
C H A R L E S F. B O W M A N

Algorithms and Data strzcctures
A N A P P R O A C H I N

c

New York Oxford
OXFORD UNIVERSITY PRESS

Oxford University Press

Oxford New York
Athens Auckland Bangkok Bogota
Bombay Buenos Aires Calcutta Cape Town
Dares Salaam Delhi Florence Hong Kong Istanbul
Karachi Kuala Lumpur Madras Madrid
Melbourne Mexico City Nairobi Paris
Singapore Taipei Tokyo Toronto

and associated companies in
Berlin Ibadan

Copyright CP 1994 by Oxford University Press, Inc.

Published by Oxford University Press Inc.,
198 Madison Avenue, New York, New York 10016

Oxford is a registered trademark of Oxford University Press.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without the prior permission of Oxford University Press.

Library of Congress Cataloging-in-Publication Data available upon request

ISBN 0-19-517480-1

9 8 7 6 5 4 3 2

Printed in the United States of America

Preface

This book instructs readers on the science of developing and analyzing
algorithms. I t is intended for use in a one- or two-semester under-
graduate course in data structures.

The text focuses on both the theoretical and practical aspects of
algorithm development. It discusses problem-solving techniques
and introduces the concepts of data abstraction and algorithm effi-
ciency. More important, it does not present algorithms in a shopping-
list format. Rather, the book tries to provide actual insight into the
design process itself.

The book also has a practical bent. Most of the algorithms are of
general use, and there is a strong emphasis placed on “real world”
programming requirements. As a result of this unique approach, and
the fact that all algorithms are presented in the C programming language,
the book should prove useful to professional programmers as well.

ORGANIZATION

Chapter 1 introduces algorithmic analysis and discusses the motiva-
tions for its study. Although the book is not intended as a tutorial on C
(see below), this chapter does provide a brief introduction to the C
programming environment. Readers already familiar with this material
may omit sections 1.5 and 1.6. Readers who wish a more thorough
examination of the language are referred to Appendix B.

Chapter 2 discusses the various phases of algorithm design and
introduces the concept of complex$y. Static data structures are presented
in Chapter 3. This is followed by a detailed explanation of recursion
in Chapter 4. Chapter 5 follows with discussion of dynamic data structures.

V

vi Preface

Many of the algorithms presented in Chapter 3 are reimplemented
using the techniques discussed in this chapter.

In Chapters 6 and 7, we discuss two of the more important abstrac-
tions found in computer science: trees and graphs. The chapters
include many practical examples. In Chapter 8 we discuss searching
techniques and finish with a discussion of sorting techniques in
Chapter 9.

T h e exercises appearing at the end of each chapter are also an
integral part of this text. They reinforce the concepts presented in each
section and often introduce new material as well.

All texts of this nature require a “host” language to serve as a vehicle
for algorithm presentation. Authors of similar books have used languages
ranging from assembler topseudo-code. We decided that C was the best
choice for this text for several reasons:

It is an excellent vehicle for expressing algorithmic ideas.
It is widely available. Most readers of this text will have access

It has become the language of choice in many professional and

Programmers familiar with other structured programming lan-

to a C compiler at school, work, or home.

academic institutions.

guages will readily understand the C programs presented in
this book.

A note about this last item. The intent of this book is to teach
algorithm design; it is not intended to serve as a tutorial introduction
to the C programming language. Thus, experienced C programmers
will note several instances where program segments could be expressed
more succinctly using some of the more advanced features of C. In all
such cases, however, cleverness gave way to clarity. T h e justification
for this approach is two-fold:

Syntax should not impede understanding.
Experienced C programmers can easily re-code the algorithms
with minimal effort.

IMPLEMENTATION NOTES

Preface vii

Moreover, to ensure that language syntax is not an obstacle to
learning, we have included the following features in the text:

Whenever appropriate, there are thorough explanations of C-

Chapter 1 includes an introduction to the C programming

Appendix B provides a more detailed introduction of C for

specific features.

environment.

programmers.

All the programs and code fragments contained herein have been
compiled by the author using ANSI C compilers running under
several operating systems. All program listings are-for the most part-
self-contained. As a result, readers should have little difficulty transcribing
them to their local environments.

ACKNOWLEDGMENTS

Although only one name appears on the cover, a project of this magni-
tude is by no means a solo effort. Publishing a book requires the help of
many dedicated professionals, with a number of specialized talents. I
would to thank all the wonderful people at Saunders College Publishing
for their efforts and suggestions: Michelle Slavin, Editorial Assistant;
Anne Gibby, Project Editor; and Jennifer Dunn, Art Director.
They all worked tirelessly to make this project a success.

I would like to extend a special thank you to Richard Bonacci,
Senior Editor, for signing the book and for his continued patience and
guidance through its completion-even when it was no longer his job;
and to Emily Barrosse, Executive Editor, for her ability to take
on a project midstream without missing a beat. It was an honor and
a pleasure to have worked with both of them.

Also, during development, a manuscript undergoes many reviews
and critiques. I would like to thank Teresa Alice Hommel, Accu-
racy Reviewer, and all the other reviewers for their advice and
suggestions:

Eric P. Bloom
Marcus Brown, University of Alabama
Michael R. Elliot, Rancho Santiago College
Peter Falley, Fairleigh Dickinson University

viii Preface

Robert M. Holloway, University of Wisconsin
Erich Kaltofen, Rensselaer
Danny Kopec, University of Maine
Linda Lesniak, Drew University
Tim McGuire, Texas A&M University
M. Andrew Moshier, University of California, Los Angeles
James F. Peters, Kansas State University
Arunabha Sen, Arizona State University
Bill Walker, East Central University

This text would not have been possible without their efforts.

I would also like to thank my wife Florence and my children,
Charles, Michael, and Nicole, for their patience and understanding
during the many long hours that I sat, seemingly transfixed, in front
of my computer. Ironically, prior to having completed this manuscript, I
had always thought it somewhat proforma that authors always thanked
their spouses for all their he@. How wrong I was. I can honestly
say that, without my wife’s assistance, this book would never have
been published. She chided me when I got lazy, consoled me when I got
discouraged, and took upon herself many of life’s mundane and thank-
less tasks to afford me time to write. There is no way, no words,
to express my love and gratitude. The best I can offer is Thank
You, Florence.

Charles Bowman
Suffern, New York
Nowetnber 1993

Contents

1 Introduction 1
1.1 Overview 1
1.2 Why Study Algorithms? 3
1.3 Why C? 6
1.4 Coding Style 6
1.5 What You Need to Know 6
Summary 11

2 Algorithm Design 12
2.1 How to Design an Algorithm
2.2 Example 1: Fibonacci Numbers 20
2.3 Example 2: Matrix Addition
Summary 27
Exercises 28

12

25

3 Static Data Stmctares 30
3.1 Overview 30
3.2 Arrays 31
3.3 Ordered Lists 32
3.4 Stacks 33
3.5 Example Calculator 39
3.6 Queues 49
Summary 58
Exercises 59

ix

X Contents

4 Recursion 61
4.1 Introduction 61
4.2 Factorial Numbers 62
4.3 Fibonacci Numbers 65
4.4 Writing Recursive Functions 67
4.5 Use of Recursion 83
Summary 84
Exercises 84

5 Dynamic Data Stmctures 86
5.1 Introduction 86
5.2 Linked Lists 87
5.3 Linked Lists Using Pointers 92
5.4 List Processing 105
5.5 Stacks Revisited 109
5.6 Queues Revisited 110
5.7 Dynamic Memory Allocation 110
5.8 Simulation Example 112
5.9 Doubly Linked Lists 125
5.10 Generalized Lists 127
Summary 137
Exercises 138

6 Trees 141
6.1 Basic Principles 141
6.2 Binary Trees 144
6.3 Balanced Trees 161
6.4 Threaded Binary Trees 175
6.5 Applications of Trees 180
Summary 190
Exercises 193

Contents xi

7 Graphs and Digraphs 195
7.1 Introduction 195
7.2 Internal Representation 200
7.3 Traversals 202
7.4 Spanning Trees 208
7.5 Shortest Path Algorithm 215
Summary 217
Exercises 220

8 searching 222
8.1 Introduction 222
8.2 Sequential Searching 223
8.3 Searching Ordered Tables 224
8.4 Hashing 238
Summary 256
Exercises 257

Sorting Techniques 259
9.1 Introduction 259
9.2 Bubble Sort 260
9.3 Selection Sort 262
9.4 Insertion Sort 264
9.5 Quicksort 265
9.6 Heapsort 272
9.7 Mergesort 276
Summary 281
Exercises 282

A P P E N D I x A Acrostic Puzzle
Exercises 288

284

xi i Contents

A P P E N D l X B C for Programmers 298
B.1 Introduction 298
B.2 Data Types 300
B.3 Declarations 303
B.4 Operator Set 305
B.5 Expressions and Statements 308
B.6 Control Flow 310
B.7 Pointers 313
B.8 The C Preprocessor 313
Exercises 3 15
Suggested Readings 3 17
Index 329

C H A P T E R I
1.1 OVERVIEW

Throughout their careers, programmers are continually asked to decide
whether a given problem has a computer-based solution. An af-
firmative answer implies that the problem is algorit/rmically solvable.
That is, if we permit the program to execute long enough, and
provide it with all the necessary computing resources, it will produce
the desired result.

A simple yes is not sufficient, however. Decisions regarding com-
putability must be considered in a practical perspective. For example,
consider writing a computer program to play chess. We could design
the program such that it would select its next move by examining every
possible option for every possible board position. Is this theoretically
possible? Yes. Is it practical? No. A program written in such a
manner could require thousands of years to compute even a single
move.

Therefore, within this framework of practicality, let's informally
define an algorithm as a series of instructions that, if followed exactly, will
accomplish a desired task in a finite (acceptable) amount of time. For
example, refer to the gower () function presented in Listing 1.1.

1

iNTRODUCTION

2 1 Introduction

/ *
* Raise X to the power Y
* /

int power(int x, int y)

int i, ret;

i = 0;
ret = 1;
while(i < y
{

ret = ret * x;
i = i + l ;

1
return(ret 1;

1
listing 1.1
Power function.

The function power () accepts two arguments: a base (x) and an
exponent (y), and it returns the result of raising x to the y power.
It is a useful function and is provided (in some form) with most
language systems. As presented here, it qualifies as an algorithm under
our informal definition in that it will compute the desired value in an
acceptable period of time. (This particular implementation has several
shortcomings, however. Consider what would happen if we invoked
the function with a y argument equal to - 1. As a rule, functions
and/or programs should behave intelligently when presented with erro-
neous data. We will be stressing this point throughout this text.)

In computer science, an algorithm is a problem-solving technique
suitable for implementation as a computer program. Specifically, an algo-
rithm is a finite set of instructions which, if followed exactly, will
accomplish a particular task. Additionally, algorithms must satisfy
the following criteria:

Each instruction contained in the algorithm must be clear, concise,
and sufficiently basic that we can (at least in theory) accomplish it
manually.

~~

1.2 Why Study Algorithms? 3

In all cases, the algorithm terminates after executing some finite
number of instructions (the actual number may vary with each
execution).

(computes) at least one value.

One last point: As stated earlier, an algorithm is a problem-solving
technique stlitable for implementation as a computer program. That
is, an algorithm is not tied to its implementation. For example, consider
the task of writing a program that yields the sum of the integers from 1
to n. One way to express this task algorithmically might be as follows:

The algorithm accomplishes at least one task and/or produces

Step 1
Step 2

Step 3

Initialize a counter to the value 1.
Add to an accumulator variable the value contained in the
counter; then increment the counter by 1.
Repeat step 2 until the counter becomes greater than n.

Now consider the two functions presented in Listing 1.2. Both
sum1 () and sum2 () achieve the result stipulated in the algo-
rithm. Yet their implementations vary dramatically. Moreover, even
without benefit of formal analysis, it should be clear that sum2 () is more
efficient than its counterpart. Indeed, there will be many occasions
when we will be confronted with just such a choice. One of the
goals of this text is to provide the insight necessary to allow the reader
to make such a selection.

1.2 WHY STUDY ALGORITHMS?

Algorithms are at the heart of computer science. Much of the early
work in the field was directed toward identifying the types and classes of
problems that could be solved algorithmically. We refer to this subject
as computubild~ theory, and it is deserving of study in its own right. In
contrast, this text will focus on analyzing individual algorithms de-
signed to solve specific problems. In doing so, we will identify and discuss
the key programming concepts associated with each algorithm so they
may be reapplied in other programs.

Most of the algorithms presented in this text employ complex
forms of data organization. These objects, called dutu structtlres, are central
to the study of algorithms. An algorithm and its associated data struc-

4 1 Introduction

suml(i n t n)
{

i n t i;
i n t result;

i = 1;
resul t = 0;
while(i <= n)

{
resul t = resul t + i;

i = i + l ;
1
return(resul t 1;

1
sum2(i n t n)

i:
i n t result;

resul t = nf (n+ 1) /2;

return(resul t);

1 listing 1.2
Two functions that
sum integers.

ture are so closely linked that a modification to one will usually
precipitate a change in the other. Because of this high degree of
interdependence, we will discuss both as a single unit.

Data Abstraction

It is often convenient to view an algorithm and its data structure solely
in terms of the operations they support. We refer to this as an
abstract data ope. Abstract data types allow programmers to think in
terms of the abstraction, without being concerned with implemen-
tation details. Data abstraction is more common than one might think.
For example, consider the use of floating-point (real) numbers in a com-

1.2 Why Study Algorithms? 5

puter program. Programmers think in terms of adding or subtracting
them. At the machine level, however, they are processed (algorithms) and
stored (data structures) in a different manner.

As implied earlier, abstract data types support both apublic inte~ace
and aprivate implementation. The public interface is the abstraction.
For those programmers using an abstract data type (often referred to
as clients), the public interface defines both the abstraction and the range
of permissible operations. For example, consider once again our floating-
point number example. Its public interface allows us to use real num-
bers in ways that seem natural to use: We can add them, subtract them,
etc. In addition, the public interface does not support other operations,
such as concatenation, that are not associated with floating numbers.

We implement abstract data types using algorithms and hidden
state data (i.e., data structures). Specific details of the implementation
should remain private. That is, clients should only be able to manipu-
late and modify an abstract data type through the proper use of its operator
set (i.e. , the public interface). We refer to this property as encapsulation.
T h e degree to which we can enforce encapsulation is, to a large extent,
based on the language we are coding in. Nonetheless, enforcement
of encapsulation rules provides us with a number of benefits, including
the following:

Maintainability We can modify the implementation of an abstract
data type without affecting client programs. That is, if we do not alter
the public interface, then any changes we apply to the private
implementation will not affect well-behaved client programs. A well-
behaved client program is one that, either through prescription or
convention, does not circumvent the public interface.

By maintaining a private implementation, we can mini-
mize the ripple effect of software modifications. That is, if the
modified code remains isolated, the changes are less likely to
affect other, non-related sections of the application.

We can construct new abstractions based on existing
types. For example, we could extend the floating-point abstrac-
tion to create abstractions for complex and imaginary numbers.

Throughout this text, we will show, by example, how to write

Modularity

Extendibility

well-constructed abstract data types.

6 1 introduction

1.3 WHY C?

Every text of this nature requires the use of a host language as a
vehicle for the presentation of algorithms. Other books on this subject
employ languages ranging from assembler to pseudo-code. Here are
some of the reasons why we selected C for use in this text:

C is an excellent vehicle for expressing algorithmic ideas.
Its use is widespread, and it has become the language of choice

Because of its broad availability (from PC to mainframe), many
in many installations.

readers of this text will be able to compile and execute the
examples exactly as they appear in the listings.

understand its flow-control constructs.
Programmers familiar with other structured languages can readily

1.4 CODING STYLE

We made every effort to ensure that each program listing is clear and
unambiguous. Also, to avoid confusion, a consistent coding style
was maintained throughout the text.

For the most part, program listings are complete and self-
contained. In some cases, however, a later listing may assume some
declarations and/or definitions included in a previous example. All such
occurrences are noted in the accompanying text.

We could simplify some of the algorithms presented in this text-
at least in terms of the number of statements needed-by using
some of the more advanced features of C. In all such cases, however,
cleverness gave way to clarity. Nevertheless, we hope that the code pre-
sented in this book will highlight the power and grace of the C program-
ming language.

1.5 WHAT YOU NEED TO KNOW

This book is not intended to serve as a tutorial introduction to the
C programming language (the bibliography lists several instructional
texts). As noted previously, readers familiar with other structured program-
ming languages (e.g., PASCAL) should have little (if any) difficulty

1.5 What You Need to Know 7

reading the program listings contained in this text. However, C
does have several unique features. Thus, to ensure that syntax does
not impede understanding, we have taken the following
safeguards:

1. We have deliberately avoided using some of the more advanced

2. Whenever appropriate, we provide thorough explanations of any

3. We have included a section that provides a brief introduction to

4. For readers who have programming experience in other structured

features of C.

C-specific features we use.

the C programming environment.

languages (e.g., PASCAL), Appendix B provides a more detailed intro-
duction to C for programmers.

Readers who are unfamiliar with C should complete this chapter.
Readers who are already familiar with the language should proceed directly
to Chapter 2.

The C Programming Environment

A complete C program consists of one or more functions, one of which
must be named main () . Program execution begins with the first execut-
able statement contained in this function. The source code for a C
program may be partitioned into separate source files (modules) and com-
piled independently. After compiling, we can combine (link-edit) all
the object (machine language) files to form one executable program. For
example, assume that we have stored the source code for the function
power () (Listing 1.1) in the file power. c. Also, assume a second source
file, test. c, that contains the following code:

#include (stdi0.h)

main()
{

int x;
x = power(2, 4) ;

printf("X = %d\n", x);

1

8 1 Introduction

The command

cc test.c p0wer.c

will compile and link the two source modules and create one execut-
able file. (The name of the resulting executable file will vary; refer
to your compiler's user manual for the actual name.) When executed,
the program will generate the following output:

X = 16

Note that the statement

#include (stdi0.h)

is a preprocessor directive and is discussed in the next section.

The C Preprocessor

A complete C language implementation comes supplied with aprepm-
cessor. 'The preprocessor is a separate program (automatically in-
voked by the compiler) that does just what its name implies: processes
C source files before passing the modified source code on to the
compiler. Two of its many features are string replacement and file
inclusion.

Let's begin by describing simple string substitution. If a C program
contained a definition of the form

#define MAX-SCORES 10

the preprocessor would replace all unquoted occurrences of the string
MAX-SCORES with the string 10. We refer to MAX-SCORES as a
symbolic constant. For example, consider the following code fragment.

#define MAX-SCORES 10

main()

int i;
int total[MW-SCORES I ;

1.5 What You Need to Know 9

if (i >= MAX-SCORES)

1

After preprocessing, the statements would be presented to the com-
piler as

main(
{

int i;
int total[10 1;

if(i >= 10)

1

This is an extremely useful facility. Not only does it make the
code easier to read, but it also simplifies program maintenance.
For example, if the maximum number of scores changed from 10 to
15, we would make only one change to our program and the
preprocessor would take care of the rest. However, if we wrote the
foregoing program without using a symbolic constant, we would have to
modify the source code in at least two places. We strongly encourage
the use of symbolic constants in C programs.

The preprocessor also allows symbolic constants to accept argu-
ments. These are usually called macros. For example, we could create the
following definition:

#define SQUARE(x) ((x)*(x))

The expansion of SQUARE() is now dependent on its use: The
statement

10 1 Introduction

z = SQUARE(y);

will be expanded to

= ((y) * (y)) ;

Note that x serves as a place holder. That is, whatever argument we
place in the x position will appear wherever x appears in the
expansion.

The parentheses surrounding the substitution string (i.e.,
((x) * (x) 1) are not syntactically required. Rather, they serve to
ensure correct operator evaluation. For example, consider the following
definition:

#define BAD-SQUARE(x) x*x

Let’s say we wanted to square the sum of two variables. We might
use BAD-SQUARE () as follows:

z = BAD-SQUARE (a + b) ;

The preprocessor would expand this statement into

z = a+b*a+b;

Mathematically, the compiler would evaluate this expression as

z = a+(b*a)+b;

Obviously, this is not what we had intended. However, the same call
using SQUARE (would expand to

z = ((a + b) * (a + b)) ;

which does yield the desired result.

inclusion facility. Let’s assume that we wanted several related
program modules to use the following set of macros:

T h e other widely used feature of the preprocessor is the file

#define NO 0
#define YES 1
#define SIZE 100
#define SQUAFtE(x) ((x)*(x))

One solution is to type (or copy) each macro into every program
source file. However, if SIZE were to change to, say, 200, we would be
forced to apply the same edit to many source files.

~ ~~ ~ ~~

1.5 What You Need to Know 11

A better solution is to place all the definitions in just one file and
include them as needed. We can accomplish this with the following pre-
processor directive:

i n c l u d e "def s . h"
This directs the preprocessor to replace the # i n c l u d e statement
with the entire contents of the file def 8 . h. The i n c l u d e d file
may contain any valid C statements, including nested # i n c l u d e
directives. The file name itself is arbitrary-in fact, the . h exten-
sion (signifying 'header' file) is only a convention.

There is another form of the # i n c l u d e directive:

i n c l u d e (filename)

T h e use of the angle brackets directs the preprocessor to search a
predetermined location (directory) for one of several system-
supplied header files. The exact location is system dependent, and
the files contain definitions of a global nature. A common example
is the file s tdio. h, which contains global definitions required by the
standard input/output library.

I ' Algorithms are problem-solving techniques suitable for implementa-
tion as a computer program. They are defined as a finite sequence
of instructions that accomplish a particular task. Although algorithms
are usually described in terms of a specific programming language,
they are, by their nature, independent of any machine or environment.

Algorithms usually employ complex forms of data organization called
data structures. It can be convenient to view algorithms and their
associated data structures solely in terms of the operations they support.
We refer to the resulting abstraction as an abstract data type. Data
abstraction can improve programmer productivity and minimize the
cost of software maintenance.

SUMMARY

Algorithm Design

2.1 HOW TO DESIGN A N ALGORITHM

Algorithm design is more akin to an art than a science. Supply 100
programmers with the identical specification and, in return, you will receive
100 different solutions. The process is largely subjective, and the
notion of good or bad can also be application specific (i.e., a program
considered a good solution in one environment might be unsuitable
in another.)

However, we are not completely on our own in this matter. There
are general guidelines that we can follow and a broad notion of
what is considered good programming practice. Throughout this text,
our discussions of individual algorithms provide specific insights
into the design process; the sections that follow serve as an introduction
to the topic.

Understand the Problem

The first step in algorithm design is to understand the problem. This
is called the requirements analysis phase. However obvious this
might appear now, all readers of this book will, at one time or another,

12

C H A P T E R 2

2.1 How to Design an Algorithm 13

a program that they think solves a particular problem-only to find
out later that their efforts were wasted because they solved the wrong
problem. Gather data, speak to users, carefully review any written
requirements. In short, try to ensure that you have all the information
you need before you start to design and code an application.

Data Structures

The next step is to design the data structures. This is a critical part
of the development process and the one most often overlooked
by even the most experienced programmers. A correctly designed data
structure will suggest the design of the definitive algorithm and
yield a simple, easily maintainable program. In contrast, choosing a
clumsy or inappropriate data structure will produce code that is unreadable
and difficult to maintain.

Subsequent chapters of this book will introduce some very sophis-
ticated data structures. However, you should already be familiar with the
more common data types provided with most languages (e.g., integers,
characters, arrays, etc.). A trivial example of an incorrect choice of
a data structure is using individual variables to process the test results
of a computer science class. It would be more appropriate to use
an array.

After they have been designed, we need to verify the appropriate-
ness of our data structures. One way to do this is to ask users to supply
a number of questions andlor updates that they would like your pro-
gram to support. You can then manually apply the questions against your
design and judge how well your data structures respond to these user
requirements. Modify your design as necessary.

Pseudo-Code

The next phase of the development process is to formulate or sketch
the algorithm in pseudo-code. Each pseudo-code statement de-
scribes tasks that the programmer will implement using one or more
host (real) language statements. The level of detail represented by each
pseudo-code statement can vary, and programmers develop individual
styles that reflect personal preference or need. The use of pseudo-code

14 2 Algorithm Design

listing 2.1
Pseudo-code
example.

while(more employee input
if(salaried)

calculate tax;
calculate fica;

determine hours ;
overtime hours;
get hourly rate;

else

print check;

allows programmers to design and analyze algorithms without becom-
ing entangled in syntactic detail. Listing 2.1 contains an example.

Analysis

The next phase in the development is analysis. We can divide this
phase into three steps. First, we must determine whether our solution
seems feasible with respect to memory requirements, performance
constraints, ease of use, etc. Second, we should review and validate
the pseudo-code description of our algorithm. Obviously, these are
both manual procedures at this point because we have not, as yet, written
any (compilable) code.

The third step is to perform an analysis of the complexity of the
algorithm. Complexity in this sense does not refer to the relative
difficulty of understanding the program; rather, it is a measure of the
amount of work performed by the executing function. This type of analysis
is especially useful when there are two or more solutions available and
we wish to select only one for implementation.

In determining complexity, it would appear useful to have the
actual execution times available for each function. Obviously, this
is not possible because we have not, as yet, performed any actual
coding. Moreover, the very point of this exercise is to eliminate
the need to develop, implement, and test more than one algorithm.
Furthermore, performance results can vary drastically when pro-
grams are compiled and executed on different processors, using differ-

2.1 How to Design an Algorithm 15

ent compilers. Therefore, the metrics that we develop for measuring com-
plexity should allow us to rate the algorithms independent of their
execution environment.

In summary, we want to analyze the complexity of an algorithm,
without writing any code, without executing any programs, and measure
the results independent of any execution environment. T h e question
then becomes, How do we do this?

In many cases, we can identify one or more basic operations as
critical to the performance of an algorithm. Once identified, we can analyze
(count) these operations to yield a relative eflcienency index or order of
execution magnitude. For example, consider sorting routines. One critical
operation for this class of algorithm is the comparison. That is, we could
state that the fewer the comparisons made, the more efficient the
algorithm. Thus, if we were presented with two or more different
sorting functions, we would usually choose to implement the one that
performed the fewest comparisons.

Now that we have suggested a method of evaluating performance,
we must also develop a consistent manner in which to present it. It would
seem obvious to state that the total amount of work performed by a
function is proportional to the amount of data that it must process. There-
fore, we will represent an algorithm’s complexity as a function of the
size of the input. For example, if n represents the total number
of data elements, a function that requires one critical operation per
input datum is an O(n) (pronounced order n) algorithm; one that requires
nz operations is O(n2) (pronounced order n squared).

We can state formally that

f (n) = O(g(n)) #there exists a c > 0 and an a such that for all n 2 0,
f (n) 9 a + cg(n)

This reads as follows: The complexity of a functionf(n) is bounded
by the function g(n)-that is, the maximum number of basic opera-
tions executed byf(n) will be no more than g(n). The variable a
represents the cost of any housekeeping or startup chores, and c
is a constant multiplier representing the cost (in execution units) of
a basic operation.

In practice, we usually ignore the effects of a, c, and any non-
critical operations when comparing complexities: The overall impact of
the constant a tends to become insignificant as the size of the dataset

2 Algorithm Design

increases, and the cost of a critical operation (c) should be about the same
for algorithms of a similar class. That is not to say, however, that their
effect is always negligible. For some problem sizes, an O(n) func-
tion, with a sufficiently large c, can be outperformed by one that has
a complexity of O(n2). In addition, for some algorithms, startup
costs represented by the constant Q might require more than constant
time (e.g., initializing arrays).

Examples of some common complexities include the following:

O(1) represents a constant complexity (e.g., a program that displays

O(n) is linear.
O(n2) is quadratic.
O(n3) is cubic.
O(2”) is exponential.

the current date and time).

Using these relationships, we can state that an O(n) algorithm is more
efficient than one that is O(n2) (for sufficiently large datasets); O(1og n) is
faster than O(n log n), which, in turn, is faster than O(nZ).

The complexity of certain algorithms can vary not only with the
size of the input, but also with its composition. Consider again
algorithms that sort names. Some procedures will perform very effi-
ciently when presented with an input stream that is already sorted;
others will degrade miserably. Some operate more efficiently when
the data are random; a few do not. T o compensate for this phenomenon,
we provide two indices of complexity behavior: worst case and average
case. For sorting routines, average case behavior is the average complexity
index for all input streams; worst case is function specific and represents
a pathological performance degradation.

Additional Analysis Criteria

In addition to those just discussed, there are other criteria by which
we can analyze and compare algorithms. These include the
following:

Clarity Clarity concerns the relative ease by which program source
code can be understood by someone other than the original
developer. (We usually refer to this attribute as readability.) A
professional programmer writes programs that are clear and easy to

2.1 How to Design an Algorithm 17

understand. Generally speaking, if you have a choice of implemen-
tation constructs, you should opt for the one that is more readable.
When you must choose a less readable construct (e.g., when perfor-
mance is critical), comment your code clearly.

T h e issue of maintainability focuses on how well a
program can accommodate change. As discussed previously, clarity is
a major consideration: You must understand code before you can
modify it. However, maintenance only begins with understanding.
T h e issue boils down to one of confidence: How confident are we
that a change we might apply to one section of a program will not
break some other part of the system? (This is sometimes called
a ripple effect.)

We must design and develop programs with maintenance in
mind. As a simple example, consider the following code
fragment:

int a[10 1;

Maintainability

while(i < 10)

a[il = . . .

while(j < 10)

z = a[jl . . .

It might not be clear to a maintenance programmer that the literal
value used in the second loop is related back to the size of a. Left
as is, we might inadvertently introduce a bug into the program if
we were to change a’s size.

Portability can be defined simply: How easy is it for us
to move a given program from one platform to another? (The
term platform is used to describe an execution environment. Com-
ponents of a platform include processor, operating system, databases,

Portability

18 2 Algorithm Design

networks, etc.) Keep in mind that the two platforms (source and
destination) might have

Different hardware architectures
Different operating systems
Different system software.

Generally speaking, there are two levels of portability. Object
code portability occurs when we can move executable code from
one system to another. This is usually considered impractical un-
less the two platforms share so many common attributes that they
become almost indistinguishable from each other (e.g., the systems
share the same processor family).

Source code portability is the more practical alternative. We
achieve this level of portability whenever we can copy source
code to a new system, recompile it, and run it with no (or relatively
few) modifications.

These are the advantages of portable programs:

They are easier to move to new platforms
They are less subject to environment changes (i.e., upgrading

They are easier to extend and maintain.
the operating system)

More and more development organizations view portability
as a major factor in systems development. There are several reasons:

The increasing costs associated with software maintenance
The speed at which hardware improvements occur
Increased competition and decreasing prices for application
software.

Portability, however, is not without its costs. In general, porta-
ble programs are slower because we are less inclined to take
advantage of machine- or operating system-specific features. In
addition, portable programs usually take longer to develop: portability
does not come for free, you must ‘design it’ into the application.

Generally speaking, all algorithms require some min-
imal amount of computing resources (e.g., memory, disk, network
access, etc.). The quantity and composition of these resources will
vary by algorithm and implementation. As a result, the costs

Resource usage

2.1 How to Design an Algorithm 19

associated with a given set of resources will certainly factor into
your choice of algorithm.

Implementation

After the design and analysis, it is finally time to implement the
algorithm. This should prove to be a fairly straightforward process if we
have followed all the previous suggestions. Specifically, if we wrote a
pseudo-code description of the algorithm, implementation will be little
more than a line-for-line translation.

Another important consideration a t this phase might be the selec-
tion of an appropriate programming language. Languages lend themselves
to certain types of tasks and become difficult to use with others. If a
choice is available, select one that is best suited to the needs of the
application.

Testing

The last step in the development process is testing. T h e effort ex-
pended on this task will have a direct effect on the perceived quality of
the product. There are essentially two parts to the process. In the first,
we must devise a set of tests that attempt to break the function
or program. This is the creative part of system testing, and it requires
as much consideration and effort as any other task in the develop-
ment process. It begins simply, using a few known data values for
which we can manually compute a result. This establishes that
the program is at least functioning to the point where we can proceed
with more extensive tests.

T h e second and more difficult part of testing is debugging. That
is, we must determine what (if anything) is wrong with the program’s
execution. When we determine the problem, we then develop and
apply fixes to offending sections of the program. When all the
problems have been corrected, we then re-execute all of our tests.
This ensures that the fixes are, indeed, correct and that they have not
affected (i.e., broken) other sections of the program.

When attempting to fix a program error, it is important to distin-
guish between symptom and cause. As an example, consider a program

2 Algorithm Design

that displays employee salary information. The program might operate
as follows:

It prompts the user for the employee number.
It searches a database for the appropriate employee and tax

It calculates withholding taxes and other payroll deductions.
It displays the information on the screen.

records.

During your testing you notice that, when displayed, the net pay
field is always incorrect by $1 (alas, in the company’s favor). Would
it be reasonable to assume that the fix is simply to add $1 to its value
just before it gets displayed? No. More likely, this problem is just
a symptom of another problem-such as an error in the formulas for
calculating payroll deductions or incorrect values stored in the tax
tables-and you must delve deeper into the program to find the
real cause. /

Keep in mind that testing can never demonstrate the absence of
bugs-only their presence. Therefore, it is incumbent on the individual(s)
conducting the tests to exercise judgment, diligence, and creativity to
ensure the best possible results.

2.2 EXAMPLE 1: FIBONACCI NUMBERS

T o demonstrate some of the ideas presented in this chapter, let’s
discuss the design and implementation of a function that computes
Fibonacci numbers. T h e Fibonacci sequence is defined as

0, 1, 1, 2, 3, 5, 8, 13, . . .
It begins with F,, = 0 and F , = 1. We compute each subsequent term
as the sum of the previous two. For example,

F(3) = F(2) + F(1) = 1 + 1 = 2
F(6) = F(5) + F(4) = 5 + 3 = 8

Formally, the series can be defined as

F,, = 0

F1 = 1

F,, = F,)-l + F,,-2, for n 2 2

2.2 Example 1: Fibonacci Numbers 21

Our task is to design and implement a function that accepts
a non-negative integer argument n and returns the value F(n).

Understand the Problem

Although it is not a formal specification, the foregoing description
adequately describes the task at hand. The key points to keep in mind
are as follows:

T h e function’s one argument corresponds to the sequence number

The argument, by definition, must be non-negative; therefore,
of the desired Fibonacci number.

the function should do something reasonable if invoked with a nega-
tive value.

Data Structures

This algorithm does not require an extensive data structure; it will
use simple integer variables to compute each Fibonacci number.

Pseudo-Code

We can use the formal definition of the Fibonacci series as the starting
point for our development. Thus, the first version of our pseudo-code
might appear as follows:

fib(n 1
i f n = O

i f n = l

for i = 2 t o n

return(0 1 ;

return(1 1 ;

fib = fminl + fmin2;
update fminl and fmin2;

return(fib 1;

Note that our description lacks some important details: the initial

22 2 Algorithm Design

values of variables, the increments for loop variables, and a test for a
valid argument.

After adding these statements, the algorithm becomes

fib(n)
i f n < O

i f n = O

i f n = l

return(-1) ;

return(0 1 ;

return(1) ;

fmin2 = 0;
fminl = 1;
for i = 2 t o n

fib = fminl + fmin2;
fmin2 = fminl;
fminl = fib;

return(fib 1;

Notice that we have established the convention of returning a - 1 to
indicate an erroneous argument. Also note how we initialize and
update the two variables, fminl and frnin2.

Analysis

If we ignore the trivial cases where n 5 1, we can compute the
function’s complexity as follows:

There are five housekeeping instructions executed before entering

The loop-with its three instructions-is executed n - 1 times,
the loop.

for a total of 3(n - 1) or, rounding that value, 3n.

The total number of instructions executed is 5 + 3n. However,
as mentioned earlier, we ignore the effects of the constants when analyzing
algorithms; thus, the complexity of fib () is O(n).

2.2 Example 1: Fibonacci Numbers 23

i n t fib(i n t n 1
I

i n t i;
i n t fibn, fibl, fib2;

i f (n < 0)

return(-1 1;

i f (n == 0)

i f (n == 1)
return(0 1;

return(1 1 ;

fibn = 0;
fib2 = 0; / * F(n-2) * /
fibl = 1; /* F(n-1) * /

for(i = 2; ;i <= n; i + +
fibq = fibl + fib2;

fibl = fibn;
fib4 = fibl;

1
return(fibn 1 ;

1
listing 2.2
Fibonacci numbers.

Implementation

T h e pseudo-code description of this function allows for a direct conver-
sion to C. We need only remember to adhere to C syntax, select
appropriate data types, and declare all variables. Listing 2.2 contains
the final C version of the algorithm.

Testing

Testing this function is a straightforward process. We want to verify
that the function computes accurate values and handles errors

24

listing 2.3
Fibonacci test
program.

2 Algorithm Design

#include <stdio. h>

#define MAX-TEST 1 0

i n t fib(i n t) ;

i n t main(void)

c
i n t i;

f o r (i = -1; i <= MAX-TEST; i++)
gr in t f ("\ti: %2d\tfib(%2d) : %d\n", i,
i, fib(i)) ;

re turn(0);

1

correctly. One way to do this is to write another function that repeatedly
invokes fib() with known values. Listing 2.3 contains an example.

program is
When compiled with the source for fib () , the output of the

i: -1 fib(- l) : -1
i: 0 fib(0) : 0
i: 1 fib(1): 1
i: 2 fib(2) : 1
i: 3 fib(3) : 2
i: 4 fib(4) : 3
i: 5 fib(5) : 5
i: 6 fib(6) : 8
i: 7 fib(7) : 13
i: 8 fib(8) : 2 1
i: 9 fib(9) : 34
i: 1 0 fib(l0): 55

which we can manually inspect for errors.

2.3 Matric Addition 25

2.3 EXAMPLE 2 MATRIX ADDITION

For our next example, we will design and implement a function that
performs matrix addition. It must compute the sum of two matrices
(A + B) and store the result in a third (C).

Understand the Problem

The two matrices must be of the same dimension. We compute their
sum by adding corresponding elements of A and B and storing the result
in C. For example, given the matrices

the function would compute C as

[1 + 8 2 + 7 3 + 6] [9 9 91
4 + 5 5 + 4 6 + 3 = 9 9 9
7 + 2 8 + 1 9 + 0 9 9 9

Data Structures

We will use two-dimensional arrays to store and process the matrices.
Each array entry will correspond to an element in the matrix. One
word of caution: Mathematicians often reference matrix elements as

Ell El2 Ell!

4 1 E22 . * * E2n

Em1 Em2 - * * El##
.

In C, however, array subscripts begin at 0. Therefore, Ell will
correspond to array element ACOI 101; E I Z will correspond to array
element A[Ol 111; and so on until E l , , which corresponds to
A[m- 11 [n- 1 1 .

26 2 Algorithm Design

Pseudo-Code

To perform the addition of each corresponding matrix element, we
need a way to reference every index pair (i , j) of the two arrays. We can
do this using a coding construct called nested loops. The outer loop
indexes over the rows, while the inner loop indexes over the
columns. A pseudo-code description of the algorithm is as follows:

mat,add(m, n) / * add m X n matrices * /
€or i = 0 to m-1

for j = 0 t o n-1
c [i , j l = a [i , j l + b [i , j l ;

Analysis

A discussion of complexity for this function is easier if we assume that
m = n. The outer loop is executed n times. With each iteration, the
inner loop is also executed n times. Thus, the total number of critical
operations (additions) performed by the algorithm is n times n. This
yields a complexity of O(n2).

Implementation

For the purpose of this example, we will assume that the three arrays
(A, B, C) are external to the function. Listing 2.4 contains the C
implementation of the function mat-add () .

Please note the following:

The arrays are declared external to the function (the first three

The two macros, NOJZOWS and NO-COLS, are application depen-

T h e function assumes that the initial values of a [1 [1 and b [1 1

lines of the listing).

dent and must be defined.

are established before a call is made to mat-add () .
Also note the C syntax for subscripts in two-dimensional arrays.

Many other languages would write subscripts something like

a [i , j l o r a (i , j)

2.3 Matric Addition 27

int a[NO-ROWS 1 NO-COLS 1 ;
int b [NOJZOWS I [NO-COLS I ;
i n t c[NOJZOWS 1 NO-COLS 1 ;

void m a t , a d d (int rows, i n t cols)

E
i n t i , j;

for(i = 0; i < NO-ROWS; i + +)
for(j = 0; j < NO-COLS; j + +)

c [i l [j l = a[ilCjl + b [i l [j l ;
1

Matrix addition.

T h e slightly different notation derives from the fact that in C, a two-
dimensional array is defined as a one-dimensional array, where each
element is another array. Its use is otherwise similar to that of other
languages.

Testing

T h e most direct way to test this function is to write a program that
generates several pairs of matrices, adds them, and then prints the results.
We will leave this as an exercise for the reader.

Programmers new to C should keep in mind that there are no
bounds checks on array references. In particular, because of the zero offset
on array indices, the reference

a [NO-ROWSI “0-COLSI

is out of bounds. As a result, part of your testing procedures should
involve the verification of all array references.

This chapter presented an overview of the software design process. We
will review and expand on the ideas presented in this chapter as we
continue with our discussions. For the sake of brevity, however, we will

SUMMARY

28 2 Algorithm Design

no longer prehent algorithms in the expanded format used in this
chapter.

This chapter is incomplete because there is one part of the develop-
ment cycle that we have not discussed: documentation. Documentation
is usually the first thing a user sees when working with a new applica-
tion. As a result, a software product’s success can be dependent on the
quality of its documentation.

Documentation comes in many forms:

Program comments
Manual pages (a description of program usage)
User’s manual
Programmer’s manual
Administrator’s manual.

Throughout this book, we will continue to stress the need to provide
well-commented source code. It is beyond the scope of this text
to describe the other forms of documentation in detail. Moreover,
documentation requirements vary with the installation and the
application. Let it suffice to say that it is incumbent on every program-
mer to provide software that is well documented.

1. Describe 00 notation.

2. Plot the curves for all the common complexities. Determine points
of intersection and compare behavior.

3. Using all the described steps, design and implement a program
that will count the number of characters, line., and words contained
in a text file. See if you can extend it to count unique words as well.

4. Write the complement of fib () : a function that takes as its sole
argument a Fibonacci number and returns its ordinal position
in the series. Be sure to test for arguments that are not Fibonacci
numbers. How should your function process an argument of l?

5. Write a program that tests the function mat,add() . Be creative.
Are there any boundary conditions?

E X E R C I S E S

2.3

6.

7.

8.

Matric Addition 29

Design, implement, and test a function that performs matrix multi-
plication. What is its complexity?

Discuss ways in which we can modify mat-add () so it can work
for any two arrays (i.e., pass the arrays as arguments). Imple-
ment and test your changes.

What is the complexity of the following pseudo-code?

examgle (1
c

for(i = 0; i < A; i + +)

for(j = 0; j < Bc j + + 1
for(k = 0; k < C ; k + +)

CRITICAL OPERATION;

Static Data Strzcctares

3.1 OVERVIEW

Conventional languages supply the basic data types or atoms minimally
required for programming. It is the nature of atoms that they cannot be
divided into smaller components (except bit-fields). In C, they include
int , char, float, etc. In many cases, the basic data types alone are
sufficient to accomplish a given programming assignment. More often,
however, the types of problems programmers are asked to solve
require more complex data objects.

Fortunately, most programming languages provide facilities for
combining atoms into larger aggregates. In computer science, these aggre-
gates are called data structures. A data structure is an ordered collection
(aggregate) of atoms combined, within the rules of the host language, to
create a new, user-defined data type. Many programming languages
even allow the combining of one or more user-defined aggregates
into a compound aggregate. Thus, the programmer has the ability to
create data structures tailored to specific needs. In this chapter, we will
examine static data structures-that is, data structures that do not alter
their basic memory representation during program execution. (The term
structure is ambiguous, however. Some programming languages-most

30

C H A P T E R 3

3.2 Arrays 31

main()
{

int i;
int a[101 ; /* Declare 10 c e l l s

for(i = 0; i < 10; i= i+ l) / * Indexed 0 - 9 * /
* /

a [i l = i; / * Store */

for(i = 0 ; i < 10; i= i+ l) /* Retrieve */
printf(“ i : %d a [i l : %d\n“, i , a [i l 1 ;

e x i t (0);
1

listing 3.1
Arrays in C.

notably C-use the term to denote a particular type of data aggre-
gate. Its definition and use in such cases is language specific. Except
where noted, we will avoid this connotation and instead use the term to
refer to any data aggregate that is not otherwise considered atomic.)

3.2 ARRAYS

T h e extent to which atoms can be combined by the programmer varies
with the language-some provide more flexibility than others. However,
one data aggregate common to most languages is the array. In fact,
this might be the only aggregate provided with some programming
environments.

Conceptually, an array is a set of pairs: index and vahe. In mathe-
matics, this is referred to as a map or correspondence. When declared in a
programming language, an array is of a specified type (e.g., int) and
size (range of indices). The indices or subscripts are integer quan-
tities, though not necessarily positive. Refer to Listing 3.1 for an
example of array declaration and use in C.

The simplicity of an array’s use belies its power. Consider writing

32 3 Static Data Structures

#define KING 'k'
#define QUEEN 'g'

main(1
4

char chessboardl81 181 ; /* DecLration * /

chessboardC21 C31 = QUEEN;

if(chessboardC41 C71 == KING 1
I check-mate 1 ;

listing 3.2
Multidimensional arrays in C.

a program-without using arrays-to analyze grade scores for a
computer science class. Each student's score, for each test, would have
to be stored and processed in a unique variable. T o go one step further,
consider how difficult it would be if the number of students and test
results were not known in advance.

Arrays need not be restricted to one dimension. We can create
rntdtidirnensional arrays to handle more complex data structures.
For example, we can represent a chess board as a two-dimensional
(8 X 8) array. Refer to Listing 3.2 for an example. Note that in C,
each dimension is placed in a separate set of brackets.

In addition to their more obvious uses, arrays also serve as the
foundation for more complex data structures. The following sections pre-
sent several examples.

3.3 ORDERED LISTS

One of the simplest forms of data aggregates is the ordered or linear
list. A linear list is an ordered subset of elements from a given set
5' written (El , Ez, E3, . . . , E,J. Examples include

(A, B, C, D, . . . , Z)

3.4 Stacks 33

or

(SUN, MON, TUE, WED, . . . , SAT)

An ordered list has several properties:

T h e length of a list is finite and computable.
T h e contents of the list can be displayed (in order).
The i" element can be retrieved.
The iCh element can be replaced.
New elements can be inserted into the list.
Existing elements can be deleted from the list.

T h e most direct approach to implementing a list is through the
use of an array. Each array element corresponds to a list member.
Note that of the six properties of an ordered list, only the last two-
insertion and deletion-are difficult with an array implementation. T o
accomplish either, we must shift elements within the array. We will
return to this point in Chapter 5.

There are times when we may wish to restrict access to list ele-
ments. For example, we may want to limit the types of operations
that can be performed or restrict the number of locations where inser-
tions and deletions can occur. In short, we need not make available the
full complement of operations for a given list. T h e sections that follow
discuss some examples of restricted lists.

3.4 STACKS

A stack is an ordered list in which only two operations are permissible:
insertion and deletion. Furthermore, these operations mdy occur
only at one end of the list, called the top. T h e result is that items are
stored and retrieved in a last-in, first-out (LIFO) manner. For example,
adding the element Es to the list (El , Ez, EB, E4) would generate the
list (El , E2, E3, E4, Es). A subsequent deletion yields the original list.

A common example of a stack is a dish rack in a diner. A dish
rack is a spring-loaded device that stores dishes in manner such
that only the top dish is visible (see Fig. 3.1). After being washed, a
clean dish is placed (pushed) on top of the stack. This forces the
spring down, leaving only the new dish visible. When a clean dish is
needed, the top one is removed (popped). This causes the spring to recoil

34 3 Static Data Structures

Figure 3.1
A dish rack.

Figure 3.2
A software stack.

Begin state
(a)

Push dish
(b)

Pop dish
(C)

just enough to allow what was the second plate to become visible.
(The last plate cleaned is the first one reused.)

Stacks are versatile data structures and have many uses. For exam-
ple, we can use stacks to reverse the order of elements in a list or
serve as the basis of a software calculator. In general, we can use stacks
whenever we need a L I F O structure.

As depicted in Figure 3.2, we can implement a software stack
using an array. T h e variable top maintains the index of the current
top-of-stack location. This is the only place where insertions and dele-

l o p

Stack

3.4 Stacks

tions may occur. T o add (push) a new element onto the stack, we increment
top and assign stack I: top] the value of the new element. Note
that we should always test for a stack full (oveflow) condition (i.e.,
(top + 1) > = s) before performing each insertion.

T o delete (pop) an element from the stack, just decrement the
variable top. Note that we need not explicitly erase the value
stored in stack [top] because a subsequent push operation will
overwrite it. A stack empty (undeflow) condition arises when the value of
top becomes negative.

T h e program segment in Listing 3.3 contains the example func-
tions push () and pop (1, which manipulate an integer stack declared as
int stack [MAXSTACK] ; . The function push () requires one argu-
ment, which it pushes onto the stack; pop () deletes, and returns the
value of, the topmost element. Also listed is the routine empty () ,
which, as its name implies, tests for a stack empty condition; it returns
either TRUE or FALSE, accordingly. In this example, the function
pop () does not explicitly test for an underflow condition-that is, an
attempt to pop an element off an already empty stack. Therefore, you
should make a call to empty () before each call to pop (1.

Note that we initialize the pointer top to -1. This is because,
in C, array indices range from 0 to n - 1 (where n is the declared
size of the array). Also note the use of the + + and the - - operators.
C has two shorthand operators for incrementing and decrementing vari-
ables: + + adds 1 to its operand; - - subtracts 1 from its operand.
For example, the statements n+ + ; and n- - ; are equivalent to n =
n + 1; and n = n - I;, respectively.

A unique feature of these operators is that we may place them
either before or after their associated operands. Furthermore, their
position is significant. T h e prefix form (e.g., + +n) increments (decre-
ments) the variable before it is evaluated (used); the postfix form (e.g.,
n+ +) increments (decrements) the variable afieor it is evaluated.

For example, given the assignment n = 10 ; , the statement

an8 = ++n;

sets ans to 11: but the statement

ans = n++;

sets ans to 10. In both cases however, n is set to 11.

36 3 Static Data Structures

#define OK 0
#define FALSE 0
#define TRUE 1
#define FULL 1
#define MAXSTACK 1 0 0

i n t top = -1;
i n t s tack [MAXSTACK] ;

push(i n t new) /* Add element t o s tack * /
{

i f (t o p + 1 >= MAXSTACK) /* Overflow * /
r e t u r n (FULL 1;

s tack[++topl = new;
re turn(OK);

1

i n t POR () / * Delete/return top element * I
{

1
re turn(stack[top-- 1 1 ;

i n t empty (1 / * T e s t f o r s tack empty * /
{

i f (top < 0)

re turn(TRUE);

re turn(FALSE 1;
1

listing 3.3
Stack functions.

3.4 Stacks 37

void reverse0 /* Function to reverse input */
{

int item;

while((item = nextinput ()) ! = EOF)

if(push(item) == FULL.)
error () ; /* overflow * /

while(!empty0
putchar(pop0) ;

1

listing 3.4
String reversal.

String Reversal

For our first example, we will use stacks to reverse a string. The
problem is to read an arbitrary sequence of characters and print them out
in reverse order.

With the aid of a stack, the solution for this problem is simple.
We will push each character we read in from the input source onto
a stack. When we have exhausted the input stream (end-of-file), we
will pop all characters off the stack and print them out. Because
stacks are LIFO structures, the output will naturally be reversed.

Listing 3.4 contains the code for the function reverse () , which
reverses strings as described earlier. It uses the routines presented
in Listing 3.3 to manage the stack. In addition, reverse () assumes
two ancillary routines. T h e first, nextinput () , returns the next
character from the input stream or the value EOF when the input has
been exhausted. (EOF is a predefined macro supplied with standard
C implementations.)

T h e second function, error () , is invoked on a stack overflow
condition. It should take appropriate action such as printing an
error message and terminating the program. However, this is a rather
inelegant way of addressing this type of problem, and we will discuss
alternative methods in Chapter 5.

38 3 Static Data Structures

Parentheses Usage

Another example using stacks involves the processing of mathematical
expressions. Suppose we wanted to verify that, for some given expression,
parentheses have been used correctly. That is, we want to check that

1. There are an equal number of left and right parentheses.
2. Each right parenthesis is preceded by its corresponding left

parenthesis.

If you consider the problem for a moment, you will see that part
1 of the preceding definition is simple to verify. We could develop
an algorithm that simply counts the number of left and right parenthe-
ses and determines if the two values are equal. However, a correct count
alone does not ensure proper usage. For example, the expression

)) a + b(+ c (

would have a valid count but symbol usage is nonetheless incorrect.
This is the more difficult aspect of the problem as denoted in part
2 of the definition.

Let’s examine a different approach to the problem. In lieu of a
simple count, we could assign values to each parenthesis. For
example, ‘(’ equals 1 and ‘)’ equals - 1. This would allow us to compute
a parenthesis index (PI) for each expression. We begin the computation by
assigning PI = 0. Then, as we scan an expression, we update the PI
by either adding or subtracting 1 from its total. For example, the partial
expression ((a + 6) * (6.. . would have a PI of 1 + 1 - 1 + 1 = 2.

This approach possesses some interesting properties. First, a final
PI of 0 indicates that there are an equal number of open and
closing parentheses. In addition, an intermediate PI value that is nega-
tive indicates an imbalance in the use of left and right parentheses. For
example, the expression (a + 6)) . . . has a PI of - 1.

Nonetheless, this technique has one drawback. What if, in addition
to parentheses, expressions may contain brackets ([I) and/or braces (I})?
Using the previous approach, the expression ((a + 61 * c) has a final
PI of 0 but is obviously incorrect.

T o overcome this final hurdle, we need to approach the problem
from another angle. Consider that, regardless of type (i.e., (, [, or I), a left
symbol opened must be closed with its corresponding right symbol.
Thus, given the partial expression (a + [b x (. . . , we would

3.5 Example Calculator 39

expect the first closing symbol to be a }, followed at some point by a
1, and then a final). Upon closer inspection, you will note that the
last symbol opened is the first one closed. In other words, this problem
is well suited for a stack solution.

Listing 3.5 contains the code for the function check-paren () ,
which verifies parentheses usage in mathematical expressions. Its one
required argument is the character array containing the expression; it
returns a status value indicating the validity of the expression.

T h e algorithm functions as follows. As it scans the input array,
check-paren () pushes left symbols onto a stack. When it encounters
a right object, it pops the topmost element off the stack and determines
whether the two symbols match (i.e., they form a pair). Notice
that with each pop, and again at the end of the routine, the function
tests for an empty stack condition. In addition to avoiding an underflow
condition, this processing ensures that the expression contains only
matched pairs of objects (i.e., there are no missing or extraneous symbols).

3.5 EXAMPLE CALCULATOR

T h e classic example demonstrating the power and use of software
stacks is a program calculator. The task is to construct a program that
computes the value of mathematical expressions. For example,

a + b/c - d x e

Expressions are composed of operands, operators, and delimiters.
Operands are the numeric values used to evaluate the expression.
T h e preceding example contains five (a, 6, c, d, e) that serve as place
holders for numeric literals (e.g., 16, or - 13.4); but they could
also represent true variables if the calculator program contained an
assignment facility. Operators indicate the mathematical operations that
are to be performed on their associated operands. They also determine
the number of operands required for each type of operation. T h e preceding
expression contains only binary operators, which require two operands;
a anmy operator requires only one operand (e.g., - 3).

At first glance, the program might appear simple: Just scan the
input from left to right, evaluating the expression as we proceed.
However, the problem that quickly becomes apparent is the difficulty
of maintaining the mathematical precedence of the operations. In

40 3 Static Data Structures

listing 3.5
Function to check
parentheses.

#define OK 0
#define ERR -1

int check-garen(char data[])

{
int i:

for(i = 0; data[il != NULL; i + +)

{
switch(data[il) {

case ' { ' :

case ' [' :
case ' (' :

gush(data[il 1;
break;

if(empty0 I I pogo != H E ')

break;

if(empty0 I I BOPO != '1 '

break;

if(empty0 I I gogo != ' ('

break;

case ' 1 ' :

return(ERR);

case 'I ' :

return(ERR) ;

case ' 1 ' :

return(ERR);

1
1
if(empty0 1

return(ERR);

return(OK);

1

3.5 Example Calculator 41

the previous example, the implied order of evaluation is

(a + We)) - (d X e)

Obviously, the order in which the operations take place can be signifi-
cant, as in the expression 6 + 4/2. If we evaluate it as (6 + 4)/2, the
answer is 5; if we evaluate it as 6 + (4/2), the answer is 8. Therefore,
we must be certain that the algorithm we develop maintains proper
operator precedence.

For our example calculator, we will only concern ourselves with
the five basic arithmetic operations: addition (+), subtraction (-),
multiplication (X), division (I), and exponentiation (?). The prece-
dence of these operators, from highest to lowest, is

Operator Value

t 3
x, I 2

+, - 1

Parentheses can be used to change the order of evaluation for a
given expression, but in their absence operations of highest prece-
dence must be performed first. When an expression contains operators
of equal priority, they are evaluated left to right (e.g., interpret
a/b x c as (a/b) X c). T h e sole exception (at least for our example) is
exponentiation, which is evaluated from right to left (ix., a t b ? c
is evaluated as a 1' (b t 6)).

Prefix and Postfix Notation

All the preceding expressions have been presented in their inJx form.
Infix notation places operators between their operands. As we have
seen, this notation-although commonly used by humans-is not con-
venient for our calculator program. There are, however, two alterna-
tive ways of representing expressions:

+ a b (prefix)

a b + (postfix)

The first, where the operator precedes its operands, is termed prefix
notation. The second, which positions the operator after its operands, is
referred to aspostJix notation. Both forms are not as strange as they

42 3 Static Data Structures

might first appear. For example, consider computing the value of
2 '? 4 in a C program. We cannot use a statement of the form

x = 2 ' ? 4 ;

because C has no exponentiation operator. Instead, we must use a
statement such as

x = power(2, 4);

in which the operator (power ()) precedes its two operands.

pressions to their corresponding postfix form. The steps required
are as follows:

Using the rules of operator precedence, we can convert infix ex-

Fully parenthesize the infix expression.
Reposition (i.e., move) operators-one at a time and in order of
precedence-to their final postfix position (to the right of their
operands).
Remove the parentheses.

For example, let's convert the expression a + b X c into its postfix
form. The first step is to add parentheses:

a + (b x c)

Next, in order of precedence, we must reposition the operators. Thus,
the first operator we must move is X , and the resulting expression
appears as

a + (bc X)

Clearly, the two operands of the X operator are b and c, and, conse-
quently, its postfix position is simple to determine. But what are
the two operands for the + operator? The answer is a and the result
of the subexpression (b x c). Therefore, we do not position the
+ operator after the operand b (as might appear obvious at first glance),
but instead we place it after the right parenthesis:

a (b c X) t

The final step is to remove the parentheses:

a b c X +

3.5 Example Calculator 43

Now, using parentheses, let’s change the evaluation order of the
operators and convert the expression (a + 6) X c to its postfix form:

(a + 6) x c

(a + b) X c

(ab +) X c

(ab +) c X

a b + c x remove parentheses

infixexpression

add parentheses (no change)

convert +
convert X

Notice the resulting position of the + operator in this example. This
is a direct result of using parentheses to alter the evaluation order
of the operators.

We can convert infix expressions into their prefix form in the same
manner. T h e only difference is that we place the operators before
their operands rather than after. You should take a moment to convert
the two previous examples into their prefix forms.

Returning now to our calculator program, the problem we had
encountered was that the program could not correctly scan an infix
expression and maintain proper operator precedence. However, if we
take a closer look at postfix notation, we notice that a left-to-right scan
will process both operands and operators in the correct order. That is,
the order of the operators in a postfix expression determines the order of
the operations. Therefore, to implement our calculator program, we
need only develop two major functions: The first will convert infix expres-
sions into their corresponding postfix forms; the second will compute
the result of a postfix expression.

Automating Infix-to-Postfix Conversion

Before we begin discussing how to automate an infix-to-postfix conver-
sion, consider the following point. Regardless of the form (prefix, infix,
or postfix), the order of the operands remains unchanged. For example,
the expression a + b X c has a postfix form of a b c X +. The
operators have moved but the relative position of the operands remains
constant. Our conversion algorithm will take full advantage of
this fact.

Just like the manual operation described earlier, our infix-to-

44 3 Static Data Structures

postfix conversion algorithm must reposition operators within the ex-
pression string. Unfortunately, the function cannot just duplicate the man-
ual operation. As a result, we need to modify our approach. As an
alternative, consider a function that serves as a gate device. That
is, as it scans its input (an infix expression), it outputs some symbols
immediately (operands); others it holds until a more appropriate
time (operators).

Specifically, our conversion routine will function as follows:

Read the input stream (the infix expression) one symbol at a time.
Output all operands immediately.
Delay writing operators to the output stream until they will be
positioned correctly in the postfix position.

Thus, the resulting output is the correct postfix form of the infix
expression.

Our algorithm will need a stack to serve as the temporary repository
for delayed operators. However, before we discuss its implementation,
let’s trace the function’s execution while converting the expression
a + b X c to its postfix form:

Input Type Stack Operation output

a Operand Empty Pass a directly to output a
+ Operator + Stack (delay) operator a
b Operand + Pass b directly to output ab
x Operator + X Stack (delay) operator ab
c Operand + X Pass c directly to output abc

Empty Empty + Empty stack abc +
Empty Empty Empty Empty stack abc X +

When read, the first operand is passed directly to the output stream.
The first operator (+) is then read and pushed (delayed) on the
stack. Then, like its predecessor, the second operator is scanned and
passed directly to the output stream.

However, why isn’t the first operator (+) popped off the stack
and written out? T h e reason is that the second operator (X) has a higher
precedence than the operator currently on the stack (+). That is,
because a stack is a LIFO structure, the (X) operator will appear
before (+) in the output stream when we ultimately empty the stack.

3.5 Example Calculator 45

T h e operation continues with the processing of the final operand,
followed by the repeated popping of the stack until the last operator
is written to the output stream.

function should handle the expression a X b + c.
Now let’s switch the order of the operators and see how the

Input Type Stack Operation

a Operand Empty Pass a directly to output
X Operator X Stack (delay) operator
b Operand X Pass b directly to output
+ Operator Empty Pop stack and output

+ Push (delay) operator
c Operand + Pass c directly to output

Empty Empty Empty Empty stack

output

a
a
ab
ab X
ab X
ab X c
a b X c +

This time, after the second operator (+) was read, the first (X) was
popped and placed on the output stream. This is because (X) has a higher
precedence than that of the incoming operator (+).

Now let’s look at an example that contains parentheses:

a/(b + c).

The operation of the algorithm is as follows:

Input Type Stack Operation output

Operand
Operator
L-Paren
Operand
Operator
Operand
R-Paren
Empty

Pass a directly to output
Stack (delay) operator
Stack L-Paren
Pass b directly to output
Stack (delay) operator
Pass c directly to output
Unstack down to L-Paren
Empty stack

a
a
a
ab
ab
abc
abc +
abc +/

In this example, the parentheses change the evaluation order of the
operators. T o produce an equivalent postfix representation, the
algorithm must stack the left parenthesis and then, after scanning the
corresponding right parenthesis, unstack all enclosed operators.
Note that we never need to push the right parenthesis onto the stack;
it serves only as a flag signaling that unstacking should begin.

46 3 Static Data Structures

Figure 3.3
Operator priorities.

Operator Incoming Instack
1' 4 3

x, 1 2 2
+, - 1 1

(4 0
1

Based on these examples it appears that, when processing an
operator, the function should output all previously stacked opera-
tors having a priority greater than, or equal to, the priority of the
incoming one. There is one exception, however. T h e expression a 1' b 1' c
has a postfix form of abc 1' 1' (remember, this operator has right-to-
left grouping). As it stands now, our algorithm would incorrectly generate
ab 1' c 1' as the postfix form of this expression.

T o overcome this problem, we can make the following
modifications:

Assign two priorities to each operator, incoming (ICP) and instack

Modify the algorithm so that it will unstack operators that have
(ISP).

an instock priority greater than, or equal to, the incoming priority
of the new operator.
Establish a (1') entry in the priority table such that its ICP is
greater than its ISP.

Now, when processing the expression a 1' b 1' c, our algorithm will
push the second (t) operator without popping the first one off the stack.

Figure 3.3 lists ISP and ICP priorities suitable for our calculator
program. Note that the values selected are arbitrary; what is important
is the relationships they define. We can also expand the table
-as is done routinely in compiler design-to address all types of
operators; boolean, relational, assignment, etc.

Listing 3.6 contains the function itop (1 , which converts infix
expressions to their postfix form. The function uses the operator
priorities listed in Figure 3.3 and the stack functions of Listing 3.3.
It also assumes the function nextinput (1, which returns the next avail-
able input symbol; if none remain, it returns the value EOF to signify
end-of-file.

3.5 Example Calculator 47

As for complexity, note that this algorithm only makes one pass
over the input. That is, if the infix expression has n symbols, the
total number of operations is some constant value (the cost of the
basic operation) times n. This yields a complexity of O(n).

Postfix Evaluation

T o complete our calculator program, we now need to develop a func-
tion that evaluates postfix expressions. As noted earlier, a postfix expression
can be evaluated in a single left-to-right scan. T h e only data require-
ment is a temporary location for storing operands until they are
needed. Again, we will use a stack.

Here is an outline of the function’s operation:

1. It will push operands onto the stack until it scans an operator.
2. When it scans an operator, it will pop an appropriate number of

operands off the stack (1 for unary, 2 for binary).
3. It will perform the indicated mathematical operation.
4. It will push the result back onto the stack (so the result, itself,

can become an operand for a subsequent operation).

When the expression string is exhausted, the one element remain-
ing on the stack is the final result. We can display this value as the answer.

Input

123 X +
23 X +

3 x +
X +

+
+
+
+

EMPTY
EMPTY
EMPTY
EMPTY
EMPTY
EMPTY

Operation Stack

BEGIN EMPTY
PUSH 1
PUSH 12
PUSH 123
POP 12
POP 1

2 x 3 1
PUSH 16
POP 1
POP EMPTY

1 + 6 EMPTY
PUSH 7
POP EMPTY

PRINT 7 EMPTY

48 3 Static Data Structures

void itop0
{

int item;
int temp ;

while((item = nextinput (1) ! = EOF)

{

switch(item) {

case 'A':
case ' * ' :
case ' / ' :
case '+':
case '-':
case ' (' :

/ * Pop operators * /
while(!empty() && isp(top-of-stk0) >= icp(item))

putchar(POP() ;

/ * Push new operator onto stack * /
push(item 1;
break;

/ * Unstack until matching ' (' * /
while((temp = pop()) != ' (')

break;

/ * Operand * /
putchar(item 1;
break;

case ' 1 ' :

putchar(temp 1 ;

default:

1
1
while(!empty()) / * Empty the rest of Stack * /

putchar(POP() ;
1

Listing 3.6
Infix-to-postfix conversion.

3.6 Queues 49

Let’s trace this function’s execution for one of our previous exam-
ples: a b c x +. However, to make the discussion clearer, we will substi-
tute the values 1, 2, and 3 for a, b, and c, respectively.

There are several important points to consider here. First, note
that all the operations are performed in the correct order (e.g.,
multiplication before the addition). Also, operators only pop the appro-
priate number of operands required to perform their individual operation.
(Both are binary operators in this example and, as such, require two
operands.) Finally, when the input is exhausted, the only operand
remaining on the stack is the result of the expression.

Listing 3.7 contains the function eval() , which evaluates postfix
expressions in the aforementioned manner. It assumes the push ()
and pop () functions from earlier in the chapter and the function
power () from Chapter 1. It also assumes the function nextitem().
This routine returns either the next available symbol from the input
stream, or the value EOF if none remain.

As it processes each input symbol, eval() automatically pushes
each operand onto the stack (default :). When it encounters an
operator, it pops the appropriate number of operands off the stack,
performs the operation, and pushes the intermediate result back
onto the stack. Note the care taken to ensure that operands are evalu-
ated in the correct order. Also note the comment associated with the
division operator. A production version of this algorithm should include
an explicit test for division by zero and take appropriate action.
The function returns the only remaining value on the stack; this is
the result of the expression. The complexity analysis for this func-
tion is similar to that of itog () , yielding an O(n) algorithm.

3.6 QUEUES

Another special form of a list is the queue. A queue is an ordered list
in which insertions occur at one end (the rear) and deletions occur at the
other (thefront). For example, the result of adding the element Es to
the queue (E4, E3, EZ, E l) would be (Es, Eq, E3, EZ, El) . Deleting an
element now would yield the queue (Es, E4, E3, Ez). Because its
operation preserves the entry order of the elements, a queue is a
first-in, first-out (FIFO) list.

50 3 Static Data Structures

listing 3.7
Postfix evaluation
function.

int eval ()
{

int temp, item;

while((item = nextitem()) ! = EOF)

{
switch(item) {

case ' + ' :
/ * Watch order of operands * /
temp = POPO;
push(POPO+ temp);
break;

case ' - ' :
temp = POPO ;
push(pop()- temp 1;
break;

case I*':

temp = pop0 ;
push(popO*temp 1 ;
break;

/ * Division by Zero? * /
temp = POPO;
push(popO/temp 1 ;
break;

temp = POP() ;
push(power(popO,temT?))
break;

default: / * Operand * /
push(item);

break;

case I/':

case 1 " ' :

1
1
return(POP(1) ; /* Answer * /

1

3.6 Queues 51

Figure 3.4
A queue array.

Front Rear

Like stacks, queues are also versatile data structures. One of the
more common examples of their use is in job scheduling, such as
that found in print spoolers. Users enter their print requests in the
job queue (this is typically accomplished through the use of a utility
program); when a printer completes its current job, the scheduler
selects the next request from the queue and routes it to the printer.
T o add more flexibility, multiple queues can be used to establish
priorities. Print requests placed on the high-priority queue take precedence
over jobs placed on the low-priority queue.

We can also use rrays to implement queues. Two pointers (front
and rear) maintai the FIFO order (see Fig. 3.4); both are initialized to
-1. To add (enque e) an element, we increment the pointer rear
and store the new alue in queue [rear]. T o remove (dequeue) an ele-

in queue [front I.
Listing 3.8 contains the source code for routines that manage a

simple queue. The function addqueue () requires one argument, which
it adds to the queue (space permitting); it returns the value OUT-OF-
SPACE to indicate a queue full condition.

T h e function delqueue () returns the next available element
(if any) off the queue. Note that a queue empty condition occurs
whenever both pointers are equal (i.e., front == rear). Because
delqueue () does not make an explicit test for this condition, you should
call queue-empty () before each deletion. The function
queuesize () is trivial and returns the total number of elements
currently enqueued.

T h e test for queue full is interesting. Regardless of the number
of elements currently enqueued, the queue becomes full when the pointer
rear reaches the end of the array. This is obvious in cases where
elements are continually added to the queue without any intervening
deletions. However, the queue will become full just as quickly for

ment, we increment I the variable front and return the value contained

52 3 Static Data Structures

listing 3.8
Queue functions.

#define OK 0
#define QUEUE-EMPTY - 1
#define OUT-OF-SPACE - 2
#define MAXQUEUE 100

i n t queue[MAXQUEUE I ;
i n t rear = -1, f ron t = -1;

i n t addqueue(i n t element)

E
i f (f r o n t + l >= MAXQUEUE)

queue[+ + f r o n t 1 = element;
r e t u r n (OK);

re turn(OUT-OF-SPACE);

1

i n t delqueue.0
I

i f (f ron t == rear) / * Queue i s empty * /

re turn(queue[++rear l 1 ;
e r r o r () ;

1

i n t q-empty ()

{
i f (f r o n t == rear)

re turn(OK ;

re turn(QUEUE-EMPTY) ;

1

i n t queuesize ()
{

1
re turn(f r o n t - rear) ;

3.6 Queues 53

Figure 3.5
Circular list.

Front

Rear

programs that repeatedly add and delete elements because the body of
the queue continually moves toward the right (ie., the high-order
indices) with each insertion.

addqueue () that would shift the queue back to the left whenever
rear reached the end of the array. That is, the function would
copy all the elements-preserving their order-beginning back at
queue [0 I ; then modify the index variables, front and rear, to reflect
the new position of the queue within the array. However, this is an
extremely inefficient solution because we must move all elements
in the queue individually.

A more efficient solution is to represent the queue as a circular
list (see Fig. 3.5). As with our previous implementation, we still need two
index variables to maintain the front and rear of the queue. This time,
however, instead of moving from left to right, they progress in a clockwise
manner. That is, when they reach the end of the array, both variables
wrap around to the beginning. In other words, both pointers chase each
other around a circular track T h e rear pointer moves ahead as ele-
ments are added to the queue; the front pointer catches up as elements
are removed.

This model ensures that we can continue to insert new elements
into the queue-regardless of the values contained in the index variables-
provided that the number of currently enqueued elements is less than
the total size of the array. Figure 3.6 depicts the operation of a circular
queue during several insertions and deletions.

We can modify the queue functions of Listing 3.8 to support a

One solution to this problem is to include code in the function

3 Static Data Structures

Rear
Front

Rear Rear Rear
Front Front Front

Empty Enqueue (El) Enqueue (E2) Dequeue (El) Dequeue (E2) ~ - ~ _ _ _

Figure 3.6 empty
Circular list operation. (a) (b) (C) (4 (e)

circular queue. Listing 3.9 contains the modified source code. First,
both pointers must now be able to wrap around. This is accomplished
with the macro NEXT (x) , which uses modulo arithmetic to calcu-
late the next array position.

The queue empty test remains the same (e.g., rear
f r o n t) . However, we can no longer detect a queue full condition
by just testing for the end of the array. As depicted in Figure 3.7, if
another element is added to the queue, rear would become equal
to f ront-thus rendering it impossible to distinguish queue full from
queue empty. Therefore, it is convenient to define queue full as
NEXT(rea r) == front. Thus, a maximum of MAXQUEUE-1 ele-
ments can be enqueued because queue [f r o n t 1 must always remain
empty.

==

Arbitrary-Length Arithmetic

As an example of the application of queues, let’s discuss how we might
implement functions to perform arbitrary-length arithmetic. T o begin,
consider that regardless of their power, most computers impose a limit
on the size of integers. For example, many machines restrict inte-
gers to only 4 bytes; some even smaller. We are going to overcome
this restriction by writing functions that deal with numbers repre-
sented as character strings.

Suppose that we had two queues of characters, and that each

3.6 Queues 55

#define MAXQUEUE 100
#define NEXT (x) ((x + 1) % MAXQUEUE)

#define OK 0
#define QUEUE-FULL -1
#define QUEUE-EMPTY - 2

int queue[MAXQUEUE 1 ;
int rear = 0, front = 0;

int cir-addq(int element
{

if(NEXT(rear) == front)

rear = NEXT(rear);

queue[rear 1 = element;
return(OK 1;

return(QUEUE-FULL 1;

1

int cir-delq(
{

if(front == rear) / * Error! * /
cir-error();

rear = NEXT (front) ;

return(gueue[frontl 1;
1

int cir-empty ()
{

if(front ==
return
return

1

rear)

QUEUE-EMPTY);

OK);

int cir-sizeg(

return(((front-rear) + MAXQUEUE) % MAXQUEUE 1;
1

listing 3.9
Circular list functions.

56 3 Static Data Structures

Figure 3.7
Queue full condition.

Rear

Front

represented a positive number stored as individual digits. We could
add those two numbers in much the same way as a grammar school
student would:

1. Remove the top two elements from each queue.
2. Add them together, along with any carry value.
3. Determine the result digit and the new carry value.
4. Repeat until all digits are processed.

For the most part, we can convert this outline directly to an
algorithm. There are, however, several points we need to consider. First,
when we add numbers, we work from the low-order to the high-order
digits of the addends. Thus, the digits must be enqueued such
that, when they are dequeued, they are processed in the correct order.

We also need to display digits in the reverse order of processing.
Consider the following example:

1234
+4444

5678

Even though we compute the value 8 first, 5 is the first digit we
would print.

Finally, we need to address the problem of summing addends of
different lengths. For example, 123 + 23 = 146.

Listing 3.10 contains the code for the function addnums (1. It
begins processing by loading its queues. Obviously, this function
requires two queues, one for each addend. However, as written, our
queue routines handle only a single queue. For the purposes of this

3.6 Queues 51

void addnums ()
{

char i;
int nl, n2, carry, digit;

while((i=nextingut()) != EOF) /* 1st addend */
addql(i 1;

while((i=nextingutO) != EOF /* 2nd addend * /
addq2(i 1;

/*
* LOOR until both queues are eqpty
* /

carry = 0;
while(!emptyqlO && !amptyq20 1
4

nl = delql0 - '0';
n2 = delq20 - '0';
digit = nl + n2 + carry;
gush(digit % 10 1;
carry = digit / 10;

1

if(carry > 0)

push(carry) ;

while(!empty())
grintf ("%d" I Bog0 1;

listing 3.10
Adding arbitrary-length integers.

58 3 Static Data Structures

example, we simply duplicated the routines of Listing 3.8 to provide
support for an additional queue. A better solution is to write a set of
general routines that can process any queue passed as an argument.
This is discussed further in the exercises at the end of this chapter and
again in Chapter 5. addnums () assumes that the addend digits are
read in the correct order (i.e., low digits first). If they came in reverse
order, we would simply use stacks in lieu of queues.

T h e third while loop performs the addition operation described
previously. However, note that the conditional test will only termi-
nate the loop when both queues are empty. So how do we handle the
situation in which addends are not the same length? Specifically, how do
we handle the case in which one queue is empty and the other is not?
We simply add the following code to the delql () and delq2 () routines:

if(front2 == rear2) / * Queue is empty * /
return(0 1 ;

This statement ensures that each time we try to remove an element
from an empty queue, the deletion function returns the value 0 (rather
than a queue empty indication). Thus, we can continue processing
the non-empty queue (adding a harmless 0 to each digit) until it, too,
is exhausted.

T h e body of the while loop also contains some interesting proc-
essing. T h e first two statements convert each digit from its charac-
ter value to its numeric value. This is accomplished by subtracting
the character value of the digit ‘0’ from each addend digit as it is
removed from the queue. That is, the result of this subtraction will
yield the numeric equivalent of the digit. For example, the numeric value
for the character ‘2’ is 50; the numeric value for the character ‘0’ is
48. If ‘2’ were the digit just removed from the queue, the result of the
expression would yield 50 - 48 = 2.

T h e next three lines of code compute and store the new digit
and the carry value. Finally, note that the function uses a stack to store
the digits so that they can be displayed in the correct order.

In this chapter we discussed static data structures. Static data structures
do not alter their basic memory configuration during program execution.
These structures are typically constructed by combining atoms into
larger data aggregates.

One of the more common types of aggregates is the array. Although
simple in concept, arrays can serve as the basis for complex data
structures, such as:

Ordered lists
Stack A LIFO list that permits insertions and deletions at only one

end, called the top.
Queue A FIFO list that allows insertions at one end (called the reor)

and deletions'at th6"other end (called the front).
Circular list An extension to the basic queue. It can be likened to a

track wherein the front and rear pointers chase each other in a circular
manner. Circular queues allow you to continue to add elements
as long as there are slots available in the array.

An ordered set of elements.

The data structures discussed in this chapter can serve as a foundation
for solving complex problems.

1. What type of data structure would you use to model the following?
a. Customers entering and leaving a bank
b. Piles of lunch trays in a school cafeteria
c. Cars waiting in line to pay a toll

2. Implement the calculator program of Section 3.5. See if you can
include support for floating-point operands and an assignment facility
for variables. Also, modify the functions itop () and eval () so
they will writelread postfix expressions to/from a queue. How
should your program handle errors such as A + B) X C?

3. Write a set of general-purpose stack routines, similar to those in
Listing 3.3, that will operate on any array supplied as an argu-
ment to the functions.

4. Do the same for the queue routines of Listing 3.8.

5. Implement a set of stack routines that allow two stacks to share
the same data array. (Hint: Let one stack grow from right to
left; the other from left to right.)

SUMMARY

E X E R C I S E S

60 3 Static Data Structures

6. Write a function to reverse the order of elements in an array. Can
this be done in place?

7. Trace the growth and decay of the stack managed by the function

31'2 X 4 1 ' 3

itog () when converting the following infix expressions:

3 1' ((2 x 4) 1' 3)

41'31'21'1

8. Trace the growth and decay of the stack managed by the function
eval() when evaluating the postfix forms of the expressions pre-
sented in question 7.

quence of events:
9. Trace the behavior of a circular queue during the following se-

cir-addg (1)

cir-addg(2)

cir-delg (

ciyaddg(3)

cir-delg ()

Assume an array size of 5 and that the sequence of function calls
is repeated five times.

to allow it
to shift queue elements left-if there is room-when rear reaches
the end of the array.

10. Add the necessary code to the function addqueue (

11. A deque, or double-ended queue, is a linear list that permits inser-
tions and deletions at either end. Write a set of routines to
implement a deque using an array. (Hint: Use a circular
representation.)

12. Complement the addnums () function (Listing 3.10) by devel-
oping routines that perform subtraction, multiplication, and division.

13. Extend the functions you wrote for exercise 12 to handle nega-
tive numbers.

14. Discuss how you would extend the functions of exercise 12 to
handle floating-point numbers.

Recursion

4.1 INTRODUCTION

A procedure that calls itself, either directly or indirectly, is termed
recunive. Direct recursion occurs when function A makes another
call to function A; indirect recursion occurs when function A calls
function B, which, in turn, calls function A. It is important to understand
that each instantiation (active copy) of a recursive procedure is entirely
unique and has its own arguments, local variables, return address,
etc. Further, each instantiation returns to the procedure that directly
invoked it. Thus, if C calls A, then A calls B, and then B calls A, the
second instantiation of A is completely independent of the first and
returns to its caller B, not C.

Most beginning computer science students shudder at the mention
of the term recursion, or believe the technique is reserved solely
for the most sophisticated programmers writing the most arcane pro-
grams. On the contrary, recursion is a powerful tool that every programmer
should understand and use.

61

C H A P T E R 4

62 4 Recursion

I i n t fact - i ter(i n t n

i n t i , ans; I {
i f (n == 0) / * B y definition * /

return(1 1 ;

ans = 1;
for (i = 1; i <= n; i++)

ane = ans * i;

return(an8) ;
listing 4.1
Factorial nurnbers-
iterative solution.

4.2 FACTORIAL NUMBERS

The best way to introduce recursion as a programming technique is
by way of example. The notation n! reads “n factorial” and denotes
the product of the positive integers from 1 to n, inclusive. For example,

3! = 1 x 2 x 3

4! = 1 x 2 x 3 x 4

5! = 1 X Z X 3 X 4 X 5

n! = 1 x 2 x 3 x x n - 2 xn-1 X n

We also define l ! = 1, and O! = 1. If asked to develop a function
that would compute factorial numbers, how would you do it? Based on
the previous definition, an iterative solution is suggested and might
look similar to the function provided in Listing 4.1.

However, we can reverse the definition of the formula:

n! = n x (n - 1) X (n - 2) X X 3 X 2 X 1

Thus, 4! = 4 X 3 X 2 X 1. Note that 3 X 2 X 1 is 3!; therefore,
we can define 4! recursively as

4! = 4 x 3!

4.2 Factorial Numbers 63

In general, we can define n! as

n! = n X (n - l)!

(n - l)! = (n - 1) X (n - 2)!

(n - 2)! = (n - 2) x (n - 3)!

Having established a recursive definition for factorial numbers,
we can begin to formulate a recursive algorithm. Consider the
following pseudo-code:

f a c t (n)

x = n - 1 ;
compute x!; / * (n - l) ! * /
return(n*x! 1 ; / * n! = n * (n - l) ! * /

T h e function fact () computes the value of n! by calculating
the value of (n - l)! and then multiplying the result by n. However, as
you may have noted, statement two is not adequately defined: We
must find a way to compute the value of x!. But if you think about it,
we already have one: fact () . The function fact () computes facto-
rial numbers. Let’s use that knowledge and rewrite the routine as

f a c t (n)

x = f a c t (n-1); / * (n - l) ! * /
return(n*x 1; /* n! = n * (n - l) ! * /

Now, when computing the value of n! , the function will recursively
call itself to compute the value of (n - l)!.

Is the function complete? Let’s take a closer look and trace its
execution when computing 2!. Processing begins when the function is
invoked with an argument of 2. It computes 2! by recursively calling
itself with an argument of 1; to compute l!, it again calls itself with an
argument of 0. T h e third copy of the function will call itself with an
argument of - 1, the next - 2, and so on. T h e problem is now
becoming clear: T h e function is infinitely recursive.

All recursive procedures need some way of stopping the recursion.
We call this the temzinating condition or the out. It is usually placed
at the top of a recursive function and contains the statements that

64 4 Recursion

eventually put an end to the recursion and begin the unstacking
of all the nested invocations. If it is omitted or incorrect-as we have
just seen-functions can become infinitely recursive.

Returning to our example, let’s identify a terminating condition
for the function fact (). By definition, we know that O! = 1 and l! =

1. We can therefore add tests for these values a t the top of the procedure
as follows

fact(n
1) if(n == 0 OR n ==

return(1 1 ;

return(n * fact(n-1)) ;

Now, when invoked with an argument of 0 or 1, the function will
return an explicit value rather than making another recursive call.
(Note that we have also removed the unneeded temporary variable x
from our algorithm.)

We have one more problem, however. The function can be initially
called with a negative argument. We should therefore add one more test
to ensure that the function has been invoked properly:

fact(n
if(n < 0) / * Bad argument * /

return(-1);

if(n == 0 OR n == 1)
return(1) ;

return(n * fact(n-1));

The final C version of the function appears in Listing 4.2. It
depends on your point of view, but fact-recr () is slightly more read-
able than fact-iter () (Listing 4.1), if for no other reason than that
it has no loop to consider. Take the time here to review both functions
and convince yourself-if you are doubtful-that the two implementa-
tions are equivalent.

listing 4.2
Factorial numbers-

4.3 Fibonacci Numbers 65

int fact-recr(int n
{

i f (n < 0) / * Check for bad argument * /
return(-1) i

return(n * fact-recr(n-1)) i

1

recursive solution.

4.3 FIBONACCI NUMBERS

Let's return to our discussion of Fibonacci numbers. As you may recall
from Chapter 2, the Fibonacci sequence is defined as

Fo = 0

FI = 1

F,, = Fn-, + Fn-2 for n 2 2
The solution we presented previously (Listing 2.2) computed a

given Fibonacci number iteratively. Upon closer inspection, however, we
see that the series is also defined recursively. That is, we can compute
a given F,l by summing the values Fll-, and F,,-2. Therefore, we
can begin to construct a recursive solution as follows

fib-recr(n
return(fib-recr(n-1) + fib-recr(n-2) 1 i

We must again consider a terminating condition. In this case, we
can use the two initial values, Fo and F,, and insert tests into our algorithm:

fib_recr(n)

i f (n == 0)
return(0) i

i f (n == 1)
return(1 1 i

return(fib-recr(n-1) + fib-recrfn-2) 1;

66 4 Recursion

1 in t fib-recr(i n t n)

{
i f (n < 0) /* Bad argument */

return(- 1 1 ;

i f (n == 0) / * B y definition */
return(0 1 ;

i f (n == 1) / * By definition * /
return(1) ;

return(fib-recr(n-1) + fib-recr(n-2));

I

I Fibonacci numbers-
recursive solution.

The algorithm is just about complete, but notice that fib-recr ()

also can be incorrectly invoked with a negative argument. We will therefore
add one more test at the beginning of the routine. Listing 4.3 contains
the final C version of the function.

As a programming note, both fib-recr () and fact-recr ()
perform tests for invalid arguments during each recursive call. However,
the test is really needed only during the initial call to ensure that
invoking functions have passed valid arguments. After that, every addi-
tional comparison (testing for n < 0) is unnecessary. It would be to
our advantage ifwe could somehow prevent the test from executing
after the first call.

We can accomplish this by splitting the algorithm into two func-
tions. The first, called from other routines, will test for valid argu-
ments; it will then invoke the second function, which will actually do
the work. As an example of this technique, fib-recr () has been
rewritten and appears in Listing 4.4.

4.4 WRITING RECURSIVE FUNCTIONS

Thus far, we have used recursion to solve problems that we have been
able to define recursively. Now let’s begin to explore the use of this

4.4 Writing Recursive Functions 67

i n t fib-recr2(i n t n)

c
i f (n < 0)

return(- 1 1;

return(fibx(n) 1;
1

/* Bad argument * /

/* Compute F(n) * /

/ * The work routine * /
int fibx(int n)

i
i f (n = = 0)

return(0 1;

i f (n = = 1)
return(1 1 ;

return(fibx(n-1) + fibx(n-2));
1

listing 4.4
Split functions.

technique for problems in which a recursive solution may not be
readily apparent.

Towers of Hanoi

One of the classic examples demonstrating the power of recursion is
the ancient puzzle, T h e Towers of Hanoi:

There are three pegs A, B, and C, and a set of five rings, all of
different sizes. T h e puzzle begins with all rings positioned on peg A
in a manner such that no ring is resting on a smaller one. That
is, they are stacked one atop the other, beginning with the
largest, followed by the next largest, and so on (see Fig. 4.1 for
an example). T h e object of the puzzle is to stack all five rings in the
same order on peg C. At any time during the solution, you may

68

Figure 4.1
Towers of Hanoi
puzzle.

4 Recursion

place rings on any of the three pegs. However, you must
adhere to the following conditions:

You can only move the topmost ring on any peg.
At no time may a larger ring rest on a smaller one.

Try to solve the puzzle manually, for a small number of rings (say
four or five), before proceeding to the algorithmic solution.

The problem confronting us is to write a program that will solve
the puzzle for any number of rings. Let’s begin by considering a general
solution for n rings. If we had a solution for n - 1 rings, it would
seem obvious that we could solve the puzzle for n rings: Solve the
puzzle for n - 1 rings, then move the remaining ring to peg C. Similarly,
if we could solve n - 2. rings, the n - 1 case would also be simple. We
could continue in this manner until the trivial case in which n = 1:
Simply move the ring from pegA to peg C. Although it may not be obvious,
what we have just described is a recursive solution to the problem.
That is, we solved the problem for a given n in terms of n - 1.

Let’s examine a more concrete example and solve the puzzle for
five rings. Suppose we know how to solve the puzzle for four rings,
moving them from peg A to peg C. Obviously, we could just as easily
move the four rings from peg A to peg B instead (using C as the auxiliary
peg). Then, to complete the solution, we need only move the largest
ring from peg A to peg C and move the four rings on peg B to peg
C (using A as auxiliary).

We can summarize the solution more precisely as follows:

1. If n = 1, move the ring from A to C and halt.
2. Move n - 1 rings from A to B using C as auxiliary.
3. Move the nth ring from A to C.
4. Move n - 1 rings from B to C using A as auxiliary.

4.4 Writing Recursive Functions 69

~

void towers(int n, char a, char b, char c)

/ * n: Number of Rings * /
/ * a: The 'From' Peg * /
/ * b: The 'Auxiliary' Peg * /
/ * c: The 'Destination' Peg * /

if(n == 1){
printf("Move ring %d from peg %c to peg %c\n",n,a,c);
return;

I

/ *
* Move n-1 rings from
* /

towers(n-1, a, c, b)

peg A to peg B (C is aux)

/ *
* Move remaining ring from peg A to peg C
* /

printf("Move ring O& from peg %c to peg %c\n",n,a,c);

/ *
* Move the n-1 rings from peg B to peg C (A is aux)
*/

towers(n-1, b, a, c);

return;

listing 4.5
Towers function.

Note that steps 2 and 4 are recursive in that they suggest that we
repeat the solution for n - 1 rings. Also note that the pegs change
roles as the solution progresses.

Now that we understand the solution, we must convert these rules

70 4 Recursion

listing 4.6
Sample output:

Move ring 1 from peg A to peg B
Move ring 2 from peg A to peg C
Move ring 1 from peg B to peg C
Move ring 3 from peg A to peg B
Move ring 1 from peg C to peg A
Move ring 2 from peg C to peg B
Move ring 1 from peg A to peg B
Move ring 4 from peg A to peg C
Move ring 1 from peg B to peg C
Move ring 2 from peg B to peg A
Move ring 1 from peg C to peg A
Move ring 3 from peg B to peg C
Move ring 1 from peg A to peg B
Move ring 2 from peg A to peg C
Move ring 1 from peg B to peg C

Towers function.

into an algorithm. We will design a function, called towers (1 , that will
display all the moves required to solve the puzzle for a given number
of rings. Its output will be commands of the form

Move ring X from peg Y to peg Z

T h e function towers (1 will require four arguments. The first
will indicate the number of rings to use. The other three will determine
the role of each of the three pegs: source, destination, or auxiliary.
Listing 4.5 contains the code.

The code is almost a line-for-line transcription of our verbal solu-
tion. Note how the routine changes the function of each peg with
each recursive call. A sample of the output produced by the function,
invoked with n = 4, appears in Listing 4.6. However, as written, the
function lacks one important detail: It does not check for bad argument
values. We will leave this as an exercise for the reader.

Eight Queens Puzzle

Another classic example of recursive programming is the Eight Queens
Puzzle. The problem is to place eight queens on a chess board such that
no two queens are attacking each other. In chess, a queen can capture

4.4 Writing Recursive Functions 71

another piece by moving any number of squares along its row, column,
or diagonals (see Fig. 4.2). Thus, the problem is to place eight queens
on an 8 X 8 board such that no two queens share the same row,
column, or diagonal. Try to solve the puzzle manually before read-
ing on.

T o begin our solution, suppose we were to develop a procedure,
nextqueen () , that would attempt to place a queen in the row indicated
by its one argument. That is, the function would scan all the squares
of the specified row and, upon locating one that was not under attack,
would place a queen on it; it would then recursively call itself to place
a queen in the next row. If all eight queens can be placed on the board,
the function returns the value SOLVED. If all the squares of a given
row should be under attack, nextqueen () will return a status of FAIL.

Let’s begin to sketch the algorithm. (Note that for programming
convenience, rows and columns will be indexed from 0 to 7.)

nextqueen(row 1
for(i = 0; i < 8; i + +) /* T r y each column * /

if(safe(row, i)) /* Is square under attack * /
if (nextqueen(row+l) == SOLVED)

return(SOLVED) ;

return(FAIL); /* All squares under attack * /

Figure 4.2
Attacking queens.

72 4 Recursion

Clearly, the description is far from complete. First, we need a
terminating condition for the recursion. Let’s think about that for a mo-
ment. We know that, by definition, there is a maximum of eight queens
in the puzzle. Therefore, we can test for row > 7 at the beginning of
the function. But consider for a moment the significance of the value
contained in the argument row. If a recursive call is made to next-
queen() with row equal to some value n, it means that rows 0 to n
- 1 have been solved. Thus, if nextqueen(should be called with
row = 8, it means that all the queens (rows 0 to 7) have been placed
and the function should return the value SOLVED.

Next, we need a way to track the placement of the queens as the
function proceeds. T o do this, we will use an 8 X 8 character array
to represent the board. In each position, we will store (for display
purposes) one of the following characters: - to denote an empty square;
or x to represent a square containing a queen.

Finally, we need to define the function safe (1, which determines
whether a given square is under attack. However, let’s postpone
our discussion of safe () until we have completed the definition of
nextqueen (1.

Let’s incorporate the changes we suggested and see how our
function is taking shape:

nextqueen(row)

if(row > 7) / * The ‘out‘*/
return(SOLVED) ;

for(i = 0; i < 8; i++) / * Try each column 0-7 * /
if(safe(row, i) / * Is square under attack*/

board[rowl[il = QUEEN; / * Place queen on board * /
if (nextqueen(row+l) == SOLVED) /* Next row * /

else
return(SOLVED);

board[rowl[il = EMPTY; / * Restore board gos * /

return(FAIL); / * A l l squares under attack * /
1

Notice that we have added the statement

board[rowl [il = EMPTY;

4.4 Writing Recursive Functions 73

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7 Figure 4.3

Diagonal attacks. .
because if a recursive call to nextqueen (1 should fail to find a
solution (with a queen located a t that position), this statement will restore
the board to its previous state; the function is then free to try the next
available square.

Our algorithm is beginning to take shape, and we now need to
discuss the implementation of the function safe (1. The problem we
must address is how the function will determine whether a given
square is under attack from previously placed queens. First, note
that there is really no need to check for attacks along rows. By virtue
of our implementation, we can be certain that the only queen that could
reside on a given row is the one we are attempting to place. Also,
checking for attacks along columns could be accomplished directly, if
crudely, by indexing through the board along the column in question.

Diagonal attacks will prove to be the most difficult to discern. As
depicted in Figure 4.3, a queen positioned on any one of the
shaded squares would be attacking the queen placed on the [3,3] slot.
How can we easily determine whether a square is under attack along
either of its two diagonals?

If you take a closer look at the board in Figure 4.3, you will notice
that each diagonal can be uniquely identified as a function of its indices.
For example, consider Figure 4.4a. T h e sum of the indices (row +
column) of each square in the forward-tilting diagonal is equal to 6. There- -
fore, any queen that has been previously placed on a square whose
indices sum to 6 will have the [3,3] slot under attack. Similarly,
we can derive a unique value for the backward-slanting diagonals (Fig.
4.4b) by subtracting (column - row) the indices. Note that each of thes

74 4 Recursion

Forward-slanting diagonals
(a)

-2 diagonal
9 diagonal

Backward-slanting diagonals
(b)

Figure 4.4
Diagonal values.

15 forward-slanting diagonals range in value from 0 to 14, and the
backward-slanting diagonals range in value from - 7 to + 7.

We can incorporate this concept into our safe () function. The
idea is that as each queen is placed onto the board, we will update two
arrays: one to track the forward diagonal and one to track the backward
diagonal. The index into each array will be the index value of each diagonal.
(As a programming convenience, we will add 7 to the index value of
the backward diagonal.) Thus, safe () need only check the appropriate
array slots to determine whether a given square is under attack along
one of its diagonals. We will extend this idea to track attacks along columns.
In this case, we use only the column value as the index into a third array.

The complete solution to the puzzle appears in Listing 4.7. The
function eightqueens () is the driving routine. It initializes the
board and flag arrays and calls nextqueen() to solve the puzzle. If
nextqueen () returns SOLVED, eightqueens () also invokes disp-
board () to print the solution.

The routine set-flags () calculates the column and diagonal
values and sets the appropriate array flags; it is called whenever a queen
is placed onto the board. The procedure reset-flags () resets the
column and diagonal flags whenever we remove a queen from the
board (i.e., after a FAIL). The function safe () tests the flags associ-

4.4 Writing Recursive Functions 75

#define FAIL 0
#define SOLVED 1
#define EMPTY I - ,

#define QUEEN ? * I

char colmk[8]; / * Flags for testing rows & diags * /
char tiltf [15] ;
char tiltbLl51;
char boardL81 181;

void eightqueenso

int i, j;

/ *
* Initialize board & flags
* /
for(i = 0; i < 8; i++)

for (j = 0; j < 8; j++ 1
board[il [jl = EMPTY;

for(i = 0; i < 15; i++) {
tiltf[il = EMPTY;
tiltb[il = EMPTY;

1

for(i = 0; i < 8; i++)
colmk[il = EMPTY;

/ *
* Attempt to solve puzzle
*/

if (nextqueen(0) = = SOLVED)

else
disp-board (1 ;

grintf ("No solution found! \n") ;

continued on p. 76

76 4 Recursion

i n t nextqueen(i n t row)

{
i n t i;

continued from p . 75

i f (row > 7)
re turn(SOLVED);

f o r (i = 0; i < 8; i++) / * Try each col */
i f (safe(row, i) = = 1

board[rowl [i l = QUEEN;
set-flags(row, i 1;
i f (nextqueen(row+l) = = SOLVED)

re turn(SOLVED 1;

/ *
else {

* Restore board & try next s l o t
* /

board[rowl [i l = EMPTY;
reset-flags(row, i 1;

1
1

re turn(FAIL) ; / * No safe s l o t s - backtrack * /
1

void
set-flags(i n t row, i n t col) / * Set col & diag flags * /
{

c o l d [col] = QUEEN;
t i l t f [row+col 3 = QUEEN;
t i l t b [(row-c01)+7 I = QUEEN;

1

void
reset-flags(i n t row, i n t col) /* R e s e t col & diag flags * /

colmk[col I = EMPTY;
t i l t f [row+col I = EMPTY;
t i l t b [(row-col)+7] = EMPTY;

1 continued on p . 77

4.4 Writing Recursive Functions 77

int safe(int row, int col)

c
int i;

if(colmkCcol1 == QUEEN
I I tiltf[row+col~ == QUEEN
I I tiltb[(row-col)+71 == QUEEN)

return(0 1;

return(1); /* Safe * /
1

void disp-board0
{

int i, j;

putchar('\n' 1;
for(i = 0; i < 8; i++){

for(j = 0; j < 8; j++ 1

gutchar('\n');
putchar(board[il tjl 1;

1
1

continued from p. 76

listing 4.7
Eight Queens solution.

ated with a given board position; if it returns 1, the square is not
under attack.

Backtracking

In the previous example, we described a programming methodology
wherein many alternate solution paths are examined. This is a
form of backtracking, Backtracking is a programming technique in which
you proceed along a given path in search of a goal. At each fork
in the road, you gzless which path you should follow. If any choice
should prove unsuccessful, you backtrack; that is, you back up to

78 4 Recursion

the previous fork and try another path. Execution continues in this
manner until you either reach a solution or exhaust all possibilities.
The latter condition signifies that no solution exists and the program
should exit with an indicative status.

Non-Deterministic Programming

Backtracking is a coding technique belonging to a more general class
called Non-Deterministic Programming (NDP). In conventional
software design, we program all the steps required to attain a desired
result. This implies that a definitive, a priori understanding of the
solution is available and that the problem itself is algorithmically solv-
able. Thus, as each successive statement is executed, the program draws
progressively closer to the desired result.

NDP is somewhat different in that we do not code a solution.
Instead, we program the method by which we attain a solution-if one
exists. In fact, we do not assume that a solution does exist. The program
literally makes guesses until it either finds a solution or exhausts all avail-
able alternatives. Moreover, there can be zero, one, or multiple solu-
tions for a given problem. This method of programming has obGious
benefits in artificial intelligence applications and expert systems
development.

Chronological Backtracking

There are two types of backtracking: Chronological Backtracking
(CBT) and Dependency-Directed Backtracking (DDB). CBT is effec-
tively an exhaustive search, similar to the earlier discussion. Each
solution path is exhaustively searched until one of the two outcomes is
determined. For example, consider the following pseudo-code:

1:
2:
3:
4:
5:
6:
7 :
8:
9:
10 :

bktk-exe(node)

{
if(node = SUCCESS)
then

endi f
for(each-choice-at-this-node)
do

return(I-FOTJND-IT)

ret-stat = bktk-exe(child-node)
if(ret-stat = SUCCESS)

4.4 Writing Recursive Functions 79

11 : then
12 : return(ret-stat)
13 : endif
14: done
15: return(FAIL 1
1 6 : 1

If at any time a solution is found (lines 3-6, 9-13), the function
returns a value indicative of success. If not, it must try an alternate choice
(lines 7-14). If all the alternatives have been exhausted (line 7), a
value indicating failure is returned, forcing the previous invocation of the
function to back up to a previous path (line 15) before continuing
the search.

There are two important points to consider. First, whenever we
perform a backup, we must restore the environment to its previous state
before trying the next path. Saving and restoring state data can become
very expensive. Second, backtracking typically yields an algorithm that is
exponential in order of execution magnitude. The following sections
discuss methods of improving the performance of this technique.

Dependency-Directed Backtracking

Dependency-Directed Backtracking functions essentially as described
earlier, but attempts to eliminate some unnecessary searching (and there-
fore unnecessary backups). This is accomplished in two ways. First,
as the name DDB implies, we can backtrack to choices that are
dependent on the dead end. That is, we back up until we reach a
point where a dependency was created and continue searching
from there.

As an example of this technique, consider a case in which we are
searching for a solution that requires that four conditions (A, B, C, and D)
be satisfied for our program to return a successful status. Let us further
assume that we have reached a state in our processing in which
conditions A and B are satisfied but C and D are not. In lieu of just
automatically backtracking to the closest fork, continue back-
tracking to a point where A and B are still true and resume the search
from there. We can skip all the intervening paths.

The second method of eliminating unnecessary searching is called
pruning. If we reach a point in the search where it becomes obvious that

80 4 Recursion

any further effort along a given path is fruitless, we can eliminate all
subsequent paths from that point onward (i.e., force a backtrack
to occur). Pruning is a straightforward approach and is often imple-
mented in game-playing simulations. For example, we could write
a chess program that could determine its next move by assigning a
quantum value to each board position it examines. At any given
point, it would select the move that yields the most advantageous
(highest) value. If the algorithm were to traverse a path represent-
ing the moves queen takes pawn, pawn takes queen, it could elect to
eliminate any further searching along that trail.

For the sake of completeness, we should also mention a third
method of improving a backtracking procedure: managing an explicit stack.
Recursive procedures are costly. This is attributable to the considerable
amount of overhead processing required for each successive call. The
execution environment must save registers, store a return address,
allocate local storage, etc., in preparation for the return. Most of this
information is not directly related to the problem at hand and, there-
fore, having to save and restore it only wastes CPU cycles. We could save
time and space if we were to code the stack explicitly. This can be
accomplished by transforming the algorithm from recursive to itera-
tive and maintaining the to-do list in. an application-controlled stack.

Acrostic Example

As an example of the backtracking technique, we will design a program
that solves acrostic puzzles. An acrostic puzzle is simply a crossword puzzle
without the clues: You are supplied the words and the diagram and,
through trial and error, you must enter all the words into their appropriate
slots (see Fig. 4.5).

The overall operation of the program is as follows: Read the puzzle
and word list into internal data structures; search for a solution; if
there is one, print it. The actual backtracking logic can be found in
the function solve (), which is what we will focus on here. A complete
discussion of the program appears in Appendix A.

The function solve () is a recursive procedure that works as
follows:

1. It chooses, and determines the size of, the next puzzle slot to fill
(horizontal or vertical).

4.4 Writing Recursive Functions 81

2. It selects, at random (i.e., sequentially), an appropriately sized
word from the available list. It calls the function itfits (to
determine whether a given word fits into the slot (in typical cross-
word puzzle fashion).

3. If the word fits, solve () enters it into the puzzle. At this point,
with the aid of the function enter (), a snapshot of the current state
(puzzle) is saved.

4. It then recursively calls itself to continue toward a solution.
5. If at any point a solution is found (i.e., there are no more slots to

fill), the function returns the value SOLVED.
6. If a given recursive call fails to find a solution, the puzzle is restored

to its previous state (with the help of the function restore ()); the
word that had been tried at that point is returned to the free list
and the next available word is selected; if none remain, the
function returns the value FAIL to its caller.

Let’s trace the execution of the function as it begins to solve the
sample puzzle depicted in Figure 4.6. Note that the line numbers in the
following discussion refer to Listing 4.8; also, the “random” selection
of the words will be the order in which they appear in Figure 4.6.

First, we need a four-letter word for the I across position. T h e
function randomly selects best (line 14), marks it as USED (line 16), and
inserts it into the puzzle (line 17). It then calls itself recursively to
continue the processing (line 19). Next, for the 2 down position, a three-
letter word is needed and era is similarly inserted into the puzzle.

T h e function now attempts to fill the 3 down position. It selects
the next available four-letter word, tamp (line 13); checks to see
that it fits (line 14); and inserts it into the puzzle (line 17).

82 4 Recursion

1 2 3 TO
ERA
BEST
TAMP
TOPS

4

Figure 4.6
Acrostic puzzle.

The next slot to fill is 4 CICTOSS, and the function selects the next
available four-letter word-in this case, tops. This time, however, the
i t f its () test (line 15) fails. Recognizing that the last four-letter
word has been used (line 13), the function performs a backtrack (line 27).

After backtracking, the function resumes processing a t the point
where it, again, needs to fill the 3 down position. It discards what was its
first choice, tamp (lines 22 and 23) and selects the next available word,
tops (line 14). (Just as a reminder, tops was put back on the available list
just prior to the backtrack.) From this point on, the function solves
the puzzle without any additional difficulties.

4.5 USE OF RECURSION

Once the technique of recursion is understood, the question most
often asked is when to employ it. Let’s begin by discussing when not to
use it. By definition, all recursive functions have a corresponding itera-
tive solution. With few exceptions, iterative solutions are more efficient
than their recursive counterparts. Therefore, you should not use re-
cursion when run-time performance is critical.

However, this does not tell the whole story. Properly used re-
cursion can be no less efficient than using procedure calls where
appropriate. For example, tests have shown that for some sorting algo-
rithms (see Chapter 9) a recursive solution is no more than 2% slower
than its iterative counterparts. This is a negligible difference, especially
considering the speed of today’s processors.

Nonetheless, there are two cases in which the use of recursion
can lead to significant performance degradation:

4.5 Use of Recursion 83

1: solve(length, width 1
2: int length, width;
3: {

4: int 1, w, i, len, tmp, type;
5: char old[WORDLEN - MINWORD + 1 I;
6:
7: w = width;
8: 1 = length;
9: len = next (&l, &w, &type) ;

10 : if(len == 0)
11 : return(SOLVED 1 ;
12 :
13 : for(i = 0; i<MAXWORD && WORD(len,i) [01 ! =NULL; i++) {
14 : if(FLAG(1en. i) = = FREE
15 : && itfits(1, w, WORD(len, i), type)) {

16 : FLAG(len, i) = USED;
17 : enter(old, 1, w, WORD(len,i), type);
18 : prev = type;
19 : trnp = solve(1, w);

20: if(tmp == SOLVED)

21: return(SOLVED 1;
22 : restore(old, 1, w, type);
23 : FLAG(len, i) = FREE;
24 : 1
25: 1
26 :
27 : return(FAIL);
28: 1

listing 4.8
Acrostic solution.

1. The algorithm performs redundant computations. The recursive
implementation of the Fibonacci algorithm is a clear example
of this problem. When you invoke f act-recr () to compute F,,
it computes the value of Fn-z twice: once during the initial call, and
once when it make a recursive call to compute F,,-,. In a similar
manner, it computes Fn-3 three times, F,i-4 four times, and so on. As
a result of all the redundant computations, the complexity of

84 4 Recursion

fact-recr0 becomes O(+”), where + is the golden ratio
(1 + d / 2 = 1.618). (The actual analysis is beyond the scope of
this text.)

2. The recursion becomes deeply nested. This problem is clearly
highlighted in the function fact-recr () (the recursive ver-
sion of the factorial algorithm). Note that in computing n!, the
depth of the recursion (i.e., the number of nested invocations) the
function attains is O(n). For large values of n, this can place exces-
sive demands on the run-time machine environment. In fact, even if
we discount all other problems (e.g., integer overflow), for a large
enough n, the function might not have access to enough re-
sources (e.g., memory and stack) to compute a solution on some
systems. Contrast this behavior with that of the function eight -
queens () . Its depth of recursion never exceeds 9.

In addition to any performance considerations, you should not use
recursion when each successive invocation would result in a larger task.
Each recursive call should receive a smaller portion of the work.

Do use recursion, however, when the problem is, itself, defined
recursively. This is common in mathematical formulas (e.g., recur-
rence relations). Use it also when processing a recursively defined data
structure (e.g., binary trees) or when a problem can be solved with
a divide-and-conquer approach. Keep in mind that a recursive imple-
mentation of an algorithm is usually smaller and therefore it is usually
less expensive to develop and less costly to maintain.

Recursion is a powerful programming technique. Proper use of re-
cursion results in simple, maintainable algorithms. One of the most im-
portant aspects of a recursive algorithm is the out. All recursive func-
tions must have a terminating condition to stop the recursion and unwind
the stack.

A powerful programming technique that employs recursion is
called backtracking. You can improve the performance of backtracking
algorithms using several techniques, including pruning and explicit
stack management.

SUMMARY

4.5 Use of Recursion 85

1. Define recursion.

2. Describe the programming technique called backtracking.

3. Write a recursive function that counts from 1 to n, where n is a
positive integer argument passed to the function.

4. Write a recursive function to sum the numbers from 1 to n, where
n is a positive integer argument passed to the function.

5. Trace the execution of the function f act-recr () when invoked
with an argument of 10.

6. Trace the execution of the function Iik-recr () when invoked
with an argument of 8.

7. Implement the function towers () and manually verify its output
when solving for five rings.

8. Rewrite the function towers () as an iterative algorithm.

9. Implement, and trace the exucution of, the Eight Queens program.

10. How many different solutions exist for the Eight Queens Puzzle?
Modify the program of the previous question so it will generate all
of them.

11. Convert the function nextqueen () to an iterative solution.
Which version is easier to maintain? Which version executes
faster? Explain your answers.

12. Implement and test a program that solves acrostic puzzles (see
Appendix A).

13. Write a backtracking program that will compute a knight’s tour
of a chessboard. A knight moves by jumping two squares in
one direction (either vertically or horizontally) and one square in
a perpendicular direction. A knight’s tour is a sequence of
moves, starting at any square, that visits each square exactly once.
Try to implement some of the improvements discussed in this chapter.

E X E R C I S E S

Dynamic Data Strzcctzcres
C H A P T E R

5.1 INTRODUCTION

In the preceding chapters, we used static data structures to implement
our example algorithms. That is, storage was pre-allocated and of a fixed
size. One advantage of this type of allocation is that it provides direct
access to individual elements. For example, if we needed to change the
ith element of a list, we could code a [i]

Nevertheless, static data structures have several disadvantages.
T h e first becomes evident when attempting to insert or delete elements
in the middle of a list. For example, consider maintaining a list of
names in alphabetical order. T o insert a new element, a program must do
the following (see Fig. 5.1):

= new value;.

Determine the location for the new name.
Allocate space by shifting existing elements one slot to the right.
Enter the new name into the list.

For a list of size n, we would need to shift, on average, n/2 elements
to complete each insertion. To delete an element, the program
must remove the designated element from the list and then shift all
succeeding members one position to the left to fill the vacant slot.

86

C H A P T E R

5

5.2 Linked Lists 87

Find location
(a)

Shift elements right

Allocate space
(b)

Perform insertion
(C)

A second disadvantage of static storage structures is that they are
unable to respond to increasing or unanticipated demand. If we
allocate space for ten elements, the arrival of the eleventh will likely
present a problem. If, on the other hand, we decided to overcom-
pensate, the program might become too large for the target execution
environment. T h e following sections discuss methods by which we can
overcome these difficulties.

Figure 5.1
Array insertion.

5.2 LINKED LISTS

One solution to the first problem mentioned-that of difficult inser-
tions and deletions-is to use a second array to implement a linked
list. A linked list is a data structure wherein each element contains
both a data value and a pointer to the next element in the list.
That is, each element contains information that allows us to locate
the next element in the list: T h e first node points to the second,
the second to the third, and so on. This type of structure usually

88

~~

Figure 5.2
A linked list.

5 Dynamic Data Structures

Data: bw : .
Array
slots

Front = 3

requires a so-called headpointer to indicate the beginning of the list, as
well as some convention to signify its end.

For example, consider the list presented in Figure 5.2. The order
of the elements is not determined by their position in the data array
(data[]), but rather by the entries contained in the link array
(link [] .)The variable front, serving as our head pointer, identi-
fies the beginning of the list (slot 3 in this example). T o access the
data value of the first element (BACH), we index into the data
array at data [front]. The location of the next element
(BEETHOVEN) is determined by the value stored in the link array at
link [front 1, in this case 0; likewise, its corresponding data value
is accessed as data [01. The traversal continues in this manner until we
encounter a link value of - 1 (by convention, we will use this value
to signify the end of the list).

This form of indirection allows us to store list elements in any
available slot of the data array. Further, free slots (holes) no longer present
a problem-just mark them as available for reuse.

The second and more significant advantage of this method is that
it simplifies insertions and deletions. To demonstrate this, let’s insert the
element CHOPIN into the list depicted in Figure 5.2. The first step
is to determine the logical position of the new element. Specifically, we
must identify the node that will become the direct pwdecessor of the
new element (i.e., the node that will ultimately point to CHOPIN, in this
example BEETHOVEN).

Data:

Link:

Data:

Link:

5.2 Linked Lists a9

Empty slot (NEW = 2)

Front = 3
Find empty slot

(a)

Front = 3
Update link of new element

(C)

Data:

Link:

Link:

Front = 3
Insert new element

(bl

Data:

Front = 3
Modify link of Beethoven

(4

Figure 5.3
Linked-list insertion.

After determining the location, the steps required to perform the
actual insertion are as follows (see Fig. 5.3):

Find an empty slot in the data array (data [2 1).
Store (copy) the new element (CHOPIN) into the free slot.
Update the link for the new element (link [2 I
Insert the new element into the list (link [O]

= 1 ;).
= 2;).

Deleting list elements is essentially a two-step procedure (see
Fig. 5.4). First, remove the deleted element from the list by setting the
link value of its predecessor to point to its successor. Then mark the
deleted element’s data slot as available.

Listing 5.1 contains two example procedures, insert () and
delete () , that perform insertions and deletions on a linked list.
There are several points worth noting about the implementation.
First, both functions require an argument indicating the logical position
for the operation. Specifically, this argument must be the index of the

5 Dynamic Data Structures

Element to be deleted

Data:

Link:

Figure 5.4
Linked-list deletion.

Previous element in list
Front = 3

Before deletion
(a1

Data:

Link:

Front = 3
After deletion

(b)

target element’s predecessor. (We will return to this point later in this
chapter when we discuss doubly linked lists.) In line with this, note the
first i f condition in the function delete () . It tests whether its grev
argument refers to the last element in the list. If that is the case,
the function cannot delete any elements from the list because, by
definition, the last element of the list cannot be a predecessor
node. In all such cases, delete () returns the value END to indicate
to the calling function that the list has not changed.

Next, both routines handle the special cases involving the first
element of the list. The reason is that when the first element is either
deleted, or has another element inserted in front of it, there is no
predecessor node. (The variable front is not part of the list proper.)
As a result, both functions use a special value (BEG) to indicate an
operation on the list’s first element.

In closing, keep in mind that the benefits provided by this imple-
mentation are not without their costs: Additional memory is re-
quired for the link array and we no longer have the ability to access

5.2 Linked Lists 91

#define OK 0
#define NO-SPACE -1

#define BEG -2
#define END -3

#define MAXLEN 20
#define MAXENTRIES 100

int front = END;
int link[MAXENTRIES I ;
char data[MAXENTRIES 1 [MAXLEN. 1 ;

int
insert(int where, char item[]) / * Ins item after 'where' * /
{

int i;

/ *
* Find free slot in data array
* /
for(i = 0; i < MAXENTRIES && data[il[Ol != NULL; i++)

/ * NULL BODY */;

if (i >= MAXENTRIES)
return (NO-SPACE);

StrnCgy(datalil, item, MAXLEN); / * Store entry * /

if(where == BEG / * Insert at beginning * /
link[i 1 = front;
front = i;

link[i 1 = link[where 1;
link[where 1 = i;

1 else {

1

return(OK) ;

1 continued on p. 92

92 5 Dynamic Data Structures

continued from p. 92
int delete(int grev 1 / * Delete member after *grev* * /
{

int t;

if (link[grev 1 == END) /* Nothing to DO! */
return(END 1 ;

if(prev == BEG) {
/ *
* Delete first element
* /

t = front;
front = link[front I;

/ *
I else {

* Delete element after *grev*
* /

t = link[grev 1 ;
link[grev I = link[t 1;

I
data[tl[Ol = NULL; / * Free data slot * /

return(OK 1;

Listing 5.1
Linked-list insertion and deletion functions.

individual list elements directly. The sections that follow will discuss ways
that we can improve on the ideas developed in this section.

5.3 LINKED LISTS USING POINTERS

We will now address the second problem mentioned previously, that
of space limitation. Although it has several advantages, the double
array implementation of the previous section does not overcome the
disadvantages associated with pre-allocated memory aggregates. Indeed,
the problem is compounded because we need a second (link) array.

5.3 Linked Lists Using Pointers 93

Front End of list

Alternate notation
(a)

Front
New element

Insertion
(bl

Figure 5.5 Front

Linked lists: Preferred
representation.

Deletion
(4

Deleted Element

Figure 5.5a presents another way that we can represent lists in
memory. As depicted, each list member can be viewed as a self-contained
unit (referred to as a node), with both a data field and a pointer to the
next element (successor).

In previous examples, the pointer (link) field was strictly an index
into another array. We will now expand this capability and permit link
fields to reference any node residing at any valid memory location
(address). As a result, programs can now construct and process lists
of arbitrary sizes. In addition, as we will see, we can create nodes ‘on
the fly’; this allows us to overcome the limitations associated with
pre-allocated storage.

Figures 5.5b and 5 . 5 ~ briefly illustrate how we perform list inser-
tions and deletions using this representation; the sections that follow
discuss the implementation in detail.

94 5 Dynamic Data Structures

Memory
addresses

-Memory

After integer assignment
(a)

After pointer assignment
(b)

Figure 5.6
Pointer assignment.

Pointers

Before we can continue the preceding discussion on linked lists, we
must determine how link fields can reference any node positioned
anywhere in memory (not just in another array). To understand how
this is accomplished, this section introduces and describes a new
type of variable called a pointer.

Regardless of data type, all variables possess several generic attri-
butes. These include name, size, type, and address (location in
memory). When writing programs, developers reference variables by
name. However, after a program is compiled and loaded into mem-
ory (executed), variables are referenced solely by their addresses. For
example, consider an integer variable i, loaded at memory location 1000.
The assignment i = 6; will cause the contents a t memory location
1000 to be overwritten with the value 6 (see Fig. 5.6a).

As mentioned earlier, programmers usually reference variables by
name. However, there are times when it more convenient to reference
variables by their addresses. For example, consider a program that
processes employee records. (Typically, employee records are quite large;

5.3 Linked Lists Using Pointers 95

for our example, we’ll assume that they are 2048 (2K) bytes in size.)
Let’s assume we had to write a payroll function that processes these
records and prints checks. One way to provide our function with data
is to pass each employee record as an argument. However, that means we
would have to copy 2K bytes worth of data with each call to the
function.

A better approach is to tell the function where records reside in
memory. In effect, each time we invoke the function, we tell it
to process the employee record that resides over there (wherever there
happens to be for each record). Using this technique, we only need to
pass the address of a record (typically only 4 to 8 bytes worth of
information) rather than its entire contents.

Pointers in C

In C, we store and process address information in variables called
pointers. A pointer is a variable that uses an address to reference,
indirectly, another data object. Put simply, a pointer is a variable that
contains the address of another variable.

T h e C declaration for a pointer has the general form

data-type *ptr-name;

where data-type determines the type of object a t which ptr-name can
point. This can range from one of the basic data types to a user-defined
aggregate (as we will see shortly).

For example, we can define a pointer to integer as

i n t * i p t r ;

(The trick to understanding C declarations is to read them from right
to left. Also, pronounce * as “pointer to.” Thus, * i p t r is apointerto int.)

The preceding pointer declaration creates storage for a variable
that has all the attributes of any other data object: name, type, size, address,
and so on. The sole difference is the type of data that we can store
in it. Specifically, i p t r does not hold an integer value; rather, it holds
the address of another integer variable.

After declaring a pointer, our next concern is to determine where
it is pointing. As we have been stressing, pointers are just like any
other variable. As a result, they, too, must be initialized. Assuming the

5 Dynamic Data Structures

preceding declaration for igtr and the declaration i n t i;, the C
statement

igtr = &i;

assigns the address of i to igtr (see Fig. 5.6b). That is, we say that
iptr points at i and that we can access the contents of i indirectly
through igtr. Note that the symbol & is a unary operator (i.e., requires
only one operand) that yields the address of its operand. Also note
that the preceding assignment modifies the contents of igtr.

Typically we are not interested in the exact values of addresses;
that is a concern best left to the compiler and the memory manage-
ment subsystem of the host operating environment. However, if we
wanted to, we could print addresses as follows:

grint f ("The address of i is: %d\n", &i 1;

or

gr int f ("The address of i is: %d\n", igtr 1;

Once assigned, we can use a pointer to modify the contents of
the memory cell at which it points. Assuming all of the preceding
declarations and assignments, the statement

*iptr = 6;

is equivalent to the assignment

i = 6;

The * operator dereferences the pointer igtr; thus, we access i indi-
rectly via the pointer.

Listing 5.2 contains some additional examples of pointer manipu-
lation in C.

Pointer dereferencing is dynamic. That is, the cell at which a
pointer is pointing at the time of dereferencing is the one that is modified.
For example, consider the following code fragment:

int i , j , *gtr;

gtr = &i;
*gtr = 10; / * assign 10 t o i * /

gtr = &j;
*gtr = 10; / * assign 10 t o j * /

5.3 Linked Lists Using Pointers 97

void ptr-ex (1
{

int i, j; /* Declare integer variables * /
int *g; /* Declare a pointer variable * /

p = Grit /* ‘p‘ now points to ‘i’ */
p = 6; / equivalent to *i = 6;’ * /
i = 7; /* equivalent to ‘*p = 7 ; ‘ * /
j = *p; / * equivalent to ‘j = i;* * /

listing 5.2
Examples of pointer manipulation in C.

T h e first time we assign 10 to the cell at which gtr points, we modify
i; the second time we modify j.

As with any variable, type checking also applies to pointers. Spe-
cifically, pointers should only point at objects consistent with their
declaration. For example, a pointer, declared as pointing to an int,
should not be assigned the address of a variable declared as a double.

As a final note, programmers new to C are sometimes confused
by what appears to be conflicting uses of the * operator. In a declaration
statement, * adds levels of indirection; in an executable statement, it
removes levels of indirection. (Keep in mind that * is also the binary
multiplication operator!) Obviously, its meaning depends on its use.
This idea, however, is certainly not a new one. For example, consider the
English word mad. The only way we can tell whether it should be
pronounced “reed” or “red” is by context. In computer languages,
operator overloading occurs when symbols have more than one meaning.
Operator overloading is not unique to C. For example, most com-
puter languages (including C) overload the (-) operator. It can mean
subtraction (as in a-b) or it can mean negation (as in x = -y) , de-
pending on usage. Keep operator overloading in mind when working
the * operator in C.

Pointer Example

As an example of the use of pointers, let’s write a function that swaps
the value in two variables. As a first cut, you might write a function similar
to the following:

98 5 Dynamic Data Structures

void bad-swap(int x, int y)

{
int temp;

temp = x;
x = y;
y = temp;

1

However, in C, function arguments are passed by value. That means,
when we call a function such as

bad-swap (a, b ;

the value of each actual parameter (e.g., a and b) is copied into the
corresponding formal parameter (e.g., x and y, respectively). The
variables x and y are local to their function. Thus, any changes we
make to x and y will have no effect on their corresponding actual parame-
ters. As a result, bad-swap () will not accomplish the desired task.
(Languages that permit formal parameters to modify actual param-
eters support a calling convewion referred to as call by rt$emnce. Take
on the role of compiler writer for a moment and consider how you would
deal with a function call such as swap (a + b, c + d) in a call-by-
reference environment.)

One way to overcome this problem is to pass the address of the
actual parameters, as in

void good-swap(int *x, int *y)

{
int temp;

temp = *x;
*x = *Y;
* y = temp;

1

This allows us to swap the value of any two integers with a call such as

good-swap(&a, &b);

At first glance, it might seem that we are now calling by reference.

5.3 Linked Lists Using Pointers 99

On the contrary, we are still calling by value; it’s just that the
values we are passing are addresses.

C Structhures

Before we can resume our discussion of linked lists, we must also
decide how we will organize the complex data structures we will need.
We have already seen one way that programming languages (C in
particular) allow us to organize data: the array. Arrays allow us to
aggregate multiple elements of the same type. But to implement
linked lists, we need a way to group elements of dissimilar types. In C,
we can accomplish this through the use of structures.

A C structure is a collection of one or more variables (called
members) that we can manipulate as a single unit. They are akin to the
notion of recordin other languages. For example, consider an employee
record. Companies must maintain a diverse set of attributes for
their employees: name (string), social security number (long in-
teger), salary (float), and job code (char), to name a few.

T o demonstrate the definition and use of structures in C, let’s
construct a simple employee record. Before we begin, consider
the following point. When we declare a variable (in any language),
the compiler must know what that variable looks like before it can construct
it for us. For example, if we code

int i;

the compiler must know how to build an integer cell in memory. The
same holds true for structures in that we must provide the compiler
with a description of the object before it can reserve storage. In C,
we can define a structure as follows:

struct employee {

char name [25 I ;
long ssnumb;
float salary;
char j ob-code;

I ;

T h e reserved word struct introduces the declaration. employee is
a user-defined name for the structure, called a structure tag. The

100 5 Dynamic Data Structures

allocation. emp 1 emp 2 full-time

structure tag is analogous to a data type (e.g., int) and provides us
(and the compiler) a name by which we can reference objects of
this type. Note that the compiler does not reserve storage as a result
of this statement. Rather, the declaration serves only to describe
this new data type to the compiler.

We can define struct variables using declarations such as

struct employee apl, emp2, full-time;

This declaration reserves storage for three variables of type struct
employee. Figure 5.7 depicts what memory might look like as a
result of this declaration.

We reference individual structure members as

variable. member

where variable is a structure variable and member is a valid member of
that type of structure. Thus, to reference the salary member of
structure empl, we code

-1. salary

Note that when we reference a member, the data type of the
resultant expression is based on the data type of the member:

Expression Data type

=PI struct employee
Grempl
empl. salary float
hemgl. salary

address of (pointer to) a struct employee

address of (pointer to) a float

As with any data type, we can also declare pointers to structure
objects:

~~ ~ ~

5.3 Linked Lists Using Pointers 101

struct employee *ptr;

This statement declares storage for a variable that can point at objects
of type struct employee. As usual, we must initialize the
pointer:

ptr = hempl;

We can reference structure members via pointers using the follow-
ing syntax:

pointer->member

For example, the expression

ptr ->salary

references the salary member of empl. Remember, pointer references
are dynamic. Thus, if we were to assign ptr = &emp2, the preceding
expression would reference the salary member of emp2.

based on the data type of the member:
T h e data type of structure references involving pointers is also

Expression Data type

ptr
ptr ->salary float
&ptr ->salary

address of (pointer to) a struct employee

address of (pointer to) a float

Structures may contain members of any data type. For example,
we can modify our employee structure as follows:

struct emp-name {

char firstpame[30 1;
char last-name[30 1;
char middle-init;

I ;

struct employee {
struct emp-name name;
long ssnumb;
float salary;
char j ob-code ;

I ;

102 5 Dynamic Data Structures

Given the following declarations and assignment:

struct employee empl, *ptr;
ptr = Grempl;

we could reference middle-init as

empl.name.middle-init

or

ptr->name.rniddle-init

The only restriction placed on structures is that they cannot con-
tain instances of themselves. For example,

struct bad-decl {

char a;
float b;
struct bad-decl c; / * Wrong! * /

I ;
If permitted, the declaration would be infinitely recursive.

selves. These are sometimes referred to as self-referential structures.
However, structures can contain instances of pointers to them-

struct listgode {

/ *
* data elements here
* /

struct list-node *next; / * ok * /
I ;

This allows structures to point to other instances of objects of the
same type. We will use this feature in the next section to imple-
ment dynamic linked lists.

in C. T h e bibliography lists several excellent references that pro-
vide more thorough discussions of the topics.

This has been but a brief overview of pointer and structure usage

linked lists and Pointers

As noted earlier, pointers can be used to process data efficiently,
especially large objects: Instead of copying enormous chunks of data from
location to location, we need only pass an address.

5.3 Linked Lists Using Pointers 103

Figure 5.8
Linked list using
pointers.

Head - Null

We can also use pointers to implement lists of the type depicted
in Figure 5.5. We begin by defining a C structure that will serve as our node:

struct node {

int data;
s t ruct node *next;

1;

This structure contains two members. T h e first field, data, stores
data values for individual nodes. The second field, next, is a pointer to
objects of type struct node. In other words, it can point to the
next node in a list. The following code fragment demonstrates one way
to construct a list:

void a-list (1
c

struct node *head, nl, n2, n3;

head = hnl;
nl.next = &n2;
n2.next = &n3;
n3.next = NULL;

1

T h e function begins by assigning the address of nl to the pointer
head this establishes the,beginning of the list. Then, using the variables
nl, n2, and n3, it constructs the body of the list: The next field of
each node is assigned the address of its successor. By convention,
we use the value NULL to indicate end-of-list. Figure 5.8 depicts the
internal representation of the preceding list.

list Insertion and Deletion with Pointers

We can now process lists using simple pointer manipulation (refer
back to Fig. 5.5). For an insertion, assign to the link field of the
new node the value contained in the link field of its intended predeces-
sor; then set the predecessor’s link field to point the new node.

104 5 Dynamic Data Structures

s t ruc t node *head = NULL;

/*
* Inser t "new" a f t e r "pre"
* /

void inser t2(s t ruc t node *pre, s t ruc t node *new)

{
i f (pre == NULL I {

/ *
* Inser t i n front of first node
*/

new ->next = head;
head = new;

new ->next = gre ->next ;
gre ->next = new;

1 e l se {

1
1

/ *
* Delete t h e node a f t e r pre
* /

void deletea(s t ruc t node *gre 1
{

i f (pre == NULL) / * delete first node * /

e l se
head = head ->next ;

pre ->next = gre ->next ->next;
I

listing 5.3
List processing using pointers.

A list deletion is even simpler. Store the address contained in the
link field of the deleted element into the link field of its predeces-
sor. We can then reuse the deleted node (i.e., place it on an mad-
able list).

manipulation routines insert2 () and delete2 () . They func-
As an example of this processing, Listing 5.3 contains the list

5.4 List Processing 105

void iter-trav(struct node *ptr)

c
while(ptr ! = NULL) {

print-node(ptr 1;

listing 5.4
List traversal: Iterative.

tion in a manner similar to that of their counterparts, insert () and
delete () (Listing 5.1), but use pointers instead of array indices.

The variable head, which points to the beginning of the list, is
initialized to NULL; this signifies an empty list. Both functions
begin their processing by testing for the special case in which the first
element of the list is to be updated. However, note that the test performed
is pre == NULL. Why not test for pre === head? In answering
this question, keep in mind that we always need to have access
to an element’s predecessor to perform an insertion or deletion. Thus,
to insert a new element in front of the third element, we pass
insert2 () a pointer to the second element; to insert a new element
in front of the second element, we pass a pointer to the first. As you can
see, there is no way to indicate that an insertion should take place in
front of the first element. T o overcome this problem, we have established
the convention that a null pointer indicates a first element operation.

5.4 LIST PROCESSING

List Traversal

Of the many operations that we can perform on lists, the most common
is the traversal. A list traversal requires that we “visit” each node in
succession, processing the data field(s) as required. For example, after
constructing our list of composers, we might need to generate a
printed listing of the names.

Listings 5.4 and 5.5 contain examples of list traversal routines.

106 5 Dynamic Data Structures

void recv-trav(struct node *gtr 1
{

if(gtr != NULL) { / * The 'out' * /
print-node(gtr 1 ;
recv-trav (ptr ->next ;

1
1

listing 5.5
List traversal: Recursive.

The first, iter-trav(), uses a loop (iterative) construct to step
through the list and print out each data element. In contrast,
recv-trav () employs a recursive algorithm to process each node.
Both functions assume a routine called print-node () to display
data elements in some predetermined manner.

list Reversal

There are occasions when we need to reverse the order of list elements.
For example, we might need to print our list of composers in
reverse alphabetical order. Listing 5.6 contains the function
reverse (), which reverses the order of elements in a linked list. Its
one required argument is a pointer to the list it will process. When
invoked, the function steps through the list, reversing pointers on the
fly. It returns the address of the new first element (formerly the last) and
therefore should be invoked as

head = reverse(head) ;

This ensures that we can still reference the list after the routine
completes.

Notice that reversing does not make a copy of the original list.
That is, by using three pointers, we can reverse the list in piace. Thus,
for any list of size n 2 1, the while loop is executed exactly once,
yielding a complexity of O(n).

5.4 List Processing 107

struct node *
reverse(struct node *headptr)

c
struct node *tmp. *curr, *prev;

/*
* set-up pointers
* /

prev = NULL;
curr = headpt r ;

while(curr ! = NULL) {
tmp = prev;
prev = curr;
curr = curr->next;
prev->next = tmp;

return(prev 1;
1

listing 5.6
Reversing a linked list.

List Concatenation

Another useful function for list processing is a routine that concatenates
two lists. T h e function lconcatl() (Listing 5.7) appends its second
argument to the end of its first, creating one large list. T o accomplish
this, it locates the last element of list l i s t 1 and assigns to it the
address of the first node of l i s t 2 . The first i f statement is a “sanity
check” to ensure that listl points to a non-empty list. The while loop
is executed only for each element of listl; this yields a complexity
of O(n).

There is one problem with this implementation of lconcatl (1.
As it stands, it will fail whenever l is t l is NULL. That is, the
pointer to the first list in the calling function will remain NULL. Al-
though it appears that lconcatl () addresses this problem with the first
i f statement, this is not the case. Keep in mind that the parameter

108 5 Dynamic Data Structures

void
lconcatl(struct node *listl, struct node *list2)

E
if(listl == NULL

listl = list2;
return;

1

/ *
* Locate end of list
* /

while(listl->next ! = NULL)

listl = listl->next;

1 is t 1 ->next = 1 ist 2 ; /* Concatenate * /
1

struct node *
lconcat2(struct node *11, struct node *12)

I
if(11 == NULL) {

return(12 1;
1

/*
* Locate end of list
* /

while(11->next ! = NULL)
11 = 11->next;

11->next = 12; / * concatenate * /

return(12 1;
1

listing 5.7
Two versions of list concatenation.

5.5 Stacks Revisited 109

calling convention in C is by value. Thus, when we assign to
listl in concatl (1, we only modify the formal parameter (a local
variable), not the actual parameter passed by the calling function.

As illustrated in lconcat2 () , we can easily rectify this problem
with a simple change to the procedure. In this version, the function
returns a pointer to the concatenated lists. Thus, if we call the function
in this manner:

listl = lconcat2(listl, list2);

we are assured of a correct result regardless of the value in the first
parameter.

5.5 STACKS REVISITED

Let’s take another look at implementing a stack, this time using point-
ers. As in our first implementation, we will use one pointer (tog) to
maintain the top of stack. In this case, however, it will be a pointer
to a list of structures of type node (see Fig. 5.9).

New Node
Insertion

(a)

Deleted (popped) element

Deletion
(b)

Figure 5.9
Stack: Pointer
implementation.

110 5 Dynamic Data Structures

Listing 5.8 contains the functions ppush () and ppop () , which
implement a pointer stack. Note that ppush() requires a node, not a
value, as its one argument.

s truct node E
char data;
struct node *next;

1;

struct node *ppop(void 1;

void ppush(struct node *) ;

struct node *top = NULL;

void ppush(struct node *new)

E
new->next = top;
top = new;

1

s t ruc t node *ppop ()
{

struct node *tmp;

if(top == NULL)

return(NULL 1;

tmp = top;
top = top ->next;
return(tmp 1;

1

listing 5.8
Stack: Pointer implementation.

5.6 Queues Revisited

5.6 QUEUES REVISITED

We can also convert our queue functions in a similar manner. As
depicted in Figure 5.10a, we need two node pointers to maintain
the FIFO order of the elements. Figures 5.10b and 5 .10~ demonstrate
how to accomplish queue insertions and deletions. Listing 5.9
contains the code.

struct node {

char data;
struct node *next;

I ;

struct node *head = NULL,
*tail = NULL;

void ptr-insg(struct node *new)

{
new ->next = NULL;
if(tail == NULL) / * Empty List */

else

tail = new;

head = new;

tail ->next = new;

I

struct node *ptr-delg()
E

struct node *tmp;

if(head == NULL) /* List Empty * /
return(NULL 1;

tmp = head;
if(head == tail) / * Last Node in List * /

head = tail = NULL; conhuedonp . 112

111

112 5 Dynamic Data Structures

else continged from p. 111
head = head ->next ;

I return(tmg 1;

listing 5.9
Linked-list functions.

Enqueue
f b)

Deletion
fc)

Figure 5.10
Queues: Pointer
implementation.

5.7 Dynamic Memory Allocation 113

5.7 DYNAMIC MEMORY ALLOCATION

Through the use of pointers, we have seen how programs can create
linked lists of virtually unlimited size. T h e only practical restriction
is the amount of memory available to a process at execution time.
Nevertheless, all the previous examples have used variables explic-
itly declared at compile time (e.g., struct node nl;); this still
limits a program’s ability to respond to varying demand. It would
be helpful if a program could allocate memory (nodes) as needed.

Many languages and operating systems support dynamic memory
allocation. Using this capability, an executing process can request
additional memory on the fly. The specifics of such a facility vary from
system to system, and the details are beyond the scope of this
text. However, for purposes of demonstration, we will assume that
two functions are supplied as part of our compilation environment:
malloc () and free () . (These routines are part of the ANSI C
standard.)

T h e function malloc () allocates chunks of memory. It takes
one argument-the size (in bytes) of the requested memory seg-
ment-and returns either a pointer to (i.e., the address of) the new
segment or the value NULL if a segment of that size is unavailable.
T h e function free () returns a previously allocated memory segment
to the system, making it available for reuse. Its one argument is
the address of the segment to be returned.

As an example of how we can use these routines, let’s incorporate
these two functions into the stack routines of the previous section.
Specifically, the function ppush () will now automatically allocate a
new node with each push request; and pgog () will free each popped node.

T h e code for the new routines, ppush2 (and ppog2 (1 , appears
in Listing 5.10. Note that the argument to ppush2 () is now a data value,
not a node. If the call to malloc () should fail, ppush2 () returns
OUT-OF-SPACE. Also note that we have modified ppog2 () . The func-
tion returns status in the usual manner. However, we have added a
pointer argument so that it can also return a data value. A call to
pgog2 () is made as follows:

stat = ppog2(&data 1;

If stat is OK, data contains the value of the popped element.

114 5 Dynamic Data Structures

s t r u c t node {

char data;
s t r u c t node *next;

I ;

#define OK 0
#define EMPTY -1
#define OUT-OF-SPACE - 2

s t r u c t node *head = NULL;

i n t ppush2(i n t da t a
{

s t r u c t node *new;

i f ((n e w = (s t r u c t node *)malloc(s izeof (s t r u c t node))) == NULL)
r e t u r n (OUT-OF-SPACE 1 ;

new->data = data;
new ->next = head;
head = new;

r e t u r n (OK 1;
I

i n t ppop2(i n t *data)

{
s t r u c t node *old;

i f (head == NULL) / * Stack empty * /
r e t u r n (EMPTY) ;

*data = head->data;
o ld = head;
head = head ->next ;
f r e e (o ld 1;

r e t u r n (OK 1 ;
I

listing 5.10
Stack functions with dynamic memory allocation.

~ ~~~

5.8 Simulation Example 115

If ggog2 () returns EMPTY, the value contained in data re-
mains unchanged.

5.8 SIMULATION EXAMPLE

As with computer systems, it is not desirable to deploy physical systems
until they are thoroughly tested. For example, an automobile manufacturer
would not want to begin construction of a new manufacturing plant
unless it was certain that the design of the new facility was opera-
tionally sound. Obviously, it would be much too costly to build the
new plant only to discover later that it produces fewer cars than
did the old one.

As typified by this example, there are many cases in which it is
too expensive or too impractical to test a physical system directly. However,
in many cases, we can create a computer simulation that imitates the
behavior of a physical system. Designers and engineers can then
use the data generated from the simulation to modify and adjust the
operational design of physical systems before they are built. This
reduces the risk and expense of large-scale development. We will now
make use of the data structures we have been discussing to develop a
simulation program.

Problem Overview

The system we are going to simulate is one currently under considera-
tion by the manager of a branch of the First National Databank. The
Databank now uses multiple queues for each teller (Fig. 5.11a). That
is, upon arrival, each customer selects one of several lines (one
per teller) in which to wait. T h e branch manager believes this method
is inefficient and is considering adopting a single line operation. Under
the new system, all arriving customers would enter the same queue
(Fig. 5.11b).

The manager’s concern is that in order to support the new system,
the branch office will need extensive remodeling. More impor-
tant, there is a possibility that customers may experience some inter-
ruption of service while the branch undergoes alterations. Given the costs
and the risk of losing business, the manager would like some assurance
that the new system will better serve Databank’s customers before
committing to the conversion.

116 5 Dynamic Data Structures

0 . 0 .
0 . 0 . .
0 . 0 . .
0 . 0 . .

dd Tellers Tellers

Multiple lines
(a)

Single line
(bl

__ -. ___ __. -

Figure 5.11
Bank lines.

Our job, as members of Databank’s data processing department,
is to develop a simulation of the new system to determine how it will
compare with the old. T o do this, the program we develop must
simulate customer traffic for a typical business day (based on histor-
ical data) and generate a summary report containing the number of
customers served, the number of transactions completed, and the
average wait time incurred by each customer. The latter is of primary
concern and will determine the fate of the new system. T o aid our simula-
tion, Databank has accumulated historical data reflecting the perfor-
mance of the existing system (e.g., number of customers per day,
types of transactions, average duration of transactions, etc.).

Implementation
There are several events our program will need to track

Bank open
Customer arrival
Teller/customer transaction
Customer departure
Bank close

The program must also generate-based on the historical data-ran-
dom customer arrivals and transaction types.

We will need two structures to track these events and accumulate
statistics for both customers and tellers. The first will be a simple structure
array to count the number of transactions performed by each teller
and to indicate when a teller becomes available to serve the next customer.

5.8 Simulation Example 117

T h e second is a linked list that will simulate the customer queue.
T h e structure definitions appear in Listing 5.11.

The driving routine of the program will be a function called simu-
late(). It will require three arguments: the closing time (as
expressed in clock ticks, which, for our example, will be minutes), the
number of tellers on hand, and the number of expected customers.

Let’s begin to sketch the algorithm:

simulate(close, no-tellers, no-customers 1
clock = 0;
while(1) { /* Forever * /

/ *
* New customer?
* /
if(arrive0) {

if (add-cust-gO ! = OK) {

/ *
* LOST SALE!
* /

I
1

/*
* Process tellers 6i customers
* /
for(i = 0; i < no-tellers; i++) {

struct tellers {
int custs ; /* No. of custs served */
int trans; / * Trans complete time * /

I ;

struct cust {
int time-in; / * Arrival time * /
int time-out; / * Departure time * /
int time-trans; / * Duration of trans */
struct cust *next; / * Ptr to next struct */

I ;

listing 5.11
Data structures for simulation program.

118 5 Dynamic Data Structures

/ *
* Is teller done with transaction?
*
if(clock >= teller[il.trans

tellerril .trans = 0; / * Available * /

/ *
* Next Please?
* /

if (tellerri] .trans==O AND Queue NOT Empty
del-cust-q0; /* Get cust from Q */
tellerri] .custs += 1;
teller [il .trans=clock+trans-duration;
accum0; / * Accumulate tots * /

1

if(clock > close) {

print execution summary;
return;

1
clock += CLK-INCR;

1
1

We seem to have accounted for all events except bank open and
close. Clearly, invoking the function is equivalent to opening the
bank for business. Simulating the bank close event, however, is not
that simple. Specifically, we cannot just stop processing at closing
time because, although we will no longer permit customers to enter,
there may still be some customers awaiting assistance inside the
bank. Therefore, simulate () must continue to process customers
until the queue is empty.

The code segment commented 'LOST SALE' is also interesting.
We could place a limit on the size of the customer queue that represents
the maximum physical capacity of the branch. Processing in this section
of the program would then represent an unsuccessful attempt by a cus-
tomer to enter the bank. The effect of this event varies with the type
of business. For a bank, this may represent only an irate client
that, although sent away grumbling, will return later to complete his

5.8 Simulation Example 119

or her transaction. However, if this simulation were for a fast-food empo-
rium, such an event would most likely represent a lost sale.

Let’s add the processing for bank close and see how our algorithm
is progressing:

simulate(close, no-tellers, no-customers)

open = 1;
clock = 0;
while(1) {

if(clock >= close) / * Time to close */

/*
open = 0;

* New customer?
* /
if(open AND arrive0)

/ *
if(add-cust-qO != OK) {

* LOST SALE!
*/

1
/ *
* Process tellers h customers
* /
for(i = 0; i < no-tellers; i + +) {

/ *
* Is teller done with transaction?
* /
if (clock >= teller [il .trans)

/*
teller[il.trans = 0; / * Available * /

* Next Please?
* /
if (tellerCi1 .trans== 0 AND Queue NOT Empty) {

del-cust-q0; /* Get cust from Q * /
teller[il .custs += 1;
teller[il . trans=clock+ trans-duration;
accum0; / * Accumulate tots * /

1
1

120 5 Dynamic Data Structures

if (open == 0 AND Queue Ebpty)E
print execution summary;
return;

1
clock += CLK-INCR;

1
1

The basic algorithm is taking shape; now let’s take a closer look
at some of the supporting functions.

arrive (This function determines customer arrivals. It will take
two arguments: the close time and the number of expected customers.
Using a pseudo-random number generator, it will compute cus-
tomer arrivals. For our example, we will use a simple percent-
age calculation. Note, however, that this does not reflect reality
because customer traffic is typically not proportionally spaced
throughout the entire business day.

queue. It notes the time of arrival and calls duration() to
determine the transaction type.

This function will use a pseudo-random number gen-
erator to determine transaction type and duration. For our example,
we will assume four transaction types (numbered 1 through 4)
with a historical occurrence rate of 30%, SO%, 15%, and 5%, respec-
tively. The function returns the duration of the transaction in
clock ticks.

This routine accumulates event data for summary and
display.

We will not discuss the implementation of each of the aforemen-

add-cust-g() This routine adds an arriving customer to the

duration (

accum()

tioned functions. However, the complete C version of our simula-
tion appears in Listing 5.12.

that we can incorporate into a simulation program. Here are some
ways we can extend this model:

This simple example is by no means representative of the detail

Allow the number of tellers to vary, simulating lunch breaks,

Vary customer arrivals based on day of week, time of day, weather
personal time, and so on.

conditions, etc.

5.8 Simulation Example 121

#define CLK-INCR 1 / * # Minutes in each loop */
#define MAX-TELLERS 10 /* Max # of tellers * /

#define OK 0
#define QUEUE-FULL -1
#define QUEUE-EMPTY -2

struct tellers {
int custs; /* No. of custs served * /
int trans; / * Trans complete time * /

1 teller [MAX-TELLERS 1 ;

struct cust {
int time-in; / * Arrival time * /
int time-out; / * Departure time * /
int time-trans; / * Duration of trans * /
struct cust *next- / * Ptr to next struct */

1;

int open = 1;
int clock = 0;

simulate(int close, int :-_-tellers, int no-customers)
/ * close: what time to close? */
/* no-tellers: no of tellers for run * /
/* no-customers: no of customers for run */
{

int 1;
struct cust tmp;

while(1) {
if (clock >= close) / * Time to close */

open = 0;

if(open==l && arrive(close, no-customers)) {
/*
* New Cust
* /

if(add-cust-q(clock) == QUEUE-FULL) {
/ *
* Lost Sale
* /

1

1 continued on p. 122

122 5 Dynamic Data Structures

/* continued from p. 121
* Process tellers & customers
* /
for(i = 0; i < no-tellers; i++) {

/*
* Is teller's current trans done
* /
if (clock > = teller [il .trans) {

1
/*

teller[i] .trans = 0;

* Next Please?
* /

if(teller[il .trans==O && !queue-emgty()){
del-cust-q(&tmp 1;
teller[i] .custs += 1;
teller [il . trans=clock+tmg. time-trans;
accum(clock, tmp.time-in 1 ;

1

1

if(queue-empty() && (ogen==O)){
print-totals();
return(OK 1;

1

clock += CLK-INCR;
1

1

struct cust *head = NULL;
struct cust *tail = NULL;

int add-custg(int time-in) / * Add new cust to queue */
{

struct cust *new;

if((new = get-custO) == NULL
return(QUEUE-FULL 1 ; continued on p. 123

5.8 Simulation Example 123

new ->next = NULL;
new -> t ime-in = t ime-in;
new->time-trans = duration(;

continued from p. 122

if(tail == NULL) { /* First element * /
tail = new;
head = tail;

tail ->next = new;
tail = new;

1 else {

1

return(OK);
1

int del-cust-g(struct cust *dest)
{

struct cust *tmp;

tmg = head;
if(head == tail) /* removed last node * /

else
head = tail = NULL;

head = head ->next ;

dest ->time-in = tmg->time-in;
dest ->time-trans = tmg ->time-trans;
free(tmg);

return(OK) ;
1

int queue-emgtyO
{

if(head == NULL)
return(QUEUE-EMPTY);

return(OK 1;
1

struct cust *
get-cust ()
{

return((struct cust *)malloc(sizeof(struct cust)));

1 continued on p. 124

124 5 Dynamic Data Structures

int duration (1
{

float B;

continued from p. 123

if(p <= .30 / * 30% chance-type 1 */

else if(p > .30 && p <= .80) / * 50% chance-type 2 */

else if (p > .80 && B <= .95 1 /* 15% chance-type 3 * /

else / * 5% chance-type 4 * /

return(6 1;

return(9);

return(11 1 ;

return(16 1 ;
I

int arrive(int min, int cus 1

if((float)cus/(float)min > ((float)rand0/32767.0))
return(1);

return(0);

I

float t 0 t -cus t ;
float tot-wait ;

void accum(int now, int arrive)

{
tot-cust += 1.0;
tot-wait += ((float)now - (floatlarrive);

1

void print-totals0
{

print("%f customer%swaited an average of %.2f mins\n",
tot-cust, tot-cust > 1 ? "S " : " ",
tot-wait/tot-cust);

I

listing 5.12
Databank simulation.

~~ ~

5.9 Doubly Linked Lists 125

Add more transaction types and vary their durations.
Permit multiple transactions by a customer.
Make the program more efficient by placing all events in an event
queue. Currently, many iterations of the for loop in the function
simulate () may be wasted. That is, there may be many clock
ticks for which no event occurs. We could, instead, place all events
(arrivals, departures, open, close, transaction complete, etc.) on a
queue (sorted by time); then, during each iteration of the for loop,
the function would simply dequeue the next event and adjust
(advance) the clock accordingly.

There are several specialized languages specifically designed to sim-
plify the development of system simulations. T h e bibliography lists several
good texts on the subject.

5.9 DOUBLY LINKED LISTS

Thus far, we have been working with singly linked lists: Each node
contains only one pointer. Although an improvement over the two-array
implementation, singly linked lists-for some applications-can be
too restrictive. First, they can be traversed in only one direction. Second,
inserting or deleting a node requires access to the node’s predecessor.
(Note that this problem does not arise when using a restricted form of a
list-such as a stack or a queue-because nodes are referenced by
external pointers.)

We can overcome both of these problems through the use of doubly
linked lists. Each node in a doubly linked list has link fields that
point to both predecessor and successor elements. Along with simpli-
fying insertions and deletions, this enables a program to traverse
a list in either direction. Examples of doubly linked lists appear in
Figure 5.12.

T o simplify implementation, we will use a head node to maintain
the beginning of the list. Initially, both of its links will point to itself,
signifying an empty list (see Fig. 5.12a).

As depicted in Figure 5.13a, a list insertion now requires the
modification of four links:

the nexf pointer of the predecessor
the p m pointer of the successor
both the next and p m pointers of the new node.

126 5 Dynamic Data Structures

Figure 5.12
Doubly linked lists.

Null list
(a1

I Head node

One node list
(bl

a/ Head node

Three node list
(C)

In a list deletion (Fig. 5.13b), predecessor and successor nodes
are made to point to each other.

Functions that demonstrate insertions and deletions in a doubly
linked list appear in Listing 5.13. The decision to insert a new
element to the right of a given node was arbitrary; we could easily
modify dbl-insert () so that it inserts nodes on the left. In
addition, the deletion function, dbl-delete (1, no longer requires
the address of a predecessor node (this can be determined from
gtr ->grev); its one argument is a pointer to the node it will delete.

Note that there are incremental costs associated with the increased
flexibility provided by doubly linked lists. First, there is the addi-
tional space required by the second link pointer. Second, each list
operation requires additional CPU time to complete. This is attrib-
utable to the time required to manipulate the additional pointers.

~~

5.9 Doubly Linked Lists 127

struct dblpode C
i n t data;
s t ruc t db lpode *next;
s t r u c t dbl-node *prev;

I ;

/ *
* Inser t 'new' t o the r igh t of 'p t r '
* /

void dbl_inser t (struct dbl-node *ptr, struct dblpode *new)

c
struct dblpode *nxt;

nxt = p t r ->next;
new ->next = nxt ;
new->prev = Ptr ;
p t r ->next = new;
nxt->prev = new;

I

/ *
* D e l e t e 'gtr'
* /

void dbl-delete(struct dbl-node *ptr)

{
struct dbl-node *prev, *succ;

prev = ptr-->prev;
succ = ptr-->next;
prev->next = p t r -->next;
succ ->prev = g t r -->prev;

I

Listing 5.13
Doubly linked list functions.

128 5 Dynamic Data Structures

Head node

Successor

Predecessor

New node

insertion
(a)

Head node

Successor

Predecessor

Deletion
(bl

Deleted node

Figure 5.13
Doubly linked lists:
insertion and deletion.

5.10 GENERALIZED LISTS

The lists in all the previous examples were composed of only atomic
elements. The only attribute associated with a given node, E,,
was its location in the list: < E, < En+,. We will now extend
our definition of a list to include non-atomic elements. That is, individual
list elements may now be other lists. These are referred to asgeneralized
lists. For example, the third element of the list

L = (A, B, (C, 0, E)

is the list (C, D).
More formally, we can define a generalized list as

5.10 Generalized Lists 129

A = O The NULL (empty} list; it has a length of 0.
B x (a, b, c) A linear list of length three.
C = (e, (f, g}, h) A list of length three. Elements 1 and 3
D = ti, 8, C) A list of length three containing previou

(More on this later.)
F = (j, k, 0.1) A list of length four that has the NUU list as its third element
G = (m, 6) A recursive list of length two that generates the list (m, im, (m, ...

second element is a sub
.This is an example of

Figure 5.14
Examples of
generalized lists.

a finite sequence of elements €,, E2, . . . , E,, for n 2 0, that are either atoms
or lists. If a given element is not an atom, it is a list and is referred to as a sublist.

The list is written as before: L = El, . . . , E,,, with sublists
contained within enclosing parentheses. (By convention, we will use up-
percase letters to denote lists and sublists and use lowercase letters
to represent atomic elements.) T h e length of the list is n regardless
of the number of elements contained in any sublists. As you may have
noted, the previous definition is recursive and, as such, allows for lists
that contain sublists, which contain sublists, etc. This permits the
construction of lists of arbitrary size and complexity. Figure 5.14 provides
some examples.

Implementation

The node structure we have used throughout this chapter requires
two modifications to support generalized lists. First, because elements are
now expected to perform double duty, we need a type field to classify
a node as either an atom or a sublist. Thus, we will establish the
convention that a value of 1 in the type field indicates an atom, 0
denotes a sublist. Second, if the node is non-atomic, we will need a second
pointer, list, to point to the sublist. The new definitions are as
follows:

130 5 Dynamic Data Structures

Data fields Sublist
Next pointers
/ \

.c
(Null)

f
Type
field I 4

(Null)
.c

(Null)

$.
(Null)

$.
(Null)

Figure 5.15
Generalized list:
(A. (B, C), 0, €1.

#define TRUE 1
#define FALSE 0

#define T-LIST 0
#define T-ATOM 1

struct list {

short type;
char data;
struct list *next;
struct l ist * l i s t ;

€;

Figure 5.15 depicts the implementation of the list

L = (A, (B, 0, D, E)

using the new structure definition.
Note that the length of list L is 4 and that each element is linked

via its next field. The second element of L is a sublist-as indicated by
the value zero in the type field-and its l ist field points to the

A

B

C

0

F

5.10 Generalized Lists 131

(Null)

(Null)

(Null)

(Null)

(Null)

G

Figure 5.16
Internal list
representation.

sublist (B, C) . Additional examples of generalized lists appear in Figure
5.16, which depicts the internal representation for all the lists contained
in Figure 5.14.

At this point, we should make a few comments regarding the
definition and use of the list structure. T h e data field of a sublist node
remains unused, and this may seem wasteful. This will change, how-
ever, when we discuss reference counts later in this chapter. Also,

132 5 Dynamic Data Structures

having an explicit type field might be viewed as redundant: If a given
node’s list pointer is non-null, we could assume that the node is non-
atomic (i.e., a sublist). Nevertheless, we decided to sacrifice space for
the sake of pedagogical clarity.

Generalized list Functions

There are a number of utility functions that are useful when working
with generalized lists. The first, gencogy (1, creates a copy of a general-
ized list. For example, assuming the list oldlist, the statement

newlist = gencogy(oldlist 1;

will create an exact copy of oldlist and assign the address of the
newly created list to newlist.

Although the address fields will necessarily be unique, the list
created by gencogy() will posses the same structure and contain the
same data values as that of the original list. As presented in Listing
5.14, the function accomplishes this by

Creating a duplicate node for each node in the original list
Inserting each new node into the new list
Processing the next element of the old list (via a recursive call

If the node is of type T-LIST, calling itself recursively to process
using the next pointer)

the sublist.

As you may have noted, gencogy () cannot copy recursive lists (such
as example G in Figure 5.14). It will repeatedly process the re-
cursive portion until it is terminated by the operating system. Because
gencogy() processes each node exactly once, its complexity is O(n).

Another useful utility function, list-egual(), compares two
lists for equality. It assumes that its two arguments point to non-
recursive lists. As in the case of gencogy () , the term equaL will be
interpreted as functionally equal, meaning that both lists have the same
overall structure and identical data elements. list-equal () tra-
verses lists in much the same manner as gencogy () , comparing
elements as it proceeds. Its complexity is therefore equivalent to that
of gencogy() . Listing 5.15 contains the code.

Two other useful functions are first () and rest (1, which return

5.10 Generalized Lists 133

the first and all but the first elements of a generalized list. For
example, given the list L = ((A, B) , C, D) , the call

first(L);

would return the list

((A, B));

and the call

rest(L 1 ;

would return the list

(C , D)

These functions-which are equivalent to the LISP functions

struct l ist *
gencopy(struct list *gtr)

I
struct list *new;

i f (ptr == NULL)
return(NULL);

i f ((new = getnode()) == NULL)
return(NULL 1;

new->data = ptr->data;
new->type = ptr->type;
i f (new->type == T-LIST)

new ->next = gencopy (gtr ->next) ;
new->list = gencopy (ptr ->list ;

return(new 1;

listing 5.14
Copying a generalized list.

134 5 Dynamic Data Structures

if(11 == NULL && 12 == NULL)
return(TRUE 1;

return(FALSE 1;

I if(11 == NULL I 1 12 == NULL)

if(Il->type == 12->type) {
tmp = FALSE;
if(11->type == T-ATOM) {

if (11->data == 12->data
tmg = TRUE;

1 else
tmg = list-equal(11->list, l2-Blist 1;

if(tmg == TRUE)
return (list-equal (11 ->next, 12 ->next)) ;

I

I return(FALSE 1; I I

listing 5.15
Determining list equality.

car () and cdr ()-can be used to step through all elements of a list,
as in

r = worklist;
while((f = first(r)) != NULL) {

/ * Process 'f' * /

r = rest(r);

I

5.10 Generalized Lists 135

Note that the functions, as presented in Listing 5.16, are non-
destructive to their original lists. That is, the functions make a copy (using
gencogy(1) of the portion of the list they will return. For some
applications, it might be desirable for the functions to operate directly on
the original lists.

Shared Lists and Reference Counts

In the previous sections, we saw several examples of shared sublists
(refer to Fig. 5.13). This is a case in which two or more list members point
to the same sublist. For many applications, this could result in a
significant savings in memory.

Implementing this feature presents us with two problems, how-
ever. First, if two or more list elements are pointing to the same sublist,
insertions become difficult. For example, consider Figure 5.17. If we
wanted to insert an element before node n, of list S, we would be forced
to modify the pointers El and Ez. Unless the program maintains back-
ward references, the task of keeping all pointers current is tantamount
to impossible.

T h e second problem arises during a list deletion. Without addi-
tional reference information, it is impossible for us to determine whether
we can place a deleted node back on the available list. Specifically,
there might be other elements still pointing a t it.

We can solve the first problem by establishing a convention that
all lists must use head nodes, and that all referencing elements must point
at them, not at any individual nodes of a sublist. Thus, insertions and
deletions within a given sublist will not affect any referencing elements.
The additional memory requirement to implement this feature is mini-
mal: one additional node per list.

We can solve the second problem through the use of reference
counts. Specifically, each time a new list element points to a sublist, we
increment the sublist’s reference count. Conversely, we decrement

....
Figure 5.17
Multiple references.

136

I

5 Dynamic Data Structures

s t ruc t l ist *
first(s t ruc t l i s t *lp 1
{

s t ruc t l ist *new;

new = getnode();
new->next = NULL;
new->data = lp->data;
new->type = lp->type;
i f (new->type == T-LIST 1

new->list = gencopy(lg -> l i s t 1 ;

re turn(new->list 1 ;
if (new->type == T-LIST && Ip->neXt == NULL 1

re turn(new 1;
1

s t ruc t l ist *
rest(s t r u c t list *lp 1
{

s t ruc t l ist *new;

l p = lp->next; /* point t o rest of list */
new = getnode();
new->data = lp->data;
new->type = lp->type;
new->list = gencopy(lp->l i s t 1;
new->next = gencopy(lp->next 1 ;

re turn(new 1 ;
1

listing 5.16
Functions first () and rest () .

void gen-delete(struct list *ptr)

{
struct list *tmp;

if(ptr->type != T-LIST) / * Must be a list ptr * /
return;

ptr->data -= 1; /* Decrement count * /

if(ptr->data == 0) { / * Delete entire list * /
for (tmp = ptr ->next ; tmp ! = NULL; tmp = tmp ->next)
{

/*
* Step through each node
* /
if(tmp->type = = T-LIST)

gen-delete(tmp 1;
/* Delete a sublist * /

else
/ * Return node to free list */
gen-free(tmp);

1
gen-free (ptr 1 ;

1
1

listing 5.17
Generalized list deletion function.

the count each time we remove a reference. Thus, during a dele-
tion, if the reference count for some sublist becomes zero, we can
place all of its nodes back on the available list. Note that this is a recursive
process in that a deleted list might point to other lists. Also observe
that there is no way to determine when a self-referencing list (example
G, Fig. 5.14) may be deleted; it will always have a reference count of
at least 1.

Listing 5.17 presents the recursive function gen-delete (1,
which deletes multiply referenced lists. It assumes the function
gen-f ree () , which places a deleted node back on the available list.
T h e function begins by ensuring that its one argument is of type
T-LIST. If it is, gen-delete () decrements the reference count. If

137

138 5 Dynamic Data Structures

the count falls to zero, the entire list is subject to deletion. T o
accomplish this, gen-free scans every element of the list. It places
each node of type T-ATOM back on the free list, and calls itself
recursively for each node node of type T-LIST.

I ’ Dynamic data structures simplify some of the problems associated
with static storage allocation: difficult insertions and deletions in
lists, and the inability to respond to unanticipated demand.

We can use pointers to reference data objects efficiently. Pointers have
all the attributes that we normally associate with any variable; the sole
exception is that the values pointers contain are addresses. Pointers
also help us overcome the call-by-value restrictions associated with C
function calls.

Using pointers, we can simplify insertions and deletions in lists. We
accomplish this by adding link fields into our data structures
(nodes). The cost for this added capability is the additional storage
and processing required for the link fields.

This technique has another benefit: We can allocate storage for nodes
dynamically. That is, we can create new storage on the fly. In C,
the routines that manage dynamic memory management are mal-
loco and free().

1. Implement a stack using pointers.

2. Implement a queue using pointers.

3. Implement a circular queue using pointers. Is this practical? Ex-
plain your answer.

4. Write a program that sorts a random list of names contained in a
file. (Hknt: Use a linked list with a character array as your
data field.)

5. Discuss the positive and negative aspects of both static and dy-
namic data structures.

6. Extend the functions insert2 () and delete2 () to allow them
to process list nodes of different types.

SUMMARY

E X E R C I S E S

5.10 Generalized Lists 139

7. Explain why holes in lists (array implementation) are problematic.
Design a method to overcome the problem.

8. Rewrite the calculator program of Chapter 2 using linked lists.

9. What would be the result of moving the call to printpode ()
after the recursive call in the function recv-trav () of Listing 5.5?

10. Suggest other ways in which the functions insert2 (1 and de-
lete2 () (Listing 5.3) can determine that operations are to
be performed on the first element of the list. Implement your
suggestions.

11. Implement the simulation program of Section 5.8. Add as many
of the suggested extensions as you can.

12. As you may recall from Chapter 3, a deque, or double-ended queue,
is a linear list that permits insertions and deletions at either
end. Write a set of routines to implement a deque using a linked
list and dynamic memory allocation.

13. Given the following code:

struct node
int data;
struct node *next;

1;

void zaptest ()

struct node *head, al, a2, a3, a4;

head = &al;
al.data = 1;
a2.data = 2;
a3.data = 3;
a4.data = 4;
(void) zap (&head, head) ;

1

140 5 Dynamic Data Structures

determine the result after the function call:

(void) zap (&head, head) ;

where zap () is defined as

struct node *zap(struct node **head,

I
struct node *ptr)

struct node *tmp;

if (ptr- >next == NULL 1

else C
*head = ptr;

tmp = zap(head, ptr->next);

tmp->next = ptr;
ptr ->next = NULL;

1

return(ptr 1;

6.1 BASIC PRINCIPLES

In this chapter, we focus our attention on an important data structure
found in computer science: the tree. Conceptually, a tree is an object that
begins with a trunk (or root) and extends into several branches (edges),
each of which may extend into other branches until finally termi-
nating at a leaf.

Trees are common structures, and examples can be found in every-
day life. Most people, for example, refer to their lineage as their
family tree. As another example, Figure 6.1 shows an organization
chart for a typical corporation. Note that for convenience, we draw
the root of the tree at the top of the diagram and the leaves at the
bottom.

In computer science, we define a tree as a set of nodes and edges.
A node is an item of information that resides in the tree. An edge
is an ordered pair of nodes (u, o), and sequence of edges is called apath.

In addition, trees have the following properties:

There is one node designated as the root of the tree.

141

C H A P T E R 6
tREES

142 6 Trees

Root

Figure 6.1
Organization chart.

Level

1

2

3

4

Leaf nodes-/-

* All nodes-except for the root-have only one entering edge (the

There exists a unique path from the root node to all other nodes

If there exists a path (a, b), then b is called a childof a and is the

root node has none).

in the tree.

root node of a subtree.

Refer to Figure 6.1 where the element labeled President is the
root node of the tree. The entries labeled Vice President are root
nodes of subtrees, and the boxes labeled Programmer are examples
of leaf nodes. Note that because each node has only one entering edge,
cross references within the tree cannot occur.

We can cite many examples in which data found in the real world
is tree structured. Because they can serve as a basis for modeling
many types of problems, trees have become an important topic for

~~

6.1 Basic Principles 143

Figure 6.2
Example tree.

study in computer science. As we shall see, we can use trees to search,
sort, and prioritize data.

Definitions

Before we can continue with our discussion of trees, we must define
a number of basic terms. (All examples refer to Fig. 6.2.)

T h e term node-used in previous chapters-will continue to de-
note an item of information. Terminal nodes are the leaf nodes of
a tree (J, K , L, M , N). We refer to all other (internal) nodes (A, B, C,
D, E) as non-terminal.

For a given node (e.g., B) , the root nodes of its subtrees (D, E)
are its children. Extending the analogy, B is considered the parent,
and the children-with respect to each other-are siblings. Generally
speaking, a node may have an infinite number of children; in practice,
however, we usually limit their number (more on this later).

We define the degrze of a node as the number of subtrees (children)
it has. For example, node A has a degree of 2, node C a degree of
4, and node J a degree of 0. All nodes with a degree of 0 are terminal;
nodes with a degree greater than zero are non-terminal.

T h e tier on which a node resides is its level. By definition, the
root node (A) is on level 1. Its children, nodes B and C, are on
level 2, nodes D through Z are on level 3, and so on.

T h e height of a tree is defined as the number of edges in a path

144 6 Trees

originating at the root and terminating at the most distant leaf node; the
height of a tree with only one node (the root) is 0. By extension, the
height of any node in a tree is the length of the longest path from
that node to a leaf node. The depth of a node is the number of edges
on the path from the root to that node.

A forest is a set of zero or more disjoint trees. For example, if we
were to remove the root node from a tree, the result would be a forest.

We can view a tree as a special form of a list. For example, refer
to the tree depicted in Figure 6.2. We could use list notation to represent
the tree as follows:

(A, (B, C, (D, (J, K) , E , (L, M, N)) , C, (F, G, H, 0))
We represent each subtree as a sublist. We begin with the list (A) that
represents the root node of the tree. When we add a sublist for A's two
children, the list becomes (A (B, 6')). We then add another sublist for
nodes D and E to yield the list (A (B, (D, E) , k)). Adding the
children of D, we get (A, (B, D, (J, K) , E) , C)). We continue in this
manner until we have added all tree nodes into the list. This type
of representation is flexible in that it allows us to maintain varying
numbers of children for each parent. However, it does have one
drawback: Children are not directly accessible from their parents. That
is, we must perform a linear search through a sublist. For most computer
applications, the additional search time is undesirable. However, if we
restrict the number of children nodes may have, we can implement trees
more efficiently. The next section introduces the first of these types
of trees, called the binary tree.

6.2 BINARY TREES

Binary trees are a restricted form of a tree. Each node-including the
root-may have a maximum of two children. Figure 6.3 provides
an example.

Formally, we define a binary tree as

a finite-possibly empty-set of nodes, one of which is designated as the root
The root node may have at most two subtrees, each of which is also a binary tree. The
two subtrees of a given node are ordered and we refer to them as the left child
and the right child, respectively.

6.2 Binary Trees

Figure 6.3
Binary tree.

Based on the preceding definition, nodes in a binary tree may
have zero, one, or two children. For nodes with only one subtree, the
definition does not specify which of the two subtrees (i.e., left or right)
must be used. As a result, the list depicted in Figure 6.4a is, in fact, a
binary tree; we refer to it as a skmea! tree. Binary trees may be skewed
either left or right, making them unique. For example, the two
trees presented in Figure 6.4b are not equal.

f
Figure 6.4 Left skewed tree
Skewed binary trees. (a1

Two skewed trees
(bl

146 6 Trees

_ _ ~

Figure 6.5
Full binary tree.

Binary Tree Definitions

Restricting the number of children in a binary tree permits us to define
several formulas. The maximum number of nodes on a given level i is
Z i - ' , for i 2 1. (The root node, as you may recall, is on level 1.) T h e
maximum number of nodes for an entire binary tree of depth k is
Z R - 1, for R 2 1. We can compute the depth of a binary tree with n
nodes as

Llog, nl + 1

A full binary tree (of depth R) is a binary tree with Z R - 1 nodes.
As suggested earlier, this is the maximum number of nodes a binary tree
may contain. Figure 6.5 presents an example of a full binary tree.

Although we did not mention it at the time, the tree presented
in Figure 6.3 is also a special form of a binary tree. We can sequentially
number the nodes of this tree from left to right, level 1 to n, to produce
the tree depicted in Figure 6.6. The result is called a complete binary tree.
A binary tree with n nodes and R levels is complete if, and only if, its
nodes correspond to all the nodes numbered in the same manner
for a full binary tree of equal depth. However, as illustrated in this
example, a complete tree is not necessarily a full tree; the last
level may remain incomplete.

Binary Tree Implementation

Keeping in mind the preceding definition of a complete tree, the most
direct approach to implementing a binary tree is using an array.
Each numbered node would correspond to an array index. Figure 6.7

6.2 Binary Trees 147

Figure 6.6
Complete binary tree.

Figure 6.7

depicts such an implementation for the tree contained in Figure
6.5.

An array implementation allows us to move through the tree using
simple calculations. For a given node i, its left child is located in slot 2i,
for 2i 5 n; its right child is located in slot 2i + 1, for 2i 5 n. A
computation that yields a value > n means that i has no child in that
position. T h e parent of i can be found at Li + 21, for i > 1. (Obviously,
when i = 1, we are positioned at the root node and there is no parent.)

For a full or complete binary tree, this implementation might
seem ideal because little, if any, space is wasted. However, consider
the tree presented in Figure 6.8a, and its corresponding array represen-
tation in Figure 6.8b. Notice that with a skewed or sparse tree, a
large percentage of the array remains unused. Moreover, this imple-
mentation suffers from the same deficiencies as a sequential list representa-
tion: We might need to move a large number of nodes in order to
insert or delete elements within the body of the tree.

In a similar manner to lists, these limitations can be overcome
using a linked representation. We can represent each node of a
binary tree using a C structure as follows:

148 6 Trees

Figure 6.8
Array representation
of a skewed binary
tree.

Skewed tree
(a)

Array implementation
(b)

struct btpode {

int data;
struct btpode *lchild;
struct btpode *rchild;

I ;

struct bt-node *root = NULL;

A simple integer variable (data) will serve as our data field. The
members, lchild and rchild, point to the two subtrees. (We will
assume that the value NULL indicates the absence of a subtree.) The
variable, root, points at the root node of the tree. Initially, its
value is set to NULL to signify an empty tree. We will use these
definitions throughout the following discussions.

Binary Tree Traversal

The versatility of the binary tree may be best demonstrated by way
of an example. Suppose that after having constructed a tree similar to the
one in Figure 6.6, we wish to process (e.g., print) the data values stored
within it. That is, we wish to move through the tree, visiting each
node exactly once. We classify this type of algorithm as a lravenal.

As it stands, however, this notion is too general and must be

6.2 Binary Trees 149

further defined. Consider that when positioned at any given node,
a traversal function may

Continue down the left subtree, or
Continue down the right subtree, or
Process (i.e., visit) the datum.

To simplify matters, we will adopt the convention that we always
traverse che left subtree before the right subtree. However, that
still leaves open the question of when we should process the data
item. Our choices are as follows:

Visit the node before moving down the left subtree.
Visit the node after traversing the left subtree but before traversing

Visit the node after traversing both subtrees.
the right subtree.

All three of these traversal methods are equally important, and
we refer to them by the names pmora'er, inorder, and postorder, respectively.

lnorder Traversal

Let's begin by describing inorder traversal (sometimes referred to as
symmetric order). Informally, an inorder traversal requires that we

1. Move down the tree as far left as possible.
2. Visit the current node.
3. Back up one node in the tree and visit it.
4. Move down the right subtree of the node visited in step 3 if it

has one and it has not been visited previously; otherwise, back up
one node.

5. Repeat steps 1 through 4 until all nodes have been processed.

This is illustrated by the procedure inorder (1 presented in
Listing 6.1.

T h e function works as follows: It recursively moves down the left
subtree until it finds itself positioned on a leaf node; it prints the
value of that node and then attempts to move down the right subtree;
it then returns to the previous level and repeats the process. If called to
process the tree depicted in Figure 6.6, inorder (1 would generate
the following output:

150 6 Trees

listing 6.1
lnorder traversal.

listing 6.2
Preorder traversal.

void inorder(struct bt-node *node)

c
i f (node != NULL) {

inorder (node->lchild) ;

print-node(node->data); /* The V i s i t * /
inorder (node ->rchild) ;

1
1

Take the time to convince yourself that the output is, indeed, correct.

Preorder Traversal

In a preorder traversal, we visit the data item before traversing the
left subtree. The function greorder (1 , presented in Listing 6.2, pro-
vides an example. Note that the function calls g r i n t g o d e () before
it invokes either of its recursive calls. Again, assuming the tree in Figure
6.6 as input, the output produced by preorder () is

1, 2, 4, 8, 9, 5, 10, 3, 6, 7

void preorder(struct bt-node *node)

c
i f (node != NULL) {

g r i n t g o d e (node->data) ; / * The V i s i t
preorder (node ->lchi ld) ;

greorder (node ->rchild) ;

1
1

6.2 Binary Trees 151

void gostorder(struct btpode *node)

{
if(node != NULL) {

gostorder(node->lchild) ;

gostorder (node->rchild) ;

listing 6.3
Postorder traversal.

Postorder Traversal

A postorder traversal positions the visit after the two recursive calls.
T h e code for the function, gostorder () , appears in Listing 6.3.
A postorder traversal of the tree in Figure 6.6 produces the follow-
ing output:

8, 9 , 4, 10, 5, 2, 6 , 7 , 3, 1

Breadth First Traversals

T h e three traversal methods we just discussed are similar in that they
process all of a node’s descendents before processing any of its
siblings. As a result, they are classified as depth fint searches. Another
class of tree traversal is a breadthfirst search. In a breadth first search, we
processes nodes by levels, left to right within a level. For example,
consider the function bt-bf s () as it appears in Listing 6.4. It uses a
queue to ensure that nodes are processed in the correct order.

bt-bf s () begins by placing the root node on the queue. During
each iteration of its while loop, the function removes the next
node from the queue, processes it, and then enqueues the node’s
children (if any). Processing terminates when the queue becomes
empty. T h e function assumes the routines addq (1 and delg () to
manage the queue (please refer back to Chapter 5).

When processing the tree depicted in Figure 6.6, bt-bf s () pro-
duces the following output:

152 6 Trees

listing 6.4
Breadth first traversal.

void bt-bfe(etruct bt-node *tree)

{
etruct bt-node *t;

addq(tree 1;
while((t = delq0) I = NULL)

I
print-node (t ->data 1 ; / * The vieit * /
if(t->lchild I = NULL)

addq(t ->lchild 1 ;
if (t->rchild I = NULL)

addq(t ->rchild 1 ;
1

1

1, 2, 3 , 4, 5 , 6 , 7, 8, 9 , 10

Binary Tree Insertion

Most programs that employ binary trees usually proceed in two phases:
Phase one constructs the tree; phase two traverses it. We have
already described several traversal methods. Now we need to discuss
the construction of binary trees. Specifically, we need to develop
an insmion algorithm.

Generally speaking, there are two places where binary tree inser-
tions may occur: at terminal (leaf) or non-terminal nodes. T o add a non-
terminal node, the insertion function requires three pieces of informa-
tion: a pointer to the new node, a pointer to the node that will
become the parent of the new node, and a flag variable indicating
whether the new node should be inserted as the left or right child of its
parent. Figure 6.9 provides an example.

Tree insertions more commonly occur at leaf nodes. For example,
consider the problem of reading a list of numbers and printing
them out in ascending order. There are many ways to construct a
solution for this problem. One of the simplest uses a special form

8.2 Binary Trees 153

Insert(N, B, left) AY
Before

(a1
After
(bl

Figure 6.9
Binary tree insertion.

of binary tree called an oniewra’binaly me (OBT). T h e driving section
of the program can be described by the following pseudo-code:

set-up-chores();
while(more input 1
do

done
print-ascending())

As its name implies, an ordered binary tree places restrictions on
insertions. Specifically, an OBT has the property that, far any given node
n, the data values contained in the left subtree of n are less than n,
and the data values contained in the right subtree of n are greater
than n.

Thus, all OBT insertions must begin with a traversal. With the
arrival of each new data element, the insertion routine compares the new

bt-insert (new-item ; /* Insert new node * /

154 6 Trees

5,3,7,2,4,6,9,1,8,10

Input
(a)

Resultant tree Figure 6.10
Ordered binary tree
insertion.

data value with that of existing nodes. It continues to move down
either the left or right subtree of each successive node predicated
on the results of each comparison. When it finally encounters a node
that is either a leaf or a non-terminal node that has no subtree in
the indicated direction, the function inserts the new element as a child
of that node. Figure 6.10 contains an example of this processing.
It shows a sample input stream and its resultant OBT.

The function bt-insert (), presented in Listing 6.5, performs
binary tree insertions as just described. The initial if statement
checks for an empty tree and inserts the first node. Otherwise, the
function iteratively steps through the tree, moving either left or right based
on the results of each comparison. When it encounters a leaf node,
bt-insert () allocates and inserts a new node. The last if statement
determines which of the parent’s pointers is assigned the new
node. The ancillary function, get-new-bt () , allocates memory for
each new element.

The question that now arises is, How should we process duplicate
data values? As you may have noticed, bt-insert () currently handles

6.2 Binary Trees 155

struct bt-node *root = NULL;

void bt-insert(int new)
{

struct bt-node *p, *g;

if(root == NULL /* NULL Tree * /
root = get-new-bt (1 ;
root->data = new;
return;

1

p = root;
while(p != NULL) {

U = B;
if(new < p->data 1

p = p->lchild;
else

p = p->rchild;
1

/ * Location for insertion * /

/ *
* *g* points to parent of new node
* /

p = get-new-bt0;
p->data = new;
if(new < g->data)

g->lchild = p;
else

g->rchild = p;
1

struct bt-node *get-new-bt()
c

struct bt-node *newnode;

newnode=(struct bt-node *)malloc(sizeof(struct bt-node));
newnode->lchild = NULL;
newnode ->rchild = NULL;

return(newnode);
1

listing 6.5
Binary tree insertion.

156 6 Trees

the problem by default. That is, the function uses a less-than test to
initiate a move down the left subtree; consequently, it inserts
duplicate nodes along the right subtree.

For applications that anticipate only a small number of duplicate
values, this is an acceptable solution. However, this implementa-
tion is wasteful for applications that expect many duplicate records.
A better solution is to add a count field to the node structure. Upon
recognizing a duplicate value, the insertion routine can then just incre-
ment the counter rather than adding a node to the tree.

Adding a count field to the node structure implies two coding
modifications. First, the insertion algorithm must include an ex-
plicit test for equality. Second (and this can only be stated in general
terms), traversal routines must take this additional field into ac-
count when processing the completed tree. For example, assume that
after constructing a tree, a program must print all nodes in ascending
order. If aN elements must appear in the output, the display function
must emit the proper number of duplicate elements based on the
values contained in the count fields.

Concluding Remarks

If you consider the structure of an ordered binary tree you will observe
that, in general, we can locate a particular value (node) more
quickly than we can with a linked (linear) list. This is because with
each comparison, we eliminate the need to search half of the remaining
subtree. We lose this advantage if the tree should become skewed.

You should also note that the OTB insertion function is input
sensitive. That is, the order in which input is presented to the
routine will affect the resultant tree's shape. Specifically, a sorted input
stream will create a tree that resembles a linear list. Obviously,
this will directly affect the performance of searching algorithms. Chap-
ters 8 and 9 will elaborate on this discussion.

Binary Tree Deletion

Most applications using binary trees do not require a deletion function.
It is more often the case that trees continue to grow rather than shrink.
(The 'typical scenario is that programs construct trees and then process

6.2 Binary Trees 157

Figure 6.11
Binary tree deletion.

Before
(a)

After
(b)

the data contained within them.) Nevertheless, there are some applications
that require a deletion capability.

Broadly speaking, we can divide node deletion in a binary tree
into two types: the removal of terminal nodes and the removal of non-
terminal nodes. Deleting a leaf node is simple and is analogous to a
list deletion: Assign the value NULL to the appropriate pointer in the
parent node and return the deleted node to the available list.

However, as depicted in Figure 6.11a, deleting a non-terminal
node is more problematic. If we remove node S from the tree, we
will need to reattach two nodes (T and U). However, there is only
one pointer available (the right child of R). Therefore, one of node 8 ’ s
children must become the parent of the other (see Fig. 6.11b). Even
if the left child of R was available, we could not just mechanically
assign to it one o f t t e unattached nodes. As with the case of an ordered
tree, there might be an explicit relationship between a parent and
its subtrees. For example, consider that if all right subtrees are to hold
data values greater than that of their parents, inserting either Tor
U as the left child of R would invalidate that relationship.

158 6 Trees

SAVE

Figure 6.12
Deletion example.

Using Figure 6.12 as a model, we can divide binary tree deletion
into several distinct cases, as follows. Figure 6.13 depicts the results of
each example.

1. If D is a leaf node, then P->rchild = NULL.
2. If the left child of D is NULL, then P->rchild = R.
3. If the right child of D is NULL, then P->rchild = L.
4. If the right child of node L is NULL (node LR in the example),

then L can become the right child of P, and R can become
the right child of L. It is important to note that this processing
maintains the ordered property of the tree.

5. If the left child of node R is NULL (node RL in the example),
then R can become the right child of P, and L can become the left
child of R. As in case 4, this maintains the ordered relationship.

6. If none of the previous cases exist, set the right child of P to
either L or R, and then reinsert the other subtree.

7. The root node of the tree is to be deleted. Perform the same
processing as in case 6 but modify the root pointer
accordingly.

T h e code for the function bt-delete () appears in Listing 6.6.
The function deletes nodes, case by case, as just described. It requires
three arguments: pointers to both the node that will be deleted and

6.2 Binary Trees 1 59

(Null)
Case 1

... A
Case 2

Case 3

Case 4

Re-insert

. . . .
Case 5 Cases 6 and 7

Figure 6.13
Deletion results.

160 6 Trees

#define OK 0
#define ERROR -1
#define LCHILD 1
#define RCHILD 2

int bt-delete(struct btpode *pred,
struct bt-node *node, int stat)

struct bt-node *child;

if(node == NULL 1
return(ERROR 1 ;

if(pred == NULL I {
root = node ->rchild;
child = node->lchil&
bt-freenode(node 1;
return(bt_insert2(child));

1

/ * 7 */

if(node->lchild == NULL && node->rchild == NULL) / * 1 * /

else if(node->lchild == NULL) / * 2 */

else if (node->rchild == NULL 1 / * 3 */

else if(node->lchild-%?child == NULL) I / * 4 * /

child = NULL;

child = node->rchild#

child = node ->lchild;

child = node->lchildr
node ->lchild->rchild = node ->rchild;

child = node ->rchild;
node ->rchild ->lchild = node ->lchild;

child = node ->rchild;
if(stat == LCHILD)

else

bt-freenode(node);
return(bt_ineert2(node->lchild) 1;

} else if(node->rchild->lchild = = NULL I { / * 5 */

1 else I / * 6 */

pred->lchild = node ->rchild;

pred->rchild = node ->rchild;

1 continued on p . 161

6.3 Balanced Trees 161

/* continued from p. I60

* Adjust predecessor's pointers
* /

if(stat == LCHILD)

else

bt-freenode(node);

pred->lchild = child]

pred->rchild = child;

return(OK);
1

listing 6.6
Binary tree deletion.

its parent, and a status flag indicating whether the deleted node
is the left or right child of its parent.

Note than the function bt-ineert20, used to reinsert a
subtree, is different from its predecessor bt-insert (1. This
version takes as an argument a pointer to a node rather than a data
value. We leave its implementation as an exercise for the reader.

Utility Functions
As with linked lists, there are several useful utility functions for proc-
essing binary trees. T h e function bt-copy () , presented in List-
ing 6.7, generates a copy of a binary tree. Note that the function is
really just a modification of a preorder traversal.

T h e function bt-equal() (Listing 6.8) determines the equiva-
lence of its two tree arguments. Defined recursively, the function descends
both trees until it either encounters a difference or determines that
the two trees are equivalent.

6.3 BALANCED TREES

Let's continue our discussion of ordered binary trees (OBTs). OBTs
are fairly easy to implement. However, they can have one drawback a
worst-case running time of O(n). As depicted in Figure 6.14, even an

162 6 Trees

struct bt-node *
bt-cogy(struct bt-node *treegtr)

{
struct bt-node *new;

if(treegtr == NULL) / * The 'out' */
return(NULL);

new = get-new-bt0;
new ->data = treegtr ->data;
new->lchild = bt-cogy(treegtr->lchild 1 ;
new->rchild = bt-copy(treegtr->rchild) ;

return(new 1;
1

Listing 6.7
Copying a binary tree.

ordered binary tree can degrade into a linear list if the insertion routine
receives elements in ascending (or nearly ascending) order.

Several methods have been developed to prevent trees from be-
coming skewed. Some of the most powerful are so-called AVL trees. (Their
name is derived from the scientists who first studied them: Adel'son-
Vel'skii and Landis.)

Before we can understand AVL trees, we must define what we
mean by &a/anced. Let's begin by defining he&& for some node n as

0, if n has no left child
'@-h'ght(n) = 1 + height(/@ - chi/d(n)) for all other nodes

0, if n has no right child

{
I -

right - height(n) = 1 + he&t(right chi/&)) for all other nodes

As you may recall, the height of any node in a tree is the length
of the longest path from that node to a leaf node. Based on the
preceding definitions, a leaf node has right-height and ldt-height both
equal to 0.

Now let's define the balance of some node n as

&a/ance(n) = right-height(n) - /&-height(n)

6.3 Balanced Trees 163

#define TRUE 1
#define FALSE 0

i n t
bt-egual(struct btpode *treel, struct bt-node *tree2)

c
i n t res;

i f (treel == NULL && tree2 == NULL
return(TRUE);

res = FALSE;
i f (treel->data == tree2 ->data) {

res = bt-egual(treel ->lchild, tree2 ->lchild) ;
i f (re8 == TRUE)

res = bt-equal(treel->rchild, tree2 ->rchild) ;
1

return(res 1;
1

listing 6.8
Binary tree equivalence.

Thus, a node’s balance indicates the relative height of its right
subtree as compared to its left. If the balance is positive, the right subtree
has greater depth than the left; if the balance is negative, the reverse
is true.

A binary tree is an AVL tree if, and only if, every node in the
tree has a balance of - 1, 0, or + 1. Figure 6.15 provides some
examples of both AVL and non-AVL trees.

AVL trees have a number of attributes that make them well suited
for searching applications. First, an AVL tree with n nodes has
height O(log, n). Second, we can insert and delete nodes in AVL trees
with an efficiency of O(log2 n), while still preserving the AVL
properties of the tree. T h e sections that follow discuss the implementa-
tion of AVL trees.

164 6 Trees

Figure 6.14 Order of elements
Ordered binary tree. (b)

Resultant tree
(b)

AVL Tree Insertion

Because an AVL tree is essentially a binary tree, we can reuse our
node structure. We will, however, need to add a field to store balances.
Because there are only three balance values, we only need two bits
of storage for this data element. However, for pedagogical clarity, we will
implement this field as a full int. Listing 6.9 contains the new AVL
node structure.

Conceptually, we insert new nodes into an AVL tree as follows:

1. Employ the same algorithm we used to insert a node into an
ordered binary tree. That is, we trace a path from the root
node to a leaf node (where we will perform the insertion).

2. Insert the new node.
3. Retrace the path back up to the root node, adjusting balances

along the way.
4. If a node’s balance should become 22, readjust the node’s subtrees

so that its balance is in line with AVL requirements (i.e., 2 1).

Figure 6.15
Examples of AVL and
non-AVL trees.

'

listing 6.9
AVL node structure.

6.3 Balanced Trees 165

struct avl-node {

int bal ;
int data;
struct avl-node *lchild;
struct avl-node *rchild;

I ;

0 8 0

(bl
AVL trees

0

0

No n - AV L trees

0

(C)

0

0 ii.

166 6 Trees

Figure 6.16
AVL insertion-
case 1.

New node

Before
(a)

After
(b)

Obviously, step 4 is the most difficult. Specifically, we need to
decide how we can readjust a node’s descendents such that all balances
are in accord with AVL requirements. The problem decomposes into
four distinct cases (and their mirror images).

Case 1 A node becomes balanced as a result of an insertion. As
depicted in Figure 6.16, the balance of node t decreases from 1
to 0 as a result of the insertion of node n into the tree.

There is no reason to readjust node t’s descendents be-
cause the overall height of the tree remains unchanged.

A node becomes unbalanced by only f l . As depicted in
Figure 6.17, the balance of node t changes from 0 to + 1
as a result of the insertion.

we must adjust the balance of node T as well.

In this case, a node becomes unbalanced by 5 2 because the
right subtree of its right child increases in height. For example,
when we insert a new element into the tree depicted in
Figure 6.18a, we generate the tree contained in Figure 6.18b.
Notice how the balance for node a increases from + 1 to + 2.

Case 2

Note that the height of the tree increases. As a result,

Case 3

6.3 Balanced Trees 167

Figure 6.17
AVL insertion-
case 2.

Before
(a)

After
(b)

Unfortunately, we cannot readjust the balance by simply
interchanging nodes b and e. This solution would undermine the
ordered property of the tree.

However, as illustrated in Figure 6.18c, we can make a
the left child of c and reposition the left child of c (node
d) as the right child of the newly positioned node a. We call
this type of transformation a single lejit rotation.

There are several important points that we should ad-
dress regarding the transformation process:

It preserves the ordered property of the tree.
It restores all nodes to appropriate AVL balances.
It preserves the inorder traversal of the tree. That is, an
inorder traversal will access nodes in the same order
after the transformation (as it would have prior to the
reordering).
We only need to modify three pointers to accomplish
the rebalancing.

One final note: There is a mirror-image case in which a
node becomes unbalanced by - 2 because the left subtree of its
left child increases in height. We rebalance the tree in this
case with an equivalent single right rotation.

A node becomes unbalanced by 2 2 because the right subtree
of its left child increases in height. As illustrated in Figures 6.19a
and 6.19b, when we insert the new node n as the right child

Case 4

168 6 Trees

Figure 6.18
AVL insertion-
case 3.

A
N

of node d, the balance of node a increases to +2.
This case really has two subcases. In the first, the new

node becomes the right child of d. This is the case we will
describe. In the other, the new node becomes the left child
of d. For both subcases, we undertake identical steps to
rebalance the tree. The only difference is that the resulting
node balances will differ slightly.

T o rebalance the tree, we perform with a single right
rotation at node c (Fig. 6.19c), followed by a single left rotation
at node d (Fig. 6.19d). Because we need two rotations, we
refer to this transformation as a double rotation or an RL
rotation (due to the rotation order).

require an LR rotation to rebalance the tree.
As with case 3, there is a mirror-image case. This would

Figure 6.19
AVL insertion-
case 4.

6.3 Balanced Trees 1 69

6 b e

Once the insertion process is understood, it is a straightforward
task to develop the actual algorithm. Listing 6.10 contains the code for a
C implementation of an AVL insertion algorithm. Contained in the
listing are routines to right balance and left rotate. T h e listing lacks the
complementary routines that left balance and right rotate; we leave
the implementation of these functions as exercise for the reader.

170 6 Trees

struct avl-node {

int bal ;
int data;
struct avl-node *lchild;
struct avl-node *rchild;

1;

struct avl-node *root = NULL;

#define NO 0
#define YES 1

#define BAL 0
#define LHIGH -1
#define RHIGH 1

struct avl-node *
avl-insert(struct avl-node *root, struct avl-node *new,

int *chg-hgt

if(root == NULL) {

root = new;
root->bal = BAL;
root->lchild = NULL;
root->rchild = NULL;
*chg-hgt = YES;

} else if (new->data < root->data) { / * Insert Left * /
root ->lchild = avl-insert (root ->lchild, new, chg-hgt) ;
if(*chg-hgt) I / * LCHILD grew *1

if(root->bal == LHIGH) / * Node's now 2 High * /
root = left-bal(root, chg-hgt);

/ * Node is now LHIGH * / else if (root->bal == BAL)

root->bal = LHIGH;
/ * Was RHIGH now BAL */ else {

root->bal = BAL;
*chg-hgt = NO;

1
1 continued on p . I71

6.3 Balanced Trees 171

continued from p. I70
1 else { / * Insert Right * /

root ->rchild = avl-insert (root ->rchild, new, chg-hgt) ;

if(*chg-hgt) { / * RCHILD grew *

root->bal = BAL;
*chg-hgt = NO;

root->bal = LHIGH;

root = rightpal(root, chg-hgt);

if (root->bal == LHIGH) { / * Was LHIGH now BAL * /

} else if(root->bal == EAL) / * Node's now RHIGH * /

else / * Node's now 2 High * /

1
1

return(root);

1

struct avl-node *rightpal(struct avl-node *node, int *chg-hgt)

{
struct avl-node *rsub, / * Right subtree of node * /

*lsub; / * Left subtree of rsub * /

rsub = node->rchild;
switch(rsub->bal) {
case RHIGH: / * Single rotation * /

node->bal = BAL;
rsub->bal = BAL;
node = rotate-left(node 1 ;
*chg-hgt = NO;
break;

case LHIGH: / * Double rotation * /
lsub = rsub->lchild;
switch(lsub->bal) {

case RHIGH:
node->bal = LHIGH;
rsub->bal = BAL;
break;

case BAL:
node ->bal = BAL;
rsub->bal = BAL;
break; continued on p. 172

172 6 Trees

caee LHIQH: continudfrom p . 171
node->bal = BAL;
reub->bal = RHIQH;
break:

1
leub->bal = BAL:
node->rchild = rotateright (node 1 ;
node = rotate-left(node 1;
*chg-hgt = NO:
break;

1
return(node 1;

1

etruct avl-node *rotatemleft(struct avl-node *node 1
{

etruct avl-node *tmp;

tmp = node->rchild;
node->rchild = tmp->lchild;
tlqp->lchild = node;
return(tmp 1;

1

etruct avl-node *left-bal(etruct avl-node *node, int *chg-hgt 1
{

1
/* Left ae an exercise * /

etruct avl-node *rotate-right(etruct avl-node *node)

{

1
/ * Left ae an exerciee * /

listing 6.10
AVL insertion algorithm.

~~ ~

6.3 Balanced Trees 173

The driving routine is called avl-insert () . It requires three
arguments: a pointer to the root node of the AVL tree; a pointer to the
new node that it will insert; and a pointer to an integer variable. This
latter argument serves as a flag that will indicate when the height
of the tree changes. (We must pass and return this value as a pointer
due to C’s call-by-value convention.)

Similar to an OBT function, this routine begins execution by
recursively invoking itself until it locates the point of insertion. However,
unlike an OBT insertion, avl-insert () must readjust the balance
fields after it adds the new node. T h e function indicates a change
in height by setting the chg-hgt flag to YES. If the balance becomes
+2, avl-insert (1 calls routines to rotate nodes and rebalance the tree.

AVL Tree Deletion

Deleting nodes in AVL trees requires that we employ the same basic
principles we discussed for insertion. Specifically, we will need to perform
single and double rotations.

We begin an AVL deletion by following the deletion algorithm
for an ordered binary tree. Then, after we’ve located the node we wish
to delete, we perform the following processing:

1. If the node is a leaf node, just delete it.
2. If the node has only one child, replace it with its child (i.e., have

the node’s parent point to the node’s child).
3. If the deleted node has two children, replace it with (a copy of)

its inorder success&; then delete the (original copy of the) inorder
successor. This example is illustrated beginning with Figure
6.20e. Note that this processing preserves the ordered property
of the tree.

Now that we have deleted the node, we must rebalance the tree:

4. If the balance of the deleted node’s parent changes from 0 to +1
(Fig. 6.20b), the algorithm terminates. That is, the tree does
not require any additional rebalancing.

5. If the deleted node’s parent changes from +1 to 0 (Fig. 6.20c),
the height of the tree has changed and the balance of the deleted
node’s grandparent is affected.

6. If the balance of a deleted node’s parent changes from ?1 to +2

174 6 'Trees

B

H I d
Original tree

(a)

H I d
Result of deleting node D

(b)

Result of deleting node F Result of deleting node H
(C) (dl

Delete node C Phase 1 Delete node C Phase 2
(e) (f l

Figure 6.20
AVL tree deletion.

6.4 Threaded Binary Trees 175

(Figs. 6.20e and 6.20f), it forces a rotation. After the rotation
completes, the parent’s balance may change. This, in turn, might
force additional changes (and possible rotations) all the way up the
tree as we retrace our path back to the root. In fact, we need to
retrace our path until we encounter a node that changes from
0 to 1; then we can terminate the algorithm (as described in step 4).

Even in the worst case, when a deletion forces O(log2 n) rotations,
the algorithm’s complexity remains O(log, n). This is because we can
perform rotations in a constant amount of time. Completing the imple-
mentation is left as an exercise for the reader.

6.4 THREADED BINARY TREES

If you examine the structure of a binary tree, you will discover that
the number of unused links (in leaf nodes) is greater than the
number of pointers actually used. In fact, in a tree with n nodes, of
the 2n available pointers, only n - 1 are used. This represents
less than half of the total number of available pointers.

We can make use of these otherwise unused links by having them
point to other nodes in the tree-in a predefined manner-to create a
threaded binary tree (TBT). In a threaded binary tree, we assign ad-
dresses to leaf node pointers based on the following rules:

If the pointer is the right child of a given node N, assign to it the

If the pointer is the left child of a given node N, assign to it the
address of the node that would follow N during an inorder traversal.

address of the node that would precede N during an inorder
traversal.

Figure 6.21a provides an example. With two exceptions, all the
previously null links are now pointing to other nodes in the tree. T h e
exceptions are the left child of node 4 and the right child of node 3.
T h e nodes have, respectively, no predecessor or successor element
in an inorder traversal. If we left the tree in this state we would require
special-case processing for these two pointers. A better solution is to use
aheadnode and have both of these links point to it. Figure 621b shows
the tree with a head node and all of its pointers assigned.

There is one more point we must address: Now that every pointer

176

- . . .-- - .

Figure 6.21e
Threaded binary tree.

6 Trees

- Threads

In order traversal
4,2,6,5,1,3

-. - . - - -

Figure 6.21 b
Threaded binary tree
with head node.

6.4 Threaded Binary Trees 177

has been put to use, it has become impossible to distinguish a leaf
node from a non-terminal node. As a result, we must include a type
field in the bt-node structure.

TBT Traversal

Inorder traversal is now greatly simplified. If, for a given node N,
rtyps = BT-THREAD, its inorder successor is rchild. Alternatively,
if rtype = BT-NOM, we determine its inorder successor by tra-
versing the left links of the rchild of N until we locate a node
with ltype = BT-THREAD. A pseudo-code description of the algo-
rithm follows.

tbt-inorder(
{

/ *
* Find
* /

root 1 / * Inorder Traversal of TBT * /

leftmoet node

tznp = root;
if(tznp I = NULL)

while(trqp->lchild I = NULL)
tlnp = tznp->lchild;

while(tmp 1 = root) / * Begin Traversal */
visit(tmp 1;
tznp = tbt-next(tmp);

1

tbt-next(node) / * Locate Inorder Successor * /
{

/ *
* For a thread, successor is rchild
*/

trap = node->rchild;

/ *
* For normal nodes, follow left hand path
* /
if(node->rtype == BT-NORM)

tmp = tmp->lchild;
while(tmp->ltype I = BT-THREAD)

return(trqp 1;
1

178 6 Trees

Confirm your understanding of the algorithm by tracing its execu-
tion when locating the inorder successor of node 2 in Figure 6.21b. In
much the same manner, we can use threaded binary trees to simplify
preorder and postorder traversals. One minor drawback of threaded binary
trees is that they commit you to a particular traversal methodology
(e.g., inorder).

TBT Insertions

We now need to develop an insertion algorithm for threaded binary
trees. T o begin our discussion, let’s consider how we would insert
a node as the right child of a leaf node. In Figure 6.22a, the right
subtree of node C is a thread. Therefore, to insert a new node N,
we need to perform the following processing:

n->rchild = c->rchild;
n->rtype = c->rtype;
n->lchi ld = c;
n->ltype = BT-THREAD;
c->rchild = n;
c->rtype = BT-NORM;

Figure 6.22b demonstrates how we insert a new node when the
rchi ld of C is not a thread. The l c h i l d of E-which currently
points to C-must end up pointing to N. The code, therefore, becomes

n->rchild = c ->rchild;
n->rtype = c->rtype;
n->lchi ld = c;
n->ltype = BT-THREAD;
c->rchild = n;
c->rtype = BT-NORM;
i f (t->rtype == T-NORM)

tmp->lchild = n;

We will leave the case of left-child insertions as an exercise for

tmp = inorder-succ(c 1;

the reader.

6.4 Threaded Binary Trees 179

Before (a) After
Insert as right child without subtree

i

Before (bl ARe r
Insert a s right child with subtree

Figure 6.22
Threaded binary tree
insertion.

180 6 Trees

TBT Deletions

As with unthreaded trees, the deletion of nodes in a threaded binary
tree is application dependent. However, with threaded trees we have the
added concern of adjusting threads when elements are deleted. Exer-
cise 7, p. 193 explores this topic further.

6.5 APPLICATIONS OF TREES

There are many uses for tree structures in program design. As we have
seen, they can be used in the sorting and searching of data. Trees
are also well suited for representing relationships among data. Let’s
look a t some examples.

Decision Trees

Another of the classic problems studied by computer scientists is the
Eight Coins Problem:

There are eight apparently identical coins. However, one coin-
a counterfeit-is of a different weight than the others. We must deter-
mine, with only three weighings on a balance scale, which coin
is counterfeit, and whether it is heavier or lighter than the others.

There are 16 unique results: Coin 1 is heavierhghter, Coin 2 is
heavierhighter, etc. You may find it beneficial to attempt to solve the
puzzle before reading on.

T h e solution to the puzzle can be described as follows:

Compare the weights of coins (1,2,3) with coins (4,5,6). There
are three possible results:

1. Set (1,2,3) = Set (4,5,6)
Because both sets weigh the same, we can deduce that either
coin 7 or coin 8 is counterfeit. We now compare one of
them with a known standard (for example, coin 1). In the
remaining two weighings, we can determine conclusively which
coin is counterfeit and whether it is heavier or lighter.

We now know, based on this first weighing, that coins 7 and
2. Set (1,2,3) C Set (4,5,6)

6.5 Applications of Trees 181

8 must be genuine. T o determine which of the first six
coins are bad, we must switch two of them and isolate two
others. That is, we compare coins (1,4) with (2,s). There
are, again, three possible outcomes:
a. Set (1,4) < Set (2,s)

Because the relationship remained the same (i-e., the coins
on the left weigh less than the coins on the right), we
can surmise that coins 3 and 6 are genuine; we also know
that coins 2 and 4 are good because switching them had
effect on the balance. Therefore, either coin 1 is light or
coin 5 is heavy. We need only compare one of the coins
to a standard to determine which one is counterfeit.

Either coin 3 or coin 6 is counterfeit. We also can surmise-
from the original weighing- that if coin 3 is bad, it is
heavy; if coin 6 is bad, it is light. Compare one against a
standard to determine the result.

T h e switching of coins 2 and 4 caused the balance to

b. Set (1,4) = Set (2,s)

c. Set (1,4) > Set (2,s)

no

change. Therefore, either coin 2 is light or coin 4 is heavy.
Compare one against a standard to determine the result.

3. Set (1,2,3) > Set (4,5,6)
The solution is analogous to section 2, above.

Before we begin our discussion of an algorithmic solution, consider
the problem-solving method we just described. After each weighing, we
observed an outcome and decided on a new course of action. That is,
each step served as a crossroads where we selected a new path
until we finally reached a solution.

We can simulate this process in a computer program using a decision
tree. Each node in a decision tree corresponds to a critical point in the
solution of a problem. Typically, this is some action or test that must
be performed. T h e children of a node represent the implications of a
decision made at the parent’s level (that is, a choice of actions based
on the outcome of the test). Leaf nodes represent solutions to the problem
(if attained via proper use of the tree).

Figure 6.23 depicts the decision tree for the Eight Coins Problem.
Each non-terminal node represents a weighing. Each of a node’s children
represents additional comparisons that are required based on the out-

182 6 Trees

< >

Figure 6.23
Eight Coins decision
tree.

come of a weighing. Each leaf node represents one of the 16 unique
solutions.

There are essentially two ways to implement this problem-solving
technique. First, after constructing a decision tree for a given problem,
we can employ a traversal function to determine a solution. As it moves
along the tree, the function uses the results of each test to select the next
path to follow. A solution is attained when the function reaches a
leaf node.

The other way is to code the decision tree implicitly. That is,
embed the decision logic right into the code. As an example of
this technique, Listing 6.11 presents the code for the function
eightcoins (1.

Game Trees

Another use for trees is in computer game simulations. T o illustrate
this technique, we will design a program that plays tic-tac-toe. T o begin
our discussion, assume that we have written a function called board
- eval () . T h e purpose of this routine is to evaluate board positions.
That is, the function computes a numerical value representing the relative
strength of the position for one of the players. A winning position
would yield the maximum value, a losing position the minimum.

For our tic-tac-toe program, board-eval () could determine for

6.5 Applications of Trees 183

#define HEAVY 1
#define LIGHT -1

void eightcoins(int *coin, int *bad, int *stat)
c

int sl, s2;
int s3, 134;

sl = coin[OI + coin[ll + coin[21;
s2 = coin131 + coin[41 + coin[51;
if(sl == s2) { / * 6 or 7 bad * /

if(coinC61 > coin[71 1
if(coin[63 != coin[OI) I

*bad = 6;
*stat = HEAVY;

*bad = 7;
*stat = LIGHT;

1 else {

1

if(coin[7] != coin[OI) {
*bad = 7;
*stat = HEAVY;

*bad = 6;
*stat = LIGHT;

else / * 6 7 */

1 else {

1
} else if(sl > s2) {

s3 = coin[OI + coini31;
s4 = coin[l] + coin[4];
if(s3 == s4 1

if(coin[2] != coin[OI I {
*bad = 2;
*stat = HEAW;

*bad = 5;
*stat = LIGHT;

1 else {

1

if(coin[OI != coin[21 I {
*bad = 0;
*stat = HEAVY;

else if(s3 > s4 1

continued on p. 184

184 6 Trees

listing 6.11
Eight Coins function.

I else { continued from p. 283
*bad = 4;
*stat = LIGHT;

else / * s3 < s4 * /
I

if(coin[ll != coin[21
*bad = 1;
*stat = HEAVY;

*bad = 3;
*stat = LIGHT;

I else I

I
I else /* sl < s2 */

s3 = coin[OI + coinC31;
s4 = coin[ll + coinl41;
if(s3 == s4 1

if(coint21 != coin[OI
*bad = 2;
*stat = LIGHT;

*bad = 5;
*stat = HEAVY;

I else I

I

if(coin[ll != coin[21
else if(s3 > s4 1

*bad = 1;
*stat = LIGHT;

*bad = 3;
*stat = HEAVY;

I
else / * s 3 < s4 * /

if(coin[O] != coin[21)E
*bad = 0;
*stat = LIGHT;

*bad = 4;
*stat = HEAVY;

I else (

I else {

I
I

I

6.5 Applications of Trees 185

Board configuration
(a)

\ I

I \

X has 4 winning positions available
(bl

Y has 2 winning positions available
(Cl

Figure 6.24
Strength index
calculation.

each player the total number of rows, columns, and diagonals still
open (i.e., locations where a win is still possible) and return the differ-
ence of the two values. For example, consider the board position
depicted in Figure 6.24a. If evaluating this position on behalf of player
X, board-eval () would compute four winning positions for X (Fig.
6.24b) and two for 0 (Fig. 6.24~) and return a strength index of 2 (i.e.,
4 - 2). Conversely, if evaluating the same position for player 0,
the function would return a strength index of -2 (2 - 4).

T o determine the next move for a player, a program could evaluate
every possible move from the current position and select the one
that yields the highest strength index. However, this type of analysis
does not always yield the best result. As depicted in Figure 6.25,
if the selection were based solely on the strength index, the program
would choose either b or c as the next move for player X. Nevertheless,
despite their lower index, choices d or e-both of which yield directly
to winning positions-are the best moves for X.

There are two ways to correct this problem. One is to build a
better evaluation function. For simple games, such as tic-tac-toe,
this is certainly possible. In fact, because the number of possible board
positions is relatively small, we could examine every possible combination
before selecting our next move. However, for more complex games-
such as chess-this option is impractical.

T h e other way to solve the problem is to change our approach.

186 6 Trees

Figure 6.25
Move evaluation for
player X.

X

4 - 2 = 2
(a)

x I 0 -Current board
position

X

0 -

4 - 1 = 3
(b) *

x x
4 - 2 = 2

(d)

4 - 1 = 3
(C)

4 - 2 = 2
(el

X -
0

The shortcoming of a static evaluation function is that it cannot
predict the outcome of the game. That is, it cannot determine the
future effect of a given move. However, if it were possible for the
function to look ahead several positions, it could improve its choice
of moves.

We can effectively implement this approach using game trees. A
game tree consists of all possible moves derived from a given position.
Each node represents a move; each level represents, alternately, moves
for each player. We define the hk-ahead level as the maximum
depth of the game tree (i.e., how many moves ahead we will look).

6.5 Applications of Trees 187

Plus

Minus

1 - Current # position

@ -1 8 -2

Figure 6.26
Game tree to select
opening move for
player X

Figure 6.26 contains an example. (Note that because of symmetry,
we need not consider all possible board configurations.) The root node of
the game tree is the current position, and each subsequent level repre-
sents a choice of moves for one of the players. T h e player to move,
in this case X, is designated as plus, the opponent as minus.

Before we describe how to use game trees, let’s observe for a
moment how humans play the game. When we select moves for
ourselves, we obviously choose what we believe to be our best move.
Our opponent will obviously try to do the same. Thus, when we
attempt to predict opponents’ moves, we must put ourselves in their
position and pick the best move for them-that is, the worst move
for us.

Now let’s apply that same logic to our game tree. However, we
must keep in mind that the evaluation function determines the
value of each board position from the standpoint of the player whose
turn it is to move. For example, let’s assume it’s X’s turn to move. For
all levels in the game tree that represent moves for X, we choose a
path that yields the highest value (that is, the best move for X).

188 6 Trees

Conversely, on levels representing moves for 0, we select moves with
the lowest index (i.e., the best moves for 0). Therefore, at eachplus level
in the game tree, our algorithm must select the move with the maxi-
mum index; at each minus level it must select the move with the mini-
mum index.

In summary, to select a move for a given player, our game pro-
gram must

Construct a game tree based on the current board position.
Evaluate (using a static evaluation function) the position index

Bubble up-from leaf to root-the strength indexes by assigning
for all leaf nodes.

each plus node the maximum value of its children, each minus node
the minimum value of its children.

When this processing has completed, the function selects as its
move the level two node (the child of the root) with the highest strength
index. This process is then repeated, using the new board position,
to choose the best response for the opposing player.

Implementation

Implementation of our game tree algorithm will require several data
elements. Because the number of moves varies with each position,
we will need the following node structure:

8 t ruc t gnode {
int Val; /* Position value */
int turn; / * Whose turn? * /
char pOS[3] 131 ; /* Board position * /
etruct gnode *cptr; / * Child pointer * /
struct gnode *sptr; / * Sibling pointer * /

1;

To simplify processing, we will not use direct pointers to reference
subtrees; rather, child nodes will be stored using linked lists. As depicted
in Figure 6.27, cptr points to a list of children and sptr points a
list of siblings. In addition, each node must provide storage for a board
position, a position value (strength index), and a flag to indicate
whether it is on a plus or minus level.

6.5 Applications of Trees 189

CPTR A-SPTR

Root ------
I I
I

Figure 6.27
Game tree
implementation.

The driving loop of the program will be

who = 'X';
blank-board(board 1;
while(move(board, who, MAXLEVEL) != WIN) {

print-board(board, who 1;
if(who == 'X') /* Alternate Turns * /

else
who =

who = 'X';
1
print-board(board, who 1;

T h e program moves alternately for each player until it determines a
winner; it then displays the results. T h e call to print-board() within
the body of the loop is optional, but is useful to trace all the intermedi-
ate moves made by both players. The symbolic constant MAX-
LEVEL determines the maximum look-ahead level for each move.

T h e function move () selects and records moves (i.e., updates
the master board) for each player. I t requires three arguments: the
player ID, the current board position, and the maximum look-ahead
level. I t is defined as

190 6 Trees

int move(char *board[], char who, int level)

{
int Val ;
struct gnode *root;
struct gnode *best;

root = make-tree(board, level) ; / * Build tree * /
best = best-move(who, root 1;
move-board(board, best->gos 1; /* Store move * /
Val = best->Val;
free-all(root) ; /* Free nodes */

return(Val 1 ;
1

The function make-tree () constructs a game tree, of depth
level, for the current board position; it returns a pointer to the
root of the tree. The function best-move () takes two arguments:
the player ID and a pointer to the game tree. It determines the
best move for player who by computing the position index for each
leaf node (using the function board-eval()) and then bubbling
the values up the tree. It returns the child node of root with the
highest value.

best-move () appear in Listing 6.12. We leave the completion of
the program as an exercise for the reader.

T h e functions make-tree () , game-tree () , and

6.5 Applications of Trees 191

struct gnode *
make-tree(char *board[], int lev)
{

s t ruc t gnode *root;

/*
* Setup root node of tree
* /

root = get-gnode () ;
root->cptr = NULL;
root->sptr = NULL;
root ->turn = POSITIVE;
move-board (root ->pos, board)

/ *
* Build rest of game tree
*/

game-tree(root, lev, 0) ;
return(root 1;

1

/ * Copy board gos * /

void
game-tree(struct gnode *root, int max-level, int cur-level)
{

s t ruc t gnode *tmp;

if (cur-level == max-level) / * the 'out' * /
return;

/ *
* Generate all unique board positions
* (child nodes) for this level
*/

gengos(root 1;

/ *
* Build the next level for each child
* /

for (tmp = root ->cptr; trng ! = NULL; tmp = tmp->sgtr) {
tmg ->turn = - root ->turn;
game-tree(tmp, max-level, cur-level+l);

1
1 continued on p. 192

192 6 Trees

struct gnode * continued fmm p. 191
best-move(char who, struct gnode *root)

i
int bval, tval;
s t ruc t gnode *tmp, *best, *tbest;

if(root->cgtr == NULL) {

/ *
* Leaf node
*/

root ->Val = board-eval (root -->gas, who ;

return(root 1;
1

/ *
* Not a leaf node - process all child nodes
* select & return best
* /

tmp = root->cptr;
best = best-move(who, tmp); / * Get first one * /
bval = best->Val * tmp->turn; /* NEG node ? */
for(tmg = tmp->sgtr; tmp I = NULL; tmg = tmp->sgtr) {

tbest = best-move(who, tmg 1 ;
tval = tbest ->Val * tbest ->turn;
if(tval > bval) {

bval = tval;
best = tbest ;

1
1

return
1

best 1;

Listing 6.12
Tic-tac-toe game.

6.5 Applications of Trees 193

Trees are very common structures found in everyday life. They can
also serve as powerful models for problem-solving techniques in com-
puter science.

Once constructed, trees can be traversed in many ways. We can also
add threads to leaf nodes to further simplify tree traversal.

Applications typically restrict the number of branches each node in a
tree may have. The most common example of this approach is a
binary tree.

Trees are simple to implement and use. As a result, they can serve
as the basis for many applications, including searching, sorting, parsing,
expression analysis, decision making, and game theory. We will explore
other uses for trees in subsequent chapters.

1. Write the iterative forms of the functions inorder () ,
greorder (1, gostorder () .

2. Draw the tree produced by the function bt-insert (1 when
presented with the following input:

1, 2, 3 , 4 , 5, 6, 7 , 8 , 9, 10

3. Prove that a binary tree can be uniquely defined by its preorder
and postorder traversals.

4. Design and code traversal routines for trees implemented as arrays.

5. Implement the tic-tac-toe program. Design it so that the computer
can play against a human opponent.

6. Using a breadth-first traversal, write a program that will display
graphically the structure of a binary tree.

7. Develop a complete set of functions (insert, delete, traversal, etc.)
to implement a threaded binary tree.

8. Write a function that will thread an unthreaded binary tree. Can
it be done in place?

9. For the binary tree depicted in Figure 6.28, determine the
following:
a. T h e number of terminal nodes

SUMMARY

E X E R C I S E S

194 6 Trees

Figure 6.28
A binary tree.

b. The number of non-terminal nodes
c. The degree of each node
d. T h e level of each node

10. Write a function that will compute the information required in
exercise 9 for any tree. Test your program using the tree shown
in Figure 6.28.

11. How many different ways can we store the values 1 to 5 in an
ordered binary tree?

12. Write a function that determines the maximum height of a bi-
nary tree.

13. Complete the omitted routines of the AVL insertion algorithm of
Listing 6.10.

14. Implement an AVL deletion function.

15. For the binary tree depicted in Figure 6.28, depict the internal
representation using list, array, linked, and threaded
implementations.

Graphs and Digraphs

One of the most widely used data structures in mathematics and
computer science is the graph. Informally, we can define a graph
as a finite set of points, some of which are connected by lines (called
edges). A digraph-short for directed graph-is a finite set of points, some
of which are connected by arrows; the arrows determine the orientation
(direction) of the edges.

Graphs are useful abstractions for modeling many types of prob-
lems. Examples include airline route maps, electronic circuits, data flow
diagrams, etc. An example graph depicting an airline route map appears
in Figure 7.1. Although the carrier does not service it, note that
Portland is part of the graph.

7.1 INTRODUCTION

Definitions and Terminology

Formally, a graph consists of two sets, Vand E, where V is a finite,
possibly empty, set of vertices and E is a set of subsets of V (of order 2)
that represent edges. For example, the graph depicted in Figure 7.1

195

C H A P T E R

7

196 7 Graphs and Digraphs

Figure 7.1
Graph representation
of an airline route
map.

has Vdefined as {PT, LA, LV, NY, FL, CHI) and E defined as
((CHI, LA), (LA, NY), (CHI, LV), (NY, LV), (LV, FL)}. The graph
is written as G = (V, E); additionally, we refer to the set of vertices of
graph G as V(C) and to the set of edges in G as E(G).

Edges connecting two vertices in a graph are unordered. This
means that the pairs (vl, az) and (w2, vl) represent the same edge. However,
edges in a digraph (which have orientation) are ordered so that (w, , vz)
and (v2, ol) represent two distinct edges. (We will use angle brackets to
denote edges in digraphs.) For any directed edge e = (vl, w Z) in a
digraph we say that e departs from vl and enten vz; in addition, we
refer to vI as the tail, and wz as the head of the edge. A tree is an
example of a digraph; refer to Figure 7.2 for additional examples.

An edge cannot connect a vertex to itself (these are sometimes
referred to as self-loops). In addition, no more than one edge may connect
a given pair of vertices in a graph, nor can there be more than one
edge with the same orientation connecting two vertices in a di-
graph. However, these restrictions may be relaxed for practical applica-
tions. For example, Figure 7 . 2 ~ depicts a mult&raph wherein vertices may
be connected by more than one edge. We can use this type of structure
to model applications such as communication networks that contain more
than one link (e.g., fiber and microwave) between locations.

The maximum number of edges in a graph with n vertices is
n(n - 1)/2; digraphs have at most n(n - 1) edges. A graph (or digraph)
is considered complete if it contains the maximum number of edges. Figure
7.3 contains two examples.

7.1 Introduction 197

Figure 7.2
Three graphs.

Graph Digraph Multigraph
(a1 (bl (Cl

Given an edge (vl, w2) in a graph G, the vertices v1 and v2 are
considered adjacent to each other; the connecting edge is incident to the
vertices. For a digraph with edge (al , v2), v1 is adjacent to v2; v2 is
adjacent from vl. We define the degree of a vertex w; as the number of edges
incident to it. For a digraph, the notion of degree is partitioned into
indegree and outdegrec Indegree is the number of edges for which vi is the
head, and outdegree is the number of edges for which vi is the tail.

Asubgraph S1 of graph G is defined as

Wi) C VG)

JW'I) C E(G)

Complete digraph
(b)

Figure 7.3 Complete graph
Two complete graphs. (a1

198 7 Graphs and Digraphs

Graph G
(a)

Subgraph S1
(b)

Subgraph S2
(Cl

Subgraph S3
(4

Figure 7.4
Subgraphs.

That is, S, is a subset of G @(if and only if) V(SJ is a subset of V(G)
and E(SJ is a subset of E(G). Figure 7.4 provides some examples.

Apath from vertex a, to vertex a, is a sequence of edges ol, az,
4, . . . , a,, such that all pairs (wl, oz), (az, aJ, . . . , (v,-~, 0,) are
edges in G. We define its length to be n, the number of edges compris-
ing the path. A simple path is one in which all the vertices are distinct
(refer to Fig. 7.5a). A cyde is a simple path wherein the first and last
vertices are identical (see Fig. 7 .5~) . A graph that does not contain any

A graph A simple path of length 2
(a) (bl

A cycle
(C)

An acyclic graph
(dl

Figure 7.5
Paths and cycles in
graphs.

7.1 Introduction 199

Figure 7.6
A graph with two
connected
components.

cycles is termed acyclic. A tree is an example of an acyclic graph; refer
to Figure 7.5d for another example of an acyclic graph.

If a path should exist from v , to vz, the vertices are connected.
Furthermore, an entire graph is considered connected if, for each pair of
vertices (v,, v,), there exists a path from v, to v,. A connected component
of a graph G is a maximal connected subgraph of G. Figure 7.6 contains
a graph with two connected components.

A directed graph is considered weakly connected if, for each pair of
vertices (w,, v,), there exists a path from w, to vl such that 0, = u, and a,
= v, and for each component of the path (us, vy) either (q, vy) or (vy,
vx) is in E(G). In other words, a path exists between the two vertices but
you might not be able to traverse it because of the orientation of some
of the edges.

Alternatively, we consider a digraph strongly connected if, for each
pair of vertices (v,, v,), there is a directed path (i.e., one you could traverse)
from v, to v,. A strongly connectedcomponent of a digraph D is a subgraph
of D that is strongly connected.

Applications of Graphs

Graphs are among the most powerful modeling tools in computer
science. Although simple in concept, graphs can model many com-
plex physical and logical problems. Some examples include:

We can use graphs to model and implement map-based applica-
tions. For example, we could model an airline company’s route
map. T h e graph would serve as the basis for fare and routing
systems.

200 7 Graphs and Digraphs

As another example of using graphs to model maps, consider a
company that specializes in home delivery of food. The firm
might maintain many food preparation centers located throughout
a geographical area. However, to minimize costs, only one
location would serve as the central point for orders. Thus, when
customers telephone the central site to request a delivery, graph-
based algorithms could determine which preparation center should
produce the order and estimate for the customer the expected deliv-
ery time.

Given a list of cities and distances, determine the most eco-
nomical route for the salesperson to travel.
We can model process flow using graphs. For example, a manufac-
turing firm could model an assembly-line process using a graph.
Each vertex in the graph could represent one stage of the produc-
tion cycle.
Graphs can represent electrical circuits. Each vertex in the graph
could represent an electrical component, and edges could rep-
resent the type of connection between pairs of components.

One of the classic map studies is the traveling salesperson problem.

7.2 INTERNAL REPRESENTATION

Now that we’ve dispensed with the definitions and terminology, let’s
start to see how we can use graphs to model problems. Before we can
work with them, however, we must develop a set of data structures
suitable for representation in a computer. For the following discus-
sions, assume a graph G = (V, E) with n = IVI and m = \El.

Adjacency Matrix

The first data structure we will discuss is an a~acmq matrix. An
adjacency matrix is a two-dimensional matrix a, such that for each edge
(q, q) in E(G), a[i,jl = 1. All other index pairs are set to 0. Note that
for a non-directed graph, we must also set ab, i] = 1 as well. The size
of the array will be n2 elements (optimally bits), but for non-directed
graphs we can save half the storage (i.e., a[i, j] = ab, 4). Figure 7.7
contains an example graph and its associated adjacency matrix.

Figure 7.7
Example graph and
adjacency matrix.

7.2 Internal Representation 201

Adjacency matrix
(b)

In a non-directed graph G, we compute the degree of a given
vertex i as its row sum:

For each vertex in a digraph, the row sum is its outdegree and
the column sum is its indegree.

Adjacency Lists

We can also represent graphs as adiacenq lists. An adjacency list is an
array of M pointers to linked lists. Specifically, each array element,
a[& represents one vertex and points to a linked list; each node in
the linked list represents a vertex adjacent to D;. Refer to Figure 7.8 for
an example. A graph containing n vertices and m edges requires a[n]
array elements and 2m list nodes; a directed graph will require
only m list nodes.

For non-directed graphs, the degree of any node, i, can be com-
puted by just counting the number of elements in list a[zJ. T h e
outdegree of any vertex in a digraph can be computed in a similar
manner. However, calculating the indegree of a digraph is some-
what more problematic. A program must scan the entire array of lists
(from a[O] to a[n]) counting references to i. We can simplify this process
by maintaining a separate list to track indegree (the equivalent of a

202 7 Graphs and Digraphs

2

Graph
(a1

Adjacency list
(bl

Figure 7.8
Example graph and
adjacency list.

column in the adjacency matrix). However, this will add to the size and
processing time of our data structure.

7.3 TRAVERSALS

Like trees, there are several methods we can employ to traverse graphs.
The most common are the depthjnt and the breadthjrst searches.
However, unlike trees, graphs do not contain root nodes. As a result,
the traversal methods we are about to discuss require that we define (or
arbitrarily select) a vertex to serve as the starting point for the
algorithms.

Depth First Search

Given the root node of a graph, a Depth First Search (DFS) proceeds
as follows:

Begin processing at the root node vo.
Select a previously unvisitednode o;, adjacent to vo, and process it.
Select an unvisited node adjacent to D; and visit it.

~~

7.3 Traversals 203

Figure 7.9
Example DFS
traversal.

s t a 7 q D ” node

A graph
(a)

Order of visits in a DFS
(b)

Continue in this manner until we encounter a node that does not

Back up to a node that has an unvisited adjacent vertex and
have any unvisited adjacent vertices.

continue the processing from that point.

A DFS can be likened to a tree traversal in that we visit all of a
node’s descendents before visiting any of its siblings. Figure 7.9a
contains an example graph, and Figure 7.9b displays the output gener-
ated by a DFS beginning at node A. T h e order in which we select adjacent
nodes is essentially arbitrary. However, note that we vist node D as a
descendent of node E , not node A.

Listing 7.1 contains an implementation of a DFS. The function,
df s () , performs depth first traversals on graphs implemented
using adjacency lists. Each node in the graph corresponds to an index
in a structure array called alist [1 . Each element of alist [] contains
two members: a flag field (tag) to indicate whether the node has been
visited, and a pointer (ptr) to the node’s adjacency list.

T o implement the adjacency list, we used a linked list of type
struct adj-node. This structure also contains two fields: vertex is
the name (ID) of the adjacent vertex and next is a pointer to the
next element in the list. Each adjacency list terminates with a
NULL pointer.

We invoke df s () with one argument, namely the index of the

204 7 Graphs and Digraphs

#define VISITED 1
#define MAX-NODES 100

struct adj-node {
int vertex ;
struct adj-node *next;

I ;

struct adj-list {
int tag;
struct adj-node *adj ;

1 alist[MAX-NODES 1;

struct adj-node *getnode();

void dfs(int vertex)
{

struct adj-node *ptr;

print-vertex(vertex 1 ;
alist [vertex] .tag = VISITED;

ptr = alist [vertex] .adj;
while(ptr ! = NULL) {

if (alist [ptr->vertex] .tag ! = VISITED)

ptr = ptr->next;
dfs (ptr->vertex) ;

I
I

listing 7.1
Depth First Search.

first node. The function begins its processing by visiting-and
setting the tag field of-the initial vertex. Next, it searches the initial
node’s adjacency list for any unvisited vertices. When it locates one, df s ()
invokes itself recursively to process the unvisited vertex. When the
recursive call eventually returns, the original instantiation continues with
its scan of the adjacency list.

7.3 Traversals 205

Figure 7.10
Example BFS
traversal.

Start
node

A graph
(a)

A. G, F, D, B, E. H, C

Order of visits in a BFS
(b)

T h e complexity of this algorithm depends on the data structure
employed. In this case, having used adjacency lists, the function can locate
adjacent vertices by simply traversing a linear list. Thus, because the
algorithm will examine each list node only once, and because there are
at most 21EI list nodes, the performance of the algorithm is O(lE1).
Alternatively, let’s assume we used an adjacency matrix to implement the
graph. T h e work required to identify all vertices adjacent to a given
vertex is O(n). Therefore, because the function will process at most n
vertices, the performance of the algorithm becomes O(nZ).

Breadth First Search

Another important traversal method for graphs is the Breadth First
Search (BFS). A BFS differs from a DFS in that the BFS visits nodes in
order of increasing distance from the start node. That is, it processes
all nodes adjacent to the start node first, then all nodes adjacent to those,
and so on. It can be likened to traversing a tree by levels.

Figure 7.10 depicts a sample BFS traversal. It uses the same graph
contained in Figure 7.9a. However, note the different order in which a
BFS visits nodes.

Obviously, as developers of a BFS algorithm, we must ensure that
the function processes nodes in the correct order. The example function,

206 7 Graphs and Digraphs

bf s () , presented in Listing 7.2, demonstrates how we can accomplish
this. The routine begins by placing the start node of the graph on
a work queue. (In this example, we arbitrarily selected alist [O] as
the beginning point of our search. We could easily adapt the func-
tion to receive this value as an argument instead.) It then iteratively
removes the next element from the queue, processes it, and enqueues all
nodes adjacent to that element. It continues in this manner until the
queue becomes empty. The function assumes all the declarations from
Listing 7.1 and two queue routines from Chapter 3.

As with a DFS traversal, this algorithm’s complexity is determined
by its underlying data structure. For this implementation, the outer while
loop will iterate exactly once for each vertex: O(n). If, as with this
implementation, we use adjacency lists, the inner loop will be
iterated O(m) times (the number of edges in the graph). If an adjacency
matrix is used, the inner loop will be executed O(n) times, yielding a
complexity of O(nZ).

Connected Graphs

As you may recall, a graph is considered connected if, for each pair of
vertices (vj, v,), there exists a path from oi to v,. If you were to
consider the problem for a moment, you would discover that there is
an easy way to determine algorithmically whether a graph is con-
nected. Simply perform either a BFS or a DFS and then determine
whether any unvisited vertices remain. The code for such a func-
tion, conn-graph () , appears in Listing 7.3.

Weighted Graphs

Graphs can become even more functional if we assign values to edges.
These values, referred to as weighs, represent a relative cost (or benefit)
associated with each edge. For example, the graph in Figure 7.11
represents the route map of an air carrier. The weights represent the air
miles between each node (city).

Formally, a weighted graph is a triple G = (V, E , W), where (V,
E) is a graph (or digraph) and W is a function that maps edges to weights.
That is, if e E E, then W(e) yields its weight. T h e weight of a path

7.3 Traversals

#define VISITED 1

207

void bfs(void
{

int node ;
struct adj-node *tmp;

/ *
* Put first element on queue
* /

addqueue(0);

alist 101 .tag = VISITED;

/*
* Begin the BFS
* /

while((node = delqueue())
{

= QUEUE-EMPTY)

/*
* Add adjacent nodes to queue
* /

tmp = alistCnode1.adj;
while (tmp ! = NULL)

{
if (alist [tmp- >vertex] .tag ! = VISITED)

{
addqueue (tmp - >vertex 1 ;
alist [tmp - >vertex] . tag = VISITED;

1
tmp = tmp - >next;

1
1

1

listing 7.2
Breadth First Search.

208 7 Graphs and Digraphs

#define MAXNODES 100
d e f i n e TODO 0
d e f i n e V I S I T E D 1

#define TRUE 1
d e f i n e FALSE 0

i n t c o m - g r a p h (void)

E
i n t i;

/ *
* Ini t ia l ize tag f i e l d s
* /

f o r (i = 0; i < MAX-NODES; i++)
al i s t [i] .tag = TODO;

d f s (0) ;

f o r (i = 0; i < MAI-NODES; i++)
i f (a l i s t [i l . t a g != VISITED)

r e t u r n (FALSE);

r e t u r n (TRUE 1;
1

listing 7.3
Connect graph
function.

in a weighted graph is the sum of the weight of its component
edges.

7.4 SPANNING TREES

As we have seen, both DFS and BFS traversals visit all vertices in a
graph. However, they do not necessarily traverse all the edges. Let’s
examine this point more closely. At any given moment during a tra-
versal, we can envision the edges of the graph as belonging to one
of two distinct sets:

7.4 Spanning Trees 209

-

Figure 7.11
Airline route map
revisited. Miami b

S-set of edges already traversed (used) during the search
B-the remaining (back) edges.

Throughout the traversal, the algorithm moves edges from set B to
set S. When the traversal completes, the function has visited all vertices;
however, not all edges are in set S. That is, S contains only the edges
minimally required to visit all vertices.

A closer examination reveals that the edges in S form a tree (i.e.,
no cycles exist). This tree is of special interest and is called a spanning
tree. A spanning tree is composed of all the vertices in G and only the
edges in S. Graphs may have more than one spanning tree. Figure 7.12
contains a sample graph and several of its spanning trees. Note that
in each example, the back edges (i.e., the edges not included in S) would
form cycles in the spanning tree.

Formally, a spanning tree for a connected graph G = (V, E) is a
subgraph of G that forms a tree connecting all vertices in G. T h e
number of edges in a spanning tree is n - 1, where n represents the
number of vertices in G. As mentioned earlier, a graph may have more
than one spanning tree.

We can easily modify and adapt the traversal routines to generate
a spanning tree for a given graph. Simply add a statement to either
df s () or bf s () that stores all traversed edges so that they may be
printed or processed later. T h e two types of trees derived from
the modified algorithms are referred to as a depthfimtspanning tne and
a breadth j m t spanning tree, respectively.

There are many uses for spanning trees. For example, consider

21 0 7 Graphs and Digraphs

D C D C D C D
(a) (b) (4 (4

<
Y

J

Graph Spanning trees

B = {BC, BD, DC} B = {AC, AD, BD} B = {AC, BC, BD}

Figure 7.12
Graph and spanning
trees.

implementing a broadcast facility for a communications network.
A spanning tree could represent the set of paths required to ensure
that a message will be transmitted to every node in the network.

Minimal Spanning Trees

Extending the preceding example, we could add weights to the graph
representing our communication network. The weights could be used to
represent the cost of sending a message between any two nodes. If
we anticipated using the broadcast facility extensively, it would
be to our advantage to analyze the structure of the network to deter-
mine a broadcast path of minimal cost. If we define the weight of a
spanning tree as the sum of the weights of its component edges, then
what we need to determine is a spanning tree of minimal weight. We call
this a minimal spanning tree (MST). Note that a weighted graph may
have more than one MST.

MST Construction

T h e construction of an MST begins with the selection of an initial
vertex. We then repeatedly add to the tree edges of minimal weight until
all vertices in the graph are represented. At any given moment during

7.4 Spanning Trees

Edges in S2
Edges
in S,

Start
node

Vertices in S1 Vertices in S2

21 1

Edges in S3

Vertices in S3

Figure 7.13
Minimal spanning tree
construction.

the construction, the edges and vertices are partitioned into three dis-
joint sets:

Set S1 T h e set of vertices and edges already part of the MST
Se t& T h e set of vertices (and incidental edges) adjacent to the

vertices in Sl. Specifically, each vertex in S, connects to a vertex
in S1 via an edge of minimal weight. In other words, a given
edge in Sz might be adjacent to more than one vertex in S,; the
Sz set contains the incidental edge of minimal weight. We
will select the next member of S, from this set.

Set S, All the remaining edges and vertices.

The function constructs the MST one edge at a time; it terminates
as soon as all vertices are in 8,. Edges are considered for inclusion into
S1 (from S,) in order of increasing weight, and only if they do not
create a cycle in the MST. Figure 7.13 depicts an intermediate
point in the processing of an MST; Listing 7.4 presents a pseudo-
code description of the algorithm. (Note that for programming conven-
ience, we have divided each S set into companion v and e sets.)

T h e algorithm functions as follows (see Fig. 7.14):

212 7 Graphs and Digraphs

mst(G)
{
1:

2:

3:

4:

5:

6:
7 :

8 :

1

S1 = {i}; / * Starting point * /
S3 = V(G) - vl; / * Remove i from S3 * /
s2 = { I ; / * Nu11 set * /

while(vl != V(G)) {
forall(j in v2 adjacent to i) {

/*
* W(x, j) = = weight of edge x
* incident to j in 52. Vertices
* in S2 may be adjacent to more
* than one S1 vertex. We must find
* the edge of minimal weight.
* /
if(W(i, j) < W(x, j) I { / * Adjust S2 set * /

e2 = e2 - (x, y);
e2 = e2 + (i, i);

1
1

forall(k in S3 adjacent to i) { / * Adjust 53 set * /
v2 = v2 + {k}; v3 = ~3 - {k};
e2 = e2 + (i, j);

1

if(e2 == { I 1
return(NO-SPANNING-TREE 1;

e = MIN(e2 1 ; / * Select edge w/ min weight * /
i = vertex(e); / * Set i = the v2 vertex of e */

/ * Adjust sets */
el = el + e;
e2 = e2 - e;
vl = vl + i;
v2 = v2 - i;

1

Listing 7.4
MST algorithm-pseudo-code description.

7.4 Spanning Trees 21 3

16
B

D-

Weighted graph
(a1

s2 S1 s2
After first pass

Note: Shortest edge= added to S,. Edge A? is replaced by edge BE in S2

After second pass
S1

(bl (Cl

Figure 7.14
Operation of MST
algorithm.

1. Variables are initialized. i represents an arbitrary vertex where
we will begin construction of the MST. (We could obviously modify
the function to receive this value as an argument.)

2. T h e while loop iterates until the v l set is equal to G. (That is,
until all vertices are included in the spanning tree).

3. T h e algorithm adjusts the v2 set with respect to i .At this point,
i represents a vertex that has just been moved into the v l
set. T h e function must therefore adjust the v2 set to ensure that
it contains all vertices in G adjacent to vertices in vl.

21 4 7 Graphs and Digraphs

4.

5.

6.

7.
8.

After adjusting the v2 set, the function must also update the
v3 set.
If, at this point, e2 is empty, G has no spanning tree and the
function returns to its caller.
In this step, the function selects the e2 edge with minimal weight
for inclusion into the MST.
This step determines the v2 vertex of the selected edge.
Adjust the S1 and S2 sets.

Figures 7.14b and 7.14~ illustrate the first two passes of the algo-
rithm when processing the graph of Figure 7.14a. Note that after the
second pass the shortest edge m was moved to the SI set and that
BE replaced AB in S2.

Analysis

An analysis of the algorithm shows that the critical steps are 3, 4, and
6. Assuming n = IVI and m = IEI, the total time required for steps 3 and
4 is O(m). However, in the worst case, step 6 might require n - 1
comparisons, and because it will execute n times (step 2), the overall
complexity becomes OW).

Implementation

There are several operations in the MST that are critical to its perfor-
mance. The function must

Determine to which set a given vertex belongs
Access all members of the v2 set
Determine the vl component of a vertex in v2
Reference the weight of each edge
Reference the adjacency list for a given vertex.

Keeping the foregoing criteria in mind, we see that Listing 7.5
contains data structures suitable for implementing the MST algo-
rithm. We represent each vertex as an entry in a structure array of
type mst-graph. The field, set, identifies the set to which the
vertex belongs (initially S3). For values of 1 or 2 (indicating inclusion
in either S1 or S2), vlnode contains the node’s adjacent vertex and weight
contains the weight of the incidental edge. When the algorithm termi-

7.5 Shortest Path Algorithm 21 5

int s2list = -1; /* Head gtr for V2 list * /

struct nadj-list {
int node ; /* ID of adjacent node * /
int weight ; /* Weight of incident edge * /
struct nadj-list *next;/* Pointer to next element * /

1;

struct mst-graph {
int set; /* S1, S2, or S3 * /
int s2link; /* Points to next 52 node * /
int vlnode ; /* V1 node of an (El, E2) edge * /
int weight ; /* Weight of El or E2 edge * /
struct nadj-list *adj; /* Pointer to adjacency list * /

} graph[MAJ-NODES] ;

listing 7.5
MST data structure.

nates, we can determine the edges that are part of the MST by indexing
through the structure array and printing: (i, graph i I . vlnode).

T h e adjacency list for each vertex is headed by the member ad j,
which points to elements of type struct nadj-list. T h e remaining
field, salink, provides quick adcess to vertices in the 8, set. It forms
a linked list headed by s2list. Figure 7.15 depicts the state of
the data structure when processing the graph in Figure 7.14~. (Note
that, for the sake for brevity, the adjacency lists are not included.)
The final implementation of the algorithm is discussed in the exercises
at the end of this chapter.

7.5 SHORTEST PATH ALGORITHM

Another common problem associated with graphs is determining the
shortest path between two vertices. As you may recall, the weight of a
path is the sum of the weights of its edges. We will define the shortest
path as the path of minimal weight connecting two vertices.

T h e direct approach to this problem is to write an algorithm that

21 6 7 Graphs and Digraphs

Vertex Set
A 1
B 1
C 2
D 2
E 2
F 3
G 3
H 2 _ _ _ ~ . ~ -

S2 List = H Figure 7.15
State of data structure * Root node
for Figure 7 . 1 4 ~ . ** End of list

SAVE
S2 Link V1 Node

* -
A

D A
-1 ** A

C B

-

- -
- -
E B

Weight

10
11
12
4

*

-
-

16

ADJ list -...
-...
-...
-...
-...
-...
-...
-...

enumerates all possible paths between two vertices, and then se-
lects the one of minimal weight. This approach, however, is inefficient.
(Consider the number of paths connecting any two nodes in a
complete graph.) Alternatively, we will design a solution that functions
in much the same manner as the MST algorithm. In short, it will
begin at some point v, and create minimal paths of increasing magni-
tude until it reaches the destination vertex up.

As with the MST algorithm, edges and vertices be partitioned
into three disjoint sets:

S, The set of vertices (and connecting edges) for which a shortest
path from v, to some intermediate vertex has been found

Sz The set of vertices (and incidental edges) that are not yet part of
the path but which are adjacent to vertices in S1. As with our
MST function, each vertex in Sz is connected to a vertex in S1
via an edge of minimal weight.
The remaining edges and vertices of the graph. S,

As the function executes, it must repeatedly select an S, vertex for
inclusion into the S, set. At first glance, it might appear tempting
just to choose the Sz vertex of minimal weight. However, keep in
mind that we are trying to build the shortest path, not the shortest
edge. Thus, the selected edge is the one that minimizes the following:

waght(va, v;) + weight(v;, up) for all edges (vi, wB) in S,

7.5 Shortest Path Algorithm 21 7

where weight(va, vj) represents the weight of an edge in S1, and we&ht(vi,
ve) represents the weight of the edge of an adjacent vertex in S2.

Figure 7.16 shows an example of how the algorithm functions.
Given the state depicted in Figure 7.16b1 the next edge selected will be
MC (even though is shorter). This is because X C (weight value
of 12) is shorter than ABD (weight value of 14).

After moving KC into S,, we must reorganize the sets as depicted
in Figure 7.16~. Note that AF was considered for inclusion into S2 but
was supplanted by m.

Listing 7.6 presents a pseudo-code description of the Shortest
Path algorithm. A careful review of the code should prompt the
question, How does it work? T h e function actually constructs and
maintains multiple paths until it determines the one that ultimately passes
through the destination vertex. During any given iteration of the
while loop, the algorithm selects, and will add an edge to, the
shortest path currently contained in S1.

But, you may ask, what if that path does not pass through destina-
tion vertex? If you consider this problem carefully, you will observe
that, as we continue to add edges to that path, it will eventually become
larger than other paths contained in S1. Thus, during a subsequent iteration
of the loop, the function will select some new, smaller path for proc-
essing. Eventually one of the paths will include an edge incident to the
destination vertex and the algorithm will terminate. T h e exercises at
the end of this chapter discuss the implementation in more detail.

__

21 8 7 Graphs and Digraphs

Figure 7.16
Example of Shortest
Path algorithm.

Graph
(a)

8

10

s2 52
Intermediate step.

Note that MC will be the next edge selected.
(6)

9

8

10

S1 52

(C)
Reorganization after step 6.

7.5 Shortest Path Algorithm 21 9

SP(0 , b, e 1 /* Shortest path from b to e * /
{

vl = {bl;
i = b;
W(i) = 0;
v3 = V(G) - vl;
v2 = { I ;
el = { I ;
e2 = { I ;

while(i ! = 3e) { /* Until destination * /
forall(j adjacent to i) {

if(j in v2 AND W(i) i- W(j) < w(b, j)) {

/* Replace edge * /
e2 = e2 - {x, jl;
e2 = e2 + {i, j I ;

l

if(j in v3) { /* Move into V2 * /
v3 = v3 - j;
v2 = v2 + j;
e2 = e2 + {i, jl;

l
l
if(v2 == { I) / * NO spanning tree * /

return(NO-PATH 1;

x = MINUPATH(e2);
v2 = v1 - x; /* Adjust sets * /
v1 = v1 + x; /* Remove x from Va * /
i = x; /* Add X to VI * /

l
l

I

Listing 7.6
Shortest Path algorithm-a psuedo-code description.

220 7 Graphs and Digraphs

Graphs are powerful data models that we can use to solve a wide
variety of problems in mathematics and computer science. They have
been in existence for many years and have developed a unique and
extensive nomenclature.

In computer programs, graphs are usually implemented using either
adjacency lists or adjacency matrices. A basic requirement of all
graph algorithms is a traversal method. The two most common are
called depth first and breadth first traversals.

We can add weights to edges in a graph. This imbues graphs with
even more functionality. Two common problems associated with
weighted graphs include generating a minimal spanning tree and find-
ing the shortest path between two vertices.

1. Write routines that insert and delete edges in a graph implemented
using an adjacency matrix. Do the same for a digraph. Com-
parehontrast implementation differences.

2. Repeat exercise 1 using adjacency lists.

3. Draw a complete graph with seven vertices.

4. Apply both DFS and BFS traversals to the graph of exercise 3.
Using the same beginning vertex for each traversal, list the order in
which the vertices are visited.

5. Write algorithms to calculate the indegree and outdegree for
any given node in a graph. Assume an adjacency list
implementation.

cency matrix.

nected graph, the resulting edges form a tree.

tree. (Do not assume a connected graph.)

a complete graph?

for a given graph. What is its complexity?

graphs/paths.

6. Rewrite both the DFS and BFS traversal functions using an adja-

7. Show that when we perform a DFS or a BFS traversal on a con-

8. Write an algorithm that determines whether a given graph is a

9. What is the maximum number of paths between two vertices in

10. Design and implement a function that computes all spanning trees

11. Implement the minimal spanning tree algorithm. Test with several

SUMMARY

E X E R C I S E S

Figure 7.17
The Koenigsberg
bridges.

7.5 Shortest Path Algorithm 221

Bridges

12. Implement the Shortest Path algorithm using the data structures
from the previous exercise. Test your program using several graphs/
paths.

13. What is the complexity of the function conn-graph () (see List-
ing 7.3)?

14. Write a function that computes all the connected components of
a given graph. (Hint: Extend the function corn-graph () .)

15. Consider the diagram in Figure 7.17. It depicts a section of a town
in East Prussia called Koenigsberg. The river Pregal flows
around the island Kneiphof and then splits in two. This forms the
four land areas that are connected by the seven bridges.

Your problem is to determine whether it is possible to begin
and end a walk at the same spot while crossing each bridge exactly
once. (Swimming is not a viable option.)

This problem was originally solved-using a graph-in 1736
by the mathematician Euler and became known as Euler’s Walk.
Euler used vertices to represent the land areas and edges to repre-
sent the bridges.

Searching

8.1 I NTRO DUCT1 0 N

In this chapter we examine efficient methods to search for information.
Searching is a common task in our everyday lives: We look up
telephone numbers in a directory; locate words in a dictionary; deter-
mine if we are free for an appointment on a given day; the list is endless.
Searching is also a common task in computer applications; it can also
be one of the most time-consuming. As a result, it is to our advantage to
do it as efficiently as possible.

Before we begin, we should introduce some terminology. In a
computer program, searching is the task of locating a particular
recodwithin a collection of records. Records are composed of one or
more jields or elements. For example, an employee record might include
fields for name, address, and social secur4ty number, among others. A
collection of records is commonly referred to as a table.

Records are usually identified by one of their fields called the key.
Keys are usually exclusive; this implies that each key uniquely identifies
one record. Records may also have more than one key. For example,
an employee table may be keyed on both social security number
and last name. In such cases, we may initiate searches using either

222

C H A P T E R 8

8.2 Sequential Searching

int secLerch(int data[], int size, int key)

c
int i;

I = size - 1; / * C arrays have a 0 offset * /
while(i >= 0 && data[il != key)

; i--

return(i 1;
1

listing 8.1
Sequential search.

key. We need not store records in any particular order, but, as we
will see, if we sort tables by key, we can increase the efficiency of
some searching algorithms.

T o simplify our examples, simple integer arrays will serve as our
data records. Each element in the array will represent one key.
Please keep in mind, however, that we can apply all the principles
we will discuss to larger, more complex record formats.

8.2 SEQUENTIAL SEARCHING

T h e simplest and most direct approach to this problem is the exhaus-
tive or sequentialsearch. Given an unsorted table of records, we can
write a function that scans an entire table, one record at a time, search-
ing for a given key. Listing 8.1 contains an example.

The function, seq-srch () , requires three arguments: key is
the search key, data[] is the table, and size indicates the
number of entries in the table. T h e algorithm begins its search at the
end of the list and iteratively compares each record with key until
it either finds a match or exhausts all possibilities. In the former case,
it returns the index of the record; in the latter case it returns the
value -1.

224 8 Searching

Complexity We will partition the discussion of this algorithm’s
complexity into two parts. For a successful search, the number of
comparisons depends on the position of the key within the table.
Assuming an equal probability for all keys, the average number of
comparisons in a successful search will be

1 + 2 + 3 + . . . + n - n + l --
n 2

or roughly O(n/2). If the desired key is not in the table, the function
performs n comparisons. The following sections discuss improvements
to this basic algorithm.

8.3 SEARCHING ORDERED TABLES

Before we introduce our first refinement, let’s observe how humans
search for information. For example, consider how we might look up the
word processor in the dictionary. We would not begin at the A’s and
scan every entry (as suggested by the preceding algorithm). Rather, using
the thumb tabs, we would begin our search at (or near) the P’s. None-
theless, we know intuitively that we will not overlook our word when we
skip past the earlier entries. Why? Because words in the dictionary
are ordered (sorted). We can apply this same principle to improve
the performance of our basic searching algorithm. (Chapter 9 will
discuss sorting methods in detail; throughout the discussions in
this chapter, we will assume that our tables have been sorted.)

Ordered linear Search

Assuming an ordered table, the first improvement we can make to
seg-srch() is to terminate the search whenever data [i] <
key. That is, we do not have to search the entire table to determine
that a key is not present. We can terminate the search as soon as
we reach a point where the remaining data values are less than the
search key. An example algorithm, seq-arch2 () , is presented in List-
ing 8.2.

Complexity The discussion of complexity again assumes that all keys
are equally likely. For a successful search, the performance of

8.3 Searching Ordered Tables 225

#define NOT-FOUND -1

int secsrch2(int data[], int size, int key)

c
int i;

i = size - 1;
while(i >= 0 && data[il != key 1

if (datatil < key 1 /* Terminate Early * /

else
return(NOT-FOUND 1;

i-- ;

return(i 1;
1

listing 8.2
Modified sequential search algorithm.

seq-srch2 () remains the same (i.e., O(n/2)). We have, however,
improved-by half-the time required to determine that a given key is
not part of the table.

Indexed Sequential Search
Our next improvement increases efficiency at the expense of additional
space. This method, referred to as an indexedsep.uentia~sea~c~, uses a second
table, called an index, to point to entries in the main data table. See
Figure 8.1 for an example.

T h e index array effectively partitions the main data table into
subarrays. If there are n entries in the index, and siw elements in
the main data table, then each index entry represents a subarray of
siw/n elements in the main table. Note that the entries in both
tables must be ordered by key.

with a scan through the index array searching for the case where
T h e idea behind this algorithm is very simple. T h e function begins

indextil <= key < index[i+ll

226

Figure 8.1
Indexed sequential
tables.

8 Searching

Index

Main table

That is, the function scans the index to determine which subarray in
the main table would contain key (if it exists). It then uses the
value stored in index [i I as the point at which to begin a sequential
search of the main table. Note that, as the function scans the index, it is
skipping over large chunks of the main data table. An example algo-
rithm, ink-seg (1 , appears in Listing 8.3.

The function indx-seq() begins with an initial test to deter-
mine whether its key argument is smaller than the smallest key in the
data table; if it is, the function immediately returns the value
NOT-FOUND to indicate an unsuccessful search.

The first while loop scans the index to determine in which
subarray of the main data table key would reside. The index,
idx [1, is an array of type struct index. This structure contains
two members: val is the key value each index element represents;
slot is an index that points into the main data table.

After scanning the index, indx-seq () invokes s e ~ e r c h 2 ()

to search the main table. The function calculates the boundary limits of

8.3 Searching Ordered Tables 227

#define NOT-FOUND -1

st ruct index {
int Val ;
int slot;

I ;

int indx-seg(int key, struct index idx[l, int idx-size,
int data[], int data-size)

int i, size, ret;

if (key C idx[Ol .val 1 / * Initial test for bad key */
return(NOT-FOUND 1 ;

/*
* Scan index for key
* /

i = 0;
while(i < idx-size && key >= idx[i+l] .Val)

i++;

/*
* Determine segment size
*/

if(i == idx-size - 1) / * i points to last slot */

else
size = data-size - idx[il.slot;
size = idx[i+l] .slot - idx[il .slot;

/*
* Scan data table
*/
ret = seg_srch2(&data[idxtil .slot I , size, key 1;
if(ret >= 0 1

ret = ret + idx[il.slot;
return(ret) ;

listing 8.3
Indexed sequential search algorithm.

8 Searching

the subarray based on the values contained in the index. Note that
the arguments we pass to seg-arch2 () only delineate the subarray that
we want it to search. As a result, if the search is successful, the function
must add the slot offset contained in the index to the value returned
by seq-erch2 (1.

Complexity T h e efficiency of this algorithm is a function of the size of
the index. As we decrease the size of the index array, we increase the
size of the sublists each index entry represents; this, in turn, increases
the size of the sublist that we must search in the main table. Increasing
the size of the index results in an increase in the number of
comparisons required to search the index itself. In general, if k
represents the size of the index and n represents the size of the table,
the complexity of this method is

If the index begins to grow so large that it becomes inefficient, we
can use a secondary index. A secondary index functions in much the
same manner as a primary index except that it points into the primary
index, not the main table. Searching begins with a scan through the
secondary index; this points us to a subarray in the primary index, and
then processing continues as described earlier. An example of such a
data structure appears in Figure 8.2.

Binary Search

As highlighted in the previous section, searching algorithms perform
fewer comparisons if they can skip over some elements. We can extend
this idea to the point where we can eliminate half of the remaining
list with each unsuccessful comparison. We call this technique a
binary search.

We begin a binary search by comparing the search key with the
middle entry of an ordered table. If they match, the function
returns the index of this element. Otherwise, processing continues
using either the lower or upper half of the table (depending on the value
of the key). In essence, we eliminate half the table with only one

Figure 8.2
Secondary index.

~

8.3 Searching Ordered Tables 229

Key Data

Key pointer

Key pointer

Secondary index

Primary index

Main table

comparison. This is the most efficient method of searching an ordered list
without the use of additional tables or indices.

An example binary search function, binsrch (1 , appears in List-
ing 8.4. T h e variables upper and lower delineate the portion of the
array that the function has not yet searched. Initially, their values are
set to the upper and lower bounds of the array. T h e value stored in the
variable middle is the index of the middle entry of the current sublist.
With each iteration of the while loop, the function compares key with
data [middle]. Based on the result, binsrch () either returns the
location of key in the table or adjusts its index variables accordingly. If
the function fails to locate key, it returns the value NOT-FOUND.

Complexity T h e complexity of binsrch () is not as obvious as some
of the other algorithms we have been discussing. T o begin our analysis,

230 8 Searching

#define NOT-FOUND -1

int binsrch(int data[], int size, int key
E

int lower, middle, upper;

lower = 0;
upper = size - 1;
while(lower <= upper {

middle = (lower + upper) / 2;
if(key == data [middle])

else if (key > data[middlel)

else

return(middle 1 ;

lower = middle + 1;
upper = middle - 1;

1

return(NOT-FOUND);

1
listing 8.4
Binary search
algorithm.

notice that if the function fails to locate a key during the first iteration
of its loop, it divides the list in half and repeats the process. At this
point, we can compute the performance of the algorithm as 1 (the cost
of the first comparison) plus the cost of processing the remaining half.
This is best expressed by the formula 0(1 + O(n/2)) (where n repre-
sents the number of elements in the table).

We can compute the cost of a failed second pass in much the same
way: 1 plus the cost of processing half the remaining entries. Note that
at this point, half the remaining entries is equivalent to one fourth of
the array or n/4. The total complexity at this point is 0(1 + 1 +
O(n)/4).

We can continue in this manner building each seccessive term. In
other words, with each failed iteration, we add 1 to our formula and
divide n again by the next power of 2. However, this formula does not
provide a definitive complexity. That is, it defines the value of O(n) in
terms of n. This is an example of a recurrence relation.

8.3 Searching Ordered Tables 231

We can define a recurrence relation as

an equation or inequality that relates the value of a function on successively smaller
values of the function.

A recurrence relation does not adequately describe the complexity of
an algorithm. That is, to be useful, we must define complexity in a way
that does not express f (n) in terms of n. Thus, we must transform the
recurrence relation into its equivalent closed form. In closed form,
we evaluate a function f (n) without referring to other values of n.

We begin the transformation of a recurrence relation by examining
its boundary conditions. A boundary condition yields a definitive
value for a particular function argument. In our example, if n = 1,
then f(1) = 1. Thus, we now have two formulas that describe
the relation:

f(1) = 1

Now let’s expand the second formula:

= 1 + 1 + f ($

= l + l + l + f -
t 3)

Note that as we add each new term, we divide n by the next
power of 2. Relating this back to the binary search algorithm, each term
in the formula corresponds to a failed comparison, Therefore, for an
array of size n, there will be (in the worst case) approximately log&)
terms, each of which has a complexity of 1. This yields a final closed
form of

f (n) = l o g h) + 1

T h e additional 1 term is to compensate for the fact that, in general,
log&) might not compute to an even integer. As a result, a binary

232 8 Searching

search function might perform one additional comparison. Thus, this
yields a complexity of O(log, a).

Modified Binary Search

There is an interesting variation of the binsrch () algorithm. Instead
of using-and computing the value of-three variables, we only
require the use of two: one to track the current position in the array
(middle), and a second to track a rate of change (delta). T h e
idea is that after each unsuccessful comparison, the algorithm will
apply the value in delta to middle to compute the next slot;
it then divides delta by 2. The direction of the change is reflected
as a positive or negative value for delta. The algorithm binsrch2 ()
is presented in Listing 8.5.

Interpolation Search

There is another interesting variation on the binary search algorithm.
In this version, we try to guess more precisely where the search key resides
in the array. Before we describe the method in detail, let’s again
consider how we look up words in a dictionary. If the word we are searching
for begins with a w, we begin our search near the end of the book; if
the word begins with a c, we search near the front. In short, we
begin our search near the location where we expect to find our word.
We call this technique an interpolation search.

We can simulate an interpolation search in a computer program
with a small modification to our binary search algorithm. Instead
of simply calculating middle as

(lower + upper) / 2
we instead estimate the location of the record based on the search
key and the current lower and upper bounds of our array. The
formula we use is

(key - data [lower]) X (upper - lower)
(data [upper] - data [lower])

middle = lower -?-

8.3 Searching Ordered Tables 233

#define HALF(x) (((x
#define NOT-FOUND -1

int binsrch2(int data
E

+1)/2

1, int size, int key)

int delta, middle;

delta = size / 2;
middle = delta;
while(key != databiddle]) {

if(delta == 0 1

else if (key > data[middlel)

else

delta = delta / 2;

return(NOT-FOUND);

middle += HALF(delta) ;

middle -= HALF(delta);

1

return(middle);

1
listing 8.5
Modified binary
search.

In essence, we are weighting our formula so that the new value of
middle will be closer to the expected location of our key.

For example, suppose that a data array contains the values 1, 2,
3, . . . , 10, and that the search key is the value 8. The basic binary search
algorithm would compute middle as

lower + upper - 1 + 10 11
2 2 2

- - = 5.5 middle =

An interpolation search computes middle as

(key - data[lower]) x (upper - lower)
(data [upper] - data[lower]) middle = lower -!-

(8 - 1) X (10 - 1)
(10 - 1)

= 1 + = 8

234 8 Searching

Even though the calculation is somewhat more complex, an inter-
polation search can provide a significant improvement over a binary search
for large datasets with evenly distributed keys.

Fibonacci Search

As we have observed, a binary search algorithm divides the data array
in half with each loop iteration. Now let’s consider another way
to partition the dataset using the Fibonacci sequence.

T o begin our discussion, assume that the size of our data array is
some Fibonacci number F(n). Our search algorithm will make its first
comparison using element data[& - l)]. There are three possible
results:

key = data[F(n - l)]

key < data[F(n- l)]

The search is successful and the function returns

The key, if it exists, resides in the subarray
the index of the record.

indexed from lower to data[F(n - l)] - 1. The next comparison will
use element data[F(n - Z)].

T h e key, if it exists, resides in the subarray
indexed from data[F(n- l)] + 1 to data[F(n)]. Note that the
size of this subarray, F(n) - F(n - l), is also a Fibonacci number.
The next comparison will use element data[F(n- 1) +

key > data[F(n - l)]

F(n - 3)].

The advantage of this technique is that the algorithm uses only
addition and subtraction rather than the division called for in a binary
search. Thus, a Fibonacci search might outperform a binary search on
machines where division is significantly slower than addition.

The only practical item we have not addressed is the (likely) event
that the size of the array is not an exact Fibonacci number. We
can overcome this problem by adjusting our index variable before the
first iteration of the loop. The complete algorithm appears in Listing 8.6.

Note that the function fibsrch() requires the help of a routine
to compute Fibonacci numbers. The code for this function, called
fibnum () , is presented in Listing 8.7.

8.3 Searching Ordered Tables 235

#define NOT-FOUND -1

int fibsrch(int data[], int size, int key)

int tmP, index, adj, fmin2, fmin3;

tmp = fibnum(size);
adj = size - fib(tmp);
index = fib(tmp- 1) ;
fmin2 = fib(tmp-2);
fmin3 = fib(tmR-33);

if (key > datalindexl / * adj for size ! = fib numb * /
index = index + adj;

while(index >= 0 && index < size) {

if(key == data [index]

else if (key < data[indexl) {

return(index);

index = index - fmin3;
tmp = fmin2;
fmin2 = fmin3;
fmin3 = tmp - fmin3;

index = index + fmin3;
fmin2 = fmin2 - fmin3;
fmin3 = fmin3 - fmin2;

1 else {

1
1

return(NOT-FOUND 1;

listing 8.6
Fibonacci search.

236

listing 8.7
Compute a Fibonacci
number.

8 Searching

i n t fibnum(i n t num)

{

i n t i , P# q I tmp;

i f

i f

0)
return(0 1;

num == 1)
return(1);

num ==

p = 0;
q = 1;
f o r (i = 1; p+q <= num; i++) {

tmp = q;
9 += Pi
p = tmp

1

return(i) ;

1

Binary Tree Searching

As you may recall, in Chapter 6 we discussed the construction of an
ordered binary tree (OBT). An OBT has the property that far a
given node n, the data values contained in its left subtree are less than
data(n) and the data values contained in its right subtree are greater
than dot&).

Once the tree is constructed, we can search for keys in an OBT
in a straightforward manner. Compare the search key with the data value
stored in the root node; if they are equal return. If key < data(root),
traverse the left subtree; otherwise, traverse the right subtree. Recursively
reapply this logic until you either locate the desired key or encounter
a terminal node. In the latter case, the function returns a value indicating
that it could not locate the key.

Listing 8.8 contains the code for the algorithm treesrch (1. A
brief inspection will show that it is very similar to the traversal

8.3 Searching Ordered Tables 237

listing 8.8
Ordered binary tree
search.

struct bt-node {

int data;
struct bt-node *lchild;
struct bt-node *rchild;

struct bt-node *
treesrch(struct bt-node
{

if(node == NULL 1
return(NULL)

*node, int key)

else if(key == node->data)

else if (key < node->data)

else

return(node 1;

return(treesrch(node->lchild, key));

return(treesrch (node ->rchild, key) 1 ;
I

algorithms discussed in Chapter 6. The function assumes that its search
tree was constructed using an insertion algorithm similar to the
one presented in Listing 6.5. Upon success, it returns a pointer to the
matching node; otherwise it returns the value NULL.

Complexity T h e complexity of this algorithm depends on the shape of
the search tree. For a full or complete binary tree, we can expect an
O(log, n) complexity (where n represents the number of nodes in the
tree). However, as noted in Chapter 6, insertion algorithms can produce
skewed trees. (This typically occurs when the insertion routine receives
keys in relatively sorted order.) Thus, in the worst case, complexity can
degrade to O(n) (linear). In practice, however, keys are usually random
enough that we may expect a fairly balanced tree. This fact, combined
with its relatively easy implementation, makes treesrch () the
algorithm of choice for many applications.

238 8 Searching

8.4 HASHING

The searching techniques we have discussed thus far share one com-
mon attribute: Their efficiency is inversely proportional to the
number of comparisons they perform. As highlighted in the preceding
sections, as we eliminate comparisons, we improve the perfor-
mance of the algorithms.

There is, however, another way in which we can improve the
performance of searching algorithms. Consider a scenario in which the
keys themselves point directly to records. That is, information encoded
directly within a key can point us to its associated record. Thus, we would
no longer require multiple searches to access a record; rather, we could
simply examine the key and know where to look.

We can effectively achieve this capability using a technique called
hashing or scatter storage. With hashing, we determine the location
(or address) of a record by performing an arithmetic computation on
its key. The result of this computation (called a hashingfunction)
yields the location of the record in a table (called a hash table). Specifi-
cally, a hash function maps all possible key values into specific slots in
the hash table. Once we store a record in the table, we can retrieve
it using the same process. That is, the hashing function we use initially
to insert keys into the hash table is the same one we use to search
for records later.

Hash tables are sequential and contiguous. Each slot in the table
is called a bucket. The contents of buckets can either be the record
itself or a pointer to where the record actually resides (out on disk,
for example). The latter is a common approach used by many
professional database management systems. Buckets may hold (or
reference) more than one key.

Although, as we will see, there are some difficulties that we must
address, the justification for studying hashing techniques should be obvi-
ous. Hashing allows us to search and retrieve records quickly and
efficiently.

Simple Hashing Example

As alluded to earlier, there are several concerns we must address. T h e
best way to highlight them is by way of example.

Let’s assume we have to build an application that supports a

8.4 Hashing 239

#deiine DIGIT1 5
#define DIGIT2 6

int hash-tel(char tel-number[])

{
int digitl, digit2;

digitl = tel-number[DIGITll - '0'; /* Convert to int * /
digit2 = tel-number[DIGIT21 - '0'; /* Convert to int * /

return(digitl*lO + digit2) ; I }
listing 8.9
Hashing function.

customer service department for some company. T o simplify the operation,
for both representatives and customers, we will key account records
by telephone number. Thus, when answering a call, the service
representative will retrieve account information by entering the cus-
tomer's telephone number into the system.

Because access time is important to us-we do not want customers
to endure a long wait while the system retrieves their account
information-we will use a hashing-based solution. Specifically, we
will hash on the right-most two digits of the customer telephone
number. Because our hash function can only return values in the range
of 0 through 99, we build a hash table with 100 buckets. Thus, our first
hashing function might be similar to the one presented in Listing 8.9.

The day finally comes and our application cuts live: We enter our
first customer, 5551024, into slot 24 of our table. We then enter
our second customer, 5552048, into slot 48. T h e application continues
along quite smoothly until the day customer 5554048 calls to open an
account. We then realize that our hashing function is not perfect. That
is, the function maps keys 5552048 and 5554048 into the same bucket.
This is called a collision. A collision occurs whenever a hash function
maps two distinct keys to the same bucket.

As simple as this example might seem, it highlights some of the
more important issues surrounding hashing:

240
~~~ ~ 

8 Searching 

Hashing functions must generate bucket addresses quickly. If the 
hashing algorithm is too inefficient it will overshadow the 
advantages this technique provides, and we would likely use one 
of the other searching techniques discussed in this chapter. 
Along with being efficient, our hashing function should minimize 
the number of collisions that might occur. That is, we would 
like the algorithm to distribute keys evenly throughout the entire 
hash table. 
Regardless of the type of hashing function, we will likely experi- 
ence collisions because the domain of keys is usually larger than the 
number of buckets we can (or wish to) allocate in our hash table. 

The  following sections address these concerns in more detail. We 
will begin by discussing collision resolution and then continue 
with a discussion of efficient hashing functions. 

Collision Resolution Strategies 

As mentioned earlier, a collision occurs whenever a hashing function 
maps two (or more) distinct keys into the same bucket. Regardless of its 
relative sophistication, a hashing function will likely generate its share 
of collisions. The  main reason is that the size of the key domain 
is typically larger than we can (or want to) make the hash table. For 
example, we probably could not allocate enough buckets for all potential 
accounts if we did index customer records by their complete tele- 
phone numbers. 

Theoretically, we could develop a hashing function that guaran- 
tees a one-to-one mapping of keys to buckets. However, it will likely 
negate one of the major advantages of hashing: speed. 

Thus, because it is effectively a foregone conclusion that collisions 
will occur, our only recourse is to develop methods to resolve them. 
In the sections that follow, we will discuss two important collision 
resolution strategies: chaining and open addressing. 

Chaining 

Separate Chaining 

Stated simply, the problem with collisions is that the hash function 
maps more than one key to the same bucket. A direct solution to the 



8.4 Hashing 241 

/Hash Table (HT) 

Figure 8.3 
Hash chains. 

problem is to allow buckets to hold more than one key. We can 
effectively accomplish this by employing a technique called 
chaining. 

With chaining, hash table slots do not hold data; rather each ele- 
ment in the table is a pointer to a linked list. Thus, if our hashing 
function maps two (or more) keys to the same bucket, we just insert 
them into a linked list. 

An example of this technique is depicted in Figure 8.3, wherein 
we use chaining to resolve collisions in an employee database. T h e  hashing 
algorithm is based on the hire date of each employee. Specifically, the 
hash function returns the day of the month each employee was hired. 



242 8 Searching 

struct hash-node I 
int data; / *  The data we need to store * /  
char key[ MAX-KEY 1 ; / *  The ‘key‘ for this record * /  
struct hash-node *next; / *  Ptr to next node in chain * /  

I ;  

struct hash-node *hash-table[ HASH-SIZE I; 

struct hash-node *get-hash( char *key 1 
{ 

int slot; 
struct hash-node *first-elem; 

slot = hash-function( key ) ;  
first-elem = hash-table [ slot 1 ; 
return( mod-seg_srch(first-elem, key) 1; 

I 

void ins-hash( struct hash-node *new-elem ) 

{ 
int slot; 

slot = hash-function( new-elem->key ) ; 
new-elem->next = hash-table [slot] ; 
hash-table[slotl = new-elem; 

I 

listing 8.10 
Example chaining functions. 

Thus, if we hired another employee on the second day of some month, 
we would insert the new individual’s record in the chain currently 
headed by the element Smith. 

Listing 8.10 contains examples of some routines that manage 
chained hash lists similar to the one presented in Figure 8.3. Central to 
this algorithm is the structure hash-node. Its members include key 
and data fields, as well as a link field that points to the next element in 
the chain. Note that a definition for macro, =-KEY, is application 
dependent. 



~~ ~ ~~ ~ 

8.4 Hashing 243 

T h e  hash table, hash-table [ I ,  is an array of pointers to 
hash-node structures. In effect, each element in the array is a head 
pointer for a linked list. We defer the discussion of appropriate 
values for the macro HASH-SIZE until we discuss hashing functions 
later; for now, just assume some reasonable size. 

T h e  function ins-hash( ) inserts new elements into a hash 
chain; the slot is determined by a call to the routine hash-function ( ) . 
(We will discuss hashing functions in detail later in this section.) We 
have omitted a complementary deletion function; its implementation is 
similarly straightforward and is left as an exercise for the reader. 

T h e  function get-hash ( ) returns a pointer to an existing hash 
element determined by its one argument. Note that it uses a 
modified version of a sequential search routine-alled 
mod-seg-srch ( )-to scan the chain. This version performs an ex- 
haustive search on a linked list, rather thaq an array; it returns either a 
pointer to the matched element or the value NULL, signifying a failed 
search. Its implementation is also left as an exercise. 

Complexity T o  sim lify our discussion of the complexity of chaining, 
let’s define the ter R probe to denote every reference we make to our 
hash structure. For example, we require three probes to access the 
record Jones (Fig. 8.3): one to select the list pointer (slot 2), and two 
additional probes fo list elements (one each for Smdh and Jones). In a 

Parisio requires four probes. For a given hash structure, the time we 
need to process a q d ery will be proportional to the number of probes it 
requires. As a result, we will use probe count as the metric for 
measuring hashing complexity. 

are the 11 that are represented in Figure 8.3. We can begin to compute 
the average number of probes by noting that there are 

similar manner, refe, i encing the record Tartaro requires two probes, and 

Assume that the only records currently in our employee database 

Five chains that require at least two probes (all non-empty chains) 
Four chains that require a t  least three probes (chains 2, 4, 27, 

Two chains that require a t  least four probes (chains 4 and 27). 
and 30) 



244 8 Searching 

Thus, we can compute the average number of probes as follows: 

= 2.73 
(5 x 2) + (4 x 3) + (2 x 4) 

11 

Note that the preceding value is specific to this one table and its 
current contents. As an alternative, we can provide a more general descrip- 
tion of hashing complexity. T o  begin, let n denote the number of 
records we need to store and let m denote the size of the hash table. We 
can now define the load factor A of a hash table as follows: 

n A = -  
m 

The  load factor represents the average length of a chain. For our 
example, the load factor for the table of Figure 8.3 is 

11 
- = .035 
31 

Note that when using chaining, load factors may be greater or less 
than 1. 

If we assume that our hash function generates a relatively even 
distribution of keys throughout the entire hash table, and that 
every key is equally likely, then we can define the following: 

$(A): The  expected number of probes required for a successful search 
U(A): T h e  expected number of probes required for an unsuccessful 

search. 

As stated earlier, chaining requires one probe for the list header 
and one probe for each referenced list element. If A represents 
the average chain length and we must inspect every element in a 
chain during an unsuccessful search, then U(A) becomes 

U(A) = 1 + A 

Computing S(A) is only slightly more problematic. First, recall 
from our complexity analysis of a sequential search that a successful 
search will access, on average, half the elements in the chain. Thus, 
if R represents the length of a given chain, a successful search requires 
i (k  + 1) probes. However, we know that the expected length of a 
chain, on average, is no longer than A. Thus, S ( A )  becomes 

1 1 1 
2 2 2 

S(A) = -(k + 1) = -(1 + A + 1) = 1 + -A 



8.4 Hashing 245 

Note that the worst case occurs when all keys (most likely due 
to a poor choice of hashing function) hash to the same bucket. If 
n represents the number of keys in the table, worst-case complexity 
can be computed as follows: 

U(X) = 1 + n 
1 S(X) = 1 + -n 
2 

AdvantageslDisadvantages Some of the advantages of chaining include 
easy insertion and deletion of nodes. T h e  costs include the extra space 
required for the pointers and the additional coding required for the 
dynamic links. If records are large as compared to the size of pointers, 
the advantages of chaining usually outweigh the disadvantages. 

Improvements and Extensions 

Ordered Chains 

We can improve on the basic chaining strategy. First, we can order 
the chains. As in the case of seg-srch2 ( 1 (Listing 8.2), we can im- 
prove-by half-the time required to determine that a given key is 
not part of the chain. 

Modified Hash Table 

For our next improvement, note that even if the element we are 
searching for is first in its chain, we still require two probes: one for the 
hash table slot and one to access the first element. We can eliminate 
the need for that initial probe if we store the first element in the hash 
table itself. That is, the hash table is no longer just an array of pointers; 
rather, it is an array of list structures. Figure 8.4 provides an example. It 
depicts the hash table of Figure 8.3 as it would appear if we had 
employed this technique. 

This technique not only saves us the cost of a probe, it also 
reclaims the additional space required by the pointers in the origi- 
nal hash table. However, we should use this strategy only when the 
keys are relatively small and when we expect our hash table to be relatively 



246 8 Searching 

26 

21 

28 

29 

30 

31 Figure 8.4 
Modified hash table. 

full; otherwise, we will waste too much space on empty slots. (Records 
are usually larger than pointers.) 

Coalesced Chaining 

The  final improvement we will discuss is an extension of the previous 
idea. If the modified hash table is composed of node structures, 
why use separate chains to handle collisions? We could use empty 
slots in the hash table itself. We illustrate an example of this technique, 
referred to as coalesced chaining, in Figure 8.5, which depicts the hash 
table of Figure 8.3 as it might appear if we employed coalesced chaining. 

With coalesced chaining, we no longer allocate new nodes with 
each collision; rather, we just appropriate the next available slot 
in the hash table. However, there is a price to pay for this feature in 
that a later arriving element might be displaced as a result of a prior 





248 8 Searching 

appropriation. For example, note that in Figure 8.5 the key Bowman 
is no longer in slot number 6. This is because the Kuehimein record 
arrived first and appropriated the bucket that would have otherwise 
been used by Bowman. 

The  way we handle such an event is to add the new record to 
the list that contains the element that appropriated its slot. This 
is how the technique derives its name: Keys with different hash values 
merge into the same chain; thus, the chains coalesce. 

Insertion operations remain similar to that of separate chaining. 
The  only difference is that we allocate new nodes in the table 
rather than from a separate buffer pool (or dynamic memory). 

We implement retrieval operations exactly as in the case of sepa- 
rate chaining. Chains will likely contain elements with different hash 
values. However, all keys with the same hash value will reside in the 
same chain. Thus, we need to search only one chain to locate a given key. 

At first glance, deleting coalesced elements might seem as easy 
as deleting elements from a linked list: Locate the deleted node’s 
predecessor and have it point to the deleted node’s successor. How- 
ever, a closer inspection reveals that it is not that easy. For example, let’s 
assume we wanted to delete Kuehlmein from the hash table of Figure 
8.5. After we performed the aforementioned processing, the hash table 
would appear as depicted in Figure 8.6. Obviously, the problem that 
arises is that after the deletion, we can no longer access the key 
Bowman. That is, because its hash value is 6-and that slot appears 
empty-we have no chain to follow. 

T o  overcome this problem, we can use a special key value that 
denotes deleted. Thus, a deleted node’s pointer remains in place 
and maintains the continuity of the chain. This is illustrated in Fig- 
ure 8.7. 

Open Addressing 

T h e  second method that we use for collision resolution is called open 
addressing. As in the modified hash table, this technique calls for 
us to store keys directly in the hash table. However, rather than using 
linked lists, we will store (and search for) colliding keys directly within 
the hash table itself. That is, we will use some alternate means by 
which we will determine a secondary bucket address for a colliding 



Figure 8.6 
Coalesced chain- 
incorrect deletion. 

8.4 Hashing 249 

Slot Kev DataLink 

Incorrect 

-Deleted node 
Kuehlewein 

deletion 



250 8 Searching 

Slot Key Data Link 

c- --[: Me ted  node 

Figure 8.7 
Coalesced chain- 
correct deletion. 

:orre( :ted deletion 



8.4 Hashing 251 

key. For example, we might use a secondary hashing function to 
generate a new index. 

With open addressing, the order in which we search through buck- 
ets is called the probe sequence. A probe sequence begins with the 
initial bucket address generated by the primary hashing algorithm. If 
this address results in a collision, we repeatedly generate secondary bucket 
addresses until we either locate the key we are searching for or locate 
an empty slot for an insertion. The  two methods we will discuss for 
generating secondary probe sequences are called linear probing and 
rehashing. 

Linear Probing 

T h e  first open addressing technique we will discuss is called linear 
probing. It derives its name from the fact that, when a collision occurs, we 
simply search successive slots in the hash table. If we are inserting a 
key, we search for the next free bucket; if we are searching for a key, we 
continue until we encounter an empty slot. When we reach the end 
of the table, we simply wrap around back to the beginning. Thus, we 
search buckets in the following order: 

SLOTinitial = primary - hash(kq) 

SLOT,,,, = (SLOT,,,,, + 1) mod m 

where m represents the size of the hash table. 
For an example of this technique, refer to Figure 8.8. Figure 8.8a 

depicts the initial state of our data structure. We are about to insert 
Jones and Baker into the table; assume both keys have a primary hash 
value of 2. However, the key Smith already occupies that position. As a 
result, we begin searching the table for the next available position to 
perform the insertion. In the case of Jones, the next free bucket is slot 3 
(Fig. 8.8b); for Baker, the next available bucket is slot 7 (Fig. 8.8~).  

Clustering Linear probing is a very simple technique and performs well 
if the hash table remains relatively empty. However, it has one major 
drawback As the hash table becomes about half full, it suffers from a 
phenomenon that we refer to as clustering. That is, once a block of 
contiguous slots develops in the table, it becomes a likely candidate for 
additional collisions. Moreover, as clusters grow, they tend to merge 
and form even larger clusters. 



252 8 Searching 

Slot Key Slot Key Slot Key 

Initial state of Insert Jones - primary Insert Baker - primary 
Figure 8.8 hash table hash value = 2 hash value = 2 
Linear probing. (a )  ( b )  ( C) 

As an example of this phenomenon, consider an empty hash table 
and an associated hashing function. T h e  probability of selecting any 
given bucket, say slot 10, is l/m, where m is the size of the hash table. 
However, if we enter a record into slot 9, we increase the probability of 
filling slot 10 on the next insertion: A key can hash to either bucket 9 
or 10, and we would fill slot 10. If both buckets 8 and 9 were filled, the 
probability would increase again. 

Linear Probing Complexity Obviously, the problem with clustering is 
that it increases search times. This is true for both successful and 
unsuccessful searches. In general, for a successful search, S(X) is the 
average of the number of probes required to locate each individual key. 
T h e  analysis for U(h) (an unsuccessful search) can be divided into two 
components. If a slot is empty, we only require one probe. Otherwise, 
we must examine every slot in the cluster. The  following are the final 
formulas, based on the load factor, for S(h) and U(h) when using linear 
probing. (The derivations are beyond the scope of this text; consult the 
bibliography for a list of references that provide a comprehensive 
discussion of the derivations.) 

$(A) = l ( 1  2 + &) 



8.4 Hashing 253 

Rehashing 

One might think that we could minimize clustering by changing the 
probe offset to a value other than 1 (for example, i). However, we 
just end up with clusters of the form 

s, s + imod  m, s + 2imod m, . . . 
where s is the original hash slot and m is the size of the table. 

T h e  only way we can minimize clustering is to generate the probe 
sequences in a manner that is independent of a key’s primary position in 
the table. We can accomplish this by using a technique called mhashing 
(sometimes referred to as double dashing or secondary hashing). With this 
technique, we use an alternate hashing function to generate an incre- 
ment. We then repeatedly apply the increment to the previous slot address 
until we locate the element or encounter an empty bucket. 

As an example of this technique, recall that for our employee 
database the primary hash function was based on the employee’s 
date of hire. We could develop a secondary hashing function based 
on the employee’s date of birth. That is, we could use the day as 
an increment to scan through the hash table. However, because we 
only rehash once, we must ensure that the secondary hashing algorithm 
generates an increment that will eventually probe mery slot in the 
hash table. As a trivial example, consider what would happen if our second- 
ary hashing function was 

neavpos = oldpos + 2 mod m 

and that our table size m was an even number. T h e  increment gener- 
ated by the secondary function would only probe the even-numbered slots 
in the table. 

In general, to ensure that our probe sequence will reach every 
slot in the table, the secondary hashing function (hmhz(kq)) should return 
a value that is greater than zero and relatively prime with respect to 
m. Specifically, if m and hmhz(kq) share a common divisor d, then 



8 Searching 

if that were the case, then the probe mfd would be the same as the 
first, and we will not visit all the buckets in the hash table. The  way to 
ensure that this will not happen is to choose a table size that is a prime 
number (as we have done, using the value 31, in our example). 
Thus, we can improve the performance of open addressing-based hash 
functions and minimize the effects of clustering. 

Hashing Functions 

The  hashing strategies we discussed earlier are only as good as their 
associated hashing algorithms. We look for two important features 
in a hashing function: It should be easy to compute and it should 
distribute keys evenly over the entire range of the hash table. 

In some cases, applications themselves will suggest a particular 
hashing algorithm-other times we must experiment. If we know, a priori, 
what keys we will process, we can develop a very efficient hashing 
algorithm specific to our needs. This is not typically the case, 
however, and we are thus forced to build generalized functions. In 
the following sections, we will describe several methods. 

Truncation 

The  first method we will discuss is called truncation. Using this tech- 
nique, we selectively ignore parts of the key. This is similar to our first 
example wherein we used the last two digits of customer telephone 
numbers as our hash key. Although fast, truncation typically fails 
to distribute keys evenly. 

Division 

If we have an integer-based key, we can divide the key by the size 
of the hash table and use the remainder as our bucket address. 
Simply put, we can compute the hash slot as 



8.4 Hashing 255 

#define HASH-TABLE-SIZE 'some-value' 

int hash-function( int key ) 

{ 

1 

As mentioned earlier, the distribution of keys depends heavily on 
the value selected for the modulus operation. T h e  best choice is 
a prime number. Thus, do not use a hash table size of 1000; use 997 
or 1009 instead. 

Another concern that we must address is that keys are often alpha- 
betic. However, we can easily convert alphabetic keys into integer 
values using the following formula: 

return( key % HASH-TABLE-SIZE 1;  

i=L 

where L represents the length of the key, c represents characters in 
the original key, and R represents the base (radix) of the character 
set (typical values include 128 and 256). Listing 8.11 contains the 
example function, str-to-int ( ) , which converts string keys 
into integer values. In addition, it shows an example of how we might 
incorporate the function into a hashing algorithm. 

Hashing by this method is simple and fast. However, there is one 
minor consideration. Because it uses division, this technique might be too 
slow on small processors or on machines lacking hardware support for 
arithmetic computations. 

Folding 

One disadvantage of the division method discussed earlier is that some 
string keys may convert to integer values larger than the processor's 
word size. One way to address this problem is to apply a technique 
called folding. 

With folding, we partition the key into several parts and then 
recombine the pieces in some convenient way to reconstruct a key that 
will fit within a given size restriction. (Note that we can also incorporate 



256 8 Searching 

#define RADIX 128 
#define HASH-TABLE-SIZE 1009 

long str-to-int( char key[] 1 
{ 

long i, nkey = 0; 

for( i = 0; key[il != NULL; i++ 1 
nkey = nkey * RADIX + key [il ; 

return( nkey 1 ;  
1 

int new-hash-function( char key[] 1 
c 

1 
return( str-to-int(key1 % HASH-TABLE-SIZE 1; 

listing 8.11 
Function to convert string keys to numeric. 

truncation to eliminate unwanted-r unneeded-omponents of 
the key.) 

To  demonstrate this technique, let’s return to our telephone num- 
ber example. We could partition a number into its area code, exchange, 
and extension. We could then add the pieces together before we 
hashed. For example, we can partition the telephone number 800-555- 
1000 into the segments 800,555, 1000; adding them yields a key value 
of 2355. 

Because all segments have an effect on the resultant key, folding 
typically achieves a greater distribution of key values as compared 
to using truncation alone. As a result, this folding is often chosen in 
lieu of truncation (even in cases where it is not explictly needed). 

7 - v-11: Searching is a common task in computer programs. In many cases, the 
perceived usefulness of an application will be predicated on the speed at 
which it can locate and retrieve information. 

SUMMARY 



8.4 Hashing 

We can improve the performance of searching algorithms by ordering 
the datasets. This allows us to search for elements in a much more intelli- 
gent manner. Examples include binary search, interpolation search, 
and indexed sequential search. 

T h e  complexity of some algorithms is expressed in terms of a recur- 
rence relation. T o  be of practical value, we must transform such complexi- 
ties into their equivalent closed form. 

Another method by which we can store and retrieve data quickly is 
called hashing. T h e  basic principle behind hashing is that the key, 
after undergoing a transformation, points directly to the location of a 
given record. Despite its efficiency, hashing introduces several unique 
problems. First, we must address the problem of collisions. The  two 
major techniques for resolving collisions are chaining and open 
addressing. 

Second, we must develop an efficient hashing function. Specifically, 
the hashing routine must not only be fast, it must distribute keys evenly 
across the entire hash table. 

1. Implement all the searching routines discussed in this chapter. 
Compare execution times and the number of actual comparisons they 
each require. Be sure to vary the size and distribution of your 
test datasets. 

2. Implement a secondary index routine based on the function 
in&-seg ( ) (Listing 8.3). 

3. Design and implement a function that build indexes for sorted 
tables. 

4. Rewrite the binary search algorithm using recursion. Which 
method is faster? 

5. Determine the number of different ways the data 1, 2, 3, . . . , 10 
can be arranged in an ordered binary tree. 

6. Write a recursive function that determines the maximum number 
of comparisons required to locate a record in a given OBT. (Hint: 
Consider the tree’s height.) 

E X E R C I S E S  



258 8 Searching 

7. Design and implement a function that performs an interpolation 
search on ordered arrays. 

8. Compare the execution efficiency of your function from the previ- 
ous exercise with that of binsrch ( ) . Be sure to vary the size 
and distribution of your sample datasets. 

9. While searching for the keys (A, C, M, P, W, 2) on a dataset 
consisting of the alphabet, trace the execution of both the 
interpolation and binary searching techniques. 

10. Design and implement an iterative version of treesrch ( ) . 
11. Discuss the relative advantages and disadvantages of the two major 

collision resolution strategies used in hashing. 

12. Assume a hashing function that returns the last digit of a telephone 
number. Practically speaking, what should be the maximum 
size of our hash table? 

13. Draw the state of a hash table after inserting the following tele- 
phone number keys (in the order presented): 5551212, 5551001, 
5552001, 5552223, 5556001. Assume that we are using a strategy 
of linear probing and that we have, as a hashing algorithm, a function 
that returns (as an integer) the last digit of the key. Count the 
number of probes each key requires. 

14. Repeat the preceding exercise, but this time assume we are us- 
ing chaining. 

15. Implement the modified sequential search algorithm introduced 
in Listing 8.10. 

16. Design and implement a deletion function for coalesced chaining. 

17. Assume a hashing implementation that uses coalesced chaining, 
and design and implement a function that reorganizes all the keys 
after a deletion. 

18. Design and implement a deletion function for linear probing. 



Sorting Technipes 

9.1 I NTRO DUCT1 0 N 

In this chapter, we will focus our attention on the design and imple- 
mentation of efficient sorting techniques. Sorting is the process whereby 
we arrange data (records) based on some sorting criteria (rules). Sorting 
criteria range from the obvious (alphabetical, numerical, etc.) to the not 
so obvious (some disk controllers prioritize 1/0 requests based on the 
proximity of the data blocks with respect to the current position 
of the drive’s read/write head). 

Records are usually ordered based on their key values. Note that 
keys may be complex (spanning several fields) and the sorting criteria 
may specify more than just one key (e.g., sort by last name, then by 
first name). We refer to the additional sort keys as subkeys. 

There are several important attributes that we must consider when 
discussing sorting algorithms: 

Execution time Determine an algorithm’s complexity and compare 
it to the complexity of other sorting algorithms. Moreover, 
determine if the algorithm’s performance is affected by the compo- 
sition (the relative order) of its dataset. For example, some 

259 

C H A P T E R  9



260 9 Sorting Techniques 

Initial state: 5 4 1 3 2 

Afterlstpass: 4 1 3 2 5 

After2ndpass: 1 3 2 4 5 
Figure 9.1 
Bubble sort example. After3rd pass: 1 2 3 4 5 

sorting routines perform efficiently when the data are sorted (or 
nearly so); others perform poorly. 

Space requirements Can the algorithm sort in place or does it require 
additional storage? Optimally, we would like an efficient algorithm 
that does not require additional space. 

Does the algorithm preserve the original order of records 
with equal keys? For example, two distinct records could have 
the same key (e.g., Smith, John). In such cases, a sorting routine 
could position them in any order relative to each other. If the 
algorithm preserves their original order-that is, the order in which 
they appeared in the input stream-it is considered stable. 

Stability 

The  sections that follow discuss a number of sorting techniques. 

9.2 BUBBLE SORT 

One of the most direct methods of sorting is a bubble SOKL We can 
describe the technique as follows: 

Step through an array of unsorted elements, comparing adjacent 

If they are out of order, switch them. 
When you complete an entire scan without switching any ele- 

cells. 

ments, the data are sorted and processing may terminate. 

Figure 9.1 illustrates a bubble sort making several passes over a 
dataset. The  function begins by comparing key, with key2, then keyz 
with key3, and so on. After the first pass completes, the largest element 
is in its final position; after the second pass, the second largest element 
is in its final position. This is how the technique derives it name: 
During the first pass the largest element bubbles to the top; during 



9.2 Bubble Sort 261 

void bbl-sort ( i n t  data[], i n t  no-elems ) 

c 
i n t  top, flag, tmp, i; 

top = no-elms; 
do I 

flag = 0; 
top-- ; 
for(  i = 0 ;  i < top; i++ ) {  

if ( data[il > data[ i+ lI  ) { 

tmp = data[i l ;  
dataCil = dataCi+11; 
d a t a [ i + l l  = tmg; 
flag++ ; 

1 
1 

1 while( flag > 0 1 ;  
1 listing 9.1 

Bubble sort algorithm. 

the second pass the second largest element bubbles into position; and 
so on. Processing continues in this manner until all elements have been 
moved into their final position. It might require a moment’s reflection 
to convince oneself that the technique indeed works. 

An example of this sorting technique appears in Listing 9.1. The  
function bbl-sort ( ) requires two arguments: the array to sort 
and its size. T h e  outer do loop controls execution. That is, the function 
will iterate until the inner loop makes a pass without swapping 
any elements. This is indicated by the value stored in the variable 
flag. T h e  inner loop does most of the work; it steps through each 
cell of the array, swapping adjacent elements as required. 

Analysis 

T h e  inner loop executes n times, once for each element of the array. 
In the worst case, the outer loop will also iterate once for each element. 
This yields a complexity of O(n2). Average-case behavior of 



262 9 Sorting Techniques 

Initial state: 4 2 5 3 1 

ls tpass:  1 2 5 3 4 

2ndpass: 1 2 5 3 4 

Figure 9.2 3rd pass: 1 2 3 5 4 
Selection sort 
example. 4th pass: 1 2 3 4 5 

bbl-sort ( ) is predicated on its input. For example, if the data are 
sorted, then only one pass is required. However, it turns out that the 
average-case behavior of this algorithm is only slightly better than 
the worst-case behavior and still yields a complexity of O(n2). (The 
actual analysis is beyond the scope of this text.) Also note that, 
because it never exchanges the positions of equal keys, bbl-sort ( ) 

is a stable sorting algorithm. 

9.3 SELECTION SORT 

Another simple sorting method is called selection son'. The  idea behind 
this technique is as follows: 

Search the data array for the smallest element. 
Exchange that element's position with the element in slot 1. 
Now locate the second smallest element and exchange its position 

Continue in this manner, searching for each successive element, 
with the element in slot 2. 

until the entire array is sorted. 

Obviously, the algorithm derives its name from the fact that it selects 
the element it will position during each pass through the array. 

Figure 9.2 depicts several passes of the algorithm on a sample 
dataset. During the first pass, the function identified the element 
1 as the smallest and switched its position with that of element 4. No 
exchange occurred during the second pass because element 2 was 
already in its final position. 

same element several times. This is highlighted in passes 1 and 
Note that, by virtue of its design, selection sort may move the 



9.3 Selection Sort 263 

void sel-sort( int data[], int no-elems ) 

{ 
int i, j, min, tmp; 

for( i = 0; i < no-elems; i++ ) {  

min = i; 
for( j = i+l; j < no-elems; j++ ) 

if ( data[jl < data[minl ) 

min = j; 
tmp = data[i]; 
data [il = data [minl ; 
data[min] = tmp; 

1 
1 

listing 9.2 
Selection sort 
algorithm. 

4, where the function repositions element 4 during both passes. How- 
ever, the algorithm will only perform, at most, one exchange during 
each pass. 

Listing 9.2 contains the code for the function sel-sort ( 1. Its 
two arguments indicate the data array and its size. During each 
iteration of the outer loop, the inner loop locates the smallest remaining 
element and saves its index in the variable min. The  actual ex- 
change occurs when the inner loop terminates. Note that as the outer 
loop moves through the list, the low-order elements (i.e., index values 
less than i) are in sorted order. 

Analysis 

The  outer loop iterates n times; with each iteration of the outer loop, 
the inner loop performs a comparison for each unsorted element. 
This yields a complexity of O(nZ). Due to its design, the function’s 
behavior remains constant regardless of the composition of its 
dataset. Thus, the average-case complexity is also O(nz). sel-sort ( ) 
is not a stable algorithm. That is, during the exchange, the relative 
position of equal keys can be reversed. 



264 9 Sorting Techniques 

Initial state: 4 2 3 1 5 

Istpass: 2 4 3 1 5 

Figure 9.3 2nd pass: 2 3 4 1 5 
Insertion sort 
example. 3rd pass: 1 2 3 4 5 

One other point. As noted earlier, only one exchange takes place 
with each iteration of the outer loop. Thus, despite its simplicity 
and somewhat poor performance, sel-sort ( 1 is useful for datasets 
with large records and small keys. 

9.4 INSERTION SORT 

Another straightforward method of sorting is called insertion serf. This 
sorting method can be likened to the way some people arrange a 
hand of playing cards. T o  begin, the first card is placed into the hand. 
Then, as each successive card is received, it is inserted into the 
hand in order. The  player makes room for each new card by shifting 
cards of higher value to the right. 

We can mimic this sorting technique in a computer program (see 
Fig. 9.3). The  element in slot 1 of the array will serve as the first card. 
New elements are dealt by scanning the array from slots 2 to n. We 
then determine where the new element belongs and insert it into the 
hand (i.e., the low-order portion of the array). 

Listing 9.3 contains the code for the function ins-sort ( 1. Its 
outer loop, which selects elements for insertion, indexes from 1 
to no-elems - 1. Note that we initialize i to the value 1; thus, the 
element in slot 0 serves as the initial card. The  actual insertion 
takes place in the inner loop. This section of code scans the already 
sorted portion of the array (i.e., the low-order indices) in reverse order, 
shifting elements to the right as required. This both determines the 
correct location of, and makes room for, the new element. When the inner 
loop terminates, the function stores the new element into the vacated 
slot. Note that like sel-sort ( ) , the low-order elements are sorted; 
however, unlike sel-sort ( ) , this algorithm may move (shift) ele- 
ments several times. 



265 

void ins-sort( int data[], int no-elems ) 

{ 
int i, j, tmp;  

fo r (  i = 1; i < no-elems; i++ I {  
tmp = data[il; 
j =  i - 1; 
while( (data[jl > tmp) && (j >= 0 )  

data[j+ll = dataljl; 
; j -- 

I 
data[j+lI = tmp; 

I 
I 

listing 9.3 
Insertion sort 
algorithm. 

Analysis 

It should be obvious that ins-sort ( ) is stable. Specifically, the 
while loop does not move equal keys across each other. 

As with the preceding algorithms, ins-sort ( ) has both worst- 
case and average-case complexities of O(n2). However, observe 
that when the dataset is ordered (or nearly so), it performs compara- 
tively few shifts. As a result, it can be the algorithm of choice for applica- 
tions that must add new elements to preexisting, sorted lists. 

At this point you might be wondering whether O ( d )  is the fastest 
we can sort. T h e  sections that follow address that issue and discuss 
more efficient sorting techniques. 

9.5 QUICKSORT 

We will begin our discussion of advanced sorting techniques with one 
of the most popular sorting algorithms: quicksort (also called partition sort). 
Quicksort was originally developed in 1960 by C. A. R. Hoare and has 
been studied, analyzed, and ‘tweaked’ ever since. We begin our discussion 
with a description of the basic algorithm; we will then address several 
improvements and extensions. 



266 

Figure 9.4 
Quicksort example. 

9 Sorting Techniques 

/Partitioning element 
Initial state: 4 7 3 5 2 1 6 

After lstpass: 3 2 1 4 7 5 6 

2nd pass: 

lstsubarray 3 2 1 
2nd subarray 7 5 6  

Unfortunately, quicksort has no real-life analogue from which we 
can derive a pedagogical metaphor. We are compelled, therefore, 
to jump right in. So let’s begin with a brief overview of the algorithm 
(assume n is the size of our data array): 

Select one element, x, from the array. We will refer to this element 
as the partitioning element for reasons that will become clear 
shortly. (Initially, the choice of partitioning element will be arbi- 
trary; we will discuss and refine the selection criteria later.) 
Determine the final position of x in the sorted array. For now 
assume it is some location data[i]. 
Rearrange all the other elements of the array such that all elements 
in slots data[O] through data[; - 11 are 5 x, and all elements 
in slots data[i + 11 through data[n] are 2 x. 

data[i - 11 and data[i + 11, . . . , data[n] until all elements are sorted. 

Figure 9.4 provides an example. During the initial pass, the func- 
tion arbitrarily selects the element in array slot 0 (value 4) as the 
partitioning element. When the first pass completes, this element is 
in its final position and the function can proceed with recursive 
calls on the two subarrays. 

If you consider the problem at all, it quickly becomes obvious 
that the most difficult task is determining the final position of the parti- 
tioning element. Specifically, how can we determine the final position 
of some element x unless we sort the entire array? After a moment 
of reflection you might observe that we do not need to sort the array 
to determine x’s final position. All we need to know is the number of other 

Recursively apply the algorithm on the two subarrays data[O], . . . , 



9.5 Quicksort 267 

/Partitioning element 

Initial state: 15 6 9 21 .... 4 19 

During Istpass: 15 6 9 21 .... 4 19 

/- Yi 
Figure 9.5 
Quicksort: Partitioning 
the elements. 

Afterexchange: 15 6 9 4 .... 21 19 

i 
. / "" ---l 
I 

elements that will be positioned either above or below x in the array. 
It then becomes a simple calculation to determine x's final location. 

At this point, you are probably ready to start coding: Select a 
partitioning element x, count the number of elements less than x, 
move x into its final position, and recursively process the two subarrays 
on either side of x. We have, however, one more problem. When 
it processes each subarray, the function assumes that the values they 
contain are logically positioned. That is, all values in the left subarray are 
I x; all values contained in the right subarray are 2 x. Once the 
partitioning element is in position, there is no provision for moving 
elements between the newly created subarrays. Therefore, we cannot 
position x without also rearranging the other array elements. 

The  solution to this problem is the very heart of the quicksort 
algorithm. Consider the following scenario: Select two index vari- 
ables i and j .  Simultaneously, move i through the array from left to 
hght (i.e., from 0 to n), and movej  through the array from right to left (i.e., 
from n to 0). When i encounters a condition where data[zl > x a n d j  
encounters a condition where data[jl < x, exchange elements (i.e., 
data[#] w datab].) T h e  function continues in this manner until the 
indices cross (i.e., w h e n j  5 i). This ensures that all elements are 
partitioned correctly. Thus, when x is finally positioned, all elements 
< x will be positioned below x in the array, and all elements > x 
will be positioned above x in the array. See Figure 9.5 for an example. 

Note that the elements, as they are rearranged, are not sorted. 
Rather, the algorithm decides whether to reposition elements 
based solely on their value relative to the final position of the parti- 
tioning element. Sorting only occurs as a result of recursively reapplying 
the algorithm on all subarrays. 



268 

listing 9.4 
Quicksort algorithm. 

9 Sorting Techniques 

void gck-sort( int data[], int lo, int hi ) 

{ 
int i, j, tmp, part-elem; 

if( hi > lo ) {  

part-elem = data [hi] ; 
i = 10-1; 
j = hi; 
while( 1 ) {  

while( data[++il < part-elem ) 

while( data[--jl > part-elem 1 

if( i >= j ) 

; 

; 

break; 

tmp = datalil; 
data[il = data[jl; 
dataljl = tmp; 

1 

tmp = datalil; 
datalil = datalhil; 
data[hi] = tmg; 

gck-sort( data, lo, i-1 ); 

gck-sort( data, i+ 1, hi 1; 
1 

1 

We are now ready to implement the basic algorithm. As presente'd 
in Listing 9.4, the function gck-sort ( requires three argu- 
ments. The  first points to the data array and the latter two are, respec- 
tively, its lower and upper bounds. (The need for an index to track 
the lower bound will be made clear shortly.) The  initial call sets these 
values to 0 and n respectively (the size of the array). Note that, 



9.5 Quicksort 269 

when using languages that support zero-based arrays (e.g., C), we must 
set hi to n - 1 (i.e., the index of the high-order slot). 

T h e  initial if statement is a sanity check to ensure that 
gck-sort ( ) was invoked with reasonable arguments. T h e  function then 
selects the partitioning element (data [hi] ) and initializes its index 
variables. The  outer while ( 1) statement is an infinite loop that 
drives the main body of the function. Contained in that loop are two 
nested while loops. Their purpose is to step their respective index vari- 
ables through the data array searching for elements that need reposi- 
tioning. When the inner loops terminate, the function tests whether i 
and j have crossed. If they have, the outer loop terminates; 
gck-sort ( ) then repositions the partitioning element and recursively 
invokes itself on the two newly created subarrays. If i and j have not 
crossed, the function swaps elements in positions data i 1 and 
data [ j ] and continues with the next iteration of the outer while 
loop. 

Analysis 

Let’s begin with the average-case analysis of quicksort. Assume a 
random dataset of size n. T h e  time required to partition elements 
is O(n) (linear). Each time we partition a subarray, we create two 
additional subarrays. If we assume that each partition will generate 
subarrays of about the same size (e.g., n/2) ,  the overall complexity of 
quicksort can be expressed by the following recurrence relation: 

Based on our discussions in Chapter 8, the closed form of this recur- 
rence relation is 

f ( n )  = n log, n 

Thus, quicksort has an average-case complexity of O(n log, n). 
For quicksort, the worst case occurs when the data are sorted (or 

nearly so). Each recursive call would only sort one element. T h e  
function would thus require n recursive calls, each requiring O(n) time 
to partition the elements. This yields an overall worst-case complexity of 



270 9 Sorting Techniques 

O(n2). In the sections that follow we discuss simple ways to ensure 
that quicksort will not encounter the pathological case. One final point: 
It should be obvious that quicksort is not a stable sorting method. 

Improvements to Quicksort 

Remove Recursion 

As you may recall from Chapter 4, all recursive algorithms have an 
equivalent iterative solution. Thus, the first improvement we can 
make to quicksort is to tranform the basic algorithm from recursive 
to iterative. 

The  driving loop of this new function will use a stack to track 
unprocessed subarrays. The  values pushed and popped will be 
the upper and lower bounds of each subarray; initially, the stack con- 
tains values denoting the entire array. 

With each iteration of the loop, the function 

Pops a subarray off the stack 
Processes it (as discussed earlier) 
Pushes the two resulting subarrays onto the stack. 

The  function terminates when the stack becomes empty. 

Secondary Sorting Routine 

For our next improvement, consider that regardless of the size of the 
original array, quicksort will ultimately begin processing small subarrays. 
(We will define small shortly.) In a recursive solution, the overhead 
required to process these small subarrays is obvious. However, iterative 
versions of the algorithm will also be affected by this overhead. 

This begs the obvious question: How can we minimize the impact 
of, small subarrays? Approaching the problem directly, you might try opti- 
mizing quicksort for small arrays. However, let’s be more clever. In- 
stead of trying t o j x  quicksort, let’s just choose another algorithm. T h e  
idea is that when subarrays become smaller than some given size m, 
we will employ a secondary sorting algorithm. 

Two questions now arise: Which algorithm should we use? And 
what are suitable values for m? Let’s begin with the first question. 
Observe that as a result of the partitioning that has taken place, ele- 



9.5 Quicksort 271 

ments in subarrays are close in value. Thus, we would want to use 
an algorithm that works efficiently on datasets that are nearly sorted. 
As noted earlier, ins-sort ( ) works well in such cases and is an appro- 
priate choice here. As for the second question, an exact value for m 
is implementation dependent. However, it need not be perfect. Versions 
of quicksort modified in this manner will perform approximately the 
same for values of m in the range of 10 to 25. 

We can carry this idea one step further. Quicksort does not need 
to invoke the secondary sorting routine for each subarray of size < m. 
Consider that if each subarray is nearly sorted, then the entire set of 
subarrays of size < m is also nearly sorted. We can modify quicksort to 
ignore all small subarrays during its partitioning phase. That is, it will 
not invoke any sorting routine whatsoever. When it completes the 
partitioning phase, quicksort can then invoke the secondary sorting 
routine just once and have it complete the sort for the entire array. 

Median-of-Three Partitioning 

T h e  final improvement we will discuss focuses on the selection of the 
partitioning element. In our complexity analysis, we noted that quicksort’s 
performance degrades when its dataset is already (or nearly) sorted. 
This problem is a direct result of repeatedly using the same relative 
element for array partitioning. 

For example, consider a case in which quicksort is processing a 
dataset that is already sorted. With each recursive call, the function 
selects data [hi] as its partitioning element. Based on this selection, 
the function will partition the array into two subarrays: one of size l o  to 
hi-1 and one of size 0. In effect, the function creates only one 
subarray for each element because there are no elements greater than 
data [hi]. This causes the performance to degrade toward O(n2).  

We could be assured of better overall performance if we could 
improve the selection of the partitioning element. Specifically, the 
closer the partitioning element is to the middle of the array, the better 
the function will perform. A first suggestion might be to use a random 
number to select a partitioning element. However, the cost associated 
with a pseudo-random number generator might be prohibitive. 

A better solution is a technique referred to as median-ofthree parti- 



272 9 Sorting Techniques 

Figure 9.6 
Example heap. 

tioning. This method calls for the function to select the partitioning 
element from a set of three: data [lo], data [middle], 
data [h i ] .  Specifically, the algorithm selects the median of those 
three elements based on key value. This technique is an inexpen- 
sive way to ensure that the partitioning element is not located at either 
extreme of the array. 

Final Remarks 

The  three modifications we have discussed can result in a 20% to 30% 
overall improvement in the performance of quicksort. There have 
been a number of other improvements suggested (e.g., median-of- 
five), but they result in only a marginal gain in performance. That is, the 
improvement in performance is not commensurate with the added 
complexity. 

9.6 HEAPSORT 

The  next sorting method we will discuss is called heapsorl. This algo- 
rithm derives its name from the data structure it employs. Before we 
discuss the sorting technique itself, let’s take a look at its data structure. 

A Reap is a complete binary tree with the property that the key 
associated with any given node n is greater than the keys of its 
children. Figure 9.6 provides an example. 



~ 

9.6 Heapsort 273 

Figure 9.7 
Binary tree prior to 
heap. D 

A heap has many uses; one of the most common is to implement 
priority queues. Referring back to Figure 9.6, we see that the 
element positioned at the root always has the highest priority. This 
can be a convenient way for applications-such as a print spooler-to 
schedule prioritized tasks. 

When we remove an element from a heap, we must re-heap the 
tree. That is, one of the deleted node’s children (the greater) will become 
the new parent; one of that node’s children will replace it; and so on. 
Thus, implementing a heap is a two-stage process. Initially, we must 
transform a complete binary tree into a heap. Then, as elements are 
inserted and removed, we must maintain the integrity of the heap. 

Let’s take a closer look at the process of transforming a complete 
binary tree into a heap. Consider the tree depicted in Figure 9.7. T o  
transform it into heap, we would have to switch node D with node B; 
once moved, we would again need to switch node B with node A. Although 
simple in theory, this technique has one shortcoming in that a child 
cannot easily access its parent. One solution is to add back pointers to 
each node. However, this treats a symptom, not the problem. A better 
solution is to use an array. Recall from Chapter 6 that when using an array 
implementation of a binary tree, the children of any node i are located 
at 2 i  and 2i  + 1; its parent is located at Lila]. Thus, via simple 
formulas, we can reference any node’s parent and children. 

In Chapter 6 we also noted one negative aspect of using arrays to 
implement trees. T h e  problem concerned sparse trees and the program- 
ming difficulties associated with the empty array slots. However, by 
definition, a heap is based on a compiete binary tree, which guaran- 
tees that there will be no empty slots within the array. 



274 9 Sorting Techniques , 

void buildheap( int data[], int size ) 

I 
int i; 

for( i = size/2; i >= 0; i-- 1 
fom-heap( data, i, size ) ;  

1 

void form-heap( int data[], int lo, int hi ) 

I 
int trnp, desc; 

if( 2*(10+1)-1 > hi ) 
return; 

/ *  Nothing to do * /  

if( (2*(10+1)) <= hi && data[2*(lo+l)l > data[2*(lo+l)-ll 

else 
desc = 2 * (lo+l); / *  Right Child * /  

desc = 2 * (lo+l) - 1; / *  Left Child */  

if( data1101 < data[descl ) {  
tmp = data[lol; 
data[lol = data[descl ; 
data[descl = tmp; 
fom-heap( data, desc, hi ); 

1 
1 

listing 9.5 
Functions to create a heap. 

T o  transform a binary tree into a heap, start at the end of the 
array and move up toward the root, switching elements as required. T h e  
code appearing in Listing 9.5 automates this task using two functions: 
f om-heap ( ) and buildheap ( ) . 

The  function f om-heap ( ) takes three arguments: a pointer to 
the data array and two integer variables that delineate its lower and upper 
bounds. Its task is to form a heap beginning at element lo. The  first 



~ 

9.6 Heapsort 275 

if statement determines whether l o  has any children; the func- 
tion returns immediately l o  it has none. T h e  function then decides 
which child to process-the greater of the two-and assigns its index to 
desc. Then, if the child is greater than its parent, it switches the two 
elements and invokes itself recursively to continue the process at the next 
level in the tree. Note that form-heap ( ) assumes that if no switch 
is required, the rest of the tree below this point is already in heap form. 
Keep this in mind as we discuss buildheap ( ) . 

T h e  function buildheap ( ) is the driving routine for 
f om-heap ( ) . It requires two arguments: the array and its size. Its 
one loop begins by calculating the middle of the array. Then, 
while decrementing its control variable, the function iteratively in- 
vokes form-heap ( ) with i as its middle parameter (i.e., 
f om-heap ( ) ' s  l o  argument). This means that from node i through 
all of i's descendants, the tree will be formed into a heap. Again keep in 
mind that f om-heap ( ) will terminate as soon as it identifies a case 
where the parent is greater than both of its children. The  entire 
array is in heap form when buildheap ( ) terminates. 

sort. Consider that a$er the initial heap of the array, the largest element 
is in the root positioh. If we were to remove that element and re- 
heap the tree, the stcond largest element would now be in the root 
position. We could broceed in this manner until we had processed all 
elements. 

Note that the process we just described sorts elements in reverse 
order. We could make quick work of this problem by simply in- 
verting the heap. However, this solution does not address one other 
problem: Where should we store the records as we remove them 
from the heap? We could create and maintain a separate array, but 
that is wasteful. 

As an alternative, consider that when we remove the root node 
from the heap, the tree has one less element. After we re-heap, 
we can reuse this otherwise empty slot to store the removed element. 
We continue in this manner with each successive element; when the 
processing completes, the entire array will have been sorted in place. 

We can now formalize our presentation of the heapsort algorithm: 

These two fundtions can now serve as the foundation for a heap- 

1. Build the initial heap. 
2. Exchange the root node with the (current) last node of the array. 



276 

void heap-sort( int data[], int size ) 

{ 
int tmp, i; 

I buildheap( data, size 1 ;  
I 

for( i = size; i > 0; i-- ) {  

I 
tmp = dataI01; 
data101 = data[il; 
data[il = trnp; 
fom-heap( data, 0, i-1 1 ;  

1 
1 listing 9.6 

Heapsort function. 

9 Sorting Techniques 

Analysis 

Initially (via buildheap ( ) ), f om-heap ( ) is called once for each 
node that has a child: O(n). In heap-sort ( ) , fom-heap ( ) is called 
n - 1 times with a maximum depth of hog& + 1)1. As a result, the 
overall complexity becomes O(n log, n). Note that, because of the 
way the heap is formed, heap-sort ( ) is not naturally stable. 

9.7 MERGESORT 

The  final sorting technique we will study is called mergesort. As its 
name implies, merging plays a major role in this sorting algorithm. Merging 
is the process by which we combine two (or more) datasets into one. 
For example, consider two sorted arrays: A of size m, and B of size 
n. Merging these two datasets would create a third sorted array-C of 



9.7 Mergesort 277 

merge( C, A, B, m, n ) 
I 

i = 1; 
j = 1; 
k = 1; 

/ /  Index into array A 
/ /  Index into array B 
/ /  Index into array C 

while( i <= m and j <= n ) {  
if( A[il <= BCjl 1 

C[k++l = A[i++l; 
else 

C[k++l = B[j++l; 
1 

if( i <= m ) / /  Process remaining elements 
while( i <= m 1 

C[k++l = A[i++l; 
else 

while( j <= m ) 
C[k++l = B[j++l; 

1 

listing 9.7 
Merging algorithm-pseudo-code. 

size nz + n-that contains all elements from both arrays. Listing 
9.7 presents a pseudo-code description of such an algorithm. 

The  function merge ( ) begins processing by initializing its control 
variables. With each iteration of the initial while loop, the func- 
tion selects and stores into C the next largest element from A or B; it 
then advances control variables as appropriate. Note that the first loop 
terminates when one of the control variables reaches the end of its 
corresponding array. Therefore, merge ( ) must determine which array 
has not been exhausted and then copy all of its remaining elements 
into C. 

T o  understand how merging can help us sort, we need to alter 
our view of array storage temporarily. Just for a moment, imagine an array 
not as a set of elements, but rather as a set of adjacent subarrays. For 



278 

Figure 9.8 
Mergesort example. 

9 Sorting Techniques 

Initial state: 

After 1st pass: 

After 2nd pass: 

After 3rd pass: 

Final pass: 

example, we could view an array of size n as n adjacent arrays of 
size 1. 

Obviously, if the subarrays are of size 1, they are, in effect, sorted. 
Now consider what would happen if we were to merge adjacent 
pairs of subarrays. This would create adjacent subarrays of size 2 (also 
sorted). We could repeat this process to create adjacent subarrays 
of sizes 4, 8, and so on. Eventually, we would reach a case where only 
two subarrays remain; when we merge these, the entire array is 
sorted. Figure 9.8 illustrates this process. 

Implementation 

Our first task is to modify the function merge ( ) .  Previously, it re- 
quired two separate source arrays. We will now modify it so that 
it will merge adjacent subarrays within the same array. Listing 9.8 
contains the code for the modified algorithm. Note that in this 
version, merge ( ) requires five arguments: The  first two are the des- 
tination and source arrays; the latter three are index variables that 
denote which adjacent pair of subarrays to merge in the source array. 

Listing 9.9 contains two other functions that complete the imple- 
mentation of the mergesort algorithm. The  first, mrgsass ( ) , is 
the function that drives merge ( ) . It is invoked with four arguments: 
The  first two are the arrays (destination and source); size is the size of 
the array and len is the length of the subarray for each pass. The  
function divides the array from [ ] into subarrays of size len and invokes 
merge ( ) once for each adjacent pair. Take note of the special proc- 



9.7 Mergesort 279 

void 
merge( int to[], int from[], int low, 

{ 

int mid, int high ) 

int ilow, ihigh, ito; 

ilow = ito = low; 
ihigh = mid + 1; 
while( ilow <= mid hh ihigh <= high ) { 

if( from[ilow] < from[ihighl ) {  

to[ito] = from[ilowl; 
ilow++ ; 

to[ito] = from 
ihigh++ ; 

1 else { 

1 
ito++ ; 

1 

ihigh] ; 

while( ilow <= mid ) 

to [ito++ 1 = from[ilow++ 1 ; 

while( ihigh <= high ) 

to[ito++] = from[ihigh++l; 
1 listing 9.8 

Mergesort algorithm. 

essing for cases where the from [ ] array cannot be partitioned into an 
even number of subarrays. 

The  second function, mrg-sort ( ) , is the driving routine for the 
entire mergesort algorithm. It is invoked with two arguments: the 
array to sort and its size. Its driving loop calculates the length of the 
subarray and calls mrgjass ( ) . 

Note that during each iteration of its while loop, mrg-sort ( ) 

calls mrggass ( ) twice, alternating the first two arguments. That is to 
say, during the first call mrggass ( ) sorts from data [ I into tmp [ I ; 
the second call reverses that order. This saves the time that we would 



280 9 Sorting Techniques 

void 
mrggass( i n t  t o [ ] ,  i n t  from[], i n t  s ize ,  i n t  len ) 

while( low < s i z e  - 2*len ) { 

merge( to ,  from, low, low+len-1, low+2*len-l ); 

low += 2 * len; 
1 

i f (  low+len-1 < s ize  ) {  

1 else { 

merge( to ,  from, low, low+len-1, s i z e  ); 

while( low <= s ize  ) { 
tollowl + from[lowl; 
low++ ; 

1 
1 

vo-l mrg-sort ( 

c 
i n t  

n t  da ta [ ] ,  ,at s ize  

t m g [  2048 1 ;  
i n t  len = 1; 

/* malloc */ 
/* len of subfile */ 

while( len < s ize  ) { 

mrggass(  tm, data, s i z e ,  l e n  ); 

len *= 2; 
mrggass(  data, tmp, s i z e ,  len );  
len *= 2; 

1 
1 

listing 9.9 
Mergesort algorithm. 



9.7 Mergesort 281 

otherwise spend copying elements from tmp [ I back to data [ 1 after 
each pass. 

One final note: In this version, mrg-sort ( ) allocates auxiliary 
storage statically (i.e., int t m g  120481 ). A more practical ap- 
proach would be to allocate the additional storage dynamically using 
a function similar to malloc ( ) . (Refer to Chapter 5 for a more detailed 
discussion of this topic.) 

Analysis 

As depicted in Figure 9.8, mergesort requires several passes: 

Pass No. Subarray Size 

1 1 
2 2 
3 4 

j t h  2'- 1 

This yields a total of hog, nl passes. Each call to merge ( ) re- 
quires one scan of the array O(n). Thus, the overall complexity of 
mergesort is O(n log, n). Note that the function requires additional 
space proportional to n. 

during merges. Thus, we can ensure that the relative position of 
the keys remains unchanged during processing. 

T h e  algorithm is also stable. T h e  function only moves records 

7 - V'D I .  : There is a wide variety of internal sorting techniques available to 
programmers. They range in complexity from O(n log, n) to O(nz). In 
addition, they vary with respect to storage requirements and stability. 

Many sorting algorithms are affected by the organization of their data- 
sets. Some perform well when the data are (nearly) sorted; others 
do not. As a result, the behavior of sorting algorithms is expressed 
using two complexities: worst case and average case. 

One of the most popular sorting algorithms is called quicksort. Al- 
though comparatively efficient, its complexity can be improved using 
simple modifications. It also has the virtue of sorting data in place. 
Two other popular techniques are called heapsort and mergesort. 

SUMMARY 



282 9 Sorting Techniques 

1. We can improve the performance of the bubble sort algorithm by 
eliminating unnecessary comparisons. For example, consider 
an array of 50 elements. If during one scan of the array the last 
exchange occurred at location 35, we can assume that slots 36 
through 50 are sorted. Therefore, the function can terminate the 
next pass at slot 34. Add the necessary code to the function 
bbl-sort ( ) to implement this feature. Compare the new algo- 
rithm’s performance to that of the original. 

2. How does the function qck-sort ( ) (Listing 9.4) put an end to 
its recursion? 

3. At the end of its outer while loop, the function qck-sort ( ) 

exchanges the partitioning element (data [hi] ) with data [il . Ex- 
plain why we can place the partitioning element a t  the ich location. 

4. Implement both the secondary sorting routine and the median- 
of-three improvements to the basic quicksort algorithm. 

5. Modify your function of the previous exercise to use a pseudo- 
random number generator, rather than median-of-three parti- 
tioning, to select its partitioning element. Compare the performance 
of the two functions. 

6. Which of the algorithms in this chapter are stable? Which are not? 
Provide example datasets to support your claims. Are your 
answers implementation dependent? If so, provide examples. 

7. Analyze the behavior of all the sorting algorithms presented in 
this chapter when presented with sorted data. Perform the same analy- 
sis for datasets sorted in reverse order. 

8. Implement a recursive version of the quicksort algorithm that uses 
a selection sort for small subfiles. Use an array size of 1000. 
Begin with M = 15 as your performance metric; then vary its 
value and note the results. 

9. Carry out the same tasks as described in the previous exercise on 
an iterative implementation of quicksort. Compare your results. 

E X E R C I S E S  



9.7 Mergesort 283 

10. Consider a complete binary tree wherein the data value for each 
node is equal to its index. Is this tree a heap? 

11. Given an array containing the values 10, 9, . . . , 1, show the state 
of the heap after the initial call to buildheap ( ) . 

12. Design and implement a version of mergesort that sorts in place. 

13. Write a general-purpose routine to insert and delete elements in 
a heap. 



Acrostic PZGXX Ze 
A P P E N D I X  

In Chapter 4, we briefly described a backtracking algorithm that solved 
acrostic puzzles. In this appendix, we undertake a more thorough examina- 
tion of the program. 

Simply stated, an acrostic puzzle is a crossword puzzle without 
the clues: You are supplied the words and the diagram and, through 
trial and error, you must enter all the words into their appropriate slots 
(see Fig. A.l). We urge you-if you are not familiar with these 
types of puzzles-to try solving one manually before reading on. 

Before we can describe an automated solution, we need to address 
some basic details. First, we must develop a way to input a puzzle descrip- 
tion to our program. T o  simplify this example, we will place puzzle 
descriptions in files (the format of which will be described later). 
Thus, to invoke our program, we will type a command similar to 
the following: 

kross guzzle-file 

The  puzzle description file is divided into two sections. Section 
I contains the layout of the puzzle. As depicted in Figure A.2, it 
begins with a line that contains the identifying string @guzzle. Fol- 
lowing that, there is a series of l ines-one for each row of the puzzle- 
that contain a combination of blanks and dashes. These characters 
represent the black boxes and the character locations of the puzzle, 
respectively. Note that you must ensure that all puzzle-description 
lines are of equal length (the program checks for this). 

Section I1 of the puzzle description file begins with a line con- 
taining the identifying string @words (refer to Fig. A.2). Immediately 
following begins the list of words, one per line, that the program will 

284 

a



Appendix A 285 

BEST 
ERA 
TAMP 
TO 
TOPS 

Figure A.l 
A sample acrostic 
puzzle and solution. 

@puzzle 

x-x- 

-M- 
_ _ - -  

@words 
best 
tamp 
tops 

Figure A 2  era 
Sample input file. to 

Solution 
(b)  

(Section I) 

('x' = Blank) 

(Section II) 

insert into the puzzle. You may enter words in any order. However, take 
the time to ensure that all words are spelled correctly. T h e  program, 
as you might expect, is rather unforgiving in this regard. 

T h e  overall operation of the program is as follows: 

Read the puzzle and word list into internal data structures. 
Attempt to find a solution for the puzzle. 
If there is a solution, print it. 

Figure A.3 contains sample program output for the puzzle pre- 
sented in Figure A.2. 

Let's begin our analysis of the program by examining its data 
structures. T h e  program uses a two-dimensional character array, 
called guzzle [ I [ I  , to store the internal representation of the puzzle. 
T h e  array is initialized by the function readguz ( ) as it scans Section I 

best Figure A.3 
Sample program tamp 

xrxo 

output. OMS 

('x' = Blank) 



286 Appendix A 

of the description file. By convention, a hyphen (-) represents a charac- 
ter location; a blank denotes a black box. 

After loading the diagram, readpuz ( ) reads and stores the word 
list into a structure array called list [ 1. Each element of this array 
represents words of the same length. The  words themselves are stored 
in a subarray referred to by the simple appellation w, which is an array of 
type struct words. Each element of this structure contains two 
members: 

word 
flag 

This is a character array that holds the actual word. 
This is a status field that indicates the state of the word (i.e., 

used, free, etc.). 

As an example of how the program uses these structures, consider 
how it might search for a five-letter word to fill a particular slot in 
the puzzle. It begins by indexing into the fifth slot of list [ 1 .  It then 
scans each element of the subarray w until it locates a free word that fits 
into the desired puzzle slot. Note that, as a programming convenience, 
we have offset the array index to eliminate unneeded entries (e.g., 
words of length 1 or 2). 

Once kross has completed initializing its data structures, it in- 
vokes the function solve ( ) to solve the puzzle. This is where 
we find all the backtracking logic (see Listing A.l). solve ( 1 is a 
recursive procedure that performs the following processing: 

1. It begins each invocation by choosing, and determining the size 
of, the next puzzle slot it must fill (horizontal or vertical). This proc- 
essing is performed by the function next ( ) and is, by necessity, 
a rather messy bit of code. 

2. It then selects, at random (i.e., sequentially), an appropriately 
sized word from the available list. It uses the function itfits ( ) to 
determine whether the word fits into the slot (in typical crossword 
puzzle fashion). 

3. If it fits, solve ( ) enters the new word into the puzzle. Just prior 
to doing so, solve ( ), with the aid of the function enter ( 1, takes 
a snapshot of the current puzzle state. 

a solution. 

no more slots to fill), it returns the value SOLVED. 

4. The  function then invokes itself recursively, continuing toward 

5. If, at any point, the function completes the puzzle (i.e., there are 



Appendix A 287 

1: solve( length, width ) 

2: int 1 engt h , width ; 
3: { 
4: int 1, w, i, len, tmp, type; 
5: char old[ WORDLEN - MINWORD + 1 1 ; 
6: 
7: w = width; 
8: 1 = length; 

= next( &l, &w, &type );  

len == 0 
return( SOLVED ; 

9: len 
10 : if( 
11 : 
12 : 
13 : for 
14 : 
15 : 
16 : 
17 : 
18 : 
19 : 
20 : 
21: 
22 : 
23 : 
24 : 
25 : 1 
26: 

i = O;i<MAXWORD&&WORD(len,i) 01 !=NULL;i++){ 
if( FLAG(len, i) == FREE 

&& itfits(1, w, WORD(len, i), type) ) { 
FLAG(len, i) = USED; 
enter( old, 1, w, WORD(len,i), type ) ;  

prev = type; 
tmp = solve( 1, w ) ;  

if( tmp == SOLVED ) 

restore( old, 1, w, type 1; 
FLAG(Len, i) = FREE; 

return( SOLVED 1 ; 

1 

27 : return( FAIL );  
28: 1 

listing A.l 
The function solve ( 1. 

6. If a given recursive call fails to find a solution, solve ( ) 

Restores the puzzle to its previous state. This is accomF 
via a call to the function restore ( 1. 

isheL 

Returns the word that it just tried back to the free list. 
Repeats the steps 2-5 with the next available word. If none 
remains, solve ( ) returns the value FAIL. 



288 Appendix A 

Let’s trace the execution of the function solve ( ) as it begins 
to solve our sample puzzle from Figure A.2. All the line numbers referenced 
throughout the discussion correspond to Listing A. 1. Also, to simplify 
our example, the random selection of words is the order in which 
they appear in Figure A.2. 

First, we need a four-letter word to fill the I across position. The  
function randomly selects best (line 14), marks it as USED (line 16), and 
inserts it into the puzzle (line 17). Solve ( ) then calls itself recursively 
to continue processing (line 19). 

The  next invocation of the function needs a three-letter word for 
the 2 down position; it selects era and inserts it into the puzzle. 
The  next call to solve ( ) must now fill the 3 down position. Thus, 
it selects the next available four-letter word, tamp (line 13), checks 
to see that it fits (line 14), and inserts it into the puzzle (line 17). 

The  next slot the function needs to fill is 4 across. As usual, it 
selects the next available four-letter word-in this case, tops. This time, 
however, the itfits ( ) test (line 15) fails. Recognizing that the last 
four-letter word has been used (line 13), the function restores the 
puzzle to its previous state (line 22) and then initiates a backtrack 
(line 27). 

After backtracking, the immediately preceding invocation of the 
function now resumes processing at the point where it, again, needs to 
fill the 3 down position. It discards what was its first choice, tamp (lines 
22 and 23) and selects the next available word, tops (line 14). Note that 
the function put the word tops back on the available list just prior to 
performing the backtrack. From this point on, the function solves the 
puzzle without any additional difficulties. The  complete program ap- 
pears in Listing A.2. 

1. Implement and test the operation of the kross program. 

2. Create several puzzles of your own and test them with the 
kross program. 

3. Rewrite the kross program to use dynamic data structures. 

4. Modify the word search routines used by kross to utilize the 
hashing techniques discussed in Chapter 8. 

E X E R C I S E S  



Appendix A 289 

#include <"stdio. hn> 
#include <"stdlib. h"> 
#include <"string. h"> 

#define ALL 1 
#define PUZ 2 
#define DOWN 1 
#define ACROSS 2 

#define MINWORD 2 
#define MAXPUZ 25 
#define MAXWORD 50 
#define WORDLEN 15 

#define EMPTY 0 
#define FREE 1 
#define USED 2 

#define FAIL -1 
#define SOLVED 3 

#define BLANK ' 
#define PADCHAR - 
#define WORDS '8@words'8 
#define PUZZLE "@guzzle" 

#define FLAG(x, y )  list[ x - WINWORD 1 . ~ 1  y 1 . f lg  
#define WORD(x, y )  l i s t [  x - MINWORD I .w[ y I .word 

i n t  main( i n t  ac, char *av[ l ) ;  
i n t  solve( i n t  length, i n t  width 1;  
i n t  next( i n t  *len, i n t  *wht, i n t  * t  ); 
i n t  itfits( i n t  1, i n t  w, char *word, i n t  t 1;  

void readguz( FILE *fg ); 
void g u z g r i n t (  void 1; 
void res tore(  char *old, i n t  1, i n t  w, i n t  t ); 
void en ter (  char *old, i n t  1, i n t  w, char *word, i n t  t );  

i n t  length, width; 
char guzzle[ MAXPUZ 1 MAXPUZ 1 ;  

s t r u c t  words { 
i n t  f lg;  
char word[ WORDLEN 1 ; 

1; continued on p.  290 



290 Appendix A 

struct wordlist { 

} list [ WORDLEN - MINWORD ] ; 
struct words w [ MAXWORD 1 ; 

int main( int ac, char *av[] ) 
{ 

1 

/ *  * 
* 
* 
* /  

void 
E 

. .  

continued from p .  289 

int i, j; 
FILE *fp; 

if( ac != 2 ) {  
fprintf ( stderr, "usage: kross puzzlef ile\nff ) ; 
exit( 1 ) ;  

1 
if( (fp = fopen( av[ll, ,,rfr ) )  == NULL ) I  

fprintf ( stderr, "Cannot open ' % s f  to read!\nf', 
av[ll 1;  
exit( 1 ); 

1 

readpuz( fp ); 
if( solve(0, -1) == SOLVED ) 

else 
puzgrint ( 1 ; 

printf ( "No Solution! ! \n" ) ; 

return( 0 1 ;  

readpuz(F1LE *fp) 

int i; 
char buf 85 1; 

/*  * Puzzle Section 
*/  
length = 0; 
if( fgets( buf, sizeof buff fp ) == NULL ) {  

fprintf ( stderr, "%s: Premature EOF! \n", PUZZLE ) ; 
exit( 1 ); 

1 continued on p.  292 



Appendix A 291 

continued fmm p .  290 
if( strncmp(buf, PUZZLE, strlen(PUZZLE)) ) {  

fprintf ( stderr, "%s: BAD FORMAT!\n", PUZZLE ); 

exit( 1 ) ;  

1 

if( fgets(buf,sizeof buf,fp) == NULL 
I I !strncmp(buf,WORDS, strlen(W0RDS)) ) { 

fprintf ( stderr, "%s: Premature EOF! \n", PUZZLE ) ; 

exit( 1 1; 
1 
width = strlen( buf ) - 1; 

do { 

} while 

/ *  

if( (strlen( buf ) - 1) ! =  width ) {  

fprintf ( stderr, "Line %d: bad width! \n" , 

exit( 1 1; 
width ) ; 

1 
for( i = 0; i < width; i++ ) {  

if( buf[ i 1 == BLANK 1 

else if( buf[il == PADCHAR 

else { 

puzzle[ length 1 i 1 = NULL; 

puzzle[ length 1 i 1 = buf i 1; 

fprintf( stderr, 
"BAD CHAR %d L# %d\n", 
buf[il, length ) ;  

exit( 1 1; 
1 

1 
puzzle[ length 1 width 1 = NULL; 
length += 1; 
fgets(buf,sizeof buf,fp)!=NULL && 

strncmp( WORDS, buff strlen(W0RDS) 1 !=  0 );  

* Words Section 
*/  continued on p .  292 



292 Appendix A 

1 

/*  
* 
* 
* 
* /  

continued from p. 291 
while(fgets(buf, sizeof buf, fp) !=  NULL ) {  

for( i = 0; i < W O R D ;  i++ ) {  

if( FLAG(strlen(buf1-1, i) == EMPTY ) { 

StmCpy( WORD(strlen(buf) -1, i), 
buf, strlen(buf) -1 1;  

strlen(buf) -1, i) = FREE; FLAG 
break; 

1 
1 

if( i >= W O R D  ) {  

fprintf ( stderr, "Out of space %d %s\n", 

exit( 1 1; 
1 

strlen(buf1-1, buf 1;  

1 

void puzgrint ( ) 
{ 

int i, j; 

for( i = 0; i < length; i++ ) { 

for( j = 0; j < width; j++ ) {  

if( guzzle[il [jl 1 
putchar ( guzzle [il t j 1 

else 
putchar( BLANK 1;  

1 
putchar( '\n' ) ;  

1 
1 

; 

continued on p.  293 



Appendix A 293 

int solve( int length, int width ) 

{ 
int 1, w, i, len, tmp, type; 
char old[WORDLEN - MINWORD + 11 ; 
w = width; 
1 = length; 
len = next( hl, hw, &type ) ;  

if( len == 0 ) 

return( SOLVED ) ; 

for( i=O; i<MAXWORD hh WORD(len, i)[O] != NULL; i++ ) 

{ 
if( FLAG(len, i) == FREE 

&& itfits(1, w, WORD(len, i), type) ) {  

FLAG(len, i) = USED; 
enter ( old, 1, w, WORD(len, i) , type 
prev = type; 
if ( solve(1, w) == SOLVED ) 

restore( old, 1, w, type );  

FLAG(len, i) = FREE; 

return ( SOLVED ) ; 

1 
1 

i 

return( FAIL ) ;  
1 continued on p.  294 



294 Appendix A 

1 = flen; 
w = *wht; 

/ *  
* Check current position for across: down would 
* have been done already. 
* /  
if( w != -1 && ( ( w  - 1) < o I 1 puzzle[11 tw-11 == NULL 

&& puzzle[l] [w] && (w + 1 )  < width && puzzle[ll [ w + l l  ) I  
/ *  
* Across! 

* /  
*t = ACROSS; 

/ *  
* Necessary evil 
* /  
*wht = w + 1; 

tmp = 0; 
while( puzzle [l] [w]  ! = NULL && w < width ) { 

w += 1; 
tmp += 1; 

1 
return( tmg 1; 

1 else if( prev == DOWN I I w == -1 
w += 1; continued on p .  295 



Appendix A 295 

/ *  
* Check for next possible position 
* /  
for(; 1 < length; 1 += 1 ) { 

for(; w < width; w += 1 ) {  
if( ( (1 - 1) < o 1 1  puzzle[l- 

continued from p.  294 

I [wl == NULL) 
&& puzzle[ll [wl != NULL && (1+1) < length 
&& puzzle[l+ll [wl != NULL ) {  

/ *  
* Down!  
*/  
*t = DOWN; 
prev = DOWN; 
*wht = w; 
*len = 1; 
tmp = 0; 
while (puzzle [l] [w] !=NULL&&l<length) { 

1 += 1; 
tmp += 1; 

1 
return( tmp ) ; 

1 
if( ((w - 1) < o 1 1  puzzle[11 [w-11 == NULL ) 

&& puzzle[ll [w] && (w+l) < width 
&& puzzle[ll [w+ll ) { 

/ *  
* Across ! 
* /  
*t = ACROSS; 
prev = ACROSS; 
*len = 1; 
*wht = w + 1; 
tmp = 0; 
if( w == - 1 ) w -  - 0; 
while(puzzle[ll [wl 
!=NULL&&w<width) { 

w += 1; 
trnp += 1; 

1 continued on p .  296 



296 Appendix A 

return( tmp 1;  continued from p.  295 
1 

1 
w = 0; 

1 

/ *  * Puzzle completed! 
*/  

return( 0 1; 

if( t == ACROSS && W != -1 ) 
1; w -= 

cp = word; 
while( *cp ) {  

if ( *cp != puzzle[ll [wl 
&& puzzle[ll [wl !=  PADCHAR 

return( 0 1;  
if( t == ACROSS ) 

w += 1; 
else 

1 += 1; 
cp++ ; 

1 
return( 1 1;  

1 



Appendix A 

E 
char *cp; 

if( t == ACROSS ) 
1; w -= 

cp = word; 
while( *cp ) { 

*old++ = puzzle[ll [wl ; 
puzzle[ll [wl = *cp; 
if( t == ACROSS ) 

else 

cp++; 

w += 1; 

1 += 1; 

1 
*old = NULL; 

1 

continued from p.  296 

listing A.2 
The complete kross program. 



C f o r  Programmers 
A P P E N D I X  

B.l INTRODUCTION 

This appendix provides a brief introduction to the C programming 
language. It is not intended to serve as an exhaustive tutorial. It will, 
however, acquaint readers with the basic features of the language. We 
assume the reader has had some prior programming experience in a high- 
level language. In addition, we also assume that the reader has re- 
viewed the section in Chapter 1 titled “What You Need to Know.” The  
grammar specified throughout this appendix adheres to the American 
National Standards Institute (ANSI) definition for C. 

Quick Tour of C 

T o  highlight many of the features we will discuss, Listing B. 1 contains 
a simple, somewhat contrived, C program. All the program does 
is scan an array to locate and print the value of its largest element. 
An example of the program’s output appears in Figure B . l .  

Program Structure 

A C program is composed of one or more functions, one of which must 
be named main( ) . Listing B . l  contains two function definitions, 
main ( ) and find-max ( ) . Program execution begins with the first 
executable instruction in main ( ) and continues until either main ( ) 
executes a return statement or the program invokes one of the 
standard exit routines (e.g., exit ( )). 

A complete C program can-and usually does-span more than 

298 

b



Appendix B 299 

#include (stdi0.h) 

/*  

/*  Preprocessor Directive * /  

* Preprocessor Macros h Symbolic Constants 
*/  

#define NO-OF-ELEMENTS 10 
#define MAX(A, B) ( ( A )  > (B) ? 

int find-max( int beg, int end ); 

int data[ NO-OF-ELEMENTS 1 ; 

int main ( ) 
{ 

int max; 
int i = 0; 

while( i < NO-OF-ELEMENTS ) 

{ 
data[ i 1 = i; 
i = i + l ;  

1 

( A )  : (B) ) 

/ *  Function Declaration * /  

/*  Variable Definition * /  

/*  Function Definition * /  

/*  Automatic Class Vars * /  

/ *  While Loop * /  

maX = find-max( 0, NO-OF-ELEMENTS ) ; 

printf( "The value of max is: %d\n", max ); 

return( 0 1;  
1 

int find-max(int beg, int end) /*  Definition of find-maxo * /  
{ 

int i, max; 

max = data[ beg 1 ; / *  External Variable */  
for( i = 0; i < end; i++ 

max = MAX( max, data[il 1; / *  Macro Reference * /  

return( max 1; 
1 

listing B.l 
Sample C program. 



300 

Figure B.l 
Sample program 
output. 

Basic Types 

Appendix B 

The value of max is: 9 

one source module (file). That is, you can define functions in more than 
one source file and then compile and link the modules together to 
form one executable program. For example, we could have placed the 
function find-max ( ) in its own, separate source file. 

During compilation, source files can include additional C and 
preprocessor statements from other files, usually called header$les. 
We refer to the resulting code, passed onto the C compiler, as a 
compilation unit. In Listing B.l, we included one header file stdi0.h. 

8.2 DATATYPES 

C supports several basic data types 

char A variable large enough to hold any character of the native 
character set. It is usually one byte in size and may store other (small 
integer) values as well. 
int  
tion environment. For example, ints are typically two bytes on 
16-bit processors, four bytes on 32-bit processors. 
float 
of this data type is machine dependent. 
double 
sion of this data type is machine dependent. 

In the program of Listing B.l, we declared several variables of type 
int .  

An integer type that reflects the natural word size of the execu- 

Single-precision floating-point values. The  size and precision 

Double-precision floating-point values. The  size and preci- 

Qualifiers 

The  basic types may have qualifiers applied to them. Two that apply 
only to ints are short and long. The  intent of these two qualifi- 
ers is to provide integers of different sizes where appropriate. For 



Appendix B 301 

example, on most processors a short is typically 16 bits, a long is 32 
bits. Compiler vendors may choose sizes that befit the execution envi- 
ronment with the proviso that shorts are at least 16 bits and longs are 
at least 32 bits. You may omit the keyword int when you use these 
qualifiers. For example, both of the following type declarations 
are equivalent: 

short i ; 
short int i; 

Programmers may apply the qualifier long to doubles as well. 
A declaration of type long double (both keywords are required 
in this case) implies extended-precision floating point. However, as 
with doubles, the actual size is machine dependent. 

The  qualifiers signed and unsigned may be applied to any 
integer or char type. Values that are unsigned may only hold positive 
values or zero; signed values may hold negative quantities. 

Constants 

C recognizes several types of constants. An integer constant is a se- 
quence of digits; its data type is int. If the digit sequence begins with 
a leading zero, the compiler interprets its value in octal; a leading Ox 
(zero followed by an x-ei ther  case) signifies hexadecimal. T h e  characters 
a through f (in either case) represent the hexadecimal digits 10 
through 15, respectively. In Listing B.l, we use an integer literal 
in the declaration of the variable i. 

If a digit sequence terminates with either an upper- or lowercase 
L, the value is treated as a long. A trailing U (either case) indicates 
unsigned. Programmers may combine both suffixes to signify un- 
signed long. Several examples follow. 

15 / *  Decimal int, value = 15 
017 / *  Octal int, value = 15 
OxF / *  Hexadecimal int, value = 15 

* /  
*/  
*/  

15u /* Decimal - unsigned int, value = 15 * /  
017L /* Octal - long, value = 15 * /  
OxFul / *  Hex - unsigned long, value = 15 * /  



302 Appendix B 

Character Constants 

A character constant is a sequence of one or more characters enclosed 
within single quotes ('). T o  express the literal value x we write 
'x'. We may also use the following so-called escape sequences to 
express characters that are otherwise difficult to represent: 

New1 ine 
Horizontal Tab 
Vertical Tab 
Carriage Return 
Formf eed 
Audible Bell 
Backspace 
Backs lash 
Question Mark 
Single Quote 
Double Quote 
Octal Value 
Hexadecimal Value 

\n 
\t 
\v 
\r 
\f 
\a 
\b 
\ \  
\ ?  

\ #  

\ " 
\ddd 
\ Oxdd 

We can use the octal and hexadecimal escape sequences to repre- 
sent any character using its value in the native mode character set. 
For example, we could specify an ASCII bell character using any of 
the following forms: \a, or \007, or \Ox7. We may use escape sequences 
anywhere a character would otherwise be expected. For example, we 
used an \n sequence in the call to printf ( ) in Listing B. l .  

String Constants 

A string constant is a sequence of characters enclosed within double 
quotes ("). For an example, refer to the first argument in the call to 
grintf ( )  in Listing B. l .  Please note that there is no data type 
string in C; nor is string a reserved word of the grammar. 
Internally, C compilers represent strings as arrays of characters termi- 
nated by a NULL character. As a result, string literals in C have a data 
type of array of characters. (Refer to the section on arrays later in 
this appendix.) 



Appendix B 303 

Symbolic Constants 

Symbolic constants are a feature of the preprocessor. A statement of 
the form 

#define SYMBOLIC-NAME REPLACEMENT-VALUE 

directs the preprocessor to replace all unquoted occurrences of the 
string SYMBOLIC-NAME with REPLACEMENT-VALUE. Refer to the sym- 
bol, NO-OF-ELEMENTS, as it appears in Listing B.l for an example. 

const Qualifier 

C also provides a const qualifier that may be applied to variable 
declarations. A statement of the form 

const double PI = 3.1459; 

signifies to the compiler that the variable PI cannot be modified. As 
a result, you must initialize all const variables when you declare them. 

B.3 DECLARATIONS 

Identifier Names 

A C identifier (i.e., the name of a variable, function, or label) is a 
sequence of one or more letters, digits, and underscores. An identifier 
name must begin with a letter or the underscore; the first 31 characters 
are significant. 

Declaration Syntax 

Variable declarations have the general form 

ope  ident@er-name [ = initial-vahe 1 ; 
where type represents a data type and ident&?r-name is a valid C 
identifier name. Optionally, you may also initialize variables using values 
expressed as compile-time constants. Listing B. 1 contains several vari- 
able declarations; we also provide some additional examples below: 



304 Appendix B 

int i = 15; / *  
signed int j; / *  
short k = 0, m; / *  
unsigned n; /* 
float f; / *  
long double x; / *  

Signed Int * /  
Signed Int * /  
Signed Short * /  
Unsigned Int * /  
Float * /  
Extended Precision * /  

Arrays 

C allows programmers to create arrays using statements of the gen- 
eral form 

type array - name [ const-expr ] ; 

where type represents the data type specified for each element of the 
array, array-name is a valid C identifier name, and const-expr 
represents a compile-time constant expression that specifies the size 
of (i.e., number of elements in) the array. The  variable, data [ 1, in Listing 
B.l, is an example of an array declaration in C. 

We reference individual array elements by their ofiet  rather than 
their index. Thus, valid element references for an array declared as 

int a[ 10 1 ;  
are from 0 to 9. There are several examples of array references in 
Listing B.l. 

We may create multidimensional arrays simply by adding addi- 
tional sets of brackets: 

int three-dim[31[71[91; 

The  preceding statement creates a three-dimensional array. C compil- 
ers ensure that memory allocation for arrays is contiguous. (Refer to the 
discussion of pointers later in this appendix.) 

Structures 

C programmers can create aggregate data types called structs. For 
example, the statement 

struct emp { 

int id; 
char name [lo1 ; 

1 ;  



Appendix B 305 

declares a struct with a tag (i.e., name) of emg. This structure has 
two memben: an integer variable named id, and a character array named 
name[]. 

We can declare instances of a struct using statements such as 

struct emg x; 

We can reference individual structure members using the dot (.) 
operator, as in 

x.id = 1024; 

We can also declare and reference arrays of structures: 

struct emg managers[ 10 I;  

managers [il .id = 1024; 

B.4 OPERATOR SET 

Unary 

Unary operators require one operand. C has several, including the 
following: 

- Unary minus (negation) operator 
! Logical Not operator 
- Bitwise Not operator 
* Indirection operator (see below) 
sc Address operator (see below) 
+ + Increment operator 
-- Decrement operator. 

We can use both the increment and decrement operators can be 
used in eitherpreJix (e.g., ++i) o r p o s ~ x  (e.g., i ++) form. T h e  
position of the operator is significant. When used in prefix form, the 
interpretation is increment then mahate; when used in postfix form 



306 Appendix B 

the interpretation is evaluate then increment. For example, consider the 
following two code fragments: 

i = 10; 
x = ++i; 

i = 10; 
x = i++; 

(1) ( 2 )  

In both cases, the result contained in i is 11. However, in case 1, x 
is set to 11; in case 2, x is set to 10. The  for loop of Listing B.l 
contains an example of the increment operator. 

Binary 

Binary operators require two operands. Let’s begin with the basic 
arithmetic set: 

+ Addition operator 
- Subtraction operator 
* Multiplication operator 
/ Division operator 
% Modulus operator (integer remainder). 

In Listing B.l, we use a binary addition operator (+) in the body of 
the while loop. 

The  relational operators include 

< Less than operator 
<= 
> Greater than operator 
>= 
-- -- Equality operator 
! = Inequality operator. 

Less than or equal operator 

Greater than or equal operator 

Expressions that employ relational operators evaluate to either 
the integer value 1 (signifying true), or the integer value 0 (signifying 
false). (See the section on conditional expressions later in this appen- 
dix.) Several examples of relational operators appear in Listing B.l .  

T h e  logical operators include 



Appendix B 307 

&& Logical And operator 
1 1  Logical Or operator 
! Logical Not operator. 

You can use the logical operators to create complex expressions. 
For example, the statement 

i f ( a > b  && c < d  
do-somethingo; 

asserts two conditions before invc 
do-something ( ) . 

Ling the funcc-on 

C is often referred to as a high-level, low-level language. One 
reason for the latter half of the appellation is the bitwise opera- 
tor set: 

& Bitwise And operator 
I Bitwise Inclusive-or operator 
A Bitwise Exchsive-or operator 

>> Right shift operator. 

These operators can only be applied to integer-based operands. 

Left shift operator 

Ternary 

C has one ternary operator, also called the conditionaf operator. Its 
syntax is 

mprt ? exprz : expr, 

We evaluate the entire expression beginning with mprI: If mprl 
evaluates to true (see the discussion on expression evaluation later), 
then we evaluate exprz; otherwise, we evaluate expr3. For example, we 
could determine the smaller of two values using the following statement: 

min-Val = a < b ? a : b; 

We use the conditional operator in the definition of the macro, MAX, 
in Listing B.l. 



Appendix B 

Assignment Operators 

The  basic assignment operator in C is the equal sign (=). (PASCAL 
programmers please take note.) C also provides a set of compound 
assignment operators, which take the form 

expr <binary operator> = expression 

These operators combine a binary expression with an assignment. For 
example, if we want to increment a variable by some value other 
than 1, say 10, we could write 

i += 10; 

B.5 EXPRESSIONS AND STATEMENTS 

Comments 

C comments begin with the unquoted character sequence / *  and 
terminate with the unquoted sequence */. Comments in C do 
not nest. 

Expressions 

A primary expression in C includes identifiers, constants, strings, and 
nested expressions enclosed within parentheses. 

Conditional Expressions 

In C, the interpretation of any conditional expression (e.g., i f  ( con- 
dition ) )  can be stated simply: Zero is false, non-zero is true. C program- 
mers tend to rely heavily on this construct and write expressions such as 

if( i % 2 ) 

do-something(); 

which will invoke the function do-something ( ) only when i con- 
tains an odd value. 

This can also lead to interesting results when combined-exron- 



Appendix B 309 

eously-with the simple assignment operator ( = ). For example, 
given the assignments 

i = 10; 
j = 11; 

the expression 

if( i = j 1 / *  ERROR: assignment NOT 
equality * /  

do-somethingo; 

will evaluate to true because: 

1. We are assigning i to j, not comparing their values. 
2. T h e  result of an assignment statement is the value being assigned 

3. T h e  result of the expression (1 1) is non-zero. 
(in this case 11). 

However, when used correctly, this construct can add power and 
expressiveness to our C programs. For example, consider the fol- 
lowing code fragment: 

while( ( a [ i + + l  = getchar()) !=  '\n' ); 

In it, we 

1. Perform an 1/0 operation. 
2. Assign the result to an array element. 
3. Increment an index variable. 
4. Perform a relational comparison. 

Note that all of this processing occurs within the conditional expression 
of a while loop. 

Statements 

In C, statements are terminated with a semicolon (;). Readers familiar 
with some other languages-most notably PASCAL-should take note. 
In C, the semicolon is a statement terminator, not a statement separator. 



310 Appendix B 

Compound Statements 

A compoundstatement (sometimes called a block) is a series of one or 
more statements enclosed within braces: 

{ 
statement-1; 
statement-2; 

at at ement-n ; 
1 

You may use a compound statement wherever a single statement 
is valid. 

B.6 CONTROL FLOW 

The if Statement 

The  basic form of the if statement is 

if( condition ) 

statement; 

You may add an optional else clause: 

if( condition ) 

else 
true-statement; 

false-statement; 

Unless you explicitly use braces, C associates an else with the closest 
preceding if. In the following example, 

if( condition1 ) 

if( condition2 
statement 1 ; 

else 
statement2; 



Appendix B 31 1 

the compiler associates the else with the inner if, not the outer 
one. If that is not your intention, you must use braces: 

if( condl ) 

{ 
if( cond2 ) 

statementl; 
1 
else 

statement2; 

The switch Statement 

C’s switch statement is a multiway branch: 

switch( expr ) 

{ 
case const-expr: 

statements; 
case const-expr: 

statements; 
default: 

statements; 
1 

The  value of expr-which must evaluate to an integer (or character)- 
is compared against the case labels. If there is a match, execution begins 
with the first statement associated with the label. If there is no match, 
execution begins at the optional default label (if there is one). It is 
important to note that cases fall through. That is, regardless of the 
entry point, execution continues through to the end of the switch 
unless a break statement (discussed later) is encountered. In the 
latter case, execution resumes with the statement following the 
switch. 

The while loop 

T h e  syntax for the while loop is 

while( condition ) 

statement; 



312 Appendix B 

Execution continues as long as condition evaluates to true (i.e., 
non-zero). 

The do-while Loop 

The  do-while loop has the form 

do 
statement; 

while( condition ); 

Like the while loop, this loop continues to iterate while its control 
expression is true. However, this construct guarantees at least one 
iteration because it has its condition test positioned at the end. 

The fo r  loop 

The  syntax of a for loop is as follows: 

for( exprl; expr2; exgr3 1 
statement; 

exgrl is the loop initialization statement; it is executed once, just 
prior to the loop’s first iteration. expr2 is the loop conditional 
statement; the loop will continue to iterate while the condition remains 
true. exgr3 is the loop increment statement; it is executed after 
each iteration of the loop body. The  semicolons are the only symbols 
required between the parentheses. The  preceding for loop is equivalent 
to the following while loop: 

exprl; 
while( exgr2 ) 

{ 
statement; 
expr3 ; 

I 

loop Termination and Continuation 

T h e  keyword statement break may be used within the body of a 
loop or switch. If executed, it causes program execution to pass 
to the statement following its enclosing construct. 



Appendix B 31 3 

T h e  keyword statement continue may be used only within the 
body of a loop. If executed, it immediately causes program execu- 
tion to begin the next iteration of the innermost enclosing loop. 

B.7 POINTERS 

The  C declaration for a pointer is 

data - type "ptr- name; 

where data-type determines the type of object at whichptr-name may 
point. For example, we can define a pointer to integer as 

i n t  * igtr ; 

Note that igtr does not hold integer values; rather, it can hold the 
addresses of other integer variables. 

T h e  statement 

igtr = &i; 

assigns the address of i to igtr. That is, we say that igtr points at 
i, and that we can access the contents of i indimctrly through iptr. T h e  
symbol & is a unary operator that yields the address of its operand. 

Once assigned, we can use a pointer to modify the contents of 
the memory cell at which it points. Assuming all of the preceding 
declarations and assignments, the statement 

*igtr = 6; 

is equivalent to the assignment 

i = 6; 

T h e  * operator dereferences the pointer igtr; thus, we access i indirectly 
via the pointer. Pointer dereferencing is dynamic. That is, the cell at which 
a pointer is pointing, at the time of dereferencing, is the one that 
is modified. 

B.8 THE C PREPROCESSOR 

C's preprocessor is a separate program-automatically invoked by the 
compiler-that does just what its name implies: processes C source 
files before passing the modified source code on to the compiler. It 
has several important features. 



31 4 Appendix B 

Symbolic Constants 

Symbolic constants are defined as follows: 

#define MAX-SCORES 1 0  

A statement of this form causes the preprocessor to replace all un- 
quoted occurrences of the string MAX-SCORES with the string 10 .  
For example, consider the following code fragment: 

#define MAX-SCORES 1 0  

main() 
{ 

i n t  i; 
i n t  t o t a l [  MAX-SCORES 1 ;  

i f  ( i > = MAX-SCORES ) 

1 

After preprocessing, the following statements would be presented to 
the compiler: 

main ( 1 
{ 

i n t  i; 
i n t  t o t a l [  1 0  1; 

i f (  i >= 1 0  ) 



Appendix B 31 5 

Macros with Arguments 

Symbolic constants may also accept arguments. For example, consider 
the following definition: 

#define SQUARE (x) ( (x) * (x) ) 

T h e  expansion of SQUARE is now dependent on its use. If we code 

z = SQUARE(y); 

the preprocessor will expand it to 

z = ((y)*(y)); 

Note that x serves as a place holder. That is, whatever argument we 
place in the x position will appear wherever x appears in the 
expansion. 

Include Files 

Another widely used feature of the preprocessor is the file inclusion 
facility. The  following preprocessor directive: 

#include “def 8 .  h“ 

directs the preprocessor to replace the #include statement with the 
entire contents of the file def s . h. The  included file may con- 
tain any valid C and preprocessor statements, including nested 
#include’s. 

There is another form of the #include directive: 

#include (filename) 

T h e  angle brackets direct the preprocessor to search a predetermined 
location for one of several system-supplied header files. T h e  exact 
location is system dependent, and the files contain definitions of a 
global nature. 

1. What effect, if any, would changing the position of the increment 
operator from prefix to postfix have on each of the following 
statements? 
a. ++i;  

E X E R C I S E S  



31 6 Appendix B 

b. for( i = 0; i < 10; ++i ) 

c. j = ++i;  
aCi1 = i; 

2. Given the following macro definition from Listing B.l ,  

#define MAX(A, B) ( (A) > (B) ? (A) : (B) ) 

what is the value of all variables after executing the following 
statements? 

int a, b, c; 

a = 20; 
b = 20; 
c = MAX( a++, b 1; 

3. What value is assigned to c after executing the following assign- 
ment statement? 

int a, b, c; 

a = 20; 
b = 10; 
c = a < b ;  

4. How many times, if any, will the following loop execute? 

int a, b, c; 

i = -5; 
while( i ) 

do-something(); 



Suggested Readings 

Adelson-Velskii, G.M., and Landis, E.M. “An Algorithm for the Organization of 

Aho, A., and Corasick, M.J. “Efficient String Matching: An Aid to Bibliographic 

Aho, A., Hopcroft, J., and Ullman, J. Data Structures and Algorit/rms, Reading, 

Aho, A., Hopcroft, J., and Ullman, J. The Design and Anaijsis of Computer Algo- 

Aho, A., and Ullman, J. Princzples of Compiler Design, Reading, Mass.: Addison- 

Amble, O., and Knuth, D.E. “Ordered Hash Tables,” Comp. J., 1813542, 1975. 
Augenstein, M., and Tenenbaum, A. “A Lesson in Recursion and Structured 

Programming,” SIGCSE Bulletin, 8( 1):17-23, February 1976. 
Augenstein, M., and Tenenbaum, A. “Approaches to Based Storage in 

PL/I,” SIGCSE Bulletin, 9( 1):145-50, February 1977. 
Auslander, M.A., and Strong, H.R. “Systematic Recursion Removal,” Communi- 

cations of the ACM, 21(2), February 1978. 
Baeza-Yates, R. “Some Average Measures in M-ary Search Trees,” Infomation 

Processing Letters, 25(6):375-8 1, July 1987. 
Bays, C. “A Note on When to Chain Overflow Items Within a Direct-Access 

Table,” Communications of the ACM, 16(1), January 1973. 
Bellman, R. Dynamic Programming, Princeton, N.J.: Princeton University Press, 

1957. 

Information,” Dokl. Akad. Nauk SSSR, Mat., 146(2):263-66, 1962. 

Search,” Communications of the ACM, 18:333-40, 1975. 

Mass.: Addison-Wesley, 1983. 

rithms, Reading, Mass.: Addison-Wesley, 1974. 

Wesley, 1977. 

31 7 



318 Suggested Readings 

Bender, E., Praeger, C., and Wormald, N. “Optimal Worst Case Trees,” Acta 

Bentley, J. “Programming Pearls,” Communications of the ACM, August 1983. 
Bentley, J. “Programming Pearls: Thanks Heaps,” Communications of the ACM, 

Bentley, J .  “Programming Pearls: How to Sort,” Communications of the ACM, 

Bentley, J .  Writing Eficient Programs, Englewood Cliffs, N.J.: Prentice-Hall, 

Berge, C. Theory of Graphs and Its Applications, Mass.: Methuen, 1962. 
Berry, R., and Meekings, B. “A Style Analysis of C Programs,” Communications 

Berztiss, A.T. Data Structures, Theory and Practice (2d ed.), New York Academic, 

Bird, R.S. “Notes on Recursion Elimination,” Communications of the ACM, 

Bird, R.S. “Improving Programs by the Introduction of Recursion,” Communica- 

Bitner, J.R., and Reingold, E.M. “Backtrack Programming Techniques,” Commu- 

Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., and Tarjan, R.E. “Time Bounds 

Boothroyd, J. “Algorithm 201 (Shellsort),” Communications of the ACM, 6:445, 

Borodin, A., and Munro, I. Computational Complexity of Akebraic and Numeric 

Bowman, C.F. “Backtracking,” Dr. Dobbs Journal of Sofmare Tools, August 

Bowman, C.F. “Pattern Matching Using Finite State Machines,” Dr. Dobbs 

Bowman, C.F. “Objectifying X-Classes, Widgets, and Objects.” Object Magazine, 

Boyer, R.S., and Moore, J.S. “A Fast String Searching Algorithm,” Communica- 

Brainerd, W.S., and Landweber, L.H. Theory of Computation, New York Wiley, 

Brown, P.J., “Programming and Documenting Software Projects,” ACM Comput. 

Bruno, J., and Coffman, E.G., “Nearly Optimal Binary Search Trees,” Proc. 

Burge, W.H. “A Correspondence Between Two Sorting Methods,” IBM Re- 

Informatica, 24(4):475-89, August 1987. 

28(3):245-50, March 1985. 

27(4):287-91, April 1984. 

1982. 

of the ACM, 28( 1):80-88, January 1985. 

1977. 

20(6):434, June 1977. 

tions of the ACM, 20( 1 l), November 1977. 

nications of the ACM, 18:651-56, 1975. 

for Selection,” J.  Comput. Syst. Sci., 7:448-61, 1973. 

1963. 

Problems, New York: American Elsevier, 1975. 

1987. 

Journal of Sofmare Tools, October 1987. 

July/ August 1993. 

tions of the ACM, 20(10):762-72, 1977. 

1974. 

Sum., 6(4), December 1974. 

ZFIP Congr. 71, North-Holland, Amsterdam, 1972, pp. 99-103. 

search Report RC 6395, IBM Thomas J. Watson Research Center, Yorktown 
Heights, N.Y., 1977. 

Carlsson, S. “A Variant of Heapsort with Almost Optimal Number of Compari- 
sons,” Information Processing Letters, 24(4):247-50, March 1987. 



~~~ ~~~~ ~ 

Suggested Readings 31 9

Chang, H., and Iyengar, S. “Efficient Algorithms to Globally Balance a Binary
Search Tree,” Communications of the ACM, 27(7):695-702, July 1984.

Cheriton, D., and Tarjan, R. “Finding Minimum Spanning Trees,” SIAM Jour-
nal on Computing, 5(4):724-42, December 1976.

Cichelli, R., ‘‘Minimal Perfect Hash Functions Made Simple,” Communications
of the ACM, 23(1):17-19, January 1980.

Cook, S.A., and Reckhow, R.A., “Time-Bounded Random Access Machines,”
Journal of Computer and System Sciences, 7:354-75, 1973.

Cranston, B., and Thomas, R. “A Simplified Recombination Scheme for the
Fibonacci Buddy System,” Communications of the ACM, 18(6), June 197.5.

Deo, N. Graph Theory with Applications to Engineering and Computer Science, Engle-
wood Cliffs, N.J.: Prentice-Hall, 1974.

Dijkstra, E. “A Note on Two Problems in Connexion with Graphs,” Numerische
Mathematik, 1:269-71, 1959.

Dijkstra, E. “Notes on Structured Programming,” in Structured Programming,
New York Academic, 1972.

Dobosiewicz, W. “Optimal Binary Search Trees,” international Journal of Com-
puter Mathematics, 19(2):135-51, 1986.

Earley, J. “Toward an Understanding of Data Structures,” Communications of the
ACM, 14(10):617-27, October 1971.

Elson, M. Data Structures, Palo Alto, Calif.: Science Research, 1975.
Elspas, B., Levitt, K.N., Waldinger, R.J., and Waksman, A. “An assessment of

techniques for proving program correctness,” ACM Computing Surveys,

Er, M. “Efficient Generation of Binary Trees from Inorder-Postorder Se-

Esakov, J., and Weiss, T. Data Structures: An Advanced Approach Using C,

Even, S. Graph Algorithms, Potomac, Md.: Computer Science, 1978.
Fischer, M.J. “Efficiency of Equivalence Algorithms.” In R.E. Miller and J.W.

Thatcher (eds.), Complexity of Computer Computations, pp. 1.53-67. New
York Plenum Press, 1972.

closure.” Conference Record, iEEE 12th Annual Symposium on Switching and
Automata Theory, pp. 129-31, 1971.

New York Wiley, 1973.

Mathematics, 65(2):149-56, June 1987.

4(2):97-147, 1972.

quences,” Information Sciences, 40(2):175-81, 1986.

Englewood Cliffs, N.J.: Prentice-Hall, 1989.

Fischer, M.J., and Meyer, A.R. “Boolean matrix multiplication and transitive

Fishman, G.S. Concepts and Methods in Discrete Event Digital Simulation,

Flajolet, P., and Prodinger, H. “Level Number Sequences for Trees,” Discrete

Flores, I. Computer Sofling, Englewood Cliffs, N.J.: Prentice-Hall, 1969.
Flores, I. Data Structure and Management, Englewood Cliffs, N.J.: Prentice-Hall,

Floyd, R. “Algorithm 97: Shortest Path,” Communications of the ACM, 5(6):345.
Floyd, R. “Algorithm 245 (Treesort3),” Communications of the ACM, (7):701,

1970.

1964.

320 Suggested Readings

Floyd, R., and Rivest, R.L. “Algorithm 489 (Select),” Communications of the

Floyd, R., and Rivest, R.L. “Expected Time Bounds for Selection,” Communica-

Ford, L.R., and Fulkerson, D.R. Flows in Networks, Princeton, N.J.: Princeton

Foster, C.C. “A Generalization of AVL Trees,” Communications of the ACM,

Frederickson, G. “Data Structures for On-Line Updating of Minimum Span-

ACM, 18(3):173, March 1975.

tions of the ACM, 18(3), March 1975.

University Press, 1972.

16(8), August 1973.

ning Trees, with Applications,” SIAM Journal on Computing, 14(4):781-98,
November 1985.

Applications,” SIAM Journal on Computing, 16(6):1004-22, December 1987.

tion and Control, 66(1-2):61-82, July-August 1985.

cessing Letfen, 22(4):197-200, April 1986.

Order,” SIAM Journal on Computing, 6(1):13%150, 1977.

tion,” Proceedings of the Ekhth AnnuaZ ACM Symposium on Theory of Comput-
ing, pp. 161-173, 1976.

Garey, M.R., Graham, R.L., and Ullman, J.D. “Worst-case analysis of memory
allocation algorithms,” Proceedings of the Fourth Annual ACM Symposium on
Theory of Computing, pp. 143-150, 1972.

Garey, M.R., and Johnson, D.S. “The complexity of near-optimal graph color-
ing,’’ Journal of the ACM, 23(1):43-49, 1976.

Garey, M.R., Johnson, D.S., and Stockmeyer, L. “Some simplified ”??-corn-
plete problems,” Proceedings of the Sixth AnnuaZ ACM Symposium on Theory of
Computing, pp. 47-63, 1974.

Gerasch, T. “An Insertion Algorithm for a Minimal Internal Path Length
Binary Search Tree,” Communications ojthe ACM, 31(5):579-85, May 1988.

Glaser, H. “Lazy Garbage Collection,” Softwarz Practice and Experience, 17(1):l-
4, January 1987.

Goller, N. “Hybrid Data Structure Defined by Indirection,” Computer Journal,
28(1):44-53, February 1985.

Golomb, S.W., and Baumert, L.D. “Backtrack Programming,” Journal of rhe
ACM, 12516, 1965.

Gonnet, G., and Munro, J. “Heaps on Heaps,” SIAM Journal on Computing,
15(4):964-71, November 1986.

Good, I.J. “A Five-Year Plan for Automatic Chess,” In E. Dale and D. Michie
(eds.), Machine Intelligence, Volume 2, pp. 89-1 18. New York American
Elsevier, 1968.

Algorithms, New York McGraw-Hill, 1977.

Frederickson, G. “Fast Algorithms for Shortest Paths in Planar Graphs with

Frederickson, G. “Implicit Data Structures for Weighted Elements,” Infonna-

Gajewska, H., and Tarjan, R. “Deques with Heap Order,” Information Pro-

Gabow, H.N. “TWO Algorithms for Generating Weighted Spanning Trees in

Galil, 2. “Real-time algorithms for string-matching and palindrome recogni-

Goodman, S.E. and Hedetniemi, S.T. Introduction to the Design and Analysis of

Gordon, G. System Simulation, Englewood Cliffs, N.J.: Prentice-Hall, 1969.

Suggested Readings 321

Gotlieb, C., and Gotlieb, L. Data Types and Data Structures, Englewood Cliffs,

Graham, R.L. “Bounds on multiprocessing timing anomalies,” SZAM Journal of

Gries, D. Compiler Construction for Digital Computers, New York Wiley, 1971.
Hancock, L., and Krieger, M. The C Primer, New York McGraw-Hill, 1982.
Hantler, S.L., and King, J.C. “An Introduction to Proving the Correctness of

Harary, F. Graph Theory, Reading, Mass.: Addison-Wesley, 1969.
Harbison, S., and Steele, G. C: A Re?rence Manual (2nd ed.), Englewood Cliffs,

Harrison, M.C. Data Structures and Programming, Glenview, Ill.: Scott Foresman,

Hinds, J. “An Algorithm for Locating Adjacent Storage Blocks in the Buddy

Hirschberg, D.S. “A Class of Dynamic Memory Allocation Algorithms,” Commu-

Hirschberg, D.S. “An Insertion Technique for One-sided Height-Balanced

Hoare, C.A.R. “Quicksort,” Comput. J., 5:10-15, 1962.
Hopcroft, J.E., and Tarjan, R.E. “Dividing a graph into triconnected compo-

Hopcroft, J.E., and Tarjan, R.E. “Efficient Algorithms for Graph Manipula-

Hopcroft, J.E., and Ullman, J.D. Formal Languages and Their Relation to Au-

Hopcroft, J.E., and Ullman, J.D. “Set merging algorithms,” SZAM Journal on

Horowitz, E., and Sahni, S. “Computing partitions with applications to the

Horowitz, E., and Sahni, S. Fundamentals of Data Structures, Woodland Hills,

Horowitz, E., and Sahni, S. Algorirhms: Design and Anabsis, Potomac, Md.: Com-

Huang, B., and Langston, M. “Practical In-place Merging,” Communications of

Huang, J.C. “An Approach to Program Testing,” ACM Comput. Sum., 7(3), Sep-

Huffman, D. “A Method for the Construction of Minimum Redundancy

Hughes, J.K., and Michton, J.I. A Structured Approach to Programming, Engle-

Iyenger, S., and Chang, H. “Efficient Algorithms to Create and Mantain Bal-

N.J.: Prentice-Hall, 1978.

Applied Math, 17(2):416-29, 1969.

Programs,” ACM Computing Sumqs, 8(3):331-53.

N.J.: Prentice-Hall, 1987.

1973.

System,” Communications of the ACM, 18(4), April, 1975.

nications of the ACM, 16(10):615-18, October 1973.

Trees,” Communications of the ACM, 19(8), August 1976.

nents,” SZAM Journal on Computing, 2(3):135-57, 1973.

tion,” Communications of the ACM, 16(6):372-78, 1973.

tomata, Reading, Mass.: Addison-Wesley, 1969.

Computing, 2(4):294-303, 1973.

knapsack problem,” Journal of the ACM, 21(2):277-92, 1974.

Calif.: Computer Science Press, 1976.

puter Science, 1977.

the ACM, 31(3):348-52, March 1988.

tember 1975.

Codes,” Proc. IRE, 40, 1952.

wood Cliffs, N.J.: Prentice-Hall, 1977.

anced and Threaded Binary Search Trees,” Sofiare Practice and Experience,
15(10):92542, October 1985.

322 Suggested Readings

Jalote, P. “Synthesizing Implementations of Abstract Data Types from Axiom-
atic Specifications,” Sofhare Practice and ExpeP.ience, 17(11):847-58, Novem-
ber 1987.

Symposium on Switching and Automata Theory, pp. 144-54, 1972.

the Fqth Southeastern Conafeence on Combinatorics, Graph Theory, and Comput-
ing, pp. 5 13-28. Winnipeg, Canada: Utilitas Mathematica Publishing, 1974.

Johnson, D.S. “Fast allocation algorithms,” Proceedings of the Thifleenth Annual

Johnson, D.S. “Worst-case behavior of graph coloring algorithms,” Proceedings of

Kelley, A., and Pohl, I . A Book on C (Zd ed), Benjamin Cummings, 1990.
Kernighan, B., and Ritchie, D. The C Programming Language (2nd ed), Engle-

Kernighan, B., and Plauger, R. Sofiare Tools, Reading, Mass.: Addison-

Kernighan, B., and Plauger, P.J. The Elements of Programming Style, New York:

Kernighan, B., and Plauger, R. The Elements of Programming Style (2nd ed.), New

Kernighan, B., and Plauger, P. J. “Programming Style: Examples and Counter

Kernighan, B., and Ritchie, D. The C Programming Language (2nd ed), Engle-

Knowlton, K. “A Fast Storage Allocator,” Communications of the ACM, 8(10), Oc-

Knuth, D. “Optimum Binary Search Trees,” Acta Infomatica, 1:14-25, 1971.
Knuth, D. The Art of Computer Programming, Volume I: Fundamental Algarithms

Knuth, D. The Art of Computer Programming, Volume III: Sorting and Seamhing,

Knuth, D. “Structured Programming with Goto Statements,” ACM Comput.

Knuth, D. Fundamental AZgorithms (Zd ed), Reading, Mass.: Addison-Wesley,

Knuth, D. Sorting and Searching, Reading, Mass.: Addison-Wesley, 1973.
Knuth, D. “Big Omicron and Big Omega and Big Theta.” SIGACT Nms,

Knuth, D. “The Complexity of Songs,” SIGACT Nms, 9(2):17-24, 1977.
Kosaraju, S.R. “Insertions and Deletions in One-sided Height Balanced

Kruse, R. Data Structures and Program Design (2nd ed), Englewood Cliffs, NJ:

Larson, P. “Dynamic Hash Tables,” Communications of the ACM, 31(4):446-57,

Ledgard, H., with Tauer, J. C with Excellence, Indianapolis, Ind.: Hayden Books,

wood Cliffs, NJ: Prentice-Hall, 1988.

Wesley, 1976.

McGraw-Hill, 1970.

York McGraw-Hill, 1978.

Examples,” ACM Comput. Sum., 6(4), December 1974.

wood Cliffs, N.J.: Prentice-Hall Software Series, 1988.

tober 1965.

(2nd ed.), Reading, Mass.: Addison-Wesley, 1973.

Reading, Mass.: Addison-Wesley, 1973.

Stlm., 6(4):261, December 1974.

1973.

8(2):18-24, 1976.

Trees,” Communications of the ACM, 21(3), March, 1978.

Prentice-Hall, 1987.

April 1988.

1987.

Suggested Readings 323

Lewis, T.G., and Smith, M.Z. Applying Data Stmctures, Boston: Houghton

Lockyer, K.G. An Introduction to Critical Data Analysis, London: Pitman, 1964.
Lockyer, K.G. Critical Path Analysis: Problems and Solutions, London: Pitman,

Lodi, E., and Luccio, F. “Split Sequence Hash Search,” Information Processing

Lum, U.Y. “General Performance Analysis of Key-to-Address Transformation

Mifflin, 1976.

1966.

Letters, 20(3):131-36, April 1985.

Methods using an Abstract File Concept,” Communications of the ACM,
16(10):603, October 1973.

Lum, U.Y., and Yuen, P.S.T. “Additional Results on Key-to-Address Transform
Techniques: A Fundamental Performance Study on Large Existing Format-
ted Files,” Communications of the ACM, 15(11):996, November 1972.

Lum, U.Y., Yuen, P.S.T., and Dodd, M. “Key-to-Address Transform Tech-
niques: A Fundamental Performance Study on Large Existing Formatted
Files,” Communications of the ACM, 14228, 1971.

cessing Letten, 26(5):271-72, January 1988.

Communications of the ACM, 20(11), November 1977.

1986.

niques, Englewood Cliffs, N. J.: Prentice-Hall, 1972.

N.J.: Prentice-Hall, 1977.

March 1975.

1965.

the ACM, 28(1):96-99, January 1985.

Maekinen, E. “On the Rotation Distance of Binary Trees,” Information Pm-

Manna, Z., and Shamir, A. “The Optimal Approach to Recursive Programs,”

Martin, J. Data Types and Data Structures, Englewood Cliffs, NJ: Prentice-Hall,

Maurer, H.A., and Williams, M.R. A Collection of Programming Problems and Tech-

Maurer, H.A. Data Stmctures and Programming Techniques, Englewood Cliffs,

Maurer, W., and Lewis, T. “Hash Table Methods,” Comprt. Sum., 7(1):5-19,

McCabe, J. “On Serial Files with Relocatable Records,” Oper. Res., 12609-18,

Merritt, S. “An Inverted Taxonomy of Sorting Algorithms,” Communications of

Millspaugh, A. Business Programming in C, The Dryden Press, 1993.
Moffat, A., and Takaoka, T . “An All-Pairs Shortest Path Algorithm with Ex-

pected Time O(nZ log n),” SIAM Journal on Computing, 16(6):1023-31, De-
cember 1987.

26(5):243-46, January 1988.

44, January 1968.

Rep., 40. University of California, Berkeley, 1970.

Morgan, C. “Data Refinement by Miracles,” Information Pmcessing Letters,

Morris, R. “Scatter Storage Techniques,” Communications of the ACM, 11(1):38-

Morris, J.H., Jr., and Pratt, V.R. “A Linear Pattern-Matching Algorithm.” Tech.

Motzkin, D. “Meansort,” Communications of the ACM, 26(4):250-51, April 1983.
Nielson, N.R. “Dynamic Memory Allocation in Computer Simulation,” Commu-

nications of the ACM, 20(11), November 1977.

324 Suggested Readings

Nievergelt, J., and Farrar, J.C. “What machines can and cannot do.” ACM Com-

Nievergelt, J., and Reingold, E.M. “Binary Search Trees of Bounded Balance,”

Nievergelt, J., and Wong, C.K. “On Binary Search Trees,” Proc, IFIP Congr. 71,

Nijenhuis, A., and Wilf, H.S. Combinatorial Algodhms, New York Academic,

Nilsson, N. Problem-Solving Methods in Arttjdal Intellkence, New York McGraw-

Nipkow, T. “Non-Deterministic Data Types: Models and Implementations,”

Ore, 0. Theory of Graphs, vol. 38: Providence, R.I.: American Mathematical Soci-

Ore, 0. Graphs and Their Uses, New York Random House, Syracuse, N.Y.:

Page, E.S., and Wilson, L.B. Information Representation and Manipulation in a

Pagli, L. “Self-Adjusting Hash Tables,” Information Processing Letters, 21(1):23-

Peterson, J.L., and Norman, T.A. “Buddy Systems,” Communications of the ACM,

Pohl, I. “A Sorting Problem and its Complexity,” Communications of the ACM,

Powell, M. “Strongly Typed User Interfaces in an Abstract Data Store,” So@-

Pratt, T.W. Programming Languages: Design and Implementation, Englewood Cliffs,

Prim, R.“Shortest Connection Networks and Some Generalizations,” Bell System

Purdom, P.W., and Stigler, S.M. “Statistical Properties of the Buddy System,”

Purdum, J., Leslie, T., and Stegemoller, A. C Programmer’s Library, Que Corpo-

Rabin, M.O. “Complexity of Computations,” Communications of the ACM,

Reingold, E.M. “On the Optimality of Some Set Merging Algorithms,” Journal

Reingold, E.M., Nievergelt, J., and Deo, N. CombinatoriaZ Algorithms: Theory and

Rich, R.P. Internal Sorting Methods Illustrated with PLII Programs, Englewood

Rivest, R.L., and Knuth, D.E. “Bibliography 26: Computer Sorting,” Comput.

Roberts, Fred S. Discrete Mathematical Modek, Englewood Cliffs, N.J.: Prentice-

puting Sumqs, 4(2):81-96, 1972.

SIAM Journal on Computing, 233, 1973.

North-Holland, Amsterdam, 1972, pp. 91-98.

1975.

Hill, 1971.

Acta Informatica, 22(6):629-61, March 1986.

ety, 1962.

Singer, 1963.

Computer, London: Cambridge, 1973.

25, July 1985.

20(6), June 1977.

15(6), June 1972.

warn Practice and Experience, 17(4):241-66, April 1987.

N.J.: Prentice-Hall, 1975.

Technical Journal, 36:1389-1401, 1957.

Communications of the ACM, 17(4), October 1970.

ration, 1984.

20(9):625-33, 1977.

of the ACM, 19(4):649-59, 1972.

Practice, Englewood Cliffs, N.J.: Prentice-Hall, 1977.

Cliffs, N.J.: Prentice-Hall, 1972.

Rev., 13:283, 1972.

Hall, 1976.

Suggested Readings 325

Roberts, Fred S. Applied Combinatorics, Englewood Cliffs, N. J.: Prentice-Hall,

Sager, T. “A Polynomial Time Generator for Minimal Perfect Hash Func-

Sahni, S.K. “Approximate Algorithms for the 0/1 Knapsack Problem,” Journal of

Sahni, S.K. “Algorithms for Scheduling Independent Tasks,” Journal of the

Sahni, S.K., and Gonzalez, T. “9-Complete Approximation Problems,” Journal

Savage, J.E. The Complexi@ of Computing, New York Wiley, 1976.
Schorr, H., and Waite, W.M. “An Efficient Machine-Independent Procedure for

Garbage Collection in Various List Structures,” Communications of the ACM,
10(8):501-506, August 1967.

puter Science, Stanford, Calif., May 1975.

9(2):137, June 1977.

1984.

tions,” Communications of the ACM, 28(5):523-32, May 1985.

the ACM, 22(1):115-24, 1975.

ACM, 23(1):116-27, 1976.

of the ACM, 23(3):555-65, 1976.

Sedgewick, R. “Quicksort,” Report no. STAN-CS-75-492, Department of Com-

Sedgewick, R. “Permutation Generation Methods,” ACM Comput. Sum.,

Sedgewick, R. “Quicksort with Equal Keys,” SZAM Journal on Computing

Sedgewick, R. Algorithms, Reading, Mass.: Addison-Wesley, 1983.
Shell, D.L. “A High Speed Sorting Procedure,” Communications of the ACM,

2(7), July 1959.
Shen, K.K., and Peterson, J.L. “A Weighted Buddy Method for Dynamic Stor-

age Allocation,” Communications of the ACM, 17(10):558-62, October 1974.
Shore, J. “On the External Storage Fragmentation Produced by First-Fit and

Best-Fit Allocation Strategies,” Communications of the ACM, 18(8):433, Au-
gust 1975.

Shore, J. Anomalous Behavior of the Fifty-Percent Rule in Dynamic Memory
Allocation,” Communications of the ACM, 20(1 l), November 1977.

Sleater, D., and Tarjan, R. “Biased Search Trees,” SZAM Journal on Computing,
14(3):54548, August 1985.

Sleator, D., and Tarjan, R. “Self-Adjusting Heaps,” SIAM Journal on Computing,
15(1):52-69, February 1986.

Sprugnoli, R. “Perfect Hashing Functions: A Single Probe Retrieving Method
for Static Sets,” Communications of the ACM, ZO(1 l), November 1977.

Stanat, D.F., and McAllister, D.F. Discrete Mathematics in Computer Science, Engle-
wood Cliffs, N.J.: Prentice-Hall, 1977.

Stephenson, C.J. “A Method for Constructing Binary Search Trees by Making
Insertions at the Root,” IBM Research Report RC 6298, IBM Thomas J. Wat-
son Research Center, Yorktown Heights, N.Y., 1976.

Communications of the ACM, 29(9):902-908, September 1986.

Wesley, 1986.

6(2):240-267, 1977.

Stout, Q., and Warren, B. “Tree Rebalancing in Optimal Time and Space,”

Stroustrup, B. The C + + Programming Langaage, Reading, Mass.: Addison-

326 Suggested Readings

Tarjan, R.E. “Depth-First Search and Linear Graph Algorithms,” SIAM Journal

Tarjan, R.E. “On the Efficiency of a Good but Not Linear Set Union Algo-

Tarjan, R.E. Data Structures and Network Algovithms, SIAM, 1983.
Tarjan, R.E. “Algorithm Design,” Communications of the ACM, 30(3):204-12,

Tenenbaum, A. “Simulations of Dynamic Sequential Search Algorithms,” Com-

Tenenbaum, A., and Widder, E. “A Comparison of First-Fit Allocation Strate-

Tenenbaum, A., and Augenstein, M. Data Structures Using Pascal (2nd ed.), En-

Touretsky, D.S. LISP, A Gentle Introduction to Symbolic Computation, New York

Tremblay, J.P., and Sorenson, P.G. An Introduction to Data Structums with Appli-

Tsakalidis, A. “AVL Trees for Localized Search,” Information and Control,

Tucker, A. Applied Combinatovics, New York Wiley, 1980.
Van Emden, M.H. “Increasing Efficiency of Quicksort,” Communications of the

Van Tassel, D. Program Style, Design, Eficienq, Debugging and Testing (2nd. ed.),

Vuillemin, J . “A Unifying Look at Data Structures,” Communications of the ACM,

Walker, W.A., and Gotlieb, C.C. “A Top Down Algorithm for Constructing

on Computing, 1(2):146-60, 1972.

rithm,” Journal of the ACM, 22(2):215-25, 1975.

March 1987.

munications of the ACM, 21(9), September 1978.

gies,” Proc. ACM 78, December 1978.

glewood Cliffs, N.J.: Prentice-Hall, 1986.

Harper & Row, 1984.

cations, New York McGraw-Hill, 1976.

67(1-3):173-94, October-December 1985.

ACM, 13563-67, 1970.

Englewood Cliffs, N.J.: Prentice-Hall, 1978.

23(4):229-39, April 1980.

Nearly Optimal Leixcographic Trees,” in R. Read (ed.), Graph Theory and
Computing, New York Academic, 1972.

Wegner, P. “Modifications of Aho and Ullman’s correctness proof of Warshall’s
algorithm,” SIGACT Nms, 6(1):32-35, 1974.

Weinberg, G. The Psychology of Computer Programming, New York Van Nostrand,
1971.

Wickelgren, W.A. How to Solve Problems: Elements of a Theoly of Problems and
Problem Solving, San Francisco: Freeman, 1974.

Williams, J. “Algorithm 232 (Heapsort),” Communications of the ACM, 7(6):347-
48, June 1964.

Wirth, N., “Program Development by Stepwise Refinement,” Communications of
the ACM, 14(4):221-27, April 1971.

Wirth, N. Systematic Programming An Introduction, Englewood Cliffs, N.J.: Pren-
tice-Hall, 1973.

Wirth, N. “On the Composition of Well-Structured Programs,” ACM Comput.
S u m , 6(4), December 1974.

Wirth, N. Algorithms f Data Shuctures = Programs, Englewood Cliffs, N.J.:
Prentice-Hall, 1976.

Suggested Readings 327

Wood, D. “The Towers of Brahma and Hanoi Revisited,” Journal of Recre-

Yao, A.C. “On the average behavior of set merging algorithms,” Proceedings of

Yourdon, E. Techniques of Program Structure and Design, Englewood Cliffs, N.J.:

ational Mathematics, 1 4 17-24, (1981-2).

the Ei&h Annual ACM Symposium on Theory of Computing, pp. 192-95, 1976.

Prentice-Hall. 1975.

This page has been reformatted by Knovel to provide easier navigation.

INDEX

Index Terms Links

A

Abstract data type 4–5

Acrostic puzzles 284–297

 backtracking technique for 80–83

acum() 120

add_cust_q() 120

Addition, matrix, algorithm for 25–27

addnums() 56 57

addqueue() 51 52

Addressing, open 248 251–254

Adjacency lists 201–202

Adjacency matrix 200–201

adj_node 203 204

Algorithm(s) 2–5

 abstract data type of 4–5

 clarity of 16–17

 comparisons in 15

 complexity of 14–16

 definition of 2–3

 design of 12–29

 analysis in 14–16

 data structure design in 13

 for Fibonacci numbers 20–24

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Algorithm(s)

 design of (Cont.)

 for matrix addition 25–27

 pseudo-code sketch in 13–14

 requirements analysis phase of 12–13

 efficiency index of 15

 implementation of 19

 maintainability of 17

 portability of 17–18

 readability of 16–17

 resource usage of 18–19

 testing of 19–20

Arbitrary-length arithmetic, queues for 54 56–58

Array 31–32

 multidimensional 32

arrive() 120

Attributes, of variables 94

AVL trees 162–164

 deletion for 173–175

 insertion for 164–173

 vs. non-AVL trees 165

avl_node() 170–172

B

Backtracking 77–80

 chronological 78–79

 dependency-directed 79–80

bad_swap() 97–98

Bank lines, computer simulation for 115–125

bbl_sort() 261–262

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

best_move() 192

bet_delete() 158 160–161

bfs() 206 207

Binary operator 39

Binary tree(s) 144–145

 breadth first traversal of 151 152

 complete 146 147

 definitions of 146

 deletion for 156–161

 full 146

 implementation of 146–148

 inorder traversal of 149–150

 insertion algorithm for 152–156

 ordered

 AVL 162–164

 deletion for 173–175

 insertion for 164–173

 balanced 161–175

 insertion for 153–154 164–173

 postorder traversal of 151

 preorder traversal of 150

 skewed 145

 array representation of 148

 threaded 175–180

 deletion for 180

 insertions for 178 179

 traversal of 177–178

 traversal of 148–152 177–178

 utility functions for 161 162

binsrch() 229–230 232 233

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

board_eval() 182 185–188

Breadth first traversal

 of binary trees 151 152

 of graph 205–206

bt_bfs() 151 152

bt_copy() 161 162

bt_equal() 161 163

bt_insert() 154–156

bt_insert2() 161

 Bubble sort 260–262

buildheap() 274–276

C

C programming language 6–11 298–316

 * operator in 96–97 313

 arrays for 31–32 304

 assignment operators for 308

 binary operators for 306–307

 character constants in 302

 compound statements in 310

 conditional expressions in 308–309

 constants in 301

 control flow in 310–313

 data types in 300–303

 qualifiers of 300–301

 declaration syntax of 303–305

 do-while loop in 312

 expressions in 308–309

 file inclusion facility in 315

 if statement in 310–311

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

C programming language (Cont.)

 for loop in 312

 loop termination in 312–313

 macros in 315

 operator set for 305–308

 pointers in 95–97 313

 preprocessor of 8–11 313–315

 program structure of 298–300

 programming environment of 7–8

 statements in 309–310

 string constants in 302

 structures in 99–102 304–305

 switch statement in 311

 symbolic constants in 303 314–315

 ternary operator for 307

 unary operators for 305–306

 while loop in 311–312

Calculator, software stacks for 39 41–49

Call by reference 98

Chaining 240–245

 coalesced 246–248

 separate 240–245

Chains, ordered 245

check_pared() 39 40

Chronological backtracking 78–79

Circular list, queue as 53–54 55

Clients 5

Clustering, of hash table 251–252

Coalesced chaining 246–248

Collision 239–240

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Comparison, in algorithm 15

Complexity, of algorithm 14–16

Computability theory 3

lconcat1() 107–109

lconcat2() 107–109

Concatenation 5

conn_graph 206 208

Correspondence, of array 31

Cycle 198

D

Data abstraction 4–5

Data structure(s) 3

 definition of 30

 dynamic 86–140

 doubly linked lists in 125–127 128

 generalized lists in 127 129–137

 linked lists in 87–92

 pointers with 92–105

 list processing in 105–109

 memory allocation in 100–112

 simulation with 112 115–125

 stacks in 109–110

 static 30–60

 arrays in 31–32

 disadvantages of 86–87

 ordered lists as 32–33

 overview of 30–31

 queues as 49 51–58

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Data structure(s)

 overview of (Cont.)

 stacks as 33–39

 program calculator with 39–49

dbl_delete() 126 128

dbl_insert() 126 128

Degree, of node 143

delete() 89–92

delete2() 104–105

Deletion

 for AVL trees 173–175

 for linked lists 89–92

 for threaded binary trees 180

delqueue() 51 52

Dependency-directed backtracking 70–80

Depth, of node 144

Dequeue 51

Dereferencing 96 313

dfs() 203–204

Digraph 195–221 197

 complete 197

 strongly connected 199

Division, in hashing 254–255

do while loop 312

Documentation 28

do_something() 307 308–309

Double hashing 253–254

Double rotation 168

Doubly linked lists 125–127 128

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

duration() 120

Dynamic memory allocation 110–112 114

E

Eight Coins Problem 180–182 183–184

Eight Queens Puzzle 69–77

eightcoins() 183–184

Encapsulation 5

Enqueue 51

error() 37

eval() 49 50

Extendibility 5

F

fact_iter() 62

Factorial numbers

 iterative solution for 62

 recursive algorithm for 62–65

fact_recr() 64 65 83–84

fibnum() 234 236

Fibonacci numbers

 algorithm for 20–24

 recursive algorithm for 65–67 83

fib_recr() 65–66

fib_recr2() 65–66

fibsrch() 234 235

FIFO (first-in, first-out) list 49 51–58

 See also Queue(s)

File inclusion facility, of preprocessor 10–11 315

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

find_max() 299

first() 132

Folding, in hashing 255–256

for loop 312

form_heap() 274–276

free() 110

G

Game tree 182 185–188

 implementation of 188–190

Game trees 182 185–188

game_tree() 191

gencopy() 132 133

gen_delete() 137 138

Generalized lists 127 129–137

 copying of 133

 equality of 132 134

 utility functions for 132–135

good_swap() 98

Graph(s) 195–221

 applications of 199–200

 breadth first traversal of 205–206

 complete 197

 connected, traversal of 206 208

 connected components of 199

 definition of 195–199

 depth first traversal of 202–205

 path of 198

 shortest path of 215–217

 subgraph of 197 198

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Graph(s) (Cont.)

 traversal of 202–208

 weakly connected 199

 weighted, traversal of 206 208

H

Hash table 235–246

Hashing, searching with 238–256

hash_node() 242

hash_tel() 238 239

Head pointer 88

Heapsort 272–276

Height, of node 143–144

I

Index, of array 31

indx_seq() 226–228

Infix notation 41

 to postfix form 42 43–46

inorder() 149–150

Inorder traversal, of binary trees 149–150

insert() 89–92

insert2() 104–105

Insertion

 for AVL trees 164–173

 for linked lists 87–92 103–105

 for threaded binary trees 178 179

Insertion sort 264–265

ins_hash() 242 243

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

ins_node() 242 243

ins_sort() 264–265

Instantiation, of recursive procedure 61

iter_trav() 106

itop() 46 48

K

kross program 289–297

L

Level, of node 143

LIFO (last-in, first-out) structure 33–36

Linear list 32–33

 See also Ordered list

Linear probing 251–253

Linked-list deletion 89–92 103–105

Linked-list insertion 87–92 103–105

Linked lists 87–92

 using pointers 92–105

List(s)

 adjacency 201–202

 circular, queue as 53–54 55

 concatenation of 107–109

 doubly linked 125–127 128

 generalized 127 129–137

 linked 87–92

 deletion with 89–92 103–105

 insertion with 87–92 103–105

 using pointers 92–105

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

List(s) (Cont.)

 ordered 32–33

 queues as 49 51–58

 stacks as 33–37

 reversal of 106–107

 shared 135–137

 traversal of 105–106

 tree as 144

List concatenation 107–109

List deletion 89–92

 with pointers 103–105

List insertion 89–92

 with pointers 103–105

List reversal 106–107

List traversal 105–106

 iterative 105–106

 recursive 105–106

list_equal() 132 134

LR rotation 169

M

Macro 9–10

main() 7 8 299

Maintainability 5

 of algorithm 17

make_tree() 191

malloc() 110

Map, of array 31

Matrix, adjacency 200–201

Matrix addition, algorithm for 25–27

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Median-of-three partitioning, in quicksort 271–272

Members 99

Memory allocation, dynamic 110–112 114

merge() 277–278

Mergesort 276–281

 implementation of 278–281

Modularity 5

move() 189–190

mrg_pass() 278–280

mrg_sort() 278–280

Multidimensional arrays 32

Multigraph 196 197

N

nextqueen() 69–77

Node 143

 degree of 143

 depth of 144

 height of 143–144

 level of 143

 non-terminal 143

 terminal 143

Non-deterministic programming 78

Numbers

 factorial

 iterative solution for 62

 recursive algorithm for 62–65

 Fibonacci, algorithm for 20–24

 recursive 65–67 83

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

O

Open addressing 248 251–254

Operands 39

Operator(s) 39

 binary 39

 unary 39

Operator overloading 97

Ordered list 32–33

 queues as 49 51–58

 stacks as 33–37

P

Parentheses, stacks processing of 37–39 40

Parenthesis index 38

Partition sort 265–272

Path 141

 in graph 198

Platform 17–18

Pointer(s) 94–95

 in C programming language 95–97 313

 dereferencing of 96–97

 example of 97–99

 linked lists with 92–105 102–103

 list deletion with 103–105

 list insertion with 103–105

 queue functions and 110 111 112

 queues with 110 112

 stacks with 109–110 111

pop() 35 36

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Portability, of algorithm 17–18

Postfix notation 41 42

 evaluation of 47 48–49 50

 infix notation to 42 43–46

postorder() 151

Postorder traversal, of binary trees 151

power() 1–2

ppop() 110 111

ppop2() 114

ppush() 110 111

ppush2() 114

Prefix notation 41

preorder() 150

Preorder traversal, of binary trees 150

Preprocessor

 of C programming language 8–11 313–315

 file inclusion facility of 10–11

Private implementation 5

Probing, linear 251–253

Pruning 79

Pseudo-code 13–14

Public interface 5

push() 35 36

Q

qck_sort() 268–269

Queue(s) 49 51–58

 for arbitrary-length arithmetic 54 56–58

 as circular list 53–54 55

 dequeue in 51

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Queue(s) (Cont.)

 enqueue in 51

 full 51 53–54 56

 pointers with 110 111 112

 for summing addends 56–58

queue_empty() 51 52

queuesize() 51 52

Quicksort 265–272

 median-of-three partitioning in 271–272

 recursion removal from 270

 secondary sorting routine in 270–271

R

Readability, of algorithms 16–17

Record 99

Recursion 61–85

 backtracking in 77–80

 acrostic puzzle examples of 80–83

 chronological 78–79

 dependency-directed 79–80

 chronological backtracking in 78–79

 dependency-directed back-tracking in 79–80

 direct 61

 for Eight Queens Puzzle 69–77

 for factorial numbers 62–65

 for Fibonacci numbers 65–67

 indirect 61

 instantiation of 61

 nesting in 83–84

 non-deterministic programming in 78

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Recursion (Cont.)

 in quicksort 270

 redundancy in 83

 terminating condition of 63–64

 for Towers of Hanoi 67–69 70 71

 use of 83–84

recv_trav() 106

Reference counts 135–137

Rehashing 253–254

Resource usage, of algorithms 18–19

rest() 132

reverse() 37 106–107

Ripple effect 17

RL rotation 168

Root, of tree 141

S

safe() 73–74 77

Searching 222–258

 See also Back-tracking

 binary 228–232

 interpolation 232–234

 modified 232

 binary tree 236–237

 Fibonacci 234–236

 hashing with 238–256

 linear, ordered 224–225

 pruning in 79–80

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Searching (Cont.)

 sequential 223–224

 complexity of 223–224

 indexed 225–228

Secondary hashing 253–254

Selection sort 262–264

Self-loops 196

Self-referential structures 102

sel_sort() 263–264

seq_srch() 223

seq_srch2() 224–225

Shared lists 135–137

simulate() 116–125

Simulation 112 115–125

Single left rotation 167

Single right rotation 167

Skewed binary trees 145

 array representation of 148

Software design. See Algorithm(s), design of

solve() 80–83 284–297

Sorting 259–283

 bubble 260–262

 execution time for 259–260

 insertion 264–265

 partition 265–272

 selection 262–264

 space requirements for 260

 stability of 260

Spanning trees 208–215

 minimal 210–211 213–215

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Stacks 33–37

 calculator design with 39 41–49

 parentheses processing by 37–39 40

 pointers with 109–110 111

 string reversal by 36–37

String reversal, by stacks 36–37

str_to_int() 255 256

Structure, in C programming language 99–102

Structure tag 99–100

Subgraph 197 198

sum1() 3 4

sum2() 3 4

switch statement 311

Symbolic constant 8–9

T

Tic-tac-toe program 182 185–188

 implementation of 188–190

Top, of stack 33–36

towers() 69 70

Towers of Hanoi 67–69 70 71

Traversal

 of binary trees 148–152

 breadth first

 of binary trees 151 152

 of graph 205–206

 depth first, of graph 202–205

 of graph 202–208

 inorder, of binary trees 149–150

 postorder, of binary trees 151

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Traversal (Cont.)

 preorder, of binary trees 150

 of threaded binary tree 177–178

Tree(s) 141–194

 applications of 180–190

 basic principles of 141–144

 binary 144–145

 threaded 175–180

 decision 180–182

 definition of 141

 forest of 144

 game 182 185–188

 spanning 208–215

 minimal 210–211 213–215

treesrch() 236–237

Truncation, in hashing 254

U

Unary operator 39

V

Value, of array 31

Variable, attributes of 94–95

W

while statement 311–312

	Front Matter
	Dedication
	Preface
	Table of Contents
	1. Introduction
	1.1 Overview
	1.2 Why Study Algorithms?
	1.2.1 Data Abstraction

	1.3 Why C?
	1.4 Coding Style
	1.5 What You Need to Know
	1.5.1 The C Programming Environment
	1.5.2 The C Preprocessor

	Summary

	2. Algorithm Design
	2.1 How to Design an Algorithm
	2.1.1 Understand the Problem
	2.1.2 Data Structures
	2.1.3 Pseudo-Code
	2.1.4 Analysis
	2.1.4.1 Additional Analysis Criteria

	2.1.5 Implementation
	2.1.6 Testing

	2.2 Example 1: Fibonacci Numbers
	2.2.1 Understand the Problem
	2.2.2 Data Structures
	2.2.3 Pseudo-Code
	2.2.4 Analysis
	2.2.5 Implementation
	2.2.6 Testing

	2.3 Example 2: Matrix Addition
	2.3.1 Understand the Problem
	2.3.2 Data Structures
	2.3.3 Pseudo-Code
	2.3.4 Analysis
	2.3.5 Implementation
	2.3.6 Testing

	Summary
	Exercises

	3. Static Data Structures
	3.1 Overview
	3.2 Arrays
	3.3 Ordered Lists
	3.4 Stacks
	3.4.1 String Reversal
	3.4.2 Parentheses Usage

	3.5 Example Calculator
	3.5.1 Prefix and Postfix Notation
	3.5.2 Automating Infix-to-Postfix Conversion
	3.5.3 Postfix Evaluation

	3.6 Queues
	3.6.1 Arbitrary-Length Arithmetic

	Summary
	Exercises

	4. Recursion
	4.1 Introduction
	4.2 Factorial Numbers
	4.3 Fibonacci Numbers
	4.4 Writing Recursive Functions
	4.4.1 Towers of Hanoi
	4.4.2 Eight Queens Puzzle
	4.4.3 Backtracking
	4.4.3.1 Non-Deterministic Programming
	4.4.3.2 Chronological Backtracking
	4.4.3.3 Dependency-Directed Backtracking
	4.4.3.4 Acrostic Example

	4.5 Use of Recursion
	Summary
	Exercises

	5. Dynamic Data Structures
	5.1 Introduction
	5.2 Linked Lists
	5.3 Linked Lists Using Pointers
	5.3.1 Pointers
	5.3.1.1 Pointers in C
	5.3.1.2 Pointer Example
	5.3.1.3 C Structures
	5.3.1.4 Linked Lists and Pointers

	5.3.2 List Insertion and Deletion with Pointers

	5.4 List Processing
	5.4.1 List Traversal
	5.4.2 List Reversal
	5.4.3 List Concatenation

	5.5 Stacks Revisited
	5.6 Queues Revisited
	5.7 Dynamic Memory Allocation
	5.8 Simulation Example
	5.8.1 Problem Overview
	5.8.2 Implementation

	5.9 Doubly Linked Lists
	5.10 Generalized Lists
	5.10.1 Implementation
	5.10.2 Generalized List Functions
	5.10.3 Shared Lists and Reference Counts

	Summary
	Exercises

	6. Trees
	6.1 Basic Principles
	6.1.1 Definitions

	6.2 Binary Trees
	6.2.1 Binary Tree Definitions
	6.2.2 Binary Tree Implementation
	6.2.3 Binary Tree Traversal
	6.2.3.1 lnorder Traversal
	6.2.3.2 Preorder Traversal
	6.2.3.3 Postorder Traversal
	6.2.3.4 Breadth First Traversals

	6.2.4 Binary Tree Insertion
	6.2.4.1 Concluding Remarks

	6.2.5 Binary Tree Deletion
	6.2.6 Utility Functions

	6.3 Balanced Trees
	6.3.1 AVL Tree Insertion
	6.3.2 AVL Tree Deletion

	6.4 Threaded Binary Trees
	6.4.1 TBT Traversal
	6.4.2 TBT Insertions
	6.4.3 TBT Deletions

	6.5 Applications of Trees
	6.5.1 Decision Trees
	6.5.2 Game Trees
	6.5.3 Implementation

	Summary
	Exercises

	7. Graphs and Digraphs
	7.1 Introduction
	7.1.1 Definitions and Terminology
	7.1.2 Applications of Graphs

	7.2 Internal Representation
	7.2.1 Adjacency Matrix
	7.2.2 Adjacency Lists

	7.3 Traversals
	7.3.1 Depth First Search
	7.3.2 Breadth First Search
	7.3.3 Connected Graphs
	7.3.4 Weighted Graphs

	7.4 Spanning Trees
	7.4.1 Minimal Spanning Trees
	7.4.2 MST Construction
	7.4.3 Analysis
	7.4.4 Implementation

	7.5 Shortest Path Algorithm
	Summary
	Exercises

	8. Searching
	8.1 Introduction
	8.2 Sequential Searching
	8.3 Searching Ordered Tables
	8.3.1 Ordered Linear Search
	8.3.2 Indexed Sequential Search
	8.3.3 Binary Search
	8.3.4 Modified Binary Search
	8.3.5 Interpolation Search
	8.3.6 Fibonacci Search
	8.3.7 Binary Tree Searching

	8.4 Hashing
	8.4.1 Simple Hashing Example
	8.4.1.1 Collision Resolution Strategies
	8.4.1.2 Chaining
	8.4.1.3 Improvements and Extensions
	8.4.1.4 Open Addressing

	8.4.2 Hashing Functions
	8.4.2.1 Truncation
	8.4.2.2 Division
	8.4.2.3 Folding

	Summary
	Exercises

	9. Sorting Techniques
	9.1 Introduction
	9.2 Bubble Sort
	9.2.1 Analysis

	9.3 Selection Sort
	9.3.1 Analysis

	9.4 Insertion Sort
	9.4.1 Analysis

	9.5 Quicksort
	9.5.1 Analysis
	9.5.2 Improvements to Quicksort
	9.5.2.1 Remove Recursion
	9.5.2.2 Secondary Sorting Routine
	9.5.2.3 Median-of-Three Partitioning
	9.5.2.4 Final Remarks

	9.6 Heapsort
	9.6.1 Analysis

	9.7 Mergesort
	9.7.1 Implementation
	9.7.2 Analysis

	Summary
	Exercises

	Appendices
	Appendix A: Acrostic Puzzle
	Exercises

	Appendix B: C for Programmers
	B.1 Introduction
	B.1.1 Quick Tour of C
	B.1.2 Program Structure

	B.2 Data Types
	B.2.1 Basic Types
	B.2.2 Qualifiers
	B.2.3 Constants
	B.2.4 Character Constants
	B.2.5 String Constants
	B.2.6 Symbolic Constants
	B.2.7 const Qualifier

	B.3 Declarations
	B.3.1 Identifier Names
	B.3.2 Declaration Syntax
	B.3.3 Arrays
	B.3.4 Structures

	B.4 Operator Set
	B.4.1 Unary
	B.4.2 Binary
	B.4.3 Ternary
	B.4.4 Assignment Operators

	B.5 Expressions and Statements
	B.5.1 Comments
	B.5.2 Expressions
	B.5.3 Conditional Expressions
	B.5.4 Statements
	B.5.5 Compound Statements

	B.6 Control Flow
	B.6.1 The if Statement
	B.6.2 The switch Statement
	B.6.3 The while Loop
	B.6.4 The do-while Loop
	B.6.5 The for Loop
	B.6.6 Loop Termination and Continuation

	B.7 Pointers
	B.8 The C Preprocessor
	B.8.1 Symbolic Constants
	B.8.2 Macros with Arguments
	B.8.3 Include Files

	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

