(e.g. can iterate from beginning to end at least once)

• std::ranges::output_range: specifies a rangewhose iterator type satisfies std::output_iterator

• std::ranges::forward_range: specifies a range whose iterator type satisfies std::forward_-

iterator (can iterate from beginning to end more than once)

• std::ranges::bidirectional_range: specifies a rangewhose iterator type satisfies std::bidirectional_-
iterator (can iterate forward and backward more than once)

• std::ranges::random_access_range: specifies a rangewhose iterator type satisfies std::random_-
access_iterator (can jump in constant time to an arbitrary element with the index operator
[])

• std::ranges::contiguous_range: specifies a rangewhose iterator type satisfies std::contiguous_-
iterator (elements are stored consecutively in memory)

Each container of the Standard Template Library supports a specific range. The supported range
specifies the capabilities of its iterators.

Properties and containers of each range concept

Concept Properties Containers

std::ranges::input_range ++It, It++ , *It std::unordered_set

It == It2, It != It2 std::unordered_map

std::unordered_multiset

std::unordered_multmap

std::forward_list

std::ranges::bidirectional_range --It, It-- std::set

std::map

std::multiset

std::multimap

std::list

std::ranges::random_access_range It[i] std::deque

It += n, It -= n

Core Language 68

Properties and containers of each range concept

Concept Properties Containers
It + n , It - n

n + It

It - It2

It < It2, It <= It2

It > It2, It >= It2

std::ranges::contiguous_range It[i] std::array

It += n, It -= n std::vector

It + n , It - n std::string

n + It

It - It2

It < It2, It <= It2

It > It2, It >= It2

A container supporting the std::ranges::contiguous_range concept supports all previously men-
tioned concepts in the table such as std::ranges::random_access_range, std::ranges::bidirectional_-
range, and std::ranges::input_range. The same holds for all other ranges. A std::ranges::input_-

range is a std::ranges::range.

There are a few special ranges:

• std::ranges::borrowed_range guarantees that the iterators are not bound to the lifetime of the
range.

• std::ranges::common_range guarantees that the begin and end iterator have the same type. All
classical iterators are a common_range.

• std::ranges::sized_range guarantees that the number of elements can be computed in constant
time using the difference of its begin and end iterator.

• std::ranges::viewable_range guarantees that the range can be converted into a view using
std::ranges::all.

4.1.7.5.2 Views

A std::ranges::view is a range that has constant time copy, move, and assignment operations.

The following lines show the definition of the concept view.

Core Language 69

The concept view

template<typename T>

concept view = range<T> &&

movable<T> &&

enable_view<T>;

template<class T>

inline constexpr bool enable_view = derived_from<T, view_base>;

A view is typically something that you apply on a range. and it performs some operation. A view does
not own data, and the time a view takes to copy, move, or assign is constant. It should be read-only,
stateless, and equality-preserving. Here is a quote from Eric Niebler’s range-v3 implementation, which
is the basis for the C++20 ranges: “Views are composable adaptations of ranges where the adaptation
happens lazily as the view is iterated.”

Consequently, the containers of the STL are ranges but not views.

4.1.7.6 Numeric Library

The numeric library provides the concept of a std::uniform_random_bit_generator that is defined
in the header <random>. A std::uniform_random_bit_generator g of type G must return uniformly-
distributed unsigned integers. Additionally, a uniform random-bit generator g of type G has to support
the member functions G::min and G::max.

4.1.8 Define Concepts

When the concept you are looking for is not one of the predefined concepts in C++20, you must
define your concept. In this section, I will define a few concepts that will be distinguishable from the
predefined concepts through the use of CamelCase syntax. Consequently, my concept for a signed
integral is named SignedIntegral, whereas the C++ standard concept goes by the name signed_-

integral.

The syntax to define a concept is straightforward:

Concept definition

template <template-parameter-list>

concept concept-name = constraint-expression;

A concept definition starts with the keyword template and has a template parameter list. The second
line is more interesting. It uses the keyword concept followed by the concept name and the constraint
expression.

A constraint-expression is a compile-time predicate that can either be:

Core Language 70

• A logical combination of other concepts or compile-time predicates

– Logical combination can be built out of conjunctions (&&), disjunctions (||), or negations
(!)

– Compile-time predicates are callables that return a boolean value at compile time

• A requires expression

– Simple requirements
– Type requirements
– Compound requirements
– Nested requirements

In the next two sections, I will demonstrate various ways of defining concepts.

4.1.8.1 A Logical Combination of other Concepts and Compile-Time Predicates

You can combine concepts and compile-time predicates using conjunctions (&&) and disjunctions (||).
You can negate components using the exclamation mark (!). Evaluation of this logical combination
of concepts and compile-time predicates obeys short-circuit evaluation²⁰. Short circuit evaluation
means that the evaluation of a logical expression automatically stops when its overall result is already
determined.

Thanks to the many compile-time predicates of the type-traits library²¹, you have all tools required
to build powerful concepts at your disposal.

²⁰https://en.wikipedia.org/wiki/Short-circuit_evaluation
²¹https://en.cppreference.com/w/cpp/header/type_traits

https://en.wikipedia.org/wiki/Short-circuit_evaluation
https://en.cppreference.com/w/cpp/header/type_traits
https://en.wikipedia.org/wiki/Short-circuit_evaluation
https://en.cppreference.com/w/cpp/header/type_traits

Core Language 71

Don’t define Concepts Recursively or try to Constrain
them
A recursive definition of a concept is not valid:

Recursively defining a concept
template<typename T>

concept Recursive = Recursive<T*>;

The GCC compiler complains in this case that 'Recursive' was not declared in this

scope.

When you try to constrain a concept such as in the following code snippet, the GCC
compiler unambiguously complains that a concept cannot be constrained.

Constraining a concept
template<typename T>

concept AlwaysTrue = true;

template<typename T>

requires AlwaysTrue<T>

concept Error = true;

Let’s

start with the concepts Integral, SignedIntegral, and UnsignedIntegral.

The concepts Integral, SignedIntegral, and UnsignedIntegral

1 template <typename T>

2 concept Integral = std::is_integral<T>::value;

3

4 template <typename T>

5 concept SignedIntegral = Integral<T> && std::is_signed<T>::value;

6

7 template <typename T>

8 concept UnsignedIntegral = Integral<T> && !SignedIntegral<T>;

I used the type-traits function std::is_integral²² to define the concept Integral (line 2). Thanks to
the function std::is_signed, I refine the concepts Integral to the concept SignedIntegral (line 4).
Finally, negating the concept SignedIntegral gives me the concept UnsignedIntegral (line 7).

Okay, let’s try it out.

²²https://en.cppreference.com/w/cpp/types/is_integral

https://en.cppreference.com/w/cpp/types/is_integral
https://en.cppreference.com/w/cpp/types/is_integral

Core Language 72

Use of the concepts Integral, SignedIntegral, and UnsignedIntegral

1 // SignedUnsignedIntegrals.cpp

2

3 #include <iostream>

4 #include <type_traits>

5

6 template <typename T>

7 concept Integral = std::is_integral<T>::value;

8

9 template <typename T>

10 concept SignedIntegral = Integral<T> && std::is_signed<T>::value;

11

12 template <typename T>

13 concept UnsignedIntegral = Integral<T> && !SignedIntegral<T>;

14

15 void func(SignedIntegral auto integ) {

16 std::cout << "SignedIntegral: " << integ << '\n';

17 }

18

19 void func(UnsignedIntegral auto integ) {

20 std::cout << "UnsignedIntegral: " << integ << '\n';

21 }

22

23 int main() {

24

25 std::cout << '\n';

26

27 func(-5);

28 func(5u);

29

30 std::cout << '\n';

31

32 }

I use the abbreviated function-template syntax to overload the function func on the concept
SignedIntegral (line 15) and UnsignedIntegral (line 19). The compiler chooses the expected overload:

Use of the concepts SignedIntegral, and UnsignedIntegral

For completeness reasons, the following concept Arithmetic uses disjunction.

Core Language 73

The concept Arithmetic

template <typename T>

concept Arithmetic = std::is_integral<T>::value || std::is_floating_point<T>::value;

4.1.8.2 Requires Expressions

Thanks to requires expressions, you can define powerful concepts. A requires expression has the
following form:

Requires expression

requires (parameter-list(optional)) {requirement-seq}

• parameter-list: A comma-separated list of parameters, such as in a function declaration

• requirement-seq: A sequence of requirements consisting of simple, type, compound, or nested
requirements

Requires expressions can also be used as a standalone feature when a compile-time predicate is
required. Read more about this feature in the secion require expression.

4.1.8.2.1 Simple Requirements

The following concept Addable is a simple requirement:

The concept Addable

template<typename T>

concept Addable = requires (T a, T b) {

a + b;

};

The concept Addable requires that the addition a + b of two values of the same type T is possible.

4.1.8.2.2 Type Requirements

In a type requirement, you have to use the keyword typename together with a type name.

Core Language 74

The concept TypeRequirement

template<typename T>

concept TypeRequirement = requires {

typename T::value_type;

typename Other<T>;

};

The concept TypeRequirement requires that type T has a nested member value_type and that the class
template Other can be instantiated with T.

Let’s try this out:

Use of the concepts TypeRequirement

1 #include <iostream>

2 #include <vector>

3

4 template <typename>

5 struct Other;

6

7 template <>

8 struct Other<std::vector<int>> {};

9

10 template<typename T>

11 concept TypeRequirement = requires {

12 typename T::value_type;

13 typename Other<T>;

14 };

15

16 int main() {

17

18 TypeRequirement auto myVec= std::vector<int>{1, 2, 3};

19

20 }

The expression TypeRequirement auto myVec = std::vector<int>{1, 2, 3} (line 18) is valid.
A std::vector²³ has an inner member value_type (line 12) and the class template Other can be
instantiated with std::vector<int> (line 13).

4.1.8.2.3 Compound Requirements

A compound requirement has the form

²³https://en.cppreference.com/w/cpp/container/vector

https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/container/vector

Core Language 75

Compound requirement

{expression} noexcept(optional) return-type-requirement(optional);

In addition to a simple requirement, a compound requirement can have a noexcept specifier²⁴ and a
requirement on its return type.

The concept Equal, demonstrated in the following example, uses compound requirements.

Definition and use of the concept Equal

1 // conceptsDefinitionEqual.cpp

2

3 #include <concepts>

4 #include <iostream>

5

6 template<typename T>

7 concept Equal = requires(T a, T b) {

8 { a == b } -> std::convertible_to<bool>;

9 { a != b } -> std::convertible_to<bool>;

10 };

11

12 bool areEqual(Equal auto a, Equal auto b){

13 return a == b;

14 }

15

16 struct WithoutEqual{

17 bool operator==(const WithoutEqual& other) = delete;

18 };

19

20 struct WithoutUnequal{

21 bool operator!=(const WithoutUnequal& other) = delete;

22 };

23

24 int main() {

25

26 std::cout << std::boolalpha << '\n';

27 std::cout << "areEqual(1, 5): " << areEqual(1, 5) << '\n';

28

29 /*

30

31 bool res = areEqual(WithoutEqual(), WithoutEqual());

32 bool res2 = areEqual(WithoutUnequal(), WithoutUnequal());

33

²⁴https://en.cppreference.com/w/cpp/language/noexcept_spec

https://en.cppreference.com/w/cpp/language/noexcept_spec
https://en.cppreference.com/w/cpp/language/noexcept_spec

Core Language 76

34 */

35

36 std::cout << '\n';

37

38 }

The concept Equal (line 6) requires that its type parameter T supports the equal and not-equal
operators. Additionally, both operators have to return a value that is convertible to a boolean. Of
course, int supports the concept Equal, but this does not hold for the types WithoutEqual (line 16) and
WithoutUnequal (line 20). Consequently, when I use the type WithoutEqual (line 31), I get the following
error message when using the GCC compiler.

WithoutEqual does not fulfill the concept Equal

4.1.8.2.4 Nested Requirements

A nested requirement has the form

Nested requirement

requires constraint-expression;

Nested requirements are used to specify requirements on type parameters.

Here is another way to define the concept UnsignedIntegral (see logical combinations of concepts
and predicates):

The concepts Integral, SignedIntegral, and UnsignedIntegral

1 // nestedRequirements.cpp

2

3 #include <type_traits>

4

5 template <typename T>

6 concept Integral = std::is_integral<T>::value;

7

8 template <typename T>

9 concept SignedIntegral = Integral<T> && std::is_signed<T>::value;

Core Language 77

10

11 // template <typename T>

12 // concept UnsignedIntegral = Integral<T> && !SignedIntegral<T>;

13

14 template <typename T>

15 concept UnsignedIntegral = Integral<T> &&

16 requires(T) {

17 requires !SignedIntegral<T>;

18 };

19

20 int main() {

21

22 UnsignedIntegral auto n = 5u; // works

23 // UnsignedIntegral auto m = 5; // compile time error, 5 is a signed literal

24

25 }

Line 14 uses the concept SignedIntegral as a nested requirement to refine the concept Integral.
Honestly, the commented-out concept UnsignedIntegral in line 11 is more convenient to read.

The concept Ordering in the following section demonstrates the use of nested requirements.

4.1.9 Requires Expressions

Requires expressions can also be used as a standalone feature when a compile-time predicate is
required. Therefore, use cases for requires expression can be a [static_assert], constexpr if ²⁵, or
a requires clause,

4.1.9.1 static_assert

static_assert requires a compile-time predicate and a message displayed when the compile-time
predicate fails. With C++17, the message is optional. With C++20, this compile-predicate can be a
requires expression.

²⁵https://en.cppreference.com/w/cpp/language/if

https://en.cppreference.com/w/cpp/language/if
https://en.cppreference.com/w/cpp/language/if

Core Language 78

Requires expressions as predicates for static_assert

1 // staticAssertRequires.cpp

2

3 #include <concepts>

4 #include <iostream>

5

6 struct Fir {

7 int count() const {

8 return 2020;

9 }

10 };

11

12 struct Sec {

13 int size() const {

14 return 2021;

15 }

16 };

17

18 int main() {

19

20 std::cout << '\n';

21

22 First first;

23 static_assert(requires(Fir fir){ { fir.count() } -> std::convertible_to<int>; });

24

25 Second second;

26 static_assert(requires(Sec sec){ { sec.count() } -> std::convertible_to<int>; });

27

28 int third;

29 static_assert(requires(int third){ { third.count() } -> std::convertible_to<int>; });

30

31 std::cout << '\n';

32

33 }

The requires expressions (lines 23, 26, and 29) check if the object has a member function count and its
result is convertible to int. This check is only valid for the class First (lines 6 - 10). On the contrary,
the checks in lines 26 and 29 fail.

Core Language 79

Requires expressions as predicates for static_assert

Maybe, you want to compile code depending on a compile-time check. In this case, constexpr if,
combined with requires expressions provides you with the necessary tool.

4.1.9.2 constexpr if

constexpr if in C++17 allows it to compile source code conditionally. For the condition, the requires
expression comes into play. All branches of the if statement have to be valid.

Thanks to constexpr if, you can define functions that inspect their arguments at compile time and
generated different functionality based on their analysis.

Requires expressions as predicates for constexpr if

1 // constexprIfRequires.cpp

2

3 #include <concepts>

4 #include <iostream>

5

6 struct First {

7 int count() const {

8 return 2020;

9 }

10 };

11

12 struct Second {

13 int size() const {

14 return 2021;

15 }

16 };

17

18 template <typename T>

19 int getNumberOfElements(T t) {

20

21 if constexpr (requires(T t){ { t.count() } -> std::convertible_to<int>; }) {

22 return t.count();

Core Language 80

23 }

24 if constexpr (requires(T t){ { t.size() } -> std::convertible_to<int>; }) {

25 return t.size();

26 }

27 else return 42;

28

29 }

30

31 int main() {

32 std::cout << '\n';

33

34 First first;

35 std::cout << "getNumberOfElements(first): " << getNumberOfElements(first) << '\n';

36

37 Second second;

38 std::cout << "getNumberOfElements(second): " << getNumberOfElements(second) << '\n';

39

40 int i;

41 std::cout << "getNumberOfElements(i): " << getNumberOfElements(i) << '\n';

42

43 std::cout << '\n';

44

45 }

Lines 21 and 24 are crucial in this code example. In line 21, the requires expressions determine if the
variable t has a member function count that returns an int. Accordingly, line 24 determines if the
variable t has a member function size. The else statement in line 27 is applied as a fallback.

Requires expressions as predicates for constexpr if

4.1.9.3 requires requires or Anonymous Concepts

You can define an anonymous concept and directly use it. In general, you should not do it. Anonymous
concepts make your code hard to read, and you cannot reuse your concepts.

Core Language 81

An anonymous concept for adding two concepts

template<typename T>

requires requires (T x) { x + x; }

T add1(T a, T b) { return a + b; }

The function template defines its concept ad-hoc. add1 uses a requires expression inside a requires
clause. The anonymous concept is equivalent to the previously defined concept Addable and so is the
following function template add2 using the named concept Addable.

Use of the concept Addable

template<Addable T>

T add2(T a, T b) { return a + b; }

Concepts should encapsulate general ideas and give them a self-explanatory name for reuse. They
are invaluable for maintaining code. Anonymous concepts read more like syntactic constraints on
template parameters and should, therefore, be avoided.

4.1.10 User-Defined Concepts

In the previous sections I answered two essential questions about concepts: “How can a concept be
used?” and “How can you define your concepts?”. In this section, I want to apply the theoretical
knowledge provided in those sections to definemore advanced concepts such as Ordering, SemiRegular,
and Regular.

4.1.10.1 The Concepts Equal and Ordering

I presented already in the short detour to the long, long history of concepts a part of Haskell’s type
classes hierarchy:

Core Language 82

Haskell Type Classes Hierarchy

The class hierarchy shows that the type class Ord is a refinement of the type class Eq. Haskell expresses
this elegantly.

A part of Haskell’s type classes hierarchy

1 class Eq a where

2 (==) :: a -> a -> Bool

3 (/=) :: a -> a -> Bool

4

5 class Eq a => Ord a where

6 compare :: a -> a -> Ordering

7 (<) :: a -> a -> Bool

8 (<=) :: a -> a -> Bool

9 (>) :: a -> a -> Bool

10 (>=) :: a -> a -> Bool

11 max :: a -> a -> a

Each type a supporting the type class Eq (line 1), has to support equality (line 2) and inequality (line
3). Now to the interesting part of this definition. Each type a supporting the type class Ord has to
support the type class Eq (class Eq a => Ord a in line 5). Additionally, type a has to support the four
comparison operators and the functions compare and max (lines 6 - 11).

Here is my challenge. Can we express Haskell’s relationship between the type classes Eq and Ord with
concepts in C++20? For simplicity, I ignore Haskell’s functions compare and max.

Core Language 83

4.1.10.1.1 The Concept Ordering

Thanks to the requires expression, the definition of the concept Ordering looks quite similar to the
definition of the type class ord in Haskell.

The concept Ordering

template <typename T>

concept Ordering =

Equal<T> &&

requires(T a, T b) {

{ a <= b } -> std::convertible_to<bool>;

{ a < b } -> std::convertible_to<bool>;

{ a > b } -> std::convertible_to<bool>;

{ a >= b } -> std::convertible_to<bool>;

};

The Ordering concept uses nested requirements under the hood. A type T supports the concept
Ordering if it supports the concept Equal and, additionally, the four comparison operators. Let’s try it
out.

Definition and usage of the concept Ordering

1 // conceptsDefinitionOrdering.cpp

2

3 #include <concepts>

4 #include <iostream>

5 #include <unordered_set>

6

7 template<typename T>

8 concept Equal =

9 requires(T a, T b) {

10 { a == b } -> std::convertible_to<bool>;

11 { a != b } -> std::convertible_to<bool>;

12 };

13

14

15 template <typename T>

16 concept Ordering =

17 Equal<T> &&

18 requires(T a, T b) {

19 { a <= b } -> std::convertible_to<bool>;

20 { a < b } -> std::convertible_to<bool>;

21 { a > b } -> std::convertible_to<bool>;

22 { a >= b } -> std::convertible_to<bool>;

23 };

Core Language 84

24

25 template <Equal T>

26 bool areEqual(const T& a, const T& b) {

27 return a == b;

28 }

29

30 template <Ordering T>

31 T getSmaller(const T& a, const T& b) {

32 return (a < b) ? a : b;

33 }

34

35 int main() {

36

37 std::cout << std::boolalpha << '\n';

38

39 std::cout << "areEqual(1, 5): " << areEqual(1, 5) << '\n';

40

41 std::cout << "getSmaller(1, 5): " << getSmaller(1, 5) << '\n';

42

43 std::unordered_set<int> firSet{1, 2, 3, 4, 5};

44 std::unordered_set<int> secSet{5, 4, 3, 2, 1};

45

46 std::cout << "areEqual(firSet, secSet): " << areEqual(firSet, secSet) << '\n';

47

48 // auto smallerSet = getSmaller(firSet, secSet);

49

50 std::cout << '\n';

51

52 }

The function template areEqual (line 25) requires that both arguments a and b have the same type and
support the concept Equal. Additionally, the function template getSmaller (line 30) requires that both
arguments support the concept Ordering. Of course, integrals such as 1 and 5 support both concepts.
A std::unordered_set²⁶, as its name implies, does not fulfill the concept Ordering. Consequently, I
commented out line 48.

Use of the concept Ordering

²⁶https://en.cppreference.com/w/cpp/container/unordered_set

https://en.cppreference.com/w/cpp/container/unordered_set
https://en.cppreference.com/w/cpp/container/unordered_set

Core Language 85

Let’s look at the more interesting case now. What happens, when we compile line 48: auto

smallerSet = getSmaller(firSet, secSet);? The GCC compiler complains unambiguously that a
std::unordered_set is not a valid argument for the function template getSmaller.

Erroneous usage of the function template getSmaller

The Ordering concept is already part of the C++20 standard.

• std::three_way_comparable: is equivalent to the concept Ordering presented above

• std::three_way_comparable_with: allows the comparison of values of different types; e.g.: 1.0
< 1.0f

With C++20, we get the three-way comparison operator, also known as the spaceship operator <=>. I
present it in full depth in the equality operator and three-way comparison chapter.

4.1.10.2 The Concepts SemiRegular and Regular

When you want to define a concrete type that works well in the C++ ecosystem, you should define a
type that “behaves like an int”. Formally, your concrete type should be a regular type. In this section,
I define the concepts SemiRegular and Regular.

SemiRegular and Regular are essential ideas in C++. Sorry, I should say concepts. For example, here
is rule T.46 from the C++ Core Guidelines: T.46: Require template arguments to be at least Regular or
SemiRegular²⁷. Now, only one important question remains to answer:What are Regular or SemiRegular
types? Before I dive into the details, this is the informal answer:

• A regular type “behaves like an int.” It can be copied and the result of the copy operation is
independent of the original one and has the same value.

Okay, let me be more formal. A regular type is also a semiregular type, so let’s begin.

²⁷http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-regular

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-regular
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-regular
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-regular

Core Language 86

Regular Types
Alexander Stepanov²⁸, the designer of the Standard Template Library, defined the terms
regular type and semiregular type. A type, according to him, is regular if it supports these
functions:

• Copy construction

• Assignment

• Equality

• Destruction

• Total ordering

Copy construction implies default construction and Equality implies Inequality. When
Stepanov defined the requirements above, move semantics was not present in C++. The
book Elements of Programming²⁹, which Alexander Stepanov wrote together with Paul
McJones³⁰, is devoted to regular types.

4.1.10.2.1 The Concept SemiRegular

A semiregular type Xmust support the Big Six and be swappable. The Big Six consists of the following
functions:

• Default constructor: X()

• Copy constructor: X(const X&)

• Copy assignment: X& operator = (const X&)

• Move constructor: X(X&&)

• Move assignment: X& operator = (X&&)

• Destructor: ∼X()

Additionally, X has to be swappable: swap(X&, X&)

Thanks to the type-traits library³¹, defining the corresponding concept is a no-brainer. First, I define
the type trait isSemiRegular and then use it to define the concept SemiRegular.

²⁸https://en.wikipedia.org/wiki/Alexander_Stepanov
²⁹http://elementsofprogramming.com/
³⁰https://www.mcjones.org/paul/
³¹https://en.cppreference.com/w/cpp/header/type_traits

https://en.wikipedia.org/wiki/Alexander_Stepanov
http://elementsofprogramming.com/
https://www.mcjones.org/paul/
https://www.mcjones.org/paul/
https://en.cppreference.com/w/cpp/header/type_traits
https://en.wikipedia.org/wiki/Alexander_Stepanov
http://elementsofprogramming.com/
https://www.mcjones.org/paul/
https://en.cppreference.com/w/cpp/header/type_traits

Core Language 87

1 template<typename T>

2 struct isSemiRegular: std::integral_constant<bool,

3 std::is_default_constructible<T>::value &&

4 std::is_copy_constructible<T>::value &&

5 std::is_copy_assignable<T>::value &&

6 std::is_move_constructible<T>::value &&

7 std::is_move_assignable<T>::value &&

8 std::is_destructible<T>::value &&

9 std::is_swappable<T>::value >{};

10

11

12 template<typename T>

13 concept SemiRegular = isSemiRegular<T>::value;

The type trait isSemiRegular (line 1) is fulfilled when all type traits to the Big Six (lines 3 - 8) and the
type trait std::is_swappable (line 9) are fulfilled. The remaining step to define the concept SemiRegular
is to use the type traits isSemiRegular (line 13).

Let’s continue with the concept Regular.

4.1.10.2.2 The Concept Regular

There is only one step and we are ready defining the concept Regular. In addition to the requirements
of the concept SemiRegular, the concept Regular requires that the type is equally comparable. I already
defined the Equal concept in the section on requires expressions. Consequently, you are already done.
You only have to conjunct the concepts Equal and SemiRegular.

Definition of the concept Regular

template<typename T>

concept Regular = Equal<T> &&

SemiRegular<T>;

Now, I’m curious. How can we define the corresponding concepts std::semiregular and std::regular

in C++20?

4.1.10.2.3 std::semiregular and std::regular

C++20 combines the concepts std::semiregular and std::regular using of existing type traits and
concepts.

Core Language 88

Definition of the concept std::semiregular and std::regular

template<class T>

concept movable = is_object_v<T> && move_constructible<T> &&

assignable_from<T&, T> && swappable<T>;

template<class T>

concept copyable = copy_constructible<T> && movable<T> &&

assignable_from<T&, T&> &&

assignable_from<T&, const T&> && assignable_from<T&, const T>;

template<class T>

concept semiregular = copyable<T> && default_initializable<T>;

template<class T>

concept regular = semiregular<T> && equality_comparable<T>;

Interestingly, the std::regular concept is defined similarly to concept Regular. On the other hand,
the std::semiregular concept is combined with more elementary concepts, such as std::copyable

and std::moveable. The concept std::movable is based on the type-traits function std::is_object³².
cppreference.com also provides a possible implementation of the compile-time predicate.

A possible implementation of the type trait std::is_object

template< class T>

struct is_object : std::integral_constant<bool,

std::is_scalar<T>::value ||

std::is_array<T>::value ||

std::is_union<T>::value ||

std::is_class<T>::value> {};

A type is an object if it is either a scalar, an array, a union, or a class.

To conclude this section, I want to apply the user-defined concept Regular and the C++20 concept
std::regular. The program regularSemiRegular.cpp does this job.

³²https://en.cppreference.com/w/cpp/types/is_object

https://en.cppreference.com/w/cpp/types/is_object
https://en.cppreference.com/w/cpp/types/is_object

Core Language 89

Application of the concepts Regular and SemiRegular

1 // regularSemiRegular.cpp

2

3 #include <concepts>

4 #include <vector>

5 #include <type_traits>

6

7 template<typename T>

8 struct isSemiRegular: std::integral_constant<bool,

9 std::is_default_constructible<T>::value &&

10 std::is_copy_constructible<T>::value &&

11 std::is_copy_assignable<T>::value &&

12 std::is_move_constructible<T>::value &&

13 std::is_move_assignable<T>::value &&

14 std::is_destructible<T>::value &&

15 std::is_swappable<T>::value >{};

16

17 template<typename T>

18 concept SemiRegular = isSemiRegular<T>::value;

19

20 template<typename T>

21 concept Equal =

22 requires(T a, T b) {

23 { a == b } -> std::convertible_to<bool>;

24 { a != b } -> std::convertible_to<bool>;

25 };

26

27 template<typename T>

28 concept Regular = Equal<T> &&

29 SemiRegular<T>;

30

31 template <Regular T>

32 void behavesLikeAnInt(T) {

33 // ...

34 }

35

36 template <std::regular T>

37 void behavesLikeAnInt2(T) {

38 // ...

39 }

40

41 struct EqualityComparable { };

42 bool operator == (EqualityComparable const&,

43 EqualityComparable const&) {

44 return true;

Core Language 90

45 }

46

47 struct NotEqualityComparable { };

48

49 int main() {

50

51 int myInt{};

52 behavesLikeAnInt(myInt);

53 behavesLikeAnInt2(myInt);

54

55 std::vector<int> myVec{};

56 behavesLikeAnInt(myVec);

57 behavesLikeAnInt2(myVec);

58

59 EqualityComparable equComp;

60 behavesLikeAnInt(equComp);

61 behavesLikeAnInt2(equComp);

62

63 NotEqualityComparable notEquComp;

64 behavesLikeAnInt(notEquComp);

65 behavesLikeAnInt2(notEquComp);

66

67 }

I put all pieces from the previous code-snippets together to define the concept Regular (line 27).
The function templates behavesLikeAnInt (line 31) and behavesLikeAnInt2 (line 36) check if the
arguments “behave like an int.” This means the user-defined concept Regular and the C++20 concept
std::regular are used to establish the condition. As the name suggests, the type EqualityComparable
(line 41) supports equality, but the type NotEqualityComparable (line 47) does not. The use of the
type NotEqualityComparable in both function calls (lines 64 and 65) is the most interesting part of the
program.

Although I’m in the early stage of concepts implementation, I want to compare the error messages of
a new GCC and MSVC compilers.

• GCC

I used the current GCC 10.2 with the command line argument -std=c++20 on Compiler Explorer³³.
These are essentially the error messages when I use the user-defined concept Regular (line 64):

³³https://godbolt.org/

https://godbolt.org/
https://godbolt.org/

Core Language 91

Error message when using the concept Regular

The C++20 concept std::regular is more comprehensive. Consequently, the call in line 65 gives a
more comprehensive error message:

Error message when using the concept std::regular

• MSVC

The error message given by the MSVC compiler is too unspecific.

Error message when using the concepts Regular and std::regular

As you can see from the screenshot, I applied version 19.27.29112 for x64 with the command line /EHSC
/std:c++latest.

Core Language 92

Concepts in C++20: An Evolution or a Revolution?
This small detour expresses my opinion. First, I present the facts, then I draw my
conclusion. The facts are based on what has been presented in this chapter. So which
arguments speak for evolution or revolution?

Evolution
• Concepts promote working with generic code at a higher level of abstraction.
• Concepts give you understandable error messages when compiling a template
fails. They provide nothing you could not achieve with the type-traits library³⁴,
SFINAE³⁵, and static_assert³⁶.

• auto is a kind of unconstrained placeholder. With C++20, we can use concepts as
constrained placeholders.

• With C++14, we could use generic lambdas as a convenient way to define function
templates.

Revolution
• Concepts allow us to verify template requirements for the first time. Of course,
you can also achieve the verification of template parameters with a combination
of type-traits library³⁷, SFINAE³⁸, and static_assert³⁹, but this technique is way
too advanced to regard it as a general solution.

• Thanks to the abbreviated function-templates syntax, defining templates has been
radically improved.

• Concepts represent semantic categories, but not syntactic constraints. Instead of
a concept such as Addable, which requires that a type supports the + operator, we
should think in terms of a concept Number, where Number is a semantic category
such as Equal or Ordering.

My Conclusion
There are many arguments whether concepts are an evolutionary step or a revolutionary
jump.Mainly because of the semantic categories, I’m on the revolution side. Concepts such
as Number, Equality, or Ordering remind me of Plato’s⁴⁰ world of ideas. It is revolutionary
that we can now reason about programming in such categories.

³⁴https://en.cppreference.com/w/cpp/header/type_traits
³⁵https://en.cppreference.com/w/cpp/language/sfinae
³⁶https://en.cppreference.com/w/cpp/language/static_assert
³⁷https://en.cppreference.com/w/cpp/header/type_traits
³⁸https://en.cppreference.com/w/cpp/language/sfinae
³⁹https://en.cppreference.com/w/cpp/language/static_assert
⁴⁰https://en.wikipedia.org/wiki/Plato

https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/language/sfinae
https://en.cppreference.com/w/cpp/language/static_assert
https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/language/sfinae
https://en.cppreference.com/w/cpp/language/static_assert
https://en.wikipedia.org/wiki/Plato
https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/language/sfinae
https://en.cppreference.com/w/cpp/language/static_assert
https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/language/sfinae
https://en.cppreference.com/w/cpp/language/static_assert
https://en.wikipedia.org/wiki/Plato

Core Language 93

Distilled Information
• Functions or classes defined on a specific type or a type parameter have their set of
problems. Concepts overcome these problems by putting semantic constraints on
type parameters.

• Concepts can be applied in requires clauses, in trailing requires clauses, as con-
strained template parameters, or in the abbreviated function templates.

• Concepts are compile-time predicates that can be used for all kinds of templates.
You can overload on concepts, specialize templates on concepts, use concepts for
member functions or variadic templates.

• Thanks to C++20 and concepts, the use of unconstrained placeholders (auto) and
constrained placeholders (concepts) is unified. Whenever you use auto, you can use
concepts in C++20.

• Thanks to the new abbreviated function-templates syntax, defining a function
template has become a piece of cake.

• Don’t reinvent the wheel. Before you define your concepts, study the rich set of
predefined concepts in the C++20 standard. When you define your concepts, you
can apply two techniques: combine concepts and compile-time predicates or use
requires expressions.

• Requires expressions can be used as a compile-time predicate in static_assert, or
constexpr if.

Core Language 94

4.2 Modules

Cippi prepares the packages

Modules are one of the four big features of C++20: concepts, modules, ranges, and coroutines. Modules
promise much: shorter compile times, macro isolation, abolishing header files, and avoiding ugly
workarounds. Before I dive into mdules, I want to provide a first example.

4.2.1 A First Example

Let’s start with a simple math module.

A simple math module

// math.ixx

export module math;

export int add(int fir, int sec){

return fir + sec;

}

The expression export module math is the module declaration. By putting export before the function
add’s declaration, add is exported and can, therefore, be used by a module consumer.

Core Language 95

Use of the simple math module

// client.cpp

import math;

int main() {

add(2000, 20);

}

import math imports module math and makes the exported names in the client visible.

Let me start with the module declaration file.

4.2.1.1 Module Declaration File

Did you notice the strange name of the module: math.ixx.

• The Microsoft compiler uses the extension ixx. The suffix ixx stands for a module interface
source.

• The Clang compiler uses the extension cppm. The m in the suffix probably stands for module.

• The GCC compiler uses no special extension.
The global module fragment starts with the keyword module and ends with the module declaration.
The global module fragment is the place to use preprocessor directives such as #include so that the
module unit can compile. Preprocessor entities used inside global module fragment are only visible
inside the module.

The second module math version, supports the two functions add and getProduct.

A module definition with a global module fragment

1 // math1.ixx

2

3 module;

4

5 #include <numeric>

6 #include <vector>

7

8 export module math;

9

10 export int add(int fir, int sec){

11 return fir + sec;

12 }

13

Core Language 96

14 export int getProduct(const std::vector<int>& vec) {

15 return std::accumulate(vec.begin(), vec.end(), 1, std::multiplies<int>());

16 }

I included the necessary headers in the global module fragment (line 3) and the module declaration
(line 8).

Use of the improved module math

// client1.cpp

#include <iostream>

#include <vector>

import math;

int main() {

std::cout << '\n';

std::cout << "add(2000, 20): " << add(2000, 20) << '\n';

std::vector<int> myVec{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

std::cout << "getProduct(myVec): " << getProduct(myVec) << '\n';

std::cout << '\n';

}

The client imports the module math and uses its functionality:

Execution of the program client1.exe

What are the advantages of modules?

Core Language 97

4.2.2 Advantages

Let me start with a simple executable. For obvious reasons, I create a helloWorld.cpp program.

A simple hello world program

// helloWorld.cpp

#include <iostream>

int main() {

std::cout << "Hello World" << '\n';

}

Making an executable helloWorld out of the program helloWorld.cpp with GCC⁴¹ increases its size
by factor 130.

Size of an object file

The numbers 100 and 12928 in the screenshot represent the number of bytes. Okay. We should have a
basic understanding of what’s happening under the hood.

4.2.2.1 The Classical Build Process

The build process consists of three steps: preprocessing, compilation, and linking.

4.2.2.1.1 Preprocessing

The preprocessor handles the directives as #include and #define. The preprocessor substitutes
#include directives with the corresponding header files, and it substitutes the macros (#define).
Thanks to directives such as #if, #else, #elif, #ifdef, #ifndef, and #endif, parts of the source code
can be included or excluded.

You can observe this straightforward text substitution process by using the compiler flag -E on
GCC/Clang or /E on Windows.

⁴¹http://gcc.gnu.org/

http://gcc.gnu.org/
http://gcc.gnu.org/

Core Language 98

Preprocessors output

WOW!!! The output of the preprocessing step has more than half a million bytes. I don’t want to blame
GCC; the other compilers are similarly verbose. The output of the preprocessor is the input for the
compiler.

The result of this preprocessing step is the translation unit.

4.2.2.1.2 Compilation

The compilation is performed separately on each output of the preprocessor. The compiler parses the
C++ source code and converts it into assembly code. The generated file is called an object file and
contains the compiled code in binary form. The object file, which can build archives for later reuse,
can refer to symbols that don’t have a definition. These archives are called static libraries.

The object files that the compiler produces are the inputs for the linker.

4.2.2.1.3 Linking

The linker’s output is an executable or a static or shared library. The linker’s job is to resolve the
references to undefined symbols. Symbols are defined in object files or libraries. The typical error in
this phase is that symbols aren’t defined or are defined more than once.

C++ inherited the build process from C. It works sufficiently well if you have only one translation
unit. But when you have more than one, many issues can occur.

4.2.2.2 Issues of the Build Process

Here’s an incomplete list of the flaws in a classical build process. Modules solve these flaws.

4.2.2.2.1 Repeated Substitution

The preprocessor substitutes #include directives with the corresponding header files. Let me change
my initial helloWorld.cpp program to make the repetition visible.

I refactored the program and added two source files hello.cpp and world.cpp. The source file
hello.cpp provides the function hello, and the source file world.cpp provides the function world.
Both source files include the corresponding headers. Refactoring means the program has the same
external behavior as the previous program, helloWorld.cpp, but the internal structure is improved.
Here are the new files:

• hello.cpp and hello.h

Core Language 99

Implementation of hello

// hello.cpp

#include "hello.h"

void hello() {

std::cout << "hello ";

}

Header of hello

// hello.h

#include <iostream>

void hello();

• world.cpp and world.h

Implementation of world

// world.cpp

#include "world.h"

void world() {

std::cout << "world";

}

Header of world

// world.h

#include <iostream>

void world();

• helloWorld2.cpp

Core Language 100

Use of hello and world

// helloWorld2.cpp

#include <iostream>

#include "hello.h"

#include "world.h"

int main() {

hello();

world();

std::cout << '\n';

}

Building and executing the program works as expected:

Compilation of a simple program

Here is the issue. The preprocessor runs on each source file. Consequentially, the header file <iostream>
is included three times. Consequently, each source file is blown up to over half a million lines.

Size of the preprocessed source file

This is a waste of compile time.

Unlike header files, a module is only imported once and is literally for free.

Core Language 101

4.2.2.2.2 Isolation from Preprocessor Macros

If there is one consensus in the C++ community, it’s the following: we should eliminate the
preprocessor macros. Why? Using a macro is simply text substitution, excluding any C++ semantics.
Of course, this has many negative consequences: for example, it may depend on which sequence you
include macros, or macros can clash with already defined macros or names in your application.

Imagine you have two header files webcolors.h and productinfo.h.

First definition of macro RED

// webcolors.h

#define RED 0xFF0000

Second definition of macro RED

// productinfo.h

#define RED 0

When a source file client.cpp includes both headers, the value of the macro RED depends on the order
of the included header. This dependency is very error-prone.

With modules, import order makes no difference.

4.2.2.2.3 Multiple Definitions of Symbols

ODR stands for the One Definition Rule and says in the case of a function:

• A function can have not more than one definition in any translation unit.

• A function can not have more than one definition in the program.

Inline functions with external linkage can be defined inmore than one translation unit. The definitions
must satisfy the requirement that all definitions have to be the same.

Let’s see what my linker says when I try to link a program that violates the one-definition rule. The
following code example has two header files, header.h and header2.h. The main program includes
the header files header.h twice, breaking the one-definition rule because two definitions of func are
included.

Core Language 102

Definition of the function func

// header.h

void func() {}

Indirect inclusion of the function definition to func

// header2.h

#include "header.h"

Double definitions of the function func

// main.cpp

#include "header.h"

#include "header2.h"

int main() {}

The linker complains about the multiple definitions of func:

Breaking the one definition rule

We are used to ugly workarounds, such as putting an include guard around your header. Adding the
include guard FUNC_H to the header file header.h solves the issue.

Core Language 103

Using include guards to solve ODR
// header.h

#ifndef FUNC_H

#define FUNC_H

void func(){}

#endif

With modules, duplicate symbols are very unlikely.

I will now summarize the advantages of modules.

4.2.2.3 All Advantages

Here are the advantages of modules in a concise form:
• Modules are imported only once and are literally for free.

• It makes no difference in which order you import a module.

• Duplicate symbols with modules are very unlikely.

• Modules enable you to express the logical structure of your code. You can explicitly specify
names that should be exported or not. Additionally, you can bundle a fewmodules into a bigger
module and provide them to your customer as a logical package.

• Thanks to modules, there is no need to separate your source code into an interface and an
implementation part.

• The first experience from real-world examples shows that compilation times decrease by at
least ten when you switch from headers to modules.

The Long History
Modules in C++ may be older than you think. My short historic detour should show how
long it takes to get something so valuable into the C++ standard.

In 2004, Daveed Vandevoorde wrote a proposal N1736.pdf⁴², which described for the first
time the idea of modules. It took until 2012 to get a dedicated Study Group (SG2, Modules).
In 2017, Clang 5.0 and MSVC 19.1 provided the first implementations. One year later,
the Modules TS (technical specification) was finalized. Around the same time, Google
proposed the so-called ATOM (Another Take On Modules) proposal (P0947⁴³) for modules.
In 2019, the Modules TS and the ATOM proposal were merged into the C++20 committee
draft (N4842⁴⁴).

Now, it is time to dive into the details of modules.

⁴²http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1736.pdf
⁴³http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0947r1.html
⁴⁴https://github.com/cplusplus/draft/releases/tag/n4842

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1736.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0947r1.html
https://github.com/cplusplus/draft/releases/tag/n4842
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1736.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0947r1.html
https://github.com/cplusplus/draft/releases/tag/n4842

Core Language 104

4.2.3 The Details

Modules introduces a few new terms which I want to present before I use them.

4.2.3.1 Terminology

A module consists of one or more module units. A module unit is a special translation unit that has
a module declaration. The module declaration must be the first declaration of this special translation
unit, except the global module fragment. Each module unit is associated with a ModuleName:

Module declaration ModuleName
[export] module ModuleName[:ModulePartition]

The keyword export and the module partition :ModulePartition are optional.
• ModuleName: The ModuleName can have a dot. Dots have no special meaning but help to express
hierarchical modules.

• export: Module declarations using the keyword export are called module interface units;
otherwise, they are called module implementation units.

• ModulePartition: A module partition is either an internal partition or an interface partition.
An internal partition is not visible from outside the module and provides declarations and
definitions of the module. An interface partition participates extends the exported interface of
the module.

• Named module: A named module is the collection of module units with the same module
name.

• Primarymodule interface: Each namedmodule must have precisely one module interface unit
that is not a module partition. This module interface unit is called the primary module interface
unit. Its exported content will be available to exporting clients.

4.2.3.2 Compiler Support

Using modules, you must use a very recent Clang, GCC, or Microsoft compiler. Even if you have the
newest C++ compiler, not all features of modules in C++20 are supported. This holds, in particular,
true for the Clang and GCC compiler.

The compilation of a module is challenging. For that reason, I show as an example the compilation
of the module with the big three: the Microsoft compiler, the Clang compiler, and the GCC compiler.
Additionally, I present the various flags you must use to use modules successfully.

Compilation of a Module
Typically, a module consists of declarations and definitions. Consequentially, compiling a
module consists of two steps.

• Precompile the module’s declarations into a compiler-specific format.

• Compile the module’s definitions into an object file.

Core Language 105

Because the module’s support of the big three is only partial, I will update this section when
appropriate.

4.2.3.2.1 Microsoft Visual Compiler

First, I use the cl.exe 19.29.30133 for the x64 compiler.

Microsoft compiler for modules

These are the steps to compile and use the module with the Microsoft compiler. I only show the
minimal command line. As promised, more details will follow. Additionally, with an older Microsoft
compiler, you must use the flag /std:c++latest.

Building the executable with the Microsoft compiler

1 cl.exe /std:c++latest /c math.ixx

2 cl.exe /std:c++latest client.cpp math.obj

• Line 1 creates an obj file math.obj and an IFC file math.ifc. The IFC is the module and contains
the metadata description of the module interface. The binary format of the IFC is modeled after
the Internal Program Representation⁴⁵ by Gabriel Dos Reis and Bjarne Stroustrup (2004/2005).

• Line 2 creates the executable client.exe. The linker cannot find the module without the
implicitly used math.ifc file from the first step.

⁴⁵https://www.stroustrup.com/gdr-bs-macis09.pdf

https://www.stroustrup.com/gdr-bs-macis09.pdf
https://www.stroustrup.com/gdr-bs-macis09.pdf

Core Language 106

Implicitly created IFC file

For obvious reasons, I do not show the output of the program execution.

The Microsoft Visual Compiler provides various options for the creation of modules.

4.2.3.2.2 Module Options

The following table gives an overview of the modules compiler options.

Modules compiler options

Modules Compiler Options Description

/interface Specifies that the input file is a module interface unit.

/internalPartition Specifies that the input file is an internal partition unit.

/reference Specifies that the input file is an IFC file.

/ifcSearchDir Specifies the search path for the IFC file.

/ifcOutput Specifies the name of the IFC file. If the name is a directory,
the compiler generates a name based on the IFC file name
or the header unit name.

/ifcOnly Specifies that the compiler only produces an IFC file.

Core Language 107

Modules compiler options

Modules Compiler Options Description
/exportHeader Specifies that the compiler creates a header unit from the

input file.

/headerName Specifies that the input file is a header file.

/headerUnit <header name>=<ifc file name> Imports a header unit.

/translateInclude Specifies that the compiler to perform #include -> import

translation if the header name is an importable header.

/showResolvedHeader Shows the fully resolved path to the header unit after
compilation.

/validateIfcChecksum[-] Specifies an extra security check using the stored content
hash in the IFC. Off by default.

Additionally, the following general compiler options are often required.

Common cl.exe Compiler Options

cl.execompileroptions

Compiler Options Description

/EHsc Specifies the C++ standard exception handling model.

/TP Specifies that all source files are C++ source files.

/std:c++latest Use the latest C++ standard.

I use various compiler options for the module and the ifc file in the following command lines.

• Use the module math.cppm to create the obj and ifc file.

Creates the obj and ifc file

cl.exe /c /std:c++latest /interface /TP math.cppm

• Use the module math.cppm to create only the ifc file‘.

Core Language 108

Creates only the ifc file

cl.exe /c /std:c++latest /ifcOnly /interface /TP math.cppm

• Use the module math.cppm to create the obj file math.obj and the ifc file mathematic.ifc.

Creates the ifc file mathematic.ifc

cl.exe /c /std:c++latest /interface /TP math.cppm /ifcOutput mathematic.ifc

• Creates the executable client.exe and explicitly use the ifc file math.inter.

Use the ifc file math.inter

cl.exe /std:c++latest client.cpp math.obj /reference math.inter

• Creates the executable client.exe and explicitly use the ifc file math.inter that is in the
directory ifcFiles.

Use the ifc file math.inter

cl.exe /std:c++latest client.cpp math.obj /ifcSearchDir ifcFiles /reference math.inter

4.2.3.2.3 Clang Compiler

I use the Clang 16.0.5 compiler.

Clang compiler for modules

With the clang compiler, the module declaration file should have a cppm extension. Consequently, I
have to rename the math.ixx file to math.cppm.

Core Language 109

A simple math module

// math.cppm

export module math;

export int add(int fir, int sec){

return fir + sec;

}

The client file client.cpp is unchanged. These are the necessary steps to create the executable.

Building the executable with the Clang compiler

1 clang++ -std=c++20 -c math.cppm --precompile -o math.pcm

2

3 clang++ -std=c++20 client.cpp -fprebuilt-module-path=. math.pcm -o client.exe

• Line 1 creates the module math.pcm. The suffix pcm stands for precompiled module and is
equivalent to the ifc file of the Microsoft Visual Compiler. Additionally, the produced module
already includes the module definition. Consequentially, the Clang compiler does not produce
an object file math.o. The option ‘–precompile is necessary for creating the precompiled module.

• Line 3 creates the executable client.exe, which uses the module math.pcm. The Clang compiler
requires that you specify the path to the module with the -fprebuilt-module-path flag. If not,
the link process fails.

Missing path to the module

The Clang compiler provides various options for the creation of modules.

4.2.3.2.4 Module Options

Clang support three kinds of options for creating and using the module.

4.2.3.2.5 Creating the Module

A module can be created in two ways. From a named module or a header unit. The Clang compiler
requires that you always specify the path to the module. The following table shows the options for
handling modules.

Core Language 110

Modules compiler options

Modules Compiler Options Description
--precompile Creates the module.

-fmodule-output Creates the module in the working directory having the
name of the input file with the extension .pcm.

-fmodule-output=<ModuleName> Creates the module having the name ModuleName.

-fmodule-header Enables the creation of the module from a header unit. Uses
the user search path.

-fmodule-header=user Enables the creation of the module from a header unit. Uses
the user search path.

-fmodule-header=system Enables the creation of the module from a header unit. Uses
the system search path.

-xc++-header Headers without suffixes can be marked as header.

-xc++-user-header User headers without suffixes can be marked as header.

-xc++-system-header System headers without suffixes can be marked as header.

-x c++-module Enables you to use an importable module unit having not
the suffix .cppm.

-fprebuilt-module-path=<ModuleDirectory> The compiler looks up the module in the directory
ModuleDirectory.

fmodule-file=<ModuleName>=<ModulePath> The compiler looks up the module ModuleName in the path
ModulePath. The option -fprebuilt-module-path has a higher
priority.

An importable module is a module unit that can be imported. Valid suffixes for header units are h or
hh.

For more details, refer to the official Standard C++ Modules⁴⁶ documentation. In the following
command lines, I use the compiler options for the module, and the ifc file.

• Use the module declaration file math.cppm to create the pcm file (math.pcm).

⁴⁶https://clang.llvm.org/docs/StandardCPlusPlusModules.html

https://clang.llvm.org/docs/StandardCPlusPlusModules.html
https://clang.llvm.org/docs/StandardCPlusPlusModules.html

Core Language 111

Creates the pcm

clang++ -c -std=c++20 -fmodule-output math.cppm -o math.pcm

• Use the module with the extension ixx (math.ixx) to create the pcm file (math.pcm).

Creates the pcm file from the ixx file

clang++ -std=c++20 --precompile -x c++-module math.ixx -o math.pcm

• Creates the pcm file and use it

Compile the pcm file and use it

clang++ -std=c++20 -c math.pcm -o math.o

clang++ -std=c++20 -fprebuilt-module-path=. math.o client.cpp -o client.exe

• Uses the pcm file other.pcm and compile it

Refering the module math in the file other.pcm

clang++ -std=c++20 -c client.cpp -fmodule-file=math=other.pcm -o client.o

4.2.3.2.6 GCC Compiler

The GCC compiler is the last one of the big three. I use the GCC 11.1.0 compiler.

GCC compiler for modules

The GCC Compiler neither supports Window’s *.ixx nor Clang’s *.cppm suffix. Consequently, I have
to rename the math.ixx file into a cpp file: math.cxx.

Core Language 112

A simple math module

// math.cxx

export module math;

export int add(int fir, int sec){

return fir + sec;

}

The client file client.cpp is unchanged. These are the necessary steps to create the executable.

Building the executable with the GCC Compiler

1 g++ -c -std=c++20 -fmodules-ts math.cxx

2

3 g++ -std=c++20 -fmodules-ts client.cpp math.o -o client

• Line 1 creates the module math.gcm and the object file math.o. I have to specify -fmodules-ts.
The extension -fmodules-ts irritates me because ts stands for technical specification. On the
contrary, Clang names the same flag -fmodules. The module math.gcm is in the directory
gcm.cache. math.gcm is the compiled module interface. Presumably, gcm stands for GCC
compiled module.

• Line 3 creates the executable client.exe. It uses the module math.gcm implicitly.

GCC supports only a few module options.

4.2.3.2.7 Module Options

The following table shows the few GCC options.

Modules compiler options

Modules Compiler Options Description
-fmodules-ts Enables modules. Required for GCC.

-fmodule-header Compiles the header units.

-fmodule-mapper=VALUE Specifies the module mapper.

-fno-module-lazy Disables lazy loading.

Core Language 113

4.2.3.2.8 Used Compiler

I use mainly the cl.exe compiler fromMicrosoft in this book. Microsoft has currently (end of 2023) the
best support for modules⁴⁷. The Microsoft blog provides a few excellent articles to modules: Overview
of modules in C++⁴⁸, C++ Modules conformance improvements with MSVC in Visual Studio 2019
16.5⁴⁹, and Using C++Modules in MSVC from the Command Line Part 1: Primary Module Interfaces⁵⁰.
Neither Clang nor GCC provides similar introductions, making it quite difficult to use modules with
those compilers.

I exemplify the usage of header units in the corresponding chapter.

4.2.3.3 Export

There are three ways to export names in a module interface unit: export specifier, export group, and
export namespace.

4.2.3.4 Export Specifier

You can export each name explicitly.

Export specifier

export module math;

export int mult(int fir, int sec);

export void doTheMath();

4.2.3.5 Export Group

An export group exports all of its names.

⁴⁷https://en.cppreference.com/w/cpp/compiler_support
⁴⁸https://docs.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-160&viewFallbackFrom=vs-2019
⁴⁹https://devblogs.microsoft.com/cppblog/c-modules-conformance-improvements-with-msvc-in-visual-studio-2019-16-

5/
⁵⁰https://devblogs.microsoft.com/cppblog/using-cpp-modules-in-msvc-from-the-command-line-part-1/

https://en.cppreference.com/w/cpp/compiler_support
https://docs.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-160&viewFallbackFrom=vs-2019
https://docs.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-160&viewFallbackFrom=vs-2019
https://devblogs.microsoft.com/cppblog/c-modules-conformance-improvements-with-msvc-in-visual-studio-2019-16-5/
https://devblogs.microsoft.com/cppblog/c-modules-conformance-improvements-with-msvc-in-visual-studio-2019-16-5/
https://devblogs.microsoft.com/cppblog/using-cpp-modules-in-msvc-from-the-command-line-part-1/
https://en.cppreference.com/w/cpp/compiler_support
https://docs.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-160&viewFallbackFrom=vs-2019
https://devblogs.microsoft.com/cppblog/c-modules-conformance-improvements-with-msvc-in-visual-studio-2019-16-5/
https://devblogs.microsoft.com/cppblog/c-modules-conformance-improvements-with-msvc-in-visual-studio-2019-16-5/
https://devblogs.microsoft.com/cppblog/using-cpp-modules-in-msvc-from-the-command-line-part-1/

Core Language 114

Export group

export module math;

export {

int mult(int fir, int sec);

void doTheMath();

}

4.2.3.6 Export Namespace

Instead of an exported group, you can use an export namespace.

Export namespace

export module math;

export namespace math {

int mult(int fir, int sec);

void doTheMath();

}

When clients use names from an export namespace, they have to qualify them.

Core Language 115

Selectively Exporting Names in Namespaces
You can also use the export specifier, the export group, and the export namepace inside
a namespace. In this case, only exported names are visible to a module consumer. The
following example uses the three ways to export names inside a namespace.

Selectively exporting inside Namespaces
export module math;

namespace math {

export int mult(int fir, int sec); // use with math::mult

export {

void doTheMath(); // use with math::doTheMath

}

export namespace mathDetails { // use with math::mathDetails::add

int add(int fir, int sec);

}

int div(int fir, int sec); // no use outside the module

}

The function div cannot be used outside the module math and has to be fully qualified:
math::div(6, 2).

Only names that don’t have an internal linkage can be exported.

4.2.3.7 Import

Thanks to import, you can import a module, a module partition, or a header unit.

The contextual keyword import

export module math;

import math.sin;

import math:cos;

import <vector>

import is a contextual keyword. This means import is an identifier and is only a keyword in certain
contexts. Before you import an importable entity, you should compile it. If not, you may import an
old version of the importable entity.

4.2.3.8 Guidelines for a Module Structure

Let’s examine guidelines for how to structure a module.

Core Language 116

Guidelines for the structure of a module

module; // starts the global module fragment

#include <headers for libraries not modularized so far>

export module math; // exporting module declaration; starts the module preamble

import <importing of other modules>

<non-exported declarations> // names only visible inside the module

export namespace math {

<exported declarations> // exported names

}

module :private; // not part of the interface

// part of the module implementation that does not cause a recompilation

This guideline serves one purpose: to give you a module structure and an idea of what I’m going to
write about. So, what’s new in this module structure?

• The global module fragment starting with the keyword module is optional. After it and
preceding the module declaration, this is the right place to include headers. Only preprocessor
directives are allowed here.

• The required exporting module declaration export module math starts the so-called module
preamble followed by the module purview that ends at the end of the translation unit. The
module preamble consists of import declarations, and the module purview mainly of export
declarations.

• The module purview can have the private module fragment. The private module fragment is
part of the module’s implementation and can only be used in the primarymodule interface unit.
Modifications in the private module fragment do not require the recompilation of the module.

• You can import modules at the beginning of the module purview. The imported modules have
module linkage and are not visible outside the module. This observation also applies to the
non-exported declarations.

• I put the exported names in namespace math, which has the same name as the module.

• The module has only declared names. Let’s write about the separation of the interface and the
implementation of a module.

Essentially, the module structure boils down to three sections.

Core Language 117

Core Parts of the Module Structure

4.2.3.9 Module Interface Unit and Module Implementation Unit

When the module becomes bigger, you should structure it into a module interface unit and one or
more module implementation units. Following the previously mentioned guidelines to structure a
module, I will refactor the previous version of the math module.

4.2.3.9.1 Module Interface Unit

Core Language 118

The module interface unit

1 // mathInterfaceUnit.ixx

2

3 module;

4

5 #include <vector>

6

7 export module math;

8

9 export namespace math {

10

11 int add(int fir, int sec);

12

13 int getProduct(const std::vector<int>& vec);

14

15 }

• The module interface unit contains the exporting module declaration: export module math (line
7).

• The names add and getProduct are exported (lines 11 and 13).

• A module can have only one module interface unit.

4.2.3.9.2 Module Implementation Unit

The module implementation unit

1 // mathImplementationUnit.cpp

2

3 module math;

4

5 #include <numeric>

6

7 namespace math {

8

9 int add(int fir, int sec) {

10 return fir + sec;

11 }

12

13 int getProduct(const std::vector<int>& vec) {

14 return std::accumulate(vec.begin(), vec.end(), 1, std::multiplies<int>());

15 }

16 }

Core Language 119

• The module implementation unit contains non-exporting module declarations: module math;

(line 3).

• A module can have more than one module implementation unit.

4.2.3.9.3 Main Program

The client uses module math

1 // client3.cpp

2

3 #include <iostream>

4 #include <vector>

5

6 import math;

7

8 int main() {

9

10 std::cout << '\n';

11

12 std::cout << "math::add(2000, 20): " << math::add(2000, 20) << '\n';

13

14 std::vector<int> myVec{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

15

16 std::cout << "math::getProduct(myVec): " << math::getProduct(myVec) << '\n';

17

18 std::cout << '\n';

19

20 }

From the user’s perspective, the module math (line 6) is included, and the namespace math was added.

Whenmy explanations become compiler-dependent, I put them in a separate tip box. This information
is generally precious if you decide to try it out.

Core Language 120

Building the Executable with the Microsoft Com-
piler
Manually building the executable includes a few steps.

Building a module with a module interface unit and a module implementation unit
1 cl.exe /c /std:c++latest mathInterfaceUnit.ixx /EHsc

2 cl.exe /c /std:c++latest mathImplementationUnit.cpp /EHsc

3 cl.exe /c /std:c++latest client3.cpp /EHsc

4 cl.exe client3.obj mathInterfaceUnit.obj mathImplementationUnit.obj

• Line 1 creates the object file mathInterfaceUnit.obj and the module
interface file math.ifc.

• Line 2 creates the object file mathImplementationUnit.obj.

• Line 3 creates the object file client3.obj.

• Line 4 creates the executable client3.exe.

For the Microsoft compiler, specify the exception handling model (/EHsc), and use
the latest C++ standard: /std:latest.

Finally, here is the output of the program:

Execution of the program client2.exe

4.2.3.10 Private Module Fragment

One of the significat advantages of structuring modules into a module interface unit and one or more
module implementation units is that modifications in the module implementation units do not affect
the module implementation unit and, therefore, requires no recompilation of the importer of the
module. Thanks to a private module fragment, you can implement a module in one file and declare
its last part as its implementation using module :private;. Consequently, modifying the private

module fragment does not cause recompilation of the importer of the module. The following module
declaration file mathInterfaceUnit2.ixx refactors the module interface unit mathInterfaceUnit.ixx
and the module implementation unit mathImplementationUnit.cpp into one file.

Core Language 121

The module declaration file with a private module fragment

1 // mathInterfaceUnit2.ixx

2

3 module;

4

5 #include <numeric>

6 #include <vector>

7

8 export module math;

9

10 export namespace math {

11

12 int add(int fir, int sec);

13

14 int getProduct(const std::vector<int>& vec);

15

16 }

17

18 module :private;

19

20 int add(int fir, int sec) {

21 return fir + sec;

22 }

23

24 int getProduct(const std::vector<int>& vec) {

25 return std::accumulate(vec.begin(), vec.end(), 1, std::multiplies<int>());

26 }

module: private; in line 18 denotes the start of the privatemodule fragment. Modifying this optional
last part of a module declaration file does not cause recompilation of the importer of the module.

4.2.3.11 Submodules and Module Partitions

When your module grows, you want to divide its functionality into manageable components. C++20
modules offer two approaches: submodules and partitions.

4.2.3.11.1 Submodules

A module can import modules and then re-export them.

In the following example, module math imports the submodules math.math1 and math.math2.

Core Language 122

The module math

// mathModule.ixx

export module math;

export import math.math1;

export import math.math2;

The expression export import math.math1 imports module math.math1 and re-exports it as part of the
module math.

For completeness, here are the modules math.math1 and math.math2. I used a period to separate the
module math from its submodules. This period is not necessary.

The submodule math.math1

// mathModule1.ixx

export module math.math1;

export int add(int fir, int sec) {

return fir + sec;

}

The submodule math.math2

// mathModule2.ixx

export module math.math2;

export {

int mul(int fir, int sec) {

return fir * sec;

}

}

If you look carefully, you recognize a slight difference in the export statements in the modules math.
While math.math1uses an export specifier, math.math2 uses an export group or export block.

Using the math module is straightforward from the client’s perspective.

Core Language 123

The main program

// mathModuleClient.cpp

#include <iostream>

import math;

int main() {

std::cout << '\n';

std::cout << "add(3, 4): " << add(3, 4) << '\n';

std::cout << "mul(3, 4): " << mul(3, 4) << '\n';

}

Compiling and executing the program gives the expected behavior.

The usage of function modules and submodules

Compilation of the Module and its Submodules with
the Microsoft Compiler
Building the executable out of the modules and its submodules
cl.exe /c /std:c++latest mathModule1.ixx /EHsc

cl.exe /c /std:c++latest mathModule2.ixx /EHsc

cl.exe /c /std:c++latest mathModule.ixx /EHsc

cl.exe /c /std:c++latest mathModuleClient.cpp /EHsc

cl.exe mathModuleClient.obj mathModule1.obj mathModule2.obj mathModule.obj /EHsc

Each compilation process of the three modules creates two artifacts: The IFC file (interface
file) *.ifc, which is used implicitly in the last line, and the *.obj file, which is used
explicitly in the last line.

I already mentioned that a submodule is also a module. Each submodule has a module declaration.
Consequently, I can create a second client that is interested only in the math.math1 module.

Core Language 124

The main program uses only submodule math.math1

// mathModuleClient1.cpp

#include <iostream>

import math.math1;

int main() {

std::cout << '\n';

std::cout << "add(3, 4): " << add(3, 4) << '\n';

}

The usage of function modules and submodules

The division of modules into modules and submodules is a means for the module designer to give the
user of the module the possibility to import fine-grained parts of the module. This observation does
not apply to module partitions.

4.2.3.11.2 Module Partitions

A module can be divided into partitions. Each partition consists of a module interface unit (partition
interface file) and zero or more module implementation units (see Module Interface Unit and Module
Implementation Unit). The interface partition must be exported. The names that the partitions export
are imported and re-exported by the primary module interface unit (primary interface file). The name
of a partition must begin with the name of the module. The partitions cannot exist standalone. You
cannot split a partition into sub-partitions.

The description of module partitions is more challenging to understand than its implementation. In
the following lines, I rewrite the math module and its submodules math.math1 and math.math2 (see
Submodules) to module partitions. In this straightforward process, I refer to the shortly introduced
terms of module partitions.

Core Language 125

Primary interface file

1 // mathPartition.ixx

2

3 export module math;

4

5 export import :math1;

6 export import :math2;

The primary interface file consists of the exporting module declaration (line 3). It imports and re-
exports the partitions math1 and math2 using colons (lines 5 and 6). The name of the partitions must
begin with the name of the module. Consequently, you don’t have to specify them.

First module partition

1 // mathPartition1.ixx

2

3 export module math:math1;

4

5 export int add(int fir, int sec) {

6 return fir + sec;

7 }

Second module partition

1 // mathPartition2.ixx

2

3 export module math:math2;

4

5 export {

6 int mul(int fir, int sec) {

7 return fir * sec;

8 }

9 }

Similar to the module declaration, the expressions export module math:math1 and export module

math:math2 (line 3) declare a module interface partition. A module interface partition is also a module
interface unit. math stands for the module and math1 or math2 for the partition.

Core Language 126

Import the module partition

// mathModuleClient.cpp

import math;

int main() {

std::cout << '\n';

std::cout << "add(3, 4): " << add(3, 4) << '\n';

std::cout << "mul(3, 4): " << mul(3, 4) << '\n';

}

You may have already assumed it: The client program is identical to the one I previously used with
submodules. The same observation holds for the creation of the executable and the execution of the
program:

The usage of function modules and submodules

4.2.3.12 Reachability versus Visibility

With modules, you have to distinguish between reachability and visibility. When a module exports
some entity, an importing client can see and use it. Non-exported entities are not visible but may be
reachable.

The module bar

1 // bar.cppm

2

3 module;

4

5 #include <iostream>

6

7 export module bar;

8

9 struct Foo {

Core Language 127

10 void writeName() {

11 std::cout << "\nFoo\n";

12 }

13

14 };

15

16 export struct Bar {

17 Foo getFoo() {

18 return Foo{};

19 }

20 };

The module bar exports the class Bar. Bar is visible and reachable. On the contrary, Foo is not visible.

Using the module bar

1 #include <utility>

2

3 import bar;

4

5 int main() {

6

7 Bar b;

8 // Foo f;

9 auto f = b.getFoo();

10 f.writeName();

11

12 using FooAlias = decltype(std::declval<Bar>().getFoo());

13 FooAlias f2;

14 f2.writeName();

15

16 }

The class Foo is not exported and, therefore, not visible. Its usage in line 6 would cause a linker error.
On the contrary, Foo is reachable because the member function getFoo (line 18 in bar.cppm) returns it.
Consequentially, the function writeName (line 8) can be invoked. Furthermore, I can create a type alias
to Foo (line 12), use it to instantiate Foo (line 13), and invoke writeName (line 14) on it. The expression
std::declval<Bar>().getFoo() in line 12 returns the object that a call Bar.getFoo() would return.
Finally, decltype returns the type of this hypothetical object.

Core Language 128

Using the module bar

4.2.3.13 Module Linkage

Until C++20, C++ supported two kinds of linkage: internal linkage and external linkage.
• Internal linkage: Names with internal linkage are not accessible outside the translation unit.
Internal linkage includes mainly namespace-scope names declared static and members of
anonymous namespaces.

• External linkage: Names with external linkage are accessible outside the translation unit.
External linkage includes names declared not as static, class types, and their members,
variables, and templates.

Language Linkage
External linkage implies language linkage. Language linkage provides linkage between
different programming languages. C++ is the default language linkage, but you can specify
other language linkages, such as C linkage.

Language linkage
extern "C" {

int openFile(const char* path); // C function declaration

}

int main() {

int fileHandle = openFile("grimm.txt"); // invokes a C function from C++

}

The C function declaration openFile has C language linkage and can be called from a C++
program. It supports C calling conventions and name mangling.

Modules introduce module linkage:
• Module linkage: Names with module linkage are only accessible inside the module. Names
have module linkage if they don’t have external linkage and they are not exported.

A slight variation of the previous module declaration mathModuleTemplate.ixx makes my point.
Imagine that I want to return to the user of my function template sum not only the result of the
addition but also the return type the compiler deduces.

Core Language 129

An improved definition of the function template sum

1 // mathModuleTemplate1.ixx

2

3 module;

4

5 #include <iostream>

6 #include <typeinfo>

7 #include <utility>

8

9 export module math;

10

11 template <typename T>

12 auto showType(T&& t) {

13 return typeid(std::forward<T>(t)).name();

14 }

15

16 export namespace math {

17

18 template <typename T, typename T2>

19 auto sum(T fir, T2 sec) {

20 auto res = fir + sec;

21 return std::make_pair(res, showType(res));

22 }

23

24 }

Instead of the sum of the numbers, the function template sum returns a std::pair⁵¹ (line 21) consisting
of the sum and a string representation of the type of the value res. Note that I put the function
template showType (line 11) outside the exported namespace math (line 16). Consequently, invoking it
from outside the module math is impossible. Function template showType uses perfect forwarding⁵² to
preserve the function argument t value category. The typeid⁵³ operator queries information about the
type at run time (run time type identification (RTTI)⁵⁴).

⁵¹https://en.cppreference.com/w/cpp/utility/pair
⁵²https://www.modernescpp.com/index.php/perfect-forwarding
⁵³https://en.cppreference.com/w/cpp/language/typeid
⁵⁴https://en.cppreference.com/w/cpp/types

https://en.cppreference.com/w/cpp/utility/pair
https://www.modernescpp.com/index.php/perfect-forwarding
https://en.cppreference.com/w/cpp/language/typeid
https://en.cppreference.com/w/cpp/types
https://en.cppreference.com/w/cpp/utility/pair
https://www.modernescpp.com/index.php/perfect-forwarding
https://en.cppreference.com/w/cpp/language/typeid
https://en.cppreference.com/w/cpp/types

Core Language 130

Use of the improved function template sum

1 // clientTemplate1.cpp

2

3 #include <iostream>

4 import math;

5

6 int main() {

7

8 std::cout << '\n';

9

10 auto [val, message] = math::sum(2000, 11);

11 std::cout << "math::sum(2000, 11): " << val << "; type: " << message << '\n';

12

13 auto [val1, message1] = math::sum(2013.5, 0.5);

14 std::cout << "math::sum(2013.5, 0.5): " << val1 << "; type: " << message1

15 << '\n';

16

17 auto [val2, message2] = math::sum(2017, false);

18 std::cout << "math::sum(2017, false): " << val2 << "; type: " << message2

19 << '\n';

20

21 }

Now, the program displays the value of the summation and a string representation of the automatically
deduced type.

Use of the improved function template sum

4.2.3.14 Header Units

Header units are a binary representation of header files and conveniently transition from headers to
modules. You must replace the #include directive with the new import statement and add a semicolon
(;).

Core Language 131

Replacing #include directives with import statement

#include <vector> => import <vector>;

#include "myHeader.h" => import "myHeader.h";

First, import respects the same lookup rules as include. It means, in the case of the quotes
("myHeader.h"), that the lookup first searches in the local directory before it continues with the system
search path.

Second, this is way more than text replacement. In this case, the compiler generates something
module-like from the import directive and treats the result as a module. The importing module
statement gets all exportable names from the header. The exported names include macros. Importing
these synthesized header units is faster than including header files and comparable in speed and
functionality to precompiled headers⁵⁵. You should use header units instead of precompiled headers.

Finally, macros defined before the imported header are not visible inside the auto-generated module.

Modules versus Precompiled Headers
Precompiled headers are a non-standardized way to compile headers in an intermediate
form that is faster to process for the compiler. The Microsoft compiler uses the extension
.pch and the GCC compiler .gch for precompiled headers. The main difference between
precompiled headers and modules is that modules can selectively export names. Only in
a module exported names are visible outside the module.

After this theory, let me try it out.

4.2.3.14.1 Use of Header Units

The following example consists of three files. The header file head.h declares the function hello, its
implementation file head.cpp defines the function hello, and the client file helloWorld3.cpp uses the
function hello.

The header file head.h

// head.h

#include <iostream>

void hello();

Only the implementation file head.cpp and the client file helloWorld3.cpp are special. They import
the header file head.h: import "head.h";.

⁵⁵https://en.wikipedia.org/wiki/Precompiled_header

https://en.wikipedia.org/wiki/Precompiled_header
https://en.wikipedia.org/wiki/Precompiled_header

Core Language 132

The source file head.cpp importing the header unit

// head.cpp

import "head.h";

void hello() {

std::cout << '\n';

std::cout << "Hello World: header units\n";

std::cout << '\n';

}

The main program helloWorld3.cpp using the module

// helloWorld3.cpp

import "head.h";

int main() {

hello();

}

I will create and use a header from the header file head.h for the Microsoft Visual Compiler and the
GCC Compiler. In contrast to the official documentation Standard C++ Modules⁵⁶, I could not master
header units with the Clang Compiler.

4.2.3.14.2 Microsoft Visual Compiler

These are the necessary steps to use header units.

⁵⁶https://clang.llvm.org/docs/StandardCPlusPlusModules.html#header-units

https://clang.llvm.org/docs/StandardCPlusPlusModules.html#header-units
https://clang.llvm.org/docs/StandardCPlusPlusModules.html#header-units

Core Language 133

Create the module head.h.ifc and use it

cl.exe /std:c++latest /EHsc /exportHeader head.h

cl.exe /c /std:c++latest /EHsc /headerUnit head.h=head.h.ifc head.cpp

cl.exe /std:c++latest /EHsc /headerUnit head.h=head.h.ifc helloWorld3.cpp head.obj

• The flag /exportHeader in line 1 causes the creation of the ifc file head.h.ifc from the header
file head.h.

• The implementation file head.cpp (line 2) and the client file helloWordl3.cpp (line 3) use
the header unit. The flag /headerUnit head.h=head.h.ifc imports the header and tells the
compiler/linker the name of the ifc file for the specified header.

Use the module head.h.ifc

4.2.3.14.3 GCC Compiler

Creating and using the module consists of three steps.

Create the module head.gcm and use it

g++ -fmodules-ts -fmodule-header head.h -std=c++20

g++ -fmodules-ts -c -std=c++20 head.cpp

g++ -fmodules-ts -std=c++20 head.o helloWorld3.cpp -o helloWorld3

• Line 1 creates the module head.gcm. The flag -fmodule-header specifies that head.h is a header
unit.

• The following line creates the object file head.o.

• Finally, line 3 creates the executable that implicitly refers to the module head.gcm.

4.2.3.14.4 One Drawback

There is one drawback with header units. Not all headers are importable. Which headers are
importable is implementation-defined⁵⁷, but the C++ standard guarantees all standard library headers
are importable headers. The ability to import excludes C headers. They are wrapped in the std

namespace. For example, <cstring> is the C++ wrapper for <string.h>. You can quickly identify the
wrapped C header because the pattern is: xxx.h becomes cxxx.

⁵⁷https://en.cppreference.com/w/cpp/language/ub

https://en.cppreference.com/w/cpp/language/ub
https://en.cppreference.com/w/cpp/language/ub

Core Language 134

4.2.4 Further Aspects

4.2.4.1 Macros

Header units support macros, but modules ignore them. The following program consists of a module
macro, a header macro.h used as header unit, and the main program macroMain.cpp.

The main program macroMain.cpp

1 // macroMain.cpp

2

3 #include <iostream>

4

5 import macro;

6 import "macro.h";

7

8 int main() {

9

10 std::cout << '\n';

11

12 std::cout << MACRO_HEADER_UNIT << '\n';

13 std::cout << MACRO_MODULE << '\n';

14

15 std::cout << '\n';

16

17 }

The program macroMain.cpp uses the two macros MACRO_HEADER_UNIT (line 12), and MACRO_MODULE (line
13). MACRO_MODULE_UNIT is defined in the header unit used header macro.h, and MACRO_MODULE in the
module macro.

The as header unit used header macro.h

// macro.h

#define MACRO_HEADER_UNIT "macro header unit"

Core Language 135

The module macro.ixx

// macro.ixx

module;

#define MACRO_HEADER_UNIT "macro module"

export module macro;

The compilation of the program consists of the following three steps:

Importing of a header unit and a macro

1 cl.exe /std:c++latest /EHsc /exportHeader macro.h

2 cl.exe /std:c++latest /EHsc /c macro.ixx

3 cl.exe /std:c++latest /EHsc /headerUnit macro.h=macro.h.ifc macroMain.cpp macro.obj

Line 1 creates the header unit, line 2 the macro, and the last uses both. As expected, the final
compilation step fails because the macro MACRO_MODULE (line 13 in macroMain.cpp) is not visible in
the main program.

The macro MACRO_MODULE is not visible

You cannot export a macro from a module but include a header into the module. This header can have
macros. The global module fragment is the right place to insert a header and, thus, a macro.

Core Language 136

1 // macro.ixx

2

3 module;

4

5 #include "macro.h"

6

7 export module macro;

4.2.4.2 Templates in Modules

I often hear the question: How do modules export templates? When you instantiate a template, its
definition must be available. For this reason, template definitions are hosted in headers. Conceptually,
the usage of a template has the following structure.

4.2.4.2.1 Without Modules

• templateSum.h

Definition of the function template sum

// templateSum.h

template <typename T, typename T2>

auto sum(T fir, T2 sec) {

return fir + sec;

}

• sumMain.cpp

Use of the template sum

// sumMain.cpp

#include <templateSum.h>

int main() {

sum(1, 1.5);

}

The main program includes the header templateSum.h. The call sum(1, 1.5) triggers the template
instantiation. In this case, the compiler generates out of the function template sum the concrete function
sum, which takes an int and a double as arguments. If you want to visualize this process, use the
example on C++ Insights⁵⁸.

⁵⁸https://cppinsights.io/

https://cppinsights.io/
https://cppinsights.io/

Core Language 137

4.2.4.2.2 With Modules

With C++20, templates can and should be in modules. Modules have a unique internal representation
that is neither source code nor assembly. This representation is a kind of abstract syntax tree⁵⁹ (AST).
Thanks to this AST, the template definition is available during template instantiation.

I define the function template sum in module math in the following example.

• mathModuleTemplate.ixx

Definition of the function template sum

// mathModuleTemplate.ixx

export module math;

export namespace math {

template <typename T, typename T2>

auto sum(T fir, T2 sec) {

return fir + sec;

}

}

• clientTemplate.cpp

Use of the function template sum

// clientTemplate.cpp

#include <iostream>

import math;

int main() {

std::cout << '\n';

std::cout << "math::sum(2000, 11): " << math::sum(2000, 11) << '\n';

std::cout << "math::sum(2013.5, 0.5): " << math::sum(2013.5, 0.5) << '\n';

std::cout << "math::sum(2017, false): " << math::sum(2017, false) << '\n';

}

⁵⁹https://en.wikipedia.org/wiki/Abstract_syntax_tree

https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Abstract_syntax_tree

Core Language 138

The command line to compile the program is not different from the previous ones. Consequently, I
skip it and present the output of the program directly:

Use of the function template sum

With modules, we get a new kind of linkage.

4.2.4.3 Migrating from Headers to Modules

Broadly speaking, there are two options whenmigrating from headers to modules. You can use header
units instead of headers, or reimplement your header in one module or in a module partition. From
the implementers perspective and the users perspective, both options are very convenient.

For convenience, I refer to modules and module partitions as modules for the rest of this section.

Header units are a no-brainer for the implementer. Headers are a good starting point for modules
because they already provide the necessary modularization of the system. The user of the header
units has to replace the #include directive with the new import statement and add a semicolon (;).

Replacing headers with a header units

#include <vector> => import <vector>;

#include "math.h" => import "math.h";

Using a module makes no significant difference for the user. Importing a module is quite similar to
including a header.

Replacing headers with modules

#include <vector> => import vector;

#include "math.h" => import math;

The burden of modules lies on their implementer, but the implementer can do this migration succes-
sively, thanks to header units. Therefore, a sound migration strategy is to start your migration with
header units. Only headers that are not importable must be implemented as modules. Additionally,
new functionality should be implemented as a named module.

Core Language 139

Distilled Information
• Modules overcome the deficiencies of headers and macros. Their import is literally
for free, and in contrast to macros, the sequence you import does not matter.
Additionally, they overcome name collisions.

• A module consists of one module interface unit and arbitrarily many module
implementation unit. The module interface must have the exporting module
declaration and the module implementation units must have the non-exporting
module declaration. Names that are not exported in the module interface have
module linkage and cannot be used outside the module.

• Modules can have headers or import and re-export other modules.

• The standard library in C++20 is not modularized. With C++20, Building your
modules is a challenging task.

• To structure large software systems, modules provide two ways: submodules and
partitions. In contrast to a partition, a submodule can live on its own.

• Thanks to header units, you can replace an include statement with an import
statement, and the compiler autogenerates a module.

• Header units do support macros, but modules not.

• A soundmigration strategy from headers tomodules ormodule partitions is to start
your migration with header units. Only headers that are not importable must be
implemented as modules. Additionally, new functionality should be implemented
as a named module.

Core Language 140

4.3 Equality Comparison and Three-Way Comparison

Cippi measures how big she is

C++20 empowers your to define or autogenerate the equality operator. The equality operator
determines for two values A and B, whether A == B , or A != B. Additionally, if your values A and
B should support ordering, use the three-way comparison operator <=>. The three-way comparison
operator is often called the spaceship operator. The spaceship operator determines for two values A
and B, whether A < B, A == B, or A > B. As with the equality operator, you can define the spaceship
operator, or the compiler can autogenerate it for you.

To appreciate the advantages of the three-way comparison operator, let me start with the classical
way of doing it.

4.3.1 Comparison before C++20

I implemented a simple int wrapper MyInt. Of course, I want to compare MyInt. Here is my solution
using the function template isLessThan.

Core Language 141

MyInt supports less than comparisons

// comparisonOperator.cpp

#include <iostream>

struct MyInt {

int value;

explicit constexpr MyInt(int val): value{val} { }

bool operator < (const MyInt& rhs) const {

return value < rhs.value;

}

};

template <typename T>

constexpr bool isLessThan(const T& lhs, const T& rhs) {

return lhs < rhs;

}

int main() {

std::cout << std::boolalpha << '\n';

MyInt myInt2011(2011);

MyInt myInt2014(2014);

std::cout << "isLessThan(myInt2011, myInt2014): "

<< isLessThan(myInt2011, myInt2014) << '\n';

std::cout << '\n';

}

The program works as expected:

Core Language 142

Use of the less than operator

Honestly, MyInt is an unintuitive type. When you define one of the six ordering relations, you should
define all of them. Intuitive types should be at least semiregular. Now, I have to write a lot of
boilerplate code. Here are the missing five operators.

The five missing comparison operators

bool operator == (const MyInt& rhs) const {

return value == rhs.value;

}

bool operator != (const MyInt& rhs) const {

return !(*this == rhs);

}

bool operator <= (const MyInt& rhs) const {

return !(rhs < *this);

}

bool operator > (const MyInt& rhs) const {

return rhs < *this;

}

bool operator >= (const MyInt& rhs) const {

return !(*this < rhs);

}

Now, let’s jump to C++20 and the equality operator and three-way comparison operator.

4.3.2 Comparison since C++20

You can define the comparison operator or the three-way comparison operator or request it from the
compiler with = default. Let me start with the equality operator.

4.3.2.1 Equality Operator

When you define or request the equality operator from the compiler with = default, you automatically
get the equality and inequality operators: ==, and !=.

Core Language 143

Implement or request the equality operator

1 // equalityComparison.cpp

2

3 #include <iostream>

4

5 struct MyInt {

6 int value;

7 explicit constexpr MyInt(int val): value{val} { }

8 bool operator==(const MyInt& rhs) const {

9 return value == rhs.value;

10 }

11 };

12

13 struct MyDouble {

14 double value;

15 explicit constexpr MyDouble(double val): value{val} { }

16 bool operator==(const MyDouble&) const = default;

17 };

18

19 template <typename T>

20 constexpr bool areEqual(const T& lhs, const T& rhs) {

21 return lhs == rhs;

22 }

23

24 int main() {

25

26 std::cout << std::boolalpha << '\n';

27

28 MyInt myInt1(2011);

29 MyInt myInt2(2014);

30

31 std::cout << "areEqual(myInt1, myInt2): "

32 << areEqual(myInt1, myInt2) << '\n';

33

34 MyDouble myDouble1(2011);

35 MyDouble myDouble2(2014);

36

37 std::cout << "areEqual(myDouble1, myDouble2): "

38 << areEqual(myDouble1, myDouble2) << '\n';

39

40 std::cout << '\n';

41

42 }

Core Language 144

The user-defined (line 8) and the compiler-generated (line 16) equality operators work as expected.
Both return a boolean.

Use of the user-defined and compiler-generated equality operator

4.3.2.2 Three-Way Comparison Operator

When you define or request the three-way operator from the compiler with = default, you
automatically get all six comparison operators: ==, !=, <, <=, >, and >=. The member function must
be const and the parameter a const lvalue reference.

Implement or request the three-way comparison operator

1 // threeWayComparison.cpp

2

3 #include <compare>

4 #include <iostream>

5

6 struct MyInt {

7 int value;

8 explicit MyInt(int val): value{val} { }

9 auto operator<=>(const MyInt& rhs) const {

10 return value <=> rhs.value;

11 }

12 };

13

14 struct MyDouble {

15 double value;

16 explicit constexpr MyDouble(double val): value{val} { }

17 auto operator<=>(const MyDouble&) const = default;

18 };

19

20 template <typename T>

21 constexpr bool isLessThan(const T& lhs, const T& rhs) {

Core Language 145

22 return lhs < rhs;

23 }

24

25 int main() {

26

27 std::cout << std::boolalpha << '\n';

28

29 MyInt myInt1(2011);

30 MyInt myInt2(2014);

31

32 std::cout << "isLessThan(myInt1, myInt2): "

33 << isLessThan(myInt1, myInt2) << '\n';

34

35 MyDouble myDouble1(2011);

36 MyDouble myDouble2(2014);

37

38 std::cout << "isLessThan(myDouble1, myDouble2): "

39 << isLessThan(myDouble1, myDouble2) << '\n';

40

41 std::cout << '\n';

42

43 }

The user-defined (line 9) and the compiler-generated (line 17) three-way comparison operators work
as expected.

Use of the user-defined and compiler-generated spaceship operator

In this case there are a few subtle differences between the user-defined and the compiler-generated
three-way comparison operator. The compiler-deduced return type for MyInt (line 9) supports strong
ordering, and the compiler-deduced return type of MyDouble (line 17) supports partial ordering.
Additionally, the three-way comparison operator requires the header <compare>.

Core Language 146

Automatic Comparison of Pointers
The compiler-generated comparison operator compares the pointers but not the
referenced objects.

Automatic Comparison of Pointers
1 // spaceshipPoiner.cpp

2

3 #include <iostream>

4 #include <compare>

5 #include <vector>

6

7 struct A {

8 std::vector<int>* pointerToVector;

9 auto operator <=> (const A&) const = default;

10 };

11

12 int main() {

13

14 std::cout << '\n';

15

16 std::cout << std::boolalpha;

17

18 A a1{new std::vector<int>()};

19 A a2{new std::vector<int>()};

20

21 std::cout << "(a1 == a2): " << (a1 == a2) << "\n\n";

22

23 }

Astonighly, the result of a1 == a2 (line 21) is false and not true because the
adresses of std::vector<int>* are compared.

Comparison of pointers

There are three comparison categories.

4.3.3 Comparison Categories

The names of the three comparison categories are strong ordering (std::strong_ordering), also known
as total ordering, weak ordering (std::weak_ordering), and partial ordering (std::partial_ordering).

Core Language 147

Strong ordering is also called total ordering.

For a type T the three following properties distinguish the three comparison categories.

1. T supports all six relational operators: ==, !=, <, <=, >, and >= (short: Relational Operator)

2. All equivalent values are indistinguishable: (short: Equivalence)

3. All values of T are comparable: For arbitrary values a and b of T, one of the three relations a <

b, a == b , and a > b must be true (short: Comparable)

Integral types or strings are typical examples of strong ordering. The ordering is called weak when
comparing the absolute value of signed integral types or strings case-insensitive. Strong ordering
determines the identity of values, but weak ordering the equivalence of values. Additionally, two
arbitrary floating-point values need not to be comparable: for a = 5.5 and b = NaN (Not a Number)
neither of the following expressions returns true: a < Nan, a == Nan , or a > Nan. This means floating-
point values support partial ordering.

Based on the three properties, distinguishing the three comparison category is straightforward:

Strong, weak, and partial ordering

Comparison Category Relational Operator Equivalence Comparable

Strong Ordering yes yes yes

Weak Ordering yes yes

Partial Ordering yes

A type supporting strong ordering supports implicitly weak and partial ordering. The same holds for
weak ordering. A type supporting weak ordering also supports partial ordering. The other directions
do not apply.

Core Language 148

Strong, weak, and partial ordering

Suppose the declared return type of the three-way comparison operator is auto. In that case, the actual
return type is the common comparison category of the base and member subobject and the member
array elements to be compared.

Let me give you an example for this rule:

Implement or request the three-way comparison operator

1 // strongWeakPartial.cpp

2

3 #include <compare>

4

5 struct Strong {

6 std::strong_ordering operator <=> (const Strong&) const = default;

7 };

8

9 struct Weak {

10 std::weak_ordering operator <=> (const Weak&) const = default;

11 };

12

13 struct Partial {

14 std::partial_ordering operator <=> (const Partial&) const = default;

15 };

16

17 struct StrongWeakPartial {

18

19 Strong s;

20 Weak w;

21 Partial p;

22

23 auto operator <=> (const StrongWeakPartial&) const = default;

Core Language 149

24

25 // FINE

26 // std::partial_ordering operator <=> (const StrongWeakPartial&) const = default;

27

28 // ERROR

29 // std::strong_ordering operator <=> (const StrongWeakPartial&) const = default;

30 // std::weak_ordering operator <=> (const StrongWeakPartial&) const = default;

31

32 };

33

34 int main() {

35

36 StrongWeakPartial a1, a2;

37

38 a1 < a2;

39

40 }

The type StrongWeakPartial has subtypes supporting strong (line 6), weak (line 10), and partial
ordering (line 14). The common comparison category for the type StrongWeakPartial (line 17)
is, therefore, std::partial_ordering. Using a more powerful comparison category, such as strong
ordering (line 29) or weak ordering (line 30), would result in a compile-time error.

4.3.3.1 Values of the Comparision Categories

Each of the three comparison categories std::strong_ordering, std::weak_ordering, and std::partial_-
ordering has there values for denoting less, equal, or greater.

4.3.3.1.1 std::strong_ordering

std::strong_ordering::less

std::strong_ordering::equal, or std::strong_ordering::equivalent

std::strong_ordering::greater

4.3.3.1.2 std::weak_ordering

std::weak_ordering::less

std::weak_ordering::equivalent

std::weak_ordering::greater

4.3.3.1.3 std::partial_ordering

Core Language 150

std::partial_ordering::less

std::partial_ordering::equivalent

std::partial_ordering::greater

std::partial_ordering::unordered

Equality of values support std::strong_ordering can either be expressedwith std::strong_ordering::equal

or std::strong_ordering::equivalent. std::partial_ordering::unordered represent values support-
ing std::weak_ordering, which neither support less, equal, or greater.

You can use the comparison categories and their values to explicitly define the three-way comparison
operator. The following code snippet does it for the simple type MyInt.

Explicit definition of the three-way comparision operator

struct MyInt {

int value;

explicit MyInt(int val): value{val} { }

std::strong_ordering operator<=>(const MyInt& rhs) const {

return value == rhs.value ? std::strong_ordering::equal :

value < rhs.value ? std::strong_ordering::less :

std::strong_ordering::greater;

}

};

Now, I want to focus on the compiler-generated spaceship operator.

4.3.4 Compiler-Generated Equality and Spaceship Operator

The compiler-generated comparison operators are implicit constexpr and noexcept⁶⁰, and performs a
lexicographical comparison. The compaision operator is defined for all fundamental types for which
the relational operators are defined. Additionally, the compiler-generated three-way comparison
operator needs the header <compare>.

You can even directly use the three-way comparison operator.

4.3.4.1 Direct Use of the Three-Way Comparison Operator

The program spaceship.cpp directly uses the spaceship operator.

⁶⁰https://www.modernescpp.com/index.php/c-core-guidelines-the-noexcept-specifier-and-operator

https://www.modernescpp.com/index.php/c-core-guidelines-the-noexcept-specifier-and-operator
https://www.modernescpp.com/index.php/c-core-guidelines-the-noexcept-specifier-and-operator

Core Language 151

Implement or request the three-way comparison operator

1 // spaceship.cpp

2

3 #include <compare>

4 #include <iostream>

5 #include <string>

6 #include <vector>

7

8 int main() {

9

10 std::cout << '\n';

11

12 int a(2011);

13 int b(2014);

14 auto res = a <=> b;

15 if (res < 0) std::cout << "a < b" << '\n';

16 else if (res == 0) std::cout << "a == b" << '\n';

17 else if (res > 0) std::cout << "a > b" << '\n';

18

19 std::string str1("2014");

20 std::string str2("2011");

21 auto res2 = str1 <=> str2;

22 if (res2 < 0) std::cout << "str1 < str2" << '\n';

23 else if (res2 == 0) std::cout << "str1 == str2" << '\n';

24 else if (res2 > 0) std::cout << "str1 > str2" << '\n';

25

26 std::vector<int> vec1{1, 2, 3};

27 std::vector<int> vec2{1, 2, 3};

28 auto res3 = vec1 <=> vec2;

29 if (res3 < 0) std::cout << "vec1 < vec2" << '\n';

30 else if (res3 == 0) std::cout << "vec1 == vec2" << '\n';

31 else if (res3 > 0) std::cout << "vec1 > vec2" << '\n';

32

33 std::cout << '\n';

34

35 }

The program uses the spaceship operator for int (line 14), string (line 21), and vector (line 28). Here
is the output of the program.

Core Language 152

Direct use of the spaceship operator

As already mentioned, these comparisons are constexpr and could be performed at compile time.

4.3.4.2 Comparison at Compile Time

The three-way comparison operator is implicit constexpr. Consequently, I can simplify the previous
program threeWayComparison.cpp and compare MyDouble in the following program at compile time.

A compiler-generated constexpr three-way comparison operator

1 // threeWayComparisonAtCompileTime.cpp

2

3 #include <compare>

4 #include <iostream>

5

6 struct MyDouble {

7 double value;

8 explicit constexpr MyDouble(double val): value{val} { }

9 auto operator<=>(const MyDouble&) const = default;

10 };

11

12 template <typename T>

13 constexpr bool isLessThan(const T& lhs, const T& rhs) {

14 return lhs < rhs;

15 }

16

17 int main() {

18

19 std::cout << std::boolalpha << '\n';

20

21 constexpr MyDouble myDouble1(2011);

22 constexpr MyDouble myDouble2(2014);

23

24 constexpr bool res = isLessThan(myDouble1, myDouble2);

25

26 std::cout << "isLessThan(myDouble1, myDouble2): "

27 << res << '\n';

28

Core Language 153

29 std::cout << '\n';

30

31 }

I ask for the result of the comparison at compile time (line 24), and I get it.

Use of the constexpr compiler-generated spaceship operator

4.3.4.3 Lexicographical Comparison

The compiler-generated comparison operator performs the lexicographical comparison. Lexicograph-
ical comparison, in this case, means that all base classes are compared left to right and all non-
static members of the class in their declaration order. I have to qualify: for performance reasons, the
compiler-generated equality operator behaves differently in C++20. I will write about this exception
in the section for the optimized == and != operators.

The post “Simplify Your CodeWith Rocket Science: C++20’s Spaceship Operator”⁶¹ from theMicrosoft
C++ Team Blog provides an impressive example of lexicographical comparison. For readability, I
added a few comments.

Lexicographical comparison

1 struct Basics {

2 int i;

3 char c;

4 float f;

5 double d;

6 auto operator<=>(const Basics&) const = default;

7 };

8

9 struct Arrays {

10 int ai[1];

11 char ac[2];

12 float af[3];

13 double ad[2][2];

14 auto operator<=>(const Arrays&) const = default;

15 };

⁶¹https://devblogs.microsoft.com/cppblog/simplify-your-code-with-rocket-science-c20s-spaceship-operator/

https://devblogs.microsoft.com/cppblog/simplify-your-code-with-rocket-science-c20s-spaceship-operator/
https://devblogs.microsoft.com/cppblog/simplify-your-code-with-rocket-science-c20s-spaceship-operator/

Core Language 154

16

17 struct Bases : Basics, Arrays {

18 auto operator<=>(const Bases&) const = default;

19 };

20

21 int main() {

22 constexpr Bases a = { { 0, 'c', 1.f, 1. }, // Basics

23 { { 1 }, { 'a', 'b' }, { 1.f, 2.f, 3.f }, // Arrays

24 { { 1., 2. }, { 3., 4. } } } };

25 constexpr Bases b = { { 0, 'c', 1.f, 1. }, // Basics

26 { { 1 }, { 'a', 'b' }, { 1.f, 2.f, 3.f }, // Arrays

27 { { 1., 2. }, { 3., 4. } } } };

28 static_assert(a == b);

29 static_assert(!(a != b));

30 static_assert(!(a < b));

31 static_assert(a <= b);

32 static_assert(!(a > b));

33 static_assert(a >= b);

34 }

I assume themost challenging aspect of the program is not the spaceship operator but the initialization
of Bases via aggregate initialization (lines 22 and 25). Aggregate initialization enables us to directly
initialize the members of a class type (class, struct, union) when the members are all public. In this
case, you can use brace initialization. Aggregate initialization is discussed in more detail in the section
on designated initializers in C++20.

Optimized == and != Operators
There is an optimization potential for string-like or vector-like types. In this case, a ==

and != may be faster than the compiler-generated comparison operator. The == and
!= operators can stop if the two values compared have different lengths. Otherwise, if
one value were a prefix of the other, lexicographical comparison would compare all
elements until the end of the shorter value. Consequently, the compiler-generated == and
!= operators compare, in the case of a string-like or a vector-like type, first their lengths
and then their content if necessary. The standardization committee was aware of this
performance issue and fixed it with the paper P1185R2⁶².

Now, it’s time for something new in C++. C++20 introduces the concept of rewriting expressions.

4.3.5 Rewriting Expressions

When the compiler sees something such as a < b, it rewrites it to (a <=> b) < 0 using the spaceship
operator.

⁶²http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1185r2.html

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1185r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1185r2.html

Core Language 155

Of course, the rule applies to all six comparison operators:

a OP b becomes (a <=> b) OP 0. It’s even better. If there is no conversion of the type(a) to type(b), the
compiler generates the new expression 0 OP (b <=> a).

For example, this means for the less-than operator, if (a <=> b) < 0 does not work, the compiler
generates 0 < (b <=> a). In essence, the compiler takes care of the symmetry of the comparison
operators.

Here are a few examples of rewriting expressions:

Rewriting expressions with MyInt

1 // rewritingExpressions.cpp

2

3 #include <compare>

4 #include <iostream>

5

6 class MyInt {

7 public:

8 constexpr MyInt(int val): value{val} { }

9 auto operator<=>(const MyInt& rhs) const = default;

10 private:

11 int value;

12 };

13

14 int main() {

15

16 std::cout << '\n';

17

18 constexpr MyInt myInt2011(2011);

19 constexpr MyInt myInt2014(2014);

20

21 constexpr int int2011(2011);

22 constexpr int int2014(2014);

23

24 if (myInt2011 < myInt2014) std::cout << "myInt2011 < myInt2014" << '\n';

25 if ((myInt2011 <=> myInt2014) < 0) std::cout << "myInt2011 < myInt2014" << '\n';

26

27 std::cout << '\n';

28

29 if (myInt2011 < int2014) std:: cout << "myInt2011 < int2014" << '\n';

30 if ((myInt2011 <=> int2014) < 0) std:: cout << "myInt2011 < int2014" << '\n';

31

32 std::cout << '\n';

33

34 if (int2011 < myInt2014) std::cout << "int2011 < myInt2014" << '\n';

Core Language 156

35 if (0 < (myInt2014 <=> int2011)) std:: cout << "int2011 < myInt2014" << '\n';

36

37 std::cout << '\n';

38

39 }

I used in line 24, line 29, and line 34 the less-than operator and the corresponding spaceship expression.
Line 35 is the most interesting one. It exemplifies how the comparison (int2011 < myInt2014) triggers
the generation of the spaceship expression (0 < (myInt2014 <=> int2011).

Rewriting expressions

Honestly, MyInt has an issue: its constructor taking one argument should be declared explicit.
Constructors taking one argument as MyInt(int val) (line 8) are conversion constructors. This means
that an instance from MyInt can be generated from any integral or floating-point value because each
integral or floating-point value can implicitly be converted to an int.

Let me fix this issue and make the constructor MyInt(int val) explicit. To support the comparison of
MyInt and int, MyInt needs an additional three-way comparison operator for int.

An additional three-way comparison operator for int

1 // threeWayComparisonForInt.cpp

2

3 #include <compare>

4 #include <iostream>

5

6 class MyInt {

7 public:

8 constexpr explicit MyInt(int val): value{val} { }

9

10 auto operator<=>(const MyInt& rhs) const = default;

11

12 constexpr auto operator<=>(const int& rhs) const {

13 return value <=> rhs;

14 }

Core Language 157

15 private:

16 int value;

17 };

18

19 template <typename T, typename T2>

20 constexpr bool isLessThan(const T& lhs, const T2& rhs) {

21 return lhs < rhs;

22 }

23

24 int main() {

25

26 std::cout << std::boolalpha << '\n';

27

28 constexpr MyInt myInt2011(2011);

29 constexpr MyInt myInt2014(2014);

30

31 std::cout << "isLessThan(myInt2011, myInt2014): "

32 << isLessThan(myInt2011, myInt2014) << '\n';

33

34 std::cout << "isLessThan(int2011, myInt2014): "

35 << isLessThan(int2011, myInt2014) << '\n';

36

37 std::cout << "isLessThan(myInt2011, int2014): "

38 << isLessThan(myInt2011, int2014) << '\n';

39

40 constexpr auto res = isLessThan(myInt2011, int2014);

41

42 std::cout << '\n';

43

44 }

I defined in (line 10) the three-way comparison operator and declared it constexpr. User-defined com-
parison operators are not implicitly constexpr, unlike the compiler-generated comparison operators.
The comparison of MyInt and int is possible in each combination (lines 34, 37, and 40).

Three-way comparison operator for int

Honestly, the implementation of the various three-way comparison operators is very elegant. The
compiler auto-generates the comparison of MyInt, and the user defines the comparison with int

explicitly. Additionally, you have to define only two operators to get 18 = 3 * 6 combinations of

Core Language 158

comparison operators thanks to reordering. The three stands for the combinations int OP MyInt,
MyInt OP MyInt, and MyInt OP int and the six for six comparison operators.

4.3.6 User-Defined and Auto-Generated Comparison Operators

When you define one of the six comparison operators and auto-generate all of them using the
spaceship operator, there is one question: Which one has the higher priority? For example, this
implementation MyInt has a user-defined less-than-and-equal-to operator and compiler-generated six
comparison operators.

Let’s see what happens.

The interplay of user-defined and auto-generated operators

1 // userDefinedAutoGeneratedOperators.cpp

2

3 #include <compare>

4 #include <iostream>

5

6 class MyInt {

7 public:

8 constexpr explicit MyInt(int val): value{val} { }

9 bool operator == (const MyInt& rhs) const {

10 std::cout << "== " << '\n';

11 return value == rhs.value;

12 }

13 bool operator < (const MyInt& rhs) const {

14 std::cout << "< " << '\n';

15 return value < rhs.value;

16 }

17

18 auto operator<=>(const MyInt& rhs) const = default;

19

20 private:

21 int value;

22 };

23

24 int main() {

25

26 MyInt myInt2011(2011);

27 MyInt myInt2014(2014);

28

29 myInt2011 == myInt2014;

30 myInt2011 != myInt2014;

31 myInt2011 < myInt2014;

32 myInt2011 <= myInt2014;

Core Language 159

33 myInt2011 > myInt2014;

34 myInt2011 >= myInt2014;

35

36 }

To see the user-defined == and < operator in action, I write a corresponding message to std::cout.
Neither operator can be constexpr because std::cout is a run-time operation.

Let’s see what happens:

User-defined and auto-generated operators

In this case, the compiler uses the user-defined == (lines 29 and 30) and < operators (line 31).
Additionally, the compiler synthesizes the != operator (line 30) from the == operator. On the other
hand, the compiler does not synthesize the == operator out of the != operator.

Similarity to Python
In Python 3, the compiler generates != out of == if necessary but not the other way around.
In Python 2, the so-called rich comparison (the user-defined six comparison operators)
has a higher priority than Python’s three-way comparison operator __cmp__. I have to say
Python 2 because the three-way comparison operator __cmp__ was removed in Python 3.

Distilled Information
• By defaulting the operator ==, the compiler autogenerates the equality and the
inequality operator: ==, and !=.

• By defaulting the operator <=>, the compiler autogenerates the six comparison
operators: ==, !=, <, <=, >, and >=.

• The compiler-generated comparison operators are noexcept and constexpr. They
apply lexicographical comparison: all base classes are compared left to right, and
all non-static members of the class in their declaration order.

• When auto-generated comparison operators and user-defined comparison opera-
tors are present, the user-defined comparison operators have a higher priority.

• The compiler rewrites expressions to take care of the symmetry of the comparison
operators. For example if (a <=> b) < 0 does not work, the compiler generates 0 <

(b <=> a).

Core Language 160

4.4 Designated Initialization

Cippi receives the divine touch

Designated initialization is a special case of aggregate initialization. Writing about designated
initialization therefore means writing about aggregate initialization.

4.4.1 Aggregate Initialization

First: what is an aggregate? Aggregates are arrays or class types. A class type is a class, a struct, or a
union.

With C++20, the following condition must hold for class types being aggregates and supporting,
therefore, aggregate initialization:

• No private or protected non-static data members

• No user-declared or inherited constructors

• No virtual, private, or protected base classes

• No virtual member functions

The following program exemplifies aggregate initialization.

Aggregate initialization

1 // aggregateInitialization.cpp

2

3 #include <iostream>

4

5 struct Point2D{

6 int x;

7 int y;

8 };

9

Core Language 161

10 class Point3D{

11 public:

12 int x;

13 int y;

14 int z;

15 };

16

17 int main(){

18

19 std::cout << '\n';

20

21 Point2D point2D{1, 2};

22 Point3D point3D{1, 2, 3};

23

24 std::cout << "point2D: " << point2D.x << " " << point2D.y << '\n';

25 std::cout << "point3D: " << point3D.x << " " << point3D.y << " "

26 << point3D.z << '\n';

27

28 std::cout << '\n';

29

30 }

Lines 21 and 22 directly initialize the aggregates using curly braces. The sequence of the initializers
in the curly braces has to match the declaration order of the members. The setion on the three-way
comparison operator has a more sophisticated example of aggregate initialization.

Aggregate initialization

Based on aggregate initialization in C++11, we get designed initializers in C++20.

4.4.2 Named Initialization of Class Members

Designated initialization enables the direct initialization of members of a class type using their names.
For a union, only one initializer can be provided. As for aggregate initialization, the sequence of
initializers in the curly braces has to match the declaration order of the members.

Core Language 162

Designated initialization

1 // designatedInitializer.cpp

2

3 #include <iostream>

4

5 struct Point2D{

6 int x;

7 int y;

8 };

9

10 class Point3D{

11 public:

12 int x;

13 int y;

14 int z;

15 };

16

17 int main(){

18

19 std::cout << '\n';

20

21 Point2D point2D{.x = 1, .y = 2};

22 Point3D point3D{.x = 1, .y = 2, .z = 3};

23

24 std::cout << "point2D: " << point2D.x << " " << point2D.y << '\n';

25 std::cout << "point3D: " << point3D.x << " " << point3D.y << " "

26 << point3D.z << '\n';

27

28 std::cout << '\n';

29

30 }

Lines 21 and 22 use designated initializers to initialize the aggregates. The initializers as .x or .y are
often called designators.

Designated Initializers

Core Language 163

The members of the aggregate can already have a default value. This default value is used when the
initializer is missing. This does not hold for a union.

Designated initializers with defaults

1 // designatedInitializersDefaults.cpp

2

3 #include <iostream>

4

5 class Point3D{

6 public:

7 int x;

8 int y = 1;

9 int z = 2;

10 };

11

12 void needPoint(Point3D p) {

13 std::cout << "p: " << p.x << " " << p.y << " " << p.z << '\n';

14 }

15

16 int main(){

17

18 std::cout << '\n';

19

20 Point3D point1{.x = 0, .y = 1, .z = 2};

21 std::cout << "point1: " << point1.x << " " << point1.y << " "

22 << point1.z << '\n';

23

24 Point3D point2;

25 std::cout << "point2: " << point2.x << " " << point2.y << " "

26 << point2.z << '\n';

27

28 Point3D point3{.x = 0, .z = 20};

29 std::cout << "point3: " << point3.x << " " << point3.y << " "

30 << point3.z << '\n';

31

32 // Point3D point4{.z = 20, .y = 1}; ERROR

33

34 needPoint({.x = 0});

35

36 std::cout << '\n';

37

38 }

Line 20 initializes all members, but line 24 does not provide a value for the member x. Consequently,

Core Language 164

x is not initialized. It is fine, if you only initialize the members that don’t have a default value, such as
in line 28 or 34. The expression in line 32 would not compile because z and y are in the wrong order.

Designated initializers with defaults

Designated initializers detect narrowing conversions. Narrowing conversion results in the loos of
precision.

Designated initializers detect narrowing conversion

1 // designatedInitializerNarrowingConversion.cpp

2

3 #include <iostream>

4

5 struct Point2D{

6 int x;

7 int y;

8 };

9

10 class Point3D{

11 public:

12 int x;

13 int y;

14 int z;

15 };

16

17 int main(){

18

19 std::cout << '\n';

20

21 Point2D point2D{.x = 1, .y = 2.5};

22 Point3D point3D{.x = 1, .y = 2, .z = 3.5f};

23

24 std::cout << "point2D: " << point2D.x << " " << point2D.y << '\n';

25 std::cout << "point3D: " << point3D.x << " " << point3D.y << " "

26 << point3D.z << '\n';

27

28 std::cout << '\n';

Core Language 165

29

30 }

Line 21 and 22 produce compile-time errors, because the initialization .y = 2.5 and .z = 3.5f would
cause narrowing conversion to int.

Designated initializers detect narrowing conversion

Interestingly, designated initializers in C behave differently from designated initializers in C++.

Differences Between C and C++
C designated initializers support use cases that are not supported in C++. C allows

• initializing the members of the aggregate out-of-order

• initializing the members of a nested aggregate

• mixing designated initializers and regular initializers

• designated initialization of arrays

The proposal P0329R4⁶³ provides self-explanatory examples for these use cases:

Difference between C and C++
struct A { int x, y; };

struct B { struct A a; };

struct A a = {.y = 1, .x = 2}; // valid C, invalid C++ (out of order)

int arr[3] = {[1] = 5}; // valid C, invalid C++ (array)

struct B b = {.a.x = 0}; // valid C, invalid C++ (nested)

struct A a = {.x = 1, 2}; // valid C, invalid C++ (mixed)

The rationale for this difference between C and C++ is also part of the proposal: “In C++,
members are destroyed in reverse construction order and the elements of an initializer
list are evaluated in lexical order, so field initializers must be specified in order. Array
designators conflict with lambda-expression syntax. Nested designators are seldom used.”
The paper continues to argue that only out-of-order initialization of an aggregate is
commonly used.

⁶³http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0329r4.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0329r4.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0329r4.pdf

Core Language 166

Distilled Information
• Designated initialization is a special case of aggregate initialization enabling it to
initialize the class members using their names. The initialization order must match
the declaration order.

Core Language 167

4.5 consteval and constinit

Cippi admires the diamond

With C++20, we get two new keywords: consteval and constinit. Keyword consteval produces a
function that is executed at compile time, and constinit guarantees that a variable with static storage
duration or thread storage duration is initialized at compile time. Now, you may have the impression
that both specifiers are quite similar to constexpr. To make it short, you are right. Before I compare the
keywords consteval, constinit, constexpr, and good old const, I have to introduce the new specifiers
consteval and constinit.

4.5.1 consteval

consteval creates a so-called immediate function.

A consteval function

consteval int sqr(int n) {

return n * n;

}

Each invocation of an immediate function creates a compile-time constant. To say it more directly, a
consteval (immediate) function is executed at compile time.

consteval cannot be applied to destructors or functions that allocate or deallocate. You can only use
at most one of consteval, constexpr, or constinit specifier in a declaration. An immediate function
(consteval) is implicitly inline and has to fulfill the requirements for a constexpr function.

The requirements of a constexpr function in C++14 and, therefore, a consteval function:

• A consteval (constexpr) can

Core Language 168

– have conditional jump instructions or loop instructions.
– have more than one instruction.
– invoke constexpr functions. A consteval function can only invoke a constexpr function
but not the other way around.

– use fundamental data types as variables that have to be initialized with a constant
expression.

• A consteval (constexpr) function cannot

– have static or thread_local data.
– have a try block nor a goto instruction.
– invoke or use non-consteval functions or non-constexpr data.

To make it short: all dependencies of a consteval function must be resolved at compile time.

The program constevalSqr.cpp applies the consteval function sqr.

A consteval function

1 // constevalSqr.cpp

2

3 #include <iostream>

4

5 consteval int sqr(int n) {

6 return n * n;

7 }

8

9 int main() {

10

11 std::cout << "sqr(5): " << sqr(5) << '\n';

12

13 const int a = 5;

14 std::cout << "sqr(a): " << sqr(a) << '\n';

15

16 int b = 5;

17 // std::cout << "sqr(b): " << sqr(b) << '\n'; ERROR

18

19 }

The number 5 is a constant expression and can be used as an argument for the function sqr (line
11). The same holds for the variable a (line 13). A constant variable such as a is usable in a constant
expression when it is initialized with a constant expression. The variable b (line 16) is not a constant
expression. Consequently, the invocation of sqr(b) (line 17) is not valid.

Here is the output of the program:

Core Language 169

Use of a consteval function

Interestingly, you can have run-time functionality in your consteval function, but performing this
run-time functionality gives a compile-time error. The following consteval function uses std::cerr
that can only be performed at run time.

A consteval function using std::cerr

1 // constevalRuntime.cpp

2

3 #include <iostream>

4

5 consteval void validMonth(int n) {

6 if (n < 0 || n > 12) {

7 std::cerr << "Compile-time error if executed";

8 }

9 }

10

11 int main() {

12

13 validMonth(5);

14 validMonth(15);

15

16 }

Invoking validMonth(5) (line 13) is fine, but invoking validMonth(15) (line 14) gives a compile-time
error because it causes the execution of the run-time function std::cerr (line 7).

Use of std::cerr in a consteval function

Core Language 170

4.5.2 constinit

constinit can be applied to variables with static storage duration or thread storage duration.

• Global (namespace) variables, static variables, or static class members have static storage
duration. These objects are allocated when the program starts and are deallocated when the
program ends.

• thread_local variables have thread storage duration. Thread-local data is created for each
thread that uses this data. thread_local data exclusively belongs to the thread. They are created
at their first usage and their lifetime is bound to the lifetime of the thread it belongs to. Often
thread-local data is called thread-local storage.

constinit ensures that this kind of variable (static storage duration or thread storage duration)
it is initialized at compile time. constinit does not imply constness. This has two interesting
consequencies: A constinit variable requires a constant compile time value and cannot initialize
another constinit variable.

Initialization with constinit

// constinitSqr.cpp

#include <iostream>

consteval int sqr(int n) {

return n * n;

}

constexpr auto res1 = sqr(5);

constinit auto res2 = sqr(5);

int main() {

std::cout << "sqr(5): " << res1 << '\n';

std::cout << "sqr(5): " << res2 << '\n';

constinit thread_local auto res3 = sqr(5);

std::cout << "sqr(5): " << res3 << '\n';

}

res1 and res2 have static storage duration. res3 has thread storage duration.

Core Language 171

Use of constinit initialization

4.5.3 Comparison of const, constexpr, consteval, and constinit

Now it’s time to write about the differences between const, constexpr, consteval, and constinit. First,
I discuss function execution and then variable initialization.

4.5.3.1 Function Execution

The following program consteval.cpp has three versions of a square function.

Three versions of a square function

1 // consteval.cpp

2

3 #include <iostream>

4

5 int sqrRunTime(int n) {

6 return n * n;

7 }

8

9 consteval int sqrCompileTime(int n) {

10 return n * n;

11 }

12

13 constexpr int sqrRunOrCompileTime(int n) {

14 return n * n;

15 }

16

17 int main() {

18

19 // constexpr int prod1 = sqrRunTime(100); ERROR

20 constexpr int prod2 = sqrCompileTime(100);

21 constexpr int prod3 = sqrRunOrCompileTime(100);

22

23 int x = 100;

24

25 int prod4 = sqrRunTime(x);

26 // int prod5 = sqrCompileTime(x); ERROR

27 int prod6 = sqrRunOrCompileTime(x);

Core Language 172

28

29 }

As the name suggests: the ordinary function sqrRunTime (line 5) runs at run time, the consteval

function sqrCompileTime runs at compile time (line 9) the constexpr function sqrRunOrCompileTime can
run at compile time or run time. Consequently, asking for the result at compile time with sqrRunTime

(line 19) is an error, so, using a non-constant expression as an argument for sqrCompileTime (line 26)
is also an error.

The difference between the constexpr function sqrRunOrCompileTime and the consteval function
sqrCompileTime is that sqrRunOrCompileTime must be executed at compile time when the context
requires compile-time evaluation.

Compile-time and run-time execution

1 static_assert(sqrRunOrCompileTime(10) == 100); // compile time

2 int arrayNewWithConstExpressiomFunction[sqrRunOrCompileTime(100)]; // compile time

3 constexpr int prod = sqrRunOrCompileTime(100); // compile time

4

5 int a = 100;

6 int runTime = sqrRunOrCompileTime(a); // run time

7

8 int runTimeOrCompiletime = sqrRunOrCompileTime(100); // run time or compile time

9

10 int alwaysCompileTime = sqrCompileTime(100); // compile time

Lines 1 - 3 require compile-time evaluation. Line 6 can only be evaluated at run time because a is
not a constant expression. The critical line is line 8. The function can be executed at compile time or
run time. Whether it is executed at compile time or run time may depend on the compiler or on the
optimization level. This observation does not hold for line 10. A consteval function is always executed
at compile time.

4.5.3.2 Variable Initialization

The program constexprConstinit.cpp compares const, constexpr, and constinit.

Core Language 173

Comparison of const, constexpr, and constinit

1 // constexprConstinit.cpp

2

3 #include <iostream>

4

5 constexpr int constexprVal = 1000;

6 constinit int constinitVal = 1000;

7

8 int incrementMe(int val){ return ++val;}

9

10 int main() {

11

12 auto val = 1000;

13 const auto res = incrementMe(val);

14 std::cout << "res: " << res << '\n';

15

16 // std::cout << "res: " << ++res << '\n'; ERROR

17 // std::cout << "++constexprVal: " << ++constexprVal << '\n'; ERROR

18 std::cout << "++constinitVal: " << ++constinitVal << '\n';

19

20 constexpr auto localConstexpr = 1000;

21 // constinit auto localConstinit = 1000; ERROR

22

23 }

Only the const variable (line 13) is initialized at run time. The constexpr and constinit variables are
initialized at compile time.

The constinit (line 18) does not imply constness, as do const (line 16) or constexpr (line 17). A
constexpr (line 20) or const (line 13) declared variable can be created as a local, but not a constinit

declared variable (line 21).

const, constexpr, and constinit declared variables

Core Language 174

Initialization of a LocalNon-Const Variable at Compile
Time
After the previous program constexprConstinit.cpp, you may have the impression that
you cannot initialize a local (automatic storage duration) non-const variable at compile
time:

• constinit enables the initialization at compile time only for objects with static
storage duration.

• constexpr implies that the variable is constant.

Thanks to consteval, a local having automatic storage duration can be initialized at
compile time at modified afterward.

1 // compileTimeInitializationLocal.cpp

2

3 consteval auto doubleMe(auto val) {

4 return 2 * val;

5 }

6

7 int main() {

8

9 auto res = doubleMe(1010);

10 ++res; // 2021

11

12 }

The local res is initialized at compile time (line 9) and modified at run time (line 10).

4.5.4 Solving the Static Initialization Order Fiasco

According to the FAQ at isocpp.org⁶⁴, the static initialization order fiasco is “a subtle way to crash your
program”. The FAQ continues: “The static initialization order problem is a very subtle and commonly
misunderstood aspect of C++.”

Before I continue, I want to make a short disclaimer. Dependencies on variables with static storage
duration (short statics) in different translation units are, in general, a code smell and should be a
reason for refactoring. Consequently, if you follow my advice to refactor, you can skip this section.

4.5.4.1 Static Initialization Order Fiasco

Static variables in one translation unit are initialized according to their definition order.

In contrast, the initialization of static variables between translation units has a severe issue. When
one static variable staticA is defined in one translation unit and another static variable staticB is

⁶⁴https://isocpp.org/wiki/faq/ctors#static-init-order

https://isocpp.org/wiki/faq/ctors#static-init-order
https://isocpp.org/wiki/faq/ctors#static-init-order

Core Language 175

defined in another translation unit, and staticB needs staticA to initialize itself, you end up with
the static initialization order fiasco. The program is ill-formed because you have no guarantee which
static variable is initialized first at (dynamic) run time.

Before I write about the solution, let me show you the static initialization order fiasco in action.

4.5.4.1.1 A 50:50 Chance to get it Right

What is unique about the initialization of statics? The initialization-order of statics happens in two
steps: static and dynamic.

When a static cannot be const-initialized during compile time, it is zero-initialized. At run time, the
dynamic initialization happens for these statics that was zero-initialized.

The static initialization order fiasco

// sourceSIOF1.cpp

int square(int n) {

return n * n;

}

auto staticA = square(5);

The static initialization order fiasco

1 // mainSOIF1.cpp

2

3 #include <iostream>

4

5 extern int staticA;

6 auto staticB = staticA;

7

8 int main() {

9

10 std::cout << '\n';

11

12 std::cout << "staticB: " << staticB << '\n';

13

14 std::cout << '\n';

15

16 }

Line 5 declares the static variable staticA. The initialization of staticB depends on the initialization
of staticA. But staticB is zero-initialized at compile time and dynamically initialized at run time. The

Core Language 176

issue is that there is no guarantee in which order staticA or staticB are initialized because staticA

and staticB belong to different translation units. You have a 50:50 chance that staticB is 0 or 25.

To demonstrate this problem, I can change the link order of the object files. This also changes the
value for staticB!

The static initializaion order fiasco caught in action

What a fiasco! The result of the executable depends on the link order of the object files. What can we
do when we don’t have C++20 at our disposal?

4.5.4.1.2 Lazy initialization of a static with a Local Scope

Static variables with local scope are created when they are used the first time. Local scope essentially
means that the static variable is surrounded in some way by curly braces. This lazy creation is a
guarantee that C++98 provides. With C++11, static variables with local scope are also initialized in a
thread-safe way. The thread-safe Meyers⁶⁵ singleton is based on this additional guarantee.

The lazy initialization can also be used to overcome the static initialization order fiasco.

⁶⁵https://en.wikipedia.org/wiki/Scott_Meyers

https://en.wikipedia.org/wiki/Scott_Meyers
https://en.wikipedia.org/wiki/Scott_Meyers

Core Language 177

Lazy initialization of a static with local scope

1 // sourceSIOF2.cpp

2

3 int square(int n) {

4 return n * n;

5 }

6

7 int& staticA() {

8

9 static auto staticA = square(5);

10 return staticA;

11

12 }

Lazy initialization of a static with local scope

1 // mainSOIF2.cpp

2

3 #include <iostream>

4

5 int& staticA();

6

7 auto staticB = staticA();

8

9 int main() {

10

11 std::cout << '\n';

12

13 std::cout << "staticB: " << staticB << '\n';

14

15 std::cout << '\n';

16

17 }

staticA (line 9 in file sourceSIOF2.cpp) is, in this case, a static in a local scope. Line 5 in file
mainSOIF2.cpp declares the function staticA, which is used to initialize in the following line staticB.
This local scope of staticA guarantees that staticA is created and initialized during run time when
it is the first time used. Changing the link order can, in this case, not change the value of staticB.

Core Language 178

Solving the static initialization order fiasco with local statics

In the last step, I solve the static initialization order fiasco using C++20.

4.5.4.1.3 Compile-Time Initialization of a static

Letme apply constinit to staticA. The constinit guarantees that staticA is initialized during compile
time.

Compile-time initialization of a static

1 // sourceSIOF3.cpp

2

3 constexpr int square(int n) {

4 return n * n;

5 }

6

7 constinit auto staticA = square(5);

Compile-time initialization of a static

1 // mainSOIF3.cpp

2

3 #include <iostream>

4

5 extern constinit int staticA;

6

7 auto staticB = staticA;

8

9 int main() {

Core Language 179

10

11 std::cout << '\n';

12

13 std::cout << "staticB: " << staticB << '\n';

14

15 std::cout << '\n';

16

17 }

Line 5 in file mainSOIF3.cpp declares the variable staticA, which is initialized (line 7 in file
sourceSIOF3.cpp) at compile time. By the way, using constexpr (line 5 in file mainSOIF3.cpp) instead
of constinit would not be valid, because constexpr requires a definition and not just a declaration.

Solving the static initializaion order fiasco with constinit

As in the case of the lazy initialization with a local static, staticB has the value 25.

Distilled Information
• With C++20, we get two new keywords: consteval and constinit. consteval
produces a function that is executed at compile time, and constinit guarantees
that the variable is initialized at compile time.

• In contrast to constexpr in C++11, consteval guarantees that the function is
executed at compile time.

• There are subtle differences between const, constexpr, and constinit. const and
constexpr create constant variables. constexpr and constinit are executed at
compile time.

Core Language 180

4.6 Template Improvements

Cippi uses her new tools

The improvements to templates make C++20 more consistent and, therefore, less error-prone when
writing generic programs.

4.6.1 Conditionally Explicit Constructor

Sometimes you need a class that should have constructors accepting different types. For example, you
have a class VariantWrapper, that holds a std::variant accepting various types.

A class VariantWrapper holding an attribute std::variant

class VariantWrapper {

std::variant<bool, char, int, double, float, std::string> myVariant;

};

To initialize a VariantWrapperwith bool, char, int, double, float, or std::string, the class VariantWrapper
needs constructors for each listed type. Laziness is a virtue – at least for programmers – , therefore,
you decide to make the constructor generic.

The class Implicit shows a generic constructor.

Core Language 181

A generic constructor

1 // implicitExplicitGenericConstructor.cpp

2

3 #include <iostream>

4 #include <string>

5

6 struct Implicit {

7 template <typename T>

8 Implicit(T t) {

9 std::cout << t << '\n';

10 }

11 };

12

13 struct Explicit {

14 template <typename T>

15 explicit Explicit(T t) {

16 std::cout << t << '\n';

17 }

18 };

19

20 int main() {

21

22 std::cout << '\n';

23

24 Implicit imp1 = "implicit";

25 Implicit imp2("explicit");

26 Implicit imp3 = 1998;

27 Implicit imp4(1998);

28

29 std::cout << '\n';

30

31 // Explicit exp1 = "implicit";

32 Explicit exp2{"explicit"};

33 // Explicit exp3 = 2011;

34 Explicit exp4{2011};

35

36 std::cout << '\n';

37

38 }

Now, you have an issue. A generic constructor (line 7) is a catch-all constructor because you can
invoke it with any type. The constructor is way too greedy. By putting an explicit in front of the
constructor (line 14), implicit conversions (lines 31 and 33) are not valid anymore. Only the explicit
calls (lines 32 and 34) are valid.

Core Language 182

Implicit and explicit generic constructors

In C++20, explicit is even more useful. Imagine you have a type MyBool that should only support the
implicit conversion from bool, but no other implicit conversion. In this case, explicit can be used
conditionally.

A generic constructor that allows implicit conversions from bool

1 // conditionallyConstructor.cpp

2

3 #include <iostream>

4 #include <type_traits>

5 #include <typeinfo>

6

7 struct MyBool {

8 template <typename T>

9 explicit(!std::is_same<T, bool>::value) MyBool(T t) {

10 std::cout << typeid(t).name() << '\n';

11 }

12 };

13

14 void needBool(MyBool b){ }

15

16 int main() {

17

18 MyBool myBool1(true);

19 MyBool myBool2 = false;

20

21 needBool(myBool1);

22 needBool(true);

23 // needBool(5);

24 // needBool("true");

25

26 }

The explicit(!std::is_same<T, bool>::value) expression guarantees that MyBool can only be
implicitly created from a bool value. The function std::is_same is a compile-time predicate from

Core Language 183

the type_traits library⁶⁶. A compile-time predicate, such as std::is_same is evaluated at compile time
and returns a boolean. Consequently, the implicit conversions from bool (lines 19 and 22) are possible,
but not the commented-out conversions from int and C-string (lines 23 and 24).

4.6.2 Non-Type Template Parameters (NTTP)

C++ supports non-types as template parameters. Essentially non-types could be

• integers and enumerators

• pointers to objects, to functions and to attributes of a class

• lvalue references

• std::nullptr_t

Typical Non-Type Template Parameter
When I ask the students in my class if they ever used a non-type as template parameter
they say: No! Of course, I answer my tricky question and show an often-used example for
non-type template parameters:

Defining a std::array
std::array<int, 5> myVec;

Constant 5 is a non-type used as a template argument.

Since the first C++-standard C++98, there has been an ongoing discussion in the C++ community
about supporting floating-point template parameters. Now, we have them and more: C++20 supports
floating-points, literal types, and string literals as non-types.

4.6.2.1 Floating-Point Typs

The following program uses floating-point types as non-type template parameters.

⁶⁶https://en.cppreference.com/w/cpp/header/type_traits

https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/header/type_traits

Core Language 184

Floating-point types as non-type template parameters

1 // nonTypeTemplateParameterFloating.cpp

2

3 #include <iostream>

4 #include <typeinfo>

5

6 template <double d>

7 auto getDouble() {

8 return d;

9 }

10

11 template <auto NonType>

12 auto getNonType() {

13 return NonType;

14 }

15

16 int main() {

17

18 std::cout << '\n';

19

20 auto d1 = getDouble<5.5>();

21 auto d2 = getDouble<6.5>();

22

23 auto i = getNonType<2017>();

24 std::cout << i << " " << typeid(i).name() << '\n';

25

26 auto f = getNonType<2020.1f>();

27 std::cout << f << " " << typeid(f).name() << '\n';

28

29 auto d = getNonType<2020.2>();

30 std::cout << d << " " << typeid(d).name() << '\n';

31

32 std::cout << '\n';

33

34 }

The function template getDouble (line 6) only accepts double values. I want to emphasize that each call
of the function template getDouble (lines 21 and 22) creates a new function getDouble. This function is
a full specialization for the given double value. Since C++17, you can use a auto as non-type template
parameter. Consequently, line 23 is valid with C++17. With C++20, you can also use auto for floating-
point types. The following program visualizes the type deduction of the C++20 compiler. The compiler
deduces the type int (line 24), float (line 27), and double (line 30) for the non-type template parameter.

Core Language 185

Floating-point types as non-type template parameters

4.6.2.2 Literal Typs

Literal Types with the following two properties:

• all base classes and non-static data members are public and non-mutable

• the types of all base classes and non-static data members are structural types or arrays of these

A literal type must have a constexpr constructor.

Literal types as non-type template parameters

1 // nonTypeTemplateParameterLiteral.cpp

2

3 struct ClassType {

4 constexpr ClassType(int) {}

5 };

6

7 template <ClassType cl>

8 auto getClassType() {

9 return cl;

10 }

11

12 int main() {

13

14 auto c1 = getClassType<ClassType(2020)>();

15

16 }

Since C++20, strings can be used as non-type template arguments.

4.6.2.3 String Literals

The class StringLiteral has a constexpr constructor.

Core Language 186

String literals as non-type template parameters

1 // nonTypeTemplateParameterString.cpp

2

3 #include <algorithm>

4 #include <iostream>

5

6 template <int N>

7 class StringLiteral {

8 public:

9 constexpr StringLiteral(char const (&str)[N]) {

10 std::copy(str, str + N, data);

11 }

12 char data[N];

13 };

14

15 template <StringLiteral str>

16 class ClassTemplate {};

17

18 template <StringLiteral str>

19 void FunctionTemplate() {

20 std::cout << str.data << '\n';

21 }

22

23 int main() {

24

25 std::cout << '\n';

26

27 ClassTemplate<"string literal"> cls;

28 FunctionTemplate<"string literal">();

29

30 std::cout << '\n';

31

32 }

StringLiteral is a literal type and, therefore, can be used as non-type template parameter for
ClassTemplate (line 15) and FunctionTemplate (line 18). The constexpr constructor (line 9) takes a
C-string as an argument.

String literals as non-type template parameters

You may wonder why we need string literals as non-type template parameter?

Core Language 187

Compile-Time Regular Expressions
A very impressive use-case for string literals is compile-time parsing of regular expres-
sions⁶⁷. There is already a proposal for C++23 in the pipeline: P1433R0: Compile-Time
Regular Expressions⁶⁸. Hana Dusíková as the author of the proposal motivates compile-
time regular expressions in C++: “The current std::regex design and implementation
[regular expression library⁶⁹] are slow, mostly because the RE [regular expression] pattern
is parsed and compiled at run time. Users often don’t need a runtime RE [regular
expression] parser engine as the pattern is known during compilation in many common
use cases. I think this breaks C++’s promise of ’don’t pay for what you don’t use’.

If the RE [regular expression] is known at compile time, the pattern should be checked
during the compilation. The design of std::regex doesn’t allow for this[compile-time
evaluation,] as the RE input is a run-time string and syntax errors are reported as
exceptions.”.

Distilled Information
• A conditionally explicit constructor allows it to control explicitly for a generic
constructor which types can be used in a constructor.

• C++20 supports further floating-point types, literal types, and string literals as non-
type template parameters.

⁶⁷https://github.com/hanickadot/compile-time-regular-expressions
⁶⁸http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1433r0.pdf
⁶⁹https://en.cppreference.com/w/cpp/regex

https://github.com/hanickadot/compile-time-regular-expressions
https://github.com/hanickadot/compile-time-regular-expressions
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1433r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1433r0.pdf
https://en.cppreference.com/w/cpp/regex
https://github.com/hanickadot/compile-time-regular-expressions
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1433r0.pdf
https://en.cppreference.com/w/cpp/regex

Core Language 188

4.7 Lambda Improvements

Cippi slides down the slide

With C++20, lambda expressions support template parameters and hence concepts can be default-
constructed and support copy assignment when they have no state. Furthermore, a syntactical
restriction is gone: pack expansion in init-capture. Additionally, lambda expressions can be used in
unevaluated contexts. With C++20, they detect when you implicitly copy the this pointer. That means
a significant cause of undefined behavior with lambdas is gone.

Let’s start with template parameters for lambdas.

4.7.1 Template Parameter for Lambdas

Admittedly, the differences between typed lambdas (C++11), generic lambdas (C++14), and template
lambdas (template parameter for lambdas) in C++20 are subtle.

Core Language 189

Typed lambdas, generic lambdas, and template lambdas

1 // templateLambda.cpp

2

3 #include <iostream>

4 #include <string>

5 #include <vector>

6

7 auto sumInt = [](int fir, int sec) { return fir + sec; };

8 auto sumGen = [](auto fir, auto sec) { return fir + sec; };

9 auto sumDec = [](auto fir, decltype(fir) sec) { return fir + sec; };

10 auto sumTem = []<typename T>(T fir, T sec) { return fir + sec; };

11

12 int main() {

13

14 std::cout << '\n';

15

16 std::cout << "sumInt(2000, 11): " << sumInt(2000, 11) << '\n';

17 std::cout << "sumGen(2000, 11): " << sumGen(2000, 11) << '\n';

18 std::cout << "sumDec(2000, 11): " << sumDec(2000, 11) << '\n';

19 std::cout << "sumTem(2000, 11): " << sumTem(2000, 11) << '\n';

20

21 std::cout << '\n';

22

23 std::string hello = "Hello ";

24 std::string world = "world";

25 // std::cout << "sumInt(hello, world): " << sumInt(hello, world) << '\n';

26 std::cout << "sumGen(hello, world): " << sumGen(hello, world) << '\n';

27 std::cout << "sumDec(hello, world): " << sumDec(hello, world) << '\n';

28 std::cout << "sumTem(hello, world): " << sumTem(hello, world) << '\n';

29

30

31 std::cout << '\n';

32

33 std::cout << "sumInt(true, 2010): " << sumInt(true, 2010) << '\n';

34 std::cout << "sumGen(true, 2010): " << sumGen(true, 2010) << '\n';

35 std::cout << "sumDec(true, 2010): " << sumDec(true, 2010) << '\n';

36 // std::cout << "sumTem(true, 2010): " << sumTem(true, 2010) << '\n';

37

38 std::cout << '\n';

39

40 }

Before I show the presumably astonishing output of the program, I want to compare the four lambdas.
• sumInt

Core Language 190

– C++11
– Typed lambda
– Accepts only types convertible to int

• sumGen

– C++14
– Generic lambda
– Accepts all types

• sumDec

– C++14
– Generic lambda
– The second type must be convertible to the first type

• sumTem

– C++20
– Template lambda
– The first type and the second type must be identical

What does this mean for template arguments with different types? Of course, each lambda accepts
int (lines 16 - 19), and the typed lambda sumInt does not accept strings (line 25).

Invoking the lambdas with the bool true and the int 2010 may be surprising (lines 33 - 36).
• sumInt returns 2011 because true is an integral, promoted to int.

• sumGen returns 2011 because true is an integral, promoted to int. There is a subtle difference
between sumInt and sumGen, which I will present in a few lines.

• sumDec returns 2. Why? The type of the second parameter sec becomes the type of the first
parameter fir: thanks to decltype(fir) sec, the compiler deduces the type of fir and makes
it the type of sec. Consequently, 2010 is converted to true. In the expression fir + sec, fir is
integral promoted to 1. Finally, the result is 2.

• sumTem is not valid.

The subtle differences between typed lambdas, generic lambdas, and template lambdas

Amore typical use case for template lambdas is using of containers in lambdas. The following program
presents three lambdas accepting a container. Each lambda returns the size of the container.

Core Language 191

Three lambdas accepting a container

1 // templateLambdaVector.cpp

2

3 #include <concepts>

4 #include <deque>

5 #include <iostream>

6 #include <string>

7 #include <vector>

8

9 auto lambdaGeneric = [](const auto& container) { return container.size(); };

10 auto lambdaVector = []<typename T>(const std::vector<T>& vec) { return vec.size(); };

11 auto lambdaVectorIntegral = []<std::integral T>(const std::vector<T>& vec) {

12 return vec.size();

13 };

14

15 int main() {

16

17

18 std::cout << '\n';

19

20 std::deque deq{1, 2, 3};

21 std::vector vecDouble{1.1, 2.2, 3.3, 4.4};

22 std::vector vecInt{1, 2, 3, 4, 5};

23

24 std::cout << "lambdaGeneric(deq): " << lambdaGeneric(deq) << '\n';

25 // std::cout << "lambdaVector(deq): " << lambdaVector(deq) << '\n';

26 // std::cout << "lambdaVectorIntegral(deq): "

27 // << lambdaVectorIntegral(deq) << '\n';

28

29 std::cout << '\n';

30

31 std::cout << "lambdaGeneric(vecDouble): " << lambdaGeneric(vecDouble) << '\n';

32 std::cout << "lambdaVector(vecDouble): " << lambdaVector(vecDouble) << '\n';

33 // std::cout << "lambdaVectorIntegral(vecDouble): "

34 // << lambdaVectorIntegral(vecDouble) << '\n';

35

36 std::cout << '\n';

37

38 std::cout << "lambdaGeneric(vecInt): " << lambdaGeneric(vecInt) << '\n';

39 std::cout << "lambdaVector(vecInt): " << lambdaVector(vecInt) << '\n';

40 std::cout << "lambdaVectorIntegral(vecInt): "

41 << lambdaVectorIntegral(vecInt) << '\n';

42

43 std::cout << '\n';

Core Language 192

44

45 }

Function lambdaGeneric (line 9) can be invoked with any data type having a member function
size(). Function lambdaVector (line 10) is more specific: it only accepts a std::vector. Function
lambdaVectorIntegral (line 11) uses the C++20 concept std::integral. Consequently, it only accepts
a std::vector using integral types such as int. To use the concept std::integral, I have to include
the header <concepts>. I assume the small program is self-explanatory.

Lambdas, accepting a container and a std::vector

Class Template Argument Deduction
There is one feature in the program templateLambdaVector.cpp that you have probably
missed. Since C++17, the compiler can deduce the type of a class template from its
arguments (lines 20 - 22). Consequently, instead of the verbose std::vector<int> myVec{1,

2, 3}, you can simply write std::vector myVec{1, 2, 3}.

4.7.2 Detection of the Implicit Copy of the this Pointer

The C++20 compiler detects when you implicitly copy the this pointer. Implicitly capturing the this
pointer by copy can cause undefined behavior. Undefined behavior essentially means that there are
no guarantees about the program’s behavior, such as for the following:

Core Language 193

Implicitly capturing the this pointer by copy

1 // lambdaCaptureThis.cpp

2

3 #include <iostream>

4 #include <string>

5

6 struct LambdaFactory {

7 auto foo() const {

8 return [=] { std::cout << s << '\n'; };

9 }

10 std::string s = "LambdaFactory";

11 ~LambdaFactory() {

12 std::cout << "Goodbye" << '\n';

13 }

14 };

15

16 auto makeLambda() {

17 LambdaFactory lambdaFactory; \

18

19 return lambdaFactory.foo();

20 }

21

22

23 int main() {

24

25 std::cout << '\n';

26

27 auto lam = makeLambda();

28 lam();

29

30 std::cout << '\n';

31

32 }

The compilation of the program works as expected, but this does not hold for the execution of the
program.

Core Language 194

Segmentation fault due to undefined behavior

Do you spot the issue in the program lambdaCaptureThis.cpp? The member function foo (line 7)
returns the lambda [=] { std::cout << s << '\n'; } having an implicit copy of the this pointer.
This implicit copy is no issue in (line 17), but it becomes an issue with the end of the scope. The end
of the scope means the end of the lifetime of the local lambda (line 19). Consequently, the call lam()
(line 28) triggers undefined behavior.

A C++20 compiler must, in this case, issue a warning.

C++20 diagnoses a warning

The last two lambdas features of C++20 are quite handy when you combine them: Lambdas in C++20
can be default-constructed and support copy-assignment when they have no state. Additionally,
lambdas can be used in unevaluated contexts.

4.7.3 Lambdas in an Unevaluated Context and Stateless Lambdas
can be Default-Constructed and Copy-Assigned

Admittedly, the title of this section contains two terms that may be new to you: unevaluated context
and stateless lambda. Let me start with unevaluated context.

4.7.3.1 Unevaluated Context

The following code snippet has a function declaration and a function definition.

Core Language 195

Declaration and definition of a function

int add1(int, int); // declaration

int add2(int a, int b) { return a + b; } // definition

Function add1 is declared, while add2 is defined. That means, if you use add1 in an evaluated context,
for example, by invoking it, you get a link-time error. The key observation is that you can use add1 in
unevaluated contexts, such as typeid⁷⁰ or decltype⁷¹. Both operators accept unevaluated operands.

Unevaluated context

1 // unevaluatedContext.cpp

2

3 #include <iostream>

4 #include <typeinfo> // typeid

5

6 int add1(int, int); // declaration

7 int add2(int a, int b) { return a + b; } // definition

8

9 int main() {

10

11 std::cout << '\n';

12

13 std::cout << "typeid(add1).name(): " << typeid(add1).name() << '\n';

14

15 decltype(*add1) add = add2;

16

17 std::cout << "add(2000, 20): " << add(2000, 20) << '\n';

18

19 std::cout << '\n';

20

21 }

typeid(add1).name() (line 13) returns a string representation of the type and decltype (line 15) deduces
the type of its argument.

⁷⁰https://en.cppreference.com/w/cpp/language/typeid
⁷¹https://en.cppreference.com/w/cpp/language/decltype

https://en.cppreference.com/w/cpp/language/typeid
https://en.cppreference.com/w/cpp/language/decltype
https://en.cppreference.com/w/cpp/language/typeid
https://en.cppreference.com/w/cpp/language/decltype

Core Language 196

Use of an unevaluated context

4.7.3.2 Stateless Lambda

A stateless lambda is a lambda that captures nothing from its environment. Or, to put it another way,
a stateless lambda is a lambda where the initial brackets [] in the lambda definition are empty. For
example, the lambda expression auto add = [](int a, int b) { return a + b; }; is stateless.

4.7.3.3 Adapting Associative Containers of the Standard Template Library

Before I show you the example, I must add a few remarks. Container std::set and all other
ordered associative containers from the Standard Template Library (std::map, std::multiset, and
std::multimap) use the function object std::less to sort the keys. std::less sorts all keys lexico-
graphically in ascending order by default. The declaration of std::set⁷² shows the implicit usage of
std::less.

Declaration of std::set

template<

class Key,

class Compare = std::less<Key>,

class Allocator = std::allocator<Key>

> class set;

Now, let me play with the ordering.

⁷²https://en.cppreference.com/w/cpp/container/set

https://en.cppreference.com/w/cpp/container/set
https://en.cppreference.com/w/cpp/container/set

Core Language 197

Lambdas used in an unevaluated context
1 // lambdaUnevaluatedContext.cpp

2

3 #include <cmath>

4 #include <iostream>

5 #include <memory>

6 #include <set>

7 #include <string>

8

9 template <typename Cont>

10 void printContainer(const Cont& cont) {

11 for (const auto& c: cont) std::cout << c << " ";

12 std::cout << "\n";

13 }

14

15 int main() {

16

17 std::cout << '\n';

18

19 std::set<std::string> set1 = {"scott", "Bjarne", "Herb", "Dave", "michael"};

20 printContainer(set1);

21

22 using SetDecreasing = std::set<std::string,

23 decltype([](const auto& l, const auto& r) {

24 return l > r;

25 })>;

26 SetDecreasing set2 = {"scott", "Bjarne", "Herb", "Dave", "michael"};

27 printContainer(set2);

28

29 using SetLength = std::set<std::string,

30 decltype([](const auto& l, const auto& r) {

31 return l.size() < r.size();

32 })>;

33 SetLength set3 = {"scott", "Bjarne", "Herb", "Dave", "michael"};

34 printContainer(set3);

35

36 std::cout << '\n';

37

38 std::set<int> set4 = {-10, 5, 3, 100, 0, -25};

39 printContainer(set4);

40

41 using setAbsolute = std::set<int, decltype([](const auto& l, const auto& r) {

42 return std::abs(l)< std::abs(r);

43 })>;

44 setAbsolute set5 = {-10, 5, 3, 100, 0, -25};

Core Language 198

45 printContainer(set5);

46

47 std::cout << "\n\n";

48

49 }

set1 (line 19) and set4 (line 38) sort their keys in ascending order. Each of set2 (line 26), set3 (line
33), and set5 (line 44) sorts its keys in an uniquely manner, using a lambda in an unevaluated context.
The using keyword (line 22) declares a type alias, which is used in the following line (line 26) to define
the sets. Creating the std::set causes the call of the default constructor of the stateless lambda.

Here is the output of the program.

Use of a lambda in an unevaluated context

When you study the output of the program, you may be surprised. The special set3, which uses the
lambda [](const auto& l, const auto& r){ return l.size() < r.size(); } as a predicate, ignores
the name Dave. The reason is simple. Dave has the same size as Herb, which was added first. std::set
supports unique keys, and the keys in this case are identical using the special predicate. If I had used
std::multiset, this wouldn’t have happened.

4.7.4 consteval Lambdas

C++20 support consteval in C++20. consteval lambdas means that the lambda is an immediate
function executed at compile time.

A consteval lambda

1 // constevalLambda.cpp

2

3 #include <algorithm>

4 #include <iostream>

5 #include <vector>

6

7 int main() {

8

9 std::cout << '\n';

10

Core Language 199

11 auto constevalLambda = [] () consteval {

12 std::vector myVec = {1, 2, 4, 3};

13 std::sort(myVec.begin(), myVec.end()) ;

14 return myVec.back();

15 };

16

17 std::cout << "constevalLambda(): " << constevalLambda() << '\n';

18

19 std::cout << '\n';

20

21 }

The lambda constevalLambda (line 11) is declared as consteval. Consequentially, the lambda call (line
17) is performed at compile time.

A consteval lambda

Empty Parameter Clause
When you declare the lambda as consteval, the redundant empty parameter clause []

() consteval is still in C++20 required. With C++23, the restriction is gone and you can
define the consteval lambda without the parameter clause:

A consteval lambda with empty parameter lause
auto constevalLambda = [] consteval {

std::vector myVec = {1, 2, 4, 3};

std::sort(myVec.begin(), myVec.end()) ;

return myVec.back();

};

4.7.5 Pack Expansion in Init-Capture

C++20 fixes a syntax restriction of lambda expressions: pack expansions in init-capture. Lambda
expression in C++ supports parameter packs in the capture clause. Since C++14, generalized captures
allow it to init-capture variables from the surrounding scope and use them in a lambda.

The following short code examples exemplify both features.

Core Language 200

Parameter Packs in the Capture Clause

// parameterPacksLambda.cpp

void hello(int, double, bool) { }

template<typename... Args>

void func(Args... args) {

auto newFunc = [args...] { return hello(args...); };

newFunc();

}

int main() {

func(5, 5.5, true);

}

Generalized Captures

// generalizedCaptures.cpp

#include <memory>

#include <utility>

int main() {

auto uniq = std::make_unique<int>(5);

auto lamb = [newUniq = std::move(std::move(uniq))] {

int val = *newUniq;

};

lamb();

}

Combining both features was not possible before C++20. Since C++20, the asymmetry is gone.

Core Language 201

Pack Expansion in Init-Capture

1 // packExpansionInitCapture.cpp

2

3 #include <iostream>

4 #include <memory>

5 #include <utility>

6

7 template<typename Callable, typename ... Args>

8 auto packExpansion(Callable call, Args ... args) {

9 return [call, ...args = std::move(args)] {

10 return call(args...);

11 };

12 }

13

14 void func(int fir, double sec, bool thi) {

15 std::cout << std::boolalpha;

16 std::cout << "fir: " << fir << '\n';

17 std::cout << "sec: " << sec << '\n';

18 std::cout << "thi: " << thi << '\n';

19 }

20

21 int main() {

22

23 std::cout << '\n';

24

25 auto lamb1 = packExpansion(func, 1, 2, true);

26 lamb1();

27

28 std::cout << '\n';

29

30 }

In line 10, I apply pack expansion in init-capture. Due to syntactical restrictions, the ellipsis is before
args: [call, ...args = std::move(args)].

Core Language 202

Pack expansion in init-capture

Distilled Information
• With C++20, lambdas can have template parameters. Therefore, a significant cause
of undefined behavior with lambdas is gone.

• Lambdas detect when the this pointer is implicitly referenced.

• You can use lambda expressions in unevaluated contexts.

• Lambdas can be consteval and allow pack expension in the init-capture.

Core Language 203

4.8 New Attributes

Cippi is ready for the race

With C++20, we get new and improved attributes such as [[nodiscard("reason")]], [[likely]],
[[unlikely]], and [[no_unique_address]]. In particular, [[nodiscard("reason")]] can be used to
explicitly express the intent of our interface.

Core Language 204

Attributes
Attributes allow the programmer to express additional constraints on the source code or
give the compiler additional optimization possibilities. You can use attributes for types,
variables, functions, names, and code blocks. When you use more than one attribute, you
can apply each one after the other (func1) or all together in one attribute, separated by
commas (func2):

Use of attributes
1 [[attribute1]] [[attribute2]] [[attribute3]]

2 int func1();

3

4 [[attribute1, attribute2, attribute3]]

5 int func2();

Attributes can be implementation-defined language extensions or standard attributes,
such as the following list of attributes C++11 - C++17 already have.

• [[noreturn]] (C++11): indicates that the function does not return

• [[carries_dependency]] (C++11): indicates a dependency chain in release-consume
ordering⁷³

• [[deprecated]] (C++14): indicates that you should not use a name

• [[fallthrough]] (C++17): indicates that a fallthrough in a case branch is intentional

• [[maybe_unused]] (C++17): suppresses compiler warning about used names

4.8.1 [[nodiscard("reason")]]

C++17 introduced the new attribute [[nodiscard]] without a reason. C++20 added the possibility to
add a message to the attribute.

Discarding objects and error codes

1 // withoutNodiscard.cpp

2

3 #include <utility>

4

5 struct MyType {

6

7 MyType(int, bool) {}

8

9 };

10

⁷³https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Consume_ordering

https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Consume_ordering
https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Consume_ordering
https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Consume_ordering

Core Language 205

11 template <typename T, typename ... Args>

12 T* create(Args&& ... args) {

13 return new T(std::forward<Args>(args)...);

14 }

15

16 enum class ErrorCode {

17 Okay,

18 Warning,

19 Critical,

20 Fatal

21 };

22

23 ErrorCode errorProneFunction() { return ErrorCode::Fatal; }

24

25 int main() {

26

27 int* val = create<int>(5);

28 delete val;

29

30 create<int>(5);

31

32 errorProneFunction();

33

34 MyType(5, true);

35

36 }

Thanks to perfect forwarding and parameter packs, the factory function create (line 11) can call any
constructor and return a heap-allocated object.

The program has many issues. First, line 30 has a memory leak, because the int created on the heap is
never deleted. Second, the error code of the function errorProneFunction (line 32) is not checked.
Lastly, the constructor call MyType(5, true) (line 34) creates a temporary, which is created and
immediately destroyed. Thast is at least a waste of resources. Now, [[nodiscard]] comes into play.

[[nodiscard]] can be used in a function declaration, enumeration declaration, or class declaration.
If you discard the return value from a function declared as [[nodiscard]], the compiler should issue
a warning. The same holds for a function returning by copy an enumeration or a class declared as
[[nodiscard]]. If you still want to ignore the return value, you can cast it to void.

Let us see what this means. In the following example, I use the C++17 syntax of the attribute
[[nodiscard]].

Core Language 206

Use of the attribute [[nodiscard]] in C++17

1 // nodiscard.cpp

2

3 #include <utility>

4

5 struct MyType {

6

7 MyType(int, bool) {}

8

9 };

10

11 template <typename T, typename ... Args>

12 [[nodiscard]]

13 T* create(Args&& ... args){

14 return new T(std::forward<Args>(args)...);

15 }

16

17 enum class [[nodiscard]] ErrorCode {

18 Okay,

19 Warning,

20 Critical,

21 Fatal

22 };

23

24 ErrorCode errorProneFunction() { return ErrorCode::Fatal; }

25

26 int main() {

27

28 int* val = create<int>(5);

29 delete val;

30

31 create<int>(5);

32

33 errorProneFunction();

34

35 MyType(5, true);

36

37 }

The factory function create (line 13) and the enum ErrorCode (line 17) are declared as [[nodiscard]].
Consequently, the calls in lines 31 and 33 create warnings.

Core Language 207

A C++17 compiler complains about a discarded object and a discarded error code

Way better, but the program still has a few issues. [[nodiscard]] cannot be used for functions such
as a constructor returning nothing. Therefore, the temporary MyType(5, true) (line 35) is still created
without a warning. Second, the error messages are too general. As a user of the functions, I want to
have a reason why discarding the result is an issue.

Both issues can be solvedwith C++20. Constructors can be declared as [[nodiscard]], and thewarning
can have additional information.

Use of the attribute [[nodiscard]] in C++20

1 // nodiscardString.cpp

2

3 #include <utility>

4

5 struct MyType {

6

7 [[nodiscard("Implicit destroying of temporary MyInt.")]] MyType(int, bool) {}

8

9 };

10

11 template <typename T, typename ... Args>

12 [[nodiscard("You have a memory leak.")]]

13 T* create(Args&& ... args){

14 return new T(std::forward<Args>(args)...);

15 }

16

17 enum class [[nodiscard("Don't ignore the error code.")]] ErrorCode {

18 Okay,

19 Warning,

20 Critical,

21 Fatal

22 };

23

24 ErrorCode errorProneFunction() { return ErrorCode::Fatal; }

Core Language 208

25

26 int main() {

27

28 int* val = create<int>(5);

29 delete val;

30

31 create<int>(5);

32

33 errorProneFunction();

34

35 MyType(5, true);

36

37 }

Now, the user of the functions gets specific messages. Here is the output of the Microsoft compiler.

A C++20 compiler complains about discarded objects and error codes

Core Language 209

The issue with std::async

Many existing functions in C++ could benefit from the [[nodiscard]] attribute. An ideal
candidate is the function std::async. When you don’t use the return value of std::asnyc,
what you intended as an asynchronous std::async call implicitly becomes synchronous.
What should have run in a separate thread behaves instead as a blocking function call.
Read more about the counterintuitive behavior of std::async in my post “The Special
Futures”⁷⁴.

While studying the [[nodiscard]] syntax on cppreference.com/nodiscard⁷⁵, I noticed that
the declarations of std::async⁷⁶ changed with C++20. Here is one:

std::async uses in C++20 the attribute [[nodiscard]]

template<class Function, class... Args>

[[nodiscard]]

std::future<std::invoke_result_t<std::decay_t<Function>,

std::decay_t<Args>...>>

async(Function&& f, Args&&... args);

The return-type of promise std::async, is declared as [[nodiscard]] in C++20.

The next two attributes [[likely]] and [[unlikely]] are about optimization.

4.8.2 [[likely]] and [[unlikely]]

Proposal P0479R5⁷⁷ for the attributes [[likely]] and [[unlikely]] is the shortest proposal I know
of. To give you an idea, this is an interesting note to the proposal. “The use of the likely attribute is
intended to allow implementations to optimize for the case where paths of execution including it are
arbitrarily more likely than any alternative path of execution that does not include such an attribute
on a statement or label. The use of the unlikely attribute is intended to allow implementations to
optimize for the case where paths of execution including it are arbitrarily more unlikely than any
alternative path of execution that does not include such an attribute on a statement or label. A path
of execution includes a label if and only if it contains a jump to that label. Excessive usage of either of
these attributes is liable to result in performance degradation.”

In summary, both attributes allow for giving the optimizer a hint regarding the path of execution
expected to be more or less likely.

⁷⁴https://www.modernescpp.com/index.php/the-special-futures
⁷⁵https://en.cppreference.com/w/cpp/language/attributes/nodiscard
⁷⁶https://en.cppreference.com/w/cpp/thread/async
⁷⁷http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0479r5.html

https://www.modernescpp.com/index.php/the-special-futures
https://www.modernescpp.com/index.php/the-special-futures
https://en.cppreference.com/w/cpp/language/attributes/nodiscard
https://en.cppreference.com/w/cpp/thread/async
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0479r5.html
https://www.modernescpp.com/index.php/the-special-futures
https://en.cppreference.com/w/cpp/language/attributes/nodiscard
https://en.cppreference.com/w/cpp/thread/async
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0479r5.html

Core Language 210

Give the optimizer a hint with [[likely]]

for(size_t i=0; i < v.size(); ++i){

if (v[i] < 0) [[likely]] sum -= sqrt(-v[i]);

else sum += sqrt(v[i]);

}

The story of optimization goes on with the new attribute [[no_unique_address]]. This time the
optimization addresses space instead of execution time.

4.8.3 [[no_unique_address]]

[[no_unique_address]] expresses that this data member of a class need not have an address distinct
from all other non-static data members of its class. Consequently, if the member has an empty type,
the compiler can optimize it to occupy no memory.

The following program exemplifies the usage of the new attribute.

Use of the attribute [[no_unique_address]]

1 // uniqueAddress.cpp

2

3 #include <iostream>

4

5 struct Empty {};

6

7 struct NoUniqueAddress {

8 int d{};

9 [[no_unique_address]] Empty e{};

10 };

11

12 struct UniqueAddress {

13 int d{};

14 Empty e{};

15 };

16

17 int main() {

18

19 std::cout << '\n';

20

21 std::cout << std::boolalpha;

22

23 std::cout << "sizeof(int) == sizeof(NoUniqueAddress): "

24 << (sizeof(int) == sizeof(NoUniqueAddress)) << '\n';

25

Core Language 211

26 std::cout << "sizeof(int) == sizeof(UniqueAddress): "

27 << (sizeof(int) == sizeof(UniqueAddress)) << '\n';

28

29 std::cout << '\n';

30

31 NoUniqueAddress NoUnique;

32

33 std::cout << "&NoUnique.d: " << &NoUnique.d << '\n';

34 std::cout << "&NoUnique.e: " << &NoUnique.e << '\n';

35

36 std::cout << '\n';

37

38 UniqueAddress unique;

39

40 std::cout << "&unique.d: " << &unique.d << '\n';

41 std::cout << "&unique.e: " << &unique.e << '\n';

42

43 std::cout << '\n';

44

45 }

The class NoUniqueAddress has a size equal to int (line 7), but not the class UniqueAddress (line 12).
The members d and e of UniqueAddress (lines 40 and 41) have different addresses but not the members
of the class UniqueAddress (lines 33 and 34).

Use of the class NoUniqueAddress and UniqueAddress

Core Language 212

Distilled Information
• C++20 supports a few new attributes. [[nodiscard("reason")]] can be used in
various contexts to check if the return value of a function is ignored.

• [[likely]] and [[unlikely]] allows the programmer to give the compiler a hint
which code path is more likely to be executed.

• Thanks to the attribute [[no_unique_address]], data members of a class can have
the same address.

Core Language 213

4.9 Further Improvements

Cippi goes up

This section presents the remaining small improvements in the C++20 core language.

4.9.1 volatile

The abstract in the proposal P1152R0⁷⁸ gives a short description of the changes that volatile

undergoes: “The proposed deprecation preserves the useful parts of volatile, and removes the dubious
/ already broken ones. This paper aims at breaking at compile-time code which is today subtly broken
at run time or through a compiler update.”

Before I dive into volatile, I want to answer the crucial question: When should you use volatile? A
note from the C++ standard says that “volatile is a hint to the implementation to avoid aggressive
optimization involving the object because the value of the object might be changed by means
undetectable by an implementation.” That means that for a single thread of execution, the compiler
must perform load or store operations in the executable as often as they occur in the source
code. volatile operations, therefore, cannot be eliminated or reordered. Consequently, you can use
volatile objects for communication with a signal handler but not for communication with another
thread of execution.

Before I show you what semantics of volatile are preserved, I want to start with the deprecated
features:

1. Deprecate volatile compound assignment, and pre/post increment/decrement

2. Deprecate volatile qualification of function parameters or return types

3. Deprecate volatile qualifiers in a structured binding declaration

⁷⁸http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1152r0.html

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1152r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1152r0.html

Core Language 214

If you want to know all the sophisticated details, I strongly suggest you watch the CppCon 2019
talk “Deprecating volatile”⁷⁹ from JF Bastien. Here are a few examples from his talk. Additionally, I
fixed a few typos in the source code. The numbers in the following code snippets refer to the three
deprecations listed earlier.

Deprecated use case for volatile

// (1)

int neck, tail;

volatile int brachiosaur;

brachiosaur = neck; // OK, a volatile store

tail = brachiosaur; // OK, a volatile load

// deprecated: does this access brachiosaur once or twice

tail = brachiosaur = neck;

// deprecated: does this access brachiosaur once or twice

brachiosaur += neck;

// OK, a volatile load, an addition, a volatile store

brachiosaur = brachiosaur + neck;

###

// (2)

// deprecated: a volatile return type has no meaning

volatile struct amber jurassic();

// deprecated: volatile parameters aren't meaningful to the

// caller, volatile only applies within the function

void trex(volatile short left_arm, volatile short right_arm);

// OK, the pointer isn't volatile, the data it points to is

void fly(volatile struct pterosaur* pterandon);

##

(3)

struct linhenykus { volatile short forelimb; };

void park(linhenykus alvarezsauroid) {

// deprecated: does the binding copy the forelimbs?

auto [what_is_this] = alvarezsauroid; // structured binding

// ...

}

⁷⁹https://www.youtube.com/watch?v=KJW_DLaVXIY

https://www.youtube.com/watch?v=KJW_DLaVXIY
https://www.youtube.com/watch?v=KJW_DLaVXIY

Core Language 215

volatile and Multithreading Semantics
volatile is typically used to denote objects that can change independently of the regular
program flow. These are, for example, objects in embedded programming that represent an
external device (memory-mapped I/O). Because these objects can change independently of
the regular program flow and their value is directly written to mainmemory, no optimized
storing in caches takes place. In other words, volatile avoids aggressive optimization
and has no multithreading semantics.

4.9.2 Range-based for loop with Initializers

With C++20, you can directly use a range-based for loop with an initializer.

Range-based for loop with initializer

1 // rangeBasedForLoopInitializer.cpp

2

3 #include <iostream>

4 #include <string>

5 #include <vector>

6

7 int main() {

8

9 for (auto vec = std::vector{1, 2, 3}; auto v : vec) {

10 std::cout << v << " ";

11 }

12

13 std::cout << "\n\n";

14

15 for (auto initList = {1, 2, 3}; auto e : initList) {

16 e *= e;

17 std::cout << e << " ";

18 }

19

20 std::cout << "\n\n";

21

22 using namespace std::string_literals;

23 for (auto str = "Hello World"s; auto c: str) {

24 std::cout << c << " ";

25 }

26

27 std::cout << '\n';

28

29 }

Core Language 216

The range-based for loop uses in line 9 a std::vector, in line 15 a std::initializer_list, and line
23 a std::string. Furthermore, in line 9 and line 15 I apply automatically type deduction for class
templates, which we had since C++17. Instead of std::vector<int>, I just write std::vector.

Use of a range-based for loop with initializers

4.9.3 Virtual constexpr function

A constexpr function has the potential to run at compile time but can also be executed at run time.
Consequently, you can make a constexpr function with C++20 virtual. Both directions are possible.
A virtual constexpr function can override a non-constexpr function, and a virtual non-constexpr
function can override a virtual constexpr function. I want to emphasize that override implies that the
relevant function of a base class is virtual.

Program virtualConstexpr.cpp shows both combinations:

Virtual constexpr functions

1 // virtualConstexpr.cpp

2

3 #include <iostream>

4

5 struct X1 {

6 virtual int f() const = 0;

7 };

8

9 struct X2: public X1 {

10 constexpr int f() const override { return 2; }

11 };

12

13 struct X3: public X2 {

14 int f() const override { return 3; }

15 };

16

17 struct X4: public X3 {

18 constexpr int f() const override { return 4; }

19 };

20

21 int main() {

22

Core Language 217

23 X1* x1 = new X4;

24 std::cout << "x1->f(): " << x1->f() << '\n';

25

26 X4 x4;

27 X1& x2 = x4;

28 std::cout << "x2.f(): " << x2.f() << '\n';

29

30 }

Line 24 uses virtual dispatch (late binding) via a pointer, line 28 uses virtual dispatch via reference.

Use of virtual constexpr functions

4.9.4 The new Character Type of UTF-8 Strings: char8_t

In addition to the character types char16_t and char32_t from C++11, C++20 gets the new character
type char8_t. Type char8_t is large enough to represent any UTF-8 code unit (8 bits). It has the same
size, signedness, and alignment as an unsigned char, but is a distinct type.

char versus char8_t

A char has one byte. In contrast to a char8_t, the number of bits of a byte and hence of a
char is not defined. Nearly all implementations use 8 bits for a byte. The std::string is
an alias for a std::basic_string of chars.

std::string and a std::string literal
std::string std::basic_string<char>

"Hello World"s

Consequently, C++20 has a new typedef for the character type char8_t (line 1) and a new UTF-8 string
literal (line 2).

A new char8_t character type and an UTF-8 string literal

std::u8string std::basic_string<char8_t>

u8"Hello World"

The program char8Str.cpp shows the straightforward usage of the new character type char8_t.

Core Language 218

Intuitive usage for the new character type char8_t

1 // char8Str.cpp

2

3 #include <iostream>

4 #include <string>

5

6 int main() {

7

8 const char8_t* char8Str = u8"Hello world";

9 std::basic_string<char8_t> char8String = u8"helloWorld";

10 std::u8string char8String2 = u8"helloWorld";

11

12 char8String2 += u8".";

13

14 std::cout << "char8String.size(): " << char8String.size() << '\n';

15 std::cout << "char8String2.size(): " << char8String2.size() << '\n';

16

17 char8String2.replace(0, 5, u8"Hello ");

18

19 std::cout << "char8String2.size(): " << char8String2.size() << '\n';

20

21 }

Without further ado, here is the output of the program:

Use of the new character type char8_t

C++20 does not have the output operator for char8_t strings. Consequentially, a convenient way is to
apply reinterpret_cast<const char*> to a char8_t string.

Output of a char8_t string

1 // char8StrOutput.cpp

2

3 #include <iostream>

4 #include <string>

5

6 int main() {

7

8 std::cout << '\n';

9

Core Language 219

10 const char8_t* char8Str = u8"Dollar: \u20AC";

11 std::basic_string<char8_t> char8String = u8"Euro: \u0024";

12 std::u8string char8String2 = u8"Pound: \u00A3";

13

14 std::cout << reinterpret_cast<const char*>(char8Str) << '\n';

15 std::cout << reinterpret_cast<const char*>(char8String.c_str()) << '\n';

16 std::cout << reinterpret_cast<const char*>(char8String2.c_str()) << '\n';

17

18 std::cout << '\n';

19

20 }

The program displays the Dollar (line 14), Euro (line 15), and Pound (line 16) sign.

Output of a char8_t string

4.9.5 using enum in Local Scopes

A using enum declaration introduces the enumerators of the named enumeration in the local scope.

Introducing enumerators in the local scope

1 // enumUsing.cpp

2

3 #include <iostream>

4 #include <string_view>

5

6 enum class Color {

7 red,

8 green,

9 blue

10 };

11

12 std::string_view toString(Color col) {

13 switch (col) {

14 using enum Color;

15 case red: return "red";

16 case green: return "green";

17 case blue: return "blue";

Core Language 220

18 }

19 return "unknown";

20 }

21

22 int main() {

23

24 std::cout << '\n';

25

26 std::cout << "toString(Color::red): " << toString(Color::red) << '\n';

27

28 using Color::green;

29

30 std::cout << "toString(green): " << toString(green) << '\n';

31

32 using enum Color;

33

34 std::cout << "toString(blue): " << toString(blue) << '\n';

35

36 std::cout << '\n';

37

38 }

The using enum declaration (lines 14 and 32) introduces the enumerators of the scoped enumerations
Color into the local scope. From that point on, the enumerators can be used unscoped (lines 15 - 17
and line 34). Additionally, you can also apply a using declaration for a specific enumeration value
(line 28).

Application of using enum

4.9.6 Default Member Initializers for Bit Fields

First of all, what is a bit field? Here is the definition from Wikipedia⁸⁰: “A bit field is a data structure
used in computer programming. It consists of a number of adjacent computer memory locations which
have been allocated to hold a sequence of bits, stored so that any single bit or group of bits within the

⁸⁰https://en.wikipedia.org/wiki/Bit_field

https://en.wikipedia.org/wiki/Bit_field
https://en.wikipedia.org/wiki/Bit_field

Core Language 221

set can be addressed. A bit field is most commonly used to represent integral types of known, fixed
bit-width.”

With C++20, we can default-initialize the members of a bit field:

Default initializers for the members of a bit field

1 // bitField.cpp

2

3 #include <iostream>

4

5 struct Class11 {

6 int i = 1;

7 int j = 2;

8 int k = 3;

9 int l = 4;

10 int m = 5;

11 int n = 6;

12 };

13

14 struct BitField20 {

15 int i : 3 = 1;

16 int j : 4 = 2;

17 int k : 5 = 3;

18 int l : 6 = 4;

19 int m : 7 = 5;

20 int n : 7 = 6;

21 };

22

23 int main () {

24

25 std::cout << '\n';

26

27 std::cout << "sizeof(Class11): " << sizeof(Class11) << '\n';

28 std::cout << "sizeof(BitField20): " << sizeof(BitField20) << '\n';

29

30 std::cout << '\n';

31

32 }

According to the members of a class (lines 6 - 11) with C++11, the members of the bit field can have
default initializers (lines 15 - 20) with C++20. When you sum up the numbers 3, 4, 5, 6, 7, and 7, you
get 32. Hence, 32 bits, or 4 bytes is exactly the size of the BitField20:

Core Language 222

Size information to a bit field

Distilled Information
• The meaning of volatile is clarified in C++20. volatile has no multithreading
semantics and should only be used to avoid aggressive optimization because an
object may be changed independently of the regular program flow.

• Range-based for loops can use an initializer.

• The new character type char8_t is large enough to represent 8 bits.

• A using enum declaration introduces the enumerators of a named enumeration in
the local scope.

• The members of a bit field can be default-initialized.

• A constexpr function can be virtual.

5. The Standard Library

In addition to the ranges library, the C++20 standard library has many new features to offer. A
std::span as a non-owning reference to a contiguous memory area, improved string, and container
implementations, and improved algorithms. Additionally, the chrono library of C++11 is extended
with calendar and time-zone capabilities. Last but not least, text can be safely and powerfully
formatted.

The Standard Library 224

5.1 The Ranges Library

Cippi starts the pipeline job

Thanks to the ranges library in C++20, working with the Standard Template Library (STL) is much
more comfortable and powerful. The algorithms of the ranges library are lazy, can work directly on
containers, and are easy to assemble. Tomake it short: The comfort and the power of the ranges library
are due to its functional ideas.

Before I dive into the details, here is a first example of the ranges library:

Combining the transform and filter functions
// rangesFilterTransform.cpp

#include <iostream>

#include <ranges>

#include <vector>

int main() {

std::vector<int> numbers = {1, 2, 3, 4, 5, 6};

auto results = numbers | std::views::filter([](int n){ return n % 2 == 0; })

| std::views::transform([](int n){ return n * 2; });

for (auto v: results) std::cout << v << " "; // 4 8 12

}

The Standard Library 225

You have to read the expression from left to right. The pipe symbol stands for function composition:
First, all numbers which are even can pass (std::views::filter([](int n){ return n % 2 == 0; })).
After that, each remaining number ismapped to its double (std::views::transform([](int n){ return

n * 2; })). The small example shows two new features of the ranges library: function composition
being applied on the entire container.

Now you should be prepared for the details. Let’s go back to square one: ranges and views are concepts.

5.1.1 Ranges

I already presented the concept range in the chapter on concepts. Consequently, here’s a brief refresher.

A range that is provided by a begin iterator and an end sentinel specifies a group of items that you
can iterate over.

The containers of the STL are ranges but not views.

The sentinel specifies the end of a range.

5.1.1.1 Sentinel

For the containers of the STL, the end iterator is the sentinel. With C++20, the type of the sentinel can
be different from the type of the begin iterator. Depending on the range, a null terminator \0may end
a string, an empty string std::string{}may end a list of words, a std::nullptrmay end a linked list,
or the number -1 may end a list of non-negative numbers.

The following example uses sentinels for a C-string and a std::vector<int>.

Space and a negative number as sentinel

1 // sentinel.cpp

2

3 #include <iostream>

4 #include <algorithm>

5 #include <compare>

6 #include <vector>

7

8 struct Space {

9 bool operator== (auto pos) const {

10 return *pos == ' ';

11 }

12 };

13

14 struct NegativeNumber {

15 bool operator== (auto num) const {

The Standard Library 226

16 return *num < 0;

17 }

18 };

19

20 struct Sum {

21 void operator()(auto n) { sum += n; }

22 int sum{0};

23 };

24

25 int main() {

26

27 std::cout << '\n';

28

29 const char* rainerGrimm = "Rainer Grimm";

30

31 std::ranges::for_each(rainerGrimm, Space{}, [] (char c) { std::cout << c; });

32 std::cout << '\n';

33 for (auto c: std::ranges::subrange{rainerGrimm, Space{}}) std::cout << c;

34 std::cout << '\n';

35

36 std::ranges::subrange rainer{rainerGrimm, Space{}};

37 std::ranges::for_each(rainer, [] (char c) { std::cout << c << ' '; });

38 std::cout << '\n';

39 for (auto c: rainer) std::cout << c << ' ';

40 std::cout << '\n';

41

42

43 std::cout << "\n";

44

45

46 std::vector<int> myVec{5, 10, 33, -5, 10};

47

48 for (auto v: myVec) std::cout << v << " ";

49 std::cout << '\n';

50

51 auto [tmp1, sum] = std::ranges::for_each(myVec, Sum{});

52 std::cout << "Sum: " << sum.sum << '\n';

53

54 auto [tmp2, sum2] = std::ranges::for_each(std::begin(myVec), NegativeNumber{},

55 Sum{});

56 std::cout << "Sum: " << sum2.sum << '\n';

57

58 std::ranges::transform(std::begin(myVec), NegativeNumber{},

59 std::begin(myVec), [](auto num) { return num * num; });

60 std::ranges::for_each(std::begin(myVec), NegativeNumber{},

The Standard Library 227

61 [](int num) { std::cout << num << " "; });

62 std::cout << '\n';

63 for (auto v: std::ranges::subrange{ std::begin(myVec), NegativeNumber{}}) {

64 std::cout << v << " ";

65 }

66

67 std::cout << "\n\n";

68

69 }

The program defines two sentinels: Space (line 8) and NegativeNumber (line 14). Both define the
equal operator. Thanks to the <compare> header, the compiler auto-generates the non-equal oper-
ator. The non-equal operator is required when using algorithms such as std::ranges_for_each or
std::ranges::tranform with a sentinel. Let me start with the sentinel Space.

Line 31 applies the sentinel Space{} directly onto the string rainerGrimm. Creating a std::ranges::subrange
(line 33) allows it to use the sentinel in a range-based for-loop. You can also define a std::ranges::subrange
and use it directly in the algorithm std::ranges::for_each (line 37) or a range-based for-loop (line
39).

My second example uses a std::vector<int>, filled with the values {5, 10, 33, -5, 10}. The
sentinel NegativeNumber checks if a number is negative. First, I sum up all values using the function
object Sum (lines 20 - 23). std::ranges::for_each returns a pair (it, func). it is the successor of the
sentinel and func the function object applied to the range. Thanks to structured binding¹, I can directly
define the variables sum and sum2 and display their values (lines 52 and 56). std::ranges::for_each
uses the sentinel NegativeNumber. Consequently, sum2 has the sum up to the sentinel. The call
std::ranges::transform (line 58) transforms each element to its square: [](auto num){ return num

* num}. The transformation stops with the sentinel NegativeNumber. Line 60 and line 63 display the
transformed values.

Finally, here is the output of the program.

¹https://en.cppreference.com/w/cpp/language/structured_binding

https://en.cppreference.com/w/cpp/language/structured_binding
https://en.cppreference.com/w/cpp/language/structured_binding

The Standard Library 228

Use of sentinels

5.1.1.2 New Iterators and Sentinels

C++20 supports new iterators and special sentinels. You must include the header <iterator> to use
them.

Let me start with the iterators.

New iterators

Iterator Description

std::counted_iterator(it, count) Uses count to specify the end of the range

std::common_iterator(it, sent) Unifies an iterator/sentinel pair

Ranges also have three special sentinels:

The Standard Library 229

Special sentinels

Iterator Description

std::default_sentinel For an iterator that knows the bound of its range

std::unreachable_sentinel For an end iterator that can never be reached

std::move_sentinel For an end iterator that maps copies to moves

The following example applies the new iterators and the special sentinels.

New iterators and sentinels

1 // iteratorSentinels.cpp

2

3 #include <iterator>

4 #include <algorithm>

5 #include <iostream>

6 #include <vector>

7

8 int main() {

9

10 std::cout << '\n';

11

12 std::vector<int> vec{1, 2, 3, 4, 5, 6, 7, 8, 9};

13

14 std::ranges::copy(vec.begin(),

15 vec.begin() + 4, std::ostream_iterator<int>{std::cout, " "}); // 1 2 3 4

16

17 std::cout << '\n';

18

19 std::ranges::copy(std::counted_iterator{vec.begin(), 4}, // ERROR

20 vec.end(), std::ostream_iterator<int>{std::cout, " "});

21

22 std::cout << '\n';

23

24 std::ranges::copy(std::counted_iterator{vec.begin(), 4},

25 std::default_sentinel, std::ostream_iterator<int>{std::cout, " "}); // 1 2 3 4

26

27

28 std::cout << '\n';

29

30 }

The program uses two ways to display the first four elements of the std::vector vec. Line 14 uses

The Standard Library 230

a begin and an end iterator. Line 24 applies a std::counted_iterator and a std::default_sentinel.
Using a std::counted_iterator and end iterator does not compile (line 19).

5.1.2 Views

Views are lightweight ranges. A view does not own data, and its time complexity to copy, move, or
assign is constant. The containers of the STL and std::string are ranges but not views. A view allows
you to access ranges, iterate through ranges, or modify or filter elements of a range.

5.1.2.1 std::ranges::view_interface

Views derive from the class std::ranges::view_interface<View> which derives from the class
std::ranges::view_base.

std::ranges::view_interface supports a few basic operations:

Operations of a std::ranges::view_interface v

Operation Requirement Description

v.empty() At least a forward iterator Returns if v is empty

if (v) At least a forward iterator Returns if v is not empty

v.size() Returns the number of elements

v.front() At least a forward iterator Returns the first element

v.back() At least bidirectional iterator Returns the last element
begin and end have the same type

v[i] At least random-access iterator Returns the i-th element

v.data() Returns a raw pointer to the elements Elements are in contiguous memory

As you may guess, a view is also a concept. For a more detailed discussion about the concept view,
read the chapter on concepts: views.

5.1.2.2 std::ranges::subrange

The class template std::ranges::subrange combines an iterator and a sentinel into a single view.
Thanks to std::ranges::subrange, creating a view out of a begin iterator and a sentinel is straightfor-
ward.

The Standard Library 231

Creating a subrange

// subrange.cpp

#include <iterator>

#include <algorithm>

#include <iostream>

#include <ranges>

#include <vector>

int main() {

std::cout << '\n';

std::vector vec{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

auto [first, last] = std::ranges::subrange{vec.begin() + 2, vec.end() - 2};

std::cout << "[first, last]: " << "[" << *first << ", " << *last << "]";

std::cout << '\n';

std::ranges::subrange sub1{std::ranges::find_if(vec, [](int i){ return i > 3; }),

std::ranges::find_if(vec, [](int i){ return i > 8; })};

for (auto v: sub1) std::cout << v << " ";

std::cout << '\n';

auto transVec = sub1 | std::views::transform([](int i) { return i * i; });

for (auto v: transVec) std::cout << v << " ";

std::cout << "\n\n";

}

The call std::ranges::subrange{vec.begin() + 2, vec.end() - 2} (line 15) returns an iterator and
a sentinel. Line 21 creates a subrange of elements bigger than 3 and smaller than 8 (line21). You can
directly apply a range adaptor onto the subrange sub1 (line 28).

The Standard Library 232

Creating subranges

The created subrange models the concept std::range::sized_range, if the subrange was created with
random-access iterators of the same type. If not, you can create a sized subrange by providing a third
constructor argument.

Creating a sized subrange

std::list numbers = {1, 2, 3, 4, 5, 6};

std::ranges::subrange sub2{numbers.begin() + 1 , numbers.end() - 1, numbers.size() - 2};

std::ranges::subrange supports basic operations:

Operations of a std::ranges::subrange sub

Operation Requirement Description

sub.begin() Returns the begin iterator

sub.end() Returns the sentinel

sub.empty() Returns if sub is empty

sub.size() Available if sized Returns the number of elements

sub.front() Available if at least a forward iterator Returns the first element

sub.back() Available if at least a bidirectional iterator
and common

Returns the last element

sub[i] Available if at least a random-access
iterator

Returns the i-th element

sub.data() Available if a contiguous iterator Returns a raw pointer to the elements

The Standard Library 233

Operations of a std::ranges::subrange sub

Operation Requirement Description
sub.next(n = 1) Returns a subrange starting with the n-th

element

sub.prev(n = 1) Returns a subrange starting with the n-th
element before the first element

sub.advance(n) Returns a subrange starting n-th elements
later (n-th elements earlier if n < 0

auto[beg, end] = sub Creates beg and end with begin and end of
sub

The concept of a view is strongly related range adaptors.

5.1.3 Range Adaptors

A range adaptor transforms a range into a view.

The following code snippet shows range adaptors operating on a range.

Range adaptors operating on a range

std::vector<int> numbers = {1, 2, 3, 4, 5, 6};

auto results = numbers | std::views::filter([](int n){ return n % 2 == 0; })

| std::views::transform([](int n){ return n * 2; });

In this code snippet, numbers is the range, and range adaptors std::views::filter and std::views::transform
create the views. Additionally, std::string_view² and std::span are also views.

Thanks to range adaptors, C++20 allows programming in a functional style. Range adaptors can be
combined, and the resulting views are lazy. I already presented two range adaptors, but C++20 offers
more.

²https://en.cppreference.com/w/cpp/string/basic_string_view

https://en.cppreference.com/w/cpp/string/basic_string_view
https://en.cppreference.com/w/cpp/string/basic_string_view

The Standard Library 234

Range adaptors in C++20

View Description

std::views::all_t Converts a range into a view.
std::views::all

std::ranges::ref_view Takes all elements of another range.

std::ranges::owning_view Owns uniquely another range.

std::ranges::iota_view Generates a view of incremented values.
std::views::iota

std::ranges::single_view Owns a single value.
std::views::single

std::ranges::empty_view A view with no elements.
std::views::empty

std::ranges::basic_istream_view Reads elements from a stream.
std::ranges::istream_view

std::ranges::filter_view Takes the elements that satisfy the predicate.
std::views::filter

std::ranges::transform_view Transforms each element.
std::views::transform

std::ranges::take_view Takes the first n elements of another view.
std::views::take

std::ranges::take_while_view Takes the elements of another view as long as the predicate returns true.
std::views::take_while

std::ranges::drop_view Skips the first n elements of another view.
std::views::drop

std::ranges::drop_while_view Skips the initial elements of another view until the predicate returns false.
std::views::drop_while

std::ranges::join_view Joins a view of ranges.
std::views::join

std::ranges::split_view Splits a view by using a delimiter.
std::views::split

The Standard Library 235

Range adaptors in C++20

View Description

std::ranges::lazy_split_view Splits a view by using a delimiter.
std::views::lazy_split

std::views::counted Creates a view from a begin iterator and a count.

std::ranges::common_view Converts a view into a std::ranges::common_range.
std::views::common

std::ranges::reverse_view Iterates in reverse order.
std::views::reverse

std::ranges::elements_view Creates a view on the n-th element of tuples.
std::views::elements

std::ranges::keys_view Creates a view on the first element of pair-like values.
std::views::keys

std::ranges::values_view Creates a view on the second element of pair-like values.
std::views::values

Strictly speaking, the functions in the namespace std::views like std::views::values are range
adaptors, and the types in the namespace std::ranges like std::ranges::values_view are views. A
range adaptor range | std::views::values operates on a range and returns a view but a view gets a
range as argument: std::ranges::values_view{range}.

std::ranges_view stores a reference to the underlying range. It is a borrowed range and can refer to
the the underlying range as long as it is valid. Reallocation of the underlying range does not invalidate
the std::ranges_view.

std::ranges::owning_view takes ownership of the elements of another range. It can only be con-
structed from an rvalue and cannot be copied.

std::owning_view

1 std::vector<int> vec{1, 2, 3, 4, 5};

2

3 std::ranges::owning_view vec2{vec}; // ERROR

4 std::ranges::owning_view vec3{std::move(vec)}; // OK

5

6 std::ranges::owning_view vec4{vec2}; // ERROR

7 std::ranges::owning_view vec5{std::move(v2)}; // OK

The Standard Library 236

Initializing a std::ranges::owning_view from a lvalue, such as in lines 3 or 6, is an error. In the first
case, the lvalue is a std::vector<int>, and in the second case, a std::ranges::owning_view.

The subtile difference between std::ranges::split_view and std::ranges::lazy_split_view is that
std::ranges::split_view cannot iterate over a constant view and requires a forward iterator.
std::ranges::split_view does not know its size.

Splitting a string

1 // splitView.cpp

2

3 #include <iostream>

4 #include <string>

5 #include <ranges>

6

7 int main() {

8

9 std::string myString = "Hello:world!";

10

11 for (auto subRange: myString | std::views::split(':')) {

12 for (auto c: subRange) {

13 std::cout << c;

14 }

15 std::cout << ':';

16 }

17

18 std::cout << '\n';

19

20 myString = "ThisTESTisTESTaTESTtest.";

21

22 for (auto subRange: myString | std::views::split(std::string("TEST"))) {

23 for (auto c: subRange) {

24 std::cout << c;

25 }

26 std::cout << ':';

27 }

28

29 }

When you split a range, you get back a subrange. First, I split myString by space (line 11) and second
by the string TEST (line 23). Additionally, I add a colon : to each resulting subrange.

Splitting a string

The Standard Library 237

5.1.3.1 Three ways to use Range Adaptors

In general, you can use a range adaptor such as std::views::drop or the corresponding view
std::ranges::drop_view. Consequently, you have to use the arguments of the function call differently:

Invocation of std::view::drop and std::ranges::drop_view

1 const auto numbers = {1, 2, 3, 4, 5};

2

3 auto firstThree = numbers | std::views::drop(3);

4 std::ranges::drop_view firstThree{numbers, 3};

5 auto firstThree = std::views::drop(3)(numbers);

More formally, here are the three syntactic forms of using range adaptors or its corresponding view.
Its line numbers refer to the line number in the previous example using std::views::drop, and
std::ranges::drop_view.

Invocation of std::view::drop and std::ranges::drop_view

1 Range | RangeAdaptor(args...) (line 3)

2 View(Range, args...) (line 4)

3 RangeAdaptor(args...)(Range) (line 5)

The range adaptor or view can accept an arbitrary number of arguments: args....

There a three range adaptors to create views out of ranges or create a special view.

5.1.3.2 std::views::all

The range adaptor std::view::all is convenient to convert a range into a view.

Converting a range into a view

1 // allView.cpp

2

3 #include <iostream>

4 #include <ranges>

5 #include <vector>

6 #include <unordered_map>

7

8 int main() {

9

10 std::cout << '\n';

11

12 std::vector<int> myVec{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

13 for (auto v : std::views::all(myVec) | std::views::take(5)) {

The Standard Library 238

14 std::cout << v << " ";

15 }

16

17 std::cout << '\n';

18

19 for (auto v : std::views::all(myVec) | std::views::drop(5)) {

20 std::cout << v << " ";

21 }

22

23 std::cout << "\n\n";;

24

25 std::unordered_map<std::string, int> myMap{{"huber", 123}, {"grimm", 456},

26 {"jaud", 789}};

27 for (auto pa : std::views::all(myMap)) {

28 std::cout << pa.first << " ";

29 }

30

31 std::cout << '\n';

32

33 for (auto pa : std::views::all(myMap)) {

34 std::cout << pa.second << " ";

35 }

36

37 std::cout << "\n\n";

38

39 auto valuesView = std::views::all(myMap);

40

41 for (auto pa : std::views::all(valuesView)) {

42 std::cout << pa.second << " ";

43 }

44

45 std::cout << "\n\n";

46

47 }

std::vector (line 12) and std::unordered_map (line 25) are the ranges that are converted into views.
std::views::take(5) takes the first five elements from the view and std::view::drop(5) drops the
first view elements from the view. You can also apply std::views::all to a std::unordered_map (lines
27 and 33). In this case, you get a std::pair pa and can address its first element with pa.first (line
28) and the second with pa.second (line 34). A view is only a special range. Consequentially, you can
directly apply a view onto a view (lines 39 and 41).

The Standard Library 239

Converting a range into a view

Admittedly, lines 33 to 35 and 41 to 43 are too complicated. Just use the views std::views::keys, and
std::views::values to get a view of the keys and values of the associative container.

Views on the keys and values of a associative container, lang=C++

1 for (auto k : std::views::keys(myMap)) {

2 std::cout << k << " ";

3 }

4

5 for (auto v : std::views::values(myMap)) {

6 std::cout << v << " ";

7 }

There is an easier way to get a view of the first five or last five elements of a range.

5.1.3.3 std::views::counted

std::views::counted creates a view from a begin iterator and a count.

Create a view from a begin iterator and a count

1 // countedView.cpp

2

3 #include <iostream>

4 #include <ranges>

5 #include <vector>

6

7 int main() {

8

9 std::cout << '\n';

The Standard Library 240

10

11 std::vector<int> myVec{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

12 for (auto v : std::views::counted(std::begin(myVec), 5)) {

13 std::cout << v << " ";

14 }

15

16 std::cout << '\n';

17

18 for (auto v : std::views::counted(std::begin(myVec) + 5, 5)) {

19 std::cout << v << " ";

20 }

21

22 std::cout << "\n\n";;

23

24 }

Lines 12 and 28 directly create the view from the begin iterator and the count. If the count is too high,
you get undefined behavior.

Create a view from a begin iterator and a count

5.1.3.4 std::views::common

The function std::views::common is quite convenientwhen you have a view but need a std::ranges::common_-
range. In the following program, commonView.cpp, I sum up all squares of the numbers from 100 to 200.

The Standard Library 241

Converting a view into a std::views::common

1 // commonView.cpp

2

3 #include <iostream>

4 #include <numeric>

5 #include <ranges>

6 #include <vector>

7

8 int main() {

9

10 std::cout << '\n';

11

12 auto results = std::views::iota(100) |

13 std::views::take_while([](int i) { return i <= 200; }) |

14 std::views::transform([](int i) { return i * i;});

15

16 /*

17 auto results = std::views::iota(100) |

18 std::views::take_while([](int i) { return i <= 200; }) |

19 std::views::transform([](int i) { return i * i;}) |

20 std::views::common;

21

22 */

23

24 auto sum = std::accumulate(results.begin(), results.end(), 0);

25

26 std::cout << "sum: " << sum << '\n';

27

28 std::cout << '\n';

29

30 }

The ranges library provides only pendants to the algorithms of the algorithm³ and thememory⁴ library,
but not to the algorithms of the numeric⁵ library. Consequentially, I use std::accumulate from the
numeric library, to sum up all squares (line 24). The compilation of the program fails with a cryptic
error message:

³https://en.cppreference.com/w/cpp/header/algorithm
⁴https://en.cppreference.com/w/cpp/header/memory
⁵https://en.cppreference.com/w/cpp/numeric

https://en.cppreference.com/w/cpp/header/algorithm
https://en.cppreference.com/w/cpp/header/memory
https://en.cppreference.com/w/cpp/numeric
https://en.cppreference.com/w/cpp/header/algorithm
https://en.cppreference.com/w/cpp/header/memory
https://en.cppreference.com/w/cpp/numeric

The Standard Library 242

Compilation error invoking std::accumulate with a view

The reason for the compilation error is straightforward but also surprising. The composition of
range adapter algorithms (lines 12 - 14) returns a view. std::accumulate on the other hand requires
harmonized types for the begin and end iterator. Converting the view into a std::view::common (lines
17 - 20) solves the issue. Now, I can directly feed results into std::accumulate (line 24).

Summing up all squares from 100 to 200

The Standard Library 243

Views on Temporary Ranges
Views do not own data. Therefore, views do not extend the lifetime of their data.
Consequently, views can only be created on lvalues. The compilation fails if you create a
view on a temporary range.

Creating views on temporary ranges
1 // temporaryRange.cpp

2

3 #include <initializer_list>

4 #include <ranges>

5

6

7 int main() {

8

9 const auto numbers = {1, 2, 3, 4, 5};

10

11 auto firstThree = numbers | std::views::drop(3);

12 // auto firstThree = {1, 2, 3, 4, 5} | std::views::drop(3); ERROR

13

14 std::ranges::drop_view firstFour{numbers, 4};

15 // std::ranges::drop_view firstFour{{1, 2, 3, 4, 5}, 4}; ERROR

16

17 }

Lines 12 and 15 cause a compilation error. The use of the lvalue numbers in lines 11 and 14
is valid.

5.1.4 Direct on the Container

The algorithms of the Standard Template Library (STL) are sometimes a little inconvenient. They need
a begin and an end iterator. This is often more than you want to write.

Algorithms of the STL need both begin and end iterators

// sortClassical.cpp

#include <algorithm>

#include <iostream>

#include <vector>

int main() {

std::vector<int> myVec{-3, 5, 0, 7, -4};

std::sort(myVec.begin(), myVec.end());

The Standard Library 244

for (auto v: myVec) std::cout << v << " "; // -4, -3, 0, 5, 7

}

Wouldn’t it be nice if std::sort could be executed on the entire container? Thanks to the ranges
library, this is possible in C++20.

Algorithms of the ranges library operate directly on the container

// sortRanges.cpp

#include <algorithm>

#include <iostream>

#include <vector>

int main() {

std::vector<int> myVec{-3, 5, 0, 7, -4};

std::ranges::sort(myVec);

for (auto v: myVec) std::cout << v << " "; // -4, -3, 0, 5, 7

}

The algorithms of the algorithm library⁶ and the memory libray⁷ have ranges pendants. They start
with the namespace std::ranges. The algorithms of the numeric library⁸ have no ranges pendant.

When you study the overloads of std::ranges::sort, you notice that they support a projection.

5.1.4.1 Projection

std::ranges::sort has two overloads:

⁶https://en.cppreference.com/w/cpp/header/algorithm
⁷https://en.cppreference.com/w/cpp/header/memory
⁸https://en.cppreference.com/w/cpp/header/numeric

https://en.cppreference.com/w/cpp/header/algorithm
https://en.cppreference.com/w/cpp/header/memory
https://en.cppreference.com/w/cpp/header/numeric
https://en.cppreference.com/w/cpp/header/algorithm
https://en.cppreference.com/w/cpp/header/memory
https://en.cppreference.com/w/cpp/header/numeric

The Standard Library 245

1 template <std::random_access_iterator I, std::sentinel_for<I> S,

2 class Comp = ranges::less, class Proj = std::identity>

3 requires std::sortable<I, Comp, Proj>

4 constexpr I sort(I first, S last, Comp comp = {}, Proj proj = {});

5

6 template <ranges::random_access_range R, class Comp = ranges::less,

7 class Proj = std::identity>

8 requires std::sortable<ranges::iterator_t<R>, Comp, Proj>

9 constexpr ranges::borrowed_iterator_t<R> sort(R&& r, Comp comp = {}, Proj proj = {});

When you study the second overload, you notice that it takes a sortable range R, a predicate Comp,
and a projection Proj. The predicate Comp uses for default less, and the projection Proj the identity
std::identity⁹ that does return its arguments unchanged. A projection is a mapping of a set into a
subset. A projection can be

• a callable such as a lambda

• a pointer to a member function or data member

Let me show you what that means:

Applying projections on data types

1 // rangeProjection.cpp

2

3 #include <algorithm>

4 #include <functional>

5 #include <iostream>

6 #include <vector>

7

8 struct PhoneBookEntry{

9 std::string name;

10 int number;

11 };

12

13 void printPhoneBook(const std::vector<PhoneBookEntry>& phoneBook) {

14 for (const auto& entry: phoneBook) std::cout << "(" << entry.name << ", "

15 << entry.number << ")";

16 std::cout << "\n\n";

17 }

18

19 int main() {

20

21 std::cout << '\n';

22

23 std::vector<PhoneBookEntry> phoneBook{ {"Brown", 111}, {"Smith", 444},

⁹https://en.cppreference.com/w/cpp/utility/functional/identity

https://en.cppreference.com/w/cpp/utility/functional/identity
https://en.cppreference.com/w/cpp/utility/functional/identity

The Standard Library 246

24 {"Grimm", 666}, {"Butcher", 222}, {"Taylor", 555}, {"Wilson", 333} };

25

26 std::ranges::sort(phoneBook, {}, &PhoneBookEntry::name); // ascending by name

27 printPhoneBook(phoneBook);

28

29 std::ranges::sort(phoneBook, std::ranges::greater() ,

30 &PhoneBookEntry::name); // descending by name

31 printPhoneBook(phoneBook);

32

33 std::ranges::sort(phoneBook, {}, &PhoneBookEntry::number); // ascending by number

34 printPhoneBook(phoneBook);

35

36 std::ranges::sort(phoneBook, std::ranges::greater(),

37 &PhoneBookEntry::number); // descending by number

38 printPhoneBook(phoneBook);

39

40 }

phoneBook (line 23) has structs of type PhoneBookEntry (line 8). A PhoneBookEntry consists of a name

and a number. Thanks to projections, the phoneBook can be sorted in ascending order by name (line
26), descending order by name (line 29), ascending order by number (line 33), and descending order
by number (line 36). The empty curly braces in the expression std::ranges::sort(phoneBook, {},

&PhoneBookEntry::name) cause the default construction of the sort criteria which is in this case is
std::less.

Applying projections on data types

When your projection is more demanding, you can use a callable such as a lambda expression.

The Standard Library 247

Use of callables as projections

1 // rangeProjectionCallable.cpp

2

3 #include <algorithm>

4 #include <functional>

5 #include <iostream>

6 #include <vector>

7

8 struct PhoneBookEntry{

9 std::string name;

10 int number;

11 };

12

13 void printPhoneBook(const std::vector<PhoneBookEntry>& phoneBook) {

14 for (const auto& entry: phoneBook) std::cout << "(" << entry.name << ", "

15 << entry.number << ")";

16 std::cout << "\n\n";

17 }

18

19 int main() {

20

21 std::cout << '\n';

22

23 std::vector<PhoneBookEntry> phoneBook{ {"Brown", 111}, {"Smith", 444},

24 {"Grimm", 666}, {"Butcher", 222}, {"Taylor", 555}, {"Wilson", 333} };

25

26 std::ranges::sort(phoneBook, {}, &PhoneBookEntry::name);

27 printPhoneBook(phoneBook);

28

29 std::ranges::sort(phoneBook, {}, [](auto p){ return p.name; });

30 printPhoneBook(phoneBook);

31

32 std::ranges::sort(phoneBook, {}, [](auto p) {

33 return std::to_string(p.number) + p.name;

34 });

35 printPhoneBook(phoneBook);

36

37 std::ranges::sort(phoneBook, [](auto p, auto p2) {

38 return std::to_string(p.number) + p.name <

39 std::to_string(p2.number) + p2.name;

40 });

41 printPhoneBook(phoneBook);

42

43 }

The Standard Library 248

std::ranges::sort in line 26 uses the attribute PhoneBookEntry::name as projection. Line 29 shows the
equivalent lambda expression [](auto p){ return p.name; } as projection. The projection in line 32
is more demanding. It uses the stringified number concatenated with the p.name. Of course, you can
use the concatenated stringified number and the name directly as sorting criteria. In this case, the
algorithm call in line 32 is easier to read than the one in line 37.

Use of a callable as range projection

Most ranges algorithms support projections.

5.1.4.2 Direct Views on Keys and Values

Furthermore, you can create direct views on the keys (line 16) and the values (line 24) of a
std::unordered_map.

Views on the keys and the values of a std::unordered_map

1 // rangesEntireContainer.cpp

2

3 #include <iostream>

4 #include <ranges>

5 #include <string>

6 #include <unordered_map>

7

8

9 int main() {

10

11 std::unordered_map<std::string, int> freqWord{ {"witch", 25}, {"wizard", 33},

12 {"tale", 45}, {"dog", 4},

13 {"cat", 34}, {"fish", 23} };

14

15 std::cout << "Keys:" << '\n';

The Standard Library 249

16 auto names = std::views::keys(freqWord);

17 for (const auto& name : names){ std::cout << name << " "; }

18 std::cout << '\n';

19 for (const auto& name : std::views::keys(freqWord)){ std::cout << name << " "; }

20

21 std::cout << "\n\n";

22

23 std::cout << "Values: " << '\n';

24 auto values = std::views::values(freqWord);

25 for (const auto& value : values){ std::cout << value << " "; }

26 std::cout << '\n';

27 for (const auto& value : std::views::values(freqWord)) {

28 std::cout << value << " ";

29 }

30

31 }

Of course, the keys and values can be displayed directly (lines 19 and 27). The output is identical.

Views on the keys and values of a std::unordered_map

Working directly on the container might be not so thrilling, but function composition and lazy
evaluation are.

5.1.5 Function Composition

In the example rangesComposition.cpp, I use a std::map because the ordering of the keys is crucial.

The Standard Library 250

Composition of views

1 // rangesComposition.cpp

2

3 #include <iostream>

4 #include <ranges>

5 #include <string>

6 #include <map>

7

8

9 int main() {

10

11 std::map<std::string, int> freqWord{ {"witch", 25}, {"wizard", 33},

12 {"tale", 45}, {"dog", 4},

13 {"cat", 34}, {"fish", 23} };

14

15 std::cout << "All words: ";

16 for (const auto& name : std::views::keys(freqWord)) { std::cout << name << " "; }

17

18 std::cout << '\n';

19

20 std::cout << "All words, reverses: ";

21 for (const auto& name : std::views::keys(freqWord)

22 | std::views::reverse) { std::cout << name << " "; }

23

24 std::cout << '\n';

25

26 std::cout << "The first 4 words: ";

27 for (const auto& name : std::views::keys(freqWord)

28 | std::views::take(4)) { std::cout << name << " "; }

29

30 std::cout << '\n';

31

32 std::cout << "All words starting with w: ";

33 auto firstw = [](const std::string& name){ return name[0] == 'w'; };

34 for (const auto& name : std::views::keys(freqWord)

35 | std::views::filter(firstw)) { std::cout << name << " "; }

36

37 std::cout << '\n';

38

39 }

I’m only interested in the keys. I display all of them (line 15), all of them reversed (line 20), the first
four (line 26), and the keys starting with the letter ‘w’ (line 32).

The Standard Library 251

Finally, here is the output of the program.

Composition of views

The pipe symbol | is syntactic sugar¹⁰ for function composition. Instead of C(R), you can write R | C.
Consequently, the next three lines are equivalent.

Three syntactic forms of function composition

auto rev1 = std::views::reverse(std::views::keys(freqWord));

auto rev2 = std::views::keys(freqWord) | std::views::reverse;

auto rev3 = freqWord | std::views::keys | std::views::reverse;

5.1.6 Lazy Evaluation

std::views::iota is a range factory for creating a sequence of elements by successively incrementing
an initial value. This sequence can be finite or infinite. The program rangesIota.cpp fills a std::vector
with 10 int’s, starting with 0.

Using std::views::iota to fill a std::vector

1 // rangesIota.cpp

2

3 #include <iostream>

4 #include <numeric>

5 #include <ranges>

6 #include <vector>

7

8 int main() {

9

10 std::cout << std::boolalpha;

11

12 std::vector<int> vec;

13 std::vector<int> vec2;

14

15 for (int i: std::views::iota(0, 10)) vec.push_back(i);

16

17 for (int i: std::views::iota(0) | std::views::take(10)) vec2.push_back(i);

18

¹⁰https://en.wikipedia.org/wiki/Syntactic_sugar

https://en.wikipedia.org/wiki/Syntactic_sugar
https://en.wikipedia.org/wiki/Syntactic_sugar

The Standard Library 252

19 std::cout << "vec == vec2: " << (vec == vec2) << '\n';

20

21 for (int i: vec) std::cout << i << " ";

22

23 }

The first iota call (line 15) creates all numbers from 0 to 9, incremented by 1. The second iota call (line
17) creates an infinite data stream, starting with 0, incremented by 1. std::views::iota(0) is lazy. I
only get a new value if I ask for it. I ask for it ten times. Consequently, both vectors are identical.

Using std::views::iota to fill a std::vector

Now, I want to solve a small challenge: finding the first 20 prime numbers starting with 1,000,000.

The first 20 prime numbers starting with 1’000’000

1 // rangesLazy.cpp

2

3 #include <iostream>

4 #include <ranges>

5

6

7 bool isPrime(int i) {

8 for (int j=2; j*j <= i; ++j){

9 if (i % j == 0) return false;

10 }

11 return true;

12 }

13

14 int main() {

15

16 std::cout << "Numbers from 1'000'000 to 1'001'000 (displayed each 100th): "

17 << '\n';

18 for (int i: std::views::iota(1'000'000, 1'001'000)) {

19 if (i % 100 == 0) std::cout << i << " ";

20 }

21

22 std::cout << "\n\n";

23

24 auto odd = [](int i){ return i % 2 == 1; };

25 std::cout << "Odd numbers from 1'000'000 to 1'001'000 (displayed each 100th): "

26 << '\n';

The Standard Library 253

27 for (int i: std::views::iota(1'000'000, 1'001'000) | std::views::filter(odd)) {

28 if (i % 100 == 1) std::cout << i << " ";

29 }

30

31 std::cout << "\n\n";

32

33 std::cout << "Prime numbers from 1'000'000 to 1'001'000: " << '\n';

34 for (int i: std::views::iota(1'000'000, 1'001'000) | std::views::filter(odd)

35 | std::views::filter(isPrime)) {

36 std::cout << i << " ";

37 }

38

39 std::cout << "\n\n";

40

41 std::cout << "20 prime numbers starting with 1'000'000: " << '\n';

42 for (int i: std::views::iota(1'000'000) | std::views::filter(odd)

43 | std::views::filter(isPrime)

44 | std::views::take(20)) {

45 std::cout << i << " ";

46 }

47

48 std::cout << '\n';

49

50 }

This is my iterative strategy:

• line 18: Of course, I don’t know when I have 20 primes greater than 1000000. To be on the safe
side, I create 1000 numbers. For obvious reasons, I displayed only each 100th.

• line 27: I’m only interested in the odd numbers; therefore, I remove the even numbers.

• line 34: Now, it’s time to apply the next filter. The predicate isPrime (line 7) returns if a number
is prime. As you can see in the following screenshot, I was too eager. I got 75 primes.

• line 42: Laziness is a virtue. I use std::iota as an infinite number factory, starting with 1000000
and ask precisely for 20 primes.

The Standard Library 254

The first 20 prime numbers, starting with 1,000,000

Pull Pipelines
Combining views using the | operator enables you to create robust pipelines. Due to the
lazy evaluation of the ranges library, the pipelines operate in pull mode.

Lazy Pipelines in Pull Mode
for (int i: std::views::iota(1'000'000) | std::views::filter(odd)

| std::views::filter(isPrime)

| std::views::take(20)) {

std::cout << i << " ";

}

Pull mode means in the concrete case that the data sink std::views::take(20) ask for
the next value. This request for a new value is delegated to std::view::filter(isPrime),
std::view::filter(isPrime) delegates it to std::views::filter(odd), and
std::views::filter(odd) delegates it to std::views::iota(1'000'000). Finally, the
data source std::views::iota(1'000'000) produces the next value and puts it into the
pipeline.

Conceptually, the workflow of the pipeline could also be started by the data source
std::views::iota(1'000'000). Such a pipeline models a push mode and applies eager eval-
uation. Eager evaluation has a disastrous outcome if applied to an infinite data source such
as std::views::iota(1'000'000). Before the subsequent view std::view::filter(odd)

gets its first value, the data source eagerly produces all values.

The Standard Library 255

5.1.7 Define a View

You can define your view.

5.1.7.1 std::ranges::view_interface

Thanks to the std::ranges::view_interface helper class, defining a view is easy. To fulfill the concept
view, your view needs at least a default constructor, and member functions begin() and end():

Your own view

class MyView : public std::ranges::view_interface<MyView> {

public:

auto begin() const { /*...*/ }

auto end() const { /*...*/ }

};

By deriving MyView public from the helper class std::ranges::view_interface using itself as a template
parameter, MyView becomes a view. This technique of class template having itself as a template
parameter is called Curiously Recurring Template Pattern¹¹ (short CRTP).

I use this technique in the next example to create a view out of a container of the Standard Template
Library.

5.1.7.2 A Container View

The view ContainerView creates a view on an arbitrary container.

Creating a view from a container

1 // containerView.cpp

2

3 #include <iostream>

4 #include <ranges>

5 #include <string>

6 #include <vector>

7

8 template<std::ranges::input_range Range>

9 requires std::ranges::view<Range>

10 class ContainerView : public std::ranges::view_interface<ContainerView<Range>> {

11 private:

12 Range range_{};

13 std::ranges::iterator_t<Range> begin_{ std::begin(range_) };

14 std::ranges::iterator_t<Range> end_{ std::end(range_) };

¹¹https://www.modernescpp.com/index.php/c-is-still-lazy

https://www.modernescpp.com/index.php/c-is-still-lazy
https://www.modernescpp.com/index.php/c-is-still-lazy

The Standard Library 256

15

16 public:

17 ContainerView() = default;

18

19 constexpr ContainerView(Range r): range_(std::move(r)) ,

20 begin_(std::begin(r)), end_(std::end(r)) {}

21

22 constexpr auto begin() const {

23 return begin_;

24 }

25 constexpr auto end() const {

26 return end_;

27 }

28 };

29

30 template<typename Range>

31 ContainerView(Range&& range) -> ContainerView<std::ranges::views::all_t<Range>>;

32

33 int main() {

34

35 std::vector<int> myVec{1, 2, 3, 4, 5, 6, 7, 8, 9};

36

37 auto myContainerView = ContainerView(myVec);

38 for (auto c : myContainerView) std::cout << c << " ";

39 std::cout << '\n';

40

41 for (auto i : std::views::reverse(ContainerView(myVec))) std::cout << i << ' ';

42 std::cout << '\n';

43

44 for (auto i : ContainerView(myVec) | std::views::reverse) std::cout << i << ' ';

45 std::cout << '\n';

46

47 std::cout << '\n';

48

49 std::string myStr = "Only for testing purpose.";

50

51 auto myContainerView2 = ContainerView(myStr);

52 for (auto c: myContainerView2) std::cout << c << " ";

53 std::cout << '\n';

54

55 for (auto i : std::views::reverse(ContainerView(myStr))) std::cout << i << ' ';

56 std::cout << '\n';

57

58 for (auto i : ContainerView(myStr) | std::views::reverse) std::cout << i << ' ';

59 std::cout << '\n';

The Standard Library 257

60

61 }

The class template ContainerView (line 8) derives from the helper class std::ranges::view_interface
and requires that the container support the concept std::ranges::view (line 9). The remaining,
minimal implementation is straightforward. ContainerView has a default constructor (line 17). Due
to a change in the C++20 standard for a view, this default constructor is not necessary anymore, but
many compilers still require it. On the contrary, the two member functions begin() (line 22) and
end() (line 25) are required. Initially, a view must be default constructible. This requirement was
removed, but many compilers still require a default constructor. Therefore, ContainerView has one.
For convenience, I added a user-defined deduction guide for class template argument deduction (line
32).

In the main function, I apply the ContainerView on a std::vector (line 37) and a std::string (line 49)
and iterate through them forwards and backward.

Creating a view from a container

Let me add a few words to the class template argument deduction guide.

The Standard Library 258

Class Template Argument Deduction Guide
Since C++17, the compiler can deduce template parameters from template arguments. The
template deduction guide is a pattern for the compiler to deduce the template arguments.

When you use ContainerView(myVec), the compiler applies the following user-defined
deduction guide:

User-Defined Deduction Guide for ContainerView
template<class Range>

ContainerView(Range&& range) -> ContainerView<std::ranges::views::all_t<Range>>;

Essentially, a call Container(myVec) causes the compiler to instantiate the code on the right
of the arrow ->:

Applying the deduction guide for Container(myVec)
ContainerView<std::ranges::views::all_t<std::vector<int>&>>(myVec);

cppreference.com¹² provides more information to the user-defined deduction guide for
class templates.

5.1.7.3 A TrimByView

When you study the previous example containerView.cpp, you notice that themember functions begin
and end are crucial for implementing a new view. The following view, TrimByView, adjusts the view’s
boundaries by ignoring its range’s beginning and trailing count elements.

Creating a view from a container excluding the beginning and trailing count elements

1 // trimByView.cpp

2

3 #include <iostream>

4 #include <ranges>

5 #include <string>

6 #include <vector>

7

8 template<std::ranges::input_range Range>

9 requires std::ranges::view<Range>

10 class TrimByView : public std::ranges::view_interface<TrimByView<Range>> {

11 private:

12 Range range_{};

13 std::ranges::iterator_t<Range> begin_{ std::begin(range_) };

14 std::ranges::iterator_t<Range> end_{ std::end(range_) };

¹²https://en.cppreference.com/w/cpp/language/class_template_argument_deduction

https://en.cppreference.com/w/cpp/language/class_template_argument_deduction
https://en.cppreference.com/w/cpp/language/class_template_argument_deduction

The Standard Library 259

15 std::size_t count{};

16

17 public:

18 TrimByView() = default;

19

20 constexpr TrimByView(Range r, std::size_t cnt): range_(std::move(r)) ,

21 begin_(std::begin(r)), end_(std::end(r)),

22 count(cnt) {}

23

24 constexpr auto begin() const {

25 return begin_ + count;

26 }

27 constexpr auto end() const {

28 return end_ - count;

29 }

30 };

31

32 template<typename Range>

33 TrimByView(Range&& range, std::size_t&& cnt) ->

34 TrimByView<std::ranges::views::all_t<Range>>;

35

36 int main() {

37

38 std::vector<int> myVec{1, 2, 3, 4, 5, 6, 7, 8, 9};

39

40 auto myTrimByView1 = TrimByView(myVec, 1);

41 for (auto c : myTrimByView1) std::cout << c << " ";

42 std::cout << '\n';

43

44 for (auto i : std::views::reverse(TrimByView(myVec, 2))) std::cout << i << ' ';

45 std::cout << '\n';

46

47 for (auto i : TrimByView(myVec, 3) | std::views::reverse) std::cout << i << ' ';

48 std::cout << '\n';

49

50 std::cout << '\n';

51

52 std::string myStr = "Only for testing purpose.";

53

54 auto myTrimByView2 = TrimByView(myStr, 1);

55 for (auto c: myTrimByView2) std::cout << c << " ";

56 std::cout << '\n';

57

58 for (auto i : std::views::reverse(TrimByView(myStr, 2))) std::cout << i << ' ';

59 std::cout << '\n';

The Standard Library 260

60

61 for (auto i : TrimByView(myStr, 3) | std::views::reverse) std::cout << i << ' ';

62 std::cout << '\n';

63

64 }

The TrimByView is almost identical to the previous ContainerView. The difference is that the container
of TrimByView needs the count (line 20), and the begin (line 24) and end member functions (line 27)
are adjusted by count. Consequentially, myTrimByView1 (line 40) is a view of the container excluding
its first and last elements. The views in lines 44 and 47 are similar. They ignore the two beginning and
trailing elements (line 44), and the three beginning and trailing elements (line 47). The according to
argumentation holds for the following views (lines 54, 58, and 61) on the string myStr.

Creating a view from a container ignoring the count beginning and trailing elements

5.1.8 std Algorithms versus std::ranges Algorithms

The algorithms of the algorithm library¹³ and the memory libray¹⁴ have ranges pendants. They start
with the namespace std::ranges. The numeric library¹⁵ does not have a ranges pendant. Now, you
may have the question: Should I use the classical std algorithm or the new std::ranges algorithm?

Let me start with a comparison of the classical std::sort and the new std::ranges::sort. First, here
are the various overloads of std::sort and std::range::sort.

¹³https://en.cppreference.com/w/cpp/header/algorithm
¹⁴https://en.cppreference.com/w/cpp/header/memory
¹⁵https://en.cppreference.com/w/cpp/header/numeric

https://en.cppreference.com/w/cpp/header/algorithm
https://en.cppreference.com/w/cpp/header/memory
https://en.cppreference.com/w/cpp/header/numeric
https://en.cppreference.com/w/cpp/header/algorithm
https://en.cppreference.com/w/cpp/header/memory
https://en.cppreference.com/w/cpp/header/numeric

The Standard Library 261

1 template< class RandomIt >

2 constexpr void sort(RandomIt first, RandomIt last);

3

4 template< class ExecutionPolicy, class RandomIt >

5 void sort(ExecutionPolicy&& policy,

6 RandomIt first, RandomIt last);

7

8 template< class RandomIt, class Compare >

9 constexpr void sort(RandomIt first, RandomIt last, Compare comp);

10

11 template< class ExecutionPolicy, class RandomIt, class Compare >

12 void sort(ExecutionPolicy&& policy,

13 RandomIt first, RandomIt last, Compare comp);

std::sort has four overloads in C++20. Let’s see what I can deduce from the names of the function
declarations. All four overloads take a range, given by a begin and end iterator. The iterators must be
random access iterators. The first and third overloads (lines 1 and 8) are declared as constexpr and can
run at compile time. The second and fourth overloads (lines 4 and 11) require an execution policy¹⁶.
The execution policy lets you specify if the program should run sequentially, parallel, or vectorized.
Additionally, the last two overloads (lines 8 and 11) let you specify the sorting strategy. Compare has to
be a binary predicate. A binary predicate is a callable that takes two arguments and returns something
convertible to a bool.

I assume my analysis reminded you of concepts. But there is a big difference. The names in the
std::sort do not stand for concepts but only for documentation purposes. In std::ranges::sort the
names are concepts.

1 template <std::random_access_iterator I, std::sentinel_for<I> S,

2 class Comp = ranges::less, class Proj = std::identity>

3 requires std::sortable<I, Comp, Proj>

4 constexpr I sort(I first, S last, Comp comp = {}, Proj proj = {});

5

6 template <ranges::random_access_range R, class Comp = ranges::less,

7 class Proj = std::identity>

8 requires std::sortable<ranges::iterator_t<R>, Comp, Proj>

9 constexpr ranges::borrowed_iterator_t<R> sort(R&& r, Comp comp = {}, Proj proj = {});

When you study the two overloads, you notice that it takes a sortable range R (lines 3 and 8), either
given by a begin iterator and end sentinel (line 1) or by a ranges::random_access_range (line 6). The
iterator and the range must support random access. Additionally, the overloads take a predicate Comp,
and a projection Proj. The predicate Comp uses for default less, and the projection Proj the identity

¹⁶https://www.modernescpp.com/index.php/parallel-algorithms-of-the-stl-with-gcc

https://www.modernescpp.com/index.php/parallel-algorithms-of-the-stl-with-gcc
https://www.modernescpp.com/index.php/parallel-algorithms-of-the-stl-with-gcc

The Standard Library 262

std::identity¹⁷. A projection is a mapping of a set into a subset. std::ranges::sort does not support
execution policies¹⁸.

From the practical point of view, letme show the difference between std::sort and std::ranges::sort.
I ignore in my comparison the execution policy.

1 // sortVersusRangesSort.cpp

2

3 #include <algorithm>

4 #include <functional>

5 #include <iostream>

6 #include <utility>

7 #include <vector>

8

9 struct PhoneBookEntry{

10 std::string name;

11 int number;

12 auto operator<=>(const PhoneBookEntry&) const = default;

13 };

14

15 void printPhoneBook(const std::vector<PhoneBookEntry>& phoneBook) {

16 for (const auto& entry: phoneBook) std::cout << "(" << entry.name << ", "

17 << entry.number << ")";

18 std::cout << "\n";

19 }

20

21 int main() {

22

23 std::cout << '\n';

24

25 std::vector<PhoneBookEntry> phoneBook{ {"Brown", 1}, {"Smith", 4},

26 {"Grimm", 6}, {"Butcher", 2}, {"Taylor", 5}, {"Wilson", 3} };

27

28 printPhoneBook(phoneBook);

29

30 std::cout << '\n';

31

32 std::cout << "Entire container\n";

33 std::sort(phoneBook.begin(), phoneBook.end());

34 printPhoneBook(phoneBook);

35 std::ranges::sort(phoneBook.begin(), phoneBook.end());

36 printPhoneBook(phoneBook);

37

¹⁷https://en.cppreference.com/w/cpp/utility/functional/identity
¹⁸https://www.modernescpp.com/index.php/parallel-algorithms-of-the-stl-with-gcc

https://en.cppreference.com/w/cpp/utility/functional/identity
https://www.modernescpp.com/index.php/parallel-algorithms-of-the-stl-with-gcc
https://en.cppreference.com/w/cpp/utility/functional/identity
https://www.modernescpp.com/index.php/parallel-algorithms-of-the-stl-with-gcc

The Standard Library 263

38 phoneBook.insert(phoneBook.begin() + 5, {"Adam", 0});

39

40 std::cout << "\nFirst three pairs\n";

41 std::sort(phoneBook.begin(), phoneBook.begin() + 3);

42 printPhoneBook(phoneBook);

43 std::ranges::sort(phoneBook.begin(), phoneBook.begin() + 3);

44 printPhoneBook(phoneBook);

45

46 std::cout << "\nBy name\n";

47 std::sort(phoneBook.begin(), phoneBook.end(),[](auto p, auto p2) {

48 return p.name < p2.name;

49 });

50 printPhoneBook(phoneBook);

51 std::ranges::sort(phoneBook.begin(), phoneBook.end(), {}, &PhoneBookEntry::name);

52 printPhoneBook(phoneBook);

53

54 std::cout << "\nBy number decreasing\n";

55 std::sort(phoneBook.begin(), phoneBook.end(),[](auto p, auto p2) {

56 return p.number > p2.number;

57 });

58 printPhoneBook(phoneBook);

59 std::ranges::sort(phoneBook.begin(), phoneBook.end(), std::ranges::greater(),

60 &PhoneBookEntry::number);

61 printPhoneBook(phoneBook);

62

63 std::cout << '\n';

64

65 }

From the practical point of view, there is no significant difference. std::sort (lines 33, 41, 47, and 55)
must be invoked with a begin and end iterator, and std::ranges::sort (lines 35, 43, 51, and 59) can
be invoked with a begin and end iterator. For convenience, I overloaded the three-way comparison
operator (line 12). The first sort operation happens on the entire container (lines 33 and 35), the
second on the first three elements (lines 41 and 43), the third only on the names (lines 47 and 51),
and the last one on the numbers in decreasing order (lines 55 and 59). The main difference is that
in std::ranges::sort you can express what you sort and how you sort. What is provided by the
projection (&PhoneBookEntry::number), and how by the sorting criteria (std::ranges::greater()) (line
59)? In contrast, the lambda function in line 55 implements the projection and the sorting criteria.
std::sort. Both algorithms return the same results:

The Standard Library 264

std::sort versus std::ranges::sort

So far, it may not convince you to prefer std::ranges::sort about std::sort. So, let me write about
the differences and start with concepts.

5.1.8.1 Concepts

What happens when you invoke std::sort or std::ranges::sort with a container only supporting a
bidirectional iterator?

• std::sort

A std::list as a doubly-linked list provides a bidirectional iterator but no random-access iterator.

Applying std::sort on a std::list

// sortVector.cpp

#include <algorithm>

#include <list>

int main() {

std::list<int> myList{1, -5, 10, 20, 0};

std::sort(myList.begin(), myList.end());

}

The Standard Library 265

Compiling the program sortVector.cpp causes an epic error message of 1090 lines.

std::sort: number of error lines using GCC

• std::ranges::sort

The modification to the previous program sortVector.cpp are minimal. Simply std::sort has to be
replaced with std::ranges::sort.

Applying std::ranges::sort on a std::list

// sortRangesVector.cpp

#include <algorithm>

#include <list>

int main() {

std::list<int> myList{1, -5, 10, 20, 0};

std::ranges::sort(myList.begin(), myList.end());

}

Using std::ranges::sort instead of std::sort reduces the error message drastically. Now, I get 57
error lines.

std::ranges::sort: number of error lines using GCC

Honestly, the error message of GCC should be easier to read. Here are the first ten lines of the 57 lines.
I marked the critical message in red.

The Standard Library 266

The first ten error lines of GCC

The next issue is more subtle.

5.1.8.2 Unified Lookup Rules

Assume you want to implement a generic function that calls begin on a given container. The question
is if the function call begin on a container should assume a free begin function or a member function
begin.

A free begin function versus a member function begin

1 // begin.cpp

2

3 #include <cstddef>

4 #include <iostream>

5 #include <ranges>

6

7 struct ContainerFree {

8 ContainerFree(std::size_t len): len_(len), data_(new int[len]){}

9 size_t len_;

10 int* data_;

11 };

12 int* begin(const ContainerFree& conFree) {

13 return conFree.data_;

14 }

15

16 struct ContainerMember {

17 ContainerMember(std::size_t len): len_(len), data_(new int[len]){}

18 int* begin() const {

19 return data_;

20 }

21 size_t len_;

22 int* data_;

23 };

24

The Standard Library 267

25 void callBeginFree(const auto& cont) {

26 begin(cont);

27 }

28

29 void callBeginMember(const auto& cont) {

30 cont.begin();

31 }

32

33 int main() {

34

35 const ContainerFree contFree(2020);

36 const ContainerMember contMemb(2023);

37

38 callBeginFree(contFree);

39 callBeginMember(contMemb);

40

41 callBeginFree(contMemb);

42 callBeginMember(contFree);

43

44 }

ContainerFree (line 7) has a free function begin (line 12), and ContainerMember (line 16) has a
member function begin (line 18). Accordingly, contFree can use the generic function callBeginFree

using the free function call begin(cont) (line 26), and contMemb can use the generic function
callBeginMember using the member function call cont.begin (line 30). When I invoke callBeginFree

and callBeginMember with the inappropriate containers in lines 41 and 42, the compilation fails.

Compilation error if using the wrong begin implementation

I can solve this issue by providing two different begin implementations in two ways: classical and
range based.

The Standard Library 268

A free begin function versus a member function begin

1 // beginSolved.cpp

2

3 #include <cstddef>

4 #include <iostream>

5 #include <ranges>

6

7 struct ContainerFree {

8 ContainerFree(std::size_t len): len_(len), data_(new int[len]){}

9 size_t len_;

10 int* data_;

11 };

12 int* begin(const ContainerFree& conFree) {

13 return conFree.data_;

14 }

15

16 struct ContainerMember {

17 ContainerMember(std::size_t len): len_(len), data_(new int[len]){}

18 int* begin() const {

19 return data_;

20 }

21 size_t len_;

22 int* data_;

23 };

24

25 void callBeginClassical(const auto& cont) {

26 using std::begin;

27 begin(cont);

28 }

29

30 void callBeginRanges(const auto& cont) {

31 std::ranges::begin(cont);

32 }

33

34 int main() {

35

36 const ContainerFree contFree(2020);

37 const ContainerMember contMemb(2023);

38

39 callBeginClassical(contFree);

40 callBeginRanges(contMemb);

41

42 callBeginClassical(contMemb);

43 callBeginRanges(contFree);

The Standard Library 269

44

45 }

The classical way to solve this issue is to bring std::begin into the scope with a so-called using declara-
tion (line 26). Thanks to ranges, you can directly use std::ranges::begin (line 31). std::ranges::begin
considers both implementations of begin: the free version and the member function.

Finally, let me write about safety.

5.1.8.3 Safety

The ranges library provides the expected operation to iterate through or access the range directly.
They need the header <ranges>.

Iterators

Operation Description

std::ranges::begin Returns an iterator to the beginning of the range

std::ranges::end Returns a sentinel indicating the end of the range

std::ranges::cbegin Returns an iterator to the beginning of the read-only range

std::ranges::cend Returns a sentinel indicating the end of the read-only range

std::ranges::rbegin Returns a reverse iterator to the end of the range

std::ranges::rend Returns a sentinel (reverse) indicating the beginning of the
range

std::ranges::crbegin Returns a reverse iterator to the end of the read-only range

std::ranges::crend Returns a sentinel (reverse) indicating the beginning of the
read-only range

std::ranges::data Returns a pointer to the beginning of the contiguous range

std::ranges::cdata Returns a pointer to the beginning of the contiguous
read-only range

When you use these operations to access the underlying range, there’s a big difference. The
compilation fails when you use the range access on the std::rangess’ variant if the argument is an
rvalue¹⁹. On the contrary, using the same operation from the classical std namespace is undefined

¹⁹https://en.cppreference.com/w/cpp/language/value_category

https://en.cppreference.com/w/cpp/language/value_category

The Standard Library 270

behavior.

1 // rangesAccess.cpp

2

3 #include <iterator>

4 #include <ranges>

5 #include <vector>

6

7 int main() {

8

9 auto beginIt1 = std::begin(std::vector<int>{1, 2, 3});

10 auto beginIt2 = std::ranges::begin(std::vector<int>{1, 2, 3});

11

12 }

std::ranges::begin provides only overloads for lvalues²⁰. The temporary vector std::vector<int>{1,
2, 3} (line 10) is an rvalue²¹. Consequentially, the compilation of the program fails.

²⁰https://en.cppreference.com/w/cpp/language/value_category
²¹https://en.cppreference.com/w/cpp/language/value_category

https://en.cppreference.com/w/cpp/language/value_category
https://en.cppreference.com/w/cpp/language/value_category
https://en.cppreference.com/w/cpp/language/value_category
https://en.cppreference.com/w/cpp/language/value_category

The Standard Library 271

std::ranges::begin causes a compilation error on a temporary

You can also ask a range for its emptiness and size. They accept lvalues and rvalues.

Emptiness and size

Operation Description

std::ranges::empty Checks if the range is empty

std::ranges::size Returns an integral equal to the size of the range

std::ranges::ssize Returns a signed integral equal to the size of the range

Furthermore, ranges support comparison. They are defined in the header <functional>

The Standard Library 272

Comparison

Operation Description

std::ranges::equal_to(fir, sec) Returns whether fir is equal to sec

std::ranges::not_equal_to(fir, sec) Returns whether fir is not equal to sec

std::ranges::less(fir, sec) Returns whether fir is less than sec

std::ranges::greater(fir, sec) Returns whether fir is greater than sec

std::ranges::less_equal(fir, sec) Returns whether fir is less than or equal
to sec

std::ranges::greater_equal(fir, sec) Returns whether fir is greater than or
equal to sec

The comparators can operate on lvalues and rvalues. To use this comparators, you have to instantiate
them.

Comparison of ranges

// comparisonRanges.cpp

#include <iostream>

#include <ranges>

#include <functional>

#include <vector>

int main() {

std::cout << std::boolalpha << '\n';

auto vec1 = std::vector{1, 2, 3, 4};

std::cout << "std::ranges::equal_to{}(vec1, std::vector{1, 2, 3}): "

<< std::ranges::equal_to{}(vec1, std::vector{1, 2, 3}) << '\n';

std::cout << "std::ranges::not_equal_to{}(vec1, std::vector{1, 2, 3}): "

<< std::ranges::not_equal_to{}(vec1, std::vector{1, 2, 3}) << '\n';

std::cout << "std::ranges::less{}(vec1, std::vector{1, 2, 3}): "

<< std::ranges::less{}(vec1, std::vector{1, 2, 3}) << '\n';

std::cout << "std::ranges::greater{}(vec1, std::vector{1, 2, 3}): "

<< std::ranges::greater{}(vec1, std::vector{1, 2, 3}) << '\n';

The Standard Library 273

std::cout << "std::ranges::less_equal{}(vec1, std::vector{1, 2, 3}): "

<< std::ranges::less_equal{}(vec1, std::vector{1, 2, 3}) << '\n';

std::cout << "std::ranges::greater_equal{}(vec1, std::vector{1, 2, 3}): "

<< std::ranges::greater_equal{}(vec1, std::vector{1, 2, 3}) << '\n';

std::cout << std::boolalpha << '\n';

}

The following screenshot shows the output of the program.

Comparison of ranges

The ranges library made a few unique design choices.

5.1.9 Design Choices

For efficiency reasons, the ranges library has some unique design choices. It’s important to know and
follow these rules.

When you study begin member function of std::ranges::filter_view, you find code equivalent to
the following one:

The Standard Library 274

Definition of std::ranges::filter_view::begin

1 if constexpr (!ranges::forward_range<V>)

2 return /* iterator */{*this, ranges::find_if(base_, std::ref(*pred_))};

3 else

4 {

5 if (!begin_.has_value())

6 begin_ = ranges::find_if(base_, std::ref(*pred_)); // caching

7 return /* iterator */{*this, begin_.value())};

8 }

Let’s analyze lines 5 - 7. First, the compiler checks if begin_.has_value() is true. If not, it determines
begin_. This means that this member function caches the result within the std::ranges::filter_view
object for use on subsequent calls. This caching has serious consequences. Let me exemplify this with
a code snippet.

Efficiency of std::views::filter

1 // cachingRanges.cpp

2

3 #include <numeric>

4 #include <iostream>

5 #include <ranges>

6 #include <vector>

7

8 int main() {

9

10 std::vector<int> vec(1'000'000);

11 std::iota(vec.begin(), vec.end(), 0);

12

13 for (int i: vec | std::views::filter([](auto v) { return v > 1000; })

14 | std::views::take(5)) {

15 std::cout << i << " "; // 1001 1002 1003 1004 1005

16 }

17

18 }

The first call of std::views::filter([](auto v) { return v > 1000; }) determines the begin iterator
and reuses it in subsequent calls. The benefit of this caching is obvious. Many subsequent iterations
of the pipeline are spared. But there are also severe drawbacks: cache issues and constness issues.

5.1.9.1 Cache

Here are the two important cache rules for ranges:

The Standard Library 275

• Don’t use a view on modified ranges.

• Don’t copy a view.

Let me play with the previous program cachingRanges.cpp and break both rules:

Efficiency of std::views::filter

1 // cachingIssuesRanges.cpp

2

3 #include <concepts>

4 #include <forward_list>

5 #include <iostream>

6 #include <numeric>

7 #include <ranges>

8 #include <vector>

9

10 void printElements(std::ranges::input_range auto&& rang) {

11 for (int i: rang) {

12 std::cout << i << " ";

13 }

14 std::cout << '\n';

15 }

16

17 int main() {

18

19 std::cout << '\n';

20

21 std::vector<int> vec{-3, 10, 4, -7, 9, 0, 5, -5};

22 std::forward_list<int> forL{-3, 10, 4, -7, 9, 0, 5, -5};

23

24 auto first5Vector = vec | std::views::filter([](auto v) { return v > 0; })

25 | std::views::take(5);

26

27 auto first5ForList = forL | std::views::filter([](auto v) { return v > 0; })

28 | std::views::take(5);

29

30 printElements(first5Vector); // 10 4 9 5

31 printElements(first5ForList); // 10 4 9 5

32

33 std::cout << '\n';

34

35 vec.insert(vec.begin(), 10);

36 forL.insert_after(forL.before_begin(), 10);

37

38

39 printElements(first5Vector); // -3 10 4 9 5

The Standard Library 276

40 printElements(first5ForList); // 10 4 9 5

41

42 std::cout << '\n';

43

44 auto first5VectorCopy{first5Vector};

45 auto first5ForListCopy{first5ForList};

46

47 printElements(first5VectorCopy); // -3 10 4 9 5

48 printElements(first5ForListCopy); // 10 10 4 9 5

49

50 std::cout << '\n';

51

52 }

To make it easier to follow the problem, I wrote the output directly in the source code. The program
does the following steps with a std::vector and a std::forward_list. First, both containers are
initialized with the initializer list {-3, 10, 4, -7, 9, 0, 5, -5} (lines 21 and 22). Then, I create two
views (lines 24 and 27). Both views first5Vector and first5ForList consist of the first 5 elements
greater than 0. Lines 30 and 31 display the corresponding values.

Now, I break the first rule: “Don’t use a view on modified ranges.” I insert 10 at the beginning of both
containers. Afterward, first5Vector displays the -3 and first5ForList ignores the added 10. After
the break of the second rule, “Don’t copy a view.” in lines 44 and 45, the cache of first5ForListCopy
is invalidated. first5VectorCopy still shows the wrong numbers. Finally, here is the output of the
program.

Caching issues with views

The Standard Library 277

Here is a simple rule of thumb: Use views directly after you have defined them.

You may have noticed that the function printElements takes it arguments by universal reference, aka
forwarding reference.

5.1.9.2 Constness

The member function of a view may cache the position. This has two interesting consequences:

• A function taking an arbitrary view should take its arguments by universal reference.

• Reading two views concurrently may be a data race.

Let’s discuss the first consequence.

5.1.9.2.1 Take Arbitrary Views by Universal Reference

The previous function printElemets takes its view by universal reference.

print of an arbitrary view

void printElements(std::ranges::input_range auto&& rang) {

for (int i: rang) {

std::cout << i << " ";

}

std::cout << '\n';

}

print takes its argument by universal reference. Taking it by lvalue reference or by value is, in general,
no option.

Taking the argument by const lvalue reference may not work because the implicitly begin call on the
view could modify it. On the contrary, a non-const lvalue reference cannot handle rvalues.

Taking the argument by value may invalidate the cache.

5.1.9.2.2 Concurrent Reading Access of Views

The following program exemplifies the concurrency issue with views:

The Standard Library 278

A data race on views

1 // dataRaceRanges.cpp

2

3 #include <numeric>

4 #include <iostream>

5 #include <ranges>

6 #include <thread>

7 #include <vector>

8

9 int main() {

10

11 std::vector<int> vec(1'000);

12 std::iota(vec.begin(), vec.end(), 0);

13

14 auto first5Vector = vec | std::views::filter([](auto v) { return v > 0; })

15 | std::views::take(5);

16

17 std::jthread thr1([&first5Vector]{

18 for (int i: first5Vector) {

19 std::cout << i << " ";

20 }

21 });

22

23

24 for (int i: first5Vector) {

25 std::cout << i << " ";

26 }

27

28 std::cout << "\n\n";

29

30 }

In the program dataRaceRanges.cpp, I iterate concurrency two times through a view in a non-
modifying way. First, I iterate in the std::jthread thr1 (line 17) and second in the main function (line
24). This is a data race because both iterations implicitly use the member function begin, which may
cache the position. ThreadSanitizer²² visualizes this data race and complains that there is a previous
write on line 24.

²²https://clang.llvm.org/docs/ThreadSanitizer.html

https://clang.llvm.org/docs/ThreadSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html

The Standard Library 279

A data race on views

On the contrary, iterating through a classical range such as std::vector is thread-safe. There is an
additional difference between classical ranges and views.

5.1.9.2.3 Propagation of Const

Classical ranges model deep constness. They propagate their constness to their elements. This means
that modifying elements of a constant container is impossible.

Const propagation of a std::vector

1 // constPropagationContainer.cpp

2

3 #include <iostream>

4 #include <vector>

5

6 template <typename T>

7 void modifyConstRange(const T& cont) {

8 cont[0] = 5;

9 }

10

11 int main() {

12

13 std::vector myVec{1, 2, 3, 4, 5};

14 modifyConstRange(myVec); // ERROR

15

16 }

The call modifyConstRange(myVec) causes a compile-time error.

On the contrary, views model shallow constness. They do not propagate the constness to their
elements. They can still be modified.

The Standard Library 280

Const propagation of a std::vector

1 // constPropagationViews.cpp

2

3 #include <iostream>

4 #include <ranges>

5 #include <vector>

6

7 template <typename T>

8 void modifyConstRange(const T& cont) {

9 cont[0] = 5;

10 }

11

12 int main() {

13

14 std::vector myVec{1, 2, 3, 4, 5};

15

16 modifyConstRange(std::views::all(myVec)); // OK

17

18 }

The call modifyConstRange(std::views::all(myVec)) is fine.

Distilled Information
• The ranges library provides us with an additional version of the STL algorithms
that operate on ranges. A range is a group of items you can iterate over. The range
is typically given by two iterators, an iterator and a size, or C-array.

• The algorithms of the ranges library

– are lazy and can, therefore, be invoked on infinite data streams.

– can operate directly on the container.

– can be composed using the pipe (|) symbol.

– support projections to address only a subset of processed items.

• Views implement some unique design choices. They may cache their begin iterator
and can, in general, not be declared as const.

The Standard Library 281

5.2 std::span

Cippi walks the dog

A std::span represents an object that refers to a contiguous sequence of objects. A std::span,
sometimes also called a view, is never an owner. This contiguous sequence of objects can be a plain
C-array, a pointer with a size, a std::array, a std::vector, or a std::string.

A std::span can have a static extent or a dynamic extent. By default, std::span has a dynamic extent :

Definition of std::span

template <typename T, std::size_t Extent = std::dynamic_extent>

class span;

5.2.1 Static versus Dynamic Extent

When a std::span has a static extent, its size is known at compile time and part of the type:
std::span<T, size>. Consequently, its implementation needs only a pointer to the first element of
the contiguous sequence of objects.

Implementing a std::span with a dynamic extent consists of a pointer to the first element and the
size of the contiguous sequence of objects. The size is not part of the std::span<T> type.

The next example, staticDynamicExtentSpan.cpp, emphasizes the differences between the two kinds
of ranges.

The Standard Library 282

std::spans with static and dynamic extent

1 // staticDynamicExtentSpan.cpp

2

3 #include <iostream>

4 #include

5 #include <vector>

6

7 void printMe(std::span<int> container) {

8

9 std::cout << "container.size(): " << container.size() << '\n';

10 for (auto e : container) std::cout << e << ' ';

11 std::cout << "\n\n";

12 }

13

14 int main() {

15

16 std::cout << '\n';

17

18 std::vector myVec1{1, 2, 3, 4, 5};

19 std::vector myVec2{6, 7, 8, 9};

20

21 std::span<int> dynamicSpan(myVec1);

22 std::span<int, 4> staticSpan(myVec2);

23

24 printMe(dynamicSpan);

25 printMe(staticSpan); // implicitly converted into a dynamic span

26

27 // staticSpan = dynamicSpan; ERROR

28 dynamicSpan = staticSpan;

29

30 printMe(staticSpan);

31

32 std::cout << '\n';

33

34 }

dynamicSpan (line 21) has a dynamic extent, while staticSpan (line 22) has a static extent. Both
std::spans return their size in the printMe function (line 9). A std::span with static extent can be
assigned to a std::span with dynamic extent, but not vice versa. Line 27 would cause an error, but
lines 7, 25, and 28 are valid.

The Standard Library 283

std::spans with static and dynamic extent

Distinguish between std::span, std::ranges::range,
std::ranges::view, and std::string_view

You may remember that a std::span is sometimes called a view.

std::ranges::range and std::ranges::view

A std::span models the concept of a range and can, therefore, be used in the algorithms
of the ranges library.

A std::span is a range
std::vector<int> myVec{-5, 7, 10, 0, 8};

std::ranges::sort(std::span{myVec});

Additionally, a std::spanwith a dynamic extent has a default constructor and models the
concept of a view.

std::string_view

A std::span and a std::string_view²³ are non-owning views and can deal with strings.
The main difference between a std::span and a std::string_view is that a std::span can
modify its referenced objects. A string_view also models the concept of a view.

5.2.2 Creation

There are various ways to create a std::span.

²³https://en.cppreference.com/w/cpp/string/basic_string_view

https://en.cppreference.com/w/cpp/string/basic_string_view
https://en.cppreference.com/w/cpp/string/basic_string_view

The Standard Library 284

5.2.2.1 Default constructor

You can only default construct a std::span with dynamic extent (std::span<int> sp). Creation of
a std::span with static extent gives a compile-time error (std::span<int, 5 sp) if the size is not 0:
std::span<int, 0> sp.

5.2.2.2 Constructing and Initializing

In general, a std::span can be initialized using an contiguous range, two iterators defining a
contiguous range, an iterator and a length, or array. The array can be a C-array or a C++-array
(std::array). Let me show you all variations.

Constructing and initalizing std::span’s with static and dynamic extent

1 // constructingInitalizingSpan.cpp

2

3 #include <array>

4 #include <list>

5 #include <vector>

6 #include

7

8 int main() {

9

10 std::vector<int> myVec{1, 2, 3, 4, 5};

11 std::list<int> myList{1, 2, 3, 4, 5};

12

13 // Direct from a container

14

15 std::span<int> mySpan1{myVec};

16 std::span<int, 5> mySpan2{myVec};

17 std::span<int, 3> mySpan3{myVec}; // undefined behavior

18 // std::span<int> mySpan4{list}; // compile-time error

19

20 // Two iterators defining a contiguous range

21

22 std::span<int> mySpan11{std::begin(myVec), std::end(myVec)};

23 std::span<int, 5> mySpan12{std::begin(myVec), std::end(myVec)};

24 std::span<int, 3> mySpan13{std::begin(myVec), std::end(myVec)}; // undefined

25 // std::span<int> mySpan14{std::begin(myList), std::end(myList)}; // error

26

27 std::span<int> mySpan15{std::begin(myVec) + 2, std::end(myVec)};

28 std::span<int, 3> mySpan16{std::begin(myVec), std::end(myVec) - 2};

29

30 // An iterator and a size

31

32 std::span<int> mySpan31{std::begin(myVec), 5};

The Standard Library 285

33 std::span<int, 5> mySpan32{std::begin(myVec), 5};

34 std::span<int, 3> mySpan33{std::begin(myVec), 5}; // undefined behavior

35 // std::span<int> mySpan34{std::begin(myList), 5}; // compile-time error

36

37 std::span<int> mySpan35{myVec.data(), 5};

38 std::span<int, 5> mySpan36{myVec.data(), 5};

39

40 // A C-array and a C++-array

41

42 int cArray[5]{1, 2, 3, 4, 5};

43 std::array<int, 5> cppArray{1, 2, 3, 4, 5};

44

45 std::span<int> mySpan41{cArray}; // creates std::span<int, 5>

46 std::span<int> mySpan42{cppArray}; // creates std::span<int, 5>

47 // std::span<int, 3> mySpan43{cArray}; // compile-time error

48 // std::span<int, 3> mySpan43{cppArray}; // compile-time error

49

50 }

I use a std::vector and a std::list to initialize a std::span with a dynamic and static extent. Lines
15 - 18 use the container directly, lines 22 - 28 use a contiguous range defined by two iterators, lines 32
- 38 apply an iterator and a size, and, finally, lines 42 - 48 use a C-array and a C++-array. When you
initialize a std::span with dynamic extent with a C-array (line 45) or a std::array (line 45), you get
a std::span with static extent (std::span<int, 5>). In all other cases, std::span with dynamic extent
stays a std::span with dynamic extent when initialized. All other use cases in the example result in
undefined behavior or a compile-time error.

Initializing a std::span with a static extent using a container (line 17), two iterators (line 23), or an
iterator with a size is undefined behavior if the size is wrong.

The iterator must be a std::contiguous_iterator. Attempting to use a std::list directly (line 18), or
via iterators (lines 25 and 35) gives a compile-time error. A std::list models a std::bidirectional_-

iterator. Trying to initalize a std::span with static extent using an incorrectly sized container, gives
a compile-time error (lines 47 and 48).

To complete this section about the creation and initialization of a std::span, I use in the following
program a container, an iterator, and a size to create a std:span with dynamic extent.

The Standard Library 286

Create a std::span

1 // createSpan.cpp

2

3 #include <algorithm>

4 #include <iostream>

5 #include

6 #include <vector>

7

8 int main() {

9

10 std::cout << '\n';

11 std::cout << std::boolalpha;

12

13 std::vector myVec{1, 2, 3, 4, 5};

14

15 std::span mySpan1{myVec};

16 std::span mySpan2{myVec.data(), myVec.size()};

17

18 bool spansEqual = std::equal(mySpan1.begin(), mySpan1.end(),

19 mySpan2.begin(), mySpan2.end());

20

21 std::cout << "mySpan1 == mySpan2: " << spansEqual << '\n';

22

23 std::cout << '\n';

24

25 }

As you may expect, mySpan1, created from the std::vector (line 15), and mySpan2, created from a
pointer and a size (line 16), are equal (line 21).

Create a std::span from a pointer and a size

std::span supports conversion in restricted ways.

The Standard Library 287

5.2.2.3 Conversion

std::span does not support implicit conversions applied to the underlying elements. It only supports
conversions by adding an additional qualifier to them. When you use a std::span with static or
dynamic extent to initialize a std::span with static extent, the size must fit.

Conversion of std::span’s with static and dynamic extent

1 // conversionSpans.cpp

2

3 #include <array>

4 #include <list>

5 #include <vector>

6 #include

7

8 int main() {

9

10 std::vector<int> myVec{1, 2, 3, 4, 5};

11

12 // conversion of underlying elements

13

14 std::span<int> sp1{myVec};

15 std::span<const int> sp2{myVec};

16 std::span<int, 5> sp3{myVec};

17 std::span<const int, 5> sp4{sp3};

18 // std::span<int> sp5{sp2}; // compile-time error

19 // std::span<long> sp6{sp1}; // compile-time error

20

21 // static extent => dynamic extent

22

23 std::span<int, 5> sp11{myVec};

24 std::span<int> sp12{myVec};

25

26 // dynamic extent => static extent

27

28 std::span<int, 5> sp21{sp12};

29 std::span<int, 6> sp22{sp12}; // undefined behavior

30

31 // static extent => static extent

32

33 // std::span<int, 6> sp31{sp21}; // compile-time error

34 // std::span<int, 4> sp32{sp22}; // compile-time error

35

36 }

You can initialize a std::span with const underlying elements with a std::span with non-const

The Standard Library 288

underlying. That holds for a std::span with a dynamic extent (line 15) and a std::span with a static
extent (line 17). Doing it the other way around (line 18) or trying to initialize a std::span<long> with
a std::span<int> gives a compile-time error.

You can use a std::span with static extent to initialize a std::span with dynamic extent (line 28).
Initializing a std::spanwith static extent with a std::spanwith dynamic extent is undefined behavior
if the sizes of the std::span’s differ (line 29). Furthermore, it causes a compile-time error when you
use std::span’s with static extent to initialize a std::span with static extent, both having a different
size.

One important reason for having a std::span<T> is that a plain C-array decays²⁴ to a pointer if passed
to a function; therefore, the size is lost. This decay is a typical reason for errors in C/C++.

5.2.3 Automatically Deduces the Size of a Contiguous Sequence of
Objects

In contrast to a C-array, std::span<T> automatically deduces the size of contiguous sequences of
objects.

A std::span automatically deduces the size of its referenced sequence of objects

1 // printSpan.cpp

2

3 #include <iostream>

4 #include <vector>

5 #include <array>

6 #include

7

8 void printMe(std::span<int> container) {

9

10 std::cout << "container.size(): " << container.size() << '\n';

11 for (auto e : container) std::cout << e << ' ';

12 std::cout << "\n\n";

13 }

14

15 int main() {

16

17 std::cout << '\n';

18

19 int arr[]{1, 2, 3, 4};

20 printMe(arr);

21

22 std::vector vec{1, 2, 3, 4, 5};

23 printMe(vec);

²⁴https://en.cppreference.com/w/cpp/types/decay

https://en.cppreference.com/w/cpp/types/decay
https://en.cppreference.com/w/cpp/types/decay

The Standard Library 289

24

25 std::array arr2{1, 2, 3, 4, 5, 6};

26 printMe(arr2);

27

28 }

The C-array (line 19), std::vector (line 22), and the std::array (line 25) contain int values.
Consequently, std::span also holds int values. There is something more interesting in this simple
example. For each container, std::span can deduce its size (line 10).

Automatic size deduction of a std::span

5.2.4 Modifying the Referenced Objects

You canmodify an entire span or only a subspan.When youmodify a span, youmodify the referenced
objects.

The following program shows how a subspan can be used to modify the referenced objects from a
std::vector.

The Standard Library 290

Modify the objects referenced by a std::span

1 // spanTransform.cpp

2

3 #include <algorithm>

4 #include <iostream>

5 #include <vector>

6 #include

7

8 void printMe(std::span<int> container) {

9

10 std::cout << "container.size(): " << container.size() << '\n';

11 for (auto e : container) std::cout << e << ' ';

12 std::cout << "\n\n";

13 }

14

15 int main() {

16

17 std::cout << '\n';

18

19 std::vector vec{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

20 printMe(vec);

21

22 std::span span1(vec);

23 std::span span2{span1.subspan(1, span1.size() - 2)};

24

25

26 std::transform(span2.begin(), span2.end(),

27 span2.begin(),

28 [](int i){ return i * i; });

29

30

31 printMe(vec);

32 printMe(span1);

33

34 }

span1 references the std::vector vec (line 22). In contrast, span2 references only the underlying vec

elements, excluding the first and the last element (line 23). Consequently, the mapping of each element
to its square addresses only those elements (line 26).

The Standard Library 291

Modify the objects referend by a std::span

There are various convenience functions to address the elements of the std::span.

5.2.5 std::span’s Operations

The following table presents the operations you can apply on a std::span.

Interface of a std::span sp

Operation Description

sp.front() Access the first element of the sequence.

sp.back() Access the last element of the sequence.

sp[i] Access the i-th element of the sequence.

sp.data() Returns a pointer to the beginning of the sequence.

sp.size() Returns the number of elements of the sequence.

sp.size_bytes() Returns the sequence size in bytes.

sp.empty() Returns true if the sequence is empty.

sp.first<count>() Returns a subspan with static extent of the first count sequence elements.
sp.first(count) Returns a subspan with dynamic extent of the first count sequence elements.

sp.last<count>() Returns a subspan with static extent of the last count sequence elements.
sp.last(count) Returns a subspan with dynamic extent of the last count sequence elements.

The Standard Library 292

Interface of a std::span sp

Operation Description

sp.subspan<first>() Returns a subspan with the same extent of the elements starting at first.
sp.subspan(first) Returns a subspan with dynamic extent of the elements starting at first.
sp.subspan<first, count>() Returns a subspan with static extent of count elements starting at first.
sp.subspan(first, count) Returns a subspan with static extent of count elements starting at first.

as_bytes Returns the sequence as a span of read-only std::bytess.
as_writable_bytes Returns the sequence as a span of writable std::bytess.

The program subspan.cpp shows the member function subspan usage.

Use of the member function subspan

1 // subspan.cpp

2

3 #include <iostream>

4 #include <numeric>

5 #include

6 #include <vector>

7

8 int main() {

9

10 std::cout << '\n';

11

12 std::vector<int> myVec(20);

13 std::iota(myVec.begin(), myVec.end(), 0);

14 for (auto v: myVec) std::cout << v << " ";

15

16 std::cout << "\n\n";

17

18 std::span<int> mySpan(myVec);

19 auto length = mySpan.size();

20

21 std::size_t count = 5;

22 for (std::size_t first = 0; first <= (length - count); first += count) {

23 for (auto ele: mySpan.subspan(first, count)) std::cout << ele << " ";

24 std::cout << '\n';

25 }

26

27 }

Line 13 fills the vector with all numbers from 0 to 19 (line 13) using the algorithm std::iota²⁵.

²⁵https://en.cppreference.com/w/cpp/algorithm/iota

https://en.cppreference.com/w/cpp/algorithm/iota
https://en.cppreference.com/w/cpp/algorithm/iota

The Standard Library 293

Additionally, this vector initializes a std::span (line 18). Finally, the for loop (line 22) uses the function
subspan to create all subspans starting at first and having count elements until mySpan is consumed.

Use of the member function subspan

Kilian Henneberger reminded me of a particular use case of std::span. A std::span can be a constant
range of modifiable elements.

5.2.6 A Constant Range of Modifiable Elements

For simplicity, I name a std::vector and a std::span range. A std::vector, like a std::stringmodels
a modifiable range of modifiable elements: std::vector<T>. When you declare this std::vector as
const, range models a constant range of constant objects: const std::vector<T>. You cannot model a
constant range of modifiable elements. This is where std::span comes into play. A std::span models
a constant range of modifiable objects: std::span<T>. The following table emphasizes the variations
of (constant/modifiable) ranges and (constant/modifiable) elements.

(Constant/modifiable) ranges of (constant/modifiable) elements

Modifiable Elements Constant Elements

Modifiable Range std::vector<T>

Constant Range std::span<T> const std::vector<T>

std::span<const T>

The program constRangeModifiableElements.cpp exemplifies each combination.

The Standard Library 294

(Constant/modifiable) ranges of (constant/modifiable) elements

1 // constRangeModifiableElements.cpp

2

3 #include <iostream>

4 #include

5 #include <vector>

6

7 void printMe(std::span<int> container) {

8

9 std::cout << "container.size(): " << container.size() << '\n';

10 for (auto e : container) std::cout << e << ' ';

11 std::cout << "\n\n";

12 }

13

14 int main() {

15

16 std::cout << '\n';

17

18 std::vector<int> origVec{1, 2, 2, 4, 5};

19

20 // Modifiable range of modifiable elements

21 std::vector<int> dynamVec = origVec;

22 dynamVec[2] = 3;

23 dynamVec.push_back(6);

24 printMe(dynamVec);

25

26 // Constant range of constant elements

27 const std::vector<int> constVec = origVec;

28 // constVec[2] = 3; ERROR

29 // constVec.push_back(6); ERROR

30 std::span<const int> constSpan(origVec);

31 // constSpan[2] = 3; ERROR

32

33 // Constant range of modifiable elements

34 std::span<int> dynamSpan{origVec};

35 dynamSpan[2] = 3;

36 printMe(dynamSpan);

37

38 std::cout << '\n';

39

40 }

The vector dynamVec (line 21) is a modifiable range of modifiable elements. This observation does not
hold for the vector constVec (line 27). Neither can constVec change its elements nor its size. constSpan

The Standard Library 295

(line 30) behaves accordingly. dynamSpanmodels the unique use case of a constant range of modifiable
elements.

(Constant/modifiable) ranges of (constant/modifiable) elements

Finally, I want to mention two dangers you should know when using std::span.

5.2.7 Dangers of std::span

The typical issues of std::span are twofold. First, a std::span should not act on a temporary and
second, the size of the underlying contiguous range of a std::span should not be modified.

5.2.7.1 A std::span on a Temporary

A std::span is never an owner. Therefore, a std::span does not extend the lifetime of its data.
Consequently, a std::span should only operate on an lvalue. Using a std::span on a temporary is
undefined behavior.

A std::span on temporary data

1 // temporarySpan.cpp

2

3 #include <iostream>

4 #include

5 #include <vector>

6

7 std::vector<int> getVector() {

8 return {1, 2, 3, 4, 5};

9 }

10

11 int main() {

12

13 std::cout << '\n';

The Standard Library 296

14

15 std::vector<int> myVec{1, 2, 3, 4, 5};

16 std::span<int, 5> mySpan1{myVec};

17 std::span<int, 5> mySpan2{getVector().begin(), 5};

18

19 for (auto v: std::span{myVec}) std::cout << v << " ";

20 std::cout << '\n';

21 for (auto v: std::span{getVector().begin(), 5}) std::cout << v << " ";

22

23 std::cout << "\n\n";

24

25 }

Using a std::span with a static extent (line 16) or a std::span with a dynamic extent (line 19)
on the lvalue is fine. When I switch from the lvalue std::vector<int> in line 15 to a temporary
std::vector<int>, given by the function getVector (lines 7 - 9), the program has undefined behavior.
Both lines 17 and 21 are not valid. Consequently, executing the program exposes the undefined
behavior. The output of line 21 does not match with the std::vector<int>, generated by the function
getVector().

A std::span on a temporary

5.2.7.2 Changing the Size of the Underlying Contiguous Range

When you change the size of the underlying contiguous range, the contiguous range may be
reallocated, and the std::span refers to stale data. Only a std::span with dynamic extent can have a
resizable underlying contiguous range and can, therefore, be a victim of this subtle issue.

The Standard Library 297

Possible resizing of the underlying contiguous range

std::vector<int> myVec{1, 2, 3, 4, 5};

std::span<int> sp1{myVec};

myVec.push_back(6); // undefined behavior

The statement myVec.push_back(6) can trigger a reallocation of the container. Consequently, myVec.push_-
back() causes undefined behavior.

Distilled Information
• A std::span is an object that refers to a contiguous sequence of objects. A

std::span, also known as view, is never an owner and, therefore, does not allocate
memory. The contiguous sequence of objects can be a plain C-array, a pointer with
a size, a std::array, a std::vector, or a std::string.

• A std::span can have a static extend or a dynamic extent. The size of a std::span

with static extent is known at compile time and cannot be changed.

• In contrast to a C-array, a std::span automatically deduces the size of its referenced
sequence of objects.

• When a std::span modifies its elements, the reference objects are also modified.

• Using a std::span on a temporary or changing the size of the underlying range is
undefined behavior.

The Standard Library 298

5.3 Container and Algorithm Improvements

Cippi inspects the container

C++20 has many improvements regarding containers of the Standard Template Library. First,
std::vector and std::string have constexpr constructors and can be used at compile time. All
containers support consistent container erasure and the associative containers a member function
contains. Thanks to the new algorithms std::shift_left and std::shift_right, you can shift the
content of a container. Additionally, std::string allows you to check for a prefix or suffix. The
execution policy std::execution::unseq permits the vectorized execution of an algorithm.

5.3.1 constexpr Containers and Algorithms

C++20 supports the constexpr containers std::vector and std::string, where constexpr means that
the member functions of both containers can be applied at compile time. Additionally, the more than
100 algorithms²⁶ of the Standard Template Library are declared as constexpr.

Consequently, you can sort a std::vector of ints at compile time.

²⁶https://en.cppreference.com/w/cpp/algorithm

https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/algorithm

The Standard Library 299

Sort a std::vector at compile time

1 // constexprVector.cpp

2

3 #include <algorithm>

4 #include <iostream>

5 #include <vector>

6

7 constexpr int maxElement() {

8 std::vector myVec = {1, 2, 4, 3};

9 std::sort(myVec.begin(), myVec.end());

10 return myVec.back();

11 }

12 int main() {

13

14 std::cout << '\n';

15

16 constexpr int maxValue = maxElement();

17 std::cout << "maxValue: " << maxValue << '\n';

18

19 constexpr int maxValue2 = [] {

20 std::vector myVec = {1, 2, 4, 3};

21 std::sort(myVec.begin(), myVec.end()) ;

22 return myVec.back();

23 }();

24

25 std::cout << "maxValue2: " << maxValue2 << '\n';

26

27 std::cout << '\n';

28

29 }

The two containers std::vector (line 8 and 20) are sorted at compile time using constexpr-declared
functions. In the first case, the function maxElement returns the last element of the vector myVec, which
is its maximum value. In the second case, I use an immediately-invoked lambda that is declared
constexpr.

Sort a std::vector at compile time

The crucial idea for constexpr containers is transient allocation.

The Standard Library 300

5.3.1.1 Transient Allocation

Transient allocation means that memory allocated at compile time must also be released at compile
time. Consequently, the compiler can detect a mismatch of allocation and deallocation in a constexpr
function.

Mismatch of allocation and deallocation in constexpr functions

1 // transientAllocation.cpp

2

3 #include <memory>

4

5 constexpr auto correctRelease() {

6 auto* p = new int[2020];

7 delete [] p;

8 return 2020;

9 }

10

11 constexpr auto forgottenRelease() {

12 auto* p = new int[2020];

13 return 2020;

14 }

15

16 constexpr auto falseRelease() {

17 auto* p = new int[2020];

18 delete p;

19 return 2020;

20 }

21

22 int main() {

23

24 constexpr int res1 = correctRelease();

25 constexpr int res2 = forgottenRelease();

26 constexpr int res3 = falseRelease();

27

28 }

The small programhas two serious issues. First, thememory in the constexpr function forgottenRelease

(line 11) is not released. Second, the non-array deallocation (line 18) in the constexpr function
falseRelease (line 16) does not match with the array allocation.

The Standard Library 301

Mismatch of allocation and deallocation in constexpr functions

A consequence of transient allocation is that you cannot create a std::vector at compile time and use
it at run time.

Transient allocation of a std::vector fails

1 // transientAllocationFailed.cpp

2

3 #include <vector>

4

5 constexpr std::vector<int> getVector() {

6 std::vector vec{1, 2, 3};

7 return vec;

8 }

9

10 int main() {

11

12 constexpr std::vector vec1{1, 2 ,3}; // ERROR

13 constexpr std::vector vec2 = getVector(); // ERROR

14

15 }

Neither can you create a constexpr vector in a run-time function (line 12) function nor can you return
a std::vector from a constexpr function (line 13).

5.3.2 std::array

C++20 offers two convenientways to create arrays. std::to_array creates a std::array and std::make_-
shared allows it to create a std::shared_ptr of arrays.

5.3.2.1 std::to_array

std::to_array creates a std::array from an existing one-dimensional array. The elements of the
created std::array are copy-initialized from the existing one-dimensional array.

The Standard Library 302

The one-dimensional existing array can be a C-string, a std::initializer_list, or a one-dimensional
array of std::pair. The following example is from cppreference.com/to_array²⁷.

Create a std::array from various one-dimensional arrays

1 // toArray.cpp

2

3 #include <iostream>

4 #include <utility>

5 #include <array>

6 #include <memory>

7

8 int main() {

9

10 std::cout << '\n';

11

12 auto arr1 = std::to_array("A simple test");

13 for (auto a: arr1) std::cout << a;

14 std::cout << "\n\n";

15

16 auto arr2 = std::to_array({1, 2, 3, 4, 5});

17 for (auto a: arr2) std::cout << a;

18 std::cout << "\n\n";

19

20 auto arr3 = std::to_array<double>({0, 1, 3});

21 for (auto a: arr3) std::cout << a;

22 std::cout << '\n';

23 std::cout << "typeid(arr3[0]).name(): " << typeid(arr3[0]).name() << '\n';

24 std::cout << '\n';

25

26 auto arr4 = std::to_array<std::pair<int, double>>({ {1, 0.0}, {2, 5.1},

27 {3, 5.1} });

28 for (auto p: arr4) {

29 std::cout << "(" << p.first << ", " << p.second << ")" << '\n';

30 }

31

32 std::cout << "\n\n";

33

34 }

I created a std::array from a C-string (line 12), from a std::initializer_list (lines 16 and 20), and
from a std::initializer_list of std::pair’s (line 26). In general, the compiler can deduce the type
of the std::array. Optionally, you can specify the type (lines 20 and 26).

²⁷https://en.cppreference.com/w/cpp/container/array/to_array

https://en.cppreference.com/w/cpp/container/array/to_array
https://en.cppreference.com/w/cpp/container/array/to_array

The Standard Library 303

Create various std::array from existing one-dimensional arrays

5.3.2.2 std::make_shared

Since C++11, C++ supports the creation of the std::shared_ptr via the factory function std::make_-

shared²⁸. With C++20, this factory function supports the creation of arrays of std::shared_ptr.

• std::shared_ptr<double[]> shar = std::make_shared<double[]>(1024): creates a shared_ptr

with 1024 default-initialized doubles

• std::shared_ptr<double[]> shar = std::make_shared<double[]>(1024, 1.0): creates a shared_-
ptr with 1024 doubles initialized to 1.0

5.3.3 Consistent Container Erasure

Before C++20, removing elements from a container was too complicated. Let me show why.

5.3.3.1 The erase-remove Idiom

Removing an element from a container seems to be quite easy. In the case of a std::vector, you can
use the function std::remove_if.

²⁸https://en.cppreference.com/w/cpp/memory/shared_ptr/make_shared

https://en.cppreference.com/w/cpp/memory/shared_ptr/make_shared
https://en.cppreference.com/w/cpp/memory/shared_ptr/make_shared
https://en.cppreference.com/w/cpp/memory/shared_ptr/make_shared

The Standard Library 304

Using std::remove_if to remove elements from a container
1 // removeElements.cpp

2

3 #include <algorithm>

4 #include <iostream>

5 #include <vector>

6

7 int main() {

8

9 std::cout << '\n';

10

11 std::vector myVec{-2, 3, -5, 10, 3, 0, -5 };

12

13 for (auto ele: myVec) std::cout << ele << " ";

14 std::cout << "\n\n";

15

16 std::remove_if(myVec.begin(), myVec.end(), [](int ele){ return ele < 0; });

17 for (auto ele: myVec) std::cout << ele << " ";

18

19 std::cout << "\n\n";

20

21 }

The program removeElements.cpp removes all elements from the std::vector that are less than zero.
Easy, right? Maybe not; now, you fall into the trap that is well-known to many seasoned C++
programmer.

Using std::remove_if to remove elements from a container

std::remove_if (lines 16) does not remove anything. The std::vector still has the same number of
arguments. Both algorithms return the new logical end of the modified container.

To modify a container, you have to apply the new logical end to the container.

The Standard Library 305

Applying the erase-remove idiom to a container

1 // eraseRemoveElements.cpp

2

3 #include <algorithm>

4 #include <iostream>

5 #include <vector>

6

7 int main() {

8

9 std::cout << '\n';

10

11 std::vector myVec{-2, 3, -5, 10, 3, 0, -5 };

12

13 for (auto ele: myVec) std::cout << ele << " ";

14 std::cout << "\n\n";

15

16 auto newEnd = std::remove_if(myVec.begin(), myVec.end(),

17 [](int ele){ return ele < 0; });

18 myVec.erase(newEnd, myVec.end());

19 // myVec.erase(std::remove_if(myVec.begin(), myVec.end(),

20 // [](int ele){ return ele < 0; }), myVec.end());

21 for (auto ele: myVec) std::cout << ele << " ";

22

23 std::cout << "\n\n";

24

25 }

Line (16) returns the new logical end newEnd of the container myVec. This new logical end is applied in
line 18 to remove all elements from myVec starting at newEnd. When you apply the functions remove and
erase in one expression such as in line 19, you see exactly why this construct is called erase-remove
idiom.

The Standard Library 306

Using the erase-remove idiom

Thanks to the new functions erase and erase_if in C++20, erasing elements from containers is far
more convenient.

5.3.3.2 erase and erase_if in C++20

With erase and erase_if, you can directly operate on the container. In contrast, the previously
presented erase-remove idiom is quite verbose: it requires two iterations.

Let’s see what the new functions erase and erase_ifmean in practice. The following program erases
elements from a few containers.

Erase elements from a container

1 // eraseCpp20.cpp

2

3 #include <iostream>

4 #include <numeric>

5 #include <deque>

6 #include <list>

7 #include <string>

8 #include <vector>

9

10 template <typename Cont>

11 void eraseVal(Cont& cont, int val) {

12 std::erase(cont, val);

13 }

14

15 template <typename Cont, typename Pred>

16 void erasePredicate(Cont& cont, Pred pred) {

17 std::erase_if(cont, pred);

18 }

19

The Standard Library 307

20 template <typename Cont>

21 void printContainer(Cont& cont) {

22 for (auto c: cont) std::cout << c << " ";

23 std::cout << '\n';

24 }

25

26 template <typename Cont>

27 void doAll(Cont& cont) {

28 printContainer(cont);

29 eraseVal(cont, 5);

30 printContainer(cont);

31 erasePredicate(cont, [](auto i) { return i >= 3; });

32 printContainer(cont);

33 }

34

35 int main() {

36

37 std::cout << '\n';

38

39 std::string str{"A Sentence with an E."};

40 std::cout << "str: " << str << '\n';

41 std::erase(str, 'e');

42 std::cout << "str: " << str << '\n';

43 std::erase_if(str, [](char c){ return std::isupper(c); });

44 std::cout << "str: " << str << '\n';

45

46 std::cout << "\nstd::vector " << '\n';

47 std::vector vec{1, 2, 3, 4, 5, 6, 7, 8, 9};

48 doAll(vec);

49

50 std::cout << "\nstd::deque " << '\n';

51 std::deque deq{1, 2, 3, 4, 5, 6, 7, 8, 9};

52 doAll(deq);

53

54 std::cout << "\nstd::list" << '\n';

55 std::list lst{1, 2, 3, 4, 5, 6, 7, 8, 9};

56 doAll(lst);

57

58 }

Line 41 erases all the 'e' characters from the given string str. Line 43 applies the lambda expression
to the same string, eraseing all uppercase letters.

In the rest of the program, elements of the sequence containers std::vector (line 47), std::deque (line
51), and std::list (line 55) are erased. On each container, the function template doAll (line 26) is

The Standard Library 308

applied. doAll erases the element 5 and all elements greater than or equal to 3. The function template
eraseVal (line 10) uses the new function erase and the function template erasePredicate (line 15) uses
the new function erase_if.

Application of the new functions erase and erase_if

The new functions erase and erase_if can be applied to all containers of the Standard Template
Library. This does not hold for the next convenience function contains, which requires an associative
container.

5.3.4 contains for Associative Containers

Thanks to the function contains, you can easily check if an element exists in an associative container.
Stop, you may say, we can already do this with find or count.

No, both functions are not beginner-friendly and have their downsides.

The Standard Library 309

Erase elements from a container

1 // checkExistence.cpp

2

3 #include <set>

4 #include <iostream>

5

6 int main() {

7

8 std::cout << '\n';

9

10 std::set mySet{3, 2, 1};

11 if (mySet.find(2) != mySet.end()) {

12 std::cout << "2 inside" << '\n';

13 }

14

15 std::multiset myMultiSet{3, 2, 1, 2};

16 if (myMultiSet.count(2)) {

17 std::cout << "2 inside" << '\n';

18 }

19

20 std::cout << '\n';

21

22 }

The functions produce the expected result.

Use of find and count to check if a container has a given element

There are issues with both calls. The find call (line 11) is too verbose. The same argument holds for the
count call (line 16). The count call also has a performance issue. When you want to know if an element
is in a container, you should stop when you found it and not count until the end. In the concrete case,
myMultiSet.count(2) returned 2.

Unlike find and count, the contains member function in C++20 is quite convenient to use.

The Standard Library 310

contains in C++20

1 // containsElement.cpp

2

3 #include <iostream>

4 #include <set>

5 #include <map>

6 #include <unordered_set>

7 #include <unordered_map>

8

9 template <typename AssocCont>

10 bool containsElement5(const AssocCont& assocCont) {

11 return assocCont.contains(5);

12 }

13

14 int main() {

15

16 std::cout << std::boolalpha;

17

18 std::cout << '\n';

19

20 std::set<int> mySet{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

21 std::cout << "containsElement5(mySet): " << containsElement5(mySet);

22

23 std::cout << '\n';

24

25 std::unordered_set<int> myUnordSet{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

26 std::cout << "containsElement5(myUnordSet): " << containsElement5(myUnordSet);

27

28 std::cout << '\n';

29

30 std::map<int, std::string> myMap{ {1, "red"}, {2, "blue"}, {3, "green"} };

31 std::cout << "containsElement5(myMap): " << containsElement5(myMap);

32

33 std::cout << '\n';

34

35 std::unordered_map<int, std::string> myUnordMap{ {1, "red"},

36 {2, "blue"}, {3, "green"} };

37 std::cout << "containsElement5(myUnordMap): " << containsElement5(myUnordMap);

38

39 std::cout << '\n';

40

41 }

There is not much to add to this example. The function template containsElement5 returns true if

The Standard Library 311

the associative container contains the key 5. In my example, I used only the associative containers
std::set, std::unordered_set, std::map, and std::unordered_set, none of which can hold a given
key more than once.

Use of the new function contains

5.3.5 Shift the Content of a Container

Thanks to the new algorithms std::shift_left and std::shift_right, you can shift the content of a
container left or right by n positions. The following rules apply to the range [begin, end).

• std::shift_left(begin, end, n): Shifts the elements left by n positions.

• std::right_left(begin, end, n): Shifts the elements right by n positions.

The calls have no effect if n is zero (n == 0) or n is equal to or bigger than the size of the container (n
>= end - begin). Elements of the range in the original range but not the new range are afterward in
a valid, but unspecified state. This essentially means that the elements are valid, but you don’t know
their values. The following program applies shift operations onto a std::vector and a std::string.

std::shift and std::shift_right applied onto two containers

1 // shiftLeftRigth.cpp

2

3 #include <algorithm>

4 #include <iostream>

5 #include <string>

6 #include <vector>

7

8 void printBoth(const std::vector<int>& myVec, const std::string& myStr,

9 const std::string& mess) {

10

11 std::cout << mess << '\n';

12 for (auto v: myVec) std::cout << v;

13 std::cout << " ";

14 for (auto s: myStr) std::cout << s;

15 std::cout << "\n\n";

The Standard Library 312

16

17 }

18

19 int main() {

20

21 std::cout << '\n';

22

23 std::vector<int> myVec{0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

24 std::string myStr("Hello World");

25

26 printBoth(myVec, myStr, "Original containers");

27

28 std::shift_left(std::begin(myVec), std::end(myVec), 2);

29 std::shift_left(std::begin(myStr), std::end(myStr), 2);

30

31 printBoth(myVec, myStr, "Shift left by 2");

32

33 std::shift_right(std::begin(myVec), std::end(myVec), 2);

34 std::shift_right(std::begin(myStr), std::end(myStr), 2);

35

36 printBoth(myVec, myStr, "Shift right by 2");

37

38 std::shift_right(std::begin(myVec), std::end(myVec), 20);

39 std::shift_right(std::begin(myStr), std::end(myStr), 20);

40

41 printBoth(myVec, myStr, "Shift right by 20 => no effect");

42

43 std::cout << '\n';

44

45 }

In the program shiftLeftRight.cpp the std::vector and std::string are left-shifted by 2 (lines 28
and 29) and right-shifted by 2 (lines 33 and 34). The left shift operation by 2 puts the two last elements
in a valid but unspecified state. Accordingly, the same holds for the right shift operation for the first
two elements. The left shift operations in lines 38 and 39 have no effect because 20 is bigger than the
size of the container.

The Standard Library 313

std::shift and std::shift_right applied onto two containers

5.3.6 String prefix and suffix checking

std::string gets new member functions starts_with and ends_with. They allow you to check if a
std::string starts or ends with a specified substring.

Check if a string starts with or ends with a given string

1 // stringStartsWithEndsWith.cpp

2

3 #include <iostream>

4 #include <string_view>

5 #include <string>

6

7 template <typename PrefixType>

8 void startsWith(const std::string& str, PrefixType prefix) {

9 std::cout << " starts with " << prefix << ": "

10 << str.starts_with(prefix) << '\n';

11 }

12

13 template <typename SuffixType>

14 void endsWith(const std::string& str, SuffixType suffix) {

15 std::cout << " ends with " << suffix << ": "

16 << str.ends_with(suffix) << '\n';

The Standard Library 314

17 }

18

19 int main() {

20

21 std::cout << '\n';

22

23 std::cout << std::boolalpha;

24

25 std::string helloWorld("Hello World");

26

27 std::cout << helloWorld << '\n';

28

29 startsWith(helloWorld, helloWorld);

30

31 startsWith(helloWorld, std::string_view("Hello"));

32

33 startsWith(helloWorld, 'H');

34

35 std::cout << "\n\n";

36

37 std::cout << helloWorld << '\n';

38

39 endsWith(helloWorld, helloWorld);

40

41 endsWith(helloWorld, std::string_view("World"));

42

43 endsWith(helloWorld, 'd');

44

45 }

Both member functions starts_with and ends_with are predicates and, hence, return a boolean. You
can invoke the new member functions starts_with and ends_with with a std::string (lines 29 and
39), a std::string_view (lines 31 and 41), and a char (lines 33 and 43).

The Standard Library 315

Check if a string starts with or ends with a given string

5.3.7 Vectorized Execution Policy: std::execution::unseq

Using an execution policy in C++17, you can specify whether the algorithm should run sequentially,
in parallel, or parallel with vectorization.

The policy tag specifies whether an algorithm should run sequentially, in parallel, or in parallel with
vectorization.

• std::execution::seq: runs the algorithm sequentially

• std::execution::par: runs the algorithm in parallel on multiple threads

• std::execution::par_unseq: runs the algorithm in parallel on multiple threads and allows the
interleaving of individual loops; permits a vectorized version with SIMD²⁹ (Single Instruction
Multiple Data) extensions.

C++20 supports a new execution policy: std::execution::unseq:

• std::execution::unseq: runs the algorithm on one thread; permits a vectorized version with
SIMD³⁰ (Single InstructionMultiple Data) extensions.

The following code snippet shows the application of the execution policies.

²⁹https://en.wikipedia.org/wiki/SIMD
³⁰https://en.wikipedia.org/wiki/SIMD

https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/SIMD

The Standard Library 316

The execution policies

1 std::vector<int> v = {1, 2, 3, 4, 5, 6, 7, 8, 9};

2

3 // sequential execution (C++98)

4 std::sort(v.begin(), v.end());

5

6 // sequential execution (C++17)

7 std::sort(std::execution::seq, v.begin(), v.end());

8

9 // permitting parallel execution (C++17)

10 std::sort(std::execution::par, v.begin(), v.end());

11

12 // permitting parallel and vectorized execution (C++17)

13 std::sort(std::execution::par_unseq, v.begin(), v.end());

14

15 // permitting vectorized execution (C++20)

16 std::sort(std::execution::unseq, v.begin(), v.end());

Applying the vectorized execution policies (std::execution::par_unseq or std::execution::unseq)
does not guarantee vectorized execution. You permit your architecture to execute it vectorized.
Additionally, you should not use a blocking mechanism such as a mutex. This may end in a deadlock.

Distilled Information
• std::vector and std::string have constexpr constructors and can, therefore, be
instantiated at compile time. Thanks to the constexpr algorithms of the Standard
Template Library (STL), you can manipulate them at compile time.

• C++20 offers two convenient ways to create arrays. std::to_array creates a
std::array and std::make_shared allows the creation of a std::shared_ptr wrap-
ping a C-array.

• The new algorithm std::erase and std::erase_if are used to erase specific
elements (erase) or elements satisfying a predicate (erase_if) from an arbitrary
container of the STL.

• Thanks to the member function contains, you can check for an associative
container if it has the requested key.

• The new algorithms std::shift_left and std::shift_right enable it to shift the
content of a container by n positions.

• std::string supports the new member function start_with and end_with to check
if the container has a specific prefix or suffix.

• The new execution policy std::execution::unseq permits the vectorized execution
of an algorithm.

The Standard Library 317

5.4 Arithmetic Utilities

Cippi studies arithmetic

Compairing signed and unsigned integers is a subtle cause for unexpected behavior and, therefore,
bugs. Thanks to the new safe comparison functions for integers, std::cmp_*, a source of subtle bugs
is gone. Additionally, C++20 includes mathematical constants such as e, π, or ϕ, and with the
functions std::midpoint and std::lerp, you can calculate the midpoint of two numbers or their
linear interpolation. The new bit manipulation allows you to access and modify individual bits or
bit sequences.

5.4.1 Safe Comparison of Integers

When you compare signed and unsigned integers, you may not get the result you expect. Thanks to
the six std::cmp_* functions, there is a cure in C++20. Motivating safe comparison of integers, I want
to start with the unsafe variant.

Integral versus Integer
The terms integral and integer are synonyms in C++. This is thewording from the standard
for fundamental types: “Types bool, char, char8_t, char16_t, char32_t, wchar_t, and the
signed and unsigned integer types are collectively called integral types. A synonym for [an]
integral type is integer type”. I prefer the term integer in this book.

5.4.1.1 Unsafe Comparison

Of course, there is a reason for the name unsafeComparison.cpp of the following program.

The Standard Library 318

Unsafe comparison of integers

1 // unsafeComparison.cpp

2

3 #include <iostream>

4

5 int main() {

6

7 std::cout << '\n';

8

9 std::cout << std::boolalpha;

10

11 int x = -3;

12 unsigned int y = 7;

13

14 std::cout << "-3 < 7: " << (x < y) << '\n';

15 std::cout << "-3 <= 7: " << (x <= y) << '\n';

16 std::cout << "-3 > 7: " << (x > y) << '\n';

17 std::cout << "-3 => 7: " << (x >= y) << '\n';

18

19 std::cout << '\n';

20

21 }

When I execute the program, the output may not meet your expectations.

Surprises with unsafe comparisons of integers

If you read the program’s output, you will see that -3 is greater than 7. You presumably know the
reason. I compared a signed x (line 11) with an unsigned y (line 12). What is happening under the
hood? The following program provides the answer.

The Standard Library 319

Unsafe comparison of integers resolved

1 // unsafeComparison2.cpp

2

3 int main() {

4 int x = -3;

5 unsigned int y = 7;

6

7 bool val = x < y;

8 static_assert(static_cast<unsigned int>(-3) == 4'294'967'293);

9 }

In the example, I’m focusing on the less-than operator. C++ Insights³¹ gives me the following output:

Unsafe comparison analyzed

Here is what’s happening:

• The compiler transforms the expression x < y (line 7) into static_cast<unsigned int>(x) < y.
In particular, the signed x is converted to an unsigned int.

• Due to the conversion, -3 becomes 4'294'967'293.

• 4'294'967'293 is equal to −3 mod 232

• 32 is the number of bits of an unsigned int on C++ Insights.

Thanks to C++20, we have a safe comparison of integers.

5.4.1.2 Safe Comparison of Integers

C++20 supports six comparison functions for integers:

³¹https://cppinsights.io/s/62732a01

https://cppinsights.io/s/62732a01
https://cppinsights.io/s/62732a01

The Standard Library 320

Six safe comparison functions

Compare Function Meaning

std::cmp_equal ==

std::cmp_not_equal !=

std::cmp_less <

std::cmp_less_equal <=

std::cmp_greater >

std::cmp_greater_equal >=

Thanks to the six comparison functions, I can easily transform the previous program unsafeComparison.cpp

into the program safeComparison.cpp. The new comparison functions require the header <utility>.

Safe comparison of integers

// safeComparison.cpp

#include <iostream>

#include <utility>

int main() {

std::cout << '\n';

std::cout << std::boolalpha;

int x = -3;

unsigned int y = 7;

std::cout << "-3 == 7: " << std::cmp_equal(x, y) << '\n';

std::cout << "-3 != 7: " << std::cmp_not_equal(x, y) << '\n';

std::cout << "-3 < 7: " << std::cmp_less(x, y) << '\n';

std::cout << "-3 <= 7: " << std::cmp_less_equal(x, y) << '\n';

std::cout << "-3 > 7: " << std::cmp_greater(x, y) << '\n';

std::cout << "-3 => 7: " << std::cmp_greater_equal(x, y) << '\n';

std::cout << '\n';

}

The Standard Library 321

Additionally, I applied the equal and not equal operators.

Safe comparison

Invoking a safe-comparison function with a non-integer, such as a double, causes a compile-time error.

Safe comparison of an unsigned int and a double

// safeComparison2.cpp

#include <iostream>

#include <utility>

int main() {

double x = -3.5;

unsigned int y = 7;

std::cout << "-3.5 < 7: " << std::cmp_less(x, y); // ERROR

}

On the other hand, you can compare a double and an unsigned int the classical way. The program
classicalComparison.cpp applies classical comparison of a double and an unsigned int.

Classical comparison of an unsigned int and a double

// classicalComparison.cpp

int main() {

double x = -3.5;

unsigned int y = 7;

auto res = x < y; // true

}

It works. The unsigned int is floating-point promoted³² to double. C++ Insights³³ shows the truth:

³²https://en.cppreference.com/w/cpp/language/implicit_conversion
³³https://cppinsights.io/s/44216566

https://en.cppreference.com/w/cpp/language/implicit_conversion
https://cppinsights.io/s/44216566
https://en.cppreference.com/w/cpp/language/implicit_conversion
https://cppinsights.io/s/44216566

The Standard Library 322

Floating point promotion to double

Additionally, the function std::in_range<R>(t) returns true if t can be represented in the type R.
std::in_range determines if t is greater than or equal to the minimum value and less than or equal
to the maximum value of type R.

The following code-snippet shows a possible implementation from cppreference.com/std::in_range³⁴.

Possible implementation of std::in_range

template<class R, class T>

constexpr bool in_range(T t) noexcept {

return std::cmp_greater_equal(t, std::numeric_limits<R>::min()) &&

std::cmp_less_equal(t, std::numeric_limits<R>::max());

}

5.4.2 Mathematical Constants

First of all, the constants need the header <numbers> and the namespace std::numbers. The following
table gives you an overview.

The mathematical constants

Mathematical Constant Description

std::numbers::e e

std::numbers::log2e log2 e

std::numbers::log10e log10 e

std::numbers::pi π

std::numbers::inv_pi 1
π

std::numbers::inv_sqrtpi 1√
π

std::numbers::ln2 ln 2

³⁴https://en.cppreference.com/w/cpp/utility/in_range

https://en.cppreference.com/w/cpp/utility/in_range
https://en.cppreference.com/w/cpp/utility/in_range

The Standard Library 323

The mathematical constants

Mathematical Constant Description

std::numbers::ln10 ln 10

std::numbers::sqrt2
√
2

std::numbers::sqrt3
√
3

std::numbers::inv_sqrt3 1√
3

std::numbers::egamma Euler-Mascheroni constant³⁵

std::numbers::phi ϕ

The program mathematicConstants.cpp applies the mathematical constants.

The mathematical constants

// mathematicConstants.cpp

#include <iomanip>

#include <iostream>

#include <numbers>

int main() {

std::cout << '\n';

std::cout<< std::setprecision(10);

std::cout << "std::numbers::e: " << std::numbers::e << '\n';

std::cout << "std::numbers::log2e: " << std::numbers::log2e << '\n';

std::cout << "std::numbers::log10e: " << std::numbers::log10e << '\n';

std::cout << "std::numbers::pi: " << std::numbers::pi << '\n';

std::cout << "std::numbers::inv_pi: " << std::numbers::inv_pi << '\n';

std::cout << "std::numbers::inv_sqrtpi: " << std::numbers::inv_sqrtpi << '\n';

std::cout << "std::numbers::ln2: " << std::numbers::ln2 << '\n';

std::cout << "std::numbers::ln10: " << std::numbers::ln10 << '\n';

std::cout << "std::numbers::sqrt2: " << std::numbers::sqrt2 << '\n';

std::cout << "std::numbers::sqrt3: " << std::numbers::sqrt3 << '\n';

std::cout << "std::numbers::inv_sqrt3: " << std::numbers::inv_sqrt3 << '\n';

std::cout << "std::numbers::egamma: " << std::numbers::egamma << '\n';

std::cout << "std::numbers::phi: " << std::numbers::phi << '\n';

³⁵https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant

https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant

The Standard Library 324

std::cout << '\n';

}

Here is the output of the program with the MSVC compiler.

Use of all mathematical constants

The mathematical constants are available for float, double, and long double. By default, double is
used but, you can also specify float (std::numbers::pi_v<float>) or long double (std::numbers::pi_-
v<long double>).

5.4.3 Midpoint and Linear Interpolation

• std::midpoint(a, b): calculates the midpoint (a + (b - a) / 2) of integers, floating points, or
pointers. If a and b are pointers, they have to point to the same array object. The function needs
the header <numeric>.

• std::lerp(a, b, t): calculates the linear interpolation (a + t(b - a)). When t is outside the range
[0, 1], it calculates the linear extrapolation. The function needs the header <cmath>.

The program midpointLerp.cpp applies both functions.

The Standard Library 325

Calculating the midpoint and the linear interpolation of numbers

1 // midpointLerp.cpp

2

3 #include <cmath>

4 #include <numeric>

5 #include <iostream>

6

7 int main() {

8

9 std::cout << '\n';

10

11 std::cout << "std::midpoint(10, 20): " << std::midpoint(10, 20) << '\n';

12

13 std::cout << '\n';

14

15 for (auto v: {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}) {

16 std::cout << "std::lerp(10, 20, " << v << "): " << std::lerp(10, 20, v)

17 << '\n';

18 }

19

20 std::cout << '\n';

21

22 }

The program should, together with its output, be self-explanatory.

Calculating the midpoint and the linear interpolation of numbers

The Standard Library 326

In contrast to a naive calculation of themidpoint of two numbers first and secondwith the expression
(first + second) / 2, std::midpoint(first, second) automatically deals with overflow errors.

Calculating the midpoint of two big numbers without overflow

1 // midpoint.cpp

2

3 #include <limits>

4 #include <numeric>

5 #include <iostream>

6

7 int main() {

8

9 std::cout << '\n';

10

11 int first = std::numeric_limits<int>::max();

12 int second = std::numeric_limits<int>::max() - 2;

13

14 std::cout << "first: " << first << '\n';

15 std::cout << "second: " << second << '\n';

16

17 std::cout << '\n';

18

19 std::cout << "(first + second) / 2: " << (first + second) / 2 << '\n';

20 std::cout << "std::midpoint(first, second): " << std::midpoint(first, second) << '\n';

21

22 std::cout << '\n';

23

24 }

The calculation (first + second) / 2 (line 19) causes an overflow because the variable first (line
19) is the largest possible value for type int and the variable second (line 20) is quite close to it. On
the contrary, std::midpoint(first, second) (line 20) returns the correct value.

Calculating the midpoint of two big numbers without overflow

The Standard Library 327

5.4.4 Bit Manipulation

The header <bit> supports various constexpr functions to access and manipulate individual bits or
bit sequences.

5.4.4.1 std::endian

Thanks to the new type std::endian, you get the endianness of a scalar type. Endianness can be big-
endian or little-endian. Big-endian means that the most significant byte is furthest left, little-endian
means that the least significant byte is furthest left. A scalar type is either an arithmetic type, an enum,
a pointer, a member pointer, or a std::nullptr_t.

The class endian provides the endianness of all scalar types:

enum class endian

enum class endian

{

little = /*implementation-defined*/,

big = /*implementation-defined*/,

native = /*implementation-defined*/

};

• If all scalar types are little-endian, std::endian::native is equal to std::endian::little.

• If all scalar types are big-endian, std::endian::native is equal to std::endian::big.

Even corner cases are supported:

• If all scalar types have sizeof 1 and therefore endianness does not matter, the values of the
enumerators std::endian::little, std::endian::big, and std::endian::native are identical.

• If the platform usesmixed endianness, std::endian::native is neither equal to std::endian::big
nor std::endian::little.

When I perform the following program getEndianness.cpp on a x86 architecture, I get the answer
little-endian.

enum class endian

// getEndianness.cpp

#include <bit>

#include <iostream>

int main() {

if constexpr (std::endian::native == std::endian::big) {

std::cout << "big-endian" << '\n';

The Standard Library 328

}

else if constexpr (std::endian::native == std::endian::little) {

std::cout << "little-endian" << '\n'; // little-endian

}

}

constexpr if enables the compiler to compile source code conditionally. Thhat is, compilation depends
on the endianness of your architecture.

5.4.4.2 Accessing or Manipulating Bits or Bit Sequences

The following table gives you an overview of all functions. You can find the functions in the header
<bit>.

Bit manipulation

Function Description

std::bit_cast Reinterprets the object representation

std::has_single_bit Checks if a number is a power of two

std::bit_ceil Finds the smallest integer power of two that is not smaller than the given value

std::bit_floor Finds the largest integer power of two that is not greater than the given value

std::bit_width Finds the smallest number of bits to represent the given value

std::rotl Computes the bitwise left-rotation

std::rotr Computes the bitwise right-rotation

std::countl_zero Counts the number of consecutive 0s, starting with the most significant bit

std::countl_one Counts the number of consecutive 1s, starting with the most significant bit

std::countr_zero Counts the number of consecutive 0s, starting with the least significant bit

std::countr_one Counts the number of consecutive 1s, starting with the least significant bit

std::popcount Counts the number of 1s in an unsigned integer

All of the functions except std::bit_cast require an unsigned integral type (unsigned char, unsigned
short, unsigned int, unsigned long, or unsigned long long). std::bit_cast guarantees that the

The Standard Library 329

number of bits fits. When you invoke the rotate functions std::rotl, or std::rotr with a negative
number, the rotation changes direction.

The program bit.cpp shows the application of the functions.

Bit manipulation

// bit.cpp

#include <bit>

#include <bitset>

#include <cstdint>

#include <iostream>

int main() {

std::uint8_t num= 0b00110010;

std::cout << std::boolalpha;

std::cout << "std::has_single_bit(0b00110010): " << std::has_single_bit(num)

<< '\n';

std::cout << "std::bit_ceil(0b00110010): " << std::bitset<8>(std::bit_ceil(num))

<< '\n';

std::cout << "std::bit_floor(0b00110010): "

<< std::bitset<8>(std::bit_floor(num)) << '\n';

std::cout << "std::bit_width(5u): " << std::bit_width(5u) << '\n';

std::cout << "std::rotl(0b00110010, 2): " << std::bitset<8>(std::rotl(num, 2))

<< '\n';

std::cout << "std::rotr(0b00110010, 2): " << std::bitset<8>(std::rotr(num, 2))

<< '\n';

std::cout << "std::countl_zero(0b00110010): " << std::countl_zero(num) << '\n';

std::cout << "std::countl_one(0b00110010): " << std::countl_one(num) << '\n';

std::cout << "std::countr_zero(0b00110010): " << std::countr_zero(num) << '\n';

std::cout << "std::countr_one(0b00110010): " << std::countr_one(num) << '\n';

std::cout << "std::popcount(0b00110010): " << std::popcount(num) << '\n';

}

Here is the output of the program.

The Standard Library 330

Bit manipulation

The following program shows the std::bit_floor, std::bit_ceil, std::bit_width, and std::popcount

for the numbers 2 to 7.

Displaying std::bit_floor, std::bit_ceil, std::bit_width, and std::popcount for a few numbers

// bitFloorCeil.cpp

#include <bit>

#include <bitset>

#include <iostream>

int main() {

std::cout << '\n';

std::cout << std::boolalpha;

for (auto i = 2u; i < 8u; ++i) {

std::cout << "bit_floor(" << std::bitset<8>(i) << ") = "

<< std::bit_floor(i) << '\n';

std::cout << "bit_ceil(" << std::bitset<8>(i) << ") = "

<< std::bit_ceil(i) << '\n';

std::cout << "bit_width(" << std::bitset<8>(i) << ") = "

<< std::bit_width(i) << '\n';

std::cout << "popcount(" << std::bitset<8>(i) << ") = "

<< std::popcount(i) << '\n';

std::cout << '\n';

}

The Standard Library 331

std::cout << '\n';

}

Displaying std::bit_floor, std::bit_ceil, std::bit_width, and std::popcount for a few numbers

The Standard Library 332

Distilled Information
• The cmp_* functions in C++20 support the safe comparison of integrals because
they detect the comparison of a signed and an unsigned integral. In the case of an
unsafe comparison, the compilation fails.

• Many mathematical constants such as e, log2 e, or π are now defined.

• C++20 provides utility functions for calculating themidpoint or linear interpolation
of two values.

• New functions to access and manipulate individual bits or bit sequences are
available.

The Standard Library 333

5.5 Formatting Library

Cippi forms a cup

5.5.1 Formatting Functions

C++20 supports the following formatting functions:

Formatting Functions

Function Description

std::format Returns the formatted string
std::format_to Writes the result to the output iterator
std::format_to_n Writes at most n characters to the output iterator

std::vformat Returns the formatted string
std::vformat_to Writes the result to the output iterator

The functions std::format and std::format_to are functionally equivalent to their pendants std::vformat
and std::vformat_to, but they differ in a few points:

• std::format, std::_format_to, and std::format_to_n: They require a compile-time value as

The Standard Library 334

format string. This format string can be a constexpr string or a string literal. std::formatted_-
size returns the number of characters of a compile-time format string.

• std::vformat, and std::vformat_t: It’s format string can be a lvalue. The arguments must
be passed to the variadic function std::make_format_args. e.g.: std::vformat(formatString,
std::make_format_args(args)).

The formatting functions accept an arbitrary number of arguments. The following program format.cpp

gives a first impression of the functions std::format, std::format_to, and std::format_to_n.

A first impression of std::format, std::format_to, and std::format_to_n

1 // format.cpp

2

3 #include <format>

4 #include <iostream>

5 #include <iterator>

6 #include <string>

7

8 int main() {

9

10 std::cout << '\n';

11

12 std::cout << std::format("Hello, C++{}!\n", "20") << '\n';

13

14 std::string buffer;

15

16 std::format_to(

17 std::back_inserter(buffer),

18 "Hello, C++{}!\n",

19 "20");

20

21 std::cout << buffer << '\n';

22

23 buffer.clear();

24

25 std::format_to_n(

26 std::back_inserter(buffer), 5,

27 "Hello, C++{}!\n",

28 "20");

29

30 std::cout << buffer << '\n';

31

32

33 std::cout << '\n';

34

35 }

The Standard Library 335

The program directly displays on line 12 the formatted string. However, the calls on lines 16 and 25
use a string as a buffer. Additionally, std::format_to_n pushes only five characters onto the buffer.

Formatted output

Accordingly, here is the corresponding program using std::vformat and std::vformat_n.

A first impression of std::vformat, and std::vformat_to

1 // formatRuntime.cpp

2

3 #include <format>

4 #include <iostream>

5 #include <iterator>

6 #include <string>

7

8 int main() {

9

10 std::cout << '\n';

11

12 std::string formatString = "Hello, C++{}!\n";

13

14 std::cout << std::vformat(formatString, std::make_format_args("20")) << '\n';

15

16 std::string buffer;

17

18 std::vformat_to(

19 std::back_inserter(buffer),

20 formatString,

21 std::make_format_args("20"));

22

23 std::cout << buffer << '\n';

24

25 }

The formatString in lines 12 and 18 is a lvalue.

The Standard Library 336

Formatted output

Presumably, themost exciting part of the formatting functions is the format string ("Hello, C++{}!\n").

5.5.2 Format String

The formatting string syntax is identical for the formatting functions std::format, std::format_to,
std::format_to_n, std::vformat, and std::vformat_to. I use std::format in my examples.

• Syntax: std::format(FormatString, Args)
The format string FormatString consists of

• Ordinary characters (except { and })

• Escape sequences {{ and }} that are replaced by { and }

• Replacement fields
A replacement field has the format { }

• You can use an argument id and a colon inside the replacement field followed by a format
specification. Both components are optional.

The argument id allows you to specify the index of the arguments inArgs. The ids start with 0. When
you don’t provide the argument id, the fields are filled in the same order as the arguments are given.
Either all replacement fields have to use an argument id or none; i.e., std::format("{}, {}", "Hello",

"World") and std::format("{1}, {0}", "World", "Hello") will both compile, but std::format("{1},
{}", "World", "Hello") won’t.

std::formatter and its specializations define the format specification for the argument types.
• Basic types and std::string: standard format specification³⁶ based on Python’s format specifi-
cation³⁷

• Chrono types: Chrono format specification³⁸. I present them in the Chrono I/O section of the
Calendar and Time Zones chapter.

• Other formattable types: User-defined std::formatter specialization
The fact that the format strings is a compile time variable, has two interesting consequences:
performance and safety.

³⁶https://en.cppreference.com/w/cpp/utility/format/formatter#Standard_format_specification
³⁷https://docs.python.org/3/library/stdtypes.html#str.format
³⁸https://en.cppreference.com/w/cpp/chrono/system_clock/formatter#Format_specification

https://en.cppreference.com/w/cpp/utility/format/formatter#Standard_format_specification
https://docs.python.org/3/library/stdtypes.html#str.format
https://docs.python.org/3/library/stdtypes.html#str.format
https://en.cppreference.com/w/cpp/chrono/system_clock/formatter#Format_specification
https://en.cppreference.com/w/cpp/utility/format/formatter#Standard_format_specification
https://docs.python.org/3/library/stdtypes.html#str.format
https://en.cppreference.com/w/cpp/chrono/system_clock/formatter#Format_specification

The Standard Library 337

5.5.2.1 Compile Time

• Performance: If the format string is checked at compile time, there is nothing to do at run
time. Consequentially, the three functions std::format, std::format_to, and std::format_to_n

promise excellent performance. The prototype library fmt³⁹ has a few exciting benchmarks.

• Safety: Using a wrong format string at compile time causes a compilation error. On the contrary,
using a format string at run time with std::vformat or std::vformat_to causes a std::format_-
error exception.

I will use the next sections to fill in the theory with practice. Let me start with the argument id and
continue with the format specification.

5.5.2.2 Argument ID

Thanks to the argument id, you can reorder or address particular arguments.

Using the argument id

1 // formatArgumentID.cpp

2

3 #include <format>

4 #include <iostream>

5 #include <string>

6

7 int main() {

8

9 std::cout << '\n';

10

11 std::cout << std::format("{} {}: {}!\n", "Hello", "World", 2020);

12

13 std::cout << std::format("{1} {0}: {2}!\n", "World", "Hello", 2020);

14

15 std::cout << std::format("{0} {0} {1}: {2}!\n", "Hello", "World", 2020);

16

17 std::cout << std::format("{0}: {2}!\n", "Hello", "World", 2020);

18

19 std::cout << '\n';

20

21 }

Line 11 displays the argument in the given order. On the contrary, line 13 reorders the first and second
argument, line 15 shows the first argument twice, and line 17 ignores the second argument.

For completeness, here is the output of the program:

³⁹https://github.com/fmtlib/fmt

https://github.com/fmtlib/fmt
https://github.com/fmtlib/fmt

The Standard Library 338

Applying the argument id

Applying the argument id with the format specification makes formatting of text in C++20 very
powerful.

5.5.2.3 Format Specification

I won’t present the formal format specification for basic types, string types, or chrono types. For basic
types and std::string, read the full details here: standard format specification⁴⁰. Accordingly, you
can find the details of chrono types here: chrono format specification⁴¹.

Instead, I present a pragmatic description of the format string for basic types, string types, and chrono
types. The presentation of chrono types is in the Calendar and Time Zones chapter.

A simplified format specification for basic types and string types

fill_align(opt) sign(opt) #(opt) 0(opt) width(opt) precision(opt) L(opt) type(opt)

All parts are optional (opt). The following few sections present the features of this format specification.

5.5.2.3.1 Fill Character and Alignment

The fill character is optional (any character except { or }) and followed by an alignment specification.
To us the fill character you must specify the alignment.

• Fill character: by default, space is used

• Alignment:

– <: left (default for non-numbers)
– >: right (default for numbers)
– ^: center

⁴⁰https://en.cppreference.com/w/cpp/utility/format/formatter#Standard_format_specification
⁴¹https://en.cppreference.com/w/cpp/chrono/system_clock/formatter#Format_specification

https://en.cppreference.com/w/cpp/utility/format/formatter#Standard_format_specification
https://en.cppreference.com/w/cpp/chrono/system_clock/formatter#Format_specification
https://en.cppreference.com/w/cpp/utility/format/formatter#Standard_format_specification
https://en.cppreference.com/w/cpp/chrono/system_clock/formatter#Format_specification

The Standard Library 339

Applying the fill character and alignment

// formatFillAlign.cpp

#include <format>

#include <iostream>

int main() {

std::cout << '\n';

int num = 2020;

std::cout << std::format("{:6}", num) << '\n';

std::cout << std::format("{:6}", 'x') << '\n';

std::cout << std::format("{:*<6}", 'x') << '\n';

std::cout << std::format("{:*>6}", 'x') << '\n';

std::cout << std::format("{:*^6}", 'x') << '\n';

std::cout << std::format("{:6d}", num) << '\n';

std::cout << std::format("{:6}", true) << '\n';

std::cout << '\n';

}

The default alignment depends on the used types. In contrast to the iostream operator, boolean values
are displayed as true or false.

Applying the fill character and alignment

The Standard Library 340

5.5.2.3.2 Sign, #, and 0

The sign, #, and 0 character is only valid when an integer or floating-point type is used.

The sign can have the following values:
• +: sign is used for zero and positive numbers

• -: sign is only used for negative numbers (default)

• space: leading space is used for non-negative numbers and a minus sign for negative numbers
Applying the sign character

// formatSign.cpp

#include <format>

#include <iostream>

int main() {

std::cout << '\n';

std::cout << std::format("{0:},{0:+},{0:-},{0: }", 0) << '\n';

std::cout << std::format("{0:},{0:+},{0:-},{0: }", -0) << '\n';

std::cout << std::format("{0:},{0:+},{0:-},{0: }", 1) << '\n';

std::cout << std::format("{0:},{0:+},{0:-},{0: }", -1) << '\n';

std::cout << '\n';

}

Applying the sign character

The # causes the alternative form:
• For integer types, the prefix 0b, 0, or 0x is used for binary, octal, or hexadecimal presented types

• For floating-point types, a decimal point is always used

• 0: pads with leading zeros

The Standard Library 341

1 // formatAlternate.cpp

2

3 #include <format>

4 #include <iostream>

5

6 int main() {

7

8 std::cout << '\n';

9

10 std::cout << std::format("{:#015}", 0x78) << '\n';

11 std::cout << std::format("{:#015b}", 0x78) << '\n';

12 std::cout << std::format("{:#015x}", 0x78) << '\n';

13

14 std::cout << '\n';

15

16 std::cout << std::format("{:g}", 120.0) << '\n';

17 std::cout << std::format("{:#g}", 120.0) << '\n';

18

19 std::cout << '\n';

20

21 }

Applying the # and the 0 characters

5.5.2.3.3 Width and Precision

You can specify the width and the precision of your argument. The width specifier can be applied
to numbers, and the precision to floating-point numbers and strings. For floating-point types, the
precision specifies the formatting precision; for strings, the precision specifies how many characters
are used and so, ultimately, trimming the string. It does not affect a string if the precision is greater
than the length of the string.

• width: you can use either a positive decimal number or a replacement field ({} or {n}). When
given, n specifies the minimum width.

The Standard Library 342

• precision: you can use a period (.) followed by a non-negative decimal number or a replacement
field.

A few examples should help you grasp the basics:

Applying the width and precision specifier

1 // formatWidthPrecision.cpp

2

3 #include <format>

4 #include <iostream>

5 #include <string>

6

7 int main() {

8

9 int i = 123456789;

10 double d = 123.456789;

11

12 std::cout << "---" << std::format("{}", i) << "---\n";

13 std::cout << "---" << std::format("{:15}", i) << "---\n"; // (w = 15)

14 std::cout << "---" << std::format("{:}", i) << "---\n"; // (w = 15)

15

16 std::cout << '\n';

17

18 std::cout << "---" << std::format("{}", d) << "---\n";

19 std::cout << "---" << std::format("{:15}", d) << "---\n"; // (w = 15)

20 std::cout << "---" << std::format("{:}", d) << "---\n"; // (w = 15)

21

22 std::cout << '\n';

23

24 std::string s= "Only a test";

25

26 std::cout << "---" << std::format("{:10.50}", d) << "---\n"; // (w = 10, p = 50)

27 std::cout << "---" << std::format("{:{}.{}}", d, 10, 50) << "---\n"; // (w = 10,

28 // p = 50)

29 std::cout << "---" << std::format("{:10.5}", d) << "---\n"; // (w = 10, p = 5)

30 std::cout << "---" << std::format("{:{}.{}}", d, 10, 5) << "---\n"; // (w = 10,

31 // p = 5)

32

33 std::cout << '\n';

34

35 std::cout << "---" << std::format("{:.500}", s) << "---\n"; // (p = 500)

36 std::cout << "---" << std::format("{:.{}}", s, 500) << "---\n"; // (p = 500)

37 std::cout << "---" << std::format("{:.5}", s) << "---\n"; // (p = 5)

38

39 }

The Standard Library 343

The w character in the source code stands for the width; similarly, the p character for the precision. I
have a few interesting observations about the program. No extra spaces are added when you specify
the width with a replacement field (line 14). When you specify a precision higher than the length of
the displayed double (lines 26 and 27), the length of the displayed value reflects the precision. This
observation does not hold for a string (lines 35 and 36).

Applying the width and precision specifiers

Additionally, you can also parametrize the width and the precision.

Applying the width and precision specifier

1 // formatWidthPrecisionParametrized.cpp

2

3 #include <format>

4 #include <iostream>

5

6 int main() {

7

8 std::cout << '\n';

9

10 double doub = 123.456789;

11

12 std::cout << std::format("{:}\n", doub);

13

14 std::cout << '\n';

The Standard Library 344

15

16 for (auto precision: {3, 5, 7, 9}) {

17 std::cout << std::format("{:.{}}\n", doub, precision);

18 }

19

20 std::cout << '\n';

21

22 int width = 10;

23 for (auto precision: {3, 5, 7, 9}) {

24 std::cout << std::format("{:{}.{}}\n", doub, width, precision);

25 }

26

27 std::cout << '\n';

28

29 }

Program formatWidthPrecisionParametrized.cpp displays the double doub in various ways. Line 12
applies the default. Line 17 varies the precision from 3 to 9. The last argument of the format string
goes into the inner {} of the format specifier {:.{}}. Finally, line 24 sets the width of the displayed
doubles to 10.

Applying the parametrized width and precision specifiers

The Standard Library 345

5.5.2.3.4 Type

In general, the compiler deduces the type of the value used. But sometimes, you want to specify the
type. These are the most important type specifications:

• Strings: s

• Integers:
– b: binary format
– B: same as b but base Prefix is 0B
– d: decimal format
– o: octal format
– x: hexadecimal format
– X: same as x, but base prefix is 0X

• char and wchar_t:
– b, B, d, o, x, X: such as integers

• bool:
– s: true or false
– b, B, d, o, x, X: such as integers

• Floating-point:
– e: exponential format
– E: same as e, but the exponent is written with E

– f, F: fixed point; precision is 6
– g, G: precision 6 but exponent is written with E

• Pointer:
– p: hexadecimal notation of its address

Only void, const void, and std::nullptr_t pointer types are valid. If you want to display the address
of an arbitrary pointer, you must cast it to (const) void*.

Output of pointers

double d = 123.456789;

std::format("{}", &d); // ERROR

std::format("{}", static_cast<void*>(&d)); // okay

std::format("{}", static_cast<const void*>(&d)); // okay

std::format("{}", nullptr); // okay

When you don’t specify the type, the values are displayed as follows. A string is displayed as a string,
an integer in decimal format, a character as a character, and a floating-point value with std::to_-

chars⁴².

The type specifiers allow you to easily display an int in a different number system.

⁴²https://en.cppreference.com/w/cpp/utility/to_chars

https://en.cppreference.com/w/cpp/utility/to_chars
https://en.cppreference.com/w/cpp/utility/to_chars
https://en.cppreference.com/w/cpp/utility/to_chars

The Standard Library 346

Applying the type specifier

1 // formatType.cpp

2

3 #include <format>

4 #include <iostream>

5

6 int main() {

7

8 int num{2020};

9

10 std::cout << "default: " << std::format("{:}", num) << '\n';

11 std::cout << "decimal: " << std::format("{:d}", num) << '\n';

12 std::cout << "binary: " << std::format("{:b}", num) << '\n';

13 std::cout << "octal: " << std::format("{:o}", num) << '\n';

14 std::cout << "hexadecimal: " << std::format("{:x}", num) << '\n';

15

16 }

Applying the type specifier

So far, I’ve formatted basic types and strings. Additionally, you can format user-defined types.

5.5.3 User-Defined Types

I have to specialize the class std::formatter⁴³ for the user-defined type. In particular, I must
implement the member functions parse, and format.

• parse: This function parses the format string and throws a std::format_error in case of an
error. The function parse should be constexpr to enable compile-time parsing. It accepts a
parse context (std::format_parse_context) and should return the last character for the format
specifier (the closing }). When you don’t use a format specifier, this is also the first character
of the format specifier.

The following lines show a few examples of the first character of the format specifier:

⁴³https://en.cppreference.com/w/cpp/utility/format/formatter

https://en.cppreference.com/w/cpp/utility/format/formatter
https://en.cppreference.com/w/cpp/utility/format/formatter

The Standard Library 347

First character of a format specifier

"{}" // context.begin() points to `}`

"{:}" // context.begin() points to `}`

"{0:d}" // context.begin() points to `d}`

"{:5.3f}" // context.begin() points to: `5.3f}`

"{:x}" // context.begin() points to `x}`

"{0} {0}" // context.begin() points to: "} {0}"

context.begin() points to the first character of the format specifier, and context.end() to the last
character of the entire format string. When you provide a format specifier, you have to parse all
between context.begin() and context.end() and return the position of the closing }.

• format: This function should be const. It gets the value val and the format std::format_context
context. format formats the value val and writes it, according to the parsed format, to
context.out(). The constext.out() return value can be directly fed into std::format_to.
std::format_to has to return the new position for further output. It returns an iterator that
represents the end of the output.

Let me apply the theory and start with the first example.

5.5.3.1 A Formatter for a Single Value

A formatter for a single value

1 // formatSingleValue.cpp

2

3 #include <format>

4 #include <iostream>

5

6 class SingleValue {

7 public:

8 SingleValue() = default;

9 explicit SingleValue(int s): singleValue{s} {}

10 int getValue() const {

11 return singleValue;

12 }

13 private:

14 int singleValue{};

15 };

16

17 template<>

18 struct std::formatter<SingleValue> {

19 constexpr auto parse(std::format_parse_context& context) {

20 return context.begin();

21 }

The Standard Library 348

22 auto format(const SingleValue& sVal, std::format_context& context) const {

23 return std::format_to(context.out(), "{}", sVal.getValue());

24 }

25 };

26

27 int main() {

28

29 std::cout << '\n';

30

31 SingleValue sVal0;

32 SingleValue sVal2020{2020};

33 SingleValue sVal2023{2023};

34

35 std::cout << std::format("Single Value: {} {} {}\n", sVal0, sVal2020, sVal2023);

36 std::cout << std::format("Single Value: {1} {1} {1}\n", sVal0, sVal2020, sVal2023);

37 std::cout << std::format("Single Value: {2} {1} {0}\n", sVal0, sVal2020, sVal2023);

38

39 std::cout << '\n';

40

41 }

SingleValue (line 6) is a class having only one value. The member function getValue (line 10) returns
this value. I specialize std::formatter (line 17) on SingleValue. This specialization has the member
functions parse (line 19) and format (line 22). parse returns the end of the format specification. The
end of the format specification is the closing }. format formats the value, and context.out creates an
object passed to std::format_to. format returns the new position for further output.

Executing this program gives the expected result.

A formatter for a single value

This formatter has a serious dropback. It does not support a format specifier. Let me improve that.

The Standard Library 349

5.5.3.1.1 A Formatter supporting a Format Specifier

Implementing a formatter for a user-defined type is pretty straightforward when you base your
formatter on a standard formatter. Basing a user-defined formatter on a standard formatter can be
done in two ways.

5.5.3.1.2 Delegation

The following formatter delegates its job to a standard formatter.

A formatter for a single value supporting a format specifier (delegation)

1 // formatSingleValueDelegation.cpp

2

3 #include <format>

4 #include <iostream>

5

6 class SingleValue {

7 public:

8 SingleValue() = default;

9 explicit SingleValue(int s): singleValue{s} {}

10 int getValue() const {

11 return singleValue;

12 }

13 private:

14 int singleValue{};

15 };

16

17 template<>

18 struct std::formatter<SingleValue> {

19

20 std::formatter<int> formatter;

21

22 constexpr auto parse(std::format_parse_context& context) {

23 return formatter.parse(context);

24 }

25

26 auto format(const SingleValue& singleValue, std::format_context& context) const {

27 return formatter.format(singleValue.getValue(), context);

28 }

29

30 };

31

32 int main() {

33

34 std::cout << '\n';

The Standard Library 350

35

36 SingleValue singleValue0;

37 SingleValue singleValue2020{2020};

38 SingleValue singleValue2023{2023};

39

40 std::cout << std::format("{:*<10}", singleValue0) << '\n';

41 std::cout << std::format("{:*^10}", singleValue2020) << '\n';

42 std::cout << std::format("{:*>10}", singleValue2023) << '\n';

43

44 std::cout << '\n';

45

46 }

std::formatter<SingleValue> (line 17) has a standard formatter for int: std::formatter<int> formatter

(line 20). I delegate the parsing job (line 23) to the formatter (line 23). Accordingly, the formatting job
format is also delegated to the formatter (line 27).

The program’s output shows that the formatter supports fill characters and alignment.

A formatter for a single value supporting a format specifier

5.5.3.1.3 Inheritance

Thanks to inheritance, implementing the formatter for the user-defined type SingleValue is a piece of
cake.

The Standard Library 351

A formatter for a single value supporting a format specifier (inheritance)

1 // formatSingleValueInheritance.cpp

2

3 #include <format>

4 #include <iostream>

5

6 class SingleValue {

7 public:

8 SingleValue() = default;

9 explicit SingleValue(int s): singleValue{s} {}

10 int getValue() const {

11 return singleValue;

12 }

13 private:

14 int singleValue{};

15 };

16

17 template<>

18 struct std::formatter<SingleValue> : std::formatter<int> {

19 auto format(const SingleValue& singleValue, std::format_context& context) const {

20 return std::formatter<int>::format(singleValue.getValue(), context);

21 }

22 };

23

24 int main() {

25

26 std::cout << '\n';

27

28 SingleValue singleValue0;

29 SingleValue singleValue2020{2020};

30 SingleValue singleValue2023{2023};

31

32 std::cout << std::format("{:*<10}", singleValue0) << '\n';

33 std::cout << std::format("{:*^10}", singleValue2020) << '\n';

34 std::cout << std::format("{:*>10}", singleValue2023) << '\n';

35

36 std::cout << '\n';

37

38 }

I derive std::formatter<SingleValue> from std::formatter<int> (line 18). Only the format functions
must be implemented. The output of this program is identical to the output of the previous program
formatSingleValueDelegation.cpp.

The Standard Library 352

Delegating to a standard formatter or inheriting from one is a straightforward way to implement a
user-defined formatter. This strategy only works for user-defined types having one value.

5.5.3.2 A Formatter for More Values

Point is a class with three members.

A formatter for a point supporting a format specifier

1 // formatPoint.cpp

2

3 #include <format>

4 #include <iostream>

5 #include <string>

6

7 struct Point {

8 int x{2017};

9 int y{2020};

10 int z{2023};

11 };

12

13 template <>

14 struct std::formatter<Point> : std::formatter<std::string> {

15 auto format(Point point, format_context& context) const {

16 return formatter<string>::format(

17 std::format("({}, {}, {})", point.x, point.y, point.y), context);

18 }

19 };

20

21 int main() {

22

23 std::cout << '\n';

24

25 Point point;

26

27 std::cout << std::format("{:*<25}", point) << '\n';

28 std::cout << std::format("{:*^25}", point) << '\n';

29 std::cout << std::format("{:*>25}", point) << '\n';

30

31 std::cout << '\n';

32

33 std::cout << std::format("{} {} {}", point.x, point.y, point.z) << '\n';

34 std::cout << std::format("{0:*<10} {0:*^10} {0:*>10}", point.x) << '\n';

35

36 std::cout << '\n';

The Standard Library 353

37

38 }

In this case, I derive from the standard formatter std::formatter<std::string>. A std::string_-

view is also possible. std::formatter<Point> creates the formatted output by calling format on
std::formatter. This function call already gets a formatted string as a value. Consequentially, all
format specifiers of std::string are applicable (lines 27 - 29). On the contrary, you can also format
each value of Point. This is exactly happening in lines 33 and 34.

A formatter for a point supporting a format specifier

5.5.4 Internationalization

The formatting functions std::format*, and std::vformat* have overloads accepting a locale. These
overloads allow you to localize your format string.

The following code snippet shows the corresponding overload of std::format:

std::format overload accepting a locale

template< class... Args >

std::string format(const std::locale& loc,

std::format_string<Args...> fmt, Args&&... args);

To use a given locale, specify L before the type specifier in the format string. Now, you apply the locale
in each call of std::format or set it globally with std::locale::global⁴⁴.

In the following example, I explicitly apply the German locale on each std::format call.

⁴⁴https://en.cppreference.com/w/cpp/locale/locale/global

https://en.cppreference.com/w/cpp/locale/locale/global
https://en.cppreference.com/w/cpp/locale/locale/global

The Standard Library 354

Using the German locale
1 // internationalization.cpp

2

3 #include <chrono>

4 #include <exception>

5 #include <iostream>

6 #include <thread>

7

8 std::locale createLocale(const std::string& localString) {

9 try {

10 return std::locale{localString};

11 }

12 catch (const std::exception& e) {

13 return std::locale{""};

14 }

15 }

16

17 int main() {

18

19 std::cout << '\n';

20

21 using namespace std::literals;

22

23 std::locale loc = createLocale("de_DE");

24

25 std::cout << "Default locale: " << std::format("{:}", 2023) << '\n';

26 std::cout << "German locale: " << std::format(loc, "{:L}", 2023) << '\n';

27

28 std::cout << '\n';

29

30 std::cout << "Default locale: " << std::format("{:}", 2023.05) << '\n';

31 std::cout << "German locale: " << std::format(loc, "{:L}", 2023.05) << '\n';

32

33 std::cout << '\n';

34

35 auto start = std::chrono::steady_clock::now();

36 std::this_thread::sleep_for(33ms);

37 auto end = std::chrono::steady_clock::now();

38

39 const auto duration = end - start;

40

41 std::cout << "Default locale: " << std::format("{:}", duration) << '\n';

42 std::cout << "German locale: " << std::format(loc, "{:L}", duration) << '\n';

43

44 std::cout << '\n';

The Standard Library 355

45

46 const auto now = std::chrono::system_clock::now();

47 std::cout << "Default locale: " << std::format("{}\n", now);

48 std::cout << "German locale: " << std::format(loc, "{:L}\n", now);

49

50 std::cout << '\n';

51

52 }

The function createLocale (line 8) creates the German locale. If this fails, it returns the default locale
that uses American formatting. I use the German locale in lines 26, 31, 42, and 48. To see the difference,
I also applied the std::format calls immediately afterward. Consequentially, the local-dependent
thousand separator is used for the integral value (line 26), and the locale-dependent decimal point
and thousand separator for the floating-point value (line 31). Accordingly, the time duration (line 42)
and the time point (line 48) use the given German locale.

The following screenshot shows the output of the program.

Using the German locale

The Standard Library 356

Distilled Information
• The formatting library offers a secure and expandable alternative to the printf

family and extends the I/O streams.

• The format specification allows you to specify fill letters and text alignment, set
the sign, specify the width and the precision of numbers, and specify the data type.

• Thanks to the functions parse and format, the formatting of a user-defined type
can be tailored to your needs.

• The formatting functions std::format*, and std::vformat* have overloads accept-
ing a locale.

The Standard Library 357

5.6 Calendar and Time Zones

Cippi studies the calendar

To get the most out of the chapter about calendars and time zones, a basic understanding of the chrono
terminology is essential.

5.6.1 Basic Chrono Terminology

Essentially, the time-zone functionality (C++20) is based on the calendar functionality (C++20) and the
calendar functionality (C++20), which are based on the chrono functionality (C++11). Consequently,
this basic chrono terminology starts with the three C++11 components time point, time duration, and
clock.

• A time point is defined by a starting point, the so-called epoch, and additional time duration
since the epoch.

• A time duration is the difference between two time points. The number of ticks of the clock
defines the time duration.

• A clock consists of a starting point (epoch) and a tick to calculate the current time point.

You can subtract time points and get a time duration. You get a new time point when you add a time
duration to a time point. A year is the typical accuracy of the clock and the measure of the time
duration.

I will use the three concepts to present the lifetime of the 2011 died father of the programming language
C: Dennis Ritchie. For simplicity reasons, I’m only interested in the years.

The Standard Library 358

Lifetime of Dennis Ritchie

Dennis Ritchie became 70 years old. The birth of Christ is the epoch. Combining the epoch with the
time duration gives me the time points 1941 and 2011. Subtraction of the timepoint 1941 from 2011
provides the time duration in Year’s accuracy.

C++11 has the three clocks std::chrono::system_clock, std::chrono::steady_clock, and std::chrono::high_-
resolution_clock. The time duration can be positive and negative. Each of the three clocks has a
member function now for returning the current time point.

C++20 adds new components to the chrono library:

• The time of day is the time duration since midnight, split into hours, minutes, seconds, and
fractional seconds.

• Calendar stands for various calendar dates such as year, month, weekday, or the nth day of a
week.

• A time zone represents a time specific to a geographic area.

• A zoned time combines a time point with a time zone.

Time is a Mysterium

Honestly, time, for me, is a mystery. On the one hand, each of us has an intuitive idea of
time; conversly, defining it formally is exceptionally challenging. For example, the three
components, time point, time duration, and clock, depend on each other.

First, let me present the basic types and literals.

5.6.2 Basic Types and Literals

For completeness reasons, this section includes the basic types and literals of the previous C++
standards.

The Standard Library 359

5.6.2.1 Clocks

Beside the wall clock std::chrono::system_clock⁴⁵, the monotonic clock std::chrono::steady_-

clock⁴⁶, and the most precise clock std::chrono::high_resolution_clock⁴⁷ in C++11, C++20 supports
five additional clocks. The following table shows the characteristics of all C++ clocks and their epoch.

Clocks and their Epoch (the namespace std::chrono is missing)

Clock Description Epoch Leap Seconds C++Standard

steady_clock Monotonic clock for measurement Impl. specific C++11

system_clock Clock of the operating system 1 January 1970 Not included C++11

file_clock Alias for file_time_type⁴⁸ Impl. specific C++20

gps_clock GPS time (Global Positioning
System⁴⁹)

6 January 1980 Not included C++20

local_t Pseudo clock for local time Without epoch C++20

tai_clock TAI time (International Atomic
Time⁵⁰)

1 January 1958 Not included C++20

utc_clock Coordinated Universal Time (UTC) 1 January 1970 Included C++20

The clocks std::chrono::steady_clock, and std::chrono::file_clock have an implementation spec-
ified epoch. The epochs of std::chrono::system_clock, std::chrono::gps_clock, std::chrono::tai_-
clock, and std::chrono::utc_clock start at 00:00:00. std::chrono::file_clock is the clock for file
system entries.

Additionally, C++11 supports the std::chrono::high_resolution_clock. This clock is on all imple-
mentations not implemented and is an alias for std::chrono::steady_clock or std::chrono::high_-
resolution_clock.

You can convert a time point between the clocks.

5.6.2.1.1 Conversion of time points between clocks.

Thanks to the function std::chrono::clock_cast, you can convert time points between the clocks hav-
ing an epoch. These are the clocks std::chrono::system_clock, std::chrono::utc_clock, std::chrono::gps_-
clock, and std::chrono::tai_clock. Additionally, std::chrono::file_clock supports conversion.

⁴⁵https://www.modernescpp.com/index.php/the-three-clocks
⁴⁶https://www.modernescpp.com/index.php/the-three-clocks
⁴⁷https://www.modernescpp.com/index.php/the-three-clocks
⁴⁸https://en.cppreference.com/w/cpp/filesystem/file_time_type
⁴⁹https://en.wikipedia.org/wiki/Global_Positioning_System
⁵⁰https://en.wikipedia.org/wiki/International_Atomic_Time

https://www.modernescpp.com/index.php/the-three-clocks
https://www.modernescpp.com/index.php/the-three-clocks
https://www.modernescpp.com/index.php/the-three-clocks
https://www.modernescpp.com/index.php/the-three-clocks
https://en.cppreference.com/w/cpp/filesystem/file_time_type
https://en.wikipedia.org/wiki/Global_Positioning_System
https://en.wikipedia.org/wiki/Global_Positioning_System
https://en.wikipedia.org/wiki/International_Atomic_Time
https://en.wikipedia.org/wiki/International_Atomic_Time
https://www.modernescpp.com/index.php/the-three-clocks
https://www.modernescpp.com/index.php/the-three-clocks
https://www.modernescpp.com/index.php/the-three-clocks
https://en.cppreference.com/w/cpp/filesystem/file_time_type
https://en.wikipedia.org/wiki/Global_Positioning_System
https://en.wikipedia.org/wiki/International_Atomic_Time

The Standard Library 360

The following program converts the time point 2021-8-5 17:00:00 between the various clocks.

Conversion of time point between various clocks

1 // convertClocks.cpp

2

3 #include <iostream>

4 #include <sstream>

5 #include <chrono>

6

7 int main() {

8

9 std::cout << '\n';

10

11 using namespace std::literals;

12

13 std::chrono::utc_time<std::chrono::utc_clock::duration> timePoint;

14 std::istringstream{"2021-8-5 17:00:00"} >> std::chrono::parse("%F %T"s, timePoint);

15

16 auto timePointUTC = std::chrono::clock_cast<std::chrono::utc_clock>(timePoint);

17 std::cout << "UTC_time: " << std::format("{:%F %X %Z}", timePointUTC) << '\n';

18

19 auto timePointSys = std::chrono::clock_cast<std::chrono::system_clock>(timePoint);

20 std::cout << "sys_time: " << std::format("{:%F %X %Z}", timePointSys) << '\n';

21

22 auto timePointFile = std::chrono::clock_cast<std::chrono::file_clock>(timePoint);

23 std::cout << "file_time: " << std::format("{:%F %X %Z}", timePointFile) << '\n';

24

25 auto timePointGPS = std::chrono::clock_cast<std::chrono::gps_clock>(timePoint);

26 std::cout << "GPS_time: " << std::format("{:%F %X %Z}", timePointGPS) << '\n';

27

28 auto timePointTAI = std::chrono::clock_cast<std::chrono::tai_clock>(timePoint);

29 std::cout << "TAI_time: " << std::format("{:%F %X %Z}", timePointTAI) << '\n';

30

31 std::cout << '\n';

32

33 }

The function std::chrono::parse (line 14) parses the chrono object from the stream. In lines 16, 19, 22,
25, and 28, the std::chrono::clock_cast converts the timePoint into the specified clock. The following
line displays the time point, specifying its date (%F), its local time representation (%X), and its time zone
abbreviation (%Z). The section Chrono I/O provides the details about the format string.

The Standard Library 361

Conversion of a time point between various clocks

The output may surprise you. GPS time is 18 seconds ahead of the UTC time. TAI time is 37 seconds
ahead of the UTC time and 19 seconds ahead of the GPS time.

5.6.2.2 Time Durations and Literals

C++14 introduced helper types such as std::chrono::seconds for time durations and corresponding
time literals such as 5s. C++20 added new helper types. The following table shows all for completeness.

Time Durations and Time Literals

Helper Type Suffix Example Duration C++ Standard

std::chrono::nanoseconds ns 5ns C++14
std::chrono::microseconds us 5us C++14
std::chrono::milliseconds ms 5ms C++14
std::chrono::seconds s 5s C++14
std::chrono::minutes min 5min C++14
std::chrono::hours h 5h C++14
std::chrono::days C++20
std::chrono::weeks C++20
std::chrono::months 30.436875 days C++20
std::chrono::years 365.2425 days (including leap years) C++20

Often the time duration std::chrono::days and the calendar date std::chrono::day are mixed up. The
same holds for the time duration std::chrono::years and the calendar date std::chrono::year.

5.6.2.2.1 Distinguish between the time durations std::chrono::days, std::chrono::years, and
the calendar types std::chrono::day, std::chrono::year

C++20 added two new literals for new calendar types std::chrono::day and std::chrono::year. The
literals d and y refer to a std::chrono::day and std::chrono::year

The Standard Library 362

Calendar Type and Literals

Type Suffix Example Available since

std::chrono::day d 5d C++20
std::chrono::year y 5y C++20

• The day literal represents a day of the month and is unspecified if outside the range [0, 255].

• The year literal represents a year in the Gregorian calendar⁵¹ and is unspecified if outside the
range [-32767, 32767].

The following program emphasizes the difference between std::chrono::days and std::chrono::day

and, accordingly, std::chrono::years and std::chrono::year.

The types day/days and year/years

1 // dayDays.cpp

2

3 #include <iostream>

4 #include <chrono>

5

6 int main() {

7

8 std::cout << '\n';

9

10 using namespace std::chrono_literals;

11

12 std::chrono::days days1 = std::chrono::day(30) - std::chrono::day(25);

13 std::chrono::days days2 = 30d - 25d;

14 if (days1 == days2 &&

15 days1 == std::chrono::days(5)) std::cout << "Five days\n";

16

17 std::chrono::years years1 = std::chrono::year(2021) - std::chrono::year(1998);

18 std::chrono::years years2= 2021y - 1998y;

19 if (years1 == years2 &&

20 years1 == std::chrono::years(23)) std::cout << "Twenty-three years\n";

21

22 std::cout << '\n';

23

24 }

When you subtract two objects of type std::chrono::day (line 12), you get an object of type
std::chrono::days. The same holds for the std::chrono::year (lines 17) and std::chrono::years.

⁵¹https://en.wikipedia.org/wiki/Gregorian_calendar

https://en.wikipedia.org/wiki/Gregorian_calendar
https://en.wikipedia.org/wiki/Gregorian_calendar

The Standard Library 363

Thanks to the using declaration using namespace std::chrono_literals (lines 13 and 18), I can directly
specify the time literals for std::chrono::day and std::chrono::year.

The types day/days and year/years

5.6.2.2.2 Include Literals

There are various ways to include the literals.

Include the time literals

using namespace std::literals;

using namespace std::chrono;

using namespace std::chrono_literals;

using namespace std::literals::chrono_literals;

• using namespace std::literals: includes all C++ literals

• using namespace std::chrono: includes the entire namespace std::chrono

• using namespace std::chrono_literals: includes all time literals

• using namespace std::literals::chrono_literals: includes all time literals

The program literals.cpp shows the use of different using declarations.

Different using declarations

1 // literals.cpp

2

3 #include <chrono>

4 #include <string>

5

6 int main() {

7

8 {

9 using namespace std::literals;

10

11 std::string cppString = "C++ string literal"s;

12 auto aMinute = 60s;

The Standard Library 364

13 // duration aHour = 0.25h + 15min + 1800s;

14 }

15

16 {

17 using namespace std::chrono;

18

19 // std::string cppString = "C++ string literal"s;

20 auto aMinute = 60s;

21 duration aHour = 0.25h + 15min + 1800s;

22 }

23

24 {

25 using namespace std::chrono_literals;

26

27 // std::string cppString = "C++ String literal"s;

28 auto aMinute = 60s;

29 // duration aHour = 0.25h + 15min + 1800s;

30 }

31

32 }

The using namespace std::literals declarations enable it to use all built-in literals such as string
literal ("C++ string literal"s in line 11) or the time literal (60s in line 12). std::chrono::duration can-
not be used unqualified. On the contrary, the using declaration using namespace std::chrono allows
it to use the time literals and the type std::chrono::duration (line 21) unqualified: duration aHour =

0.25h + 15min + 1800s. Thanks to the using declaration using namespace::std::chrono::literals,
all time literals are available.

5.6.2.3 Time Points

Besides the clock and the time duration, the third fundamental type in C++11was std::chrono::time_-
point.

std::chrono::time_point

template<typename Clock, typename Duration = typename Clock::duration>

class time_point;

A std::chrono::time_point depends on the clock and the time duration. C++20 provides aliases for
additional time points.

The Standard Library 365

Aliase for time points

Time Point Description

std::chrono::local_time<duration> Local time point
std::chrono::local_seconds Local time point in seconds
std::chrono::local_days Local time point in days

std::chrono::sys_time<duration> System time point
std::chrono::sys_seconds System time point in seconds
std::chrono::sys_days System time point in days

std::chrono::utc_time<duration> UTC time point
std::chrono::utc_seconds UTC time point in seconds

std::chrono::tai_time<duration> TAI time point
std::chrono::tai_seconds TAI time point in seconds

std::chrono::gps_time<duration> GPS time point
std::chrono::gps_seconds GPS time point in seconds

std::chrono::file_time<duration> Filesystem time point

With the exception of std::chrono::steady_clock, you can define a time point with the specified
time duration. All but not the clock std::chrono::file_clock enables it to specify it for seconds.
Additionally, std::chrono::local_t and std::chrono::system_clock enables to specify it for days.

5.6.3 Time of Day

std::chrono::hh_mm_ss is the time duration since midnight, split into hours, minutes, seconds, and
fractional seconds. This type is typically used as a formatting tool. First, the following table gives a
brief overview of std::chrono::hh_mm_ss instance tOfDay.

Time of Day

Function Description

tOfDay.hours() Returns the hour component since midnight

tOfDay.minutes() Returns the minute component since midnight

tOfDay.seconds() Returns the second component since midnight

tOfDay.subseconds() Returns the fractional second component since midnight

The Standard Library 366

Time of Day

Function Description
tOfDay.is_negative() Returns if the time duration is negative

tOfDay.to_duration() Returns the time duration since midnight
If tOfDay.is_negative(), returns -(h + m + s + ss),
otherwise h + m + s + ss

tOfday.fractional_width Number of fractional decimal digits

std::chrono::make12(hour) Returns the 12-hour equivalent of a 24-hour format time
std::chrono::make24(hour) Returns the 24-hour equivalent of a 12-hour format time

std::chrono::is_am(hour) Detects if the 24-hour format time is a.m.
std::chrono::is_pm(hour) Detects if the 24-hour format time is p.m.

Depending on the used time duration, the static member provides the appropriate tOfDay.fractional_-
width. If no such value of fractional_width in the range [0, 18] exists, then fractional_width is 6.
See for example, std::chrono::duration<int, std::ratio<1, 3>> in the following table.

fractional_width

Time Duration Value of fractional_with

std::chrono::hours 0
std::chrono::minutes 0
std::chrono::seconds 0

std::chrono::milliseconds 3

std::chrono::microseconds 6

std::chrono::nanoseconds 9

std::chrono::duration<int, std::ratio<1, 2>> 1
std::chrono::duration<int, std::ratio<1, 3>> 6

The use of the chrono type std::chrono::hh_mm_ss is straightforward.

The Standard Library 367

Time of day

1 // timeOfDay.cpp

2

3 #include <chrono>

4 #include <iostream>

5

6 int main() {

7

8 using namespace std::chrono_literals;

9

10 std::cout << std::boolalpha << '\n';

11

12 auto timeOfDay = std::chrono::hh_mm_ss(10.5h + 98min + 2020s + 0.5s);

13

14 std::cout<< "timeOfDay: " << timeOfDay << '\n';

15

16 std::cout << '\n';

17

18 std::cout << "timeOfDay.hours(): " << timeOfDay.hours() << '\n';

19 std::cout << "timeOfDay.minutes(): " << timeOfDay.minutes() << '\n';

20 std::cout << "timeOfDay.seconds(): " << timeOfDay.seconds() << '\n';

21 std::cout << "timeOfDay.subseconds(): " << timeOfDay.subseconds() << '\n';

22 std::cout << "timeOfDay.to_duration(): " << timeOfDay.to_duration() << '\n';

23

24 std::cout << '\n';

25

26 std::cout << "std::chrono::hh_mm_ss(45700.5s): "

27 << std::chrono::hh_mm_ss(45700.5s) << '\n';

28

29 std::cout << '\n';

30

31 std::cout << "std::chrono::is_am(5h): " << std::chrono::is_am(5h) << '\n';

32 std::cout << "std::chrono::is_am(15h): " << std::chrono::is_am(15h) << '\n';

33

34 std::cout << '\n';

35

36 std::cout << "std::chrono::make12(5h): " << std::chrono::make12(5h) << '\n';

37 std::cout << "std::chrono::make12(15h): " << std::chrono::make12(15h) << '\n';

38

39 std::cout << '\n';

40

41 }

First, I create in line 12 a new instance of std::chrono::hh_mm_ss: timeOfDay. Thanks to the chrono

The Standard Library 368

literals from C++14, I can add a few time durations to initialize a time of day object. With C++20,
you can directly output timeOfDay (line 14). The rest should be straightforward to read. Lines 18 - 21
display the components of the time since midnight in hours, minutes, seconds, and fractional seconds.
Line 22 returns the time duration since midnight in seconds. Line 26 is more interesting: the given
seconds correspond to the time displayed in line 15. Lines 31 and 32 return if the given hour is a.m.
Lines 36 and 37 return the 12-hour equivalent of the given hour.

Here is the output of the program:

Time of day

5.6.4 Calendar Dates

A new type of the chrono extension in C++20 is a calendar date. C++20 supports various ways to
create a calendar date and interact with them. First of all: What is a calendar date?

• A calendar date is a date that consists of a year, a month, and a day. Consequently, C++20 has
a specific data type std::chrono::year_month_day. C++20 has way more to offer. The following
table should give you the overview of calendar types before I show you various use cases.

The Standard Library 369

Various calendar types

Calendar Type Description

std::chrono::day Represents a day of a month
std::chrono::month Represents a month of a year
std::chrono::year Represents a year in the Gregorian calendar

std::chrono::weekday Represents a day of the week in the Gregorian calendar
std::chrono::weekday_indexed Represents the n-th weekday of a month
std::chrono::weekday_last Represents the last weekday of a month

std::chrono::month_day Represents a specific day of a specific month
std::chrono::month_day_last Represents the last day of a specific month
std::chrono::month_weekday Represents the n-th weekday of a specific month
std::chrono::month_weekday_last Represents the last weekday of a specific month

std::chrono::year_month Represents a specific month of a specific year
std::chrono::year_month_day Represents a specific year, month, and day
std::chrono::year_month_day_last Represents the last day of a specific year and month
std::chrono::year_month_weekday Represents the n-th weekday of a specific year and month
std::chrono::year_month_day_weekday_last Represents the last weekday of a specific year and month

std::chrono::last Indicates the last day or weekday of a month

Thanks to the cute syntax, you can use std::chrono::operator / to create Gregorian calendar dates.

The calendar data types support various operations. The following table gives an overview. For
readability reasons, I ignore the namespace std::chrono.

Operations on the calendar types

Calendar Type ++/-- +/- difference ==/!= <=>

std::chrono::day yes days yes yes yes
std::chrono::month yes months, years yes yes yes
std::chrono::year yes years yes yes yes

std::chrono::weekday yes days yes yes yes
std::chrono::weekday_indexed yes
std::chrono::weekday_last yes

std::chrono::month_day yes yes
std::chrono::month_day_last yes yes
std::chrono::month_weekday yes
std::chrono::month_weekday_last yes

The Standard Library 370

Operations on the calendar types

Calendar Type ++/-- +/- difference ==/!= <=>

std::chrono::year_month months , years yes yes yes
std::chrono::year_month_day months, years yes yes
std::chrono::year_month_day_last months, years yes yes
std::chrono::year_month_weekday months, years yes
std::chrono::year_month_day_weekday_last months, years yes

The increment and decrement operations⁵² ++/-- are supported in the prefix and postfix version.
Adding or subtraction +/- requires objects of type std::chrono::duration as arguments. You can
calculate the difference of two objects having the same calendar type. The result is a object of
type std::chrono::duration. That means when you build the difference of two objects of calendar type
std::chrono::day you get an object of type std::chrono::days. <=> is the new three-way comparison
operator.

The following program uses the operations on the calendar types.

Operations on calendar types

1 // calendarOperations.cpp

2

3 #include <chrono>

4 #include <iostream>

5

6 int main() {

7

8 std::cout << '\n';

9

10 using std::chrono::Monday;

11 using std::chrono::Saturday;

12

13 using std::chrono::March;

14 using std::chrono::June;

15 using std::chrono::July;

16

17 using std::chrono::days;

18 using std::chrono::months;

19 using std::chrono::years;

20

21 using std::chrono::last;

22

23 using namespace std::chrono_literals;

24

25 std::cout << std::boolalpha;

⁵²https://en.cppreference.com/w/cpp/language/operator_incdec

https://en.cppreference.com/w/cpp/language/operator_incdec
https://en.cppreference.com/w/cpp/language/operator_incdec

The Standard Library 371

26

27 std::cout << "March: " << March << '\n';

28 std::cout << "March + months(3): " << March + months(3) << '\n';

29 std::cout << "March - months(25): " << March - months(25) << '\n';

30 std::cout << "July - June: " << July - June << '\n';

31 std::cout << "June < July: " << (June < July) << '\n';

32

33 std::cout << '\n';

34

35 std::cout << "Saturday: " << Saturday << '\n';

36 std::cout << "Saturday + days(3): " << Saturday + days(3) << '\n';

37 std::cout << "Saturday - days(22): " << Saturday - days(22) << '\n';

38 std::cout << "Saturday - Monday: " << Saturday - Monday << '\n';

39

40 std::cout << '\n';

41

42 std::cout << "2021y/March: " << 2021y/March << '\n';

43 std::cout << "2021y/March + years(3) - months(35): "

44 << 2021y/March + years(3) - months(35) << '\n';

45 std::cout << "2022y/July - 2021y/June: " << 2022y/July - 2021y/June << '\n';

46 std::cout << "2021y/June > 2021y/July: " << (2021y/June > 2021y/July) << '\n';

47

48 std::cout << '\n';

49

50 std::cout << "2021y/March/Saturday[last]: " << 2021y/March/Saturday[last] << '\n';

51 std::cout << "2021y/March/Saturday[last] + months(13) + years(3): "

52 << 2021y/March/Saturday[last] + months(13) + years(3) << '\n';

53 std::cout << "2021y/July/Saturday[last] - months(1) == 2021y/June/Saturday[last]: "

54 << (2021y/July/Saturday[last] - months(1) == 2021y/June/Saturday[last])

55 << '\n';

56

57 std::cout << '\n';

58

59 }

The program performs operations on std::chrono::month (line 27), std::chrono::weekday (line 35),
std::chrono::year_month (line 42), and std::chrono::year_month_weekday_last (line 50).

The Standard Library 372

Operations with Calendar Type

Adding or subtracting the time duration std::chrono::months automatically applies modulo opera-
tions (lines 28 and 29). Subtracting two std::chrono::month objects returns 1 month. One month has
2629746 seconds (line 31). Accordingly, you can add or subtract a time duration std::chrono::days to
or from a calendar data std::chrono::day (lines 36 and 37). Subtracting two std::chrono::day objects
returns a std::chrono::days object. std::chrono::year_month allows the subtraction (line 44), the dif-
ference (line 45), and the comparison of time points (line 46). Objects of type std::chrono::weekday_-
last allow the addition/subtraction of the time durations std::chrono::months and std::chrono::years.
In addition, these std::chrono::weekday_last objects can be compared.

C++20 supports constants and literals to make using calendar-date types more convenient.

5.6.4.1 Constants and Literals for Calendar Types

Let me start with the constants for std::chrono::weekday, and std::chrono::month.

The Standard Library 373

std::chrono::weekday

std::chrono::Monday

std::chrono::Thuesday

std::chrono::Wednesday

std::chrono::Thursday

std::chrono::Friday

std::chrono::Saturday

std::chrono::Sunday

std::chrono::month

std::chrono::January

std::chrono::February

std::chrono::March

std::chrono::April

std::chrono::May

std::chrono::June

std::chrono::July

std::chrono::August

std::chrono::September

std::chrono::October

std::chrono::November

std::chrono::December

C++20 supports for calendar types std::chrono::day and std::chrono::year two new literals: d' and

y’. You can read more details about it in the section Time Durations and Literals.

Let me start and create a few calendar dates.

5.6.4.2 Create Calendar Dates

The program createCalendar.cpp shows various ways to create calendar-related dates.

Create calendar dates

1 // createCalendar.cpp

2

3 #include <chrono>

4 #include <iostream>

5

6 int main() {

7

8 std::cout << '\n';

9

The Standard Library 374

10 using namespace std::chrono_literals;

11

12 using std::chrono::last;

13

14 using std::chrono::year;

15 using std::chrono::month;

16 using std::chrono::day;

17

18 using std::chrono::year_month;

19 using std::chrono::year_month_day;

20 using std::chrono::year_month_day_last;

21 using std::chrono::year_month_weekday;

22 using std::chrono::year_month_weekday_last;

23 using std::chrono::month_weekday;

24 using std::chrono::month_weekday_last;

25 using std::chrono::month_day;

26 using std::chrono::month_day_last;

27 using std::chrono::weekday_last;

28 using std::chrono::weekday;

29

30 using std::chrono::January;

31 using std::chrono::February;

32 using std::chrono::June;

33 using std::chrono::March;

34 using std::chrono::October;

35

36 using std::chrono::Monday;

37 using std::chrono::Thursday;

38 using std::chrono::Sunday;

39

40 constexpr auto yearMonthDay{year(1940)/month(6)/day(26)};

41 std::cout << yearMonthDay << " ";

42 std::cout << year_month_day(1940y, June, 26d) << '\n';

43

44 std::cout << '\n';

45

46 constexpr auto yearMonthDayLast{year(2010)/March/last};

47 std::cout << yearMonthDayLast << " ";

48 std::cout << year_month_day_last(2010y, month_day_last(month(3))) << '\n';

49

50 constexpr auto yearMonthWeekday{year(2020)/March/Thursday[2]};

51 std::cout << yearMonthWeekday << " ";

52 std::cout << year_month_weekday(2020y, month(March), Thursday[2]) << '\n';

53

54 constexpr auto yearMonthWeekdayLast{year(2010)/March/Monday[last]};

The Standard Library 375

55 std::cout << yearMonthWeekdayLast << " ";

56 std::cout << year_month_weekday_last(2010y, month(March), weekday_last(Monday));

57

58 std::cout << "\n\n";

59

60 constexpr auto day_{day(19)};

61 std::cout << day_ << " ";

62 std::cout << day(19) << '\n';

63

64 constexpr auto month_{month(1)};

65 std::cout << month_ << " ";

66 std::cout << month(1) << '\n';

67

68 constexpr auto year_{year(1988)};

69 std::cout << year_ << " ";

70 std::cout << year(1988) << '\n';

71

72 constexpr auto weekday_{weekday(5)};

73 std::cout << weekday_ << " ";

74 std::cout << weekday(5) << '\n';

75

76 constexpr auto yearMonth{year(1988)/1};

77 std::cout << yearMonth << " ";

78 std::cout << year_month(year(1988), January) << '\n';

79

80 constexpr auto monthDay{10/day(22)};

81 std::cout << monthDay << " ";

82 std::cout << month_day(October, day(22)) << '\n';

83

84 constexpr auto monthDayLast{June/last};

85 std::cout << monthDayLast << " ";

86 std::cout << month_day_last(month(6)) << '\n';

87

88 constexpr auto monthWeekday{2/Monday[3]};

89 std::cout << monthWeekday << " ";

90 std::cout << month_weekday(February, Monday[3]) << '\n';

91

92 constexpr auto monthWeekDayLast{June/Sunday[last]};

93 std::cout << monthWeekDayLast << " ";

94 std::cout << month_weekday_last(June, weekday_last(Sunday)) << '\n';

95

96 std::cout << '\n';

97

98 }

The Standard Library 376

There are twoways to create a calendar date. You can use the so-called cute syntax yearMonthDay{year(1940)/month(6)/day(26)}
(line 40), or you can use the explicit type date::year_month_day(1940y, June, 26d) (line 42). To avoid
overwhelming you, I will delay my explanation of the cute syntax to the next section. The explicit
type is interesting because it uses the date-time literals 1940y, 26d, and the predefined constant June.
This was the obvious part of the program.

Line 46, line 50, and line 54 offer additional ways to create calendar dates.
• Line 46: the last day of March 2010: {year(2010)/March/last} or year_month_day_last(2010y,
month_day_last(month(3)))

• Line 50: the second Thursday of March 2020: {year(2020)/March/Thursday[2]} or year_month_-
weekday(2020y, month(March), Thursday[2])

• Line 54: the last Monday of March 2010: {year(2010)/March/Monday[last]} or year_month_-

weekday_last(2010y, month(March), weekday_last(Monday))

The remaining calendar types stand for a day (line 60), a month (line 64), or a year (line 68). You can
combine them as basic building blocks for fully specified calendar dates, such as in lines 46, 50, or 54

This is the output of the program:

Various calendar days

As promised, let me write about the cute syntax.

The Standard Library 377

5.6.4.3 Cute Syntax

The cute syntax consists of overloaded division operators to specify a calendar date. The over-
loaded operators support time literals (e.g., 2020y, 31d) and std::chrono::month constants such as
std::chrono::January, std::chrono::February, …, std::chrono::December).

The following three combinations of year, month, and day are possible using the cute syntax.

Cute syntax

year/month/day

day/month/year

month/day/year

These combinations are not chosen arbitrarily. They are the ones used worldwide. Any other
combination is not allowed.

Consequently, when you choose the type year, month, or day for the first argument, the type for the
remaining two arguments is no longer necessary, and a number does the job.

Cute syntax

1 // cuteSyntax.cpp

2

3 #include <chrono>

4 #include <iostream>

5

6 int main() {

7

8 std::cout << '\n';

9

10 constexpr auto yearMonthDay{std::chrono::year(1966)/6/26};

11 std::cout << yearMonthDay << '\n';

12

13 constexpr auto dayMonthYear{std::chrono::day(26)/6/1966};

14 std::cout << dayMonthYear << '\n';

15

16 constexpr auto monthDayYear{std::chrono::month(6)/26/1966};

17 std::cout << monthDayYear << '\n';

18

19 constexpr auto yearDayMonth{std::chrono::year(1966)/std::chrono::month(26)/6};

20 std::cout << yearDayMonth << '\n';

21

22 std::cout << '\n';

23

24 }

The Standard Library 378

The combination year/day/month (line 19) is not allowed and causes a run-time message.

Use of cute syntax

I assume youwant to display a calendar date {year(2010)/March/last} in a readable form, for example,
2020-03-31. This is a job for the local_days or sys_days operator.

5.6.4.4 Displaying Calendar Dates

Thanks to std::chrono::local_days or std::chrono::sys_days, you can convert calendar dates
to a local or a system std::chrono::time_point. I use std::chrono::sys_days in my example.
std::chrono::sys_days is based on std::chrono::system_clock⁵³. Let me convert the calendar dates
(lines 18, 22, and 26) from the previous program createCalendar.cpp.

Displaying calendar dates

1 // sysDays.cpp

2

3 #include <chrono>

4 #include <iostream>

5

6 int main() {

7

8 std::cout << '\n';

9

10 using std::chrono::last;

11

12 using std::chrono::year;

13 using std::chrono::sys_days;

14

15 using std::chrono::March;

16 using std::chrono::February;

17

18 using std::chrono::Monday;

⁵³https://en.cppreference.com/w/cpp/chrono/system_clock

https://en.cppreference.com/w/cpp/chrono/system_clock
https://en.cppreference.com/w/cpp/chrono/system_clock

The Standard Library 379

19 using std::chrono::Thursday;

20

21 constexpr auto yearMonthDayLast{year(2010)/March/last};

22 std::cout << "sys_days(yearMonthDayLast): "

23 << sys_days(yearMonthDayLast) << '\n';

24

25 constexpr auto yearMonthWeekday{year(2020)/March/Thursday[2]};

26 std::cout << "sys_days(yearMonthWeekday): "

27 << sys_days(yearMonthWeekday) << '\n';

28

29 constexpr auto yearMonthWeekdayLast{year(2010)/March/Monday[last]};

30 std::cout << "sys_days(yearMonthWeekdayLast): "

31 << sys_days(yearMonthWeekdayLast) << '\n';

32

33 std::cout << '\n';

34

35 constexpr auto leapDate{year(2012)/February/last};

36 std::cout << "sys_days(leapDate): " << sys_days(leapDate) << '\n';

37

38 constexpr auto noLeapDate{year(2013)/February/last};

39 std::cout << "sys_day(noLeapDate): " << sys_days(noLeapDate) << '\n';

40

41 std::cout << '\n';

42

43 }

The std::chrono::last constant (line 21) lets me quickly determine howmany days a month has. The
output shows that 2012 is a leap year (line 36), but not 2013 (line 39).

Displaying calendar dates

Suppose you have a calendar date like year(2100)/2/29. Your first question may be: Is this date valid?

The Standard Library 380

5.6.4.5 Check if a Date is Valid

The various calendar types in C++20 have the function ok. This function returns true if the date is
valid.

Checking if a date is valid

1 // leapYear.cpp

2

3 #include <chrono>

4 #include <iostream>

5

6 int main() {

7

8 std::cout << std::boolalpha << '\n';

9

10 std::cout << "Valid days" << '\n';

11 std::chrono::day day31(31);

12 std::chrono::day day32 = day31 + std::chrono::days(1);

13 std::cout << " day31: " << day31 << "; ";

14 std::cout << "day31.ok(): " << day31.ok() << '\n';

15 std::cout << " day32: " << day32 << "; ";

16 std::cout << "day32.ok(): " << day32.ok() << '\n';

17

18

19 std::cout << '\n';

20

21 std::cout << "Valid months" << '\n';

22 std::chrono::month month1(1);

23 std::chrono::month month0(0);

24 std::cout << " month1: " << month1 << "; ";

25 std::cout << "month1.ok(): " << month1.ok() << '\n';

26 std::cout << " month0: " << month0 << "; ";

27 std::cout << "month0.ok(): " << month0.ok() << '\n';

28

29 std::cout << '\n';

30

31 std::cout << "Valid years" << '\n';

32 std::chrono::year year2020(2020);

33 std::chrono::year year32768(-32768);

34 std::cout << " year2020: " << year2020 << "; ";

35 std::cout << "year2020.ok(): " << year2020.ok() << '\n';

36 std::cout << " year32768: " << year32768 << "; ";

37 std::cout << "year32768.ok(): " << year32768.ok() << '\n';

38

39 std::cout << '\n';

The Standard Library 381

40

41 std::cout << "Leap Years" << '\n';

42

43 constexpr auto leapYear2016{std::chrono::year(2016)/2/29};

44 constexpr auto leapYear2020{std::chrono::year(2020)/2/29};

45 constexpr auto leapYear2024{std::chrono::year(2024)/2/29};

46

47 std::cout << " leapYear2016.ok(): " << leapYear2016.ok() << '\n';

48 std::cout << " leapYear2020.ok(): " << leapYear2020.ok() << '\n';

49 std::cout << " leapYear2024.ok(): " << leapYear2024.ok() << '\n';

50

51 std::cout << '\n';

52

53 std::cout << "No Leap Years" << '\n';

54

55 constexpr auto leapYear2100{std::chrono::year(2100)/2/29};

56 constexpr auto leapYear2200{std::chrono::year(2200)/2/29};

57 constexpr auto leapYear2300{std::chrono::year(2300)/2/29};

58

59 std::cout << " leapYear2100.ok(): " << leapYear2100.ok() << '\n';

60 std::cout << " leapYear2200.ok(): " << leapYear2200.ok() << '\n';

61 std::cout << " leapYear2300.ok(): " << leapYear2300.ok() << '\n';

62

63 std::cout << '\n';

64

65 std::cout << "Leap Years" << '\n';

66

67 constexpr auto leapYear2000{std::chrono::year(2000)/2/29};

68 constexpr auto leapYear2400{std::chrono::year(2400)/2/29};

69 constexpr auto leapYear2800{std::chrono::year(2800)/2/29};

70

71 std::cout << " leapYear2000.ok(): " << leapYear2000.ok() << '\n';

72 std::cout << " leapYear2400.ok(): " << leapYear2400.ok() << '\n';

73 std::cout << " leapYear2800.ok(): " << leapYear2800.ok() << '\n';

74

75 std::cout << '\n';

76

77 }

I check in the program if a given day (line 10), a given month (line 21), or a given year (line 31) is
valid. The range of a day is [1, 31], of a month [1, 12], and a year [-32767, 32767]. Consequently, the
ok() calls on the corresponding values return false. Two facts are interesting when I display various
values. First, if the value is not valid, the output shows: “is not a valid day”, “is not a valid month”, “is
not a valid year”. Second, month values are displayed in string representation.

The Standard Library 382

Check if a data is valid

You can apply the ok-call on a calendar date. Now it’s pretty easy to check if a specific calendar date
is a leap day and, therefore, the corresponding year a leap year. In the worldwide used Gregorian
calendar⁵⁴, the following rules apply:

Each year that is exactly divisible by 4 is a leap year.
• Except for years that are exactly divisible by 100. They are not leap years.

– Except for years that are exactly divisible by 400. They are leap years.
Too complicated? The program leapYears.cpp exemplifies this rule.

The extended chrono library makes it relatively easy to ask for the time duration between calendar
dates.

5.6.4.6 Query Calendar Dates

Without further ado, the following program queryCalendarDates.cpp queries a few calendar dates.

⁵⁴https://en.wikipedia.org/wiki/Gregorian_calendar

https://en.wikipedia.org/wiki/Gregorian_calendar
https://en.wikipedia.org/wiki/Gregorian_calendar
https://en.wikipedia.org/wiki/Gregorian_calendar

The Standard Library 383

Query calendar dates
1 // queryCalendarDates.cpp

2

3 #include <chrono>

4 #include <iostream>

5

6 int main() {

7

8 std::cout << '\n';

9

10 using std::chrono::floor;

11

12 using std::chrono::January;

13

14 using std::chrono::years;

15 using std::chrono::days;

16 using std::chrono::hours;

17

18 using std::chrono::year_month_day;

19 using std::chrono::year_month_weekday;

20

21 using std::chrono::sys_days;

22

23 auto now = std::chrono::system_clock::now();

24 std::cout << "The current time is: " << now << " UTC\n";

25 std::cout << "The current date is: " << floor<days>(now) << '\n';

26 std::cout << "The current date is: " << year_month_day{floor<days>(now)}

27 << '\n';

28 std::cout << "The current date is: " << year_month_weekday{floor<days>(now)}

29 << '\n';

30

31 std::cout << '\n';

32

33

34 auto currentDate = year_month_day(floor<days>(now));

35 auto currentYear = currentDate.year();

36 std::cout << "The current year is " << currentYear << '\n';

37 auto currentMonth = currentDate.month();

38 std::cout << "The current month is " << currentMonth << '\n';

39 auto currentDay = currentDate.day();

40 std::cout << "The current day is " << currentDay << '\n';

41

42 std::cout << '\n';

43

44 auto hAfter = floor<hours>(now) - sys_days(January/1/currentYear);

The Standard Library 384

45 std::cout << "It has been " << hAfter << " since New Year!\n";

46 auto nextYear = currentDate.year() + years(1);

47 auto nextNewYear = sys_days(January/1/nextYear);

48 auto hBefore = sys_days(January/1/nextYear) - floor<hours>(now);

49 std::cout << "It is " << hBefore << " before New Year!\n";

50

51 std::cout << '\n';

52

53 std::cout << "It has been " << floor<days>(hAfter) << " since New Year!\n";

54 std::cout << "It is " << floor<days>(hBefore) << " before New Year!\n";

55

56 std::cout << '\n';

57

58 }

With the C++20 extension, you can directly display a time point, such as now (line 24). std::chrono::floor
rounds the time point down to a day std::chrono::sys_days. This value can be used to initialize the
calendar type std::chrono::year_month_day. Finally, when I put the value into a std::chrono::year_-
month_weekday calendar type, I get the answer that this specific day is the 3rd Tuesday in October.

Of course, I can also ask a calendar date for its components, such as the current year, month, or day
(line 34).

Line 44 is the most interesting one. When I subtract from the current date, using hour resolution, the
first of January of the current year, I get the number of hours since the new year. Conversely, when I
subtract from the first of January of the next year (line 48) the current date, I get the hours to the new
year using hour resolution. Maybe you don’t like hour resolution. Lines 54 and 54 display the values
using day resolution.

The Standard Library 385

Query calendar days

Now, I want to know the weekday of my birthdays.

5.6.4.7 Query Weekdays

Thanks to the extended chrono library, getting the weekday of a given calendar date is pretty easy.

Weekdays of given calendar dates

1 // weekdaysOfBirthdays.cpp

2

3 #include <chrono>

4 #include <cstdlib>

5 #include <iostream>

6

7 int main() {

8

9 std::cout << '\n';

10

11 int y;

12 int m;

13 int d;

14

15 std::cout << "Year: ";

16 std::cin >> y;

17 std::cout << "Month: ";

18 std::cin >> m;

The Standard Library 386

19 std::cout << "Day: ";

20 std::cin >> d;

21

22 std::cout << '\n';

23

24 auto birthday = std::chrono::year(y)/std::chrono::month(m)/std::chrono::day(d);

25

26 if (not birthday.ok()) {

27 std::cout << birthday << '\n';

28 std::exit(EXIT_FAILURE);

29 }

30

31 std::cout << "Birthday: " << birthday << '\n';

32 auto birthdayWeekday = std::chrono::year_month_weekday(birthday);

33 std::cout << "Weekday of birthday: " << birthdayWeekday.weekday() << '\n';

34

35 auto currentDate = std::chrono::year_month_day(

36 std::chrono::floor<std::chrono::days>(std::chrono::system_clock::now()));

37 auto currentYear = currentDate.year();

38

39 auto age = (int)currentDate.year() - (int)birthday.year();

40 std::cout << "Your age: " << age << '\n';

41

42 std::cout << '\n';

43

44 std::cout << "Weekdays for your next 10 birthdays" << '\n';

45

46 for (int i = 1, newYear = (int)currentYear; i <= 10; ++i) {

47 std::cout << " Age " << ++age << '\n';

48 auto newBirthday = std::chrono::year(++newYear)/

49 std::chrono::month(m)/std::chrono::day(d);

50 std::cout << " Birthday: " << newBirthday << '\n';

51 std::cout << " Weekday of birthday: "

52 << std::chrono::year_month_weekday(newBirthday).weekday() << '\n';

53 }

54

55 std::cout << '\n';

56

57 }

First, the program asks you for your birthday’s Year, month, and day (line 15). Based on the input,
a calendar date is created (line 24) and checked for validity (line 26). Now I display the weekday of
your birthday. I use the calendar date to fill the calendar type std::chrono::year_month_weekday (line
32). To get the int representation of the calendar type year, I must convert it to int (line 39). Now

The Standard Library 387

I can display your age. Finally, for each of your next ten birthdays (line 46), the for loop shows the
following information: your age, the calendar date, and the weekday. I have to increment the age and
newYear variables.

Here is a run of the program with my birthday.

Weekdays of birthdays

The Standard Library 388

5.6.4.8 Calculating Ordinal Dates

As a last example of the new calendar facility, I want to present the online resource Examples and
Recipes⁵⁵ from Howard Hinnant, which has about 40 examples of the new chrono functionality.
Presumably, the chrono extension in C++20 is not easy to get; therefore, it’s essential to have so many
examples. You should use these examples as a starting point for further experiments and, therefore,
sharpen your understanding. You can also add your recipes.

To get an idea of Examples and Recipes, I want to present a slightly modified program by Roland
Bock⁵⁶ that calculates ordinal dates.

“An ordinal date consists of a year and a day of year (1st of January being day 1, 31st of December
being day 365 or day 366). The year can be obtained directly from year_month_day. And calculating
the day is wonderfully easy. In the code below, we make us of the fact that year_month_day can deal
with invalid dates like the 0th of January:” (Roland Bock)

I added the necessary headers to Roland’s program.

Calculating ordinal dates

1 // ordinalDate.cpp

2

3 #include <cassert>

4 #include <chrono>

5 #include <iomanip>

6 #include <iostream>

7

8 int main() {

9

10 std::cout << '\n';

11

12 using std::chrono::system_clock;

13

14 using std::chrono::floor;

15

16 using std::chrono::days;

17

18 using std::chrono::January;

19

20 using std::chrono::year_month_day;

21 using std::chrono::sys_days;

22

23 const auto time = system_clock::now();

24 const auto daypoint = floor<days>(time);

25 const auto ymd = year_month_day{daypoint};

⁵⁵https://github.com/HowardHinnant/date/wiki/Examples-and-Recipes
⁵⁶https://github.com/rbock

https://github.com/HowardHinnant/date/wiki/Examples-and-Recipes
https://github.com/HowardHinnant/date/wiki/Examples-and-Recipes
https://github.com/rbock
https://github.com/rbock
https://github.com/HowardHinnant/date/wiki/Examples-and-Recipes
https://github.com/rbock

The Standard Library 389

26

27 // calculating the year and the day of the year

28 const auto year = ymd.year();

29 const auto year_day = daypoint - sys_days{year/January/0};

30

31 std::cout << year << '-' << std::setfill('0') << std::setw(3)

32 << year_day.count() << '\n';

33

34 // inverse calculation and check

35 assert(ymd == year_month_day{sys_days{year/January/0} + year_day});

36

37 std::cout << '\n';

38

39 }

I want to make a few remarks about the program. Line 24 truncates the current time point. The value
is used in the following line to initialize a calendar date. Line 29 calculates the time duration between
the two time points. Both time points have the resolution day. Finally, year_day.count() in line 31
returns the time duration in days.

Caculating ordinal dates

5.6.5 Time Zones

First, a time zone is a region and its entire date history, such as daylight saving time or leap seconds.

The Standard Library 390

Challenges
Dealing with time zones has a few inherent challenges.

• Wintertime and summertime: Many European countries, such as Germany, use a
so-called summertime (daylight saving time) and wintertime. The daylight saving
time is one hour ahead of the wintertime in Germany.

• More time zones: Countries like China or the United States have different time
zones. For example, in the United States, between the Hawaii Standard Time
(UTC-10) and the Easter Daylight Time (UTC-4) is a difference of six hours.

• Time zone differences: Time zone differences are often fractions of hours, such
as 30 or 45 minutes. The Australian Central Time is UTC+9:30, and the Australian
Central Western Standard Time is UTC+8:45.

• Time zone abbreviations are ambiguous: The time zone abbreviations are not
unique. ADT can be Arabic Daylight Time (UTC+4) or Atlantic Daylight Time (UTC-3).

The time zone library in C++20 is a complete parser of the IANA time-zone database⁵⁷. The following
table gives you an overview of the new functionality.

The time-zone data types

Type Description

std::chrono::tzdb Describes a copy of the IANA time-zone database

std::chrono::tdzb_list Represents a linked list of the tzdb

std::chrono::get_tzdb Accesses and controls the global time-zone database
std::chrono::get_tzdb_list

std::chrono::reload_tzdb

std::chrono::remote_version

std::chrono::locate_zone Locates the time zone based on its name

std::chrono::current_zone Returns the current time zone

std::chrono::time_zone Represents a time zone

std::chrono::sys_info Represents information about a time zone at a specific time point

std::chrono::local_info Represents information about a local time to UNIX time
conversion

⁵⁷https://www.iana.org/timezones

https://www.iana.org/timezones
https://www.iana.org/timezones

The Standard Library 391

The time-zone data types

Type Description
std::chrono::zoned_traits Class for time zone pointers

std::chrono::zoned_time Represents a time zone and a time point

std::chrono::leap_second Contains information about a leap-second insertion

std::chrono::time_zone_link Represents an alternative name for a time zone

std::chrono::nonexistent_local_time Exception which is thrown if a local time does not exist

The use of the time zone database requires an operating system. Consequently, using the time zone
database on a freestanding system typically results in an exception. The time-zone database is updated
during the operating system’s update, such as a reboot. When your system supports updating the
IANA time-zone database⁵⁸ without rebooting, you can use std::chrono::reload_tzdb(). The new
database is atomically added to the front of the linked list. Calls such as std::chrono::get_tzdb_list()
or std::chrono::get_tzdb() parse the front of the list. Consequently, the database queries get the
updated database entries. std::chrono::get_tzdb().version returns the version of the used database.

The two elementary types for time zones are std::chrono::time_zone and std::chrono::zoned_time.

The possible time zones are predefined by the IANA time-zone database⁵⁹. The calls std::chrono::current_-
zone(), and std::chrono::locate_zone(name) return a pointer to the current or by name requested time
zone. The call std::chrono::locate_zone(name) causes a search for name in the database. If the search
is unsuccessful, you get a std::runtime_error exception.

std::chrono::zoned_time() represents a time zone combined with a time point. You can use a system
time point, or a local time point as time point. A system time point uses std::chrono::system_clock
and a local time point uses the pseudo clock std::chrono::local_t).

My first example is straightforward. It displays the UTC time and the local time.

5.6.5.1 UTC Time and Local Time

The UTC time or Coordinated Universal Time⁶⁰ is the primary time standard worldwide. A computer
uses Unix time⁶¹, a very close approximation of UTC. The UNIX time is the number of seconds since
the Unix epoch. The Unix epoch is 00:00:00 UTC on 1 January 1970.

std::chrono::system_clock::now() returns in the program localTime.cpp the Unix time.

⁵⁸https://www.iana.org/timezones
⁵⁹https://www.iana.org/timezones
⁶⁰https://en.wikipedia.org/wiki/Coordinated_Universal_Time
⁶¹https://en.wikipedia.org/wiki/Unix_time

https://www.iana.org/timezones
https://www.iana.org/timezones
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://en.wikipedia.org/wiki/Unix_time
https://www.iana.org/timezones
https://www.iana.org/timezones
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://en.wikipedia.org/wiki/Unix_time

The Standard Library 392

Getting the UTC time and local time

1 // localTime.cpp

2

3 #include <chrono>

4 #include <iostream>

5

6 int main() {

7

8 std::cout << '\n';

9

10 using std::chrono::floor;

11

12 std::cout << "UTC time" << '\n';

13 auto utcTime = std::chrono::system_clock::now();

14 std::cout << " " << utcTime << '\n';

15 std::cout << " " << floor<std::chrono::seconds>(utcTime) << '\n';

16

17 std::cout << '\n';

18

19 std::cout << "Local time" << '\n';

20 auto localTime = std::chrono::zoned_time(std::chrono::current_zone(), utcTime);

21

22 std::cout << " " << localTime << '\n';

23 std::cout << " " << floor<std::chrono::seconds>(localTime.get_local_time())

24 << '\n';

25

26 auto offset = localTime.get_info().offset;

27 std::cout << " UTC offset: " << offset << '\n';

28

29 std::cout << '\n';

30

31 }

The code block beginning with line 12 gets the current time point, truncates it to seconds, and displays
it. Line 20 creates a std::chrono::zoned_time localTime. After that, the call localTime.get_local_-
time() returns the stored time point as a local time. This time point is also truncated to seconds.
localTime (line 26) can also be used to get information about the time zone. In this case, I’m interested
in the offset to the UTC time.

The Standard Library 393

Displaying UTC time and local time

My last example answers a crucial question when I teach in a different time zone: When should I start
my online class?

5.6.5.2 Various Time Zones for Online Classes

The program onlineClass.cpp answers the following question: How late is it in given time zones when
I start an online class at the 7h, 13h, or 17h local time (Germany)?

The online class should start on the 1st of February 2021, taking four hours. Because of daylight saving
time, the calendar date is essential to get the correct answer.

Calculating the time in different time zones

1 // onlineClass.cpp

2

3 #include <chrono>

4 #include <algorithm>

5 #include <iomanip>

6 #include <iostream>

7

8 using namespace std::chrono_literals;

9

10 template <typename ZonedTime>

11 auto getMinutes(const ZonedTime& zonedTime) {

12 return std::chrono::floor<std::chrono::minutes>(zonedTime.get_local_time());

13 }

14

15 void printStartEndTimes(const std::chrono::local_days& localDay,

16 const std::chrono::hours& h,

17 const std::chrono::hours& durationClass,

18 const std::initializer_list<std::string>& timeZones) {

The Standard Library 394

19

20 std::chrono::zoned_time startDate{std::chrono::current_zone(), localDay + h};

21 std::chrono::zoned_time endDate{std::chrono::current_zone(),

22 localDay + h + durationClass};

23 std::cout << "Local time: [" << getMinutes(startDate) << ", "

24 << getMinutes(endDate) << "]" << '\n';

25

26 auto longestStringSize = std::max(timeZones, [](const std::string& a,

27 const std::string& b) { return a.size() < b.size(); }).size();

28 for (auto timeZone: timeZones) {

29 std::cout << " " << std::setw(longestStringSize + 1) << std::left

30 << timeZone

31 << "[" << getMinutes(std::chrono::zoned_time(timeZone, startDate))

32 << ", " << getMinutes(std::chrono::zoned_time(timeZone, endDate))

33 << "]" << '\n';

34

35 }

36 }

37

38 int main() {

39

40 using namespace std::string_literals;

41

42 std::cout << '\n';

43

44 constexpr auto classDay{std::chrono::year(2021)/2/1};

45 constexpr auto durationClass = 4h;

46 auto timeZones = {"America/Los_Angeles"s, "America/Denver"s,

47 "America/New_York"s, "Europe/London"s,

48 "Europe/Minsk"s, "Europe/Moscow"s,

49 "Asia/Kolkata"s, "Asia/Novosibirsk"s,

50 "Asia/Singapore"s, "Australia/Perth"s,

51 "Australia/Sydney"s};

52

53 for (auto startTime: {7h, 13h, 17h}) {

54 printStartEndTimes(std::chrono::local_days{classDay}, startTime,

55 durationClass, timeZones);

56 std::cout << '\n';

57 }

58

59 std::cout << '\n';

60

61 }

The Standard Library 395

Before I dive into the functions getMinutes (line 10) and printStartEndTimes (line 15), let me say a
few words about the main function. The main function defines the day of the class, the duration of
the class, and all time zones. Finally, the range-based for loop (line 53) iterates through all potential
starting points for an online class. All necessary information is displayed thanks to the function
printStartEndTimes (line 15).

The lines beginning with line 20 calculate the startDate and endDate of my training by adding the
start time and the class duration to the calendar date. Both values are displayed with the help of
the function getMinutes (line 10). floor<std::chrono::minutes>(zonedTime.get_local_time()) gets
the stored timepoint out of the std::chrono::zoned_time and rounds the value down to the minute
resolution. Line 26 determines the size of the longest of all time-zone names to align the program’s
output properly. Line 28 iterates through all time zones and displays the name of the time zone and
the beginning and end of each online class. A few calendar dates even cross the day boundaries.

The Standard Library 396

Displaying start and end times in various time zones

5.6.6 Chrono I/O

I/O consists of the reading and writing of the chrono types. The various chrono types support the
unformatted writing and the formatted one with the new formatting library. This library also has the
function std::chrono::parse() that makes reading from a stream quite powerful.

The Standard Library 397

5.6.6.1 Output

Most chrono types, such as time duration, time points, and calendar dates, support direct writing
without format specification.

5.6.6.1.1 Unformatted

The following tables show the default output format. Let’s start with time durations.

5.6.6.1.2 Time Durations

Time Durations and Time Literals

Time Duration Literal Output

std::chrono::nanoseconds ns 5ns

std::chrono::microseconds us 5us

std::chrono::milliseconds ms 5ms

std::chrono::seconds s 5s

std::chrono::minutes min 5min

std::chrono::hours h 5h

std::chrono::days

std::chrono::weeks 5[604800]s

std::chrono::months 5[2629746]

std::chrono::years 5[31556952]

The program displays values for each time duration.

Time durations and their literals

1 // timeDurationsOutput.cpp

2

3 #include <chrono>

4 #include <iostream>

5

6 int main() {

7

8 std::cout << '\n';

9

10 using namespace std::chrono_literals;

11

12 std::cout << "5ns: " << 5ns << '\n';

13 std::cout << "std::chrono::nanoseconds(5): "

14 << std::chrono::nanoseconds(5) << '\n';

15

The Standard Library 398

16 std::cout << '\n';

17

18 std::cout << "5ms: " << 5ms << '\n';

19 std::cout << "std::chrono::microseconds(5): "

20 << std::chrono::microseconds(5) << '\n';

21

22 std::cout << '\n';

23

24 std::cout << "5us: " << 5us << '\n';

25 std::cout << "std::chrono::milliseconds(5): "

26 << std::chrono::milliseconds(5) << '\n';

27

28 std::cout << '\n';

29

30 std::cout << "5s: " << 5s << '\n';

31 std::cout << "std::chrono::seconds(5): " << std::chrono::seconds(5) << '\n';

32

33 std::cout << '\n';

34

35 std::cout << "5min: " << 5min << '\n';

36 std::cout << "std::chrono::minutes(5): " << std::chrono::minutes(5) << '\n';

37

38 std::cout << '\n';

39

40 std::cout << "5h: " << 5h << '\n';

41 std::cout << "std::chrono::hours(5): " << std::chrono::hours(5) << '\n';

42

43 std::cout << '\n';

44

45 std::cout << "std::chrono::days(5): " << std::chrono::days(5) << '\n';

46

47 std::cout << '\n';

48

49 std::cout << "std::chrono::weeks(5): " << std::chrono::weeks(5) << '\n';

50

51 std::cout << '\n';

52

53 std::cout << "std::chrono::months(5): " << std::chrono::months(5) << '\n';

54

55 std::cout << '\n';

56

57 std::cout << "std::chrono::years(5): " << std::chrono::years(5) << '\n';

58

59 std::cout << '\n';

60

The Standard Library 399

61 }

Time durations and their literals

The natural numbers in the square braces of std::chrono::weeks, std::chrono::months, and std::chrono
::years represent the number of seconds.

5.6.6.1.3 Time Points

When you use the C++20 clocks static member function now, you get the date and the time in the
following format.

Current Time with the C++20 clocks

year-month-day hours:minutes:seconds

The following program shows the current time using all C++20 clocks.

The Standard Library 400

The current time displayed with the C++20 clocks

1 // timePointsOutput.cpp

2

3 #include <chrono>

4 #include <iostream>

5

6 int main() {

7

8 std::cout << '\n';

9

10 auto nowSystemClock = std::chrono::system_clock::now();

11 std::cout << "nowSystemClock: " << nowSystemClock << '\n';

12

13 auto nowSteadyClock = std::chrono::steady_clock::now();

14 // std::cout << "nowSteadyClock: " << nowSteadyClock << '\n'; ERROR

15

16 auto nowFileClock = std::chrono::file_clock::now();

17 std::cout << "nowFileClock: " << nowFileClock << '\n';

18

19 auto nowGPSClock = std::chrono::gps_clock::now();

20 std::cout << "nowGPSClock: " << nowGPSClock << '\n';

21

22 // auto nowlocal_tClock = std::chrono::local_t::now(); ERROR

23

24 auto nowTAIClock = std::chrono::tai_clock::now();

25 std::cout << "nowTAIClock: " << nowTAIClock << '\n';

26

27 auto nowUTCClock = std::chrono::utc_clock::now();

28 std::cout << "nowUTCClock: " << nowUTCClock << '\n';

29

30 std::cout << '\n';

31

32 }

The program shows two interesting facts. First, the current time given by the std::chrono::steady_-
clock::now() cannot be displayed (line 14). Second, the pseudo clock std::chrono::local_t has not
static member function now() (line 22).

The Standard Library 401

Current time with the C++20 clocks

The GPS time is 18 seconds ahead of the UTC time. The TAI time is 37 seconds ahead of the UTC time
and 19 seconds ahead of the GPS time.

Thanks to the C++17 std::chrono::floor⁶², you can display the time point in different granularities.
In this case, the time point has to be of type std::chrono::local_time.

The local time displayed in different resolutions

1 // timePointsOutputGranularity.cpp

2

3 #include <chrono>

4 #include <iostream>

5

6 int main() {

7

8 std::cout << '\n';

9

10 auto now = std::chrono::system_clock::now();

11

12 auto zonedTime = std::chrono::zoned_time(std::chrono::current_zone(), now);

13 auto localTime = zonedTime.get_local_time();

14

15 std::cout << "local_time: "

16 << localTime << '\n';

17

18 std::cout << "std::chrono::floor<std::chrono::microseconds>(localTime): "

19 << std::chrono::floor<std::chrono::microseconds>(localTime) << '\n';

20

21 std::cout << "std::chrono::floor<std::chrono::milliseconds>(localTime): "

22 << std::chrono::floor<std::chrono::milliseconds>(localTime) << '\n';

23

24 std::cout << "std::chrono::floor<std::chrono::seconds>(localTime): "

25 << std::chrono::floor<std::chrono::seconds>(localTime) << '\n';

26

⁶²https://en.cppreference.com/w/cpp/chrono/duration/floor

https://en.cppreference.com/w/cpp/chrono/duration/floor
https://en.cppreference.com/w/cpp/chrono/duration/floor

The Standard Library 402

27 std::cout << "std::chrono::floor<std::chrono::minutes>(localTime): "

28 << std::chrono::floor<std::chrono::minutes>(localTime) << '\n';

29

30 std::cout << "std::chrono::floor<std::chrono::hours>(localTime): "

31 << std::chrono::floor<std::chrono::hours>(localTime) << '\n';

32

33 std::cout << "std::chrono::floor<std::chrono::days>(localTime): "

34 << std::chrono::floor<std::chrono::days>(localTime) << '\n';

35

36 std::cout << "std::chrono::floor<std::chrono::weeks>(localTime): "

37 << std::chrono::floor<std::chrono::weeks>(localTime) << '\n';

38

39 // std::cout << std::chrono::floor<std::chrono::months>(localTime) << '\n'; ERROR

40 // std::cout << std::chrono::floor<std::chrono::years>(localTime) << '\n'; ERROR

41

42 std::cout << '\n';

43

44 }

The program displays localTime in different accuracies, starting with the time duration std::chrono

::microseconds (line 18) and ending with std::chrono::weeks (line 36). Curiously, the time durations
for std::chrono::months, and std::chrono::years cannot be displayed, but this will be fixed with
C++23.

The local time displayed in different resolutions

5.6.6.1.4 Calendar Dates

The following table shows the format specifiers, including a short description and an example. For
the full description, refer to the cppreference.com/chrono/parse⁶³ page.

⁶³https://en.cppreference.com/w/cpp/chrono/parse

https://en.cppreference.com/w/cpp/chrono/parse
https://en.cppreference.com/w/cpp/chrono/parse

The Standard Library 403

Various Calendar Types

Calendar Type Description Output Example

std::chrono::day Day 09

std::chrono::month Month Aug

std::chrono::year Year 2021

std::chrono::weekday Weekday Mon

std::chrono::weekday_indexed nth weekday Mon[2]

std::chrono::weekday_last Last weekday Mon[last]

std::chrono::month_day Day of a month Aug/09

std::chrono::month_day_last Last day of a month Aug/last

std::chrono::month_weekday nth weekday of a month Aug/Mon[2]

std::chrono::month_weekday_last Last weekday of a month Aug/Mon[last]

std::chrono::year_month Month of a years 2021/Aug

std::chrono::year_month_day A day of a month of a year 2021-08-09

std::chrono::year_month_day_last Last day of a month of a year 2021/Aug/last

std::chrono::year_month_weekday nth weekday of a month of a year 2021/Aug/Mon[2]

std::chrono::year_month_day_weekday_last Last weekday of a month of a year 2021/Aug/Mon[last]

The program createCalender.cpp outputs the various calendar dates.

5.6.6.1.5 Formatted

The following table shows the format specifiers, including a short description and an example. Refer
to the cppreference.com/chrono/parse⁶⁴ page for the full description.

Format Specifiers for Calendar Dates

Specifier Description Example

Calendar Date:
%c Locale’s date and time representation Mon Aug 9 22:58:04 2021

%x Locale’s date representation 09/08/21

%F year-month-day 2021-08-08

%D month/day/year 09/08/21

Year
%Y Year 2021

%y Year without century 21

%C Century as two digits 20

⁶⁴https://en.cppreference.com/w/cpp/chrono/parse

https://en.cppreference.com/w/cpp/chrono/parse
https://en.cppreference.com/w/cpp/chrono/parse

The Standard Library 404

Format Specifiers for Calendar Dates

Specifier Description Example

Month:
%b, or %h Abbreviated month name Aug

%B Month name August

%m Month 08

Week:
%W Week of the year (01 until 53, week starts Monday) 31

%U Week of the year (01 until 53, week starts Sunday) 31

Weekday:
%a Abbreviated weekday name Mon

%A Weekday name Monday

%w Weekday as number (Sunday (0) until Saturday (6)) 1

%u Weekday as number (Monday (1) until Sunday (7)) 1

Day:
%e Day (leading space if necessary) 9

%d Day with two digits 09

Format Specifiers for Time

Specifier Description Example

%c Date and time representation Mon Aug 9 22:58:04 2021

%X Time representation 22:58:04

%r 12-hour clock time 10:58:04 PM

%T hours:minutes:seconds 22:58:04.435

%R hours:minutes 22:58

%H 24-hour clock 22

%I 12-hour clock 10

%p AM or PM (12-hour clock) PM

%M Minute 58

%S seconds.subseconds 04.453

The Standard Library 405

Other Format Specifier for Chrono

Specifier Description Example

%Z Time zone abbreviation CEST

%z Offset (hours and minutes) from UTC +0200

%j Day of the year (Starting wiht 001) 221

%q Unit suffix according to the time’s duration ms

%n Newline character \n

%t Tabulator character \t

%% % character %

The following program uses the time specifier and calendar date specifiers.

Use of the time specifier and calendar date specifiers

1 // formattedOutputChrono.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <thread>

6

7 int main() {

8

9 std::cout << '\n';

10

11 using namespace std::literals;

12

13 auto start = std::chrono::steady_clock::now();

14 std::this_thread::sleep_for(33ms);

15 auto end = std::chrono::steady_clock::now();

16 std::cout << std::format("The job took {} seconds\n", end - start);

17 std::cout << std::format("The job took {:%S} seconds\n", end - start);

18

19 std::cout << '\n';

20

21 auto now = std::chrono::system_clock::now();

22 std::cout << "now: " << now << '\n';

23 std::cout << "Specifier {:%c}: " << std::format("{:%c}\n", now);

24 std::cout << "Specifier {:%x}: " << std::format("{:%x}\n", now);

25 std::cout << "Specifier {:%F}: " << std::format("{:%F}\n", now);

26 std::cout << "Specifier {:%D}: " << std::format("{:%D}\n", now);

27 std::cout << "Specifier {:%Y}: " << std::format("{:%Y}\n", now);

28 std::cout << "Specifier {:%y}: " << std::format("{:%y}\n", now);

29 std::cout << "Specifier {:%b}: " << std::format("{:%b}\n", now);

30 std::cout << "Specifier {:%B}: " << std::format("{:%B}\n", now);

The Standard Library 406

31 std::cout << "Specifier {:%m}: " << std::format("{:%m}\n", now);

32 std::cout << "Specifier {:%W}: " << std::format("{:%W}\n", now);

33 std::cout << "Specifier {:%U}: " << std::format("{:%U}\n", now);

34 std::cout << "Specifier {:%a}: " << std::format("{:%a}\n", now);

35 std::cout << "Specifier {:%A}: " << std::format("{:%A}\n", now);

36 std::cout << "Specifier {:%w}: " << std::format("{:%w}\n", now);

37 std::cout << "Specifier {:%u}: " << std::format("{:%u}\n", now);

38 std::cout << "Specifier {:%e}: " << std::format("{:%e}\n", now);

39 std::cout << "Specifier {:%d}: " << std::format("{:%d}\n", now);

40

41 std::cout << '\n';

42

43 }

The call std::chrono::steady_clock::now() (lines 13 and 15) determines the current time. You should
use the std::chrono::steady_clock for measurements because this clock is monotonic and cannot be
adjusted, such as std::chrono::system_clock (line 21)

Use of the time specifier and calendar date specifiers

You can also apply the format specifier for formatted input.

The Standard Library 407

5.6.6.2 Input

The chrono library supports formatted input in twoways. You can use the function std::chrono::from_-
stream⁶⁵ or std::chrono::parse⁶⁶. Both functions require an input stream and parse the input into
a time point according to the format specification. All format specifier except %q for unit suffixed
according to the literals for time durations can be used.

5.6.6.2.1 std::chrono::from_stream

std::chrono::from_stream has overloads for the various clocks and calendar dates.

• Clocks

– std::chrono::system_time

– std::chrono::utc_time

– std::chrono::tai_time

– std::chrono::gps_time

– std::chrono::file_time

– std::chrono::local_time

• Calendar dates

– std::chrono::year_month_day

– std::chrono::year_month

– std::chrono::month_day

– std::chrono::weekday

– std::chrono::year

– std::chrono::month

– std::chrono::day

The various overloads require in the elementary form an input stream is, a format string fmt, and a
time point or a calendar object chro: std::chrono::from_stream(is, fmt, chro). The chrono object
from the input stream is then parsed according to the format string.

You can also provide an abbreviation abb for a time zone and an offset off from the UTC time:
std::chrono::from_stream(is, fmt, chro, abb, off). The offset has the type std::chrono::minutes.

The program inputChrono.cpp uses formatted input to read a time point and a calendar date from an
input stream.

⁶⁵https://en.cppreference.com/w/cpp/chrono/system_clock/from_stream
⁶⁶https://en.cppreference.com/w/cpp/chrono/parse

https://en.cppreference.com/w/cpp/chrono/system_clock/from_stream
https://en.cppreference.com/w/cpp/chrono/system_clock/from_stream
https://en.cppreference.com/w/cpp/chrono/parse
https://en.cppreference.com/w/cpp/chrono/system_clock/from_stream
https://en.cppreference.com/w/cpp/chrono/parse

The Standard Library 408

Reading chrono objects from an input stream using std::chrono::from_stream

1 // inputChrono.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <string>

6 #include <sstream>

7

8 int main() {

9

10 std::cout << '\n';

11

12 std::chrono::sys_seconds timePoint;

13 std::istringstream iStream1{"2021-08-11 21:49:35"};

14 std::chrono::from_stream(iStream1, "%F %T", timePoint);

15 if (iStream1) std::cout << "timePoint: " << timePoint << '\n';

16 else std::cerr << "timepoint: Reading failed\n";

17

18 std::chrono::year_month_day date1;

19 std::istringstream iStream2{"11/08/21"};

20 std::chrono::from_stream(iStream2, "%x", date1);

21 if (iStream2) std::cout << "date1: " << date1 << '\n';

22 else std::cerr << "date1: Reading failed\n";

23

24 std::chrono::year_month_day date2;

25 std::istringstream iStream3{"11/15/21"};

26 std::chrono::from_stream(iStream3, "%x", date2);

27 if (iStream3) std::cout << "date2: " << date2 << '\n';

28 else std::cerr << "date2: Reading failed\n";

29

30 std::cout << '\n';

31

32 }

On lines 13 and 14, the data on the input stream (iStream1) matches the format string ("%F %T"). The
same holds for input stream iStream2 (line 19) and the corresponding format string "%x" (line 20). On
the contrary, there is no 15th month, and the parse step in line 26 fails. Consequentially, the failbit of
the iStream3 is set. Using the iStream3 in a boolean expression evaluates to false.

The Standard Library 409

Reading chrono objects from an input stream using std::chrono::from_stream

5.6.6.2.2 std::chrono::parse

Accordingly to std::chrono::from_stream, you can use the function std::chrono::parse for parsing
input. The following code snippet shows their equivalence.

Equivalence of std::chrono::from_stream and std::chrono::parse

std::chrono::from_stream(is, fmt, chro)

is >> std::chrono::parse(fmt, chro)

Instead of std::chrono::from_stream, std::chrono::parse is directly invoked on the input stream is.
std::chrono::parse also needs a format string fmt and a chrono object chro.

Consequently, I can directly rewrite the previous program inputChrono.cpp using std::chrono::from_-
stream into the program inputChronoParse.cpp using std::chrono::parse.

Reading chrono objects from an input stream using std::chrono::parse

1 // inputChronoParse.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <string>

6 #include <sstream>

7

8 int main() {

9

10 std::cout << '\n';

11

12 std::chrono::sys_seconds timePoint;

13 std::istringstream iStream1{"2021-08-11 21:49:35"};

14 iStream1 >> std::chrono::parse("%F %T", timePoint);

15 if (iStream1) std::cout << "timePoint: " << timePoint << '\n';

16 else std::cerr << "timepoint: Reading failed\n";

The Standard Library 410

17

18 std::chrono::year_month_day date1;

19 std::istringstream iStream2{"11/08/21"};

20 iStream2 >> std::chrono::parse("%x", date1);

21 if (iStream2) std::cout << "date1: " << date1 << '\n';

22 else std::cerr << "date1: Reading failed\n";

23

24 std::chrono::year_month_day date2;

25 std::istringstream iStream3{"11/15/21"};

26 iStream3 >> std::chrono::parse("%x", date2);

27 if (iStream3) std::cout << "date2: " << date2 << '\n';

28 else std::cerr << "date2: Reading failed\n";

29

30 std::cout << '\n';

31

32 }

Format String must be a C++ String
The format string in std::chrono::parse must be a C++ string and cannot be a C string.
This issue is already regarded as a oversight and will be fixed.

1 std::chrono::parse("%F %T", timePoint);

2

3 std::chrono::parse(std::string("%F %T"), timePoint);

4

5 using namespace std::literals;

6 std::chrono::parse("%F %T"s, timePoint);

A straightforward fix of this issue (line 1) is to use a std::string (line 3), or a string literal
(line 6).

Distilled Information
• C++20 adds new components to the chrono library: time of day, calendar, and time
zone.

• Time of day is the time duration since midnight, split into hours, minutes, seconds,
and fractional seconds.

• Calendar stands for various calendar dates such as year, a month, a weekday, or
the n-th day of a week.

• A time zone represents time specific to a geographic area.

• Thanks to the new formatting library, you can read and write chrono objects
formatted to and from input streams.

The Standard Library 411

5.7 Further Improvements

Cippi goes up

5.7.1 std::bind_front

std::bind_front (Func&& func, Args&& ... args) creates a callable wrapper for a callable func.
std::bind_front can have an arbitrary number of arguments and binds its arguments to the front.

std::bind_front versus std::bind

Since C++11, we have had std::bind⁶⁷ and lambda expressions⁶⁸. With C++20, we get
std::bind_front⁶⁹. This may make you wonder. To be pedantic std::bind is available
since the Technical Report 1⁷⁰ (TR1). std::bind and lambda expressions can be used as
a replacement of std::bind_front. Furthermore, std::bind_front seems like the little
sister of std::bind, because only std::bind supports the rearranging of arguments. Of
course, there is a reason to use std::bind_front in the future: in contrast to std::bind,
std::bind_front propagates the exception specification of the underlying call operator.

The following program shows that you can replace std::bind_front with std::bind or lambda
expressions.

⁶⁷https://en.cppreference.com/w/cpp/utility/functional/bind
⁶⁸https://en.cppreference.com/w/cpp/language/lambda
⁶⁹https://en.cppreference.com/w/cpp/utility/functional/bind_front
⁷⁰https://en.wikipedia.org/wiki/C%2B%2B_Technical_Report_1

https://en.cppreference.com/w/cpp/utility/functional/bind
https://en.cppreference.com/w/cpp/language/lambda
https://en.cppreference.com/w/cpp/utility/functional/bind_front
https://en.wikipedia.org/wiki/C++_Technical_Report_1
https://en.cppreference.com/w/cpp/utility/functional/bind
https://en.cppreference.com/w/cpp/language/lambda
https://en.cppreference.com/w/cpp/utility/functional/bind_front
https://en.wikipedia.org/wiki/C++_Technical_Report_1

The Standard Library 412

Comparing std::bind_front, std::bind, and a lambda expression

1 // bindFront.cpp

2

3 #include <functional>

4 #include <iostream>

5

6 int plusFunction(int a, int b) {

7 return a + b;

8 }

9

10 auto plusLambda = [](int a, int b) {

11 return a + b;

12 };

13

14 int main() {

15

16 std::cout << '\n';

17

18 auto twoThousandPlus1 = std::bind_front(plusFunction, 2000);

19 std::cout << "twoThousandPlus1(20): " << twoThousandPlus1(20) << '\n';

20

21 auto twoThousandPlus2 = std::bind_front(plusLambda, 2000);

22 std::cout << "twoThousandPlus2(20): " << twoThousandPlus2(20) << '\n';

23

24 auto twoThousandPlus3 = std::bind_front(std::plus<int>(), 2000);

25 std::cout << "twoThousandPlus3(20): " << twoThousandPlus3(20) << '\n';

26

27 std::cout << "\n\n";

28

29 using namespace std::placeholders;

30

31 auto twoThousandPlus4 = std::bind(plusFunction, 2000, _1);

32 std::cout << "twoThousandPlus4(20): " << twoThousandPlus4(20) << '\n';

33

34 auto twoThousandPlus5 = [](int b) { return plusLambda(2000, b); };

35 std::cout << "twoThousandPlus5(20): " << twoThousandPlus5(20) << '\n';

36

37 std::cout << '\n';

38

39 }

Each call (lines 18, 21, 24, 31, and 34) gets a callable taking two arguments and returns a callable
taking only one argument because the first argument is bound to 2000. The callable is a function (line

The Standard Library 413

18), a lambda expression (line 21), and a predefined function object (line 24). Parameter _1 is a so-
called placeholder (line 31) and stands for the missing argument. With lambda expression (line 34),
you can directly apply one argument and provide an argument b for the missing parameter. From the
readability perspective, std::bind_frontmay be easier to read than std::bind or a lambda expression.

Applying std::bind, std::bind_front, and a lambda expression

5.7.2 std::is_constant_evaluated

The function std::is_constant_evaluted determines whether the function call occurs within a
constant-evaluated context or not. Why do we need this function from the type-traits library? In
C++20, we have roughly spoken three kinds of functions:

• consteval declared functions run at compile time: consteval int alwaysCompiletime();

• constexpr declared functions can run at compile time or run time: constexpr int itDepends();

• usual functions run at run time: int alwaysRuntime();

Now, I must write about the complicated case: constexpr. A constexpr function can run at compile
time or run time. Sometimes these functions should behave differently, depending on whether the
function call occurs within a constant-evaluated context or not. A constexpr function such as getSum
has the potential to run at compile time.

A constexpr-declared function

constexpr int getSum(int l, int r) {

return l + r;

}

A constexpr function can be called within a constant-evaluated context or not.

1. A constant-evaluated context

• Implicit: A call inside a constexpr function or a static_assert.
• Explicit: The client of the function explicitly wants to have the result at compile time:
constexpr auto res = getSum(2000, 11). Now, getSum() has to run at compile time.

The Standard Library 414

2. A non-constant-evaluated context

• A constexpr function can only be performed at run time if the arguments are not
constexpr. This would be the case if the function getSum(a, 11) is invoked with a variable
that was not declared as constexpr : int a = 2000.

You can detect if the function call occurs within a constant-evaluated context and perform different
operations. cppreference.com/is_constant_evaluted⁷¹ shows a smart use case. At compile time, you
explicitly calculate the power of two numbers; at run time, you use std::pow.

Executing different code at compile time and run time

// constantEvaluated.cpp

#include <type_traits>

#include <cmath>

#include <iostream>

constexpr double power(double b, int x) {

if (std::is_constant_evaluated() && !(b == 0.0 && x < 0)) {

if (x == 0)

return 1.0;

double r = 1.0, p = x > 0 ? b : 1.0 / b;

auto u = unsigned(x > 0 ? x : -x);

while (u != 0) {

if (u & 1) r *= p;

u /= 2;

p *= p;

}

return r;

}

else {

return std::pow(b, double(x));

}

}

int main() {

std::cout << '\n';

constexpr double kilo1 = power(10.0, 3);

std::cout << "kilo1: " << kilo1 << '\n';

int n = 3;

⁷¹https://en.cppreference.com/w/cpp/types/is_constant_evaluated

https://en.cppreference.com/w/cpp/types/is_constant_evaluated
https://en.cppreference.com/w/cpp/types/is_constant_evaluated

The Standard Library 415

double kilo2 = power(10.0, n);

std::cout << "kilo2: " << kilo2 << '\n';

std::cout << '\n';

}

There are two interesting observation I want to share.

• You can use a non-constexpr function such as std::pow⁷² in the run-time branch of the function
constantEvaluated.cpp.

• It is possible to use std::is_constant_evaluated in a consteval declared function or in a
function that can only run at run time. In this case, the compile-time branch or run-time branch
is performed.

5.7.3 std::ssize

Accordingly to std::ranges::ssize, std::ssize in C++20 returns a signed value. In contrast, the
container’s member function size returns an unsigned value.

size, std::size, and std::ssize

1 std::vector myVec{1, 2, 3};

2

3 for (int i = 0; i <= myVec.size(); i++) { }

4 for (int i = 0; i <= std::size(myVec); i++) { }

5 for (int i = 0; i <= std::ssize(myVec); i++) { }

The expressions myVec.size() (line 3) and std::size(myVec) (line 4) return an unsigned value, but
std::ssize(myVec) (line 5) a signed value. Consequentially, the compiler may produce a warning for
lines 3 and 4, depending on your compiler options. This warning is due to comparing the signed value
of i and the unsigned value of the vector size. Furthermore, this comparison fails if the container’s
size exceeds the maximum value of the signed int i.

Thanks to argument-dependent lookup⁷³, you can use std::size, and std::ssize unqualified:

⁷²https://en.cppreference.com/w/cpp/numeric/math/pow
⁷³https://www.modernescpp.com/index.php/argument-dependent-lookup-and-hidden-friends/

https://en.cppreference.com/w/cpp/numeric/math/pow
https://www.modernescpp.com/index.php/argument-dependent-lookup-and-hidden-friends/
https://en.cppreference.com/w/cpp/numeric/math/pow
https://www.modernescpp.com/index.php/argument-dependent-lookup-and-hidden-friends/

The Standard Library 416

Unqualified use of std::size, and std::ssize

std::vector myVec{1, 2, 3};

for (int i = 0; i <= size(myVec); i++) { }

for (int i = 0; i <= ssize(myVec); i++) { }

5.7.4 std::source_location

std::source_location represents implementation-defined information about the source code. This
information includes the file name, line number, column number, and function name. The information
is precious if you need information about the call site for debugging, logging, or testing purposes. The
class std::source_location is a better alternative than the predefined C++11 macros __FILE__ and
__LINE__ and should be used instead.

std::source_location can give you the following information.

std::source_location src

Function Description

std::source_location::current() Creates a new source_location object src

src.line() Returns the line number

src.column() Returns the column number

src.file_name() Returns the file name

src.function_name() Returns the function name

The static consteval function std::source_location::current() creates a new source location
object src that represents the information of the call site. You can store this object in a container
std::vector<std::source_location> or display its information.

The Standard Library 417

Displaying information about the call site with std::source_location

1 // sourceLocation.cpp

2

3 #include <format>

4 #include <iostream>

5 #include <string_view>

6 #include <source_location>

7

8 void log(std::string_view message,

9 const std::source_location& logMessage = std::source_location::current()) {

10 std::cerr << std::format("\n{}: {}:{} in ({}, {}) \n\n",

11 message,

12 logMessage.file_name(), logMessage.function_name(),

13 logMessage.line(), logMessage.column());

14 }

15

16 void func() {

17 log("Hello world from func");

18 }

19

20 int main() {

21 log("Hello world from main");

22 func();

23 }

The program sourceLocation.cpp displays for each log message (lines 17 and 21) the source file, the
function name, and the line and column number.

First, here is the output of the MSVC compiler:

Displaying log information with the MSVC compiler

Additionally, here is GCC’s output on the Compiler Explorer:

The Standard Library 418

Displaying log information with the GCC compiler

5.7.5 std::to_address

std::to_address(p) returns the address of p without forming a reference to the object pointed to by
p. The utility function std::to_address can handle raw pointers and fancy pointers (smart pointers)
uniquely.

Displaying the address of raw pointers and smart pointers in an unique way

1 // toAddress.cpp

2

3 #include <iostream>

4 #include <memory>

5

6 int main() {

7

8 std::cout << '\n';

9

10 int myInt{5};

11

12 int* pMyInt{&myInt};

13 std::cout << "std::to_address(pMyInt): " << std::to_address(pMyInt) << '\n';

14

15 auto uniq = std::make_unique<int>(5);

16 std::cout << "std::to_address(uniq): " << std::to_address(uniq) << '\n';

17 std::cout << "std::to_address(uniq.get()): " << std::to_address(uniq.get()) << '\n';

18

19 auto shar = std::make_shared<int>(5);

20 std::cout << "std::to_address(shar): " << std::to_address(shar) << '\n';

21 std::cout << "std::to_address(shar.get()): " << std::to_address(shar.get()) << '\n';

22

23 std::cout << '\n';

24

25 }

The Standard Library 419

Displaying the address of raw pointers and smart pointers in a unique way

In contrast to std::addressof(*p)⁷⁴, std::to_address(p) can be used even when p does not reference
storage that has an object constructed in it.

Distilled Information
• std::bind_front is the easier-to-use variant for std::bind (C++11). In contrast to

std::bind, std::bind_front does not enable the rearranging of its arguments.

• The function std::is_constant_evaluted determines whether the function is exe-
cuted at compile time or run time.

• std::source_location represents information about the source code. This informa-
tion includes file names, line numbers, and function names, and is highly valuable
for debugging, logging, or testing.

• std::to_address(p) returns the address of p without forming a reference to the
object pointed to by p.

⁷⁴https://en.cppreference.com/w/cpp/memory/addressof

https://en.cppreference.com/w/cpp/memory/addressof
https://en.cppreference.com/w/cpp/memory/addressof

6. Concurrency

With the publishing of the C++11 standard, C++ got a multithreading library and a memory model.
This library has basic building blocks like atomic variables, threads, locks, and condition variables.
That’s the foundation on which C++ standards such as C++20 can establish higher-level abstractions.

Concurrency 421

6.1 Coroutines

Cippi waters the flowers

Coroutines are functions that can suspend and resume their execution while keeping their state. The
evolution of functions in C++ goes one step further.

The Challenge of Understanding Coroutines
It was quite a challenge for me to understand coroutines. I strongly suggest that you should
not read the sections in the chapter in sequence. Skip in your first iteration the sections
The Framework, Awaitable and Awaiters, and The Workflow. Furthermore, read the case
studies Variations of Futures, Modification and Generalization of a Generator, and Various
Job Workflows. Reading, studying, and playing with the examples provided should give
you the initial intuition needed to dive into details and the workflow of coroutines.

What I present in this section as a new idea in C++20 is quite old. The term coroutine was coined by
Melvin Conway¹. He used it in his publication on compiler construction in 1963. Donald Knuth² called
procedures a special case of coroutines. Sometimes, it just takes a while to get your ideas accepted.

¹https://en.wikipedia.org/wiki/Melvin_Conway
²https://en.wikipedia.org/wiki/Donald_Knuth

https://en.wikipedia.org/wiki/Melvin_Conway
https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/Melvin_Conway
https://en.wikipedia.org/wiki/Donald_Knuth

Concurrency 422

Functions versus Coroutines

While you can only call a function and return from it, you can call a coroutine, suspend and resume
it, and destroy a suspended coroutine.

With the new keywords co_await and co_yield, C++20 extends the execution of C++ functions with
two new concepts.

Thanks to the co_await expression, it is possible to suspend and resume the execution of the
expression. If you use co_await expression in a function func, the call auto getResult = func()

does not block if the result of the function is not available. Instead of resource-consuming blocking,
you have resource-friendly waiting.

co_yield expression supports generator functions. The generator function returns a new value each
time you call it. A generator function is a kind of data stream from which you can extract values. The
data stream can be infinite. Therefore, we are at the center of lazy evaluation with C++.

6.1.1 A Generator Function

The following program is as simple as possible. The function getNumbers returns all integers from
begin to end, incremented by inc. Value begin has to be smaller than end, and inc has to be positive.

Concurrency 423

A greedy generator function

1 // greedyGenerator.cpp

2

3 #include <iostream>

4 #include <vector>

5

6 std::vector<int> getNumbers(int begin, int end, int inc = 1) {

7

8 std::vector<int> numbers;

9 for (int i = begin; i < end; i += inc) {

10 numbers.push_back(i);

11 }

12

13 return numbers;

14

15 }

16

17 int main() {

18

19 std::cout << '\n';

20

21 const auto numbers= getNumbers(-10, 11);

22

23 for (auto n: numbers) std::cout << n << " ";

24

25 std::cout << "\n\n";

26

27 for (auto n: getNumbers(0, 101, 5)) std::cout << n << " ";

28

29 std::cout << "\n\n";

30

31 }

Of course, I’m reinventing the wheel with getNumbers, because this task could be done with std::iota³.

For completeness, here is the output.

³http://en.cppreference.com/w/cpp/algorithm/iota

http://en.cppreference.com/w/cpp/algorithm/iota
http://en.cppreference.com/w/cpp/algorithm/iota

Concurrency 424

A generator function

Two observations of the program greedyGenerator.cpp are essential. On the one hand, the vector
numbers in line 8 always gets all values. This holds even if I’m only interested in the first 5 elements of
a vector with 1000 elements. On the other hand, it’s easy to transform the function getNumbers into a
lazy generator. The following program is intentionally not complete. The definition of the generator
is still missing.

A lazy generator function
1 // lazyGenerator.cpp

2

3 #include <iostream>

4

5 generator<int> generatorForNumbers(int begin, int inc = 1) {

6

7 for (int i = begin;; i += inc) {

8 co_yield i;

9 }

10

11 }

12

13 int main() {

14

15 std::cout << '\n';

16

17 const auto numbers = generatorForNumbers(-10);

18

19 for (int i= 1; i <= 20; ++i) std::cout << numbers() << " ";

20

21 std::cout << "\n\n";

22

23 for (auto n: generatorForNumbers(0, 5)) std::cout << n << " ";

24

25 std::cout << "\n\n";

26

27 }

While the function getNumbers in the file greedyGenerator.cpp returns a std::vector<int>, the

Concurrency 425

coroutine generatorForNumbers in lazyGenerator.cpp returns a generator. The generator numbers in
line 17 or generatorForNumbers(0, 5) in line 23 returns a new number on request. The range-based
for loop triggers the query. Precisely, the query of the coroutine returns the value i via co_yield i

and immediately suspends its execution. If a new value is requested, the coroutine resumes execution
exactly at that place.

The expression generatorForNumbers(0, 5) in line 23 is a just-in-place use of a generator.

I want to stress one point explicitly. The coroutine generatorForNumbers creates an infinite data stream
because the for loop in line 8 has no end condition. This is fine if I only ask for a finite number of
values, such as in line 20. This does not hold for line 23 since there is no end condition. Therefore, the
expression runs forever.

6.1.2 Characteristics

Coroutines have a few unique characteristics.

6.1.2.1 Typical Use Cases

Coroutines are the usual way to write event-driven applications⁴, which can be simulations, games,
servers, user interfaces, or even algorithms. Coroutines are also typically used for cooperative
multitasking⁵. The key to cooperative multitasking is that each task takes as much time as it needs
but avoids sleeping or waiting and instead allows some other task to run. Cooperative multitasking
stands in contrast to pre-emptive multitasking, for which we have a scheduler that decides how long
each task gets the CPU.

There are different kinds of coroutines.

6.1.2.2 Underlying Concepts

Coroutines in C++20 are asymmetric, first-class, and stackless.

The workflow of an asymmetric coroutine goes back to the caller. This does not hold for a symmetric
coroutine. A symmetric coroutine can delegate its workflow to another coroutine.

First-class coroutines are similar to first-class functions, since coroutines behave like data. Behaving
like data means that you can use them as arguments to or return values from functions, or store them
in a variable.

A stackless coroutine can suspend and resume the top-level coroutine. The execution of the coroutine
and the yielding from the coroutine comes back to the caller. The coroutine stores its state for
resumption separate from the stack. Stackless coroutines are often called resumable functions.

⁴https://en.wikipedia.org/wiki/Event-driven_programming
⁵https://en.wikipedia.org/wiki/Computer_multitasking

https://en.wikipedia.org/wiki/Event-driven_programming
https://en.wikipedia.org/wiki/Computer_multitasking
https://en.wikipedia.org/wiki/Computer_multitasking
https://en.wikipedia.org/wiki/Event-driven_programming
https://en.wikipedia.org/wiki/Computer_multitasking

Concurrency 426

6.1.2.3 Design Goals

Gor Nishanov describes in proposal N4402⁶ the design goals of coroutines.

Coroutines should

• be highly scalable (to billions of concurrent coroutines)

• have highly efficient resume and suspend operations comparable in cost to the overhead of a
function

• seamlessly interact with existing facilities with no overhead

• have open-ended coroutine machinery allowing library designers to develop coroutine libraries
exposing various high-level semantics such as generators, goroutines⁷, tasks and more

• usable in environments where exceptions are forbidden or not available

Due to the design goals of scalability and seamless interaction with existing facilities, the coroutines
are stackless. In contrast, a stackful coroutine reserves a default stack of 1MB on Windows and 2MB
on Linux.

There are four ways for a function to become a coroutine.

6.1.2.4 Becoming a Coroutine

A function becomes a coroutine if it uses

• co_return, or

• co_await, or

• co_yield, or a

• co_await expression in a range-based for loop.

⁶https://isocpp.org/files/papers/N4402.pdf
⁷https://tour.golang.org/concurrency/1

https://isocpp.org/files/papers/N4402.pdf
https://tour.golang.org/concurrency/1
https://isocpp.org/files/papers/N4402.pdf
https://tour.golang.org/concurrency/1

Concurrency 427

Distinguish Between the Coroutine and the Coroutine
Handle
The term coroutine is often used for two different things: the function invoking co_return,
co_await, or co_yield, and the coroutine handle. Using one term for two different entities
may puzzle you (such as it did me). Let me clarify both terms.

A simple coroutine producing 2021
MyFuture<int> createFuture() {

co_return 2021;

}

int main() {

auto fut = createFuture();

std::cout << "fut.get(): " << fut.get() << '\n';

}

This straightforward example has a function createFuture and returns an object of type
MyFuture<int>. Both are called coroutines. To be specific, the function createFuture is the
coroutine that returns a coroutine handle MyFuture<int>. The coroutine handle is a handle
to a objects that implements the framework to model a specific behavior. I present in the
section co_return the implementation and the use of this straightforward coroutine.

6.1.2.4.1 Restrictions

Coroutines cannot have return statements or placeholder return types. This applies for unconstrained
placeholders (auto) and constrained placeholders (concepts).

Additionally, functions having variadic arguments⁸, constexpr functions, consteval functions, con-
structors, destructors, and the main function cannot be coroutines.

6.1.3 The Framework

The framework for implementing coroutines consists of more than 20 functions, some of which you
must implement and some of which you may overwrite. Therefore, you can tailor the coroutine to
your needs.

A coroutine is associated with three parts: the promise object, the coroutine handle, and the coroutine
frame. The client gets the coroutine handle to interact with the promise object, which keeps its state
in the coroutine frame.

⁸https://en.cppreference.com/w/cpp/language/variadic_arguments

https://en.cppreference.com/w/cpp/language/variadic_arguments
https://en.cppreference.com/w/cpp/language/variadic_arguments

Concurrency 428

6.1.3.1 Promise Object

The promise object is manipulated inside the coroutine, and it delivers its result or exception via the
promise object.

The promise object supports the following interface. Some of the functions must be implemented,
some of them are optional.

Promise object

Member Function Description

Constructor A promise needs a constructor.

initial_suspend() Determines if the coroutine suspends
before it runs.

final_suspend noexcept() Determines if the coroutine suspends
before it ends.

unhandled_exception() Called when an unhandled exception
happens.

get_return_object() Initializes the coroutine handle that is
returned to the caller.

get_return_object_on_allocation_-

failure()

Defines if memory allocation fails.

return_value(val) Is invoked by co_return val.

return_void() Is invoked by co_return or the end of the
coroutine.

yield_value(val) Is invoked by co_yield val.

await_transform(val) Returns an Awaitable.

operator new(size) Defines how the coroutine allocates
memory.

operator delete(ptr, size) Defines how the coroutine frees memory.

The compiler automatically invokes these functions during its execution of the coroutine. The section
workflow presents this workflow in detail.

The function get_return_object initializes the coroutine handle that the client uses to interact with
the coroutine.

Concurrency 429

The three functions yield_value, initial_suspend and final_suspend return an awaiter. Often, the
predefined Awaiters std::suspend_always and std::suspend_never are used. This Awaiter can start
eager or lazy. The function final_suspend can execute some logic if the coroutine is finally suspended.

A promise needs at least one of the member functions return_value, return_void, or yield_value.
Additionally, either return_value or return_void must be available. When you overload yield_value

or return_value of the promise object for different types, the coroutine can return different values
using co_yield, or co_return.

The static function get_return_object_on_allocation_failure guarantees that memory allocation
of the coroutine never throws. When this static member function is implemented, the overloaded
::operator new(std::size_t sz, std::nothrow_t) is called. Consequentially, when you implement
your operator new, it must be noexcept and return a nullptr when memory allocation fails.

Thanks to the two functions operator new(size), and operator delete(ptr, size), you can implement
a coroutine-specific memory allocation strategy. This strategy may avoid memory allocation on the
heap.

For an unhandled exception in the coroutine, the function unhandled_exception is called. Now, you
can handle your exception in various ways: you can ignore the exception, terminate your program
using, for example std::exit⁹, handle the exception, or store it using std::current_exception¹⁰. You
have to rethrow the exception in the try block to handle it:

Handling an exception in the coroutine

void unhandled_exception() {

try {

throw; // rethrow the exception

}

catch (const std::exception& excep) {

std::cerr << "Exception in the coroutine: " << excep.what() << '\n';

}

}

6.1.3.2 Coroutine Handle

The coroutine handle is a non-owning handle to resume or destroy the coroutine frame from the
outside. The coroutine handle is part of the resumable function. The following table shows the
coroutine handles interface.

⁹https://en.cppreference.com/w/cpp/utility/program/exit
¹⁰https://en.cppreference.com/w/cpp/error/current_exception

https://en.cppreference.com/w/cpp/utility/program/exit
https://en.cppreference.com/w/cpp/error/current_exception
https://en.cppreference.com/w/cpp/utility/program/exit
https://en.cppreference.com/w/cpp/error/current_exception

Concurrency 430

Functions Description

Constructor{} Creates a handle not
Constructor{nullptr} referring to a coroutine

Constructor{handle} Copies the handle.

handle1 = handle2 Assigns the handle2.

coroutine_handle<PromType>::from_-

promise(prom)

Creates a handle with the promise prom.

coroutine_handle<PromType>::from_-

address(addr)

Returns the handle for the address addr.

operator bool Checks if the handle represents a
coroutine.

operator coroutine_handle<> Creates a type-erased coroutine handle.

handle.done() Checks if the coroutine has completed.

==, != Checks if two handles refer the same
coroutine.

<, <=, >, >=, <=> Enables the ordering of handles.

handle.resume() Resumes the coroutine.

handle() Resumes the coroutine.

handle.destroy() Destroys the coroutine.

handle.promise() Returns the promise of the coroutine.

handle.address() Returns the underlying address of the
coroutine data.

Typically, the promise invokes in its member function get_return_object the static member function
coroutine_handle<PromType>::from_promise(prom) to initialize the coroutine handle.

Concurrency 431

Creating the coroutine handle from the promise

struct promise_type {

...

auto get_return_object() {

return Generator{handle_type::from_promise(*this)};

}

...

};

This call get_return_object creates and returns a Generator, initialized with the promise. Finally, the
class Generator uses the handle.

A coroutine handle

1 template<typename T>

2 struct Generator {

3

4 struct promise_type;

5 using handle_type = std::coroutine_handle<promise_type>;

6

7 Generator(handle_type h): coro(h) {}

8 handle_type coro;

9

10 ~Generator() {

11 if (coro) coro.destroy();

12 }

13 T getValue() {

14 return coro.promise().current_value;

15 }

16 bool next() {

17 coro.resume();

18 return not coro.done();

19 }

20 ...

21 }

The constructor (line 7) gets the coroutine handle to the promise that has type std::coroutine_-

handle<promise_type>¹¹. The member functions next (line 16) and getValue (line 13) enables a client
to resume the promise (gen.next()) or ask for its value (gen.getValue()) using the coroutine handle.

Internally, both functions trigger the coroutine handle coro (line 8) to

• resume the coroutine: coro.resume() (line 17) or coro();

¹¹https://en.cppreference.com/w/cpp/coroutine/coroutine_handle

https://en.cppreference.com/w/cpp/coroutine/coroutine_handle
https://en.cppreference.com/w/cpp/coroutine/coroutine_handle
https://en.cppreference.com/w/cpp/coroutine/coroutine_handle

Concurrency 432

• destroy the coroutine: coro.destroy() (line 11);

• check the state of the coroutine: coro (line 11).

The coroutine is automatically destroyed when its function body ends. Its call coro returns true at its
final suspension point.

A default initialized or with a nullptr initialized coroutine handle does not refer to a coroutine.
Using this handle in a logical expression, return false. Coroutine handles are typically copied because
copying or assigning them is cheap.

The function address returns a void pointer (void*) to the coroutine. This void pointer can be used to
create the handle using the static function from_address:

Creating the coroutine handle from the coroutine address

auto handle = std::coroutine_handle<Promise>::from_promise(prm);

void* handlePointer = handle.address();

auto handle2 = std::coroutine_handle<Promise>::from_address(handlePointer);

Thanks to the overloaded coroutine_handle<> operator, you can convert a coroutine handle to
std::coroutine_handle<void>. The type-erased coroutine handle can be used to accept any coroutine
handle but misses the promise.

Creating the coroutine handle from the coroutine address

auto handle = std::coroutine_handle<Promise>::from_promise(prm);

std::coroutine_handle<> handle2 = handle;

handle2.resume();

Calling promise on the type-erased coroutine handle handle2 is an error: handle2.promise().

Typically, the coroutine returns the coroutine handle.

6.1.3.2.1 std::coroutine_traits

coroutine_traits allows it to inject the coroutine handle into a coroutine.

Concurrency 433

Injecting the coroutine handle
1 // coroutineTraits.cpp

2

3 #include <coroutine>

4 #include <memory>

5 #include <iostream>

6

7 struct GeneratorVerbose {

8

9 struct promise_type;

10 using handle_type = std::coroutine_handle<promise_type>;

11

12 handle_type coro;

13 GeneratorVerbose() {

14 std::cout << " GeneratorVerbose::GeneratorVerbose" << '\n';

15 }

16

17 ~GeneratorVerbose() {

18 std::cout << " GeneratorVerbose::~GeneratorVerbose" << '\n';

19 if (coro) coro.destroy();

20 }

21

22 int getNextValue() {

23 std::cout << " GeneratorVerbose::getNextValue" << '\n';

24 coro.resume();

25 return coro.promise().current_value;

26 }

27 struct promise_type {

28 promise_type(int, GeneratorVerbose& genVerbose) {

29 std::cout << " promise_type::promise_type" << '\n';

30 genVerbose.coro = handle_type::from_promise(*this);

31 }

32

33 ~promise_type() {

34 std::cout << " promise_type::~promise_type" << '\n';

35 }

36

37 std::suspend_always initial_suspend() {

38 std::cout << " promise_type::initial_suspend" << '\n';

39 return {};

40 }

41 std::suspend_always final_suspend() noexcept {

42 std::cout << " promise_type::final_suspend" << '\n';

43 return {};

44 }

Concurrency 434

45 auto get_return_object() {

46 std::cout << " promise_type::get_return_object" << '\n'; \

47

48 }

49

50 std::suspend_always yield_value(int value) {

51 std::cout << " promise_type::yield_value" << '\n'; \

52

53 current_value = value;

54 return {};

55 }

56 void return_void() {}

57 void unhandled_exception() {

58 std::exit(1);

59 }

60

61 int current_value;

62 };

63

64 };

65

66 struct Generator {

67

68 struct promise_type;

69 using handle_type = std::coroutine_handle<promise_type>;

70

71 handle_type coro;

72

73 ~Generator() {

74 if (coro) coro.destroy();

75 }

76

77 int getNextValue() {

78 coro.resume();

79 return coro.promise().current_value;

80 }

81 struct promise_type {

82 promise_type(int, Generator& gen) {

83 gen.coro = handle_type::from_promise(*this);

84 }

85

86 std::suspend_always initial_suspend() {

87 return {};

88 }

89 std::suspend_always final_suspend() noexcept {

Concurrency 435

90 return {};

91 }

92

93 auto get_return_object() { }

94

95 std::suspend_always yield_value(int value) {

96 current_value = value;

97 return {};

98 }

99 void return_void() {}

100 void unhandled_exception() {

101 std::exit(1);

102 }

103

104 int current_value;

105 };

106

107 };

108

109 template<>

110 struct std::coroutine_traits<void, int, GeneratorVerbose&> {

111 using promise_type = GeneratorVerbose::promise_type;

112 };

113

114 template<>

115 struct std::coroutine_traits<void, int, Generator&> {

116 using promise_type = Generator::promise_type;

117 };

118

119

120 template <typename CoroutineInterface>

121 void getNext(int start, CoroutineInterface&) {

122 auto value = start;

123 while (true) {

124 co_yield value;

125 value += 1;

126 }

127 }

128

129 int main() {

130

131 std::cout << '\n';

132

133 {

134 GeneratorVerbose genVerbose;

Concurrency 436

135 getNext(0, genVerbose);

136 for (int i = 0; i <= 3; ++i) {

137 auto val = genVerbose.getNextValue();

138 std::cout << "main: " << val << '\n';

139 }

140 }

141

142 std::cout << "\n\n";

143

144 Generator gen;

145 getNext(0, gen);

146 for (int i = 0; i <= 20; ++i) {

147 auto val = gen.getNextValue();

148 std::cout << val << ' ';

149 }

150

151 std::cout << "\n\n";

152

153 }

The program coroutineTraits.cpp has two generators. Both are default constructed (lines 132 and
142). GeneratorVerbose (line 7) and Generator (line 64) have minimal functionality to be used inside
a coroutine. For simplicity, I will call them coroutine interface. GeneratorVerbose displays when each
function is called. The function template getNext is the coroutine. This coroutine doesn’t return the
coroutine, but it is injected. In line 133, I inject GeneratorVerbose, and in line 143 Generator. Thanks to
the fully specialized coroutine traits (line 107) and (line 112), the compiler knows which promise type
it should use. void, int, GeneratorVerbose& is the signature of the first instantiation of the function
template getNext and void, int, Generator& the signature of the second. The first argument, void,
stands for the return type of getNext. The promise_type of GeneratorVerbose and Generator need
a constructor that takes exactly the same arguments as the function getNext. Usually, the member
function get_return_object initializes and returns the coroutine handle. This step is not necessary
when the coroutine interface is injected.

The following program shows the output of the program. In the first case, you can study the various
function invocation.

Concurrency 437

A special Awaitable

6.1.3.3 Coroutine Frame

The coroutine frame is an internal, typically heap-allocated state. It consists of the already mentioned
promise object, the coroutine’s copied parameters, the representation of the suspension points, local
variables whose lifetime ends before the current suspension point, and local variables whose lifetime
exceeds the current suspension point.

The coroutine is typically heap-allocated, but compilers may avoid heap allocation. The following
properties increase the likelihood that the coroutine is not heap allocated.

1. The lifetime of the coroutine has to be nested inside the lifetime of the caller.

2. Inline function give the compiler more insight to see the size of the frame.

3. std::final_suspend returns std::suspend_always. This simplifies lifetime management.

The crucial abstractions in the coroutine framework are Awaitables and Awaiters.

Concurrency 438

6.1.4 Awaitables and Awaiters

The three functions of a promise object prom yield_value, initial_suspend, and final_suspend return
Awaitables.

6.1.4.1 Awaitables

An Awaitable is something you can await on. It is the argument of co_await: co_await Awaitable.
The Awaitable determines if the coroutine pauses or not.

Essentially, the compiler generates the following function calls using the promise prom and the co_-

await operator.

Compiler-generated function calls

Call Compiler generated call

Start coroutine execution co_await prom.initial_suspend()

co_yield value co_await prom.yield_value(value)

co_return value co_await prom.return_value(value)

End coroutine execution co_await prom.final_suspend()

Thanks to the member function await_transform, the promise can create the Awaitable.

6.1.4.1.1 await_transform

The following Awaitable suspends never. This example also shows how the Awaitable can get an
argument.

A special Awaitable

1 // suspendsNeverWithSleep.cpp

2

3 #include <coroutine>

4 #include <chrono>

5 #include <format>

6 #include <iostream>

7 #include <thread>

8

9 struct MySuspendNever {

10 MySuspendNever(std::chrono::duration<double, std::milli> sleep): sleepDuration(sleep) {}

11 std::chrono::duration<double, std::milli> sleepDuration;

12

Concurrency 439

13 bool await_ready() const noexcept {

14 std::cout << " MySuspendNever::await_ready" << '\n';

15 std::this_thread::sleep_for(sleepDuration);

16 return true;

17 }

18 void await_suspend(std::coroutine_handle<>) const noexcept {

19 std::cout << " MySuspendNever::await_suspend" << '\n';

20 }

21 void await_resume() const noexcept {

22 std::cout << " MySuspendNever::await_resume" << '\n';

23 }

24 };

25

26 struct Job {

27 struct promise_type;

28 using handle_type = std::coroutine_handle<promise_type>;

29 handle_type coro;

30 Job(handle_type h): coro(h){}

31 ~Job() {

32 if (coro) coro.destroy();

33 }

34 void start() {

35 coro.resume();

36 }

37

38

39 struct promise_type {

40 auto get_return_object() {

41 return Job{handle_type::from_promise(*this)};

42 }

43 std::suspend_always initial_suspend() {

44 std::cout << " Job prepared" << '\n';

45 return {};

46 }

47 std::suspend_always final_suspend() noexcept {

48 std::cout << " Job finished" << '\n';

49 return {};

50 }

51 void return_void() {}

52 void unhandled_exception() {}

53

54 };

55 };

56

57 Job prepareJob() {

Concurrency 440

58 using namespace std::chrono_literals;

59 co_await MySuspendNever(0.5ms);

60 }

61

62 int main() {

63

64 std::cout << "Before job" << '\n';

65

66 auto start = std::chrono::steady_clock::now();

67 auto job = prepareJob();

68 job.start();

69 auto end = std::chrono::steady_clock::now();

70 std::cout << std::format("The job took {}\n", end - start);

71

72 std::cout << "After job" << '\n';

73

74 }

The Awaitable MySuspendNever (line 9) suspends never and sleeps for the sleepDuration (line 14).
Its constructor takes the sleepDuration (line 10). Line 59 uses this special constructor taking the
sleepDuration as argument. The following screenshot shows the output of the program.

A special Awaitable

Thanks to await_transform, there is another way to get an Awaitable. First, the co_wait call of the
coroutine prepareJob gets the time duration.

Concurrency 441

co_await has a time duration

// suspendsNeverWithSleepAwaitTransform.cpp

...

Job prepareJob() {

using namespace std::chrono_literals;

co_await 0.5ms;

}

Second, the promise type supports a member function await_transform that gets the time duration
and returns the Awaitable.

The promise with a member function await_transform

// suspendsNeverWithSleepAwaitTransform.cpp

...

struct promise_type {

...

auto await_transform(std::chrono::duration<double, std::milli> sleepDuration) {

return MySuspendNever(sleepDuration);

}

...

};

The co_await operator needs an Awaitable as an argument. Typically, the Awaitable becomes the
Awaiter.

6.1.4.2 Awaiter

The concept Awaiter requires three member functions await_ready, await_suspend, and await_resume.

Concurrency 442

The Awaiter

Member Function Description

Constructor Initializes the Awaiter. Can take arguments.

await_ready Indicates if the coroutine is ready for suspension.

await_suspend(coroutineHandle) Handles the suspension of the coroutine.

await_resume Handles the resumption of the coroutine.

The three member functions await_ready, await_suspend, and await_resume are typically const,
noexcept, and constexpr.

6.1.4.2.1 await_ready

The function await_ready returns a boolean and is immediately called before the coroutine is
suspended. The coroutine is suspended if await_ready returns true; otherwise, it is not suspended
and continues its control flow. Typically, await_ready returns false, but it may return true if the
reason for suspension no longer exists.

6.1.4.2.2 await_suspend

The function await_suspend(coroutineHandle) handles the suspension of the coroutine. await_-

suspend is the crucial function of the Awaiter. It supports various control flows based on its parameters
and return types:

Parameter
• std::coroutine_handle<PromiseType>: the coroutine handle

• std::coroutine_handle<>: a type-erased coroutine handle that doesn’t have access to the
promise

• auto: automatically deduced return type

Return type
• void: the control flow immediately returns to the caller. The coroutine remains suspended.

• bool:

– true: the control flow immediately returns to the caller
– false: the coroutine is resumed

• std::coroutine_handle<>:

– if it returns a coroutine handle coroHandle of another coroutine, this coroutine is resumed:
coroHandle.resume(). This strategy is called symmetric transfer.

– std::noop_coroutine: no coroutine is resumed. Equivalent to returning true.

Concurrency 443

6.1.4.2.3 await_resume

Typically, after the call await_suspend,, await_resume is called. await_resume return value is the result
of the co_wait awaitable expression. The return value can also be void.

6.1.4.2.4 Symmetric Transfer

The symmetric transfer is if the call std::await_suspend returns a coroutine handle. This means that
the coroutine is suspended, but the returned coroutine immediately resumed. Thanks to this technique,
the immediately resumed coroutine uses the stack from the given coroutine.

The following code snippet shows the critical ideas of coroutine and an Awaiter implementing the
continuation of coroutines.

Continuation with symmetric transfer

1 struct Task {

2 struct promise_type;

3 using handleType = std::coroutine_handle<promise_type>;

4 handle_type origHandle;

5

6 struct promise_type {

7 std::coroutine_handle<> continuationHandle = contHandle;

8 ...

9 auto final_suspend() noexcept {

10 return ContinuationAwaiter{};

11 }

12 };

13 ...

14 };

15

16 struct ContinuationAwaiter {

17 bool await_ready() noexcept {

18 return false;

19 }

20

21 std::coroutine_handle<> await_suspend(Task::handleType handle) noexcept {

22 if (handle.promise().continuationHandle) {

23 return handle.promise().continuationHandle;

24 }

25 else {

26 return std::noop_coroutine();

27 }

28 }

29

30 void await_resume() noexcept { }

31 };

Concurrency 444

If a coroutine should continue with another coroutine, it must return a special Awaiter in its final_-
suspend call (line 9). Additionally, the promise_type must store the handle to the coroutine to be
continued (line 7). If there is no continuation, you should set the continuation handle to a nullptr:
std::coroutine_handle<> continuationHandle = contHandle.

The special Awaiter ContinuationAwaiter continues in the member function await_suspend. It gets the
coroutine handle handle, checks if the continuation handle is set (line 22), and returns the continuation
handle. The coroutine is suspended in this case, but the returned coroutine is immediately resumed.
If the coroutine handle is not set, std::noop_coroutine is returned. This means the control flow
immediately returns to the caller without resuming a coroutine. A std::noop_coroutine call creates
a coroutine handle std::noop_coroutine_handle. Calling resume, destroy, address, or done on a
std::noop_coroutine_handle has no effect.

6.1.4.3 std::suspend_always and std::suspend_never

The C++20 standard already defines two basic Awaiters: std::suspend_always, and std::suspend_-

never.

As its name suggests, the Awaiter suspend_always always suspends. Therefore, the call await_ready
returns false.

The Awaiter std::suspend_always

struct suspend_always {

constexpr bool await_ready() const noexcept { return false; }

constexpr void await_suspend(std::coroutine_handle<>) const noexcept {}

constexpr void await_resume() const noexcept {}

};

The opposite holds for suspend_never. It never suspends and, hence, the call await_ready returns true.

The Awaiter std::suspend_never

struct suspend_never {

constexpr bool await_ready() const noexcept { return true; }

constexpr void await_suspend(std::coroutine_handle<>) const noexcept {}

constexpr void await_resume() const noexcept {}

};

TheAwaiters std::suspend_always and std::suspend_never are the basic building blocks for functions,
such as initial_suspend and final_suspend. Both functions are automatically executed when the
coroutine is executed: initial_suspend at the beginning and final_suspend at the end end of the
coroutine.

Concurrency 445

6.1.4.4 Get the Awaitable and the Awaiter

There are essentially two ways to get an Awaiter.

• A co_await operator is defined.

• The Awaitable becomes the Awaiter.

Remember, when co_await expression is invoked, the expression is converted to an Awaitable:

1. if expression is created by an initial suspension point (prom.initial_suspend()), final sus-
pension point (prom.final_suspend()), or yield expression (prom.yield_value(value)), the
Awaitable is the expression.

2. if the current coroutine’s promise type has a member function await_transform, the Awaitable
is prom.await_transform(expression).

3. the Awaitable is the expression.

Now, the compiler performs the following lookup rule to get an Awaiter:

1. It looks for the co_await operator on the promise object and returns an Awaiter:

awaiter = awaitable.operator co_await();

2. It looks for a freestanding co_await operator and returns an Awaiter:

awaiter = operator co_await(awaitable);

3. If there is no co_await operator defined, the Awaitable becomes the Awaiter:

awaiter = awaitable;

awaiter = awaitable

When you study my coroutine implementations in this chapter, you may notice that I use
most of the time that an Awaitable implicitly becomes an Awaiter. Only the example to
thread synchronization uses the co_await operator to get the Awaiter.

After these static aspects of coroutines, I want to continue with their dynamic aspects.

6.1.5 The Workflows

The compiler transforms your coroutine and runs two workflows: the outer promise workflow and
the inner Awaiter workflow.

6.1.5.1 The Promise Workflow

When you use co_yield, co_await, or co_return in a function, the function becomes a coroutine, and
the compiler transforms its body to something equivalent to the following lines.

Concurrency 446

The transformed coroutine

1 {

2 Promise prom;

3 co_await prom.initial_suspend();

4 try {

5 <function body having co_return, co_yield, or co_await>

6 }

7 catch (...) {

8 prom.unhandled_exception();

9 }

10 FinalSuspend:

11 co_await prom.final_suspend();

12 }

The compiler automatically runs the transformed code using the functions of the promise object. In
short, I call this workflow the promise workflow. Here are the main steps of this workflow.

• Coroutine begins execution

– allocates the coroutine frame if necessary
– copies all function parameters to the coroutine frame
– creates the prom object prom (line 2)
– calls prom.get_return_object() to create the coroutine handle and keeps it in a local
variable. The result of the call will be returned to the caller when the coroutine first
suspends.

– calls prom.initial_suspend() and co_awaits its result. The promise type typically returns
suspend_never for eagerly-started coroutines or suspend_always for lazily-started corou-
tines. (line 3)

– the body of the coroutine is executed when co_await prom.initial_suspend() resumes

• Coroutine reaches a suspension point

– the return object (prom.get_return_object()) is returned to the caller which resumed the
coroutine

• Coroutine reaches co_return

– calls prom.return_void() for co_return or co_return expression, where expression has
type void

– calls prom.return_value(expression) for co_return expression, where expression has
non-void type.

– destroys all stack-created variables
– calls prom.final_suspend() and co_awaits its result

• Coroutine is destroyed (by terminating via co_return or via uncaught exception, or via the
coroutine handle)

Concurrency 447

– calls the destructor of the promise object
– calls the destructor of the function parameters
– frees the memory used by the coroutine frame
– transfers control back to the caller

When a coroutine ends with an uncaught exception, the following happens:

• catches the exception and calls prom.unhandled_exception() from the catch block

• calls prom.final_suspend() and co_awaits the result (line 11)

When you use co_await expr in a coroutine, or the compiler implicitly invokes co_await prom.initial_-

suspend(), co_await prom.final.suspend(), or co_await prom.yield_value(value), a second, inner
Awaitable workflow starts.

6.1.5.2 The Awaiter Workflow

Using co_await expr causes the compiler to transform the code based on the functions await_ready,
await_suspend, and await_resume. Consequently, I call the execution of the transformed code the
Awaiter workflow.

The compiler generates approximately the following code using the awaiter. For simplicity, I ignore
exception handling and describe the workflow with comments.

The generated Awaiter Workflow

1 awaiter.await_ready() returns false:

2

3 suspend coroutine

4

5 awaiter.await_suspend(coroutineHandle) returns:

6

7 void:

8 awaiter.await_suspend(coroutineHandle);

9 coroutine keeps suspended

10 return to caller

11

12 bool:

13 bool result = awaiter.await_suspend(coroutineHandle);

14 if result:

15 coroutine keep suspended

16 return to caller

17 else:

18 go to resumptionPoint

19

20 another coroutine handle:

21 auto anotherCoroutineHandle = awaiter.await_suspend(coroutineHandle);

22 anotherCoroutineHandle.resume();

Concurrency 448

23 return to caller

24

25 resumptionPoint:

26

27 return awaiter.await_resume();

The workflow is only executed if awaiter.await_ready() returns false (line 1). In case it returns true,
the coroutine is ready and returns with the result of the call awaiter.await_resume() (line 27).

Let me assume that awaiter.await_ready() returns false. First, the coroutine is suspended (line 3),
and immediately the return value of awaiter.await_suspend() is evaluated. The return type can be
void (line 7), a boolean (line 12), or another coroutine handle (line 20), such as anotherCoroutineHandle.
Depending on the return type, the program flow returns or another coroutine is executed.

Return value of awaiter.await_suspend()

Type Description

void The coroutine keeps suspended and returns to the caller.

bool bool == true: The coroutine keeps suspended and returns to the caller.
bool == false: The coroutine is resumed and does not return to the caller.

anotherCoroutineHandle The other coroutine is resumed and returns to the caller.

Whats happens in case an exception is thrown? It makes a difference if the exception occurs in await_-

read, await_suspend, or await_resume.
• await_ready: The coroutine is not suspended, and the calls await_suspend or await_resume are
not evaluated.

• await_suspend: The exception is caught, the coroutine is resumed, and the exception rethrown.
await_resume is not called.

• await_resume: await_ready and await_suspend are evaluated, and all values are returned. Of
course, the call await_resume does not return a result.

Let me put theory into practice.

6.1.6 co_return

A coroutine uses co_return as its return statement.

6.1.6.1 A Future

Admittedly, the coroutine in the following program eagerFuture.cpp is the simplest coroutine I can
imagine. Still it does something meaningful: it automatically stores the result of its invocation.

Concurrency 449

An eager future
1 // eagerFuture.cpp

2

3 #include <coroutine>

4 #include <iostream>

5 #include <memory>

6

7 template<typename T>

8 struct MyFuture {

9 std::shared_ptr<T> value;

10 MyFuture(std::shared_ptr<T> p): value(p) {}

11 ~MyFuture() { }

12 T get() {

13 return *value;

14 }

15

16 struct promise_type {

17 std::shared_ptr<T> ptr = std::make_shared<T>();

18 ~promise_type() { }

19 MyFuture<T> get_return_object() {

20 return ptr;

21 }

22 void return_value(T v) {

23 *ptr = v;

24 }

25 std::suspend_never initial_suspend() {

26 return {};

27 }

28 std::suspend_never final_suspend() noexcept {

29 return {};

30 }

31 void unhandled_exception() {

32 std::exit(1);

33 }

34 };

35 };

36

37 MyFuture<int> createFuture() {

38 co_return 2021;

39 }

40

41 int main() {

42

43 std::cout << '\n';

44

Concurrency 450

45 auto fut = createFuture();

46 std::cout << "fut.get(): " << fut.get() << '\n';

47

48 std::cout << '\n';

49

50 }

MyFuture behaves as a future¹² which runs immediately. The call of the coroutine createFuture (line
45) returns the future, and the call fut.get (line 46) picks up the result of the associated promise.

There is one subtle difference to a future, the return value of the coroutine createFuture is available
after its invocation. Due to the lifetime issues, the return value is managed by a std::shared_ptr

(lines 9 and 17). The coroutine always uses std::suspend_never (lines 25 and 28) and, therefore, neither
suspends before it runs nor after. Thismeans the coroutine is executedwhen the function createFuture
is invoked. The member function get_return_object (line 19) creates and stores the handle to the
coroutine object, and return_value (lines 22) stores the result of the coroutine, which was provided
by co_return 2021 (line 38). The client invokes fut.get (line 46) and uses the future as a handle to the
promise. The member function get returns the result to the client (line 13).

An eager future

You may think it is not worth the effort of implementing a coroutine that behaves just like a
function. You are right! However, this simple coroutine is an ideal starting point for writing various
implementations of futures. Read more about Variations of Futures in the chapter case studies.

6.1.7 co_yield

Thanks to co_yield you can implement a generator generating an infinite data stream fromwhich you
can successively query values. The return type of the generator generatorForNumbers(int begin, int

inc= 1) is generator<int>, where the generator internally holds a special promise p such that a call
co_yield i is equivalent to a call co_await p.yield_value(i). Statement co_yield i can be called an
arbitrary number of times. Immediately after each call, the execution of the coroutine is suspended.

6.1.7.1 An Infinite Data Stream

The program infiniteDataStream.cpp produces an infinite data stream. The coroutine getNext uses
co_yield to create a data stream that starts at start and gives on request the next value, incremented
by step.

¹²https://en.cppreference.com/w/cpp/thread/future

https://en.cppreference.com/w/cpp/thread/future
https://en.cppreference.com/w/cpp/thread/future

Concurrency 451

An infinite data stream
1 // infiniteDataStream.cpp

2

3 #include <coroutine>

4 #include <memory>

5 #include <iostream>

6

7 template<typename T>

8 struct Generator {

9

10 struct promise_type;

11 using handle_type = std::coroutine_handle<promise_type>;

12

13 Generator(handle_type h): coro(h) {} // (3)

14 handle_type coro;

15

16 ~Generator() {

17 if (coro) coro.destroy();

18 }

19 Generator(const Generator&) = delete;

20 Generator& operator = (const Generator&) = delete;

21 Generator(Generator&& oth) noexcept : coro(oth.coro) {

22 oth.coro = nullptr;

23 }

24 Generator& operator = (Generator&& oth) noexcept {

25 coro = oth.coro;

26 oth.coro = nullptr;

27 return *this;

28 }

29 T getValue() {

30 return coro.promise().current_value;

31 }

32 bool next() { // (5)

33 coro.resume();

34 return not coro.done();

35 }

36 struct promise_type {

37 promise_type() = default; // (1)

38

39 ~promise_type() = default;

40

41 auto initial_suspend() { // (4)

42 return std::suspend_always{};

43 }

44 auto final_suspend() noexcept {

Concurrency 452

45 return std::suspend_always{};

46 }

47 auto get_return_object() { // (2)

48 return Generator{handle_type::from_promise(*this)};

49 }

50 auto return_void() {

51 return std::suspend_never{};

52 }

53

54 auto yield_value(const T value) { // (6)

55 current_value = value;

56 return std::suspend_always{};

57 }

58 void unhandled_exception() {

59 std::exit(1);

60 }

61 T current_value;

62 };

63

64 };

65

66 Generator<int> getNext(int start = 0, int step = 1) {

67 auto value = start;

68 while (true) {

69 co_yield value;

70 value += step;

71 }

72 }

73

74 int main() {

75

76 std::cout << '\n';

77

78 std::cout << "getNext():";

79 auto gen = getNext();

80 for (int i = 0; i <= 10; ++i) {

81 gen.next();

82 std::cout << " " << gen.getValue(); // (7)

83 }

84

85 std::cout << "\n\n";

86

87 std::cout << "getNext(100, -10):";

88 auto gen2 = getNext(100, -10);

89 for (int i = 0; i <= 20; ++i) {

Concurrency 453

90 gen2.next();

91 std::cout << " " << gen2.getValue();

92 }

93

94 std::cout << '\n';

95

96 }

The main program creates two coroutines. The first one gen (line 79) returns the values from 0 to 10,
and the second one gen2 (line 88) the values from 100 to -100. Before I dive into the workflow, thanks
to the online compiler Wandbox¹³, here is the output of the program.

An infinite data stream

The numbers in the program infiniteDataStream.cpp stand for the steps in the first iteration of the
workflow.

1. creates the promise

2. calls promise.get_return_object() and keeps the result in a local variable

3. creates the generator

4. calls promise.initial_suspend(). The generator is lazy and, therefore, always suspends.

5. asks for the next value and returns if the generator is consumed

6. triggered by the co_yield call. The next value is available thereafter.

7. gets the next value
In further iterations, only steps 5, 6, and 7 are performed.

Section Modification and Generalization of Threads in chapter case studies discusses further improve-
ments and modifications of the generator infiniteDataStream.cpp.

6.1.8 co_await

co_await eventually causes the execution of the coroutine to be suspended or resumed. The expression
exp in co_await exp has to be a so-called Awaitable expression, i.e. which must implement a specific
interface, consisting of the three functions await_ready, await_suspend, and await_resume.

A typical use case for co_await is a server that waits for events.

¹³https://wandbox.org/

https://wandbox.org/
https://wandbox.org/

Concurrency 454

A blocking server

1 Acceptor acceptor{443};

2 while (true) {

3 Socket socket = acceptor.accept(); // blocking

4 auto request = socket.read(); // blocking

5 auto response = handleRequest(request);

6 socket.write(response); // blocking

7 }

The server is quite simple because it sequentially answers each request in the same thread. The server
listens on port 443 (line 1), accepts the connection (line 3), reads the incoming data from the client
(line 4), and writes its answer to the client (line 6). The calls in lines 3, 4, and 6 are blocking.

Thanks to co_await, the blocking calls can now be suspended and resumed.

A waiting server

1 Acceptor acceptor{443};

2 while (true) {

3 Socket socket = co_await acceptor.accept();

4 auto request = co_await socket.read();

5 auto response = handleRequest(request);

6 co_await socket.write(response);

7 }

Before I present the challenging example of thread synchronization with coroutines, I want to start
with something straightforward: starting a job on request.

6.1.8.1 Starting a Job on Request

The coroutine in the following example is as simple as it can be. It awaits on the predefined Awaitable
std::suspend_never().

Starting a job on request

1 // startJob.cpp

2

3 #include <coroutine>

4 #include <iostream>

5

6 struct Job {

7 struct promise_type;

8 using handle_type = std::coroutine_handle<promise_type>;

9 handle_type coro;

10 Job(handle_type h): coro(h){}

Concurrency 455

11 ~Job() {

12 if (coro) coro.destroy();

13 }

14 void start() {

15 coro.resume();

16 }

17

18

19 struct promise_type {

20 auto get_return_object() {

21 return Job{handle_type::from_promise(*this)};

22 }

23 std::suspend_always initial_suspend() {

24 std::cout << " Preparing job" << '\n';

25 return {};

26 }

27 std::suspend_always final_suspend() noexcept {

28 std::cout << " Performing job" << '\n';

29 return {};

30 }

31 void return_void() {}

32 void unhandled_exception() {}

33

34 };

35 };

36

37 Job prepareJob() {

38 co_await std::suspend_never();

39 }

40

41 int main() {

42

43 std::cout << "Before job" << '\n';

44

45 auto job = prepareJob();

46 job.start();

47

48 std::cout << "After job" << '\n';

49

50 }

You may think that the coroutine prepareJob (line 37) is meaningless because the Awaitable never
suspends. No! The function prepareJob is at least a coroutine factory using co_await (line 38) and
returning a coroutine object. The function call prepareJob() in line 45 creates the coroutine object of

Concurrency 456

type Job. When you study the data type Job, you recognize that the coroutine object is immediately
suspended, because the member function of the promise returns the Awaitable std::suspend_always
(line 23). This is exactly the reason why the function call job.start (line 46) is necessary to resume
the coroutine (line 15). The member function final_suspend also returns std::suspend_always (line
27).

Starting a Job on Request

In the case studies’ section various job flows, I use the program startJob as a starting point for further
experiments.

6.1.8.2 Thread Synchronization

It’s typical for threads to synchronize themselves. One thread prepares a work package, another thread
awaits. Condition variables¹⁴, promises and futures¹⁵, and also an atomic boolean¹⁶ can be used to
create a sender-receiver workflow. Thanks to coroutines, thread synchronization is quite easy, without
the inherent risks of condition variables such as spurious wakeups and lost wakeups.

Thread Synchronization

1 // senderReceiver.cpp

2

3 #include <coroutine>

4 #include <chrono>

5 #include <iostream>

6 #include <functional>

7 #include <string>

8 #include <stdexcept>

9 #include <atomic>

10 #include <thread>

11

12 class Event {

13 public:

14

15 Event() = default;

16

17 Event(const Event&) = delete;

¹⁴https://en.cppreference.com/w/cpp/thread/condition_variable
¹⁵https://en.cppreference.com/w/cpp/thread
¹⁶https://en.cppreference.com/w/cpp/atomic/atomic

https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread
https://en.cppreference.com/w/cpp/atomic/atomic

Concurrency 457

18 Event(Event&&) = delete;

19 Event& operator=(const Event&) = delete;

20 Event& operator=(Event&&) = delete;

21

22 class Awaiter;

23 Awaiter operator co_await() const noexcept;

24

25 void notify() noexcept;

26

27 private:

28

29 friend class Awaiter;

30

31 mutable std::atomic<void*> suspendedWaiter{nullptr};

32 mutable std::atomic<bool> notified{false};

33

34 };

35

36 class Event::Awaiter {

37 public:

38 Awaiter(const Event& eve): event(eve) {}

39

40 bool await_ready() const;

41 bool await_suspend(std::coroutine_handle<> corHandle) noexcept;

42 void await_resume() noexcept {}

43

44 private:

45 friend class Event;

46

47 const Event& event;

48 std::coroutine_handle<> coroutineHandle;

49 };

50

51 bool Event::Awaiter::await_ready() const {

52

53 // allow at most one waiter

54 if (event.suspendedWaiter.load() != nullptr){

55 throw std::runtime_error("More than one waiter is not valid");

56 }

57

58 // event.notified == false; suspends the coroutine

59 // event.notified == true; the coroutine is executed like a normal function

60 return event.notified;

61 }

62

Concurrency 458

63 bool Event::Awaiter::await_suspend(std::coroutine_handle<> corHandle) noexcept {

64 coroutineHandle = corHandle;

65

66 const Event& ev = event;

67 ev.suspendedWaiter.store(this);

68

69 if (ev.notified) {

70 void* thisPtr = this;

71

72 if (ev.suspendedWaiter.compare_exchange_strong(thisPtr, nullptr)) {

73 return false;

74 }

75 }

76

77 return true;

78 }

79

80 void Event::notify() noexcept {

81 notified = true;

82

83 void* waiter = suspendedWaiter.load();

84

85 if (waiter != nullptr && suspendedWaiter.compare_exchange_strong(waiter, nullptr)) {

86 static_cast<Awaiter*>(waiter)->coroutineHandle.resume();

87 }

88 }

89

90 Event::Awaiter Event::operator co_await() const noexcept {

91 return Awaiter{ *this };

92 }

93

94 struct Task {

95 struct promise_type {

96 Task get_return_object() { return {}; }

97 std::suspend_never initial_suspend() { return {}; }

98 std::suspend_never final_suspend() noexcept { return {}; }

99 void return_void() {}

100 void unhandled_exception() {}

101 };

102 };

103

104 Task receiver(Event& event) {

105 auto start = std::chrono::high_resolution_clock::now();

106 co_await event;

107 std::cout << "Got the notification! " << '\n';

Concurrency 459

108 auto end = std::chrono::high_resolution_clock::now();

109 std::chrono::duration<double> elapsed = end - start;

110 std::cout << "Waited " << elapsed.count() << " seconds." << '\n';

111 }

112

113 using namespace std::chrono_literals;

114

115 int main() {

116

117 std::cout << '\n';

118

119 std::cout << "Notification before waiting" << '\n';

120 Event event1{};

121 auto senderThread1 = std::thread([&event1]{ event1.notify(); }); // Notification

122 auto receiverThread1 = std::thread(receiver, std::ref(event1));

123

124 receiverThread1.join();

125 senderThread1.join();

126

127 std::cout << '\n';

128

129 std::cout << "Notification after 2 seconds waiting" << '\n';

130 Event event2{};

131 auto receiverThread2 = std::thread(receiver, std::ref(event2));

132 auto senderThread2 = std::thread([&event2]{

133 std::this_thread::sleep_for(2s);

134 event2.notify(); // Notification

135 });

136

137 receiverThread2.join();

138 senderThread2.join();

139

140 std::cout << '\n';

141

142 }

From the user’s perspective, thread synchronization with coroutines is straightforward. Let’s have
a look at the program senderReceiver.cpp. The threads senderThread1 (line 121) and senderThread2

(line 132) use an event to send its notification in lines 121 and 134. The function receiver in lines 104
- 111 is the coroutine, which is executed in threads receiverThread1 (line 122) and receiverThread2

(line 132). I measured the time between the beginning and the end of the coroutine and displayed it.
This number shows how long the coroutine waits. The following screenshot shows the output of the
program.

Concurrency 460

Thread synchronization

If you compare the class Generator in the infinite data stream with the class Event in this example,
there is a subtle difference. In the first case, the Generator is the Awaitable and the Awaiter; in the
second case, the Event uses the operator co_await to return the Awaiter. This separation of concerns
into the Awaitable and the Awaiter improves the structure of the code.

The output displays that the execution of the second coroutine takes about two seconds. The reason
is that the event1 sends its notification (line 121) before the coroutine is suspended, but the event2

sends its notification after a time duration of 2 seconds (line 134).

Now, I put the implementer’s hat on. The workflow of the coroutine is quite challenging to grasp. The
class Event has two interesting members: suspendedWaiter and notified. Variable suspendedWaiter in
line 31 holds the waiter for the signal, and notified in line 32 has the state of the notification.

In my explanation of both workflows, I assume in the first case (first workflow) that the event
notification happens before the coroutine awaits the events. For the second case (second workflow),
I assume it is the other way around.

Let’s first look at event1 and the first workflow. Here, event1 sends its notification before receiverThread1
is started. The invocation event1 (line 121) triggers the method notify (lines 80 to 88). First the
notification flag is set, and then, the call void* waiter = suspendedWaiter.load() loads the
potential waiter. In this case, the waiter is a nullptr because it was not set before. This means
the following resume call on the waiter in line 86 is not executed. The subsequentially performed
function await_ready (lines 51 - 61) checks first if there is more than one waiter. In this case, I throw a
std::runtime exception. The crucial part of this method is the return value. event.notification was
already set to true in the notifymethod. truemeans, in this case, that the coroutine is not suspended
and executes such as a normal function.

In the second workflow, the co_await event2 call happens before event2 sends its notification. co_-
await event2 triggers the call await_ready (line 51). The big difference with the first workflow is that

Concurrency 461

event.notified is false. This false value causes the suspension of the coroutine. Technically, method
await_suspend (lines 63 - 78) is executed. await_suspend gets the coroutine handle corHandle and stores
it for later invocation in the variable coroutineHandle (line 64). Of course, later invocation means
resumption. Second, the waiter is stored in the variable suspendedWaiter. When later event2.notify
triggers its notification, method notify (line 80) is executed. The difference with the first workflow
is that the condition waiter != nullptr evaluates to true. The result is that the waiter uses the
coroutineHandle to resume the coroutine.

Distilled Information
• Coroutines are generalized functions that can pause and resume their execution
while keeping their state.

• With C++20, we don’t get concrete coroutines but a framework for implementing
coroutines. This framework consists of more than 20 functions that you partially
have to implement and partially could overwrite.

• With the new keywords co_await and co_yield, C++20 extends the execution of
C++ functions with two new concepts.

• Thanks to co_await expression, it is possible to suspend and resume the execution
of the expression. If you use co_await expression in a function func, the call auto
getResult = func() does not block if the function’s result is not available. Instead
of resource-consuming blocking, you have resource-friendly waiting.

• co_yield empowers you to write infinite data streams.

Concurrency 462

6.2 Atomics

Cippi studies the atomics

Atomics receives a few important extensions in C++20. Probably the most important ones are atomic
references and atomic smart pointers.

6.2.1 std::atomic_ref

The class template std::atomic_ref applies atomic operations to the referenced object.

Concurrent writing and reading of an atomic object ensure that there is no data race. The lifetime of
the referenced object must exceed the lifetime of the atomic_ref. If any atomic_ref accesses an object,
all other accesses to the object must use an atomic_ref. In addition, no subobject of the atomic_ref-
accessed object may be accessed by another atomic_ref.

6.2.1.1 Motivation

Stop. You may think that using a reference inside an atomic would do the job. Unfortunately not.

In the following program, I have a class ExpensiveToCopy, which includes a counter. A few threads
concurrently increment the counter. Consequently, counter has to be protected.

Concurrency 463

Using an atomic reference
1 // atomicReference.cpp

2

3 #include <atomic>

4 #include <iostream>

5 #include <random>

6 #include <thread>

7 #include <vector>

8

9 struct ExpensiveToCopy {

10 int counter{};

11 };

12

13 int getRandom(int begin, int end) {

14

15 std::random_device seed; // initial seed

16 std::mt19937 engine(seed()); // generator

17 std::uniform_int_distribution<> uniformDist(begin, end);

18

19 return uniformDist(engine);

20 }

21

22 void count(ExpensiveToCopy& exp) {

23

24 std::vector<std::thread> v;

25 std::atomic<int> counter{exp.counter};

26

27 for (int n = 0; n < 10; ++n) {

28 v.emplace_back([&counter] {

29 auto randomNumber = getRandom(100, 200);

30 for (int i = 0; i < randomNumber; ++i) { ++counter; }

31 });

32 }

33

34 for (auto& t : v) t.join();

35

36 }

37

38 int main() {

39

40 std::cout << '\n';

41

42 ExpensiveToCopy exp;

43 count(exp);

44 std::cout << "exp.counter: " << exp.counter << '\n';

Concurrency 464

45

46 std::cout << '\n';

47

48 }

Variable exp (line 42) is the expensive-to-copy object. For performance reasons, the function count

(line 22) takes exp by reference. Function count initializes the std::atomic<int> with exp.counter

(line 25). The following lines create ten threads (line 27), each performing the lambda expression,
which takes counter by reference. The lambda expression gets a random number between 100 and 200
(line 29) and increments the counter exactly as often. The function getRandom (line 13) starts with an
initial seed and creates via the random-number generator Mersenne Twister¹⁷ a uniform distributed
number between 100 and 200.

In the end, the exp.counter (line 44) should have an approximate value of 1500 because ten threads
increment on average 150 times. Executing the program on the Wandbox online compiler¹⁸ gives me
a surprising result.

Surprise with an atomic reference

The counter is 0. What is happening? The issue is in line 25. The initialization in the expression
std::atomic<int> counter{exp.counter} creates a copy. The following small program exemplifies the
issue.

¹⁷https://en.wikipedia.org/wiki/Mersenne_Twister
¹⁸https://wandbox.org/

https://en.wikipedia.org/wiki/Mersenne_Twister
https://wandbox.org/
https://en.wikipedia.org/wiki/Mersenne_Twister
https://wandbox.org/

Concurrency 465

Copying the reference

1 // atomicRefCopy.cpp

2

3 #include <atomic>

4 #include <iostream>

5

6 int main() {

7

8 std::cout << '\n';

9

10 int val{5};

11 int& ref = val;

12 std::atomic<int> atomicRef(ref);

13 ++atomicRef;

14 std::cout << "ref: " << ref << '\n';

15 std::cout << "atomicRef.load(): " << atomicRef.load() << '\n';

16

17 std::cout << '\n';

18

19 }

The increment operation in line 13 does not address the reference ref (line 11). The value of ref is
not changed.

Copying the reference

Replacing the std::atomic<int> with std::atomic_ref<int> solves the issue.

Concurrency 466

Using a std::atomic_ref

// atomicRef.cpp

#include <atomic>

#include <iostream>

#include <random>

#include <thread>

#include <vector>

struct ExpensiveToCopy {

int counter{};

};

int getRandom(int begin, int end) {

std::random_device seed; // initial randomness

std::mt19937 engine(seed()); // generator

std::uniform_int_distribution<> uniformDist(begin, end);

return uniformDist(engine);

}

void count(ExpensiveToCopy& exp) {

std::vector<std::thread> v;

std::atomic_ref<int> counter{exp.counter};

for (int n = 0; n < 10; ++n) {

v.emplace_back([&counter] {

auto randomNumber = getRandom(100, 200);

for (int i = 0; i < randomNumber; ++i) { ++counter; }

});

}

for (auto& t : v) t.join();

}

int main() {

std::cout << '\n';

ExpensiveToCopy exp;

count(exp);

std::cout << "exp.counter: " << exp.counter << '\n';

Concurrency 467

std::cout << '\n';

}

Now, the value of counter is as expected:

The expected result with std::atomic_ref

In keeping with std::atomic¹⁹, type std::atomic_ref can be specialized and supports specializations
for the built-in data types.

6.2.1.2 Specializations of std::atomic_ref (C++20)

You can specialize std::atomic_ref for user-defined types, use partial specializations for pointer types,
or full specializations for arithmetic types such as integral or floating-point types.

6.2.1.2.1 Primary Template

The primary template std::atomic_ref can be instantiated with a TriviallyCopyable²⁰ type T.

struct Counters {

int a;

int b;

};

Counter counter;

std::atomic_ref<Counters> cnt(counter);

6.2.1.2.2 Partial Specializations for Pointer Types

The standard provides partial specializations for a pointer type: std::atomic_ref<T*>.

¹⁹https://en.cppreference.com/w/cpp/atomic/atomic
²⁰https://en.cppreference.com/w/cpp/types/is_trivially_copyable

https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/types/is_trivially_copyable
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/types/is_trivially_copyable

Concurrency 468

6.2.1.2.3 Specializations for Arithmetic Types

The standard provides specialization for the integral and floating-point types: std::atomic_ref<arithmetic
type>.

• Character types: char, char8_t (C++20), char16_t, char32_t, and wchar_t

• Standard signed-integer types: signed char, short, int, long, and long long

• Standard unsigned-integer types: unsigned char, unsigned short, unsigned int, unsigned long,
and unsigned long long

• Additional integer types, defined in the header <cstdint>²¹:

– int8_t, int16_t, int32_t, and int64_t (signed integer with exactly 8, 16, 32, and 64 bits)
– uint8_t, uint16_t, uint32_t, and uint64_t (unsigned integer with exactly 8, 16, 32, and 64
bits)

– int_fast8_t, int_fast16_t, int_fast32_t, and int_fast64_t (fastest signed integer with
at least 8, 16, 32, and 64 bits)

– uint_fast8_t, uint_fast16_t, uint_fast32_t, and uint_fast64_t (fastest unsigned integer
with at least 8, 16, 32, and 64 bits)

– int_least8_t, int_least16_t, int_least32_t, and int_least64_t (smallest signed integer
with at least 8, 16, 32, and 64 bits)

– uint_least8_t, uint_least16_t, uint_least32_t, and uint_least64_t (smallest unsigned
integer with at least 8, 16, 32, and 64 bits)

– intmax_t, and uintmax_t (maximum signed and unsigned integer)
– intptr_t, and uintptr_t (signed and unsigned integer for holding a pointer)

• Standard floating-point types: float, double, and long double

6.2.1.2.4 All Atomic Operations

First, here is the list of all operations on atomic_ref.

All operations on atomic_ref

Function Description

is_lock_free Checks if the atomic_ref object is lock-free.
atomic_ref<T>::is_always_lock_free Checks at compile time if the atomic type is always lock-free.

load Atomically returns the value of the referenced object.
operator T Atomically returns the value of the atomic. Equivalent to

atom.load().

²¹http://en.cppreference.com/w/cpp/header/cstdint

http://en.cppreference.com/w/cpp/header/cstdint
http://en.cppreference.com/w/cpp/header/cstdint

Concurrency 469

All operations on atomic_ref

Function Description
store Atomically replaces the value of the referenced object with a

non-atomic.

exchange Atomically replaces the value of the referenced object with the new
value.

compare_exchange_strong Atomically compares and eventually exchanges the value of the
referenced object.

compare_exchange_weak

fetch_add, += Atomically adds (subtracts) the value to (from) the referenced
object.

fetch_sub, -=

fetch_or, |= Atomically performs bitwise (AND, OR, and XOR) operation on
the referenced object.

fetch_and, &=
fetch_xor, ^=

++, -- Increments or decrements (either pre- and post-increment) the
referenced object.

notify_one Notifies one atomic wait operation.
notify_all Notifies all atomic wait operations.

wait Blocks until it is notified.
Compares itself with the old value to protect against spurious
wakeups.
If the value is different from the old value, returns.

The composite assignment operators (+=, -=, |=, &=, or ^=) return the new value; the fetch variations
return the old value.

Thanks to the constexpr function atomic_ref<type>::is_always_lock_free, you can check for each
atomic type if it’s lock-free on all supported hardware that the executable might run on. This check
returns only true if it is true for all supported hardware. The check is performed at compile-time and
is available since C++17.

Each function supports an additional memory-ordering argument. The default for the memory-
ordering argument is std::memory_order_seq_cst, but you can also use std::memory_order_relaxed,
std::memory_order_consume, std::memory_order_acquire, std::memory_order_release, or std::memory_-
order_acq_rel. The compare_exchange_strong and compare_exchange_weak member functions can be
parameterized with two memory orderings, one for the success case, and the other for the failure case.
Both calls perform an atomic exchange if equal and an atomic load if not. They return true in the
success case, false otherwise. If you only explicitly provide one memory ordering, it is used for both

Concurrency 470

the success and the failure case. Here are the details for memory ordering²².

Of course, not all operations are available for all types referenced by std::atomic_ref. The table shows
the list of all atomic operations, depending on the type referenced by std::atomic_ref.

All atomic operations, depending on the type referenced by std::atomic_ref

Function atomic_ref<T> atomic_ref<floating> atomic_ref<T*> atomic_ref<integral>

is_lock_free yes yes yes yes

load yes yes yes yes
operator T yes yes yes yes

store yes yes yes yes

exchange yes yes yes yes

compare_exchange_strong yes yes yes yes
compare_exchange_weak yes yes yes yes

fetch_add, += yes yes yes
fetch_sub, -= yes yes yes

fetch_or, |= yes
fetch_and, &= yes
fetch_xor, ^= yes

++, -- yes yes

notify_one yes yes yes yes
notify_all yes yes yes yes

wait yes yes yes yes

6.2.2 Atomic Smart Pointer

A std::shared_ptr²³ consists of a control block and its resource. The control block is thread-safe, but
access to the resource is not. This means modifying the reference counter is an atomic operation,
and you have the guarantee that the resource is deleted exactly once. These are the guarantees
std::shared_ptr gives you.

²²https://en.cppreference.com/w/cpp/atomic/memory_order
²³https://en.cppreference.com/w/cpp/memory/shared_ptr

https://en.cppreference.com/w/cpp/atomic/memory_order
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/atomic/memory_order
https://en.cppreference.com/w/cpp/memory/shared_ptr

Concurrency 471

The Importance of being Thread Safe
I want to take a short detour to emphasize how important it is that the std::shared_ptr

has well-defined multithreading semantics. At first glance, using a std::shared_ptr does
not appear to be a sensible choice for multithreaded code. It is by definition shared and
mutable and is the ideal candidate for non-synchronized read and write operations and
hence for undefined behavior. On the other hand, there is the guideline in modern C++:
Don’t use raw pointers. This means, consequently, that you should use smart pointers
in multithreaded programs.

The proposal N4162²⁴ for atomic smart pointers directly addresses the deficiencies of the current
implementation. The shortcomings boil down to these three points: consistency, correctness, and
performance.

• Consistency: the atomic operations for std::shared_ptr are the only atomic operations for a
non-atomic data type.

• Correctness: using global atomic operations is quite error-prone because the correct usage is
based on discipline. It is easy to forget to use an atomic operation - such as using ptr = localPtr

instead of std::atomic_store(&ptr, localPtr). The result is undefined behavior because of a
data race. If we used an atomic smart pointer instead, the type system would not allow it.

• Performance: the atomic smart pointers have a significant advantage compared to non-atomic
versions. The atomic versions are designed for the particular use case and can internally have
a std::atomic_flag as cheap spinlock²⁵. Designing the non-atomic versions of the pointer
functions to be thread-safe would be overkill when they are used in a single-threaded scenario.
They would have a performance penalty.

The correctness argument is probably the most important one. Why? The answer lies in the proposal.
The proposal presents a thread-safe singly-linked list that supports insertion, deletion, and searching
of elements. This singly-linked list is implemented in a lock-free way.

²⁴http://wg21.link/n4162
²⁵https://en.wikipedia.org/wiki/Spinlock

http://wg21.link/n4162
https://en.wikipedia.org/wiki/Spinlock
http://wg21.link/n4162
https://en.wikipedia.org/wiki/Spinlock

Concurrency 472

6.2.2.1 A thread-safe singly-linked list

A thread-safe singly-linked list

Concurrency 473

All changes that are required to compile the program with a C++11 compiler are marked in red. The
implementation with atomic smart pointers is much easier and hence less error-prone. C++20’s type
system does not permit using a non-atomic operation on an atomic smart pointer.

The proposal N4162²⁶ proposed the new types std::atomic_shared_ptr and std::atomic_weak_-

ptr as atomic smart pointers. By merging them into the mainline ISO C++ standard, they be-
came partial template specializations of std::atomic, namely std::atomic<std::shared_ptr<T>> and
std::atomic<std::weak_ptr<T>>.

The following program shows five threads modifying a std::atomic<std::shared_ptr<std::string>>
without synchronization.

1 // atomicSharedPtr.cpp

2

3 #include <iostream>

4 #include <memory>

5 #include <atomic>

6 #include <string>

7 #include <thread>

8

9 int main() {

10

11 std::cout << '\n';

12

13 std::atomic<std::shared_ptr<std::string>> sharString(

14 std::make_shared<std::string>("Zero"));

15

16 std::thread t1([&sharString]{

17 sharString.store(std::make_shared<std::string>(*sharString.load() + "One"));

18 });

19 std::thread t2([&sharString]{

20 sharString.store(std::make_shared<std::string>(*sharString.load() + "Two"));

21 });

22 std::thread t3([&sharString]{

23 sharString.store(std::make_shared<std::string>(*sharString.load() +"Three"));

24 });

25 std::thread t4([&sharString]{

26 sharString.store(std::make_shared<std::string>(*sharString.load() +"Four"));

27 });

28 std::thread t5([&sharString]{

29 sharString.store(std::make_shared<std::string>(*sharString.load() +"Five"));

30 });

31

32 t1.join();

²⁶http://wg21.link/n4162

http://wg21.link/n4162
http://wg21.link/n4162

Concurrency 474

33 t2.join();

34 t3.join();

35 t4.join();

36 t5.join();

37

38 std::cout << *sharString.load() << '\n';

39

40 }

The atomic std::shared_ptr shaString (line 13) is initialized with the string “Zero”. Each of the
five threads t1 to t5 (lines 16 - 28) adds a string to sharString that is displayed in line 38. Using
a std::shared_ptr instead of std::atomic<std::shared_ptr> would be a data race.

Executing the program shows the interleaving of the threads.

Thread-safe modification of a std::string

Consequently, the atomic operations for std::shared_ptr are deprecated with C++20.

6.2.3 std::atomic_flag Extensions

Before I write about std::atomic_flag extension in C++20, I want to give a short reminder of
std::atomic_flag in C++11. If you want to read more details, read my post about std::atomic_flag²⁷
in C++11.

6.2.3.1 C++11

std::atomic_flag is a kind of atomic boolean. It has clear- and set-state functions. I call the clear
state false and the set state true for simplicity. Its clearmember function enables you to set its value
to false. With the test_and_set method, you can set the value to true and return the previous value
in an atomic step. ATOMIC_FLAG_INIT enables initializing the std::atomic_flag to false.

std::atomic_flag has two exciting properties, these are
• the only guaranteed lock-free atomic.

• the building block for higher thread abstractions.
With C++11, there is no member function to ask for the current value of a std::atomic_flag without
modifying it. This changes with C++20.

²⁷https://www.modernescpp.com/index.php/the-atomic-flag

https://www.modernescpp.com/index.php/the-atomic-flag
https://www.modernescpp.com/index.php/the-atomic-flag

Concurrency 475

6.2.3.2 C++20 Extensions

The following table shows the more powerful interface of std::atomic_flag in C++20.

All operations of std::atomic_flag atomicFlag

Method Description

atomicFlag.clear() Clears the atomic flag.

atomicFlag.test_and_set() Sets the atomic flag and returns the old value.
atomicFlag.test() (C++20) Returns the value of the flag.

atomicFlag.notify_one() (C++20) Notifies one thread waiting on the atomic flag.
atomicFlag.notify_all (C++20) Notifies all threads waiting on the atomic flag.

atomicFlag.wait(bo) (C++20) Blocks the thread until notified and the atomic value changes.

The call atomicFlag.test() returns the atomicFlag value without changing it. Further on, you can
use std::atomic_flag for thread synchronization: atomicFlag.wait(), atomicFlag.notify_one(), and
atomicFlag.notify_all(). The member functions notify_one or notify_all notify one or all of the
waiting atomic flags. atomicFlag.wait(bo) needs a boolean bo. The call atomicFlag.wait(bo) blocks
until the next notification or spurious wakeup. It checks when the value of atomicFlag is equal to bo

and unblocks if not. The value bo serves as a predicate to protect against spurious wakeups. A spurious
wakeup is an erroneous notification.

Compared to C++11, the default construction of a std::atomic_flag is initialized to false state.

The remaining more powerful atomics can provide their functionality by using a mutex. That is
according to the C++ standard. So these atomics have a member function is_lock_free to check
if the atomic internally uses a mutex. On the popular platforms, I always get the answer false. But
you should be aware of that. Thanks to the constexpr function atomic<type>::is_always_lock_free,
you can check any atomic type if it’s lock-free on each supported hardware that the executable might
run on. This check returns only true if it is true for all supported hardware. The check is performed
at compile-time and is available since C++17.

6.2.3.3 One Time Synchronization of Threads

Sender-receiver workflows are pretty common for threads. In such a workflow, the receiver is waiting
for the sender’s notification before Future continues to work. There are various ways to implement
these workflows. With C++11, you can use condition variables or promise/future pairs; with C++20,
you can use std::atomic_flag. Each way has its pros and cons. Consequently, I want to compare them.
I assume you don’t know the details of condition variables or promises and futures. Therefore, I give
a short refresher.

Concurrency 476

6.2.3.3.1 Condition Variables

A condition variable can fulfill the role of a sender or a receiver. As a sender, it can notify one or more
receivers.

Thread synchronization with condition variables

1 // threadSynchronizationConditionVariable.cpp

2

3 #include <iostream>

4 #include <condition_variable>

5 #include <mutex>

6 #include <thread>

7 #include <vector>

8

9 std::mutex mut;

10 std::condition_variable condVar;

11

12 std::vector<int> myVec{};

13

14 void prepareWork() {

15

16 {

17 std::lock_guard<std::mutex> lck(mut);

18 myVec.insert(myVec.end(), {0, 1, 0, 3});

19 }

20 std::cout << "Sender: Data prepared." << '\n';

21 condVar.notify_one();

22 }

23

24 void completeWork() {

25

26 std::cout << "Waiter: Waiting for data." << '\n';

27 std::unique_lock<std::mutex> lck(mut);

28 condVar.wait(lck, []{ return not myVec.empty(); });

29 myVec[2] = 2;

30 std::cout << "Waiter: Complete the work." << '\n';

31 for (auto i: myVec) std::cout << i << " ";

32 std::cout << '\n';

33

34 }

35

36 int main() {

37

38 std::cout << '\n';

39

Concurrency 477

40 std::thread t1(prepareWork);

41 std::thread t2(completeWork);

42

43 t1.join();

44 t2.join();

45

46 std::cout << '\n';

47

48 }

The program has two child threads: t1 and t2. They get their payload prepareWork and completeWork

in lines 40 and 41. The function prepareWork (line 14) notifies that it is done with the preparation
of the work: condVar.notify_one(). While holding the lock, thread t2 is waiting for its notification:
condVar.wait(lck, []{ return not myVec.empty(); }). The waiting thread always performs the same
steps. When awoken, it checks the predicate while holding the lock ([]{ return not myVec.empty();).
If the predicate does not hold, it puts itself back to sleep. If the predicate holds, it continues with its
work. In the concrete workflow, the sending thread puts the initial values into the std::vector (line
18), which the receiving thread completes (line 29).

Concurrency 478

Thread synchronization with condition variables

Condition variables have many inherent issues. For example, the receiver could be awakened without
notification or could lose the notification. The first issue is known as a spurious wakeup and the second
as a lost wakeup. The predicate protects against both flaws. The notification could be lost when the
sender sends its notification before the receiver is in the wait state and does not use a predicate.
Consequently, the receiver waits for something that never happens. This is a deadlock. When you
study the program’s output, you see that every second run would cause a deadlock if I did not use a
predicate. Of course, it is possible to use condition variables without a predicate.

If you want to know the details of the sender-receiver workflow and the traps of condition variables,
read my posts “C++ Core Guidelines: Be Aware of the Traps of Condition Variables”²⁸.

²⁸https://www.modernescpp.com/index.php/c-core-guidelines-be-aware-of-the-traps-of-condition-variables

https://www.modernescpp.com/index.php/c-core-guidelines-be-aware-of-the-traps-of-condition-variables
https://www.modernescpp.com/index.php/c-core-guidelines-be-aware-of-the-traps-of-condition-variables

Concurrency 479

Let me implement the same workflow using a future/promise pair.

6.2.3.3.2 Futures and Promises

A promise can send a value, an exception, or a notification to its associated future. Here is the
corresponding workflow using a promise and a future.

Thread synchronization with a promise/future pair

1 // threadSynchronizationPromiseFuture.cpp

2

3 #include <iostream>

4 #include <future>

5 #include <thread>

6 #include <vector>

7

8 std::vector<int> myVec{};

9

10 void prepareWork(std::promise<void> prom) {

11

12 myVec.insert(myVec.end(), {0, 1, 0, 3});

13 std::cout << "Sender: Data prepared." << '\n';

14 prom.set_value();

15

16 }

17

18 void completeWork(std::future<void> fut){

19

20 std::cout << "Waiter: Waiting for data." << '\n';

21 fut.wait();

22 myVec[2] = 2;

23 std::cout << "Waiter: Complete the work." << '\n';

24 for (auto i: myVec) std::cout << i << " ";

25 std::cout << '\n';

26

27 }

28

29 int main() {

30

31 std::cout << '\n';

32

33 std::promise<void> sendNotification;

34 auto waitForNotification = sendNotification.get_future();

35

36 std::thread t1(prepareWork, std::move(sendNotification));

37 std::thread t2(completeWork, std::move(waitForNotification));

Concurrency 480

38

39 t1.join();

40 t2.join();

41

42 std::cout << '\n';

43

44 }

When you study the workflow, you recognize that the synchronization is reduced to its essential
parts: prom.set_value() (line 14) and fut.wait() (line 21). I skip the screenshot to this run because it
is essentially the same as the previous run with condition variables.

Here is more information on promises and futures, often just called tasks²⁹.

6.2.3.3.3 std::atomic_flag

Now, I jump directly from C++11 to C++20.

Thread synchronization with a std::atomic_flag

1 // threadSynchronizationAtomicFlag.cpp

2

3 #include <atomic>

4 #include <iostream>

5 #include <thread>

6 #include <vector>

7

8 std::vector<int> myVec{};

9

10 std::atomic_flag atomicFlag{};

11

12 void prepareWork() {

13

14 myVec.insert(myVec.end(), {0, 1, 0, 3});

15 std::cout << "Sender: Data prepared." << '\n';

16 atomicFlag.test_and_set();

17 atomicFlag.notify_one();

18

19 }

20

21 void completeWork() {

22

23 std::cout << "Waiter: Waiting for data." << '\n';

24 atomicFlag.wait(false);

²⁹https://www.modernescpp.com/index.php/tag/tasks

https://www.modernescpp.com/index.php/tag/tasks
https://www.modernescpp.com/index.php/tag/tasks

Concurrency 481

25 myVec[2] = 2;

26 std::cout << "Waiter: Complete the work." << '\n';

27 for (auto i: myVec) std::cout << i << " ";

28 std::cout << '\n';

29

30 }

31

32 int main() {

33

34 std::cout << '\n';

35

36 std::thread t1(prepareWork);

37 std::thread t2(completeWork);

38

39 t1.join();

40 t2.join();

41

42 std::cout << '\n';

43

44 }

The thread preparing the work (line 16) sets the atomicFlag to true and sends the notification. The
thread that complets the work is waiting for the notification. It is only unblocked if atomicFlag is
equal to true.

Here are a few runs of the program with the Microsoft Compiler.

Concurrency 482

Thread synchronization with std::atomic_flag

6.2.4 std::atomic Extensions

In C++20, std::atomic. like std::atomic_ref, std::atomic³⁰ can be instantiated with floating-point
types such as float, double, and long double. In addition, std::atomic_flag and std::atomic can
be used for thread synchronization via the member functions notify_one, notify_all, and wait.
Notifying and waiting are available on all partial and full specializations of std::atomic (bools,
integrals, floats, and pointers) and std::atomic_ref.

Thanks to atomic<bool>, the previous program threadSynchronizationAtomicFlag.cpp can directly be
reimplemented.

³⁰https://en.cppreference.com/w/cpp/atomic/atomic

https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic

Concurrency 483

Thread synchronization with std::atomic<bool>

1 // threadSynchronizationAtomicBool.cpp

2

3 #include <atomic>

4 #include <iostream>

5 #include <thread>

6 #include <vector>

7

8 std::vector<int> myVec{};

9

10 std::atomic<bool> atomicBool{false};

11

12 void prepareWork() {

13

14 myVec.insert(myVec.end(), {0, 1, 0, 3});

15 std::cout << "Sender: Data prepared." << '\n';

16 atomicBool.store(true);

17 atomicBool.notify_one();

18

19 }

20

21 void completeWork() {

22

23 std::cout << "Waiter: Waiting for data." << '\n';

24 atomicBool.wait(false);

25 myVec[2] = 2;

26 std::cout << "Waiter: Complete the work." << '\n';

27 for (auto i: myVec) std::cout << i << " ";

28 std::cout << '\n';

29

30 }

31

32 int main() {

33

34 std::cout << '\n';

35

36 std::thread t1(prepareWork);

37 std::thread t2(completeWork);

38

39 t1.join();

40 t2.join();

41

42 std::cout << '\n';

43

44 }

Concurrency 484

The call atomicBool.wait(false) blocks if atomicBool == false holds. Consequently, the call
atomicBool.store(true) (line 16) sets atomicBool to true and sends its notification.

As before, here are four runs with the Microsoft Compiler.

Thread synchronization with std::atomic<bool>

Concurrency 485

Condition Variables versus Promise/Future Pairs ver-
sus std::atomic_flag

When you only need a one-time notification, such as in the previous program
threadSynchronizationConditionVariable.cpp, promises, and futures are a better choice
than condition variables. Promises and futures cannot be victims of spurious or lost
wakeups. Furthermore, there is neither a need to use locks or mutexes nor is there a need
to use a predicate to protect against spurious or lost wakeups. There use of promises and
futures has only one disadvantege: they can only be used once.

I’m not sure if I would use a future/promise pair or atomics such as std::atomic_flag

or std::atomic<bool> for such a simple thread-synchronization workflow. All are thread-
safe by design and require no protection mechanism so far. Promises and futures are easier
to use, and atomics are probably faster. I am only sure that if possible I would not use a
condition variable.

Distilled Information
• std::atomic_ref applies atomic operations to the referenced object. Concurrent
writing and reading are atomic for referenced objects, with no data race. The
lifetime of the referenced object must exceed the lifetime of the std::atomic_ref.

• A std::shared_ptr consists of a control block and its resource. The control block is
thread-safe, but the access to the resource is not. With C++20, we have an atomic
shared pointer: std::atomic<std::shared_ptr<T>>, and std::atomic<std::weak_-

ptr<T>>.

• std::atomic_flag as a kind of atomic boolean is the only guaranteed lock-free data
structure in C++. Its limited interface is extended in C++20. You can return its value,
and you can use it for thread synchronization.

• std::atomic, introduced in C++11, gets various improvements in C++20. You
can specialize a std::atomic for a floating-point value and use it for thread
synchronization.

Concurrency 486

6.3 Semaphores

Cippi directs the train

Semaphores are a synchronization mechanism used to control concurrent access to a shared resource.
A counting semaphore is a special semaphore that has a counter greater than zero. The counter
is initialized in the constructor. Acquiring the semaphore decreases the counter, and releasing the
semaphore increases the counter. If a thread tries to acquire the semaphore when the counter is zero,
the thread will block until another thread increments the counter by releasing the semaphore.

Edsger W. Dijkstra invented Semaphores
The Dutch computer scientist Edsger W. Dijkstra³¹ presented in 1965 the concept of a
semaphore. A semaphore is a data structure with a queue and a counter. The counter is
initialized to a value equal to or greater than zero. It supports the two operations wait

and signal. Operation wait acquires the semaphore and decreases the counter. It blocks
the thread from acquiring the semaphore if the counter is zero. Operation signal releases
the semaphore and increases the counter. Blocked threads are added to the queue to avoid
starvation³².

Originally, a semaphore was a railway signal.

³¹https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
³²https://en.wikipedia.org/wiki/Starvation_(computer_science)

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Starvation_(computer_science)
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Starvation_(computer_science)

Concurrency 487

Semaphore

The original uploader was AmosWolfe at English Wikipedia. - Transferred from en.wikipedia to
Commons., CC BY 2.0,³³

C++20 supports a std::binary_semaphore, which is an alias for a std::counting_semaphore<1>. In this
case, the least maximal value is 1. std::binary_semaphores can be used to implement locks³⁴.

using binary_semaphore = std::counting_semaphore<1>;

In contrast to a std::mutex, a std::counting_semaphore is not bound to a thread. This means that
the acquisition and release of a semaphore call can happen on different threads. The following table
presents the interface of a std::counting_semaphore.

Member functions of a std::counting_semaphore sem

Member function Description

std::semaphore sem{num} Creates a semaphore with the counter num. cnt must be a signed
integral.

sem.max() (static) Returns the maximum value of the counter.

sem.release(upd = 1) Increases counter by upd and subsequently unblocks threads acquiring
the semaphore sem.

sem.acquire() Decrements the counter by 1 or blocks until the counter is greater than
0.

³³https://commons.wikimedia.org/w/index.php?curid=1972304
³⁴https://en.cppreference.com/w/cpp/named_req/BasicLockable

https://commons.wikimedia.org/w/index.php?curid=1972304
https://commons.wikimedia.org/w/index.php?curid=1972304
https://en.cppreference.com/w/cpp/named_req/BasicLockable
https://commons.wikimedia.org/w/index.php?curid=1972304
https://en.cppreference.com/w/cpp/named_req/BasicLockable

Concurrency 488

Member functions of a std::counting_semaphore sem

Member function Description

sem.try_acquire() Tries to decrement the counter by 1 if it is greater than 0.

sem.try_acquire_for(relTime) Tries to decrement the counter by 1 or blocks for at most relTime if the
counter is 0.

sem.try_acquire_until(absTime) Tries to decrement the counter by 1 or blocks at most until absTime if
the counter is 0.

The constructor call std::counting_semaphore<10> sem(5) creates a semaphore sem with at least
a maximal value of 10 and a counter of 5. The call sem.max() returns the maximum possible
value of the internal counter. The following relations must hold for upd in sem.release(upd = 1):
update >= 0 and update + counter <= sem.max(). sem.try_aquire_for(relTime) needs a time
duration; the member function sem.try_acquire_until(absTime) needs a time point. The three calls
sem.try_acquire, sem.try_acquire_for, and sem.try_acquire_until return a boolean indicating the
success of the calls.

Semaphores are typically used in sender-receiver workflows. For example, initializing the semaphore
sem with 0 will block the receiver’s sem.acquire() call until the sender calls sem.release(). Conse-
quently, the receiver waits for the notification of the sender. One-time synchronization of threads
can easily be implemented using semaphores.

Thread synchronization with a std::counting_semaphore

1 // threadSynchronizationSemaphore.cpp

2

3 #include <iostream>

4 #include <semaphore>

5 #include <thread>

6 #include <vector>

7

8 std::vector<int> myVec{};

9

10 std::counting_semaphore<1> prepareSignal(0);

11

12 void prepareWork() {

13

14 myVec.insert(myVec.end(), {0, 1, 0, 3});

15 std::cout << "Sender: Data prepared." << '\n';

16 prepareSignal.release();

17 }

18

19 void completeWork() {

20

Concurrency 489

21 std::cout << "Waiter: Waiting for data." << '\n';

22 prepareSignal.acquire();

23 myVec[2] = 2;

24 std::cout << "Waiter: Complete the work." << '\n';

25 for (auto i: myVec) std::cout << i << " ";

26 std::cout << '\n';

27

28 }

29

30 int main() {

31

32 std::cout << '\n';

33

34 std::thread t1(prepareWork);

35 std::thread t2(completeWork);

36

37 t1.join();

38 t2.join();

39

40 std::cout << '\n';

41

42 }

The std::counting_semaphore prepareSignal (line 10) can have the values 0 and 1. In the concrete
example, it’s initialized with 0 (line 10). This means, that the call prepareSignal.release() sets the
value to 1 (line 16) and unblocks the call prepareSignal.acquire() (line 22).

Concurrency 490

Thread synchronization with semaphores

Distilled Information
• Semaphores are a synchronization mechanism used to control concurrent access to
a shared resource.

• A counting semaphore in C++20 has a counter. Acquiring the semaphore decreases
the counter, and releasing the semaphore increases the counter. If a thread tries to
acquire the semaphore when the counter is zero, the thread blocks until another
thread increments the counter by releasing the semaphore.

Concurrency 491

6.4 Latches and Barriers

Cippi waits at the barrier

Latches and barriers are coordination types that enable some threads to block until a counter becomes
zero. In C++20we get latches and barriers in two variations: std::latch and std::barrier. Concurrent
invocations of the member functions of a std::latch or a std::barrier produce no data race.

First, there are two questions:

1. What are the differences between these two mechanisms to coordinate threads? You can use
a std::latch only once, but you can use a std::barrier more than once. A std::latch helps
to manage one task by multiple threads. A std::barrier helps to manage repeated tasks by
multiple threads. Additionally, a std::barrier enables you to execute a function in the so-called
completion step. The completion step is the state when the counter becomes zero.

2. What use cases do latches and barriers support that cannot be done in C++11 and C++14 with
futures, threads, or condition variables combined with locks? Latches and barriers address no
new use cases, but they are much easier to use. They are also more performant because they
often use a lock-free mechanism internally.

6.4.1 std::latch

Now, let us have a closer look at the interface of a std::latch.

Concurrency 492

Member functions of a std::latch lat

Member function Description

std::latch lat{cnt} Creates a std::latch with counter cnt. cnt must be a signed integral.

lat.count_down(upd = 1) Atomically decrements the counter by upd without blocking the caller.

lat.try_wait() Returns true if counter == 0.

lat.wait() Returns immediately if counter == 0. If not blocks until counter == 0.

lat.arrive_and_wait(upd = 1) Equivalent to count_down(upd); wait();.

std::latch::max Returns the maximum value of the counter supported by the
implementation

The default value for upd is 1. If upd is greater than the counter or negative, the behavior is undefined.
The call lat.try_wait() never actually waits, as its name suggests.

The following program bossWorkers.cpp uses two std::latch to build a boss-workers workflow. I syn-
chronized the output to std::cout using the function synchronizedOut (line 13). This synchronization
makes it easier to follow the workflow.

A boss-worker workflow using two std::latch

1 // bossWorkers.cpp

2

3 #include <iostream>

4 #include <mutex>

5 #include <latch>

6 #include <thread>

7

8 std::latch workDone(6);

9 std::latch goHome(1);

10

11 std::mutex coutMutex;

12

13 void synchronizedOut(const std::string& s) {

14 std::lock_guard<std::mutex> lo(coutMutex);

15 std::cout << s;

16 }

17

18 class Worker {

19 public:

20 Worker(std::string n): name(n) { }

21

Concurrency 493

22 void operator() (){

23 // notify the boss when work is done

24 synchronizedOut(name + ": " + "Work done!\n");

25 workDone.count_down();

26

27 // waiting before going home

28 goHome.wait();

29 synchronizedOut(name + ": " + "Good bye!\n");

30 }

31 private:

32 std::string name;

33 };

34

35 int main() {

36

37 std::cout << '\n';

38

39 std::cout << "BOSS: START WORKING! " << '\n';

40

41 Worker herb(" Herb");

42 std::thread herbWork(herb);

43

44 Worker scott(" Scott");

45 std::thread scottWork(scott);

46

47 Worker bjarne(" Bjarne");

48 std::thread bjarneWork(bjarne);

49

50 Worker andrei(" Andrei");

51 std::thread andreiWork(andrei);

52

53 Worker andrew(" Andrew");

54 std::thread andrewWork(andrew);

55

56 Worker david(" David");

57 std::thread davidWork(david);

58

59 workDone.wait();

60

61 std::cout << '\n';

62

63 goHome.count_down();

64

65 std::cout << "BOSS: GO HOME!" << '\n';

66

Concurrency 494

67 herbWork.join();

68 scottWork.join();

69 bjarneWork.join();

70 andreiWork.join();

71 andrewWork.join();

72 davidWork.join();

73

74 }

The idea of the workflow is straightforward. The six workers herb, scott, bjarne, andrei, andrew, and
david (lines 41 - 57) have to do their job.When each has finished his job, it counts down the std::latch
workDone (line 25). The boss (main thread) is blocked in line 59 until the counter becomes 0. When the
counter is 0, the boss uses the second std::latch goHome to signal its workers to go home. In this case,
the initial counter is 1 (line 9). The call goHome.wait() blocks until the counter becomes 0.

A boss-worker workflow using two std::latch

When you think about this workflow, you may notice that it can be done without a boss. Here it is.

Concurrency 495

A worker’s workflow using a std::latch

1 // workers.cpp

2

3 #include <iostream>

4 #include <barrier>

5 #include <mutex>

6 #include <thread>

7

8 std::latch workDone(6);

9 std::mutex coutMutex;

10

11 void synchronizedOut(const std::string& s) {

12 std::lock_guard<std::mutex> lo(coutMutex);

13 std::cout << s;

14 }

15

16 class Worker {

17 public:

18 Worker(std::string n): name(n) { }

19

20 void operator() () {

21 synchronizedOut(name + ": " + "Work done!\n");

22 workDone.arrive_and_wait(); // wait until all work is done

23 synchronizedOut(name + ": " + "See you tomorrow!\n");

24 }

25 private:

26 std::string name;

27 };

28

29 int main() {

30

31 std::cout << '\n';

32

33 Worker herb(" Herb");

34 std::thread herbWork(herb);

35

36 Worker scott(" Scott");

37 std::thread scottWork(scott);

38

39 Worker bjarne(" Bjarne");

40 std::thread bjarneWork(bjarne);

41

42 Worker andrei(" Andrei");

43 std::thread andreiWork(andrei);

44

Concurrency 496

45 Worker andrew(" Andrew");

46 std::thread andrewWork(andrew);

47

48 Worker david(" David");

49 std::thread davidWork(david);

50

51 herbWork.join();

52 scottWork.join();

53 bjarneWork.join();

54 andreiWork.join();

55 andrewWork.join();

56 davidWork.join();

57

58 }

There is not much to add to this simplified workflow. The call wordDone.arrive_and_wait() (line 22)
is equivalent to the calls count_down(upd); wait();. As a result, the workers coordinate themselves,
and the boss is no longer necessary, as was the case in the previous program bossWorkers.cpp.

A workers workflow using a std::latch

A std::barrier is similar to a std::latch.

6.4.2 std::barrier

There are two differences between a std::latch and a std::barrier. First, you can use a std::barrier
more than once, and second, you can adjust the counter for the next phase. The counter is set in the

Concurrency 497

constructor of std::barrier bar. Calling bar.arrive(), bar.arrive_and_wait(), and bar.arrive_and_-

drop() decrements the counter in the current phase. Additionally, bar.arrive_and_drop() decrements
the counter for the next phase. Immediately after the current phase is finished and the counter
becomes zero, the so-called completion step starts. In this completion step, a callable is invoked. The
std::barrier gets its callable in its constructor. This callable must be declared as noexcept.

The completion step performs the following steps:

1. All threads are blocked.

2. An arbitrary thread is unblocked and executes the callable. The callable must be noexcept.

3. If the completion step is done, all threads are unblocked.

Member functions of a std::barrier bar

Member function Description fullfill

std::barrier bar{cnt} Creates a std::latch with counter cnt. cnt must be a signed
integral.

std::barrier bar{cnt, call} Creates a std::barrier with counter cnt and callable call.

bar.arrive(upd) Atomically decrements counter by upd.

bar.wait() Blocks at the synchronization point until the completion step is
done.

bar.arrive_and_wait() Equivalent to bar.wait(bar.arrive())

bar.arrive_and_drop() Decrements the counter for the current and the subsequent
phase by one.

std::barrier::max Maximum value supported by the implementation

The call bar.arrive_and_drop()means essentially that the counter is decremented by one for the next
phase.

The program fullTimePartTimeWorkers.cpp halves the number of workers in the second phase.

Concurrency 498

Full-time and part-time workers
1 // fullTimePartTimeWorkers.cpp

2

3 #include <iostream>

4 #include <barrier>

5 #include <mutex>

6 #include <string>

7 #include <thread>

8

9 std::barrier workDone(6);

10 std::mutex coutMutex;

11

12 void synchronizedOut(const std::string& s) {

13 std::lock_guard<std::mutex> lo(coutMutex);

14 std::cout << s;

15 }

16

17 class FullTimeWorker {

18 public:

19 FullTimeWorker(std::string n): name(n) { }

20

21 void operator() () {

22 synchronizedOut(name + ": " + "Morning work done!\n");

23 workDone.arrive_and_wait(); // Wait until morning work is done

24 synchronizedOut(name + ": " + "Afternoon work done!\n");

25 workDone.arrive_and_wait(); // Wait until afternoon work is done

26

27 }

28 private:

29 std::string name;

30 };

31

32 class PartTimeWorker {

33 public:

34 PartTimeWorker(std::string n): name(n) { }

35

36 void operator() () {

37 synchronizedOut(name + ": " + "Morning work done!\n");

38 workDone.arrive_and_drop(); // Wait until morning work is done

39 }

40 private:

41 std::string name;

42 };

43

44 int main() {

Concurrency 499

45

46 std::cout << '\n';

47

48 FullTimeWorker herb(" Herb");

49 std::thread herbWork(herb);

50

51 FullTimeWorker scott(" Scott");

52 std::thread scottWork(scott);

53

54 FullTimeWorker bjarne(" Bjarne");

55 std::thread bjarneWork(bjarne);

56

57 PartTimeWorker andrei(" Andrei");

58 std::thread andreiWork(andrei);

59

60 PartTimeWorker andrew(" Andrew");

61 std::thread andrewWork(andrew);

62

63 PartTimeWorker david(" David");

64 std::thread davidWork(david);

65

66 herbWork.join();

67 scottWork.join();

68 bjarneWork.join();

69 andreiWork.join();

70 andrewWork.join();

71 davidWork.join();

72

73 }

This workflow consists of two kinds of workers: full-time workers (line 17) and part-time workers
(line 32). The part-time worker works in the morning, and the full-time worker in the morning
and the afternoon. Consequently, the full-time workers call workDone.arrive_and_wait() (lines 23
and 25) two times. On the contrary, the part-time workers call workDone.arrive_and_drop() (line 38)
only once. This workDone.arrive_and_drop() call causes the part-time worker to skip the afternoon
work. Accordingly, the counter has in the first phase (morning) the value 6, and in the second phase
(afternoon) the value 3.

Concurrency 500

Full-time and part-time workers

Distilled Information
• Latches and barriers are coordination types that enable some threads to block until
a counter becomes zero. You can use a std::latch only once, but you can use a
std::barrier more than once.

• A std::latch is useful for managing one task by multiple threads; a std::barrier

helps to manage repeated tasks by multiple threads.

Concurrency 501

6.5 Cooperative Interruption

Cippi stops in front of the stop sign

The functionality of cooperative interruption is based on the three classes std::stop_source, std::stop_-
token, and the std::stop_callback. std::jthread and std::condition_variable_any support an
explicit interface for the cooperative interruption.

First, why is it not a good idea to kill a thread?

Killing a Thread is Dangerous
Killing a thread is dangerous because you don’t know the state of the thread. Here are two
possible malicious outcomes.

• The thread is only half-done with its job. Consequently, you don’t know the state
of its job and, hence, the state of your program. You end with undefined behavior,
and all bets are off.

• The thread may be in a critical section and have locked a mutex. Killing a thread
while it locks a mutex ends with a high probability in a deadlock.

The std::stop_source, std::stop_token, and the std::stop_callback classes allows a thread to asyn-
chronously request an execution to stop or ask if an execution got a stop signal. The std::stop_token
can be passed to an operation and then used to poll actively the token for a stop request or to
register a callback via std::stop_callback. The std::stop_source sends the stop request. This signal

Concurrency 502

affects all associated std::stop_token. The three classes, std::stop_source, std::stop_token, and the
std::stop_callback share the ownership of an associated stop state. The stop state is allocated on the
heap and automatically released when it is not needed anymore. This cooperative interruption facility
is, by design, thread-safe.

In the following subsections, I provide more details about the cooperative interruption.

6.5.1 std::stop_source

You can construct a std::stop_source in two ways:

Constructors of std::stop_source

1 std::stop_source();

2 explicit std::stop_source(std::nostopstate_t) noexcept;

The default constructor (line 1) creates a std::stop_source with an associated stop state. The
constructor taking std::nostopstate_t (line 2) constructs an empty std::stop_source without an
associated stop state.

The component std::stop_source src provides the following member functions for handling stop
requests.

Member functions of std::stop_source src

Member function Description
std::stop_source src Creates a stop source with an associated stop state.
std::stop_source(std::nostopstate_t) Creates a stop source without an associated stop state.

std::stop_source src{nostopstate} Creates a stop_source without associated stop state.

src.get_token() If src.stop_possible(), returns a stop_token for the associated
stop state. Otherwise, returns a default-constructed (empty)
stop_token without associated stop state.

src.stop_possible() true if src can be requested to stop.

src.stop_requested() true if stop_possible() and request_stop() was called by one of
the owners.

src.request_stop() Calls a stop request if src.stop_possible() and
!src.stop_requested(). Otherwise, the call has no effect.

The call src.get_token() returns the stop token stoken. Thanks to stoken you can check if a stop
request has beenmade or can bemade by its associated stop source src. The stop token stoken observes
the stop source src.

Concurrency 503

src.stop_requested() returns true when src has an associated stop state and was not asked to stop
earlier.

src.stop_possible() return false if there is no associated stop state or no stop source anymore and
stop has never been requested before.

The calls src.stop_possible(), src.stop_requested(), and src.request_stop() are thread-safe.

src.request_stop() of a stop source src is visible to all std::stop_token and registered callback of
the same associated stop state. Also, any std::condiction_variable_any waiting on the associated
std::stop_token() will be awoken. Once a stop is requested, it cannot be withdrawn. src.request_-
stop() is successful and returns true if src has an associated stop state and was not requested to stop
before.

6.5.2 std::stop_token

std::stop_token is essentially a thread-safe “view” of the associated stop state. It is typically retrieved
from a std::jthread or a std::stop_source src via src.get_token(). This causes them to share the
same associated stop state as the std::jthread or std::stop_source.

Thanks to the std::stop_token, you can check for the associated std::stop_source if a stop request
has been made.

The std::stop_token can also be passed to the constructor of std::stop_callback or the interruptible
waiting functions of std::condition_variable_any.

Member functions of std::stop_token stoken

Member function Description

std::stop_token stoken Creates a stop token with no associated stop state.

stoken.stop_possible() Returns true if stoken has an associated stop state or a stop request has already
been made, otherwise false.

stoken.stop_requested() true if request_stop() was called on the associated std::stop_source src,
otherwise false.

stoken.stop_possible() also returns false if there is no longer a stop source.

If the std::stop_token should be temporarily disabled, you can replace it with a default-constructed
token. A default-constructed token has no associated stop state. The following code snippet shows
how to disable and enable a thread’s capability to accept stop requests.

Concurrency 504

Temporarily disable a stop token

1 std::jthread jthr([](std::stop_token stoken) {

2 ...

3 std::stop_token interruptDisabled;

4 std::swap(stoken, interruptDisabled);

5 ...

6 std::swap(stoken, interruptDisabled);

7 ...

8 }

std::stop_token interruptDisabled has no associated stop state. This means the thread jthr can
accept stop requests in all lines except 4 and 5.

6.5.3 std::stop_callback

A std::stop_callback models RAII. It’s constructor registers a callable for a stop token, and it’s
destructor unregisters it. The following example shows the use of std::stop_callback.

Use of callbacks

1 // invokeCallback.cpp

2

3 #include <atomic>

4 #include <chrono>

5 #include <iostream>

6 #include <thread>

7 #include <vector>

8

9 using namespace std::literals;

10

11 auto func = [](std::stop_token stoken) {

12 int counter{0};

13 auto thread_id = std::this_thread::get_id();

14 std::stop_callback callBack(stoken, [&counter, thread_id] {

15 std::cout << "Thread id: " << thread_id

16 << "; counter: " << counter << '\n';

17 });

18 while (counter < 10) {

19 std::this_thread::sleep_for(0.2s);

20 ++counter;

21 }

22 };

23

24 int main() {

Concurrency 505

25

26 std::cout << '\n';

27

28 std::vector<std::jthread> vecThreads(10);

29 for(auto& thr: vecThreads) thr = std::jthread(func);

30

31 std::this_thread::sleep_for(1s);

32

33 for(auto& thr: vecThreads) thr.request_stop();

34

35 std::cout << '\n';

36

37 }

Each ten threads invoke the lambda function func (lines 11 - 22). The callback in lines 14 - 17 displays
the thread id and the local counter. Due to the 1-second sleeping of the main thread and the child
threads sleeping, the counter is four when the callbacks are invoked. The call thr.request_stop()
triggers the callback on each thread.

Use of callbacks

The std::stop_callback constructor registers the callback function for the std::stop_token given
by the associated std::stop_source. This callback function is either invoked in the thread invoking
request_stop() or the thread constructing the std::stop_callback. If the request to stop happens prior
to the registration of the std::stop_callback, the callback is invoked in the thread constructing the
std::stop_callback. Otherwise, the callback is invoked in the thread invoking request_stop. If the
call request_stop() happens after the execution of the thread constructing the std::stop_callback,

Concurrency 506

the registered callback will never be called.

You can register more than one callback for one or more threads using the same std::stop_token. The
C++ standard provides no guarantee in which order they are executed.

Use a std::stop_token more times on various threads

1 // invokeCallbacks.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <thread>

6

7 using namespace std::literals;

8

9 void func(std::stop_token stopToken) {

10 std::this_thread::sleep_for(100ms);

11 for (int i = 0; i <= 9; ++i) {

12 std::stop_callback cb(stopToken, [i] { std::cout << i; });

13 }

14 std::cout << '\n';

15 }

16

17 int main() {

18

19 std::cout << '\n';

20

21 std::jthread thr1 = std::jthread(func);

22 std::jthread thr2 = std::jthread(func);

23 thr1.request_stop();

24 thr2.request_stop();

25

26 std::cout << '\n';

27

28 }

Concurrency 507

Use a std::stop_token more times on various threads

6.5.4 A General Mechanism to Send Signals

The pair std::stop_source and std::stop_token can be considered as a general mechanism to send a
signal. By copying the std::stop_token, you can send the signal to any entity executing something.
In the following example, I use std::async, std::promise, std::thread, and std::jthread in various
combinations.

Sending a signal to various executing entities

1 // signalStopRequests.cpp

2

3 #include <iostream>

4 #include <thread>

5 #include <future>

6

7 using namespace std::literals;

8

9 void function1(std::stop_token stopToken, const std::string& str){

10 std::this_thread::sleep_for(1s);

11 if (stopToken.stop_requested()) std::cout << str << ": Stop requested\n";

12 }

13

14 void function2(std::promise<void> prom,

15 std::stop_token stopToken, const std::string& str) {

16 std::this_thread::sleep_for(1s);

17 std::stop_callback callBack(stopToken, [&str] {

18 std::cout << str << ": Stop requested\n";

19 });

20 prom.set_value();

21 }

22

Concurrency 508

23 int main() {

24

25 std::cout << '\n';

26

27 std::stop_source stopSource;

28

29 std::stop_token stopToken = std::stop_token(stopSource.get_token());

30

31 std::thread thr1 = std::thread(function1, stopToken, "std::thread");

32

33 std::jthread jthr = std::jthread(function1, stopToken, "std::jthread");

34

35 auto fut1 = std::async([stopToken] {

36 std::this_thread::sleep_for(1s);

37 if (stopToken.stop_requested()) std::cout << "std::async: Stop requested\n";

38 });

39

40 std::promise<void> prom;

41 auto fut2 = prom.get_future();

42 std::thread thr2(function2, std::move(prom), stopToken, "std::promise");

43

44 stopSource.request_stop();

45 if (stopToken.stop_requested()) std::cout << "main: Stop requested\n";

46

47 thr1.join();

48 thr2.join();

49

50 std::cout << '\n';

51

52 }

Thanks to the stopSource (line 27), I can create the stopToken (line 29) for each running entity
such as std::thread (line 31), std::jthread (line 33), std::async (line 35), or std::promise (line
42). A std::stop_token is cheap to copy. Line 44 triggers stopSource.request_stop. Also, the main-
thread (line 45) gets the signal. I use in this example std::jthread. std::jthread has explicit member
functions to deal with cooperative interruptionmore conveniently. Readmore about it in the following
section Joining Thread.

Concurrency 509

Sending a signal to various executing entities

You may wonder why the various executing entities sleep for one second (lines 10, 16, and 36) in the
previous program signalStopRequests.cpp? I want to be sure that the call stopSource.request_stop()
in line 44 has an effect. The execution entity as the std::thread (line 31), the std::jthread (line 33),
std:async (line 35), or std::promise (line 42) can have one of the following states, when the request
to stop is signaled.

• Not started: The call stopToken.stop_requested returns true when executed. The callback is
executed when stopSource.request_stop is signaled.

• Executing: The execution entity receives the signal. To take effect, the stopSource.request_-

stop must happen before the running entity calls stopToken.stop_requested. Accordingly, the
stopSource.request_stop must happen before the callback is initialized.

• Finished: The call stopSource.request_stop has no effect. The callback is not executed.

Let’s see what happens when I join the threads thr1 and thr2 before the call stopSource.request_stop
in the previous program signalStopRequests.cpp? Here are lines 44 and 45 swapped with lines 47 and
48.

Sending the signal too late

44 thr1.join();

45 thr2.join();

46

47 stopSource.request_stop();

48 if (stopToken.stop_requested()) std::cout << "main: Stop requested\n";

The swap of the lines affects that only the main-thread reacts to the signal.

Concurrency 510

Ignoring the signal if it is too late

6.5.5 Joining Threads

A std::jthread is a std::thread with the additional functionality to signal an interrupt and to
automatically join(). To support this functionality it has a std::stop_token.

The member functions of std::jthread jthr for stop-token handling

Member Function Description

t.get_stop_source() Returns a std::stop_source object associated with the shared
stop state.

t.get_stop_token() Returns a std::stop_token object associated with the shared
stop state.

t.request_stop() Requests execution stop via the shared stop state.

6.5.6 New wait Overloads for the condition_variable_any

std::condition_variable_any is a generalization of std::condition_variable³⁵. std::condition_-

variable requires a std::unique_lock<std::mutex>, but std::condition_variable_any can operate on
any lock lo, supporting lo.lock() and lo.unlock.

The three wait variations to wait, wait_for, and wait_until of the std::condition_variable_any get
new overloads. They take a std::stop_token.

³⁵https://en.cppreference.com/w/cpp/thread/condition_variable

https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread/condition_variable

Concurrency 511

Three new wait overloads

1 template <class Predicate>

2 bool wait(Lock& lock,

3 stop_token stoken,

4 Predicate pred);

5

6 template <class Rep, class Period, class Predicate>

7 bool wait_for(Lock& lock,

8 stop_token stoken,

9 const chrono::duration<Rep, Period>& rel_time,

10 Predicate pred);

11

12 template <class Clock, class Duration, class Predicate>

13 bool wait_until(Lock& lock,

14 stop_token stoken,

15 const chrono::time_point<Clock, Duration>& abs_time,

16 Predicate pred);

These new overloads require a predicate. The presented versions ensure that the threads are notified if
a stop request for the passed std::stop_token stoken is signaled. The functions return a boolean that
indicates whether the predicate evaluates to true. Returning falsemeans that the stop was requested
or, if applicable, the timeout was triggered. The three overloads are equivalent to the following
expressions:

Equivalent expression for the three overloads

// wait in lines 1 - 4

while (!stoken.stop_requested()) {

if (pred()) return true;

wait(lock);

}

return pred();

// wait_for in lines 6 - 10

return wait_until(lock,

std::move(stoken),

chrono::steady_clock::now() + rel_time,

std::move(pred)

);

// wait_until in lines 12 - 16

while (!stoken.stop_requested()) {

if (pred()) return true;

if (wait_until(lock, timeout_time) == std::cv_status::timeout) return pred();

Concurrency 512

}

return pred();

After the wait calls, you can check if a stop request happened.

Handle interrupts with wait

cv.wait(lock, stoken, predicate);

if (stoken.stop_requested()){

// interrupt occurred

}

The following example shows the use of a condition variable with a stop request.

Use of condition variable with a stop request

1 // conditionVariableAny.cpp

2

3 #include <condition_variable>

4 #include <thread>

5 #include <iostream>

6 #include <chrono>

7 #include <mutex>

8 #include <thread>

9

10 using namespace std::literals;

11

12 std::mutex mut;

13 std::condition_variable_any condVar;

14

15 bool dataReady;

16

17 void receiver(std::stop_token stopToken) {

18

19 std::cout << "Waiting" << '\n';

20

21 std::unique_lock<std::mutex> lck(mut);

22 bool ret = condVar.wait(lck, stopToken, []{return dataReady;});

23 if (ret){

24 std::cout << "Notification received: " << '\n';

25 }

26 else{

27 std::cout << "Stop request received" << '\n';

28 }

29 }

Concurrency 513

30

31 void sender() {

32

33 std::this_thread::sleep_for(5ms);

34 {

35 std::lock_guard<std::mutex> lck(mut);

36 dataReady = true;

37 std::cout << "Send notification" << '\n';

38 }

39 condVar.notify_one();

40

41 }

42

43 int main(){

44

45 std::cout << '\n';

46

47 std::jthread t1(receiver);

48 std::jthread t2(sender);

49

50 t1.request_stop();

51

52 t1.join();

53 t2.join();

54

55 std::cout << '\n';

56

57 }

The receiver thread (lines 17 - 29) is waiting for the notification of the sender thread (lines 31 - 41).
Before the sender thread sends its notification in line 39, the main thread triggers a stop request in line
50. The program’s output shows that the stop request happened before the notification.

Sending a stop request to a condition variable

Concurrency 514

Distilled Information
• Thanks to std::stop_source, std::stop_token, and std::stop_callback, threads
and condition variables can be cooperatively interrupted. Cooperative interruption
means that the thread gets a stop request that it can accept or ignore.

• The std::stop_token can be passed to an operation and than used to actively poll
the token for a stop request or register a callback via std::stop_callback.

• The pair std::stop_source and std::stop_token can be considered as a general
mechanism to send a signal.

• Additionally to a std::jthread, std::condition_variable_any can also accept a
stop request.

Concurrency 515

6.6 std::jthread

Cippi ties a braid

std::jthread stands for joining thread. In addition to std::thread³⁶ from C++11, std::jthread
automatically joins in its destructor and can cooperatively be interrupted. std::jthread models RAII
and, therefore, also joins when an exception occurs.

The std::jthread constructor creates a std::stop_source and stores it as a member of the thread
object. It passes the corresponding std::stop_token to the called funtion if that functions takes an
additional std::stop_token as first parameter. The std::stop_token‘ can be used by the function to
check if a stop request has been made.

The following table gives you a concise overview of the std::jthread t functionality. For additional
details, please refer to cppreference.com³⁷.

³⁶https://en.cppreference.com/w/cpp/thread/thread
³⁷https://en.cppreference.com/w/cpp/thread/jthread

https://en.cppreference.com/w/cpp/thread/thread
https://en.cppreference.com/w/cpp/thread/jthread
https://en.cppreference.com/w/cpp/thread/thread
https://en.cppreference.com/w/cpp/thread/jthread

Concurrency 516

Functions of a std::jthread t

Method Description
t.∼jthread() If joinable(), calls request_stop() and then join().

t.join() Waits until thread t has finished its execution.

t.detach() Executes the created thread t independently of the creator.

t.joinable() Returns true if thread t is still joinable.

t.get_id() and Returns the id of the thread.
std::this_thread::get_id()

std::jthread::hardware_concurrency() Indicates the number of threads that can run concurrently.

std::this_thread::sleep_until(absTime) Puts thread t to sleep until time point absTime.

std::this_thread::sleep_for(relTime) Puts thread t to sleep for time duration relTime.

std::this_thread::yield() Enables the system to run another thread.

t.swap(t2) Swaps the threads. Same as std::swap(t, t2).

t.get_stop_source() Returns a std::stop_source object associated with the shared
stop state.

t.get_stop_token() Returns a std::stop_token object associated with the shared
stop state.

t.request_stop() Requests execution stop via the shared stop state. Returns true
if the stop request was successful.

Detaching a std::jthread t with t.detach() still allows it to call the functions t.get_stop_source()
and t.get_stop_token().

6.6.1 Automatically Joining

This is the non-intuitive behavior of std::thread. If a std::thread is still joinable, std::terminate³⁸
is called in its destructor, , which calls std::abort³⁹. A thread thr is joinable if neither thr.join() nor
thr.detach() has been called.

³⁸https://en.cppreference.com/w/cpp/error/terminate
³⁹https://en.cppreference.com/w/cpp/utility/program/abort

https://en.cppreference.com/w/cpp/error/terminate
https://en.cppreference.com/w/cpp/utility/program/abort
https://en.cppreference.com/w/cpp/error/terminate
https://en.cppreference.com/w/cpp/utility/program/abort

Concurrency 517

Terminating a still joinable std::thread

// threadJoinable.cpp

#include <iostream>

#include <thread>

int main() {

std::cout << '\n';

std::cout << std::boolalpha;

std::thread thr{[]{ std::cout << "Joinable std::thread" << '\n'; }};

std::cout << "thr.joinable(): " << thr.joinable() << '\n';

std::cout << '\n';

}

When executed, the program terminates.

Terminating a joinable std::thread

Both executions of std::thread terminate. In the second run, the thread thr has enough time to display
its message: “Joinable std::thread”.

In the next example, I use std::jthread from the current C++20 standard.

Concurrency 518

Terminating a still joinable std::jthread

// jthreadJoinable.cpp

#include <iostream>

#include <thread>

int main() {

std::cout << '\n';

std::cout << std::boolalpha;

std::jthread thr{[]{ std::cout << "Joinable std::thread" << '\n'; }};

std::cout << "thr.joinable(): " << thr.joinable() << '\n';

std::cout << '\n';

}

Now, the thread thr automatically joins in its destructor if it’s still joinable.

Using a std::jthread that joins automatically

Here is a typical implementation of std::jthreads destructor.

Typical implemenation of std::jthreads destructor
1 jthread::~jthread() {

2 if(joinable()) {

3 request_stop();

4 join();

5 }

6 }

First, the thread checks if it is still joinable (line 2). A thread is still joinable if neither join() or
detach() was called on it. If the thread is still joinable, it asks for the stopping of the execution (line
3) and calls join() afterward (line 4). The join call blocks until the execution of the thread is done.

Concurrency 519

6.6.2 Cooperative Interruption of a std::jthread

To get the general idea, let me present a simple example.

Interrupt a non-interruptible and interruptible std::jthread

1 // interruptJthread.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <thread>

6

7 using namespace::std::literals;

8

9 int main() {

10

11 std::cout << '\n';

12

13 std::jthread nonInterruptible([]{

14 int counter{0};

15 while (counter < 10){

16 std::this_thread::sleep_for(0.2s);

17 std::cerr << "nonInterruptible: " << counter << '\n';

18 ++counter;

19 }

20 });

21

22 std::jthread interruptible([](std::stop_token stoken){

23 int counter{0};

24 while (counter < 10){

25 std::this_thread::sleep_for(0.2s);

26 if (stoken.stop_requested()) return;

27 std::cerr << "interruptible: " << counter << '\n';

28 ++counter;

29 }

30 });

31

32 std::this_thread::sleep_for(1s);

33

34 std::cerr << '\n';

35 std::cerr << "Main thread interrupts both jthreads" << '\n';

36 nonInterruptible.request_stop();

37 interruptible.request_stop();

38

39 std::cout << '\n';

40

Concurrency 520

41 }

In the main program, I start the two threads nonInterruptible and interruptible (lines 13 and 22).
Unlike in the thread nonInterruptible, the thread interruptible gets a std::stop_token and uses it in
line 26 to check if it was interrupted: stoken.stop_requested(). In case of a stop request, the lambda
function returns, and, therefore, the thread ends. The call interruptible.request_stop() (line 37)
triggers the stop request. This does not hold for the previous call nonInterruptible.request_stop().
The call has no effect.

Interrupt a non-interruptible and interruptible std::jthread

Concurrency 521

Distilled Information
• A std::jthread stands for joining thread. In addition to std::thread from C++11,

std::jthread automatically joins in its destructor and can cooperatively be inter-
rupted.

• This is the non-intuitive behavior of std::thread. If a std::thread is still joinable,
std::terminate is called in its destructor, which calls std::abort. In contrast, a
std::jthread automatically joins in its destructor if necessary.

• A std::jthread can cooperatively be interrupted using a std::stop_token. Coop-
eratively means that the std::jthread can ignore the stop request.

Concurrency 522

6.7 Synchronized Output Streams

Cippi sings in the choir

Compiler Support for Synchronized Output Streams
At the end of 2020, only GCC 11 supports synchronized output streams.

What happens when you write without synchronization to std::cout?

Non-synchronized access to std::cout

1 // coutUnsynchronized.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <thread>

6

7 class Worker{

8 public:

9 Worker(std::string n):name(n) {};

10 void operator() (){

11 for (int i = 1; i <= 3; ++i) {

12 // begin work

13 std::this_thread::sleep_for(std::chrono::milliseconds(200));

14 // end work

15 std::cout << name << ": " << "Work " << i << " done !!!" << '\n';

16 }

17 }

18 private:

Concurrency 523

19 std::string name;

20 };

21

22

23 int main() {

24

25 std::cout << '\n';

26

27 std::cout << "Boss: Let's start working.\n\n";

28

29 std::thread herb= std::thread(Worker("Herb"));

30 std::thread andrei= std::thread(Worker(" Andrei"));

31 std::thread scott= std::thread(Worker(" Scott"));

32 std::thread bjarne= std::thread(Worker(" Bjarne"));

33 std::thread bart= std::thread(Worker(" Bart"));

34 std::thread jenne= std::thread(Worker(" Jenne"));

35

36

37 herb.join();

38 andrei.join();

39 scott.join();

40 bjarne.join();

41 bart.join();

42 jenne.join();

43

44 std::cout << "\n" << "Boss: Let's go home." << '\n';

45

46 std::cout << '\n';

47

48 }

The boss has six workers (lines 29 - 34). Each worker has to take care of three work packages that take
1/5 second each (line 13). After the worker is done with his work package, he screams out loudly to
the boss (line 15). Once the boss receives notifications from all workers, he sends them home (line 44).

What a mess for such a simple workflow! Each worker screams out his message ignoring their
coworkers!

Concurrency 524

Non-synchronized writing to std::cout

std::cout is thread-safe
The C++11 standard guarantees that you need not protect std::cout. Each character is
written atomically. More output statements like those in the example may interleave. This
interleaving is only a visual issue; the program is well-defined. This remark is valid for all
global stream objects. Insertion to and extraction from global stream objects (std::cout,
std::cin, std::cerr, and std::clog) is thread safe. To put it more formally: writing to
std::cout is not participating in a data race, but does create a race condition. This means
that the output depends on the interleaving of threads.

How can we solve this issue? With C++11, the answer is straightforward: use a lock such as lock_-

https://en.cppreference.com/w/cpp/thread/lock_guard

Concurrency 525

guard⁴⁰ to synchronize the access to std::cout.

Synchronized access to std::cout

1 // coutSynchronized.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <mutex>

6 #include <thread>

7

8 std::mutex coutMutex;

9

10 class Worker{

11 public:

12 Worker(std::string n):name(n) {};

13

14 void operator() () {

15 for (int i = 1; i <= 3; ++i) {

16 // begin work

17 std::this_thread::sleep_for(std::chrono::milliseconds(200));

18 // end work

19 std::lock_guard<std::mutex> coutLock(coutMutex);

20 std::cout << name << ": " << "Work " << i << " done !!!\n";

21 }

22 }

23 private:

24 std::string name;

25 };

26

27

28 int main() {

29

30 std::cout << '\n';

31

32 std::cout << "Boss: Let's start working." << "\n\n";

33

34 std::thread herb= std::thread(Worker("Herb"));

35 std::thread andrei= std::thread(Worker(" Andrei"));

36 std::thread scott= std::thread(Worker(" Scott"));

37 std::thread bjarne= std::thread(Worker(" Bjarne"));

38 std::thread bart= std::thread(Worker(" Bart"));

39 std::thread jenne= std::thread(Worker(" Jenne"));

40

⁴⁰https://en.cppreference.com/w/cpp/thread/lock_guard

https://en.cppreference.com/w/cpp/thread/lock_guard
https://en.cppreference.com/w/cpp/thread/lock_guard
https://en.cppreference.com/w/cpp/thread/lock_guard

Concurrency 526

41 herb.join();

42 andrei.join();

43 scott.join();

44 bjarne.join();

45 bart.join();

46 jenne.join();

47

48 std::cout << "\n" << "Boss: Let's go home." << '\n';

49

50 std::cout << '\n';

51

52 }

The coutMutex in line 8 protects the shared object std::cout. Putting the coutMutex into a std::lock_-
guard guarantees that the coutMutex is locked in the constructor (line 19) and unlocked in the destructor
(line 21) of the std::lock_guard. Thanks to the coutMutex, guarded by the coutLock, the chaos becomes
a harmony.

Concurrency 527

Synchronized access of std::cout

With C++20, writing synchronized to std::cout is a piece of cake. std::basic_syncbuf is a wrapper
for a std::basic_streambuf⁴¹. It accumulates output in its buffer. The wrapper sets its content to the
wrapped buffer when it is destructed. Consequently, the content appears as a contiguous sequence of
characters, and no interleaving of characters can happen.

Thanks to std::basic_osyncstream, you can directly write synchronously to std::cout.

C++20 defines two specializations of std::basic_osyncstream for char and wchar_t.

⁴¹https://en.cppreference.com/w/cpp/io/basic_streambuf

https://en.cppreference.com/w/cpp/io/basic_streambuf
https://en.cppreference.com/w/cpp/io/basic_streambuf

Concurrency 528

std::osyncstream std::basic_osyncstream<char>

std::wosyncstream std::basic_osyncstream<wchar_t>

You can create a named-synchronized output stream. Now, the previous program coutUnsynchronized.cpp

is refactored to write synchronized to std::cout.

Synchronized access of std::cout with std::basic_osyncstream

1 // synchronizedOutput.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <syncstream>

6 #include <thread>

7

8 class Worker{

9 public:

10 Worker(std::string n): name(n) {};

11 void operator() (){

12 for (int i = 1; i <= 3; ++i) {

13 // begin work

14 std::this_thread::sleep_for(std::chrono::milliseconds(200));

15 // end work

16 std::osyncstream syncStream(std::cout);

17 syncStream << name << ": " << "Work " << i << " done !!!" << '\n';

18 }

19 }

20 private:

21 std::string name;

22 };

23

24

25 int main() {

26

27 std::cout << '\n';

28

29 std::cout << "Boss: Let's start working.\n\n";

30

31 std::thread herb= std::thread(Worker("Herb"));

32 std::thread andrei= std::thread(Worker(" Andrei"));

33 std::thread scott= std::thread(Worker(" Scott"));

34 std::thread bjarne= std::thread(Worker(" Bjarne"));

35 std::thread bart= std::thread(Worker(" Bart"));

36 std::thread jenne= std::thread(Worker(" Jenne"));

37

38

Concurrency 529

39 herb.join();

40 andrei.join();

41 scott.join();

42 bjarne.join();

43 bart.join();

44 jenne.join();

45

46 std::cout << "\n" << "Boss: Let's go home." << '\n';

47

48 std::cout << '\n';

49

50 }

The only change to the previous program coutUnsynchronized.cpp is that std::cout is wrapped in a
std::osyncstream (line 16). To use the std::osyncstream, I add the header <syncstream>. When the
std::osyncstream goes out of scope in line 18, the characters are transferred, and std::cout is flushed.
It is worth mentioning that the std::cout calls in the main program do not introduce a data race and,
therefore, need not be synchronized.

Because I use the syncStream declared on line 17 only once, a temporary object may be more
appropriate. The following code snippet presents the modified call operator.

void operator()() {

for (int i = 1; i <= 3; ++i) {

// begin work

std::this_thread::sleep_for(std::chrono::milliseconds(200));

// end work

std::osyncstream(std::cout) << name << ": " << "Work " << i << " done !!!"

<< '\n';

}

}

std::basic_osyncstream syncStream offers two interesting member functions.

• syncStream.emit() emits all buffered output and executes all pending flushes.

• syncStream.get_wrapped() returns a pointer to the wrapped buffer.

Additionally, the flag std::flush_emit allows you to flush the buffer of the synchronized output
stream explicitly.

Concurrency 530

1 void operator()() {

2 std::osyncstream syncStream(std::cout);

3 for (int i = 1; i <= 3; ++i) {

4 // begin work

5 std::this_thread::sleep_for(std::chrono::milliseconds(200));

6 // end work

7 syncStream << name << ": " << "Work " << i << " done !!!"

8 << '\n' << std::flush_emit;

9 }

10 }

The modified call operator produces the same output as the previous one. This time, the synchronized
output stream is an lvalue and flushes its content explicitly (line 8).

cppreference.com⁴² shows how you can sequence the output of different output streams with the
get_wrapped member function.

Sequence output

// sequenceOutput.cpp

#include <syncstream>

#include <iostream>

int main() {

std::osyncstream bout1(std::cout);

bout1 << "Hello, ";

{

std::osyncstream(bout1.get_wrapped()) << "Goodbye, " << "Planet!" << '\n';

} // emits the contents of the temporary buffer

bout1 << "World!" << '\n';

} // emits the contents of bout1

Synchronized access of std::cout

⁴²https://en.cppreference.com/w/cpp/io/basic_osyncstream/get_wrapped

https://en.cppreference.com/w/cpp/io/basic_osyncstream/get_wrapped
https://en.cppreference.com/w/cpp/io/basic_osyncstream/get_wrapped

Concurrency 531

Distilled Information
• Although std::cout is thread safe, youmay get an interleaving of output operations
when threads concurrently write to std::cout. This is only a visual issue but not a
data race.

• C++20 supports synchronized output streams. They accumulate output in an inter-
nal buffer and write their content in an atomic step. Consequently, no interleaving
of output operations happens.

7. Case Studies
After providing the theory to C++20, I now apply the theory in practice and provide you with a few
case studies.

The ranges library are great tool to implement more convenient functions. In the section A Flavor
of Python, I start an experiment and implement Python’s 2 filter, map, and list comprehension

functions using the ranges library.

The section on coroutines presented three coroutines, based on co_return, co_yield, and co_await. I
use these coroutines as a starting point for further experiments to deepen our understanding of the
challenging control-flow of coroutines. In section variations of futures, I implement a lazy future and
a future based on the future in section co_return. Section modification and generalization of threads
improves the generator from section co_return, and, finally, section various job workflows discusses
the job workflow, started in the section about co_await.

When youwant to synchronize threadsmore than once, you can use condition variables, std::atomic_-
flag, std::atomic<bool>, or semaphores. In the section fast synchronization of threads, I want to
answer which variant is the fastest?

Case Studies 533

7.1 A Flavor of Python

Cippi starts the workflow

The programming language Python¹ has the convenient functions filter and map.

• filter: applies a predicate to all elements of an iterable and returns those elements for which
the predicate returns true

• map: applies a function to all elements of an iterable and returns a new iterable with the
transformed elements

An iterable in C++ would be a type that you could use in a range-based for loop.

Furthermore, Python lets you combine both functions in a list comprehension.

• list comprehension: applies a filter and map phase to an iterable and returns a new iterable

My challenge is: I want to implement Python2-like functions filter, map, and list comprehension in
C++20 using the ranges library.

7.1.1 filter

Python’s filter function has a corresponding ranges function.

¹https://www.python.org/

https://www.python.org/
https://www.python.org/

Case Studies 534

Python’s filter function in C++

1 // filterRanges.cpp

2

3 #include <iostream>

4 #include <numeric>

5 #include <ranges>

6 #include <string>

7 #include <vector>

8

9 template <typename Func, typename Seq>

10 auto filter(Func func, const Seq& seq) {

11

12 typedef typename Seq::value_type value_type;

13

14 std::vector<value_type> result{};

15 for (auto i : seq | std::views::filter(func)) result.push_back(i);

16

17 return result;

18 }

19

20

21 int main() {

22

23 std::cout << '\n';

24

25 std::vector<int> myInts(50);

26 std::iota(myInts.begin(), myInts.end(), 1);

27 auto res = filter([](int i){ return (i % 3) == 0; }, myInts);

28 for (auto v: res) std::cout << v << " ";

29

30

31 std::vector<std::string> myStrings{"Only", "for", "testing", "purposes"};

32 auto res2 = filter([](const std::string& s){ return std::isupper(s[0]); },

33 myStrings);

34

35 std::cout << "\n\n";

36

37 for (auto word: res2) std::cout << word << '\n';

38

39 std::cout << '\n';

40

41 }

Before I write a few words about the program, let me show you the output.

Case Studies 535

The filter function applied

The filter function (line 9) should be easy to read. Line 12 detects the type of the underlying element.
I simply apply the callable func to each element of the sequence and return the elements in the
std::vector. Line 27 selects all numbers i from 1 to 50 for which (i % 3) == 0 holds. Only the
strings that start with an uppercase letter can pass the filter in line 32.

7.1.2 map

map applies a callable to each element of the input sequence.

Python’s map function in C++

1 // mapRanges.cpp

2

3 #include <iostream>

4 #include <list>

5 #include <ranges>

6 #include <string>

7 #include <vector>

8 #include <utility>

9

10

11 template <typename Func, typename Seq>

12 auto map(Func func, const Seq& seq) {

13

14 typedef typename Seq::value_type value_type;

15 using return_type = decltype(func(std::declval<value_type>()));

16

17 std::vector<return_type> result{};

18 for (auto i :seq | std::views::transform(func)) result.push_back(i);

19

20 return result;

21 }

22

23 int main() {

24

25 std::cout << '\n';

26

27 std::list<int> myInts{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

28 auto res = map([](int i){ return i * i; }, myInts);

Case Studies 536

29

30 for (auto v: res) std::cout << v << " ";

31

32 std::cout << "\n\n";

33

34 std::vector<std::string> myStrings{"Only", "for", "testing", "purposes"};

35 auto res2 = map([](const std::string& s){ return std::make_pair(s.size(), s); },

36 myStrings);

37

38 for (auto p: res2) std::cout << "(" << p.first << ", " << p.second << ") " ;

39

40 std::cout << "\n\n";

41

42 }

Line 15 in the definition of the map function is quite interesting. The expression decltype(func(

std::declval<value_type>())) deduces the return_type. The return_type is the type to which all
input sequence elements are transformed if the function func is applied to them. std::declval<value_-
type>() returns an rvalue reference that decltype can use to deduce the type. That means the call
map([](int i){ return i * i; }, myInts) (line 28) maps each element of myInt to its square, and
the call map([](const std::string& s){ return std::make_pair(s.size(), s); }, myStrings)maps
each string of myStrings to a pair. The first element of each pair is the length of the string.

The map function applied

7.1.3 List Comprehension

The program listComprehensionRanges.cpp has a simplified version of Python’s list-comprehension
algorithm.

map applies a callable to each element of the input sequence.

Case Studies 537

A simplified variant of Python’s list comprehension in C++
1 // listComprehensionRanges.cpp

2

3 #include <algorithm>

4 #include <cctype>

5 #include <functional>

6 #include <iostream>

7 #include <ranges>

8 #include <string>

9 #include <vector>

10 #include <utility>

11

12 template <typename T>

13 struct AlwaysTrue {

14 constexpr bool operator()(const T&) const {

15 return true;

16 }

17 };

18

19 template <typename Map, typename Seq, typename Filt = AlwaysTrue<

20 typename Seq::value_type>>

21 auto mapFilter(Map map, Seq seq, Filt filt = Filt()) {

22

23 typedef typename Seq::value_type value_type;

24 using return_type = decltype(map(std::declval<value_type>()));

25

26 std::vector<return_type> result{};

27 for (auto i :seq | std::views::filter(filt)

28 | std::views::transform(map)) result.push_back(i);

29 return result;

30 }

31

32 int main() {

33

34 std::cout << '\n';

35

36 std::vector myInts{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

37

38 auto res = mapFilter([](int i){ return i * i; }, myInts);

39 for (auto v: res) std::cout << v << " ";

40

41 std::cout << "\n\n";

42

43 res = mapFilter([](int i){ return i * i; }, myInts,

44 [](auto i){ return i % 2 == 1; });

Case Studies 538

45 for (auto v: res) std::cout << v << " ";

46

47 std::cout << "\n\n";

48

49 std::vector<std::string> myStrings{"Only", "for", "testing", "purposes"};

50 auto res2 = mapFilter([](const std::string& s){

51 return std::make_pair(s.size(), s);

52 }, myStrings);

53 for (auto p: res2) std::cout << "(" << p.first << ", " << p.second << ") " ;

54

55 std::cout << "\n\n";

56

57 myStrings = {"Only", "for", "testing", "purposes"};

58 res2 = mapFilter([](const std::string& s){

59 return std::make_pair(s.size(), s);

60 }, myStrings,

61 [](const std::string& word){ return std::isupper(word[0]); });

62

63 for (auto p: res2) std::cout << "(" << p.first << ", " << p.second << ") " ;

64

65 std::cout << "\n\n";

66

67 }

The default predicate that the filter function applies (line 19) always returns true (line 12). Always
true means that the function mapFilter simply behaves by default as a map function. Consequently,
the mapFilter function behaves in lines 37 and 49 as does the previous map function. Lines 42 and 55
apply both functions map and filter in one call.

Both functions map and filter applied

Case Studies 539

7.2 Variations of Futures

Cippi starts the workflow

Before I create variations of the future from section co_return, we should understand its control flow.
Comments make the control flow transparent. Additionally, I provide a link to the presented programs
on online compilers.

Control flow of an eager future

1 // eagerFutureWithComments.cpp

2

3 #include <coroutine>

4 #include <iostream>

5 #include <memory>

6

7 template<typename T>

8 struct MyFuture {

9 std::shared_ptr<T> value;

10 MyFuture(std::shared_ptr<T> p): value(p) {

11 std::cout << " MyFuture::MyFuture" << '\n';

12 }

13 ~MyFuture() {

14 std::cout << " MyFuture::~MyFuture" << '\n';

15 }

16 T get() {

17 std::cout << " MyFuture::get" << '\n';

18 return *value;

19 }

20

21 struct promise_type {

22 std::shared_ptr<T> ptr = std::make_shared<T>();

23 promise_type() {

24 std::cout << " promise_type::promise_type" << '\n';

Case Studies 540

25 }

26 ~promise_type() {

27 std::cout << " promise_type::~promise_type" << '\n';

28 }

29 MyFuture<T> get_return_object() {

30 std::cout << " promise_type::get_return_object" << '\n';

31 return ptr;

32 }

33 void return_value(T v) {

34 std::cout << " promise_type::return_value" << '\n';

35 *ptr = v;

36 }

37 std::suspend_never initial_suspend() {

38 std::cout << " promise_type::initial_suspend" << '\n';

39 return {};

40 }

41 std::suspend_never final_suspend() noexcept {

42 std::cout << " promise_type::final_suspend" << '\n';

43 return {};

44 }

45 void unhandled_exception() {

46 std::exit(1);

47 }

48 };

49 };

50

51 MyFuture<int> createFuture() {

52 std::cout << "createFuture" << '\n';

53 co_return 2021;

54 }

55

56 int main() {

57

58 std::cout << '\n';

59

60 auto fut = createFuture();

61 auto res = fut.get();

62 std::cout << "res: " << res << '\n';

63

64 std::cout << '\n';

65

66 }

The call createFuture (line 60) causes the creation of the instance of MyFuture (line 59). Before

Case Studies 541

MyFuture’s constructor call (line 10) is completed, the promise promise_type is created, executed,
and destroyed (lines 20 - 48). The promise uses in each step of its control flow the awaitable
std::suspend_never (lines 36 and 40) and, hence, never pauses. To save the result of the promise
for the later fut.get() call (line 60), it has to be allocated. Furthermore, the used std::shared_ptrs
ensure (lines 9 and 21) that the program does not cause a memory leak. As a local, fut goes out of
scope in line 65, and the C++ run time calls its destructor.

You can try out the program on the Compiler Explorer².

An eager future

The presented coroutine runs immediately and is, therefore, eager. Furthermore, the coroutine runs
in the thread of the caller.

Let’s make the coroutine lazy.

7.2.1 A Lazy Future

A lazy future is a future that only runs when asked for the value. Let’s see what I have to change in
the eager coroutine, presented in eagerFutureWithComments.cpp, to make it lazy.

Control flow of a lazy future

1 // lazyFuture.cpp

2

3 #include <coroutine>

4 #include <iostream>

5 #include <memory>

6

7 template<typename T>

8 struct MyFuture {

9 struct promise_type;

²https://godbolt.org/z/Y9naEx

https://godbolt.org/z/Y9naEx
https://godbolt.org/z/Y9naEx

Case Studies 542

10 using handle_type = std::coroutine_handle<promise_type>;

11

12 handle_type coro;

13

14 MyFuture(handle_type h): coro(h) {

15 std::cout << " MyFuture::MyFuture" << '\n';

16 }

17 ~MyFuture() {

18 std::cout << " MyFuture::~MyFuture" << '\n';

19 if (coro) coro.destroy();

20 }

21

22 T get() {

23 std::cout << " MyFuture::get" << '\n';

24 coro.resume();

25 return coro.promise().result;

26 }

27

28 struct promise_type {

29 T result;

30 promise_type() {

31 std::cout << " promise_type::promise_type" << '\n';

32 }

33 ~promise_type() {

34 std::cout << " promise_type::~promise_type" << '\n';

35 }

36 auto get_return_object() {

37 std::cout << " promise_type::get_return_object" << '\n';

38 return MyFuture{handle_type::from_promise(*this)};

39 }

40 void return_value(T v) {

41 std::cout << " promise_type::return_value" << '\n';

42 result = v;

43 }

44 std::suspend_always initial_suspend() {

45 std::cout << " promise_type::initial_suspend" << '\n';

46 return {};

47 }

48 std::suspend_always final_suspend() noexcept {

49 std::cout << " promise_type::final_suspend" << '\n';

50 return {};

51 }

52 void unhandled_exception() {

53 std::exit(1);

54 }

Case Studies 543

55 };

56 };

57

58 MyFuture<int> createFuture() {

59 std::cout << "createFuture" << '\n';

60 co_return 2021;

61 }

62

63 int main() {

64

65 std::cout << '\n';

66

67 auto fut = createFuture();

68 auto res = fut.get();

69 std::cout << "res: " << res << '\n';

70

71 std::cout << '\n';

72

73 }

Let’s first study the promise. The promise always suspends at the beginning (line 44) and at the end
(line 48). Furthermore, the member function get_return_object (line 36) creates the return object
that is returned to the caller of the coroutine createFuture (line 58). The future MyFuture is more
interesting. It has a handle coro (line 12) to the promise. MyFuture uses the handle to manage the
promise. It resumes the promise (line 24), asks the promise for the result (line 25), and finally destroys
it (line 19). The resumption of the coroutine is necessary because it never runs automatically (line 44).
When the client invokes fut.get() (line 68) to ask for the result of the future, it implicitly resumes
the promise (line 24).

You can try out the program on the Compiler Explorer³.

³https://godbolt.org/z/EejWcj

https://godbolt.org/z/EejWcj
https://godbolt.org/z/EejWcj

Case Studies 544

A lazy future

What happens if the client is not interested in the result of the future? Let’s try it out.

The client does not resume the coroutine

int main() {

std::cout << '\n';

auto fut = createFuture();

// auto res = fut.get();

// std::cout << "res: " << res << '\n';

std::cout << '\n';

}

As youmay guess, the promise never runs, and themember functions return_value and final_suspend
are not executed.

A lazy future that is not started

Case Studies 545

Lifetime Challenges of Coroutines
One of the challenges of dealing with coroutines is handling the lifetime of the coroutine.
In the previous program eagerFutureWithComments.cpp, I stored the coroutine result in a
std::shared_ptr. This is critical because the coroutine is executed eagerly.

In this program lazyFuture.cpp, the call final_suspend always suspends (line 48):
std::suspend_always final_suspend(). Consequently, the promise outlives the client, and
a std::shared_ptr is not necessary anymore. Returning std::suspend_never from the
function final_suspend would cause, in this case, undefined behavior because the client
would outlive the promise. Hence, the lifetime of the result ends, before the client asks for
it.

Let’s vary the coroutine further and run the promise in a separate thread.

7.2.2 Execution on Another Thread

The coroutine is fully suspended before entering the coroutine createFuture (line 67) because the
member function initial_suspend returns std::suspend_always (line 52). Consequently, the promise
can run on another thread.

Executing the promise on another thread

1 // lazyFutureOnOtherThread.cpp

2

3 #include <coroutine>

4 #include <iostream>

5 #include <memory>

6 #include <thread>

7

8 template<typename T>

9 struct MyFuture {

10 struct promise_type;

11 using handle_type = std::coroutine_handle<promise_type>;

12 handle_type coro;

13

14 MyFuture(handle_type h): coro(h) {}

15 ~MyFuture() {

16 if (coro) coro.destroy();

17 }

18

19 T get() {

20 std::cout << " MyFuture::get: "

21 << "std::this_thread::get_id(): "

22 << std::this_thread::get_id() << '\n';

23

Case Studies 546

24 std::thread t([this] { coro.resume(); });

25 t.join();

26 return coro.promise().result;

27 }

28

29 struct promise_type {

30 promise_type(){

31 std::cout << " promise_type::promise_type: "

32 << "std::this_thread::get_id(): "

33 << std::this_thread::get_id() << '\n';

34 }

35 ~promise_type(){

36 std::cout << " promise_type::~promise_type: "

37 << "std::this_thread::get_id(): "

38 << std::this_thread::get_id() << '\n';

39 }

40

41 T result;

42 auto get_return_object() {

43 return MyFuture{handle_type::from_promise(*this)};

44 }

45 void return_value(T v) {

46 std::cout << " promise_type::return_value: "

47 << "std::this_thread::get_id(): "

48 << std::this_thread::get_id() << '\n';

49 std::cout << v << std::endl;

50 result = v;

51 }

52 std::suspend_always initial_suspend() {

53 return {};

54 }

55 std::suspend_always final_suspend() noexcept {

56 std::cout << " promise_type::final_suspend: "

57 << "std::this_thread::get_id(): "

58 << std::this_thread::get_id() << '\n';

59 return {};

60 }

61 void unhandled_exception() {

62 std::exit(1);

63 }

64 };

65 };

66

67 MyFuture<int> createFuture() {

68 co_return 2021;

Case Studies 547

69 }

70

71 int main() {

72

73 std::cout << '\n';

74

75 std::cout << "main: "

76 << "std::this_thread::get_id(): "

77 << std::this_thread::get_id() << '\n';

78

79 auto fut = createFuture();

80 auto res = fut.get();

81 std::cout << "res: " << res << '\n';

82

83 std::cout << '\n';

84

85 }

I added a few comments to the program that show the id of the running thread. The program
lazyFutureOnOtherThread.cpp is quite similar to the previous program lazyFuture.cpp. The main
difference is the member function get (line 19). The call std::thread t([this] { coro.resume();

}); (line 24) resumes the coroutine on another thread.

You can try out the program on the Wandbox⁴ online compiler.

Execution on another thread

I want to add a few additional remarks about the member function get. It is crucial that the promise,
resumed in a separate thread and finishes before it returns coro.promise().result.

⁴https://wandbox.org/permlink/jFVVj80Gxu6bnNkc

https://wandbox.org/permlink/jFVVj80Gxu6bnNkc
https://wandbox.org/permlink/jFVVj80Gxu6bnNkc

Case Studies 548

The member function get using std::thread

T get() {

std::thread t([this] { coro.resume(); });

t.join();

return coro.promise().result;

}

Where I join the thread t after the call return coro.promise().result, the program would have
undefined behavior. In the following implementation of the function get, I use a std::jthread. Since
std::jthread automatically joins when it goes out of scope. This is too late.

The member function get using std::jthread

T get() {

std::jthread t([this] { coro.resume(); });

return coro.promise().result;

}

In this case, the client likely gets its result before the promise prepares it using the member function
return_value. Now, result has an arbitrary value, and therefore so does res.

Execution on another thread

There are other possibilities to ensure that the thread is done before the return call.

• Create a std::jthread in its scope.

std::jthread has its own scope

T get() {

{

std::jthread t([this] { coro.resume(); });

}

return coro.promise().result;

}

• Make std::jthread a temporary object

Case Studies 549

std::jthread as a temporary

T get() {

std::jthread([this] { coro.resume(); });

return coro.promise().result;

}

In particular, I don’t like the last solution because it may take you a few seconds to recognize that I
just called the constructor of std::jthread.

Case Studies 550

7.3 Modification and Generalization of a Generator

Cippi handles a data stream

Before I modify and generalize the generator for an infinite data stream, I want to present it as a
starting point of our journey. I intentionally put many output operations in the source code and only
ask for three values. This simplification and visualization should help to understand the control flow.

Generator generating an infinite data stream

1 // infiniteDataStreamComments.cpp

2

3 #include <coroutine>

4 #include <memory>

5 #include <iostream>

6

7 template<typename T>

8 struct Generator {

9

10 struct promise_type;

11 using handle_type = std::coroutine_handle<promise_type>;

12

13 Generator(handle_type h): coro(h) {

14 std::cout << " Generator::Generator" << '\n';

15 }

16 handle_type coro;

17

Case Studies 551

18 ~Generator() {

19 std::cout << " Generator::~Generator" << '\n';

20 if (coro) coro.destroy();

21 }

22 Generator(const Generator&) = delete;

23 Generator& operator = (const Generator&) = delete;

24 Generator(Generator&& oth): coro(oth.coro) {

25 oth.coro = nullptr;

26 }

27 Generator& operator = (Generator&& oth) {

28 coro = oth.coro;

29 oth.coro = nullptr;

30 return *this;

31 }

32 int getNextValue() {

33 std::cout << " Generator::getNextValue" << '\n';

34 coro.resume();

35 return coro.promise().current_value;

36 }

37 struct promise_type {

38 promise_type() {

39 std::cout << " promise_type::promise_type" << '\n';

40 }

41

42 ~promise_type() {

43 std::cout << " promise_type::~promise_type" << '\n';

44 }

45

46 std::suspend_always initial_suspend() {

47 std::cout << " promise_type::initial_suspend" << '\n';

48 return {};

49 }

50 std::suspend_always final_suspend() noexcept {

51 std::cout << " promise_type::final_suspend" << '\n';

52 return {};

53 }

54 auto get_return_object() {

55 std::cout << " promise_type::get_return_object" << '\n';

56 return Generator{handle_type::from_promise(*this)};

57 }

58

59 std::suspend_always yield_value(int value) {

60 std::cout << " promise_type::yield_value" << '\n';

61 current_value = value;

62 return {};

Case Studies 552

63 }

64 void return_void() {}

65 void unhandled_exception() {

66 std::exit(1);

67 }

68

69 T current_value;

70 };

71

72 };

73

74 Generator<int> getNext(int start = 10, int step = 10) {

75 std::cout << " getNext: start" << '\n';

76 auto value = start;

77 while (true) {

78 std::cout << " getNext: before co_yield" << '\n';

79 co_yield value;

80 std::cout << " getNext: after co_yield" << '\n';

81 value += step;

82 }

83 }

84

85 int main() {

86

87 auto gen = getNext();

88 for (int i = 0; i <= 2; ++i) {

89 auto val = gen.getNextValue();

90 std::cout << "main: " << val << '\n';

91 }

92

93 }

Executing the program on the Compiler Explorer⁵ makes the control flow transparent.

⁵https://godbolt.org/z/cTW9Gq

https://godbolt.org/z/cTW9Gq
https://godbolt.org/z/cTW9Gq

Case Studies 553

Generator generating an infinite data stream

Let’s analyze the control flow.

The call getNext() (line 87) triggers the creation of the Generator<int>. First, the promise_type (line 38)
is created, and the following get_return_object call (line 54) creates the generator (line 56) and stores
it in a local variable. The result of this call is returned to the caller when the coroutine is suspended
the first time. The initial suspension happens immediately (line 48). Because the member function
call initial_suspend returns an awaitable std::suspend_always (line 48), the control flow continues
with the coroutine getNext until the instruction co_yield value (line 79). This call is mapped to the
call yield_value(int value) (line 59), and the current value is prepared current_value = value (line
61). The member function yield_value(int value) returns the awaitable std::suspend_always (line
59). Consequently, the execution of the coroutine pauses and the control flow goes back to the main

function, and the for loop starts (line 89). The call gen.getNextValue() (line 89) starts the execution
of the coroutine by resuming the coroutine, using coro.resume() (line 34). Further, the function
getNextValue() returns the current value that was prepared using the previously invoked member
function yield_value(int value) (line 59). Finally, the generated number is displayed in line 90, and
the for loop continues. In the end, the generator and the promise are destructed.

After this detailed analysis, I would like to make a first modification of the control flow.

Case Studies 554

7.3.1 Modifications

The snippets and line numbers are based on the previous program infiniteDataStreamComments.cpp.
I only show the modifications.

7.3.1.1 The Coroutine is Not Resumed

When I disable the resumption of the coroutine (gen.getNextValue() in line 89) and the display of its
value (line 90), the coroutine pauses immediately.

Not resuming the coroutine

int main() {

auto gen = getNext();

for (int i = 0; i <= 2; ++i) {

// auto val = gen.getNextValue();

// std::cout << "main: " << val << '\n';

}

}

The coroutine never runs. Consequently, the generator and its promise are created and destroyed.

Not resuming the coroutine

7.3.1.2 initial_suspend Never Suspends

In the program, the member function initial_suspend returns the awaitable std::suspend_always

(line 46). As its name suggests, the awaitable std::suspends_always causes the coroutine to pause
immediately. Let me return std::suspend_never instead of std::suspend_always.

Case Studies 555

initial_suspend suspends never

std::suspend_never initial_suspend() {

std::cout << " promise_type::initial_suspend" << '\n';

return {};

}

In this case, the coroutine runs immediately and pauses when the function yield_value (line 59)
is invoked. A subsequent call gen.getNextValue() (line 89), resumes the coroutine and triggers the
execution of the member function yield_value once more. The result is that the starting value 10 is
ignored, and the coroutine returns the values 20, 30, and 40.

Don’t Resuming the Coroutine

7.3.1.3 yield_value Never Suspends

The member function yield_value (line 59) is triggered by the call co_yield value and prepares
the current_value (line 61). The function returns the awaitable std::suspend_always (line 62) and,

Case Studies 556

therefore, pauses the coroutine. Consequently, a subsequent call gen.getNextValue (line 89) has to
resume the coroutine. When I change the return value of the member function yield_value to
std::suspend_never, let me see what happens.

yield_value never suspends

std::suspend_never yield_value(int value) {

std::cout << " promise_type::yield_value" << '\n';

current_value = value;

return {};

}

As you may guess, the while loop (lines 77 - 82) runs forever, and the coroutine does not return
anything.

yield_value Never Suspends

It is straightforward to restructure the generator infiniteDataStreamComments.cpp so that it produces
a finite number of values.

Case Studies 557

7.3.2 Generalization

You may wonder why I never used the full generic potential of Generator. Let me adjust its
implementation to produce the successive elements of an arbitrary container of the Standard Template
Library.

Generator successively returning each element

1 // coroutineGetElements.cpp

2

3 #include <coroutine>

4 #include <memory>

5 #include <iostream>

6 #include <string>

7 #include <vector>

8

9 template<typename T>

10 struct Generator {

11

12 struct promise_type;

13 using handle_type = std::coroutine_handle<promise_type>;

14

15 Generator(handle_type h): coro(h) {}

16

17 handle_type coro;

18

19 ~Generator() {

20 if (coro) coro.destroy();

21 }

22 Generator(const Generator&) = delete;

23 Generator& operator = (const Generator&) = delete;

24 Generator(Generator&& oth): coro(oth.coro) {

25 oth.coro = nullptr;

26 }

27 Generator& operator = (Generator&& oth) {

28 coro = oth.coro;

29 oth.coro = nullptr;

30 return *this;

31 }

32 T getNextValue() {

33 coro.resume();

34 return coro.promise().current_value;

35 }

36 struct promise_type {

37 promise_type() {}

38

Case Studies 558

39 ~promise_type() {}

40

41 std::suspend_always initial_suspend() {

42 return {};

43 }

44 std::suspend_always final_suspend() noexcept {

45 return {};

46 }

47 auto get_return_object() {

48 return Generator{handle_type::from_promise(*this)};

49 }

50

51 std::suspend_always yield_value(const T value) {

52 current_value = value;

53 return {};

54 }

55 void return_void() {}

56 void unhandled_exception() {

57 std::exit(1);

58 }

59

60 T current_value;

61 };

62

63 };

64

65 template <typename Cont>

66 Generator<typename Cont::value_type> getNext(Cont cont) {

67 for (auto c: cont) co_yield c;

68 }

69

70 int main() {

71

72 std::cout << '\n';

73

74 std::string helloWorld = "Hello world";

75 auto gen = getNext(helloWorld);

76 for (int i = 0; i < helloWorld.size(); ++i) {

77 std::cout << gen.getNextValue() << " ";

78 }

79

80 std::cout << "\n\n";

81

82 auto gen2 = getNext(helloWorld);

83 for (int i = 0; i < 5 ; ++i) {

Case Studies 559

84 std::cout << gen2.getNextValue() << " ";

85 }

86

87 std::cout << "\n\n";

88

89 std::vector myVec{1, 2, 3, 4 ,5};

90 auto gen3 = getNext(myVec);

91 for (int i = 0; i < myVec.size() ; ++i) {

92 std::cout << gen3.getNextValue() << " ";

93 }

94

95 std::cout << '\n';

96

97 }

In this example, the generator is instantiated and used three times. In the first two cases, gen (line 76)
and gen2 (line 83) are initialized with std::string helloWorld, while gen3 uses a std::vector<int>

(line 91). The output of the program should not be surprising. Line 78 returns all characters of the
string helloWorld successively, line 85 only the first five characters, and line 93 the elements of the
std::vector<int>.

You can try out the program on the Compiler Explorer⁶.

A generator successively returning each element

To make it short. The implementation of the Generator<T> is almost identical to the previous one. The
crucial difference with the previous program is the coroutine getNext.

getNext

template <typename Cont>

Generator<typename Cont::value_type> getNext(Cont cont) {

for (auto c: cont) co_yield c;

}

getNext is a function template that takes a container as an argument and iterates in a range-based
for loop through all container elements. After each iteration, the function template pauses. The
return type Generator<typename Cont::value_type> may look surprising to you. Cont::value_type is

⁶https://godbolt.org/z/j9znva

https://godbolt.org/z/j9znva
https://godbolt.org/z/j9znva

Case Studies 560

a dependent template parameter for which the parser needs a hint. By default, the compiler assumes
a non-type if it could be interpreted as a type or a non-type. For this reason, I have to put typename in
front of Cont::value_type.

The generalized coroutine still has a few flaws. In the final iteration, I fix these flaws and extend its
interface so that it can be used in a range-based for-loop.

7.3.3 Iterator Protocol

A generator supporting the iterator protocol

1 // coroutineRange.cpp

2

3 #include <concepts>

4 #include <coroutine>

5 #include <exception>

6 #include <iostream>

7 #include <string>

8 #include <vector>

9

10

11 template<typename T>

12 struct Generator {

13

14 struct promise_type;

15 using handle_type = std::coroutine_handle<promise_type>;

16

17

18 Generator(handle_type h) : coro{h} { }

19 handle_type coro;

20 ~Generator() { if (coro) coro.destroy(); }

21

22 Generator(const Generator&) = delete;

23 Generator& operator=(const Generator&) = delete;

24 Generator(Generator&& oth): coro(oth.coro) {

25 oth.coro = nullptr;

26 }

27 Generator& operator = (Generator&& oth) {

28 coro = oth.coro;

29 oth.coro = nullptr;

30 return *this;

31 }

32

33 struct promise_type {

34 T coroValue{};

Case Studies 561

35

36 std::suspend_always yield_value(const T val) {

37 coroValue = val;

38 return {};

39 }

40

41 auto get_return_object() {

42 return std::coroutine_handle<promise_type>::from_promise(*this);

43 }

44 std::suspend_always initial_suspend() { return {}; }

45 void return_void() { }

46 void unhandled_exception() { std::terminate(); }

47 std::suspend_always final_suspend() noexcept { return {}; }

48 };

49

50 struct Iterator {

51 handle_type coro;

52 Iterator(auto p) : coro{p} { }

53 void getNext() {

54 if (coro) {

55 coro.resume();

56 if (coro.done()) {

57 coro = nullptr;

58 }

59 }

60 }

61 T operator*() const {

62 return coro.promise().coroValue;

63 }

64 Iterator operator++() {

65 getNext();

66 return *this;

67 }

68 bool operator== (const Iterator& i) const = default;

69 };

70

71

72 Iterator begin() const {

73 if (!coro || coro.done()) {

74 return Iterator{nullptr};

75 }

76 Iterator itor{coro};

77 itor.getNext();

78 return itor;

79 }

Case Studies 562

80

81 Iterator end() const {

82 return Iterator{nullptr};

83 }

84 };

85

86 template <std::ranges::forward_range Cont>

87 Generator<typename Cont::value_type> getCoroutine(Cont cont) {

88

89 for (const auto& c: cont){

90 co_yield c;

91 }

92

93 }

94

95 int main() {

96

97 std::string helloWorld = "Hello world";

98 auto genChar = getCoroutine(helloWorld);

99 for (const auto& val : genChar) {

100 std::cout << val << " ";

101 }

102

103 std::cout << "\n\n";

104

105 std::vector myVec{1, 2, 3, 4, 5};

106 auto genNumbers = getCoroutine(myVec);

107 for (const auto& val : genNumbers) {

108 std::cout << val << " ";

109 }

110 std::cout << "\n\n";

111

112 }

Thanks to the member functions begin (line 72) und end (line 81), Generator supports the iterator
protocol. Bothmember functions return iterator objects. begin return the first element of the container
and end the end iterator Iterator{nullptr}. To get the first value, begin resumes one time the
coroutine by calling getNext() (line 77),Iterator is a minimal iterator and support the three essential
member functions operator*(line 61), operator++ (line 64), and operator== (line 68).

• operator* returns the current value

• operator++ increments the current value

• operator!= compares the current value with the end iterator. The compiler generates operator!=
from operator==.

Case Studies 563

The Generator in the program coroutineRange.cpp is clearly more robust than the previous one in
the program coroutineGetElements.cpp. This robustness is mainly due to the Iterator. The member
function getNext (line 53) checks if the handle coro represents a coroutine line 54. Additionally,
the member function begin (line 72) guarantees that the coroutine is only resumed if not completed:
coro.done() (line 73). To resume an already completed coroutine is undefined behavior.

Resuming a completed coroutine

1 std::string helloWorld = "Hello world";

2 auto genChar = getCoroutine(helloWorld);

3 for (const auto& val : genChar) {

4 std::cout << val << " ";

5 }

6

7 for (const auto& val : genChar) {

8 std::cout << val << " ";

9 }

Without the check coro.done() (line 73) in the program coroutineRange.cpp. The second range-based
for-loop (line 7) would trigger are resumption of the coroutine, and, therefore, undefined behavior.

The generic function getCoroutine (line 86) uses the concept std::ranges::forward_range.

Finally, here is the output of the program:

A generator supporting the iterator protocol

Case Studies 564

7.4 Various Job Workflows

Cippi digs the garden

Before I modify the workflow from section co_await, I want to make the awaiter workflow more
transparent.

7.4.1 The Transparent Awaiter Workflow

I added a few output messages to the program startJob.cpp.

Starting a job on request (including comments)

1 // startJobWithComments.cpp

2

3 #include <coroutine>

4 #include <iostream>

5

6 struct MySuspendAlways {

7 bool await_ready() const noexcept {

8 std::cout << " MySuspendAlways::await_ready" << '\n';

9 return false;

10 }

11 void await_suspend(std::coroutine_handle<>) const noexcept {

12 std::cout << " MySuspendAlways::await_suspend" << '\n';

13

Case Studies 565

14 }

15 void await_resume() const noexcept {

16 std::cout << " MySuspendAlways::await_resume" << '\n';

17 }

18 };

19

20 struct MySuspendNever {

21 bool await_ready() const noexcept {

22 std::cout << " MySuspendNever::await_ready" << '\n';

23 return true;

24 }

25 void await_suspend(std::coroutine_handle<>) const noexcept {

26 std::cout << " MySuspendNever::await_suspend" << '\n';

27

28 }

29 void await_resume() const noexcept {

30 std::cout << " MySuspendNever::await_resume" << '\n';

31 }

32 };

33

34 struct Job {

35 struct promise_type;

36 using handle_type = std::coroutine_handle<promise_type>;

37 handle_type coro;

38 Job(handle_type h): coro(h){}

39 ~Job() {

40 if (coro) coro.destroy();

41 }

42 void start() {

43 coro.resume();

44 }

45

46

47 struct promise_type {

48 auto get_return_object() {

49 return Job{handle_type::from_promise(*this)};

50 }

51 MySuspendAlways initial_suspend() {

52 std::cout << " Job prepared" << '\n';

53 return {};

54 }

55 MySuspendAlways final_suspend() noexcept {

56 std::cout << " Job finished" << '\n';

57 return {};

58 }

Case Studies 566

59 void return_void() {}

60 void unhandled_exception() {}

61

62 };

63 };

64

65 Job prepareJob() {

66 co_await MySuspendNever();

67 }

68

69 int main() {

70

71 std::cout << "Before job" << '\n';

72

73 auto job = prepareJob();

74 job.start();

75

76 std::cout << "After job" << '\n';

77

78 }

First of all, I replaced the predefined awaitables std::suspend_always and std::suspend_never with
awaitables MySuspendAlways (line 6) and MySuspendNever (line 20). I use them in lines 51, 55, and 66.
The awaitables mimic the behavior of the predefined awaitables but additionally write a comment.
Due to the use of std::cout, the member functions await_ready, await_suspend, and await_resume

cannot be declared as constexpr.

The screenshot of the program execution shows the control flow nicely, which you can directly
observe on the Compiler Explorer⁷.

⁷https://godbolt.org/z/T5rcE4

https://godbolt.org/z/T5rcE4
https://godbolt.org/z/T5rcE4

Case Studies 567

Starting a job on request (including comments)

The function initial_suspend (line 51) is executed at the beginning of the coroutine, and the
function final_suspend at its end (line 55). The call prepareJob() (line 73) triggers the creation of the
coroutine object, and the function call job.start() its resumption and, hence, completion (line 74).
Consequently, the members await_ready, await_suspend, and await_resume of MySuspendAlways are
executed. When you don’t resume the awaitable such as the coroutine object returned by the member
function final_suspend, the function await_resume is not processed. In contrast, the awaitable’s
MySuspendNever function is immediately ready because await_ready returns true and, hence, does
not suspend.

Thanks to the comments, you should have an elementary understanding of the awaiter workflow.
Now, it’s time to vary it.

7.4.2 Automatically Resuming the Awaiter

In the previous workflow, I explicitly started the job.

Explicitly starting the job

int main() {

std::cout << "Before job" << '\n';

auto job = prepareJob();

job.start();

std::cout << "After job" << '\n';

}

This explicit invoking of job.start()was necessary because await_ready in the awaitable MySuspendAlways
always returned false. Now let’s assume that await_ready can return true or false and the job is not

Case Studies 568

explicitly started. A short reminder: When await_ready returns true, the function await_resume is
directly invoked but not await_suspend.

Automatically Resuming the Awaiter

1 // startJobWithAutomaticResumption.cpp

2

3 #include <coroutine>

4 #include <functional>

5 #include <iostream>

6 #include <random>

7

8 std::random_device seed;

9 auto gen = std::bind_front(std::uniform_int_distribution<>(0,1),

10 std::default_random_engine(seed()));

11

12 struct MySuspendAlways {

13 bool await_ready() const noexcept {

14 std::cout << " MySuspendAlways::await_ready" << '\n';

15 return gen();

16 }

17 bool await_suspend(std::coroutine_handle<> handle) const noexcept {

18 std::cout << " MySuspendAlways::await_suspend" << '\n';

19 handle.resume();

20 return true;

21

22 }

23 void await_resume() const noexcept {

24 std::cout << " MySuspendAlways::await_resume" << '\n';

25 }

26 };

27

28 struct Job {

29 struct promise_type;

30 using handle_type = std::coroutine_handle<promise_type>;

31 handle_type coro;

32 Job(handle_type h): coro(h){}

33 ~Job() {

34 if (coro) coro.destroy();

35 }

36

37 struct promise_type {

38 auto get_return_object() {

39 return Job{handle_type::from_promise(*this)};

40 }

41 MySuspendAlways initial_suspend() {

Case Studies 569

42 std::cout << " Job prepared" << '\n';

43 return {};

44 }

45 std::suspend_always final_suspend() noexcept {

46 std::cout << " Job finished" << '\n';

47 return {};

48 }

49 void return_void() {}

50 void unhandled_exception() {}

51

52 };

53 };

54

55 Job performJob() {

56 co_await std::suspend_never();

57 }

58

59 int main() {

60

61 std::cout << "Before jobs" << '\n';

62

63 performJob();

64 performJob();

65 performJob();

66 performJob();

67

68 std::cout << "After jobs" << '\n';

69

70 }

First of all, the coroutine is now called performJob and runs automatically. gen (line 9) is a random
number generator for the numbers 0 or 1. It uses for its job the default random engine, initialized with
the seed. Thanks to std::bind_front, I can bind it together with the std::uniform_int_distribution
to get a callable which, when used, gives me a random number 0 or 1.

I removed in this example the awaitables with predefined awaitables from the C++ standard, except
the awaitable MySuspendAlways as the return type of the member function initial_suspend (line 41).
await_ready (line 13) returns a boolean. If the boolean is true, the control flow jumps directly to
the await_resume member function (line 23), if false, the coroutine is immediately suspended and
the function await_suspend is executed (line 17). The function await_suspend gets the handle to the
coroutine and uses it to resume the coroutine (line 19). Instead of returning the value true, await_-
suspend can also return void.

The following screenshot shows: When await_ready returns true, the function await_resume is called,
when await_ready returns false, the function await_suspend is also called.

Case Studies 570

You can try out the program on the Compiler Explorer⁸.

Automatically Resuming the Awaiter

Let me improve the presented program more and resume the awaiter on a separate thread.

7.4.3 Automatically Resuming the Awaiter on a Separate Thread

The following program is based on the previous one.

⁸https://godbolt.org/z/8b1Y14

https://godbolt.org/z/8b1Y14
https://godbolt.org/z/8b1Y14

Case Studies 571

Automatically Resuming the Awaiter on a Seperate Thread
1 // startJobWithAutomaticResumptionOnThread.cpp

2

3 #include <coroutine>

4 #include <functional>

5 #include <iostream>

6 #include <random>

7 #include <thread>

8 #include <vector>

9

10 std::random_device seed;

11 auto gen = std::bind_front(std::uniform_int_distribution<>(0,1),

12 std::default_random_engine(seed()));

13

14 struct MyAwaitable {

15 std::jthread& outerThread;

16 bool await_ready() const noexcept {

17 auto res = gen();

18 if (res) std::cout << " (executed)" << '\n';

19 else std::cout << " (suspended)" << '\n';

20 return res;

21 }

22 void await_suspend(std::coroutine_handle<> h) {

23 outerThread = std::jthread([h] { h.resume(); });

24 }

25 void await_resume() {}

26 };

27

28

29 struct Job{

30 static inline int JobCounter{1};

31 Job() {

32 ++JobCounter;

33 }

34

35 struct promise_type {

36 int JobNumber{JobCounter};

37 Job get_return_object() { return {}; }

38 std::suspend_never initial_suspend() {

39 std::cout << " Job " << JobNumber << " prepared on thread "

40 << std::this_thread::get_id();

41 return {};

42 }

43 std::suspend_never final_suspend() noexcept {

44 std::cout << " Job " << JobNumber << " finished on thread "

Case Studies 572

45 << std::this_thread::get_id() << '\n';

46 return {};

47 }

48 void return_void() {}

49 void unhandled_exception() { }

50 };

51 };

52

53 Job performJob(std::jthread& out) {

54 co_await MyAwaitable{out};

55 }

56

57 int main() {

58

59 std::vector<std::jthread> threads(8);

60 for (auto& thr: threads) performJob(thr);

61

62 }

The main difference with the previous program is the new awaitable MyAwaitable, used in the
coroutine performJob (line 54). On the contrary, the coroutine object returned from the coroutine
performJob is straightforward. Essentially, its member functions initial_suspend (line 38) and
final_suspend (line 43) returns the predefined awaitable std::suspend_never. Additionally, both
functions show the JobNumber of the executed job and the thread ID on which it runs. The screenshot
shows which coroutine runs immediately and which one is suspended. Thanks to the thread id, you
can observe that suspended coroutines are resumed on a different thread.

You can try out the program on the Wandbox⁹.

⁹https://wandbox.org/permlink/skHgWKF0SYAwp8Dm

https://wandbox.org/permlink/skHgWKF0SYAwp8Dm
https://wandbox.org/permlink/skHgWKF0SYAwp8Dm

Case Studies 573

Automatically Resuming the Awaiter on a Separate Thread

Let me discuss the interesting control flow of the program. Line 59 creates eight default-constructed
threads, which the coroutine performJob (line 53) takes by reference. Further, the reference becomes
the argument for creating MyAwaitable{out} (line 54). Depending on the value of res (line 17), and,
therefore, the return value of the function await_ready, the awaitable continues (res is true) to run
or is suspended (res is false). In case MyAwaitable is suspended, the function await_suspend (line 22)
is executed. Thanks to the assignment of outerThread (line 23), it becomes a running thread. The
running threads must outlive the lifetime of the coroutine. For this reason, the threads have the scope
of the main function.

Case Studies 574

7.5 Fast Synchronization of Threads

Cippi plays ping-pong

The Reference PCs
You should take the performance numbers with a grain of salt. I’m not interested in
the exact number for each variation of the algorithms on Linux and Windows. I’m more
interested in getting a gut feeling about which algorithms may work and which may not.
I’m not comparing the absolute numbers of my Linux desktop with the numbers on my
Windows laptop, but I’m interested to know if some algorithms work better on Linux or
Windows.

When youwant to synchronize threadsmore than once, you can use condition variables, std::atomic_-
flag, std::atomic<bool>, or semaphores. In this section, I would like to answer the question: which
variant is the fastest.

To get comparable numbers, I implement a ping-pong game. One thread executes a ping function (or
ping thread for short), and the other thread a pong function (or pong thread for short). The ping thread
waits for the pong-thread notification and sends the notification back to the pong thread. The game
stops after 1,000,000 ball changes. I perform each game five times to get comparable performance
numbers.

Case Studies 575

About the Numbers
I made my performance test at the end of 2020 with the brand new Visual Studio compiler
19.28 because it already supported synchronization with atomics (std::atomic_flag and
std::atomic) and semaphores. Additionally, I compiled the examples with maximum
optimization (/Ox). The performance number should only give a rough idea of the relative
performance of the various ways to synchronize threads. If you want to have the exact
number on your platform, you have to repeat the tests.

Let me start the comparison with C++11.

7.5.1 Condition Variables

Multiple time synchronization with a condition variable

1 // pingPongConditionVariable.cpp

2

3 #include <condition_variable>

4 #include <iostream>

5 #include <atomic>

6 #include <thread>

7

8 bool dataReady{false};

9

10 std::mutex mutex_;

11 std::condition_variable condVar1;

12 std::condition_variable condVar2;

13

14 std::atomic<int> counter{};

15 constexpr int countlimit = 1'000'000;

16

17 void ping() {

18

19 while(counter <= countlimit) {

20 {

21 std::unique_lock<std::mutex> lck(mutex_);

22 condVar1.wait(lck, []{return dataReady == false;});

23 dataReady = true;

24 }

25 ++counter;

26 condVar2.notify_one();

27 }

28 }

29

30 void pong() {

Case Studies 576

31

32 while(counter <= countlimit) {

33 {

34 std::unique_lock<std::mutex> lck(mutex_);

35 condVar2.wait(lck, []{return dataReady == true;});

36 dataReady = false;

37 }

38 condVar1.notify_one();

39 }

40

41 }

42

43 int main(){

44

45 auto start = std::chrono::system_clock::now();

46

47 std::thread t1(ping);

48 std::thread t2(pong);

49

50 t1.join();

51 t2.join();

52

53 std::chrono::duration<double> dur = std::chrono::system_clock::now() - start;

54 std::cout << "Duration: " << dur.count() << " seconds" << '\n';

55 }

I use two condition variables in the program: condVar1 and condVar2. The ping thread waits for the
notification of condVar1 and sends its notification with condVar2. Variable dataReady protects against
spurious and lost wakeups. The ping-pong game ends when counter reaches the countlimit. The
notify_one calls (lines 26 and 38) and the counter are thread-safe and are, therefore, outside the critical
region.

Here are the numbers.

Case Studies 577

Multiple time synchronizations with condition variables

The average execution time is 0.52 seconds.

Porting this workflow to std::atomic_flag in C++20 is straightforward.

7.5.2 std::atomic_flag

Here is the same workflow using two atomic flags and then one.

7.5.2.1 Two Atomic Flags

In the following program, I replace the waiting on the condition variable with the waiting on the
atomic flag and the condition variable’s notification with the atomic-flag setting followed by the
notification.

Multiple time synchronization with two atomic flags

1 // pingPongAtomicFlags.cpp

2

3 #include <iostream>

4 #include <atomic>

5 #include <thread>

6

7 std::atomic_flag condAtomicFlag1{};

8 std::atomic_flag condAtomicFlag2{};

9

10 std::atomic<int> counter{};

11 constexpr int countlimit = 1'000'000;

12

Case Studies 578

13 void ping() {

14 while(counter <= countlimit) {

15 condAtomicFlag1.wait(false);

16 condAtomicFlag1.clear();

17

18 ++counter;

19

20 condAtomicFlag2.test_and_set();

21 condAtomicFlag2.notify_one();

22 }

23 }

24

25 void pong() {

26 while(counter <= countlimit) {

27 condAtomicFlag2.wait(false);

28 condAtomicFlag2.clear();

29

30 condAtomicFlag1.test_and_set();

31 condAtomicFlag1.notify_one();

32 }

33 }

34

35 int main() {

36

37 auto start = std::chrono::system_clock::now();

38

39 condAtomicFlag1.test_and_set();

40 std::thread t1(ping);

41 std::thread t2(pong);

42

43 t1.join();

44 t2.join();

45

46 std::chrono::duration<double> dur = std::chrono::system_clock::now() - start;

47 std::cout << "Duration: " << dur.count() << " seconds" << '\n';

48

49 }

A call condAtomicFlag1.wait(false) (line 15) blocks if the atomic flag’s value is false, and returns
if condAtomicFlag1 has the value true. The boolean value serves as a kind of predicate and must,
therefore, be set back to false (line 15). Before the notification (line 21) is sent to the pong thread,
condAtomicFlag1 is set to true (line 20). The initial setting of condAtomicFlag1 (line 39) to true starts
the game.

Thanks to std::atomic_flag, the game ends faster.

Case Studies 579

Multiple time synchronization with two atomic flags

On average, a game takes 0.32 seconds.

When you analyze the program, you may recognize that one atomic flag is sufficient for the workflow.

7.5.2.2 One Atomic Flag

Using one atomic flag makes the workflow easier to understand.

Multiple time synchronization with one atomic flag

1 // pingPongAtomicFlag.cpp

2

3 #include <iostream>

4 #include <atomic>

5 #include <thread>

6

7 std::atomic_flag condAtomicFlag{};

8

9 std::atomic<int> counter{};

10 constexpr int countlimit = 1'000'000;

11

12 void ping() {

13 while(counter <= countlimit) {

14 condAtomicFlag.wait(true);

15 condAtomicFlag.test_and_set();

16

17 ++counter;

18

Case Studies 580

19 condAtomicFlag.notify_one();

20 }

21 }

22

23 void pong() {

24 while(counter <= countlimit) {

25 condAtomicFlag.wait(false);

26 condAtomicFlag.clear();

27 condAtomicFlag.notify_one();

28 }

29 }

30

31 int main() {

32

33 auto start = std::chrono::system_clock::now();

34

35 condAtomicFlag.test_and_set();

36 std::thread t1(ping);

37 std::thread t2(pong);

38

39 t1.join();

40 t2.join();

41

42 std::chrono::duration<double> dur = std::chrono::system_clock::now() - start;

43 std::cout << "Duration: " << dur.count() << " seconds" << '\n';

44

45 }

In this case, the ping thread blocks on true but the pong thread blocks on false. From the performance
perspective, using one or two atomic flags makes no difference.

Case Studies 581

Multiple time synchronization with one atomic flag

The average execution time is 0.31 seconds.

I used std::atomic_flag like an atomic boolean in this example. Let’s give it another try with
std::atomic<bool>.

7.5.3 std::atomic<bool>

The following C++20 implementation is based on std::atomic.

Multiple time synchronization with an atomic bool

1 // pingPongAtomicBool.cpp

2

3 #include <iostream>

4 #include <atomic>

5 #include <thread>

6

7 std::atomic<bool> atomicBool{};

8

9 std::atomic<int> counter{};

10 constexpr int countlimit = 1'000'000;

11

12 void ping() {

13 while(counter <= countlimit) {

14 atomicBool.wait(true);

15 atomicBool.store(true);

16

17 ++counter;

Case Studies 582

18

19 atomicBool.notify_one();

20 }

21 }

22

23 void pong() {

24 while(counter <= countlimit) {

25 atomicBool.wait(false);

26 atomicBool.store(false);

27 atomicBool.notify_one();

28 }

29 }

30

31 int main() {

32

33 std::cout << std::boolalpha << '\n';

34

35 std::cout << "atomicBool.is_lock_free(): "

36 << atomicBool.is_lock_free() << '\n';

37

38 std::cout << '\n';

39

40 auto start = std::chrono::system_clock::now();

41

42 atomicBool.store(true);

43 std::thread t1(ping);

44 std::thread t2(pong);

45

46 t1.join();

47 t2.join();

48

49 std::chrono::duration<double> dur = std::chrono::system_clock::now() - start;

50 std::cout << "Duration: " << dur.count() << " seconds" << '\n';

51

52 }

std::atomic<bool> can internally use a locking mechanism like a mutex. My Windows run time is
lock-free.

Case Studies 583

Multiple time synchronization with an atomic bool

On average, the execution time is 0.38 seconds.

From the readability perspective, this implementation based on std::atomic is straightforward to
understand. This observation also holds for the next implementation of the ping-pong game based on
semaphores.

7.5.4 Semaphores

Semaphores promise to be faster than condition variables. Let’s see if this is true.

Case Studies 584

Multiple time synchronization with semaphores

1 // pingPongSemaphore.cpp

2

3 #include <iostream>

4 #include <semaphore>

5 #include <thread>

6

7 std::counting_semaphore<1> signal2Ping(0);

8 std::counting_semaphore<1> signal2Pong(0);

9

10 std::atomic<int> counter{};

11 constexpr int countlimit = 1'000'000;

12

13 void ping() {

14 while(counter <= countlimit) {

15 signal2Ping.acquire();

16 ++counter;

17 signal2Pong.release();

18 }

19 }

20

21 void pong() {

22 while(counter <= countlimit) {

23 signal2Pong.acquire();

24 signal2Ping.release();

25 }

26 }

27

28 int main() {

29

30 auto start = std::chrono::system_clock::now();

31

32 signal2Ping.release();

33 std::thread t1(ping);

34 std::thread t2(pong);

35

36 t1.join();

37 t2.join();

38

39 std::chrono::duration<double> dur = std::chrono::system_clock::now() - start;

40 std::cout << "Duration: " << dur.count() << " seconds" << '\n';

41

42 }

Case Studies 585

The program pingPongsemaphore.cpp uses two semaphores: signal2Ping and signal2Pong (lines 7 and
8). Both can have the two values 0 or 1, and are initialized with 0. This means when the value is 0 for
the semaphore signal2Ping, a call signal2Ping.release() (lines 24 and 32) sets the value to 1 and is,
therefore, a notification. A signal2Ping.acquire() (line 15) call blocks until the value becomes 1. The
same argumentation holds for the second semaphore signal2Pong.

Multiple time synchronization with semaphores

On average, the execution time is 0.33 seconds.

7.5.5 All Numbers

As expected, condition variables are the slowest way, and atomic flag the fastest way to syn-
chronize threads. In between is the performance of a std::atomic<bool>. There is one downside
with std::atomic<bool>. std::atomic_flag is the only atomic data type that is always lock-free.
Semaphores impressed me most because they are nearly as fast as atomic flags.

Execution Time

Condition
Variables

Two Atomic
Flags

One Atomic
Flag

Atomic
Boolean

Semaphores

Execution
Time

0.52 0.32 0.31 0.38 0.33

Case Studies 586

Distilled Information
• The section coroutines introduced an eager future, using co_return. This future is
an ideal starting point to make it lazy and finally let it run on its thread.

• Thanks to the Ranges Library, I can implement Python’s 2 filter, map, and list

comprehension functions in C++20.

• Modifications of the generator for an infinite data stream reveal its nature. When
the member function initial_suspend returns std::suspend_never, the coroutine
starts immediately and ignores the first value. In contrast, returning std::suspend_-
never from the function yield_value ends in an infinite loop. When you forget to
resume the coroutine, it will never run. The generator Generator<T> is generally
applicable. Instead of an infinite data stream, it can successively return the elements
of an arbitrary container of the Standard Template Library.

• Implementing your own awaitable MySuspendNever and MySuspendAlwaysmakes the
awaiter workflow transparent. Adapting the awaitable MySuspendAlways enables it
to create an Awaiter that resumes itself if necessary. Changing awaitable allows
you to automatically resume the coroutine on a separate thread.

• If you want to synch threads more than once, you have many options. You can
use condition variables, std::atomic_flag, std::atomic<bool>, or semaphores. This
case study answers the question: Which variant is the fastest one? The numbers
show that condition variables are the slowest way and atomic flags are the fastest
way to synchronize threads. The performance of std::atomic<bool> is in between.
Semaphores are nearly as fast as atomic flags.

Epilogue

Congratulations! If you are reading these lines, you have mastered the challenging and exciting C++20
standard. C++20 is a C++ standard that likely has the same influence on C++, such as the other
two significant C++ standards: C++98 and C++11. Due to C++11, the following names for the C++
standards are used by the C++ community.

• Legacy C++: C++98, and C++03

• Modern C++ : C++11, C++14, and C++17

• <Placeholder>: C++20

I’m not sure what name will be used for C++20 in the future. I’m only sure that C++20 starts a new
C++ area. Let me remind you why, in particular, the Big Four change the way we program in C++.

• Concepts: Concepts are revolutionizing the waywe think about and write generic code. Thanks
to them, we can reason about our program for the first time in semantic categories such as
Number or Ordering.

• Modules: Modules are the starting point of software components. Modules help overcome the
deficiencies of legacy headers and macros.

• Ranges: The ranges library extends the Standard Template Library with functional ideas.
Algorithms can operate directly on the containers, be evaluated lazily, and be composed.

• Coroutines: Thanks to coroutines, asynchronous programming becomes a first-class citizen
in C++. Coroutines transform blocking function calls in waiting and are highly valuable in
event-driven systems such as simulations, servers, or user interfaces.

C++20 is just the starting point. In the chapter about C++23 and Beyond, I give more details on the
near future of C++.

To make it short: C++ has a bright, shining future.

Further Information

8. C++23 and Beyond
Anyone who thinks a significant C++ standard is followed by a small C++ standard is wrong. C++23
provides powerful extensions to C++20. These extensions include the core language but, in particular,
the standard library. Thanks to contracts, reflection, and pattern matching, the C++ future beyond
C++23 shines pretty bright.

C++23 and Beyond 590

8.1 C++23

This C++23 chapter should give you a first impression but not a detailed presentation of C++23.

Let me start with the core language.

8.1.1 Core Language

8.1.1.1 Deducing This

Deducing this, sometimes also called explicit object parameter, allows it to make the implicit this
pointer of a member function explicit. Similar to Python¹, the explicit object parameter must be the
first function parameter and is called in C++, by convention, Self and self.

struct Test {

void implicitParameter(); // implicit this pointer

void explictParameter(this Self& self); // explicit this pointer

};

Implicit this enables new programming techniques in C++23: deduplication of function overloading
based on the object’s lvalue/rvalue value category and its constness Additionally, you can reference a
lambda and invoke it recursively. Furthermore, deducing this simplifies the implementation of CRTP².

8.1.1.1.1 Deduplicating Function Overloading

Assume you want to overload a member function based on the lvalue/rvalue value category and
constness of the calling object. This means you have to overload your member function four times.

Deduplicating Function Overloading

1 // deducingThis.cpp

2

3 #include <iostream>

4

5 struct Test {

6 template <typename Self>

7 void explicitCall(this Self&& self, const std::string& text) {

8 std::cout << text << ": ";

9 std::forward<Self>(self).implicitCall();

10 std::cout << '\n';

11 }

12

¹https://www.python.org/
²https://www.modernescpp.com/index.php/c-is-still-lazy

https://www.python.org/
https://www.modernescpp.com/index.php/c-is-still-lazy
https://www.python.org/
https://www.modernescpp.com/index.php/c-is-still-lazy

C++23 and Beyond 591

13 void implicitCall() & {

14 std::cout << "non const lvalue";

15 }

16

17 void implicitCall() const& {

18 std::cout << "const lvalue";

19 }

20

21 void implicitCall() && {

22 std::cout << "non const rvalue";

23 }

24

25 void implicitCall() const&& {

26 std::cout << "const rvalue";

27 }

28

29

30 };

31

32 int main() {

33

34 std::cout << '\n';

35

36 Test test;

37 const Test constTest;

38

39 test.explicitCall("test");

40 constTest.explicitCall("constTest");

41 std::move(test).explicitCall("std::move(test)");

42 std::move(constTest).explicitCall("std::move(constTest)");

43

44 std::cout << '\n';

45

46 }

Lines 13, 17, 21, and 25 are the required function overloads. Lines 13 and 17 take a non const and const
lvalue object, lines 21 and 25 a non const and const rvalue object. Deducing this in line 7 enables it
to deduplicate the four overloads in one member function, that perfectly forwards self (line 9) and
calls implicitCall

C++23 and Beyond 592

Deduplication of member function overloading

8.1.1.1.2 Reference a Lambda

The crucial idea of the Visitor Pattern³ is performing operations on an object hierarchy. The object
hierarchy is stable, but the operations may change frequently. The Overload Pattern⁴ represents the
modern C++ version of the Visitor Pattern. It combines variadic templates with std:variant⁵ and
its function std::visit⁶. Thanks to explicit object parameters in C++23, a lambda expression can
explicitly reference its implicit lambda object.

The Overload Pattern

1 // deducingThisVisitor.cpp

2

3 #include <iostream>

4 #include <string>

5 #include <vector>

6 #include <variant>

7

8 template<class... Ts> struct overloaded : Ts... {

9 using Ts::operator()...;

10 };

11

12 class Wheel {

13 public:

14 Wheel(const std::string& n): name(n) { }

15 std::string getName() const {

16 return name;

17 }

18 private:

³https://www.modernescpp.com/index.php/the-visitor-pattern
⁴https://www.modernescpp.com/index.php/visiting-a-std-variant-with-the-overload-pattern
⁵https://en.cppreference.com/w/cpp/utility/variant
⁶https://en.cppreference.com/w/cpp/utility/variant/visit

https://www.modernescpp.com/index.php/the-visitor-pattern
https://www.modernescpp.com/index.php/visiting-a-std-variant-with-the-overload-pattern
https://en.cppreference.com/w/cpp/utility/variant
https://en.cppreference.com/w/cpp/utility/variant/visit
https://www.modernescpp.com/index.php/the-visitor-pattern
https://www.modernescpp.com/index.php/visiting-a-std-variant-with-the-overload-pattern
https://en.cppreference.com/w/cpp/utility/variant
https://en.cppreference.com/w/cpp/utility/variant/visit

C++23 and Beyond 593

19 std::string name;

20 };

21

22 class Body {};

23

24 class Engine {};

25

26 class Car;

27

28 using CarElement = std::variant<Wheel, Body, Engine, Car>;

29

30 class Car {

31 public:

32 Car(std::initializer_list<CarElement*> carElements):

33 elements{carElements} {}

34

35 template<typename T>

36 void visitCarElements(T&& visitor) const {

37 for (auto elem : elements) {

38 std::visit(visitor, *elem);

39 }

40 }

41 private:

42 std::vector<CarElement*> elements;

43 };

44

45 overloaded carElementPrintVisitor {

46 [](const Body& body) { std::cout << "Visiting body" << '\n'; },

47 [](this auto const& self, const Car& car) { car.visitCarElements(self);

48 std::cout << "Visiting car" << '\n'; },

49 [](const Wheel& wheel) { std::cout << "Visiting "

50 << wheel.getName() << " wheel" << '\n'; },

51 [](const Engine& engine) { std::cout << "Visiting engine" << '\n';}

52 };

53

54 overloaded carElementDoVisitor {

55 [](const Body& body) { std::cout << "Moving my body" << '\n'; },

56 [](this auto const& self, const Car& car) { car.visitCarElements(self);

57 std::cout << "Starting my car" << '\n'; },

58 [](const Wheel& wheel) { std::cout << "Kicking my "

59 << wheel.getName() << " wheel" << '\n'; },

60 [](const Engine& engine) { std::cout << "Starting my engine" << '\n';}

61 };

62

63

C++23 and Beyond 594

64 int main() {

65

66 std::cout << '\n';

67

68 CarElement wheelFrontLeft = Wheel("front left");

69 CarElement wheelFrontRight = Wheel("front right");

70 CarElement wheelBackLeft = Wheel("back left");

71 CarElement wheelBackRight = Wheel("back right");

72 CarElement body = Body{};

73 CarElement engine = Engine{};

74

75 CarElement car = Car{&wheelFrontLeft, &wheelFrontRight,

76 &wheelBackLeft, &wheelBackRight,

77 &body, &engine};

78

79 std::visit(carElementPrintVisitor, engine);

80 std::visit(carElementPrintVisitor, car);

81 std::cout << '\n';

82

83 std::visit(carElementDoVisitor, engine);

84 std::visit(carElementDoVisitor, car);

85 std::cout << '\n';

86

87 }

The car (line 75) stands for the object hierarchy, and the two operations visit that is carElementPrintVisitor
(line 45) and carElementDoVistor (line 54). Deducing this enables the car-visiting lambda expressions
in lines 47 and 58 to reference the implicit lambda object to visit the components of the car:
car.visitCarElement(self).

The Overload Pattern

C++23 and Beyond 595

8.1.1.1.3 Simplifying CRTP

But what does CRTP mean? The acronym CRTP stands for the C++ idiom Curiously Recurring
Template Pattern andmeans a technique in C++ in which a class Derived derives from a class template
Base. The crucial point is that Base has Derived as a template argument.

template <typename T>

class Base{

...

};

class Derived : public Base<Derived>{

...

};

CRTP is typically used to implement polymorphism at compile time. For further information, please
read my post More about Dynamic and Static Polymorphism⁷.

Thanks to the explicit object parameter, I can remove the C and the R from the acronym CRTP.

Simplifying CRTP

1 // deducingThisCRTP.cpp

2

3 #include <iostream>

4

5 struct Base{

6 template <typename Self>

7 void interface(this Self&& self){

8 std::forward<Self>(self).implementation();

9 }

10 void implementation(){

11 std::cout << "Implementation Base\n";

12 }

13 };

14

15 struct Derived1: Base {

16 void implementation(){

17 std::cout << "Implementation Derived1\n";

18 }

19 };

20

21 struct Derived2: Base {

22 void implementation(){

⁷https://www.modernescpp.com/index.php/more-about-dynamic-and-static-polymorhism

https://www.modernescpp.com/index.php/more-about-dynamic-and-static-polymorhism
https://www.modernescpp.com/index.php/more-about-dynamic-and-static-polymorhism

C++23 and Beyond 596

23 std::cout << "Implementation Derived2\n";

24 }

25 };

26

27 struct Derived3: Base {};

28

29 template <typename T>

30 void execute(T& base){

31 base.interface();

32 }

33

34

35 int main(){

36

37 std::cout << '\n';

38

39 Derived1 d1;

40 execute(d1);

41

42 Derived2 d2;

43 execute(d2);

44

45 Derived3 d3;

46 execute(d3);

47

48 std::cout << '\n';

49

50 }

Excplit object parameters enable deducing the derived type and perfectly forwarding it (line 7). The
concrete type in line 32, Derived1 (line 39), Derived2 (line 42), and Derived3 (line 45) is used. Conse-
quentially, the corresponding virtual function implementation is called: std::forward<Self>(self).implementation().

C++23 and Beyond 597

simplifying CRTP

8.1.2 The Standard Library

8.1.2.1 Ranges Extensions

The ranges library got powerful extensions in C++23. This extension includes a convenient way to
construct a container, various new views, and with std::generator the first concrete coroutine.

8.1.2.1.1 ranges::to

std::ranges::to is a convenient way to construct a container from a range:

std::vector<int> range(int begin, int end, int stepsize = 1) {

auto boundary = [end](int i){ return i < end; };

std::vector<int> result = std::ranges::views::iota(begin)

| std::views::stride(stepsize)

| std::views::take_while(boundary)

| std::ranges::to<std::vector>();

return result;

}

The function range creates a std::vector<int> consisting of all elements from begin to end with the
stepsize stepsize. begin must be smaller than end. Thanks to std::ranges_to, the element can be
directly pushed into the std::vector.

8.1.2.1.2 New Views

C++23 supports additional views:

C++23 and Beyond 598

Views in C++23

View Description

std::ranges::zip_view Creates a view of tuples.
std::views::zip

std::ranges::zip_transform_view Creates a view of tuples by applying the transformation function.
std::views::zip_transform

std::ranges::adjacent_view Creates a view of adjacent elements.
std::views::adjacent

std::ranges::adjacent_transform_view Creates a view of adjacent elements by applying the transformation
function.

std::views::adjacent_transform

std::ranges::join_with_view Joins existing ranges into a view by applying a delimiter.
std::views::join_with

std::ranges::slide_view Creates N-tuples by taking a view and a number N.
std::views::slide

std::ranges::chunk_view Creates N-chunks of a view and a number N.
std::views::chunk

std::ranges::chunk_by_view Creates chunks of a view based on a predicate.
std::views::chunk_by

std::ranges::as_const_view Converts a view into a constant range.
std::views::as_const

std::ranges::as_rvalue_view Casts each element into an rvalue.
std::views::as_rvalue

std::ranges::stride_view Creates a view of the N-th elements of another view.
std::views::stride

The following code snippet applies the new views.

C++23 and Beyond 599

New views in C++23

// cpp23Ranges.cpp

...

#include <ranges>

...

std::vector vec = {1, 2, 3, 4};

for (auto i : vec | std::views::adjacent<2>) {

std::cout << '(' << i.first << ", " << i.second << ") "; // (1, 2) (2, 3) (3, 4)

}

for (auto i : vec | std::views::adjacent_transform<2>(std::multiplies())) {

std::cout << i << ' '; // 2 6 12

}

std::print("{}\n", vec | std::views::chunk(2)); // [[1, 2], [3, 4],

std::print("{}\n", vec | std::views::slide(2)); // [[1, 2], [2, 3], [3, 4]

for (auto i : vec | std::views::slide(2)) {

std::cout << '[' << i[0] << ", " << i[1] << "] "; // [1, 2] [2, 3] [3, 4] [4, 5]

}

std::vector vec2 = {1, 2, 3, 0, 5, 2};

std::print("{}\n", vec2 | std::views::chunk_by(std::ranges::less_equal{}));

// [[1, 2, 3], [0, 5], [2]]

for (auto i : vec | std::views::slide(2)) {

std::cout << '[' << i[0] << ", " << i[1] << "] "; // [1, 2] [2, 3] [3, 4] [4, 5]

}

8.1.2.1.3 std::generator

std::generator in C++23 is the first concrete coroutine generator. A std::generator generates a
sequence of elements by repeatedly resuming the coroutine. The sequence of elements can be infinite.

C++23 and Beyond 600

The coroutine generator std::generator

// generator.cpp

...

#include <generator>

#include <ranges>

...

std::generator<int> fib() {

co_yield 0; // 1

auto a = 0;

auto b = 1;

for(auto n : std::views::iota(0)) {

auto next = a + b;

a = b;

b = next;

co_yield next; // 2

}

}

...

for (auto f : fib() | std::views::take(10)) { // 3

std::cout << f << " "; // 0 1 1 2 3 5 8 13 21 34

}

The function fib return a coroutine. This coroutine creates an infinite stream of Fibonacci numbers.
The stream of numbers starts with 0 (1) and continues with the following Fibonacci number (2). The
ranges-based for-loop requests explicitly the first 10 Fibonacci numbers (3).

C++23 and Beyond 601

8.1.2.2 Modularized Standard Library

C++23 has a modularized standard library. import std imports the entire standard library. Conse-
quentially, you have to rewrite your hello world program in C++23.

import std;

int main() {

std::print("Hello world!); // "Hello world!"

}

C++23 and Beyond 602

8.1.2.3 std::print, and std::println

TheC++23 convenience functions std::print and std::printlnwrite to the output console. std::println
adds a newline character to the output. Additionally, both functions enable it to write to an output
stream and support Unicode⁸. You must include the header <print> or import the modularized
standard library.

#include <print> // or import std;

...

std::print("{1} {0}!", "world", "Hello"); // prints "Hello world!"

std::ofstream outFile("testfile.txt");

std::print(outFile, "{1} {0}!", "world", "Hello"); // writes "Hello world!" into outFile

⁸https://en.wikipedia.org/wiki/Unicode

https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/Unicode

C++23 and Beyond 603

8.1.2.4 Formatting Ranges

C++23 enables it to format ranges.

Applying the format specification to the elements of a std::vector

1 // formatVector.cpp

2

3 #include <format>

4 #include <iostream>

5 #include <string>

6 #include <vector>

7

8 int main() {

9

10 std::vector<int> myInts{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

11 std::cout << std::format("{}\n", myInts);

12 std::cout << std::format("{::+}\n", myInts);

13 std::cout << std::format("{::02x}\n", myInts);

14 std::cout << std::format("{::b}\n", myInts);

15

16 std::cout << '\n';

17

18 std::vector<std::string> myStrings{"Only", "for", "testing", "purpose"};

19 std::cout << std::format("{}\n", myStrings);

20 std::cout << std::format("{::.3}\n", myStrings);

21

22 }

By default (lines 11 and 19), the std::vector is displayed with surrounding square brackets. You can
also apply format specifiers to the elements of the range by using an additional colons :.

Applying the format specification to the elements of a std::vector

C++23 and Beyond 604

8.1.2.5 Container Adapters

The four associative containers std::flat_map, std::flat_multimap, std::flat_set, and std::set_-

multiset in C++23 are a drop-in replacement for the ordered associative containers⁹ std::map,
std::multimap, std::set, and std::multiset. More precisely, a std::flat_map is a drop-in replacement
for a std::map, a std::flat_multimap is a drop-in replacement for a std::multimap, and so forth.

The flat-ordered associative containers require separate sequence containers¹⁰ for their keys and
values. These sequence containers must support a random access iterator. By default, a std::vector¹¹
is used, but a std::array¹², or a std::deque¹³ is also valid.

The following code snippet shows the declaration of std::flat_map, and std::flat_set.

template<class Key, class T,

class Compare = less<Key>,

class KeyContainer = vector<Key>, class MappedContainer = vector<T>>

class flat_map;

template<class Key,

class Compare = less<Key>,

class KeyContainer = vector<Key>>

class flat_set;

The flat-ordered associative containers provide better time and space properties than the ordered
associative containers. The flat variants require less memory and are faster to read than their non-
flat-ordered pendants. The following comparison goes more into the details about the flat and the
non-flat-ordered associative containers.

Comparisonof the FlatOrderedAssociative Container
and their Non-Flat Pendants
The flat variants provide better reading performance, such as iterating through the
container, and require less memory. They also need that the elements must either be
copyable or moveable. The flat variants support a random access iterator¹⁴).

The non-flat variants improve writing performance if you insert or delete elements.
Additionally, the non-flat variants guarantee that the iterators stay valid after inserting
or deleting elements. The non-flat variants support a bidirectional iterator¹⁵.

⁹https://en.cppreference.com/w/cpp/container
¹⁰https://en.cppreference.com/w/cpp/container
¹¹https://en.cppreference.com/w/cpp/container/vector
¹²https://en.cppreference.com/w/cpp/container/array
¹³https://en.cppreference.com/w/cpp/container/deque
¹⁴https://en.cppreference.com/w/cpp/iterator/random_access_iterator
¹⁵https://en.cppreference.com/w/cpp/iterator/bidirectional_iterator

https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/container/array
https://en.cppreference.com/w/cpp/container/deque
https://en.cppreference.com/w/cpp/iterator/random_access_iterator
https://en.cppreference.com/w/cpp/iterator/bidirectional_iterator
https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/container/array
https://en.cppreference.com/w/cpp/container/deque
https://en.cppreference.com/w/cpp/iterator/random_access_iterator
https://en.cppreference.com/w/cpp/iterator/bidirectional_iterator

C++23 and Beyond 605

8.1.2.5.1 std::sorted_unique

You can use the constant std::sorted_unique in a constructor call or in themember functions insert to
specify that the to be inserted elements are already sorted and unique. This improves the performance
of creating a flat-ordered associative container or inserting elements.

The following code snippet creates a std::flat_map from a sorted initializer list {1, 2, 3, 4, 5}.

std::flat_map myFlatMap = { std::sorted_unique, {1, 2, 3, 4, 5}, {10, 11, 1, 5, -4} };

Using the constant std::sorted_unique with non-sorted or unique elements is undefined behavior.

C++23 and Beyond 606

8.1.2.6 std::expected

std::expected<T, E> provides a way to store either of two values. An instance of std::expected

always holds a value: either the expected value of type T, or the unexpected value of type E.
This vocabulary type requires the header <expected>. Thanks to std::expected, you can implement
functions that either return a value or an error. The stored value is allocated directly within the storage
occupied by the expected object. No dynamic memory allocation takes place.

std::expected has a similar interface such as std::optional. In contrast to std::optional, std::exptected
can return an error message.

The various constructors let you define an expected object exp with an expected value. exp.emplace
will construct the contained value in-place. You can explicitly ask a std::expected if it has a value,
or you can check it in a logical expression. exp.value returns the expected value, and exp.value_or

returns the expected value, or a default value. If exp has an unexpected value, the call exp.value will
throw a std::bad_expected_access exception.

std::unexpected represents the unexpected value stored in std::expected.

std::expected

1 // expected.cpp

2

3 #include <iostream>

4 #include <expected>

5 #include <vector>

6 #include <string>

7

8 std::expected<int, std::string> getInt(std::string arg) {

9 try {

10 return std::stoi(arg);

11 }

12 catch (...) {

13 return std::unexpected{std::string(arg + ": Error")};

14 }

15 }

16

17

18 int main() {

19

20 std::vector<std::string> strings = {"66", "foo", "-5"};

21

22 for (auto s: strings) {

23 auto res = getInt(s);

24 if (res) {

25 std::cout << res.value() << ' '; // 66 -5

26 }

C++23 and Beyond 607

27 else {

28 std::cout << res.error() << ' '; // foo: Error

29 }

30 }

31

32 std::cout << '\n';

33

34 for (auto s: strings) {

35 auto res = getInt(s);

36 std::cout << res.value_or(2023) << ' '; // 66 2023 -5

37 }

38

39 }

The function getInt converts each string to an integer and returns a std::expected<int, std::string>.
int represents the expected, and std::string the unexpected value. The two range-based for-loops
(lines 22 and 34) iterate through the std::vector<std::string>. In the first range-based for-loop (line
22), the expected (line 25) or the unexpected value (line 28) is displayed. In the second range-based
for-loop (line 34), either the expected or the default value 2023 (line 36) is displayed.

std::exptected supports monadic operations for convenient function composition: exp.and_then,
exp.transform, exp.or_else, and exp.transform_error. exp.and_then returns the result of the given
function call if it exists, or an empty std::expected. exp.transform returns a std::expected con-
taining its transformed value, or an empty std::expected. Additionally, exp.or_else returns the
std::expected if it contains a value or the result of the given function otherwise.

Monadic operations on std::expected

1 // expectedMonadic.cpp

2 ...

3 #include <expected>

4

5 std::expected<int, std::string> getInt(std::string arg) {

6 try {

7 return std::stoi(arg);

8 }

9 catch (...) {

10 return std::unexpected{std::string(arg + ": Error")};

11 }

12 }

13

14 std::vector<std::string> strings = {"66", "foo", "-5"};

15

16 for (auto s: strings) {

17 auto res = getInt(s)

C++23 and Beyond 608

18 .transform([](int n) { return n + 100; })

19 .transform([](int n) { return std::to_string(n); });

20 std::cout << *res << ' '; // 166 foo: Error 95

21 }

The range-based for-loop (line 23) iterates through the std::vector<std::string>. First, the function
getInt converts each string to an integer (line 24), adds 100 to it (line 25), converts it back to a string
(line 26), and finally displays the string (line 27). If the initial conversion to int fails, the string arg +

": Error" is returned (line 14) and displayed.

C++23 and Beyond 609

8.1.2.7 Multidimensional Access

A std::mdspan is a non-owning multidimensional view of a contiguous sequence of objects. Often,
this multidimensional view is called a multidimensional array. The contiguous sequence of objects
can be a plain C-array, a pointer with a length, a std::array¹⁶, a std::vector¹⁷, or a std::string¹⁸.

The number of dimensions and the size of each dimension determine the shape of the multidimen-
sional array. The number of dimensions is called rank, and the size of each dimension extension. The
size of the std::mdspan is the product of all dimensions that are not 0. You can access the elements of
a std::mdspan using the multidimensional index operator [].

Each dimension of a std::mdspan can have a static extent or a dynamic extent. static extent means
that its length is specified at compile time; dynamic extent accordingly that its length is specified at
run time.

Definition of std::mdspan

1 template<

2 class T,

3 class Extents,

4 class LayoutPolicy = std::layout_right,

5 class AccessorPolicy = std::default_accessor<T>

6 > class mdspan;

• T: the contiguous sequence of objects

• Extents: specifies the number of dimensions as their size; each dimension can have a static
extent or a dynamic extent

• LayoutPolicy: specifies the layout policy to access the underlying memory

• AccessorPolicy: specifies how the underlying elements are referenced

Thanks to class template argument deduction (CTAG)¹⁹ in C++17, the compiler can often automati-
cally deduce the template arguments.

¹⁶https://en.cppreference.com/w/cpp/container/array
¹⁷https://en.cppreference.com/w/cpp/container/vector
¹⁸https://en.cppreference.com/w/cpp/string/basic_string
¹⁹https://en.cppreference.com/w/cpp/language/class_template_argument_deduction

https://en.cppreference.com/w/cpp/container/array
https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/string/basic_string
https://en.cppreference.com/w/cpp/language/class_template_argument_deduction
https://en.cppreference.com/w/cpp/container/array
https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/string/basic_string
https://en.cppreference.com/w/cpp/language/class_template_argument_deduction

C++23 and Beyond 610

Two 2-dimensional arrays

1 // mdspan.cpp

2

3 #include <mdspan>

4 #include <iostream>

5 #include <vector>

6

7 int main() {

8

9 std::vector myVec{1, 2, 3, 4, 5, 6, 7, 8};

10

11 std::mdspan m{myVec.data(), 2, 4};

12 std::cout << "m.rank(): " << m.rank() << '\n';

13

14 for (std::size_t i = 0; i < m.extent(0); ++i) {

15 for (std::size_t j = 0; j < m.extent(1); ++j) {

16 std::cout << m[i, j] << ' ';

17 }

18 std::cout << '\n';

19 }

20

21 std::cout << '\n';

22

23 std::mdspan m2{myVec.data(), 4, 2};

24 std::cout << "m2.rank(): " << m2.rank() << '\n';

25

26 for (std::size_t i = 0; i < m2.extent(0); ++i) {

27 for (std::size_t j = 0; j < m2.extent(1); ++j) {

28 std::cout << m2[i, j] << ' ';

29 }

30 std::cout << '\n';

31 }

32

33 }

I apply class template argument deduction three times in this example. Line 9 uses it for a std::vector,
and lines 11 and 23 for a std::mdspan. The first 2-dimensional array m has a shape of (2, 4), the second
one m2 a shape of (4, 2). Lines 12 and 24 display the ranks of both std::mdspan. Thanks to the extent
of each dimension (lines 14 and 15), and the index operator in line 16, it is straightforward to iterate
through multidimensional arrays.

C++23 and Beyond 611

Two 2-dimensional arrays

If your multidimensional array should have a static extent, you have to specify the template
arguments.

Explicitly specifying the template arguments of a std::mdspan

1 // staticDynamicExtent.cpp

2

3 #include <mdspan>

4 ...

5

6 std::mdspan<int, std::extents<std::size_t, 2, 4>> m{myVec.data()}; // (1)

7 std::cout << "m.rank(): " << m.rank() << '\n';

8

9 for (std::size_t i = 0; i < m.extent(0); ++i) {

10 for (std::size_t j = 0; j < m.extent(1); ++j) {

11 std::cout << m[i, j] << ' ';

12 }

13 std::cout << '\n';

14 }

15

16 std::mdspan<int, std::extents<std::size_t, std::dynamic_extent, std::dynamic_extent>>

17 m2{myVec.data(), 4, 2}; // (2)

18 std::cout << "m2.rank(): " << m2.rank() << '\n';

19

20 for (std::size_t i = 0; i < m2.extent(0); ++i) {

21 for (std::size_t j = 0; j < m2.extent(1); ++j) {

22 std::cout << m2[i, j] << ' ';

23 }

24 std::cout << '\n';

25 }

The program staticDynamicExtent.cpp is based on the previous program mdspan.cpp, and produces
the same output. The difference is, that the std::mdspan m (1) has a static extent. For completeness,

C++23 and Beyond 612

std::mdspan m2 (2) has a dynamic extent. Consequentially, the shape of m is specified with template
arguments, but the shape of m2 is with function arguments.

A std::mdspan allows you to specify the layout policy to access the underlying memory. By default,
std::layout_right (C, C++ or Python²⁰ style) is used, but you can also specify std::layout_left

(Fortran²¹ or MATLAB²² style). The following graphic exemplifies in which sequence the elements of
the std::mdspan are accessed.

std::layout_right and std::layout_left

Traversing two std::mdspan with the layout policy std::layout_right and std::layout_left shows
the difference.

Using a std::mdspan with std::layout_right and std::layout_left

1 // mdspanLayout.cpp

2 ...

3 #include <mdspan>

4

5 std::vector myVec{1, 2, 3, 4, 5, 6, 7, 8};

6

7 std::mdspan<int,

8 std::extents<std::size_t, std::dynamic_extent, std::dynamic_extent>,

9 std::layout_right> m2{myVec.data(), 4, 2}; // (1)

10

11 std::cout << "m.rank(): " << m.rank() << '\n';

12

13 for (std::size_t i = 0; i < m.extent(0); ++i) {

14 for (std::size_t j = 0; j < m.extent(1); ++j) {

15 std::cout << m[i, j] << ' ';

16 }

17 std::cout << '\n';

18 }

19

20 std::cout << '\n';

21

22 std::mdspan<int,

²⁰https://en.wikipedia.org/wiki/Python_(programming_language)
²¹https://en.wikipedia.org/wiki/Fortran
²²https://en.wikipedia.org/wiki/MATLAB

https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/MATLAB

C++23 and Beyond 613

23 std::extents<std::size_t, std::dynamic_extent, std::dynamic_extent>,

24 std::layout_left> m2{myVec.data(), 4, 2}; // (2)

25 std::cout << "m2.rank(): " << m2.rank() << '\n';

26

27 for (std::size_t i = 0; i < m2.extent(0); ++i) {

28 for (std::size_t j = 0; j < m2.extent(1); ++j) {

29 std::cout << m2[i, j] << ' ';

30 }

31 std::cout << '\n';

32 }

The std::mdspan m uses std::layout_right (1), the other std::mdspan std::layout_left (1). Thanks to
class template argument deduction, the constructor call of std::mdspan (1) needs no explicit template
arguments and is much easier to write: std::mdspan m2{myVec.data(), 4, 2}.

The output of the program shows the two different layout strategies.

std::mdspan with std::layout_left and std::layout_right

The following table presents an overview of std::mdspan’s interface.

Functions of a std::mdspan md

Function Description

md[ind] Access the ind-th element.

md.size Returns the size of the multidimensional array.

md.rank Returns the dimension of the multidimensional array.

md.extents(i) Returns the size of the i-th dimension.

md.data_handle Returns a pointer to the contiguous sequence of elements.

C++23 and Beyond 614

8.2 Beyond C++23

“Prediction is very difficult, especially if it’s about the future.” (Niels Bohr²³). Consequently, you should
read this chapter as my best attempt to predict the C++ future.

It’s highly likely that the four features reflection, pattern matching, and contracts are successively
added to the C++ standard, starting with C++26.

8.2.1 Contracts

Contracts were planned to be the fifth great feature of C++20. Because of design issues, they were
removed in the standardization committee meeting in July 2019 in Cologne. At the same time, the
study group 21 for contracts²⁴ was created.

• What is a Contract?
A contract specifies in a precise and checkable way interfaces for software components. These
software components are typically functions and member functions that have to fulfill preconditions,
postconditions, or invariants. Here are the simplified definitions of these three terms:

• A precondition: a predicate that is supposed to hold upon entry into a function

• A postcondition: a predicate that is supposed to hold upon exit from the function

• An assertion: a predicate that is supposed to hold at its point in the computation
The precondition and the postcondition are placed outside the function definition, but the invariant
(assertion) is placed inside. A predicate is a function which returns a boolean.

Here is a first example:

The function push uses contracts

int push(queue& q, int val)

[[expects: !q.full()]]

[[ensures !q.empty()]] {

...

[[assert: q.is_ok()]]

...

}

The attribute expects is a precondition, the attribute ensures a postcondition, and the attribute assert
an assertion. The contracts for the function push are that the queue is not full before adding an element,
that it is not empty after adding and the assertion q.is_ok() holds.

Preconditions and postconditions are part of the function interface. That means they can’t access local
members of a function or private or protected members of a class. Assertions, however, are part of
the implementation and can, therefore, access local members of a function of private or protected
members of a class:

²³https://www.goodreads.com/quotes/23796-prediction-is-very-difficult-especially-about-the-future
²⁴https://isocpp.org/std/the-committee

https://www.goodreads.com/quotes/23796-prediction-is-very-difficult-especially-about-the-future
https://isocpp.org/std/the-committee
https://www.goodreads.com/quotes/23796-prediction-is-very-difficult-especially-about-the-future
https://isocpp.org/std/the-committee

C++23 and Beyond 615

Accessing a private attribute

class X {

public:

void f(int n)

[[expects: n < m]] // error; m is private

{

[[assert: n < m]]; // OK

// ...

}

private:

int m;

};

The attribute m is private and cannot, therefore, be part of a precondition. By default, a violation of a
contract terminates the program.

You can adjust the behavior of the attributes.

8.2.1.1 Fine-tune Attributes

The syntax for adapting the attributes is quite elaborate: [[contract-attribute modifier: conditional-
expression]].

• contract-attribute: expects, ensures, and assert

• modifier: specifies the contract level or the enforcement of the contract; possible values are
default, audit, and axiom

– default: the cost of run-time checking should be small; it is the default modifier
– audit: the cost of run-time checking is assumed to be large
– axiom: the predicate is not checked at run time

• conditional-expression: the predicate of the contract

For the ensures attribute, there is additionally an identifier available: [[ensures modifier identifier:
conditional-expression]]

The identifier lets you refer to the return value of the function.

C++23 and Beyond 616

Accessing the return value

int mul(int x, int y)

[[expects: x > 0]] // implicit default

[[expects default: y > 0]]

[[ensures audit res: res > 0]] {

return x * y;

}

res as the identifier is an arbitrary name. As shown in the example, you can use more contracts of
the same kind.

Let me dive deeper into the handling of contract violations.

8.2.1.2 Handling Contract Violations

A compilation has three assertion build levels:

• off: no contracts are checked

• default: default contracts are checked; this is the default

• audit: default and audit contracts are checked

When a contract violation occurs because the predicate returns false, the violation handler is invoked.
The violation handler gets a value of type std::contract_violation. This value provides detailed
information about the violation of the contract.

The class contract_violation

namespace std {

class contract_violation{

public:

uint_least32_t line_number() const noexcept;

string_view file_name() const noexcept;

string_view function_name() const noexcept;

string_view comment() const noexcept;

string_view assertion_level() const noexcept;

};

}

• line_number: the line number of the contract violation

• file_name: the file name of the contract violation

• function_name: the function name of the contract violation

• comment: the predicate of the contract

• assertion_level: the assertion level of the contract

C++23 and Beyond 617

8.2.1.3 Declaration of Contracts

A contract can be placed on the declaration of a function. This includes declarations of virtual
functions or function templates.

• The contract declaration of a function must be identical. Any declaration different from the
first one can omit the contract.

Conctract declarations must be idential

int f(int x)

[[expects: x > 0]]

[[ensures r: r > 0]];

int f(int x); // OK. No contract.

int f(int x)

[[expects: x >= 0]]; // Error missing ensures and different expects condition

• A contract cannot be modified in an overriding function.

Overriding functions cannot modify a contract

struct B {

virtual void f(int x)[[expects: x > 0]];

virtual void g(int x);

};

struct D: B{

void f(int x)[[expects: x >= 0]]; // error

void g(int x)[[expects: x != 0]]; // error

};

Both contract definitions of class D are erroneous. The contract of the member function D::f differs
from the one from B::f. The member function D::g adds a contract to B::g.

Closing Thoughts from Herb Sutter
Contracts were planned to be part of C++20 but were delayed. Herb Sutter’s thoughts on
Sutter’s Mill²⁵ give you an idea about their importance: “contracts is the most impactful
feature of C++20 so far, and arguably the most impactful feature we have added to C++
since C++11.”

²⁵https://herbsutter.com/2018/07/02/trip-report-summer-iso-c-standards-meeting-rapperswil/

https://herbsutter.com/2018/07/02/trip-report-summer-iso-c-standards-meeting-rapperswil/
https://herbsutter.com/2018/07/02/trip-report-summer-iso-c-standards-meeting-rapperswil/

C++23 and Beyond 618

8.2.2 Reflection

Reflection is the possibility of a program to analyze andmodify itself. Reflection takes place at compile
time and, therefore, adheres to the C++ metarule: “don’t pay for anything you don’t use”. The type-
traits library²⁶ is a powerful tool for reflection, but the proposal P0385²⁷ for static reflection goes much
further.

The following code snippet should give you a first impression of reflection:

The reflection operator

1 template <typename T>

2 T min(constT& a,constT& b) {

3 log() << "function: min<"

4 << get_base_name_v<get_aliased_t<$reflect(T)>>

5 << ">("

6 << get_base_name_v<$reflect(a)> << ": "

7 << get_base_name_v<get_aliased_t<get_type_t<$reflect(a)>>>

8 << " = " << a << ", "

9 << get_base_name_v<$reflect(b)> << ": "

10 << get_base_name_v<get_aliased_t<get_type_t<$reflect(b)>>>

11 << " = " << b

12 << ")" << '\n';

13 return a < b ? a : b;

14 }

The new reflection operator $reflect is the crucial expression in the example. First, the new operator
creates a special data type, which provides meta information on the template parameter T (line 4) and
the values a (line 6), and c (line 9). Thanks to function composition, the metainformation can be used
to provide more information: get_base_name_v<get_aliased_t (lines 7 and 10).

When you invoke the function minwith the argument min(12.34, 23.45), you get the following output:

Calling min(12.34, 23.45)

You may be curious and want to know: Which metainformation could you get with reflection? The
following points give you the answer:

• Objects: the source-code line and column and the name of the file

• Classes: the private and public data members and member functions

• Aliases: the name of the resolved alias
The next example from proposal P0385 shows how reflection helps determine the private and public
members of a class.

²⁶https://en.cppreference.com/w/cpp/header/type_traits
²⁷http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0385r2.pdf

https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/header/type_traits
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0385r2.pdf
https://en.cppreference.com/w/cpp/header/type_traits
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0385r2.pdf

C++23 and Beyond 619

Determining the public and private members of the class foo
#include <reflect>

#include <iostream>

struct foo {

private:

int _i, _j;

public:

static constexpr const bool b = true;

float x, y, z;

private:

static double d;

};

template <typename ... T>

void eat(T ...) { }

template <typename Metaobjects, std::size_t I>

int do_print_data_member(void) {

using namespace std;

typedef reflect::get_element_t<Metaobjects, I> metaobj;

cout << I << ": "

<< (reflect::is_public_v<metaobj>?"public":"non-public")

<< " "

<< (reflect::is_static_v<metaobj>?"static":"")

<< " "

<< reflect::get_base_name_v<reflect::get_type_t<metaobj>>

<< " "

<< reflect::get_base_name_v<metaobj>

<< '\n';

}

return 0;

template <typename Metaobjects, std::size_t ... I>

void do_print_data_members(std::index_sequence<I...>) {

eat(do_print_data_member<Metaobjects, I>()...);

}

template <typename Metaobjects>

void do_print_data_members(void) {

using namespace std;

do_print_data_members<Metaobjects>(

make_index_sequence<

reflect::get_size_v<Metaobjects>

C++23 and Beyond 620

>()

);

}

template <typename MetaClass>

void print_data_members(void) {

using namespace std;

cout << "Public data members of " << reflect::get_base_name_v<MetaClass>

<< '\n';

do_print_data_members<reflect::get_public_data_members_t<MetaClass>>();

}

template <typename MetaClass>

void print_all_data_members(void) {

using namespace std;

cout << "All data members of " << reflect::get_base_name_v<MetaClass>

<< '\n';

do_print_data_members<reflect::get_data_members_t<MetaClass>>();

}

int main(void) {

print_data_members<$reflect(foo)>();

print_all_data_members<$reflect(foo)>();

return 0;

}

The program produces the following output:

C++23 and Beyond 621

Displaying the public and private members of the class foo

C++23 and Beyond 622

8.2.3 Pattern Matching

New data types such as std::tuple²⁸ or std::variant²⁹ need new ways to work with their elements.
Simple if or switch conditions or functions like std::apply³⁰ or std::visit³¹ can only provide basic
functionality. Pattern matching, heavily used in functional programming, allows the more efficient
handling of the new data types.

The following code snippets from the proposal P1371R2³² on pattern matching compare classical
control structures with pattern matching. Pattern matching uses the keyword inspect and __ for a
placeholder.

• switch statement

switch statement versus pattern matching

switch (x) {

case 0: std::cout << "got zero"; break;

case 1: std::cout << "got one"; break;

default: std::cout << "don't care";

}

inspect (x) {

0: std::cout << "got zero";

1: std::cout << "got one";

__: std::cout << "don't care";

}

• if condition

if statement versus pattern matching

if (s == "foo") {

std::cout << "got foo";

} else if (s == "bar") {

std::cout << "got bar";

} else {

std::cout << "don't care";

}

inspect (s) {

"foo": std::cout << "got foo";

"bar": std::cout << "got bar";

__: std::cout << "don't care";

}

²⁸https://en.cppreference.com/w/cpp/utility/tuple
²⁹https://en.cppreference.com/w/cpp/utility/variant
³⁰https://en.cppreference.com/w/cpp/utility/apply
³¹https://en.cppreference.com/w/cpp/utility/variant/visit
³²http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1371r2.pdf

https://en.cppreference.com/w/cpp/utility/tuple
https://en.cppreference.com/w/cpp/utility/variant
https://en.cppreference.com/w/cpp/utility/apply
https://en.cppreference.com/w/cpp/utility/variant/visit
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1371r2.pdf
https://en.cppreference.com/w/cpp/utility/tuple
https://en.cppreference.com/w/cpp/utility/variant
https://en.cppreference.com/w/cpp/utility/apply
https://en.cppreference.com/w/cpp/utility/variant/visit
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1371r2.pdf

C++23 and Beyond 623

The application of pattern matching on std::tuple, std::variant, or polymorphy demonstrates its
power.

• std::tuple

std::tuple versus pattern matching

auto&& [x, y] = p;

if (x == 0 && y == 0) {

std::cout << "on origin";

} else if (x == 0) {

std::cout << "on y-axis";

} else if (y == 0) {

std::cout << "on x-axis";

} else {

std::cout << x << ',' << y;

}

inspect (p) {

[0, 0]: std::cout << "on origin";

[0, y]: std::cout << "on y-axis";

[x, 0]: std::cout << "on x-axis";

[x, y]: std::cout << x << ',' << y;

}

• std::variant

std::variant versus pattern matching

struct visitor {

void operator()(int i) const {

os << "got int: " << i;

}

void operator()(float f) const {

os << "got float: " << f;

}

std::ostream& os;

};

std::visit(visitor{strm}, v);

inspect (v) {

<int> i: strm << "got int: " << i;

<float> f: strm << "got float: " << f;

}

• Polymorphic data types

C++23 and Beyond 624

Polymorphy versus pattern matching

struct Shape { virtual ~Shape() = default; };

struct Circle : Shape { int radius; };

struct Rectangle : Shape { int width, height; };

virtual int Shape::get_area() const = 0;

int Circle::get_area() const override {

return 3.14 * radius * radius;

}

int Rectangle::get_area() const override {

return width * height;

}

int get_area(const Shape& shape) {

return inspect (shape) {

<Circle> [r] => 3.14 * r * r,

<Rectangle> [w, h] => w * h

}

}

The proposal P1371R2 on pattern matching offers more advanced use cases. For example, pattern
matching can be used to traverse an expression tree³³.

³³https://en.wikipedia.org/wiki/Binary_expression_tree

https://en.wikipedia.org/wiki/Binary_expression_tree
https://en.wikipedia.org/wiki/Binary_expression_tree

9. Feature Testing
The header <version> allows you to ask your compiler for its C++11 or later support. You can ask
for attributes, features of the core language, or the library. <version> has about 200 macros defined,
which expand to a number when the feature is implemented. The number represents the year and
month in which the feature was added to the C++ standard. These are the numbers for static_assert,
lambdas, and concepts.

Macros for static_assert, lambdas, and concepts

__cpp_static_assert 200410L

__cpp_lambdas 200907L

__cpp_concepts 201907L

Feature Support
When I experiment with brand-new C++ features, I check which compiler implements
the feature I’m interested in. That’s the time I visit cppreference.com/compiler_support¹,
searching for the feature I want to try out, and hope that at least one compiler of the big
three (GCC, Clang, MSVC) implements the new feature.

Getting the answer partial is not satisfying. In the end I don’t know who I should contact
when the compilation of a brand-new feature fails.

¹https://en.cppreference.com/w/cpp/compiler_support

https://en.cppreference.com/w/cpp/compiler_support
https://en.cppreference.com/w/cpp/compiler_support

Feature Testing 626

Feature support for C++20 core language

The cppreference.com page for feature testing² uses all macros together in a long, long source file.

Use of all feature test macros

1 // featureTest.cpp

2 // from cppreference.com

3

4 #if __cplusplus < 201100

5 # error "C++11 or better is required"

6 #endif

7

8 #include <algorithm>

9 #include <cstring>

10 #include <iomanip>

11 #include <iostream>

12 #include <string>

13

14 #ifdef __has_include

15 # if __has_include(<version>)

16 # include <version>

17 # endif

18 #endif

19

20 #define COMPILER_FEATURE_VALUE(value) #value

21 #define COMPILER_FEATURE_ENTRY(name) { #name, COMPILER_FEATURE_VALUE(name) },

22

23 #ifdef __has_cpp_attribute

²https://en.cppreference.com/w/cpp/feature_test

https://en.cppreference.com/w/cpp/feature_test
https://en.cppreference.com/w/cpp/feature_test

Feature Testing 627

24 # define COMPILER_ATTRIBUTE_VALUE_AS_STRING(s) #s

25 # define COMPILER_ATTRIBUTE_AS_NUMBER(x) COMPILER_ATTRIBUTE_VALUE_AS_STRING(x)

26 # define COMPILER_ATTRIBUTE_ENTRY(attr) \

27 { #attr, COMPILER_ATTRIBUTE_AS_NUMBER(__has_cpp_attribute(attr)) },

28 #else

29 # define COMPILER_ATTRIBUTE_ENTRY(attr) { #attr, "_" },

30 #endif

31

32 // Change these options to print out only necessary info.

33 static struct PrintOptions {

34 constexpr static bool titles = 1;

35 constexpr static bool attributes = 1;

36 constexpr static bool general_features = 1;

37 constexpr static bool core_features = 1;

38 constexpr static bool lib_features = 1;

39 constexpr static bool supported_features = 1;

40 constexpr static bool unsupported_features = 1;

41 constexpr static bool sorted_by_value = 0;

42 constexpr static bool cxx11 = 1;

43 constexpr static bool cxx14 = 1;

44 constexpr static bool cxx17 = 1;

45 constexpr static bool cxx20 = 1;

46 constexpr static bool cxx23 = 0;

47 } print;

48

49 struct CompilerFeature {

50 CompilerFeature(const char* name = nullptr, const char* value = nullptr)

51 : name(name), value(value) {}

52 const char* name; const char* value;

53 };

54

55 static CompilerFeature cxx[] = {

56 COMPILER_FEATURE_ENTRY(__cplusplus)

57 COMPILER_FEATURE_ENTRY(__cpp_exceptions)

58 COMPILER_FEATURE_ENTRY(__cpp_rtti)

59 #if 0

60 COMPILER_FEATURE_ENTRY(__GNUC__)

61 COMPILER_FEATURE_ENTRY(__GNUC_MINOR__)

62 COMPILER_FEATURE_ENTRY(__GNUC_PATCHLEVEL__)

63 COMPILER_FEATURE_ENTRY(__GNUG__)

64 COMPILER_FEATURE_ENTRY(__clang__)

65 COMPILER_FEATURE_ENTRY(__clang_major__)

66 COMPILER_FEATURE_ENTRY(__clang_minor__)

67 COMPILER_FEATURE_ENTRY(__clang_patchlevel__)

68 #endif

Feature Testing 628

69 };

70 static CompilerFeature cxx11[] = {

71 COMPILER_FEATURE_ENTRY(__cpp_alias_templates)

72 COMPILER_FEATURE_ENTRY(__cpp_attributes)

73 COMPILER_FEATURE_ENTRY(__cpp_constexpr)

74 COMPILER_FEATURE_ENTRY(__cpp_decltype)

75 COMPILER_FEATURE_ENTRY(__cpp_delegating_constructors)

76 COMPILER_FEATURE_ENTRY(__cpp_inheriting_constructors)

77 COMPILER_FEATURE_ENTRY(__cpp_initializer_lists)

78 COMPILER_FEATURE_ENTRY(__cpp_lambdas)

79 COMPILER_FEATURE_ENTRY(__cpp_nsdmi)

80 COMPILER_FEATURE_ENTRY(__cpp_range_based_for)

81 COMPILER_FEATURE_ENTRY(__cpp_raw_strings)

82 COMPILER_FEATURE_ENTRY(__cpp_ref_qualifiers)

83 COMPILER_FEATURE_ENTRY(__cpp_rvalue_references)

84 COMPILER_FEATURE_ENTRY(__cpp_static_assert)

85 COMPILER_FEATURE_ENTRY(__cpp_threadsafe_static_init)

86 COMPILER_FEATURE_ENTRY(__cpp_unicode_characters)

87 COMPILER_FEATURE_ENTRY(__cpp_unicode_literals)

88 COMPILER_FEATURE_ENTRY(__cpp_user_defined_literals)

89 COMPILER_FEATURE_ENTRY(__cpp_variadic_templates)

90 };

91 static CompilerFeature cxx14[] = {

92 COMPILER_FEATURE_ENTRY(__cpp_aggregate_nsdmi)

93 COMPILER_FEATURE_ENTRY(__cpp_binary_literals)

94 COMPILER_FEATURE_ENTRY(__cpp_constexpr)

95 COMPILER_FEATURE_ENTRY(__cpp_decltype_auto)

96 COMPILER_FEATURE_ENTRY(__cpp_generic_lambdas)

97 COMPILER_FEATURE_ENTRY(__cpp_init_captures)

98 COMPILER_FEATURE_ENTRY(__cpp_return_type_deduction)

99 COMPILER_FEATURE_ENTRY(__cpp_sized_deallocation)

100 COMPILER_FEATURE_ENTRY(__cpp_variable_templates)

101 };

102 static CompilerFeature cxx14lib[] = {

103 COMPILER_FEATURE_ENTRY(__cpp_lib_chrono_udls)

104 COMPILER_FEATURE_ENTRY(__cpp_lib_complex_udls)

105 COMPILER_FEATURE_ENTRY(__cpp_lib_exchange_function)

106 COMPILER_FEATURE_ENTRY(__cpp_lib_generic_associative_lookup)

107 COMPILER_FEATURE_ENTRY(__cpp_lib_integer_sequence)

108 COMPILER_FEATURE_ENTRY(__cpp_lib_integral_constant_callable)

109 COMPILER_FEATURE_ENTRY(__cpp_lib_is_final)

110 COMPILER_FEATURE_ENTRY(__cpp_lib_is_null_pointer)

111 COMPILER_FEATURE_ENTRY(__cpp_lib_make_reverse_iterator)

112 COMPILER_FEATURE_ENTRY(__cpp_lib_make_unique)

113 COMPILER_FEATURE_ENTRY(__cpp_lib_null_iterators)

Feature Testing 629

114 COMPILER_FEATURE_ENTRY(__cpp_lib_quoted_string_io)

115 COMPILER_FEATURE_ENTRY(__cpp_lib_result_of_sfinae)

116 COMPILER_FEATURE_ENTRY(__cpp_lib_robust_nonmodifying_seq_ops)

117 COMPILER_FEATURE_ENTRY(__cpp_lib_shared_timed_mutex)

118 COMPILER_FEATURE_ENTRY(__cpp_lib_string_udls)

119 COMPILER_FEATURE_ENTRY(__cpp_lib_transformation_trait_aliases)

120 COMPILER_FEATURE_ENTRY(__cpp_lib_transparent_operators)

121 COMPILER_FEATURE_ENTRY(__cpp_lib_tuple_element_t)

122 COMPILER_FEATURE_ENTRY(__cpp_lib_tuples_by_type)

123 };

124

125 static CompilerFeature cxx17[] = {

126 COMPILER_FEATURE_ENTRY(__cpp_aggregate_bases)

127 COMPILER_FEATURE_ENTRY(__cpp_aligned_new)

128 COMPILER_FEATURE_ENTRY(__cpp_capture_star_this)

129 COMPILER_FEATURE_ENTRY(__cpp_constexpr)

130 COMPILER_FEATURE_ENTRY(__cpp_deduction_guides)

131 COMPILER_FEATURE_ENTRY(__cpp_enumerator_attributes)

132 COMPILER_FEATURE_ENTRY(__cpp_fold_expressions)

133 COMPILER_FEATURE_ENTRY(__cpp_guaranteed_copy_elision)

134 COMPILER_FEATURE_ENTRY(__cpp_hex_float)

135 COMPILER_FEATURE_ENTRY(__cpp_if_constexpr)

136 COMPILER_FEATURE_ENTRY(__cpp_inheriting_constructors)

137 COMPILER_FEATURE_ENTRY(__cpp_inline_variables)

138 COMPILER_FEATURE_ENTRY(__cpp_namespace_attributes)

139 COMPILER_FEATURE_ENTRY(__cpp_noexcept_function_type)

140 COMPILER_FEATURE_ENTRY(__cpp_nontype_template_args)

141 COMPILER_FEATURE_ENTRY(__cpp_nontype_template_parameter_auto)

142 COMPILER_FEATURE_ENTRY(__cpp_range_based_for)

143 COMPILER_FEATURE_ENTRY(__cpp_static_assert)

144 COMPILER_FEATURE_ENTRY(__cpp_structured_bindings)

145 COMPILER_FEATURE_ENTRY(__cpp_template_template_args)

146 COMPILER_FEATURE_ENTRY(__cpp_variadic_using)

147 };

148 static CompilerFeature cxx17lib[] = {

149 COMPILER_FEATURE_ENTRY(__cpp_lib_addressof_constexpr)

150 COMPILER_FEATURE_ENTRY(__cpp_lib_allocator_traits_is_always_equal)

151 COMPILER_FEATURE_ENTRY(__cpp_lib_any)

152 COMPILER_FEATURE_ENTRY(__cpp_lib_apply)

153 COMPILER_FEATURE_ENTRY(__cpp_lib_array_constexpr)

154 COMPILER_FEATURE_ENTRY(__cpp_lib_as_const)

155 COMPILER_FEATURE_ENTRY(__cpp_lib_atomic_is_always_lock_free)

156 COMPILER_FEATURE_ENTRY(__cpp_lib_bool_constant)

157 COMPILER_FEATURE_ENTRY(__cpp_lib_boyer_moore_searcher)

158 COMPILER_FEATURE_ENTRY(__cpp_lib_byte)

Feature Testing 630

159 COMPILER_FEATURE_ENTRY(__cpp_lib_chrono)

160 COMPILER_FEATURE_ENTRY(__cpp_lib_clamp)

161 COMPILER_FEATURE_ENTRY(__cpp_lib_enable_shared_from_this)

162 COMPILER_FEATURE_ENTRY(__cpp_lib_execution)

163 COMPILER_FEATURE_ENTRY(__cpp_lib_filesystem)

164 COMPILER_FEATURE_ENTRY(__cpp_lib_gcd_lcm)

165 COMPILER_FEATURE_ENTRY(__cpp_lib_hardware_interference_size)

166 COMPILER_FEATURE_ENTRY(__cpp_lib_has_unique_object_representations)

167 COMPILER_FEATURE_ENTRY(__cpp_lib_hypot)

168 COMPILER_FEATURE_ENTRY(__cpp_lib_incomplete_container_elements)

169 COMPILER_FEATURE_ENTRY(__cpp_lib_invoke)

170 COMPILER_FEATURE_ENTRY(__cpp_lib_is_aggregate)

171 COMPILER_FEATURE_ENTRY(__cpp_lib_is_invocable)

172 COMPILER_FEATURE_ENTRY(__cpp_lib_is_swappable)

173 COMPILER_FEATURE_ENTRY(__cpp_lib_launder)

174 COMPILER_FEATURE_ENTRY(__cpp_lib_logical_traits)

175 COMPILER_FEATURE_ENTRY(__cpp_lib_make_from_tuple)

176 COMPILER_FEATURE_ENTRY(__cpp_lib_map_try_emplace)

177 COMPILER_FEATURE_ENTRY(__cpp_lib_math_special_functions)

178 COMPILER_FEATURE_ENTRY(__cpp_lib_memory_resource)

179 COMPILER_FEATURE_ENTRY(__cpp_lib_node_extract)

180 COMPILER_FEATURE_ENTRY(__cpp_lib_nonmember_container_access)

181 COMPILER_FEATURE_ENTRY(__cpp_lib_not_fn)

182 COMPILER_FEATURE_ENTRY(__cpp_lib_optional)

183 COMPILER_FEATURE_ENTRY(__cpp_lib_parallel_algorithm)

184 COMPILER_FEATURE_ENTRY(__cpp_lib_raw_memory_algorithms)

185 COMPILER_FEATURE_ENTRY(__cpp_lib_sample)

186 COMPILER_FEATURE_ENTRY(__cpp_lib_scoped_lock)

187 COMPILER_FEATURE_ENTRY(__cpp_lib_shared_mutex)

188 COMPILER_FEATURE_ENTRY(__cpp_lib_shared_ptr_arrays)

189 COMPILER_FEATURE_ENTRY(__cpp_lib_shared_ptr_weak_type)

190 COMPILER_FEATURE_ENTRY(__cpp_lib_string_view)

191 COMPILER_FEATURE_ENTRY(__cpp_lib_to_chars)

192 COMPILER_FEATURE_ENTRY(__cpp_lib_transparent_operators)

193 COMPILER_FEATURE_ENTRY(__cpp_lib_type_trait_variable_templates)

194 COMPILER_FEATURE_ENTRY(__cpp_lib_uncaught_exceptions)

195 COMPILER_FEATURE_ENTRY(__cpp_lib_unordered_map_try_emplace)

196 COMPILER_FEATURE_ENTRY(__cpp_lib_variant)

197 COMPILER_FEATURE_ENTRY(__cpp_lib_void_t)

198 };

199

200 static CompilerFeature cxx20[] = {

201 COMPILER_FEATURE_ENTRY(__cpp_aggregate_paren_init)

202 COMPILER_FEATURE_ENTRY(__cpp_char8_t)

203 COMPILER_FEATURE_ENTRY(__cpp_concepts)

Feature Testing 631

204 COMPILER_FEATURE_ENTRY(__cpp_conditional_explicit)

205 COMPILER_FEATURE_ENTRY(__cpp_consteval)

206 COMPILER_FEATURE_ENTRY(__cpp_constexpr)

207 COMPILER_FEATURE_ENTRY(__cpp_constexpr_dynamic_alloc)

208 COMPILER_FEATURE_ENTRY(__cpp_constexpr_in_decltype)

209 COMPILER_FEATURE_ENTRY(__cpp_constinit)

210 COMPILER_FEATURE_ENTRY(__cpp_deduction_guides)

211 COMPILER_FEATURE_ENTRY(__cpp_designated_initializers)

212 COMPILER_FEATURE_ENTRY(__cpp_generic_lambdas)

213 COMPILER_FEATURE_ENTRY(__cpp_impl_coroutine)

214 COMPILER_FEATURE_ENTRY(__cpp_impl_destroying_delete)

215 COMPILER_FEATURE_ENTRY(__cpp_impl_three_way_comparison)

216 COMPILER_FEATURE_ENTRY(__cpp_init_captures)

217 COMPILER_FEATURE_ENTRY(__cpp_modules)

218 COMPILER_FEATURE_ENTRY(__cpp_nontype_template_args)

219 COMPILER_FEATURE_ENTRY(__cpp_using_enum)

220 };

221 static CompilerFeature cxx20lib[] = {

222 COMPILER_FEATURE_ENTRY(__cpp_lib_array_constexpr)

223 COMPILER_FEATURE_ENTRY(__cpp_lib_assume_aligned)

224 COMPILER_FEATURE_ENTRY(__cpp_lib_atomic_flag_test)

225 COMPILER_FEATURE_ENTRY(__cpp_lib_atomic_float)

226 COMPILER_FEATURE_ENTRY(__cpp_lib_atomic_lock_free_type_aliases)

227 COMPILER_FEATURE_ENTRY(__cpp_lib_atomic_ref)

228 COMPILER_FEATURE_ENTRY(__cpp_lib_atomic_shared_ptr)

229 COMPILER_FEATURE_ENTRY(__cpp_lib_atomic_value_initialization)

230 COMPILER_FEATURE_ENTRY(__cpp_lib_atomic_wait)

231 COMPILER_FEATURE_ENTRY(__cpp_lib_barrier)

232 COMPILER_FEATURE_ENTRY(__cpp_lib_bind_front)

233 COMPILER_FEATURE_ENTRY(__cpp_lib_bit_cast)

234 COMPILER_FEATURE_ENTRY(__cpp_lib_bitops)

235 COMPILER_FEATURE_ENTRY(__cpp_lib_bounded_array_traits)

236 COMPILER_FEATURE_ENTRY(__cpp_lib_char8_t)

237 COMPILER_FEATURE_ENTRY(__cpp_lib_chrono)

238 COMPILER_FEATURE_ENTRY(__cpp_lib_concepts)

239 COMPILER_FEATURE_ENTRY(__cpp_lib_constexpr_algorithms)

240 COMPILER_FEATURE_ENTRY(__cpp_lib_constexpr_complex)

241 COMPILER_FEATURE_ENTRY(__cpp_lib_constexpr_dynamic_alloc)

242 COMPILER_FEATURE_ENTRY(__cpp_lib_constexpr_functional)

243 COMPILER_FEATURE_ENTRY(__cpp_lib_constexpr_iterator)

244 COMPILER_FEATURE_ENTRY(__cpp_lib_constexpr_memory)

245 COMPILER_FEATURE_ENTRY(__cpp_lib_constexpr_numeric)

246 COMPILER_FEATURE_ENTRY(__cpp_lib_constexpr_string)

247 COMPILER_FEATURE_ENTRY(__cpp_lib_constexpr_string_view)

248 COMPILER_FEATURE_ENTRY(__cpp_lib_constexpr_tuple)

Feature Testing 632

249 COMPILER_FEATURE_ENTRY(__cpp_lib_constexpr_utility)

250 COMPILER_FEATURE_ENTRY(__cpp_lib_constexpr_vector)

251 COMPILER_FEATURE_ENTRY(__cpp_lib_coroutine)

252 COMPILER_FEATURE_ENTRY(__cpp_lib_destroying_delete)

253 COMPILER_FEATURE_ENTRY(__cpp_lib_endian)

254 COMPILER_FEATURE_ENTRY(__cpp_lib_erase_if)

255 COMPILER_FEATURE_ENTRY(__cpp_lib_execution)

256 COMPILER_FEATURE_ENTRY(__cpp_lib_format)

257 COMPILER_FEATURE_ENTRY(__cpp_lib_generic_unordered_lookup)

258 COMPILER_FEATURE_ENTRY(__cpp_lib_int_pow2)

259 COMPILER_FEATURE_ENTRY(__cpp_lib_integer_comparison_functions)

260 COMPILER_FEATURE_ENTRY(__cpp_lib_interpolate)

261 COMPILER_FEATURE_ENTRY(__cpp_lib_is_constant_evaluated)

262 COMPILER_FEATURE_ENTRY(__cpp_lib_is_layout_compatible)

263 COMPILER_FEATURE_ENTRY(__cpp_lib_is_nothrow_convertible)

264 COMPILER_FEATURE_ENTRY(__cpp_lib_is_pointer_interconvertible)

265 COMPILER_FEATURE_ENTRY(__cpp_lib_jthread)

266 COMPILER_FEATURE_ENTRY(__cpp_lib_latch)

267 COMPILER_FEATURE_ENTRY(__cpp_lib_list_remove_return_type)

268 COMPILER_FEATURE_ENTRY(__cpp_lib_math_constants)

269 COMPILER_FEATURE_ENTRY(__cpp_lib_polymorphic_allocator)

270 COMPILER_FEATURE_ENTRY(__cpp_lib_ranges)

271 COMPILER_FEATURE_ENTRY(__cpp_lib_remove_cvref)

272 COMPILER_FEATURE_ENTRY(__cpp_lib_semaphore)

273 COMPILER_FEATURE_ENTRY(__cpp_lib_shared_ptr_arrays)

274 COMPILER_FEATURE_ENTRY(__cpp_lib_shift)

275 COMPILER_FEATURE_ENTRY(__cpp_lib_smart_ptr_for_overwrite)

276 COMPILER_FEATURE_ENTRY(__cpp_lib_source_location)

277 COMPILER_FEATURE_ENTRY(__cpp_lib_span)

278 COMPILER_FEATURE_ENTRY(__cpp_lib_ssize)

279 COMPILER_FEATURE_ENTRY(__cpp_lib_starts_ends_with)

280 COMPILER_FEATURE_ENTRY(__cpp_lib_string_view)

281 COMPILER_FEATURE_ENTRY(__cpp_lib_syncbuf)

282 COMPILER_FEATURE_ENTRY(__cpp_lib_three_way_comparison)

283 COMPILER_FEATURE_ENTRY(__cpp_lib_to_address)

284 COMPILER_FEATURE_ENTRY(__cpp_lib_to_array)

285 COMPILER_FEATURE_ENTRY(__cpp_lib_type_identity)

286 COMPILER_FEATURE_ENTRY(__cpp_lib_unwrap_ref)

287 };

288

289 static CompilerFeature cxx23[] = {

290 COMPILER_FEATURE_ENTRY(__cpp_cxx23_stub) //< Populate eventually

291 };

292 static CompilerFeature cxx23lib[] = {

293 COMPILER_FEATURE_ENTRY(__cpp_lib_cxx23_stub) //< Populate eventually

Feature Testing 633

294 };

295

296 static CompilerFeature attributes[] = {

297 COMPILER_ATTRIBUTE_ENTRY(carries_dependency)

298 COMPILER_ATTRIBUTE_ENTRY(deprecated)

299 COMPILER_ATTRIBUTE_ENTRY(fallthrough)

300 COMPILER_ATTRIBUTE_ENTRY(likely)

301 COMPILER_ATTRIBUTE_ENTRY(maybe_unused)

302 COMPILER_ATTRIBUTE_ENTRY(nodiscard)

303 COMPILER_ATTRIBUTE_ENTRY(noreturn)

304 COMPILER_ATTRIBUTE_ENTRY(no_unique_address)

305 COMPILER_ATTRIBUTE_ENTRY(unlikely)

306 };

307

308 constexpr bool is_feature_supported(const CompilerFeature& x) {

309 return x.value[0] != '_' && x.value[0] != '0' ;

310 }

311

312 inline void print_compiler_feature(const CompilerFeature& x) {

313 constexpr static int max_name_length = 44; //< Update if necessary

314 std::string value{ is_feature_supported(x) ? x.value : "------" };

315 if (value.back() == 'L') value.pop_back(); //~ 201603L -> 201603

316 // value.insert(4, 1, '-'); //~ 201603 -> 2016-03

317 if ((print.supported_features && is_feature_supported(x))

318 || (print.unsupported_features && !is_feature_supported(x))) {

319 std::cout << std::left << std::setw(max_name_length)

320 << x.name << " " << value << '\n';

321 }

322 }

323

324 template<size_t N>

325 inline void show(char const* title, CompilerFeature (&features)[N]) {

326 if (print.titles) {

327 std::cout << '\n' << std::left << title << '\n';

328 }

329 if (print.sorted_by_value) {

330 std::sort(std::begin(features), std::end(features),

331 [](CompilerFeature const& lhs, CompilerFeature const& rhs) {

332 return std::strcmp(lhs.value, rhs.value) < 0;

333 });

334 }

335 for (const CompilerFeature& x : features) {

336 print_compiler_feature(x);

337 }

338 }

Feature Testing 634

339

340 int main() {

341 if (print.general_features) show("C++ GENERAL", cxx);

342 if (print.cxx11 && print.core_features) show("C++11 CORE", cxx11);

343 if (print.cxx14 && print.core_features) show("C++14 CORE", cxx14);

344 if (print.cxx14 && print.lib_features) show("C++14 LIB" , cxx14lib);

345 if (print.cxx17 && print.core_features) show("C++17 CORE", cxx17);

346 if (print.cxx17 && print.lib_features) show("C++17 LIB" , cxx17lib);

347 if (print.cxx20 && print.core_features) show("C++20 CORE", cxx20);

348 if (print.cxx20 && print.lib_features) show("C++20 LIB" , cxx20lib);

349 if (print.cxx23 && print.core_features) show("C++23 CORE", cxx23);

350 if (print.cxx23 && print.lib_features) show("C++23 LIB" , cxx23lib);

351 if (print.attributes) show("ATTRIBUTES", attributes);

352 }

Of course, the length of the source file is overwhelming. When you want to know more about each
macro, visit the page for feature testing³. In particular, that page provides a link for each macro so
that you can get more information about a feature. For example, here is the table on attributes:

Macros for the attributes

Here is a demonstration of the <version> header and its macros. I executed the program on the
brand-new GCC, Clang, and MSVC compilers. I used the Compiler Explorer for the GCC and Clang
compilers. The /Zc:__cplusplus flag enables the __cplusplus macro reports the recent C++ language
standards support. Additionally, I enabled C++20 support on all three platforms. For obvious reasons,
I only display the support of the C++20 core language.

• GCC 10.2

³https://en.cppreference.com/w/cpp/feature_test

https://en.cppreference.com/w/cpp/feature_test
https://en.cppreference.com/w/cpp/feature_test

Feature Testing 635

C++20 core language support available on the GCC compiler

• Clang 11.0

C++20 core language support available on the Clang compiler

• MSVC 19.27

Feature Testing 636

C++20 core language support available on the MSVC compiler

The three screenshots speak a clear message about the big three: Their C++20 core language support
is quite good at the end of 2020.

10. Glossary
The idea of this glossary is by no means to be exhaustive but to provide a reference for the essential
terms.

10.1 Aggregate

Aggregates are arrays and class types. A class type is a class, a struct, or a union.

With C++20, the following condition must hold for a class type to be an aggregate.

• No private or protected non-static data members

• No user-declared or inherited constructors

• No virtual, private, or protected base classes

• No virtual member functions

10.2 Automatic Storage Duration

Object storage with automatic storage duration is automatically allocated at the beginning of the
enclosing scope and deallocated at its end. All locals except objects with static storage duration have
automatic storage duration.

10.3 Awaitable

An Awaitable is something you can await on. It is the argument of co_await: co_await awaitable.
The awaitable determines if the coroutine pauses or not.

10.4 Awaiter

The co_await operator needs an awaitable as an argument. Typically, the awaitable becomes the
awaiter. The concept awaiter requires three functions.

Glossary 638

The Concept Awaiter

Function Description

await_ready Indicates if the result is ready. When it returns false, await_suspend
is called.

await_suspend Schedules the coroutine to resume or destroy.

await_resume Provides the result for the co_await exp expression.

The C++20 standard already defines two basic awaitables: std::suspend_always, and std::suspend_-

never.

10.5 Callable

see Callable Unit.

10.6 Callable Unit

A callable unit, or callable for short, is something that behaves like a function. Not only are these
named functions but also function objects or lambda expressions. If a callable accepts one argument,
it’s called a unary callable, and with two arguments, it’s called a binary callable.

Predicates are special callables that return a boolean as a result.

10.7 Concurrency

Concurrency means that the execution of several tasks overlaps. Concurrency is a superset of
parallelism.

10.8 Critical Section

A critical section is a section of code that contains shared variables and must be protected to avoid a
data race. At most one thread at a time should enter a critical section.

10.9 Data Race

A data race is a situation in which at least two threads access a shared variable at the same time. At
least one thread tries to modify the variable, and the other tries to read or modify the variable. If your
program has a data race, it has undefined behavior. This means all outcomes are possible.

Glossary 639

10.10 Deadlock

A deadlock is a state in which at least one thread is blocked forever because it waits for the release of
a resource that it will never get.

There are two main reasons for deadlocks:

1. A mutex has not been unlocked.

2. You lock your mutexes in an incorrect order.

10.11 Dynamic Storage Duration

Objects with dynamic storage duration are explicitly allocated and deallocated using dynamic
memory allocation functions such as new¹ or delete².

10.12 Eager Evaluation

In the case of eager evaluation, the expression is evaluated immediately. This evaluation strategy is
the opposite to lazy evaluation. Eager evaluation is often called greedy evaluation.

10.13 Executor

An executor is an object associatedwith a specific execution context. It provides one ormore execution
functions for creating execution agents from a callable function object.

10.14 Function Objects

First of all, don’t call them functors³. That’s a well-defined term from a branch of mathematics called
category theory⁴.

Function objects are objects that behave like functions. They achieve this by implementing the
function call operator. As function objects are objects, they can have attributes and, therefore, state.

¹https://en.cppreference.com/w/cpp/memory/new/operator_new
²https://en.cppreference.com/w/cpp/memory/new/operator_delete
³https://en.wikipedia.org/wiki/Functor
⁴https://en.wikipedia.org/wiki/Category_theory

https://en.cppreference.com/w/cpp/memory/new/operator_new
https://en.cppreference.com/w/cpp/memory/new/operator_delete
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Category_theory
https://en.cppreference.com/w/cpp/memory/new/operator_new
https://en.cppreference.com/w/cpp/memory/new/operator_delete
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Category_theory

Glossary 640

struct Square{

void operator()(int& i){i= i*i;}

};

std::vector<int> myVec{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

std::for_each(myVec.begin(), myVec.end(), Square());

for (auto v: myVec) std::cout << v << " "; // 1 4 9 16 25 36 49 64 81 100

Instantiate function objects to use them
It’s a common error that the name of the function object (Square) is used in an algorithm in-
stead of an instance of the function object (Square()) itself: std::for_each(myVec.begin(),
myVec.end(), Square). Of course, that’s a typical error. You have to use the instance:
std::for_each(myVec.begin(), myVec.end(), Square())

10.15 Lambda Expressions

Lambda expressions provide their functionality in place. The compiler gets all the necessary informa-
tion to optimize the code optimally. Lambda functions can receive their arguments by value or by
reference. They can capture the variables of their defining environment by value or by reference as
well.

std::vector<int> myVec{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

std::for_each(myVec.begin(), myVec.end(), [](int& i){ i= i*i; });

// 1 4 9 16 25 36 49 64 81 100

10.16 Lazy Evaluation

In the case of lazy evaluation⁵, the expression is only evaluated if needed. This evaluation strategy is
opposite to eager evaluation. Lazy evaluation is often called call-by-need.

10.17 Literal Type

A literal type is according to cppreference.com/LiteralType⁶ any of the following type with C++20:

⁵https://en.wikipedia.org/wiki/Lazy_evaluation
⁶https://en.cppreference.com/w/cpp/named_req/LiteralType

https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.cppreference.com/w/cpp/named_req/LiteralType
https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.cppreference.com/w/cpp/named_req/LiteralType

Glossary 641

• scalar type;

• reference type;

• an array of literal types;

• possibly cv-qualified class type that has all of the following properties:

– has a constexpr destructor,
– is either

* an aggregate type,
* a type with at least one constexpr (possibly template) constructor that is not a copy
or move constructor,

* a closure type (lambda)

– for unions, at least one non-static data member is of non-volatile literal type,
– for non-unions, all non-static data members and base classes are of non-volatile literal
types.

10.18 Lock-free

A non-blocking algorithm is lock-free if there is guaranteed system-wide progress.

10.19 Lost Wakeup

A lost wakeup is a situation in which a thread misses its wake-up notification due to a race condition.

10.20 Math Laws

A binary operation (*) on some set X is

• associative, if it satisfies the associative law for all x, y, z in X: (x * y) * z = x * (y * z)

• commutative, if it satisfies the commutative law for all x, y in X: x * y = y * x

• distributive, if it satisfies the distributive law for all x, y, z in X: x(y + z) = xy + xz

10.21 Memory Location

A memory location is according to cppreference.com⁷

• an object of scalar type (arithmetic type, pointer type, enumeration type, or std::nullptr_t),

• or the largest contiguous sequence of bit fields of non-zero length.

⁷http://en.cppreference.com/w/cpp/language/memory_model

http://en.cppreference.com/w/cpp/language/memory_model
http://en.cppreference.com/w/cpp/language/memory_model

Glossary 642

10.22 Memory Model

The memory model defines the relationship between objects and memory locations and deals with
the question: What happens if two threads access the same memory locations?

10.23 Non-blocking

An algorithm is called non-blocking if a failure or suspension of any thread cannot cause failure or
suspension of another thread. This definition is from the excellent book Java concurrency in practice⁸.

10.24 Object

A type is an object if it is either a scalar, an array, a union, or a class.

10.25 Parallelism

Parallelism means that several tasks are performed at the same time. Parallelism is a subset of
Concurrency. In contrast to concurrency, parallelism requires multiple cores.

10.26 POD (Plain Old Data)

A POD type is trivial and has standard layout.

10.27 Predicate

Predicates are callable units that return something convertible to a boolean as a result. If a predicate
has one argument, it’s called a unary predicate. If a predicate has two arguments, it’s called a binary
predicate.

10.28 RAII

Resource Acquisition Is Initialization, or RAII for short, stands for a popular technique in C++ in
which the resource acquisition and release are bound to the lifetime of an object. This means for a
lock that the mutex will be locked in the constructor and unlocked in the destructor.

Typical use cases in C++ are locks that handle the lifetime of its underlying mutex, smart pointers
that handle the lifetime of its resource (memory), or containers of the standard template library⁹ that
handle the lifetime of their elements.

⁸http://jcip.net/
⁹https://en.cppreference.com/w/cpp/container

http://jcip.net/
https://en.cppreference.com/w/cpp/container
http://jcip.net/
https://en.cppreference.com/w/cpp/container

Glossary 643

10.29 Race Conditions

A race condition is a situation inwhich the result of an operation depends on the interleaving (ordering
of operations) of certain individual operations.

Race conditions are quite difficult to see. Whether they occur depends on the interleaving of the
threads. That means the number of your cores, your system’s utilization, or your executable’s
optimization level may all be reasons why a race condition appears or does not.

10.30 Regular Type

In addition to the requirements of the concept SemiRegular, the concept Regular requires that the type
is equally comparable.

10.31 Scalar Type

A scalar type is either an arithmetic type (see std::is_arithmetic¹⁰), an enum, a pointer, a member
pointer, or a std::nullptr_t.

10.32 SemiRegular

A semiregular type X has to support the Big Six and has to be swappable: swap(X&, X&)

10.33 Short-Circuit Evaluation

Short circuit evaluation means that the evaluation of a logical expression automatically stops when
its overall result is already determined.

10.34 Standard-Layout Type

A standard-layout type does not use features that are not available in C. All its members must have the
same access specifier. User-defined special members are allowed. The following characteristic holds
for standard layout types.

A standard-layout type can only have

• non-virtual functions or non-virtual base classes

¹⁰https://en.cppreference.com/w/cpp/types/is_arithmetic

https://en.cppreference.com/w/cpp/types/is_arithmetic
https://en.cppreference.com/w/cpp/types/is_arithmetic

Glossary 644

• non-static data members with the same access specifiers

• non-static members or bases classes that are standard layout

• Meets one of these conditions:

– no non-static data member in the most-derived class and no more than one base class
with non-static data members, or

– has no base classes with non-static data members

A standard-layout Type is in contrast to a trivial type C compatible.

10.35 Static Storage Duration

Global (namespace) variables, static variables, or static class members have static storage duration.
These objects are allocated when the program starts and are deallocated when the program ends.

10.36 Spurious Wakeup

A spurious wakeup is an erroneous notification. The waiting component of a condition variable or
atomic flag can receive a notification, even though the notification component did not send the signal.

10.37 The Big Four

The Big Four are the four key features of C++20: concepts, modules, the ranges library, and coroutines.

• Concepts change the way we think about and program with templates. They are semantic
categories for template parameters. They enable you to express your intention directly in the
type system. If something goes wrong, the compiler gives you a clear error message.

• Modules overcome the restrictions of header files. They promise a lot. For example, the
separation of header and source files becomes as obsolete as the preprocessor. In the end, we
have faster build times and an easier way to build packages.

• The new ranges library supports performing algorithms directly on the containers, composing
algorithms with the pipe symbol, and applying algorithms lazily on infinite data streams.

• Thanks to coroutines, asynchronous programming in C++ becomes mainstream. Coroutines
are the basis for cooperative tasks, event loops, infinite data streams, or pipelines.

Glossary 645

10.38 The Big Six

The Big Six consists of the following functions:
• Default constructor: X()

• Copy constructor: X(const X&)

• Copy assignment: X& operator = (const X&)

• Move constructor: X(X&&)

• Move assignment: X& operator = (X&&)

• Destructor: ∼X()

10.39 Thread

In computer science, a thread of execution is the smallest sequence of programmed instructions that
a scheduler can manage independently typically. It is typically part of the operating system. The
implementation of threads and processes differs between operating systems, but in most cases, a
thread is a process component. Multiple threads can exist within one process, executing concurrently
and sharing resources such as memory, while different processes do not share these resources. For the
details, read the Wikipedia article about threads¹¹.

10.40 Thread Storage Duration

thread_local variables have thread storage duration. Thread-local data is created for each thread that
uses this data. thread_local data exclusively belongs to the thread. They are created at their first usage
and its lifetime is bound to the lifetime of the thread it belongs to. Often thread-local data is called
thread-local storage.

10.41 Time Complexity

O(i) stands for the time complexity (run time) of an operation. WithO(1), the run time of an operation
on a container is constant and is, hence, independent of its size. Conversely, O(n) means that the run
time depends linearly on the number of container elements.

10.42 Translation Unit

A translation unit is the source file after processing of the C preprocessor. The C preprocessor includes
the header files using #include directives, and performs conditional inclusion with directives such
as #ifdef, or #ifndef, and expands macros. The compiler uses the translation unit to create an object
file.

¹¹https://en.wikipedia.org/wiki/Thread_(computing)

https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Thread_(computing)

Glossary 646

10.43 Trivial Type

A trivial type is a type for which the compiler creates all the special member functions implicitly
or explicitly they are defaulted by the user. The member of a trivial type can have different access
specifiers and occupies a contiguous memory block.

A trivial type cannot have

• virtual functions or virtual base classes.

• non-trivial base classes.

• non-trivial members.

A trivial type is in contrast to a standard-layout¹² type not compatible with C.

10.44 Type Erasure

Type erasure is a type-safe generic way to provide a unique interface for different types. The different
types don’t need a common base class and are unrelated.

10.45 Undefined Behavior

All bets are off. Your program can produce the correct or the wrong result, can crash at run time, or
may not even compile. That behavior might change when porting to a new platform, upgrading to a
new compiler, or as a result of an unrelated code change.

¹²https://en.cppreference.com/w/cpp/named_req/StandardLayoutType

https://en.cppreference.com/w/cpp/named_req/StandardLayoutType
https://en.cppreference.com/w/cpp/named_req/StandardLayoutType

Index
Entries in capital letters stand for sections and subsections.

** ** [[unlikely]]
(operator) [i] (mdspan in C++23)
[i] (span)
(formatting) [i] (subrange)
‘ [i] (view_interface)
‘jthread (jthread) _
- __cplusplus
-fmodule-header __cpp_aggregate_bases
-fmodule-mapper __cpp_aggregate_nsdmi
-fmodules-ts __cpp_aggregate_paren_init
/ __cpp_alias_templates
/exportHeader __cpp_aligned_new
/headerName __cpp_attributes
/headerUnit __cpp_binary_literals
/ifcOnly __cpp_capture_star_this
/ifcOutput __cpp_char8_t
/ifcSearchDir __cpp_concepts
/interface __cpp_conditional_explicit
/internalPartition __cpp_consteval
/reference __cpp_constexpr
/std:c++latest __cpp_constinit
/TP __cpp_decltype
/translateInclude __cpp_decltype_auto
/validateIfcChecksum[-] __cpp_deduction_guides
0 __cpp_delegating_constructors
0 (formatting) __cpp_designated_initializers
[__cpp_enumerator_attributes
[[carries_dependency]] __cpp_exceptions
[[deprecated]] __cpp_fold_expressions
[[fallthrough]] __cpp_generic_lambdas
[[likely]] __cpp_generic_lambdas
[[maybe_unused]] __cpp_guaranteed_copy_elision
[[nodiscard]] __cpp_hex_float
[[noreturn]] __cpp_if_constexpr

Index 648

__cpp_impl_coroutine __cpp_lib_constexpr_dynamic_alloc
__cpp_impl_destroying_delete __cpp_lib_constexpr_functional
__cpp_impl_three_way_comparison __cpp_lib_constexpr_iterator
__cpp_inheriting_constructors __cpp_lib_constexpr_memory
__cpp_inheriting_constructors __cpp_lib_constexpr_numeric
__cpp_init_captures __cpp_lib_constexpr_string
__cpp_init_captures __cpp_lib_constexpr_string_view
__cpp_initializer_lists __cpp_lib_constexpr_tuple
__cpp_inline_variables __cpp_lib_constexpr_utility
__cpp_lambdas __cpp_lib_constexpr_vector
__cpp_lib_addressof_constexpr __cpp_lib_coroutine
__cpp_lib_allocator_traits_is_always_equal __cpp_lib_destroying_delete
__cpp_lib_any __cpp_lib_enable_shared_from_this
__cpp_lib_apply __cpp_lib_endian
__cpp_lib_array_constexpr __cpp_lib_erase_if
__cpp_lib_as_const __cpp_lib_exchange_function
__cpp_lib_assume_aligned __cpp_lib_execution
__cpp_lib_atomic_flag_test __cpp_lib_filesystem
__cpp_lib_atomic_float __cpp_lib_format
__cpp_lib_atomic_is_always_lock_free __cpp_lib_gcd_lcm
__cpp_lib_atomic_lock_free_type_aliases __cpp_lib_generic_associative_lookup
__cpp_lib_atomic_ref __cpp_lib_generic_unordered_lookup
__cpp_lib_atomic_shared_ptr __cpp_lib_hardware_interference_size
__cpp_lib_atomic_value_initialization __cpp_lib_has_unique_object_representations
__cpp_lib_atomic_wait __cpp_lib_hypot
__cpp_lib_barrier __cpp_lib_incomplete_container_elements
__cpp_lib_bind_front __cpp_lib_int_pow2
__cpp_lib_bit_cast __cpp_lib_integer_comparison_functions
__cpp_lib_bitops __cpp_lib_integer_sequence
__cpp_lib_bool_constant __cpp_lib_integral_constant_callable
__cpp_lib_bounded_array_traits __cpp_lib_interpolate
__cpp_lib_boyer_moore_searcher __cpp_lib_invoke
__cpp_lib_byte __cpp_lib_is_aggregate
__cpp_lib_char8_t __cpp_lib_is_constant_evaluated
__cpp_lib_chrono __cpp_lib_is_final
__cpp_lib_chrono __cpp_lib_is_invocable
__cpp_lib_chrono_udls __cpp_lib_is_layout_compatible
__cpp_lib_clamp __cpp_lib_is_nothrow_convertible
__cpp_lib_complex_udls __cpp_lib_is_null_pointer
__cpp_lib_concepts __cpp_lib_is_pointer_interconvertible
__cpp_lib_constexpr_algorithms __cpp_lib_is_swappable
__cpp_lib_constexpr_complex __cpp_lib_jthread

Index 649

A

__cpp_lib_latch __cpp_lib_to_array
__cpp_lib_launder __cpp_lib_to_chars
__cpp_lib_list_remove_return_type __cpp_lib_transformation_trait_aliases
__cpp_lib_logical_traits __cpp_lib_transparent_operators
__cpp_lib_make_from_tuple __cpp_lib_transparent_operators
__cpp_lib_make_reverse_iterator __cpp_lib_tuple_element_t
__cpp_lib_make_unique __cpp_lib_tuples_by_type
__cpp_lib_map_try_emplace __cpp_lib_type_identity
__cpp_lib_math_constants __cpp_lib_type_trait_variable_templates
__cpp_lib_math_special_functions __cpp_lib_uncaught_exceptions
__cpp_lib_memory_resource __cpp_lib_unordered_map_try_emplace
__cpp_lib_node_extract __cpp_lib_unwrap_ref
__cpp_lib_nonmember_container_access __cpp_lib_variant
__cpp_lib_not_fn __cpp_lib_void_t
__cpp_lib_null_iterators __cpp_modules
__cpp_lib_optional __cpp_namespace_attributes
__cpp_lib_parallel_algorithm __cpp_noexcept_function_type
__cpp_lib_polymorphic_allocator __cpp_nontype_template_args
__cpp_lib_quoted_string_io __cpp_nontype_template_parameter_auto
__cpp_lib_ranges __cpp_nsdmi
__cpp_lib_raw_memory_algorithms __cpp_range_based_for
__cpp_lib_remove_cvref __cpp_raw_strings
__cpp_lib_result_of_sfinae __cpp_ref_qualifiers
__cpp_lib_robust_nonmodifying_seq_ops __cpp_return_type_deduction
__cpp_lib_sample __cpp_rtti
__cpp_lib_scoped_lock __cpp_rvalue_references
__cpp_lib_semaphore __cpp_sized_deallocation
__cpp_lib_shared_mutex __cpp_static_assert
__cpp_lib_shared_ptr_arrays __cpp_structured_bindings
__cpp_lib_shared_ptr_weak_type __cpp_template_template_args
__cpp_lib_shared_timed_mutex __cpp_threadsafe_static_init
__cpp_lib_shift __cpp_unicode_characters
__cpp_lib_smart_ptr_for_overwrite __cpp_unicode_literals
__cpp_lib_source_location __cpp_user_defined_literals
__cpp_lib_span __cpp_using_enum
__cpp_lib_ssize __cpp_variable_templates
__cpp_lib_starts_ends_with __cpp_variadic_templates
__cpp_lib_string_udls __cpp_variadic_using
__cpp_lib_string_view _dynamic_alloc
__cpp_lib_syncbuf _in_decltype
__cpp_lib_three_way_comparison A
__cpp_lib_to_address A Flavor of Python

Index 650

B

A General Mechanism to Send Signals atomic_weak_ptr
A Generator Function Atomics
A Quick Overview August
A thread-safe singly linked list auto[beg, end] (subrange)
Abbreviated Function Templates Automatic Storage Duration (Glossary)
acquire Automatically Joining
Addable await_ready
address await_resume
adjacent_transform_view await_suspend
adjacent_view await_transform
advance (subrange) Awaitable (Glossary)
Aggregate (Glossary) Awaitables (coroutines)
Aggregate Initialization Awaitables and Awaiters (coroutines)
alignment Awaiter (coroutines)
all (views) Awaiter (Glossary)
All Atomic Operations (std::atomic_ref) Awaiter
all_t (views) B
An Infinite Data Stream back (span)
and_then (exptected) back (subrange)
Anonymous Concepts back (view_interface)
April bad_expected_access (expected)
Argument ID barrier
Arithmetic basic_istream (views)
arrive basic_istream_view
arrive_and_drop basic_osyncstream
arrive_and_wait (barrier) basic_streambuf
arrive_and_wait (latch) basic_syncbuf
as_bytes (span) Becoming a Coroutine
as_const_view begin (format_parse_context)
as_rvalue_view begin (ranges)
as_writable_bytes (span) begin (subrange)
assertion (contracts) bidirectional_iterator (concepts)
assignable_from (concepts) bidirectional_range (concepts)
associative (Glossary) big (endian)
atomic Extensions big-endian
Atomic Smart Pointer binary_semaphore
atomic<shared_ptr<T>> bind_front
atomic<weak_ptr<T>> bit field
atomic_flag Extensions Bit Manipulation
ATOMIC_FLAG_INIT bit_cast
atomic_ref bit_ceil
atomic_shared_ptr bit_floor

Index 651

C

bit_width common (views)
borrowed_range (concepts) common_iterator (iterator)
C common_range (concepts)
C++03 common_reference_with (concepts)
C++11 common_view
C++14 common_with (concepts)
C++17 commutative (Glossary)
C++23 and Beyond comparable
C++23 Comparison
C++98 compilation (source code)
Calendar and Timezone compile-time predicate
Calendar Dates Compiler Support (modules)
calendar Compound Requirements
Callable (Glossary) Concepts
callable (Glossary) Concurrency (Glossary)
Callable Unit Concurrency
Case Studies condition_variable_any
cbegin (ranges) Conditionally Explicit Constructor
cdata (ranges) Consistent Container Erasure
cend (ranges) consteval lambda
char16_t consteval
char32_t constexpr Container
char8_t constexpr if (concepts)
char constinit
chunk_by_view constrained placeholders
chunk_view constrained template parameter
Cippi constraint-expression
Class Template Argument Deduction Guide constructible_from (concepts)
clear (atomic_flag) Container Adapters (C++23)
clock Container and Algorithm Improvements
clock_cast contains
cmp_equal contiguous_iterator (concepts)
cmp_greater contiguous_range (concepts)
cmp_greater_equal contract_violation (contracts)
cmp_less Contracts (Beyond C++23)
cmp_less_equal convertible_to (concepts)
cmp_not_equal copy_constructible (concepts)
co_await operator copyable (concepts)
co_await Core Language
co_return coroutine factory
co_yield Coroutine Frame (coroutines)
column Coroutine Handle (coroutines)

Index 652

DE

coroutine handle Designated Initialization
coroutine object designators
coroutine state destroy
coroutine_traits destructible (concepts)
Coroutines detach
count (span) Details (coroutines)
count_down distributive (Glossary)
counted (views) done
counted_iterator (iterator) drop (views)
counting semaphores drop_view
countl_one drop_while (views)
countl_zero drop_while_view
countr_one dynamic extent (mdspan in C++23)
countr_zero dynamic extent (span)
cppm (file extension) Dynamic Storage Duration (Glossary)
crbegin (ranges) E
crend (ranges) e
Critical Section (Glossary) Eager evaluation (Glossary)
current Edsger W. Dijkstra
current_zone egamma
Cute Syntax elements (views)
CWG elements_view
D elif (macro)
d (built-in literal) else (macro)
data (ranges) emit
data (span) emplace (expected)
data (subrange) empty (ranges)
data (view_interface) empty (span)
Data Race (Glossary) empty (subrange)
data_handle (mdspan in C++23) empty (view_interface)
day empty (views)
Deadlock (Glossary) empty_view
December end (format_parse_contextformat_parse_context)
Deducing This (C++23) end (ranges)
Default Member Initializers Bit Fields end (subrange)
default_constructible (concepts) endian
default_initializable (concepts) endif (macro)
default_sentinel (sentinel) ends_with
define (macro) Epilogue
Define Concepts epoch
derived_from (concepts) Equal
Design Goals (coroutines) equal_to (ranges)

Index 653

FG

Equality Comparison and Three-Way Comparison flat_set (C++23)
equality operator floating_point (concept definition)
equality flush_emit
equality_comparable (concepts) format (user-defined type)
equivalence Format String
erase-remove idiom format
erase format_error
erase_if format_parse_context (user-defined type)
EWG format_to (user-defined type)
exchange (atomic_ref) format_to
Executor (Glossary) format_to_n
expected (C++23) Formatted Input (chrono)
export group Formatted Output (chrono)
export import formatted_size
export namespace formatter (user-defined type)
export specifier Formatting Library
export forward_iterator (concepts)
exportHeader (compiler option) forward_range (concepts)
extension (mdspan in C++23) Four Ways to use a Concept
extents (mdspan in C++23) fractional_width
external linkage Friday
F From Mathematics to Generic Programming
Fast Synchronization of Threads from_address
Feature Testing from_promise
February from_stream (chrono)
fetch_add (atomic_ref) front (span)
fetch_and (atomic_ref) front (subrange)
fetch_or (atomic_ref) front (view_interface)
fetch_sub (atomic_ref) Function Objects (Glossary)
fetch_xor (atomic_ref) function_name
file_clock Further Improvements
file_name Further Information
file_time[duration] G
fill character generator (ranges in C++23)
filter (Python) generic lambdas
filter (views) get_id
filter_view get_return_object
final_suspend get_return_object_on_allocation_failure
first (span) get_stop_source
flat_map (C++23) get_stop_token
flat_multimap (C++23) get_token (stop_source)
flat_multiset (C++23) get_tzdb

Index 654

HIJKL

get_tzdb_list integral (concept definition)
get_wrapped integral (concepts)
global module fragment Integral
Glossary interface (compiler option)
gps_clock interface partition
gps_seconds internal linkage
gps_time[duration] internal partition
greater (ranges) internalPartition (compiler option)
greater_equal (ranges) internationalization
Guideline for a Module Structure inv_pi
H inv_sqrt3
h (built-in literal) inv_sqrtpi
has_single_bit invariant (contracts)
has_value (expected) invocable (concepts)
Haskell type classes iota (views)
header units iota_view
headerName (compiler option) is_always_lock_free (atomic_ref)
headerUnit (compiler option) is_am
hh_mm_ss is_constant_evaluated
high_resolution_clock is_lock_free (atomic_ref)
Historical Context of C++ is_negative
hours is_pm
I Iterator
identity (algorithm) ixx (file extension)
if (macro) J
ifc (file extension) January
IFC file join (views)
ifcOnly (compiler option) join
ifcOutput (compiler option) join_view
ifcSearchDir (compiler option) join_with_view
ifdef (macro) joinable
immediate function Joining Threads
import jthread
in_range July
include (macro) June
indef (macro) K
Initalizers keys (views)
initial_suspend keys_view
input_iterator (concepts) L
input_output_iterator (concepts) Lambda Functions (Glossary)
input_range (concepts) Lambda Improvements
inspect language linkage

Index 655

M

last (span) M
last make12
last make14
latch make_format_args
Latches and Barriers make_shared
layout_left (mdspan in C++23) map (Python)
layout_right (mdspan in C++23) March
Lazy Evaluation (Glossary) Math Laws (Glossary)
lazy_split (views) Mathematical Constants
lazy_split_view max (barrier)
leap_second max (counting_semaphore)
LegacyRandomAccessIterator max (latch)
lerp May
less (ranges) Memory Location (Glossary)
less_equal (ranges) Memory Model (Glossary)
LEWG mergeable (concepts)
lexicographical comparison midpoint
line min (built-in literal)
linking minutes
list comprehension (Python) Modication and Generalization of a Generator
Literal Type (Glossary) Modularized Standard Library (C++23)
little (endian) module declaration file
little-endian module declaration
ln10 module implementation unit
ln2 module interface partition
load (atomic_ref) module interface unit
local_days (Time Points) module linkage
local_days module partitions
local_info module purview
local_seconds module unit
local_t module-header (compiler option)
local_time[duration] module-mapper (compiler option)
locale::global module
locale modules-ts (compiler option)
localization Modules
locate_zone Monday
lock-free (Glossary) month
log10e month_day
log2e month_day_last
Lost Wakeup (Glossary) month_weekday
lsys_days month_weekday_last
LWG movable (concepts)

Index 656

NOPR

move_constructiblee (concepts) osyncstream
move_sentinel (sentinel) output_iterator (concepts)
ms (built-in literal) output_range (concepts)
Multidimensional Access (C++23) owning_view
N P
named module Pack Expansion in Init-Capture
NaN Parallelism (Glossary)
Nested Requirements parse (chrono)
New Attributes parse (user-defined type)
next (subrange) partial ordering
no-module-lazy (compiler option) partial_ordering
no_unique_address (attribute) partition interface file
Non-blocking (Glossary) Pattern Matching (Beyond C++23)
Non-Type Template Parameters PCH
nonexistent_local_time permutable (concepts)
noop_coroutine phi
noop_coroutine_handle pi
nostopstate_t placeholders
Not a Number Plain Old Data (Glossary)
not_equal_to (ranges) POD
notify_all (atomic_flag) popcount
notify_all (atomic_ref) postcondition (contracts)
notify_one (atomic_flag) precision
notify_one (atomic_ref) precompiled header
November precondition (contracts)
ns (built-in literal) Predefined Concepts
NTTP predicate (concepts)
O Predicate (Glossary)
Object (Glossary) preprocessing
October prev (subrange)
ODR primary interface file
ok primary module interface unit
one definition rule primary module interface
One Time Synchronization of Threads print (C++23)
operator bool (coroutines) println (C++23)
operator coroutine_handle<> (coroutines) private module fragment
operator delete (coroutines) projection
operator new (coroutines) promise object (coroutine)
operator T (atomic_ref) Promise Object (coroutines)
Optimized == and != Operators promise
or_else (exptected) Pull Pipelines
ordinal dates R

Index 657

S

Race Condition (Glossary) s (built-in literal)
RAII (Glossary) Safe Comparison of Integers integral
random_access_iterator (concepts) same_as (concepts)
random_access_range (concepts) Saturday
range (concepts) Scalar Type (Glossary)
Range Adaptor scalar type
Range Adaptor seconds
Range-based for-loop Semaphores
Ranges Extensions(C++23) semiregular (concepts)
Ranges Library SemiRegular (Glossary)
rank (mdspan in C++23) September
rbegin (ranges) SG10
reachability SG11
ref_view SG12
reference (compiler option) SG13
Reference PCs SG14
Reflection (Beyond C++23) SG15
reflection operator SG16
regular (concepts) SG17
Regular Type (Glossary) SG18
regular_invocable (concepts) SG19
relational operator SG1
release (counting_semaphore) SG20
reload_tzdb SG21
remote_version SG22
rend (ranges) SG2
request_stop (jthread) SG2
request_stop (stop_source) SG3
Requires Clauses SG4
Requires Expressions SG5
requires requires SG6
Restrictions (coroutines) SG7
resumable function SG8
resumable object SG9
resume SG
return_value shift_left
return_void shift_rigth
reverse (views) Short-Circuit Evaluation Type (Glossary)
reverse_view sign
rotl signed_integral (concept definition)
rotr SignedIntegral
S Simple Requirements

Index 658

T

single (views) stop_source
single_view stop_token
size (mdspan in C++23) store (atomic_ref)
size (ranges) stride_view
size (span) strong ordering
size (subrange) strong_ordering
size (view_interface) Study Group
size submodules
size_bytes (span) subseconds
sized_range (concepts) subspan (span)
slide_view Sunday
sortable (concepts) suspend_always
sorted_unique (C++23) suspend_never
source_location swappable (concepts)
spacehip operator (concepts) symmetric transfer
spaceship Synchronized Output Streams
span sys_days
Specilisations of std::atomic_ref sys_info
split (views) sys_seconds
split_view sys_time[duration]
Spurious wakeup (Glossary) system_clock
sqrt2 T
sqrt3 tai_clock
ssize (ranges) tai_seconds
ssize tai_time[duration]
Standard Library take (views)
Standard-Layout Type (Glossary) take_view
Standardization take_while (views)
starts_with take_while_view
stateless lambda tdzb_list
static extent (mdspan in C++23) Template Improvements
static extent (span) Template Introduction
static initialization order fiasco template lambdas
Static Storage Duration (Glossary) Templates in Modules
static_assert (concepts) test (atomic_flag)
std:c++latest (compiler option) Test of Concepts
steady_clock test_and_set (atomic_flag)
stop_callback The Awaiter Workflow
stop_possible (stop_source) The Big Four (Glossary)
stop_possible (stop_token) The Big Six (Glossary)
stop_requested (stop_source) The Concepts Equal andOrdering
stop_requested (stop_token) The Concepts SemiRegular and Regular

Index 659

UV

The Details try_acquire_until
The Framework (coroutines) try_wait
The Promise Workflow Type Erasure (Glossary)
The structure of a std::list Type Requirements
The Workflow Typical Use-Cases (coroutines)
this_thread::get_id tzdb
this_thread::sleep_for U
this_thread::sleep_until unconstrained placeholders
this_thread::yield Undefined Behavior (Glossary)
Thread (Glossary) Underlying Concepts (coroutines)
Thread Storage Duration (Glossary) unevaluated context
thread::hardware_concurrency unexpected
three-way comparison operator Unformatted Output (chrono)
Three-Way Comparison operator unhandled_exception
Thuesday Unix time
Thursday unreachable_sentinel (sentinel)
Time Complexity (Glossary) unseq (execution)
time duration unsigned_integral (concept definition)
time of day UnsignedIntegral
time point us (built-in literal)
time zone using enum in local Scopes
time_zone UTC time
time_zone_link utc_clock
to (ranges) utc_seconds
to_address utc_time[duration]
to_array V
to_duration validateIfcChecksum[-] (compiler option)
total ordering value (expected)
totally_ordered (concepts) value_or (expected)
TP (compiler option) values (views)
TR1 values_view
trailing requires clause Variations of
transform (exptected) Various Job Workflows
transform (views) vformat
transform_error (exptected) vformat_to
transform_view view (concepts)
Transient Allocation view
translateInclude (compiler option) view_interface
Translation Unit (Glossary) viewable_range (concepts)
Trivial Type (Glossary) Views on Temporary Ranges
try_acquire views::adjacent
try_acquire_for views::adjacent_transform

Index 660

WYZ

views::all_t Z-fno-module-lazy
views::as_const zip_transform_view
views::as_rvalue zip_view
views::chunk zoned time
views::chunk_by zoned_time
views::join_with zoned_traits
views::slide
views::stride
views::transform
views::zip
Virtual constexpr function
visibility
volatile
W
wait (atomic_flag)
wait (atomic_ref)
wait (barrier)
wait (condition_variable_any)
wait (latch)
wait_for (condition_variable_any)
wait_until (condition_variable_any)
weak ordering
weak_ordering
Wednesday
weekday
weekday_indexed
weekday_last
WG21
width
with
Working Group 21
wosyncstream
Y
y (built-in literal)
year
year_month
year_month_day
year_month_day_last
year_month_weekday
year_month_weekday_last
yield_value
Z

Index 661

	Table of Contents
	Reader Testimonials
	Introduction
	Conventions
	Special Fonts
	Special Boxes

	Source Code
	Compilation of the Programs

	How should you read the Book?
	Personal Notes
	Acknowledgments
	About Me

	About C++
	Historical Context
	C++98
	C++03
	TR1
	C++11
	C++14
	C++17

	Standardization
	Stage 3
	Stage 2
	Stage 1

	A Quick Overview of C++20
	C++20
	The Big Four
	Concepts
	Modules
	The Ranges Library
	Coroutines

	Core Language
	Three-Way Comparison Operator
	Designated Initialization
	consteval and constinit
	Template Improvements
	Lambda Improvements
	New Attributes

	The Standard Library
	std::span
	Container Improvements
	Arithmetic Utilities
	Formatting Library
	Calendar and Time Zones

	Concurrency
	Atomics
	Semaphores
	Latches and Barriers
	Cooperative Interruption
	std::jthread
	Synchronized Outputstreams

	The Details
	Core Language
	Concepts
	Two Wrong Approaches
	Advantages of Concepts
	The long, long History
	Use of Concepts
	Constrained and Unconstrained Placeholders
	Abbreviated Function Templates
	Predefined Concepts
	Define Concepts
	Requires Expressions
	User-Defined Concepts

	Modules
	A First Example
	Advantages
	The Details
	Further Aspects

	Equality Comparison and Three-Way Comparison
	Comparison before C++20
	Comparison since C++20
	Comparison Categories
	Compiler-Generated Equality and Spaceship Operator
	Rewriting Expressions
	User-Defined and Auto-Generated Comparison Operators

	Designated Initialization
	Aggregate Initialization
	Named Initialization of Class Members

	consteval and constinit
	consteval
	constinit
	Comparison of const, constexpr, consteval, and constinit
	Solving the Static Initialization Order Fiasco

	Template Improvements
	Conditionally Explicit Constructor
	Non-Type Template Parameters (NTTP)

	Lambda Improvements
	Template Parameter for Lambdas
	Detection of the Implicit Copy of the this Pointer
	Lambdas in an Unevaluated Context and Stateless Lambdas can be Default-Constructed and Copy-Assigned
	consteval Lambdas
	Pack Expansion in Init-Capture

	New Attributes
	[[nodiscard("reason")]]
	[[likely]] and [[unlikely]]
	[[no_unique_address]]

	Further Improvements
	volatile
	Range-based for loop with Initializers
	Virtual constexpr function
	The new Character Type of UTF-8 Strings: char8_t
	using enum in Local Scopes
	Default Member Initializers for Bit Fields

	The Standard Library
	The Ranges Library
	Ranges
	Views
	Range Adaptors
	Direct on the Container
	Function Composition
	Lazy Evaluation
	Define a View
	std Algorithms versus std::ranges Algorithms
	Design Choices

	std::span
	Static versus Dynamic Extent
	Creation
	Automatically Deduces the Size of a Contiguous Sequence of Objects
	Modifying the Referenced Objects
	std::span's Operations
	A Constant Range of Modifiable Elements
	Dangers of std::span

	Container and Algorithm Improvements
	constexpr Containers and Algorithms
	std::array
	Consistent Container Erasure
	contains for Associative Containers
	Shift the Content of a Container
	String prefix and suffix checking
	Vectorized Execution Policy: std::execution::unseq

	Arithmetic Utilities
	Safe Comparison of Integers
	Mathematical Constants
	Midpoint and Linear Interpolation
	Bit Manipulation

	Formatting Library
	Formatting Functions
	Format String
	User-Defined Types
	Internationalization

	Calendar and Time Zones
	Basic Chrono Terminology
	Basic Types and Literals
	Time of Day
	Calendar Dates
	Time Zones
	Chrono I/O

	Further Improvements
	std::bind_front
	std::is_constant_evaluated
	std::ssize
	std::source_location
	std::to_address

	Concurrency
	Coroutines
	A Generator Function
	Characteristics
	The Framework
	Awaitables and Awaiters
	The Workflows
	co_return
	co_yield
	co_await

	Atomics
	std::atomic_ref
	Atomic Smart Pointer
	std::atomic_flag Extensions
	std::atomic Extensions

	Semaphores
	Latches and Barriers
	std::latch
	std::barrier

	Cooperative Interruption
	std::stop_source
	std::stop_token
	std::stop_callback
	A General Mechanism to Send Signals
	Joining Threads
	New wait Overloads for the condition_variable_any

	std::jthread
	Automatically Joining
	Cooperative Interruption of a std::jthread

	Synchronized Output Streams

	Case Studies
	A Flavor of Python
	filter
	map
	List Comprehension

	Variations of Futures
	A Lazy Future
	Execution on Another Thread

	Modification and Generalization of a Generator
	Modifications
	Generalization
	Iterator Protocol

	Various Job Workflows
	The Transparent Awaiter Workflow
	Automatically Resuming the Awaiter
	Automatically Resuming the Awaiter on a Separate Thread

	Fast Synchronization of Threads
	Condition Variables
	std::atomic_flag
	std::atomic<bool>
	Semaphores
	All Numbers

	Epilogue
	Further Information
	C++23 and Beyond
	C++23
	Core Language
	The Standard Library

	Beyond C++23
	Contracts
	Reflection
	Pattern Matching

	Feature Testing
	Glossary
	Aggregate
	Automatic Storage Duration
	Awaitable
	Awaiter
	Callable
	Callable Unit
	Concurrency
	Critical Section
	Data Race
	Deadlock
	Dynamic Storage Duration
	Eager Evaluation
	Executor
	Function Objects
	Lambda Expressions
	Lazy Evaluation
	Literal Type
	Lock-free
	Lost Wakeup
	Math Laws
	Memory Location
	Memory Model
	Non-blocking
	Object
	Parallelism
	POD (Plain Old Data)
	Predicate
	RAII
	Race Conditions
	Regular Type
	Scalar Type
	SemiRegular
	Short-Circuit Evaluation
	Standard-Layout Type
	Static Storage Duration
	Spurious Wakeup
	The Big Four
	The Big Six
	Thread
	Thread Storage Duration
	Time Complexity
	Translation Unit
	Trivial Type
	Type Erasure
	Undefined Behavior

	Index
	A
	B
	C
	DE
	FG
	HIJKL
	M
	NOPR
	S
	T
	UV
	WYZ

