Copyrighted Materials
Copyright © 1994 Oxford University Press Retrieved from www.knovel.com

CHARLES F BOWMAN

Algorithms and Data Structures

AN APPROACH IN

New York Oxford
OXFORD UNIVERSITY PRESS

Oxford University Press

Oxford New York

Athens Auckland Bangkok Bogota

Bombay Buenos Aires Calcutta Cape Town

Dar es Salaam Delhi Florence Hong Kong Istanbul
Karachi Kuala Lumpur Madras Madrid

Melbourne Mexico City Nairobi Paris

Singapore Taipei Tokyo Toronto

and associated companies in
Berlin Ibadan

Copyright © 1994 by Oxford University Press, Inc.

Published by Oxford University Press Inc.,
198 Madison Avenue, New York, New York 10016

Oxford is a registered trademark of Oxford University Press.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise,

without the prior permission of Oxford University Press.

Library of Congress Cataloging-in-Publication Data available upon request

ISBN 0-19-517480-1

98765432

Printed in the United States of America

Copyrighted Materials

Copyright © 1994 Oxford University Press Retrieved from www.knovel.com

F or Mom

Copyrighted Materials

Copyright © 1994 Oxford University Press Retrieved from www.knovel.com

Preface

This book instructs readers on the science of developing and analyzing
algorithms. It is intended for use in a one- or two-semester under-
graduate course in data structures.

The text focuses on both the theoretical and practical aspects of
algorithm development. It discusses problem-solving techniques
and introduces the concepts of data abstraction and algorithm effi-
ciency. More important, it does not present algorithms in a shopping-
list format. Rather, the book tries to provide actual insight into the
design process itself,

The book also has a practical bent. Most of the algorithms are of
general use, and there is a strong emphasis placed on “‘real world”
programming requirements. As a result of this unique approach, and
the fact that all algorithms are presented in the C programming language,
the book should prove useful to professional programmers as well.

———— ORGANIZATION

Chapter 1 introduces algorithmic analysis and discusses the motiva-
tions for its study. Although the book is not intended as a tutorial on C
(see below), this chapter does provide a brief introduction to the C
programming environment. Readers already familiar with this material
may omit sections 1.5 and 1.6. Readers who wish a more thorough
examination of the language are referred to Appendix B.

Chapter 2 discusses the various phases of algorithm design and
introduces the concept of complexity. Static data structures are presented
in Chapter 3. This is followed by a detailed explanation of recursion
in Chapter 4. Chapter 5 follows with discussion of dynamic data structures.

Preface

Many of the algorithms presented in Chapter 3 are reimplemented
using the techniques discussed in this chapter.

In Chapters 6 and 7, we discuss two of the more important abstrac-
tions found in computer science: srees and graphs. The chapters
include many practical examples. In Chapter 8 we discuss searching
techniques and finish with a discussion of sorting techniques in
Chapter 9.

The exercises appearing at the end of each chapter are also an
integral part of this text. They reinforce the concepts presented in each
section and often introduce new material as well.

IMPLEMENTATION NOTES

All texts of this nature require a “host” language to serve as a vehicle

for algorithm presentation. Authors of similar books have used languages
ranging from assembler to pseudo-code. We decided that C was the best
choice for this text for several reasons:

* It is an excellent vehicle for expressing algorithmic ideas.

* It is widely available. Most readers of this text will have access
to a C compiler at school, work, or home.

* It has become the language of choice in many professional and
academic institutions. v

* Programmers familiar with other structured programming lan-
guages will readily understand the C programs presented in
this book.

A note about this last item. The intent of this book is to teach
algorithm design; it is not intended to serve as a tutorial introduction
to the C programming language. Thus, experienced C programmers
will note several instances where program segments could be expressed
more succinctly using some of the more advanced features of C. In all
such cases, however, cleverness gave way to clarity. The justification
for this approach is two-fold:

* Syntax should not impede understanding.
» Experienced C programmers can easily re-code the algorithms
with minimal effort.

Preface vii

Moreover, to ensure that language syntax is not an obstacle to
learning, we have included the following features in the text:

®* Whenever appropriate, there are thorough explanations of C-
specific features.

® Chapter 1 includes an introduction to the C programming
environment.

* Appendix B provides a more detailed introduction of C for
programmers.

All the programs and code fragments contained herein have been
compiled by the author using ANSI C compilers running under
several operating systems. All program listings are—for the most part—
self-contained. As a result, readers should have little difficulty transcribing
them to their local environments.

ACKNOWLEDGMENTS

Although only one name appears on the cover, a project of this magni-
tude is by no means a solo effort. Publishing a book requires the help of
many dedicated professionals, with a number of specialized talents. I
would to thank all the wonderful people at Saunders College Publishing
for their efforts and suggestions: Michelle Slavin, Editorial Assistant;
Anne Gibby, Project Editor; and Jennifer Dunn, Art Director.

They all worked tirelessly to make this project a success.

I would like to extend a special thank you to Richard Bonacci,
Senior Editor, for signing the book and for his continued patience and
guidance through its completion—even when it was no longer his job;
and to Emily Barrosse, Executive Editor, for her ability to take
on a project midstream without missing a beat. It was an honor and
a pleasure to have worked with both of them.

Also, during development, a manuscript undergoes many reviews
and critiques. I would like to thank Teresa Alice Hommel, Accu-
racy Reviewer, and all the other reviewers for their advice and
suggestions:

Eric P. Bloom

Marcus Brown, University of Alabama
Michael R. Elliot, Rancho Santiago College
Peter Falley, Fairleigh Dickinson University

viii

Preface

Robert M. Holloway, University of Wisconsin
Erich Kaltofen, Rensselaer
Danny Kopec, University of Maine
Linda Lesniak, Drew University
Tim McGuire, Texas A&M University
M. Andrew Moshier, University of California, Los Angeles
James F. Peters, Kansas State University
Arunabha Sen, Arizona State University
Bill Walker, East Central University
This text would not have been possible without their efforts.

I would also like to thank my wife Florence and my children,
Charles, Michael, and Nicole, for their patience and understanding
during the many long hours that I sat, seemingly transfixed, in front
of my computer. Ironically, prior to having completed this manuscript, I
had always thought it somewhat pro forma that authors always thanked
their spouses for @/ their help. How wrong I was. I can honestly
say that, without my wife’s assistance, this book would never have
been published. She chided me when I got lazy, consoled me when I got
discouraged, and took upon herself many of life’s mundane and thank-
less tasks to afford me time to write. There is no way, no words,
to express my love and gratitude. The best I can offer is Thank
You, Florence.

Charles Bowman
Suffern, New York
November 1993

Copyrighted Materials

Copyright © 1994 Oxford University Press Retrieved from www.knovel.com

Contents

1 Introduction
1.1 Overview
1.2 Why Study Algorithms?
1.3 Why C? [¢]
1.4 Coding Style [6]
1.5 What You Need to Know El
Summary

2 Algorithm Design
2.1 How to Design an Algorithm
2.2 Example 1: Fibonacci Numbers
2.3 Example 2: Matrix Addition
Summary
Exercises

3 Static Data Structures
3.1 Overview
3.2 Arrays
3.3 Ordered Lists
3.4 Stacks
3.5 Example Calculator
3.6 Queues
Summary
Exercises

ix

Contents

4 Recursion
4.1 Introduction
4.2 Factorial Numbers
4.3 Fibonacci Numbers
4.4 Writing Recursive Functions
4.5 Use of Recursion
Summary
Exercises

5 Dynamic Data Structures
5.1 Introduction
5.2 Linked Lists
5.3 Linked Lists Using Pointers
5.4 List Processing
5.5 Stacks Revisited
5.6 Queues Revisited
5.7 Dynamic Memory Allocation
5.8 Simulation Example |_11__2|
5.9 Doubly Linked Lists E
5.10 Generalized Lists @
Summary [137 |
Exercises [138]

6 Trees
6.1 Basic Principles
6.2 Binary Trees
6.3 Balanced Trees
6.4 Threaded Binary Trees [175
6.5 Applications of Trees [180
Summary [190,
Exercises [193]

Contents

7 Graphs and Digraphs 195
7.1 Introduction

7.2 Internal Representation

7.3 Traversals [202
7.4 Spanning Trees

7.5 Shortest Path Algorithm

Summary
Exercises 220

] Searching
8.1 Introduction m
8.2 Sequential Searching
8.3 Searching Ordered Tables
8.4 Hashing
Summary
Exercises

9 Sorting Techniques

9.1 Introduction
9.2 Bubble Sort
9.3 Selection Sort |262
9.4 Insertion Sort |264
9.5 Quicksort |265

9.6 Heapsort

9.7 Mergesort

Summary [28]|
Exercises |282)

arpennix A Acrostic Puzzle (284

Exercises

224

Xi

Xii Contents

arrenoix B € for Programmers (298
B.1 Introduction
B.2 Data Types |300
B.3 Declarations
B.4 Operator Ser |305
B.5 Expressions and Statements
B.6 Control Flow
B.7 Pointers
B.8 The C Preprocessor
Exercises

Suggested Readings 317

Index m

Copyrighted Materials

Copyright © 1994 Oxford University Press Retrieved from www.knovel.com

[ntroduction

C H A P

T E R

1.1 OVERVIEW

Throughout their careers, programmers are continually asked to decide
whether a given problem has a computer-based solution. An af-
firmative answer implies that the problem is algorithmically solvable.
That is, if we permit the program to execute long enough, and
provide it with all the necessary computing resources, it will produce
the desired result.

A simple yes is not sufficient, however. Decisions regarding com-
putability must be considered in a practical perspective. For example,
consider writing a computer program to play chess. We could design
the program such that it would select its next move by examining every
possible option for every possible board position. Is this theoretically
possible? Yes. Is it practical? No. A program written in such a
manner could require thousands of years to compute even a single
move.

Therefore, within this framework of practicality, let’s informally
define an algorithm as a series of instructions that, if followed exactly, will
accomplish a desired task in a finite (acceptable) amount of time. For
example, refer to the power () function presented in Listing 1.1.

Listing 1.1
Power function.

1 Introduction

/*

* Raise X to the power Y
*/

int power(int x, int y)
{

int i, ret;

i = 0;

ret = 1;

while(i < y)

{
ret = ret * x;
i=1i+ 1;

}

return(ret);

The function power () accepts two arguments: a base (x) and an
exponent (y), and it returns the result of raising x to the y power.

It is a uvseful function and is provided (in some form) with most
language systems. As presented here, it qualifies as an algorithm under
our informal definition in that it will compute the desired value in an
acceptable period of time. (This particular implementation has several
shortcomings, however. Consider what would happen if we invoked
the function with a y argument equal to — 1. As a rule, functions

and/or programs should behave intelligently when presented with erro-
neous data. We will be stressing this point throughout this text.)

In computer science, an algorithm is a problem-solving technique
suitable for implementation as a computer program. Specifically, an algo-
rithm is a finite set of instructions which, if followed exactly, will
accomplish a particular task. Additionally, algorithms must satisfy
the following criteria:

* Each instruction contained in the algorithm must be clear, concise,
and sufficiently basic that we can (at least in theory) accomplish it
manually.

1.2 Why Study Algorithms? 3

¢ In all cases, the algorithm terminates after executing some finite
number of instructions (the actual number may vary with each
execution).

» The algorithm accomplishes at least one task and/or produces
(computes) at least one value.

One last point: As stated earlier, an algorithm is a problem-solving
technique switable for implementation as a computer program. That
is, an algorithm is not tied to its implementation. For example, consider
the task of writing a program that yields the sum of the integers from 1
to #. One way to express this task algorithmically might be as follows:

Step 1 Initialize a counter to the value 1.

Step 2 Add to an accumulator variable the value contained in the
counter; then increment the counter by 1.

Step 3 Repeat step 2 until the counter becomes greater than #.

Now consider the two functions presented in Listing 1.2. Both
suml () and sum2 () achieve the result stipulated in the algo-
rithm. Yet their implementations vary dramatically. Moreover, even
without benefit of formal analysis, it should be clear that sum2 () is more
efficient than its counterpart. Indeed, there will be many occasions
when we will be confronted with just such a choice. One of the
goals of this text is to provide the insight necessary to allow the reader
to make such a selection.

1.2 WHY STUDY ALGORITHMS?

Algorithms are at the heart of computer science. Much of the early
work in the field was directed toward identifying the types and classes of
problems that could be solved algorithmically. We refer to this subject
as computability theory, and it is deserving of study in its own right. In
contrast, this text will focus on analyzing individual algorithms de-
signed to solve specific problems. In doing so, we will identify and discuss
the key programming concepts associated with each algorithm so they
may be reapplied in other programs.

Most of the algorithms presented in this text employ complex
forms of data organization. These objects, called data structures, are central
to the study of algorithms. An algorithm and its associated data struc-

4 1 Introduction

suml(int n)
{
int i;
int result;
i=1;
result = 0;
while(i <= n)
{
result = result + i;
i=1i+ 1;
}
return(result);
}
sum2(int n)
{
int result;
result = n*(n+1)/2;
return(result);
Listing 1.2 }
Two functions that
sum integers.

ture are so closely linked that a modification to one will usually
precipitate a change in the other. Because of this high degree of
interdependence, we will discuss both as a single unit.

Data Abstraction

It is often convenient to view an algorithm and its data structure solely

in terms of the operations they support. We refer to this as an
abstract data type. Abstract data types allow programmers to #ink in
terms of the abstraction, without being concerned with implemen-

tation details. Data abstraction is more common than one might think.
For example, consider the use of floating-point (real) numbers in a com-

1.2 Why Study Algorithms? ‘ 5

puter program. Programmers think in terms of adding or subtracting
them. At the machine level, however, they are processed (algorichms) and
stored (data structures) in a different manner.

As implied earlier, abstract daca types support both a public interface
and a private implementation. The public interface is the abstraction.

For those programmers using an abstract data type (often referred to

as clients), the public interface defines both the abstraction and the range
of permissible operations. For example, consider once again our floating-
point number example. Its public interface allows us to use real num-
bers in ways that seem natural to use: We can add them, subtract them,
etc. In addition, the public interface does not support other operations,
such as concatenation, that are not associated with floating numbers.

We implement abstract data types using algorithms and hidden
state data (i.e., data structures). Specific details of the implementation
should remain private. That is, clients should only be able to manipu-
late and modify an abstract data type through the proper use of its operator
set (i.e., the public interface). We refer to this property as encapsulation.
The degree to which we can enforce encapsulation is, to a large extent,
based on the language we are coding in. Nonetheless, enforcement
of encapsulation rules provides us with a number of benefits, including
the following:

Maintainability We can modify the implementation of an abstract
data type without affecting client programs. That is, if we do not alter
the public interface, then any changes we apply to the private
implementation will not affect well-behaved client programs. A well-
behaved client program is one that, either through prescription or
convention, does not circumvent the public interface.

Modularity By maintaining a private implementation, we can mini-
mize the ripple effect of software modifications. That is, if the
modified code remains isolated, the changes are less likely to
affect other, non-related sections of the application.

Extendibility We can construct new abstractions based on existing
types. For example, we could extend the floating-point abstrac-
tion to create abstractions for complex and imaginary numbers.

Throughout this text, we will show, by example, how to write
well-constructed abstract data types.

6 1 Introduction

Every text of this nature requires the use of a host language as a
vehicle for the presentation of algorithms. Other books on this subject
employ languages ranging from assembler to psexdo-code. Here are
some of the reasons why we selected C for use in this text:

* C is an excellent vehicle for expressing algorithmic ideas.

* Its use is widespread, and it has become the language of choice
in many installations.

* Because of its broad availability (from PC to mainframe), many
readers of this text will be able to compile and execute the
examples exactly as they appear in the listings.

* Programmers familiar with other structured languages can readily
understand its flow-control constructs.

messssssssessss 1.4 CODING STYLE

We made every effort to ensure that each program listing is clear and
unambiguous. Also, to avoid confusion, a consistent coding style
was maintained throughout the text. .

For the most part, program listings are complete and self-
contained. In some cases, however, a later listing may assume some
declarations and/or definitions included in a previous example. All such
occurrences are noted in the accompanying text.

We could simplify some of the algorithms presented in this text—
at least in terms of the number of statements needed—by using
some of the more advanced features of C. In all such cases, however,
cleverness gave way to clarity. Nevertheless, we hope that the code pre-
sented in this book will highlight the power and grace of the C program-
ming language.

——— 15 WHAT YOU NEED TO KNOW

This book is not intended to serve as a tutorial introduction to the
C programming language (the bibliography lists several instructional
texts). As noted previously, readers familiar with other structured program-
ming languages (e.g., PASCAL) should have little (if any) difficulty

1.5 What You Need to Know 7

reading the program listings contained in this text. However, C
does have several unique features. Thus, to ensure that syntax does
not impede understanding, we have taken the following

safeguards:

1. We have deliberately avoided using some of the more advanced
features of C.

2. Whenever appropriate, we provide thorough explanations of any
C-specific features we use.

3. We have included a section that provides a brief introduction to
the C programming environment.

4. For readers who have programming experience in other structured
languages (e.g., PASCAL), Appendix B provides a more detailed intro-
duction to C for programmers.

Readers who are unfamiliar with C should complete this chapter.
Readers who are already familiar with the language should proceed directly
to Chapter 2.

The C Programming Environment

A complete C program consists of one or more functions, one of which
must be named main (). Program execution begins with the first execut-
able statement contained in this function. The source code for a C
program may be partitioned into separate source files (modules) and com-
piled independently. After compiling, we can combine (link-edit) all
the object (machine language) files to form one executable program. For
example, assume that we have stored the source code for the function
power () (Listing 1.1) in the file power. c. Also, assume a second source
file, test.c, that contains the following code:

#include (stdio.h)

main()
{
int x;
x = power(2, 4);

printf("X = %d\n", x);

1 Introduction

The command
cc test.c power.c

will compile and link the two source modules and create one execut-
able file. (The name of the resulting executable file will vary; refer

to your compiler’s user manual for the actual name.) When executed,
the program will generate the following output:

X = 16
Note that the statement
#include (stdio.h)

is a preprocessor directive and is discussed in the next section.

The C Preprocessor

A complete C language implementation comes supplied with a prepro-
cessor. 'The preprocessor is a separate program (automatically in-
voked by the compiler) that does just what its name implies: processes
C source files before passing the modified source code on to the
compiler. T'wo of its many features are string replacement and file
inclusion. '

Let’s begin by describing simple string substitution. If a C program
contained a definition of the form

#define MAX SCORES 10

the preprocessor would replace all unquoted occurrences of the string
MAX SCORES with the string 10. We refer to MAX SCORES as a
symbolic constant. For example, consider the following code fragment.

#define MAX_ SCORES 10
main()
{

int 1i;

int total[MAX SCORES];

15 What You Need to Know

if{(i >= MAX SCORES)

}

After preprocessing, the statements would be presented to the com-
piler as

main()
{
int 1i;
int totall[10 1;

if(i >= 10)

}

This is an extremely useful facility. Not only does it make the
code easier to read, but it also simplifies program maintenance.
For example, if the maximum number of scores changed from 10 to
15, we would make only one change to our program and the
preprocessor would take care of the rest. However, if we wrote the

foregoing program without using a symbolic constant, we would have to

modify the source code in at least two places. We strongly encourage
the use of symbolic constants in C programs.
The preprocessor also allows symbolic constants to accept argu-

ments. These are usually called macros. For example, we could create the

following definition:
#define SQUARE (x) ((x)*(x))

The expansion of SQUARE () is now dependent on its use: The
statement

10

1 Introduction

z = SQUARE(y):
will be expanded to

z = ((V)*(y)):

Note that x serves as a place holder. That is, whatever argument we
place in the x position will appear wherever x appears in the
expansion,

The parentheses surrounding the substitution string (i.e.,
((x)*(x))) are not syntactically required. Rather, they serve to
ensure correct operator evaluation. For example, consider the following
definition:

#idefine BAD SQUARE (x) x*x

Let’s say we wanted to square the sum of two variables. We might
use BAD_SQUARE () as follows:

z = BAD_SQUARE(a+b);

The preprocessor would expand this statement into
z = atb*a+tb;

Mathematically, the compiler would evaluate this expression as
z = a+ (b*a) +b;

Obviously, this is not what we had intended. However, the same call
using SQUARE () would expand to

z = ((at+b)*(a+b));

which does yield the desired result.

The other widely used feature of the preprocessor is the file
inclusion facility. Let’s assume that we wanted several related
program modules to use the following set of macros:

#idefine NO 0

#define YES 1

#define SIZE 100

#define SQUARE(x) ((x)*(x))

One solution is to type (or copy) each macro into every program
source file. However, if SIZE were to change to, say, 200, we would be
forced to apply the same edit to many source files.

SUMMARY

1.5 What You Need to Know 1"

A better solution is to place all the definitions in just one file and
include them as needed. We can accomplish this with the following pre-
processor directive:

#include "defs.h”

This directs the preprocessor to replace the #include statement
with the entire contents of the file defs.h. The included file
may contain any valid C statements, including nested #include
directives. The file name itself is arbitrary—in fact, the . h exten-
sion (signifying ‘header’ file) is only a convention.

There is another form of the #include directive:

#include (filename)

The use of the angle brackets directs the preprocessor to search a
predetermined location (directory) for one of several system-
supplied header files. The exact location is system dependent, and
the files contain definitions of a global nature. A common example

is the file stdio.h, which contains global definitions required by the
standard input/output library.

Algorithms are problem-solving techniques suitable for implementa-
tion as a computer program. They are defined as a finite sequence
of instructions that accomplish a particular task. Although algorithms
are usually described in terms of a specific programming language,
they are, by their nature, independent of any machine or environment.

Algorithms usually employ complex forms of data organization called
data structures. It can be convenient to view algorithms and their
associated data structures solely in terms of the operations they support.
We refer to the resulting abstraction as an abstract data type. Data
abstraction can improve programmer productivity and minimize the
cost of software maintenance.

Copyrighted Materials

Copyright © 1994 Oxford University Press Retrieved from www.knovel.com

Algorithm Design

C H A P T E R

——— 2.1 HOW TO DESIGN AN ALGORITHM

Algorithm design is more akin to an art than a science. Supply 100
programmers with the identical specification and, in return, you will receive
100 different solutions. The process is largely subjective, and the
notion of good or bad can also be application specific (i.e., a program
considered a good solution in one environment might be unsuitable
in another.)

However, we are not completely on our own in this matter. There
are general guidelines that we can follow and a broad notion of
what is considered good programming practice. Throughout this text,
our discussions of individual algorithms provide specific insights
into the design process; the sections that follow serve as an introduction
to the topic.

Understand the Problem

The first step in algorithm design is to understand the problem. This
is called the requirements analysis phase. However obvious this
might appear now, all readers of this book will, at one time or another,

12

21 How to Design an Algorithm 13

a program that they think solves a particular problem—only to find
out later that their efforts were wasted because they solved the wrong
problem. Gather data, speak to users, carefully review any written
requirements. In short, try to ensure that you have all the information
you need before you start to design and code an application.

Data Structures

The next step is to design the data structures. This is a critical part

of the development process and the one most often overlooked

by even the most experienced programmers. A correctly designed data
structure will suggest the design of the definitive algorithm and

yield a simple, easily maintainable program. In contrast, choosing a
clumsy or inappropriate data structure will produce code that is unreadable
and difficult to maintain.

Subsequent chapters of this book will introduce some very sophis-
ticated data structures. However, you should already be familiar with the
more common data types provided with most languages (e.g., integers,
characters, arrays, etc.). A trivial example of an incorrect choice of
a data structure is using individual variables to process the test results
of a computer science class. It would be more appropriate to use
an array.

After they have been designed, we need to verify the appropriate-
ness of our data structures. One way to do this is to ask users to supply
a number of questions and/or updates that they would like your pro-
gram to support. You can then manually apply the questions against your
design and judge how well your data structures respond to these user
requirements. Modify your design as necessary.

Pseudo-Code

The next phase of the development process is to formulate or sketch
the algorithm in psewdo-code. Each pseudo-code statement de-

scribes tasks that the programmer will implement using one or more
host (real) language statements. The level of detail represented by each
pseudo-code statement can vary, and programmers develop individual
styles that reflect personal preference or need. The use of pseudo-code

14

Listing 2.1
Pseudo-code
example.

2 Algorithm Design

while(more employee input)
if(salaried)
calculate tax;
calculate fica;
else
determine hours;
overtime hours;
get hourly rate;
print check;

allows programmers to design and analyze algorithms without becom-
ing entangled in syntactic detail. Listing 2.1 contains an example.

Analysis

The next phase in the development is analysis. We can divide this
phase into three steps. First, we must determine whether our solution
seems feasible with respect to memory requirements, performance
constraints, ease of use, etc. Second, we should review and validate

the pseudo-code description of our algorithm. Obviously, these are
both manual procedures at this point because we have not, as yet, written
any (compilable) code.

The third step is to perform an analysis of the complexity of the
algorithm. Complexity in this sense does not refer to the relative
difficulty of understanding the program; rather, it is a measure of the
amount of work performed by the executing function. This type of analysis
is especially useful when there are two or more solutions available and
we wish to select only one for implementation.

In determining complexity, it would appear useful to have the
actual execution times available for each function. Obviously, this
is not possible because we have not, as yet, performed any actual
coding. Moreover, the very point of this exercise is to eliminate
the need to develop, implement, and test more than one algorithm.
Furthermore, performance results can vary drastically when pro-
grams are compiled and executed on different processors, using differ-

2.1 How to Design an Algorithm 15

ent compilers. Therefore, the metrics that we develop for measuring com-
plexity should allow us to rate the algorithms independent of their
execution environment.

In summary, we want to analyze the complexity of an algorithm,
without writing any code, without executing any programs, and measure
the results independent of any execution environment. The question
then becomes, How do we do this?

In many cases, we can identify one or more basic operations as
critical to the performance of an algorithm. Once identified, we can analyze
(count) these operations to yield a relative ejﬁdemy index or order of
execution magnitude. For example, consider sorting routines. One critical
operation for this class of algorithm is the comparison. 'That is, we could
state that the fewer the comparisons made, the more efficient the
algorithm. Thus, if we were presented with two or more different
sorting functions, we would usually choose to implement the one that
performed the fewest comparisons.

Now that we have suggested a method of evaluating performance,
we must also develop a consistent manner in which to present it. It would
seem obvious to state that the total amount of work performed by a
function is proportional to the amount of data that it must process. There-
fore, we will represent an algorithm’s complexity as a function of the
size of the input. For example, if # represents the total number
of data elements, a function that requires one critical operation per
input datum is an O(z) (pronounced order #) algorithm; one that requires
#* operations is O(#?) (pronounced order n squared).

We can state formally that

S(n) = O(g(n)) iff there exists a ¢ > 0 and an ¢ such that for all » = 0,
fn) < a+ cg(n)

This reads as follows: The complexity of a function f(») is bounded
by the function g(#)—that is, the maximum number of basic opera-
tions executed by f(#) will be no more than g(#). The variable 4
represents the cost of any housekeeping or startup chores, and ¢
is a constant multiplier representing the cost (in execution units) of
a basic operation.

In practice, we usually ignore the effects of @, ¢, and any non-
critical operations when comparing complexities: The overall impact of
the constant # tends to become insignificant as the size of the dataset

16

2 Algorithm Design

increases, and the cost of a critical operation (¢) should be about the same
for algorithms of a similar class. That is not to say, however, that their
effect is always negligible. For some problem sizes, an O(#) func-
tion, with a sufficiently large ¢, can be outperformed by one that has
a complexity of O(#%). In addition, for some algorithms, startup
costs represented by the constant # might require more than constant
time (e.g., initializing arrays).

Examples of some common complexities include the following:

* O(1) represents a constant complexity (e.g., a program that displays
the current date and time).

e O(n) is linear.

* O(#*) is quadratic.

* O(»*) is cubic.

* O(2") is exponential.

Using these relationships, we can state that an O(z) algorithm is more
efficient than one that is O(z*) (for sufficiently large datasets); O(log #) is
faster than O(# log #), which, in turn, is faster than O(#?).

The complexity of certain algorithms can vary not only with the
size of the input, but also with its composition. Consider again
algorithms that sort names. Some procedures will perform very effi-
ciently when presented with an input stream that is already sorted;
others will degrade miserably. Some operate more efficiently when
the data are random; a few do not. To compensate for this phenomenon,
we provide two indices of complexity behavior: worst case and average
case. For sorting routines, average case behavior is the average complexity
index for all input streams; worst case is function specific and represents
a pathological performance degradation.

Additional Analysis Criteria

In addition to those just discussed, there are other criteria by which
we can analyze and compare algorithms. These include the
following:

Clarity Clarity concerns the relative ease by which program source
code can be understood by someone other than the original
developer. (We usually refer to this atribute as readability.) A
professional programmer writes programs that are clear and easy to

21

How to Design an Algorithm 17

understand. Generally speaking, if you have a choice of implemen-
tation constructs, you should opt for the one that is more readable.
When you must choose a less readable construct (e.g., when perfor-
mance is critical), comment your code clearly.

Maintainability 'The issue of maintainability focuses on how well a

program can accommodate change. As discussed previously, clarity is
a major consideration: You must understand code before you can
modify it. However, maintenance only begins with understanding.
‘The issue boils down to one of confidence: How confident are we
that a change we might apply to one section of a program will not
break some other part of the system? (This is sometimes called
a ripple effect.)

We must design and develop programs with maintenance in
mind. As a simple example, consider the following code
fragment:

int al 10 1;
while(i < 10)

afil] = . . .
while(j < 10)

z = aljl . . .
It might not be clear to a maintenance programmer that the literal
value used in the second loop is related back to the size of a. Left
as is, we might inadvertently introduce a bug into the program if
we were to change a’s size.

Portability Portability can be defined simply: How easy is it for us

to move a given program from one platform to another? (The
term platform is used to describe an execution environment. Com-
ponents of a platform include processor, operating system, databases,

2 Algorithm Design

networks, etc.) Keep in mind that the two platforms (source and
destination) might have

* Different hardware architectures
* Different operating systems
« Different system software.

Generally speaking, there are two levels of portability. Object
code portability occurs when we can move executable code from
one system to another. This is usually considered impractical un-
less the two platforms share so many common attributes that they
become almost indistinguishable from each other (e.g., the systems
share the same processor family).

Source code portability is the more practical alternative. We
achieve this level of portability whenever we can copy source ‘
code to a new system, recompile it, and run it with no (or relatively
few) modifications.

These are the advantages of portable programs:

 They are easier to move to new platforms

* They are less subject to environment changes (i.e., upgrading
the operating system)

* They are easier to extend and maintain.

More and more development organizations view portability
as a major factor in systems development. There are several reasons:

* The increasing costs associated with software maintenance

* The speed at which hardware improvements occur

* Increased competition and decreasing prices for application
software.

Portability, however, is not without its costs. In general, porta-
ble programs are slower because we are less inclined to take
advantage of machine- or operating system-specific features. In
addition, portable programs usually take longer to develop: portability
does not come for free, you must ‘design it’ into the application.

Resource usage Generally speaking, all algorithms require some min-
imal amount of computing resources (e.g., memory, disk, network
access, etc.). The quantity and composition of these resources will
vary by algorithm and implementation. As a result, the costs

21 How to Design an Algorithm 19

associated with a given set of resources will certainly factor into
your choice of algorithm.

Implementation

After the design and analysis, it is finally time to implement the
algorithm. This should prove to be a fairly straightforward process if we
have followed all the previous suggestions. Specifically, if we wrote a
pseudo-code description of the algorithm, implementation will be little
more than a line-for-line translation.

Another important consideration at this phase might be the selec-
tion of an appropriate programming language. Languages lend themselves
to certain types of tasks and become difficult to use with others, If a
choice is available, select one that is best suited to the needs of the
application.

Testing

The last step in the development process is testing. The effort ex-
pended on this task will have a direct effect on the perceived quality of
the product. There are essentially two parts to the process. In the first,
we must devise a set of tests that atctempt to break the function
or program. This is the creative part of system testing, and it requires
as much consideration and effort as any other task in the develop-
ment process. It begins simply, using a few known data values for
which we can manually compute a result. This establishes that
the program is at least functioning to the point where we can proceed
with more extensive tests.

The second and more difficult part of testing is debugging. That
is, we must determine what (if anything) is wrong with the program’s
execution. When we determine the problem, we then develop and
apply fixes to offending sections of the program. When all the
problems have been corrected, we then re-execute all of our tests.
This ensures that the fixes are, indeed, correct and that they have not
affected (i.e., broken) other sections of the program.

When attempting to fix a program error, it is important to distin-
guish between symptom and cause. As an example, consider a program

20

2 Algorithm Design

that displays employce salary information. The program might operate
as follows:

* It prompts the user for the employee number.

* It searches a database for the appropriate employee and tax
records.

* It calculates withholding taxes and other payroll deductions.

» It displays the information on the screen.

During your testing you notice that, when displayed, the net pay
field is always incorrect by $1 (alas, in the company’s favor). Would
it be reasonable to assume that the fix is simply to add $1 to its value
just before it gets displayed? No. More likely, this problem is just
a symptom of another problem—such as an error in the formulas for
calculating payroll deductions or incorrect values stored in the tax
tables—and you must delve deeper into the program to find the
real cause. ‘'

Keep in mind that testing can never demonstrate the absence of
bugs—only their presence. Therefore, it is incumbent on the individual(s)
conducting the tests to exercise judgment, diligence, and creativity to
ensure the best possible results.

22 EXAMPLE 1: FIBONACCI NUMBERS

To demonstrate some of the ideas presented in this chapter, let’s
discuss the design and implementation of a function that computes
Fibonacci numbers. The Fibonacci sequence is defined as

0,1,1,2,35,8,13,...

It begins with F, = 0 and F; = 1. We compute each subsequent term
as the sum of the previous two. For example,

FQ) =F2)+ F1) =1+ 1
F6) = F5) + F(4) =5+ 3 =38
Formally, the series can be defined as
F,=0
F,=1
F,=F,_,+F,, forn=2

22 Example 1: Fibonacci Numbers 21

Our task is to design and implement a function that accepts
a non-negative integer argument » and returns the value F(#).

Understand the Problem

Although it is not a formal specification, the foregoing description
adequately describes the task at hand. The key points to keep in mind
are as follows:

» The function’s one argument corresponds to the seguence number
of the desired Fibonacci number.

* The argument, by definition, must be non-negative; therefore,
the function should do something reasonable if invoked with a nega-
tive value.

Data Structures

This algorithm does not require an extensive data structure; it will
use simple integer variables to compute each Fibonacci number.

Pseudo-Code

We can use the formal definition of the Fibonacci series as the starting
point for our development. Thus, the first version of our pseudo-code
might appear as follows:

fib(n)

ifn =20
return(0);

ifn =1
return(1);

for i = 2 ton
fib = fminl + £fmin2;
update fminl and fmin2;

return(fib);

Note that our description lacks some important details: the initial

2 Aigorithm Design

values of variables, the increments for loop variables, and a test for a
valid argument. '

After adding these statements, the algorithm becomes

fib(n)
ifn<oO0
return(—1);
ifn =20
return(0);
ifn =1
return(1);
fmin2 = 0;
fminl = 1;
for i = 2 ton
fib = fminl + fmin2;
fmin2 = fminl;

fminl = fib;

return(fib);

Notice that we have established the convention of returning a —1 to
indicate an erroneous argument. Also note how we initialize and
update the two variables, £fminl and £min2.

Analysis

If we ignore the trivial cases where #» =< 1, we can compute the
function’s complexity as follows:

« There are five housekeeping instructions executed before entering
the loop.

* The loop—with its three instructions—is executed z — 1 times,
for a total of 3(# — 1) or, rounding that value, 3z.

The total number of instructions executed is 5 + 3z. However,
as mentioned earlier, we ignore the effects of the constants when analyzing
algorithms; thus, the complexity of fib () is O(n).

Listing 2.2
Fibonacci numbers.

2.2 Example 1: Fibonacci Numbers

int fib(int n)
{
int i;
int fibn, fibl, fib2;
if(n<0)
return{ —1);
if(n == 0)
return(0):
if(n == 1)
return(1);
fibn = 0;
fib2 = 0; /* F(n—2) */
fibl = 1; /* F(n—1) */
for(i = 2; 1 <= n; i++){
fibn = fibl + fib2;
fib2 = fibl;
fibl = fibn;
}
return(fibn);
}

Implementatien

The pseudo-code description of this function allows for a direct conver-
sion to C. We need only remember to adhere to C syntax, select
appropriate data types, and declare all variables. Listing 2.2 contains
the final C version of the algorithm.

Testing

Testing this function is a straightforward process. We want to verify
that the function computes accurate values and handles errors

24

Listing 2.3
Fibonacci test
program.

2 Algorithm Design

#include <stdio.h>

#define MAX_TEST 10

int fib(int);

int main(void)

{
int i;
for(i = —-1; i <= MAX_TEST; i++)
printf("\ti: %2d\tfib(%2d): %d\n", i,
i, fib(i));
return{(0):
}

correctly. One way to do this is to write another function that repeatedly
invokes fib () with known values. Listing 2.3 contains an example.

When compiled with the source for fib(), the output of the
program is

i: -1 fib(-1): ~1

i: 0 fib(0): O
i: 1 fib(1): 1
i: 2 fib(2): 1
i: 3 fib(3): 2
i: 4 fib(4): 3
i: 5 fib(5): 5
i: 6 fib{ 6): 8
i: 7 fib(7): 13
i: 8 fib(8): 21
i: 9 fib(9): 34
i: 10 fib(10): 55

which we can manually inspect for errors.

23 Matric Addition 25

23 EXAMPLE 2: MATRIX ADDITION

For our next example, we will design and implement a function that
performs matrix addition. It must compute the sum of two matrices
(A + B) and store the result in a third (C).

Understand the Problem

The two matrices must be of the same dimension. We compute their
sum by adding corresponding elements of A and B and storing the result
in C. For example, given the matrices

1 2 3 8 7 6
4 5 6}+]|5 4 3
7 89 210
the function would compute C as
1+8 2+7 3+6 9 9 9
445 5+4 6+3|=19 9 9
7+2 841 940 9 9 9

Data Structures

We will use two-dimensional arrays to store and process the matrices.
Each array entry will correspond to an element in the matrix. One
word of caution; Mathematicians often reference matrix ¢lements as

Ell ElZ wee Eln
EZI EZZ aes EZII
Eml EmZ vee Eﬂm

In C, however, array subscripts begin at 0. Therefore, £, will
correspond to array element A[0] [0]; E,; will correspond to array
element A[0][1]; and so on until E,, which corresponds to
A[m—1] [n—-1].

26

2 Algorithm Design

Pseudo-Code

To perform the addition of each corresponding matrix element, we
need a way to reference every index pair (7,) of the two arrays. We can
do this using a coding construct called wested Joops. The outer loop
indexes over the rows, while the inner loop indexes over the
columns. A pseudo-code description of the algorithm is as follows:

mat_add(m, n) /* add m X n matrices */
for 1 = 0 tom—1
for j = 0 to n~—1
cli, 31 = ali, j1 + b[i, jl:

Analysis

A discussion of complexity for this function is easier if we assume that

m = n. The outer loop is executed » times. With each iteration, the
inner loop is also executed # times. Thus, the total number of critical
operations (additions) performed by the algorithm is # times #. This
yields a complexity of O(#*).

Implementation

For the purpose of this example, we will assume that the three arrays
(A, B, C) are external to the function. Listing 2.4 contains the C
implementation of the function mat_add().

Please note the following:

* The arrays are declared external to the function (the first three
lines of the listing).

* The two macros, NO_ROWS and NO_COLS, are application depen-
dent and must be defined.

¢ The function assumes that the initial valuesof a[]1 [] and b[] []
are established before a call is made to mat_add ().

Also note the C syntax for subscripts in two-dimensional arrays.
Many other languages would write subscripts something like

al[i, jlora(i, 3J)

Listing 24
Matrix addition.

SUMMARY

23 Matric Addition 27

int al NO_ROWS][NO_COLS 1];
int b[NO_ROWS][NO_COLS];
int c[NO_ROWS][NO_COLS 1];

void mat_add(int rows, int cols)

{
int i, jl'
for(i = 0; 1 < NO_ROWS; i+ +)
for(§ = 0; j < NO_COLS; j++)
cl[il[j]l = alilljl + bIlilljl;
}

The slightly different notation derives from the fact that in C, a two-
dimensional array is defined as a one-dimensional array, where each
element is another array. Its use is otherwise similar to that of other
languages.

Testing

The most direct way to test this function is to write a program that
generates several pairs of matrices, adds them, and then prints the results.
We will leave this as an exercise for the reader.

Programmers new to C should keep in mind that there are no
bounds checks on array references. In particular, because of the zero offset
on array indices, the reference

a[NO_ROWS] [NO_COLS]

is out of bounds. As a result, part of your testing procedures should
involve the verification of all array references.

"This chapter presented an overview of the software design process. We
will review and expand on the ideas presented in this chapter as we
continue with our discussions. For the sake of brevity, however, we will

EXERCISES

2 Algorithm Design

no longer present algorithms in the expanded format used in this
chapter.

This chapter is incomplete because there is one part of the develop-
ment cycle that we have not discussed: documentation. Documentation
is usually the first thing a user sees when working with a new applica-
tion. As a result, a software product’s success can be dependent on the
quality of its documentation.

Documentation comes in many forms:

* Program comments

* Manual pages (a description of program usage)
* User’s manual

* Programmer’s manual

* Administrator’s manual.

Throughout this book, we will continue to stress the need to provide
well-commented source code. It is beyond the scope of this text

to describe the other forms of documentation in detail. Moreover,
documentation requirements vary with the installation and the
application. Let it suffice to say that it is incumbent on every program-
mer to provide software that is well documented.

1. Describe O() notation.

2. Plot the curves for all the common complexities. Determine points
of intersection and compare behavior.

3. Using all the described steps, design and implement a program
that will count the number of characters, lines, and words contained
in a text file. See if you can extend it to count unique words as well.

4. Write the complement of fib(): a function that takes as its sole
argument a Fibonacci number and returns its ordinal position
in the series. Be sure to test for arguments that are not Fibonacci
numbers. How should your function process an argument of 1?

5. Write a program that tests the function mat_add (). Be creative.
Are there any boundary conditions?

23

Matric Addition

. Design, implement, and test a function that performs matrix multi-

plication. What is its complexity?

. Discuss ways in which we can modify mat_add () so it can work

for any two arrays (i.e., pass the arrays as arguments). Imple-
ment and test your changes.

. What is the complexity of the following pseudo-code?

example()
{
for(i = 0; 1 < A; i++4+)
for(j = 0; J < B; j++)
for(k = 0; X < C; k++4+)
CRITICAL OPERATION;

Copyrighted Materials

Copyright © 1994 Oxford University Press Retrieved from www.knovel.com

Static Dara Structures

C H A P

30

T E R ;

SEWN

3.1 OVERVIEW

Conventional languages supply the basic data types or afozs minimally
required for programming. It is the nature of atoms that they cannot be
divided into smaller components (except bit-fields). In C, they include
int, char, float, etc. In many cases, the basic data types alone are
sufficient to accomplish a given programming assignment. More often,
however, the types of problems programmers are asked to solve
require more complex data objects.

Fortunately, most programming languages provide facilities for
combining atoms into larger aggregates. In computer science, these aggre-
gates are called data structures. A data structure is an ordered collection
(aggregate) of atoms combined, within the rules of the host language, to
create a new, user-defined data type. Many programming languages
even allow the combining of one or more user-defined aggregates
into a compound aggregate. Thus, the programmer has the ability to
create data structures tailored to specific needs. In this chapter, we will
examine static data structures—that is, data structures that do not alter
their basic memory representation during program execution. (The term
structure is ambiguous, however. Some programming languages—most

32 Arrays k]|

main()
{
int i;
int al10]; /* Declare 10 cells
*/
for(i = 0; 1 < 10; i=i+4+1) /* Indexed 0 — 9 */
a[i]l] = 1i; /* Store */
for(i = 0; 1 < 10; i=i+1) /* Retrieve */
printf(”i: %d al[il: %d\n”, i, al[i])
exit(0);
}
Listing 3.1
Arrays in C.
notably C—use the term to denote a particular type of data aggre-
gate. Its definition and use in such cases is language specific. Except
where noted, we will avoid this connotation and instead use the term to
refer to any data aggregate that is not otherwise considered atomic.)
messssssssssss 3.2 ARRAYS

The extent to which atoms can be combined by the programmer varies
with the language—some provide more flexibility than others. However,
one data aggregate common to most languages is the @rray. In fact,
this might be the only aggregate provided with some programming
environments.

Conceptually, an array is a set of pairs: izdex and va/ue. In mathe-
matics, this is referred to as a map or correspondence. When declared in a
programming language, an array is of a specified type (e.g., int) and
size (range of indices). The indices or subscripts are integer quan-
tities, though not necessarily positive. Refer to Listing 3.1 for an
example of array declaration and use in C.

The simplicity of an array’s use belies its power. Consider writing

3 Static Data Structures

#define KING 'k’
#define QUEEN ’‘q’

main()

{
char chessboard[8][8]; /* Declaration */
chessboard[2] [3] = QUEEN;
if(chessboard[4][7] == KING)

check_mate();
}
Listing 3.2

Multidimensional arrays in C.

a program—without using arrays—to analyze grade scores for a
computer science class. Each student’s score, for each test, would have
to be stored and processed in a unique variable. To go one step further,
consider how difficult it would be if the number of students and test
results were not known in advance.

Arrays need not be restricted to one dimension. We can create
multidimensional arrays to handle more complex data structures.
For example, we can represent a chess board as a two-dimensional
(8 X 8) array. Refer to Listing 3.2 for an example. Note that in C,
each dimension is placed in a separate set of brackets.

In addition to their more obvious uses, arrays also serve as the
foundation for more complex data structures. The following sections pre-
sent several examples.

——— 33 ORDERED LISTS

One of the simplest forms of data aggregates is the ordered or linear
fist. A linear list is an ordered subset of elements from a given set
§ written (£,, E,, E;, ..., E,). Examples include

AB,GD,...,7)

34 Stacks 33

or
(SUN, MON, TUE, WED, ..., SAT)
An ordered list has several properties:

* The length of a list is finite and computable.

* The contents of the list can be displayed (in order).
e The /* element can be retrieved.

 The * element can be replaced.

* New elements can be inserted into the list.

* Existing elements can be deleted from the list.

The most direct approach to implementing a list is through the
use of an array. Each array element corresponds to a list member.
Note that of the six properties of an ordered list, only the last two—
insertion and deletion—are difficulc with an array implementation. To
accomplish either, we must shift elements within the array. We will
return to this point in Chapter 5.

There are times when we may wish to restrict access to list ele-
ments. For example, we may want to limit the types of operations
that can be performed or restrict the number of locations where inser-
tions and deletions can occur. In short, we need not make available the
full complement of operations for a given list. The sections that follow
discuss some examples of restricted lists.

34 STACKS

A stack is an ordered list in which only two operations are permissible:
insertion and deletion. Furthermore, these operations may occur
only at one end of the list, called the s0p. The result is that items are
stored and retrieved in a last-in, first-out (LIFO) manner. For example,
adding the element E;s to the list (E,, E,, E;, E,) would generate the
list (Ey, E,, E;, E4, Es). A subsequent deletion yields the original list.

A common example of a stack is a dish rack in a diner. A dish
rack is a spring-loaded device that stores dishes in manner such
that only the top dish is visible (see Fig. 3.1). After being washed, a
clean dish is placed (pusked) on top of the stack. This forces the
spring down, leaving only the new dish visible. When a clean dish is
needed, the top one is removed (popped). This causes the spring to recoil

34 3 Static Data Structures

WA

&Rk

Figure 3.1 Begin state Push dish Pop dish
A dish rack. (a) {b) {c)

just enough to allow what was the second plate to become visible.
(The last plate cleaned is the first one reused.)

Stacks are versatile data structures and have many uses. For exam-
ple, we can use stacks to reverse the order of elements in a list or
serve as the basis of a software calculator. In general, we can use stacks
whenever we need a LIFO structure.

As depicted in Figure 3.2, we can implement a software stack
using an array. The variable top maintains the index of the current
top-of-stack location. This is the only place where insertions and dele-

N+1

B - Top

Figure 3.2
A software stack.

34 Stacks 35

tions may occur. Toadd (push) a new element onto the stack, we increment
top and assign stack[top] the value of the new element. Note
that we should always test for a stack full (overflow) condition (i.e.,

(top + 1) >= 8) before performing each insertion.

To delete (pop) an element from the stack, just decrement the
variable top. Note that we need not explicitly erase the value
stored in stack [top] because a subsequent. push operation will
overwrite it. A stack empty (underflow) condition arises when the value of
top becomes negative.

The program segment in Listing 3.3 contains the example func-
tions push () and pop (), which manipulate an integer stack declared as
int stack[MAXSTACK] ;. T'he function push() requires one argu-
ment, which it pushes onto the stack; pop () deletes, and returns the
value of, the topmost element. Also listed is the routine empty (),
which, as its name implies, tests for a stack empty condition; it returns
either TRUE or FALSE, accordingly. In this example, the function
pop () does not explicitly test for an underflow condition—that is, an
attempt to pop an element off an already empty stack. Therefore, you
should make a call to empty () before each call to pop ().

Note that we initialize the pointer top to — 1. This is because,
in C, array indices range from 0 to » — 1 (where # is the declared
size of the array). Also note the use of the + + and the — — operators.

C has two shorthand operators for incrementing and decrementing vari-
ables: + + adds 1 to its operand; — — subtracts 1 from its operand.
For example, the statements n+ +; and n— — ; are equivalent ton =
n + 1; andn = n — 1;, respectively.

A unique feature of these operators is that we may place them
either before or after their associated operands. Furthermore, their
position is significant. The prefix form (e.g., + +n) increments (decre-
ments) the variable defore it is evaluated (used); the postfix form (e.g.,
n+ +) increments (decrements) the variable affer it is evaluated.

For example, given the assignmentn = 10;, the statement

ans = -+ +n;
sets ans to 11; but the statement
ans = n++;

sets ans to 10. In both cases however, n is set to 11.

36 3 Static Data Structures

#define OK
#define FALSE
#define TRUE
#define FULL 1
fidefine MAXSTACK 100

»r O O

int top = —1;
int stack[MAXSTACK]:;

push(int new) /* Add element to stack */
{
if(top+1 >= MAXSTACK) /* Overflow */
return(FULL);

stack[++top] = new;
return(OK);

int pop() /* Delete/return top element */
{
return(stack[top—-—1);

int empty() /* Test for stack empty */
{
if(top < 0)
return(TRUE);

return(FALSE);

Listing 3.3
Stack functions.

34 Stacks

void reverse() /* Function to reverse input */

{

while{((item = nextinput()) ! = EOF)
if(push(item) == FULL)
error(); /* overflow */

while(!empty())
putchar(pop()):

Listing 3.4
String reversal.

String Reversal

For our first example, we will use stacks to reverse a string, The
problem is to read an arbitrary sequence of characters and print them out
in reverse order.

With the aid of a stack, the solution for this problem is simple.
We will push each character we read in from the input source onto
a stack. When we have exhausted the input stream (end-of-file), we
will pop all characters off the stack and print them out. Because
stacks are LIFO structures, the output will naturally be reversed.

Listing 3.4 contains the code for the function reverse (), which
reverses strings as described carlier. It uses the routines presented
in Listing 3.3 to manage the stack. In addition, reverse () assumes
two ancillary routines. The first, nextinput (), returns the next
character from the input stream or the value EOF when the input has
been exhausted. (EOF is a predefined macro supplied with standard
C implementations.)

The second function, error (), is invoked on a stack overflow
condition. It should take appropriate action such as printing an
error message and terminating the program. However, this is a rather
inelegant way of addressing this type of problem, and we will discuss
alternative methods in Chapter 5.

3 Static Data Structures

Parentheses Usage

Another example using stacks involves the processing of mathematical
expressions. Suppose we wanted to verify that, for some given expression,
parentheses have been used correctly. That is, we want to check that

1. There are an equal number of left and right parentheses.
2. Each right parenthesis is preceded by its corresponding left
parenthesis.

If you consider the problem for a moment, you will see that part
1 of the preceding definition is simple to verify. We could develop
an algorithm that simply counts the number of left and right parenthe-
ses and determines if the two values are equal. However, a correct count
alone does not ensure proper usage. For example, the expression

YdYa + 6(+ ¢

would have a valid count but symbol usage is nonetheless incorrect.
"T'his is the more difficult aspect of the problem as denoted in part
2 of the definition.

Let’s examine a different approach to the problem. In lieu of a
simple count, we could assign values to each parenthesis. For
example, ‘(" equals 1 and ‘)’ equals — 1. This would allow us to compute
a parenthesis index (PI) for each expression. We begin the computation by
assigning PI = (. Then, as we scan an expression, we update the P/
by either adding or subtracting 1 from its total. For example, the partial
expression ((@ + &) * (c...would havea Plof 1 + 1 -1 4+ 1 =2,

This approach possesses some interesting properties. First, a final
PI of 0 indicates that there are an equal number of open and
closing parentheses. In addition, an intermediate P/ value that is nega-
tive indicates an imbalance in the use of left and right parentheses. For
example, the expression (¢ + 4)) ... has a Pl of 1.

Nonetheless, this technique has one drawback. What if, in addition
to parentheses, expressions may contain brackets ([]) and/or braces ({})?
Using the previous approach, the expression ({¢ + 8] * ¢) has a final
PI of 0 but is obviously incorrect.

To overcome this final hurdle, we need to approach the problem
from another angle. Consider that, regardless of type (i.e., (, [, or {), a left
symbol opened must be closed with its corresponding right symbol.
Thus, given the partial expression (@ + [6 X { ..., we would

35 Example Calculator 39

expect the first closing symbol to be a }, followed at some point by a
], and then a final). Upon closer inspection, you will note that the
last symbol opened is the first one closed. In other words, this problem
is well suited for a stack solution.

Listing 3.5 contains the code for the function check_paren(),
which verifies parentheses usage in mathematical expressions. Its one
required argument is the character array containing the expression; it
returns a status value indicating the validity of the expression.

The algorithm functions as follows. As it scans the input array,
check_paren() pushes left symbols onto a stack. When it encounters
aright object, it pops the topmost element off the stack and determines
whether the two symbols match (i.e., they form a pair). Notice
that with each pop, and again at the end of the routine, the function
tests for an empty stack condition. In addition to avoiding an underflow
condition, this processing ensures that the expression contains only
matched pairs of objects (i.¢., there are no missing or extraneous symbols).

35 EXAMPLE CALCULATOR

The classic example demonstrating the power and use of software
stacks is a program calculator. The task is to construct a program that
computes the value of mathematical expressions. For example,

a+blc—dxXe

Expressions are composed of operands, operators, and delimiters.
Operands are the numeric values used to evaluate the expression.

The preceding example contains five (4, 4, ¢, 4, ¢) that serve as place
holders for numeric literals (e.g., 16, or —13.4); but they could

also represent true variables if the calculator program contained an
assignment facility. Operators indicate the mathematical operations that
are to be performed on their associated operands. They also determine
the number of operands required for each type of operation. The preceding
expression contains only &i#ary operators, which require two operands;

a wnary operator requires only one operand (e.g., —3).

At first glance, the program might appear simple: Just scan the
input from left to right, evaluating the expression as we proceed.
However, the problem that quickly becomes apparent is the difficulty
of maintaining the mathematical precedence of the operations. In

Listing 3.5
Function to check
parentheses

3 Static Data Structures

#define OK 0
fidefine ERR —1
int check_paren(char data[])
{
int i;
for(i = 0; data[i] != NULL;
{
switch(datal[i])({
case '{’:
case '[’:
case '(’:
push(datal[i]);
break;
case ’'}’:
if(empty() | | pop()
return(ERR);
break;
case ’]’:
if(empty() | | pop()
return(ERR):;
break;
case ’)’:
if(empty() | | pop()
return(ERR);
break;
}
}
if(empty())
return(OK);
return(ERR);
}

it+)

35 Example Calculator 41

the previous example, the implied order of evaluation is
(@ + (Gl) — (@ X e)

Obviously, the order in which the operations take place can be signifi-
cant, as in the expression 6 + 4/2. If we evaluate it as (6 + 4)/2, the
answer is 5; if we evaluate it as 6 + (4/2), the answer is 8. Therefore,
we must be certain that the algorithm we develop maintains proper
operator precedence.

For our example calculator, we will only concern ourselves with
the five basic arithmetic operations: addition (+), subtraction (—),
multiplication (X), division (/), and exponentiation (1. The prece-
dence of these operators, from highest to lowest, is

Operator Value
T 3
X,/ 2
+, — 1

Parentheses can be used to change the order of evaluation for a
given expression, but in their absence operations of highest prece-
dence must be performed first. When an expression contains operators
of equal priority, they are evaluated left to right (e.g., interpret
alb X cas (a/b) X c). The sole exception (at least for our example) is
exponentiation, which is evaluated from right to left (i.e, 2 T4 T ¢
is evaluatedas 2 T (6 T o).

Prefix and Postfix Notation

All the preceding expressions have been presented in their infix form.
Infix notation places operators between their operands. As we have
seen, this notation—although commonly used by humans—is not con-
venient for our calculator program. There are, however, two alterna-
tive ways of representing expressions:

+ab (prefix)
ab+ (postfix)

The first, where the operator precedes its operands, is termed prefix
notation. The second, which positions the operator after its operands, is
referred to as postfix notation. Both forms are not as strange as they

42

3 Static Data Structures

might first appear. For example, consider computing the value of
2 T 4 in a C program. We cannot use a statement of the form

x =21 4;

because C has no exponentiation operator. Instead, we must use a
statement such as

x = power(2, 4);

in which the operator (power ()) precedes its two operands.

Using the rules of operator precedence, we can convert infix ex-
pressions to their corresponding postfix form. The steps required
are as follows:

* Fully parenthesize the infix expression.

* Reposition (i.e., move) operators—one at a time and in order of
precedence—to their final postfix position (to the right of their
operands).

* Remove the parentheses.

For example, let’s convert the expression @ + 4 X c¢into its postfix
form. The first step is to add parentheses:

a+ (& Xo)

Next, in order of precedence, we must reposition the operators. Thus,
the first operator we must move is X, and the resulting expression
appears as

a + (bc X)

Clearly, the two operands of the X operator are 4 and ¢, and, conse-
quently, its postfix position is simple to determine. But what are
the two operands for the + operator? The answer is ¢ and the result
of the subexpression (& X ¢). Therefore, we do not position the

+ operator after the operand 4 (as might appear obvious at first glance),
but instead we place it after the right parenthesis:

abec X))+
The final step is to remove the parentheses:

abec X +

35 Example Calculator 43

Now, using parentheses, let’s change the evaluation order of the
operators and convert the expression (¢ + £) X ¢ to its postfix form:

(@a+ b Xc infix expression

(a+ b Xc¢ add parentheses (no change)
(ab +) X ¢ convert +

(ab +)c X convert X

ab+cX remove parentheses

Notice the resulting position of the + operator in this example. This
is a direct result of using parentheses to alter the evaluation order
of the operators.

We can convert infix expressions into their prefix form in the same
manner. The only difference is that we place the operators before
their operands rather than after. You should take a moment to convert
the two previous examples into their prefix forms.

Returning now to our calculator program, the problem we had
encountered was that the program could not correctly scan an infix
expression and maintain proper operator precedence. However, if we
take a closer look at postfix notation, we notice that a left-to-right scan
will process both operands and operators in the correct order. That is,
the order of the operators in a postfix expression determines the order of
the operations. Therefore, to implement our calculator program, we
need only develop two major functions: The first will convert infix expres-
sions into their corresponding postfix forms; the second will compute
the result of a postfix expression.

Automating Infix-to-Postfix Conversion

Before we begin discussing how to automate an infix-to-postfix conver-
sion, consider the following point. Regardless of the form (prefix, infix,
or postfix), the order of the operands remains unchanged. For example,
the expression 4 + & X ¢ has a postfix form of 2 4 ¢ X +. The
operators have moved but the relative position of the operands remains
constant. Qur conversion algorithm will take full advantage of
this fact.

Just like the manual operation described earlier, our infix-to-

3 Static Data Structures

postfix conversion algorithm must reposition operators within the ex-
pression string. Unfortunately, the function cannot just duplicate the man-
ual operation. As a result, we need to modify our approach. As an
alternative, consider a function that serves as a gafe device. That
is, as it scans its input (an infix expression), it outputs some symbols
immediately (operands); others it holds until a more appropriate
time (operators).

Specifically, our conversion routine will function as follows:

* Read the input stream (the infix expression) one symbol at a time.

* Qutput all operands immediately.

* Delay writing operators to the output stream until they will be
positioned correctly in the postfix position.

Thus, the resulting output is the correct postfix form of the infix
expression. ‘

Our algorithm will need a stack to serve as the temporary repository
for delayed operators. However, before we discuss its implementation,
let’s trace the function’s execution while converting the expression
a + b X ¢ o its postfix form:

Input Type Stack Operation Output

a Operand Empty Pass 2 directly to output 4

+ Operator + Stack (delay) operator a

b Operand + Pass 4 directly to output 44

X Operator + X Stack (delay) operator ab

¢ Operand + X Pass ¢ directly to output abe
Empty Empty + Empty stack abc +
Empty Empty Empty Empty stack abc X +

When read, the first operand is passed directly to the output stream.
The first operator (+) is then read and pushed (delayed) on the
stack. Then, like its predecessor, the second operator is scanned and
passed directly to the output stream.

However, why isn’t the first operator (+) popped off the stack
and written out? The reason is that the second operator (X) has a higher
precedence than the operator currently on the stack (+). That is,
because a stack is a LIFO structure, the (X) operator will appear
before (+) in the output stream when we ultimately empty the stack.

35 Example Calculator 45

The operation continues with the processing of the final operand,
followed by the repeated popping of the stack until the last operator
is written to the output stream.

Now let’s switch the order of the operators and see how the
function should handle the expression @ X & + ¢

Input Type Stack Operation Output

a Operand Empty Pass 2 directly to output 2

X Operator X Stack (delay) operator a

b Operand X Pass 4 directly to output @b

+ Operator Empty Pop stack and output ab X

+ Push (delay) operator ab X

¢ Operand + Pass ¢ directly to output @ X ¢

Empty Empty Empty Empty stack ab X ¢ +

This time, after the second operator (+) was read, the first (X) was
popped and placed on the output stream. This is because (X) has a higher
precedence than that of the incoming operator (+).

Now let’s look at an example that contains parentheses:

al(b + o).

The operation of the algorithm is as follows:

Input Type Stack Operation Output

a Operand Empty Pass @ directly to output a

/ Operator / Stack (delay) operator a

(L-Paren K Stack L-Paren a

b Operand /(Pass 4 directly to output ab

+ Operator [(+ Stack (delay) operator ab

c Operand /(+ Pass ¢ directly to output abe

) R-Paren / Unstack down to L-Paren abc +
Empty Empty Empty Empty stack abe +/

In this example, the parentheses change the evaluation order of the
operators. To produce an equivalent postfix representation, the
algorithm must stack the left parenthesis and then, after scanning the
corresponding right parenthesis, unstack all enclosed operators.
Note that we never need to push the right parenthesis onto the stack;
it serves only as a flag signaling that unstacking should begin.

Figure 3.3
Operator priorities.

3 Static Data Structures

I 4 3
X, [2 2
+,— 1 1
(4 0
) =

Based on these examples it appears that, when processing an
operator, the function should output al} previously stacked opera-
tors having a priority greater than, or equal to, the priority of the
incoming one. There is one exception, however. The expressiona T4 T ¢
has a postfix form of b T T (remember, this operator has right-to-
left grouping). As it stands now, our algorithm would incorrectly generate
ab T ¢ T as the postfix form of this expression.

To overcome this problem, we can make the following
modifications:

* Assign two priorities to each operator, incoming (ICP) and instack
(ISP).

* Modify the algorithm so that it will unstack operators that have
an snstack priority greater than, or equal to, the fncoming priority
of the new operator.

« Establish a (T) entry in the priority table such that its ICP is
greater than its ISP,

Now, when processing the expression 2 T 4 T ¢, our algorithm will
push the second (T) operator without popping the first one off the stack.
Figure 3.3 lists ISP and ICP priorities suitable for our calculator
program. Note that the values selected are arbitrary; what is important

is the relationships they define. We can also expand the table
—as is done routinely in compiler design—to address all types of
operators; boolean, relational, assignment, etc.

Listing 3.6 contains the function itop (), which converts infix
expressions to their postfix form. The function uses the operator
priorities listed in Figure 3.3 and the stack functions of Listing 3.3.

It also assumes the function nextinput (), which returns the next avail-
able input symbol; if none remain, it returns the value EOF to signify
end-of-file.

35 Example Calculator 47

As for complexity, note that this algorithm only makes one pass
over the input. That is, if the infix expression has # symbols, the
total number of operations is some constant value (the cost of the
basic operation) times #. This yields a complexity of O(#).

Postfix Evaluation

To complete our calculator program, we now need to develop a func-
tion that evaluates postfix expressions. As noted earlier, a postfix expression
can be evaluated in a single left-to-right scan. The only data require-
ment is a temporary location for storing operands until they are
needed. Again, we will use a stack.

Here is an outline of the function’s operation:

1. It will push operands onto the stack until it scans an operator.
2. When it scans an operator, it will pop an appropriate number of
operands off the stack (1 for unary, 2 for binary).
. It will perform the indicated mathematical operation.
4. It will push the result back onto the stack (so the result, itself,
can become an operand for a subsequent operation).

(o8]

When the expression string is exhausted, the one element remain-
ing on the stack is the final result. We can display this value as the answer.

Input Operation Stack
123 X+ BEGIN EMPTY
23 X+ PUSH 1
3 X+ PUSH 12
X + PUSH 123
+ POP 12
+ POP 1
+ 2 X 3 1
+ PUSH 16
EMPTY POP 1
EMPTY POP EMPTY
EMPTY 1+ 6 EMPTY
EMPTY PUSH 7
EMPTY POP EMPTY

EMPTY PRINT 7 EMPTY

48 3 Static Data Structures

void itop()
{
int item;
int temp;
while((item = nextinput()) != EOF)
{
switch(item) {
case ‘'/\’':
case '*’;
case '/’:
case '+’':
case ‘—':
case "(’:
/* Pop operators */
while(!empty() && isp(top of stk()) >= icp(item))
putchar(pop());
/* Push new operator onto stack */
push(item);
break;
case ’')’:
/* Unstack until matching ’(’ */
while((temp = pop()) != (7)
putchar(temp);
break;
default:
/* Operand */
putchar(item);
break;
}
}
while(!empty()) /* Empty the rest of Stack */
putchar(pop());
}
Listing 3.6

Infix-to-postfix conversion.

36 CQueues 49

Let’s trace this function’s execution for one of our previous exam-
ples: a5 c X +. However, to make the discussion clearer, we will substi-
tute the values 1, 2, and 3 for &, &, and ¢, respectively.

There are several important points to consider here. First, note
that all the operations are performed in the correct order (e.g.,
multiplication before the addition). Also, operators only pop the appro-
priate number of operands required to perform their individual operation.
(Both are binary operators in this example and, as such, require two
operands.) Finally, when the input is exhausted, the only operand
remaining on the stack is the result of the expression.

Listing 3.7 contains the function eval (), which evaluates postfix
expressions in the aforementioned manner. It assumes the push ()
and pop () functions from earlier in the chapter and the function
power () from Chapter 1. It also assumes the function nextitem().
This routine returns either the next available symbol from the input
stream, or the value EOF if none remain.

As it processes each input symbol, eval () automatically pushes
each operand onto the stack (default:). When it encounters an
operator, it pops the appropriate number of operands off the stack,
performs the operation, and pushes the intermediate result back
onto the stack. Note the care taken to ensure that operands are evalu-
ated in the correct order. Also note the comment associated with the
division operator. A production version of this algorithm should include
an explicit test for division by zero and take appropriate action.

The function returns the only remaining value on the stack; this is
the result of the expression. The complexity analysis for this func-
tion is similar to that of itop (), vielding an O(#) algorithm.

36 QUEUES

Another special form of a list is the guexe. A queue is an ordered list

in which insertions occur at one end (the 7¢ar) and deletions occur at the
other (the front). For example, the result of adding the element E; to
the queue (E,, E;, E, E|) would be (Es, E4, E;, E; E,). Deleting an
element now would yield the queue (Es, E4, Ei, E;). Because its
operation preserves the entry order of the elements, a queue is a
first-in, first-out (FIFO) list.

Listing 3.7
Postfix evaluation
function.

3 Static Data Structures

int eval()
{
int temp, item;
while((item = nextitem()) != EOF)
{
switch(item) {
case '+ '’:
/* Watch order of operands */
temp = pop();
push(pop() + temp);
break;
case '—':
temp = pop();
push(pop() — temp);
break;
case ’*’;
temp = pop();
push(pop()* temp);
break;
case '/’:
/* Division by Zero? */
temp = pop();
push(pop()/ temp);
break;
case 'N7:
temp = pop();
push(power (pop(),temp));
break;
default: /* Operand */
push(item);
break;
}
1
return(pop());: /* Answer */
}

Figure 3.4
A queue array.

36 Queues 51

Front ——— — Rear

| |
v \

Like stacks, queues are also versatile data structures. One of the
more common examples of their use is in job scheduling, such as
that found in print spoolers. Users enter their print requests in the
job queue (this is typically accomplished through the use of a utility
program); when a printer completes its current job, the scheduler
selects the next request from the queue and routes it to the printer.

T'o add more flexibility, multiple queues can be used to establish
priorities. Print requests placed on the high-priority queue take precedence
over jobs placed on the low-priority queue.

We can also use larrays to implement queues. Two pointers (Eront
and rear) maintain the FIFO order (see Fig. 3.4); both are initialized to
—1. To add (enguene) an element, we increment the pointer rear
and store the new value in queue [rear]. To remove (deguene) an ele-
ment, we incrementlthe variable £ront and return the value contained
in queue[front].

Listing 3.8 contains the source code for routines that manage a
simple queue. The function addqueue () requires one argument, which
it adds to the queue (space permitting); it returns the value OUT _OF _
SPACE to indicate a queue full condition.

The function delgqueue () returns the next available element
(if any) off the queue. Note that a queue empty condition occurs
whenever both pointers are equal (i.e., front == rear). Because
delqueue () does not make an explicit test for this condition, you should
call queue_empty() before each deletion. The function
queuesize () is trivial and returns the total number of elements
currently enqueued.

The test for queue full is interesting. Regardless of the number
of elements currently enqueued, the queue becomes full when the pointer
rear reaches the end of the array. This is obvious in cases where
elements are continually added to the queue without any intervening
deletions. However, the queue will become full just as quickly for

52 3 Static Data Structures

#define OK 0

fidefine QUEUE_EMPTY -1

#define OUT OF_SPACE —2

#define MAXQUEUE 100

int queue [MAXQUEUE];

int rear = —1, front = -—1;

int addqueue(int element)

{
if(front+1 >= MAXQUEUE)
return(OUT_OF_SPACE);
queue[++front] = element;
return(OK);
}

int delgqueue()
if(front == rear) /* Queue is empty */

error();
return(queuel[++rear]);

int g_empty()

{
if(front == rear)
return(QUEUE_EMPTY);
return(OK);
}

int queuesize()

{
return(front — rear);

Listing 3.8
Queue functions.

Figure 3.5
Circular list.

36 AQueues b3

programs that repeatedly add and delete elements because the body of
the queue continually moves toward the right (i.e., the high-order
indices) with each insertion.

One solution to this problem is to include code in the function
addqueue () that would shift the queue back to the left whenever
rear reached the end of the array. That is, the function would
copy all the elements—preserving their order—beginning back at
queue [0]; then modify the index variables, front and rear, to reflect
the new position of the queue within the array. However, this is an
extremely inefficient solution because we must move all elements
in the queue individually.

A more efficient solution is to represent the queue as a cirealar
Jist (see Fig. 3.5). As with our previous implementation, we still need two
index variables to maintain the front and rear of the queue. This time,
however, instecad of moving from /ef# fo right, they progress in a clockwise
manner. That is, when they reach the end of the array, both variables
wrap around to the beginning. In other words, both pointers chase each
other around a circular track: The rear pointer moves ahead as ele-
ments are added to the queue; the £ront pointer catches up as elements
are removed.

This model ensures that we can continue to insert new elements
into the queue—regardless of the values contained in the index variables—
provided that the number of currently enqueued elements is less than
the total size of the array. Figure 3.6 depicts the operation of a circular
queue during several insertions and deletions.

We can modify the queue functions of Listing 3.8 to support a

54 3 Static Data Structures

Rear
Front
Al

Tl e g
A
.3

Empty Enqueue (E/) Enqueue (Ej) Dequeue (E;) Dequeue (E))
Figure 3.6 empty
Circular list operation. (a) (b) {c) {d) {e)

circular queue. Listing 3.9 contains the modified source code. First,
both pointers must now be able to wrap around. This is accomplished
with the macro NEXT (x), which uses modulo arithmetic to calcu-
late the next array position.

The queue empty test remains the same (e.g., rear ==
front). However, we can no longer detect a queue full condition
by just testing for the end of the array. As depicted in Figure 3.7, if
another element is added to the queue, rear would become equal
to £ront—thus rendering it impossible to distinguish queue full from
queue empty. Therefore, it is convenient to define queue full as

NEXT (rear) == front. Thus, a maximum of MAXQUEUE-1 ele-
ments can be enqueued because queue[front] must always remain
empty.

Arbitrary-Length Arithmetic

As an example of the application of queues, let’s discuss how we might
implement functions to perform arbitrary-length arithmetic. To begin,
consider that regardless of their power, most computers impose a limit
on the size of integers. For example, many machines restrict inte-
gers to only 4 bytes; some even smaller. We are going to overcome
this restriction by writing functions that deal with numbers repre-
sented as character strings.

Suppose that we had two queues of characters, and that each

3.6 Queues

#idefine MAXQUEUE 100

#define NEXT (x) ((x + 1) % MAXQUEUE)
#idefine OK 0

#define QUEUE_FULL -1

#define QUEUE_EMPTY -—2

int queue[MAXQUEUE];

int rear = 0, front = 0;

int cir addq(int element)
{
if(NEXT(rear) == front)
return(QUEUE_FULL);
rear = NEXT(rear);
queue[rear] = element;
return(OK);

int cir delq()

{
if(front == rear) /* Error! */
cir_error():;
rear = NEXT(front);:
return(queuel[front]):
}

int cir_empty()

{
if(front == rear)
return(QUEUE_EMPTY);
return(OK);
}

int cir sizeq()
{

return(((front-rear) + MAXQUEUE) % MAXQUEUE);
) .

Listing 3.9
Circular list functions.

55

Figure 3.7
Queue full condition.

3 Static Data Structures

represented a positive number stored as individual digits. We could
add those two numbers in much the same way as a grammar school
student would:

1. Remove the top two elements from each queue.

2. Add them together, along with any carry value.

3. Determine the result digit and the new carry value.
4. Repeat until all digits are processed.

For the most part, we can convert this outline directly to an
algorithm. There are, however, several points we need to consider. First,
when we add numbers, we work from the low-order to the high-order
digits of the addends. Thus, the digits must be enqueued such
that, when they are dequeued, they are processed in the correct order.

We also need to display digits in the reverse order of processing.
Consider the following example:

1234
+4444
5678

Even though we compute the value 8 first, 5 is the first digit we
would print.

Finally, we need to address the problem of summing addends of
different lengths. For example, 123 + 23 = 146.

Listing 3.10 contains the code for the function addnums (). It
begins processing by loading its queues. Obviously, this function
requires two queues, one for each addend. However, as written, our
queue routines handle only a single queue. For the purposes of this

3.6 Queues

void addnums()
{
char i;
int nl, n2, carry, digit:;

addqgl(i);

addqg2(i);

/*
* Loop until both queues are empty

carry = 0;
while(!emptyqgl() && !emptyqg2())
{
nl delqgl() — ’07;
n2 delg2() - ’07;
digit = nl + n2 + carry;
push(digit % 10);
carry = digit / 10;

if(carry > 0)
push(carry);

while(!empty ())
printf(”7%d”, pop()):

printf(~“\n”);

while((i=nextinput()) != EOF) /* 1lst addend */

while((i=nextinput()) != EOF) /* 2nd addend */

Listing 3.10
Adding arbitrary-length integers

3 Static Data Structures

example, we simply duplicated the routines of Listing 3.8 to provide
support for an additional queue. A better solution is to write a set of
general routines that can process any queue passed as an argument.
This is discussed further in the exercises at the end of this chapter and
again in Chapter 5. addnums () assumes that the addend digits are
read in the correct order (i.e., low digits first). If they came in reverse
order, we would simply use stacks in lieu of queues.

The third while loop performs the addition operation described
previously. However, note that the conditional test will only termi-
nate the loop when bo#t queues are empty. So how do we handle the
situation in which addends are not the same length? Specifically, how do
we handle the case in which one queue is empty and the other is not?
We simply add the following code to the delqgl () and delg2 () routines:

if(front2 == rear2) /* Queue is empty */
return(0);

This statement ensures that each time we try to remove an element
from an empty queue, the deletion function returns the value 0 (rather
than a queue empty indication). Thus, we can continue processing
the non-empty queue (adding a harmless 0 to each digit) uncil it, too,
is exhausted.

The body of the while loop also contains some interesting proc-
essing. The first two statements convert each digit from its charac-
ter value to its numeric value. This is accomplished by subtracting
the character value of the digit ‘0’ from each addend digit as it is
removed from the queue. That is, the resule of this subtraction will
yield the numeric equivalent of the digit. For example, the numeric value
for the character ‘2’ is 50; the numeric value for the character ‘0’ is
48. If ‘2’ were the digit just removed from the queue, the result of the
expression would yield 50 — 48 = 2.

The next three lines of code compute and store the new digit
and the carry value. Finally, note that the function uses a stack to store
the digits so that they can be displayed in the correct order.

SUMMARY

EXERCISES

3.6 Queues 59

In this chapter we discussed static data structures. Static data structures

do not alter their basic memory configuration during program execution.
These structures are typically constructed by combining atoms into
larger data aggregates.

One of the more common types of aggregates is the array. Although
simple in concept, arrays can serve as the basis for complex data
structures, such as:

Ordered lists An ordered set of elements.

Stack A LIFO list that permits insertions and deletions at only one
end, called the 70p.

Queue A FIFO list that allows insertions at one end (called the rear)
and deletions at the other end (called the frons).

Circular list An extension to the basic queue. It can be likened to a
track wherein the front and rear pointers chase each other in a circular
manner. Circular queues allow you to continue to add elements
as long as there are slots available in the array.

"The data structures discussed in this chapter can serve as a foundation
for solving complex problems.

1. What type of data structure would you use to model the following?
a. Customers entering and leaving a bank
b. Piles of lunch trays in a school cafeteria
c. Cars waiting in line to pay a toll

2. Implement the calculator program of Section 3.5. See if you can
include support for floating-point operands and an assignment facility
for variables. Also, modify the functions itop() and eval() so
they will write/read postfix expressions to/from a queue. How
should your program handle errors such as A + B) X C?

3. Write a set of general-purpose stack routines, similar to those in
Listing 3.3, that will operate on any array supplied as an argu-
ment to the functions.

4. Do the same for the queue routines of Listing 3.8.

5. Implement a set of stack routines that allow two stacks to share
the same data array. (Hins: Let one stack grow from right to
left; the other from left to right.)

3 Static Data Structures

10.

11.

12.

13.

14.

. Write a function to reverse the order of elements in an array. Can

this be done in place?

. Trace the growth and decay of the stack managed by the function

itop() when converting the following infix expressions:
3T2x4713
3T x4713)
4131211

. Trace the growth and decay of the stack managed by the function

eval() when evaluating the postfix forms of the expressions pre-
sented in question 7.

. Trace the behavior of a circular queue during the following se-

quence of events:
cir addqg(i)

cir_addq(2)
cir delg()
cir_addq(3)
cir_delqg()

Assume an array size of 5 and that the sequence of function calls
is repeated five times.

Add the necessary code to the function addqueue () to allow it
to shift queue elements left—if there is room—when rear reaches
the end of the array.

A deque, or double-ended queue, is a linear list that permits inser-
tions and deletions at either end. Write a set of routines to
implement a deque using an array. (Hinz: Use a circular
representation.)

Complement the addnums () function (Listing 3.10) by devel-
oping routines that perform subtraction, multiplication, and division.

Extend the functions you wrote for exercise 12 to handle nega-
tive numbers.

Discuss how you would extend the functions of exercise 12 to
handle floating-point numbers.

Copyrighted Materials

Copyright © 1994 Oxford University Press Retrieved from www.knovel.com

Recursion

C H A P T E R

—— 4.1 INTRODUCTION

A procedure that calls itself, either directly or indirectly, is termed
recursive. Direct recursion occurs when function A makes another
call to function A; indirect recursion occurs when function A calls
function B, which, in turn, calls function A. It is important to understand
that each instantiation (active copy) of a recursive procedure is entirely
unique and has its own arguments, local variables, return address,
etc. Further, each instantiation returns to the procedure that directly
invoked it. Thus, if C calls A, then A calls B, and then B calls A, the
second instantiation of 4 is completely independent of the first and
returns to its caller B, not C.

Most beginning computer science students shudder at the mention
of the term recursion, or believe the technique is reserved solely
for the most sophisticated programmers writing the most arcane pro-
grams. On the contrary, recursion is a powerful tool that every programmer
should understand and use.

61

62 4 Recursion

/* By definition */

int fact_iter(int n)
{
int i, ans;
if(n == 0)
return{ 1);
ans = 1;
for(i = 1; i <= n; i++)
ans = ans * i;
. return(ans);
Listing 4.1 }
Factorial numbers—
iterative solution.

e 4.2 FACTORIAL NUMBERS

The best way to introduce recursion as a programming technique is
by way of example. The notation #! reads “# factorial” and denotes
the product of the positive integers from 1 to #, inclusive. For example,

I=1X2X3
41=1X2X3 X4
S!=1X2X3X4X5

=1 X2X3X .+ Xn=2Xn—1Xn

We also define 1! = 1, and 0! = 1. If asked to develop a function
that would compute factorial numbers, how would you do it? Based on
the previous definition, an iterative solution is suggested and might

look similar to the function provided in Listing 4.1.
However, we can reverse the definition of the formula:

Al=n2XH-—1)Xn—-—2)X...X3X2XI1

Thus, 4! = 4 X 3 X 2 X 1. Note that 3 X 2 X 1 is 3!; therefore,

we can define 4! recursively as

4 = 4 x 3!

4.2 Factorial Numbers 63

In general, we can define #! as
al =nX(n-—1)
=D =@m—1)X@=-2)
n—21=@#—2)X(n—3)

Having established a recursive definition for factorial numbers,
we can begin to formulate a recursive algorithm. Consider the
following pseudo-code:

fact(n)
x =n -— 1;
compute x!; /* (n—1)1 */
return(n*x!); /¥ nl = n* (n—1)! */

The function fact () computes the value of #! by calculating
the value of (# — 1)! and then multiplying the result by ». However, as
you may have noted, statement two is not adequately defined: We
must find a way to compute the value of x!. But if you think about it,
we already have one: fact (). The function fact () computes facto-
rial numbers. Let’s use that knowledge and rewrite the routine as

fact(n)
x = fact(n—1); /* (n—1)1! */
return(n*x); /* n! = n * (n—1)! */

Now, when computing the value of #!, the function will recursively
call itself to compute the value of (# — 1).

Is the function complete? Let’s take a closer look and trace its
execution when computing 2!. Processing begins when the function is
invoked with an argument of 2. It computes 2! by recursively calling
itself with an argument of 1; to compute 1!, it again calls itself with an
argument of 0. The third copy of the function will call itself with an
argument of —1, the next —2, and so on. The problem is now
becoming clear: ‘The function is infinitely recursive.

All recursive procedures need some way of stopping the recursion.
We call this the zerminating condition or the out. It is usually placed
at the top of a recursive function and contains the statements that

4 Recursion

eventually put an end to the recursion and begin the unstacking
of all the nested invocations. If it is omitted or incorrect—as we have
just seen—functions can become infinitely recursive.

Returning to our example, let’s identify a terminating condition
for the function fact (). By definition, we know that 0! = 1 and 1! =
1. We can therefore add tests for these values at the top of the procedure
as follows

fact(n)
if(n == 0ORn == 1)
return{ 1);

return(n * fact(n—1));

Now, when invoked with an argument of 0 or 1, the function will
return an explicit value rather than making another recursive call.
(Note that we have also removed the unneeded temporary variable x
from our algorithm.)

We have one more problem, however. The function can be initially
called with a negative argument. We should therefore add one more test
to ensure that the function has been invoked properly:

fact(n)
if(n < 0) /* Bad argument */
return(—1);

if(n == 0ORNn == 1)
return(1);

return(n * fact(n—1));

The final C version of the function appears in Listing 4.2. It
depends on your point of view, but fact_recr () is slightly more read-
able than fact_iter () (Listing 4.1), if for no other reason than that
it has no loop to consider. Take the time here to review both functions
and convince yourself—if you are doubtful—that the two implementa-
tions are equivalent.

Listing 4.2
Factorial numbers—
recursive solution.

4.3 Fibonacci Numbers 65

int fact_recr(int n)
{
if(n < 0) /* Check for bad argument */
return{(—1);
if(n ==0|n==1)
return(1):;
return(n * fact_recr(n-—1));
}

——— 4.3 FIBONACC| NUMBERS

Let’s return to our discussion of Fibonacci numbers. As you may recall
from Chapter 2, the Fibonacci sequence is defined as

Fo =0
Fl =1
F,=F,_+F,, forn=2
The solution we presented previously (Listing 2.2) computed a
given Fibonacci number iteratively. Upon closer inspection, however, we
see that the series is also defined recursively. That is, we can compurte
a given F, by summing the values F,_, and F,_,. Therefore, we
can begin to construct a recursive solution as follows
fib recr(n)
return(fib recr(n—1) + fib recr(n-—2));

We must again consider a terminating condition. In this case, we
can use the two initial values, F, and ¥, and insert tests into our algorithm:

fib recr(n)
if(n == 0)
return(0);

if(n == 1)
return(1);

return(fib recr(n—1) + fib_recr(n—2));

Listing 4.3
Fibonacci numbers—
recursive solution.

4 Recursion

int fib_recr(int n)

{
if(n < 0) /* Bad argument */
return(—1);
if(n == 0) /* By definition */
return{ 0);
if(n == 1) /* By definition */
return(1):
return(fib recr(n—1) + fib_recr(n—2));
}

The algorithm is just about complete, but notice that fib_recr ()
also can be incorrectly invoked with a negative argument. We will therefore
add one more test at the beginning of the routine. Listing 4.3 contains
the final C version of the function.

As a programming note, both fib_recr () and fact_recr()
perform tests for invalid arguments during each recursive call. However,
the test is really needed only during the initial call to ensure that
invoking functions have passed valid arguments. After that, every addi-
tional comparison (testing for n < 0) is unnecessary. It would be to
our advantage if we could somehow prevent the test from executing
after the first call.

We can accomplish this by splitting the algorithm into two func-
tions. The first, called from other routines, will test for valid argu-
ments; it will then invoke the second function, which will actually do
the work. As an example of this technique, fib_recr () has been
rewritten and appears in Listing 4.4.

44 WRITING RECURSIVE FUNCTIONS

Thus far, we have used recursion to solve problems that we have been
able to define recursively. Now let’s begin to explore the use of this

44 Writing Recursive Functions 67

int fib recr2(int n)
{
if(n<0) /* Bad argument */
return(—1);
return(fibx(n)); /* Compute F(n) */
}
/* The work routine */
int fibx(int n)
{
if(n == 0)
return(0);
if(n == 1))
return(1);
return{ fibx(n—1)+ fibx(n—2));
}
Listing 4.4

Split functions.

technique for problems in which a recursive solution may not be
readily apparent.

Towers of Hanoi

One of the classic examples demonstrating the power of recursion is
the ancient puzzle, The Towers of Hanoi:

There are three pegs 4, B, and C, and a set of five rings, all of
different sizes. The puzzle begins with all rings positioned on peg A
in a manner such that no ring is resting on a smaller one. That

is, they are stacked one atop the other, beginning with the
largest, followed by the next largest, and so on (see Fig. 4.1 for

an example). The object of the puzzle is to stack all five rings in the
same order on peg C. At any time during the solution, you may

68 4 Recursion

Figure 4.1
Towers of Hanoi
puzzle.

place rings on any of the three pegs. However, you must
adhere to the following conditions:

* You can only move the topmost ring on any peg.
* At no time may a larger ring rest on a smaller one.

Try to solve the puzzle manually, for a small number of rings (say
four or five), before proceeding to the algorithmic solution.

The problem confronting us is to write a program that will solve
the puzzle for any number of rings. Let’s begin by considering a general
solution for # rings. If we had a solution for # — 1 rings, it would
seem obvious that we could solve the puzzle for » rings: Solve the
puzzle for » — 1 rings, then move the remaining ring to peg €. Similarly,
if we could solve # — 2 rings, the # — 1 case would also be simple. We
could continue in this manner until the trivial case in which » = 1:
Simply move the ring from peg A to peg C. Although it may not be obvious,
what we have just described is a recursive solution to the problem.
That is, we solved the problem for a given # in terms of » — 1,

Let’s examine a more concrete example and solve the puzzle for
five rings. Suppose we know how to solve the puzzle for four rings,
moving them from peg A to peg C. Obviously, we could just as easily
move the four rings from peg A to peg B instead (using C as the auxiliary
peg). Then, to complete the solution, we need only move the largest
ring from peg A to peg C and move the four rings on peg B to peg
C (using A as auxiliary).

We can summarize the solution more precisely as follows:

1. If » = 1, move the ring from A to ¢ and halt.

2. Move # — 1 rings from A to B using C as auxiliary.
3. Move the 2" ring from A to C.

4. Move #» — 1 rings from B to C using A as auxiliary.

4.4 Writing Recursive Functions

void towers(int n, char a, char b, char c)
/* n: Number of Rings */
/* a: The ‘From’ Peg */
/* b: The ‘Auxiliary’ Peg */
/* c: The ‘Destination’ Peg */
{
if(n == 1)(
printf (”"Move ring %d from peg %c to peg %c\n”,n,a,c):
return;
}
/ *
* Move n—1 rings from peg A to peg B (C is aux)
*/
towers(n—1, a, ¢, b);
/ *
* Move remaining ring from peg A to peg C
*/
printf (”"Move ring %d from peg %c to peg %c\n”,n,a,c);
/ *
* Move the n—1 rings from peg B to peg C (A is aux)
*/
towers(n—1, b, a, ¢);
return;
}
Listing 4.5

Towers function.

Note that steps 2 and 4 are recursive in that they suggest that we
repeat the solution for z — 1 rings. Also note that the pegs change
roles as the solution progresses.

Now that we understand the solution, we must convert these rules

10

Listing 4.6
Sample output:
Towers function.

4 Recursion

Move ring 1 from peg A to peg B
Move ring 2 from peg A to peg C
Move ring 1 from peg B to peg C
Move ring 3 from peg A to peg B
Move ring 1 from peg C to peg A
Move ring 2 from peg C to peg B
Move ring 1 from peg A to peg B
Move ring 4 from peg A to peg C
Move ring 1 from peg B to peg C
Move ring 2 from peg B to peg A
Move ring 1 from peg C to peg A
Move ring 3 from peg B to peg C
Move ring 1 from peg A to peg B
Move ring 2 from peg A to peg C
Move ring 1 from peg B to peg C

into an algorithm. We will design a function, called towers (), that will
display all the moves required to solve the puzzle for a given number
of rings. Its output will be commands of the form

Move ring X from peg Y to peg Z

The function towers () will require four arguments. The first
will indicate the number of rings to use. The other three will determine
the role of each of the three pegs: source, destination, or auxiliary.
Listing 4.5 contains the code.

The code is almost a line-for-line transcription of our verbal solu-
tion. Note how the routine changes the function of each peg with
each recursive call. A sampte of the output produced by the function,
invoked with # = 4, appears in Listing 4.6. However, as written, the
function lacks one important detail: It does not check for bad argument
values. We will leave this as an exercise for the reader.

Eight Queens Puzzle

Another classic example of recursive programming is the Eight Queens
Puzzle. The problem is to place eight queens on a chess board such that
no two queens are attacking each other. In chess, a queen can capture

4.4 Writing Recursive Functions n

another piece by moving any number of squares along its row, column,
or diagonals (see Fig. 4.2). 'Thus, the problem is to place eight queens

on an 8 X 8 board such that no two queens share the same row,
column, or diagonal. Try to solve the puzzle manually before read-
ing on.

To begin our solution, suppose we were to develop a procedure,
nextqueen (), that would attempt to place a queen in the row indicated
by its one argument. That is, the function would scan all the squares
of the specified row and, upon locating one that was not under attack,
would place a queen on it; it would then recursively call itself to place
a queen in the next row. If all eight queens can be placed on the board,
the function returns the value SOLVED. If all the squares of a given
row should be under attack, nextqueen () will return a status of FAIL.

Let’s begin to sketch the algorithm. (Note that for programming
convenience, rows and columns will be indexed from 0 to 7.)

nextqueen(row)

for(i =

i< 8; i++) /* Try each column */

if(safe(row, i)) /* Is square under attack */
if(nextqueen(row+1l) == SOLVED)

return(SOLVED);

return(FAIL); /* All squares under attack */

Figure 4.2
Attacking queens.

12

nextqueen(row)

if(row > 7)

4 Recursion

Clearly, the description is far from complete. First, we need a
terminating condition for the recursion. Let’s think about that for a mo-
ment. We know that, by definition, there is a maximum of eight queens
in the puzzle. Therefore, we can test for row > 7 at the beginning of
the function. But consider for a moment the significance of the value
contained in the argument row. If a recursive call is made to next-
queen () with row equal to some value #, it means that rows 0 to #

— 1 have been solved. Thus, if nextgqueen() should be called with
row = 8, it means that all the queens (rows 0 to 7) have been placed
and the function should return the value SOLVED.

Next, we need a way to track the placement of the queens as the
function proceeds. To do this, we will use an 8 X 8 character array
to represent the board. In each position, we will store (for display
purposes) one of the following characters: — to denote an empty square;
or * to represent a square containing a queen.

Finally, we need to define the function safe (), which determines
whether a given square is under attack. However, let’s postpone
our discussion of safe () until we have completed the definition of
nextqueen().

Let’s incorporate the changes we suggested and see how our
function is taking shape:

/* The ‘out’*/

return(SOLVED);

for(i = 0; i < 8; i+ +) /* Try each column 0-7 */
if(safe(row, i)){ /* Is square under attack */
board[row] [1] = QUEEN; /* Place queen on board */
if(nextqueen(row+1l) == SOLVED) /* Next row */
return(SOLVED);
else
board[row] [1] = EMPTY; /* Restore board pos */
}
return(FAIL); /* All squares under attack */

Notice that we have added the statement

board[row] [i] = EMPTY;

Figure 4.3
Diagonal attacks.

4.4 Writing Recursive Functions 73

because if a recursive call to nextqueen () should fail to find a
solution (with a queen located at that position), this statement will restore
the board to its previous state; the function is then free to try the next
available square.

Our algorithm is beginning to take shape, and we now need to
discuss the implementation of the function safe(). The problem we
must address is how the function will determine whether a given
square is under attack from previously placed queens. First, note
that there is really no need to check for attacks along rows. By virtue
of our implementation, we can be certain that the only queen that could
reside on a given row is the one we are attempting to place. Also,
checking for attacks along columns could be accomplished directly, if
crudely, by indexing through the board along the column in question.

Diagonal attacks will prove to be the most difficult to discern. As
depicted in Figure 4.3, a queen positioned on any one of the
shaded squares would be attacking the queen placed on the [3,3] slot.
How can we easily determine whether a square is under attack along
cither of its two diagonals?

If you take a closer look at the board in Figure 4.3, you will notice
that each diagonal can be uniquely identified as a function of its indices.
For example, consider Figure 4.4a. The sum of the indices (row +
column) of each square in the forward-tilting diagonal is equal to 6. There- -
fore, any queen that has been previously placed on a square whose
indices sum to 6 will have the [3,3] slot under attack. Similarly,
we can derive a unique value for the backward-slanting diagonals (Fig.
4.4b) by subtracting (column — row) the indices. Note that each of the

L]

~N o W= o

Forward-slanting diagonals

.:,-'Jﬁ_.#-“ ra

Figure 4.4
Diagonal values.

4 Recursion

0 1 2 3 4 5 6 7
| i 5 o
: 0 P_U_ : ¥, | ,‘!"
; 4 adiagona~_ | BN B |
E fj 9 diagonal 2 g2 0 - B
| 9 I8 3 i 8
3 B
x| T BN EEE
X 7 B =2 O
.. L

Backward-slanting diagonals
(b)

15 forward-slanting diagonals range in value from 0 to 14, and the
backward-slanting diagonals range in value from —7 to +7.

We can incorporate this concept into our safe () function. The
idea is that as each queen is placed onto the board, we will update two
arrays: one to track the forward diagonal and one to track the backward
diagonal. The index into each array will be the index value of each diagonal.
(As a programming convenience, we will add 7 to the index value of
the backward diagonal.) Thus, safe () need only check the appropriate
array slots to determine whether a given square is under attack along
one of its diagonals. We will extend this idea to track attacks along columns.
In this case, we use only the column value as the index into a third array.

The complete solution to the puzzle appears in Listing 4.7. The
function eightqueens () is the driving routine. It initializes the
board and flag arrays and calls nextqueen () to solve the puzzle. If
nextqueen () returns SOLVED, eightqgueens () also invokes disp_
board () to print the solution.

The routine set_flags () calculates the column and diagonal
values and sets the appropriate array flags; it is called whenever a queen
is placed onto the board. The procedure reset_flags () resets the
column and diagonal flags whenever we remove a queen from the
board (i.e., after a FAIL). The function safe () tests the flags associ-

4.4 Writing Recursive Functions

75

#define FAIL 0
#define SOLVED 1
#define EMPTY r—
#define QUEEN ks
char colmk[8]; /* Flags for testing rows & diags */
char tiltf[15];
char tiltb([1l5];
char board[8][81]:;
void eightqueens()
{
int i, j;
/*
* Initialize board & flags
*/
for(i = 0; 1 < 8; i++)
for (J = 0; 3 < 8; j++)
board[i]l [j] = EMPTY;
for(i = 0; i < 15; i++){
tiltf[i] = EMPTY;
tiltb[i] = EMPTY;
}
for(i = 0; 1 < 8; i++)
colmk[i] = EMPTY;
/*
* Attempt to solve puzzle
*/
if(nextqueen(0) == SOLVED)
disp board();
else
printf(“No solution found!\n”);
}

continued on p. 76

76 4 Recursion
int nextqueen(int row) continued from p. 75
{
int 1i;
if(row > 7)
return(SOLVED);
for(i = 0; i < 8; i++) /* Try each col */
if(safe(row, 1) == 1){
boardirow] [1] = QUEEN:;
set_flags(row, i);
if(nextqueen(row+1l) == SOLVED)
return(SOLVED);
else {
/*
* Restore board & try next slot
*/
board[row] [1] = EMPTY;
reset flags(row, 1);
}
}
return(FAIL); /* No safe slots - backtrack */
}
void
set flags(int row, int col) /* Set col & diag flags */
{
colmk[col] = QUEEN;
tiltf[row+col] = QUEEN;
tiltb[(row—col)+7 1 = QUEEN:;
}
void
reset_flags(int row, int col) /* Reset col & diag flags */
{
colmk|[col] = EMPTY;
tiltf[row+col] = EMPTY;
tiltb[(row—col)+7] = EMPTY;
} continued on p. 77

4.4 Writing Recursive Functions

n

int safe(int row, int col) continued from p. 76
{

int 1i;

if(colmk[col]l] == QUEEN

| | tiltf[row+col] == QUEEN

| | tiltb[(row—col) +7] == QUEEN)

return(0);

return(1); /* Safe */
}
void disp_board()
{
int 1i,3j;
putchar(‘\n’);
for(i = 0; 1 < 8; i++){
for(j = 0; j < 8; j++)
putchar(board[il] [j]);
putchar(‘\n’);
}
}
Listing 4.7

Ei_ght Queens solution.

ated with a given board position; if it returns 1, the square is not
under attack. '

Backtracking

In the previous example, we described a programming methodology
wherein many alternate solution paths are examined. This is a
form of backtracking. Backtracking is a programming technique in which
you proceed along a given path in search of a goal. At each for#

in the road, you gwess which path you should follow. If any choice
should prove unsuccessful, you backtrack; that is, you back up to

18

4 Recursion

the previous fork and try another path. Execution continues in this
manner until you either reach a solution or exhaust all possibilities.
"The latter condition signifies that no solution exists and the program
should exit with an indicative status.

Non-Deterministic Programming

Backtracking is a coding technique belonging to a more general class
called Non-Deterministic Programming (NDP). In conventional
software design, we program all the steps required to attain a desired
result. This implies that a definitive, a priori understanding of the
solution is available and that the problem itself is algorithmically solv-
able. Thus, as each successive statement is executed, the program draws
progressively closer to the desired result.

NDP is somewhat different in that we do not code a solution.
Instead, we program the method by which we attain a solution—if one
exists. In fact, we do not assume that a solution does exist. The program
literally makes guesses until it either finds a solution or exhausts all avail-
able alternatives. Moreover, there can be zero, one, or multiple solu-
tions for a given problem. This method of programming has obvious
benefits in artificial intelligence applications and expert systems
development. ‘

Chronological Backtracking

There are two types of backtracking: Chronological Backtracking
(CBT) and Dependency-Directed Backtracking (DDB). CBT is effec-
tively an exhaustive search, similar to the earlier discussion. Each
solution path is exhaustively searched until one of the two outcomes is
determined. For example, consider the following pseudo-code:

1: bktk_exe(node)

2: {

3: if(node = SUCCESS)

4: then

5: return(I_FOUND IT)

6: endif

7: for(each choice_at_this_node)

8: do

9: ret_stat = bktk_exe(child node)

10: if(ret_stat = SUCCESS)

4.4 Writing Recursive Functions 9

11: then

12: return(ret_stat)
13: endif

14: done

15: return(FAIL)

16: }

If at any time a solution is found (lines 3-6, 9-13), the function
returns a value indicative of success. If not, it must try an alternate choice
(lines 7-14). If all the alternatives have been exhausted (line 7), a
value indicating failure is returned, forcing the previous invocation of the
function to back up to a previous path (line 15) before continuing
the search.

There are two important points to consider. First, whenever we
perform a backup, we must restore the environment to its previous state
before trying the next path. Saving and restoring state data can become
very expensive. Second, backtracking typically yields an algorithm that is
exponential in order of execution magnitude. The following sections
discuss methods of improving the performance of this technique.

Dependency-Directed Backtracking

Dependency-Directed Backtracking functions essentially as described
earlier, but attempts to eliminate some unnecessary searching (and there-
fore unnecessary backups). This is accomplished in two ways. First,

as the name DDB implies, we can backtrack to choices that are
dependent on the dead end. That is, we back up until we reach a
point where a dependency was created and continue searching

from there.

As an example of this technique, consider a case in which we are
searching for a solution that requires that four conditions (4, B, C, and D)
be satisfied for our program to return a successful status. Let us further
assume that we have reached a state in our processing in which
conditions A and B are satisfied but ¢ and D are not. In lieu of just
automatically backtracking to the closest fork, continue back-
tracking to a point where A and B are still true and resume the search
from there. We can skip all the intervening paths.

The second method of eliminating unnecessary searching is called
pruning. If we reach a point in the search where it becomes obvious that

4 Recursion

any further effort along a given path is fruitless, we can eliminate all
subsequent paths from that point onward (i.e., force a backtrack

to occur). Pruning is a straightforward approach and is often imple-
mented in game-playing simulations. For example, we could write

a chess program that could determine its next move by assigning a
quantum value to each board position it examines. At any given
point, it would select the move that yields the most advantageous
(highest) value. If the algorithm were to traverse a path represent-
ing the moves queen takes pawn, pawn takes queen, it could elect to
eliminate any further searching along that trail.

For the sake of completeness, we should also mention a third
method of improving a backtracking procedure: managing an explicit stack.
Recursive procedures are costly. This is attributable to the considerable
amount of overhead processing required for each successive call. The
execution environment must save registers, store a return address,
allocate local storage, etc., in preparation for the return. Most of this
information is not directly related to the problem at hand and, there-
fore, having to save and restore it only wastes CPU cycles. We could save
time and space if we were to code the stack explicitly. This can be
accomplished by transforming the algorithm from recursive to itera-
tive and maintaining the to-do list in. an application-controlled stack.

Acrostic Example

As an example of the backtracking technique, we will design a program
that solves acrostic puzzles. An acrostic puzzle is simply a crossword puzzle
without the clues: You are supplied the words and the diagram and,
through trial and error, you must enter all the words into their appropriate
slots (see Fig. 4.5).

The overall operation of the program is as follows: Read the puzzle
and word list into internal data structures; search for a solution; if
there is one, print it. The actual backtracking logic can be found in
the function solve (), which is what we will focus on here. A complete
discussion of the program appears in Appendix A.

The function solve() is a recursive procedure that works as
follows:

1. It chooses, and determines the size of, the next puzzle slot to fill
(horizontal or vertical).

Figure 4.5
Sample acrostic
puzzle.

44 Writing Recursive Functions 81

T0
BEST
TAMP
TOPS

2. It selects, at random (i.e., sequentially), an appropriately sized
word from the available list. It calls the function itfits () to
determine whether a given word fits into the slot (in typical cross-
word puzzle fashion).

3, If the word fits, solve () enters it into the puzzle. At this point,
with the aid of the function enter (), a snapshot of the current state
(puzzle) is saved. _

4. It then recursively calls itself to continue toward a solution.

5. If at any point a solution is found (i.e., there are no more slots to
fill), the function returns the value SOLVED.

6. If a given recursive call fails to find a solution, the puzzle is restored
to its previous state (with the help of the function restore()); the
word that had been tried at that point is returned to the free list
and the next available word is selected; if none remain, the
function returns the value FAIL to its caller.

Let’s trace the execution of the function as it begins to solve the
sample puzzle depicted in Figure 4.6. Note that the line numbers in the
following discussion refer to Listing 4.8; also, the “random” selection
of the words will be the order in which they appear in Figure 4.6.

First, we need a four-letter word for the 7 across position. The
function randomly selects dest (line 14), marks it as USED (line 16), and
inserts it into the puzzle (line 17). It then calls itself recursively to
continue the processing (line 19). Next, for the 2 down position, a three-
letter word is needed and erz is similarly inserted into the puzzle.

The function now attempts to fill the 3 down position. It selects
the next available four-letter word, famp (line 13); checks to see
that it fits (line 14); and inserts it into the puzzle (line 17).

82

Figure 4.6
Acrostic puzzle.

4 Recursion
1 2 3 T0
ERA
BEST
TAMP
TOPS
4

The next slot to fill is 4 across, and the function selects the next
available four-letter word—in this case, zops. This time, however, the
itfits () test (line 15) fails. Recognizing that the last four-letter
word has been used (line 13), the function performs a backtrack (line 27).

After backtracking, the function resumes processing at the point
where it, again, needs to fill the 3 down position. It discards what was its
first choice, zamp (lines 22 and 23) and selects the next available word,
tops (line 14). (Just as a reminder, fops was put back on the available list
just prior to the backtrack.) From this point on, the function solves
the puzzle without any additional difficulties.

45 USE OF RECURSION

Once the technique of recursion is understood, the question most
often asked is when to employ it. Let’s begin by discussing when not to
use it. By definition, all recursive functions have a corresponding itera-
tive solution. With few exceptions, iterative solutions are more efficient
than their recursive counterparts. Therefore, you should not use re-
cursion when run-time performance is critical.

However, this does not tell the whole story. Properly used re-
cursion can be no less efficient than .using procedure calls where
appropriate. For example, tests have shown that for some sorting algo-
rithms (see Chapter 9) a recursive solution is no more than 2% slower
than its iterative counterparts. This is a negligible difference, especially
considering the speed of today’s processors.

Nonetheless, there are two cases in which the use of recursion
can lead to significant performance degradation:

45 Use of Recursion 83

1: solve(length, width)

2: int length, width;

3: {

4: int l, w, i, len, tmp, type:;

5: char old[WORDLEN — MINWORD + 1];

6:

7: w = width;

8: 1 = length:

9: len = next(&l, &w, &type);

10: if(len == 0)

11: return(SOLVED);

12:

13: for(i = P; i<MAXWORD && WORD(len,i) [@#]!=NULL; i++){
14: if(FLAG(len, i) == FREE

15: && itfits(l, w, WORD(len, i), type))({
16: FLAG(len, i) = USED;

17: enter(old, 1, w, WORD(len,i), type):
18: prev = type;

19: tmp = solve(1, w);

20: if(tmp == SOLVED)

21: return{ SOLVED);

22: restore(old, 1, w, type):
23: FLAG(len, 1) = FREE;

24: }

25: }

26:

27: return(FAIL):

28: }

Listing 4.8

Acrostic solution.

1. The algorithm performs redundant computations. The recursive
implementation of the Fibonacci algorithm is a clear example
of this problem. When you invoke fact_recr () to compute F,,
it computes the value of F,_, twice: once during the initial call, and
once when it make a recursive call to compute F,_;. In a similar
manner, it computes F,_; three times, F,_, four times, and so on. As
a result of all the redundant computations, the complexity of

84

SUMMARY

4 Recursion

fact_recr() becomes O(d”), where ¢ is the golden ratio
(1 + V/5/2 = 1.618). (The actual analysis is beyond the scope of
this text.)

2. The recursion becomes deeply nested. This problem is clearly
highlighted in the function fact_xrecr () (the recursive ver-
sion of the factorial algorithm). Note that in computing #!, the
depth of the recursion (i.c., the number of nested invocations) the
function attains is O(z). For large values of #, this can place exces-
sive demands on the run-time machine environment. In fact, even if
we discount all other problems (e.g., integer overflow), for a large
enough 7, the function might not have access to enough re-
sources (e.g., memory and stack) to compute a solution on some
systems. Contrast this behavior with that of the function eight-
queens (). [ts depth of recursion never exceeds 9.

In addition to any performance considerations, you should not use
recursion when each successive invocation would result in a larger task.
Each recursive call should receive a smaller portion of the work.

Do use recursion, however, when the problem is, itself, defined
recursively. This is common in mathematical formulas (e.g., recur-
rence relations). Use it also when processing a recursively defined data
structure (e.g., binary trees) or when a problem can be solved with
a divide-and-conquer approach. Keep in mind that a recursive imple-
mentation of an algorithm is usually smaller and therefore it is usually
less expensive to develop and less costly to maintain.

Recursion is a powerful programming technique. Proper use of re-
cursion results in simple, maintainable algorithms. One of the most im-
portant aspects of a recursive algorithm is the ozz. All recursive func-
tions must have a terminating condition to stop the recursion and unwind
the stack.

A powerful programming technique that employs recursion is
called backtracking. You can improve the performance of backtracking
algorithms using several techniques, including pruning and explicit
stack management.

EXERCISES

11.

12.

13.

Use of Recursion 85

. Define recursion.
. Describe the programming technique called backtracking.

. Write a recursive function that counts from 1 to », where 7 is a

positive integer argument passed to the function.

. Write a recursive function to sum the numbers from 1 to #, where

n is a positive integer argument passed to the function.

. Trace the execution of the function fact_recr () when invoked

with an argument of 10.

. Trace the execution of the function fib_recr () when invoked

with an argument of 8.

. Implement the function towers () and manually verify its output

when solving for five rings.

. Rewrite the function towers () as an iterative algorithm.
. Implement, and trace the exucution of, the Eight Queens program.

10.

How many different solutions exist for the Eight Queens Puzzle?
Modify the program of the previous question so it will generate all
of them.

Convert the function nextqueen() to an iterative solution.
Which version is easier to maintain? Which version executes
faster? Explain your answers.

Implement and test a program that solves acrostic puzzles (see
Appendix A).

Write a backtracking program that will compute a knight’s tour

of a chessboard. A knight moves by jumping two squares in

one direction (either vertically or horizontally) and one square in

a perpendicular direction. A knight’s tour is a sequence of
moves, starting at any square, that visits each square exactly once.
T'ry to implement some of the improvements discussed in this chapter.

Copyrighted Materials

Copyright © 1994 Oxford University Press Retrieved from www.knovel.com

Dynamic Data Structures

C H A P T E R

51 INTRODUCTION

In the preceding chapters, we used static data structures to implement
our example algorithms. That is, storage was pre-allocated and of a fixed
size. One advantage of this type of allocation is that it provides direct
access to individual elements. For example, if we needed to change the
™ element of a list, we could code a[i] = new value;.

Nevertheless, static data structures have several disadvantages.
The first becomes evident when attempting to insert or delete elements
in the middle of a list. For example, consider maintaining a list of
names in alphabetical order. To insert a new element, a program must do
the following (see Fig. 5.1):

¢ Determine the location for the new name.
* Allocate space by shifting existing elements one slot to the right.
* Enter the new name into the list.

For a list of size #, we would need to shift, on average, #/2 elements
to complete each insertion. To delete an element, the program
must remove the designated element from the list and then shift all
succeeding members one position to the left to fill the vacant slot.

Figure 5.1
Array insertion.

5.2 Linked Lists 87

Find location

(a)

Shift elements right

Allocate space
(b)

Perform insertion

(c)

A second disadvantage of static storage structures is that they are
unable to respond to increasing or unanticipated demand. If we
allocate space for ten elements, the arrival of the eleventh will likely
present a problem, If, on the other hand, we decided to overcom-
pensate, the program might become too large for the target execution
environment. The following sections discuss methods by which we can
overcome these difficulties.

5.2 LINKED LISTS

One solution to the first problem mentioned—that of difficult inser-
tions and deletions—is to use a second array to implement a /inked
Jfist. A linked list is a data structure wherein each element contains
both a data value and a pointer to the next element in the list.
That is, each element contains information that allows us to locate
the next element in the list: The first node points to the second,
the second to the third, and so on. This type of structure usually

Figure 5.2
A linked list.

5 Dynamic Data Structures

(0) (1 (2) (3)

Array
slots
(0) {1) (2) 3)

End of list
Front=3

requires a so-called Aead pointer to indicate the beginning of the list, as
well as some convention to signify its end.

For example, consider the list presented in Figure 5.2. The order
of the elements is not determined by their position in the data array
(datall), but rather by the entries contained in the link array
(1ink[].) The variable front, serving as our head pointer, identi-
fies the beginning of the list (slot 3 in this example). To access the
data value of the first element (BACH), we index into the data
array at data[front]. The location of the next element
(BEETHOVEN) is determined by the value stored in the link array at
link[£front], in this case 0; likewise, its corresponding data value
is accessed as data[0]. The traversal continues in this manner until we
encounter a link value of —1 (by convention, we will use this value
to signify the end of the list).

This form of indirection allows us to store list elements in any
available slot of the data array. Further, free slots (holes) no longer present
a problem—just mark them as available for reuse.

The second and more significant advantage of this method is that
it simplifies insertions and deletions. T'o demonstrate this, let’s insert the
element CHOPIN into the list depicted in Figure 5.2. The first step
is to determine the logical position of the new element. Specifically, we
must identify the node that will become the direct predecessor of the
new element (i.e., the node that will ultimately point to CHOPIN, in this
example BEETHOVEN).

52 Linked Lists

Empty slot (NEW =2)
(0) (1) (2) (3) (0) (1) (2) (3)
- K N I - I N I
Front=3 Front=3 '
Find empty slot Insert new element
(a) (b)
(0) (1) (2) 3 (0 (1) (2) (3)
o M - N
Front=3 Front=3
Update link of new element Modify link of Beethoven
(c)
Figure 5.3

Linked-list insertion.

After determining the location, the steps required to perform the
actual insertion are as follows (see Fig. 5.3):

* Find an empty slot in the data array (data[2]).

* Store (copy) the new element (CHOPIN) into the free slot.
 Update the link for the new element (1ink[2] = 1;).
 Insert the new element into the list (Link[0] = 2;).

Deleting list elements is essentially a two-step procedure (see
Fig. 5.4). First, remove the deleted element from the list by setting the
link value of its predecessor to point to its successor. Then mark the
deleted element’s data slot as available.

Listing 5.1 contains two example procedures, insert () and
delete(), that perform insertions and deletions on a linked list.
There are several points worth noting about the implementation.

First, both functions require an argument indicating the logical position
for the operation. Specifically, this argument must be the index of the

90 5 Dynamic Data Structures

Element to be deleted

(0) (1 (2) (3)

... IS I N I
[

Previous element in list

Frnm.: 3

Before deletion
(a)

(0)

(1) (2)

(3)

Link:

Figure 54 After deletion
Linked-list deletion. (b)

target element’s predecessor. (We will return to this point later in this
chapter when we discuss doubly linked lists.) In line with this, note the
first 1 £ condition in the function delete (). It tests whether its prev
argument refers to the last element in the list. If that is the case,

the function cannot delete any elements from the list because, by
definition, the last element of the list cannot be a predecessor

node. In all such cases, delete () returns the value END to indicate

to the calling function that the list has not changed.

Next, both routines handle the special cases involving the first
element of the list. The reason is that when the first element is either
deleted, or has another element inserted in front of it, there is no
predecessor node. (The variable front is not part of the list proper.)
As a result, both functions use a special value (BEG) to indicate an
operation on the list’s first element.

In closing, keep in mind that the benefits provided by this imple-
mentation are not without their costs: Additional memory is re-
quired for the link array and we no longer have the ability to access

5.2 Linked Lists

#define OK 0
#define NO SPACE —1

#define BEG -2
#define END -3
#define MAXLEN 20
#define MAXENTRIES 100

int front = END;
int link[MAXENTRIES 1:;
char data[MAXENTRIES][MAXLEN 1]:;

int
insert(int where, char item[]) /* Ins item after ’‘where’ */
{

int i;

/*

* Find free slot in data array

*/

for(i = 0; i < MAXENTRIES && data[i] [0] != NULL; i++)

/* NULL BODY */;

if(i >= MAXENTRIES)
return (NO_SPACE);

strncpy(datali]l, item, MAXLEN); /* Store entry */

if(where == BEG) { /* Insert at beginning */
link[i] = front;
front = 1i;
} else {
link[1] = 1link[where];
link[where] = 1i;
}

return(OK):

} continued on p. 92

92 5 Dynamic Data Structures

continued from p. 91
int delete(int prev) /* Delete member after ’prev’ */

{
int ¢t;

if(link[prev] == END) /* Nothing to Do! */
return(END);

if(prev == BEG){

/*
* Delete first element
*/
t = front;
front = link[front];
} else {
/*
* Delete element after ’prev’
*/

t = link[prev 1;
link[prev] = link[t]1:
}
data[t]l[0] = NULL; /* Free data slot */

return(OK);

Listing 5.1
Linked-list insertion and deletion functions.

individual list elements directly. The sections that follow will discuss ways
that we can improve on the ideas developed in this section.

——— 5.3 LINKED LISTS USING POINTERS

We will now address the second problem mentioned previously, that

of space limitation. Although it has several advantages, the double

array implementation of the previous section does not overcome the
disadvantages associated with pre-allocated memory aggregates. Indeed,
the problem is compounded because we need a second (link) array.

Figure 5.5
Linked lists: Preferred
representation.

53 Linked Lists Using Pointers a3

N I - EEE
i i
| [

Front —— End of list
Alternate notation
(a)
N - -
i A

Front

-—— New element

Insertion

(b)

... . . CR

Deletion

(c)

Deleted Element

Figure 5.5a presents another way that we can represent lists in
memory. As depicted, each list member can be viewed as a self-contained
unit (referred to as a #ode), with both a data field and a pointer to the
next element (successor).

In previous examples, the pointer (link) field was strictly an index
into another array. We will now expand this capability and permit link
fields to reference any node residing at any valid memory location
(address). As a result, programs can now construct and process lists
of arbitrary sizes. In addition, as we will see, we can create nodes ‘on
the fly’; this allows us to overcome the limitations associated with
pre-allocated storage.

Figures 5.5b and 5.5¢ briefly illustrate how we perform list inser-
tions and deletions using this representation; the sections that follow
discuss the implementation in detail.

94 5 Dynamic Data Structures

- Memory
addresses

000 © 1000

5000 e o0 |
- 1000 g8
iptr iptr

After integer assignment After pointer assignment
(a) {b)

Figure 5.6
Pointer assignment.

Pointers

Before we can continue the preceding discussion on linked lists, we
must determine how link fields can reference any node positioned
anywhere in memory (not just in another array). To understand how
this is accomplished, this section introduces and describes a new
type of variable called a pointer.

Regardless of data type, all variables possess several generic a#ri-
butes. These include name, size, type, and address (location in
memory). When writing programs, developers reference variables by
name. However, after a program is compiled and loaded into mem-
ory (executed), variables are referenced solely by their addresses. For
example, consider an integer variable i, loaded at memory location 1000.
The assignment 4 = 6; will cause the confents at memory location
1000 to be overwritten with the value 6 (see Fig. 5.6a).

As mentioned earlier, programmers usually reference variables by
name. However, there are times when it more convenient to reference
variables by their addresses. For example, consider a program that
processes employee records. (Typically, employee records are quite large;

5.3 Linked Lists Using Pointers 95

for our example, we’ll assume that they are 2048 (2K) bytes in size.)
Let’s assume we had to write a payroll function that processes these
records and prints checks. One way to provide our function with data
is to pass each employee record as an argument. However, that means we
would have to copy 2K bytes worth of data with each call to the
function.

A better approach is to tell the function where records reside in
memory. In effect, each time we invoke the function, we tell it
to process the employee record that resides over #here (wherever #ere
happens to be for each record). Using this technique, we only need to
pass the address of a record (typically only 4 to 8 bytes worth of
information) rather than its entire contents.

Pointers in C

In C, we store and process address information in variables called
pointers. A pointer is a variable that uses an address to reference,
indirectly, another data object. Put simply, a pointer is a variable that
contains the address of another variable.

The C declaration for a pointer has the general form

data_type *ptr_name;

where data_type determines the type of object at which p#r_name can
point. This can range from one of the basic data types to a user-defined
aggregate (as we will see shortly).

For example, we can define a pointer to integer as

int *iptr;

(The trick to understanding C declarations is to read them from right
to left. Also, pronounce * as “pointer to.” Thus, *iptr is a pointer to int.)
The preceding pointer declaration creates storage for a variable
that has all the attributes of any other data object: name, type, size, address,
and so on. The sole difference is the type of data that we can store
in it. Specifically, iptr does not hold an integer value; rather, it holds
the address of another integer variable.
After declaring a pointer, our next concern is to determine where
it is pointing. As we have been stressing, pointers are just like any
other variable. As a result, they, too, must be #nitialized. Assuming the

5 Dynamic Data Structures

preceding declaration for iptr and the declaration int i;, the C
statement
iptr = &i;
assigns the address of 1 to iptr (see Fig. 5.6b). That is, we say that
iptr points at 1 and that we can access the contents of i indirectly
through iptr. Note that the symbol & is a unary operator (i.e., requires
only one operand) that yields the address of its operand. Also note
that the preceding assignment modifies the contents of iptr.
Typically we are not interested in the exact values of addresses;
that is a concern best left to the compiler and the memory manage-
ment subsystem of the host operating environment. However, if we
wanted to, we could print addresses as follows:

printf(“The address of i is: %d\n”, &i);
or
printf(“The address of i is: %d\n”, iptr);

Once assigned, we can use a pointer to modify the contents of
the memory cell at which it points. Assuming all of the preceding
declarations and assignments, the statement

*iptr = 6;
is equivalent to the assignment

i = 6;
The * operator dereferences the pointer iptr; thus, we access i indi-
rectly via the pointer.

Listing 5.2 contains some additional examples of pointer manipu-
lation in C.

Pointer dereferencing is dynamic. That is, the cell at which a

pointer is pointing at the time of dereferencing is the one that is modified.
For example, consider the following code fragment:

int i, j, *ptr;

ptr = &i;
ptr = 10; / assign 10 to i */
ptr = &3Jj;

ptr = 10; / assign 10 to j */

53 Linked Lists Using Pointers 97

void ptr_ex()

{
int i, 3: /* Declare integer variables */
int *p; /* Declare a pointer variable */
p = &i; /* 'p’ now points to i’ */
D = 6; / equivalent to i = 6;’ */
i=17; /* equivalent to ’'*p = 7;’ */
J = *p; /* equivalent to ’'j = i;’ */

}

Listing 5.2

Examples of pointer manipulation in C.

The first time we assign 10 to the cell at which ptr points, we modify
i; the second time we modify J.

" As with any variable, type checking also applies to pointers. Spe-
cifically, pointers should only point at objects consistent with their
declaration. For example, a pointer, declared as pointing to an int,
should not be assigried the address of a variable declared as a double.

As a final note, programmers new to C are sometimes confused
by what appears to be conflicting uses of the » operator. In a declaration
statement, * adds levels of indirection; in an executable statement, it
removes levels of indirection. (Keep in mind that » is also the binary
multiplication operator!) Obviously, its meaning depends on its use.
"This idea, however, is certainly not a new one. For example, consider the
English word read. The only way we can tell whether it should be
pronounced “reed” or “red” is by context. In computer languages,
operator overloading occurs when symbols have more than one meaning.
Operator overloading is not unique to C. For example, most com-
puter languages (including C) overload the (—) operator. It can mean
subtraction (as in a—Db) or it can mean negation (as in x = =—vy), de-
pending on usage. Keep operator overloading in mind when working
the # operator in C.

Pointer Example

As an example of the use of pointers, let’s write a function that swaps
the value in two variables. As a first cut, you might write a function similar
to the following;

5 Dynamic Data Structures

void bad_swap(int x, int y)

{
int temp;
temp = x;
X = y;
y = temp;
}

However, in C, function arguments are passed by va/ue. That means,
when we call a function such as

bad_swap(a, b);

the value of each acfual parameter (e.g., a and b) is copied into the
corresponding formal parameter (e.g., x and y, respectively). The
variables x and y are local to their function. Thus, any changes we
make to x and y will have no effect on their corresponding actual parame-
ters. As a result, bad_swap () will not accomplish the desired task.
(Languages that permit formal parameters to modify actual param-
eters support a calling convention referred to as call by reference. Take
on the role of compiler writer for a moment and consider how you would
deal with a function call such as swap(a+b, c+d) in a call-by-
reference environment.)

One way to overcome this problem is to pass the address of the
actual parameters, as in

void good swap(int *x, int *y)

{
int temp;
temp = *x;
*x = *y'-
*y = temp;
}

"This allows us to swap the value of any two integers with a call such as
good_swap(&a, &b);

At first glance, it might seem that we are now calling by reference.

5.3 Linked Lists Using Pointers 99

On the contrary, we are still calling by value; it’s just that the
values we are passing are addresses.

C Structures

Before we can resume our discussion of linked lists, we must also
decide how we will organize the complex data structures we will need.
We have already seen one way that programming languages (C in
particular) allow us to organize data: the array. Arrays allow us to
aggregate multiple clements of the same type. But to implement
linked lists, we need a way to group elements of dissimilar types. In C,
we can accomplish this through the use of structures.

A C structure is a collection of one or more variables (called
members) that we can manipulate as a single unit. They are akin to the
notion of record in other languages. For example, consider an employee
record. Companies must maintain a diverse set of attributes for
their employees: name (stxring), social security number (long in-
teger), salary (float), and job code (char), to name a few.

To demonstrate the definition and use of structures in G, let’s
construct a simple employee record. Before we begin, consider
the following point. When we declare a variable (in any language),
the compiler must know what that variable looks like before it can construct
it for us. For example, if we code

int i;
the compiler must know how to build an integer cell in memory. The
same holds true for structures in that we must provide the compiler

with a description of the object before it can reserve storage. In C,
we can define a structure as follows:

struct employee {

char name[25];
long ssnumb;
float salary;
char job_code;

};

The reserved word struct introduces the declaration. employee is
a user-defined name for the structure, called a structure tag. The

Figure 5.7
Structure memory
allocation.

5 Dynamic Data Structures

emp 1 emp 2 full_time

structure tag is analogous to a data type (e.g., int) and provides us
(and the compiler) a name by which we can reference objects of
this type. Note that the compiler does not reserve storage as a result
of this statement. Rather, the declaration serves only to describe
this new data type to the compiler.

We can define struct variables using declarations such as

struct employee empl, emp2, full_time;

This declaration reserves storage for three variables of type struct
employee. Figure 5.7 depicts what memory might look like as a
result of this declaration.

We reference individual structure members as

variable. member

where variable is a structure variable and member is a valid member of
that type of structure. Thus, to reference the salary member of
structure empl, we code

empl.salary

Note that when we reference a member, the data type of the
resultant expression is based on the data type of the member:

Expression Data type

empl struct employee

&empl address of (pointer to) a struct employee
empl.salary float

&empl.salary address of (pointer to) a float

As with any data type, we can also declare pointers to structure
objects:

5.3 Linked Lists Using Pointers 101

struct employee *ptr;

This statement declares storage for a variable that can point at objects
of type struct employee. As usual, we must initialize the
pointer:

ptr = &empl;
We can reference structure members via pointers using the follow-
ing syntax: '
pointer—>member
For example, the expression
ptr—>salary

references the salary member of empl. Remember, pointer references
are dynamic. Thus, if we were to assign ptr = &emp2, the preceding
expression would reference the salary member of emp2.

The data type of structure references involving pointers is also
based on the data type of the member:

Expression Data type

ptr address of (pointer to) a struct employee
ptr—>salary float

&ptr—>salary address of (pointer to) a float

Structures may contain members of any data type. For example,
we can modify our employee structure as follows:

struct emp name {
char first _namel[30 1;
char last_name[30 1;
char middle_init;

gstruct employee {

struct emp_name name;
long gsnumb;

float salary;

char job_code;

102 5 Dynamic Data Structures

Given the following declarations and assignment:

struct employee empl, *ptr;
ptr = &empl;

we could reference middle_init as
empl.name.middle_init

or
ptr—name.middle_ init

The only restriction placed on structures is that they cannot con-
tain instances of themselves. For example,

struct bad_decl {

char a;

float b;

struct bad_decl c; /* Wrong! */
};

If permitted, the declaration would be infinitely recursive.
However, structures can contain instances of pointers to them-
selves. These are sometimes referred to as self-referential structures.

struct list_node {

/*

* data elements here

*/

struct list_node *next; /* ok */
};

This allows structures to point to other instances of objects of the
same type. We will use this feature in the next section to imple-
ment dynamic linked lists.

Thhis has been but a brief overview of pointer and structure usage
in C. The bibliography lists several excellent references that pro-
vide more thorough discussions of the topics.

Linked Lists and Pointers

As noted earlier, pointers can be used to process data efficiently,
especially large objects: Instead of copying enormous chunks of data from
location to location, we need only pass an address.

Figure 5.8
Linked list using
pointers.

5.3 Linked Lists Using Pointers 103

it
% -

o

L _'__;E e

We can also use pointers to implement lists of the type depicted
in Figure 5.5. We begin by defining a C structure that will serve as our node:

struct node {

int data;

struct node *next;
};:

This structure contains two members. The first field, data, stores
data values for individual nodes. The second field, next, is a pointer to
objects of type struct node. In other words, it can point to the
next node in a list. The following code fragment demonstrates one way
to construct a list:

void a_list()

{
struct node *head, nl, n2, n3;
head = &nl:;
nl.next = &n2;
n2.next = &n3;
n3.next = NULL;
}

The function begins by assigning the address of n1l to the pointer
head; this establishes the beginning of the list. Then, using the variables
nl, n2, and n3, it constructs the body of the list: The next field of
each node is assigned the address of its successor. By convention,
we use the value NULL to indicate end-of-list. Figure 5.8 depicts the
internal representation of the preceding list.

List Insertion and Deletion with Pointers

We can now process lists using simple pointer manipulation (refer
back to Fig. 5.5). For an insertion, assign to the link field of the
new node the value contained in the link field of its intended predeces-
sor; then set the predecessor’s link field to point the new node.

104 5 Dynamic Data Structures
struct node *head = NULL;
/*
* Insert "new” after "pre”
*/
void insert2(struct node *pre, struct node *new)
{
if(pre == NULL){
/*
* Insert in front of first node
*/
new—>next = head;
head = new;
} else {
new—>next = pre-—>next;
pre—>next = new;
}
}
/*
* Delete the node after pre
*/
void delete2(struct node *pre)
{
if(pre == NULL) /* delete first node */
head = head-—>next;
else
pre—>next = pre—>next—next;
}
Listing 5.3

List processing using pointers.

A list deletion is even simpler. Store the address contained in the
link field of the deleted element into the link field of its predeces-
sor. We can then reuse the deleted node (i.e., place it on an qvail-
able list).

As an example of this processing, Listing 5.3 contains the list
manipulation routines insert2 () and delete2 (). They func-

54 List Processing 105

void iter_trav(struct node *ptr)
{
while(ptr != NULL){
print_node(ptr);
ptr = ptr—>next;

Listing 5.4
List traversal: lterative.

tion in a manner similar to that of their counterparts, insert () and
delete() (Listing 5.1), but use pointers instead of array indices.

The variable head, which points to the beginning of the list, is
initialized to NULL; this signifies an empty list. Both functions
begin their processing by testing for the special case in which the firsc
element of the list is to be updated. However, note that the test performed
is pre == NULL. Why not test for pre === head? In answering
this question, keep in mind that we always need to have access
to an element’s predecessor to perform an insertion or deletion. Thus,
to insert a new element in front of the third element, we pass
insert2 () a pointer to the second element; to insert a new element
in front of the second element, we pass a pointer to the first. As you can
see, there is no way to indicate that an insertion should take place in
front of the first element. To overcome this problem, we have established
the convention that a null pointer indicates a first element operation.

e 5.4 LIST PROCESSING

List Traversal

Of the many operations that we can perform on lists, the most common
is the traversal. A list traversal requires that we “visit” each node in
succession, processing the data field(s) as required. For example, after
constructing our list of composers, we might need to generate a
printed listing of the names.

Listings 5.4 and 5.5 contain examples of list traversal routines.

106

5 Dynamic Data Structures

void recv_trav(struct node *ptr)

{
if(ptr != NULL){ /* The ’‘out’ */
print_node(ptr);
recv_trav(ptr—>next);
}
}
Listing 5.5

List traversal: Recursive.

The first, iter trawv(), uses a loop (iterative) construct to step
through the list and print out each data element. In contrast,
recv_trav() employs a recursive algorithm to process each node.
Both functions assume a routine called print_node () to display
data elements in some predetermined manner.

List Reversal

There are occasions when we need to reverse the order of list elements.
For example, we might need to print our list of composers in
reverse alphabetical order. Listing 5.6 contains the function

reverse (), which reverses the order of elements in a linked list. Its
one required argument is a pointer to the list it will process. When
invoked, the function steps through the list, reversing pointers on the
fly. It returns the address of the new first element (formerly the last) and
therefore should be invoked as

head = reverse(head);

This ensures that we can still reference the list after the routine
completes.

Notice that reversing does not make a copy of the original list.
That is, by using three pointers, we can reverse the list iz place. 'Thus,
for any list of size # = 1, the while loop is executed exactly once,
yielding a complexity of O(#).

54 List Processing 107

struct node *
reverse(struct node *headptr)
{
struct node *tmp, *curr, *prev;
/*
* Set-up pointers
*/
prev = NULL;
curr = headptr:
while(curr != NULL) {
tmp = prev:;
prev = curr;
curr = curr—>next;
prev—>next = tmp;
3
return(prev);
}
Listing 5.6

Reversing a linked list.

List Concatenation

Another useful function for list processing is a routine that concatenates
two lists. The function 1lconcat1() (Listing 5.7) appends its second
argument to the end of its first, creating one large list. T'o accomplish
this, it locates the last element of list 1ist1 and assigns to it the
address of the first node of 1ist2. The first 1 £ statement is a “sanity
check” to ensure that 1ist1 points to a non-empty list. The while loop
is executed only for each element of 1ist1; this yields a complexity
of O(n).

There is one problem with this implementation of 1concat1 ().
As it stands, it will fail whenever 1listl is NULL. That is, the
pointer to the first list in the calling function will remain NULL. Al-
though it appears that Lconcatl1 () addresses this problem with the first
if statement, this is not the case. Keep in mind that the parameter

108 5 Dynamic Data Structures

void
lconcatl(struct node *listl, struct node *list2)
{

if(listl == NULL) {
listl = list2;
return;
}
/*
* Locate end of list
*/
while(listl—>next != NULL)

listl = listl—>next:

listl—>next = list2; /* Concatenate */

struct node *
lconcat2(struct node *11, struct node *12)

{

if(11 == NULL){
return(12);
}
/*
* Locate end of list
*/
while(1l1—>next != NULL)
1l1 = 1l1—>next;
11 —>next = 12; /* Concatenate */

return(12);

Listing 5.7
Two versions of list concatenation.

5.5 Stacks Revisited 109

calling convention in C is by value. Thus, when we assign to
list1l in concatl1(), we only modify the formal parameter (a local
variable), not the actual parameter passed by the calling function.

As illustrated in leconcat?2 (), we can easily rectify this problem
with a simple change to the procedure. In this version, the function
returns a pointer to the concatenated lists. Thus, if we call the function
in this manner:

listl = lconcat2(listl, list2);

we are assured of a correct result regardless of the value in the first
parameter.

s 5.5 STACKS REVISITED

Let’s take another look at implementing a stack, this time using point-
ers. As in our first implementation, we will use one pointer (top) to
maintain the top of stack. In this case, however, it will be a pointer

to a list of structures of type node (see Fig. 5.9).

oo N EE

Insertion

(a)

- EE

Deleted (popped) element

Deletion
(b)

Figure 5.9
Stack: Pointer
implementation.

10 5 Dynamic Data Structures

Listing 5.8 contains the functions ppush () and ppop (), which
implement a pointer stack. Note that ppush() requires a node, not a
value, as its one argument.

struct node {

char data;

struct node *next;
struct node *ppop(void);
void ppush(struct node *);
struct node *top = NULL;
void ppush(struct node *new)
{

new—>next = top;
top = new;

struct node *ppop()

{
struct node *tmp;
if(top == NULL)
return(NULL);
tmp = top:
top = top—>next;
return(tmp):
}
Listing 5.8

Stack: Pointer implementation.

56 Queues Revisited m

sssssssssssss 5.6 QUEUES REVISITED

We can also convert our queue functions in a similar manner. As
depicted in Figure 5.10a, we need two node pointers to maintain
the FIFO order of the elements. Figures 5.10b and 5.10c demonstrate
how to accomplish queue insertions and deletions. Listing 5.9
contains the code.

struct node {
char data;
struct node *next;

struct node *head NULL,
*tail = NULL;

void ptr_insqg(struct node *new)

{
new—>next = NULL;
if(tail == NULL) /* Empty List */
head = new;
else
tail—>next = new;
tail = new;
}

struct node *ptr_delq()
{

struct node *tmp;

if(head == NULL) /* List Empty */
return(NULL);

tmp = head; :
if(head == tail) /* Last Node in List */
head = tail = NULL; continued on p. 112

112 5 Dynamic Data Structures

else continued from p. 111
head = head—>next;

return(tmp):;

Listing 5.9
Linked-list functions.

NN SR
|

Front Rear
Queue

(a)

R L L e el

i

Front | b :
Rear --- = Null

Enqueue
(b)

Deletg_d element

T

#a —'_ —E-- —'-E—--‘H Null

i
|

Front - Rear
Deletion

(c)

Figure 5.10
Queues: Pointer
implementation.

5.7 Dynamic Memory Allocation 13

5.7 DYNAMIC MEMORY ALLOCATION

Through the use of pointers, we have seen how programs can create
linked lists of virtually unlimited size. The only practical restriction

is the amount of memory available to a process at execution time.
Nevertheless, all the previous examples have used variables explic-
itly declared at compile time (e.g., struct node nl;); this still
limits a program’s ability to respond to varying demand. It would

be helpful if a program could allocate memory (nodes) as needed.

Many languages and operating systems support dynamic memory
allocation. Using this capability, an executing process can request
additional memory on the fly. The specifics of such a facility vary from
system to system, and the details are beyond the scope of this
text. However, for purposes of demonstration, we will assume that
two functions are supplied as part of our compilation environment:
malloc() and free(). (These routines are part of the ANSI C
standard.)

The function malloe () allocates chunks of memory. It takes
one argument—the size (in bytes) of the requested memory seg-
ment—and returns either a pointer to (i.e., the address of) the new
segment or the value NULL if a segment of that size is unavailable.
The function £ree () returns a previously allocated memory segment
to the system, making it available for reuse. Its one argument is
the address of the segment to be returned.

As an example of how we can use these routines, let’s incorporate
these two functions into the stack routines of the previous section.
Specifically, the function ppush () will now automatically allocate a
new node with each push request; and ppop () will free each popped node.

The code for the new routines, ppush2 () and ppop2 (), appears
in Listing 5.10. Note that the argument to ppush2 () is now a data value,
not a node. If the call to malloc () should fail, ppush2 () returns
OUT_OF_SPACE. Also note that we have modified ppop2 (). The func-
tion returns status in the usual manner. However, we have added a
pointer argument so that it can also return a data value. A call to
ppop2 () is made as follows:

stat = ppop2(&data);

If stat is OK, data contains the value of the popped element.

113 5 Dynamic Data Structures

struct node {
char data;
struct node ‘*next;

#define OK 0

#define EMPTY -1
#define OUT_OF_SPACE -2
struct node *head = NULL;

int ppush2(int data)

{
struct node *new;
return(OUT_OF_SPACE);
new—>data = data;
new—>next = head;
head = new;
return(OK);
}

int ppop2(int *data)

{
struct node *o0ld;

return(EMPTY);

*data = head—>data;
old = head;
head = head-—>next;
free(old);

return(OK);

if ((new= (struct node *)malloc(sizeof (struct node)))

if(head == NULL) /* Stack empty */

NULL)

Listing 5.10
Stack functions with dynamic memory allocation.

58 Simulation Example 115

If ppop2() returns EMPTY, the value contained in data re-
mains unchanged.

58 SIMULATION EXAMPLE

As with computer systems, it is not desirable to deploy physical systems
until they are thoroughly tested. For example, an automobile manufacturer
would not want to begin construction of a new manufacturing plant
unless it was certain that the design of the new facility was opera-
tionally sound. Obviously, it would be much too costly to build the
new plant only to discover later that it produces fewer cars than

did the old one.

As typified by this example, there are many cases in which it is
too expensive or too impractical to test a physical system directly. However,
in many cases, we can create a computer simulation that imitates the
behavior of a physical system. Designers and engineers can then
use the data generated from the simulation to modify and adjust the
operational design of physical systems before they are built. This
reduces the risk and expense of large-scale development. We will now
make use of the data structures we have been discussing to develop a
simulation program.

Problem Overview

The system we are going to simulate is one currently under considera-
tion by the manager of a branch of the First National Databank. The
Databank now uses multiple queues for each teller (Fig. 5.11a). That
is, upon arrival, each customer selects one of several lines (one
per teller) in which to wait. The branch manager believes this method
is inefficient and is considering adopting a single line operation. Under
the new system, all arriving customers would enter the same queue
(Fig. 5.11b).

The manager’s concern is that in order to support the new system,
the branch office will need extensive remodeling. More impor-
tant, there is a possibility that customers may experience some inter-
ruption of service while the branch undergoes alterations. Given the costs
and the risk of losing business, the manager would like some assurance
that the new system will better serve Databank’s customers before
committing to the conversion.

116

Figure 5.11
Bank lines.

5 Dynamic Data Structures

 ait JEEE SRR EEE N
R s SnOEY SRR SRR

o o o R P S S S
° ° ° ° L J R 4 :] @ f‘\
e o e o ®--
® @ [J o
[[] o [] [] [] o o [
Tellers Tellers
Multiple lines Single line
(a) (b)

Our job, as members of Databank’s data processing department,
is to develop a simulation of the new system to determine how it will
compare with the old. To do this, the program we develop must
simulate customer traffic for a typical business day (based on histor-
ical data) and generate a summary report containing the number of
customers served, the number of transactions completed, and the
average wait time incurred by each customer. The latter is of primary
concern and will determine the fate of the new system. To aid our simula-
tion, Databank has accumulated historical data reflecting the perfor-
mance of the existing system (e.g., number of customers per day,
types of transactions, average duration of transactions, etc.).

Implementation
There are several events our program will need to track:

* Bank open

e Customer arrival

¢ Teller/customer transaction
» Customer departure

* Bank close

The program must also generate—based on the historical data—ran-
dom customer arrivals and transaction types.

We will need two structures to track these events and accumulate
statistics for both customers and tellers. The first will be a simple structure
array to count the number of transactions performed by each teller
and to indicate when a teller becomes available to serve the next customer.

58 Simulation Example 117

The second is a linked list that will simulate the customer queue.
The structure definitions appear in Listing 5.11.

The driving routine of the program will be a function called simu-
late (). It will require three arguments: the closing time (as
expressed in clock ticks, which, for our example, will be minutes), the
number of tellers on hand, and the number of expected customers.

Let’s begin to sketch the algorithm:

simulate(close, no_tellers, no_customers)
clock = 0;
while(1l) (/* Forever */

/ *
* New customer?
*/
if(arrive()){
if(add_cust_q() != OK){

/ *
* LOST SALE!
*/
}
}
/ *
* Process tellers & customers
*/
for(i = 0; i < no_tellers; i++){
struct tellers {
int custs; /* No. of custs served */
int trans; /* Trans complete time */
};:
struct cust {
int time_in; /* Arrival time */
int time out; /* Departure time */
int time_trans; /* Duration of trans */
struct cust *next; /* Ptr to next struct */
};
Listing 5.11

Data structures for simulation program.

118

5 Dynamic Data Structures

/*
* Is teller done with transaction?
*

if(clock >= teller{i].trans)

tellerf[i].trans = 0; /* Available */
/*
* Next Please?
*/

if(teller[i] .trans==0 AND Queue NOT Empty)
del cust_q(); /* Get cust from Q */
teller([i] .custs += 1;
teller{il.trans=clock+trans_duration;
accum(); /* Accumulate tots */

if(clock > close){

print execution summary;
return;

clock += CLK_INCR;

We seem to have accounted for all events except bank open and
close. Clearly, invoking the function is equivalent to opening the
bank for business. Simulating the bank close event, however, is not
that simple. Specifically, we cannot just stop processing at closing
time because, although we will no longer permit customers to enter,
there may still be some customers awaiting assistance inside the
bank. Therefore, simulate () must continue to process customers
until the queue is empty.

The code segment commented ‘LOST SALE’ is also interesting.
We could place a limit on the size of the customer queue that represents
the maximum physical capacity of the branch. Processing in this section
of the program would then represent an unsuccessful attempt by a cus-
tomer to enter the bank. The effect of this event varies with the type
of business. For a bank, this may represent only an irate client
that, although sent away grumbling, will return later to complete his

58 Simulation Example : 119

or her transaction. However, if this simulation were for a fast-food empo-
rium, such an event would most likely represent a lost sale.

Let’s add the processing for bank close and see how our algorithm
is progressing:

simulate(close, no_tellers, no_customers)

open = 1;
clock = 0;
while (1) {
if(clock >= close) /* Time to close */
open = 0;
/*
* New customer?
*/
if(open AND arrive())
if(add_cust_q() != OK){
/*
* LOST SALE!
*/
}
/*
* Process tellers & customers
*/
for(i = 0; 1 < no_tellers; i+ +){
/*
* Is teller done with transaction?
*/
if(clock >= teller[i].trans)
teller{i].trans = 0; /* Available */
/*
* Next Please?
*/

if(teller{i] .trans==0 AND Queue NOT Empty)({
del_cust_q(); /* Get cust from Q */
teller[i).custs += 1;
teller[i] .trans=clock+trans_duration;
accum(); /* Accumulate tots */

120 5 Dynamic Data Structures

if(open == 0 AND Queue Empty) {
print execution summary;
return;

}

clock += CLK_INCR;

The basic algorithm is taking shape; now let’s take a closer look
at some of the supporting functions.

arrive() 'This function determines customer arrivals. It will take
two arguments: the close time and the number of expected customers.
Using a pseudo-random number generator, it will compute cus-
tomer arrivals. For our example, we will use a simple percent-
age calculation. Note, however, that this does not reflect reality
because customer traffic is typically not proportionally spaced
throughout the entire business day.

add_cust_q() This routine adds an arriving customer to the
queue. It notes the time of arrival and calls Auration() to
determine the transaction type.

duration() This function will use a pseudo-random number gen-
erator to determine transaction type and duration. For our example,
we will assume four transaction types (numbered 1 through 4)
with a historical occurrence rate of 30%, 50%, 15%, and 5%, respec-
tively. The function returns the duration of the transaction in
clock ticks.

accum() 'This routine accumulates event data for summary and
display.

We will not discuss the implementation of each of the aforemen-
tioned functions. However, the complete C version of our simula-
tion appears in Listing 5.12.

This simple example is by no means representative of the detail
that we can incorporate into a simulation program. Here are some
ways we can extend this model:

* Allow the number of tellers to vary, simulating lunch breaks,
personal time, and so on,

* Vary customer arrivals based on day of week, time of day, weather
conditions, etc.

5.8 Simulation Example 1 P4l

#define CLK_INCR 1 /* # Minutes in each loop */
##define = MAX TELLERS 10 /* Max # of tellers */
#define OK 0
fdefine QUEUE_FULL -1
#define QUEUE_EMPTY -2
struct tellers {
int custs; /* No. of custs served */
int trans; /* Trans complete time */

} teller[MAX_ TELLERS];

struct cust {
int time_ in; /* Arrival time */
int time_ out; /* Departure time */
int time trans; /* Duration of trans */
struct cust *next; /* Ptr to next struct */

};

int open = 1

;
int c¢lock = 0;

simulate(int close, int no_tellers, int no_customers)
/* close: what time to close? */
/* no tellers: no of tellers for run */
/* no_customers: no of customers for run */
{
int 1i;
struct cust tmp;

while(1){
if(clock >= close) /* Time to close */

open = 0;

if(open==1 && arrive(close, no_customers)){

/*
* New Cust
*/
if(add_cust_qg{clock) == QUEUE_FULL) {
/*
* Lost Sale
*/
}

} continued on p. 122

122 5 Dynamic Data Structures

/* continued from p. 121
* Process tellers & customers
*/
for(i = 0; 1 < no_tellers; i++){
/*
* Is teller’s current trans done
*/
if(clock >= teller[i].trans){
teller[i].trans = 0;
}
/*
* Next Please?
*/ '

if(teller[i].trans==0 && !queue_empty()){
del_cust_g(&tmp);
teller|[i] .custs += 1;
teller{i].trans=clock+tmp.time trans;
accum(clock, tmp.time_in);

}

if (queue_empty () && (open==0)){
print_totals():;
return{(OK);

}
clock += CLK_INCR;
} ‘
}
struct cust *head = NULL;
struct cust *tail = NULL;

int add_cust_qg(int time_in) /* Add new cust to queue */

{
struct cust *new;

if((new = get_cust()) == NULL)
return(QUEUE_FULL); continued on p. 123

5.8 Simulation Example

123

new—>next = NULL continued from p. 122

;
new—>time_in time in

new—>time_trans = duration();

if(tail == NULL){ /* First element */
tail = new;
head = tail;
} else {
tail —>next = new;
tail = new;

}
return(OK);
}
int del_cust_q(struct cust *dest)
{
struct cust *tmp:;
tmp = head;
if(head == tail) /* removed last node */
head = tail = NULL;
else
head = head—>next;
dest —>time_in = tmp—>time_in;
dest —>time_trans = tmp—>time trans;
free(tmp);
return(OK);
}
int queue_empty()
{
if(head == NULL)
return(QUEUE_EMPTY);
return(OK);
}
struct cust *
get_cust ()
{

return((struct cust *)malloc(sizeof (struct cust))):

} continued on p. 124

124 5 Dynamic Data Structures

int duration() continued from p. 123

{
float P:

p = (float)rand()/32767.0;

if(p <= .30) /* 30% chance-type 1 */
return(6);
else if(p > .30 && p <= .80) /* 50% chance-type 2 */
return(9);
else if(p > .80 && p <= .95) /* 15% chance-type 3 */
return(11); :
else /* 5% chance-type 4 */
return(16);
}
int arrive(int min, int cus)
{
1f((float)cus/ (float)min > ((float)rand()/32767.0))
return(1);
return(0);
}
float tot_cust;
float tot_wait;

void accum(int now, int arrive)

{
tot_cust += 1.0;
tot_wait += ((float)now — (float)arrive);
}
void print_totals()
{
print ("%f customer%swaited an average of %.2f mins\n”,
tot_cust, tot_cust > 1 ? #g ” : » 7,
tot_wait/tot_cust);
}
Listing 5.12

Databank simulation.

59 Doubly Linked Lists 125

* Add more transaction types and vary their durations.

¢ Permit multiple transactions by a customer.

* Make the program more efficient by placing all events in an event
queue. Currently, many iterations of the for loop in the function
simulate () may be wasted. That is, there may be many clock
ticks for which no event occurs. We could, instead, place all events
(arrivals, departures, open, close, transaction complete, etc.) on a
queue (sorted by time); then, during each iteration of the for loop,
the function would simply dequeue the next event and adjust
(advance) the clock accordingly.

There are several specialized languages specifically designed to sim-
plify the development of system simulations. The bibliography lists several
good texts on the subject.

59 DOUBLY LINKED LISTS

Thus far, we have been working with singly linked lists: Each node
contains only one pointer. Although an improvement over the two-array
implementation, singly linked lists—for some applications—can be
too restrictive. First, they can be traversed in only one direction. Second,
inserting or deleting a node requires access to the node’s predecessor.
(Note that this problem does not arise when using a restricted form of a
list—such as a stack or a queue—because nodes are referenced by
external pointers.)

We can overcome both of these problems through the use of doubly
linked lists. Each node in a doubly linked list has link fields that
point to both predecessor and successor elements. Along with simpli-
fying insertions and deletions, this enables a program to traverse
4 list in either direction. Examples of doubly linked lists appear in
Figure 5.12.

To simplify implementation, we will use a 4ead node to maintain
the beginning of the list. Initially, both of its links will point to itself,
signifying an empty list (see Fig. 5.12a).

As depicted in Figure 5.13a, a list insertion now requires the
modification of four links:

* the #zexz pointer of the predecessor
¢ the prev pointer of the successor
* both the #ext and prev pointers of the new node.

126

Figure 5.12
Doubly linked lists.

5 Dynamic Data Structures

Head node

Null list
(a)

. Head node

o

One node list
(b)

/
5 o
V ’ ¥
NCHE CEENE CHED

Three node list
{c)

Head node

In a list deletion (Fig. 5.13b), predecessor and successor nodes
are made to point to each other.

Functions that demonstrate insertions and deletions in a doubly
linked list appear in Listing 5.13. The decision to insert a new
element to the right of a given node was arbitrary; we could easily
modify dbl_insert () so that it inserts nodes on the left. In
addition, the deletion function, dbl_delete (), no longer requires
the address of a predecessor node (this can be determined from
ptr —>prev); its one argument is a pointer to the node it will delete.

Note that there are incremental costs associated with the increased
flexibility provided by doubly linked lists. First, there is the addi-
tional space required by the second link pointer. Second, each list
operation requires additional CPU time to complete. This is attrib-
utable to the time required to manipulate the additional pointers.

59 Doubly Linked Lists

struct dbl_node {
int data;
struct dbl_node *next;
struct dbl _node *prev;
};
/*
* Insert 'new’ to the right of ’ptr’
*/
void dbl_insert(struct dbl node *ptr, struct dbl_node *new)
{
struct dbl_node *nxt;
nxt = ptr-—>next;
new—>next = nxt;
new—~>prev = ptr;
ptr—>next = new;
nxt ->prev = new;
}
/*
* Delete ’‘ptr’
*/
void dbl_delete(struct dbl_node *ptr)
{
struct dbl_node *prev, *succ;
prev = ptr-—>prev;
succ = ptr-—>next;
prev—>next = ptr-—>next;
succ—>prev = ptr—>prev;
}
Listing 5.13

Doubly linked list functions.

127

128 5 Dynamic Data Structures

Head node
f—-m
NCHCS. CNEmE
N ~Successor
e A
;

" New node

—

Insertion

(a)

Head node

-

mﬁm‘

Predecessor Deleted node

~Successor

Deletion
(b)

Figure 5.13
Doubly linked lists:
Insertion and deletion.

meesessssees 510 GENERALIZED LISTS

The lists in all the previous examples were composed of only atomic
elements. The only attribute associated with a given node, €,,

was its location in the list: €,_; < €, < €,,,. We will now extend
our definition of a list to include non-atomic elements. That is, individual
list elements may now be other lists. These are referred to as generalized
Jists. For example, the third element of the list

L = (4, B, (G, D), E)

is the list (C, D).
More formally, we can define a generalized list as

5.10 Generalized Lists 129

The NULL (empty} list; it has a Iannﬂl of 0.
Alinear list of length three. i i 3
/Alist of length three. Elemants 1and3are ato[n]c, ﬂaa second elementis a ;ubllat,

Alist of length three containing previouslv 'clﬁmd sts.Tms is an oxample oﬂm’ smmm
{More on this later.) ; : _ e

Alistof langth four that has the NULLlstas it tird slement.
‘Arecursive list of length two that generates the list (m, (m, (m, ...

Figure 5.14
Examples of
generalized lists.

a finite sequence of elements €, €,, . .., €, for n = 0, that are either atoms
or lists. If a given element is not an atom, it is a list and is referred to as a sublist.

The list is written as before: L. = &€, ..., €,, with sublists
contained within enclosing parentheses. (By convention, we will use up-
percase letters to denote lists and sublists and use lowercase letters
to represent atomic elements.) The length of the list is 7 regardless
of the number of elements contained in any sublists. As you may have
noted, the previous definition is recursive and, as such, allows for lists
that contain sublists, which contain sublists, etc. This permits the
construction of lists of arbitrary size and complexity. Figure 5.14 provides
some examples.

Implementation

The node structure we have used throughout this chapter requires
two modifications to support generalized lists. First, because elements are
now expected to perform double duty, we need a type field to classify

a node as either an atom or a sublist. Thus, we will establish the
convention that a value of 1 in the type field indicates an atom, 0
denotes a sublist. Second, if the node is non-atomic, we will need a second
pointer, 1ist, to point to the sublist. The new definitions are as
follows:

130 5 Dynamic Data Structures

L ‘/Data felds ggﬁqltlgt Next pointers
Q AW . ~
DERNE-DEEE-DDEE-DEEN -
Tvp{ ‘Nt") (Ntll) (Ntll)
field
(Ntll) (Ntll)
L=(A,(B,C),D,E)
Figure 5.15
Generalized list:
(A (B, C), D, E).
#define TRUE 1
#define FALSE 0

#define T LIST 0
#define T ATOM 1

struct list {
short type;
char data;
struct list ‘*next;
struct list *list;
};

Figure 5.15 depicts the implementation of the list
L = (4, (B, 0),D,E)

using the new structure definition.
Note that the length of list L is 4 and that each element is linked

via its next field. The second element of L is a sublist—as indicated by

the value zero in the type field—and its 1ist field points to the

5.10 Generalized Lists 131

A————— (Null
- (OEE UDEE -DoEE
{NuII} {Null} {Nul!}

c-——-f—-——illﬂll—--llﬂll! S
|

| (Null)
.
gy ‘””"’
S —
.
(Null)
- -EE -EDE R K
[Ntll} {Ntll} [Ntll] [Ntll}
o— lll-lr

{NuH]

Figure 5.16
Internal list
representation.

sublist (B, C).Additional examples of generalized lists appear in Figure
5.16, which depicts the internal representation for all the lists contained
in Figure 5.14.

At this point, we should make a few comments regarding the
definition and use of the 1ist structure. The data field of a sublist node
remains unused, and this may seem wasteful. This will change, how-
ever, when we discuss reference counts later in this chapter. Also,

132

5 Dynamic Data Structures

having an explicit type field might be viewed as redundant: If a given
node’s 1ist pointer is non-null, we could assume that the node is non-
atomic (i.e., a sublist). Nevertheless, we decided to sacrifice space for
the sake of pedagogical clarity.

Generalized List Functions

There are a number of utility functions that are useful when working
with generalized lists. The first, gencopy (), creates a copy of a general-
ized list. For example, assuming the list o1d1list, the statement

newlist = gencopy(oldlist);

will create an exact copy of oldlist and assign the address of the
newly created list to newlist.

Although the address fields will necessarily be unique, the list
created by gencopy () will posses the same structure and contain the
same data values as that of the original list. As presented in Listing
5.14, the function accomplishes this by

e Creating a duplicate node for each node in the original list

* Inserting each new node into the new list

* Processing the next element of the old list (via a recursive call
using the next pointer)

¢ If the node is of type T_LIST, calling itself recursively to process
the sublist.

As you may have noted, gencopy () cannot copy recursive lists (such
as example G in Figure 5.14). It will repeatedly process the re-
cursive portion until it is terminated by the operating system. Because
gencopy () processes each node exactly once, its complexity is O{(#).

Another useful utility function, 1ist_equal (), compares two
lists for equality. It assumes that its two arguments point to non-
recursive lists. As in the case of gencopy (), the term egual/ will be
interpreted as functionally equal, meaning that both lists have the same
overall structure and identical data elements. 1ist_equal () tra-
verses lists in much the same manner as gencopy (), comparing
elements as it proceeds. Its complexity is therefore equivalent to that
of gencopy (). Listing 5.15 contains the code.

Two other useful functions are first () and rest (), which return

510 Generalized Lists

the first and all but the first elements of a generalized list. For
example, given the list L. = ((A, B), C, D), the call

first(L);
would return the list
((A, B));
and the call
rest(L);
would return the list
(C, D)

These functions—which are equivalent to the LISP functions

struct list *
gencopy(struct list *ptr)
{

struct list *new;

if(ptr == NULL)
return(NULL);

if((new = getnode()) == NULL)
return(NULL):;

new—>data = ptr—>data;
new—>type = ptr—>type:;

if(new—>type == T_LIST)
new—>list = gencopy(ptr—>list);
new—>next = gencopy(ptr—>next);

return(new);

}

Listing 5.14
Copying a generalized list.

134 5 Dynamic Data Structures

int list_equal(struct list *11, struct list *12)
{
int tmp;
if(11 == NULL && 12 == NULL)
return(TRUE);
if(11 == NULL | | 12 == NULL)
return(FALSE):;
if(11->type == 1l2—->type){
tmp = FALSE;
if(11->type == T _ATOM){
if(1l1—->data == 1l2->data)
tmp = TRUE;
} else
tmp = list _equal(1l1->1list, 1l2->1list);
if(tmp == TRUE)
return(list_equal(ll->next, 1l2->next));
}
return(FALSE);
}
Listing 5.15

Determining list equality.

car() and cdr()—can be used to step through all elements of a list,
as in

r = worklist;
while((f = first(x)) != NULL){

/* Process 'f’ */

r = rest(r);

Figure 5.17
Multiple references.

510 Generalized Lists 135

Note that the functions, as presented in Listing 5.16, are non-
destructive to their original lists. That is, the functions make a copy (using
gencopy ()) of the portion of the list they will return. For some
applications, it might be desirable for the functions to operate directly on
the original lists.

Shared Lists and Reference Counts

In the previous sections, we saw several examples of shared sublists
(refer to Fig. 5.13). This is a case in which two or more list members point
to the same sublist. For many applications, this could result in a
significant savings in memory.

Implementing this feature presents us with two problems, how-
ever. First, if two or more list elements are pointing to the same sublist,
insertions become difficult. For example, consider Figure 5.17. If we
wanted to insert an element before node #, of list §, we would be forced
to modify the pointers £; and £,. Unless the program maintains back-
ward references, the task of keeping all pointers current is tantamount
to impossible.

The second problem arises during a list deletion. Without addi-
tional reference information, it is impossible for us to determine whether
we can place a deleted node back on the available list. Specifically,
there might be other elements still pointing at it.

We can solve the first problem by establishing a convention that
all lists must use 4ead nodes, and that all referencing elements must point
at them, not at any individual nodes of a sublist. 'Thus, insertions and
deletions within a given sublist will not affect any referencing elements.
The additional memory requirement to implement this feature is mini-
mal: one additional node per list.

We can solve the second problem through the use of reference
counts. Specifically, each time a new list element points to a sublist, we
increment the sublist’s reference count. Conversely, we decrement

E E,
e
o~ -
1 2

136 5 Dynamic Data Structures

struct list *
first(struct list *1lp)

{
struct list *new;

new = getnode();
new—>next NULL;
new—>data lp—>data;
new—>type = lp—>type;

if(new—>type == T _LIST)
new—>list = gencopy(lp—>list);
if(new—>type == T LIST && lp—>next == NULL)

return{ new—>list);

return(new);

}

struct list *

rest(struct list *1lp)

{
struct list *new:;
lp = lp—next; /* Point to rest of list */
new = getnode();
new—>data = lp—>data;
new—>type = lp—>type;
new—>list = gencopy(lp—>list);
new—>next = gencopy(lp—next);
return(new);

}

Listing 5.16

Functions first () and rest ().

void gen_delete(struct list *ptr)
{
struct list *tmp;
if(ptr—>type != T_LIST) /* Must be a list ptr */
return;
ptr—>data —-= 1; /* Decrement count */
if(ptr—>data == 0){ /* Delete entire list */
for(tmp=ptr—>next; tmp != NULL; tmp=tmp—>next)
{
/ *
* Step through each node
*/
if(tmp—>type == T_LIST)
/* Delete a sublist */
gen_delete(tmp);
else
/* Return node to free list */
gen_ free(tmp);
}
gen free(ptr);
}
}
Listing 5.17

Generalized list deletion function.

the count each time we remove a reference. Thus, during a dele-
tion, if the reference count for some sublist becomes zero, we can
place all of its nodes back on the available list. Note that this is a recursive
process in that a deleted list might point to other lists. Also observe
that there is no way to determine when a self-referencing list (example
G, Fig. 5.14) may be deleted; it will always have a reference count of
at least 1.

Listing 5.17 presents the recursive function gen_delete(),
which deletes multiply referenced lists. It assumes the function
gen_ free (), which places a deleted node back on the available list.
The function begins by ensuring that its one argument is of type
T_LIST. Ifitis, gen_delete() decrements the reference count. If

137

138 5 Dynamic Data Structures

the count falls to zero, the entire list is subject to deletion. To
accomplish this, gen_free scans every element of the list. It places
each node of type T ATOM back on the free list, and calls itself
recursively for each node node of type T_LIST.

SUMMARY Dynamic data structures simplify some of the problems associated
with static storage allocation: difficult insertions and deletions in
lists, and the inability to respond to unanticipated demand.

We can use pointers to reference data objects efficiently. Pointers have

all the attributes that we normally associate with any variable; the sole
exception is that the values pointers contain are addresses. Pointers
also help us overcome the call-by-value restrictions associated with C
function calls.

Using pointers, we can simplify insertions and deletions in lists. We
accomplish this by adding link fields into our data structures
(nodes). The cost for this added capability is the additional storage
and processing required for the link fields.

This technique has another benefit: We can allocate storage for nodes
dynamically. That is, we can create new storage on the fly. In C,
the routines that manage dynamic memory management are mal-
loc() and free().

EXERCISES 1. Implement a stack using pointers.

2. Implement a queue using pointers.

3. Implement a circular queue using pointers. Is this practical? Ex-
plain your answer.

4. Write a program that sorts a random list of names contained in a
file. (Hint: Use a linked list with a character array as your
data field.)

5. Discuss the positive and negative aspects of both static and dy-
namic data structures.

6. Extend the functions insert2() and delete2 () to allow them
to process list nodes of different types.

5.10 Generalized Lists

10.

11.

12.

13.

139

. Explain why holes in lists (array implementation) are problematic.
Design a method to overcome the problem.

. Rewrite the calculator program of Chapter 2 using linked lists.

. What would be the result of moving the call to print_node ()

after the recursive call in the function recv_trav() of Listing 5.5?

Suggest other ways in which the functions ingert2() and de-
lete2() (Listing 5.3) can determine that operations are to
be performed on the first element of the list. Implement your

suggestions.

Implement the simulation program of Section 5.8. Add as many

of the suggested extensions as you can.

As you may recall from Chapter 3, a degue, or double-ended queue,
is a linear list that permits insertions and deletions at either
end. Write a set of routines to implement a deque using a linked

list and dynamic memory allocation.
Given the following code:

struct node {
int data;
struct node *next;

void zaptest()

{
struct node *head, al, a2,

head = &al:;
al.data = 1;
a2.data = 2;
ald.data = 3;
ad4.data = 4;

(void)zap(&head, head):

a3, a4;

140 5 Dynamic Data Structures

determine the resulc after the function call:
(void)zap(&head, head);
where zap () is defined as

struct node *zap(struct node **head,
struct node *ptr)

{
struct node *tmp;
if(ptr—>next == NULL)
*head = ptr;
else {

tmp = zap(head, ptr—>next)
tmp —>next = ptr;
ptr—>next = NULL;

return(ptr):

.
r

Copyrighted Materials

Copyright © 1994 Oxford University Press Retrieved from www.knovel.com

1 rees

C H A P T E R -]

R W 4

——— 6.1 BASIC PRINCIPLES

In this chapter, we focus our attention on an important data structure
found in computer science: the tree. Conceptually, a tree is an object that
begins with a trunk (or root) and extends into several branches (edges),
each of which may extend into other branches until finally termi-
nating at a leaf.

Trees are common structures, and examples can be found in every-
day life. Most people, for example, refer to their lineage as their
family tree. As another example, Figure 6.1 shows an organization
chart for a typical corporation. Note that for convenience, we draw
the root of the tree at the top of the diagram and the leaves at the
bottom.

In computer science, we define a tree as a set of #odes and edges.
A node is an item of information that resides in the tree. An edge
is an ordered pair of nodes (#, v), and sequence of edges is called a pazé.

In addition, trees have the following properties:

* There is one node designated as the rvoz of the tree.

mm

142 6 Trees

Root Level

Prasident 1

v.p. AL VP
Marketing Manufacturing Computer Systems

Programmer § Programmer § Programmer

Leaf nodes/

Figure 6.1
Organization chart.

* All nodes—except for the root—have only oze entering edge (the
root node has none).

* There exists a unique path from the root node to all other nodes
in the tree.

o If there exists a path (g, 4), then 4 is called a cki/d of 2 and is the
root node of a subtree.

Refer to Figure 6.1 where the element labeled President is the
root node of the tree. The entries labeled Vice President are root
nodes of subtrees, and the boxes labeled Programmer are examples
of leaf nodes. Note that because each node has only one entering edge,
cross references within the tree cannot occur. ‘

We can cite many examples in which data found in the real world
is tree structured. Because they can serve as a basis for modeling
many types of problems, trees have become an important topic for

Figure 6.2
Example tree.

6.1 Basic Principles 143

study in computer science. As we shall see, we can use trees to search,
sort, and prioritize data.

Definitions

Before we can continue with our discussion of trees, we must define
a number of basic terms. (All examples refer to Fig. 6.2.)

The term node—used in previous chapters—will continue to de-
note an item of information. Terminal nodes are the leaf nodes of
a tree (J, K, L, M, N). We refer to all other (internal) nodes (4, B, C,
D, E) as non-terminal.

For a given node (e.g., B), the root nodes of its subtrees (D, .E)
are its children. Extending the analogy, B is considered the parent,
and the children—with respect to each other—are siblings. Generally
speaking, a node may have an infinite number of children; in practice,
however, we usually limit their number (more on this later).

We define the degree of a node as the number of subtrees (children)
it has. For example, node A has a degree of 2, node C a degree of
4, and node J a degree of 0. All nodes with a degree of 0 are terminal;
nodes with a degree greater than zero are non-terminal.

The tier on which a node resides is its /evel. By definition, the
root node (A) is on level 1. Its children, nodes B and C, are on
level 2, nodes D through 7 are on level 3, and so on.

The /Aeight of a tree is defined as the number of edges in a path

144

6 Trees

originating at the root and terminating at the most distant leaf node; the
height of a tree with only one node (the root) is 0. By extension, the
height of any node in a tree is the length of the longest path from
that node to a leaf node. The dep# of a node is the number of edges
on the path from the root to that node.
A forest is a set of zero or more disjoint trees. For example, if we
were to remove the root node from a tree, the result would be a forest.
We can view a tree as a special form of a list. For example, refer
to the tree depicted in Figure 6.2. We could use list notation to represent
the tree as follows:

4, B, G, (D, U, K), E, (L, M, N)), C, (F, G, H, I)))

We represent each subtree as a sublist. We begin with the list (4) that
represents the root node of the tree. When we add a sublist for A’s two
children, the list becomes (A (B, (). We then add another sublist for
nodes D and K to yield the list (A (B, (D, E), ()). Adding the
children of D, we get (A, (B, D, (/, K), E), C)). We continue in this
manner until we have added all tree nodes into the list. This type

of representation is flexible in that it allows us to maintain varying
numbers of children for each parent. However, it does have one
drawback: Children are not directly accessible from their parents. That

is, we must perform a linear search through a sublist. For most computer
applications, the additional search time is undesirable. However, if we
restrict the number of children nodes may have, we can implement trees
more efficiently. The next section introduces the first of these types

of trees, called the dinary tree.

6.2 BINARY TREES

Binary trees are a restricted form of a tree. Each node—including the
root—may have a maximum of two children. Figure 6.3 provides
an example.

Formally, we define a binary tree as

a finite—possibly empty—set of nodes, one of which is designated as the root.

The root node may have at most two subtrees, each of which is also a binary tree. The
two subtrees of a given node are ordered and we refer to them as the /eft child

and the right child, respectively.

6.2 Binary Trees 145

-~———— Root node

Figure 6.3
Binary tree,

Based on the preceding definition, nodes in a binary tree may
have zero, one, or two children. For nodes with only one subtree, the
definition does not specify which of the two subtrees (i.e., left or right)
must be used. As a result, the list depicted in Figure 6.4a is, in fact, a
binary tree; we refer to it as a skewed tree. Binary trees may be skewed
either left or right, making them unique. For example, the two
trees presented in Figure 6.4b are not equal.

f&”"‘a

Figure 6.4 Left skewed tree Two skewed trees
Skewed binary trees. (a) {b)

146

Figure 6.5
Full binary tree.

6 Trees

Binary Tree Definitions

Restricting the number of children in a binary tree permits us to define
several formulas. The maximum number of nodes on a given level 7 is
271 for i = 1. (The root node, as you may recall, is on level 1.) The
maximum number of nodes for an entire binary tree of depth £ is

2* — 1, for # = 1. We can compute the depth of a binary tree with #»
nodes as

Llogz nl + 1

A full binary tree (of depth #) is a binary tree with 2#—1 nodes.
As suggested earlier, this is the maximum number of nodes a binary tree
may contain. Figure 6.5 presents an example of a full binary tree.
Although we did not mention it at the time, the tree presented
in Figure 6.3 is also a special form of a binary tree. We can sequentially
number the nodes of this tree from left to right, level 1 to #, to produce
the tree depicted in Figure 6.6. The result is called a complete binary tree.
A binary tree with # nodes and # levels is complete if, and only if| its
nodes correspond to all the nodes numbered in the same manner
for a full binary tree of equal depth. However, as illustrated in this
example, a complete tree is not necessarily a full tree; the last
level may remain incomplete.

Binary Tree Implementation

Keeping in mind the preceding definition of a complete tree, the most
direct approach to implementing a binary tree is using an array.
Each numbered node would correspond to an array index. Figure 6.7

Figure 6.6

Complete binary tree.

Figure 6.7
Array implementation
of a binary tree.

6.2 Binary Trees 147

e iclolel]

depicts such an implementation for the tree contained in Figure
6.5.

An array implementation allows us to move through the tree using
simple calculations. For a given node 4, its left child is located in slot 27,
for 2/ =< g; its right child is located in slot 2/ + 1, for 27 < ». A
computation that yields a value ># means that 7 has no child in that
position. The parent of 7 can be found at Li = 2], fori> 1. (Obviously,
when 7/ = 1, we are positioned at the root node and there is no parent.)

For a full or complete binary tree, this implementation might
seem ideal because little, if any, space is wasted. However, consider
the tree presented in Figure 6.8a, and its corresponding array represen-
tation in Figure 6.8b. Notice that with a skewed or sparse tree, a
large percentage of the array remains unused. Moreover, this imple-
mentation suffers from the same deficiencies as a sequential list representa-
tion: We might need to move a large number of nodes in order to
insert or delete elements within the body of the tree.

In a similar manner to lists, these limitations can be overcome
using a linked representation. We can represent each node of a
binary tree using a C structure as follows:

148

Figure 6.8

Array representation
of a skewed binary
tree.

6 Trees

el |

Skewed tree Array implementation
{a) (b)

struct bt_node {
int data;
struct bt_node *1child;
struct bt _node *rchild;

struct bt_node *root = NULL;

A simple integer variable (data) will serve as our data field. The
members, 1child and rchild, point to the two subtrees. (We will
assume that the value NULL indicates the absence of a subtree.) The
variable, root, points at the root node of the tree. Initially, its
value is set to NULL to signify an empty tree. We will use these
definitions throughout the following discussions.

Binary Tree Traversal

The versatility of the binary tree may be best demonstrated by way
of an example. Suppose that after having constructed a tree similar to the
one in Figure 6.6, we wish to process (e.g., print) the data values stored
within it. That is, we wish to move through the tree, visiting each
node exactly once. We classify this type of algorithm as a zraversal.

As it stands, however, this notion is too general and must be

6.2 Binary Trees 149

further defined. Consider that when positioned at any given node,
a traversal function may

» Continue down the left subtree, or
 Continue down the right subtree, or
* Process (i.e., visit) the datum.

To simplify matters, we will adopt the convention that we always
traverse the left subtree before the right subtree. However, that
still leaves open the question of when we should process the data
item. Our choices are as follows:

* Visit the node before moving down the left subtree.

» Visit the node after traversing the left subtree but before traversing
the right subtree.

* Visit the node after traversing both subtrees.

All three of these traversal methods are equally important, and
we refer to them by the names preorder, inorder, and postorder, respectively.

Inorder Traversal

Let’s begin by describing inorder traversal (sometimes referred to as
symmetric order). Informally, an inorder traversal requires that we

1. Move down the tree as far left as possible.

2. Visit the current node.

3. Back up one node in the tree and visit it.

4. Move down the right subtree of the node visited in step 3 if it
has one and it has not been visited previously; otherwise, back up
one node.

5. Repeat steps 1 through 4 until all nodes have been processed.

This is illustrated by the procedure inordex () presented in
Listing 6.1,

The function works as follows: It recursively moves down the left
subtree until it finds itself positioned on a leaf node; it prints the
value of that node and then attempts to move down the right subtree;
it then returns to the previous level and repeats the process. If called to
process the tree depicted in Figure 6.6, 1norder () would generate
the following output:

150

Listing 6.1
Inorder traversal.

Listing 6.2
Preorder traversal.

6 Trees

void inorder(struct bt _node *node)
{
if(node != NULL) {
inorder(node—>1child);
print node(node—>data); /* The Visit */
inorder(node—>rchild);
}
}

8, 4, 9, 2, 10, 5, 1, 6, 3, 7

Take the time to convince yourself that the output is, indeed, correct.

Preorder Traversal

In a preorder traversal, we visit the data item before traversing the
left subtree. The function preorder (), presented in Listing 6.2, pro-
vides an example. Note that the function calls print_node () before

it invokes either of its recursive calls. Again, assuming the tree in Figure
6.6 as input, the output produced by preorder () is

1, 2, 4, 8, 9, 5, 10, 3, 6, 7

void preorder(struct bt _node *node)
{
if(node != NULL){
print_node(node—>data); /* The Visit */
preorder{(node—>1lchild);
preorder (node—>rchild);
}
}

6.2 Binary Trees 15

void postorder(struct bt_node *node)
{
if(node != NULL){
postorder(node—>1lchild);
postorder(node—>rchild);
print_node(node—>data); /* The Visit */
}
Listing 6.3 }
Postorder traversal.

Postorder Traversal

A postorder traversal positions the visit after the two recursive calls.
The code for the function, postorder (), appears in Listing 6.3.

A postorder traversal of the tree in Figure 6.6 produces the follow-
ing output:

8, 9, 4, 10, 5, 2, 6, 7, 3, 1

Breadth First Traversals

The three traversal methods we just discussed are similar in that they
process all of a node’s descendents before processing any of its
siblings. As a result, they are classified as dep#t first searches. Another
class of tree traversal is a breadth first search. In a breadth first search, we
processes nodes by levels, left to right within a level. For example,
consider the function bt_bfs () as it appears in Listing 6.4. It uses a
queue to ensure that nodes are processed in the correct order.

bt_bfs () begins by placing the root node on the queue. During
each iteration of its while loop, the function removes the next
node from the queue, processes it, and then enqueues the node’s
children (if any). Processing terminates when the queue becomes
empty. The function assumes the routines addg() and delg() to
manage the queue (please refer back to Chapter 5).

When processing the tree depicted in Figure 6.6, bt_bfs () pro-
duces the following output:

152

Listing 6.4
Breadth first traversal.

6 Trees

void bt_bfs(struct bt_node *tree)

{
struct bt_node *t;

addq(tree);
while((t = delqg()) != NULL)
{
print_node(t~—>data); /* The visgit */
if(t—>1lchild = NULL)
addqg(t—>1lchild);
1f(t—>rchild |= NULL)
addg(t->rchild);

1' 2’ 3’ 4’ 5’ 6' 71 8' 9’ 10

Binary Tree Insertion

Most programs that employ binary trees usually proceed in two phases:
Phase one constructs the tree; phase two traverses it. We have
already described several traversal methods. Now we need to discuss
the construction of binary trees. Specifically, we need to develop

an énsertion algorithm,

Generally speaking, there are two places where binary tree inser-
tions may occur: at terminal (leaf) or non-terminal nodes. To add a non-
terminal node, the insertion function requires three pieces of informa-
tion: a pointer to the new node, a pointer to the node that will
become the parent of the new node, and a flag variable indicating
whether the new node should be inserted as the left or right child of its
parent. Figure 6.9 provides an example.

Tree insertions more commonly occur at leaf nodes. For example,
consider the problem of reading a list of numbers and printing
them out in ascending order. There are many ways to construct a
solution for this problem. One of the simplest uses a special form

8.2 Binary Trees 153

Insert{N, B, left}

Before After
{a) {b)

Figure 6.9
Binary tree insertion.

of binary tree called an ordered binary tree (OBT). The driving section
of the program can be described by the following pseudo-code:

set_up_chores();
while(more input)
do
bt_insert(new_item); /* Insert new node */
done
print_ascending();

As its name implies, an ordered binary tree places restrictions on
insertions. Specifically, an OBT has the property that, for any given node
#n, the data values contained in the left subtree of # are less than #,
and the data values contained in the right subtree of # are greater
than .

Thus, all OBT insertions must begin with a traversal. With the
arrival of each new data element, the insertion routine compares the new

154

Figure 6.10
Ordered binary tree
insertion.

6 Trees

51 31 71 21 4161 9, 1, 8, 10

input
(a)

Resultant tree
{b)

data value with that of existing nodes. It continues to move down
either the left or right subtree of each successive node predicated

on the results of each comparison. When it finally encounters a node
that is either a leaf or a non-terminal node that has no subtree in
the indicated direction, the function inserts the new element as a child
of that node. Figure 6.10 contains an example of this processing.

It shows a sample input stream and its resultant OBT,

The function bt_insert (), presented in Listing 6.5, performs
binary tree insertions as just described. The initial 1 statement
checks for an empty tree and inserts the first node. Otherwise, the
function iteratively steps through the tree, moving either left or right based
on the results of each comparison. When it encounters a leaf node,
bt_insert () allocates and inserts a new node. The last i £ statement
determines which of the parent’s pointers is assigned the new
node. The ancillary function, get_new bt (), allocates memory for
each new element.

The question that now arises is, How should we process duplicate
data values? As you may have noticed; bt_insert () currently handles

6.2 Binary Trees

155

struct bt_node *root = NULL;

void bt_insert(int new)
{
struct bt_node *p, *q;

if(root == NULL){ /* NULL Tree */
root = get_new bt(); '
root —>data = new;
return;

P = roo
while (
q
i

ct
~e

{= NULL)({ /* Location for insertion
new < p—>data)
p = p—>1lchild;

kel

b
£(

else
p = p—>rchild;
}

/*
* 'q’ points to parent of new node
*/
P = get_new bt();
p—>data = new;
if(new < g—>data)
g—>1lchild = p:
else
g—>rchild = p;
}

struct bt_node *get_new_bt ()
{

struct bt_node *newnode;

newnode= (struct bt_node *)malloc(sizeof (struct bt_node));
newnode —>1child = NULL;

newnode —>rchild =

return(newnode);

*/

Listing 6.5
Binary tree insertion.

156

6 Trees

the problem by default. That is, the function uses a less-than test to
initiate a move down the left subtree; consequently, it inserts
duplicate nodes along the right subtree.

For applications that anticipate only a small number of duplicate
values, this is an acceptable solution. However, this implementa-
tion is wasteful for applications that expect many duplicate records.
A better solution is to add a count field to the node structure. Upon
recognizing a duplicate value, the insertion routine can then just incre-
ment the counter rather than adding a node to the tree.

Adding a count field to the node structure implies two coding
modifications. First, the insertion algorithm must include an ex-
plicit test for equality. Second (and this can only be stated in general
terms), traversal routines must take this additional field into ac-
count when processing the completed tree. For example, assume that
after constructing a tree, a program must print all nodes in ascending
order. If a// elements must appear in the output, the display function
must emit the proper number of duplicate elements based on the
values contained in the count fields.

Concluding Remarks

If you consider the structure of an ordered binary tree you will observe
that, in general, we can locate a particular value (node) more
quickly than we can with a linked (linear) list. This is because with
each comparison, we eliminate the need to search half of the remaining
subtree. We lose this advantage if the tree should become skewed.

You should also note that the OTB insertion function is input
sensitive. That is, the order in which input is presented to the
routine will affect the resultant tree’s shape. Specifically, a sorted input
stream will create a tree that resembles a linear list. Obviously,
this will directly affect the performance of searching algorithms. Chap-
ters 8 and 9 will elaborate on this discussion.

Binary Tree Deletion

Most applications using binary trees do not require a deletion function.
It is more often the case that trees continue to grow rather than shrink.
(The typical scenario is that programs construct trees and then process

Figure 6.11
Binary tree deletion.

6.2 Binary Trees 157

Node to be
deleted

Before After
(a) (b)

the data contained within them.) Nevertheless, there are some applications
that require a deletion capability.

Broadly speaking, we can divide node deletion in a binary tree
into two types: the removal of terminal nodes and the removal of non-
terminal nodes. Deleting a leaf node is simple and is analogous to a
list deletion: Assign the value NULL to the appropriate pointer in the
parent node and return the deleted node to the available list.

However, as depicted in Figure 6.11a, deleting a non-terminal
node is more problematic. If we remove node § from the tree, we
will need to reattach two nodes (7 and U). However, there is only
one pointer available (the right child of R). Therefore, one of node §’s
children must become the parent of the other (see Fig. 6.11b). Even
if the left child of R was available, we could not just mechanically
assign to it orie of the unattached nodes. As with the case of an ordered
tree, there might be an explicit relationship between a parent and
its subtrees. For example, consider that if all right subtrees are to hold
data values greater than that of their parents, inserting either 7 or
U as the left child of R would invalidate that relationship.

158

Figure 6.12
Deletion example.

6 Trees

SAVE

+——————— Parent

node

<————— Node to be

deleted

Using Figure 6.12 as a model, we can divide binary tree deletion

into several distinct cases, as follows. Figure 6.13 depicts the results of
each example.

WD

. If D is a leaf node, then P—>rchild = NULL.

. If the left child of D is NULL, then P—>rchild = R.

. If the right child of D is NULL, then P—>rchild = L.

. If the right child of node L is NULL (node LR in the example),

then L can become the right child of P, and R can become
the right child of L. It is important to note that this processing
maintains the ordered property of the tree.

. If the left child of node R is NULL (node RL in the example),

then R can become the right child of P, and L can become the left
child of R. As in case 4, this maintains the ordered relationship.

. If none of the previous cases exist, set the right child of P to

either L. or R, and then reinsert the other subtree.

. The root node of the tree is to be deleted. Perform the same

processing as in case 6 but modify the root pointer
accordingly.

The code for the function bt_delete () appears in Listing 6.6.

The function deletes nodes, case by case, as just described. It requires
three arguments: pointers to both the node that will be deleted and

6.2 Binary Trees 159

(Null)
Case 1

Case 2

Case 3 %

Case 4

*— Re-insert

Caseb Cases6and 7

Figure 6.13
Deletion results.

160 6 Trees
#define OK 0
#define ERROR -1

{

#define LCHILD 1
#define RCHILD 2

int bt_delete(struct bt_node *pred,

struct bt_node *node, int stat)
struct bt_node *child;

1f(node == NULL)
return(ERROR);

if(pred == NULL){
root = node—>rchild;
child = node~->1lchild;
bt_freenode(node);
return(bt_insert2(child));
}

/* 7 */

1f(node—>1lchild == NULL && node—>rchild == NULL) /* 1 %/

child = NULL;
else if(node—>1lchild == NULL)
child = node->rchild;
else if(node—->rchild == NULL)
child = node—>1lchild;
else if(node—>1lchild—>rchild == NULL) {
child = node—->1lchild;
node—>1child->rchild = node—>rchild;
} else if(node—>rchild->1lchild == NULL){
child = node—>rchild;
node—>rchild—>1child = node->1lchild;
} else {
child = node->rchild;
if(stat == LCHILD)
pred—>1child = node~—->rchild;
else
pred—>rchild = node—~>rchild;
bt_freenode(node);
return(bt_insert2(node—>1child));

/* 2 %/
/* 3 %/

/* 4 */

/* 5 %/

/* 6 */

continued on p. 161

6.3 Balanced Trees 161

/* continued from p. 160

* Adjust predecessor’s pointers
*/
1€(stat == LCHILD)
pred~>1lchild = child;
else
pred~>rchild = child;
bt_freenode(node);

return(OK);

Listing 6.6
Binary tree deletion.

its parent, and a status flag indicating whether the deleted node
is the left or right child of its parent.

Note than the function bt_insert2(), used to reinsert a
subtree, is different from its predecessor bt_insert (). This
version takes as an argument a pointer to a node rather than a data
value. We leave its implementation as an exercise for the reader.

Utility Functions

As with linked lists, there are several useful utility functions for proc-
essing binary trees. The function bt_copy (), presented in List-
ing 6.7, generates a copy of a binary tree. Note that the function is
really just a modification of a preorder traversal.

The function bt_equal () (Listing 6.8) determines the equiva-~
lence of its two tree arguments. Defined recursively, the function descends
both trees until it either encounters a difference or determines that
the two trees are equivalent.

mesesssssssss 6.3 BALANCED TREES

Let’s continue our discussion of ordered binary trees (OBTs). OBT's
are fairly easy to implement. However, they can have one drawback: a
worst-case running time of O(#). As depicted in Figure 6.14, even an

162 6 Trees

struct bt_node *
bt_copy(struct bt _node *treeptr)
{
struct bt_node *new;
if(treeptr == NULL) /* The ‘out’ */

return(NULL);

new = get_new bt():;

new—>data = treeptr-—>data;

new—>1child = bt_copy(treeptr—>1lchild);
new—>rchild = bt_copy(treeptr—>rchild);

return(new);

Listing 6.7
Copying a binary tree.

ordered binary tree can degrade into a linear list if the insertion routine
receives elements in ascending (or nearly ascending) order.

Several methods have been developed to prevent trees from be-
coming skewed. Some of the most powerful are so-called AVL #rees. (‘Their
name is derived from the scientists who first studied them: Adel’son-
Vel’skii and Landis.)

Before we can understand AVL trees, we must define what we
mean by balanced. Let’s begin by defining Aeight for some node # as

) 0, if # has no left child
eft_height(n) =\ | 1 height(left child(n)) for all other nodes

.) 0, if # has no right child
right_height(n) = 11 L height(right_child(n)) for all other nodes

As you may recall, the height of any node in a tree is the length
of the longest path from that node to a leaf node. Based on the
preceding definitions, a leaf node has right _feight and left_keight both
equal to 0.

Now let’s define the dalance of some node # as

balancen) = right_height(n) — left_height(n)

6.3 Balanced Trees 163

#define TRUE 1
#define FALSE 0
int
bt_equal(struct bt_node *treel, struct bt_node *tree2)
{ ’ '
int res;
if(treel == NULL && tree2 == NULL)
return(TRUE);
res = FALSE;
if(treel—>data == tree2—>data){
res = bt_equal(treel->1lchild, tree2->1lchild);
if(res == TRUE)
res = bt_equal(treel—>rchild, tree2->rchild);
}
return(res);
}
Listing 6.8

Binary tree equivalence.

Thus, a node’s balance indicates the relative height of its right
subtree as compared to its left. If the balance is positive, the right subtree
has greater depth than the left; if the balance is negative, the reverse
is true.

A binary tree is an AVL tree if, and only if, every node in the
tree has a balance of —1, 0, or +1. Figure 6.15 provides some
examples of both AVL and non-AVL trees.

AVL trees have a number of attributes that make them well suited
for searching applications. First, an AVL tree with # nodes has
height O(log, #). Second, we can insert and delete nodes in AVL trees
with an efficiency of O(log,), while still preserving the AVL
properties of the tree. The sections that follow discuss the implementa-
tion of AVL trees.

164 6 Trees

1,2,3,4,5 //,
Figure 6.14 Order of elements Resultant tree
Ordered binary tree. (b) (b)

AVL Tree Insertion

Because an AVL tree is essentially a binary tree, we can reuse our
node structure, We will, however, need to add a field to store balances.
Because there are only three balance values, we only need two bits
of storage for this data element. However, for pedagogical clarity, we will
implement this field as a full int. Listing 6.9 contains the new AVL
node structure.

Conceptually, we insert new nodes into an AVL tree as follows:

1. Employ the same algorithm we used to insert a node into an
ordered binary tree. That is, we trace a path from the root
node to a leaf node (where we will perform the insertion).

. Insert the new node.

3. Retrace the path back up to the root node, adjusting balances

along the way.

4. If a node’s balance should become *2, readjust the node’s subtrees

so that its balance is in line with AVL requirements (i.e., +1).

N

6.3 Balanced Trees 165

1 2
0 0 1
0 0
{a) (b) (c)
AVL trees
0
1 0

]]
Figure 6.15
Examples of AVL and (d) (a)
non-AVL trees. Non-AVL trees
struct avl_node {

int bal;

int data;

struct avl_node *lchild;

struct avl_node *rchild;
Listing 6.9 };:
AVL node structure.

Figure 6.16
AVL insertion—

case 1.

6 Trees

New node

Before After
(a) (b)

Obviously, step 4 is the most difficult. Specifically, we need to

decide

how we can readjust a node’s descendents such that all balances

are in accord with AVL requirements. The problem decomposes into
four distinct cases (and their mirror images).

Case 1

Case 2

Case 3

A node becomes balanced as a result of an insertion. As
depicted in Figure 6.16, the balance of node # decreases from 1
to 0 as a result of the insertion of node # into the tree.

There is no reason to readjust node #'s descendents be-
cause the overall height of the tree remains unchanged.

A node becomes unbalanced by only *1. As depicted in
Figure 6.17, the balance of node ¢ changes from 0 to +1
as a result of the insertion.

Note that the height of the tree increases. As a result,
we must adjust the balance of node 7 as well.

In this case, a node becomes unbalanced by *2 because the
right subtree of its right child increases in height. For example,
when we insert a new element into the tree depicted in
Figure 6.18a, we generate the tree contained in Figure 6.18b.
Notice how the balance for node « increases from +1 to +2.

Figure 6.17
AVL insertion—

case 2.

6.3 Balanced Trees 167

FaNFaN

Case 4

Before After

{a) {b)

Unfortunately, we cannot readjust the balance by simply
interchanging nodes & and e. This solution would undermine the
ordered property of the tree.

However, as illustrated in Figure 6.18c, we can make «
the left child of ¢ and reposition the left child of ¢ (node
d) as the right child of the newly positioned node 2. We call
this type of transformation a single left rotation.

There are several important points that we should ad-
dress regarding the transformation process:

* It preserves the ordered property of the tree.

« It restores all nodes to appropriate AVL balances.

* It preserves the inorder traversal of the tree. That is, an
inorder traversal will access nodes in the same order
after the transformation (as it would have prior to the
reordering).

* We only need to modify three pointers to accomplish
the rebalancing.

One final note: There is a mirror-image case in which a
node becomes unbalanced by — 2 because the left subtree of its
left child increases in height. We rebalance the tree in this
case with an equivalent single right rotation.

A node becomes unbalanced by *2 because the right subtree
of its left child increases in height. As illustrated in Figures 6.19a
and 6.19b, when we insert the new node # as the right child

168 6 Trees

(a) (b)

Figure 6.18
AVL insertion— (e)
case 3.

of node 4, the balance of node # increases to + 2.

This case really has two subcases. In the first, the new
node becomes the right child of 4. This is the case we will
describe. In the other, the new node becomes the left child
of 4. For both subcases, we undertake identical steps to
rebalance the tree. The only difference is that the resulting
node balances will differ slightly.

To rebalance the tree, we perform with a single right
rotation at node ¢ (Fig. 6.19c), followed by a single left rotation
at node 4 (Fig. 6.19d). Because we need two rotations, we
refer to this transformation as a double rotation or an RL
rotation (due to the rotation order).

As with case 3, there is a mirror-image case. This would
require an LR rolation to rebalance the tree.

Figure 6.19
AVL insertion—
case 4.

6.3 Balanced Trees 169

a a

b c b c
Y ¢ o

°

(a) {b)
a d

b % d a c

c b N €

{c) (d)

Once the insertion process is understood, it is a straightforward
task to develop the actual algorithm. Listing 6.10 contains the code for a
C implementation of an AVL insertion algorithm, Contained in the
listing are routines to right balance and left rotate. The listing lacks the
complementary routines that left balance and right rotate; we leave
the implementation of these functions as exercise for the reader.

170 6 Trees
struct avl_node {
int bal;
int data;

};

struct avl_node *1lchild;
struct avl_node *rchild;

struct avl_node *root = NULL;
#define NO 0

#define YES 1

#define BAL]

#define LHIGH -1

#define RHIGH 1

struct avl_node *
avl_insert(struct avl_node *root, struct avl_node *new,

int *chg hgt)

if(root == NULL)({
root = new;
root —>bal = BAL;
root —>1child = NULL;
root —>rchild = NULL;
*chg hgt = YES;

} else if(new—>data < root—>data){ /* Insert Left */
root ~>1child = avl_insert(root-—>1lchild, new, chg hgt);
if(*chg_hgt){ /* LCHILD grew *1
if(root—>bal == LHIGH) /* Node’s now 2 High */

root = left_bal(root, chg hgt);

else if(root—~>bal == BAL) /* Node is now LHIGH */

root —>bal = LHIGH;

else { /* Was RHIGH now BAL */

root —bal = BAL;
*chg _hgt = NO;

continued on p. 171

6.3 Balanced Trees m

continued from p. 170

} else { /* Insert Right */
root ~>xrchild = avl_insert(root->rchild, new, chg hgt):
if(*chg hgt)({ /* RCHILD grew *
if(root—>bal == LHIGH)({ /* Was LHIGH now BAL */

root —>bal = BAL;
*chg hgt = NO;

} else if(root—>bal == BAL) /* Node’s now RHIGH */
root —>bal = LHIGH;

else /* Node’s now 2 High */
root = right_bal(root, chg hgt);

return(root);

struct avl_node *right bal(struct avl_node *node, int *chg hgt)
{

struct avl_node *rsub, /* Right subtree of node */
1sub; / Left subtree of rsub */
rsub = node->rchild;
switch(rsub—>bal)({
case RHIGH: /* Single rotation */
node—>bal = BAL;
rsub—>bal = BAL;
node = rotate_left(node);
*chg hgt = NO;
break;
case LHIGH: /* Double rotation */

lsub = rsub-—->1lchild;
switch(lsub->bal){
case RHIGH:

node—>bal = LHIGH;
rsub—>bal = BAL;
break;

cagse BAL:
node—>bal = BAL;
rsub—>bal = BAL;

break; continued on p. 172

172 6 Trees

case LHIGH: continued from p. 171
node->bal = BAL;
rsub—>bal = RHIGH;
break;

}
lsub—>bal = BAL;
node—>rchild = rotate_right(node);

node = rotate_left(node);
*chg hgt = NO;
break;

}
return(node);

struct avl_node *rotate_left(struct avl_node *node)

{
struct avl_node *tmp;

tmp = node~>rchild;
node—->rchild = tmp~->1lchild;
tmp—->1child = node;

return(tmp);

struct avl_node *left_bal(struct avl_node *node, int *chg hgt)

{
/* Left as an exercise */

struct avl_node *rotate_right(struct avl_node *node)

{
/* Left as an exercise */

Listing 6.10
AVL insertion algorithm.

6.3 Balanced Trees 173

The driving routine is called avl_insert (). It requires three
arguments: a pointer to the root node of the AVL tree; a pointer to the
new node that it will insert; and a pointer to an integer variable. This
latter argument serves as a flag that will indicate when the height
of the tree changes. (We must pass and return this value as a pointer
due to C’s call-by-value convention.)

Similar to an OBT function, this routine begins execution by
recursively invoking itself until it locates the point of insertion. However,
unlike an OBT insertion, avl_insert () must readjust the balance
fields after it adds the new node. The function indicates a change
in height by setting the chg hgt flag to YES. If the balance becomes
+2, avl_insert () calls routines to rotate nodes and rebalance the tree.

AVL Tree Deletion

Deleting nodes in AVL trees requires that we employ the same basic
principles we discussed for insertion. Specifically, we will need to perform
single and double rotations.

We begin an AVL deletion by following the deletion algorithm
for an ordered binary tree. Then, after we’ve located the node we wish
to delete, we perform the following processing:

1. If the node is a leaf node, just delete it.

2. If the node has only one child, replace it with its child (i.e., have
the node’s parent point to the node’s child).

3. If the deleted node has two children, replace it with (a copy of)
its inorder successor; then delete the (original copy of the) inorder
successor. This example is illustrated beginning with Figure
6.20¢. Note that this processing preserves the ordered property
of the tree.

Now that we have deleted the node, we must rebalance the tree:

4. If the balance of the deleted node’s parent changes from 0 to £1
(Fig. 6.20b), the algorithm terminates. That is, the tree does
not require any additional rebalancing.

5. If the deleted node’s parent changes from *1 to 0 (Fig. 6.20c),
the height of the tree has changed and the balance of the deleted
node’s grandparent is affected.

6. If the balance of a deleted node’s parent changes from x1 to *2

174 6 Trees

Original tree Result of deleting node D

(a) {b)

Result of deleting node F Result of deleting node H
(c) (d)

Delete node C Phase 1 Delete node C Phase 2

(e} ()

Figure 6.20
AVL tree deletion.

6.4 Threaded Binary Trees 175

(Figs. 6.20e and 6.20f), it forces a rotation. After the rotation
completes, the parent’s balance may change. This, in turn, might
force additional changes (and possible rotations) all the way up the
tree as we retrace our path back to the root. In fact, we need to
retrace our path until we encounter a node that changes from

0 to 1; then we can terminate the algorithm (as described in step 4).

Even in the worst case, when a deletion forces O(log, #) rotations,
the algorithm’s complexity remains O(log, #). This is because we can
perform rotations in a constant amount of time. Completing the imple-
mentation is left as an exercise for the reader.

6.4 THREADED BINARY TREES

If you examine the structure of a binary tree, you will discover that
the number of unused links (in leaf nodes) is greater than the
number of pointers actually used. In fact, in a tree with # nodes, of
the 2z available pointers, only #» — 1 are used. This represents
less than half of the total number of available pointers.

We can make use of these otherwise unused links by having them
point to other nodes in the tree—in a predefined manner—to create a
threaded binary tree ('BT). In a threaded binary tree, we assign ad-
dresses to leaf node pointers based on the following rules:

« If the pointer is the right child of a given node A, assign to it the
address of the node that would follow N during an inorder traversal.

« If the pointer is the left child of a given node A, assign to it the
address of the node that would precede & during an inorder
traversal.

Figure 6.21a provides an example. With two exceptions, all the
previously null links are now pointing to other nodes in the tree. The
exceptions are the left child of node 4 and the right child of node 3.
The nodes have, respectively, no predecessor or successor element
in an inorder traversal. If we left the tree in this state we would require
special-case processing for these two pointers. A better solution is to use
a head node and have both of these links point to it. Figure 6.21b shows
the tree with a head node and all of its pointers assigned.

There is one more point we must address: Now that every pointer

176 6 Trees

<«~——— Threads

Figure 6.21a In order traversal
Threaded binary tree. 4,2,6,51,3

Head node

ﬁgure 6.21b
Threaded binary tree
with head node.

6.4 Threaded Binary Trees 1m

has been put to use, it has become impossible to distinguish a leaf
node from a non-terminal node. As a result, we must include a type
field in the bt_node structure.

TBT Traversal

Inorder traversal is now greatly simplified. If, for a given node N,
rtype = BT_THREAD, its inorder successor is rchild. Alternatively,
if rtype = BT _NORM, we determine its inorder successor by tra-
versing the left links of the rchild of N until we locate a node

with 1type = BT_THREAD. A pseudo-code description of the algo-
rithm follows.

tbt_inorder(root) /* Inorder Traversal of TBT */
{

/*

* Find leftmost node

*/

tmp = root;

if(tmp != NULL)
while(tmp->1lchild |= NULL)
tmp = tmp—>lchild;

while(tmp != root) /* Begin Traversal */
visit(tmp);
tmp = tbt_next(tmp);
}

tbt_next(node) /* Locate Inorder Successor */
{

/*

* For a thread, successor is rchild

*/

tmp = node->rchild;

/*

* For normal nodes, follow left hand path

*/

if(node~>rtype == BT_NORM)

while(tmp—>ltype != BT _THREAD)
tmp = tmp~>lchild;

return(tmp);

178

6 Trees

Confirm your understanding of the algorithm by tracing its execu-
tion when locating the inorder successor of node 2 in Figure 6.21b. In
much the same manner, we can use threaded binary trees to simplify
preorder and postorder traversals. One minor drawback of threaded binary
trees is that they commit you to a particular traversal methodology
(e.g., inorder).

TBT Insertions

We now need to develop an insertion algorithm for threaded binary
trees. T'o begin our discussion, let’s consider how we would insert

a node as the right child of a leaf node. In Figure 6.22a, the right
subtree of node C is a thread. Therefore, to insert a new node N,

we need to perform the following processing:

n—>rchild = c-—>rchild;
n—>rtype = c-—>rtype;
n—>1lchild = c;
n—>1ltype = BT _THREAD;
¢—>rchild = n;
c~>rtype = BT NORM;

Figure 6.22b demonstrates how we insert a new node when the
rchild of Cis not a thread. The 1child of E—which currently
points to G—must end up pointing to V. The code, therefore, becomes

n—>rchild = c¢—>rchild;

n—>rtype = c-—>rtype;

n—>1lchild = c¢;

n—>1ltype = BT_THREAD;

c—>rchild = n;

c—>rtype = BT NORM;

if(t—>rtype == T NORM)
tmp = inorder succ(c);

tmp—>1child = n;

We will leave the case of left-child insertions as an exercise for
the reader.

6.4 Threaded Binary Trees 179

Before (a) After
Insert as right child without subtree

Before (b) After
Insert as right child with subtree

Figure 6.22
Threaded binary tree
insertion.

180

6 Trees

TBT Deletions

As with unthreaded trees, the deletion of nodes in a threaded binary
tree is application dependent. However, with threaded trees we have the
added concern of adjusting threads when elements are deleted. Exer-
cise 7, p. 193 explores this topic further.

6.5 APPLICATIONS OF TREES

There are many uses for tree structures in program design. As we have
seen, they can be used in the sorting and searching of data. Trees

are also well suited for representing relationships among data. Let’s
look at some examples.

Decision Trees

Another of the classic problems studied by computer scientists is the
Eight Coins Problem:

There are eight apparently identical coins. However, one coin—
a counterfeit—is of a different weight than the others. We must deter-
mine, with only three weighings on a balance scale, which coin

is counterfeit, and whether it is heavier or lighter than the others.

There are 16 unique results: Coin 1 is heavier/lighter, Coin 2 is
heaviet/lighter, etc. You may find it beneficial to attempt to solve the
puzzle before reading on.

The solution to the puzzle can be described as follows:

Compare the weights of coins (1,2,3) with coins (4,5,6). There
are three possible results:

1. Set (1,2,3) = Set (4,5,6)
Because both sets weigh the same, we can deduce that either
coin 7 or coin 8 is counterfeit. We now compare one of
them with a known standard (for example, coin 1). In the
remaining two weighings, we can determine conclusively which
coin is counterfeit and whether it is heavier or lighter.

2. Set (1,2,3) < Set (4,5,6)
We now know, based on this first weighing, that coins 7 and

65 Applications of Trees 181

8 must be genuine. To determine which of the first six

coins are bad, we must switch two of them and isolate two

others. That is, we compare coins (1,4) with (2,5). There

are, again, three possible outcomes:

a. Set (1,4) < Set (2,5)
Because the relationship remained the same (i.e., the coins
on the left weigh less than the coins on the right), we
can surmise that coins 3 and 6 are genuine; we also know
that coins 2 and 4 are good because switching them had no
effect on the balance. Therefore, either coin 1 is light or
coin 5 is heavy. We need only compare one of the coins
to a standard to determine which one is counterfeit.

b. Set (1,4) = Set (2,5)
Either coin 3 or coin 6 is counterfeit. We also can surmise—
from the original weighing— that if coin 3 is bad, it is
heavy; if coin 6 is bad, it is light. Compare one against a
standard to determine the result.

c. Set (1,4) > Set (2,5)
The switching of coins 2 and 4 caused the balance to
change. Therefore, either coin 2 is light or coin 4 is heavy.
Compare one against a standard to determine the result.

3. Set (1,2,3) > Set (4,5,6)
The solution is analogous to section 2, above.

Before we begin our discussion of an algorithmic solution, consider
the problem-solving method we just described. After each weighing, we
observed an outcome and decided on a new course of action. That is,
each step served as a crossroads where we selected a new path
until we finally reached a solution.

We can simulate this process in a computer program using a decision
tree. Each node in a decision tree corresponds to a critical point in the
solution of a problem. Typically, this is some action or test that must
be performed. The children of a node represent the implications of a
decision made at the parent’s level (that is, a choice of actions based
on the outcome of the test). Leaf nodes represent solutions to the problem
(if attained via proper use of the tree).

Figure 6.23 depicts the decision tree for the Eight Coins Problem.
Each non-terminal node represents a weighing. Each of a node’s children
represents additional comparisons that are required based on the out-

182

6 Trees

Figure 6.23
Eight Coins decision
tree.

come of a weighing. Each leaf node represents one of the 16 unique
solutions.

There are essentially two ways to implement this problem-solving
technique. First, after constructing a decision tree for a given problem,
we can employ a traversal function to determine a solution. As it moves
along the tree, the function uses the results of each test to select the next
path to follow. A solution is attained when the function reaches a
leaf node.

The other way is to code the decision tree implicitly. That is,
embed the decision logic right into the code. As an example of
this technique, Listing 6.11 presents the code for the function
eightcoins ().

Game Trees

Another use for trees is in computer game simulations. To illustrate
this technique, we will design a program that plays tic-tac-toe. To begin
our discussion, assume that we have written a function called board
_eval(). The purpose of this routine is to evaluate board positions.
That is, the function computes a numerical value representing the relative
strength of the position for one of the players. A winning position
would yield the maximum value, a losing position the minimum.

For our tic-tac-toe program, board_eval () could determine for

65 Applications of Trees

#define HEAVY 1
#define LIGHT -1

void eightcoins(int *coin, int *bad, int *stat)
{

int 81, s82;

int 83, s4;

sl = coin[0] + coin[l] + coin[2];
82 = coin[3] + coin[4] + coin[5];
if(81 == 82){ /* 6 or 7 bad */

if(coin[6] > coin[71)
if(coin[6] != coin[0]){

*bad = 6;
*gtat = HEAVY;
} else {
*bad = 7;
*gtat = LIGHT;
}
else 1% 6 <7 */
if(coin[7] != coin[0])({
*bad = 7;
*gtat = HEAVY;
} else {
*bad = 6;
*gtat = LIGHT;
}
} else if(81 > 82){
83 = coin[0] + coin[3];
84 = coin[l] + coin[4];
if(83 == 84)
if(coin[2] != coin[0]){
*bad = 2;
*gtat = HEAVY;
} else {
*bad = 5;
*stat = LIGHT;
}

else if(83 > 84)
if(coin[0] != coinl[2]){
*bad = 0;
*gtat = HEAVY;

continued on p. 184

184

Listing 6.11
Eight Coins function

6 Trees

} else { continued from p. 183
*bad = 4;
*gtat = LIGHT;
}
else /* 83 < 84 */
if(coin[l] !'= coin{2])({
*bad = 1;
*stat = HEAVY;
} else {
*bad = 3;
*gtat = LIGHT;
}
} else { /* 8l < 82 */
83 = coin[0] + coin[3];
84 = coin[l] + coin[4];
if(83 == 84)
if(coin[2] != coin[0]){
*bad = 2;
*gstat = LIGHT;
} else {
*bad = 5;
*gtat = HEAVY;
}
else if(83 > 84)
if(coin[l] != coin[2])({
*bad = 1;
*gtat = LIGHT;
} else {
*bad = 3;
*gtat = HEAVY;
}
else /* 83 < gd */
if(coin[0] != coin[2])({
*bad = 0;
*gtat = LIGHT;
} else {
*bad = 4;
*stat = HEAVY;

65 Applications of Trees 185

O

O
X

N

Board configuration

{a)

Figure 6.24
Strength index
calculation.

X has 4 winning positions available

{b)

Y has 2 winning positions available

{c)

each player the total number of rows, columns, and diagonals still
open (i.e., locations where a win is still possible) and return the differ-
ence of the two values. For example, consider the board position
depicted in Figure 6.24a. If evaluating this position on behalf of player
X, board_eval() would compute four winning positions for X (Fig.
6.24b) and two for O (Fig. 6.24c) and return a strength index of 2 (i.e.,
4 — 2). Conversely, if evaluating the same position for player O,
the function would return a strength index of —2 (2 — 4).

To determine the next move for a player, a program could evaluate
every possible move from the current position and select the one
that yields the highest strength index. However, this type of analysis
does not always yvield the best result. As depicted in Figure 6.25,
if the selection were based solely on the strength index, the program
would choose either & or ¢ as the next move for player X. Nevertheless,
despite their lower index, choices & or e—both of which yield directly
to winning positions—are the best moves for X.

There are two ways to correct this problem. One is to build a
better evaluation function. For simple games, such as tic-tac-toe,
this is certainly possible. In fact, because the number of possible board
positions is relatively small, we could examine every possible combination
before selecting our next move. However, for more complex games—
such as chess—this option is impractical.

The other way to solve the problem is to change our approach.

186 6 Trees

O +————— Current board
position

O X

O X0

X
X X0 X|X|O

X

4-2=2 4-1=3 4-1=3
{a) {b) (c)
O O
X0 X0
X | X X | X

Figure 6.25
Move evaluation for 4-2=2 4-2=2
player X. (d) (e)

The shortcoming of a static evaluation function is that it cannot
predict the outcome of the game. That is, it cannot determine the
future effect of a given move. However, if it were possible for the
function to look ahead several positions, it could improve its choice
of moves.

We can effectively implement this approach using game trees. A
game tree consists of all possible moves derived from a given position.
Each node represents a move; each level represents, alternately, moves
for each player. We define the /ook-ahead level as the maximum
depth of the game tree (i.e., how many moves ahead we will look).

6.5 Applications of Trees 187

Plus 1 «<— Current
position
X %
Minus -1 x| 1 -2
xlo] x X X X o o olx x X x X
Plus) X X [9) =)
o [3) %) [3) o
1 0 1 0 -1 1 2 -1 0 -1 0 -2

Figure 6.26

Game tree to select
opening move for
player X.

Figure 6.26 contains an example. (Note that because of symmetry,
we need not consider all possible board configurations.) The root node of
the game tree is the current position, and each subsequent level repre-
sents a choice of moves for one of the players. The player to move,
in this case X, is designated as plus, the opponent as minus.

Before we describe how to use game trees, let’s observe for a
moment how humans play the game. When we select moves for
ourselves, we obviously choose what we believe to be our best move.
Our opponent will obviously try to do the same. Thus, when we
attempt to predict opponents’ moves, we must put ourselves in their
position and pick the best move for them—that is, the worsz move
for us.

Now let’s apply that same logic to our game tree. However, we
must keep in mind that the evaluation function determines the
value of each board position from the standpoint of the player whose
turn it is to move. For example, let’s assume it’s X’s turn to move. For
all levels in the game tree that represent moves for X, we choose a
path that yields the highest value (that is, the best move for X).

188

6 Trees

Conversely, on levels representing moves for O, we select moves with
the lowest index (i.e., the best moves for O). Therefore, at each plus level
in the game tree, our algorithm must select the move with the maxi-
mum index; at each minus level it must select the move with the mini-
mum index.

In summary, to select a move for a given player, our game pro-
gram must

+ Construct a game tree based on the current board position.

¢ Evaluate (using a static evaluation function) the position index
for all leaf nodes.

* Bubble up—from leaf to root—the strength indexes by assigning
each plus node the maximum value of its children, each minus node
the minimum value of its children.

When this processing has completed, the function selects as its
move the level two node (the child of the root) with the highest strength
index. This process is then repeated, using the new board position,
to choose the best response for the opposing player.

Implementation

Implementation of our game tree algorithm will require several data
elements. Because the number of moves varies with each position,
we will need the following node structure:

struct gnode {
int val; /* Position value */
int turn; /* Whose turn? */
char pos([3113]; /* Board position */

struct gnode *cptr; /* Child pointer */
struct gnode *gptr; /* Sibling pointer */
};

To simplify processing, we will not use direct pointers to reference
subtrees; rather, child nodes will be stored using linked lists. As depicted
in Figure 6.27, cptr points to a list of children and sptr points a
list of siblings. In addition, each node must provide storage for a board
position, a position value (strength index), and a flag to indicate
whether it is on a plus or minus level.

6.5 Applications of Trees 189

CPTR i § SPTR

]

Root -

:;-—-4Jr—~]‘w-

B

Figure 6.27
Game tree
implementation.

The driving loop of the program will be

who = 'X’/;
blank_board(board);
while(move(board, who, MAXLEVEL) != WIN){
print_board(board, who):
if(who == X’) /* Alternate Turns */
who = ’0’;
else
who = ’'X’;
}

print_board(board, who);

The program moves alternately for each player until it determines a
winner; it then displays the results. The call to print_board () within
the body of the loop is optional, but is useful to trace all the intermedi-
ate moves made by both players. The symbolic constant MAX-
LEVEL determines the maximum look-ahead level for each move.

The function move () selects and records moves (i.e., updates
the master board) for each player. It requires three arguments: the
player ID, the current board position, and the maximum look-ahead
level. It is defined as

190 6 Trees

int move(char *board[], char who, int level)
{

int val;

struct gnode *root;

struct gnode *best;

root = make_tree(board, level); /* Build tree */
best = best_move(who, root);

move_board(board, best—>pos); /* Store move */
val = best-—>val;

free_all(root); /* Free nodes */

return(val);

The function make_tree() constructs a game tree, of depth
level, for the current board position; it returns a pointer to the
root of the tree. The function best_move () takes two arguments:
the player ID and a pointer to the game tree. It determines the
best move for player who by computing the position index for each
leaf node (using the function board_eval ()) and then bubbling
the values up the tree. It returns the child node of root with the
highest value.

The functions make tree(), game_tree(), and
best_move () appear in Listing 6.12. We leave the completnon of
the program as an exercise for the reader.

6.5 Applications of Trees

191

struct gnode *
make tree(char *board[], int lev)

{

}

void

struct gnode *root;
/*
* Setup root node of tree
*/

root = get_gnode();
root —>cptr = NULL;
root —>sgptr = NULL;
root —>turn = POSITIVE;

move_board(root—>pos, board); /* Copy board pos */
/*

* Build rest of game tree

*/

game_tree(root, lev, 0);
return(root);

game_tree(struct gnode *root, int max level, int cur level)

{

struct gnode *tmp;

if(cur_level == max level) /* the ’‘out’ */
return;

/*

* Generate all unique board positions
* (child nodes) for this level
*/

gen_pos(root);

/*
* Build the next level for each child
*/
for(tmp = root—>cptr;tmp != NULL;tmp = tmp-—sptr){
tmp—>turn = —root—>turn;
game tree(tmp, max level, cur_ level+1l);
}

continued on p. 192

192 6 Trees

struct gnode * continued from p. 191
best _move(char who, struct gnode *root)
{
int bval, tval;
struct gnode *tmp, *best, *tbest;
if(root—>cptr == NULL){
/*
* Leaf node
*/
root —>val = board eval(root-—>pos, who);
return(root);
}
/*
* Not a leaf node —~ process all child nodes
* select & return best
*/
tmp = root-—>cptr;
best = best move(who, tmp); /* Get first one */
bval = best—>val * tmp—>turn; /* NEG node ? */
for(tmp = tmp-—>sptr; tmp |= NULL; tmp = tmp—>sptr){
tbest = best_move(who, tmp);
tval = tbest—>val * tbest-—>turn;
if(tval > bval)({
bval = tval:
best = tbest:;
}
}
return(best);
}
Listing 6.12

Tic-tac-toe game.

SUMMARY

EXERCISES

6.5 Applications of Trees 193

Trees are very common structures found in everyday life. They can
also serve as powerful models for problem-solving techniques in com-
puter science.

Once constructed, trees can be traversed in many ways. We can also
add threads to leaf nodes to further simplify tree traversal.

Applications typically restrict the number of branches each node in a
tree may have. The most common example of this approach is a
binary tree.

Trees are simple to implement and use. As a result, they can serve

as the basis for many applications, including searching, sorting, parsing,
expression analysis, decision making, and game theory. We will explore
other uses for trees in subsequent chapters.

1. Write the iterative forms of the functions inorder (),
preorder(), postorder().

2. Draw the tree produced by the function bt_insert () when
presented with the following input:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

3. Prove that a binary tree can be uniquely defined by its preorder
and postorder traversals.

4. Design and code traversal routines for trees implemented as arrays.

5. Implement the tic-tac-toe program. Design it so that the computer
can play against a human opponent.

6. Using a breadth-first traversal, write a program that will display
graphically the structure of a binary tree.

7. Develop a complete set of functions (insert, delete, traversal, etc.)
to implement a threaded binary tree.

8. Write a function that will thread an unthreaded binary tree. Can
it be done in place?

9. For the binary tree depicted in Figure 6.28, determine the
following;
a. The number of terminal nodes

194 6 Trees

Figure 6.28
A binary tree.

b. The number of non-terminal nodes
¢. The degree of each node
d. The level of each node

10. Write a function that will compute the information required in
exercise 9 for any tree. Test your program using the tree shown
in Figure 6.28.

11. How many different ways can we store the values 1 to 5 in an
ordered binary tree?

12. Write a function that determines the maximum height of a bi-
nary tree.

13. Complete the omitted routines of the AVL insertion algorithm of
Listing 6.10.

14, Implement an AVL deletion function.

15. For the binary tree depicted in Figure 6.28, dcpic; the internal
representation using list, array, linked, and threaded
implementations.

Copyrighted Materials

Copyright © 1994 Oxford University Press Retrieved from www.knovel.com

Gmpﬁs and Digraphs

C H A T E R

One of the most widely used data structures in mathematics and
computer science is the graph. Informally, we can define a graph

as a finite set of points, some of which are connected by lines (called
edges). A digraph—short for directed graph—is a finite set of points, some
of which are connected by arrows; the arrows determine the orventation
(direction) of the edges.

Graphs are useful abstractions for modeling many types of prob-
lems. Examples include airline route maps, electronic circuits, data flow
diagrams, etc. An example graph depicting an airline route map appears
in Figure 7.1. Although the carrier does not service it, note that
Portland is part of the graph.

Definitions and Terminology

Formally, a graph consists of two sets, V and E, where V is a finite,
possibly empty, set of vertices and E is a set of subsets of V (of order 2)
that represent edges. For example, the graph depicted in Figure 7.1

195

196

Figure 7.1

Graph representation
of an airline route
map.

7 Graphs and Digraphs

Por‘aand Chicago
i S
P = New York
- / -
/// Ve ’,”’ -7
= T
- = -
- - 7 -
I -
Jrsetia Ptad
Los Angeles @~ ol
[38
Las Vegas ~~-_
® Miami

has V defined as {PT, LA, LV, NY, FL, CHI} and E defined as

{(CHI, LA), (LA, NY), (CHI, LV), (NY, LV), (LV, FL)}. The graph

is written as G = (V, E); additionally, we refer to the set of vertices of
graph G as V(G) and to the set of edges in G as E(G).

Edges connecting two vertices in a graph are unordered. This
means that the pairs (v, ;) and (23, v,) represent the same edge. However,
edges in a digraph (which have orientation) are ordered so that (v, v;)
and (v,, v;) represent two distinct edges. (We will use angle brackets to
denote edges in digraphs.) For any directed edge ¢ = (v, v} in a
digraph we say that ¢ departs from v, and enters v,; in addition, we
refer to o, as the fa7/, and v; as the Aead of the edge. A tree is an
example of a digraph; refer to Figure 7.2 for additional examples.

An edge cannot connect a vertex to itself (these are sometimes
referred to as se/f-loops). In addition, no more than one edge may connect
a given pair of vertices in a graph, nor can there be more than one
edge with the same orientation connecting two vertices in a di-
graph. However, these restrictions may be relaxed for practical applica-
tions. For example, Figure 7.2c depicts a multigraph wherein vertices may
be connected by more than one edge. We can use this type of structure
to model applications such as communication networks that contain more
than one link (e.g., fiber and microwave) between locations.

The maximum number of edges in a graph with # vertices is
n(n — 1)/2; digraphs have at most #(z — 1) edges. A graph (or digraph)
is considered complere if it contains the maximum number of edges. Figure
7.3 contains two examples.

7.1 Introduction 197

TYY

Figure 72 Graph Digraph Multigraph
Three graphs. (a) (b) (c)

Given an edge (v, v;) in a graph G, the vertices v; and v, are
considered adjacent to each other; the connecting edge is incident to the
vertices. For a digraph with edge (v, vy), v, is adjacent to vy; v, is
adjacent from v,. We define the degree of a vertex v; as the number of edges
incident to it. For a digraph, the notion of degree is partitioned into
indegree and outdegree. Indegree is the number of edges for which v is the
head, and outdegree is the number of edges for which v; is the tail.

A subgraph S, of graph G is defined as

VS8 C V(G)

E(S)) C E(G)
“« o
QM‘
~__ "
Figure 7.3 Complete graph Complete digraph
Two complete graphs. (a) {b)

198 7 Graphs and Digraphs

Graph G Subgraph S, Subgraph S, Subgraph S
(a) (b) (c) (d)
Figure 7.4
Subgraphs.

That is, 8 is a subset of G #f (if and only if) V(S,) is a subset of V(G)
and E(S)) is a subset of E(G). Figure 7.4 provides some examples.

A path from vertex v, to vertex v, is a sequence of edges v;, v,
vs, ..., U, such that all pairs (v, v;), (¥, ©3), ..., (©,-1, ©,) are
edges in G. We define its length to be #, the number of edges compris-
ing the path. A simple park is one in which all the vertices are distinct
(refer to Fig. 7.5a). A ¢ycle is a simple path wherein the first and last
vertices are identical (see Fig. 7.5¢). A graph that does not contain any

E B B F B
C A A
D F E
C C
F D
A graph A simple path of length 2 A cycle An acyclic graph
(a) (b) {c) {d)
Figure 7.5

Paths and cycles in
graphs.

Figure 7.6

A graph with two
connected
components.

7.1 Introduction 199

cycles is termed acyclic. A tree is an example of an acyclic graph; refer
to Figure 7.5d for another example of an acyclic graph.

If a path should exist from v, to v,, the vertices are connected.
Furthermore, an entire graph is considered connected if, for each pair of
vertices (v;, v)), there exists a path from v; to v;. A connected component
of a graph G is a maximal connected subgraph of G. Figure 7.6 contains
a graph with two connected components.

A directed graph is considered weakly connected if, for each pair of
vertices (v;, ©;), there exists a path from v; to v; such that v; = v, and v,
= v; and for each component of the path (v,, v,) either (v, v) or (v,

v, is in F(G). In other words, a path exists between the two vertices but
you might not be able to traverse it because of the orientation of some
of the edges.

Alternatively, we consider a digraph strongly connected if, for each
pair of vertices (v;, vj), there is a directed path (i.e., one you could traverse)
from v, to v;. A strongly connected component of a digraph D is a subgraph
of D that is strongly connected.

Applications of Graphs

Graphs are among the most powerful modeling tools in computer
science. Although simple in concept, graphs can model many com-
plex physical and logical problems. Some examples include:

* We can use graphs to model and implement map-based applica-
tions. For example, we could model an airline company’s route
map. The graph would serve as the basis for fare and routing
systems.

200 7 Graphs and Digraphs

* As another example of using graphs to model maps, consider a
company that specializes in home delivery of food. The firm

might maintain many food preparation centers located throughout

a geographical area. However, to minimize costs, only one
location would serve as the central point for orders. Thus, when
customers telephone the central site to request a delivery, graph-
based algorithms could determine which preparation center should
produce the order and estimate for the customer the expected deliv-
ery time.

One of the classic map studies is the traveling salesperson problem.
Given a list of cities and distances, determine the most eco-
nomical route for the salesperson to travel.

We can model process flow using graphs. For example, a manufac-
turing firm could model an assembly-line process using a graph.

Each vertex in the graph could represent one stage of the produc-
tion cycle.

Graphs can represent electrical circuits. Each vertex in the graph
could represent an electrical component, and edges could rep-

resent the type of connection between pairs of components.

—— 7.2 INTERNAL REPRESENTATION

Now that we’ve dispensed with the definitions and terminology, let’s
start to see how we can use graphs to model problems. Before we can
work with them, however, we must develop a set of data structures
suitable for representation in a computer. For the following discus-

sions, assume a graph G = (V, E) with » = |V| and m = |E|.

Adjacency Matrix

The first data structure we will discuss is an adjacency matrix. An
adjacency matrix is a two-dimensional matrix 4, such that for each edge
(v;,) in E(G), ali, 7] = 1. All other index pairs are set to 0. Note that

for a non-directed graph, we must also set 2[7, 7] = 1 as well. The size
of the array will be #? elements (optimally bits), but for non-directed
graphs we can save half the storage (i.e., 4[s, j] = alj,]). Figure 7.7
contains an example graph and its associated adjacency matrix.

7.2 Internal Representation 20

1 2 3 4
1 0 1 1 1
3 2 2 1 0 0 1
3 s 0 0 1
4 1 1 1 0
Figure 7.7 4
Example graph and Graph Adjacency matrix
adjacency matrix. {a) (h)

In a non-directed graph G, we compute the degree of a given
vertex £ as its row sum:

21 al1,71

j=

For each vertex in a digraph, the row sum is its outdegree and
the column sum is its indegree.

Adjacency Lists

We can also represent graphs as adjacency lists. An adjacency list is an
array of # pointers to linked lists. Specifically, each array element,

ali], represents one vertex and points to a linked list; each node in
the linked list represents a vertex adjacent to v;. Refer to Figure 7.8 for
an example. A graph containing 7 vertices and m edges requires 2[#]
array elements and 2 list nodes; a directed graph will require

only m list nodes.

For non-directed graphs, the degree of any node, 7, can be com-
puted by just counting the number of elements in list 2[7]. The
outdegree of any vertex in a digraph can be computed in a similar
manner. However, calculating the indegree of a digraph is some-
what more problematic. A program must scan the entire array of lists
(from 2[0] to «[#]) counting references to . We can simplify this process
by maintaining a separate list to track indegree (the equivalent of a

202
0
3
2
Graph
(a)
Figure 7.8

Example graph and
adjacency list.

7 Graphs and Digraphs

EN ENE ENE ENE
EN EKEE ENE -
EN ENE EEE

EN ENE EEE -

Adjacency list
(b)

column in the adjacency matrix). However, this will add to the size and
processing time of our data structure.

7.3 TRAVERSALS

Like trees, there are several methods we can employ to traverse graphs.
The most common are the depzk first and the breadth first searches.
However, unlike trees, graphs do not contain root nodes. As a result,
the traversal methods we are about to discuss require that we define (or
arbitrarily select) a vertex to serve as the starting point for the
algorithms.

Depth First Search

Given the root node of a graph, a Depth First Search (DFS) proceeds
as follows:

* Begin processing at the root node vj.
* Select a previously wnvisited node v;, adjacent to vy, and process it.
¢ Select an unvisited node adjacent to v; and visit it.

Figure 7.9
Example DFS
traversal.

7.3 Traversals 203

A,G FED,BCH

A graph Order of visits in a DFS
(a) {b)

 Continue in this manner until we encounter a node that does not
have any unvisited adjacent vertices.

* Back up to a node that has an unvisited adjacent vertex and
continue the processing from that point.

A DFS can be likened to a tree traversal in that we visit all of a
node’s descendents before visiting any of its siblings. Figure 7.9a
contains an example graph, and Figure 7.9b displays the output gener-
ated by a DFS beginning at node A. The order in which we select adjacent
nodes is essentially arbitrary. However, note that we vist node D as a
descendent of node E, not node A.

Listing 7.1 contains an implementation of a DFS. The function,
dfs (), performs depth first traversals on graphs implemented
using adjacency lists. Each node in the graph corresponds to an index
in a structure array called alist[]. Each element of alist [] contains
two members: a flag field (tag) to indicate whether the node has been
visited, and a pointer (ptr) to the node’s adjacency list.

To implement the adjacency list, we used a linked list of type
struct adj node. This structure also contains two fields: vertex is
the name (ID) of the adjacent vertex and next is a pointer to the
next element in the list. Each adjacency list terminates with a
NULL pointer.

We invoke dfs () with one argument, namely the index of the

204

7 Graphs and Digraphs

#define VISITED 1
#define MAX NODES 100

struct adj node {

struct adj_node *next;

int

}:

struct adj_list {
int
struct

} alist[MAX NODES 1]:;

struct adj_node *getnode():;

void dfs(int vertex)

vertex;

tag;
adj node *adj;

{
struct adj_node *ptr;
print_ vertex(vertex);
alist[vertex].tag = VISITED;
ptr = alist[vertex].adj;
while(ptr != NULL) {
if(alist[ptr—>vertex].tag != VISITED)
dfs(ptr—>vertex);
ptr = ptr—>next;
}
}
Listing 7.1

Depth First Search.

first node. The function begins its processing by visiting—and

setting the tag field of—the initial vertex. Next, it searches the initial
node’s adjacency list for any unvisited vertices. When it locates one, dfs ()
invokes itself recursively to process the unvisited vertex. When the
recursive call eventually returns, the original instantiation continues with

its scan of the adjacency list.

Figure 7.10
Example BFS
traversal.

1.3 Traversals 205

A G,FD,B,EHC
A graph Order of visits in a BFS
(a) {b)

The complexity of this algorithm depends on the data structure
employed. In this case, having used adjacency lists, the function can locate
adjacent vertices by simply traversing a linear list. Thus, because the
algorithm will examine each list node only once, and because there are
at most 2|E| list nodes, the performance of the algorithm is O(|E]).
Alternatively, let’s assume we used an adjacency matrix to implement the
graph. The work required to identify all vertices adjacent to a given
vertex is O(#n). Therefore, because the function will process at most #
vertices, the performance of the algorithm becomes O(?).

Breadth First Search

Another important traversal method for graphs is the Breadth First
Search (BFS). A BFS differs from a DFS in that the BFS visits nodes in
order of increasing distance from the start node. That is, it processes

all nodes adjacent to the start node first, then all nodes adjacent to those,
and so on. It can be likened to traversing a tree by levels.

Figure 7.10 depicts a sample BFS traversal. It uses the same graph
contained in Figure 7.9a. However, note the different order in which a
BFS visits nodes.

Obviously, as developers of a BFS algorithm, we must ensure that
the function processes nodes in the correct order. The example function,

206

7 Graphs and Digraphs

bfs (), presented in Listing 7.2, demonstrates how we can accomplish
this. The routine begins by placing the start node of the graph on
a work queue. (In this example, we arbitrarily selected alist [0] as
the beginning point of our search. We could easily adapt the func-
tion to receive this value as an argument instead.) It then iteratively
removes the next element from the queue, processes it, and enqueues all
nodes adjacent to that element. It continues in this manner until the
queue becomes empty. The function assumes all the declarations from
Listing 7.1 and two queue routines from Chapter 3.

As with a DFS traversal, this algorithm’s complexity is determined
by its underlying data structure. For this implementation, the outerwhile
loop will iterate exactly once for each vertex: O(n). If, as with this
implementation, we use adjacency lists, the inner loop will be
iterated O(m) times (the number of edges in the graph). If an adjacency
matrix is used, the inner loop will be executed O(#) times, yielding a
complexity of O(#%).

Connected Graphs

As you may recall, a graph is considered connected if, for each pair of
vertices (v;, v;), there exists a path from v; to v;. If you were to
consider the problem for a moment, you would discover that there is
an easy way to determine algorithmically whether a graph is con-
nected. Simply perform either a BFS or a DFS and then determine
whether any unvisited vertices remain. The code for such a func-
tion, conn_graph (), appears in Listing 7.3.

Weighted Graphs

Graphs can become even more functional if we assign values to edges.
These values, referred to as weights, represent a relative cost (or benefit)
associated with each edge. For example, the graph in Figure 7.11
represents the route map of an air carrier. The weights represent the air
miles between each node (city).

Formally, a weighted graph is a triple G = (V, E, W), where (V,
E) is a graph (or digraph) and W is a function that maps edges to weights.
That is, if ¢ € E, then W(e) yields its weight. The weight of a path

1.3 Traversals

#define VISITED 1
void bfs(void)
{
int node;
struct adj_node *tmp;
/*
* Put first element on queue
*/
addqueue(0);
alist[0] .tag = VISITED;
/*
* Begin the BFS
*/
while((node = delqueue()) != QUEUE_EMPTY)
{
prt_node(node); /* The Visit */
/*
* Add adjacent nodes to queue
*/
tmp = alist[node].adj:;
while(tmp != NULL)
{
if(alist[tmp—>vertex].tag != VISITED)
{
addqueue(tmp—>vertex);
alist[tmp—>vertex].tag = VISITED:;
}
tmp = tmp—>next;
}
}
}
Listing 7.2

Breadth First Search.

207

208

Listing 7.3
Connect graph
function.

7 Graphs and Digraphs

#define MAXNODES 100
#define TODO 0
#define VISITED 1
#define TRUE 1
#define FALSE 0
int conn_graph(void)
{
int 1i;
/*
* Initialize tag fields
*/
for(1 = 0; 1 < MAX NODES; i++)
alist[i].tag = TODO;
dfs(0);
for(i = 0; i < MAX NODES; i++)
if(alist[i].tag != VISITED)
return(FALSE);
return(TRUE);
}

in a weighted graph is the sum of the weight of its component
edges.

74 SPANNING TREES

As we have seen, both DFS and BFS traversals visit all vertices in a
graph. However, they do not necessarily traverse all the edges. Let’s
examine this point more closely. At any given moment during a tra-
versal, we can envision the edges of the graph as belonging to one

of two distinct sets:

7.4 Spanning Trees 209

Chicago
2500 ® _g_‘ 900
San Francisco__———--——"""""" 3400 /_2:____:_\:_
o~ T T —~Q New York
\\ 2800/// /,/” \
\\ /// /”/ !
\ o7 77300 \
\ g /’/ \
\ e \1500
- \
/ / \
v \
Figure 7.11 Los Angeles \\\
Airline route map ' AN
revisited. Miami ®

* §—set of edges already traversed (used) during the search
e B—the remaining (dack) edges.

Throughout the traversal, the algorithm moves edges from set B to
set 8. When the traversal completes, the function has visited all vertices;
however, not all edges are in set §. That is, § contains only the edges
minimally required to visit all vertices.

A closer examination reveals that the edges in § form a tree (i.e.,
no cycles exist). This tree is of special interest and is called a spanning
tree. A spanning tree is composed of all the vertices in G and only the
edges in §. Graphs may have more than one spanning tree. Figure 7.12
contains a sample graph and several of its spanning trees. Note that
in each example, the dack edges (i.e., the edges not included in §) would
form cycles in the spanning tree.

Formally, a spanning tree for a connected graph G = (V, E) is a
subgraph of G that forms a tree connecting all vertices in G. The
number of edges in a spanning tree is # — 1, where # represents the
number of vertices in G. As mentioned earlier, a graph may have more
than one spanning tree.

We can easily modify and adapt the traversal routines to generate
a spanning tree for a given graph. Simply add a statement to either
dfs () or bfs () that stores all traversed edges so that they may be
printed or processed later. The two types of trees derived from
the modified algorithms are referred to as a depth: first spanning tree and
a breadth first spanning tree, respectively.

There are many uses for spanning trees. For example, consider

210

{a)

Graph

Figure 7.12
Graph and spanning
trees.

7 Graphs and Digraphs

A B A B A B
D C D c D C
(b) () (d)

Spanning trees

B ={BC, BD, DC} B ={AC, AD, BD} B ={AC, BC, BD}

implementing a broadcast facility for a communications network.
A spanning tree could represent the set of paths required to ensure
that a message will be transmitted to every node in the network.

Minimal Spanning Trees

Extending the preceding example, we could add weights to the graph
representing our communication network. The weights could be used to
represent the cost of sending a message between any two nodes. If
we anticipated using the broadcast facility extensively, it would

be to our advantage to analyze the structure of the network to deter-
mine a broadcast path of minimal cost. If we define the weight of a
spanning tree as the sum of the weights of its component edges, then
what we need to determine is a spanning tree of minimal weight. We call
this a minimal spanning tree (MST). Note that a weighted graph may
have more than one MST.

MST Construction

The construction of an MST begins with the selection of an initial
vertex. We then repeatedly add to the tree edges of minimal weight until
all vertices in the graph are represented. At any given moment during

1.4 Spanning Trees 211

Edgesin Sy Edgesin S

-]
- -——--eJ
L - oK
Vertices in §; Vertices in S, Vertices in S3

Figure 7.13
Minimal spanning tree
construction.

the construction, the edges and vertices are partitioned into three dis-
joint sets:

Set §; The set of vertices and edges already part of the MST

Set 8, The set of vertices (and incidental edges) adjacent to the
vertices in). Specifically, each vertex in §, connects to a vertex
in 8 via an edge of minimal weight. In other words, a given
edge in §, might be adjacent to more than one vertex in §; the
§, set contains the incidental edge of minimal weight. We
will select the next member of §; from this set.

Set §; All the remaining edges and vertices.

The function constructs the MST one edge at a time; it terminates
as soon as all vertices are in §,;. Edges are considered for inclusion into
§; (from §)) in order of increasing weight, and only if they do not
create a cycle in the MST. Figure 7.13 depicts an intermediate
point in the processing of an MST; Listing 7.4 presents a pseudo-
code description of the algorithm. (Note that for programming conven-
ience, we have divided each § set into companion v and ¢ sets.)

The algorithm functions as follows (see Fig. 7.14):

212 1 Graphs and Digraphs

mst(G)

{

1: 81 = {i}: /* Starting point */
83 = V(G) — vl1; /* Remove 1 from S3 */
s2 = {}; /* Null set */

2: while(vl !'= V(G)){
forall(j in v2 adjacent to i)({

3: /*
* W(x, j) == weight of edge x
* incident to j in 82. Vertices
* in S2 may be adjacent to more
* than one S1 vertex. We must find
* the edge of minimal weight.
*/
if(w(i, j) < w(x, j)){ /* Adjust S2 set */
e2 = e2 — (x, v);
e2 = e2 + (i, 1i);
}
}
4: forall(k in 83 adjacent to i){ /* Adjust S3 set */

v2 = v2 + {k}; v3 = v3 — {k}:
e2 = e2 + (i, J):

}

5: if(e2 == {})
return(NO_SPANNING_ TREE);

6: e = MIN(e2); /* Select edge w/ min weight */
7: i = vertex(e); /* Set i = the v2 vertex of e */
8: /* Adjust sets */

el = el + e;

e2 = e2 — e;

vli = vl + i;

v2 = v2 - i;

}
}
Listing 7.4

MST algorithm—pseudo-code description.

7.4 Spanning Trees 213

B 16
H
10
A <’
16
12
1 i
D 18 |
Weighted graph
(a)
o0 . —eB B [| B
— o
A
%EL oE A | I
O —
D TeD
Si _ S, Sy S
After first pass After second pass
(b) (c)

Note: Shortest edge AB added to . Edge AE is replaced by edge BE in Ss

Figure 7.14
Operation of MST
algorithm.

1. Variables are initialized. i represents an arbitrary vertex where
we will begin construction of the MST. (We could obviously modify
the function to receive this value as an argument.)

2. The while loop iterates until the v1 set is equal to G. (That is,
until all vertices are included in the spanning tree).

3. The algorithm adjusts the v2 set with respect to 1 . At this point,
i represents a vertex that has just been moved into the v1
_set. The function must therefore adjust the v2 set to ensure that
it contains all vertices in G adjacent to vertices in v1.

214

7 Graphs and Digraphs

4. After adjusting the v2 set, the function must also update the
v3 set.

5. If, at this point, e2 is empty, G has no spanning tree and the
function returns to its caller.

6. In this step, the function selects the e2 edge with minimal weight
for inclusion into the MST.

7. This step determines the v2 vertex of the selected edge.

8. Adjust the S and S, sets.

Figures 7.14b and 7.14c illustrate the first two passes of the algo-
rithm when processing the graph of Figure 7.14a. Note that after the
second pass the shortest edge AB was moved to the §) set and that
BE replaced AB in §,.

Analysis

An analysis of the algorithm shows that the critical steps are 3, 4, and

6. Assuming # = |V| and m = |E|, the total time required for steps 3 and
4 is O(m). However, in the worst case, step 6 might require » — 1
comparisons, and because it will execute # times (step 2), the overall
complexity becomes O(#?).

Implementation

There are several operations in the MST that are critical to its perfor-
mance. The function must

* Determine to which set a given vertex belongs
* Access all members of the v2 set

 Determine the v1 component of a vertex in v2
* Reference the weight of each edge
 Reference the adjacency list for a given vertex.

Keeping the foregoing criteria in mind, we see that Listing 7.5
contains data structures suitable for implementing the MST algo-
rithm. We represent each vertex as an entry in a structure array of
type mst_graph. The field, set, identifies the set to which the
vertex belongs (initially §;). For values of 1 or 2 (indicating inclusion
in either S, or §;), vinode contains the node’s adjacent vertex and weight
contains the weight of the incidental edge. When the algorithm termi-.

15 Shortest Path Algorithm

215

int s2list = -—1; /* Head ptr for V2 list */

struct nadj_ list {
int node; /* ID of adjacent node */
int weight; /* Weight of incident edge */
struct nadj_list *next;/* Pointer to next element */

};

struct mst_graph { .
int set; /* 81, 82, or S3 */
int s82link; /* Points to next S2 node */
int vlinode; /* V1 node of an (El, E2) edge */
int weight; /* Weight of El or E2 edge */
struct mnadj_list *adj; /* Pointer to adjacency list */

} graph[MAX NODES];

Listing 7.5
MST data structure.

nates, we can determine the edges that are part of the MST by indexing

through the structure array and printing: (i, graphl[i].vinode).
The adjacency list for each vertex is headed by the member adj,

which points to elements of type struct nadj_1list. The remaining

field, s21ink, provides quick aécess to vertices in the S, set. It forms

a linked list headed by s21ist. Figure 7.15 depicts the state of

the data structure when processing the graph in Figure 7.14c. (Note

that, for the sake for brevity, the adjacency lists are not included.)

The final implementation of the algorithm is discussed in the exercises

at the end of this chapter.

1.5 SHORTEST PATH ALGORITHM

Another common problem associated with graphs is determining the
shortest path between two vertices. As you may recall, the weight of a
path is the sum of the weights of its edges. We will define the shortest
path as the path of minimal weight connecting two vertices.

‘The direct approach to this problem is to write an algorithm that

216

Figure 7.15
State of data structure
for Figure 7.14c.

7 Graphs and Digraphs

SAVE
A 1 - £ * S
B 1 - A 10 --
C 2 A n —ee
D 2 —1** A 12 e
E 2 C B 4 -
F 3 - - - v
G 3 - - - e
H 2 E B 16 el
Sy List=H
* Root node
** End of list

enumerates all possible paths between two vertices, and then se-
lects the one of minimal weight. This approach, however, is inefficient.
(Consider the number of paths connecting any two nodes in a
complete graph.) Alternatively, we will design a solution that functions
in much the same manner as the MST algorithm. In short, it will
begin at some point v, and create minimal paths of increasing magni-
tude until it reaches the destination vertex vj.

As with the MST algorithm, edges and vertices be partitioned
into three disjoint sets:

81 The set of vertices (and connecting edges) for which a shortest
path from v, to some intermediate vertex has been found

S, The set of vertices (and incidental edges) that are not yet part of
the path but which are adjacent to vertices in ;. As with our
MST function, each vertex in §; is connected to a vertex in &
via an edge of minimal weight.

§; The remaining edges and vertices of the graph.

As the function executes, it must repeatedly select an §, vertex for
inclusion into the §; set. At first glance, it might appear tempting
just to choose the §, vertex of minimal weight. However, keep in
mind that we are trying to build the shortest path, not the shortest
edge. Thus, the selected edge is the one that minimizes the following:

weight (vy, v;) + weight(v;, vg) for all edges (v;, vp) in §;

75 Shortest Path Algorithm 217

where weight(v,, v;) represents the weight of an edge in S, and weighA(v;,
vp) represents the weight of the edge of an adjacent vertex in 5.

Figure 7.16 shows an example of how the algorithm functions.
Given the state depicted in Figure 7.16b, the next edge selected will be
MC (even though BD is shorter). This is because AMC (weight value
of 12) is shorter than ABD (weight value of 14).

After moving MC into S, we must reorganize the sets as depicted
in Figure 7.16¢c. Note that AF was considered for inclusion into S, but
was supplanted by CE.

Listing 7.6 presents a pseudo-code description of the Shortest
Path algorithm. A careful review of the code should prompt the
question, How does it work? The function actually constructs and
maintains multiple paths until it determines the one that ultimately passes
through the destination vertex. During any given iteration of the
while loop, the algorithm selects, and will add an edge to, the
shortest path currently contained in §).

But, you may ask, what if that path does not pass through destina-
tion vertex? If you consider this problem carefully, you will observe
that, as we continue to add edges to that path, it will eventually become
larger than other paths contained in §;. Thus, during a subsequent iteration
of the loop, the function will select some new, smaller path for proc-
essing. Eventually one of the paths will include an edge incident to the
destination vertex and the algorithm will terminate. The exercises at
the end of this chapter discuss the implementation in more detail.

218 7 Graphs and Digraphs

il - C

10

Sz SE
__Intermediate step.
Note that MC will be the next edge selected.
{b)

Figure 7.16 Sy S,
Example of Shortest Reorganization after step B.
Path algorithm. (e}

715 Shortest Path Algorithm

sp(G, b, e) /* Shortest path from b to e */
{

vl = {b};

i = b;

w(i) = 0;

v = V(G) — vi;

v2 = {};

el = {};

e2 = {};

while(i !'= 3e)({ /* Until destination */

forall(j adjacent to i)({

if(j§ in v2 AND W(i) + W(Jj) < w(b, J)){
/* Replace edge */
e2 = e2 — {x, j};:
e2 = e2 + (i, 3 I¥;
}
if(j in v3){ /* Move into v2 */
vdi = v3 — jJ;
v2 = v2 + j:
e2 = e2 + {i, j};
}
}
if(v2 == {}) /* No spanning tree */
return(NO_PATH);
X = MIN PATH(e2);
v, = v, — X; /* Adjust sets */
v, = v; + x; /* Remove x from v, */
i = x; /* AGd x to v; */
}
}
Listing 7.6

Shortest Path algorithm—a psuedo-code description.

219

SUMMARY

EXERCISES

7 Graphs and Digraphs

Graphs are powerful data models that we can use to solve a wide
variety of problems in mathematics and computer science. They have
been in existence for many years and have developed a unique and
extensive nomenclature.

In computer programs, graphs are usually implemented using either
adjacency lists or adjacency matrices. A basic requirement of all
graph algorithms is a traversal method. The two most common are
called depth first and breadth first traversals.

We can add weights to edges in a graph. This imbues graphs with
even more functionality. T'wo common problems associated with
weighted graphs include generating a minimal spanning tree and find-
ing the shortest path between two vertices.

1. Write routines that insert and delete edges in a graph implemented
using an adjacency matrix. Do the same for a digraph. Com-
pare/contrast implementation differences.

2. Repeat exercise 1 using adjacency lists.
3. Draw a complete graph with seven vertices.

4. Apply both DFS and BFS traversals to the graph of exercise 3.
Using the same beginning vertex for each traversal, list the order in
which the vertices are visited.

5. Write algorithms to calculate the indegree and outdegree for
any given node in a graph. Assume an adjacency list
implementation.

6. Rewrite both the DFS and BFS traversal functions using an adja-
cency matrix.

7. Show that when we perform a DFS or a BFS traversal on a con-
nected graph, the resulting edges form a tree.

8. Write an algorithm that determines whether a given graph is a
tree. (Do not assume a connected graph.)

9. What is the maximum number of paths between two vertices in
a complete graph?

10. Design and implement a function that computes all spanning trees
for a given graph. What is its complexity?

11. Implement the minimal spanning tree algorithm. Test with several
graphs/paths.

Pregal

River

Figure 7.17
The Koenigsberg
bridges.

15

Shortest Path Algorithm 74

Bridges

rd

12.

13.

14.

15.

Implement the Shortest Path algorithm using the data structures
from the previous exercise. T'est your program using several graphs/
paths.

What is the complexity of the function conn_graph () (see List-
ing 7.3)?

Write a function that computes 4/ the connected components of
a given graph. (Hins: Extend the function conn_graph().)

Consider the diagram in Figure 7.17. It depicts a section of a town
in East Prussia called Koenigsberg. The river Pregal flows
around the island Kneiphof and then splits in two. This forms the
four land areas that are connected by the seven bridges.

Your problem is to determine whether it is possible to begin
and end a walk at the same spot while crossing each bridge exactly
once. (Swimming is not a viable option.)

This problem was originally solved——using a graph—in 1736
by the mathematician Euler and became known as Euler’s Walk.
Euler used vertices to represent the land areas and edges to repre-
sent the bridges.

Copyrighted Materials

Copyright © 1994 Oxford University Press Retrieved from www.knovel.com

Searching

C H A P T E R

222

8.1 INTRODUCTION

In this chapter we examine efficient methods to search for information.
Searching is a common task in our everyday lives: We look up
telephone numbers in a directory; locate words in a dictionary; deter-
mine if we are free for an appointment on a given day; the list is endless.
Searching is also a common task in computer applications; it can also

be one of the most time-consuming. As a result, it is to our advantage to
do it as efficiently as possible.

Before we begin, we should introduce some terminology. In a
computer program, searching is the task of locating a particular
record within a collection of records. Records are composed of one or
more fields or elements. For example, an employee record might include
fields for name, address, and social security number, among others. A
collection of records is commonly referred to as a zable.

Records are usually identified by one of their fields called the 4¢y.
Keys are usually exclusive; this implies that each key uniquely identifies
one record. Records may also have more than one key. For example,
an employee table may be keyed on both social security number
and last name. In such cases, we may initiate searches using either

8.2 Sequential Searching

int seq srch(int datall, int size, int key)

{
int i;
i = size — 1; /* C arrays have a 0 offset */
while(i >= 0 && datal[i] != key)

i—m—;

return(i);

}

Listing 8.1

Sequential search.

key. We need not store records in any particular order, but, as we
will see, if we sort tables by key, we can increase the efficiency of
some searching algorithms.

To simplify our examples, simple integer arrays will serve as our
data records. Each element in the array will represent one key.
Please keep in mind, however, that we can apply all the principles
we will discuss to larger, more complex record formats.

messssssnemes 8.2 SEQUENTIAL SEARCHING

The simplest and most direct approach to this problem is the exhaus-
tive or sequential search. Given an unsorted table of records, we can
write a function that scans an entire table, one record at a time, search-
ing for a given key. Listing 8.1 contains an example.

The function, seq_srch (), requires three arguments: key is
the search key, datal] is the table, ar_ld-' size indicates the
number of entries in the table. The algorithm begins its search at the
end of the list and iteratively compares each record with key until
it either finds a match or exhausts all possibilities. In the former case,
it returns the index of the record; in the latter case it returns the
value —1.

224

8 Searching

Complexity We will partition the discussion of this algorithm’s
complexity into two parts. For a successful search, the number of
comparisons depends on the position of the key within the table.
Assuming an equal probability for all keys, the average number of
comparisons in a successful search will be

1+2+3+---+n=n+1
n 2

or roughly O(#/2). If the desired key is not in the table, the function
performs # comparisons. The following sections discuss improvements
to this basic algorithm,

8.3 SEARCHING ORDERED TABLES

Before we introduce our first refinement, let’s observe how humans
search for information. For example, consider how we might look up the
word processor in the dictionary. We would not begin at the A’s and
scan every entry (as suggested by the preceding algorithm). Rather, using
the thumb tabs, we would begin our search at (or near) the P’s. None-
theless, we know intuitively that we will not overlook our word when we
skip past the earlier entries. Why? Because words in the dictionary
are ordered (sorted). We can apply this same principle to improve

the performance of our basic searching algorithm. (Chapter 9 will
discuss sorting methods in detail; throughout the discussions in

this chapter, we will assume that our tables have been sorted.)

Ordered Linear Search

Assuming an ordered table, the first improvement we can make to
seq_srch() is to terminate the search whenever data[i] <

key. That is, we do not have to search the entire table to determine
that a key is not present. We can terminate the search as soon as

we reach a point where the remaining data values are less than the
search key. An example algorithm, seq_srch2(), is presented in List-
ing 8.2.

Complexity The discussion of complexity again assumes that all keys
are equally likely. For a successful search, the performance of

8.3 Searching Ordered Tables 225

#define NOT_FOUND —1
int seq srch2(int datall, int size, int key)
{
int i;
i = sgize — 1;
while(i >= 0 && datal[i] != key)
if(datali] < key) /* Terminate Early */
return(NOT_FOUND);
else
i—-—;
return(i);
}
Listing 8.2

Modified sequential search algorithm.

seq_srch2 () remains the same (i.e., O(»/2)). We have, however,
improved—by half—the time required to determine that a given key is
not part of the table.

Indexed Sequential Search

Our next improvement increases efficiency at the expense of additional
space. This method, referred to as an indexed sequential search, uses a second
table, called an sndex, to point to entries in the main data table. See
Figure 8.1 for an example.

The index array effectively partitions the main data table into
subarrays. If there are 7 entries in the index, and size elements in
the main data table, then each index entry represents a subarray of
size/n elements in the main table. Note that the entries in both
tables must be ordered by key.

The idea behind this algorithm is very simple. The function begins
with a scan through the index array searching for the case where

index{i] <= key < index[i-+1]

226

Figure 8.1
Indexed sequential
tables.

8 Searching

Main table

That is, the function scans the index to determine which subarray in
the main table would contain key (if it exists). It then uses the

value stored in index[1] as the point at which to begin a sequential
search of the main table. Note that, as the function scans the index, it is
skipping over large chunks of the main data table. An example algo-
rithm, indx_seq(), appears in Listing 8.3.

The function indx seq() begins with an initial test to deter-
mine whether its key argument is smaller than the smallest key in the
data table; if it is, the function immediately returns the value
NOT _FOUND to indicate an unsuccessful search.

The first while loop scans the index to determine in which
subarray of the main data table key would reside. The index,
idx[1], is an array of type struct index. This structure contains
two members: val is the key value each index element represents;
slot is an index that points into the main data table.

After scanning the index, indx_seq() invokes seq_srch2 ()
to search the main table. The function calculates the boundary limits of

8.3 Searching Ordered Tables 221
#define NOT FOUND -—1
struct index {
int wval;
int slot;
};
int indx_seq(int key, struct index idx[], int idx_size,
int datal[]l, int data size)
{
int i, size, ret;
if(key < idx[0].val) /* Initial test for bad key */
return(NOT_FOUND);
/*
* Scan index for key
*/
i=0;
while(i < idx_size && key >= idx[i+1].val)
i4++4;
/*
* Determine segment size
*/
if(i == idx size—1) /* i points to last slot */
gsize = data_size — idx[i].slot;
else
size = idx[i+1].slot — idx[i].slot;
/*
* Scan data table
*/
ret = seq srch2(&datal idx[i].slot], size, key);
if(ret >= 0)
ret = ret + idx[i].slot;
return{ ret);
}
Listing 8.3

Indexed sequential search algorithm.

8 Searching

the subarray based on the values contained in the index. Note that

the arguments we pass to seq_srch2 () only delineate the subarray that
we want it to search. As a result, if the search is successful, the function
must add the slot offset contained in the index to the value returned

by seq_srch2().

Complexity The efficiency of this algorithm is a function of the size of
the index. As we decrease the size of the index array, we increase the
size of the sublists each index entry represents; this, in turn, increases
the size of the sublist that we must search in the main table. Increasing
the size of the index results in an increase in the number of
comparisons required to search the index itself. In general, if 4
represents the size of the index and # represents the size of the table,
the complexity of this method is

£, ok
0<z+2)

If the index begins to grow so large that it becomes inefficient, we
can use a secondary index. A secondary index functions in much the
same manner as a primary index except that it points into the primary
index, not the main table. Searching begins with a scan through the
secondary index; this points us to a subarray in the primary index, and
then processing continues as described earlier. An example of such a
data structure appears in Figure 8.2.

Binary Search

As highlighted in the previous section, searching algorithms perform
fewer comparisons if they can skip over some elements. We can extend
this idea to the point where we can eliminate half of the remaining
list with each unsuccessful comparison. We call this technique a

binary search.

We begin a binary search by comparing the search key with the
middle entry of an ordered table. If they match, the function
returns the index of this element. Otherwise, processing continues
using either the lower or upper half of the table (depending on the value
of the key). In essence, we eliminate half the table with only one

Figure 8.2
Secondary index.

8.3 Searching Ordered Tables 229

Key Data

Key pointer

Secondary index

Primary index

Main table

comparison. This is the most efficient method of searching an ordered list
without the use of additional tables or indices.

An example binary search function, binsrch(), appears in List-
ing 8.4. The variables upper and lower delineate the portion of the
array that the function has not yet searched. Initially, their values are
set to the upper and lower bounds of the array. The value stored in the
variable middle is the index of the middle entry of the current sublist.
With each iteration of the while loop, the function compares key with
data[middle]. Based on the result, binsrch () either returns the
location of key in the table or adjusts its index variables accordingly. If
the function fails to locate key, it returns the value NOT FOUND,

Complexity The complexity of binsxrch () is not as obvious as some
of the other algorithms we have been discussing. To begin our analysis,

230

Listing 8.4
Binary search
algorithm.

8 Searching

#define NOT_ FOUND —1

int binsrch(int data[], int size, int key)
{

int lower, middle, upper:
lower = 0;
upper = size — 1;

while(lower <= upper){

middle = (lower + upper) / 2;

if(key == datal[middle])
return(middle);

else if(key > dataimiddle])
lower = middle + 1;

else
upper = middle - 1;

return(NOT FOUND);

notice that if the function fails to locate a key during the first iteration
of its loop, it divides the list in half and repeats the process. At this
point, we can compute the performance of the algorithm as 1 (the cost
of the first comparison) plus the cost of processing the remaining half.
This is best expressed by the formula O(1 + O(#/2)) (where # repre-
sents the number of elements in the table).

We can compute the cost of a failed second pass in much the same
way: 1 plus the cost of processing half the remaining entries. Note that
at this point, half the remaining entries is equivalent to one fourth of
the array or #/4. The total complexity at this point is O(1 + 1 +
O(n)/4).

We can continue in this manner building each seccessive term. In
other words, with each failed iteration, we add 1 to our formula and
divide # again by the next power of 2. However, this formula does not
provide a definitive complexity. That is, it defines the value of O(#) in
terms of #. This is an example of a recurrence relation.

8.3 Searching Ordered Tables 22

We can define a recurrence relation as

an equation or inequality that relates the value of a function on successively smaller
values of the function.

A recurrence relation does not adequately describe the complexity of
an algorithm. That is, to be useful, we must define complexity in a way
that does not express f(#) in terms of #. Thus, we must transform the
recurrence relation into its equivalent closed form. In closed form,
we evaluate a function f(z) without referring to other values of #.

We begin the transformation of a recurrence relation by examining
its boundary conditions. A boundary condition yields a definitive
value for a particular function argument. In our example, if » = 1,
then f(1) = 1. Thus, we now have two formulas that describe
the relation:

) =1

f)y =1+ f(g)

Now let’s expand the second formula:

”n
1+f<§)
1+1+f(%)

1+1+1+f(%>

I

f(n)

Note that as we add each new term, we divide » by the next
power of 2. Relating this back to the binary search algorithm, each term
in the formula corresponds to a failed comparison. Therefore, for an
array of size », there will be (in the worst case) approximately log,(»)
terms, each of which has a complexity of 1. This yields a final closed
form of

f(n) = logy(n) + 1

The additional 1 term is to compensate for the fact that, in general,
log,(#) might not compute to an even integer. As a result, a binary

8 Searching

search function might perform one additional comparison. 'Thus, this
yields a complexity of O(log, 7).

Modified Binary Search

There is an interesting variation of the binsxch () algorithm. Instead

of using—and computing the value of—three variables, we only
require the use of two: one to track the current position in the array
(middle), and a second to track a rate of change (delta). The

idea is that after each unsuccessful comparison, the algorithm will
apply the value in delta to middle to compute the next slot;

it then divides delta by 2. The direction of the change is reflected

as a positive or negative value for delta. The algorithm binsrch2 ()
is presented in Listing 8.5.

Interpolation Search

There is another interesting variation on the binary search algorithm.
In this version, we try to guess more precisely where the search key resides
in the array. Before we describe the method in detail, let’s again
consider how we look up words in a dictionary. If the word we are searching
for begins with a @, we begin our search near the end of the book; if
the word begins with a ¢, we search near the front. In short, we
begin our search near the location where we expect to find our word.
We call this technique an inferpolation search.

We can simulate an interpolation search in a computer program
with a small modification to our binary search algorithm. Instead
of simply calculating middle as

(lower + upper) / 2

we instead estimate the location of the record based on the search
key and the current lower and upper bounds of our array. The
formula we use is

(#ey — datallower]) X (upper — lower)
(datalupper] — datallower])

middle = Jower +

Listing 8.5
Modified binary
search.

8.3 Searching Ordered Tables 233

#define HALF (x) (((x)+1)72)
#define NOT FOUND —1

int binsrch2(int data[l, int size, int key)

{
int delta, middle;

delta = size / 2;
middle = delta;
while(key != data[middle])({
if(delta == 0)
return(NOT_FOUND);
else if(key > data[middle])
middle += HALF(delta):;
else
middle —= HALF(delta);
delta = delta / 2;

return(middle);

In essence, we are weighting our formula so that the new value of
middle will be closer to the expected location of our key.

For example, suppose that a data array contains the values 1, 2,
3,..., 10, and that the search key is the value 8. The basic binary search
algorithm would compute middle as

lower + upper 1 +10 11

middle = 2 2 7 = 5.5

An interpolation search computes middle as

(#ey — datallower]) X (upper — lower)
(data(upper] — datallower])

(8—1)><(10—1)=
(10 - 1)

middle = lower +

I

8

=1+

234

8 Searching

Even though the calculation is somewhat more complex, an inter-
polation search can provide a significant improvement over a binary search
for large datasets with evenly distributed keys.

Fibonacci Search

As we have observed, a binary search algorithm divides the data array
in half with each loop iteration. Now let’s consider another way
to partition the dataset using the Fibonacci sequence.

To begin our discussion, assume that the size of our data array is
some Fibonacci number F(#). Our search algorithm will make its first
comparison using element data[F(n—1)]. There are three possible
results:

key = dara|[F(n—1)] The search is successful and the function returns
the index of the record.

key < datalF(n—1)] The key, if it exists, resides in the subarray
indexed from lower to datalF(n—1)] — 1. The next comparison will
use element data[F(n—2)].

#¢y > datalF(n — 1)] The key, if it exists, resides in the subarray
indexed from datalF(n—1)] + 1 to datalF(#)]. Note that the
size of this subarray, F(#) — F(z—1), is also a Fibonacci number.
The next comparison will use element datw[F(n—-1) +
F(n—3)].

The advantage of this technique is that the algorithm uses only
addition and subtraction rather than the division called for in a binary
search. Thus, a Fibonacci search might outperform a binary search on
machines where division is significantly slower than addition.

The only practical item we have not addressed is the (likely) event
that the size of the array is not an exact Fibonacci number. We
can overcome this problem by adjusting our index variable before the
first iteration of the loop. The complete algorithm appears in Listing 8.6.

Note that the function fibsrch () requires the help of a routine
to compute Fibonacci numbers. The code for this function, called
fibnum (), is presented in Listing 8.7.

8.3 Searching Ordered Tables

235

#define NOT_FOUND —1

int fibsrch(int data[], int size, int key)

{

int tmp, index, adj, fmin2, £fmin3;

tmp = fibnum(size);
adj = size — fib(tmp);
index = fib(tmp-1);
fmin2 fib(tmp—2);
fmin3 fib(tmp—3);

if(key > datal[index]) /* adj for size
index = index + adj;

while(index >= 0 && index < size){
if(key == datalindex])
return(index):
else if(key < datalindex]){

1= fib numb */

index = index — fmin3;
tmp = fmin2;
fmin2 = fmin3;
fmin3 = tmp — fmin3;
} else {
index = index + fmin3;
fmin2 = fmin2 — fmin3;
fmin3 = fmin3 — fmin2;
}
}
return(NOT FOUND);
}
Listing 8.6

Fibonacci search.

236

Listing 8.7
Compute a Fibonacci
number.

8 Searching

int fibnum(int num)
{
int i, p, qQ, tmp;
if(num == 0)
return(0);
if(num == 1)
return(1);
p = 0;
qa=1;
for(i = 1; p+q <= num; i++){
tmp = q;
q += p;
P = tmp;
}
return{ i);
}

Binary Tree Searching

As you may recall, in Chapter 6 we discussed the construction of an
ordered binary tree (OBT). An OBT has the property that for a
given node #, the data values contained in its left subtree are less than
data(n) and the data values contained in its right subtree are greater
than data(n).

Once the tree is constructed, we can search for keys in an OBT
in a straightforward manner. Compare the search key with the data value
stored in the root node; if they are equal return. If Zey < data(roos),
traverse the left subtree; otherwise, traverse the right subtree. Recursively
reapply this logic until you either locate the desired key or encounter
a terminal node. In the latter case, the function returns a value indicating
that it could not locate the key.

Listing 8.8 contains the code for the algorithm treesrch(). A
brief inspection will show that it is very similar to the traversal

Listing 8.8
Ordered binary tree
search.

83 Searching Ordered Tables 237

struct bt_node {
int data;
struct bt_node *1lchild;
struct bt_node *rchild;
};

struct bt_node *
treesrch(struct bt_node *node, int key)

{

if(node == NULL)
return(NULL);
else if(key == node—>data)

return(node):
else if(key < node—>data)

return{(treesrch(node—>1lchild, key));
else

return(treesrch(node—>rchild, key));

algorithms discussed in Chapter 6. The function assumes that its search
tree was constructed using an insertion algorithm similar to the
one presented in Listing 6.5. Upon success, it returns a pointer to the
matching node; otherwise it returns the value NULL.

Complexity The complexity of this algorithm depends on the shape of
the search tree. For a full or complete binary tree, we can expect an
O(log,) complexity (where # represents the number of nodes in the
tree). However, as noted in Chapter 6, insertion algorithms can produce
skewed trees. (This typically occurs when the insertion routine receives
keys in relatively sorted order.) Thus, in the worst case, complexity can
degrade to O(#) (linear). In practice, however, keys are usually random
enough that we may expect a fairly balanced tree. This fact, combined
with its relatively easy implementation, makes treesrch() the
algorithm of choice for many applications.

238

8 Searching

— 8.4 HASHING

The searching techniques we have discussed thus far share one com-
mon attribute: Their efficiency is inversely proportional to the
number of comparisons they perform. As highlighted in the preceding
sections, as we eliminate comparisons, we improve the perfor-
mance of the algorithms.

There is, however, another way in which we can improve the
performance of searching algorithms. Consider a scenario in which the
keys themselves point directly to records. That is, information encoded
directly within a key can point us to its associated record. Thus, we would
no longer require multiple searches to access a record; rather, we could
simply examine the key and #zow where to look.

We can effectively achieve this capability using a technique called
hashing or scatter storage. With hashing, we determine the location
(or address) of a record by performing an arithmetic computation on
its key. The result of this computation (called a Aashing function)
yields the location of the record in a table (called a Zask table). Specifi-
cally, a hash function maps all possible key values into specific slots in
the hash table. Once we store a record in the table, we can retrieve
it using the same process. That is, the hashing function we use initially
to insert keys into the hash table is the same one we use to search
for records later.

Hash tables are sequential and contiguous. Each slot in the table
is called a ducket. The contents of buckets can either be the record
itself or a pointer to where the record actually resides (out on disk,
for example). The latter is a common approach used by many
professional database management systems. Buckets may hold (or
reference) more than one key.

Although, as we will see, there are some difficulties that we must
address, the justification for studying hashing techniques should be obvi-
ous. Hashing allows us to search and retrieve records quickly and
efficiently.

Simple Hashing Example

As alluded to earlier, there are several concerns we must address. The
best way to highlight them is by way of example.
Let’s assume we have to build an application that supports a

8.4 Hashing 239

#define DIGIT1 5
#define DIGIT2 6

int hash_tel(char tel number[])

{
int digitl, digit2;
digitl = tel number[DIGIT1] — ‘0’; /* Convert to int */
digit2 = tel_ number[DIGIT2] — ’0’; /* Convert to int */
return(digitl*10 + digit2):
3
Listing 8.9

Hashing function.

customer service department for some company. To simplify the operation,
for both representatives and customers, we will key account records
by telephone number. Thus, when answering a call, the service
representative will retrieve account information by entering the cus-
tomer’s telephone number into the system.

Because access time is important to us-——we do not want customers
to endure a long wait while the system retrieves their account
information—we will use a hashing-based solution. Specifically, we
will hash on the right-most two digits of the customer telephone
number. Because our hash function can only return values in the range
of 0 through 99, we build a hash table with 100 buckets. Thus, our first
hashing function might be similar to the one presented in Listing 8.9.

The day finally comes and our application cuts live: We enter our
first customer, 5551024, into slot 24 of our table. We then enter
our second customer, 5552048, into slot 48. The application continues
along quite smoothly until the day customer 5554048 calls to open an
account. We then realize that our hashing function is not perfect. That
is, the function maps keys 5552048 and 5554048 into the same bucket.
"This is called a collision. A collision occurs whenever a hash function
maps two distinct keys to the same bucket.

As simple as this example might seem, it highlights some of the
more important issues surrounding hashing:

8 Searching

* Hashing functions must generate bucket addresses quickly. If the
hashing algorithm is too inefficient it will overshadow the
advantages this technique provides, and we would likely use one
of the other searching techniques discussed in this chapter.

« Along with being efficient, our hashing function should minimize
the number of collisions that might occur. That is, we would
like the algorithm to distribute keys evenly throughout the entire
hash table.

* Regardless of the type of hashing function, we will likely experi-
ence collisions because the domain of keys is usually larger than the
number of buckets we can (or wish to) allocate in our hash table.

The following sections address these concerns in more detail. We
will begin by discussing collision resolution and then continue
with a discussion of efficient hashing functions.

Collision Resolution Strategies

As mentioned earlier, a collision occurs whenever a hashing function
maps two (or more) distinct keys into the same bucket. Regardless of its
relative sophistication, a hashing function will likely generate its share

of collisions. The main reason is that the size of the key domain

is typically larger than we can (or want to) make the hash table. For
example, we probably could not allocate enough buckets for all potential
accounts if we did index customer records by their complete tele-
phone numbers.

Theoretically, we could develop a hashing function that guaran-
tees a one-to-one mapping of keys to buckets. However, it will likely
negate one of the major advantages of hashing: speed.

Thus, because it is effectively a foregone conclusion that collisions
will occur, our only recourse is to develop methods to resolve them.

In the sections that follow, we will discuss two important collision
resolution strategies: chaining and open addressing.

Chaining
Separate Chaining

Stated simply, the problem with collisions is that the hash function
maps more than one key to the same bucket. A direct solution to the

84 Hashing 24

/Hash Table (HT)

I
- I I - |

J |
4 P Stein 1Data .—>.——* I<ueh|ewe\'n
J |

6.-—4 Bowman 1Data
d |

%

» I I I I
28 -

] |

» I I T

31 .

Figure 8.3
Hash chains.

problem is to allow buckets to hold more than one key. We can
effectively accomplish this by employing a technique called
chaining.

With chaining, hash table slots do not hold data; rather each cle-
ment in the table is a pointer to a linked list. Thus; if our hashing
function maps two (or more) keys to the same bucket, we just insert
them into a linked list.

An example of this technique is depicted in Figure 8.3, wherein
we use chaining to resolve collisions in an employee database. The hashing
algorithm is based on the hire date of each employee. Specifically, the
hash function returns the day of the month each employee was hired.

242 8 Searching

struct hash node {

int data; /* The data we need to store */
char key[MAX KEY]; /* The ’‘key’ for this record */
struct hash node *next; /* Ptr to next node in chain */

};
struct hash node *hash_table[HASH_SIZE];

struct hash node *get_hash(char *key)

{
int glot;
struct hash _node *first_elem;
slot = hash function(key);
first_elem = hash table[slot 1];
return(mod_ seq_srch(first_elem, key));
}
void ins hash(struct hash_node *new elem)
{
int slot;
slot = hash_ function(new _elem—>key);
new_elem—>next = hash table[slot];
hash table[slot] = new elem;
}
Listing 8.10

Example chaining functions.

"Thus, if we hired another employee on the second day of some month,
we would insert the new individual’s record in the chain currently
headed by the clement Smizh.

Listing 8.10 contains examples of some routines that manage
chained hash lists similar to the one presented in Figure 8.3. Central to
this algorithm is the structure hash_node. Its members include key
and data fields, as well as a link field that points to the next element in
the chain. Note that a definition for macro, MAX KEY, is application
dependent.

84 Hashing 243

The hash table, hash_tablel[], is an array of pointers to
hash_node structures. In effect, each element in the array is a head
pointer for a linked list. We defer the discussion of appropriate
values for the macro HASH_SIZE until we discuss hashing functions
later; for now, just assume some reasonable size.

The function ins_hash() inserts new elements into a hash
chain; the slot is determined by a call to the routine hash_function().
(We will discuss hashing functions in detail later in this section.) We
have omitted a complementary deletion function; its implementation is
similarly straightforward and is left as an exercise for the reader.

The function get_hash () returns a pointer to an existing hash
element determined by its one argument. Note that it uses a
modified version of a sequential search routine—called
mod_seq_srch()—to scan the chain. This version performs an ex-
haustive search on a linked list, rather than an array; it returns either a
pointer to the matched element or the value NULL, signifying a failed
search. Its implementation is also left as an exercise.

Complexity To simplify our discussion of the complexity of chaining,
let’s define the term probe to denote every reference we make to our
hash structure. For example, we require three probes to access the
record Jones (Fig. 8.3): one to select the list pointer (slot 2), and two
additional probes for list elements (one each for Smith and Jones). In a
similar manner, referencing the record Tarzaro requires two probes, and
Parisio requires four probes. For a given hash structure, the time we
need to process a query will be proportional to the number of probes it
requires. As a result, we will use probe count as the metric for
measuring hashing complexity.

Assume that the only records currently in our employee database
are the 11 that are represented in Figure 8.3. We can begin to compute
the average number of probes by noting that there are

» Five chains that require at least two probes (all non-empty chains)

* Four chains that require at least three probes (chains 2, 4, 27,
and 30)

» T'wo chains that require at least four probes (chains 4 and 27).

244

8 Searching

Thus, we can compute the average number of probes as follows:

BX2+@AX3HY+@X4) _
11

2.73

Note that the preceding value is specific to this one table and its
current contents. As an alternative, we can provide a more general descrip-
tion of hashing complexity. To begin, let # denote the number of
records we need to store and let # denote the size of the hash table. We
can now define the /oad factor N\ of a hash table as follows:

A=2
m

The load factor represents the average length of a chain. For our

example, the load factor for the table of Figure 8.3 is

11
31" .035

Note that when using chaining, load factors may be greater or less
than 1.

If we assume that our hash function generates a relatively even
distribution of keys throughout the entire hash table, and that
every key is equally likely, then we can define the following:

S(\): The expected number of probes required for a successful search
U(\): The expected number of probes required for an unsuccessful
search.

As stated earlier, chaining requires one probe for the list header
and one probe for each referenced list element. If A represents
the average chain length and we must inspect every element in a
chain during an unsuccessful search, then U(\) becomes

UM =1+ A

Computing S(A) is only slightly more problematic. First, recall
from our complexity analysis of a sequential search that a successful
search will access, on average, half the elements in the chain. Thus,
if £ represents the length of a given chain, a successful search requires
%(,é + 1) probes. However, we know that the expected length of a
chain, on average, is no longer than A. Thus, S(\) becomes

1 1 1
S()\)—z(,é-i-l)—z(l-i-)\'i-l)—1+E)\

8.4 Hashing 245

Note that the worst case occurs when all keys (most likely due .
to a poor choice of hashing function) hash to the same bucket. If
n represents the number of keys in the table, worst-case complexity
can be computed as follows:

UM =1+n

SO =1+ -;-n

Advantages/ Disadvantages Some of the advantages of chaining include
easy insertion and deletion of nodes. The costs include the extra space
required for the pointers and the additional coding required for the
dynamic links. If records are large as compared to the size of pointers,
the advantages of chaining usually outweigh the disadvantages.

Improvements and Extensions
Ordered Chains

We can improve on the basic chaining strategy. First, we can order
the chains. As in the case of seq_srch2() (Listing 8.2), we can im-
prove—by half—the time required to determine that a given key is
not part of the chain.

Modified Hash Table

For our next improvement, note that even if the element we are
searching for is first in its chain, we still require two probes: one for the
hash table slot and one to access the first element. We can eliminate
the need for that initial probe if we store the first element in the hash
table itself. That is, the hash table is no longer just an array of pointers;
rather, it is an array of list structures. Figure 8.4 provides an example. It
depicts the hash table of Figure 8.3 as it would appear if we had
employed this technique.

This technique not only saves us the cost of a probe, it also
reclaims the additional space required by the pointers in the origi-
nal hash table. However, we should use this strategy only when the
keys are relatively small and when we expect our hash table to be relatively

246

Figure 8.4

Modified hash table.

8 Searching

Smtth Data Jones 'D'1ta
MFMHIII

amiwn

26
- I - - I
28
29

31 |

full; otherwise, we will waste too much space on empty slots. (Records
are usually larger than pointers.)

Coalesced Chaining

The final improvement we will discuss is an extension of the previous

idea. If the modified hash table is composed of node structures,

why use separate chains to handle collisions? We could use empty

slots in the hash table itself. We illustrate an example of this technique,

referred to as coalesced chaining, in Figure 8.5, which depicts the hash

table of Figure 8.3 as it might appear if we employed coalesced chaining.
With coalesced chaining, we no longer allocate new nodes with

each collision; rather, we just appropriate the next available slot

in the hash table. However, there is a price to pay for this feature in

that a later arriving element might be displaced as a result of a prior

Figure 8.5
Coalesced chaining.

8.4 Hashing

Slot Key Datalink

' I

2
3
4
5

EINE
ETEEE-
e | [

- CTEE - |

I

s IR
— T
T

o | 8
7 BEVER

i
lﬂ’ﬂﬂ’lﬂﬂ’.‘.‘l

23 BVUIELGE
pI8 |ppolito
bl Martino

(%)
o

27 BRELED
pif Pierno
] Parisio |
30 EEED

[=]

31 REREEN

247

248

8 Searching

appropriation. For example, note that in Figure 8.5 the key Bowman
is no longer in slot number 6. This is because the Kueklewein record
arrived first and appropriated the bucket that would have otherwise
been used by Bowman.

The way we handle such an event is to add the new record to
the list that contains the element that appropriated its slot. This
is how the technique derives its name: Keys with different hash values
merge into the same chain; thus, the chains coalesce.

Insertion operations remain similar to that of separate chaining.
The only difference is that we allocate new nodes in the table
rather than from a separate buffer pool (or dynamic memory).

We implement retrieval operations exactly as in the case of sepa-
rate chaining. Chains will likely contain elements with different hash
values. However, all keys with the same hash value will reside in the
same chain. Thus, we need to search only one chain to locate a given key.

At first glance, deleting coalesced elements might seem as easy
as deleting elements from a linked list: Locate the deleted node’s
predecessor and have it point to the deleted node’s successor. How-
ever, a closer inspection reveals that it is not that easy. For example, let’s
assume we wanted to delete Kueklewein from the hash table of Figure
8.5. After we performed the aforementioned processing, the hash table
would appear as depicted in Figure 8.6. Obviously, the problem that
arises is that after the deletion, we can no longer access the key
Bowman. That is, because its hash value is 6—and that slot appears
empty—we have no chain to follow.

To overcome this problem, we can use a special key value that
denotes deleted. Thus, a deleted node’s pointer remains in place
and maintains the continuity of the chain. This is illustrated in Fig-
ure 8.7.

Open Addressing

The second method that we use for collision resolution is called oper
addressing. As in the modified hash table, this technique calls for

us to store keys directly in the hash table. However, rather than using
linked lists, we will store (and search for) colliding keys directly within
the hash table itself. That is, we will use some alternate means by
which we will determine a secondary bucket address for a colliding

8.4 Hashing

[It<——Deleted node
|I' Kuehlewein

Incorrect deletion

26
27
i} Pierno
» IR |
Il Demeo
Figure 8.6 31 m ||'
Coalesced chain— 1

incorrect deletion.

250 8 Searching

NERNENARRH

26
28

Pierno D
pRl Parisio {Data 1
30
Figure 8.7 31 I

Coalesced chain—
correct deletion.

1
|

<—— Deleted node

Corrected deletion

8.4 Hashing 251

key. For example, we might use a secondary hashing function to
generate a new index.

With open addressing, the order in which we search through buck-
ets is called the prode sequence. A probe sequence begins with the
initial bucket address generated by the primary hashing algorithm. If
this address results in a collision, we repeatedly generate secondary bucket
addresses until we either locate the key we are searching for or locate
an empty slot for an insertion. The two methods we will discuss for
generating secondary probe sequences are called linear probing and
rehashing,

Linear Probing

The first open addressing technique we will discuss is called /Jinear
probing. It derives its name from the fact that, when a collision occurs, we
simply search successive slots in the hash table. If we are inserting a
key, we search for the next free bucket; if we are searching for a key, we
continue until we encounter an empty slot. When we reach the end

of the table, we simply wrap around back to the beginning. Thus, we
search buckets in the following order:

SLOTinitial = pnmary_/msﬁ(key)
SLOTnext = (SLOTcurrent + 1) mod m

where m represents the size of the hash table.

For an example of this technique, refer to Figure 8.8. Figure 8.8a
depicts the initial state of our data structure: We are about to insert
Jones and Baker into the table; assume both keys have a primary hash
value of 2. However, the key Smith already occupies that position. As a
result, we begin searching the table for the next available position to
perform the insertion. In the case of Jowues, the next free bucket is slot 3
(Fig. 8.8b); for Baker, the next available bucket is slot 7 (Fig. 8.8c).

Clustering Linear probing is a very simple technique and performs well
if the hash table remains relatively empty. However, it has one major
drawback: As the hash table becomes about half full, it suffers from a
phenomenon that we refer to as c/ustersng. That is, once a block of
contiguous slots develops in the table, it becomes a likely candidate for
additional collisions. Moreover, as clusters grow, they tend to merge
and form even larger clusters.

Figure 8.8
Linear probing.

8 Searching

2. Smith

SIT'\;I'\ 7

Initial state of Insert Jones — primary Insert Baker — primary
hash table hash value =2 hash value =2
{a) (b) (c)

As an example of this phenomenon, consider an empty hash table
and an associated hashing function. The probability of selecting any
given bucket, say slot 10, is 1/m, where m is the size of the hash table.
However, if we enter a record into slot 9, we increase the probability of
filling slot 10 on the next insertion: A key can hash to either bucket 9
or 10, and we would fill slot 10. If both buckets 8 and 9 were filled, the
probability would increase again.

Linear Probing Complexity Obviously, the problem with clustering is
that it increases search times. This is true for both successful and
unsuccessful searches. In general, for a successful search, S(\) is the
average of the number of probes required to locate each individual key.
The analysis for {/(\) (an unsuccessful search) can be divided into two
components. If a slot is empty, we only require one probe. Otherwise,
we must examine every slot in the cluster. The following are the final
formulas, based on the load factor, for S(\) and U(\) when using linear
probing. (The derivations are beyond the scope of this text; consult the
bibliography for a list of references that provide a comprehensive
discussion of the derivations.)

1 1

8.4 Hashing 253

1 1
UN\) = E(l + ———(1 —)\)2>

Rehashing

One might think that we could minimize clustering by changing the
probe offset to a value other than 1 (for example, 7). However, we
just end up with clusters of the form

S5 s + i mod m, s + 27 mod m,

where s is the original hash slot and # is the size of the table.

The only way we can minimize clustering is to generate the probe
sequences in a manner that is independent of a key’s primary position in
the table. We can accomplish this by using a technique called redasking
(sometimes referred to as dowble hashing or secondary hasking). With this
technique, we use an alternate hashing function to generate an incre-
ment. We then repeatedly apply the increment to the previous slot address
until we locate the element or encounter an empty bucket.

As an example of this technique, recall that for our employee
database the primary hash function was based on the employee’s
date of hire. We could develop a secondary hashing function based
on the employee’s date of birth. That is, we could use the day as
an increment to scan through the hash table. However, because we
only rehash once, we must ensure that the secondary hashing algorithm
generates an increment that will eventually probe every slot in the
hash table. As a trivial example, consider what would happen if our second-
ary hashing function was

newpos = oldpos + 2 mod m

and that our table size m was an even number. The increment gener-
ated by the secondary function would only probe the even-numbered slots
in the table.

In general, to ensure that our probe sequence will reach every
slot in the table, the secondary hashing function (4ask,(#ey)) should return
a value that is greater than zero and relatively prime with respect to
m. Specifically, if 7 and Aask,(key) share a common divisor &, then

(ZZ; X /ms/lz(éey)) mod m = (m X /—m—ll;(-@) modm = 0

254

8 Searching

if that were the case, then the probe m/d would be the same as the
first, and we will not visit all the buckets in the hash table. The way to
ensure that this will not happen is to choose a table size that is a prime
number (as we have done, using the value 31, in our example).

Thus, we can improve the performance of open addressing-based hash
functions and minimize the effects of clustering.

Hashing Functions

"The hashing strategies we discussed earlier are only as good as their
associated hashing algorithms. We look for two important features

in a hashing function: It should be easy to compute and it should
distribute keys evenly over the entire range of the hash table.

In some cases, applications themselves will suggest a particular
hashing algorithm—other times we must experiment. If we know, a priori,
what keys we will process, we can develop a very efficient hashing
algorithm specific to our needs. This is not typically the case,
however, and we are thus forced to build generalized functions. In
the following sections, we will describe several methods.

Truncation

The first method we will discuss is called #runcation. Using this tech-
nique, we selectively ignore parts of the key. This is similar to our first
example wherein we used the last two digits of customer telephone
numbers as our hash key. Although fast, truncation typically fails

to distribute keys evenly.

Division

If we have an integer-based key, we can divide the key by the size
of the hash table and use the remainder as our bucket address.
Simply put, we can compute the hash slot as

84 Hashing 255

#define HASH TABLE SIZE ’‘some_ value’

int hash function(int key)
{

return(key % HASH TABLE_SIZE);
}

As mentioned earlier, the distribution of keys depends heavily on
the value selected for the modulus operation. The best choice is
a prime number. Thus, do not use a hash table size of 1000; use 997
or 1009 instead.

Another concern that we must address is that keys are often alpha-
betic. However, we can easily convert alphabetic keys into integer
values using the following formula:

=L
Kinteger = 2 [N R
i=1

where L represents the length of the key, ¢ represents characters in
the original key, and R represents the base (radix) of the character

set (typical values include 128 and 256). Listing 8.11 contains the
example function, str_to_int (), which converts string keys
into integer values. In addition, it shows an example of how we might
incorporate the function into a hashing algorithm.

Hashing by this method is simple and fast. However, there is one
minor consideration. Because it uses division, this technique might be too
slow on small processors or on machines lacking hardware support for
arithmetic computations.

Folding

One-disadvantage of the division method discussed earlier is that some
string keys may convert to integer values larger than the processor’s
word size. One way to address this problem is to apply a technique
called folding.

With folding, we partition the key into several parts and then
recombine the pieces in some convenient way to reconstruct a key that
will fit within a given size restriction. (Note that we can also incorporate

256

8 Searching

#define RADIX

$#define HASH_TABLE_ SIZE 1009

long str_to_int(char key[])

128

{
long i, nkey = 0;
for(i = 0; keyl[i] != NULL; i++)
nkey = nkey * RADIX + keyl[il:
return(nkey);
}
int new _hash function(char keyl[])
{
return(str to_int(key) % HASH TABLE SIZE);
}
Listing 8.11

Function to convert string keys to numeric.

SUMMARY

truncation to eliminate unwanted—or unneeded—components of
the key.)

T'o demonstrate this technique, let’s return to our telephone num-
ber example. We could partition a number into its area code, exchange,
and extension. We could then add the pieces together before we
hashed. For example, we can partition the telephone number 800-555-
1000 into the segments 800, 555, 1000; adding them yields a key value
of 2355.

Because all segments have an effect on the resultant key, folding
typically achieves a greater distribution of key values as compared
to using truncation alone. As a result, this folding is often chosen in
lieu of truncation (even in cases where it is not explictly needed).

Searching is a common task in computer programs. In many cases, the
perceived usefulness of an application will be predicated on the speed at
which it can locate and retrieve information.

EXERCISES

84 Hashing 257

We can improve the performance of searching algorithms by ordering
the datasets. This allows us to search for elements in a much more intelli-
gent manner. Examples include binary search, interpolation search,
and indexed sequential search.

The complexity of some algorithms is expressed in terms of a recur-
rence relation. To be of practical value, we must transform such complexi-
ties into their equivalent closed form.

Another method by which we can store and retrieve data quickly is
called hashing. The basic principle behind hashing is that the key,

after undergoing a transformation, points directly to the location of a
given record. Despite its efficiency, hashing introduces several unique
problems. First, we must address the problem of collisions. The two
major techniques for resolving collisions are chaining and open
addressing.

Second, we must develop an efficient hashing function. Specifically,
the hashing routine must not only be fast, it must distribute keys evenly
across the entire hash table.

1. Implement all the searching routines discussed in this chapter.
Compare execution times and the number of actual comparisons they
each require. Be sure to vary the size and distribution of your
test datasets.

2. Implement a secondary index routine based on the function
indx seq() (Listing 8.3).

3. Design and implement a function that build indexes for sorted
tables.

4. Rewrite the binary search algorithm using recursion. Which
method is faster?

5. Determine the number of different ways the data 1, 2, 3, ..., 10
can be arranged in an ordered binary tree.

6. Write a recursive function that determines the maximum number
of comparisons required to locate a record in a given OBT. (Hins:
Consider the tree’s height.)

258

8 Searching

10.
11.

12.

13.

14.

15.

16.

17.

18.

. Design and implement a function that performs an interpolation

search on ordered arrays.

. Compare the execution efficiency of your function from the previ-

ous exercise with that of binsrch (). Be sure to vary the size
and distribution of your sample datasets.

. While searching for the keys (A, C, M, P, W, Z) on a dataset

consisting of the alphabet, trace the execution of both the
interpolation and binary searching techniques.

Design and implement an iterative version of treesrch().

Discuss the relative advantages and disadvantages of the two major
collision resolution strategies used in hashing.

Assume a hashing function that returns the last digit of a telephone
number. Practically speaking, what should be the maximum
size of our hash table?

Draw the state of a hash table after inserting the following tele-
phone number keys (in the order presented): 5551212, 5551001,
5552001, 5552223, 5556001. Assume that we are using a strategy

of linear probing and that we have, as a hashing algorithm, a function
that returns (as an integer) the last digit of the key. Count the
number of probes each key requires.

Repeat the preceding exercise, but this time assume we are us-
ing chaining,

Implement the mbdiﬁed sequential search algorithm introduced
in Listing 8.10.

Design and implement a deletion function for coalesced chaining.

Assume a hashing implementation that uses coalesced chaining,
and design and implement a function that reorganizes all the keys
after a deletion.

Design and implement a deletion function for linear probing.

Copyrighted Materials

Copyright © 1994 Oxford University Press Retrieved from www.knovel.com

Sorting Techniques

C H A P T E R

— 9.1 INTRODUCTION

In this chapter, we will focus our attention on the design and imple-
mentation of efficient sorting techniques. Sorting is the process whereby
we arrange data (records) based on some sorting criteria (rules). Sorting
criteria range from the obvious (alphabetical, numerical, etc.) to the not
so obvious (some disk controllers prioritize I/O requests based on the
proximity of the data blocks with respect to the current position

of the drive’s read/write head).

Records are usually ordered based on their key values. Note that
keys may be complex (spanning several fields) and the sorting criteria
may specify more than just one key (e.g., sort by last name, then by
first name). We refer to the additional sort keys as subkeys.

There are several important attributes that we must consider when
discussing sorting algorithms:

Execution time Determine an algorithm’s complexity and compare
it to the complexity of other sorting algorithms. Moreover,
determine if the algorithm’s performance is affected by the compo-
sition (the relative order) of its dataset. For example, some

259

260

Figure 9.1
Bubble sort example.

9 Sorting Techniques

Initial state: 5 4 1 3 2
Afteristpass: 4 1 3 2 5
After2ndpass: 1 3 2 4 5

After3rdpass: 1 2 3 4 5

sorting routines perform efficiently when the data are sorted (or
nearly so); others perform poorly.

Space requirements Can the algorithm sort in place or does it require
additional storage? Optimally, we would like an efficient algorithm
that does not require additional space.

Stability Does the algorithm preserve the original order of records
with equal keys? For example, two distinct records could have
the same key (e.g., Smith, John). In such cases, a sorting routine
could position them in any order relative to each other. If the
algorithm preserves their original order—that is, the order in which
they appeared in the input stream—it is considered stable.

The sections that follow discuss a number of sorting techniques.

92 BUBBLE SORT

One of the most direct methods of sorting is a &ubble sort. We can
describe the technique as follows: '

* Step through an array of unsorted elements, comparing adjacent
cells.

¢ If they are out of order, switch them.

* When you complete an entire scan without switching any ele-
ments, the data are sorted and processing may terminate.

Figure 9.1 illustrates a bubble sort making several passes over a
dataset. The function begins by comparing £¢y, with 4ey,, then 4ey,
with 4ey;, and so on. After the first pass completes, the largest element
is in its final position; after the second pass, the second largest element
is in its final position. This is how the technique derives it name:
During the first pass the largest element bubbles to the top; during

Listing 9.1
Bubble sort algorithm.

9.2 Bubble Sort 261

"woid bbl sort(int datall, int no_elems)
{
int top, flag, tmp, i;
top = no_elems;
do {
flag = 0;
top——;
for(i = 0; 1 < top; i++){
if(datal[i] > datali+1]){
tmp = datali]l;
datafil] = datal[i+1];
data[i+1] = tmp;
flag++;
}
}
} while(flag > 0);
}

the second pass the second largest element bubbles into position; and

so on. Processing continues in this manner until all elements have been
moved into their final position. It might require a moment’s reflection

to convince oneself that the technique indeed works.

An example of this sorting technique appears in Listing 9.1. The
function bbl_sort () requires two arguments: the array to sort
and its size. The outer do loop controls execution. That is, the function
will iterate until the inner loop makes a pass without swapping
any elements. This is indicated by the value stored in the variable
flag. The inner loop does most of the work; it steps through each
cell of the array, swapping adjacent elements as required.

Analysis

The inner loop executes # times, once for each element of the array.
In the worst case, the outer loop will also iterate once for each element.
This vields a complexity of O(#?). Average-case behavior of

262 9 Sorting Techniques

Initial state: 4 2 5 3 1
Istpass: 1 2 5 3 4

2ndpass: 1 2 5 3 4

Figure 9.2 Jrdpass: 1 2 '3 5 4
Selection sort
example. 4thpass: 1 2 3 4 5

bbl_sort() is predicated on its input. For example, if the data are
sorted, then only one pass is required. However, it turns out that the
average-case behavior of this algorithm is only slightly better than

the worst-case behavior and still yields a complexity of O(#?). (The
actual analysis is beyond the scope of this text.) Also note that,
because it never exchanges the positions of equal keys, bbl_sort ()

is a stable sorting algorithm.

———————— 9.3 SELECTION SORT

Another simple sorting method is called selection sort. The idea behind
this technique is as follows:

*» Search the data array for the smallest element.

¢ Exchange that element’s position with the element in slot 1.

« Now locate the second smallest element and exchange its position
with the element in slot 2.

« Continue in this manner, searching for each successive element,
until the entire array is sorted.

Obviously, the algorithm derives its name from the fact that it selecss
the element it will position during each pass through the array.
Figure 9.2 depicts several passes of the algorithm on a sample
dataset. During the first pass, the function identified the element
1 as the smallest and switched its position with that of element 4. No
exchange occurred during the second pass because element 2 was
already in its final position.
Note that, by virtue of its design, selection sort may move the
same element several times. This is highlighted in passes 1 and

Listing 9.2
Selection sort
algorithm.

9.3 Selection Sort

void sel_sort(int datall, int no_elems)

{

int i, j, min, tmp:;

for(1 = 0; 1 < no_elems; i++){
min = i;
for(j = i+1l; j < no_elems; j++)
if(datal[j] < data[min])
min = j;
tmp = datal[il;
datal[i] = data[min];
data[min] = tmp;

4, where the function repositions element 4 during both passes. How-

263

ever, the algorithm will only perform, at most, one exchange during

each pass.

Listing 9.2 contains the code for the function sel soxt (). Its
two arguments indicate the data array and its size. During each
iteration of the outer loop, the inner loop locates the smallest remaining
element and saves its index in the variable min, The actual ex-
change occurs when the inner loop terminates. Note that as the outer

loop moves through the list, the low-order elements (i.e., index values

less than i) are in sorted order.

Analysis

The outer loop iterates 7 times; with each iteration of the outer loop,
the inner loop performs a comparison for each unsorted element.
This yields a complexity of O(#%). Due to its design, the function’s
behavior remains constant regardless of the composition of its
dataset. Thus, the average-case complexity is also O(#%). sel _sort ()
is not a stable algorithm. That is, during the exchange, the relative
position of equal keys can be reversed.

264

Figure 9.3
Insertion sort
example.

9 Sorting Techniques

Initial state: 4 2 3 1 b
Istpass: 2 4 3 t b
2ndpass: 2 3 4 1 5

3rdpass; 1 2 3 4 5

One other point. As noted earlier, only one exchange takes place
with each iteration of the outer loop. Thus, despite its simplicity
and somewhat poor performance, sel_sort () is useful for datasets
with large records and small keys.

9.4 INSERTION SORT

Another straightforward method of sorting is called insertion sort. 'This
sorting method can be likened to the way some people arrange a
hand of playing cards. 'T'o begin, the first card is placed into the hand.
Then, as each successive card is received, it is inserted into the
hand in order. The player makes room for each new card by shifting
cards of higher value to the right.

We can mimic this sorting technique in a computer program (see
Fig. 9.3). The element in slot 1 of the array will serve as the first card.
New eclements are dealt by scanning the array from slots 2 to ». We
then determine where the new element belongs and insert it into the
hand (i.e., the low-order portion of the array).

Listing 9.3 contains the code for the function ins_sort (). Its
outer loop, which selects elements for insertion, indexes from 1
to no_elems —1. Note that we initialize i to the value 1; thus, the
element in slot 0 serves as the initial card. The actual insertion
takes place in the inner loop. This section of code scans the already
sorted portion of the array (i.e., the low-order indices) in reverse order,
shifting elements to the right as required. This both determines the
correct location of, and makes room for, the new element. When the inner
loop terminates, the function stores the new element into the vacated
slot. Note that like sel sort (), the low-order elements are sorted;
however, unlike sel_sort (), this algorithm may move (shift) ele-
ments several times,

Listing 9.3
Insertion sort
algorithm,

95 Quicksort 265

void ins_sort(int datall, int no_elems)

{

int i, j, tmp:

for(i = 1; 1 < no _elems; i++){

tmp = datali];

j=1i-1;

while((datal[j]l] > tmp) && (j >= 0)){
datalj+1] = dataljl;
j——:

}

datal[j+1] = tmp;

Analysis

It should be obvious that ins_sort () is stable. Specifically, the
while loop does not move equal keys across each other.

As with the preceding algorithms, ins_sort () has both worst-
case and average-case complexities of O(#*). However, observe
that when the dataset is ordered (or nearly so), it performs compara-
tively few shifts. As a result, it can be the algorithm of choice for applica-
tions that must add new elements to pre-existing, sorted lists.

At this point you might be wondering whether O(#%) is the fastest
we can sort. The sections that follow address that issue and discuss
more efficient sorting techniques.

9.5 QUICKSORT

We will begin our discussion of advanced sorting techniques with one

of the most popular sorting algorithms: guicksort (also called partition sor?).
Quicksort was originally developed in 1960 by C. A. R. Hoare and has
been studied, analyzed, and ‘tweaked’ ever since. We begin our discussion
with a description of the basic algorithm; we will then address several
improvements and extensions.

266 9 Sorting Techniques

Partitioning element
Initialstate: 4 7 3 5 2 1 6

Afteristpass: 3 2 1 4 7 §5 8

2nd pass:

1stsubarray 3 2 1

Figure 9.4
2nd subarray

Quicksort example.

Unfortunately, quicksort has no real-life analogue from which we
can derive a pedagogical metaphor. We are compelied, therefore,
to jump right in. So let’s begin with a brief overview of the algorithm
(assume # is the size of our data array):

* Select one element, x, from the array. We will refer to this element
as the partitioning element for reasons that will become clear
shortly. (Initially, the choice of partitioning element will be arbi-
trary; we will discuss and refine the selection criteria later.)

¢ Determine the final position of x in the sorted array. For now
assume it is some location dazalz).

* Rearrange all the other elements of the array such that all elements
in slots data|0] through datali ~ 1] are =< x, and all elements
in slots datali + 1] through data[n] are = x.

* Recursively apply the algorithm on the two subarrays daza{0], . . .,
datali — 1] and data(i + 1), ..., data[#] until all elements are sorted.

Figure 9.4 provides an example. During the initial pass, the func-
tion arbitrarily selects the element in array slot 0 (value 4) as the
partitioning element. When the first pass completes, this element is
in its final position and the function can proceed with recursive
calls on the two subarrays.

If you consider the problem at all, it quickly becomes obvious
that the most difficult task is determining the final position of the parti-
tioning element. Specifically, how can we determine the final position
of some element x unless we sort the entire array? After a moment
of reflection you might observe that we do not need to sort the array
to determine «’s final position. All we need to know is the number of other

Figure 9.5
Quicksort; Partitioning
the elements.

9.5 Quicksort 267

Partitioning element
Initial state: 15 6 9 21 4 19

During 1stpass: 15 6 9 21 4 19

T TN

{)

Afterexchange: 15 6 9 4 21 19

elements that will be positioned either above or below x in the array.
It then becomes a simple calculation to determine x’s final location.
At this point, you are probably ready to start coding: Select a
partitioning element x, count the number of elements less than x,
move x into its final position, and recursively process the two subarrays
on either side of x. We have, however, one more problem. When
it processes each subarray, the function assumes that the values they
contain are logically positioned. That is, all values in the left subarray are
= x; all values contained in the right subarray are = x. Once the
partitioning clement is in position, there is no provision for moving
elements between the newly created subarrays. Therefore, we cannot
position x without also rearranging the other array elements.
The solution to this problem is the very heart of the quicksort
algorithm. Consider the following scenario: Select two index vari-
ables 7 and ;. Simultaneously, move i through the array from /Zf? to
right (i.e., from 0 to #), and move s through the array from right to left (i.e.,
from # to 0). When ¢ encounters a condition where dafzff] > x and 7
encounters a condition where dafe[7] < x, exchange elements (i.c.,
datali] © data[;].) The function continues in this manner until the
indices cross (i.e., when 7 = 7). This ensures that all elements are
partitioned correctly. Thus, when x is finally positioned, all elements
< x will be positioned below & in the array, and all elements > x
will be positioned above x in the array. See Figure 9.5 for an example.
Note that the elements, as they are rearranged, are not sorted.
Rather, the algorithm decides whether to reposition elements
based solely on their value relative to the final position of the parti-
tioning element. Sorting only occurs as a result of recursively reapplying
the algorithm on all subarrays.

268 9 Sorting Techniques

void qck sort(int datall, int lo, int hi)
{
int i, j, tmp, part_elem;
if(hi > lo){
part_elem = data[hi];
i = lo-1;
j = hi;
while(1){
while(datal[++i] < part_elem)
while(datal——j] > part_elem)
1f(i >= 3)
break;
tmp = datal[il:;
data[i] = datalj]:;
datalj] = tmp;
}
tmp = datalil;
datal[i] = data[hi}:
datal[hi] = tmp;
gck_sort(data, lo, i—-1);
gck_sort(data, i+ 1, hi);
}
Listing 9.4 }
Quicksort algorithm.

We are now ready to implement the basic algorithm. As presented
in Listing 9.4, the function gek_sort () requires three argu-
ments. The first points to the data array and the latter two are, respec-
tively, its lower and upper bounds. (The need for an index to track
the lower bound will be made clear shortly.) The initial call sets these
values to 0 and # respectively (the size of the array). Note that,

95 Quicksort 269

when using languages that support zero-based arrays (e.g., C), we must
set hi to » — 1 (i.e.,, the index of the high-order slot).

The initial 1f statement is a sanity check to ensure that
gck_sort () was invoked with reasonable arguments. The function then
selects the partitioning element (data [hi]) and initializes its index
variables. The outer while (1) statement is an infinite loop that
drives the main body of the function. Contained in that loop are two
nested while loops. Their purpose is to step their respective index vari-
ables through the data array searching for elements that need reposi-
tioning. When the inner loops terminate, the function tests whether i
and j have crossed. If they have, the outer loop terminates;
qgck_sort () then repositions the partitioning element and recursively
invokes itself on the two newly created subarrays. If 1 and j have not
crossed, the function swaps elements in positions data[i] and
datal[j] and continues with the next iteration of the outer while
loop.

Analysis

Let’s begin with the average-case analysis of quicksort. Assume a
random dataset of size #. The time required to partition elements
is O(n) (linear). Each time we partition a subarray, we create two
additional subarrays. If we assume that each partition will generate
subarrays of about the same size (e.g., #/2), the overall complexity of
quicksort can be expressed by the following recurrence relation:

=1

f(”)=ﬂ+2f(g>, forn>1

Based on our discussions in Chapter 8, the closed form of this recur-
rence relation is

Sf(n) = nlog,n

Thus, quicksort has an average-case complexity of O(# log; #).

For quicksort, the worst case occurs when the data are sorted (or
nearly so). Each recursive call would only sort one element. The
function would thus require # recursive calls, each requiring O(z) time
to partition the elements. This yields an overall worst-case complexity of

210

9 Sorting Techniques

O(n%). In the sections that follow we discuss simple ways to ensure
that quicksort will not encounter the pathological case. One final point;
It should be obvious that quicksort is not a stable sorting method.

Improvements to Quicksort
Remove Recursion

As you may recall from Chapter 4, all recursive algorithms have an
equivalent jterative solution. Thus, the first improvement we can
make to quicksort is to tranform the basic algorithm from recursive
to iterative.

The driving loop of this new function will use a stack to track
unprocessed subarrays. The values pushed and popped will be
the upper and lower bounds of each subarray; initially, the stack con-
tains values denoting the entire array.

With each iteration of the loop, the function

* Pops a subarray off the stack
*» Processes it (as discussed carlier)
* Pushes the two resulting subarrays onto the stack.

The function terminates when the stack becomes empty.

Secondary Sorting Routine

For our next improvement, consider that regardless of the size of the
original array, quicksort will ultimately begin processing small subarrays.
(We will define small shortly.) In a recursive solution, the overhead
required to process these small subarrays is obvious. However, iterative
versions of the algorithm will also be affected by this overhead.

This begs the obvious question: How can we minimize the impact
of.small subarrays? Approaching the problem directly, you might try opti-
mizing quicksort for small arrays. However, let’s be more clever. In-
stead. of trying to fix quicksort, let’s just choose another algorithm. The
idea is that when subarrays become smaller than some given size m,
we will employ a secondary sorting algorithm.

Two questions now arise: Which algorithm should we use? And
what are suitable values for #? Let’s begin with the first question.
Observe that as a result of the partitioning that has taken place, ele-

95 Quicksort 2n

ments in subarrays are close in value. Thus, we would want to use
an algorithm that works efficiently on datasets that are nearly sorted.
As noted earlier, ing_sort () works well in such cases and is an appro-
priate choice here. As for the second question, an exact value for 7
is implementation dependent. However, it need not be perfect. Versions
of quicksort modified in this manner will perform approximately the
same for values of 7 in the range of 10 to 25.

We can carry this idea one step further. Quicksort does not need
to invoke the secondary sorting routine for each subarray of size < m.
Consider that if each subarray is nearly sorted, then the entire set of
subarrays of size < m is also nearly sorted. We can modify quicksort to
ignore all small subarrays during its partitioning phase. That is, it will
not invoke any sorting routine whatsoever. When it completes the
partitioning phase, quicksort can then invoke the secondary sorting
routine just once and have it complete the sort for the entire array.

Median-of-Three Partitioning

‘The final improvement we will discuss focuses on the selection of the
partitioning element. In our complexity analysis, we noted that quicksort’s
performance degrades when its dataset is already (or nearly) sorted.
'This problem is a direct result of repeatedly using the same relative
element for array partitioning,

For example, consider a case in which quicksort is processing a
dataset that is already sorted. With each recursive call, the function
selects data[hi] as its partitioning element. Based on this selection,
the function will partition the array into two subarrays: one of size 1o to
hi—1 and one of size 0. In effect, the function creates only one
subarray for each element because there are no elements greater than
data[hi]. This causes the performance to degrade toward O(#?).

We could be assured of better overall performance if we could
improve the selection of the partitioning element. Specifically, the
closer the partitioning element is to the middle of the array, the better
the function will perform. A first suggestion might be to use a random
number to select a partitioning element. However, the cost associated
with a pseudo—random number generator might be prohibitive.

A better solution is a technique referred vo as median-of-three parti-

2712

Figure 9.6
Example heap.

9 Sorting Techniques

tioning. This method calls for the function to select the partitioning
element from a set of three: data[lo], data[middlel],
datal[hi]. Specifically, the algorithm selects the median of those
three clements based on key value. This technique is an inexpen-
sive way to ensure that the partitioning element is not located at either
extreme of the array.

Final Remarks

The three modifications we have discussed can result in a 20% to 30%
overall improvement in the performance of quicksort. There have

been a number of other improvements suggested (e.g., median-of-
five), but they result in only a marginal gain in performance. That is, the
improvement in performance is not commensurate with the added
complexity.

9.6 HEAPSORT

The next sorting method we will discuss is called Zeapsorz. This algo-
rithm derives its name from the data structure it employs. Before we
discuss the sorting technique itself, let’s take a look at its data structure.

A heap is a complete binary tree with the property that the key
associated with any given node # is greater than the keys of its
children. Figure 9.6 provides an example.

Figure 9.7
Binary tree prior to

heap.

9.6 Heapsort 273

A heap has many uses; one of the most common is to implement
priority queues. Referring back to Figure 9.6, we see that the
element positioned at the root always has the highest priority. This
can be a convenient way for applications—such as a print spooler—to
schedule prioritized tasks.

When we remove an element from a heap, we must re-Aeap the
tree. That is, one of the deleted node’s children (the greater) will become
the new parent; one of that node’s children will replace it; and so on.
Thus, implementing a heap is a two-stage process. Initially, we must
transform a complete binary tree into a heap. Then, as elements are
inserted and removed, we must maintain the integrity of the heap.

Let’s take a closer look at the process of transforming a complete
binary tree into a heap. Consider the tree depicted in Figure 9.7. To
transform it into heap, we would have to switch node D with node B;
once moved, we would again need to switch node B with node A. Although
simple in theory, this technique has one shortcoming in that a child
cannot easily access its parent. One solution is to add back pointers to
each node. However, this treats a symptom, not the problem. A better
solution is to use an array. Recall from Chapter 6 that when using an array
implementation of a binary tree, the children of any node 7 are located
at 27 and 2/ + 1; its parent is located at | #/2]. Thus, via simple
formulas, we can reference any node’s parent and children.

In Chapter 6 we also noted one negative aspect of using arrays to
implement trees. The problem concerned sparse trees and the program-
ming difficulties associated with the empty array slots. However, by
definition, a heap is based on a complete binary tree, which guaran-
tees that there will be no empty slots within the array.

214

9 Sorting Techniques

void buildheap(int datal[]l, int size)
{
int 1i;
for(1 = size/2; 1 >= 0; i——)
form_heap(data, i, size);
}
void form heap(int datal]l, int lo, int hi)
{
int tmp, desc;
if(2*(lo+1)—1 > hi) /* Nothing to do */
return;
if((2*¥(lo+1)) <= hi && datal[2*(lo+1l)] > data[2*(lo+1)-1])
desc = 2 * (lo+1); /* Right Child */
else
desc = 2 * (lo+1l) — 1; /* Left Child */
if(datallo] < dataldesc])({
tmp = datallol;
data[lo] = dataldesc];
data[desc] = tmp;
form_heap(data, desc, hi);
}
}
Listing 9.5

Functions to create a heap.

To transform a binary tree into a heap, start at the end of the
array and move up toward the root, switching elements as required. The
code appearing in Listing 9.5 automates this task using two functions:
form heap() and buildheap().

The function form_heap () takes three arguments: a pointer to
the data array and two integer variables that delineate its lower and upper
bounds. Its task is to form a heap beginning at element lo. The first

96 Heapsort 215

if statement determines whether 1o has any children; the func-

tion returns immediately 1o it has none. The function then decides
which child to process—the greater of the two—and assigns its index to
desc. Then, if the child is greater than its parent, it switches the two
elements and invokes itself recursively to continue the process at the next
level in the tree. Note that form_heap () assumes that if no switch

is required, the rest of the tree below this point is already in heap form.
Keep this in mind as we discuss buildheap().

The function buildheap () is the driving routine for
form_heap (). It requires two arguments: the array and its size. Its
one loop begins by calculating the middle of the array. Then,
while decrementing its control variable, the function iteratively in-
vokes form heap () with 1 as its middle parameter (i.e.,
form_heap ()’s lo argument). This means that from node i through
all of 1’s descendants, the tree will be formed into a heap. Again keep in
mind that form heap () will terminate as soon as it identifies a case
where the parent is greater than both of its children. The entire
array is in heap form when buildheap () terminates.

These two functions can now serve as the foundation for a heap-
sort. Consider that after the initial heap of the array, the largest element
is in the root position. If we were to remove that element and re-
heap the tree, the second largest element would now be in the root
position. We could proceed in this manner until we had processed all
elements.

Note that the process we just described sorts elements in reverse
order. We could make quick work of this problem by simply in-
verting the heap. However, this solution does not address one other
problem: Where should we store the records as we remove them
from the heap? We could create and maintain a separate array, but
that is wasteful.

As an alternative, consider that when we remove the root node
from the heap, the tree has one less element. After we re-heap,
we can reuse this otherwise empty slot to store the removed element.
We continue in this manner with each successive element; when the
processing completes, the entire array will have been sorted in place.

We can now formalize our presentation of the heapsort algorithm:

1. Build the initial heap.
2. Exchange the root node with the (current) last node of the array.

216

Listing 9.6
Heapsort function.

9 Sorting Techniques

void heap_sort(int datall, int size)

{

int tmp, i;

buildheap(data, size);

for(i = size; 1 > 0; i——){
tmp = datal[0];
data[0] = data[i]:;
datal[i] = tmp;
form heap(data, 0, i—1);

3. Re-heap the tree.
4. Repeat steps 2 and 3 until all elements have been processed.

Listing 9.6 contains the code for the function heap_sort ().
This is the driving routine for the heapsort algorithm. It uses both
buildheap () and form heap () to create and maintain the heap;
it tracks the current end of the array via its loop counter i.

Analysis

Initially (via buildheap()), form_heap() is called once for each
node that has a child: O(#). In heap_sort (), form heap() is called
n — 1 times with a maximum depth of rlogz(n + 1)-|. As a result, the
overall complexity becomes O(# log, #). Note that, because of the

way the heap is formed, heap_sort () is not naturally stable.

9.7 MERGESORT

The final sorting technique we will study is called mergesors. As its
name implies, merging plays a major role in this sorting algorithm. Merging
is the process by which we combine two (or more) datasets into one.
For example, consider two sorted arrays: A of size m, and B of size

n. Merging these two datasets would create a third sorted array—C of

9.7 Mergesort 271

merge(C, A, B, m, n)
{
i=1; // Index into array A
=1 // Index into array B
k = 1; // Index into array C
while(i <= mand j <= n){
if(Ali] <= BIjl)
Clk++1 = A[i++];
else
Clk++] = B[j++1]1;
}
if(i <= m) // Process remaining elements
while(1 <= m)
Clk++1 = A[i++];
else
while(j <= m)
Clk++] = B[j++1]1;
}
Listing 9.7

Merging algorithm—pseudo-code.

size m + n—that contains all elements from both arrays. Listing
9.7 presents a pseudo-code description of such an algorithm.

The functionmerge () begins processing by initializing its control
variables. With each iteration of the initial while loop, the func-
tion selects and stores into G the next largest element from A or B; it
then advances control variables as appropriate. Note that the first loop
terminates when oze of the control variables reaches the end of its
corresponding array. Therefore, merge () must determine which array
has not been exhausted and then copy all of its remaining elements
into C. ’

T'o understand how merging can help us sort, we need to alter
our view of array storage temporarily. Just for a moment, imagine an array
not as a set of elements, but rather as a set of adjacent subarrays. For

278

Figure 9.8
Mergesort example.

9 Sorting Techniques

Initial state:
After 1st pass:
After 2nd pass:

After 3rd pass:

Final pass:

example, we could view an array of size # as # adjacent arrays of
size 1.

Obviously, if the subarrays are of size 1, they are, in effect, sorted.
Now consider what would happen if we were to merge adjacent
pairs of subarrays. This would create adjacent subarrays of size 2 (also
sorted). We could repeat this process to create adjacent subarrays
of sizes 4, 8, and so on. Eventually, we would reach a case where only
two subarrays remain; when we merge these, the entire array is
sorted. Figure 9.8 illustrates this process.

Implementation

Our first task is to modify the function merge (). Previously, it re-

quired two separate source arrays. We will now modify it so that

it will merge adjacent subarrays within the same array. Listing 9.8

contains the code for the modified algorithm. Note that in this

version, merge () requires five arguments: The first two are the des-

tination and source arrays; the latter three are index variables that

denote which adjacent pair of subarrays to merge in the source array.
Listing 9.9 contains two other functions that complete the imple-

mentation of the mergesort algorichm. The first, mrg pass (), is

the function that drives merge (). It is invoked with four arguments:

The first two are the arrays (destination and source); size is the size of

the array and len is the length of the subarray for each pass. The

function divides the array £rom[] into subarrays of size 1en and invokes

merge () once for each adjacent pair. Take note of the special proc-

Listing 9.8
Mergesort algorithm.

9.7 Mergesort

void
merge(int to[], int from[], int low,
int mid, int high)
{
int ilow, ihigh, ito;
ilow = ito = low;
ihigh = mid + 1;
while(ilow <= mid && ihigh <= high){
if(from[ilow] < from[ihigh]){
to[ito] = from[ilow]:;
ilow++;
} else {
tol[ito] = from[ihighl;
ihigh++;
}
ito++;
}
while(ilow <= mid)
to[ito++] = from[ilow-++];
while(ihigh <= high)
tol[ito++] = from[ihigh++];
}

279

essing for cases where the from[] array cannot be partitioned into an

even number of subarrays.

The second function, mrg sort (), is the driving routine for the

entire mergesort algorithm. It is invoked with two arguments: the

array to sort and its size. Its driving loop calculates the length of the

subarray and calls mrg pass().

Note that during each iteration of its while loop, mrg_sort ()

calls mrg_pass () twice, alternating the first two arguments. That is to

say, during the first call mrg_pass () sorts from datal] into tmp[];

the second call reverses that order. This saves the time that we would

9 Sorting Techniques

280
void
mrg pass(int to[], int from([], int size, int len)
{
int low = 0;
while(low < size — 2*len){
merge(to, from, low, low+len—1, low+2*len—1);
low += 2 * len;
}
if(low+len—1 < size)({
merge(to, from, low, low+len-1, size);
} else {
while(low <= gize){
tollow] + from[low]:;
low++;
}
}
}
void mrg sort(int datal]l, int size)
{
int tmp[2048]1; /* malloc */
int len = 1; /* len of subfile */
while(len < size){
mrg pass(tmp, data, size, len);
len *= 2;
mrg _pass(data, tmp, size, len);
len *= 2;
}
}
Listing 9.9

Mergesort algorithm.

SUMMARY

9.7 Mergesort 281

otherwise spend copying elements from tmp[] back to datal] after
each pass.

One final note: In this version, mrg_sort () allocates auxiliary
storage statically (i.e., int tmp[2048]). A more practical ap-
proach would be to allocate the additional storage dynamically using
a function similar to malloc (). (Refer to Chapter 5 for a more detailed
discussion of this topic.)

Analysis

As depicted in Figure 9.8, mergesort requires several passes:

Pass No. Subarray Size

W N =
N -

I3
5

21‘—1

-,

This yields a total of [log, # | passes. Each call to merge() re-
quires one scan of the array O(#). Thus, the overall complexity of
mergesort is O(n log, #). Note that the function requires additional
space proportional to 7.

The algorithm is also stable. The function only moves records
during merges. Thus, we can ensure that the relative position of
the keys remains unchanged during processing.

There is a wide variety of internal sorting techniques available to
programmers. They range in complexity from O(z log, #) to O(#%). In
addition, they vary with respect to storage requirements and stability.

Many sorting algorithms are affected by the organization of their data-
sets. Some perform well when the data are (nearly) sorted; others

do not. As a result, the behavior of sorting algorithms is expressed
using two complexities: worst case and average case.

One of the most popular sorting algorithms is called quicksort. Al-
though comparatively efficient, its complexity can be improved using
simple modifications. It also has the virtue of sorting data in place.
T'wo other popular techniques are called heapsort and mergesort.

282

EXERCISES

9 Sorting Techniques

1.

We can improve the performance of the bubble sort algorithm by
eliminating unnecessary comparisons. For example, consider

an array of 50 elements. If during one scan of the array the last
exchange occurred at location 35, we can assume that slots 36
through 50 are sorted. Therefore, the function can terminate the
next pass at slot 34. Add the necessary code to the function
bbl_sort () to implement this feature. Compare the new algo-
rithm’s performance to that of the original.

. How does the function gck_sort () (Listing 9.4) put an end to

its recursion?

. At the end of its outer while loop, the function gck_sort ()

exchanges the partitioning element (data [hi]) with datali]. Ex-
plain why we can place the partitioning element at the ™ location.

. Implement both the secondary sorting routine and the median-

of-three improvements to the basic quicksort algorithm.

. Modify your function of the previous exercise to use a pseudo—

random number generator, rather than median-of-three parti-
tioning, to select its partitioning element. Compare the performance
of the two functions.

. Which of the algorithms in this chapter are stable? Which are not?

Provide example datasets to support your claims. Are your
answers implementation dependent? If so, provide examples.

. Analyze the behavior of all the sorting algorithms presented in

this chapter when presented with sorted data. Perform the same analy-
sis for datasets sorted in reverse order.

. Implement a recursive version of the quicksort algorithm that uses

a selection sort for small subfiles. Use an array size of 1000.
Begin with M = 15 as your performance metric; then vary its
value and note the results.

. Carry out the same tasks as described in the previous exercise on

an iterative implementation of quicksort. Compare your results.

97

10.

11.

12.
13.

Mergesort ‘ 283

Consider a complete binary tree wherein the data value for each
node is equal to its index. Is this tree a heap?

Given an array containing the values 10, 9, .. ., 1, show the state
of the heap after the initial call to buildheap ().

Design and implement a version of mergesort that sorts in place.

Write a general-purpose routine to insert and delete elements in
a heap.

Copyrighted Materials

Copyright © 1994 Oxford University Press Retrieved from www.knovel.com

Acrostic Puzgle

AP P E N D I X

In Chapter 4, we briefly described a backtracking algorithm that solved
acrostic puzzles. In this appendix, we undertake a more thorough examina-
tion of the program.

Simply stated, an acrostic puzzle is a crossword puzzle without
the clues: You are supplied the words and the diagram and, through
trial and error, you must enter all the words into their appropriate slots
(see Fig. A.1). We urge you—if you are not familiar with these
types of puzzles—to try solving one manually before reading on.

Before we can describe an automated solution, we need to address
some basic details. First, we must develop a way to input a puzzle descrip-
tion to our program. To simplify this example, we will place puzzle
descriptions in files (the format of which will be described later).

Thus, to invoke our program, we will type a command similar to
the following:

kross puzzle_file

The puzzle description file is divided into two sections. Section
I contains the layout of the puzzle. As depicted in Figure A.2, it
begins with a line that contains the identifying string @puzzle. Fol-
lowing that, there is a series of lines—one for each row of the puzzle—
that contain a combination of blanks and dashes. These characters
represent the black boxes and the character locations of the puzzle,
respectively. Note that you must ensure that all puzzle-description
lines are of equal length (the program checks for this).

Section II of the puzzle description file begins with a line con-
taining the identifying string @words (refer to Fig. A.2). Immediately
following begins the list of words, one per line, that the program will

Figure A1
A sample acrostic

puzzle and solution.

Figure A2
Sample input file.

Figure A3
Sample program
output.

Appendix A
BEST
ERA
TAMP
TO
TOPS
Puzzle Solution
(a) (b)
@puzzle {Section 1)
X-X- ('x' = Blank)
-xx-
@words (Section I1)
best
tamp
tops
era
to

insert into the puzzle. You may enter words in any order. However, take

the time to ensure that all words are spelled correctly. The program,
as you might expect, is rather unforgiving in this regard.
The overall operation of the program is as follows:

* Read the puzzle and word list into internal data structures.
* Actempt to find a solution for the puzzle.
» If there is a solution, print it.

Figure A.3 contains sample program output for the puzzle pre-
sented in Figure A.2.

Let’s begin our analysis of the program by examining its data
structures. 'The program uses a two-dimensional character array,
called puzzle{][], to store the internal representation of the puzzle.

The array is initialized by the function readpuz () as it scans Section I

best
Xrxo {'x' = Blank)
tamp
OXXS

286

Appendix A

of the description file. By convention, a hyphen (-) represents a charac-
ter location; a blank denotes a black box.

After loading the diagram, readpuz () reads and stores the word
list into a structure array called list[]. Each element of this array
represents words of the same length. The words themselves are stored
in a subarray referred to by the simple appellation w, which is an array of
type struct words. Each element of this structure contains two
members:

word This is a character array that holds the actual word.
flag This is a status field that indicates the state of the word (i.e.,
used, free, etc.).

As an example of how the program uses these structures, consider
how it might search for a five-letter word to fill a particular slot in
the puzzle. It begins by indexing into the fifth slot of 1ist []. It then
scans each element of the subarray w until it locates a free word that fits
into the desired puzzle slot. Note that, as a programming convenience,
we have offset the array index to eliminate unneeded entries (e.g.,
words of length 1 or 2).

Once kross has completed initializing its data structures, it in-
vokes the function solve() to solve the puzzle. This is where
we find all the backtracking logic (see Listing A.1). solve() is a
recursive procedure that performs the following processing:

1. It begins each invocation by choosing, and determining the size
of, the next puzzle slot it must fill (horizontal or vertical). This proc-
essing is performed by the function next () and is, by necessity,

a rather messy bit of code.

2. It then selects, at random (i.e., sequentially), an appropriately
sized word from the available list. It uses the function itfits() to
determine whether the word fits into the slot (in typical crossword
puzzle fashion).

3. If ic fits, solve () enters the new word into the puzzle. Just prior
to doing so, solve (), with the aid of the function enter ()}, takes
a snapshor of the current puzzle state.

4. The function then invokes itself recursively, continuing toward
a solution.

5. If, at any point, the function completes the puzzle (i.e., there are
no more slots to fill), it returns the value SOLVED.

Appendix A

287

1: solve(length, width)
2: int length, width;
3: {
4: int 1, w, i, len, tmp, type;
5: char 0ld[WORDLEN — MINWORD + 1 1;
6:
7: w = width;
8: 1l = length;
9: len = next(&1, &w, &type);
10: if(len == 0)
11: return(SOLVED);
12:
13: for(i = 0;i<MAXWORD&&WORD(len,i) [0]!=NULL;i++){
14: if(FLAG(len, i) == FREE
15: && itfits(l, w, WORD(len, i), type)){
16: FLAG(len, i) = USED;
17: enter(old, 1, w, WORD(len,i), type):
18: prev = type;
19: tmp = solve(1, w);
20: if(tmp == SOLVED)
21: return(SOLVED):;
22: restore(old, 1, w, type):
23: FLAG(len, i) = FREE;
24: }
25: }
26:
27: return{ FAIL);
28: }
Listing A1

The function solve().

6. If a given recursive call fails to find a solution, solve ()

* Restores the puzzle to its previous state. This is accomplished
via a call to the function restore().

* Returns the word that it just tried back to the free list.

* Repeats the steps 2-5 with the next available word. If none
remains, solve () returns the value FAIL.

EXERCISES

Appendix A

Let’s trace the execution of the function solve() as it begins
to solve our sample puzzle from Figure A.2. All the line numbers referenced
throughout the discussion correspond to Listing A.1. Also, to simplify
our example, the random selection of words is the order in which
they appear in Figure A.2.

First, we need a four-letter word to fill the 7 across position. The
function randomly selects dest (line 14), marks it as USED (line 16), and
inserts it into the puzzle (line 17). Solve () then calls itself recursively
to continue processing (line 19).

The next invocation of the function needs a three-letter word for
the 2 down position; it selects ¢r and inserts it into the puzzle.

The next call to solve () must now fill the 3 down position. Thus,
it selects the next available four-letter word, zamp (line 13), checks
to see that it fits (line 14), and inserts it into the puzzle (line 17).

The next slot the function needs to fill is 4 across. As usual, it
selects the next available four-letter word—in this case, zops. This time,
however, the itfits () test (line 15) fails. Recognizing that the last
four-letter word has been used (line 13), the function restores the
puzzle to its previous state (line 22) and then initiates a backtrack
(line 27).

After backtracking, the immediately preceding invocation of the
function now resumes processing at the point where it, again, needs to
fill the 3 down position. It discards what was its first choice, zemp (lines
22 and 23) and selects the next available word, Zops (line 14). Note that
the function put the word Zops back on the available list just prior to
performing the backtrack. From this point on, the function solves the
puzzle without any additional difficulties. The complete program ap-
pears in Listing A.2.

1. Implement and test the operation of the kross program.

2. Create several puzzles of your own and test them with the
kross program.

3. Rewrite the kross program to use dynamic data structures.

4. Modify the word search routines used by kross to utilize the
hashing techniques discussed in Chapter 8.

Appendix A 289

#include <#7gtdio.h”>
#include <7gtdlib.h”>
#include <”gtring.h”>
#define ALL 1
#define PUZ 2
#define DOWN 1
#define ACROSS 2
#define MINWORD 2
#define MAXPUZ 25
#define MAXWORD 50
#define WORDLEN 15
#define EMPTY 0
#define FREE 1
##define USED 2
#define FAIL -1
#define SOLVED 3
#define BLANK '
#define PADCHAR '~
#define WORDS 7@words”
#define PUZZLE ”@puzzle”
#define FLAG(x, V) list[x — MINWORD].w[vy]1.flg
#define WORD(x, Y) list[x — MINWORD].w[y 1.word
int main(int ac, char *av|]):
int solve(int length, int width);
int next(int *len, int *wht, int *t);
int itfits(int 1, int w, char *word, int t);
void readpuz(FILE *fp);
void puz_print(void);
void restore(char *old, int 1, int w, int t);
void enter(char *old, int 1, int w, char *word, int t);
int length, width;
char puzzle[MAXPUZ][MAXPUZ]:;
struct words {
int flg:;
char word[WORDLEN 1]:;
}: continued on p. 290

290 Appendix A

struct wordlist { continued from p. 289
struct words w[MAXWORD];
} list[WORDLEN — MINWORD];

int main(int ac, char *av[])

{
int 1, j;
FILE *fp;
if(ac 1= 2){
fprintf(stderr, “usage: kross puzzlef ile\n”);
exit(1);
}
if((fp = fopen(av[1l], ”xr”)) == NULL)({
fprintf(stderr, “Cannot open ’‘%s’ to read!\n”,
av[l]);
exit(1);
}
readpuz(fp):;
if(solve(0, —1) == SOLVED)
puz_print();
else
printf(“No Solution!!\n”);
return(0);
}
/*
* HI At - I it it i i i 11
* READPUZ () : read puzzle into memory from file
* - - 5 -4]
*/
void readpuz(FILE *fp)
{

int i;
char buf[85];

/*

* Puzzle Section

*/

length = 0;

if(fgets(buf, sizeof buf, fp) == NULL){
fprintf(stderr, "%s: Premature EOF!\n”, PUZZLE);
exit(1);

} continued on p. 291

Appendix A 291

continued from p. 290
if(strncmp(buf, PUZZLE, strlen(PUZZLE))){
fprintf(stderr, ”%s: BAD FORMAT!\n”, PUZZLE);

exit(1);
}
if(fgets(buf,sizeof buf,fp) == NULL -)
| | 1strncmp(buf,WORDS, strlen(WORDS))){
fprintf(stderr, ”%s: Premature EOF!\n”, PUZZLE):;
exit(1);
}

width = strlen(buf) — 1;

do {
if((strlen(buf) — 1) !'= width){
fprintf(stderr, ”Line %d: bad width!\n”,

width);
exit(1);
}
for(i = 0; i < width; i++){
if(buf[i] == BLANK)
puzzle[length][i] = NULL;
else if(buf[i] == PADCHAR)
puzzle[length 1[i] = buf[i]1:
else {
fprintf(stderr,
7"BAD CHAR %d L# %d\n”,
buf[i], length);
exit(1);
}
}

puzzle[length][width] = NULL;
length += 1;
} while(fgets(buf,sizeof buf, fp)! =NULL &&
strncmp (WORDS, buf, strlen(WORDS)) != 0);

/ *
* Words Section
*/ continued on p. 292

292

Appendix A

void

continued from p. 291

" while(fgets(buf, sizeof buf, fp) != NULL)({

for(i = 0; i < MAXWORD; i++)({
if(FLAG(strlen(buf)—1, i) == EMPTY){
strncpy(WORD(strlen(buf) -1, i),
buf, strlen(buf)-1);
FLAG(strlen(buf)—1, i) = FREE;
break;

}

if(1 >= MAXWORD){

fprintf(stderr, ”Out of space %3 %s\n”,
strlen(buf)—1, buf);

exit(1);

}

puz_print ()

int

i, 3

for(i = 0; i < length; i++){

for(j = 0; j < width; j++){
if (puzzleli]l []j])
putchar(puzzle[i]l[]j]):
else
putchar(BLANK);
}
putchar(‘\n’);

continued on p. 293

Appendix A 293

/* continued from p. 292
* HET It i3 ittt
* SOLVE(): function that searches for a solution
*/
static int prev = -—1;

int solve(int length, int width)

{
int i1, w, i, len, tmp, type;
char 0ld[WORDLEN — MINWORD + 1]:;

w width;
1l = length;
len = next(&l, &w, &type);
if(len == 0)
return(SOLVED);

for(i=0; i<MAXWORD && WORD(len, i)[0] != NULL; i++)
{
if(FLAG(len, i) == FREE
&& itfits(l, w, WORD(len, i), type)){
FLAG(len, i) = USED;
enter(old, 1, w, WORD(len, 1), type);
prev = type;
if(solve(l, w) == SOLVED)
return(SOLVED);
restore(old, 1, w, type);
FLAG(len, i) = FREE;

return(FAIL);
} continued on p. 294

294 Appendix A

/* continued from p. 293

ECEC NS EES Ao SC IS NS ESCo SIS C SRS SRS CECo SRS oS C SN oI ERREDESESSSESSSE==RC

*
o]
3
jo]
[o]
Q
V]
cr
[0}
B
]
»
cr
]
-t
Q
cr
(a3
(o]
=1}
=
=

o e e e A A o S S e e e e e e A et e A e A e e o M A e e e e N S T e e am
R R R e e e P -

*/
int next(int *len, int *wht, int *t)

{

Return the next slot in the puzzle to attempt
to be solved. DOWN has precedence.

The new values for len & wht will be updated.
The returned value for the ’w’ coordinate for
an across ’‘hit’ will have to be the value + 1.

* ¥ % ® * *

int 1, w, tmp:

* Check current position for across: down would
* have been done already.
*/
if(wl= —1 & ((w — 1) < 0| | puzzle[l]l[w—1] == NULL)
&& puzzle[ll[w] && (w + 1) < width && puzzle[l][w+1]){
/*
* Across!
*/
*t = ACROSS;

/*

* Necessary evil!
*/

*wht = w + 1;

tmp = 0;

while(puzzlel[l]llw] != NULL && w < width)({
w += 1;
tmp += 1;

}

return(tmp);

} else if(prev == DOWN | | w == —1)
w += 1; continued on p. 295

295

Appendix A
/* continued from p. 294
* Check for next possible position
*/

for(; 1 < length; 1 += 1){
for(; w < width; w += 1){
if(((1 = 1) < 0 || puzzle[l—1][w] == NULL)

&& puzzlef[l]l [w] != NULL && (1+1) < length
&& puzzle[l+1][w] != NULL)({
/*
* Down!
*/
*t = DOWN;
prev = DOWN;
*wht w;
*len = 1;
tmp = 0;
while(puzzle[1l] [w] !=NULL&&1<length) {
1 += 1;
tmp += 1;

|l

}
return(tmp);

}
if(((w — 1) < 0 | puzzle[l][w—1] == NULL)
&& puzzle[l][w] && (w+1l) < width
&& puzzle[l] [w+1]){
/*
* Across!
*/
*t = ACROSS;
prev = ACROSS;
*len = 1;
*wht = w + 1;

tmp = 0;
if(w== —-1)w= 0;
while(puzzle[l] [w]
I=NULL&&w<width) {

w += 1;

tmp += 1;
} continued on p. 296

296 Appendix A

return{ tmp); continued from p. 295
}
}
w = 0;
}
/*
* Puzzle completed!
*/
return(0);
}
/*
* N e NN o oo MmN oS o NS Ao oo oo oS oo oo o oo C oSN CDoCSD=EZE===S====
* ITFITS(): determine if a word fits into a given slot
* EEEmN eSS oS E S S S oSS E S S S S o oo oS oo oo EESSEnDEE=D=SE===
*/
int itfits(int 1, int w, char *word, int t)
{
char *cp;
if(t == ACROSS && w = —1)
w —= 1;
cp = word;
while(*cp){
if(*cp != puzzlell] [w]
&& puzzle[ll [w] != PADCHAR)
return(0);
if(t == ACROSS)
w += 1;
else
1 += 1;
cp++;
}
return(1);
}
/*
* i i i
* ENTER(): enter a word into the puzzle
* I - it i
*/
void enter(char *old, int 1, int w, char *word, int t)
continued on p. 297

Appendix A 2917

{ continued from p. 296
char *cp;

if(t == ACROSS)
w —= 1;

cp = word;

while(*cp){
*old++ = puzzle[l][w];
puzzlel[l] [w] = *cp;
if(£t == ACROSS)

w += 1;
else
1 += 1;
cpt+;
}
*0ld = NULL;
}
/*
* H Tttt it i it ittt A
* RESTORE(): restore puzzle to its previous state
* HH1 i i i it
*/
void restore(char *old, int 1, int w, int t)
{
char *cop;
if(t == ACROSS)
w == 1;
cp = old;
while(*cp){
puzzle[l]l [w] = *cp;
if(£t == ACROSS)
w += 1;
elsge
1l += 1;
cpt++;
}
}
Listing A.2

The complete kross program.

Copyrighted Materials

Copyright © 1994 Oxford University Press Retrieved from www.knovel.com

(' for Programmers

AP P E N D I X

esessssssssss B.1 INTRODUCTION

This appendix provides a brief introduction to the C programming
language. It is not intended to serve as an exhaustive tutorial. It will,
however, acquaint readers with the basic features of the language. We
assume the reader has had some prior programming experience in a high-
level language. In addition, we also assume that the reader has re-
viewed the section in Chapter 1 titled “What You Need to Know.” The
grammar specified throughout this appendix adheres to the American
National Standards Institute (ANSI) definition for C.

Quick Tour of C

To highlight many of the features we will discuss, Listing B.1 contains
a simple, somewhat contrived, C program. All the program does

is scan an array to locate and print the value of its largest element.
An example of the program’s output appears in Figure B.1.

Program Structure

A C program is composed of one or more functions, one of which must
be named main (). Listing B.1 contains two function definitions,
main() and find max(). Program execution begins with the first
exccutable instruction in main() and continues until either main ()
executes a return statement or the program invokes one of the
standard exit routines (e.g., exit ()).

A complete C program can—and usually does—span more than

Appendix B

299

#include (stdio.h)
/*
*/

#define NO_OF_ELEMENTS 10
#define MAX(A, B)

int find max(int beg, int end)
{

int i, max;

return(max);

((a) > (B) ? (&) :

/* Preprocegsor Directive */

* Preprocessor Macros & Symbolic Constants

(B))

int find max(int beg, int end); /* Function Declaration */
int datal[NO_OF ELEMENTS]; /* Variable Definition */
int main() /* Function Definition */
{
int max; /* Automatic Class Vars */
int 1 = 0;
while(i < NO_OF_ELEMENTS) /* While Loop */
{
datal i 1 = i;
i=1i+41;
}
max = find max(0, NO_OF_ELEMENTS);
printf(“The value of max is: %d\n”, max);
return(0);
}

/* Definition of find max() */

max = datal beg 1: /* External Variable */
for(i = 0; 1 < end; i++)
max = MAX(max, datal[i]); /* Macro Reference */

Listing B.1
Sample C program.

300

Figure B.1
Sample program
output.

Appendix B

The value of max is: 9

one source module (file). That is, you can define functions in more than
one source file and then compile and link the modules together to
form one executable program. For example, we could have placed the
function find_max () in its own, separate source file.

During compilation, source files can include additional C and
preprocessor statements from other files, usually called Aeader files.
We refer to the resulting code, passed onto the C compiler, as a
compilation unit. In Listing B.1, we included one header file stdio.h.

B.2 DATA TYPES

Basic Types
C supports several basic data types

char A variable large enough to hold any character of the native
character set. It is usually one byte in size and may store other (small
integer) values as well.

int An integer type that reflects the natural word size of the execu-
tion environment. For example, ints are typically two bytes on

16-bit processors, four bytes on 32-bit processors.

float Single-precision floating-point values. The size and precision

of this data type is machine dependent.

double Double-precision floating-point values. The size and preci-
sion of this data type is machine dependent.

In the program of Listing B.1, we declared several variables of type
int.

Qualifiers

"The basic types may have qualifiers applied to them. Two that apply
only to ints are short and long. The intent of these two qualifi-
ers is to provide integers of different sizes where appropriate. For

Appendix B 301

example, on most processors a short is typically 16 bits, a long is 32
bits. Compiler vendors may choose sizes that befit the execution envi-
ronment with the proviso that shorts are at least 16 bits and longs are
at least 32 bits. You may omit the keyword int when you use these
qualifiers. For example, both of the following type declarations

are equivalent:

short 1i;
short int i;

Programmers may apply the qualifier long to doubles as well.
A declaration of type long double (both keywords are required
in this case) implies extended-precision floating point. However, as
with doubles, the actual size is machine dependent.

The qualifiers signed and unsigned may be applicd to any
integer or char type. Values that are unsigned may only hold positive
values or zero; signed values may hold negative quantities.

Constants

C recognizes several types of constants. An integer constant is a se-
quence of digits; its data type is int. If the digit sequence begins with
a leading zero, the compiler interprets its value in octal; a leading 0x
(zero followed by an x—either case) signifies hexadecimal. The characters
a through £ (in either case) represent the hexadecimal digits 10
through 15, respectively. In Listing B.1, we use an integer literal
in the declaration of the variable i.

If a digit sequence terminates with either an upper- or lowercase
L, the value is treated as a 1ong. A trailing U (either case) indicates
unsigned. Programmers may combine both suffixes to signify un-
signed long. Several examples follow.

15 /* Decimal int, value = 15

017 /* Octal int, value = 15

OxF /* Hexadecimal int, wvalue = 15

15u /* Decimal — unsigned int, value = 15
017L /* Octal — long, value = 15

0xFul /* Hex — unsigned long, value = 15

*/
*/
*/

*/
*/
*/

302

Appendix B

Character COnsténts

A character constant is a sequence of one or more characters enclosed
within single quotes (*). To express the literal value x we write
’x’. We may also use the following so-called escape sequences to
express characters that are otherwise difficult to represent:

Newline \n
Horizontal Tab \t
Vertical Tab \v
Carriage Return \r
Formfeed \f
Audible Bell \a
Backspace \b
Backslash \\
Question Mark \?
Single Quote \
Double Quote \”
Octal Value \ddd

Hexadecimal value \0xdd

We can use the octal and hexadecimal escape sequences to repre-
sent any character using its value in the native mode character set.
For example, we could specify an ASCII bell character using any of
the following forms: \a, or \007, or \0x7. We may use escape sequences
anywhere a character would otherwise be expected. For example, we
used an \n sequence in the call to print£() in Listing B.1.

String Constants

A string constant is a sequence of characters enclosed within double
quotes (#). For an example, refer to the first argument in the call to
printf£ () in Listing B.1. Please note that there is no data type
string in C; nor is string a reserved word of the grammar.
Internally, C compilers represent strings as arrays of characters termi-
nated by a NULL character. As a result, string literals in C have a data
type of array of characters. (Refer to the section on arrays later in
this appendix.)

Appendix B 303

Symbolic Constants

Symbolic constants are a feature of the preprocessor. A statement of
the form

#define SYMBOLIC_NAME REPLACEMENT VALUE

directs the preprocessor to replace all unquoted occurrences of the
string SYMBOLIC_NAME with REPLACEMENT VALUE. Refer to the sym-
bol, NO_OF_ ELEMENTS, as it appears in Listing B.1 for an example.

const Qualifier

C also provides a const qualifier that may be applied to variable
declarations. A statement of the form

const double PI = 3.1459;

signifies to the compiler that the variable PI cannot be modified. As
a result, you must initialize all const variables when you declare them.

B.3 DECLARATIONS

Identifier Names

A C identifier (i.e., the name of a variable, function, or label) is a
sequence of one or more letters, digits, and underscores. An identifier
name must begin with a letter or the underscore; the first 31 characters
are significant.

Declaration Syntax
Variable declarations have the general form
type identifier _name | = initial _value] ;

where fype represents a data type and identifier _name is a valid C
identifier name. Optionally, you may also initialize variables using values
expressed as compile-time constants. Listing B.1 contains several vari-
able declarations; we also provide some additional examples below:

304 Appendix B

int i = 15; /* Signed Int */

signed int j; /* Signed Int */

short k = 0, m; /* Signed Short */

unsigned n; /* Unsigned Int */

float f£; /* Float */

long double x; /* Extended Precision */
Arrays

C allows programmers to create arrays using statements of the gen-
eral form

ype array _name| const_expr];

where #pe represents the data type specified for each element of the
array, array_name is a valid C identifier name, and const_expr
represents a compile-time constant expression that specifies the size
of (i.e., number of elements in) the array. The variable, datal], in Listing
B.1, is an example of an array declaration in C.

We reference individual array elements by thetr offses rather than
their index. Thus, valid element references for an array declared as

int a[10 1;

are from 0 to 9. There are several examples of array references in
Listing B.1.

We may create multidimensional arrays simply by adding addi-
tional sets of brackets:

int three_dim([3][71[9]:

The preceding statement creates a three-dimensional array. G compil-
ers ensure that memory allocation for arrays is contiguous. (Refer to the
discussion of pointers later in this appendix.)

Structures

C programmers can create aggregate data types called structs. For
example, the statement

struct emp {
int id;
char name[10];

Appendix B 305

declares a struct with a tag (i.e., name) of emp. This structure has
two members: an integer variable named id, and a character array named

name(].
We can declare instances of a struct using statements such as

struct emp x;

We can reference individual structure members using the dot (.)
operator, as in

x.id = 1024;
We can also declare and reference arrays of structures:

struct emp managers[10];

managers[i].id = 1024;
eeessessseses B4 OPERATOR SET

Unary

Unary operators require one operand. C has several, including the
following:

- Unary minus (negation) operator

! Logical Not operator

~ Bitwise Noz operator

* Indirection operator (see below)
& Address operator (see below)
++ Increment operator

—— Decrement operator.

We can use both the increment and decrement operators can be
used in either prefix (e.g., ++ 1) or postfix (e.g., 1 ++) form. The
position of the operator is significant. When used in prefix form, the
interpretation is éncrement then evaluate; when used in postfix form

306

Appendix B

the interpretation is evaluate then increment. For example, consider the
following two code fragments:

i = 10; i = 10;

x ++1i; x = i++;

(1) (2)

In both cases, the result contained in i is 11. However, in case 1, x
is set to 11; in case 2, x is set to 10. The for loop of Listing B.1
contains an example of the increment operator.

Binary

Binary operators require two operands. Let’s begin with the basic
arithmetic set:

+ Addition operator

- Subtraction operator

Multiplication operator

Division operator

Modulus operator (integer remainder).

® N %

In Listing B.1, we use a binary addition operator (+) in the body of
the while loop.
The relational operators include

< Less than operator

<= Less than or equal operator

> Greater than operator

>= QGreater than or equal operator

= Equality operator
= Inequality operator.

Expressions that employ relational operators evaluate to either
the integer value 1 (signifying true), or the integer value 0 (signifying
false). (See the section on conditional expressions later in this appen-
dix.) Several examples of relational operators appear in Listing B.1.

The logical operators include

Appendix B

&& Logical And operator
] Logical Or operator
! Logical Nor operator.

You can use the logical operators to create complex expressions.
For example, the statement

if(a>b & c < d4d)
do_something () ;

asserts two conditions before invoking the function
do_something ().

C is often referred to as a high-level, low-level language. One
reason for the latter half of the appellation is the bitwise opera-
tor set:

& Bitwise And operator

| Bitwise Inclusive-or operator
A Bitwise Exclusive-or operator
<< Left shift operator

>> Right shift operator.

These operators can only be applied to integer-based operands.

Ternary

C has one ternary operatot, also called the conditional operator. Its
syntax is

expry ¥ expry . expry

We evaluate the entire expression beginning with expry: If expry
evaluates to true (see the discussion on expression evaluation later),
then we evaluate expry; otherwise, we evaluate expr;. For example, we

307

could determine the smaller of two values using the following statement:

min val = a < b ? a : b;

We use the conditional operator in the definition of the macro, MAX,
in Listing B.1.

308

Appendix B

Assignment Operators

The basic assignment operator in C is the equal sign (=). (PASCAL
programmers please take note.) C also provides a set of compound
assignment operators, which take the form

expr <binary operator> = expression

These operators combine a binary expression with an assignment. For
example, if we want to increment a variable by some value other
than 1, say 10, we could write

i += 10;

B.5 EXPRESSIONS AND STATEMENTS

Comments

C comments begin with the unquoted character sequence /* and
terminate with the unquoted sequence */. Comments in C do
not nest.

Expressions

A primary expression in C includes identifiers, constants, strings, and
nested expressions enclosed within parentheses.

Conditional Expressions

In C, the interpretation of any conditional expression (e.g., 1£(con-
dition))can be stated simply: Zero is fa/se, non-zero is true. C program-
mers tend to rely heavily on this construct and write expressions such as

if(1% 2)
do_something();

which will invoke the function do_something () only when i con-
tains an odd value.
This can also lead to interesting results when combined—erron-

Appendix B 309

eously—with the simple assignment operator (=). For example,
given the assignments

i = 10;
j = 11;

the expression

if(1 = 3) /* ERROR: assignment NOT
equality */
do_something();

will evaluate to true because:

1. We are assigning i to J, not comparing their values.

2. The result of an assignment statement is the value being assigned
(in this case 11).

3. The result of the expression (11) is non-zero.

However, when used correctly, this construct can add power and
expressiveness to our C programs. For example, consider the fol-
lowing code fragment:

while((a[i++] = getchar()) != ’'\n’):
In it, we

1. Perform an 1/O operation.

2. Assign the result to an array element.
3. Increment an index variable,

4. Perform a relational comparison.

Note that all of this processing occurs within the conditional expression
of a while loop.

Statements

In C, statements are terminated with a semicolon (;). Readers familiar
with some other languages—most notably PASCAlL—should take note.
In C, the semicolon is a statement Zerminator, not a statement sgparator.

310

Appendix B

Compound Statements

A compound statement (sometimes called a dlock) is a series of one or
more statements enclosed within braces:

{
statement_1;
statement_2;
statement_n;
}

You may use a compound statement wherever a single statement
is valid.

B.6 CONTROL FLOW

The if Statement

The basic form of the if statement is

if(condition)
statement;

You may add an optional é/se clause:

if(condition)
true_statement;
else
false statement;

Unless you explicitly use braces, C associates an else with the closest
preceding if. In the following example,

if(conditionl)
if(condition2)
statementl;
else
statement2;

Appendix B 31

the compiler associates the else with the inner if, not the outer
one. If that is not your intention, you must use braces:

if(condl)

{
if(cond2)
statementl;
}
else
statement2;

The switch Statement
C’s switch statement is a multiway branch:

switch(expr)
{
case const_expr:
statements;
case const_expr:
statements;
default:
statements;
}

The value of expr—which must evaluate to an integer (or character)—

is compared against the case labels. If there is a match, execution begins
with the first statement associated with the label. If there is no match,
execution begins at the optional default label (if there is one). It is
important to note that cases fall through. That is, regardless of the
entry point, execution continues through to the end of the switch
unless a break statement (discussed later) is encountered. In the
latter case, execution resumes with the statement following the
switch.

The while Loop
The syntax for the while loop is

while(condition)
statement;

312 Appendix B

Execution continues as long as condition evaluates to true (i.c.,
non-zero).

The do-while Loop
The do-while loop has the form

do
statement;
while(condition):

Like the while loop, this loop continues to iterate while its control
expression is true. However, this construct guarantees at least one
iteration because it has its condition test positioned at the end.

The for Loop
The syntax of a for loop is as follows:

for(exprl; expr2; expr3)
statement;

exprl is the loop initialization statement; it is executed once, just
prior to the loop’s first iteration. expr2 is the loop conditional
statement; the loop will continue to iterate while the condition remains
true. expr3 is the loop increment statement; it is executed after

each iteration of the loop body. The semicolons are the only symbols
required between the parentheses. The preceding £or loop is equivalent
to the following while loop:

exprl;

while(expr2)

{
statement;
expr3;

Loop Termination and Continuation

The keyword statement break may be used within the body of a
loop or switch. If executed, it causes program execution to pass
to the statement following its enclosing construct.

Appendix B 313

The keyword statement continue may be used only within the
body of a loop. If executed, it immediately causes program execu-
tion to begin the next iteration of the innermost enclosing loop.

B.7 POINTERS

The C declaration for a pointer is
data_type *ptr_name;

where data _type determines the type of object at which pe#r_name may
point. For example, we can define a pointer to integer as

int *iptr;

Note that iptr does not hold integer values; rather, it can hold the
addresses of other integer variables.
The statement

iptr = &i;
assigns the address of i to iptr. That is, we say that iptr points at
i, and that we can access the contents of i indirectly through iptr. The
symbol & is a #nary operator that yields the address of its operand.
Once assigned, we can use a pointer to modify the contents of

the memory cell at which it points. Assuming all of the preceding
declarations and assignments, the statement

*iptr = 6;

is equivalent to the assignment

i = 6;

The * operator dereferences the pointer iptr; thus, we access i indirectly
via the pointer. Pointer dereferencing is dynamic. That is, the cell at which
a pointer is pointing, at the time of dereferencing, is the one that

is modified.

B.8 THE C PREPROCESSOR

C’s preprocessor is a separate program—automatically invoked by the
compiler—that does just what its name implies: processes C source
files before passing the modified source code on to the compiler. It
has several important features.

314 Appendix B

Symbolic Constants
Symbolic constants are defined as follows:
#define MAX SCORES 10

A statement of this form causes the preprocessor to replace all un-
quoted occurrences of the string MAX SCORES with the string 10.
For example, consider the following code fragment:

fidefine MAX SCORES 10
main()
{

int 1i;

int total[MAX SCORES];

if(i >= MAX SCORES)

}

After preprocessing, the following statements would be presented to
the compiler:

main()
{
int 1i;
int totall 10]1;

if(1 >= 10)

EXERCISES

Appendix B 315

Macros with Arguments

Symbolic constants may also accept arguments. For example, consider
the following definition:

f#define SQUARE (x) ((x)*(x))

The expansion of SQUARE is now dependent on its use. If we code
z = SQUARE(y); |

the preprocessor will expand it to
z = ((¥)*(¥));

Note that x serves as a place holder. That is, whatever argument we
place in the x position will appear wherever x appears in the
expansion.

Include Files

Another widely used feature of the preprocessor is the file inclusion
facility. The following preprocessor directive:

#include rdefs.h”

directs the preprocessor to replace the #include statement with the
entire contents of the file defs.h. The included file may con-
tain any valid C and preprocessor statements, including nested
#include’s.

There is another form of the #include directive:

#include (filename)

The angle brackets direct the preprocessor to search a predetermined
location for one of several system-supplied header files. The exact
location is system dependent, and the files contain definitions of a
global nature.

1. What effect, if any, would changing the position of the increment
operator from prefix to postfix have on each of the following
statements?

a. ++1;

316

Appendix B

b.for(i = 0; i < 10; ++4i)
ali]l] = 1i;
c.j = ++1i;

2. Given the following macro definition from Listing B.1,

#define MAX (A, B) ((a) > (B) ? (A) : (B))

what is the value of all variables after executing the following
statements?

int a, b, c¢;

a = 20;
b 20;
c = MAX(a++, b):;

. What value is assigned to ¢ after executing the following assign-

ment statement?
int a, b, c;
a = 20;

b = 10;
c = a < b:

. How many times, if any, will the following loop execute?

int a, b, c;

i = —-5;
while(i)
do_something();

Suggested Readings

Adelson-Velskii, G.M., and Landis, E.M. “An Algorithm for the Organization of
Information,” Do#kl. Akad. Nauk SSSR, Mat., 146(2):263-66, 1962.

Aho, A,, and Corasick, M.J. “Efficient String Matching: An Aid to Bibliographic
Search,”” Communications of the ACM, 18:333-40, 1975.

Aho, A., Hopcroft, J., and Ullman, J. Data Structures and Algorithms, Reading,
Mass.: Addison-Wesley, 1983.

Aho, A., Hopcroft, J., and Ullman,]J. Tke Design and Anabysis of Computer Algo-
rithms, Reading, Mass.: Addison-Wesley, 1974.

Aho, A., and Ullman, J. Principles of Compiler Design, Reading, Mass.: Addison-
Wesley, 1977.

Ambile, O., and Knuth, D.E. “Ordered Hash Tables,” Comp. J., 18:135-42, 1975.

Augenstein, M., and Tenenbaum, A. “A Lesson in Recursion and Structured
Programming,” SIGCSE Bulletin, 8(1):17-23, February 1976.

Augenstein, M., and Tenenbaum, A. ““‘Approaches to Based Storage in
PL/1,” SIGCSE Bulletin, 9(1):145-50, February 1977.

Auslander, M.A., and Strong, H.R. “Systematic Recursion Removal,” Communi-
cations of the ACM, 21(2), February 1978.

Bacza-Yates, R. “Some Average Measures in M-ary Search Trees,” Information
Processing Letters, 25(6):375-81, July 1987.

Bays, C. “A Note on When to Chain Overflow Items Within a Direct-Access
Table,” Communications of the ACM, 16(1), January 1973.

Bellman, R. Dynamic Programming, Princeton, N.].: Princeton University Press,
1957.

317

318

Suggested Readings

Bender, E., Praeger, C., and Wormald, N. “Optimal Worst Case Trees,” Acta
Informatica, 24(4):475-89, August 1987,

Bentley,]J. “Programming Pearls,”” Communications of the ACM, August 1983,

Bentley, J. “Programming Pearls: Thanks Heaps,” Communications of the ACM,
28(3):245-50, March 1985.

Bentley, J. “Programming Pearls: How to Sort,”” Communications of the ACM,
27(4):287-91, April 1984.

Bentley, J. Writing Efficient Programs, Englewood Cliffs, N.]J.: Prentice-Hall,
1982.

Berge, C. Theory of Graphs and Irs Applications, Mass.: Methuen, 1962.

Berry, R., and Meekings, B. “A Style Analysis of C Programs,” Gommunications
of the ACM, 28(1).80-88, January 1985.

Berztiss, A.'T. Data Structures, Theory and Practice (2d ed.), New York: Academic,
1977.

Bird, R.S. “Notes on Recursion Elimination,” Communications of the ACM,
20(6):434, June 1977.

Bird, R.S. “Improving Programs by the Introduction of Recursion,” Communica-
tions of the ACM, 20(11), November 1977.

Bitner, J.R., and Reingold, E.M. “Backtrack Programming Techniques,” Commu-
nications of the ACM, 18:651-56, 1975,

Blum, M., Floyd, R.-W., Pratt, V., Rivest, R.L.., and Tarjan, R.E. “Time Bounds
for Selection,” J. Comput. Syst. Sci., 7:448-61, 1973.

Boothroyd, J. “Algorithm 201 (Shellsort),” Communications of the ACM, 6:445,
1963.

Borodin, A., and Munro, 1. Computational Complexity of Algebraic and Numeric
Problems, New York: American Elsevier, 1975.

Bowman, C.F. “Backtracking,” Dr. Dobbs Journal of Software Tools, August
1987.

Bowman, C.F. “Pattern Matching Using Finite State Machines,” Dr. Dobbs
Journal of Software Tools, October 1987,

Bowman, C.F. “Objectifying X-Classes, Widgets, and Objects.” Object Magazine,
July/ August 1993.

Boyer, R.S., and Moore,].S. “A Fast String Searching Algorlthm Commaunica-
tons of the ACM, 20(10):762-72, 1977.

Brainerd, W.S., and Landweber, L.H. Theory of Computation, New York: Wiley,
1974,

Brown, P.]., “Programming and Documenting Software Projects,” ACM Comput.
Surv., 6(4), December 1974,

Bruno, J., and Coffman, E.G., “Nearly Optimal Binary Search Trees,” Proc.
IFIP Congr. 71, North-Holland, Amsterdam, 1972, pp. 99-103.

Burge, W.H. “A Correspondence Between Two Sorting Methods,” /BM Re-
search Report RC 6395, IBM Thomas J. Watson Research Center, Yorktown
Heights, N.Y., 1977.

Carlsson, S. “A Variant of Heapsort with Almost Optimal Number of Compari-
sons,” Information Processing Letters, 24(4):247-50, March 1987.

Suggested Readings 319

Chang, H., and Iyengar, S. “Efficient Algorithms to Globally Balance a Binary
Search Tree,” Communications of the ACM, 27(7).695-702, July 1984,

Cheriton, D., and Tarjan, R. “Finding Minimum Spanning Trees,” SIAM Jour-
nal on Computing, 5(4):724-42, December 1976.

Cichelli, R., “Minimal Perfect Hash Functions Made Simple,” Communications
of the ACM, 23(1):17-19, January 1980.

Cook, S.A., and Reckhow, R.A., “Time-Bounded Random Access Machines,”
Journal of Computer and System Sciences, 7:354-75, 1973.

Cranston, B., and Thomas, R. “A Simplified Recombination Scheme for the
Fibonacci Buddy System,” Communications of the ACM, 18(6), June 1975.

Deo, N. Graph Theory with Applications to Engineering and Computer Science, Engle-
wood Cliffs, N.].: Prentice-Hall, 1974,

Dijkstra, E. “A Note on Two Problems in Connexion with Graphs,” Numerische
Mathemarik, 1:269-71, 1959,

Dijkstra, E. “Notes on Structured Programming,” in Structured Programming,
New York: Academic, 1972.

Dobosiewicz, W. “Optimal Binary Search Trees,” International Journal of Com-
puter Mathematics, 19(2):135-51, 1986.

Earley, J. “Toward an Understanding of Data Structures,” Communications of the
ACM, 14(10):617-27, October 1971.

Elson, M. Data Structures, Palo Alto, Calif.: Science Research, 1975.

Elspas, B., Levitt, K.N., Waldinger, R.J., and Waksman, A. “An assessment of
techniques for proving program correctness,” ACM Gomputing Surveys,
4(2):97-147, 1972,

Er, M. “Efficient Generation of Binary Trees from Inorder-Postorder Se-
quences,” Information Sciences, 40(2):175~-81, 1986.

Esakov, J., and Weiss, T. Darta Structures: An Advanced Approack Using C,
Englewood Cliffs, N.].: Prentice-Hall, 1989.

Even, S. Grapk Algorithms, Potomac, Md.: Computer Science, 1978.

Fischer, M.J. “Efficiency of Equivalence Algorithms.” In R.E. Miller and J.W.
Thatcher (eds.), Complexity of Computer Computations, pp. 153-67. New
York: Plenum Press, 1972.

Fischer, M.]., and Meyer, A.R. “Boolean matrix multiplication and transitive
closure.” Conference Record, IEEE 12th Annual Symposium on Switching and
Automata Theory, pp. 129-31, 1971.

Fishman, G.S. Concepts and Methods in Discrete Event Digital Simulation,

New York: Wiley, 1973.

Flajolet, P., and Prodinger, H. “Level Number Sequences for Trees,” Discrete
Mathematics, 65(2):149-56, June 1987.

Flores, 1. Computer Sorting, Englewood Cliffs, N.]J.: Prentice-Hall, 1969,

Flores, 1. Data Structure and Management, Englewood Cliffs, N.J.: Prentice-Hall,
1970.

Floyd, R. “Algorithm 97: Shortest Path,” Communications of the ACM, 5(6):345.

Floyd, R. “Algorithm 245 (Treesort3),” Communications of the ACM, (7):701,
1964.

320

Suggested Readings

Floyd, R., and Rivest, R.L. “Algorithm 489 (Select),” Communications of the
ACM, 18(3):173, March 1975.

Floyd, R., and Rivest, R.L. “Expected Time Bounds for Selection,” Communica-
tions of the ACM, 18(3), March 1975.

Ford, L..R., and Fulkerson, D.R. Flows in Networ#ks, Princeton, N.].: Princeton
University Press, 1972.

Foster, C.C. “A Generalization of AVL Trees,” Commaunications of the ACM,
16(8), August 1973.

Frederickson, G. “Data Structures for On-Line Updating of Minimum Span-
ning Trees, with Applications,” SIAM Journal on Computing, 14(4):781-98,
November 1985.

Frederickson, G. ‘“‘Fast Algorithms for Shortest Paths in Planar Graphs with
Applications,” SIAM Journal on Computing, 16(6):1004-22, December 1987.

Frederickson, G. “Implicit Data Structures for Weighted Elements,” Informa-
tion and Control, 66(1-2):61-82, July-August 1985.

Gajewska, H., and Tarjan, R. “Deques with Heap Order,” Information Pro-
cessing Letters, 22(4):197-200, April 1986.

Gabow, H.N. “Two Algorithms for Generating Weighted Spanning Trees in
Order,” SIAM Journal on Computing, 6(1):139-150, 1977.

Galil, Z. “Real-time algorithms for string-matching and palindrome recogni-
tion,” Proceedings of the Eighth Annual ACM Symposium on Theory of Comput-
ing, pp. 161-173, 1976.

Garey, M.R., Graham, R.L., and Ullman, J.D. “Worst-case analysis of memory
allocation algorithms,” Proceedings of the Fourth Annual ACM Symposium on
Theory of Computing, pp. 143-150, 1972.

Garey, M.R,, and Johnson, D.S. “The complexity of near-optimal graph color-
ing,” Journal of the ACM, 23(1):43-49, 1976.

Garey, M.R,, Johnson, D.S., and Stockmeyer, L. “Some simplified N%-com-
plete problems,” Proceedings of the Sixth Annual ACM Symposium on Theory of
Computing, pp. 47-63, 1974.

Gerasch, T. “An Insertion Algorithm for a Minimal Internal Path Length
Binary Search Tree,” Communications of the ACM, 31(5):579-85, May 1988.

Glaser, H. “Lazy Garbage Collection,” Software Practice and Experience, 17(1):1-
4, January 1987.

Goller, N. “Hybrid Data Structure Defined by Indirection,” Computer Journal,
28(1):44-53, February 1985.

Golomb, S.W., and Baumert, L.D. “Backtrack Programming,” Journal of the
ACM, 12:516, 1965.

Gonnet, G., and Munro,]J. “Heaps on Heaps,” SIAM Journal on Computing,
15(4):964-71, November 1986.

Good, 1.]. ““A Five-Year Plan for Automatic Chess,”” In E. Dale and D. Michie
(eds.), Machine Intelligence, Volume 2, pp. 89-118. New York: American
Elsevier, 1968.

Goodman, S.E. and Hedetniemi, S.T. Introduction to the Design and Analysis of
Algorithms, New York: McGraw-Hill, 1977.

Gordon, G. System Simulation, Englewood Cliffs, N.J.: Prentice-Hall, 1969.

Suggested Readings N

Gotlieb, C., and Gotlieb, L. Data Types and Data Structures, Englewood Cliffs,
N.].: Prentice-Hall, 1978.

Graham, R.L. “Bounds on multiprocessing timing anomalies,” SIAM Journal of
Applied Math, 17(2):416-29, 1969.

Gries, D. Compiler Construction for Digital Computers, New York: Wiley, 1971,

Hancock, L., and Krieger, M. The C Primer, New York: McGraw-Hill, 1982.

Hantler, S.L., and King, J.C. ““An Introduction to Proving the Correctness of
Programs,” ACM Computing Surveys, 8(3):331-53.

Harary, F. Grapk Theory, Reading, Mass.: Addison-Wesley, 1969.

Harbison, S., and Steele, G. C: A Reference Manual (2nd ed.), Englewood Cliffs,
N.].: Prentice-Hali, 1987,

Harrison, M.C. Data Structures and Programming, Glenview, Ill.: Scott Foresman,
1973.

Hinds, J. “An Algorithm for Locating Adjacent Storage Blocks in the Buddy
System,” Commaunications of the ACM, 18(4), April, 1975,

Hirschberg, D.S. “A Class of Dynamic Memory Allocation Algorithms,” Commu-
nications of the AGM, 16(10):615-18, October 1973.

Hirschberg, D.S. “An Insertion Technique for One-Sided Height-Balanced
Trees,” Communications of the ACM, 19(8), August 1976.

Hoare, C.A.R. “Quicksort,” Comput. J., 5:10-15, 1962,

Hopcroft, J.E., and Tarjan, R.E. “Dividing a graph into triconnected compo-
nents,” SIAM Journal on Computing, 2(3):135-57, 1973.

Hopcroft, J.E., and Tarjan, R.E. “Efficient Algorithms for Graph Manipula-
tion,”” Communications of the ACM, 16(6):372-78, 1973.

Hopcroft, J.E., and Ullman, J.D. Formal Languages and Their Relation to Au-
tomata, Reading, Mass.: Addison-Wesley, 1969.

Hopecroft, J.E., and Ullman, J.D. “Set merging algorithms,” SIAM Journal on
Computing, 2(4):294-303, 1973.

Horowitz, E., and Sahni, S. “Computing partitions with applications to the
knapsack problem,” Journal of the ACM, 21(2):277-92, 1974.

Horowitz, E., and Sahni, S. Fundamentals of Data Structures, Woodland Hills,
Calif.: Computer Science Press, 1976.

Horowitz, E., and Sahni, S. Algorithms: Design and Analysis, Potomac, Md.: Com-
puter Science, 1977.

Huang, B., and Langston, M. “Practical In-place Merging,” Communications of
the ACM, 31(3):348-52, March 1988.

Huang, J.C. “An Approach to Program Testing,” ACM Compur. Surv., 7(3), Sep-
tember 1975,

Huffman, D. “A Method for the Construction of Minimum Redundancy
Codes,” Proc. IRE, 40, 1952.

Hughes, J.K., and Michton,]J.I. A Structured Approack to Programming, Engle-
wood Cliffs, N.].: Prentice-Hall, 1977.

Iyenger, S., and Chang, H. “Efficient Algorithms to Create and Mantain Bal-
anced and Threaded Binary Search Trees,” Software Practice and Experience,
15(10):925-42, October 1985.

Suggested Readings

Jalote, P. “Synthesizing Implementations of Abstract Data Types from Axiom-
atic Specifications,” Software Practice and Experience, 17(11):847-58, Novem-
ber 1987.

Johnson, D.S. “Fast allocation algorithms,” Proceedings of the Thirteenth Annual
Symposium on Switching and Automata Theory, pp. 144-54, 1972.

Johnson, D.S. “Worst-case behavior of graph coloring algorithms,” Proceedings of
the Fifth Southeastern Conference on Combinatorics, Graph Theory, and Comput-
ing, pp. 513-28. Winnipeg, Canada: Utilitas Mathematica Publishing, 1974.

Kelley, A., and Pohl, 1. A Boo# on C (2d ed.), Benjamin Cummings, 1990.

Kernighan, B., and Ritchie, D. T%e C Programming Language (2nd ed.), Engle-
wood Cliffs, NJ: Prentice-Hall, 1988.

Kernighan, B., and Plauger, R. Software Tools, Reading, Mass.: Addison-
Wesley, 1976.

Kernighan, B., and Plauger, P.]. The Elements of Programming Style, New York:
McGraw-Hill, 1970.

Kernighan, B., and Plauger, R. The Elements of Programming Style (Znd ed.), New
York: McGraw-Hill, 1978.

Kernighan, B., and Plauger, P.J. “Programming Style: Examples and Counter
Examples,” ACM Comput. Surv., 6(4), December 1974.

Kernighan, B., and Ritchie, D. The C Programming Language (2nd ed.), Engle-
wood Cliffs, N.].: Prentice-Hall Software Series, 1988.

Knowlton, K. “A Fast Storage Allocator,” Gommunications of the ACM, 8(10), Oc-
tober 1965.

Knuth, D. “Optimum Binary Search Trees,” Acta Informatica, 1:14-25, 1971.

Knuth, D. The Art of Computer Programming, Volume I: Fundamental Algorithms
(2nd ed.), Reading, Mass.: Addison-Wesley, 1973.

Knuth, D. Tke Art of Computer Programming, Volume II1: Sorting and Searching,
Reading, Mass.: Addison-Wesley, 1973.

Knuth, D. “Structured Programming with Goto Statements,” ACM Comput.
Surv., 6(4):261, December 1974.

Knuth, D. Fundamental Algorithms (2d ed), Reading, Mass.: Addison-Wesley,
1973.

Knuth, D. Sorting and Searching, Reading, Mass.: Addison-Wesley, 1973,

Knuth, D. “Big Omicron and Big Omega and Big Theta.” SIGACT News,
8(2):18-24, 1976.

Knuth, D. “The Complexity of Songs,” SIGACT News, 9(2):17-24, 1977.

Kosaraju, S.R. “Insertions and Deletions in One-Sided Height Balanced
Trees,” Communications of the ACM, 21(3), March, 1978.

Kruse, R. Data Structures and Program Design (2nd ed.), Englewood Cliffs, NJ:
Prentice-Hall, 1987.

Larson, P. “Dynamic Hash Tables,” Communications of the ACM, 31(4):446-57,
April 1988,

Ledgard, H., with Tauer, J. C with Excellence, Indianapolis, Ind.: Hayden Books,
1987.

Suggested Readings 323

Lewis, T.G., and Smith, M.Z. Applying Data Structures, Boston: Houghton
Mifflin, 1976.

Lockyer, K.G. An Introduction to Critical Data Analysis, London: Pitman, 1964.

Lockyer, K.G. Critical Path Analysis: Problems and Solutions, London: Pitman,
1966.

Lodi, E., and Luccio, F. “Split Sequence Hash Search,” Information Processing
Letters, 20(3):131-36, April 1985.

Lum, U.Y. “General Performance Analysis of Key-to-Address Transformation
Methods using an Abstract File Concept,” Commaunications of the ACM,
16(10):603, October 1973.

Lum, U.Y,, and Yuen, P.S.T. “Additional Results on Key-to-Address Transform
Techniques: A Fundamental Performance Study on Large Existing Format-
ted Files,” Communications of the ACM, 15(11):996, November 1972,

Lum, U.Y,, Yuen, P.S.T., and Dodd, M. “Key-to-Address Transform Tech-
niques: A Fundamental Performance Study on Large Existing Formatted
Files,” Communications of the ACM, 14:228, 1971.

Maekinen, E. “On the Rotation Distance of Binary Trees,” Information Pro-
cessing Letters, 26(5):271-72, January 1988.

Manna, Z., and Shamir, A. ‘““The Optimal Approach to Recursive Programs,”
Communications of the ACM, 20(11), November 1977.

Martin, J. Data Types and Data Structures, Englewood Cliffs, NJ: Prentice-Hall,
1986.

Maurer, H.A., and Williams, M.R. A Collection of Programming Problems and Tech-
nigues, Englewood Cliffs, N.J.: Prentice-Hall, 1972,

Maurer, H.A. Data Structures and Programming Technigues, Englewood Cliffs,
N.]J.: Prentice-Hall, 1977.

Maurer, W., and Lewis, T. “Hash Table Methods,” Comput. Surv., 7(1):5-19,
March 1975.

McCabe, J. “On Serial Files with Relocatable Records,” Oper. Res., 12:609-18,
1965.

Merritt, S. “An Inverted Taxonomy of Sorting Algorithms,” Communications of
the ACM, 28(1):96-99, January 1985.

Millspaugh, A. Business Programming in C, The Dryden Press, 1993.

Moffat, A., and Takaoka, T. “An All-Pairs Shortest Path Algorithm with Ex-
pected Time O(#* log n),” SIAM Journal on Computing, 16(6):1023-31, De-
cember 1987.

Morgan, C. “Data Refinement by Miracles,” Information Processing Letters,
26(5):243-46, January 1988.

Morris, R. “Scatter Storage Techniques,” Communications of the ACM, 11(1):38-
44, January 1968,

Morris, J.H., Jr., and Pratt, V.R. “A Linear Pattern-Matching Algorithm.” Tzch.
Rep., 40. University of California, Berkeley, 1970. '

Motzkin, D. “Meansort,” Commaunications of the ACM, 26(4):250--51, April 1983.

Nielson, N.R. “Dynamic Memory Allocation in Computer Simulation,” Gommu-
nications of the ACM, 20(11), November 1977.

324

Suggested Readings

Nievergelt, J., and Farrar,]J.C. “What machines can and cannot do.” ACM Com-
puting Surveys, 4(2):81-96, 1972.

Nievergelt,]., and Reingold, E.M. “Binary Search Trees of Bounded Balance,”
STAM Journal on Computing, 2:33, 1973,

Nievergelt, J., and Wong, C.K. ““On Binary Search Trees,” Proc. IFIP Congr. 71,
North-Holland, Amsterdam, 1972, pp. 91-98.

Nijenhuis, A., and Wilf, H.S. Combinatorial Algorithms, New York: Academic,
1975.

Nilsson, N. Problem-Solving Methods in Artificial Intelligence, New York: McGraw-
Hill, 1971.

Nipkow, T. “Non-Deterministic Data Types: Models and Implementations,”
Acta Informatica, 22(6):629-61, March 1986.

Ore, O. Theory of Graphs, vol. 38: Providence, R.I.: American Mathematical Soci-
ety, 1962.

Ore, O. Grapks and Their Uses, New York: Random House, Syracuse, N.Y.:
Singer, 1963.

Page, E.S., and Wilson, L.B. Information Representation and Manipulation in a
Computer, London: Cambridge, 1973.

Pagli, L. “Self-Adjusting Hash Tables,” Information Processing Letters, 21(1):23—
25, July 1985.

Peterson, J.L., and Norman, T.A. “Buddy Systems,” Communications of the ACM,
20(6), June 1977.

Pohl, 1. “‘A Sorting Problem and its Complexity,” Communications of the ACM,
15(6), June 1972.

Powell, M. “Strongly Typed User Interfaces in an Abstract Data Store,” Sofz-
ware Practice and Experience, 17(4):241-66, April 1987.

Pratt, T.W. Programming Languages: Design and Implementation, Englewood Cliffs,
N.].: Prentice-Hall, 1975.

Prim, R.**Shortest Connection Networks and Some Generalizations,” Bell System
Technical Journal, 36:1389-1401, 1957.

Purdom, P.W.,, and Stigler, S.M. *‘Statistical Properties of the Buddy System,”
Communications of the ACM, 17(4), October 1970.

Purdum, J., Leslie, T., and Stegemoller, A. C Programmer’s Library, Que Corpo-
ration, 1984.

Rabin, M.O. “Complexity of Computations,”” Commaunications of the ACM,
20(9):625-33, 1977.

Reingold, E.M. “On the Optimality of Some Set Merging Algorithms,” Journal
of the ACM, 19(4):649-59, 1972.

Reingold, E.M., Nievergelt, J., and Deo, N. Combinatorial Algorithms: Theory and
Practice, Englewood Cliffs, N.J.: Prentice-Hall, 1977.

Rich, R.P. Internal Sorting Methods Illustrated with PL{I Programs, Englewood
Cliffs, N.J.: Prentice-Hall, 1972.

Rivest, R.L., and Knuth, D.E. “Bibliography 26: Computer Sorting,” Comput.
Rev., 13:283, 1972,

Roberts, Fred S. Discrete Mathematical Models, Englewood Cliffs, N.]J.: Prentice-
Hall, 1976.

Suggested Readings 325

Roberts, Fred S. Applied Combinatorics, Englewood Cliffs, N.].: Prentice-Hall,
1984.

Sager, T. “A Polynomial Time Generator for Minimal Perfect Hash Func-
tions,” Communications of the ACM, 28(5):523-32, May 1985.

Sahni, S.K. “Approximate Algorithms for the 0/1 Knapsack Problem,” Journal of
the ACM, 22(1):115-24, 1975.

Sahni, S.K. “Algorithms for Scheduling Independent Tasks,” Journal of the
ACM, 23(1):116-27, 1976.

Sahni, S.K., and Gonzalez, T. “®P-Complete Approximation Problems,” Journal
of the ACM, 23(3):555-65, 1976.

Savage, J.E. The Complexity of Computing, New York: Wiley, 1976.

Schorr, H., and Waite, WM. “An Efficient Machine-Independent Procedure for
Garbage Collection in Various List Structures,” Communications of the ACM,
10(8):501-506, August 1967.

Sedgewick, R. “Quicksort,” Report no. STAN-CS-75-492, Department of Com-
puter Science, Stanford, Calif., May 1975.

Sedgewick, R. ‘“Permutation Generation Methods,”” ACM Comput. Surv.,
9(2):137, June 1977.

Sedgewick, R. “Quicksort with Equal Keys,” STAM Journal on Computing
6(2):240-267, 1977.

Sedgewick, R. Algorithms, Reading, Mass.: Addison-Wesley, 1983,

Shell, D.L. “A High Speed Sorting Procedure,” Communications of the ACM,
2(7), July 1959.

Shen, K.K., and Peterson, J.L.. “A Weighted Buddy Method for Dynamic Stor-
age Allocation,” Communications of the ACM, 17(10):558-62, October 1974.

Shore, J. “On the External Storage Fragmentation Produced by First-Fit and
Best-Fit Allocation Strategies,” Communications of the ACM, 18(8):433, Au-
gust 1975.

Shore, J. Anomalous Behavior of the Fifty-Percent Rule in Dynamic Memory
Allocation,” Commaunications of the ACM, 20(11), November 1977.

Sleater, D., and Tarjan, R. “Biased Search Trees,” SIAM Journal on Computing,
14(3):545-68, August 1985.

Sleator, D., and Tarjan, R. “Self-Adjusting Heaps,” SIAM Journal on Computing,
15(1):52-69, February 1986.

Sprugnoli, R. “Perfect Hashing Functions: A Single Probe Retrieving Method
for Static Sets,” Communications of the ACM, 20(11), November 1977.

Stanat, D.F., and McAllister, D.F. Discrete Mathematics in Computer Science, Engle-
wood Cliffs, N.].: Prentice-Hall, 1977.

Stephenson, C.J. “A Method for Constructing Binary Search Trees by Making
Insertions at the Root,”” IBM Researchk Report RC 6298, IBM Thomas J. Wat-
son Research Center, Yorktown Heights, N.Y., 1976.

Stout, Q., and Warren, B. “Tree Rebalancing in Optimal Time and Space,”
Communications of the ACM, 29(9):902-908, September 1986.

Stroustrup, B. T4e C + + Programming Language, Reading, Mass.: Addison-
Wesley, 1986.

326

Suggested Readings

Tarjan, R.E. “Depth-First Search and Linear Graph Algorithms,” SIAM Journa!
on Computing, 1(2):146-60, 1972.

Tarjan, R.E. “On the Efficiency of a Good but Not Linear Set Union Algo-
rithm,” Journal of the ACM, 22(2):215-25, 1975.

Tarjan, R.E. Data Structures and Network Algorithms, SIAM, 1983.

Tarjan, R.E. “Algorithm Design,” Communications of the ACM, 30(3):204-12,
March 1987.

Tenenbaum, A. “Simulations of Dynamic Sequential Search Algorithms,” Com-
munications of the ACM, 21(9), September 1978.

Tenenbaum, A., and Widder, E. “A Comparison of First-Fit Allocation Strate-
gies,” Proc. ACM 78, December 1978,

Tenenbaum, A., and Augenstein, M. Data Structures Using Pascal (2nd ed.), En-
glewood Cliffs, N.].: Prentice-Hall, 1986.

Touretsky, D.S. LISP, A Gentle Introduction to Symbolic Computation, New York:
Harper & Row, 1984.

Tremblay,]J.P., and Sorenson, P.G. Az Introduction to Data Structures with Appli-
cations, New York: McGraw-Hill, 1976.

Tsakalidis, A. “AVL Trees for Localized Search,” Information and Control,
67(1-3):173-94, October—December 1985.

Tucker, A. Applied Combinatorics, New York: Wiley, 1980.

Van Emden, M.H. “Increasing Efficiency of Quicksort,” Communications of the
ACM, 13:563-67, 1970.

Van Tassel, D. Program Style, Design, Efficiency, Debugging, and Testing (2nd. ed.),
Englewood Cliffs, N.]J.: Prentice-Hall, 1978.

Vuillemin, J. “A Unifying Look at Data Structures,” Communications of the ACM,
23(4):229-39, April 1980.

Walker, W.A,, and Gotlieb, C.C. “A Top Down Algorithm for Constructing
Nearly Optimal Leixcographic Trees,” in R. Read (ed.), Grapk Theory and
Computing, New York: Academic, 1972.

Wegner, P. “Modifications of Aho and Ullman’s correctness proof of Warshall’s
algorithm,” SIGACT News, 6(1):32-35, 1974.

Weinberg, G. The Psychology of Computer Programming, New York: Van Nostrand,
1971.

Wickelgren, W.A. How to Solve Problems: Elements of a Theory of Problems and
Problem Solving, San Francisco: Freeman, 1974.

Williams, J. “Algorithm 232 (Heapsort),” Communications of the ACM, 7(6):347- -
48, June 1964.

Wirth, N., “Program Development by Stepwise Refinement,” Communications of
the ACM, 14(4):221-27, April 1971.

Wirth, N. Systematic Programming: An Introduction, Englewood Cliffs, N.].: Pren-
tice-Hall, 1973.

Wirth, N. “On the Composition of Well-Structured Programs,” ACM Comput.
Surv., 6(4), December 1974,

Wirth, N. Algorithms + Data Structures = Programs, Englewood Cliffs, N.J.:
Prentice-Hall, 1976.

Suggested Readings 327

Wood, D. “The Towers of Brahma and Hanoi Revisited,” Journal of Recre-
ational Mathematics, 14:17-24, (1981-2).

Yao, A.C. “On the average behavior of set merging algorithms,” Proceedings of
the Eighth Annual ACM Symposium on Theory of Computing, pp. 192-95, 1976.

Yourdon, E. Techniques of Program Structure and Design, Englewood Cliffs, N.].:
Prentice-Hall, 1975.

Copyrighted Materials

Copyright © 1994 Oxford University Press Retrieved from www.knovel.com

INDEX

Index Terms Links
A
Abstract data type 4-5
Acrostic puzzles
backtracking technique for
acum()
add_cust_q()
Addition, matrix, algorithm for
addnums()
addqueue()
Addressing, open [248] [251-254 |
Adjacency lists
Adjacency matrix
adj_node 204
Algorithm(s) 2-5
abstract data type of 4-5
clarity of 16-17
comparisons in
complexity of 14-16
definition of 2-3
design of 12-29
analysis in 14-16
data structure design in
for Fibonacci numbers 20-24

This page has been reformatted by Knovel to provide easier navigation.

Index Terms

Algorithm(s)
design of (Cont.)
for matrix addition
pseudo-code sketch in
requirements analysis phase of
efficiency index of
implementation of
maintainability of
portability of
readability of
resource usage of
testing of
Avrbitrary-length arithmetic, queues for
Array
multidimensional
arrive()
Attributes, of variables
AVL trees
deletion for
insertion for
vs. non-AVL trees

avl_node()
B

Backtracking
chronological
dependency-directed
bad_swap()
Bank lines, computer simulation for
bbl_sort()

C.

inks

27

=]
P12
=l =] =
TRES

==

= =
T
l_\
©

17
19

[Ey

T
N
o

19-

(621
SN

[56-58

31-

162-164
173-17

(o))
a| || |on

= =
~ »
T T
== =
~ N[[w] |
ol IN] N

172

77-80
78—

~

97—
115-125
261-262

~

©
Ol |0
o| |5 |[o

This page has been reformatted by Knovel to provide easier navigation.

Index Terms

best_move()
bet_delete()
bfs()
Binary operator
Binary tree(s)
breadth first traversal of
complete
definitions of
deletion for
full
implementation of
inorder traversal of
insertion algorithm for
ordered
AVL
deletion for
insertion for
balanced
insertion for
postorder traversal of
preorder traversal of
skewed
array representation of
threaded
deletion for
insertions for
traversal of
traversal of
utility functions for
binsrch()

C.
>
N
%)

[N
[(e]
N

=
[$)]
(0]

[160-161

144-14

= =] =] (=)
NN wl||o
ol || |~| o] |o] |®

[N
Ul
P

=l =

Bl 1O

of |~

146-14
149-15
152-156

O |00

162-164
173-175
164-173
161-175

207

152
147

[153-154

[164-173]

5

45
4
180

[EEN

=] =
3
o |~

[N
e}

[y
~
7

[ERN
[ee]
o

[EEN
~
(00)

177-

[REY

78

179

[REN

[148-152

[177-178

161
229-230

162
232

This page has been reformatted by Knovel to provide easier navigation.

233

Index Terms

board_eval()
Breadth first traversal
of binary trees
of graph
bt_bfs()
bt_copy()
bt _equal()
bt_insert()
bt_insert2()
Bubble sort
buildheap()

C

C programming language
* operator in

arrays for

assignment operators for

binary operators for

character constants in

compound statements in

conditional expressions in

constants in
control flow in
data types in

qualifiers of
declaration syntax of
do-while loop in
expressions in
file inclusion facility in

if statement in

C.
>
N
%)

[182]

[EnN

| |
=l =] 2] =]
ol o] |of || |o
ol [~] IR] IR o] [~

5

N
o

[N
1

161
260-262
274-276

[EnN
a1
N

[SN
o]
T
= =
al (o]
N (ee]

162
163

[op]

-11

[298-316

©
CID
©
~

w
T
w
N

306
30
31

w
o
| OIO |
Wl W] |w w| |w
B i=l R =] [=]1 R [=}
Rl|Oo] o] |IN] |N] |0

w

310
300
300-30
303-30

1

(&3]

308

| |

Wl |w w
o o
O|IN = |w

31
310-311

(6,]

w
-
w

304

This page has been reformatted by Knovel to provide easier navigation.

Index Terms

C programming language (Cont.)
for loop in
loop termination in
macros in
operator set for
pointers in
preprocessor of
program structure of
programming environment of
statements in
string constants in
structures in
switch statement in
symbolic constants in
ternary operator for
unary operators for
while loop in
Calculator, software stacks for
Call by reference
Chaining
coalesced
separate
Chains, ordered
check_pared()
Chronological backtracking
Circular list, queue as
Clients
Clustering, of hash table
Coalesced chaining
Collision

C.
>
N
%)

312
312-313

305

[e°)

©
a1l | |

| || || |w
ol S]] |=]]|~
~ 3

313

[313-315

|

w| |
= |
ol |co

309
302

©
N

102

[304-305 |

H
ey
[N

w
o
w

[314-315]

o

305-306
311

| |

W W] |w
= =

N ~

w
({e]

[41-49]

240-245
246-248
240-245

[¢;]

N N
[{e]

(2] B B
il
ol |
Al |©

251-252
246-248
239-240

55 |

This page has been reformatted by Knovel to provide easier navigation.

Index Terms

Comparison, in algorithm
Complexity, of algorithm
Computability theory
Iconcatl()

Iconcat2()

Concatenation
conn_graph
Correspondence, of array
Cycle

D

Data abstraction

Data structure(s)
definition of
dynamic
doubly linked lists in
generalized lists in
linked lists in

pointers with

list processing in
memory allocation in
simulation with
stacks in
static
arrays in
disadvantages of
ordered lists as
overview of

gueues as

107-109

107

109

19

N
8|[=] (8] =

(o)
P
o [w D
5| [E@= &

125-127

_
Fl =
(5] 5]

208

128

[EnN
N
Ny|

[129-137 |

[{e]
N

87—

[{e]
i
=
o
(&3]

105-109

=
o
T
[N
[N
N

=
=
N

[115-125]|

=
o
N
[y
[N
o

w

Wl W] || |W| W
SRR 12
W] |wW| | [o2]
W] NN O

N
[{e]

[51-58 |

This page has been reformatted by Knovel to provide easier navigation.

Index Terms

Data structure(s)

overview of (Cont.)

stacks as
program calculator with

dbl_delete()
dbl_insert()
Degree, of node
delete()
delete2()
Deletion

for AVL trees

for linked lists

for threaded binary trees
delqueue()
Dependency-directed backtracking
Depth, of node
Dequeue
Dereferencing
dfs()
Digraph

complete

strongly connected
Division, in hashing
do while loop
Documentation
do_something()
Double hashing
Double rotation
Doubly linked lists

C.
>
N
%)

w

3

2

104-105

(o] w

© O |w
| =] =]]] |

Ol | N B

N |W] o] O] |©] |©

[
~
(IAJ
[N
~
]

(o]

SN

5

203-204
195-22
9
99
254-255

~

[y

~ o]
o ©
w =l =] o] I =] =]
N N |oof o ©
o] N [(RN 1R =10 D

128
128

52

313

197

07

w

[308-309 |

N
[Sa)
T
N
[Sal
iISN

125-127

=
()]
(o]

128

This page has been reformatted by Knovel to provide easier navigation.

Index Terms

duration()

Dynamic memory allocation
E

Eight Coins Problem
Eight Queens Puzzle
eightcoins()
Encapsulation
Enqueue

error()

eval()

Extendibility

F

fact_iter()

Factorial numbers
iterative solution for
recursive algorithm for

fact_recr()

fibnum()

Fibonacci numbers
algorithm for
recursive algorithm for

fib_recr()

fib_recr2()

fibsrch()

FIFO (first-in, first-out) list

See also Queue(s)

File inclusion facility, of preprocessor

Links
11
[180-182| [183-184]|
62-65
234 235
[49] [51-58]
10-11 315

This page has been reformatted by Knovel to provide easier navigation.

Index Terms

find_max()

first()

Folding, in hashing
for loop
form_heap()
free()

G

Game tree
implementation of
Game trees
game_tree()
gencopy()
gen_delete()
Generalized lists
copying of
equality of
utility functions for
good_swap()
Graph(s)

applications of

breadth first traversal of

complete

connected, traversal of

connected components of

definition of

depth first traversal of

path of
shortest path of
subgraph of

3

255-25

31

274-27
110

T
NN
©
O IN] O] N |©

[182 |

[185-188

188-190

[182]

[185-188

3
3

©

133
138

[ERN
N
-

[129-137

=] =
w
@

N

3
135

-
w
iR

195-221
199-200
205-206

197

195-
202-20

(]

a1

=N =] (=]
© ol o
~| || [|©o] | [

N

215-21

197

134

208

198

This page has been reformatted by Knovel to provide easier navigation.

Index Terms

Graph(s) (Cont.)
traversal of
weakly connected

weighted, traversal of
H

Hash table

Hashing, searching with
hash_node()

hash_tel()

Head pointer

Heapsort

Height, of node

Index, of array
indx_seq()
Infix notation

to postfix form

inorder()

Inorder traversal, of binary trees

insert()
insert2()
Insertion
for AVL trees
for linked lists

for threaded binary trees

Insertion sort
ins_hash()

235-246
238-256
4
3
88
272-276
143-144

IR

208

239

149—

149-
89-92

104-105

©

==
ull !
ol |o

164-173

[87-92

[103-105 |

1
264-265
242

~
oo

79

This page has been reformatted by Knovel to provide easier navigation.

=
(72}

Index Terms Lin

ins_node() 243
ins_sort()
Instantiation, of recursive procedure
iter_trav()
itop()
K
kross program
L
Level, of node
LIFO (last-in, first-out) structure 33-36
Linear list 32-33
See also Ordered list
Linear probing 251-253
Linked-list deletion [89-92| [103-105|
Linked-list insertion [87-92] [103-105 |
Linked lists
using pointers
List(s)
adjacency
circular, queue as
concatenation of
doubly linked 128
generalized [127] [129-137]
linked
deletion with [89-92| [103-105|
insertion with [87-92| [103-105]
using pointers

This page has been reformatted by Knovel to provide easier navigation.

Index Terms

List(s) (Cont.)
ordered
queues as
stacks as
reversal of
shared
traversal of
tree as
List concatenation
List deletion
with pointers
List insertion
with pointers
List reversal
List traversal
iterative
recursive
list_equal()
LR rotation

M

Macro

main()

Maintainability
of algorithm

make_tree()

malloc()

Map, of array

Matrix, adjacency

Matrix addition, algorithm for

C.
>
N
%)

w
N
w
w

ioN
[{e)

89—
103-105
106-107
105-10
105-10
105-10

»

[N
w [{e]

=
D
[{e]

©
[N
(=]

N

o

NS

arf |1

S| 18] [w] 2] 8] [=
SIERE RS

134

This page has been reformatted by Knovel to provide easier navigation.

299

Index Terms

Median-of-three partitioning, in quicksort

Members
Memory allocation, dynamic
merge()
Mergesort

implementation of
Modularity
move()
mrg_pass()
mrg_sort()
Multidimensional arrays

Multigraph

N

nextqueen()
Node
degree of
depth of
height of
level of
non-terminal
terminal
Non-deterministic programming
Numbers
factorial
iterative solution for
recursive algorithm for
Fibonacci, algorithm for

recursive

C.
>
N
%)

271-272

110-112
2717-27
276-28
278

[ee]

189-19
278-28
278-28

|
w &
] |3] 3] (8] (= =] [2 g

-
©
(2]

77

»

©

=l =] =]]
NG N
5[] |w

4

[
SN
N
[N
SN
SN

[ERN
w

4

==
NI S
w||w

~
oo

NIE
T
ol o
SN

N

65-67

114

197

This page has been reformatted by Knovel to provide easier navigation.

Index Terms

O

Open addressing
Operands
Operator(s)

binary

unary
Operator overloading
Ordered list

queues as

stacks as
P

Parentheses, stacks processing of
Parenthesis index
Partition sort
Path
in graph
Platform
Pointer(s)
in C programming language
dereferencing of
example of
linked lists with
list deletion with
list insertion with
queue functions and
queues with

stacks with

pop()

C.
>
N
%)

[248

[251

—254 |

39
39
39
39
97

w
ll\)
[O8]
w

N
[{e)

[5

1-58 |

33-37

37

|
wl|w
x| |©

N
(o))
(.IJ'I
N
\‘
N

4

[y

9

©

Ol 1O |©] |~

| |o] | BN

| | | | L
(o] [(e]

~N| N[O |00 |oof |-

97-99

313

[92-105

[y
o
N

|
[y
o
w

103-105
103-105

==
=
ol o
I
'_\
N

[y
o
i
[y
Wl =
(S2] | (=]

[N
[N

(O]
| |-

This page has been reformatted by Knovel to provide easier navigation.

112

Index Terms

Portability, of algorithm
Postfix notation
evaluation of
infix notation to
postorder()
Postorder traversal, of binary trees
power()
pPop()
ppPop2()
ppush()

ppush2()
Prefix notation

preorder()
Preorder traversal, of binary trees
Preprocessor
of C programming language
file inclusion facility of
Private implementation
Probing, linear
Pruning
Pseudo-code

Public interface
push()

Q

gck_sort()

Queue(s)
for arbitrary-length arithmetic
as circular list

dequeue in

C.
>
N
%)

H
N
| =
| |0

[48-49|

[43-46|

=] =
HH
| |~

T
N

[ERN
[N
o

114
110

0

= [
all |a| |]|=
o py 'S

111

111

?D
[y
[N

[313-315]|

251-

= =
w o
P NI=ER; AR
8 [« [=] 2] 8] [|2

268-269

LI
[{e]

[51-58 |

[54]

[56-58 |

53-54

HI
[y

This page has been reformatted by Knovel to provide easier navigation.

Index Terms

Queue(s) (Cont.)
engueue in
full
pointers with
for summing addends
gueue_empty()
queuesize()
Quicksort
median-of-three partitioning in
recursion removal from

secondary sorting routine in
R

Readability, of algorithms
Record
Recursion
backtracking in
acrostic puzzle examples of
chronological
dependency-directed
chronological backtracking in
dependency-directed back-tracking in
direct
for Eight Queens Puzzle
for factorial numbers
for Fibonacci numbers
indirect
instantiation of
nesting in

non-deterministic programming in

H
iy

a1
[y

[8)]
T
ol
SN

56—

-
a1l o] O] |
=l] o] |1©

72
72

N C1RIN}
N N o
T T
| [N o] [N
~
o

71

[EEN
?3
[y
~

S]] N eof [~ o
CHCHENCHZH T T
o |oo| || [oo] [] |oo] || |
S| |o] D] |0l | [D] |

oo | |O] |
T TP
| |o] |of o] o] |

~

a1l |Oo1
Ny IN

-
[N
[N

This page has been reformatted by Knovel to provide easier navigation.

H

6
112

Index Terms

Recursion (Cont.)
in quicksort
redundancy in
terminating condition of
for Towers of Hanoi
use of
recv_trav()
Reference counts
Rehashing
Resource usage, of algorithms
rest()
reverse()
Ripple effect
RL rotation

Root, of tree

S

safe()

Searching

See also Back-tracking

binary
interpolation
modified
binary tree
Fibonacci
hashing with
linear, ordered

pruning in

C.
>
N
%)

N
[ee] B B}
w| |Oo

N |-
o1| |w
|] |on o| |[o] |o
| |1 | Wl [N |
| N| [~ =]]] | |
| o] |w] o] || o] |o
ol |&]|N] o]] |of |

[106-107 |

73-74
222

228-232
232-234

{
N
(2]
(o]

N
w
N

236237
234-23
238-25
224-225

79-80

This page has been reformatted by Knovel to provide easier navigation.

Index Terms

Searching (Cont.)
sequential
complexity of
indexed
Secondary hashing
Selection sort
Self-loops
Self-referential structures
sel_sort()
seq_srch()
seq_srch2()
Shared lists
simulate()
Simulation
Single left rotation
Single right rotation
Skewed binary trees
array representation of
Software design. See Algorithm(s), design of
solve()
Sorting
bubble
execution time for
insertion
partition
selection
space requirements for
stability of
Spanning trees

minimal

C.
>
N
%)

223-224
223-224
225-228
253
262

| |
=l IN] IN
ol |l D] |0
N o] &) |

N
[o)]
T

26
223
224-225
135-137
116-125

SN

112

[115-125]

167
6
4

[N

= =
N
oo N

[¢,]

[80-83]

[284-297 |

259-283
260-262
259
264-265
265-272
262-264
260

|
N
[o2]
o

N
[o)]
o

208-215

[210-211

[213-215 |

This page has been reformatted by Knovel to provide easier navigation.

Index Terms

Stacks
calculator design with
parentheses processing by
pointers with
string reversal by
String reversal, by stacks
str_to_int()
Structure, in C programming language
Structure tag
Subgraph
suml()
sum2()
switch statement

Symbolic constant
T

Tic-tac-toe program
implementation of
Top, of stack
towers()
Towers of Hanoi
Traversal
of binary trees
breadth first
of binary trees
of graph
depth first, of graph
of graph
inorder, of binary trees

postorder, of binary trees

C.
>
N
%)

w
T

37

w
©

w

T

w

©
N
T
©

[N
o
T
[REN
[N
o

36—
36—

N

o1 o] |
ol | |~

ol |©o
Ple
==
ol |lo
SIS

197

w
=] [eo] [«]

111

[Sa)
(op]

2

198

[~][=]

[182 |

188-190
33-36

(o]
T
(2]
©

148-152

205-206
202-205
202-208
149-150

151

[S)]
iy

152

This page has been reformatted by Knovel to provide easier navigation.

Index Terms Links

Traversal (Cont.)
preorder, of binary trees
of threaded binary tree 177-178

Tree(s) 141-194
applications of 180-190
basic principles of 141-144
binary 144-145

threaded 175-180
decision 180-182
definition of 141
forest of 144
game [182| |[185-188]
spanning 208-215
minimal [210-211] [213-215]

treesrch() 236-237

Truncation, in hashing 254

U

Unary operator

Vv

Value, of array

Variable, attributes of 94-95

w

while statement 311-312

This page has been reformatted by Knovel to provide easier navigation.

	Front Matter
	Dedication
	Preface
	Table of Contents
	1. Introduction
	1.1 Overview
	1.2 Why Study Algorithms?
	1.2.1 Data Abstraction

	1.3 Why C?
	1.4 Coding Style
	1.5 What You Need to Know
	1.5.1 The C Programming Environment
	1.5.2 The C Preprocessor

	Summary

	2. Algorithm Design
	2.1 How to Design an Algorithm
	2.1.1 Understand the Problem
	2.1.2 Data Structures
	2.1.3 Pseudo-Code
	2.1.4 Analysis
	2.1.4.1 Additional Analysis Criteria

	2.1.5 Implementation
	2.1.6 Testing

	2.2 Example 1: Fibonacci Numbers
	2.2.1 Understand the Problem
	2.2.2 Data Structures
	2.2.3 Pseudo-Code
	2.2.4 Analysis
	2.2.5 Implementation
	2.2.6 Testing

	2.3 Example 2: Matrix Addition
	2.3.1 Understand the Problem
	2.3.2 Data Structures
	2.3.3 Pseudo-Code
	2.3.4 Analysis
	2.3.5 Implementation
	2.3.6 Testing

	Summary
	Exercises

	3. Static Data Structures
	3.1 Overview
	3.2 Arrays
	3.3 Ordered Lists
	3.4 Stacks
	3.4.1 String Reversal
	3.4.2 Parentheses Usage

	3.5 Example Calculator
	3.5.1 Prefix and Postfix Notation
	3.5.2 Automating Infix-to-Postfix Conversion
	3.5.3 Postfix Evaluation

	3.6 Queues
	3.6.1 Arbitrary-Length Arithmetic

	Summary
	Exercises

	4. Recursion
	4.1 Introduction
	4.2 Factorial Numbers
	4.3 Fibonacci Numbers
	4.4 Writing Recursive Functions
	4.4.1 Towers of Hanoi
	4.4.2 Eight Queens Puzzle
	4.4.3 Backtracking
	4.4.3.1 Non-Deterministic Programming
	4.4.3.2 Chronological Backtracking
	4.4.3.3 Dependency-Directed Backtracking
	4.4.3.4 Acrostic Example

	4.5 Use of Recursion
	Summary
	Exercises

	5. Dynamic Data Structures
	5.1 Introduction
	5.2 Linked Lists
	5.3 Linked Lists Using Pointers
	5.3.1 Pointers
	5.3.1.1 Pointers in C
	5.3.1.2 Pointer Example
	5.3.1.3 C Structures
	5.3.1.4 Linked Lists and Pointers

	5.3.2 List Insertion and Deletion with Pointers

	5.4 List Processing
	5.4.1 List Traversal
	5.4.2 List Reversal
	5.4.3 List Concatenation

	5.5 Stacks Revisited
	5.6 Queues Revisited
	5.7 Dynamic Memory Allocation
	5.8 Simulation Example
	5.8.1 Problem Overview
	5.8.2 Implementation

	5.9 Doubly Linked Lists
	5.10 Generalized Lists
	5.10.1 Implementation
	5.10.2 Generalized List Functions
	5.10.3 Shared Lists and Reference Counts

	Summary
	Exercises

	6. Trees
	6.1 Basic Principles
	6.1.1 Definitions

	6.2 Binary Trees
	6.2.1 Binary Tree Definitions
	6.2.2 Binary Tree Implementation
	6.2.3 Binary Tree Traversal
	6.2.3.1 lnorder Traversal
	6.2.3.2 Preorder Traversal
	6.2.3.3 Postorder Traversal
	6.2.3.4 Breadth First Traversals

	6.2.4 Binary Tree Insertion
	6.2.4.1 Concluding Remarks

	6.2.5 Binary Tree Deletion
	6.2.6 Utility Functions

	6.3 Balanced Trees
	6.3.1 AVL Tree Insertion
	6.3.2 AVL Tree Deletion

	6.4 Threaded Binary Trees
	6.4.1 TBT Traversal
	6.4.2 TBT Insertions
	6.4.3 TBT Deletions

	6.5 Applications of Trees
	6.5.1 Decision Trees
	6.5.2 Game Trees
	6.5.3 Implementation

	Summary
	Exercises

	7. Graphs and Digraphs
	7.1 Introduction
	7.1.1 Definitions and Terminology
	7.1.2 Applications of Graphs

	7.2 Internal Representation
	7.2.1 Adjacency Matrix
	7.2.2 Adjacency Lists

	7.3 Traversals
	7.3.1 Depth First Search
	7.3.2 Breadth First Search
	7.3.3 Connected Graphs
	7.3.4 Weighted Graphs

	7.4 Spanning Trees
	7.4.1 Minimal Spanning Trees
	7.4.2 MST Construction
	7.4.3 Analysis
	7.4.4 Implementation

	7.5 Shortest Path Algorithm
	Summary
	Exercises

	8. Searching
	8.1 Introduction
	8.2 Sequential Searching
	8.3 Searching Ordered Tables
	8.3.1 Ordered Linear Search
	8.3.2 Indexed Sequential Search
	8.3.3 Binary Search
	8.3.4 Modified Binary Search
	8.3.5 Interpolation Search
	8.3.6 Fibonacci Search
	8.3.7 Binary Tree Searching

	8.4 Hashing
	8.4.1 Simple Hashing Example
	8.4.1.1 Collision Resolution Strategies
	8.4.1.2 Chaining
	8.4.1.3 Improvements and Extensions
	8.4.1.4 Open Addressing

	8.4.2 Hashing Functions
	8.4.2.1 Truncation
	8.4.2.2 Division
	8.4.2.3 Folding

	Summary
	Exercises

	9. Sorting Techniques
	9.1 Introduction
	9.2 Bubble Sort
	9.2.1 Analysis

	9.3 Selection Sort
	9.3.1 Analysis

	9.4 Insertion Sort
	9.4.1 Analysis

	9.5 Quicksort
	9.5.1 Analysis
	9.5.2 Improvements to Quicksort
	9.5.2.1 Remove Recursion
	9.5.2.2 Secondary Sorting Routine
	9.5.2.3 Median-of-Three Partitioning
	9.5.2.4 Final Remarks

	9.6 Heapsort
	9.6.1 Analysis

	9.7 Mergesort
	9.7.1 Implementation
	9.7.2 Analysis

	Summary
	Exercises

	Appendices
	Appendix A: Acrostic Puzzle
	Exercises

	Appendix B: C for Programmers
	B.1 Introduction
	B.1.1 Quick Tour of C
	B.1.2 Program Structure

	B.2 Data Types
	B.2.1 Basic Types
	B.2.2 Qualifiers
	B.2.3 Constants
	B.2.4 Character Constants
	B.2.5 String Constants
	B.2.6 Symbolic Constants
	B.2.7 const Qualifier

	B.3 Declarations
	B.3.1 Identifier Names
	B.3.2 Declaration Syntax
	B.3.3 Arrays
	B.3.4 Structures

	B.4 Operator Set
	B.4.1 Unary
	B.4.2 Binary
	B.4.3 Ternary
	B.4.4 Assignment Operators

	B.5 Expressions and Statements
	B.5.1 Comments
	B.5.2 Expressions
	B.5.3 Conditional Expressions
	B.5.4 Statements
	B.5.5 Compound Statements

	B.6 Control Flow
	B.6.1 The if Statement
	B.6.2 The switch Statement
	B.6.3 The while Loop
	B.6.4 The do-while Loop
	B.6.5 The for Loop
	B.6.6 Loop Termination and Continuation

	B.7 Pointers
	B.8 The C Preprocessor
	B.8.1 Symbolic Constants
	B.8.2 Macros with Arguments
	B.8.3 Include Files

	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

