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Preface 

This book instructs readers on the science of developing and analyzing 
algorithms. I t  is intended for use in a one- or two-semester under- 
graduate course in data structures. 

The  text focuses on both the theoretical and practical aspects of 
algorithm development. It discusses problem-solving techniques 
and introduces the concepts of data abstraction and algorithm effi- 
ciency. More important, it does not present algorithms in a shopping- 
list format. Rather, the book tries to provide actual insight into the 
design process itself. 

The  book also has a practical bent. Most of the algorithms are of 
general use, and there is a strong emphasis placed on “real world” 
programming requirements. As a result of this unique approach, and 
the fact that all algorithms are presented in the C programming language, 
the book should prove useful to professional programmers as well. 

ORGANIZATION 

Chapter 1 introduces algorithmic analysis and discusses the motiva- 
tions for its study. Although the book is not intended as a tutorial on C 
(see below), this chapter does provide a brief introduction to the C 
programming environment. Readers already familiar with this material 
may omit sections 1.5 and 1.6. Readers who wish a more thorough 
examination of the language are referred to Appendix B. 

Chapter 2 discusses the various phases of algorithm design and 
introduces the concept of complex$y. Static data structures are presented 
in Chapter 3. This is followed by a detailed explanation of recursion 
in Chapter 4. Chapter 5 follows with discussion of dynamic data structures. 

V 
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Many of the algorithms presented in Chapter 3 are reimplemented 
using the techniques discussed in this chapter. 

In Chapters 6 and 7, we discuss two of the more important abstrac- 
tions found in computer science: trees and graphs. The  chapters 
include many practical examples. In Chapter 8 we discuss searching 
techniques and finish with a discussion of sorting techniques in 
Chapter 9. 

T h e  exercises appearing at the end of each chapter are also an 
integral part of this text. They reinforce the concepts presented in each 
section and often introduce new material as well. 

All texts of this nature require a “host” language to serve as a vehicle 
for algorithm presentation. Authors of similar books have used languages 
ranging from assembler topseudo-code. We decided that C was the best 
choice for this text for several reasons: 

It is an excellent vehicle for expressing algorithmic ideas. 
It is widely available. Most readers of this text will have access 

It has become the language of choice in many professional and 

Programmers familiar with other structured programming lan- 

to a C compiler at school, work, or home. 

academic institutions. 

guages will readily understand the C programs presented in 
this book. 

A note about this last item. The  intent of this book is to teach 
algorithm design; it is not intended to serve as a tutorial introduction 
to the C programming language. Thus, experienced C programmers 
will note several instances where program segments could be expressed 
more succinctly using some of the more advanced features of C. In all 
such cases, however, cleverness gave way to clarity. T h e  justification 
for this approach is two-fold: 

Syntax should not impede understanding. 
Experienced C programmers can easily re-code the algorithms 
with minimal effort. 

IMPLEMENTATION  NOTES
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Moreover, to ensure that language syntax is not an obstacle to 
learning, we have included the following features in the text: 

Whenever appropriate, there are thorough explanations of C- 

Chapter 1 includes an introduction to the C programming 

Appendix B provides a more detailed introduction of C for 

specific features. 

environment. 

programmers. 

All the programs and code fragments contained herein have been 
compiled by the author using ANSI C compilers running under 
several operating systems. All program listings are-for the most part- 
self-contained. As a result, readers should have little difficulty transcribing 
them to their local environments. 
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C H A P T E R  I 
1.1 OVERVIEW 

Throughout their careers, programmers are continually asked to decide 
whether a given problem has a computer-based solution. An af- 
firmative answer implies that the problem is algorit/rmically solvable. 
That is, if we permit the program to execute long enough, and 
provide it with all the necessary computing resources, it will produce 
the desired result. 

A simple yes is not sufficient, however. Decisions regarding com- 
putability must be considered in a practical perspective. For example, 
consider writing a computer program to play chess. We could design 
the program such that it would select its next move by examining every 
possible option for every possible board position. Is this theoretically 
possible? Yes. Is it practical? No. A program written in such a 
manner could require thousands of years to compute even a single 
move. 

Therefore, within this framework of practicality, let's informally 
define an algorithm as a series of instructions that, if followed exactly, will 
accomplish a desired task in a finite (acceptable) amount of time. For 
example, refer to the gower ( ) function presented in Listing 1.1. 

1 
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2 1 Introduction 

/ *  
* Raise X to the power Y 
* /  

int power( int x, int y ) 

int i, ret; 

i = 0; 
ret = 1; 
while( i < y 
{ 

ret = ret * x; 
i = i + l ;  

1 
return( ret 1;  

1 
listing 1.1 
Power function. 

The  function power ( ) accepts two arguments: a base (x) and an 
exponent (y), and it returns the result of raising x to the y power. 
It is a useful function and is provided (in some form) with most 
language systems. As presented here, it qualifies as an algorithm under 
our informal definition in that it will compute the desired value in an 
acceptable period of time. (This particular implementation has several 
shortcomings, however. Consider what would happen if we invoked 
the function with a y argument equal to - 1. As a rule, functions 
and/or programs should behave intelligently when presented with erro- 
neous data. We will be stressing this point throughout this text.) 

In computer science, an algorithm is a problem-solving technique 
suitable for implementation as a computer program. Specifically, an algo- 
rithm is a finite set of instructions which, if followed exactly, will 
accomplish a particular task. Additionally, algorithms must satisfy 
the following criteria: 

Each instruction contained in the algorithm must be clear, concise, 
and sufficiently basic that we can (at least in theory) accomplish it 
manually. 
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In all cases, the algorithm terminates after executing some finite 
number of instructions (the actual number may vary with each 
execution). 

(computes) at least one value. 

One last point: As stated earlier, an algorithm is a problem-solving 
technique stlitable for implementation as a computer program. That 
is, an algorithm is not tied to its implementation. For example, consider 
the task of writing a program that yields the sum of the integers from 1 
to n. One way to express this task algorithmically might be as follows: 

The  algorithm accomplishes at least one task and/or produces 

Step 1 
Step 2 

Step 3 

Initialize a counter to the value 1. 
Add to an accumulator variable the value contained in the 
counter; then increment the counter by 1. 
Repeat step 2 until the counter becomes greater than n. 

Now consider the two functions presented in Listing 1.2. Both 
sum1 ( ) and sum2 ( ) achieve the result stipulated in the algo- 
rithm. Yet their implementations vary dramatically. Moreover, even 
without benefit of formal analysis, it should be clear that sum2 ( ) is more 
efficient than its counterpart. Indeed, there will be many occasions 
when we will be confronted with just such a choice. One of the 
goals of this text is to provide the insight necessary to allow the reader 
to make such a selection. 

1.2 WHY STUDY ALGORITHMS? 

Algorithms are at the heart of computer science. Much of the early 
work in the field was directed toward identifying the types and classes of 
problems that could be solved algorithmically. We refer to this subject 
as computubild~ theory, and it is deserving of study in its own right. In 
contrast, this text will focus on analyzing individual algorithms de- 
signed to solve specific problems. In doing so, we will identify and discuss 
the key programming concepts associated with each algorithm so they 
may be reapplied in other programs. 

Most of the algorithms presented in this text employ complex 
forms of data organization. These objects, called dutu structtlres, are central 
to the study of algorithms. An algorithm and its associated data struc- 
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suml( i n t  n) 
{ 

i n t  i; 
i n t  result;  

i = 1; 
resul t  = 0; 
while( i <= n ) 

{ 
resul t  = resul t  + i; 

i = i + l ;  
1 
return( resul t  1; 

1 
sum2( i n t  n ) 

i: 
i n t  result;  

resul t  = nf (n+ 1) /2;  

return( resul t  ); 

1 listing 1.2 
Two functions that 
sum integers. 

ture are so closely linked that a modification to one will usually 
precipitate a change in the other. Because of this high degree of 
interdependence, we will discuss both as a single unit. 

Data Abstraction 

It is often convenient to view an algorithm and its data structure solely 
in terms of the operations they support. We refer to this as an 
abstract data ope. Abstract data types allow programmers to think in 
terms of the abstraction, without being concerned with implemen- 
tation details. Data abstraction is more common than one might think. 
For example, consider the use of floating-point (real) numbers in a com- 



1.2 Why Study Algorithms? 5 

puter program. Programmers think in terms of adding or subtracting 
them. At the machine level, however, they are processed (algorithms) and 
stored (data structures) in a different manner. 

As implied earlier, abstract data types support both apublic inte~ace 
and aprivate implementation. The  public interface is the abstraction. 
For those programmers using an abstract data type (often referred to 
as clients), the public interface defines both the abstraction and the range 
of permissible operations. For example, consider once again our floating- 
point number example. Its public interface allows us to use real num- 
bers in ways that seem natural to use: We can add them, subtract them, 
etc. In addition, the public interface does not support other operations, 
such as concatenation, that are not associated with floating numbers. 

We implement abstract data types using algorithms and hidden 
state data (i.e., data structures). Specific details of the implementation 
should remain private. That is, clients should only be able to manipu- 
late and modify an abstract data type through the proper use of its operator 
set (i.e. , the public interface). We refer to this property as encapsulation. 
T h e  degree to which we can enforce encapsulation is, to a large extent, 
based on the language we are coding in. Nonetheless, enforcement 
of encapsulation rules provides us with a number of benefits, including 
the following: 

Maintainability We can modify the implementation of an abstract 
data type without affecting client programs. That is, if we do not alter 
the public interface, then any changes we apply to the private 
implementation will not affect well-behaved client programs. A well- 
behaved client program is one that, either through prescription or 
convention, does not circumvent the public interface. 

By maintaining a private implementation, we can mini- 
mize the ripple effect of software modifications. That is, if the 
modified code remains isolated, the changes are less likely to 
affect other, non-related sections of the application. 

We can construct new abstractions based on existing 
types. For example, we could extend the floating-point abstrac- 
tion to create abstractions for complex and imaginary numbers. 

Throughout this text, we will show, by example, how to write 

Modularity 

Extendibility 

well-constructed abstract data types. 
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1.3 WHY C? 

Every text of this nature requires the use of a host language as a 
vehicle for the presentation of algorithms. Other books on this subject 
employ languages ranging from assembler to pseudo-code. Here are 
some of the reasons why we selected C for use in this text: 

C is an excellent vehicle for expressing algorithmic ideas. 
Its use is widespread, and it has become the language of choice 

Because of its broad availability (from PC to mainframe), many 
in many installations. 

readers of this text will be able to compile and execute the 
examples exactly as they appear in the listings. 

understand its flow-control constructs. 
Programmers familiar with other structured languages can readily 

1.4 CODING STYLE 

We made every effort to ensure that each program listing is clear and 
unambiguous. Also, to avoid confusion, a consistent coding style 
was maintained throughout the text. 

For the most part, program listings are complete and self- 
contained. In some cases, however, a later listing may assume some 
declarations and/or definitions included in a previous example. All such 
occurrences are noted in the accompanying text. 

We could simplify some of the algorithms presented in this text- 
at least in terms of the number of statements needed-by using 
some of the more advanced features of C. In all such cases, however, 
cleverness gave way to clarity. Nevertheless, we hope that the code pre- 
sented in this book will highlight the power and grace of the C program- 
ming language. 

1.5 WHAT YOU NEED TO KNOW 

This book is not intended to serve as a tutorial introduction to the 
C programming language (the bibliography lists several instructional 
texts). As noted previously, readers familiar with other structured program- 
ming languages (e.g., PASCAL) should have little (if any) difficulty 
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reading the program listings contained in this text. However, C 
does have several unique features. Thus, to ensure that syntax does 
not impede understanding, we have taken the following 
safeguards: 

1. We have deliberately avoided using some of the more advanced 

2. Whenever appropriate, we provide thorough explanations of any 

3. We have included a section that provides a brief introduction to 

4. For readers who have programming experience in other structured 

features of C. 

C-specific features we use. 

the C programming environment. 

languages (e.g., PASCAL), Appendix B provides a more detailed intro- 
duction to C for programmers. 

Readers who are unfamiliar with C should complete this chapter. 
Readers who are already familiar with the language should proceed directly 
to Chapter 2. 

The C Programming Environment 

A complete C program consists of one or more functions, one of which 
must be named main ( ) . Program execution begins with the first execut- 
able statement contained in this function. The  source code for a C 
program may be partitioned into separate source files (modules) and com- 
piled independently. After compiling, we can combine (link-edit) all 
the object (machine language) files to form one executable program. For 
example, assume that we have stored the source code for the function 
power ( ) (Listing 1.1) in the file power. c. Also, assume a second source 
file, test. c, that contains the following code: 

#include (stdi0.h) 

main( ) 
{ 

int x; 
x = power( 2, 4 ) ;  

printf( "X = %d\n", x );  

1 
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The  command 

cc test.c p0wer.c 

will compile and link the two source modules and create one execut- 
able file. (The name of the resulting executable file will vary; refer 
to your compiler's user manual for the actual name.) When executed, 
the program will generate the following output: 

X = 16 

Note that the statement 

#include (stdi0.h) 

is a preprocessor directive and is discussed in the next section. 

The C Preprocessor 

A complete C language implementation comes supplied with aprepm- 
cessor. 'The preprocessor is a separate program (automatically in- 
voked by the compiler) that does just what its name implies: processes 
C source files before passing the modified source code on to the 
compiler. Two of its many features are string replacement and file 
inclusion. 

Let's begin by describing simple string substitution. If a C program 
contained a definition of the form 

#define MAX-SCORES 10 

the preprocessor would replace all unquoted occurrences of the string 
MAX-SCORES with the string 10. We refer to MAX-SCORES as a 
symbolic constant. For example, consider the following code fragment. 

#define MAX-SCORES 10 

main() 

int i; 
int total[ MW-SCORES I ;  
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if ( i >= MAX-SCORES ) 

1 

After preprocessing, the statements would be presented to the com- 
piler as 

main( 
{ 

int i; 
int total[ 10 1;  

if( i >= 10 ) 

1 

This is an extremely useful facility. Not only does it make the 
code easier to read, but it also simplifies program maintenance. 
For example, if the maximum number of scores changed from 10 to 
15, we would make only one change to our program and the 
preprocessor would take care of the rest. However, if we wrote the 
foregoing program without using a symbolic constant, we would have to 
modify the source code in at least two places. We strongly encourage 
the use of symbolic constants in C programs. 

The  preprocessor also allows symbolic constants to accept argu- 
ments. These are usually called macros. For example, we could create the 
following definition: 

#define SQUARE(x) ((x)*(x)) 

The  expansion of SQUARE() is now dependent on its use: The  
statement 
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z = SQUARE(y); 

will be expanded to 

= ( ( y ) * ( y ) ) ;  

Note that x serves as a place holder. That is, whatever argument we 
place in the x position will appear wherever x appears in the 
expansion. 

The  parentheses surrounding the substitution string (i.e., 
( (x) * (x) 1) are not syntactically required. Rather, they serve to 
ensure correct operator evaluation. For example, consider the following 
definition: 

#define BAD-SQUARE(x) x*x 

Let’s say we wanted to square the sum of two variables. We might 
use BAD-SQUARE ( ) as follows: 

z = BAD-SQUARE ( a + b) ; 

The  preprocessor would expand this statement into 

z = a+b*a+b; 

Mathematically, the compiler would evaluate this expression as 

z = a+(b*a)+b;  

Obviously, this is not what we had intended. However, the same call 
using SQUARE ( would expand to 

z = ( ( a + b ) * ( a + b ) ) ;  

which does yield the desired result. 

inclusion facility. Let’s assume that we wanted several related 
program modules to use the following set of macros: 

T h e  other widely used feature of the preprocessor is the file 

#define NO 0 
#define YES 1 
#define SIZE 100 
#define SQUAFtE(x) ((x)*(x)) 

One solution is to type (or copy) each macro into every program 
source file. However, if SIZE were to change to, say, 200, we would be 
forced to apply the same edit to many source files. 
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A better solution is to place all the definitions in just one file and 
include them as needed. We can accomplish this with the following pre- 
processor directive: 

# i n c l u d e  "def s . h" 
This directs the preprocessor to replace the # i n c l u d e  statement 
with the entire contents of the file def 8 .  h. The  i n c l u d e d  file 
may contain any valid C statements, including nested # i n c l u d e  
directives. The  file name itself is arbitrary-in fact, the . h exten- 
sion (signifying 'header' file) is only a convention. 

There is another form of the # i n c l u d e  directive: 

# i n c l u d e  (filename) 

T h e  use of the angle brackets directs the preprocessor to search a 
predetermined location (directory) for one of several system- 
supplied header files. The  exact location is system dependent, and 
the files contain definitions of a global nature. A common example 
is the file s tdio.  h, which contains global definitions required by the 
standard input/output library. 

I '  Algorithms are problem-solving techniques suitable for implementa- 
tion as a computer program. They are defined as a finite sequence 
of instructions that accomplish a particular task. Although algorithms 
are usually described in terms of a specific programming language, 
they are, by their nature, independent of any machine or environment. 

Algorithms usually employ complex forms of data organization called 
data structures. It can be convenient to view algorithms and their 
associated data structures solely in terms of the operations they support. 
We refer to the resulting abstraction as an abstract data type. Data 
abstraction can improve programmer productivity and minimize the 
cost of software maintenance. 

SUMMARY 



Algorithm Design 

2.1 HOW TO DESIGN A N  ALGORITHM 

Algorithm design is more akin to an art than a science. Supply 100 
programmers with the identical specification and, in return, you will receive 
100 different solutions. The  process is largely subjective, and the 
notion of good or bad can also be application specific (i.e., a program 
considered a good solution in one environment might be unsuitable 
in another.) 

However, we are not completely on our own in this matter. There 
are general guidelines that we can follow and a broad notion of 
what is considered good programming practice. Throughout this text, 
our discussions of individual algorithms provide specific insights 
into the design process; the sections that follow serve as an introduction 
to the topic. 

Understand the Problem 

The  first step in algorithm design is to understand the problem. This 
is called the requirements analysis phase. However obvious this 
might appear now, all readers of this book will, at one time or another, 

12 
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a program that they think solves a particular problem-only to find 
out later that their efforts were wasted because they solved the wrong 
problem. Gather data, speak to users, carefully review any written 
requirements. In short, try to ensure that you have all the information 
you need before you start to design and code an application. 

Data Structures 

The  next step is to design the data structures. This is a critical part 
of the development process and the one most often overlooked 
by even the most experienced programmers. A correctly designed data 
structure will suggest the design of the definitive algorithm and 
yield a simple, easily maintainable program. In contrast, choosing a 
clumsy or inappropriate data structure will produce code that is unreadable 
and difficult to maintain. 

Subsequent chapters of this book will introduce some very sophis- 
ticated data structures. However, you should already be familiar with the 
more common data types provided with most languages (e.g., integers, 
characters, arrays, etc.). A trivial example of an incorrect choice of 
a data structure is using individual variables to process the test results 
of a computer science class. It would be more appropriate to use 
an array. 

After they have been designed, we need to verify the appropriate- 
ness of our data structures. One way to do this is to ask users to supply 
a number of questions andlor updates that they would like your pro- 
gram to support. You can then manually apply the questions against your 
design and judge how well your data structures respond to these user 
requirements. Modify your design as necessary. 

Pseudo-Code 

The  next phase of the development process is to formulate or sketch 
the algorithm in pseudo-code. Each pseudo-code statement de- 
scribes tasks that the programmer will implement using one or more 
host (real) language statements. The  level of detail represented by each 
pseudo-code statement can vary, and programmers develop individual 
styles that reflect personal preference or need. The  use of pseudo-code 
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listing 2.1 
Pseudo-code 
example. 

while( more employee input 
if( salaried ) 

calculate tax; 
calculate fica; 

determine hours ; 
overtime hours; 
get hourly rate; 

else 

print check; 

allows programmers to design and analyze algorithms without becom- 
ing entangled in syntactic detail. Listing 2.1 contains an example. 

Analysis 

The  next phase in the development is analysis. We can divide this 
phase into three steps. First, we must determine whether our solution 
seems feasible with respect to memory requirements, performance 
constraints, ease of use, etc. Second, we should review and validate 
the pseudo-code description of our algorithm. Obviously, these are 
both manual procedures at this point because we have not, as yet, written 
any (compilable) code. 

The  third step is to perform an analysis of the complexity of the 
algorithm. Complexity in this sense does not refer to the relative 
difficulty of understanding the program; rather, it is a measure of the 
amount of work performed by the executing function. This type of analysis 
is especially useful when there are two or more solutions available and 
we wish to select only one for implementation. 

In determining complexity, it would appear useful to have the 
actual execution times available for each function. Obviously, this 
is not possible because we have not, as yet, performed any actual 
coding. Moreover, the very point of this exercise is to eliminate 
the need to develop, implement, and test more than one algorithm. 
Furthermore, performance results can vary drastically when pro- 
grams are compiled and executed on different processors, using differ- 
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ent compilers. Therefore, the metrics that we develop for measuring com- 
plexity should allow us to rate the algorithms independent of their 
execution environment. 

In summary, we want to analyze the complexity of an algorithm, 
without writing any code, without executing any programs, and measure 
the results independent of any execution environment. T h e  question 
then becomes, How do we do this? 

In many cases, we can identify one or more basic operations as 
critical to the performance of an algorithm. Once identified, we can analyze 
(count) these operations to yield a relative eflcienency index or order of 
execution magnitude. For example, consider sorting routines. One critical 
operation for this class of algorithm is the comparison. That is, we could 
state that the fewer the comparisons made, the more efficient the 
algorithm. Thus, if we were presented with two or more different 
sorting functions, we would usually choose to implement the one that 
performed the fewest comparisons. 

Now that we have suggested a method of evaluating performance, 
we must also develop a consistent manner in which to present it. It would 
seem obvious to state that the total amount of work performed by a 
function is proportional to the amount of data that it must process. There- 
fore, we will represent an algorithm’s complexity as a function of the 
size of the input. For example, if n represents the total number 
of data elements, a function that requires one critical operation per 
input datum is an O(n) (pronounced order n)  algorithm; one that requires 
nz operations is O(n2) (pronounced order n squared). 

We can state formally that 

f ( n )  = O(g(n)) #there exists a c > 0 and an a such that for all n 2 0, 
f ( n )  9 a + cg(n) 

This reads as follows: The  complexity of a functionf(n) is bounded 
by the function g(n)-that is, the maximum number of basic opera- 
tions executed byf(n) will be no more than g(n). The  variable a 
represents the cost of any housekeeping or startup chores, and c 
is a constant multiplier representing the cost (in execution units) of 
a basic operation. 

In practice, we usually ignore the effects of a, c, and any non- 
critical operations when comparing complexities: The  overall impact of 
the constant a tends to become insignificant as the size of the dataset 
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increases, and the cost of a critical operation (c) should be about the same 
for algorithms of a similar class. That is not to say, however, that their 
effect is always negligible. For some problem sizes, an O(n) func- 
tion, with a sufficiently large c, can be outperformed by one that has 
a complexity of O(n2). In addition, for some algorithms, startup 
costs represented by the constant Q might require more than constant 
time (e.g., initializing arrays). 

Examples of some common complexities include the following: 

O( 1) represents a constant complexity (e.g., a program that displays 

O(n) is linear. 
O(n2) is quadratic. 
O(n3) is cubic. 
O(2”) is exponential. 

the current date and time). 

Using these relationships, we can state that an O(n) algorithm is more 
efficient than one that is O(n2) (for sufficiently large datasets); O(1og n) is 
faster than O(n log n), which, in turn, is faster than O(nZ).  

The  complexity of certain algorithms can vary not only with the 
size of the input, but also with its composition. Consider again 
algorithms that sort names. Some procedures will perform very effi- 
ciently when presented with an input stream that is already sorted; 
others will degrade miserably. Some operate more efficiently when 
the data are random; a few do not. T o  compensate for this phenomenon, 
we provide two indices of complexity behavior: worst case and average 
case. For sorting routines, average case behavior is the average complexity 
index for all input streams; worst case is function specific and represents 
a pathological performance degradation. 

Additional Analysis Criteria 

In addition to those just discussed, there are other criteria by which 
we can analyze and compare algorithms. These include the 
following: 

Clarity Clarity concerns the relative ease by which program source 
code can be understood by someone other than the original 
developer. (We usually refer to this attribute as readability.) A 
professional programmer writes programs that are clear and easy to 
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understand. Generally speaking, if you have a choice of implemen- 
tation constructs, you should opt for the one that is more readable. 
When you must choose a less readable construct (e.g., when perfor- 
mance is critical), comment your code clearly. 

T h e  issue of maintainability focuses on how well a 
program can accommodate change. As discussed previously, clarity is 
a major consideration: You must understand code before you can 
modify it. However, maintenance only begins with understanding. 
T h e  issue boils down to one of confidence: How confident are we 
that a change we might apply to one section of a program will not 
break some other part of the system? (This is sometimes called 
a ripple effect.) 

We must design and develop programs with maintenance in 
mind. As a simple example, consider the following code 
fragment: 

int a[ 10 1; 

Maintainability 

while( i < 10 ) 

a[il = . . .  

while( j < 10 ) 

z = a[jl . . . 

It might not be clear to a maintenance programmer that the literal 
value used in the second loop is related back to the size of a. Left 
as is, we might inadvertently introduce a bug into the program if 
we were to change a’s size. 

Portability can be defined simply: How easy is it for us 
to move a given program from one platform to another? (The 
term platform is used to describe an execution environment. Com- 
ponents of a platform include processor, operating system, databases, 

Portability 
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networks, etc.) Keep in mind that the two platforms (source and 
destination) might have 

Different hardware architectures 
Different operating systems 
Different system software. 

Generally speaking, there are two levels of portability. Object 
code portability occurs when we can move executable code from 
one system to another. This is usually considered impractical un- 
less the two platforms share so many common attributes that they 
become almost indistinguishable from each other (e.g., the systems 
share the same processor family). 

Source code portability is the more practical alternative. We 
achieve this level of portability whenever we can copy source 
code to a new system, recompile it, and run it with no (or relatively 
few) modifications. 

These are the advantages of portable programs: 

They are easier to move to new platforms 
They are less subject to environment changes (i.e., upgrading 

They are easier to extend and maintain. 
the operating system) 

More and more development organizations view portability 
as a major factor in systems development. There are several reasons: 

The  increasing costs associated with software maintenance 
The  speed at which hardware improvements occur 
Increased competition and decreasing prices for application 
software. 

Portability, however, is not without its costs. In general, porta- 
ble programs are slower because we are less inclined to take 
advantage of machine- or operating system-specific features. In 
addition, portable programs usually take longer to develop: portability 
does not come for free, you must ‘design it’ into the application. 

Generally speaking, all algorithms require some min- 
imal amount of computing resources (e.g., memory, disk, network 
access, etc.). The  quantity and composition of these resources will 
vary by algorithm and implementation. As a result, the costs 

Resource usage 
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associated with a given set of resources will certainly factor into 
your choice of algorithm. 

Implementation 

After the design and analysis, it is finally time to implement the 
algorithm. This should prove to be a fairly straightforward process if we 
have followed all the previous suggestions. Specifically, if we wrote a 
pseudo-code description of the algorithm, implementation will be little 
more than a line-for-line translation. 

Another important consideration a t  this phase might be the selec- 
tion of an appropriate programming language. Languages lend themselves 
to certain types of tasks and become difficult to use with others. If a 
choice is available, select one that is best suited to the needs of the 
application. 

Testing 

The  last step in the development process is testing. T h e  effort ex- 
pended on this task will have a direct effect on the perceived quality of 
the product. There are essentially two parts to the process. In the first, 
we must devise a set of tests that attempt to break the function 
or program. This is the creative part of system testing, and it requires 
as much consideration and effort as any other task in the develop- 
ment process. It begins simply, using a few known data values for 
which we can manually compute a result. This establishes that 
the program is at least functioning to the point where we can proceed 
with more extensive tests. 

T h e  second and more difficult part of testing is debugging. That 
is, we must determine what (if anything) is wrong with the program’s 
execution. When we determine the problem, we then develop and 
apply fixes to offending sections of the program. When all the 
problems have been corrected, we then re-execute all of our tests. 
This ensures that the fixes are, indeed, correct and that they have not 
affected (i.e., broken) other sections of the program. 

When attempting to fix a program error, it is important to distin- 
guish between symptom and cause. As an example, consider a program 
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that displays employee salary information. The  program might operate 
as follows: 

It prompts the user for the employee number. 
It searches a database for the appropriate employee and tax 

It calculates withholding taxes and other payroll deductions. 
It displays the information on the screen. 

records. 

During your testing you notice that, when displayed, the net pay 
field is always incorrect by $1 (alas, in the company’s favor). Would 
it be reasonable to assume that the fix is simply to add $1 to its value 
just before it gets displayed? No. More likely, this problem is just 
a symptom of another problem-such as an error in the formulas for 
calculating payroll deductions or incorrect values stored in the tax 
tables-and you must delve deeper into the program to find the 
real cause. / 

Keep in mind that testing can never demonstrate the absence of 
bugs-only their presence. Therefore, it is incumbent on the individual(s) 
conducting the tests to exercise judgment, diligence, and creativity to 
ensure the best possible results. 

2.2 EXAMPLE 1: FIBONACCI NUMBERS 

T o  demonstrate some of the ideas presented in this chapter, let’s 
discuss the design and implementation of a function that computes 
Fibonacci numbers. T h e  Fibonacci sequence is defined as 

0, 1, 1, 2, 3, 5, 8, 13, . . . 
It begins with F,, = 0 and F ,  = 1. We compute each subsequent term 
as the sum of the previous two. For example, 

F(3) = F(2) + F(1) = 1 + 1 = 2 
F(6) = F(5)  + F(4) = 5 + 3 = 8 

Formally, the series can be defined as 

F,, = 0 

F1 = 1 

F,, = F,)-l + F,,-2, for n 2 2 
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Our task is to design and implement a function that accepts 
a non-negative integer argument n and returns the value F(n). 

Understand the Problem 

Although it is not a formal specification, the foregoing description 
adequately describes the task at hand. The  key points to keep in mind 
are as follows: 

T h e  function’s one argument corresponds to the sequence number 

The argument, by definition, must be non-negative; therefore, 
of the desired Fibonacci number. 

the function should do something reasonable if invoked with a nega- 
tive value. 

Data Structures 

This algorithm does not require an extensive data structure; it will 
use simple integer variables to compute each Fibonacci number. 

Pseudo-Code 

We can use the formal definition of the Fibonacci series as the starting 
point for our development. Thus, the first version of our pseudo-code 
might appear as follows: 

fib( n 1 
i f n = O  

i f n = l  

for i = 2 t o  n 

return( 0 1 ;  

return( 1 1 ; 

fib = fminl + fmin2; 
update fminl and fmin2; 

return( fib 1; 

Note that our description lacks some important details: the initial 
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values of variables, the increments for loop variables, and a test for a 
valid argument. 

After adding these statements, the algorithm becomes 

fib( n ) 
i f n < O  

i f n = O  

i f n = l  

return( -1 ) ;  

return( 0 1 ;  

return( 1 ) ; 

fmin2 = 0; 
fminl = 1; 
for i = 2 t o  n 

fib = fminl + fmin2; 
fmin2 = fminl; 
fminl = fib; 

return( fib 1;  

Notice that we have established the convention of returning a - 1 to 
indicate an erroneous argument. Also note how we initialize and 
update the two variables, fminl and frnin2. 

Analysis 

If we ignore the trivial cases where n 5 1, we can compute the 
function’s complexity as follows: 

There are five housekeeping instructions executed before entering 

The  loop-with its three instructions-is executed n - 1 times, 
the loop. 

for a total of 3(n - 1) or, rounding that value, 3n. 

The  total number of instructions executed is 5 + 3n. However, 
as mentioned earlier, we ignore the effects of the constants when analyzing 
algorithms; thus, the complexity of fib ( ) is O(n). 
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i n t  fib( i n t  n 1 
I 

i n t  i; 
i n t  fibn, fibl, fib2; 

i f (  n < 0 ) 

return( -1 1;  

i f (  n == 0 )  

i f (  n == 1 )  
return( 0 1; 

return( 1 1 ;  

fibn = 0; 
fib2 = 0; / *  F(n-2) * /  
fibl = 1; /* F(n-1) * /  

for( i = 2; ;i <= n; i + +  
fibq = fibl + fib2; 

fibl = fibn; 
fib4 = fibl; 

1 
return( fibn 1 ;  

1 
listing 2.2 
Fibonacci numbers. 

Implementation 

T h e  pseudo-code description of this function allows for a direct conver- 
sion to C. We need only remember to adhere to C syntax, select 
appropriate data types, and declare all variables. Listing 2.2 contains 
the final C version of the algorithm. 

Testing 

Testing this function is a straightforward process. We want to verify 
that the function computes accurate values and handles errors 
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listing 2.3 
Fibonacci test 
program. 

2 Algorithm Design 

#include <stdio.  h> 

#define MAX-TEST 1 0  

i n t  fib( i n t  ) ;  

i n t  main( void ) 

c 
i n t  i; 

f o r (  i = -1; i <= MAX-TEST; i++ ) 
gr in t f  ( "\ti: %2d\tfib(%2d) : %d\n", i, 
i, fib(i)  ) ;  

re turn(  0 ); 

1 

correctly. One way to do this is to write another function that repeatedly 
invokes fib( ) with known values. Listing 2.3 contains an example. 

program is 
When compiled with the source for fib ( ) , the output of the 

i: -1 fib(- l ) :  -1 
i: 0 fib( 0 ) :  0 
i: 1 fib( 1): 1 
i: 2 fib( 2 ) :  1 
i: 3 fib( 3 ) :  2 
i: 4 fib( 4 ) :  3 
i: 5 fib( 5 ) :  5 
i: 6 fib( 6 ) :  8 
i: 7 fib( 7 ) :  13 
i: 8 fib( 8 ) :  2 1  
i: 9 fib( 9 ) :  34 
i: 1 0  fib(l0):  55 

which we can manually inspect for errors. 
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2.3 EXAMPLE 2 MATRIX ADDITION 

For our next example, we will design and implement a function that 
performs matrix addition. It must compute the sum of two matrices 
(A + B) and store the result in a third (C). 

Understand the Problem 

The  two matrices must be of the same dimension. We compute their 
sum by adding corresponding elements of A and B and storing the result 
in C. For example, given the matrices 

the function would compute C as 

[ 1 + 8  2 + 7  3 + 6 ]  [9 9 91 
4 + 5  5 + 4  6 + 3  = 9 9 9 
7 + 2  8 + 1  9 + 0  9 9 9  

Data Structures 

We will use two-dimensional arrays to store and process the matrices. 
Each array entry will correspond to an element in the matrix. One 
word of caution: Mathematicians often reference matrix elements as 

Ell El2 Ell! 

4 1  E22 . * *  E2n 

Em1 Em2 - * * El## 
. . . . . . . . . . . . 

In C, however, array subscripts begin at 0. Therefore, Ell will 
correspond to array element ACOI 101; E I Z  will correspond to array 
element A[Ol 111; and so on until E l , ,  which corresponds to 
A[m- 11 [n- 1 1 .  
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Pseudo-Code 

To perform the addition of each corresponding matrix element, we 
need a way to reference every index pair ( i , j )  of the two arrays. We can 
do this using a coding construct called nested loops. The  outer loop 
indexes over the rows, while the inner loop indexes over the 
columns. A pseudo-code description of the algorithm is as follows: 

mat,add( m, n ) / *  add m X n matrices * /  
€or i = 0 to m-1 

for j = 0 t o  n-1 
c [ i ,  j l  = a [ i ,  j l  + b [ i ,  j l ;  

Analysis 

A discussion of complexity for this function is easier if we assume that 
m = n. The  outer loop is executed n times. With each iteration, the 
inner loop is also executed n times. Thus, the total number of critical 
operations (additions) performed by the algorithm is n times n. This 
yields a complexity of O(n2). 

Implementation 

For the purpose of this example, we will assume that the three arrays 
(A, B,  C) are external to the function. Listing 2.4 contains the C 
implementation of the function mat-add ( ) . 

Please note the following: 

The  arrays are declared external to the function (the first three 

The  two macros, NOJZOWS and NO-COLS, are application depen- 

T h e  function assumes that the initial values of a [ 1 [ 1 and b [ 1 1 

lines of the listing). 

dent and must be defined. 

are established before a call is made to mat-add ( ) . 
Also note the C syntax for subscripts in two-dimensional arrays. 

Many other languages would write subscripts something like 

a [ i ,  j l  o r a ( i ,  j )  



2.3 Matric Addition 27 

int  a[ NO-ROWS 1 NO-COLS 1 ; 
int  b [ NOJZOWS I [ NO-COLS I ; 
i n t  c[  NOJZOWS 1 NO-COLS 1 ;  

void m a t , a d d (  int  rows, i n t  cols ) 

E 
i n t  i ,  j; 

for( i = 0; i < NO-ROWS; i + +  ) 
for( j = 0; j < NO-COLS; j + +  ) 

c [ i l [ j l  = a[ilCjl + b [ i l  [ j l ;  
1 

Matrix addition. 

T h e  slightly different notation derives from the fact that in C, a two- 
dimensional array is defined as a one-dimensional array, where each 
element is another array. Its use is otherwise similar to that of other 
languages. 

Testing 

T h e  most direct way to test this function is to write a program that 
generates several pairs of matrices, adds them, and then prints the results. 
We will leave this as an exercise for the reader. 

Programmers new to C should keep in mind that there are no 
bounds checks on array references. In particular, because of the zero offset 
on array indices, the reference 

a [NO-ROWSI “0-COLSI 

is out of bounds. As a result, part of your testing procedures should 
involve the verification of all array references. 

This chapter presented an overview of the software design process. We 
will review and expand on the ideas presented in this chapter as we 
continue with our discussions. For the sake of brevity, however, we will 

SUMMARY 
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no longer prehent algorithms in the expanded format used in this 
chapter. 

This chapter is incomplete because there is one part of the develop- 
ment cycle that we have not discussed: documentation. Documentation 
is usually the first thing a user sees when working with a new applica- 
tion. As a result, a software product’s success can be dependent on the 
quality of its documentation. 

Documentation comes in many forms: 

Program comments 
Manual pages (a description of program usage) 
User’s manual 
Programmer’s manual 
Administrator’s manual. 

Throughout this book, we will continue to stress the need to provide 
well-commented source code. It is beyond the scope of this text 
to describe the other forms of documentation in detail. Moreover, 
documentation requirements vary with the installation and the 
application. Let it suffice to say that it is incumbent on every program- 
mer to provide software that is well documented. 

1. Describe 00 notation. 

2. Plot the curves for all the common complexities. Determine points 
of intersection and compare behavior. 

3. Using all the described steps, design and implement a program 
that will count the number of characters, line., and words contained 
in a text file. See if you can extend it to count unique words as well. 

4. Write the complement of fib ( ) : a function that takes as its sole 
argument a Fibonacci number and returns its ordinal position 
in the series. Be sure to test for arguments that are not Fibonacci 
numbers. How should your function process an argument of l? 

5. Write a program that tests the function mat,add( ) . Be creative. 
Are there any boundary conditions? 

E X E R C I S E S  
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6. 

7. 

8. 
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Design, implement, and test a function that performs matrix multi- 
plication. What is its complexity? 

Discuss ways in which we can modify mat-add ( ) so it can work 
for any two arrays (i.e., pass the arrays as arguments). Imple- 
ment and test your changes. 

What is the complexity of the following pseudo-code? 

examgle ( 1 
c 

for( i = 0; i < A; i + +  ) 

for( j = 0; j < Bc j + +  1 
for( k = 0; k < C ;  k + +  ) 

CRITICAL OPERATION; 
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3.1 OVERVIEW 

Conventional languages supply the basic data types or atoms minimally 
required for programming. It is the nature of atoms that they cannot be 
divided into smaller components (except bit-fields). In C, they include 
int ,  char, float, etc. In many cases, the basic data types alone are 
sufficient to accomplish a given programming assignment. More often, 
however, the types of problems programmers are asked to solve 
require more complex data objects. 

Fortunately, most programming languages provide facilities for 
combining atoms into larger aggregates. In computer science, these aggre- 
gates are called data structures. A data structure is an ordered collection 
(aggregate) of atoms combined, within the rules of the host language, to 
create a new, user-defined data type. Many programming languages 
even allow the combining of one or more user-defined aggregates 
into a compound aggregate. Thus, the programmer has the ability to 
create data structures tailored to specific needs. In this chapter, we will 
examine static data structures-that is, data structures that do not alter 
their basic memory representation during program execution. (The term 
structure is ambiguous, however. Some programming languages-most 

30 

C H A P T E R  3
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main( ) 
{ 

int  i; 
int  a[101 ; /*  Declare 10 c e l l s  

for( i = 0; i < 10; i= i+ l  ) / *  Indexed 0 - 9 * /  
* /  

a [ i l  = i; / *  Store */ 

for(  i = 0 ;  i < 10; i= i+ l  ) /*  Retrieve */ 
printf(  “ i :  %d a [ i l :  %d\n“, i ,  a [ i l  1 ;  

e x i t (  0 ); 
1 

listing 3.1 
Arrays in C. 

notably C-use the term to denote a particular type of data aggre- 
gate. Its definition and use in such cases is language specific. Except 
where noted, we will avoid this connotation and instead use the term to 
refer to any data aggregate that is not otherwise considered atomic.) 

3.2 ARRAYS 

T h e  extent to which atoms can be combined by the programmer varies 
with the language-some provide more flexibility than others. However, 
one data aggregate common to most languages is the array. In fact, 
this might be the only aggregate provided with some programming 
environments. 

Conceptually, an array is a set of pairs: index and vahe. In mathe- 
matics, this is referred to as a map or correspondence. When declared in a 
programming language, an array is of a specified type (e.g., int) and 
size (range of indices). The  indices or subscripts are integer quan- 
tities, though not necessarily positive. Refer to Listing 3.1 for an 
example of array declaration and use in C. 

The  simplicity of an array’s use belies its power. Consider writing 
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#define KING 'k' 
#define QUEEN 'g' 

main( 1 
4 

char chessboardl81 181 ; /* DecLration * /  

chessboardC21 C31 = QUEEN; 

if( chessboardC41 C71 == KING 1 
I check-mate 1 ; 

listing 3.2 
Multidimensional arrays in C. 

a program-without using arrays-to analyze grade scores for a 
computer science class. Each student's score, for each test, would have 
to be stored and processed in a unique variable. T o  go one step further, 
consider how difficult it would be if the number of students and test 
results were not known in advance. 

Arrays need not be restricted to one dimension. We can create 
rntdtidirnensional arrays to handle more complex data structures. 
For example, we can represent a chess board as a two-dimensional 
(8 X 8) array. Refer to Listing 3.2 for an example. Note that in C, 
each dimension is placed in a separate set of brackets. 

In addition to their more obvious uses, arrays also serve as the 
foundation for more complex data structures. The  following sections pre- 
sent several examples. 

3.3 ORDERED LISTS 

One of the simplest forms of data aggregates is the ordered or linear 
list. A linear list is an ordered subset of elements from a given set 
5' written (El ,  Ez,  E3, . . . , E,J. Examples include 

(A, B, C, D, . . . , Z )  



3.4 Stacks 33 

or 

(SUN, MON, TUE, WED, . . . , SAT) 

An ordered list has several properties: 

T h e  length of a list is finite and computable. 
T h e  contents of the list can be displayed (in order). 
The  i" element can be retrieved. 
The  iCh element can be replaced. 
New elements can be inserted into the list. 
Existing elements can be deleted from the list. 

T h e  most direct approach to implementing a list is through the 
use of an array. Each array element corresponds to a list member. 
Note that of the six properties of an ordered list, only the last two- 
insertion and deletion-are difficult with an array implementation. T o  
accomplish either, we must shift elements within the array. We will 
return to this point in Chapter 5. 

There are times when we may wish to restrict access to list ele- 
ments. For example, we may want to limit the types of operations 
that can be performed or restrict the number of locations where inser- 
tions and deletions can occur. In short, we need not make available the 
full complement of operations for a given list. T h e  sections that follow 
discuss some examples of restricted lists. 

3.4 STACKS 

A stack is an ordered list in which only two operations are permissible: 
insertion and deletion. Furthermore, these operations mdy occur 
only at one end of the list, called the top. T h e  result is that items are 
stored and retrieved in a last-in, first-out (LIFO) manner. For example, 
adding the element Es to the list (El ,  Ez, EB, E4) would generate the 
list (El ,  E2, E3, E4, Es).  A subsequent deletion yields the original list. 

A common example of a stack is a dish rack in a diner. A dish 
rack is a spring-loaded device that stores dishes in manner such 
that only the top dish is visible (see Fig. 3.1). After being washed, a 
clean dish is placed (pushed) on top of the stack. This forces the 
spring down, leaving only the new dish visible. When a clean dish is 
needed, the top one is removed (popped). This causes the spring to recoil 
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Figure 3.1 
A dish rack. 

Figure 3.2 
A software stack. 

Begin state 
(a )  

Push dish 
(b) 

Pop dish 
( C) 

just enough to allow what was the second plate to become visible. 
(The  last plate cleaned is the first one reused.) 

Stacks are versatile data structures and have many uses. For exam- 
ple, we can use stacks to reverse the order of elements in a list or 
serve as the basis of a software calculator. In general, we can use stacks 
whenever we need a L I F O  structure. 

As depicted in Figure 3.2, we can implement a software stack 
using an array. T h e  variable top maintains the index of the current 
top-of-stack location. This is the only place where insertions and dele- 

l o p  

Stack 
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tions may occur. T o  add (push) a new element onto the stack, we increment 
top and assign stack I: top] the value of the new element. Note 
that we should always test for a stack full (oveflow) condition (i.e., 
(top + 1) > = s ) before performing each insertion. 

T o  delete (pop) an element from the stack, just decrement the 
variable top. Note that we need not explicitly erase the value 
stored in stack [top] because a subsequent push operation will 
overwrite it. A stack empty (undeflow) condition arises when the value of 
top becomes negative. 

T h e  program segment in Listing 3.3 contains the example func- 
tions push ( ) and pop ( 1, which manipulate an integer stack declared as 
int stack [MAXSTACK] ; . The  function push ( ) requires one argu- 
ment, which it pushes onto the stack; pop ( ) deletes, and returns the 
value of, the topmost element. Also listed is the routine empty ( ) , 
which, as its name implies, tests for a stack empty condition; it returns 
either TRUE or FALSE, accordingly. In this example, the function 
pop ( ) does not explicitly test for an underflow condition-that is, an 
attempt to pop an element off an already empty stack. Therefore, you 
should make a call to empty ( ) before each call to pop ( 1. 

Note that we initialize the pointer top to -1. This is because, 
in C, array indices range from 0 to n - 1 (where n is the declared 
size of the array). Also note the use of the + + and the - - operators. 
C has two shorthand operators for incrementing and decrementing vari- 
ables: + + adds 1 to its operand; - - subtracts 1 from its operand. 
For example, the statements n+ + ; and n- - ; are equivalent to n = 
n + 1; and n = n - I;, respectively. 

A unique feature of these operators is that we may place them 
either before or after their associated operands. Furthermore, their 
position is significant. T h e  prefix form (e.g., + +n) increments (decre- 
ments) the variable before it is evaluated (used); the postfix form (e.g., 
n+ +) increments (decrements) the variable afieor it is evaluated. 

For example, given the assignment n = 10 ; , the statement 

an8 = ++n; 

sets ans to 11: but the statement 

ans = n++; 

sets ans to 10. In both cases however, n is set to 11. 
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#define OK 0 
#define FALSE 0 
#define TRUE 1 
#define FULL 1 
#define MAXSTACK 1 0 0  

i n t  top = -1; 
i n t  s tack [MAXSTACK] ; 

push( i n t  new ) /*  Add element t o  s tack * /  
{ 

i f (  t o p + 1  >= MAXSTACK ) /*  Overflow * /  
r e t u r n (  FULL 1;  

s tack[++topl  = new; 
re turn(  OK ); 

1 

i n t  POR ( ) / *  Delete/return top element * I  
{ 

1 
re turn(  stack[top-- 1 1 ; 

i n t  empty ( 1 / *  T e s t  f o r  s tack empty * /  
{ 

i f (  top < 0 ) 

re turn(  TRUE ); 

re turn(  FALSE 1; 
1 

listing 3.3 
Stack functions. 
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void reverse0 /* Function to reverse input */ 
{ 

int item; 

while( (item = nextinput ( )  ) ! = EOF ) 

if( push(item) == FULL. ) 
error ( ) ; /* overflow * /  

while( !empty0 
putchar( pop0 ) ; 

1 

listing 3.4 
String reversal. 

String Reversal 

For our first example, we will use stacks to reverse a string. The  
problem is to read an arbitrary sequence of characters and print them out 
in reverse order. 

With the aid of a stack, the solution for this problem is simple. 
We will push each character we read in from the input source onto 
a stack. When we have exhausted the input stream (end-of-file), we 
will pop all characters off the stack and print them out. Because 
stacks are LIFO structures, the output will naturally be reversed. 

Listing 3.4 contains the code for the function reverse ( ) , which 
reverses strings as described earlier. It uses the routines presented 
in Listing 3.3 to manage the stack. In addition, reverse ( ) assumes 
two ancillary routines. T h e  first, nextinput ( ) , returns the next 
character from the input stream or the value EOF when the input has 
been exhausted. (EOF is a predefined macro supplied with standard 
C implementations.) 

T h e  second function, error ( ) , is invoked on a stack overflow 
condition. It should take appropriate action such as printing an 
error message and terminating the program. However, this is a rather 
inelegant way of addressing this type of problem, and we will discuss 
alternative methods in Chapter 5. 
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Parentheses Usage 

Another example using stacks involves the processing of mathematical 
expressions. Suppose we wanted to verify that, for some given expression, 
parentheses have been used correctly. That is, we want to check that 

1. There are an equal number of left and right parentheses. 
2. Each right parenthesis is preceded by its corresponding left 

parenthesis. 

If you consider the problem for a moment, you will see that part 
1 of the preceding definition is simple to verify. We could develop 
an algorithm that simply counts the number of left and right parenthe- 
ses and determines if the two values are equal. However, a correct count 
alone does not ensure proper usage. For example, the expression 

) ) a  + b( + c (  

would have a valid count but symbol usage is nonetheless incorrect. 
This is the more difficult aspect of the problem as denoted in part 
2 of the definition. 

Let’s examine a different approach to the problem. In lieu of a 
simple count, we could assign values to each parenthesis. For 
example, ‘(’ equals 1 and ‘)’ equals - 1. This would allow us to compute 
a parenthesis index (PI) for each expression. We begin the computation by 
assigning PI = 0. Then, as we scan an expression, we update the PI 
by either adding or subtracting 1 from its total. For example, the partial 
expression ( (a + 6) * (6.. . would have a PI of 1 + 1 - 1 + 1 = 2. 

This approach possesses some interesting properties. First, a final 
PI of 0 indicates that there are an equal number of open and 
closing parentheses. In addition, an intermediate PI value that is nega- 
tive indicates an imbalance in the use of left and right parentheses. For 
example, the expression (a + 6)) . . . has a PI of - 1. 

Nonetheless, this technique has one drawback. What if, in addition 
to parentheses, expressions may contain brackets ([I) and/or braces (I})? 
Using the previous approach, the expression ((a + 61 * c) has a final 
PI of 0 but is obviously incorrect. 

T o  overcome this final hurdle, we need to approach the problem 
from another angle. Consider that, regardless of type (i.e., (, [, or I), a left 
symbol opened must be closed with its corresponding right symbol. 
Thus, given the partial expression (a + [b x ( . . . , we would 
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expect the first closing symbol to be a }, followed at some point by a 
1, and then a final ). Upon closer inspection, you will note that the 
last symbol opened is the first one closed. In other words, this problem 
is well suited for a stack solution. 

Listing 3.5 contains the code for the function check-paren ( ) , 
which verifies parentheses usage in mathematical expressions. Its one 
required argument is the character array containing the expression; it 
returns a status value indicating the validity of the expression. 

T h e  algorithm functions as follows. As it scans the input array, 
check-paren ( ) pushes left symbols onto a stack. When it encounters 
a right object, it pops the topmost element off the stack and determines 
whether the two symbols match (i.e., they form a pair). Notice 
that with each pop, and again at the end of the routine, the function 
tests for an empty stack condition. In addition to avoiding an underflow 
condition, this processing ensures that the expression contains only 
matched pairs of objects (i.e., there are no missing or extraneous symbols). 

3.5 EXAMPLE CALCULATOR 

T h e  classic example demonstrating the power and use of software 
stacks is a program calculator. The  task is to construct a program that 
computes the value of mathematical expressions. For example, 

a + b/c - d x e 

Expressions are composed of operands, operators, and delimiters. 
Operands are the numeric values used to evaluate the expression. 
T h e  preceding example contains five (a, 6, c, d, e) that serve as place 
holders for numeric literals (e.g., 16, or - 13.4); but they could 
also represent true variables if the calculator program contained an 
assignment facility. Operators indicate the mathematical operations that 
are to be performed on their associated operands. They also determine 
the number of operands required for each type of operation. T h e  preceding 
expression contains only binary operators, which require two operands; 
a anmy operator requires only one operand (e.g., - 3). 

At first glance, the program might appear simple: Just scan the 
input from left to right, evaluating the expression as we proceed. 
However, the problem that quickly becomes apparent is the difficulty 
of maintaining the mathematical precedence of the operations. In 
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listing 3.5 
Function to check 
parentheses. 

#define OK 0 
#define ERR -1 

int check-garen( char data[] ) 

{ 
int i: 

for( i = 0; data[il !=  NULL; i + +  ) 

{ 
switch( data[il ) {  

case ' { ' :  

case ' [ '  : 
case ' ( ' :  

gush( data[il 1; 
break; 

if( empty0 I I pogo !=  H E '  ) 

break; 

if( empty0 I I BOPO !=  '1 '  

break; 

if( empty0 I I gogo !=  ' ( '  

break; 

case ' 1 ' :  

return( ERR ); 

case 'I ' : 

return( ERR ) ;  

case ' 1 ' :  

return( ERR ); 

1 
1 
if( empty0 1 

return( ERR );  

return( OK );  

1 
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the previous example, the implied order of evaluation is 

(a + We)) - (d X e) 

Obviously, the order in which the operations take place can be signifi- 
cant, as in the expression 6 + 4/2. If we evaluate it as (6 + 4)/2, the 
answer is 5; if we evaluate it as 6 + (4/2), the answer is 8. Therefore, 
we must be certain that the algorithm we develop maintains proper 
operator precedence. 

For our example calculator, we will only concern ourselves with 
the five basic arithmetic operations: addition ( +), subtraction ( -), 
multiplication ( X ), division (I), and exponentiation (?). The  prece- 
dence of these operators, from highest to lowest, is 

Operator Value 

t 3 
x, I 2 

+, - 1 

Parentheses can be used to change the order of evaluation for a 
given expression, but in their absence operations of highest prece- 
dence must be performed first. When an expression contains operators 
of equal priority, they are evaluated left to right (e.g., interpret 
a/b x c as (a/b) X c). T h e  sole exception (at least for our example) is 
exponentiation, which is evaluated from right to left (ix., a t b ? c 
is evaluated as a 1' (b t 6)). 

Prefix and Postfix Notation 

All the preceding expressions have been presented in their inJx form. 
Infix notation places operators between their operands. As we have 
seen, this notation-although commonly used by humans-is not con- 
venient for our calculator program. There are, however, two alterna- 
tive ways of representing expressions: 

+ a b  (prefix) 

a b  + (postfix) 

The  first, where the operator precedes its operands, is termed prefix 
notation. The  second, which positions the operator after its operands, is 
referred to aspostJix notation. Both forms are not as strange as they 
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might first appear. For example, consider computing the value of 
2 '? 4 in a C program. We cannot use a statement of the form 

x = 2 ' ? 4 ;  

because C has no exponentiation operator. Instead, we must use a 
statement such as 

x = power( 2,  4 ); 

in which the operator (power ( ) ) precedes its two operands. 

pressions to their corresponding postfix form. The  steps required 
are as follows: 

Using the rules of operator precedence, we can convert infix ex- 

Fully parenthesize the infix expression. 
Reposition (i.e., move) operators-one at a time and in order of 
precedence-to their final postfix position (to the right of their 
operands). 
Remove the parentheses. 

For example, let's convert the expression a + b X c into its postfix 
form. The  first step is to add parentheses: 

a + (b  x c) 

Next, in order of precedence, we must reposition the operators. Thus, 
the first operator we must move is X , and the resulting expression 
appears as 

a + (bc X )  

Clearly, the two operands of the X operator are b and c, and, conse- 
quently, its postfix position is simple to determine. But what are 
the two operands for the + operator? The  answer is a and the result 
of the subexpression (b  x c). Therefore, we do not position the 
+ operator after the operand b (as might appear obvious at first glance), 
but instead we place it after the right parenthesis: 

a ( b c  X )  t 

The  final step is to remove the parentheses: 

a b c X  + 
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Now, using parentheses, let’s change the evaluation order of the 
operators and convert the expression (a + 6)  X c to its postfix form: 

(a + 6)  x c 

(a + b) X c 

(ab +) X c 

(ab +) c X 

a b + c x  remove parentheses 

infixexpression 

add parentheses (no change) 

convert + 
convert X 

Notice the resulting position of the + operator in this example. This 
is a direct result of using parentheses to alter the evaluation order 
of the operators. 

We can convert infix expressions into their prefix form in the same 
manner. T h e  only difference is that we place the operators before 
their operands rather than after. You should take a moment to convert 
the two previous examples into their prefix forms. 

Returning now to our calculator program, the problem we had 
encountered was that the program could not correctly scan an infix 
expression and maintain proper operator precedence. However, if we 
take a closer look at postfix notation, we notice that a left-to-right scan 
will process both operands and operators in the correct order. That is, 
the order of the operators in a postfix expression determines the order of 
the operations. Therefore, to implement our calculator program, we 
need only develop two major functions: The  first will convert infix expres- 
sions into their corresponding postfix forms; the second will compute 
the result of a postfix expression. 

Automating Infix-to-Postfix Conversion 

Before we begin discussing how to automate an infix-to-postfix conver- 
sion, consider the following point. Regardless of the form (prefix, infix, 
or postfix), the order of the operands remains unchanged. For example, 
the expression a + b X c has a postfix form of a b c X +. The  
operators have moved but the relative position of the operands remains 
constant. Our conversion algorithm will take full advantage of 
this fact. 

Just like the manual operation described earlier, our infix-to- 
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postfix conversion algorithm must reposition operators within the ex- 
pression string. Unfortunately, the function cannot just duplicate the man- 
ual operation. As a result, we need to modify our approach. As an 
alternative, consider a function that serves as a gate device. That 
is, as it scans its input (an infix expression), it outputs some symbols 
immediately (operands); others it holds until a more appropriate 
time (operators). 

Specifically, our conversion routine will function as follows: 

Read the input stream (the infix expression) one symbol at a time. 
Output all operands immediately. 
Delay writing operators to the output stream until they will be 
positioned correctly in the postfix position. 

Thus, the resulting output is the correct postfix form of the infix 
expression. 

Our algorithm will need a stack to serve as the temporary repository 
for delayed operators. However, before we discuss its implementation, 
let’s trace the function’s execution while converting the expression 
a + b X c to its postfix form: 

Input Type Stack Operation output 

a Operand Empty Pass a directly to output a 
+ Operator + Stack (delay) operator a 
b Operand + Pass b directly to output ab 
x Operator + X Stack (delay) operator ab 
c Operand + X Pass c directly to output abc 

Empty Empty + Empty stack abc + 
Empty Empty Empty Empty stack abc X + 

When read, the first operand is passed directly to the output stream. 
The  first operator (+)  is then read and pushed (delayed) on the 
stack. Then, like its predecessor, the second operator is scanned and 
passed directly to the output stream. 

However, why isn’t the first operator (+ )  popped off the stack 
and written out? T h e  reason is that the second operator ( X ) has a higher 
precedence than the operator currently on the stack (+). That is, 
because a stack is a LIFO structure, the ( X )  operator will appear 
before (+)  in the output stream when we ultimately empty the stack. 
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T h e  operation continues with the processing of the final operand, 
followed by the repeated popping of the stack until the last operator 
is written to the output stream. 

function should handle the expression a X b + c. 
Now let’s switch the order of the operators and see how the 

Input Type Stack Operation 

a Operand Empty Pass a directly to output 
X Operator X Stack (delay) operator 
b Operand X Pass b directly to output 
+ Operator Empty Pop stack and output 

+ Push (delay) operator 
c Operand + Pass c directly to output 

Empty Empty Empty Empty stack 

output 

a 
a 
ab 
ab X 
ab X 
ab X c 
a b X c +  

This time, after the second operator (+)  was read, the first ( X )  was 
popped and placed on the output stream. This is because ( X ) has a higher 
precedence than that of the incoming operator ( + ). 

Now let’s look at an example that contains parentheses: 

a/(b + c). 

The  operation of the algorithm is as follows: 

Input Type Stack Operation output 

Operand 
Operator 
L-Paren 
Operand 
Operator 
Operand 
R-Paren 
Empty 

Pass a directly to output 
Stack (delay) operator 
Stack L-Paren 
Pass b directly to output 
Stack (delay) operator 
Pass c directly to output 
Unstack down to L-Paren 
Empty stack 

a 
a 
a 
ab 
ab 
abc 
abc + 
abc +/ 

In this example, the parentheses change the evaluation order of the 
operators. T o  produce an equivalent postfix representation, the 
algorithm must stack the left parenthesis and then, after scanning the 
corresponding right parenthesis, unstack all enclosed operators. 
Note that we never need to push the right parenthesis onto the stack; 
it serves only as a flag signaling that unstacking should begin. 
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Figure 3.3 
Operator priorities. 

Operator Incoming Instack 
1' 4 3 

x, 1 2 2 
+, - 1 1 

( 4 0 
1 

Based on these examples it appears that, when processing an 
operator, the function should output all previously stacked opera- 
tors having a priority greater than, or equal to, the priority of the 
incoming one. There is one exception, however. T h e  expression a 1' b 1' c 
has a postfix form of abc 1' 1' (remember, this operator has right-to- 
left grouping). As it stands now, our algorithm would incorrectly generate 
ab 1' c 1' as the postfix form of this expression. 

T o  overcome this problem, we can make the following 
modifications: 

Assign two priorities to each operator, incoming (ICP) and instack 

Modify the algorithm so that it will unstack operators that have 
(ISP). 

an instock priority greater than, or equal to, the incoming priority 
of the new operator. 
Establish a (1') entry in the priority table such that its ICP is 
greater than its ISP. 

Now, when processing the expression a 1' b 1' c, our algorithm will 
push the second (t) operator without popping the first one off the stack. 

Figure 3.3 lists ISP and ICP priorities suitable for our calculator 
program. Note that the values selected are arbitrary; what is important 
is the relationships they define. We can also expand the table 
-as is done routinely in compiler design-to address all types of 
operators; boolean, relational, assignment, etc. 

Listing 3.6 contains the function itop ( 1 ,  which converts infix 
expressions to their postfix form. The  function uses the operator 
priorities listed in Figure 3.3 and the stack functions of Listing 3.3. 
It also assumes the function nextinput ( 1, which returns the next avail- 
able input symbol; if none remain, it returns the value EOF to signify 
end-of-file. 
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As for complexity, note that this algorithm only makes one pass 
over the input. That is, if the infix expression has n symbols, the 
total number of operations is some constant value (the cost of the 
basic operation) times n. This yields a complexity of O(n). 

Postfix Evaluation 

T o  complete our calculator program, we now need to develop a func- 
tion that evaluates postfix expressions. As noted earlier, a postfix expression 
can be evaluated in a single left-to-right scan. T h e  only data require- 
ment is a temporary location for storing operands until they are 
needed. Again, we will use a stack. 

Here is an outline of the function’s operation: 

1. It will push operands onto the stack until it scans an operator. 
2. When it scans an operator, it will pop an appropriate number of 

operands off the stack (1 for unary, 2 for binary). 
3. It will perform the indicated mathematical operation. 
4. It will push the result back onto the stack (so the result, itself, 

can become an operand for a subsequent operation). 

When the expression string is exhausted, the one element remain- 
ing on the stack is the final result. We can display this value as the answer. 

Input 

123 X +  
23 X +  

3 x +  
X +  

+ 
+ 
+ 
+ 

EMPTY 
EMPTY 
EMPTY 
EMPTY 
EMPTY 
EMPTY 

Operation Stack 

BEGIN EMPTY 
PUSH 1 
PUSH 12 
PUSH 123 
POP 12 
POP 1 

2 x 3  1 
PUSH 16  
POP 1 
POP EMPTY 

1 + 6  EMPTY 
PUSH 7 
POP EMPTY 

PRINT 7 EMPTY 
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void itop0 
{ 

int item; 
int temp ; 

while( (item = nextinput ( 1  ) ! = EOF ) 

{ 

switch( item ) { 

case 'A': 
case ' * ' :  
case ' / ' :  
case '+': 
case '-': 
case ' ( ' :  

/ *  Pop operators * /  
while( !empty() && isp(top-of-stk0) >= icp(item) ) 

putchar( POP( ) ; 

/ *  Push new operator onto stack * /  
push( item 1;  
break; 

/ *  Unstack until matching ' ( '  * /  
while( (temp = pop()) !=  ' ( '  ) 

break; 

/ *  Operand * /  
putchar( item 1;  
break; 

case ' 1 ' :  

putchar( temp 1 ;  

default: 

1 
1 
while( !empty() ) / *  Empty the rest of Stack * /  

putchar( POP( ) ; 
1 

Listing 3.6 
Infix-to-postfix conversion. 



3.6 Queues 49 

Let’s trace this function’s execution for one of our previous exam- 
ples: a b c x +. However, to make the discussion clearer, we will substi- 
tute the values 1, 2, and 3 for a, b, and c, respectively. 

There are several important points to consider here. First, note 
that all the operations are performed in the correct order (e.g., 
multiplication before the addition). Also, operators only pop the appro- 
priate number of operands required to perform their individual operation. 
(Both are binary operators in this example and, as such, require two 
operands.) Finally, when the input is exhausted, the only operand 
remaining on the stack is the result of the expression. 

Listing 3.7 contains the function eval( ) , which evaluates postfix 
expressions in the aforementioned manner. It assumes the push ( ) 
and pop ( ) functions from earlier in the chapter and the function 
power ( ) from Chapter 1. It also assumes the function nextitem( ). 
This routine returns either the next available symbol from the input 
stream, or the value EOF if none remain. 

As it processes each input symbol, eval( ) automatically pushes 
each operand onto the stack (default :). When it encounters an 
operator, it pops the appropriate number of operands off the stack, 
performs the operation, and pushes the intermediate result back 
onto the stack. Note the care taken to ensure that operands are evalu- 
ated in the correct order. Also note the comment associated with the 
division operator. A production version of this algorithm should include 
an explicit test for division by zero and take appropriate action. 
The  function returns the only remaining value on the stack; this is 
the result of the expression. The  complexity analysis for this func- 
tion is similar to that of itog ( ) , yielding an O(n) algorithm. 

3.6 QUEUES 

Another special form of a list is the queue. A queue is an ordered list 
in which insertions occur at one end (the rear) and deletions occur at the 
other (thefront). For example, the result of adding the element Es  to 
the queue (E4, E3, EZ, E l )  would be (Es, Eq, E3, EZ, El) .  Deleting an 
element now would yield the queue (Es, E4, E3, Ez). Because its 
operation preserves the entry order of the elements, a queue is a 
first-in, first-out (FIFO) list. 
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listing 3.7 
Postfix evaluation 
function. 

int eval ( ) 
{ 

int temp, item; 

while( (item = nextitem()) ! = EOF ) 

{ 
switch( item ) { 

case ' + ' :  
/ *  Watch order of operands * /  
temp = POPO; 
push( POPO+ temp ); 
break; 

case ' - ' :  
temp = POPO ; 
push( pop()- temp 1;  
break; 

case I*': 

temp = pop0 ; 
push( popO*temp 1 ;  
break; 

/ *  Division by Zero? * /  
temp = POPO; 
push( popO/temp 1 ;  
break; 

temp = POP() ; 
push( power(popO,temT?) ) 
break; 

default: / *  Operand * /  
push( item ); 

break; 

case I/': 

case 1 " ' :  

1 
1 
return( POP( 1 ) ; /* Answer * /  

1 
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Figure 3.4 
A queue array. 

Front Rear 

Like stacks, queues are also versatile data structures. One of the 
more common examples of their use is in job scheduling, such as 
that found in print spoolers. Users enter their print requests in the 
job queue (this is typically accomplished through the use of a utility 
program); when a printer completes its current job, the scheduler 
selects the next request from the queue and routes it to the printer. 
T o  add more flexibility, multiple queues can be used to establish 
priorities. Print requests placed on the high-priority queue take precedence 
over jobs placed on the low-priority queue. 

We can also use rrays to implement queues. Two pointers (front 
and rear) maintai the FIFO order (see Fig. 3.4); both are initialized to 
-1. To  add (enque e)  an element, we increment the pointer rear 
and store the new alue in queue [rear]. T o  remove (dequeue) an ele- 

in queue [ front I. 
Listing 3.8 contains the source code for routines that manage a 

simple queue. The  function addqueue ( ) requires one argument, which 
it adds to the queue (space permitting); it returns the value OUT-OF- 
SPACE to indicate a queue full condition. 

T h e  function delqueue ( ) returns the next available element 
(if any) off the queue. Note that a queue empty condition occurs 
whenever both pointers are equal (i.e., front == rear). Because 
delqueue ( ) does not make an explicit test for this condition, you should 
call queue-empty ( ) before each deletion. The  function 
queuesize ( ) is trivial and returns the total number of elements 
currently enqueued. 

T h e  test for queue full is interesting. Regardless of the number 
of elements currently enqueued, the queue becomes full when the pointer 
rear reaches the end of the array. This is obvious in cases where 
elements are continually added to the queue without any intervening 
deletions. However, the queue will become full just as quickly for 

ment, we increment I the variable front and return the value contained 
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listing 3.8 
Queue functions. 

#define OK 0 
#define QUEUE-EMPTY - 1 
#define OUT-OF-SPACE - 2  
#define MAXQUEUE 100  

i n t  queue[ MAXQUEUE I ;  
i n t  rear = -1, f ron t  = -1; 

i n t  addqueue( i n t  element ) 

E 
i f (  f r o n t + l  >= MAXQUEUE ) 

queue[ + + f r o n t  1 = element; 
r e t u r n (  OK ); 

re turn(  OUT-OF-SPACE ); 

1 

i n t  delqueue.0 
I 

i f  ( f ron t  == rear ) / *  Queue i s  empty * /  

re turn(  queue[++rear l  1 ;  
e r r o r  ( ) ; 

1 

i n t  q-empty ( ) 

{ 
i f (  f r o n t  == rear ) 

re turn(  OK ; 

re turn(  QUEUE-EMPTY ) ;  

1 

i n t  queuesize ( ) 
{ 

1 
re turn(  f r o n t  - rear ) ; 
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Figure 3.5 
Circular list. 

Front 

Rear 

programs that repeatedly add and delete elements because the body of 
the queue continually moves toward the right (ie., the high-order 
indices) with each insertion. 

addqueue ( ) that would shift the queue back to the left whenever 
rear reached the end of the array. That is, the function would 
copy all the elements-preserving their order-beginning back at 
queue [ 0 I ; then modify the index variables, front and rear, to reflect 
the new position of the queue within the array. However, this is an 
extremely inefficient solution because we must move all elements 
in the queue individually. 

A more efficient solution is to represent the queue as a circular 
list (see Fig. 3.5). As with our previous implementation, we still need two 
index variables to maintain the front and rear of the queue. This time, 
however, instead of moving from left to right, they progress in a clockwise 
manner. That is, when they reach the end of the array, both variables 
wrap around to the beginning. In other words, both pointers chase each 
other around a circular track T h e  rear pointer moves ahead as ele- 
ments are added to the queue; the front pointer catches up as elements 
are removed. 

This model ensures that we can continue to insert new elements 
into the queue-regardless of the values contained in the index variables- 
provided that the number of currently enqueued elements is less than 
the total size of the array. Figure 3.6 depicts the operation of a circular 
queue during several insertions and deletions. 

We can modify the queue functions of Listing 3.8 to support a 

One solution to this problem is to include code in the function 
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Rear 
Front 

Rear Rear Rear 
Front Front Front 

Empty Enqueue (El) Enqueue (E2) Dequeue (El) Dequeue (E2) ~ - ~ _ _ _  

Figure 3.6 empty 
Circular list operation. (a )  ( b )  ( C) (4 ( e) 

circular queue. Listing 3.9 contains the modified source code. First, 
both pointers must now be able to wrap around. This is accomplished 
with the macro NEXT (x )  , which uses modulo arithmetic to calcu- 
late the next array position. 

The  queue empty test remains the same (e.g., rear 
f r o n t ) .  However, we can no longer detect a queue full condition 
by just testing for the end of the array. As depicted in Figure 3.7, if 
another element is added to the queue, rear would become equal 
to f ront-thus rendering it impossible to distinguish queue full from 
queue empty. Therefore, it is convenient to define queue full as 
NEXT(rea r )  == front.  Thus, a maximum of MAXQUEUE-1 ele- 
ments can be enqueued because queue [ f r o n t  1 must always remain 
empty. 

== 

Arbitrary-Length Arithmetic 

As an example of the application of queues, let’s discuss how we might 
implement functions to perform arbitrary-length arithmetic. T o  begin, 
consider that regardless of their power, most computers impose a limit 
on the size of integers. For example, many machines restrict inte- 
gers to only 4 bytes; some even smaller. We are going to overcome 
this restriction by writing functions that deal with numbers repre- 
sented as character strings. 

Suppose that we had two queues of characters, and that each 
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#define MAXQUEUE 100 
#define NEXT ( x ) ( ( x  + 1) % MAXQUEUE) 

#define OK 0 
#define QUEUE-FULL -1 
#define QUEUE-EMPTY - 2 

int queue[ MAXQUEUE 1 ; 
int rear = 0, front = 0; 

int cir-addq( int element 
{ 

if( NEXT(rear) == front ) 

rear = NEXT( rear ); 

queue[ rear 1 = element; 
return( OK 1;  

return( QUEUE-FULL 1;  

1 

int cir-delq( 
{ 

if( front == rear ) / *  Error! * /  
cir-error(); 

rear = NEXT ( front ) ; 

return( gueue[frontl 1;  
1 

int cir-empty ( ) 
{ 

if( front == 
return 
return 

1 

rear ) 

QUEUE-EMPTY );  

OK ); 

int cir-sizeg( 

return( ((front-rear) + MAXQUEUE) % MAXQUEUE 1;  
1 

listing 3.9 
Circular list functions. 
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Figure 3.7 
Queue full condition. 

Rear 

Front 

represented a positive number stored as individual digits. We could 
add those two numbers in much the same way as a grammar school 
student would: 

1. Remove the top two elements from each queue. 
2. Add them together, along with any carry value. 
3. Determine the result digit and the new carry value. 
4. Repeat until all digits are processed. 

For the most part, we can convert this outline directly to an 
algorithm. There are, however, several points we need to consider. First, 
when we add numbers, we work from the low-order to the high-order 
digits of the addends. Thus, the digits must be enqueued such 
that, when they are dequeued, they are processed in the correct order. 

We also need to display digits in the reverse order of processing. 
Consider the following example: 

1234 
+4444 

5678 

Even though we compute the value 8 first, 5 is the first digit we 
would print. 

Finally, we need to address the problem of summing addends of 
different lengths. For example, 123 + 23 = 146. 

Listing 3.10 contains the code for the function addnums ( 1. It 
begins processing by loading its queues. Obviously, this function 
requires two queues, one for each addend. However, as written, our 
queue routines handle only a single queue. For the purposes of this 
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void addnums ( ) 
{ 

char i; 
int nl, n2, carry, digit; 

while( (i=nextingut()) !=  EOF ) /*  1st addend */ 
addql( i 1;  

while( (i=nextingutO) !=  EOF /* 2nd addend * /  
addq2( i 1;  

/* 
* LOOR until both queues are eqpty 
* /  

carry = 0; 
while( !emptyqlO && !amptyq20 1 
4 

nl = delql0 - '0'; 
n2 = delq20 - '0'; 
digit = nl + n2 + carry; 
gush( digit % 10 1;  
carry = digit / 10; 

1 

if( carry > 0 ) 

push( carry ) ; 

while( !empty() ) 
grintf ( "%d" I Bog0 1; 

listing 3.10 
Adding arbitrary-length integers. 
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example, we simply duplicated the routines of Listing 3.8 to provide 
support for an additional queue. A better solution is to write a set of 
general routines that can process any queue passed as an argument. 
This is discussed further in the exercises at the end of this chapter and 
again in Chapter 5. addnums ( ) assumes that the addend digits are 
read in the correct order (i.e., low digits first). If they came in reverse 
order, we would simply use stacks in lieu of queues. 

T h e  third while loop performs the addition operation described 
previously. However, note that the conditional test will only termi- 
nate the loop when both queues are empty. So how do we handle the 
situation in which addends are not the same length? Specifically, how do 
we handle the case in which one queue is empty and the other is not? 
We simply add the following code to the delql ( ) and delq2 ( ) routines: 

if( front2 == rear2 ) / *  Queue is empty * /  
return( 0 1 ;  

This statement ensures that each time we try to remove an element 
from an empty queue, the deletion function returns the value 0 (rather 
than a queue empty indication). Thus, we can continue processing 
the non-empty queue (adding a harmless 0 to each digit) until it, too, 
is exhausted. 

T h e  body of the while loop also contains some interesting proc- 
essing. T h e  first two statements convert each digit from its charac- 
ter value to its numeric value. This is accomplished by subtracting 
the character value of the digit ‘0’ from each addend digit as it is 
removed from the queue. That  is, the result of this subtraction will 
yield the numeric equivalent of the digit. For example, the numeric value 
for the character ‘2’ is 50; the numeric value for the character ‘0’ is 
48. If ‘2’ were the digit just removed from the queue, the result of the 
expression would yield 50 - 48 = 2. 

T h e  next three lines of code compute and store the new digit 
and the carry value. Finally, note that the function uses a stack to store 
the digits so that they can be displayed in the correct order. 



In this chapter we discussed static data structures. Static data structures 
do not alter their basic memory configuration during program execution. 
These structures are typically constructed by combining atoms into 
larger data aggregates. 

One of the more common types of aggregates is the array. Although 
simple in concept, arrays can serve as the basis for complex data 
structures, such as: 

Ordered lists 
Stack A LIFO list that permits insertions and deletions at only one 

end, called the top. 
Queue A FIFO list that allows insertions at one end (called the reor) 

and deletions'at th6"other end (called the front). 
Circular list An extension to the basic queue. It can be likened to a 

track wherein the front and rear pointers chase each other in a circular 
manner. Circular queues allow you to continue to add elements 
as long as there are slots available in the array. 

An ordered set of elements. 

The  data structures discussed in this chapter can serve as a foundation 
for solving complex problems. 

1. What type of data structure would you use to model the following? 
a. Customers entering and leaving a bank 
b. Piles of lunch trays in a school cafeteria 
c. Cars waiting in line to pay a toll 

2. Implement the calculator program of Section 3.5. See if you can 
include support for floating-point operands and an assignment facility 
for variables. Also, modify the functions itop ( ) and eval ( ) so 
they will writelread postfix expressions to/from a queue. How 
should your program handle errors such as A + B )  X C? 

3. Write a set of general-purpose stack routines, similar to those in 
Listing 3.3, that will operate on any array supplied as an argu- 
ment to the functions. 

4. Do the same for the queue routines of Listing 3.8. 

5. Implement a set of stack routines that allow two stacks to share 
the same data array. (Hint: Let one stack grow from right to 
left; the other from left to right.) 

SUMMARY 

E X E R C I S E S  
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6. Write a function to reverse the order of elements in an array. Can 
this be done in place? 

7. Trace the growth and decay of the stack managed by the function 

31'2 X 4 1 ' 3  

itog ( ) when converting the following infix expressions: 

3 1' ((2 x 4) 1' 3) 

41'31'21'1 

8. Trace the growth and decay of the stack managed by the function 
eval( ) when evaluating the postfix forms of the expressions pre- 
sented in question 7. 

quence of events: 
9. Trace the behavior of a circular queue during the following se- 

cir-addg ( 1 ) 

cir-addg(2) 

cir-delg ( 

ciyaddg(3) 

cir-delg ( ) 

Assume an array size of 5 and that the sequence of function calls 
is repeated five times. 

to allow it 
to shift queue elements left-if there is room-when rear reaches 
the end of the array. 

10. Add the necessary code to the function addqueue ( 

11. A deque, or double-ended queue, is a linear list that permits inser- 
tions and deletions at either end. Write a set of routines to 
implement a deque using an array. (Hint: Use a circular 
representation.) 

12. Complement the addnums ( ) function (Listing 3.10) by devel- 
oping routines that perform subtraction, multiplication, and division. 

13. Extend the functions you wrote for exercise 12 to handle nega- 
tive numbers. 

14. Discuss how you would extend the functions of exercise 12 to 
handle floating-point numbers. 



Recursion 

4.1 INTRODUCTION 

A procedure that calls itself, either directly or indirectly, is termed 
recunive. Direct recursion occurs when function A makes another 
call to function A; indirect recursion occurs when function A calls 
function B, which, in turn, calls function A. It is important to understand 
that each instantiation (active copy) of a recursive procedure is entirely 
unique and has its own arguments, local variables, return address, 
etc. Further, each instantiation returns to the procedure that directly 
invoked it. Thus, if C calls A, then A calls B, and then B calls A, the 
second instantiation of A is completely independent of the first and 
returns to its caller B, not C. 

Most beginning computer science students shudder at the mention 
of the term recursion, or believe the technique is reserved solely 
for the most sophisticated programmers writing the most arcane pro- 
grams. On the contrary, recursion is a powerful tool that every programmer 
should understand and use. 

61 

C H A P T E R  4
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I i n t  fact - i ter(  i n t  n 

i n t  i ,  ans; I {  
i f (  n == 0 )  / *  B y  definition * /  

return( 1 1 ;  

ans = 1; 
for (  i = 1; i <= n; i++  ) 

ane = ans * i; 

return( an8 ) ;  
listing 4.1 
Factorial nurnbers- 
iterative solution. 

4.2 FACTORIAL NUMBERS 

The  best way to introduce recursion as a programming technique is 
by way of example. The  notation n! reads “n factorial” and denotes 
the product of the positive integers from 1 to n, inclusive. For example, 

3! = 1 x 2 x 3  

4! = 1 x 2 x 3 x 4  

5! = 1 X Z X 3 X 4 X 5  

n! = 1 x 2 x 3  x x n - 2  xn-1  X n  

We also define l !  = 1, and O! = 1. If asked to develop a function 
that would compute factorial numbers, how would you do it? Based on 
the previous definition, an iterative solution is suggested and might 
look similar to the function provided in Listing 4.1. 

However, we can reverse the definition of the formula: 

n! = n x (n - 1) X (n - 2) X X 3 X 2 X 1 

Thus, 4! = 4 X 3 X 2 X 1. Note that 3 X 2 X 1 is 3!; therefore, 
we can define 4! recursively as 

4! = 4 x 3! 
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In general, we can define n! as 

n! = n X (n - l)! 

(n - l)! = (n  - 1) X (n  - 2)! 

(n  - 2)! = (n  - 2) x (n  - 3)! 

Having established a recursive definition for factorial numbers, 
we can begin to formulate a recursive algorithm. Consider the 
following pseudo-code: 

f a c t (  n ) 

x = n - 1 ;  
compute x!;  / *  ( n - l ) !  * /  
return( n*x! 1 ;  / *  n! = n * ( n - l ) !  * /  

T h e  function fact ( ) computes the value of n! by calculating 
the value of (n  - l)! and then multiplying the result by n. However, as 
you may have noted, statement two is not adequately defined: We 
must find a way to compute the value of x!.  But if you think about it, 
we already have one: fact ( ) . The  function fact ( ) computes facto- 
rial numbers. Let’s use that knowledge and rewrite the routine as 

f a c t (  n ) 

x = f a c t (  n-1 ); / *  ( n - l ) !  * /  
return( n*x 1;  /* n! = n * ( n - l ) !  * /  

Now, when computing the value of n! ,  the function will recursively 
call itself to compute the value of (n  - l)!. 

Is the function complete? Let’s take a closer look and trace its 
execution when computing 2!. Processing begins when the function is 
invoked with an argument of 2. It computes 2! by recursively calling 
itself with an argument of 1; to compute l!, it again calls itself with an 
argument of 0. T h e  third copy of the function will call itself with an 
argument of - 1, the next - 2, and so on. T h e  problem is now 
becoming clear: T h e  function is infinitely recursive. 

All recursive procedures need some way of stopping the recursion. 
We call this the temzinating condition or the out. It is usually placed 
at the top of a recursive function and contains the statements that 
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eventually put an end to the recursion and begin the unstacking 
of all the nested invocations. If it is omitted or incorrect-as we have 
just seen-functions can become infinitely recursive. 

Returning to our example, let’s identify a terminating condition 
for the function fact ( ). By definition, we know that O! = 1 and l! = 

1. We can therefore add tests for these values a t  the top of the procedure 
as follows 

fact( n 
1 )  if( n == 0 OR n == 

return( 1 1 ; 

return( n * fact(n-1) ) ;  

Now, when invoked with an argument of 0 or 1, the function will 
return an explicit value rather than making another recursive call. 
(Note that we have also removed the unneeded temporary variable x 
from our algorithm.) 

We have one more problem, however. The  function can be initially 
called with a negative argument. We should therefore add one more test 
to ensure that the function has been invoked properly: 

fact( n 
if( n < 0 ) / *  Bad argument * /  

return( -1 ); 

if( n == 0 OR n == 1 )  
return( 1 ) ;  

return( n * fact(n-1) ); 

The  final C version of the function appears in Listing 4.2. It 
depends on your point of view, but fact-recr ( ) is slightly more read- 
able than fact-iter ( ) (Listing 4.1), if for no other reason than that 
it has no loop to consider. Take the time here to review both functions 
and convince yourself-if you are doubtful-that the two implementa- 
tions are equivalent. 
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int  fact-recr( int  n 
{ 

i f (  n < 0 ) / *  Check for bad argument * /  
return( -1  ) i 

return( n * fact-recr(n-1) ) i  

1 

recursive solution. 

4.3 FIBONACCI NUMBERS 

Let's return to our discussion of Fibonacci numbers. As you may recall 
from Chapter 2, the Fibonacci sequence is defined as 

Fo = 0 

FI = 1 

F,, = Fn-, + Fn-2 for n 2 2 
The  solution we presented previously (Listing 2.2) computed a 

given Fibonacci number iteratively. Upon closer inspection, however, we 
see that the series is also defined recursively. That is, we can compute 
a given F,l by summing the values Fll-, and F,,-2. Therefore, we 
can begin to construct a recursive solution as follows 

fib-recr( n 
return( fib-recr(n-1) + fib-recr(n-2) 1 i 

We must again consider a terminating condition. In this case, we 
can use the two initial values, Fo and F,, and insert tests into our algorithm: 

fib_recr( n ) 

i f (  n == 0 )  
return( 0 ) i  

i f (  n == 1 )  
return( 1 1 i 

return( fib-recr(n-1) + fib-recrfn-2) 1;  
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1 in t  fib-recr( i n t  n ) 

{ 
i f (  n < 0 ) /*  Bad argument */ 

return( - 1  1 ;  

i f (  n == 0 )  / *  B y  definition */ 
return( 0 1 ;  

i f (  n == 1 )  / *  By definition * /  
return( 1 ) ; 

return( fib-recr(n-1) + fib-recr(n-2) );  

I 

I Fibonacci numbers- 
recursive solution. 

The  algorithm is just about complete, but notice that fib-recr ( ) 

also can be incorrectly invoked with a negative argument. We will therefore 
add one more test at the beginning of the routine. Listing 4.3 contains 
the final C version of the function. 

As a programming note, both fib-recr ( ) and fact-recr ( ) 
perform tests for invalid arguments during each recursive call. However, 
the test is really needed only during the initial call to ensure that 
invoking functions have passed valid arguments. After that, every addi- 
tional comparison (testing for n < 0) is unnecessary. It would be to 
our advantage ifwe could somehow prevent the test from executing 
after the first call. 

We can accomplish this by splitting the algorithm into two func- 
tions. The  first, called from other routines, will test for valid argu- 
ments; it will then invoke the second function, which will actually do 
the work. As an example of this technique, fib-recr ( ) has been 
rewritten and appears in Listing 4.4. 

4.4 WRITING RECURSIVE FUNCTIONS 

Thus far, we have used recursion to solve problems that we have been 
able to define recursively. Now let’s begin to explore the use of this 
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i n t  fib-recr2( i n t  n ) 

c 
i f (  n < 0 ) 

return( - 1  1;  

return( fibx(n) 1;  
1 

/* Bad argument * /  

/* Compute F(n) * /  

/ *  The work routine * /  
int  fibx( int  n ) 

i 
i f (  n = =  0 )  

return( 0 1;  

i f (  n = =  1 )  
return( 1 1 ;  

return( fibx(n-1) + fibx(n-2) );  
1 

listing 4.4 
Split functions. 

technique for problems in which a recursive solution may not be 
readily apparent. 

Towers of Hanoi 

One of the classic examples demonstrating the power of recursion is 
the ancient puzzle, T h e  Towers of Hanoi: 

There are three pegs A, B, and C, and a set of five rings, all of 
different sizes. T h e  puzzle begins with all rings positioned on peg A 
in a manner such that no ring is resting on a smaller one. That 
is, they are stacked one atop the other, beginning with the 
largest, followed by the next largest, and so on (see Fig. 4.1 for 
an example). T h e  object of the puzzle is to stack all five rings in the 
same order on peg C. At any time during the solution, you may 
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Figure 4.1 
Towers of Hanoi 
puzzle. 

4 Recursion 

place rings on any of the three pegs. However, you must 
adhere to the following conditions: 

You can only move the topmost ring on any peg. 
At no time may a larger ring rest on a smaller one. 

Try to solve the puzzle manually, for a small number of rings (say 
four or five), before proceeding to the algorithmic solution. 

The  problem confronting us is to write a program that will solve 
the puzzle for any number of rings. Let’s begin by considering a general 
solution for n rings. If we had a solution for n - 1 rings, it would 
seem obvious that we could solve the puzzle for n rings: Solve the 
puzzle for n - 1 rings, then move the remaining ring to peg C. Similarly, 
if we could solve n - 2. rings, the n - 1 case would also be simple. We 
could continue in this manner until the trivial case in which n = 1: 
Simply move the ring from pegA to peg C. Although it may not be obvious, 
what we have just described is a recursive solution to the problem. 
That is, we solved the problem for a given n in terms of n - 1. 

Let’s examine a more concrete example and solve the puzzle for 
five rings. Suppose we know how to solve the puzzle for four rings, 
moving them from peg A to peg C. Obviously, we could just as easily 
move the four rings from peg A to peg B instead (using C as the auxiliary 
peg). Then, to complete the solution, we need only move the largest 
ring from peg A to peg C and move the four rings on peg B to peg 
C (using A as auxiliary). 

We can summarize the solution more precisely as follows: 

1. If n = 1, move the ring from A to C and halt. 
2. Move n - 1 rings from A to B using C as auxiliary. 
3. Move the nth ring from A to C. 
4. Move n - 1 rings from B to C using A as auxiliary. 
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~ 

void towers( int n, char a, char b, char c ) 

/ *  n: Number of Rings * /  
/ *  a: The 'From' Peg * /  
/ *  b: The 'Auxiliary' Peg * /  
/ *  c: The 'Destination' Peg * /  

if( n == 1){ 
printf("Move ring %d from peg %c to peg %c\n",n,a,c); 
return; 

I 

/ *  
* Move n-1  rings from 
* /  

towers( n-1, a, c, b ) 

peg A to peg B (C is aux) 

/ *  
* Move remaining ring from peg A to peg C 
* /  

printf("Move ring O& from peg %c to peg %c\n",n,a,c); 

/ *  
* Move the n-1 rings from peg B to peg C (A is aux) 
*/  

towers( n-1, b, a, c ); 

return; 

listing 4.5 
Towers function. 

Note that steps 2 and 4 are recursive in that they suggest that we 
repeat the solution for n - 1 rings. Also note that the pegs change 
roles as the solution progresses. 

Now that we understand the solution, we must convert these rules 
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listing 4.6 
Sample output: 

Move ring 1 from peg A to peg B 
Move ring 2 from peg A to peg C 
Move ring 1 from peg B to peg C 
Move ring 3 from peg A to peg B 
Move ring 1 from peg C to peg A 
Move ring 2 from peg C to peg B 
Move ring 1 from peg A to peg B 
Move ring 4 from peg A to peg C 
Move ring 1 from peg B to peg C 
Move ring 2 from peg B to peg A 
Move ring 1 from peg C to peg A 
Move ring 3 from peg B to peg C 
Move ring 1 from peg A to peg B 
Move ring 2 from peg A to peg C 
Move ring 1 from peg B to peg C 

Towers function. 

into an algorithm. We will design a function, called towers ( 1 ,  that will 
display all the moves required to solve the puzzle for a given number 
of rings. Its output will be commands of the form 

Move ring X from peg Y to peg Z 

T h e  function towers ( 1 will require four arguments. The  first 
will indicate the number of rings to use. The  other three will determine 
the role of each of the three pegs: source, destination, or auxiliary. 
Listing 4.5 contains the code. 

The  code is almost a line-for-line transcription of our verbal solu- 
tion. Note how the routine changes the function of each peg with 
each recursive call. A sample of the output produced by the function, 
invoked with n = 4, appears in Listing 4.6. However, as written, the 
function lacks one important detail: It does not check for bad argument 
values. We will leave this as an exercise for the reader. 

Eight Queens Puzzle 

Another classic example of recursive programming is the Eight Queens 
Puzzle. The  problem is to place eight queens on a chess board such that 
no two queens are attacking each other. In chess, a queen can capture 



4.4 Writing Recursive Functions 71 

another piece by moving any number of squares along its row, column, 
or diagonals (see Fig. 4.2). Thus, the problem is to place eight queens 
on an 8 X 8 board such that no two queens share the same row, 
column, or diagonal. Try to solve the puzzle manually before read- 
ing on. 

T o  begin our solution, suppose we were to develop a procedure, 
nextqueen ( ) , that would attempt to place a queen in the row indicated 
by its one argument. That is, the function would scan all the squares 
of the specified row and, upon locating one that was not under attack, 
would place a queen on it; it would then recursively call itself to place 
a queen in the next row. If all eight queens can be placed on the board, 
the function returns the value SOLVED. If all the squares of a given 
row should be under attack, nextqueen ( ) will return a status of FAIL. 

Let’s begin to sketch the algorithm. (Note that for programming 
convenience, rows and columns will be indexed from 0 to 7.) 

nextqueen( row 1 
for( i = 0; i < 8; i + +  ) /*  T r y  each column * /  

if( safe(row, i) ) /*  Is square under attack * /  
if ( nextqueen(row+l) == SOLVED ) 

return( SOLVED ) ; 

return( FAIL );  /*  All squares under attack * /  

Figure 4.2 
Attacking queens. 
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Clearly, the description is far from complete. First, we need a 
terminating condition for the recursion. Let’s think about that for a mo- 
ment. We know that, by definition, there is a maximum of eight queens 
in the puzzle. Therefore, we can test for row > 7 at the beginning of 
the function. But consider for a moment the significance of the value 
contained in the argument row. If a recursive call is made to next- 
queen( ) with row equal to some value n, it means that rows 0 to n 
- 1 have been solved. Thus, if nextqueen( should be called with 
row = 8, it means that all the queens (rows 0 to 7) have been placed 
and the function should return the value SOLVED. 

Next, we need a way to track the placement of the queens as the 
function proceeds. T o  do this, we will use an 8 X 8 character array 
to represent the board. In each position, we will store (for display 
purposes) one of the following characters: - to denote an empty square; 
or x to represent a square containing a queen. 

Finally, we need to define the function safe ( 1, which determines 
whether a given square is under attack. However, let’s postpone 
our discussion of safe ( ) until we have completed the definition of 
nextqueen ( 1. 

Let’s incorporate the changes we suggested and see how our 
function is taking shape: 

nextqueen( row ) 

if( row > 7) / *  The ‘out‘*/ 
return( SOLVED ) ; 

for( i = 0; i < 8; i++ ) / *  Try each column 0-7 * /  
if( safe(row, i) / *  Is square under attack*/ 

board[rowl[il = QUEEN; / *  Place queen on board * /  
if ( nextqueen(row+l) == SOLVED ) /*  Next row * /  

else 
return( SOLVED ); 

board[rowl[il = EMPTY; / *  Restore board gos * /  

return( FAIL );  / *  A l l  squares under attack * /  
1 

Notice that we have added the statement 

board[rowl [il = EMPTY; 
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7 Figure 4.3 

Diagonal attacks. . 
because if a recursive call to nextqueen ( 1 should fail to find a 
solution (with a queen located a t  that position), this statement will restore 
the board to its previous state; the function is then free to try the next 
available square. 

Our algorithm is beginning to take shape, and we now need to 
discuss the implementation of the function safe ( 1. The  problem we 
must address is how the function will determine whether a given 
square is under attack from previously placed queens. First, note 
that there is really no need to check for attacks along rows. By virtue 
of our implementation, we can be certain that the only queen that could 
reside on a given row is the one we are attempting to place. Also, 
checking for attacks along columns could be accomplished directly, if 
crudely, by indexing through the board along the column in question. 

Diagonal attacks will prove to be the most difficult to discern. As 
depicted in Figure 4.3, a queen positioned on any one of the 
shaded squares would be attacking the queen placed on the [3,3] slot. 
How can we easily determine whether a square is under attack along 
either of its two diagonals? 

If you take a closer look at the board in Figure 4.3, you will notice 
that each diagonal can be uniquely identified as a function of its indices. 
For example, consider Figure 4.4a. T h e  sum of the indices (row + 
column) of each square in the forward-tilting diagonal is equal to 6. There- - 
fore, any queen that has been previously placed on a square whose 
indices sum to 6 will have the [3,3] slot under attack. Similarly, 
we can derive a unique value for the backward-slanting diagonals (Fig. 
4.4b) by subtracting (column - row) the indices. Note that each of thes 
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Forward-slanting diagonals 
(a )  

-2 diagonal 
9 diagonal 

Backward-slanting diagonals 
(b)  

Figure 4.4 
Diagonal values. 

15 forward-slanting diagonals range in value from 0 to 14, and the 
backward-slanting diagonals range in value from - 7 to + 7. 

We can incorporate this concept into our safe ( ) function. The  
idea is that as each queen is placed onto the board, we will update two 
arrays: one to track the forward diagonal and one to track the backward 
diagonal. The  index into each array will be the index value of each diagonal. 
(As a programming convenience, we will add 7 to the index value of 
the backward diagonal.) Thus, safe ( ) need only check the appropriate 
array slots to determine whether a given square is under attack along 
one of its diagonals. We will extend this idea to track attacks along columns. 
In this case, we use only the column value as the index into a third array. 

The  complete solution to the puzzle appears in Listing 4.7. The  
function eightqueens ( ) is the driving routine. It initializes the 
board and flag arrays and calls nextqueen( ) to solve the puzzle. If 
nextqueen ( ) returns SOLVED, eightqueens ( ) also invokes disp- 
board ( ) to print the solution. 

The  routine set-flags ( ) calculates the column and diagonal 
values and sets the appropriate array flags; it is called whenever a queen 
is placed onto the board. The  procedure reset-flags ( ) resets the 
column and diagonal flags whenever we remove a queen from the 
board (i.e., after a FAIL). The  function safe ( ) tests the flags associ- 
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#define FAIL 0 
#define SOLVED 1 
#define EMPTY I - ,  

#define QUEEN ? * I  

char colmk[8]; / *  Flags for testing rows & diags * /  
char tiltf [15] ; 
char tiltbLl51; 
char boardL81 181; 

void eightqueenso 

int i, j; 

/ *  
* Initialize board & flags 
* /  
for( i = 0; i < 8; i++ ) 

for (j = 0; j < 8; j++ 1 
board[il [jl = EMPTY; 

for( i = 0; i < 15; i++ ) {  
tiltf[il = EMPTY; 
tiltb[il = EMPTY; 

1 

for( i = 0; i < 8; i++ ) 
colmk[il = EMPTY; 

/ *  
* Attempt to solve puzzle 
*/ 

if ( nextqueen(0) = = SOLVED ) 

else 
disp-board ( 1 ; 

grintf ( "No solution found! \n" ) ; 

continued on p.  76 
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i n t  nextqueen( i n t  row ) 

{ 
i n t  i; 

continued from p .  75 

i f (  row > 7 ) 
re turn(  SOLVED ); 

f o r (  i = 0; i < 8; i++ ) / *  Try each col  */ 
i f (  safe(row, i) = =  1 

board[rowl [ i l  = QUEEN; 
set-flags( row, i 1;  
i f  ( nextqueen(row+l) = = SOLVED ) 

re turn(  SOLVED 1;  

/ *  
else { 

* Restore board & try next s l o t  
* /  

board[rowl [ i l  = EMPTY; 
reset-flags( row, i 1;  

1 
1 

re turn(  FAIL ) ;  / *  No safe  s l o t s  - backtrack * /  
1 

void 
set-flags( i n t  row, i n t  col  ) / *  Set col  & diag flags * /  
{ 

c o l d [  col ] = QUEEN; 
t i l t f [  row+col 3 = QUEEN; 
t i l t b [  (row-c01)+7 I = QUEEN; 

1 

void 
reset-flags( i n t  row, i n t  col  ) /*  R e s e t  col  & diag flags * /  

colmk[ col I = EMPTY; 
t i l t f [  row+col I = EMPTY; 
t i l t b [  (row-col)+7 ] = EMPTY; 

1 continued on p .  77 
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int safe( int row, int col ) 

c 
int i; 

if( colmkCcol1 == QUEEN 
I I tiltf[row+col~ == QUEEN 
I I tiltb[(row-col)+71 == QUEEN ) 

return( 0 1;  

return( 1 ); /*  Safe * /  
1 

void disp-board0 
{ 

int i, j; 

putchar( '\n' 1;  
for( i = 0; i < 8; i++){ 

for(j = 0; j < 8; j++ 1 

gutchar( '\n' ); 
putchar( board[il tjl 1;  

1 
1 

continued from p.  76 

listing 4.7 
Eight Queens solution. 

ated with a given board position; if it returns 1, the square is not 
under attack. 

Backtracking 

In the previous example, we described a programming methodology 
wherein many alternate solution paths are examined. This is a 
form of backtracking, Backtracking is a programming technique in which 
you proceed along a given path in search of a goal. At each fork 
in the road, you gzless which path you should follow. If any choice 
should prove unsuccessful, you backtrack; that is, you back up to 
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the previous fork and try another path. Execution continues in this 
manner until you either reach a solution or exhaust all possibilities. 
The  latter condition signifies that no solution exists and the program 
should exit with an indicative status. 

Non-Deterministic Programming 

Backtracking is a coding technique belonging to a more general class 
called Non-Deterministic Programming (NDP). In conventional 
software design, we program all the steps required to attain a desired 
result. This implies that a definitive, a priori understanding of the 
solution is available and that the problem itself is algorithmically solv- 
able. Thus, as each successive statement is executed, the program draws 
progressively closer to the desired result. 

NDP is somewhat different in that we do not code a solution. 
Instead, we program the method by which we attain a solution-if one 
exists. In fact, we do not assume that a solution does exist. The  program 
literally makes guesses until it either finds a solution or exhausts all avail- 
able alternatives. Moreover, there can be zero, one, or multiple solu- 
tions for a given problem. This method of programming has obGious 
benefits in artificial intelligence applications and expert systems 
development. 

Chronological Backtracking 

There are two types of backtracking: Chronological Backtracking 
(CBT) and Dependency-Directed Backtracking (DDB). CBT is effec- 
tively an exhaustive search, similar to the earlier discussion. Each 
solution path is exhaustively searched until one of the two outcomes is 
determined. For example, consider the following pseudo-code: 

1: 
2: 
3:  
4:  
5: 
6:  
7 :  
8: 
9:  
10 : 

bktk-exe( node ) 

{ 
if( node = SUCCESS ) 
then 

endi f 
for( each-choice-at-this-node ) 
do 

return( I-FOTJND-IT) 

ret-stat = bktk-exe( child-node ) 
if( ret-stat = SUCCESS ) 
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11 : then 
12 : return( ret-stat ) 
13 : endif 
14:  done 
15: return( FAIL 1 
1 6 :  1 

If at any time a solution is found (lines 3-6, 9-13), the function 
returns a value indicative of success. If not, it must try an alternate choice 
(lines 7-14). If all the alternatives have been exhausted (line 7), a 
value indicating failure is returned, forcing the previous invocation of the 
function to back up to a previous path (line 15) before continuing 
the search. 

There are two important points to consider. First, whenever we 
perform a backup, we must restore the environment to its previous state 
before trying the next path. Saving and restoring state data can become 
very expensive. Second, backtracking typically yields an algorithm that is 
exponential in order of execution magnitude. The  following sections 
discuss methods of improving the performance of this technique. 

Dependency-Directed Backtracking 

Dependency-Directed Backtracking functions essentially as described 
earlier, but attempts to eliminate some unnecessary searching (and there- 
fore unnecessary backups). This is accomplished in two ways. First, 
as the name DDB implies, we can backtrack to choices that are 
dependent on the dead end. That is, we back up until we reach a 
point where a dependency was created and continue searching 
from there. 

As an example of this technique, consider a case in which we are 
searching for a solution that requires that four conditions (A, B, C, and D) 
be satisfied for our program to return a successful status. Let us further 
assume that we have reached a state in our processing in which 
conditions A and B are satisfied but C and D are not. In lieu of just 
automatically backtracking to the closest fork, continue back- 
tracking to a point where A and B are still true and resume the search 
from there. We can skip all the intervening paths. 

The  second method of eliminating unnecessary searching is called 
pruning. If we reach a point in the search where it becomes obvious that 
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any further effort along a given path is fruitless, we can eliminate all 
subsequent paths from that point onward (i.e., force a backtrack 
to occur). Pruning is a straightforward approach and is often imple- 
mented in game-playing simulations. For example, we could write 
a chess program that could determine its next move by assigning a 
quantum value to each board position it examines. At any given 
point, it would select the move that yields the most advantageous 
(highest) value. If the algorithm were to traverse a path represent- 
ing the moves queen takes pawn, pawn takes queen, it could elect to 
eliminate any further searching along that trail. 

For the sake of completeness, we should also mention a third 
method of improving a backtracking procedure: managing an explicit stack. 
Recursive procedures are costly. This is attributable to the considerable 
amount of overhead processing required for each successive call. The  
execution environment must save registers, store a return address, 
allocate local storage, etc., in preparation for the return. Most of this 
information is not directly related to the problem at hand and, there- 
fore, having to save and restore it only wastes CPU cycles. We could save 
time and space if we were to code the stack explicitly. This can be 
accomplished by transforming the algorithm from recursive to itera- 
tive and maintaining the to-do list in. an application-controlled stack. 

Acrostic Example 

As an example of the backtracking technique, we will design a program 
that solves acrostic puzzles. An acrostic puzzle is simply a crossword puzzle 
without the clues: You are supplied the words and the diagram and, 
through trial and error, you must enter all the words into their appropriate 
slots (see Fig. 4.5). 

The  overall operation of the program is as follows: Read the puzzle 
and word list into internal data structures; search for a solution; if 
there is one, print it. The  actual backtracking logic can be found in 
the function solve ( ), which is what we will focus on here. A complete 
discussion of the program appears in Appendix A. 

The  function solve ( ) is a recursive procedure that works as 
follows: 

1. It chooses, and determines the size of, the next puzzle slot to fill 
(horizontal or vertical). 
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2. It selects, at random (i.e., sequentially), an appropriately sized 
word from the available list. It calls the function itfits ( to 
determine whether a given word fits into the slot (in typical cross- 
word puzzle fashion). 

3. If the word fits, solve ( ) enters it into the puzzle. At this point, 
with the aid of the function enter ( ), a snapshot of the current state 
(puzzle) is saved. 

4. It then recursively calls itself to continue toward a solution. 
5. If at any point a solution is found (i.e., there are no more slots to 

fill), the function returns the value SOLVED. 
6. If a given recursive call fails to find a solution, the puzzle is restored 

to its previous state (with the help of the function restore ( ) ); the 
word that had been tried at that point is returned to the free list 
and the next available word is selected; if none remain, the 
function returns the value FAIL to its caller. 

Let’s trace the execution of the function as it begins to solve the 
sample puzzle depicted in Figure 4.6. Note that the line numbers in the 
following discussion refer to Listing 4.8; also, the “random” selection 
of the words will be the order in which they appear in Figure 4.6. 

First, we need a four-letter word for the I across position. T h e  
function randomly selects best (line 14), marks it as USED (line 16), and 
inserts it into the puzzle (line 17). It then calls itself recursively to 
continue the processing (line 19). Next, for the 2 down position, a three- 
letter word is needed and era is similarly inserted into the puzzle. 

T h e  function now attempts to fill the 3 down position. It selects 
the next available four-letter word, tamp (line 13); checks to see 
that it fits (line 14); and inserts it into the puzzle (line 17). 
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1 2  3 TO 
ERA 
BEST 
TAMP 
TOPS 

4 

Figure 4.6 
Acrostic puzzle. 

The  next slot to fill is 4 CICTOSS, and the function selects the next 
available four-letter word-in this case, tops. This time, however, the 
i t f  its ( ) test (line 15) fails. Recognizing that the last four-letter 
word has been used (line 13), the function performs a backtrack (line 27). 

After backtracking, the function resumes processing a t  the point 
where it, again, needs to fill the 3 down position. It discards what was its 
first choice, tamp (lines 22 and 23) and selects the next available word, 
tops (line 14). (Just as a reminder, tops was put back on the available list 
just prior to the backtrack.) From this point on, the function solves 
the puzzle without any additional difficulties. 

4.5 USE OF RECURSION 

Once the technique of recursion is understood, the question most 
often asked is when to employ it. Let’s begin by discussing when not to 
use it. By definition, all recursive functions have a corresponding itera- 
tive solution. With few exceptions, iterative solutions are more efficient 
than their recursive counterparts. Therefore, you should not use re- 
cursion when run-time performance is critical. 

However, this does not tell the whole story. Properly used re- 
cursion can be no less efficient than using procedure calls where 
appropriate. For example, tests have shown that for some sorting algo- 
rithms (see Chapter 9) a recursive solution is no more than 2% slower 
than its iterative counterparts. This is a negligible difference, especially 
considering the speed of today’s processors. 

Nonetheless, there are two cases in which the use of recursion 
can lead to significant performance degradation: 
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1: solve( length, width 1 
2: int length, width; 
3: { 

4: int 1, w, i, len, tmp, type; 
5: char old[ WORDLEN - MINWORD + 1 I; 
6: 
7: w = width; 
8: 1 = length; 
9: len = next ( &l, &w, &type ) ; 

10 : if( len == 0 )  
11 : return( SOLVED 1 ; 
12 : 
13 : for( i = 0; i<MAXWORD && WORD(len,i) [01 ! =NULL; i++) { 
14 : if( FLAG(1en. i) = =  FREE 
15 : && itfits(1, w, WORD(len, i), type) ) {  

16 : FLAG(len, i) = USED; 
17 : enter(old, 1, w, WORD(len,i), type); 
18 : prev = type; 
19 : trnp = solve( 1, w ); 

20: if( tmp == SOLVED ) 

21: return( SOLVED 1;  
22 : restore( old, 1, w, type );  
23 : FLAG(len, i) = FREE; 
24 : 1 
25: 1 
26 : 
27 : return( FAIL );  
28: 1 

listing 4.8 
Acrostic solution. 

1. The  algorithm performs redundant computations. The  recursive 
implementation of the Fibonacci algorithm is a clear example 
of this problem. When you invoke f act-recr ( ) to compute F,, 
it computes the value of Fn-z twice: once during the initial call, and 
once when it make a recursive call to compute F,,-,. In a similar 
manner, it computes Fn-3 three times, F,i-4 four times, and so on. As 
a result of all the redundant computations, the complexity of 
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fact-recr0 becomes O(+”), where + is the golden ratio 
(1 + d / 2  = 1.618). (The actual analysis is beyond the scope of 
this text.) 

2. The  recursion becomes deeply nested. This problem is clearly 
highlighted in the function fact-recr ( ) (the recursive ver- 
sion of the factorial algorithm). Note that in computing n!, the 
depth of the recursion (i.e., the number of nested invocations) the 
function attains is O(n). For large values of n, this can place exces- 
sive demands on the run-time machine environment. In fact, even if 
we discount all other problems (e.g., integer overflow), for a large 
enough n, the function might not have access to enough re- 
sources (e.g., memory and stack) to compute a solution on some 
systems. Contrast this behavior with that of the function eight - 
queens ( ) . Its depth of recursion never exceeds 9. 

In addition to any performance considerations, you should not use 
recursion when each successive invocation would result in a larger task. 
Each recursive call should receive a smaller portion of the work. 

Do use recursion, however, when the problem is, itself, defined 
recursively. This is common in mathematical formulas (e.g., recur- 
rence relations). Use it also when processing a recursively defined data 
structure (e.g., binary trees) or when a problem can be solved with 
a divide-and-conquer approach. Keep in mind that a recursive imple- 
mentation of an algorithm is usually smaller and therefore it is usually 
less expensive to develop and less costly to maintain. 

Recursion is a powerful programming technique. Proper use of re- 
cursion results in simple, maintainable algorithms. One of the most im- 
portant aspects of a recursive algorithm is the out. All recursive func- 
tions must have a terminating condition to stop the recursion and unwind 
the stack. 

A powerful programming technique that employs recursion is 
called backtracking. You can improve the performance of backtracking 
algorithms using several techniques, including pruning and explicit 
stack management. 

SUMMARY 
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1. Define recursion. 

2. Describe the programming technique called backtracking. 

3. Write a recursive function that counts from 1 to n, where n is a 
positive integer argument passed to the function. 

4. Write a recursive function to sum the numbers from 1 to n, where 
n is a positive integer argument passed to the function. 

5. Trace the execution of the function f act-recr ( ) when invoked 
with an argument of 10. 

6. Trace the execution of the function Iik-recr ( ) when invoked 
with an argument of 8. 

7. Implement the function towers ( ) and manually verify its output 
when solving for five rings. 

8. Rewrite the function towers ( ) as an iterative algorithm. 

9. Implement, and trace the exucution of, the Eight Queens program. 

10. How many different solutions exist for the Eight Queens Puzzle? 
Modify the program of the previous question so it will generate all 
of them. 

11. Convert the function nextqueen ( ) to an iterative solution. 
Which version is easier to maintain? Which version executes 
faster? Explain your answers. 

12. Implement and test a program that solves acrostic puzzles (see 
Appendix A). 

13. Write a backtracking program that will compute a knight’s tour 
of a chessboard. A knight moves by jumping two squares in 
one direction (either vertically or horizontally) and one square in 
a perpendicular direction. A knight’s tour is a sequence of 
moves, starting at any square, that visits each square exactly once. 
Try to implement some of the improvements discussed in this chapter. 

E X E R C I S E S  



Dynamic Data Strzcctzcres 
C H A P T E R  

5.1 INTRODUCTION 

In the preceding chapters, we used static data structures to implement 
our example algorithms. That is, storage was pre-allocated and of a fixed 
size. One advantage of this type of allocation is that it provides direct 
access to individual elements. For example, if we needed to change the 
ith element of a list, we could code a [i] 

Nevertheless, static data structures have several disadvantages. 
T h e  first becomes evident when attempting to insert or delete elements 
in the middle of a list. For example, consider maintaining a list of 
names in alphabetical order. T o  insert a new element, a program must do 
the following (see Fig. 5.1): 

= new value;. 

Determine the location for the new name. 
Allocate space by shifting existing elements one slot to the right. 
Enter the new name into the list. 

For a list of size n, we would need to shift, on average, n/2 elements 
to complete each insertion. To  delete an element, the program 
must remove the designated element from the list and then shift all 
succeeding members one position to the left to fill the vacant slot. 

86 

C H A P T E R  

5
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Find location 
(a )  

Shift elements right 

Allocate space 
( b )  

Perform insertion 
( C) 

A second disadvantage of static storage structures is that they are 
unable to respond to increasing or unanticipated demand. If we 
allocate space for ten elements, the arrival of the eleventh will likely 
present a problem. If, on the other hand, we decided to overcom- 
pensate, the program might become too large for the target execution 
environment. T h e  following sections discuss methods by which we can 
overcome these difficulties. 

Figure 5.1 
Array insertion. 

5.2 LINKED LISTS 

One solution to the first problem mentioned-that of difficult inser- 
tions and deletions-is to use a second array to implement a linked 
list. A linked list is a data structure wherein each element contains 
both a data value and a pointer to the next element in the list. 
That is, each element contains information that allows us to locate 
the next element in the list: T h e  first node points to the second, 
the second to the third, and so on. This type of structure usually 
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~~ 

Figure 5.2 
A linked list. 

5 Dynamic Data Structures 

Data: bw : . 
Array 
slots 

Front = 3 

requires a so-called headpointer to indicate the beginning of the list, as 
well as some convention to signify its end. 

For example, consider the list presented in Figure 5.2. The  order 
of the elements is not determined by their position in the data array 
(data[]), but rather by the entries contained in the link array 
(link [ ] . )The variable front, serving as our head pointer, identi- 
fies the beginning of the list (slot 3 in this example). T o  access the 
data value of the first element (BACH), we index into the data 
array at data [front]. The  location of the next element 
(BEETHOVEN) is determined by the value stored in the link array at 
link [ front 1, in this case 0; likewise, its corresponding data value 
is accessed as data [ 01. The  traversal continues in this manner until we 
encounter a link value of - 1 (by convention, we will use this value 
to signify the end of the list). 

This form of indirection allows us to store list elements in any 
available slot of the data array. Further, free slots (holes) no longer present 
a problem-just mark them as available for reuse. 

The  second and more significant advantage of this method is that 
it simplifies insertions and deletions. To demonstrate this, let’s insert the 
element CHOPIN into the list depicted in Figure 5.2. The  first step 
is to determine the logical position of the new element. Specifically, we 
must identify the node that will become the direct pwdecessor of the 
new element (i.e., the node that will ultimately point to CHOPIN, in this 
example BEETHOVEN). 
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Data: 

Link: 

Link: 
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Insert new element 
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Data: 

Front = 3 
Modify link of Beethoven 
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Figure 5.3 
Linked-list insertion. 

After determining the location, the steps required to perform the 
actual insertion are as follows (see Fig. 5.3): 

Find an empty slot in the data array (data [ 2 1 ). 
Store (copy) the new element (CHOPIN) into the free slot. 
Update the link for the new element (link [ 2 I 
Insert the new element into the list (link [ O ]  

= 1 ; ). 
= 2;). 

Deleting list elements is essentially a two-step procedure (see 
Fig. 5.4). First, remove the deleted element from the list by setting the 
link value of its predecessor to point to its successor. Then mark the 
deleted element’s data slot as available. 

Listing 5.1 contains two example procedures, insert ( ) and 
delete ( ) , that perform insertions and deletions on a linked list. 
There are several points worth noting about the implementation. 
First, both functions require an argument indicating the logical position 
for the operation. Specifically, this argument must be the index of the 
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Element to  be deleted 

Data: 

Link: 

Figure 5.4 
Linked-list deletion. 

Previous element in list 
Front = 3 

Before deletion 
( a1 

Data: 

Link: 

Front = 3 
After deletion 

( b )  

target element’s predecessor. (We will return to this point later in this 
chapter when we discuss doubly linked lists.) In line with this, note the 
first i f  condition in the function delete ( ) .  It tests whether its grev 
argument refers to the last element in the list. If that is the case, 
the function cannot delete any elements from the list because, by 
definition, the last element of the list cannot be a predecessor 
node. In all such cases, delete ( ) returns the value END to indicate 
to the calling function that the list has not changed. 

Next, both routines handle the special cases involving the first 
element of the list. The  reason is that when the first element is either 
deleted, or has another element inserted in front of it, there is no 
predecessor node. (The variable front is not part of the list proper.) 
As a result, both functions use a special value (BEG) to indicate an 
operation on the list’s first element. 

In closing, keep in mind that the benefits provided by this imple- 
mentation are not without their costs: Additional memory is re- 
quired for the link array and we no longer have the ability to access 
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#define OK 0 
#define NO-SPACE -1 

#define BEG -2 
#define END -3 

#define MAXLEN 20 
#define MAXENTRIES 100 

int front = END; 
int link[ MAXENTRIES I ; 
char data[ MAXENTRIES 1 [ MAXLEN. 1 ; 

int 
insert( int where, char item[] ) / *  Ins item after 'where' * /  
{ 

int i; 

/ *  
* Find free slot in data array 
* /  
for(i = 0; i < MAXENTRIES && data[il[Ol !=  NULL; i++) 

/ *  NULL BODY */; 

if ( i >= MAXENTRIES ) 
return ( NO-SPACE ); 

StrnCgy( datalil, item, MAXLEN ); / *  Store entry * /  

if( where == BEG / *  Insert at beginning * /  
link[ i 1 = front; 
front = i; 

link[ i 1 = link[ where 1; 
link[ where 1 = i; 

1 else { 

1 

return( OK ) ; 

1 continued on p.  92 
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continued from p.  92 
int delete( int grev 1 / *  Delete member after *grev* * /  
{ 

int t; 

if ( link[ grev 1 == END ) /*  Nothing to DO! */ 
return( END 1 ; 

if( prev == BEG ) {  
/ *  
* Delete first element 
* /  

t = front; 
front = link[ front I;  

/ *  
I else { 

* Delete element after *grev* 
* /  

t = link[ grev 1 ; 
link[ grev I = link[ t 1; 

I 
data[tl[Ol = NULL; / *  Free data slot * /  

return( OK 1;  

Listing 5.1 
Linked-list insertion and deletion functions. 

individual list elements directly. The  sections that follow will discuss ways 
that we can improve on the ideas developed in this section. 

5.3 LINKED LISTS USING POINTERS 

We will now address the second problem mentioned previously, that 
of space limitation. Although it has several advantages, the double 
array implementation of the previous section does not overcome the 
disadvantages associated with pre-allocated memory aggregates. Indeed, 
the problem is compounded because we need a second (link) array. 
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Front End of list 

Alternate notation 
(a )  

Front 
New element 

Insertion 
(bl 

Figure 5.5 Front 

Linked lists: Preferred 
representation. 

Deletion 
( 4 

Deleted Element 

Figure 5.5a presents another way that we can represent lists in 
memory. As depicted, each list member can be viewed as a self-contained 
unit (referred to as a node), with both a data field and a pointer to the 
next element (successor). 

In previous examples, the pointer (link) field was strictly an index 
into another array. We will now expand this capability and permit link 
fields to reference any node residing at any valid memory location 
(address). As a result, programs can now construct and process lists 
of arbitrary sizes. In addition, as we will see, we can create nodes ‘on 
the fly’; this allows us to overcome the limitations associated with 
pre-allocated storage. 

Figures 5.5b and 5 . 5 ~  briefly illustrate how we perform list inser- 
tions and deletions using this representation; the sections that follow 
discuss the implementation in detail. 
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Memory 
addresses 

-Memory 

After integer assignment 
(a )  

After pointer assignment 
( b )  

Figure 5.6 
Pointer assignment. 

Pointers 

Before we can continue the preceding discussion on linked lists, we 
must determine how link fields can reference any node positioned 
anywhere in memory (not just in another array). To  understand how 
this is accomplished, this section introduces and describes a new 
type of variable called a pointer. 

Regardless of data type, all variables possess several generic attri- 
butes. These include name, size, type, and address (location in 
memory). When writing programs, developers reference variables by 
name. However, after a program is compiled and loaded into mem- 
ory (executed), variables are referenced solely by their addresses. For 
example, consider an integer variable i, loaded at memory location 1000. 
The  assignment i = 6; will cause the contents a t  memory location 
1000 to be overwritten with the value 6 (see Fig. 5.6a). 

As mentioned earlier, programmers usually reference variables by 
name. However, there are times when it more convenient to reference 
variables by their addresses. For example, consider a program that 
processes employee records. (Typically, employee records are quite large; 
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for our example, we’ll assume that they are 2048 (2K) bytes in size.) 
Let’s assume we had to write a payroll function that processes these 
records and prints checks. One way to provide our function with data 
is to pass each employee record as an argument. However, that means we 
would have to copy 2K bytes worth of data with each call to the 
function. 

A better approach is to tell the function where records reside in 
memory. In effect, each time we invoke the function, we tell it 
to process the employee record that resides over there (wherever there 
happens to be for each record). Using this technique, we only need to 
pass the address of a record (typically only 4 to 8 bytes worth of 
information) rather than its entire contents. 

Pointers in C 

In C, we store and process address information in variables called 
pointers. A pointer is a variable that uses an address to reference, 
indirectly, another data object. Put simply, a pointer is a variable that 
contains the address of another variable. 

T h e  C declaration for a pointer has the general form 

data-type *ptr-name; 

where data-type determines the type of object a t  which ptr-name can 
point. This can range from one of the basic data types to a user-defined 
aggregate (as we will see shortly). 

For example, we can define a pointer to integer as 

i n t  * i p t r ;  

(The trick to understanding C declarations is to read them from right 
to left. Also, pronounce * as “pointer to.” Thus, * i p t r  is apointerto int.) 

The  preceding pointer declaration creates storage for a variable 
that has all the attributes of any other data object: name, type, size, address, 
and so on. The  sole difference is the type of data that we can store 
in it. Specifically, i p t r  does not hold an integer value; rather, it holds 
the address of another integer variable. 

After declaring a pointer, our next concern is to determine where 
it is pointing. As we have been stressing, pointers are just like any 
other variable. As a result, they, too, must be initialized. Assuming the 
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preceding declaration for igtr and the declaration i n t  i;, the C 
statement 

igtr = &i; 

assigns the address of i to igtr (see Fig. 5.6b). That is, we say that 
iptr  points at i and that we can access the contents of i indirectly 
through igtr. Note that the symbol & is a unary operator (i.e., requires 
only one operand) that yields the address of its operand. Also note 
that the preceding assignment modifies the contents of igtr. 

Typically we are not interested in the exact values of addresses; 
that is a concern best left to the compiler and the memory manage- 
ment subsystem of the host operating environment. However, if we 
wanted to, we could print addresses as follows: 

grint f (  "The address of i is:  %d\n", &i 1;  

or 

gr int f (  "The address of i is: %d\n", igtr 1;  

Once assigned, we can use a pointer to modify the contents of 
the memory cell at which it points. Assuming all of the preceding 
declarations and assignments, the statement 

*iptr = 6; 

is equivalent to the assignment 

i = 6; 

The  * operator dereferences the pointer igtr; thus, we access i indi- 
rectly via the pointer. 

Listing 5.2 contains some additional examples of pointer manipu- 
lation in C. 

Pointer dereferencing is dynamic. That is, the cell at which a 
pointer is pointing at the time of dereferencing is the one that is modified. 
For example, consider the following code fragment: 

int  i ,  j ,  *gtr; 

gtr = &i; 
*gtr = 10; / *  assign 10  t o  i * /  

gtr = &j; 
*gtr = 10; / *  assign 10 t o  j * /  
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void ptr-ex ( 1 
{ 

int i, j; /* Declare integer variables * /  
int *g; /* Declare a pointer variable * /  

p = Grit /* ‘p‘ now points to ‘i’ */ 
*p = 6; /* equivalent to *i = 6;’ * /  
i = 7; /* equivalent to ‘*p = 7 ; ‘  * /  
j = *p; / *  equivalent to ‘j = i;* * /  

listing 5.2 
Examples of pointer manipulation in C. 

T h e  first time we assign 10  to the cell at which gtr points, we modify 
i; the second time we modify j. 

As with any variable, type checking also applies to pointers. Spe- 
cifically, pointers should only point at objects consistent with their 
declaration. For example, a pointer, declared as pointing to an int, 
should not be assigned the address of a variable declared as a double. 

As a final note, programmers new to C are sometimes confused 
by what appears to be conflicting uses of the * operator. In a declaration 
statement, * adds levels of indirection; in an executable statement, it 
removes levels of indirection. (Keep in mind that * is also the binary 
multiplication operator!) Obviously, its meaning depends on its use. 
This idea, however, is certainly not a new one. For example, consider the 
English word mad. The  only way we can tell whether it should be 
pronounced “reed” or “red” is by context. In computer languages, 
operator overloading occurs when symbols have more than one meaning. 
Operator overloading is not unique to C. For example, most com- 
puter languages (including C) overload the ( - )  operator. It can mean 
subtraction (as in a-b) or it can mean negation (as in x = -y ) ,  de- 
pending on usage. Keep operator overloading in mind when working 
the * operator in C. 

Pointer Example 

As an example of the use of pointers, let’s write a function that swaps 
the value in two variables. As a first cut, you might write a function similar 
to the following: 
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void bad-swap( int x, int y ) 

{ 
int temp; 

temp = x; 
x = y; 
y = temp; 

1 

However, in C, function arguments are passed by value. That means, 
when we call a function such as 

bad-swap ( a, b ; 

the value of each actual parameter (e.g., a and b) is copied into the 
corresponding formal parameter (e.g., x and y, respectively). The  
variables x and y are local to their function. Thus, any changes we 
make to x and y will have no effect on their corresponding actual parame- 
ters. As a result, bad-swap ( ) will not accomplish the desired task. 
(Languages that permit formal parameters to modify actual param- 
eters support a calling convewion referred to as call by rt$emnce. Take 
on the role of compiler writer for a moment and consider how you would 
deal with a function call such as swap (a + b, c + d) in a call-by- 
reference environment.) 

One way to overcome this problem is to pass the address of the 
actual parameters, as in 

void good-swap( int *x, int *y  ) 

{ 
int temp; 

temp = *x; 
*x = *Y; 
* y  = temp; 

1 

This allows us to swap the value of any two integers with a call such as 

good-swap( &a, &b ); 

At first glance, it might seem that we are now calling by reference. 
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On the contrary, we are still calling by value; it’s just that the 
values we are passing are addresses. 

C Structhures 

Before we can resume our discussion of linked lists, we must also 
decide how we will organize the complex data structures we will need. 
We have already seen one way that programming languages (C in 
particular) allow us to organize data: the array. Arrays allow us to 
aggregate multiple elements of the same type. But to implement 
linked lists, we need a way to group elements of dissimilar types. In C, 
we can accomplish this through the use of structures. 

A C structure is a collection of one or more variables (called 
members) that we can manipulate as a single unit. They are akin to the 
notion of recordin other languages. For example, consider an employee 
record. Companies must maintain a diverse set of attributes for 
their employees: name ( string), social security number (long in- 
teger), salary (float), and job code (char), to name a few. 

T o  demonstrate the definition and use of structures in C, let’s 
construct a simple employee record. Before we begin, consider 
the following point. When we declare a variable (in any language), 
the compiler must know what that variable looks like before it can construct 
it for us. For example, if we code 

int i; 

the compiler must know how to build an integer cell in memory. The  
same holds true for structures in that we must provide the compiler 
with a description of the object before it can reserve storage. In C, 
we can define a structure as follows: 

struct employee { 

char name [ 25 I ; 
long ssnumb; 
float salary; 
char j ob-code; 

I ;  

T h e  reserved word struct introduces the declaration. employee is 
a user-defined name for the structure, called a structure tag. The  
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allocation. emp 1 emp 2 full-time 

structure tag is analogous to a data type (e.g., int) and provides us 
(and the compiler) a name by which we can reference objects of 
this type. Note that the compiler does not reserve storage as a result 
of this statement. Rather, the declaration serves only to describe 
this new data type to the compiler. 

We can define struct variables using declarations such as 

struct employee apl, emp2, full-time; 

This declaration reserves storage for three variables of type struct 
employee. Figure 5.7 depicts what memory might look like as a 
result of this declaration. 

We reference individual structure members as 

variable. member 

where variable is a structure variable and member is a valid member of 
that type of structure. Thus, to reference the salary member of 
structure empl, we code 

-1. salary 

Note that when we reference a member, the data type of the 
resultant expression is based on the data type of the member: 

Expression Data type 

=PI struct employee 
Grempl 
empl. salary float 
hemgl. salary 

address of (pointer to) a struct employee 

address of (pointer to) a float 

As with any data type, we can also declare pointers to structure 
objects: 
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struct employee *ptr; 

This statement declares storage for a variable that can point at objects 
of type struct employee. As usual, we must initialize the 
pointer: 

ptr = hempl; 

We can reference structure members via pointers using the follow- 
ing syntax: 

pointer->member 

For example, the expression 

ptr ->salary 

references the salary member of empl. Remember, pointer references 
are dynamic. Thus, if we were to assign ptr = &emp2, the preceding 
expression would reference the salary member of emp2. 

based on the data type of the member: 
T h e  data type of structure references involving pointers is also 

Expression Data type 

ptr 
ptr ->salary float 
&ptr ->salary 

address of (pointer to) a struct employee 

address of (pointer to) a float 

Structures may contain members of any data type. For example, 
we can modify our employee structure as follows: 

struct emp-name { 

char firstpame[ 30 1;  
char last-name[ 30 1;  
char middle-init; 

I ;  

struct employee { 
struct emp-name name; 
long ssnumb; 
float salary; 
char j ob-code ; 

I ;  
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Given the following declarations and assignment: 

struct employee empl, *ptr; 
ptr = Grempl; 

we could reference middle-init as 

empl.name.middle-init 

or 

ptr->name.rniddle-init 

The  only restriction placed on structures is that they cannot con- 
tain instances of themselves. For example, 

struct bad-decl { 

char a; 
float b; 
struct bad-decl c; / *  Wrong! * /  

I ;  
If permitted, the declaration would be infinitely recursive. 

selves. These are sometimes referred to as self-referential structures. 
However, structures can contain instances of pointers to them- 

struct listgode { 

/ *  
* data elements here 
* /  

struct list-node *next; / *  ok * /  
I ;  

This allows structures to point to other instances of objects of the 
same type. We will use this feature in the next section to imple- 
ment dynamic linked lists. 

in C. T h e  bibliography lists several excellent references that pro- 
vide more thorough discussions of the topics. 

This has been but a brief overview of pointer and structure usage 

linked lists and Pointers 

As noted earlier, pointers can be used to process data efficiently, 
especially large objects: Instead of copying enormous chunks of data from 
location to location, we need only pass an address. 
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Figure 5.8 
Linked list using 
pointers. 

Head - Null 

We can also use pointers to implement lists of the type depicted 
in Figure 5.5. We begin by defining a C structure that will serve as our node: 

struct node { 

int data; 
s t ruct node *next; 

1; 

This structure contains two members. T h e  first field, data, stores 
data values for individual nodes. The  second field, next, is a pointer to 
objects of type struct node. In other words, it can point to the 
next node in a list. The  following code fragment demonstrates one way 
to construct a list: 

void a-list ( 1  
c 

struct node *head, nl, n2, n3; 

head = hnl; 
nl.next = &n2; 
n2.next = &n3; 
n3.next = NULL; 

1 

T h e  function begins by assigning the address of nl to the pointer 
head this establishes the,beginning of the list. Then, using the variables 
nl, n2, and n3, it constructs the body of the list: The  next field of 
each node is assigned the address of its successor. By convention, 
we use the value NULL to indicate end-of-list. Figure 5.8 depicts the 
internal representation of the preceding list. 

list Insertion and Deletion with Pointers 

We can now process lists using simple pointer manipulation (refer 
back to Fig. 5.5). For an insertion, assign to the link field of the 
new node the value contained in the link field of its intended predeces- 
sor; then set the predecessor’s link field to point the new node. 
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s t ruc t  node *head = NULL; 

/* 
* Inser t  "new" a f t e r  "pre" 
* /  

void inser t2(  s t ruc t  node *pre, s t ruc t  node *new ) 

{ 
i f (  pre == NULL I {  

/ *  
* Inser t  i n  front of first node 
*/ 

new ->next = head; 
head = new; 

new ->next = gre ->next ; 
gre ->next = new; 

1 e l se  { 

1 
1 

/ *  
* Delete t h e  node a f t e r  pre 
* /  

void deletea(  s t ruc t  node *gre 1 
{ 

i f (  pre == NULL ) / *  delete  first node * /  

e l se  
head = head ->next ; 

pre ->next = gre ->next ->next; 
I 

listing 5.3 
List processing using pointers. 

A list deletion is even simpler. Store the address contained in the 
link field of the deleted element into the link field of its predeces- 
sor. We can then reuse the deleted node (i.e., place it on an mad- 
able list). 

manipulation routines insert2 ( ) and delete2 ( ) . They func- 
As an example of this processing, Listing 5.3 contains the list 
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void iter-trav( struct node *ptr ) 

c 
while( ptr ! = NULL ) { 

print-node( ptr 1; 

listing 5.4 
List traversal: Iterative. 

tion in a manner similar to that of their counterparts, insert ( ) and 
delete ( ) (Listing 5.1), but use pointers instead of array indices. 

The  variable head, which points to the beginning of the list, is 
initialized to NULL; this signifies an empty list. Both functions 
begin their processing by testing for the special case in which the first 
element of the list is to be updated. However, note that the test performed 
is pre == NULL. Why not test for pre === head? In answering 
this question, keep in mind that we always need to have access 
to an element’s predecessor to perform an insertion or deletion. Thus, 
to insert a new element in front of the third element, we pass 
insert2 ( ) a pointer to the second element; to insert a new element 
in front of the second element, we pass a pointer to the first. As you can 
see, there is no way to indicate that an insertion should take place in 
front of the first element. T o  overcome this problem, we have established 
the convention that a null pointer indicates a first element operation. 

5.4 LIST PROCESSING 

List Traversal 

Of the many operations that we can perform on lists, the most common 
is the traversal. A list traversal requires that we “visit” each node in 
succession, processing the data field(s) as required. For example, after 
constructing our list of composers, we might need to generate a 
printed listing of the names. 

Listings 5.4 and 5.5 contain examples of list traversal routines. 



106 5 Dynamic Data Structures 

void recv-trav( struct node *gtr 1 
{ 

if( gtr !=  NULL ) {  / *  The 'out' * /  
print-node( gtr 1 ;  
recv-trav ( ptr ->next ; 

1 
1 

listing 5.5 
List traversal: Recursive. 

The  first, iter-trav( ), uses a loop (iterative) construct to step 
through the list and print out each data element. In contrast, 
recv-trav ( ) employs a recursive algorithm to process each node. 
Both functions assume a routine called print-node ( ) to display 
data elements in some predetermined manner. 

list Reversal 

There are occasions when we need to reverse the order of list elements. 
For example, we might need to print our list of composers in 
reverse alphabetical order. Listing 5.6 contains the function 
reverse ( ), which reverses the order of elements in a linked list. Its 
one required argument is a pointer to the list it will process. When 
invoked, the function steps through the list, reversing pointers on the 
fly. It returns the address of the new first element (formerly the last) and 
therefore should be invoked as 

head = reverse( head ) ;  

This ensures that we can still reference the list after the routine 
completes. 

Notice that reversing does not make a copy of the original list. 
That is, by using three pointers, we can reverse the list in piace. Thus, 
for any list of size n 2 1, the while loop is executed exactly once, 
yielding a complexity of O(n). 
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struct node * 
reverse( struct node *headptr ) 

c 
struct node *tmp. *curr, *prev; 

/* 
* set-up pointers 
* /  

prev = NULL; 
curr = headpt r ; 

while( curr ! = NULL ) { 
tmp = prev; 
prev = curr; 
curr = curr->next; 
prev->next = tmp; 

return( prev 1;  
1 

listing 5.6 
Reversing a linked list. 

List Concatenation 

Another useful function for list processing is a routine that concatenates 
two lists. T h e  function lconcatl(  ) (Listing 5.7) appends its second 
argument to the end of its first, creating one large list. T o  accomplish 
this, it locates the last element of list l i s t 1  and assigns to it the 
address of the first node of l i s t 2 .  The  first i f  statement is a “sanity 
check” to ensure that listl points to a non-empty list. The  while loop 
is executed only for each element of listl; this yields a complexity 
of O(n). 

There is one problem with this implementation of lconcatl ( 1. 
As it stands, it will fail whenever l is t l  is NULL. That is, the 
pointer to the first list in the calling function will remain NULL. Al- 
though it appears that lconcatl ( ) addresses this problem with the first 
i f  statement, this is not the case. Keep in mind that the parameter 
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void 
lconcatl( struct node *listl, struct node *list2 ) 

E 
if( listl == NULL 

listl = list2; 
return; 

1 

/ *  
* Locate end of list 
* /  

while( listl->next ! = NULL ) 

listl = listl->next; 

1 is t 1 ->next = 1 ist 2 ; /* Concatenate * /  
1 

struct node * 
lconcat2( struct node *11, struct node *12 ) 

I 
if( 11 == NULL ) {  

return( 12 1;  
1 

/* 
* Locate end of list 
* /  

while( 11->next ! = NULL ) 
11 = 11->next; 

11->next = 12; / *  concatenate * /  

return( 12 1; 
1 

listing 5.7 
Two versions of list concatenation. 
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calling convention in C is by value. Thus, when we assign to 
listl in concatl ( 1, we only modify the formal parameter (a local 
variable), not the actual parameter passed by the calling function. 

As illustrated in lconcat2 ( ) , we can easily rectify this problem 
with a simple change to the procedure. In this version, the function 
returns a pointer to the concatenated lists. Thus, if we call the function 
in this manner: 

listl = lconcat2( listl, list2 );  

we are assured of a correct result regardless of the value in the first 
parameter. 

5.5 STACKS REVISITED 

Let’s take another look at implementing a stack, this time using point- 
ers. As in our first implementation, we will use one pointer (tog) to 
maintain the top of stack. In this case, however, it will be a pointer 
to a list of structures of type node (see Fig. 5.9). 

New Node 
Insertion 

( a )  

Deleted (popped) element 

Deletion 
(b)  

Figure 5.9 
Stack: Pointer 
implementation. 
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Listing 5.8 contains the functions ppush ( ) and ppop ( ) , which 
implement a pointer stack. Note that ppush( ) requires a node, not a 
value, as its one argument. 

s truct  node E 
char data; 
struct  node *next; 

1; 

struct  node *ppop( void 1; 

void ppush( struct  node * ) ;  

struct  node *top = NULL; 

void ppush( struct  node *new ) 

E 
new->next = top; 
top = new; 

1 

s t ruc t node *ppop ( ) 
{ 

struct  node *tmp; 

if( top == NULL ) 

return( NULL 1; 

tmp = top; 
top = top ->next; 
return( tmp 1; 

1 

listing 5.8 
Stack: Pointer implementation. 
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5.6 QUEUES REVISITED 

We can also convert our queue functions in a similar manner. As 
depicted in Figure 5.10a, we need two node pointers to maintain 
the FIFO order of the elements. Figures 5.10b and 5 .10~  demonstrate 
how to accomplish queue insertions and deletions. Listing 5.9 
contains the code. 

struct node { 

char data; 
struct node *next; 

I ;  

struct node *head = NULL, 
*tail = NULL; 

void ptr-insg( struct node *new ) 

{ 
new ->next = NULL; 
if( tail == NULL ) / *  Empty List */ 

else 

tail = new; 

head = new; 

tail ->next = new; 

I 

struct node *ptr-delg() 
E 

struct node *tmp; 

if( head == NULL ) /*  List Empty * /  
return( NULL 1;  

tmp = head; 
if( head == tail ) / *  Last Node in List * /  

head = tail = NULL; conhuedonp .  112 

111 
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else continged from p.  111 
head = head ->next ; 

I return( tmg 1; 

listing 5.9 
Linked-list functions. 

Enqueue 
f b) 

Deletion 
fc) 

Figure 5.10 
Queues: Pointer 
implementation. 
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5.7 DYNAMIC MEMORY ALLOCATION 

Through the use of pointers, we have seen how programs can create 
linked lists of virtually unlimited size. T h e  only practical restriction 
is the amount of memory available to a process at execution time. 
Nevertheless, all the previous examples have used variables explic- 
itly declared at compile time (e.g., struct node nl;); this still 
limits a program’s ability to respond to varying demand. It would 
be helpful if a program could allocate memory (nodes) as needed. 

Many languages and operating systems support dynamic memory 
allocation. Using this capability, an executing process can request 
additional memory on the fly. The  specifics of such a facility vary from 
system to system, and the details are beyond the scope of this 
text. However, for purposes of demonstration, we will assume that 
two functions are supplied as part of our compilation environment: 
malloc ( ) and free ( ) . (These routines are part of the ANSI C 
standard.) 

T h e  function malloc ( ) allocates chunks of memory. It takes 
one argument-the size (in bytes) of the requested memory seg- 
ment-and returns either a pointer to (i.e., the address of) the new 
segment or the value NULL if a segment of that size is unavailable. 
T h e  function free ( ) returns a previously allocated memory segment 
to the system, making it available for reuse. Its one argument is 
the address of the segment to be returned. 

As an example of how we can use these routines, let’s incorporate 
these two functions into the stack routines of the previous section. 
Specifically, the function ppush ( ) will now automatically allocate a 
new node with each push request; and pgog ( ) will free each popped node. 

T h e  code for the new routines, ppush2 ( and ppog2 ( 1 ,  appears 
in Listing 5.10. Note that the argument to ppush2 ( ) is now a data value, 
not a node. If the call to malloc ( ) should fail, ppush2 ( ) returns 
OUT-OF-SPACE. Also note that we have modified ppog2 ( ) . The  func- 
tion returns status in the usual manner. However, we have added a 
pointer argument so that it can also return a data value. A call to 
pgog2 ( ) is made as follows: 

stat = ppog2( &data 1;  

If stat is OK, data contains the value of the popped element. 
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s t r u c t  node { 

char data;  
s t r u c t  node *next; 

I ;  

#define OK 0 
#define EMPTY -1 
#define OUT-OF-SPACE - 2  

s t r u c t  node *head = NULL; 

i n t  ppush2( i n t  da t a  
{ 

s t r u c t  node *new; 

i f ( ( n e w = ( s t r u c t  node *)malloc(s izeof  ( s t r u c t  node ) ) )  == NULL ) 
r e t u r n (  OUT-OF-SPACE 1 ;  

new->data = data;  
new ->next = head; 
head = new; 

r e t u r n (  OK 1;  
I 

i n t  ppop2( i n t  *data ) 

{ 
s t r u c t  node *old; 

i f (  head == NULL ) / *  Stack empty * /  
r e t u r n (  EMPTY ) ;  

*data = head->data; 
o ld  = head; 
head = head ->next ; 
f r e e (  o ld  1; 

r e t u r n (  OK 1 ;  
I 

listing 5.10 
Stack functions with dynamic memory allocation. 
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If ggog2 ( ) returns EMPTY, the value contained in data re- 
mains unchanged. 

5.8 SIMULATION EXAMPLE 

As with computer systems, it is not desirable to deploy physical systems 
until they are thoroughly tested. For example, an automobile manufacturer 
would not want to begin construction of a new manufacturing plant 
unless it was certain that the design of the new facility was opera- 
tionally sound. Obviously, it would be much too costly to build the 
new plant only to discover later that it produces fewer cars than 
did the old one. 

As typified by this example, there are many cases in which it is 
too expensive or too impractical to test a physical system directly. However, 
in many cases, we can create a computer simulation that imitates the 
behavior of a physical system. Designers and engineers can then 
use the data generated from the simulation to modify and adjust the 
operational design of physical systems before they are built. This 
reduces the risk and expense of large-scale development. We will now 
make use of the data structures we have been discussing to develop a 
simulation program. 

Problem Overview 

The  system we are going to simulate is one currently under considera- 
tion by the manager of a branch of the First National Databank. The  
Databank now uses multiple queues for each teller (Fig. 5.11a). That 
is, upon arrival, each customer selects one of several lines (one 
per teller) in which to wait. T h e  branch manager believes this method 
is inefficient and is considering adopting a single line operation. Under 
the new system, all arriving customers would enter the same queue 
(Fig. 5.11b). 

The  manager’s concern is that in order to support the new system, 
the branch office will need extensive remodeling. More impor- 
tant, there is a possibility that customers may experience some inter- 
ruption of service while the branch undergoes alterations. Given the costs 
and the risk of losing business, the manager would like some assurance 
that the new system will better serve Databank’s customers before 
committing to the conversion. 
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Figure 5.11 
Bank lines. 

Our job, as members of Databank’s data processing department, 
is to develop a simulation of the new system to determine how it will 
compare with the old. T o  do this, the program we develop must 
simulate customer traffic for a typical business day (based on histor- 
ical data) and generate a summary report containing the number of 
customers served, the number of transactions completed, and the 
average wait time incurred by each customer. The  latter is of primary 
concern and will determine the fate of the new system. T o  aid our simula- 
tion, Databank has accumulated historical data reflecting the perfor- 
mance of the existing system (e.g., number of customers per day, 
types of transactions, average duration of transactions, etc.). 

Implementation 
There are several events our program will need to track 

Bank open 
Customer arrival 
Teller/customer transaction 
Customer departure 
Bank close 

The  program must also generate-based on the historical data-ran- 
dom customer arrivals and transaction types. 

We will need two structures to track these events and accumulate 
statistics for both customers and tellers. The  first will be a simple structure 
array to count the number of transactions performed by each teller 
and to indicate when a teller becomes available to serve the next customer. 
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T h e  second is a linked list that will simulate the customer queue. 
T h e  structure definitions appear in Listing 5.11. 

The  driving routine of the program will be a function called simu- 
late(). It will require three arguments: the closing time (as 
expressed in clock ticks, which, for our example, will be minutes), the 
number of tellers on hand, and the number of expected customers. 

Let’s begin to sketch the algorithm: 

simulate( close, no-tellers, no-customers 1 
clock = 0; 
while(1) { /* Forever * /  

/ *  
* New customer? 
* /  
if( arrive0 ) {  

if ( add-cust-gO ! = OK ) { 

/ *  
* LOST SALE! 
* /  

I 
1 

/* 
* Process tellers 6i customers 
* /  
for( i = 0; i < no-tellers; i++ ) {  

struct tellers { 
int custs ; /*  No. of custs served */ 
int trans; / *  Trans complete time * /  

I ;  

struct cust { 
int time-in; / *  Arrival time * /  
int time-out; / *  Departure time * /  
int time-trans; / *  Duration of trans */ 
struct cust *next; / *  Ptr to next struct */ 

I ;  

listing 5.11 
Data structures for simulation program. 
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/ *  
* Is teller done with transaction? 
* 
if( clock >= teller[il.trans 

tellerril .trans = 0; / *  Available * /  

/ *  
* Next Please? 
* /  

if ( tellerri] .trans==O AND Queue NOT Empty 
del-cust-q0; /* Get cust from Q */ 
tellerri] .custs += 1; 
teller [il .trans=clock+trans-duration; 
accum0; / *  Accumulate tots * /  

1 

if( clock > close ) {  

print execution summary; 
return; 

1 
clock += CLK-INCR; 

1 
1 

We seem to have accounted for all events except bank open and 
close. Clearly, invoking the function is equivalent to opening the 
bank for business. Simulating the bank close event, however, is not 
that simple. Specifically, we cannot just stop processing at closing 
time because, although we will no longer permit customers to enter, 
there may still be some customers awaiting assistance inside the 
bank. Therefore, simulate ( ) must continue to process customers 
until the queue is empty. 

The  code segment commented 'LOST SALE' is also interesting. 
We could place a limit on the size of the customer queue that represents 
the maximum physical capacity of the branch. Processing in this section 
of the program would then represent an unsuccessful attempt by a cus- 
tomer to enter the bank. The  effect of this event varies with the type 
of business. For a bank, this may represent only an irate client 
that, although sent away grumbling, will return later to complete his 
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or her transaction. However, if this simulation were for a fast-food empo- 
rium, such an event would most likely represent a lost sale. 

Let’s add the processing for bank close and see how our algorithm 
is progressing: 

simulate( close, no-tellers, no-customers ) 

open = 1; 
clock = 0; 
while(1) { 

if( clock >= close ) / *  Time to close */ 

/* 
open = 0; 

* New customer? 
* /  
if( open AND arrive0 ) 

/ *  
if( add-cust-qO !=  OK ) {  

* LOST SALE! 
*/ 

1 
/ *  
* Process tellers h customers 
* /  
for( i = 0; i < no-tellers; i + +  ) {  

/ *  
* Is teller done with transaction? 
* /  
if ( clock >= teller [il .trans ) 

/*  
teller[il.trans = 0; / *  Available * /  

* Next Please? 
* /  
if ( tellerCi1 .trans== 0 AND Queue NOT Empty ) { 

del-cust-q0; /* Get cust from Q * /  
teller[il .custs += 1; 
teller[il . trans=clock+ trans-duration; 
accum0; / *  Accumulate tots * /  

1 
1 
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if ( open == 0 AND Queue Ebpty )E 
print execution summary; 
return; 

1 
clock += CLK-INCR; 

1 
1 

The  basic algorithm is taking shape; now let’s take a closer look 
at some of the supporting functions. 

arrive ( This function determines customer arrivals. It will take 
two arguments: the close time and the number of expected customers. 
Using a pseudo-random number generator, it will compute cus- 
tomer arrivals. For our example, we will use a simple percent- 
age calculation. Note, however, that this does not reflect reality 
because customer traffic is typically not proportionally spaced 
throughout the entire business day. 

queue. It notes the time of arrival and calls duration( ) to 
determine the transaction type. 

This function will use a pseudo-random number gen- 
erator to determine transaction type and duration. For our example, 
we will assume four transaction types (numbered 1 through 4) 
with a historical occurrence rate of 30%, SO%, 15%, and 5%, respec- 
tively. The  function returns the duration of the transaction in 
clock ticks. 

This routine accumulates event data for summary and 
display. 

We will not discuss the implementation of each of the aforemen- 

add-cust-g( ) This routine adds an arriving customer to the 

duration ( 

accum( ) 

tioned functions. However, the complete C version of our simula- 
tion appears in Listing 5.12. 

that we can incorporate into a simulation program. Here are some 
ways we can extend this model: 

This simple example is by no means representative of the detail 

Allow the number of tellers to vary, simulating lunch breaks, 

Vary customer arrivals based on day of week, time of day, weather 
personal time, and so on. 

conditions, etc. 
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#define CLK-INCR 1 / *  # Minutes in each loop */ 
#define MAX-TELLERS 10 /* Max # of tellers * /  

#define OK 0 
#define QUEUE-FULL -1 
#define QUEUE-EMPTY -2 

struct tellers { 
int custs; /* No. of custs served * /  
int trans; / *  Trans complete time * /  

1 teller [ MAX-TELLERS 1 ; 

struct cust { 
int time-in; / *  Arrival time * /  
int time-out; / *  Departure time * /  
int time-trans; / *  Duration of trans * /  
struct cust *next- / *  Ptr to next struct */ 

1; 

int open = 1; 
int clock = 0; 

simulate( int close, int :-_-tellers, int no-customers ) 
/ *  close: what time to close? */ 
/* no-tellers: no of tellers for run * /  
/* no-customers: no of customers for run */ 
{ 

int 1; 
struct cust tmp; 

while( 1 ) { 
if ( clock >= close ) / *  Time to close */ 

open = 0; 

if( open==l && arrive(close, no-customers) ) {  
/* 
* New Cust 
* /  

if( add-cust-q(clock) == QUEUE-FULL ) { 
/ *  
* Lost Sale 
* /  

1 

1 continued on p. 122 
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/* continued from p.  121 
* Process tellers & customers 
* /  
for( i = 0; i < no-tellers; i++ ) {  

/* 
* Is teller's current trans done 
* /  
if ( clock > = teller [il .trans ) { 

1 
/* 

teller[i] .trans = 0; 

* Next Please? 
* /  

if(teller[il .trans==O && !queue-emgty()){ 
del-cust-q( &tmp 1; 
teller[i] .custs += 1; 
teller [il . trans=clock+tmg. time-trans; 
accum( clock, tmp.time-in 1 ;  

1 

1 

if(queue-empty() && (ogen==O)){ 
print-totals(); 
return( OK 1; 

1 

clock += CLK-INCR; 
1 

1 

struct cust *head = NULL; 
struct cust *tail = NULL; 

int add-custg( int time-in ) / *  Add new cust to queue */ 
{ 

struct cust *new; 

if( (new = get-custO) == NULL 
return( QUEUE-FULL 1 ;  continued on p. 123 
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new ->next = NULL; 
new -> t ime-in = t ime-in; 
new->time-trans = duration( ; 

continued from p.  122 

if( tail == NULL ) {  /* First element * /  
tail = new; 
head = tail; 

tail ->next = new; 
tail = new; 

1 else { 

1 

return( OK ); 
1 

int del-cust-g( struct cust *dest ) 
{ 

struct cust *tmp; 

tmg = head; 
if( head == tail ) /*  removed last node * /  

else 
head = tail = NULL; 

head = head ->next ; 

dest ->time-in = tmg->time-in; 
dest ->time-trans = tmg ->time-trans; 
free( tmg );  

return( OK ) ;  
1 

int queue-emgtyO 
{ 

if( head == NULL ) 
return( QUEUE-EMPTY );  

return( OK 1;  
1 

struct cust * 
get-cust ( ) 
{ 

return( (struct cust *)malloc(sizeof(struct cust)) );  

1 continued on p. 124 
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int duration ( 1 
{ 

float B; 

continued from p. 123 

if( p <= .30 / *  30% chance-type 1 */ 

else if( p > .30 && p <= .80 ) / *  50% chance-type 2 */ 

else if ( p > .80 && B <= .95 1 /* 15% chance-type 3 * /  

else / *  5% chance-type 4 * /  

return( 6 1; 

return( 9 ); 

return( 11 1 ;  

return( 16 1 ;  
I 

int arrive( int min, int cus 1 

if( (float)cus/(float)min > ((float)rand0/32767.0) ) 
return( 1 ); 

return( 0 ); 

I 

float t 0 t -cus t ; 
float tot-wait ; 

void accum( int now, int arrive ) 

{ 
tot-cust += 1.0; 
tot-wait += ((float)now - (floatlarrive); 

1 

void print-totals0 
{ 

print("%f customer%swaited an average of %.2f mins\n", 
tot-cust, tot-cust > 1 ? "S " : " ", 
tot-wait/tot-cust ); 

I 

listing 5.12 
Databank simulation. 
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Add more transaction types and vary their durations. 
Permit multiple transactions by a customer. 
Make the program more efficient by placing all events in an event 
queue. Currently, many iterations of the for loop in the function 
simulate ( ) may be wasted. That is, there may be many clock 
ticks for which no event occurs. We could, instead, place all events 
(arrivals, departures, open, close, transaction complete, etc.) on a 
queue (sorted by time); then, during each iteration of the for loop, 
the function would simply dequeue the next event and adjust 
(advance) the clock accordingly. 

There are several specialized languages specifically designed to sim- 
plify the development of system simulations. T h e  bibliography lists several 
good texts on the subject. 

5.9 DOUBLY LINKED LISTS 

Thus far, we have been working with singly linked lists: Each node 
contains only one pointer. Although an improvement over the two-array 
implementation, singly linked lists-for some applications-can be 
too restrictive. First, they can be traversed in only one direction. Second, 
inserting or deleting a node requires access to the node’s predecessor. 
(Note that this problem does not arise when using a restricted form of a 
list-such as a stack or a queue-because nodes are referenced by 
external pointers.) 

We can overcome both of these problems through the use of doubly 
linked lists. Each node in a doubly linked list has link fields that 
point to both predecessor and successor elements. Along with simpli- 
fying insertions and deletions, this enables a program to traverse 
a list in either direction. Examples of doubly linked lists appear in 
Figure 5.12. 

T o  simplify implementation, we will use a head node to maintain 
the beginning of the list. Initially, both of its links will point to itself, 
signifying an empty list (see Fig. 5.12a). 

As depicted in Figure 5.13a, a list insertion now requires the 
modification of four links: 

the nexf pointer of the predecessor 
the p m  pointer of the successor 
both the next and p m  pointers of the new node. 
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Figure 5.12 
Doubly linked lists. 
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In a list deletion (Fig. 5.13b), predecessor and successor nodes 
are made to point to each other. 

Functions that demonstrate insertions and deletions in a doubly 
linked list appear in Listing 5.13. The  decision to insert a new 
element to the right of a given node was arbitrary; we could easily 
modify dbl-insert ( ) so that it inserts nodes on the left. In 
addition, the deletion function, dbl-delete ( 1, no longer requires 
the address of a predecessor node (this can be determined from 
gtr ->grev); its one argument is a pointer to the node it will delete. 

Note that there are incremental costs associated with the increased 
flexibility provided by doubly linked lists. First, there is the addi- 
tional space required by the second link pointer. Second, each list 
operation requires additional CPU time to complete. This is attrib- 
utable to the time required to manipulate the additional pointers. 
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struct dblpode  C 
i n t  data; 
s t ruc t  db lpode  *next; 
s t r u c t  dbl-node *prev; 

I ;  

/ *  
* Inser t  'new' t o  the r igh t  of 'p t r '  
* /  

void dbl_inser t (  struct dbl-node *ptr,  struct dblpode  *new ) 

c 
struct dblpode  *nxt; 

nxt = p t r  ->next; 
new ->next = nxt ; 
new->prev = Ptr ;  
p t r  ->next = new; 
nxt->prev = new; 

I 

/ *  
* D e l e t e  'gtr' 
* /  

void dbl-delete( struct dbl-node *ptr  ) 

{ 
struct dbl-node *prev, *succ; 

prev = ptr-->prev; 
succ = ptr-->next; 
prev->next = p t r  -->next; 
succ ->prev = g t r  -->prev; 

I 

Listing 5.13 
Doubly linked list functions. 



128 5 Dynamic Data Structures 

Head node 

Successor 

Predecessor 

New node 

insertion 
(a )  

Head node 

Successor 

Predecessor 

Deletion 
(bl 

Deleted node 

Figure 5.13 
Doubly linked lists: 
insertion and deletion. 

5.10 GENERALIZED LISTS 

The  lists in all the previous examples were composed of only atomic 
elements. The  only attribute associated with a given node, E,, 
was its location in the list: < E, < En+,. We will now extend 
our definition of a list to include non-atomic elements. That is, individual 
list elements may now be other lists. These are referred to asgeneralized 
lists. For example, the third element of the list 

L = (A,  B, (C, 0, E )  

is the list (C, D).  
More formally, we can define a generalized list as 
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A = O  The NULL (empty} list; it has a length of 0. 
B x (a, b, c) A linear list of length three. 
C = (e, (f, g}, h) A list of length three. Elements 1 and 3 
D = ti, 8, C) A list of length three containing previou 

(More on this later.) 
F = (j, k, 0.1) A list of length four that has the NUU list as its third element 
G = (m, 6) A recursive list of length two that generates the list (m, im, (m, ... 

second element is a sub 
.This is an example of 

Figure 5.14 
Examples of 
generalized lists. 

a finite sequence of elements €,, E2, . . . , E,, for n 2 0, that are either atoms 
or lists. If a given element is not an atom, it is a list and is referred to as a sublist. 

The  list is written as before: L = El, . . . , E,,, with sublists 
contained within enclosing parentheses. (By convention, we will use up- 
percase letters to denote lists and sublists and use lowercase letters 
to represent atomic elements.) T h e  length of the list is n regardless 
of the number of elements contained in any sublists. As you may have 
noted, the previous definition is recursive and, as such, allows for lists 
that contain sublists, which contain sublists, etc. This permits the 
construction of lists of arbitrary size and complexity. Figure 5.14 provides 
some examples. 

Implementation 

The  node structure we have used throughout this chapter requires 
two modifications to support generalized lists. First, because elements are 
now expected to perform double duty, we need a type field to classify 
a node as either an atom or a sublist. Thus, we will establish the 
convention that a value of 1 in the type field indicates an atom, 0 
denotes a sublist. Second, if the node is non-atomic, we will need a second 
pointer, list, to point to the sublist. The  new definitions are as 
follows: 
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Figure 5.15 
Generalized list: 
(A. (B, C), 0, €1. 

#define TRUE 1 
#define FALSE 0 

#define T-LIST 0 
#define T-ATOM 1 

struct list { 

short type; 
char data; 
struct list *next; 
struct l ist  * l i s t ;  

€; 

Figure 5.15 depicts the implementation of the list 

L = (A, (B,  0, D, E )  

using the new structure definition. 
Note that the length of list L is 4 and that each element is linked 

via its next field. The second element of L is a sublist-as indicated by 
the value zero in the type field-and its l ist  field points to the 
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Figure 5.16 
Internal list 
representation. 

sublist (B, C )  . Additional examples of generalized lists appear in Figure 
5.16, which depicts the internal representation for all the lists contained 
in Figure 5.14. 

At this point, we should make a few comments regarding the 
definition and use of the list structure. T h e  data field of a sublist node 
remains unused, and this may seem wasteful. This will change, how- 
ever, when we discuss reference counts later in this chapter. Also, 
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having an explicit type field might be viewed as redundant: If a given 
node’s list pointer is non-null, we could assume that the node is non- 
atomic (i.e., a sublist). Nevertheless, we decided to sacrifice space for 
the sake of pedagogical clarity. 

Generalized list Functions 

There are a number of utility functions that are useful when working 
with generalized lists. The  first, gencogy ( 1, creates a copy of a general- 
ized list. For example, assuming the list oldlist, the statement 

newlist = gencogy( oldlist 1; 

will create an exact copy of oldlist and assign the address of the 
newly created list to newlist. 

Although the address fields will necessarily be unique, the list 
created by gencogy( ) will posses the same structure and contain the 
same data values as that of the original list. As presented in Listing 
5.14, the function accomplishes this by 

Creating a duplicate node for each node in the original list 
Inserting each new node into the new list 
Processing the next element of the old list (via a recursive call 

If the node is of type T-LIST, calling itself recursively to process 
using the next pointer) 

the sublist. 

As you may have noted, gencogy ( ) cannot copy recursive lists (such 
as example G in Figure 5.14). It will repeatedly process the re- 
cursive portion until it is terminated by the operating system. Because 
gencogy( ) processes each node exactly once, its complexity is O(n). 

Another useful utility function, list-egual( ), compares two 
lists for equality. It assumes that its two arguments point to non- 
recursive lists. As in the case of gencogy ( ) , the term equaL will be 
interpreted as functionally equal, meaning that both lists have the same 
overall structure and identical data elements. list-equal ( ) tra- 
verses lists in much the same manner as gencogy ( ) , comparing 
elements as it proceeds. Its complexity is therefore equivalent to that 
of gencogy( ) . Listing 5.15 contains the code. 

Two other useful functions are first ( ) and rest ( 1, which return 
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the first and all but the first elements of a generalized list. For 
example, given the list L = ( (A, B) , C, D ) ,  the call 

first( L ); 

would return the list 

((A, B)); 

and the call 

rest( L 1 ;  

would return the list 

( C ,  D) 

These functions-which are equivalent to the LISP functions 

struct l ist  * 
gencopy( struct list *gtr ) 

I 
struct list *new; 

i f (  ptr == NULL ) 
return( NULL ); 

i f (  (new = getnode()) == NULL ) 
return( NULL 1; 

new->data = ptr->data; 
new->type = ptr->type; 
i f (  new->type == T-LIST ) 

new ->next = gencopy ( gtr ->next ) ; 
new->list = gencopy ( ptr ->list ; 

return( new 1;  

listing 5.14 
Copying a generalized list. 
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if( 11 == NULL && 12 == NULL ) 
return( TRUE 1; 

return( FALSE 1; 

I if( 11 == NULL I 1 12 == NULL ) 

if( Il->type == 12->type ) {  
tmp = FALSE; 
if( 11->type == T-ATOM ) {  

if ( 11->data == 12->data 
tmg = TRUE; 

1 else 
tmg = list-equal( 11->list, l2-Blist 1; 

if( tmg == TRUE ) 
return ( list-equal (11 ->next, 12 ->next) ) ; 

I 

I return( FALSE 1; I I 

listing 5.15 
Determining list equality. 

car ( ) and cdr ( )-can be used to step through all elements of a list, 
as in 

r = worklist; 
while( (f = first(r)) != NULL ) {  

/ *  Process 'f' * /  

r = rest( r ); 

I 
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Note that the functions, as presented in Listing 5.16, are non- 
destructive to their original lists. That is, the functions make a copy (using 
gencogy( 1 )  of the portion of the list they will return. For some 
applications, it might be desirable for the functions to operate directly on 
the original lists. 

Shared Lists and Reference Counts 

In the previous sections, we saw several examples of shared sublists 
(refer to Fig. 5.13). This is a case in which two or more list members point 
to the same sublist. For many applications, this could result in a 
significant savings in memory. 

Implementing this feature presents us with two problems, how- 
ever. First, if two or more list elements are pointing to the same sublist, 
insertions become difficult. For example, consider Figure 5.17. If we 
wanted to insert an element before node n, of list S, we would be forced 
to modify the pointers El  and Ez. Unless the program maintains back- 
ward references, the task of keeping all pointers current is tantamount 
to impossible. 

T h e  second problem arises during a list deletion. Without addi- 
tional reference information, it is impossible for us to determine whether 
we can place a deleted node back on the available list. Specifically, 
there might be other elements still pointing a t  it. 

We can solve the first problem by establishing a convention that 
all lists must use head nodes, and that all referencing elements must point 
at them, not at any individual nodes of a sublist. Thus, insertions and 
deletions within a given sublist will not affect any referencing elements. 
The  additional memory requirement to implement this feature is mini- 
mal: one additional node per list. 

We can solve the second problem through the use of reference 
counts. Specifically, each time a new list element points to a sublist, we 
increment the sublist’s reference count. Conversely, we decrement 

.... 
Figure 5.17 
Multiple references. 
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s t ruc t  l ist  * 
first( s t ruc t  l i s t  *lp 1 
{ 

s t ruc t  l ist  *new; 

new = getnode(); 
new->next = NULL; 
new->data = lp->data; 
new->type = lp->type; 
i f (  new->type == T-LIST 1 

new->list = gencopy( lg -> l i s t  1 ; 

re turn(  new->list 1 ; 
if ( new->type == T-LIST && Ip->neXt == NULL 1 

re turn(  new 1; 
1 

s t ruc t l ist  * 
rest(  s t r u c t  list *lp 1 
{ 

s t ruc t l ist  *new; 

l p  = lp->next; /* point t o  rest of list */  
new = getnode(); 
new->data = lp->data; 
new->type = lp->type; 
new->list = gencopy( lp->l i s t  1; 
new->next = gencopy( lp->next 1 ; 

re turn(  new 1 ;  
1 

listing 5.16 
Functions first ( ) and rest ( ) .  



void gen-delete(struct list *ptr ) 

{ 
struct list *tmp; 

if( ptr->type !=  T-LIST ) / *  Must be a list ptr * /  
return; 

ptr->data -= 1; /* Decrement count * /  

if( ptr->data == 0 ) {  / *  Delete entire list * /  
for ( tmp = ptr ->next ; tmp ! = NULL; tmp = tmp ->next ) 
{ 

/* 
* Step through each node 
* /  
if( tmp->type = =  T-LIST ) 

gen-delete( tmp 1;  
/* Delete a sublist * /  

else 
/ *  Return node to free list */ 
gen-free( tmp ); 

1 
gen-free ( ptr 1 ; 

1 
1 

listing 5.17 
Generalized list deletion function. 

the count each time we remove a reference. Thus, during a dele- 
tion, if the reference count for some sublist becomes zero, we can 
place all of its nodes back on the available list. Note that this is a recursive 
process in that a deleted list might point to other lists. Also observe 
that there is no way to determine when a self-referencing list (example 
G, Fig. 5.14) may be deleted; it will always have a reference count of 
at least 1. 

Listing 5.17 presents the recursive function gen-delete ( 1, 
which deletes multiply referenced lists. It assumes the function 
gen-f ree ( ) , which places a deleted node back on the available list. 
T h e  function begins by ensuring that its one argument is of type 
T-LIST. If it is, gen-delete ( ) decrements the reference count. If 

137 
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the count falls to zero, the entire list is subject to deletion. T o  
accomplish this, gen-free scans every element of the list. It places 
each node of type T-ATOM back on the free list, and calls itself 
recursively for each node node of type T-LIST. 

I ’  Dynamic data structures simplify some of the problems associated 
with static storage allocation: difficult insertions and deletions in 
lists, and the inability to respond to unanticipated demand. 

We can use pointers to reference data objects efficiently. Pointers have 
all the attributes that we normally associate with any variable; the sole 
exception is that the values pointers contain are addresses. Pointers 
also help us overcome the call-by-value restrictions associated with C 
function calls. 

Using pointers, we can simplify insertions and deletions in lists. We 
accomplish this by adding link fields into our data structures 
(nodes). The  cost for this added capability is the additional storage 
and processing required for the link fields. 

This technique has another benefit: We can allocate storage for nodes 
dynamically. That is, we can create new storage on the fly. In C, 
the routines that manage dynamic memory management are mal- 
loco and free(). 

1. Implement a stack using pointers. 

2. Implement a queue using pointers. 

3. Implement a circular queue using pointers. Is this practical? Ex- 
plain your answer. 

4. Write a program that sorts a random list of names contained in a 
file. (Hknt: Use a linked list with a character array as your 
data field.) 

5. Discuss the positive and negative aspects of both static and dy- 
namic data structures. 

6. Extend the functions insert2 ( ) and delete2 ( ) to allow them 
to process list nodes of different types. 

SUMMARY 

E X E R C I S E S  
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7. Explain why holes in lists (array implementation) are problematic. 
Design a method to overcome the problem. 

8. Rewrite the calculator program of Chapter 2 using linked lists. 

9. What would be the result of moving the call to printpode ( ) 
after the recursive call in the function recv-trav ( ) of Listing 5.5? 

10. Suggest other ways in which the functions insert2 ( 1  and de- 
lete2 ( ) (Listing 5.3) can determine that operations are to 
be performed on the first element of the list. Implement your 
suggestions. 

11. Implement the simulation program of Section 5.8. Add as many 
of the suggested extensions as you can. 

12. As you may recall from Chapter 3, a deque, or double-ended queue, 
is a linear list that permits insertions and deletions at either 
end. Write a set of routines to implement a deque using a linked 
list and dynamic memory allocation. 

13. Given the following code: 

struct node 
int data; 
struct node *next; 

1; 

void zaptest ( )  

struct node *head, al, a2, a3, a4; 

head = &al; 
al.data = 1; 
a2.data = 2; 
a3.data = 3; 
a4.data = 4; 
(void) zap ( &head, head ) ; 

1 
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determine the result after the function call: 

(void) zap ( &head, head ) ; 

where zap ( ) is defined as 

struct node *zap( struct node **head, 

I 
struct node *ptr ) 

struct node *tmp; 

if ( ptr- >next == NULL 1 

else C 
*head = ptr; 

tmp = zap( head, ptr->next ); 

tmp->next = ptr; 
ptr ->next = NULL; 

1 

return( ptr 1;  



6.1 BASIC PRINCIPLES 

In this chapter, we focus our attention on an important data structure 
found in computer science: the tree. Conceptually, a tree is an object that 
begins with a trunk (or root) and extends into several branches (edges), 
each of which may extend into other branches until finally termi- 
nating at a leaf. 

Trees are common structures, and examples can be found in every- 
day life. Most people, for example, refer to their lineage as their 
family tree. As another example, Figure 6.1 shows an organization 
chart for a typical corporation. Note that for convenience, we draw 
the root of the tree at the top of the diagram and the leaves at the 
bottom. 

In computer science, we define a tree as a set of nodes and edges. 
A node is an item of information that resides in the tree. An edge 
is an ordered pair of nodes (u, o), and sequence of edges is called apath. 

In addition, trees have the following properties: 

There is one node designated as the root of the tree. 

141 
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Root 

Figure 6.1 
Organization chart. 

Level 

1 

2 

3 

4 

Leaf nodes-/- 

* All nodes-except for the root-have only one entering edge (the 

There exists a unique path from the root node to all other nodes 

If there exists a path (a, b), then b is called a childof a and is the 

root node has none). 

in the tree. 

root node of a subtree. 

Refer to Figure 6.1 where the element labeled President is the 
root node of the tree. The  entries labeled Vice President are root 
nodes of subtrees, and the boxes labeled Programmer are examples 
of leaf nodes. Note that because each node has only one entering edge, 
cross references within the tree cannot occur. 

We can cite many examples in which data found in the real world 
is tree structured. Because they can serve as a basis for modeling 
many types of problems, trees have become an important topic for 
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Figure 6.2 
Example tree. 

study in computer science. As we shall see, we can use trees to search, 
sort, and prioritize data. 

Definitions 

Before we can continue with our discussion of trees, we must define 
a number of basic terms. (All examples refer to Fig. 6.2.) 

T h e  term node-used in previous chapters-will continue to de- 
note an item of information. Terminal nodes are the leaf nodes of 
a tree (J, K ,  L, M ,  N). We refer to all other (internal) nodes (A, B, C, 
D, E )  as non-terminal. 

For a given node (e.g., B) ,  the root nodes of its subtrees (D, E )  
are its children. Extending the analogy, B is considered the parent, 
and the children-with respect to each other-are siblings. Generally 
speaking, a node may have an infinite number of children; in practice, 
however, we usually limit their number (more on this later). 

We define the degrze of a node as the number of subtrees (children) 
it has. For example, node A has a degree of 2, node C a degree of 
4, and node J a degree of 0. All nodes with a degree of 0 are terminal; 
nodes with a degree greater than zero are non-terminal. 

T h e  tier on which a node resides is its level. By definition, the 
root node (A) is on level 1. Its children, nodes B and C, are on 
level 2, nodes D through Z are on level 3, and so on. 

T h e  height of a tree is defined as the number of edges in a path 
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originating at the root and terminating at the most distant leaf node; the 
height of a tree with only one node (the root) is 0. By extension, the 
height of any node in a tree is the length of the longest path from 
that node to a leaf node. The  depth of a node is the number of edges 
on the path from the root to that node. 

A forest is a set of zero or more disjoint trees. For example, if we 
were to remove the root node from a tree, the result would be a forest. 

We can view a tree as a special form of a list. For example, refer 
to the tree depicted in Figure 6.2. We could use list notation to represent 
the tree as follows: 

(A, (B, C, (D, (J, K) ,  E ,  (L, M,  N ) ) ,  C, (F,  G, H, 0)) 
We represent each subtree as a sublist. We begin with the list (A) that 
represents the root node of the tree. When we add a sublist for A's two 
children, the list becomes (A (B,  6')). We then add another sublist for 
nodes D and E to yield the list (A (B,  (D, E) ,  k)). Adding the 
children of D, we get (A, (B, D, (J, K) ,  E) ,  C)). We continue in this 
manner until we have added all tree nodes into the list. This type 
of representation is flexible in that it allows us to maintain varying 
numbers of children for each parent. However, it does have one 
drawback: Children are not directly accessible from their parents. That 
is, we must perform a linear search through a sublist. For most computer 
applications, the additional search time is undesirable. However, if we 
restrict the number of children nodes may have, we can implement trees 
more efficiently. The  next section introduces the first of these types 
of trees, called the binary tree. 

6.2 BINARY TREES 

Binary trees are a restricted form of a tree. Each node-including the 
root-may have a maximum of two children. Figure 6.3 provides 
an example. 

Formally, we define a binary tree as 

a finite-possibly empty-set of nodes, one of which is designated as the root 
The root node may have at most two subtrees, each of which is also a binary tree. The 
two subtrees of a given node are ordered and we refer to them as the left child 
and the right child, respectively. 
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Figure 6.3 
Binary tree. 

Based on the preceding definition, nodes in a binary tree may 
have zero, one, or two children. For nodes with only one subtree, the 
definition does not specify which of the two subtrees (i.e., left or right) 
must be used. As a result, the list depicted in Figure 6.4a is, in fact, a 
binary tree; we refer to it as a skmea! tree. Binary trees may be skewed 
either left or right, making them unique. For example, the two 
trees presented in Figure 6.4b are not equal. 

f 
Figure 6.4 Left skewed tree 
Skewed binary trees. ( a1 

Two skewed trees 
(bl 
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_ _ ~  

Figure 6.5 
Full binary tree. 

Binary Tree Definitions 

Restricting the number of children in a binary tree permits us to define 
several formulas. The  maximum number of nodes on a given level i is 
Z i - ' ,  for i 2 1. (The root node, as you may recall, is on level 1.) T h e  
maximum number of nodes for an entire binary tree of depth k is 
Z R  - 1, for R 2 1. We can compute the depth of a binary tree with n 
nodes as 

Llog, nl + 1 

A full binary tree (of depth R )  is a binary tree with Z R -  1 nodes. 
As suggested earlier, this is the maximum number of nodes a binary tree 
may contain. Figure 6.5 presents an example of a full binary tree. 

Although we did not mention it at the time, the tree presented 
in Figure 6.3 is also a special form of a binary tree. We can sequentially 
number the nodes of this tree from left to right, level 1 to n, to produce 
the tree depicted in Figure 6.6. The  result is called a complete binary tree. 
A binary tree with n nodes and R levels is complete if, and only if, its 
nodes correspond to all the nodes numbered in the same manner 
for a full binary tree of equal depth. However, as illustrated in this 
example, a complete tree is not necessarily a full tree; the last 
level may remain incomplete. 

Binary Tree Implementation 

Keeping in mind the preceding definition of a complete tree, the most 
direct approach to implementing a binary tree is using an array. 
Each numbered node would correspond to an array index. Figure 6.7 
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Figure 6.6 
Complete binary tree. 

Figure 6.7 

depicts such an implementation for the tree contained in Figure 
6.5. 

An array implementation allows us to move through the tree using 
simple calculations. For a given node i, its left child is located in slot 2i, 
for 2i 5 n; its right child is located in slot 2i + 1, for 2i 5 n. A 
computation that yields a value > n  means that i has no child in that 
position. T h e  parent of i can be found at Li + 21, for i > 1. (Obviously, 
when i = 1, we are positioned at the root node and there is no parent.) 

For a full or complete binary tree, this implementation might 
seem ideal because little, if any, space is wasted. However, consider 
the tree presented in Figure 6.8a, and its corresponding array represen- 
tation in Figure 6.8b. Notice that with a skewed or sparse tree, a 
large percentage of the array remains unused. Moreover, this imple- 
mentation suffers from the same deficiencies as a sequential list representa- 
tion: We might need to move a large number of nodes in order to 
insert or delete elements within the body of the tree. 

In a similar manner to lists, these limitations can be overcome 
using a linked representation. We can represent each node of a 
binary tree using a C structure as follows: 
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Figure 6.8 
Array representation 
of a skewed binary 
tree. 

Skewed tree 
(a)  

Array implementation 
(b)  

struct btpode { 

int data; 
struct btpode *lchild; 
struct btpode *rchild; 

I ;  

struct bt-node *root = NULL; 

A simple integer variable (data) will serve as our data field. The  
members, lchild and rchild, point to the two subtrees. (We will 
assume that the value NULL indicates the absence of a subtree.) The  
variable, root, points at the root node of the tree. Initially, its 
value is set to NULL to signify an empty tree. We will use these 
definitions throughout the following discussions. 

Binary Tree Traversal 

The  versatility of the binary tree may be best demonstrated by way 
of an example. Suppose that after having constructed a tree similar to the 
one in Figure 6.6, we wish to process (e.g., print) the data values stored 
within it. That is, we wish to move through the tree, visiting each 
node exactly once. We classify this type of algorithm as a lravenal. 

As it stands, however, this notion is too general and must be 
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further defined. Consider that when positioned at any given node, 
a traversal function may 

Continue down the left subtree, or 
Continue down the right subtree, or 
Process (i.e., visit) the datum. 

To  simplify matters, we will adopt the convention that we always 
traverse che left subtree before the right subtree. However, that 
still leaves open the question of when we should process the data 
item. Our choices are as follows: 

Visit the node before moving down the left subtree. 
Visit the node after traversing the left subtree but before traversing 

Visit the node after traversing both subtrees. 
the right subtree. 

All three of these traversal methods are equally important, and 
we refer to them by the names pmora'er, inorder, and postorder, respectively. 

lnorder Traversal 

Let's begin by describing inorder traversal (sometimes referred to as 
symmetric order). Informally, an inorder traversal requires that we 

1. Move down the tree as far left as possible. 
2. Visit the current node. 
3. Back up one node in the tree and visit it. 
4. Move down the right subtree of the node visited in step 3 if it 

has one and it has not been visited previously; otherwise, back up 
one node. 

5. Repeat steps 1 through 4 until all nodes have been processed. 

This is illustrated by the procedure inorder ( 1 presented in 
Listing 6.1. 

T h e  function works as follows: It recursively moves down the left 
subtree until it finds itself positioned on a leaf node; it prints the 
value of that node and then attempts to move down the right subtree; 
it then returns to the previous level and repeats the process. If called to 
process the tree depicted in Figure 6.6, inorder ( 1 would generate 
the following output: 
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listing 6.1 
lnorder traversal. 

listing 6.2 
Preorder traversal. 

void inorder( struct  bt-node *node ) 

c 
i f (  node !=  NULL ) {  

inorder ( node->lchild ) ; 

print-node( node->data );  /*  The V i s i t  * /  
inorder ( node ->rchild ) ; 

1 
1 

Take the time to convince yourself that the output is, indeed, correct. 

Preorder Traversal 

In a preorder traversal, we visit the data item before traversing the 
left subtree. The  function greorder ( 1 ,  presented in Listing 6.2, pro- 
vides an example. Note that the function calls g r i n t g o d e  ( ) before 
it invokes either of its recursive calls. Again, assuming the tree in Figure 
6.6 as input, the output produced by preorder ( ) is 

1, 2, 4,  8, 9, 5, 10, 3,  6, 7 

void preorder( struct  bt-node *node ) 

c 
i f (  node !=  NULL ) {  

g r i n t g o d e (  node->data ) ;  / *  The V i s i t  
preorder ( node ->lchi ld  ) ; 

greorder ( node ->rchild ) ; 

1 
1 
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void gostorder( struct btpode *node ) 

{ 
if( node !=  NULL ) {  

gostorder( node->lchild ) ; 

gostorder ( node->rchild ) ; 

listing 6.3 
Postorder traversal. 

Postorder Traversal 

A postorder traversal positions the visit after the two recursive calls. 
T h e  code for the function, gostorder ( ) , appears in Listing 6.3. 
A postorder traversal of the tree in Figure 6.6 produces the follow- 
ing output: 

8, 9 ,  4, 10, 5,  2, 6 ,  7 ,  3,  1 

Breadth First Traversals 

T h e  three traversal methods we just discussed are similar in that they 
process all of a node’s descendents before processing any of its 
siblings. As a result, they are classified as depth fint searches. Another 
class of tree traversal is a breadthfirst search. In a breadth first search, we 
processes nodes by levels, left to right within a level. For example, 
consider the function bt-bf s ( ) as it appears in Listing 6.4. It uses a 
queue to ensure that nodes are processed in the correct order. 

bt-bf s ( ) begins by placing the root node on the queue. During 
each iteration of its while loop, the function removes the next 
node from the queue, processes it, and then enqueues the node’s 
children (if any). Processing terminates when the queue becomes 
empty. T h e  function assumes the routines addq ( 1 and delg ( ) to 
manage the queue (please refer back to Chapter 5). 

When processing the tree depicted in Figure 6.6, bt-bf s ( ) pro- 
duces the following output: 
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listing 6.4 
Breadth first traversal. 

void bt-bfe( etruct bt-node *tree ) 

{ 
etruct bt-node *t; 

addq( tree 1;  
while( (t = delq0) I =  NULL ) 

I 
print-node ( t ->data 1 ; / *  The vieit * /  
if( t->lchild I =  NULL ) 

addq( t ->lchild 1 ; 
if ( t->rchild I = NULL ) 

addq( t ->rchild 1 ; 
1 

1 

1, 2, 3 ,  4,  5 ,  6 ,  7, 8, 9 ,  10 

Binary Tree Insertion 

Most programs that employ binary trees usually proceed in two phases: 
Phase one constructs the tree; phase two traverses it. We have 
already described several traversal methods. Now we need to discuss 
the construction of binary trees. Specifically, we need to develop 
an insmion algorithm. 

Generally speaking, there are two places where binary tree inser- 
tions may occur: at terminal (leaf) or non-terminal nodes. T o  add a non- 
terminal node, the insertion function requires three pieces of informa- 
tion: a pointer to the new node, a pointer to the node that will 
become the parent of the new node, and a flag variable indicating 
whether the new node should be inserted as the left or right child of its 
parent. Figure 6.9 provides an example. 

Tree insertions more commonly occur at leaf nodes. For example, 
consider the problem of reading a list of numbers and printing 
them out in ascending order. There are many ways to construct a 
solution for this problem. One of the simplest uses a special form 
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Insert(N, B, left) AY 
Before 

( a1 
After 
(bl 

Figure 6.9 
Binary tree insertion. 

of binary tree called an oniewra’binaly me (OBT). T h e  driving section 
of the program can be described by the following pseudo-code: 

set-up-chores(); 
while( more input 1 
do 

done 
print-ascending()) 

As its name implies, an ordered binary tree places restrictions on 
insertions. Specifically, an OBT has the property that, far any given node 
n, the data values contained in the left subtree of n are less than n, 
and the data values contained in the right subtree of n are greater 
than n. 

Thus, all OBT insertions must begin with a traversal. With the 
arrival of each new data element, the insertion routine compares the new 

bt-insert ( new-item ; /* Insert new node * /  
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5,3,7,2,4,6,9,1,8,10 

Input 
(a )  

Resultant tree Figure 6.10 
Ordered binary tree 
insertion. 

data value with that of existing nodes. It continues to move down 
either the left or right subtree of each successive node predicated 
on the results of each comparison. When it finally encounters a node 
that is either a leaf or a non-terminal node that has no subtree in 
the indicated direction, the function inserts the new element as a child 
of that node. Figure 6.10 contains an example of this processing. 
It shows a sample input stream and its resultant OBT. 

The  function bt-insert ( ), presented in Listing 6.5, performs 
binary tree insertions as just described. The  initial if statement 
checks for an empty tree and inserts the first node. Otherwise, the 
function iteratively steps through the tree, moving either left or right based 
on the results of each comparison. When it encounters a leaf node, 
bt-insert ( ) allocates and inserts a new node. The  last if statement 
determines which of the parent’s pointers is assigned the new 
node. The  ancillary function, get-new-bt ( ) , allocates memory for 
each new element. 

The  question that now arises is, How should we process duplicate 
data values? As you may have noticed, bt-insert ( ) currently handles 
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struct bt-node *root = NULL; 

void bt-insert( int new ) 
{ 

struct bt-node *p, *g; 

if( root == NULL /* NULL Tree * /  
root = get-new-bt ( 1 ; 
root->data = new; 
return; 

1 

p = root; 
while( p != NULL ) { 

U = B; 
if( new < p->data 1 

p = p->lchild; 
else 

p = p->rchild; 
1 

/ *  Location for insertion * /  

/ *  
* *g* points to parent of new node 
* /  

p = get-new-bt0; 
p->data = new; 
if( new < g->data ) 

g->lchild = p; 
else 

g->rchild = p; 
1 

struct bt-node *get-new-bt() 
c 

struct bt-node *newnode; 

newnode=(struct bt-node *)malloc(sizeof(struct bt-node)); 
newnode->lchild = NULL; 
newnode ->rchild = NULL; 

return( newnode ); 
1 

listing 6.5 
Binary tree insertion. 
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the problem by default. That is, the function uses a less-than test to 
initiate a move down the left subtree; consequently, it inserts 
duplicate nodes along the right subtree. 

For applications that anticipate only a small number of duplicate 
values, this is an acceptable solution. However, this implementa- 
tion is wasteful for applications that expect many duplicate records. 
A better solution is to add a count field to the node structure. Upon 
recognizing a duplicate value, the insertion routine can then just incre- 
ment the counter rather than adding a node to the tree. 

Adding a count field to the node structure implies two coding 
modifications. First, the insertion algorithm must include an ex- 
plicit test for equality. Second (and this can only be stated in general 
terms), traversal routines must take this additional field into ac- 
count when processing the completed tree. For example, assume that 
after constructing a tree, a program must print all nodes in ascending 
order. If aN elements must appear in the output, the display function 
must emit the proper number of duplicate elements based on the 
values contained in the count fields. 

Concluding Remarks 

If you consider the structure of an ordered binary tree you will observe 
that, in general, we can locate a particular value (node) more 
quickly than we can with a linked (linear) list. This is because with 
each comparison, we eliminate the need to search half of the remaining 
subtree. We lose this advantage if the tree should become skewed. 

You should also note that the OTB insertion function is input 
sensitive. That is, the order in which input is presented to the 
routine will affect the resultant tree's shape. Specifically, a sorted input 
stream will create a tree that resembles a linear list. Obviously, 
this will directly affect the performance of searching algorithms. Chap- 
ters 8 and 9 will elaborate on this discussion. 

Binary Tree Deletion 

Most applications using binary trees do not require a deletion function. 
It is more often the case that trees continue to grow rather than shrink. 
(The 'typical scenario is that programs construct trees and then process 
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Figure 6.11 
Binary tree deletion. 

Before 
(a )  

After 
( b) 

the data contained within them.) Nevertheless, there are some applications 
that require a deletion capability. 

Broadly speaking, we can divide node deletion in a binary tree 
into two types: the removal of terminal nodes and the removal of non- 
terminal nodes. Deleting a leaf node is simple and is analogous to a 
list deletion: Assign the value NULL to the appropriate pointer in the 
parent node and return the deleted node to the available list. 

However, as depicted in Figure 6.11a, deleting a non-terminal 
node is more problematic. If we remove node S from the tree, we 
will need to reattach two nodes (T  and U). However, there is only 
one pointer available (the right child of R). Therefore, one of node 8 ’ s  
children must become the parent of the other (see Fig. 6.11b). Even 
if the left child of R was available, we could not just mechanically 
assign to it one o f t t e  unattached nodes. As with the case of an ordered 
tree, there might be an explicit relationship between a parent and 
its subtrees. For example, consider that if all right subtrees are to hold 
data values greater than that of their parents, inserting either Tor 
U as the left child of R would invalidate that relationship. 
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SAVE 

Figure 6.12 
Deletion example. 

Using Figure 6.12 as a model, we can divide binary tree deletion 
into several distinct cases, as follows. Figure 6.13 depicts the results of 
each example. 

1. If D is a leaf node, then P->rchild = NULL. 
2. If the left child of D is NULL, then P->rchild = R. 
3. If the right child of D is NULL, then P->rchild = L. 
4. If the right child of node L is NULL (node LR in the example), 

then L can become the right child of P, and R can become 
the right child of L. It is important to note that this processing 
maintains the ordered property of the tree. 

5. If the left child of node R is NULL (node RL in the example), 
then R can become the right child of P, and L can become the left 
child of R. As in case 4, this maintains the ordered relationship. 

6. If none of the previous cases exist, set the right child of P to 
either L or R,  and then reinsert the other subtree. 

7. The  root node of the tree is to be deleted. Perform the same 
processing as in case 6 but modify the root pointer 
accordingly. 

T h e  code for the function bt-delete ( ) appears in Listing 6.6. 
The function deletes nodes, case by case, as just described. It requires 
three arguments: pointers to both the node that will be deleted and 
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(Null) 
Case 1 

... A 
Case 2 

Case 3 

Case 4 

Re-insert 

. .  . .  
Case 5 Cases 6 and 7 

Figure 6.13 
Deletion results. 
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#define OK 0 
#define ERROR -1 
#define LCHILD 1 
#define RCHILD 2 

int bt-delete( struct btpode *pred, 
struct bt-node *node, int stat ) 

struct bt-node *child; 

if( node == NULL 1 
return( ERROR 1 ; 

if( pred == NULL I {  
root = node ->rchild; 
child = node->lchil& 
bt-freenode( node 1;  
return( bt_insert2(child) ); 

1 

/ *  7 */  

if( node->lchild == NULL && node->rchild == NULL ) / *  1 * /  

else if( node->lchild == NULL ) / *  2 */  

else if ( node->rchild == NULL 1 / *  3 */  

else if( node->lchild-%?child == NULL ) I  / *  4 * /  

child = NULL; 

child = node->rchild# 

child = node ->lchild; 

child = node->lchildr 
node ->lchild->rchild = node ->rchild; 

child = node ->rchild; 
node ->rchild ->lchild = node ->lchild; 

child = node ->rchild; 
if( stat == LCHILD ) 

else 

bt-freenode( node );  
return( bt_ineert2(node->lchild) 1;  

} else if( node->rchild->lchild = =  NULL I {  / *  5 */  

1 else I / *  6 */  

pred->lchild = node ->rchild; 

pred->rchild = node ->rchild; 

1 continued on p .  161 
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/* continued from p.  I60 

* Adjust predecessor's pointers 
* /  

if( stat == LCHILD ) 

else 

bt-freenode( node ); 

pred->lchild = child] 

pred->rchild = child; 

return( OK ); 
1 

listing 6.6 
Binary tree deletion. 

its parent, and a status flag indicating whether the deleted node 
is the left or right child of its parent. 

Note than the function bt-ineert20, used to reinsert a 
subtree, is different from its predecessor bt-insert ( 1. This 
version takes as an argument a pointer to a node rather than a data 
value. We leave its implementation as an exercise for the reader. 

Utility Functions 
As with linked lists, there are several useful utility functions for proc- 
essing binary trees. T h e  function bt-copy ( ) , presented in List- 
ing 6.7, generates a copy of a binary tree. Note that the function is 
really just a modification of a preorder traversal. 

T h e  function bt-equal( ) (Listing 6.8) determines the equiva- 
lence of its two tree arguments. Defined recursively, the function descends 
both trees until it either encounters a difference or determines that 
the two trees are equivalent. 

6.3 BALANCED TREES 

Let's continue our discussion of ordered binary trees (OBTs). OBTs 
are fairly easy to implement. However, they can have one drawback a 
worst-case running time of O(n). As depicted in Figure 6.14, even an 
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struct bt-node * 
bt-cogy( struct bt-node *treegtr ) 

{ 
struct bt-node *new; 

if( treegtr == NULL ) / *  The 'out' */ 
return( NULL ); 

new = get-new-bt0; 
new ->data = treegtr ->data; 
new->lchild = bt-cogy( treegtr->lchild 1 ; 
new->rchild = bt-copy( treegtr->rchild ) ; 

return( new 1; 
1 

Listing 6.7 
Copying a binary tree. 

ordered binary tree can degrade into a linear list if the insertion routine 
receives elements in ascending (or nearly ascending) order. 

Several methods have been developed to prevent trees from be- 
coming skewed. Some of the most powerful are so-called AVL trees. (Their 
name is derived from the scientists who first studied them: Adel'son- 
Vel'skii and Landis.) 

Before we can understand AVL trees, we must define what we 
mean by &a/anced. Let's begin by defining he&& for some node n as 

0, if n has no left child 
'@-h'ght(n) = 1 + height(/@ - chi/d(n)) for all other nodes 

0, if n has no right child 

{ 
I - 

right - height(n) = 1 + he&t(right chi/&)) for all other nodes 

As you may recall, the height of any node in a tree is the length 
of the longest path from that node to a leaf node. Based on the 
preceding definitions, a leaf node has right-height and ldt-height both 
equal to 0. 

Now let's define the balance of some node n as 

&a/ance(n) = right-height(n) - /&-height( n) 
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#define TRUE 1 
#define FALSE 0 

i n t  
bt-egual( struct btpode  *treel, struct bt-node *tree2 ) 

c 
i n t  res; 

i f (  treel == NULL && tree2 == NULL 
return( TRUE ); 

res = FALSE; 
i f  ( treel->data == tree2 ->data ) { 

res = bt-egual( treel ->lchild, tree2 ->lchild ) ; 
i f (  re8 == TRUE ) 

res = bt-equal( treel->rchild, tree2 ->rchild ) ; 
1 

return( res 1;  
1 

listing 6.8 
Binary tree equivalence. 

Thus, a node’s balance indicates the relative height of its right 
subtree as compared to its left. If the balance is positive, the right subtree 
has greater depth than the left; if the balance is negative, the reverse 
is true. 

A binary tree is an AVL tree if, and only if, every node in the 
tree has a balance of - 1, 0, or + 1. Figure 6.15 provides some 
examples of both AVL and non-AVL trees. 

AVL trees have a number of attributes that make them well suited 
for searching applications. First, an AVL tree with n nodes has 
height O(log, n). Second, we can insert and delete nodes in AVL trees 
with an efficiency of O(log2 n), while still preserving the AVL 
properties of the tree. T h e  sections that follow discuss the implementa- 
tion of AVL trees. 
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Figure 6.14 Order of elements 
Ordered binary tree. (b) 

Resultant tree 
( b )  

AVL Tree Insertion 

Because an AVL tree is essentially a binary tree, we can reuse our 
node structure. We will, however, need to add a field to store balances. 
Because there are only three balance values, we only need two bits 
of storage for this data element. However, for pedagogical clarity, we will 
implement this field as a full int. Listing 6.9 contains the new AVL 
node structure. 

Conceptually, we insert new nodes into an AVL tree as follows: 

1. Employ the same algorithm we used to insert a node into an 
ordered binary tree. That is, we trace a path from the root 
node to a leaf node (where we will perform the insertion). 

2. Insert the new node. 
3. Retrace the path back up to the root node, adjusting balances 

along the way. 
4. If a node’s balance should become 22, readjust the node’s subtrees 

so that its balance is in line with AVL requirements (i.e., 2 1). 



Figure 6.15 
Examples of AVL and 
non-AVL trees. 

' 

listing 6.9 
AVL node structure. 
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struct avl-node { 

int bal ; 
int data; 
struct avl-node *lchild; 
struct avl-node *rchild; 

I ;  

0 8 0  

(bl 
AVL trees 

0 

0 

No n - AV L trees 

0 

( C) 

0 

0 ii. 
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Figure 6.16 
AVL insertion- 
case 1. 

New node 

Before 
(a )  

After 
(b)  

Obviously, step 4 is the most difficult. Specifically, we need to 
decide how we can readjust a node’s descendents such that all balances 
are in accord with AVL requirements. The  problem decomposes into 
four distinct cases (and their mirror images). 

Case 1 A node becomes balanced as a result of an insertion. As 
depicted in Figure 6.16, the balance of node t decreases from 1 
to 0 as a result of the insertion of node n into the tree. 

There is no reason to readjust node t’s descendents be- 
cause the overall height of the tree remains unchanged. 

A node becomes unbalanced by only f l .  As depicted in 
Figure 6.17, the balance of node t changes from 0 to + 1 
as a result of the insertion. 

we must adjust the balance of node T as well. 

In this case, a node becomes unbalanced by 5 2 because the 
right subtree of its right child increases in height. For example, 
when we insert a new element into the tree depicted in 
Figure 6.18a, we generate the tree contained in Figure 6.18b. 
Notice how the balance for node a increases from + 1 to + 2. 

Case 2 

Note that the height of the tree increases. As a result, 

Case 3 
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Figure 6.17 
AVL insertion- 
case 2. 

Before 
(a )  

After 
( b) 

Unfortunately, we cannot readjust the balance by simply 
interchanging nodes b and e. This solution would undermine the 
ordered property of the tree. 

However, as illustrated in Figure 6.18c, we can make a 
the left child of c and reposition the left child of c (node 
d )  as the right child of the newly positioned node a. We call 
this type of transformation a single lejit rotation. 

There are several important points that we should ad- 
dress regarding the transformation process: 

It preserves the ordered property of the tree. 
It restores all nodes to appropriate AVL balances. 
It preserves the inorder traversal of the tree. That is, an 
inorder traversal will access nodes in the same order 
after the transformation (as it would have prior to the 
reordering). 
We only need to modify three pointers to accomplish 
the rebalancing. 

One final note: There is a mirror-image case in which a 
node becomes unbalanced by - 2 because the left subtree of its 
left child increases in height. We rebalance the tree in this 
case with an equivalent single right rotation. 

A node becomes unbalanced by 2 2  because the right subtree 
of its left child increases in height. As illustrated in Figures 6.19a 
and 6.19b, when we insert the new node n as the right child 

Case 4 
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______ 

Figure 6.18 
AVL insertion- 
case 3. 

A 
N 

of node d, the balance of node a increases to +2. 
This case really has two subcases. In the first, the new 

node becomes the right child of d. This is the case we will 
describe. In the other, the new node becomes the left child 
of d. For both subcases, we undertake identical steps to 
rebalance the tree. The  only difference is that the resulting 
node balances will differ slightly. 

T o  rebalance the tree, we perform with a single right 
rotation at node c (Fig. 6.19c), followed by a single left rotation 
at node d (Fig. 6.19d). Because we need two rotations, we 
refer to this transformation as a double rotation or an RL 
rotation (due to the rotation order). 

require an LR rotation to rebalance the tree. 
As with case 3, there is a mirror-image case. This would 



Figure 6.19 
AVL insertion- 
case 4. 
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6 b e  

Once the insertion process is understood, it is a straightforward 
task to develop the actual algorithm. Listing 6.10 contains the code for a 
C implementation of an AVL insertion algorithm. Contained in the 
listing are routines to right balance and left rotate. T h e  listing lacks the 
complementary routines that left balance and right rotate; we leave 
the implementation of these functions as exercise for the reader. 
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struct avl-node { 

int bal ; 
int data; 
struct avl-node *lchild; 
struct avl-node *rchild; 

1; 

struct avl-node *root = NULL; 

#define NO 0 
#define YES 1 

#define BAL 0 
#define LHIGH -1 
#define RHIGH 1 

struct avl-node * 
avl-insert( struct avl-node *root, struct avl-node *new, 

int *chg-hgt 

if( root == NULL ) {  

root = new; 
root->bal = BAL; 
root->lchild = NULL; 
root->rchild = NULL; 
*chg-hgt = YES; 

} else if ( new->data < root->data ) { / *  Insert Left * /  
root ->lchild = avl-insert ( root ->lchild, new, chg-hgt ) ; 
if( *chg-hgt ) I  / *  LCHILD grew *1 

if( root->bal == LHIGH ) / *  Node's now 2 High * /  
root = left-bal( root, chg-hgt ); 

/ *  Node is now LHIGH * /  else if ( root->bal == BAL ) 

root->bal = LHIGH; 
/ *  Was RHIGH now BAL */ else { 

root->bal = BAL; 
*chg-hgt = NO; 

1 
1 continued on p .  I71 
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continued from p. I70 
1 else { / *  Insert Right * /  

root ->rchild = avl-insert ( root ->rchild, new, chg-hgt ) ; 

if( *chg-hgt ) {  / *  RCHILD grew * 

root->bal = BAL; 
*chg-hgt = NO; 

root->bal = LHIGH; 

root = rightpal( root, chg-hgt );  

if ( root->bal == LHIGH ) {  / *  Was LHIGH now BAL * /  

} else if( root->bal == EAL ) / *  Node's now RHIGH * /  

else / *  Node's now 2 High * /  

1 
1 

return( root ); 

1 

struct avl-node *rightpal( struct avl-node *node, int *chg-hgt ) 

{ 
struct avl-node *rsub, / *  Right subtree of node * /  

*lsub; / *  Left subtree of rsub * /  

rsub = node->rchild; 
switch( rsub->bal ) { 
case RHIGH: / *  Single rotation * /  

node->bal = BAL; 
rsub->bal = BAL; 
node = rotate-left( node 1 ;  
*chg-hgt = NO; 
break; 

case LHIGH: / *  Double rotation * /  
lsub = rsub->lchild; 
switch( lsub->bal ) { 

case RHIGH: 
node->bal = LHIGH; 
rsub->bal = BAL; 
break; 

case BAL: 
node ->bal = BAL; 
rsub->bal = BAL; 
break; continued on p. 172 
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caee LHIQH: continudfrom p .  171 
node->bal = BAL; 
reub->bal = RHIQH; 
break: 

1 
leub->bal = BAL: 
node->rchild = rotateright ( node 1 ; 
node = rotate-left( node 1; 
*chg-hgt = NO: 
break; 

1 
return( node 1; 

1 

etruct avl-node *rotatemleft( struct avl-node *node 1 
{ 

etruct avl-node *tmp; 

tmp = node->rchild; 
node->rchild = tmp->lchild; 
tlqp->lchild = node; 
return( tmp 1; 

1 

etruct avl-node *left-bal( etruct avl-node *node, int *chg-hgt 1 
{ 

1 
/* Left ae an exercise * /  

etruct avl-node *rotate-right( etruct avl-node *node ) 

{ 

1 
/ *  Left ae an exerciee * /  

listing 6.10 
AVL insertion algorithm. 
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The  driving routine is called avl-insert ( ) . It requires three 
arguments: a pointer to the root node of the AVL tree; a pointer to the 
new node that it will insert; and a pointer to an integer variable. This 
latter argument serves as a flag that will indicate when the height 
of the tree changes. (We must pass and return this value as a pointer 
due to C’s call-by-value convention.) 

Similar to an OBT function, this routine begins execution by 
recursively invoking itself until it locates the point of insertion. However, 
unlike an OBT insertion, avl-insert ( ) must readjust the balance 
fields after it adds the new node. T h e  function indicates a change 
in height by setting the chg-hgt flag to YES. If the balance becomes 
+2, avl-insert ( 1 calls routines to rotate nodes and rebalance the tree. 

AVL Tree Deletion 

Deleting nodes in AVL trees requires that we employ the same basic 
principles we discussed for insertion. Specifically, we will need to perform 
single and double rotations. 

We begin an AVL deletion by following the deletion algorithm 
for an ordered binary tree. Then, after we’ve located the node we wish 
to delete, we perform the following processing: 

1. If the node is a leaf node, just delete it. 
2. If the node has only one child, replace it with its child (i.e., have 

the node’s parent point to the node’s child). 
3. If the deleted node has two children, replace it with (a copy of) 

its inorder success&; then delete the (original copy of the) inorder 
successor. This example is illustrated beginning with Figure 
6.20e. Note that this processing preserves the ordered property 
of the tree. 

Now that we have deleted the node, we must rebalance the tree: 

4. If the balance of the deleted node’s parent changes from 0 to +1 
(Fig. 6.20b), the algorithm terminates. That is, the tree does 
not require any additional rebalancing. 

5. If the deleted node’s parent changes from +1 to 0 (Fig. 6.20c), 
the height of the tree has changed and the balance of the deleted 
node’s grandparent is affected. 

6. If the balance of a deleted node’s parent changes from ?1 to +2 
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B 

H I  d 
Original tree 

(a)  

H I  d 
Result of deleting node D 

( b )  

Result of deleting node F Result of deleting node H 
( C) (dl 

Delete node C Phase 1 Delete node C Phase 2 
( e) ( f l  

Figure 6.20 
AVL tree deletion. 
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(Figs. 6.20e and 6.20f), it forces a rotation. After the rotation 
completes, the parent’s balance may change. This, in turn, might 
force additional changes (and possible rotations) all the way up the 
tree as we retrace our path back to the root. In fact, we need to 
retrace our path until we encounter a node that changes from 
0 to 1; then we can terminate the algorithm (as described in step 4). 

Even in the worst case, when a deletion forces O(log2 n) rotations, 
the algorithm’s complexity remains O(log, n). This is because we can 
perform rotations in a constant amount of time. Completing the imple- 
mentation is left as an exercise for the reader. 

6.4 THREADED BINARY TREES 

If you examine the structure of a binary tree, you will discover that 
the number of unused links (in leaf nodes) is greater than the 
number of pointers actually used. In fact, in a tree with n nodes, of 
the 2n available pointers, only n - 1 are used. This represents 
less than half of the total number of available pointers. 

We can make use of these otherwise unused links by having them 
point to other nodes in the tree-in a predefined manner-to create a 
threaded binary tree (TBT). In a threaded binary tree, we assign ad- 
dresses to leaf node pointers based on the following rules: 

If the pointer is the right child of a given node N, assign to it the 

If the pointer is the left child of a given node N, assign to it the 
address of the node that would follow N during an inorder traversal. 

address of the node that would precede N during an inorder 
traversal. 

Figure 6.21a provides an example. With two exceptions, all the 
previously null links are now pointing to other nodes in the tree. T h e  
exceptions are the left child of node 4 and the right child of node 3. 
T h e  nodes have, respectively, no predecessor or successor element 
in an inorder traversal. If we left the tree in this state we would require 
special-case processing for these two pointers. A better solution is to use 
aheadnode and have both of these links point to it. Figure 621b shows 
the tree with a head node and all of its pointers assigned. 

There is one more point we must address: Now that every pointer 
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Figure 6.21e 
Threaded binary tree. 

6 Trees 

- Threads 

In order traversal 
4,2,6,5,1,3 

-. - . - - - 

Figure 6.21 b 
Threaded binary tree 
with head node. 
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has been put to use, it has become impossible to distinguish a leaf 
node from a non-terminal node. As a result, we must include a type 
field in the bt-node structure. 

TBT Traversal 

Inorder traversal is now greatly simplified. If, for a given node N, 
rtyps = BT-THREAD, its inorder successor is rchild. Alternatively, 
if rtype = BT-NOM, we determine its inorder successor by tra- 
versing the left links of the rchild of N until we locate a node 
with ltype = BT-THREAD. A pseudo-code description of the algo- 
rithm follows. 

tbt-inorder( 
{ 

/ *  
* Find 
* /  

root 1 / *  Inorder Traversal of TBT * /  

leftmoet node 

tznp = root; 
if( tznp I =  NULL ) 

while( trqp->lchild I =  NULL ) 
tlnp = tznp->lchild; 

while( tmp 1 = root ) / *  Begin Traversal */ 
visit( tmp 1; 
tznp = tbt-next( tmp ); 

1 

tbt-next( node ) / *  Locate Inorder Successor * /  
{ 

/ *  
* For a thread, successor is rchild 
*/  

trap = node->rchild; 

/ *  
* For normal nodes, follow left hand path 
* /  
if( node->rtype == BT-NORM ) 

tmp = tmp->lchild; 
while( tmp->ltype I = BT-THREAD ) 

return( trqp 1; 
1 
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Confirm your understanding of the algorithm by tracing its execu- 
tion when locating the inorder successor of node 2 in Figure 6.21b. In 
much the same manner, we can use threaded binary trees to simplify 
preorder and postorder traversals. One minor drawback of threaded binary 
trees is that they commit you to a particular traversal methodology 
(e.g., inorder). 

TBT Insertions 

We now need to develop an insertion algorithm for threaded binary 
trees. T o  begin our discussion, let’s consider how we would insert 
a node as the right child of a leaf node. In Figure 6.22a, the right 
subtree of node C is a thread. Therefore, to insert a new node N, 
we need to perform the following processing: 

n->rchild = c->rchild; 
n->rtype = c->rtype; 
n->lchi ld = c; 
n->ltype = BT-THREAD; 
c->rchild = n; 
c->rtype = BT-NORM; 

Figure 6.22b demonstrates how we insert a new node when the 
rchi ld  of C is not a thread. The  l c h i l d  of E-which currently 
points to C-must end up pointing to N. The  code, therefore, becomes 

n->rchild = c ->rchild; 
n->rtype = c->rtype; 
n->lchi ld = c; 
n->ltype = BT-THREAD; 
c->rchild = n; 
c->rtype = BT-NORM; 
i f  ( t->rtype == T-NORM ) 

tmp->lchild = n; 

We will leave the case of left-child insertions as an exercise for 

tmp = inorder-succ( c 1;  

the reader. 
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Before ( a )  After 
Insert as right child without subtree 

i 

Before (bl ARe r 
Insert a s  right child with subtree 

Figure 6.22 
Threaded binary tree 
insertion. 
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TBT Deletions 

As with unthreaded trees, the deletion of nodes in a threaded binary 
tree is application dependent. However, with threaded trees we have the 
added concern of adjusting threads when elements are deleted. Exer- 
cise 7, p. 193 explores this topic further. 

6.5 APPLICATIONS OF TREES 

There are many uses for tree structures in program design. As we have 
seen, they can be used in the sorting and searching of data. Trees 
are also well suited for representing relationships among data. Let’s 
look a t  some examples. 

Decision Trees 

Another of the classic problems studied by computer scientists is the 
Eight Coins Problem: 

There are eight apparently identical coins. However, one coin- 
a counterfeit-is of a different weight than the others. We must deter- 
mine, with only three weighings on a balance scale, which coin 
is counterfeit, and whether it is heavier or lighter than the others. 

There are 16 unique results: Coin 1 is heavierhghter, Coin 2 is 
heavierhighter, etc. You may find it beneficial to attempt to solve the 
puzzle before reading on. 

T h e  solution to the puzzle can be described as follows: 

Compare the weights of coins (1,2,3) with coins (4,5,6). There 
are three possible results: 

1. Set (1,2,3) = Set (4,5,6) 
Because both sets weigh the same, we can deduce that either 
coin 7 or coin 8 is counterfeit. We now compare one of 
them with a known standard (for example, coin 1). In the 
remaining two weighings, we can determine conclusively which 
coin is counterfeit and whether it is heavier or lighter. 

We now know, based on this first weighing, that coins 7 and 
2. Set (1,2,3) C Set (4,5,6) 
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8 must be genuine. T o  determine which of the first six 
coins are bad, we must switch two of them and isolate two 
others. That is, we compare coins (1,4) with (2,s). There 
are, again, three possible outcomes: 
a. Set (1,4) < Set (2,s) 

Because the relationship remained the same (i-e., the coins 
on the left weigh less than the coins on the right), we 
can surmise that coins 3 and 6 are genuine; we also know 
that coins 2 and 4 are good because switching them had 
effect on the balance. Therefore, either coin 1 is light or 
coin 5 is heavy. We need only compare one of the coins 
to a standard to determine which one is counterfeit. 

Either coin 3 or coin 6 is counterfeit. We also can surmise- 
from the original weighing- that if coin 3 is bad, it is 
heavy; if coin 6 is bad, it is light. Compare one against a 
standard to determine the result. 

T h e  switching of coins 2 and 4 caused the balance to 

b. Set (1,4) = Set (2,s) 

c. Set (1,4) > Set (2,s) 

no 

change. Therefore, either coin 2 is light or coin 4 is heavy. 
Compare one against a standard to determine the result. 

3. Set (1,2,3) > Set (4,5,6) 
The  solution is analogous to section 2, above. 

Before we begin our discussion of an algorithmic solution, consider 
the problem-solving method we just described. After each weighing, we 
observed an outcome and decided on a new course of action. That is, 
each step served as a crossroads where we selected a new path 
until we finally reached a solution. 

We can simulate this process in a computer program using a decision 
tree. Each node in a decision tree corresponds to a critical point in the 
solution of a problem. Typically, this is some action or test that must 
be performed. T h e  children of a node represent the implications of a 
decision made at the parent’s level (that is, a choice of actions based 
on the outcome of the test). Leaf nodes represent solutions to the problem 
(if attained via proper use of the tree). 

Figure 6.23 depicts the decision tree for the Eight Coins Problem. 
Each non-terminal node represents a weighing. Each of a node’s children 
represents additional comparisons that are required based on the out- 
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< > 

Figure 6.23 
Eight Coins decision 
tree. 

come of a weighing. Each leaf node represents one of the 16 unique 
solutions. 

There are essentially two ways to implement this problem-solving 
technique. First, after constructing a decision tree for a given problem, 
we can employ a traversal function to determine a solution. As it moves 
along the tree, the function uses the results of each test to select the next 
path to follow. A solution is attained when the function reaches a 
leaf node. 

The  other way is to code the decision tree implicitly. That is, 
embed the decision logic right into the code. As an example of 
this technique, Listing 6.11 presents the code for the function 
eightcoins ( 1. 

Game Trees 

Another use for trees is in computer game simulations. T o  illustrate 
this technique, we will design a program that plays tic-tac-toe. T o  begin 
our discussion, assume that we have written a function called board 
- eval ( ) . T h e  purpose of this routine is to evaluate board positions. 
That is, the function computes a numerical value representing the relative 
strength of the position for one of the players. A winning position 
would yield the maximum value, a losing position the minimum. 

For our tic-tac-toe program, board-eval ( ) could determine for 
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#define HEAVY 1 
#define LIGHT -1 

void eightcoins( int *coin, int *bad, int *stat ) 
c 

int sl, s2; 
int s3, 134; 

sl = coin[OI + coin[ll + coin[21; 
s2 = coin131 + coin[41 + coin[51; 
if( sl == s2 ) {  / *  6 or 7 bad * /  

if( coinC61 > coin[71 1 
if( coin[63 != coin[OI ) I  

*bad = 6; 
*stat = HEAVY; 

*bad = 7; 
*stat = LIGHT; 

1 else { 

1 

if( coin[7] !=  coin[OI ) {  
*bad = 7; 
*stat = HEAVY; 

*bad = 6; 
*stat = LIGHT; 

else / *  6 7 */  

1 else { 

1 
} else if( sl > s2 ) {  

s3 = coin[OI + coini31; 
s4 = coin[l] + coin[4]; 
if( s3 == s4 1 

if( coin[2] !=  coin[OI I {  
*bad = 2; 
*stat = HEAW; 

*bad = 5; 
*stat = LIGHT; 

1 else { 

1 

if( coin[OI !=  coin[21 I {  
*bad = 0; 
*stat = HEAVY; 

else if( s3 > s4 1 

continued on p.  184 



184 6 Trees 

listing 6.11 
Eight Coins function. 

I else { continued from p.  283 
*bad = 4; 
*stat = LIGHT; 

else / *  s3 < s4 * /  
I 

if( coin[ll !=  coin[21 
*bad = 1; 
*stat = HEAVY; 

*bad = 3; 
*stat = LIGHT; 

I else I 

I 
I else /* sl < s2 */ 

s3 = coin[OI + coinC31; 
s4 = coin[ll + coinl41; 
if( s3 == s4 1 

if( coint21 !=  coin[OI 
*bad = 2; 
*stat = LIGHT; 

*bad = 5; 
*stat = HEAVY; 

I else I 

I 

if( coin[ll !=  coin[21 
else if( s3 > s4 1 

*bad = 1; 
*stat = LIGHT; 

*bad = 3; 
*stat = HEAVY; 

I 
else / *  s 3  < s4 * /  

if( coin[O] !=  coin[21 )E 
*bad = 0; 
*stat = LIGHT; 

*bad = 4; 
*stat = HEAVY; 

I else ( 

I else { 

I 
I 

I 
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Board configuration 
(a )  

\ I  

I \ 

X has 4 winning positions available 
(bl 

Y has 2 winning positions available 
( Cl 

Figure 6.24 
Strength index 
calculation. 

each player the total number of rows, columns, and diagonals still 
open (i.e., locations where a win is still possible) and return the differ- 
ence of the two values. For example, consider the board position 
depicted in Figure 6.24a. If evaluating this position on behalf of player 
X, board-eval ( ) would compute four winning positions for X (Fig. 
6.24b) and two for 0 (Fig. 6.24~) and return a strength index of 2 (i.e., 
4 - 2). Conversely, if evaluating the same position for player 0, 
the function would return a strength index of -2  (2 - 4). 

T o  determine the next move for a player, a program could evaluate 
every possible move from the current position and select the one 
that yields the highest strength index. However, this type of analysis 
does not always yield the best result. As depicted in Figure 6.25, 
if the selection were based solely on the strength index, the program 
would choose either b or c as the next move for player X. Nevertheless, 
despite their lower index, choices d or e-both of which yield directly 
to winning positions-are the best moves for X. 

There are two ways to correct this problem. One is to build a 
better evaluation function. For simple games, such as tic-tac-toe, 
this is certainly possible. In fact, because the number of possible board 
positions is relatively small, we could examine every possible combination 
before selecting our next move. However, for more complex games- 
such as chess-this option is impractical. 

T h e  other way to solve the problem is to change our approach. 
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Figure 6.25 
Move evaluation for 
player X. 

X 

4 - 2 = 2  
(a )  

x I 0 -Current board 
position 

X 

0 - 

4 - 1  = 3  
( b )  * 

x x  
4 - 2 = 2  

(d) 

4 - 1  = 3  
( C) 

4 - 2 = 2  
(el 

X - 
0 

The  shortcoming of a static evaluation function is that it cannot 
predict the outcome of the game. That is, it cannot determine the 
future effect of a given move. However, if it were possible for the 
function to look ahead several positions, it could improve its choice 
of moves. 

We can effectively implement this approach using game trees. A 
game tree consists of all possible moves derived from a given position. 
Each node represents a move; each level represents, alternately, moves 
for each player. We define the hk-ahead level as the maximum 
depth of the game tree (i.e., how many moves ahead we will look). 
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Plus 

Minus 

1 - Current # position 

@ -1 8 -2 

Figure 6.26 
Game tree to select 
opening move for 
player X 

Figure 6.26 contains an example. (Note that because of symmetry, 
we need not consider all possible board configurations.) The  root node of 
the game tree is the current position, and each subsequent level repre- 
sents a choice of moves for one of the players. T h e  player to move, 
in this case X, is designated as plus, the opponent as minus. 

Before we describe how to use game trees, let’s observe for a 
moment how humans play the game. When we select moves for 
ourselves, we obviously choose what we believe to be our best move. 
Our opponent will obviously try to do the same. Thus, when we 
attempt to predict opponents’ moves, we must put ourselves in their 
position and pick the best move for them-that is, the worst move 
for us. 

Now let’s apply that same logic to our game tree. However, we 
must keep in mind that the evaluation function determines the 
value of each board position from the standpoint of the player whose 
turn it is to move. For example, let’s assume it’s X’s  turn to move. For 
all levels in the game tree that represent moves for X, we choose a 
path that yields the highest value (that is, the best move for X). 
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Conversely, on levels representing moves for 0, we select moves with 
the lowest index (i.e., the best moves for 0). Therefore, at eachplus level 
in the game tree, our algorithm must select the move with the maxi- 
mum index; at each minus level it must select the move with the mini- 
mum index. 

In summary, to select a move for a given player, our game pro- 
gram must 

Construct a game tree based on the current board position. 
Evaluate (using a static evaluation function) the position index 

Bubble up-from leaf to root-the strength indexes by assigning 
for all leaf nodes. 

each plus node the maximum value of its children, each minus node 
the minimum value of its children. 

When this processing has completed, the function selects as its 
move the level two node (the child of the root) with the highest strength 
index. This process is then repeated, using the new board position, 
to choose the best response for the opposing player. 

Implementation 

Implementation of our game tree algorithm will require several data 
elements. Because the number of moves varies with each position, 
we will need the following node structure: 

8 t ruc t gnode { 
int Val; /* Position value */ 
int turn; / *  Whose turn? * /  
char pOS[3] 131 ; /*  Board position * /  
etruct gnode *cptr; / *  Child pointer * /  
struct gnode *sptr; / *  Sibling pointer * /  

1; 

To simplify processing, we will not use direct pointers to reference 
subtrees; rather, child nodes will be stored using linked lists. As depicted 
in Figure 6.27, cptr points to a list of children and sptr points a 
list of siblings. In addition, each node must provide storage for a board 
position, a position value (strength index), and a flag to indicate 
whether it is on a plus or minus level. 
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CPTR A-SPTR 

Root ------ 
I I 
I 

Figure 6.27 
Game tree 
implementation. 

The  driving loop of the program will be 

who = 'X'; 
blank-board( board 1; 
while( move(board, who, MAXLEVEL) != WIN ) {  

print-board( board, who 1;  
if( who == 'X' ) /*  Alternate Turns * /  

else 
who = 

who = 'X'; 
1 
print-board( board, who 1; 

T h e  program moves alternately for each player until it determines a 
winner; it then displays the results. T h e  call to print-board( ) within 
the body of the loop is optional, but is useful to trace all the intermedi- 
ate moves made by both players. The  symbolic constant MAX- 
LEVEL determines the maximum look-ahead level for each move. 

T h e  function move ( ) selects and records moves (i.e., updates 
the master board) for each player. I t  requires three arguments: the 
player ID, the current board position, and the maximum look-ahead 
level. I t  is defined as 
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int move( char *board[], char who, int level ) 

{ 
int Val ; 
struct gnode *root; 
struct gnode *best; 

root = make-tree( board, level ) ;  / *  Build tree * /  
best = best-move( who, root 1; 
move-board( board, best->gos 1; /* Store move * /  
Val = best->Val; 
free-all( root ) ;  /*  Free nodes */ 

return( Val 1 ;  
1 

The  function make-tree ( ) constructs a game tree, of depth 
level, for the current board position; it returns a pointer to the 
root of the tree. The  function best-move ( ) takes two arguments: 
the player ID and a pointer to the game tree. It determines the 
best move for player who by computing the position index for each 
leaf node (using the function board-eval( ) ) and then bubbling 
the values up the tree. It returns the child node of root with the 
highest value. 

best-move ( ) appear in Listing 6.12. We leave the completion of 
the program as an exercise for the reader. 

T h e  functions make-tree ( ) , game-tree ( ) , and 
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struct gnode * 
make-tree( char *board[], int lev ) 
{ 

s t ruc t gnode *root; 

/* 
* Setup root node of tree 
* /  

root = get-gnode ( ) ; 
root->cptr = NULL; 
root->sptr = NULL; 
root ->turn = POSITIVE; 
move-board ( root ->pos, board ) 

/ *  
* Build rest of game tree 
*/ 

game-tree( root, lev, 0 ) ;  
return( root 1;  

1 

/ *  Copy board gos * /  

void 
game-tree( struct gnode *root, int max-level, int cur-level ) 
{ 

s t ruc t gnode *tmp; 

if ( cur-level == max-level ) / *  the 'out' * /  
return; 

/ *  
* Generate all unique board positions 
* (child nodes) for this level 
*/ 

gengos( root 1; 

/ *  
* Build the next level for each child 
* /  

for (tmp = root ->cptr; trng ! = NULL; tmp = tmp->sgtr) { 
tmg ->turn = - root ->turn; 
game-tree( tmp, max-level, cur-level+l ); 

1 
1 continued on p.  192 
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struct gnode * continued fmm p.  191 
best-move( char who, struct gnode *root ) 

i 
int bval, tval; 
s t ruc t gnode *tmp, *best, *tbest; 

if( root->cgtr == NULL ) {  

/ *  
* Leaf node 
*/ 

root ->Val = board-eval ( root -->gas, who ; 

return( root 1;  
1 

/ *  
* Not a leaf node - process all child nodes 
* select & return best 
* /  

tmp = root->cptr; 
best = best-move( who, tmp );  / *  Get first one * /  
bval = best->Val * tmp->turn; /* NEG node ? */  
for( tmg = tmp->sgtr; tmp I =  NULL; tmg = tmp->sgtr ) {  

tbest = best-move( who, tmg 1 ;  
tval = tbest ->Val * tbest ->turn; 
if( tval > bval ) {  

bval = tval; 
best = tbest ; 

1 
1 

return 
1 

best 1;  

Listing 6.12 
Tic-tac-toe game. 
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Trees are very common structures found in everyday life. They can 
also serve as powerful models for problem-solving techniques in com- 
puter science. 

Once constructed, trees can be traversed in many ways. We can also 
add threads to leaf nodes to further simplify tree traversal. 

Applications typically restrict the number of branches each node in a 
tree may have. The  most common example of this approach is a 
binary tree. 

Trees are simple to implement and use. As a result, they can serve 
as the basis for many applications, including searching, sorting, parsing, 
expression analysis, decision making, and game theory. We will explore 
other uses for trees in subsequent chapters. 

1. Write the iterative forms of the functions inorder ( ) , 
greorder ( 1, gostorder ( ) . 

2. Draw the tree produced by the function bt-insert ( 1  when 
presented with the following input: 

1, 2, 3 ,  4 ,  5, 6,  7 ,  8 ,  9, 10 

3. Prove that a binary tree can be uniquely defined by its preorder 
and postorder traversals. 

4. Design and code traversal routines for trees implemented as arrays. 

5. Implement the tic-tac-toe program. Design it so that the computer 
can play against a human opponent. 

6. Using a breadth-first traversal, write a program that will display 
graphically the structure of a binary tree. 

7. Develop a complete set of functions (insert, delete, traversal, etc.) 
to implement a threaded binary tree. 

8. Write a function that will thread an unthreaded binary tree. Can 
it be done in place? 

9. For the binary tree depicted in Figure 6.28, determine the 
following: 
a. T h e  number of terminal nodes 

SUMMARY 

E X E R C I S E S  
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Figure 6.28 
A binary tree. 

b. The  number of non-terminal nodes 
c. The  degree of each node 
d. T h e  level of each node 

10. Write a function that will compute the information required in 
exercise 9 for any tree. Test  your program using the tree shown 
in Figure 6.28. 

11. How many different ways can we store the values 1 to 5 in an 
ordered binary tree? 

12. Write a function that determines the maximum height of a bi- 
nary tree. 

13. Complete the omitted routines of the AVL insertion algorithm of 
Listing 6.10. 

14. Implement an AVL deletion function. 

15. For the binary tree depicted in Figure 6.28, depict the internal 
representation using list, array, linked, and threaded 
implementations. 



Graphs and Digraphs 

One of the most widely used data structures in mathematics and 
computer science is the graph. Informally, we can define a graph 
as a finite set of points, some of which are connected by lines (called 
edges). A digraph-short for directed graph-is a finite set of points, some 
of which are connected by arrows; the arrows determine the orientation 
(direction) of the edges. 

Graphs are useful abstractions for modeling many types of prob- 
lems. Examples include airline route maps, electronic circuits, data flow 
diagrams, etc. An example graph depicting an airline route map appears 
in Figure 7.1. Although the carrier does not service it, note that 
Portland is part of the graph. 

7.1 INTRODUCTION 

Definitions and Terminology 

Formally, a graph consists of two sets, Vand E,  where V is a finite, 
possibly empty, set of vertices and E is a set of subsets of V (of order 2) 
that represent edges. For example, the graph depicted in Figure 7.1 

195 
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Figure 7.1 
Graph representation 
of an airline route 
map. 

has Vdefined as {PT, LA, LV, NY, FL, CHI) and E defined as 
((CHI, LA), (LA, NY), (CHI, LV), (NY, LV), (LV, FL)}. The  graph 
is written as G = (V, E); additionally, we refer to the set of vertices of 
graph G as V(C) and to the set of edges in G as E(G). 

Edges connecting two vertices in a graph are unordered. This 
means that the pairs (vl, az) and (w2, vl) represent the same edge. However, 
edges in a digraph (which have orientation) are ordered so that (w, ,  vz)  
and (v2, ol) represent two distinct edges. (We will use angle brackets to 
denote edges in digraphs.) For any directed edge e = (vl, w Z )  in a 
digraph we say that e departs from vl and enten vz;  in addition, we 
refer to vI as the tail, and wz as the head of the edge. A tree is an 
example of a digraph; refer to Figure 7.2 for additional examples. 

An edge cannot connect a vertex to itself (these are sometimes 
referred to as self-loops). In addition, no more than one edge may connect 
a given pair of vertices in a graph, nor can there be more than one 
edge with the same orientation connecting two vertices in a di- 
graph. However, these restrictions may be relaxed for practical applica- 
tions. For example, Figure 7 . 2 ~  depicts a mult&raph wherein vertices may 
be connected by more than one edge. We can use this type of structure 
to model applications such as communication networks that contain more 
than one link (e.g., fiber and microwave) between locations. 

The  maximum number of edges in a graph with n vertices is 
n(n - 1)/2; digraphs have at most n(n - 1) edges. A graph (or digraph) 
is considered complete if it contains the maximum number of edges. Figure 
7.3 contains two examples. 
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Figure 7.2 
Three graphs. 

Graph Digraph Multigraph 
( a1 (bl ( Cl 

Given an edge (vl, w2) in a graph G, the vertices v1 and v2 are 
considered adjacent to each other; the connecting edge is incident to the 
vertices. For a digraph with edge (al ,  v2), v1 is adjacent to v2; v2 is 
adjacent from vl. We define the degree of a vertex w; as the number of edges 
incident to it. For a digraph, the notion of degree is partitioned into 
indegree and outdegrec Indegree is the number of edges for which vi is the 
head, and outdegree is the number of edges for which vi is the tail. 

Asubgraph S1 of graph G is defined as 

Wi) C VG) 

JW'I) C E(G) 

Complete digraph 
( b )  

Figure 7.3 Complete graph 
Two complete graphs. ( a1 
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Graph G 
( a )  

Subgraph S1 
(b) 

Subgraph S2 
( Cl 

Subgraph S3 
(4 

Figure 7.4 
Subgraphs. 

That is, S, is a subset of G @(if and only if) V(SJ is a subset of V(G) 
and E(SJ is a subset of E(G). Figure 7.4 provides some examples. 

Apath from vertex a, to vertex a, is a sequence of edges ol, az, 
4, . . . , a,, such that all pairs (wl, oz), (az, aJ, . . . , (v,-~, 0,) are 
edges in G. We define its length to be n, the number of edges compris- 
ing the path. A simple path is one in which all the vertices are distinct 
(refer to Fig. 7.5a). A cyde is a simple path wherein the first and last 
vertices are identical (see Fig. 7 .5~) .  A graph that does not contain any 

A graph A simple path of length 2 
(a )  (bl 

A cycle 
( C) 

An acyclic graph 
( dl 

Figure 7.5 
Paths and cycles in 
graphs. 
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Figure 7.6 
A graph with two 
connected 
components. 

cycles is termed acyclic. A tree is an example of an acyclic graph; refer 
to Figure 7.5d for another example of an acyclic graph. 

If a path should exist from v ,  to vz, the vertices are connected. 
Furthermore, an entire graph is considered connected if, for each pair of 
vertices (v,, v,), there exists a path from v, to v,. A connected component 
of a graph G is a maximal connected subgraph of G. Figure 7.6 contains 
a graph with two connected components. 

A directed graph is considered weakly connected if, for each pair of 
vertices (w,, v,), there exists a path from w, to vl such that 0, = u, and a, 
= v, and for each component of the path (us, vy) either (q, vy) or (vy, 
vx) is in E(G). In other words, a path exists between the two vertices but 
you might not be able to traverse it because of the orientation of some 
of the edges. 

Alternatively, we consider a digraph strongly connected if, for each 
pair of vertices (v,, v,), there is a directed path (i.e., one you could traverse) 
from v, to v,. A strongly connectedcomponent of a digraph D is a subgraph 
of D that is strongly connected. 

Applications of Graphs 

Graphs are among the most powerful modeling tools in computer 
science. Although simple in concept, graphs can model many com- 
plex physical and logical problems. Some examples include: 

We can use graphs to model and implement map-based applica- 
tions. For example, we could model an airline company’s route 
map. T h e  graph would serve as the basis for fare and routing 
systems. 
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As another example of using graphs to model maps, consider a 
company that specializes in home delivery of food. The  firm 
might maintain many food preparation centers located throughout 
a geographical area. However, to minimize costs, only one 
location would serve as the central point for orders. Thus, when 
customers telephone the central site to request a delivery, graph- 
based algorithms could determine which preparation center should 
produce the order and estimate for the customer the expected deliv- 
ery time. 

Given a list of cities and distances, determine the most eco- 
nomical route for the salesperson to travel. 
We can model process flow using graphs. For example, a manufac- 
turing firm could model an assembly-line process using a graph. 
Each vertex in the graph could represent one stage of the produc- 
tion cycle. 
Graphs can represent electrical circuits. Each vertex in the graph 
could represent an electrical component, and edges could rep- 
resent the type of connection between pairs of components. 

One of the classic map studies is the traveling salesperson problem. 

7.2 INTERNAL REPRESENTATION 

Now that we’ve dispensed with the definitions and terminology, let’s 
start to see how we can use graphs to model problems. Before we can 
work with them, however, we must develop a set of data structures 
suitable for representation in a computer. For the following discus- 
sions, assume a graph G = (V, E) with n = IVI and m = \El. 

Adjacency Matrix 

The  first data structure we will discuss is an a~acmq matrix. An 
adjacency matrix is a two-dimensional matrix a, such that for each edge 
(q, q) in E(G), a[i,jl = 1. All other index pairs are set to 0. Note that 
for a non-directed graph, we must also set ab, i] = 1 as well. The  size 
of the array will be n2 elements (optimally bits), but for non-directed 
graphs we can save half the storage (i.e., a[i, j ]  = ab, 4). Figure 7.7 
contains an example graph and its associated adjacency matrix. 



Figure 7.7 
Example graph and 
adjacency matrix. 
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Adjacency matrix 
( b )  

In a non-directed graph G, we compute the degree of a given 
vertex i as its row sum: 

For each vertex in a digraph, the row sum is its outdegree and 
the column sum is its indegree. 

Adjacency Lists 

We can also represent graphs as adiacenq lists. An adjacency list is an 
array of M pointers to linked lists. Specifically, each array element, 
a[& represents one vertex and points to a linked list; each node in 
the linked list represents a vertex adjacent to D;. Refer to Figure 7.8 for 
an example. A graph containing n vertices and m edges requires a[n] 
array elements and 2m list nodes; a directed graph will require 
only m list nodes. 

For non-directed graphs, the degree of any node, i, can be com- 
puted by just counting the number of elements in list a[zJ. T h e  
outdegree of any vertex in a digraph can be computed in a similar 
manner. However, calculating the indegree of a digraph is some- 
what more problematic. A program must scan the entire array of lists 
(from a[O] to a[n]) counting references to i. We can simplify this process 
by maintaining a separate list to track indegree (the equivalent of a 
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Graph 
( a1 

Adjacency list 
( bl 

Figure 7.8 
Example graph and 
adjacency list. 

column in the adjacency matrix). However, this will add to the size and 
processing time of our data structure. 

7.3 TRAVERSALS 

Like trees, there are several methods we can employ to traverse graphs. 
The  most common are the depthjnt and the breadthjrst searches. 
However, unlike trees, graphs do not contain root nodes. As a result, 
the traversal methods we are about to discuss require that we define (or 
arbitrarily select) a vertex to serve as the starting point for the 
algorithms. 

Depth First Search 

Given the root node of a graph, a Depth First Search (DFS) proceeds 
as follows: 

Begin processing at the root node vo. 
Select a previously unvisitednode o;, adjacent to vo, and process it. 
Select an unvisited node adjacent to D; and visit it. 



~~ 

7.3 Traversals 203 

Figure 7.9 
Example DFS 
traversal. 

s t a 7 q D ”  node 

A graph 
(a )  

Order of visits in a DFS 
( b) 

Continue in this manner until we encounter a node that does not 

Back up to a node that has an unvisited adjacent vertex and 
have any unvisited adjacent vertices. 

continue the processing from that point. 

A DFS can be likened to a tree traversal in that we visit all of a 
node’s descendents before visiting any of its siblings. Figure 7.9a 
contains an example graph, and Figure 7.9b displays the output gener- 
ated by a DFS beginning at node A. T h e  order in which we select adjacent 
nodes is essentially arbitrary. However, note that we vist node D as a 
descendent of node E ,  not node A. 

Listing 7.1 contains an implementation of a DFS. The  function, 
df s ( ) , performs depth first traversals on graphs implemented 
using adjacency lists. Each node in the graph corresponds to an index 
in a structure array called alist [ 1 .  Each element of alist [ ] contains 
two members: a flag field (tag) to indicate whether the node has been 
visited, and a pointer (ptr) to the node’s adjacency list. 

T o  implement the adjacency list, we used a linked list of type 
struct adj-node. This structure also contains two fields: vertex is 
the name (ID) of the adjacent vertex and next is a pointer to the 
next element in the list. Each adjacency list terminates with a 
NULL pointer. 

We invoke df s ( ) with one argument, namely the index of the 
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#define VISITED 1 
#define MAX-NODES 100 

struct adj-node { 
int vertex ; 
struct adj-node *next; 

I ;  

struct adj-list { 
int tag; 
struct adj-node *adj ; 

1 alist[ MAX-NODES 1;  

struct adj-node *getnode(); 

void dfs( int vertex ) 
{ 

struct adj-node *ptr; 

print-vertex( vertex 1 ;  
alist [ vertex ] .tag = VISITED; 

ptr = alist [vertex] .adj; 
while( ptr ! = NULL ) { 

if ( alist [ptr->vertex] .tag ! = VISITED ) 

ptr = ptr->next; 
dfs ( ptr->vertex ) ; 

I 
I 

listing 7.1 
Depth First Search. 

first node. The  function begins its processing by visiting-and 
setting the tag field of-the initial vertex. Next, it searches the initial 
node’s adjacency list for any unvisited vertices. When it locates one, df s ( ) 
invokes itself recursively to process the unvisited vertex. When the 
recursive call eventually returns, the original instantiation continues with 
its scan of the adjacency list. 
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Figure 7.10 
Example BFS 
traversal. 

Start 
node 

A graph 
( a) 

A. G, F, D, B, E. H, C 

Order of visits in a BFS 
( b )  

T h e  complexity of this algorithm depends on the data structure 
employed. In this case, having used adjacency lists, the function can locate 
adjacent vertices by simply traversing a linear list. Thus, because the 
algorithm will examine each list node only once, and because there are 
at most 21EI list nodes, the performance of the algorithm is O(lE1). 
Alternatively, let’s assume we used an adjacency matrix to implement the 
graph. T h e  work required to identify all vertices adjacent to a given 
vertex is O(n). Therefore, because the function will process at most n 
vertices, the performance of the algorithm becomes O(nZ). 

Breadth First Search 

Another important traversal method for graphs is the Breadth First 
Search (BFS). A BFS differs from a DFS in that the BFS visits nodes in 
order of increasing distance from the start node. That is, it processes 
all nodes adjacent to the start node first, then all nodes adjacent to those, 
and so on. It can be likened to traversing a tree by levels. 

Figure 7.10 depicts a sample BFS traversal. It uses the same graph 
contained in Figure 7.9a. However, note the different order in which a 
BFS visits nodes. 

Obviously, as developers of a BFS algorithm, we must ensure that 
the function processes nodes in the correct order. The  example function, 
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bf s ( ) , presented in Listing 7.2, demonstrates how we can accomplish 
this. The  routine begins by placing the start node of the graph on 
a work queue. (In this example, we arbitrarily selected alist [ O ]  as 
the beginning point of our search. We could easily adapt the func- 
tion to receive this value as an argument instead.) It then iteratively 
removes the next element from the queue, processes it, and enqueues all 
nodes adjacent to that element. It continues in this manner until the 
queue becomes empty. The  function assumes all the declarations from 
Listing 7.1 and two queue routines from Chapter 3. 

As with a DFS traversal, this algorithm’s complexity is determined 
by its underlying data structure. For this implementation, the outer while 
loop will iterate exactly once for each vertex: O(n). If, as with this 
implementation, we use adjacency lists, the inner loop will be 
iterated O(m) times (the number of edges in the graph). If an adjacency 
matrix is used, the inner loop will be executed O(n) times, yielding a 
complexity of O(nZ). 

Connected Graphs 

As you may recall, a graph is considered connected if, for each pair of 
vertices (vj, v,), there exists a path from oi to v,. If you were to 
consider the problem for a moment, you would discover that there is 
an easy way to determine algorithmically whether a graph is con- 
nected. Simply perform either a BFS or a DFS and then determine 
whether any unvisited vertices remain. The  code for such a func- 
tion, conn-graph ( ) , appears in Listing 7.3. 

Weighted Graphs 

Graphs can become even more functional if we assign values to edges. 
These values, referred to as weighs, represent a relative cost (or benefit) 
associated with each edge. For example, the graph in Figure 7.11 
represents the route map of an air carrier. The  weights represent the air 
miles between each node (city). 

Formally, a weighted graph is a triple G = (V, E ,  W), where (V, 
E )  is a graph (or digraph) and W is a function that maps edges to weights. 
That is, if e E E,  then W(e) yields its weight. T h e  weight of a path 
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#define VISITED 1 

207 

void bfs( void 
{ 

int node ; 
struct adj-node *tmp; 

/ *  
* Put first element on queue 
* /  

addqueue( 0 ); 

alist 101 .tag = VISITED; 

/* 
* Begin the BFS 
* /  

while( (node = delqueue() ) 
{ 

= QUEUE-EMPTY ) 

/*  
* Add adjacent nodes to queue 
* /  

tmp = alistCnode1.adj; 
while ( tmp ! = NULL ) 

{ 
if ( alist [tmp- >vertex] .tag ! = VISITED ) 

{ 
addqueue ( tmp - >vertex 1 ; 
alist [ tmp - >vertex] . tag = VISITED; 

1 
tmp = tmp - >next; 

1 
1 

1 

listing 7.2 
Breadth First Search. 
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#define MAXNODES 100 
# d e f i n e  TODO 0 
# d e f i n e  V I S I T E D  1 

#define TRUE 1 
# d e f i n e  FALSE 0 

i n t  c o m - g r a p h (  void ) 

E 
i n t  i; 

/ *  
* Ini t ia l ize  tag f i e l d s  
* /  

f o r (  i = 0; i < MAX-NODES; i++ ) 
al i s t  [i] .tag = TODO; 

d f s (  0 ) ;  

f o r (  i = 0; i < MAI-NODES; i++ ) 
i f (  a l i s t [ i l . t a g  !=  VISITED ) 

r e t u r n (  FALSE ); 

r e t u r n (  TRUE 1;  
1 

listing 7.3 
Connect graph 
function. 

in a weighted graph is the sum of the weight of its component 
edges. 

7.4 SPANNING TREES 

As we have seen, both DFS and BFS traversals visit all vertices in a 
graph. However, they do not necessarily traverse all the edges. Let’s 
examine this point more closely. At any given moment during a tra- 
versal, we can envision the edges of the graph as belonging to one 
of two distinct sets: 



7.4 Spanning Trees 209 

- 

Figure 7.11 
Airline route map 
revisited. Miami b 

S-set of edges already traversed (used) during the search 
B-the remaining (back) edges. 

Throughout the traversal, the algorithm moves edges from set B to 
set S. When the traversal completes, the function has visited all vertices; 
however, not all edges are in set S. That is, S contains only the edges 
minimally required to visit all vertices. 

A closer examination reveals that the edges in S form a tree (i.e., 
no cycles exist). This tree is of special interest and is called a spanning 
tree. A spanning tree is composed of all the vertices in G and only the 
edges in S. Graphs may have more than one spanning tree. Figure 7.12 
contains a sample graph and several of its spanning trees. Note that 
in each example, the back edges (i.e., the edges not included in S) would 
form cycles in the spanning tree. 

Formally, a spanning tree for a connected graph G = (V, E )  is a 
subgraph of G that forms a tree connecting all vertices in G. T h e  
number of edges in a spanning tree is n - 1, where n represents the 
number of vertices in G. As mentioned earlier, a graph may have more 
than one spanning tree. 

We can easily modify and adapt the traversal routines to generate 
a spanning tree for a given graph. Simply add a statement to either 
df s ( ) or bf s ( ) that stores all traversed edges so that they may be 
printed or processed later. T h e  two types of trees derived from 
the modified algorithms are referred to as a depthfimtspanning tne and 
a breadth j m t  spanning tree, respectively. 

There are many uses for spanning trees. For example, consider 
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Figure 7.12 
Graph and spanning 
trees. 

implementing a broadcast facility for a communications network. 
A spanning tree could represent the set of paths required to ensure 
that a message will be transmitted to every node in the network. 

Minimal Spanning Trees 

Extending the preceding example, we could add weights to the graph 
representing our communication network. The  weights could be used to 
represent the cost of sending a message between any two nodes. If 
we anticipated using the broadcast facility extensively, it would 
be to our advantage to analyze the structure of the network to deter- 
mine a broadcast path of minimal cost. If we define the weight of a 
spanning tree as the sum of the weights of its component edges, then 
what we need to determine is a spanning tree of minimal weight. We call 
this a minimal spanning tree (MST). Note that a weighted graph may 
have more than one MST. 

MST Construction 

T h e  construction of an MST begins with the selection of an initial 
vertex. We then repeatedly add to the tree edges of minimal weight until 
all vertices in the graph are represented. At any given moment during 
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Edges in S2 
Edges 
in S, 

Start 
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Vertices in S1 Vertices in S2 

21 1 

Edges in S3 

Vertices in S3 

Figure 7.13 
Minimal spanning tree 
construction. 

the construction, the edges and vertices are partitioned into three dis- 
joint sets: 

Set S1 T h e  set of vertices and edges already part of the MST 
Se t& T h e  set of vertices (and incidental edges) adjacent to the 

vertices in Sl. Specifically, each vertex in S, connects to a vertex 
in S1 via an edge of minimal weight. In other words, a given 
edge in Sz might be adjacent to more than one vertex in S,; the 
Sz set contains the incidental edge of minimal weight. We 
will select the next member of S, from this set. 

Set S, All the remaining edges and vertices. 

The  function constructs the MST one edge at a time; it terminates 
as soon as all vertices are in 8,. Edges are considered for inclusion into 
S1 (from S,) in order of increasing weight, and only if they do not 
create a cycle in the MST. Figure 7.13 depicts an intermediate 
point in the processing of an MST; Listing 7.4 presents a pseudo- 
code description of the algorithm. (Note that for programming conven- 
ience, we have divided each S set into companion v and e sets.) 

T h e  algorithm functions as follows (see Fig. 7.14): 
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mst( G ) 
{ 
1: 

2: 

3: 

4:  

5: 

6: 
7 :  

8 :  

1 

S1 = {i}; / *  Starting point * /  
S3 = V(G) - vl; / *  Remove i from S3 * /  
s2 = { I ;  / *  Nu11 set * /  

while( vl !=  V(G) ) {  
forall( j in v2 adjacent to i ) {  

/*  
* W(x, j) = =  weight of edge x 
* incident to j in 52. Vertices 
* in S2 may be adjacent to more 
* than one S1 vertex. We must find 
* the edge of minimal weight. 
* /  
if( W(i, j) < W(x, j) I {  / *  Adjust S2 set * /  

e2 = e2 - (x, y); 
e2 = e2 + (i, i); 

1 
1 

forall( k in S3 adjacent to i ) {  / *  Adjust 53 set * /  
v2 = v2 + {k}; v3 = ~3 - {k}; 
e2 = e2 + (i, j); 

1 

if( e2 == { I  1 
return( NO-SPANNING-TREE 1;  

e = MIN( e2 1 ;  / *  Select edge w/ min weight * /  
i = vertex( e ); / *  Set i = the v2 vertex of e */ 

/ *  Adjust sets */ 
el = el + e; 
e2 = e2 - e; 
vl = vl + i; 
v2 = v2 - i; 

1 

Listing 7.4 
MST algorithm-pseudo-code description. 
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Figure 7.14 
Operation of MST 
algorithm. 

1. Variables are initialized. i represents an arbitrary vertex where 
we will begin construction of the MST. (We could obviously modify 
the function to receive this value as an argument.) 

2. T h e  while loop iterates until the v l  set is equal to G. (That is, 
until all vertices are included in the spanning tree). 

3. T h e  algorithm adjusts the v2 set with respect to i .At this point, 
i represents a vertex that has just been moved into the v l  
set. T h e  function must therefore adjust the v2 set to ensure that 
it contains all vertices in G adjacent to vertices in vl.  
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4. 

5. 

6. 

7. 
8. 

After adjusting the v2 set, the function must also update the 
v3 set. 
If, at this point, e2 is empty, G has no spanning tree and the 
function returns to its caller. 
In this step, the function selects the e2 edge with minimal weight 
for inclusion into the MST. 
This step determines the v2 vertex of the selected edge. 
Adjust the S1 and S2 sets. 

Figures 7.14b and 7.14~ illustrate the first two passes of the algo- 
rithm when processing the graph of Figure 7.14a. Note that after the 
second pass the shortest edge m was moved to the SI set and that 
BE replaced AB in S2. 

Analysis 

An analysis of the algorithm shows that the critical steps are 3, 4, and 
6. Assuming n = IVI and m = IEI, the total time required for steps 3 and 
4 is O(m). However, in the worst case, step 6 might require n - 1 
comparisons, and because it will execute n times (step 2), the overall 
complexity becomes OW). 

Implementation 

There are several operations in the MST that are critical to its perfor- 
mance. The  function must 

Determine to which set a given vertex belongs 
Access all members of the v2 set 
Determine the vl component of a vertex in v2 
Reference the weight of each edge 
Reference the adjacency list for a given vertex. 

Keeping the foregoing criteria in mind, we see that Listing 7.5 
contains data structures suitable for implementing the MST algo- 
rithm. We represent each vertex as an entry in a structure array of 
type mst-graph. The  field, set, identifies the set to which the 
vertex belongs (initially S3). For values of 1 or 2 (indicating inclusion 
in either S1 or S2), vlnode contains the node’s adjacent vertex and weight 
contains the weight of the incidental edge. When the algorithm termi- 
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int s2list = -1; /* Head gtr for V2 list * /  

struct nadj-list { 
int node ; /* ID of adjacent node * /  
int weight ; /* Weight of incident edge * /  
struct nadj-list *next;/* Pointer to next element * /  

1; 

struct mst-graph { 
int set; /* S1, S2, or S3 * /  
int s2link; /* Points to next 52 node * /  
int vlnode ; /* V1 node of an (El, E2) edge * /  
int weight ; /* Weight of El or E2 edge * /  
struct nadj-list *adj; /* Pointer to adjacency list * /  

} graph[ MAJ-NODES ] ; 

listing 7.5 
MST data structure. 

nates, we can determine the edges that are part of the MST by indexing 
through the structure array and printing: (i, graph i I . vlnode). 

T h e  adjacency list for each vertex is headed by the member ad j, 
which points to elements of type struct nadj-list. T h e  remaining 
field, salink, provides quick adcess to vertices in the 8, set. It forms 
a linked list headed by s2list. Figure 7.15 depicts the state of 
the data structure when processing the graph in Figure 7.14~. (Note 
that, for the sake for brevity, the adjacency lists are not included.) 
The  final implementation of the algorithm is discussed in the exercises 
at the end of this chapter. 

7.5 SHORTEST PATH ALGORITHM 

Another common problem associated with graphs is determining the 
shortest path between two vertices. As you may recall, the weight of a 
path is the sum of the weights of its edges. We will define the shortest 
path as the path of minimal weight connecting two vertices. 

T h e  direct approach to this problem is to write an algorithm that 
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Vertex Set 
A 1 
B 1 
C 2 
D 2 
E 2 
F 3 
G 3 
H 2 _ _ _ ~ . ~ -  

S2 List = H Figure 7.15 
State of data structure * Root node 
for Figure 7 . 1 4 ~ .  ** End of list 

SAVE 
S2 Link V1 Node 

* - 
A 
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C B 

- 
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Weight 

10 
11 
12 
4 

* 

- 
- 

16 

ADJ list -... 
-... 
-... 
-... 
-... 
-... 
-... 
-... 

enumerates all possible paths between two vertices, and then se- 
lects the one of minimal weight. This approach, however, is inefficient. 
(Consider the number of paths connecting any two nodes in a 
complete graph.) Alternatively, we will design a solution that functions 
in much the same manner as the MST algorithm. In short, it will 
begin at some point v, and create minimal paths of increasing magni- 
tude until it reaches the destination vertex up. 

As with the MST algorithm, edges and vertices be partitioned 
into three disjoint sets: 

S, The  set of vertices (and connecting edges) for which a shortest 
path from v, to some intermediate vertex has been found 

Sz The  set of vertices (and incidental edges) that are not yet part of 
the path but which are adjacent to vertices in S1. As with our 
MST function, each vertex in Sz is connected to a vertex in S1 
via an edge of minimal weight. 
The  remaining edges and vertices of the graph. S, 

As the function executes, it must repeatedly select an S, vertex for 
inclusion into the S, set. At first glance, it might appear tempting 
just to choose the Sz vertex of minimal weight. However, keep in 
mind that we are trying to build the shortest path, not the shortest 
edge. Thus, the selected edge is the one that minimizes the following: 

waght(va, v;) + weight(v;, up) for all edges (vi, wB) in S, 
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where weight(va, vj) represents the weight of an edge in S1, and we&ht(vi, 
ve) represents the weight of the edge of an adjacent vertex in S2. 

Figure 7.16 shows an example of how the algorithm functions. 
Given the state depicted in Figure 7.16b1 the next edge selected will be 
MC (even though is shorter). This is because X C  (weight value 
of 12) is shorter than ABD (weight value of 14). 

After moving KC into S,, we must reorganize the sets as depicted 
in Figure 7.16~. Note that AF was considered for inclusion into S2 but 
was supplanted by m. 

Listing 7.6 presents a pseudo-code description of the Shortest 
Path algorithm. A careful review of the code should prompt the 
question, How does it work? T h e  function actually constructs and 
maintains multiple paths until it determines the one that ultimately passes 
through the destination vertex. During any given iteration of the 
while loop, the algorithm selects, and will add an edge to, the 
shortest path currently contained in S1. 

But, you may ask, what if that path does not pass through destina- 
tion vertex? If you consider this problem carefully, you will observe 
that, as we continue to add edges to that path, it will eventually become 
larger than other paths contained in S1. Thus, during a subsequent iteration 
of the loop, the function will select some new, smaller path for proc- 
essing. Eventually one of the paths will include an edge incident to the 
destination vertex and the algorithm will terminate. T h e  exercises at 
the end of this chapter discuss the implementation in more detail. 

__ 
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Figure 7.16 
Example of Shortest 
Path algorithm. 

Graph 
(a )  
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Intermediate step. 

Note that MC will be the next edge selected. 
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( C) 
Reorganization after step 6. 



7.5 Shortest Path Algorithm 21 9 

SP( 0 ,  b, e 1 /* Shortest path from b to e * /  
{ 

vl = {bl; 
i = b; 
W(i) = 0; 
v3 = V(G) - vl; 
v2 = { I ;  
el = { I ;  
e2 = { I ;  

while( i ! = 3e ) { /* Until destination * /  
forall( j adjacent to i ) {  

if( j in v2 AND W(i) i- W(j) < w(b, j) ) {  

/*  Replace edge * /  
e2 = e2 - {x, jl; 
e2 = e2 + {i, j I ;  

l 

if( j in v3 ) {  /*  Move into V2 * /  
v3 = v3 - j; 
v2 = v2 + j; 
e2 = e2 + {i, jl; 

l 
l 
if( v2 == { I  ) / *  NO spanning tree * /  

return( NO-PATH 1;  

x = MINUPATH( e2 ); 
v2 = v1 - x; /* Adjust sets * /  
v1 = v1 + x; /* Remove x from Va * /  
i = x; /* Add X to VI * /  

l 
l 

I 

Listing 7.6 
Shortest Path algorithm-a psuedo-code description. 
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Graphs are powerful data models that we can use to solve a wide 
variety of problems in mathematics and computer science. They have 
been in existence for many years and have developed a unique and 
extensive nomenclature. 

In computer programs, graphs are usually implemented using either 
adjacency lists or adjacency matrices. A basic requirement of all 
graph algorithms is a traversal method. The  two most common are 
called depth first and breadth first traversals. 

We can add weights to edges in a graph. This imbues graphs with 
even more functionality. Two common problems associated with 
weighted graphs include generating a minimal spanning tree and find- 
ing the shortest path between two vertices. 

1. Write routines that insert and delete edges in a graph implemented 
using an adjacency matrix. Do the same for a digraph. Com- 
parehontrast implementation differences. 

2. Repeat exercise 1 using adjacency lists. 

3. Draw a complete graph with seven vertices. 

4. Apply both DFS and BFS traversals to the graph of exercise 3. 
Using the same beginning vertex for each traversal, list the order in 
which the vertices are visited. 

5.  Write algorithms to calculate the indegree and outdegree for 
any given node in a graph. Assume an adjacency list 
implementation. 

cency matrix. 

nected graph, the resulting edges form a tree. 

tree. (Do not assume a connected graph.) 

a complete graph? 

for a given graph. What is its complexity? 

graphs/paths. 

6. Rewrite both the DFS and BFS traversal functions using an adja- 

7. Show that when we perform a DFS or a BFS traversal on a con- 

8. Write an algorithm that determines whether a given graph is a 

9. What is the maximum number of paths between two vertices in 

10. Design and implement a function that computes all spanning trees 

11. Implement the minimal spanning tree algorithm. Test with several 

SUMMARY 

E X E R C I S E S  



Figure 7.17 
The Koenigsberg 
bridges. 
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Bridges 

12. Implement the Shortest Path algorithm using the data structures 
from the previous exercise. Test  your program using several graphs/ 
paths. 

13. What is the complexity of the function conn-graph ( ) (see List- 
ing 7.3)? 

14. Write a function that computes all the connected components of 
a given graph. (Hint: Extend the function corn-graph ( ) .) 

15. Consider the diagram in Figure 7.17. It depicts a section of a town 
in East Prussia called Koenigsberg. The  river Pregal flows 
around the island Kneiphof and then splits in two. This forms the 
four land areas that are connected by the seven bridges. 

Your problem is to determine whether it is possible to begin 
and end a walk at the same spot while crossing each bridge exactly 
once. (Swimming is not a viable option.) 

This problem was originally solved-using a graph-in 1736 
by the mathematician Euler and became known as Euler’s Walk. 
Euler used vertices to represent the land areas and edges to repre- 
sent the bridges. 
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8.1 I NTRO DUCT1 0 N 

In this chapter we examine efficient methods to search for information. 
Searching is a common task in our everyday lives: We look up 
telephone numbers in a directory; locate words in a dictionary; deter- 
mine if we are free for an appointment on a given day; the list is endless. 
Searching is also a common task in computer applications; it can also 
be one of the most time-consuming. As a result, it is to our advantage to 
do it as efficiently as possible. 

Before we begin, we should introduce some terminology. In a 
computer program, searching is the task of locating a particular 
recodwithin a collection of records. Records are composed of one or 
more jields or elements. For example, an employee record might include 
fields for name, address, and social secur4ty number, among others. A 
collection of records is commonly referred to as a table. 

Records are usually identified by one of their fields called the key. 
Keys are usually exclusive; this implies that each key uniquely identifies 
one record. Records may also have more than one key. For example, 
an employee table may be keyed on both social security number 
and last name. In such cases, we may initiate searches using either 
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8.2 Sequential Searching 

int secLerch( int data[], int size, int key ) 

c 
int i; 

I = size - 1; / *  C arrays have a 0 offset * /  
while( i >= 0 && data[il !=  key ) 

; i-- 

return( i 1;  
1 

listing 8.1 
Sequential search. 

key. We need not store records in any particular order, but, as we 
will see, if we sort tables by key, we can increase the efficiency of 
some searching algorithms. 

T o  simplify our examples, simple integer arrays will serve as our 
data records. Each element in the array will represent one key. 
Please keep in mind, however, that we can apply all the principles 
we will discuss to larger, more complex record formats. 

8.2 SEQUENTIAL SEARCHING 

T h e  simplest and most direct approach to this problem is the exhaus- 
tive or sequentialsearch. Given an unsorted table of records, we can 
write a function that scans an entire table, one record at a time, search- 
ing for a given key. Listing 8.1 contains an example. 

The  function, seq-srch ( ) , requires three arguments: key is 
the search key, data[] is the table, and size indicates the 
number of entries in the table. T h e  algorithm begins its search at the 
end of the list and iteratively compares each record with key until 
it either finds a match or exhausts all possibilities. In the former case, 
it returns the index of the record; in the latter case it returns the 
value -1. 
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Complexity We will partition the discussion of this algorithm’s 
complexity into two parts. For a successful search, the number of 
comparisons depends on the position of the key within the table. 
Assuming an equal probability for all keys, the average number of 
comparisons in a successful search will be 

1 + 2 + 3 + . . . + n  - n + l  -- 
n 2 

or roughly O(n/2). If the desired key is not in the table, the function 
performs n comparisons. The  following sections discuss improvements 
to this basic algorithm. 

8.3 SEARCHING ORDERED TABLES 

Before we introduce our first refinement, let’s observe how humans 
search for information. For example, consider how we might look up the 
word processor in the dictionary. We would not begin at the A’s and 
scan every entry (as suggested by the preceding algorithm). Rather, using 
the thumb tabs, we would begin our search at (or near) the P’s. None- 
theless, we know intuitively that we will not overlook our word when we 
skip past the earlier entries. Why? Because words in the dictionary 
are ordered (sorted). We can apply this same principle to improve 
the performance of our basic searching algorithm. (Chapter 9 will 
discuss sorting methods in detail; throughout the discussions in 
this chapter, we will assume that our tables have been sorted.) 

Ordered linear Search 

Assuming an ordered table, the first improvement we can make to 
seg-srch( ) is to terminate the search whenever data [ i] < 
key. That is, we do not have to search the entire table to determine 
that a key is not present. We can terminate the search as soon as 
we reach a point where the remaining data values are less than the 
search key. An example algorithm, seq-arch2 ( ) , is presented in List- 
ing 8.2. 

Complexity The  discussion of complexity again assumes that all keys 
are equally likely. For a successful search, the performance of 



8.3 Searching Ordered Tables 225 

#define NOT-FOUND -1 

int secsrch2( int data[], int size, int key ) 

c 
int i; 

i = size - 1; 
while( i >= 0 && data[il !=  key 1 

if ( datatil < key 1 /* Terminate Early * /  

else 
return( NOT-FOUND 1; 

i-- ; 

return( i 1; 
1 

listing 8.2 
Modified sequential search algorithm. 

seq-srch2 ( ) remains the same (i.e., O(n/2)). We have, however, 
improved-by half-the time required to determine that a given key is 
not part of the table. 

Indexed Sequential Search 
Our next improvement increases efficiency at the expense of additional 
space. This method, referred to as an indexedsep.uentia~sea~c~, uses a second 
table, called an index, to point to entries in the main data table. See 
Figure 8.1 for an example. 

T h e  index array effectively partitions the main data table into 
subarrays. If there are n entries in the index, and siw elements in 
the main data table, then each index entry represents a subarray of 
siw/n elements in the main table. Note that the entries in both 
tables must be ordered by key. 

with a scan through the index array searching for the case where 
T h e  idea behind this algorithm is very simple. T h e  function begins 

indextil <= key < index[i+ll 
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Figure 8.1 
Indexed sequential 
tables. 

8 Searching 

Index 

Main table 

That is, the function scans the index to determine which subarray in 
the main table would contain key (if it exists). It then uses the 
value stored in index [ i I as the point at which to begin a sequential 
search of the main table. Note that, as the function scans the index, it is 
skipping over large chunks of the main data table. An example algo- 
rithm, ink-seg ( 1 ,  appears in Listing 8.3. 

The  function indx-seq( ) begins with an initial test to deter- 
mine whether its key argument is smaller than the smallest key in the 
data table; if it is, the function immediately returns the value 
NOT-FOUND to indicate an unsuccessful search. 

The  first while loop scans the index to determine in which 
subarray of the main data table key would reside. The  index, 
idx [ 1, is an array of type struct index. This structure contains 
two members: val is the key value each index element represents; 
slot is an index that points into the main data table. 

After scanning the index, indx-seq ( ) invokes s e ~ e r c h 2  ( ) 

to search the main table. The  function calculates the boundary limits of 
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#define NOT-FOUND -1 

st ruct index { 
int Val ; 
int slot; 

I ;  

int indx-seg( int key, struct index idx[l, int idx-size, 
int data[], int data-size ) 

int i, size, ret; 

if ( key C idx[Ol .val 1 / *  Initial test for bad key */  
return( NOT-FOUND 1 ;  

/* 
* Scan index for key 
* /  

i = 0; 
while( i < idx-size && key >= idx[i+l] .Val ) 

i++; 

/* 
* Determine segment size 
*/ 

if( i == idx-size - 1 ) / *  i points to last slot */ 

else 
size = data-size - idx[il.slot; 
size = idx[i+l] .slot - idx[il .slot; 

/* 
* Scan data table 
*/ 
ret = seg_srch2( &data[ idxtil .slot I ,  size, key 1; 
if( ret >= 0 1 

ret = ret + idx[il.slot; 
return( ret ) ; 

listing 8.3 
Indexed sequential search algorithm. 
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the subarray based on the values contained in the index. Note that 
the arguments we pass to seg-arch2 ( ) only delineate the subarray that 
we want it to search. As a result, if the search is successful, the function 
must add the slot offset contained in the index to the value returned 
by seq-erch2 ( 1. 

Complexity T h e  efficiency of this algorithm is a function of the size of 
the index. As we decrease the size of the index array, we increase the 
size of the sublists each index entry represents; this, in turn, increases 
the size of the sublist that we must search in the main table. Increasing 
the size of the index results in an increase in the number of 
comparisons required to search the index itself. In general, if k 
represents the size of the index and n represents the size of the table, 
the complexity of this method is 

If the index begins to grow so large that it becomes inefficient, we 
can use a secondary index. A secondary index functions in much the 
same manner as a primary index except that it points into the primary 
index, not the main table. Searching begins with a scan through the 
secondary index; this points us to a subarray in the primary index, and 
then processing continues as described earlier. An example of such a 
data structure appears in Figure 8.2. 

Binary Search 

As highlighted in the previous section, searching algorithms perform 
fewer comparisons if they can skip over some elements. We can extend 
this idea to the point where we can eliminate half of the remaining 
list with each unsuccessful comparison. We call this technique a 
binary search. 

We begin a binary search by comparing the search key with the 
middle entry of an ordered table. If they match, the function 
returns the index of this element. Otherwise, processing continues 
using either the lower or upper half of the table (depending on the value 
of the key). In essence, we eliminate half the table with only one 



Figure 8.2 
Secondary index. 
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Key Data 

Key pointer 

Key pointer 

Secondary index 

Primary index 

Main table 

comparison. This is the most efficient method of searching an ordered list 
without the use of additional tables or indices. 

An example binary search function, binsrch ( 1 ,  appears in List- 
ing 8.4. T h e  variables upper and lower delineate the portion of the 
array that the function has not yet searched. Initially, their values are 
set to the upper and lower bounds of the array. T h e  value stored in the 
variable middle is the index of the middle entry of the current sublist. 
With each iteration of the while loop, the function compares key with 
data [middle]. Based on the result, binsrch ( ) either returns the 
location of key in the table or adjusts its index variables accordingly. If 
the function fails to locate key, it returns the value NOT-FOUND. 

Complexity T h e  complexity of binsrch ( ) is not as obvious as some 
of the other algorithms we have been discussing. T o  begin our analysis, 
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#define NOT-FOUND -1 

int binsrch( int data[], int size, int key 
E 

int lower, middle, upper; 

lower = 0; 
upper = size - 1; 
while( lower <= upper { 

middle = (lower + upper) / 2; 
if( key == data [middle] ) 

else if ( key > data[middlel ) 

else 

return( middle 1 ;  

lower = middle + 1; 
upper = middle - 1; 

1 

return( NOT-FOUND ); 

1 
listing 8.4 
Binary search 
algorithm. 

notice that if the function fails to locate a key during the first iteration 
of its loop, it divides the list in half and repeats the process. At this 
point, we can compute the performance of the algorithm as 1 (the cost 
of the first comparison) plus the cost of processing the remaining half. 
This is best expressed by the formula 0(1 + O(n/2)) (where n repre- 
sents the number of elements in the table). 

We can compute the cost of a failed second pass in much the same 
way: 1 plus the cost of processing half the remaining entries. Note that 
at this point, half the remaining entries is equivalent to one fourth of 
the array or n/4. The  total complexity at this point is 0(1 + 1 + 
O(n)/4). 

We can continue in this manner building each seccessive term. In 
other words, with each failed iteration, we add 1 to our formula and 
divide n again by the next power of 2. However, this formula does not 
provide a definitive complexity. That is, it defines the value of O(n) in 
terms of n. This is an example of a recurrence relation. 
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We can define a recurrence relation as 

an equation or inequality that relates the value of a function on successively smaller 
values of the function. 

A recurrence relation does not adequately describe the complexity of 
an algorithm. That is, to be useful, we must define complexity in a way 
that does not express f ( n )  in terms of n. Thus, we must transform the 
recurrence relation into its equivalent closed form. In closed form, 
we evaluate a function f ( n )  without referring to other values of n. 

We begin the transformation of a recurrence relation by examining 
its boundary conditions. A boundary condition yields a definitive 
value for a particular function argument. In our example, if n = 1, 
then f(1) = 1. Thus, we now have two formulas that describe 
the relation: 

f(1) = 1 

Now let’s expand the second formula: 

= 1 + 1 + f ( $  

= l + l + l + f  - 
t 3 )  

Note that as we add each new term, we divide n by the next 
power of 2. Relating this back to the binary search algorithm, each term 
in the formula corresponds to a failed comparison, Therefore, for an 
array of size n, there will be (in the worst case) approximately log&) 
terms, each of which has a complexity of 1. This yields a final closed 
form of 

f ( n )  = l o g h )  + 1 

T h e  additional 1 term is to compensate for the fact that, in general, 
log&) might not compute to an even integer. As a result, a binary 
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search function might perform one additional comparison. Thus, this 
yields a complexity of O(log, a). 

Modified Binary Search 

There is an interesting variation of the binsrch ( ) algorithm. Instead 
of using-and computing the value of-three variables, we only 
require the use of two: one to track the current position in the array 
(middle), and a second to track a rate of change (delta). T h e  
idea is that after each unsuccessful comparison, the algorithm will 
apply the value in delta to middle to compute the next slot; 
it then divides delta by 2. The  direction of the change is reflected 
as a positive or negative value for delta. The  algorithm binsrch2 ( ) 
is presented in Listing 8.5. 

Interpolation Search 

There is another interesting variation on the binary search algorithm. 
In this version, we try to guess more precisely where the search key resides 
in the array. Before we describe the method in detail, let’s again 
consider how we look up words in a dictionary. If the word we are searching 
for begins with a w, we begin our search near the end of the book; if 
the word begins with a c, we search near the front. In short, we 
begin our search near the location where we expect to find our word. 
We call this technique an interpolation search. 

We can simulate an interpolation search in a computer program 
with a small modification to our binary search algorithm. Instead 
of simply calculating middle as 

(lower + upper) / 2 
we instead estimate the location of the record based on the search 
key and the current lower and upper bounds of our array. The  
formula we use is 

(key - data [lower]) X (upper - lower) 
(data [upper] - data [lower] ) 

middle = lower -?- 
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#define HALF(x) ( ( ( x  
#define NOT-FOUND -1 

int binsrch2( int data 
E 

+1)/2 

1, int size, int key ) 

int delta, middle; 

delta = size / 2; 
middle = delta; 
while( key != databiddle] ) { 

if( delta == 0 1 

else if ( key > data[middlel ) 

else 

delta = delta / 2; 

return( NOT-FOUND ); 

middle += HALF( delta ) ; 

middle -= HALF( delta ); 

1 

return( middle );  

1 
listing 8.5 
Modified binary 
search. 

In essence, we are weighting our formula so that the new value of 
middle will be closer to the expected location of our key. 

For example, suppose that a data array contains the values 1, 2, 
3, . . . , 10, and that the search key is the value 8. The  basic binary search 
algorithm would compute middle as 

lower + upper - 1 + 10 11 
2 2 2 

- - = 5.5 middle = 

An interpolation search computes middle as 

(key - data[lower]) x (upper - lower) 
(data [upper] - data[lower]) middle = lower -!- 

(8 - 1) X (10 - 1) 
(10 - 1) 

= 1 +  = 8  
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Even though the calculation is somewhat more complex, an inter- 
polation search can provide a significant improvement over a binary search 
for large datasets with evenly distributed keys. 

Fibonacci Search 

As we have observed, a binary search algorithm divides the data array 
in half with each loop iteration. Now let’s consider another way 
to partition the dataset using the Fibonacci sequence. 

T o  begin our discussion, assume that the size of our data array is 
some Fibonacci number F(n). Our search algorithm will make its first 
comparison using element data[& - l)]. There are three possible 
results: 

key = data[F(n - l)] 

key < data[F(n- l)] 

The  search is successful and the function returns 

The  key, if it exists, resides in the subarray 
the index of the record. 

indexed from lower to data[F(n - l)]  - 1. The  next comparison will 
use element data[F(n - Z)]. 

T h e  key, if it exists, resides in the subarray 
indexed from data[F(n- l)] + 1 to data[F(n)]. Note that the 
size of this subarray, F(n) - F(n - l), is also a Fibonacci number. 
The  next comparison will use element data[F(n- 1) + 

key > data[F(n - l)] 

F(n - 3)]. 

The  advantage of this technique is that the algorithm uses only 
addition and subtraction rather than the division called for in a binary 
search. Thus, a Fibonacci search might outperform a binary search on 
machines where division is significantly slower than addition. 

The  only practical item we have not addressed is the (likely) event 
that the size of the array is not an exact Fibonacci number. We 
can overcome this problem by adjusting our index variable before the 
first iteration of the loop. The  complete algorithm appears in Listing 8.6. 

Note that the function fibsrch( ) requires the help of a routine 
to compute Fibonacci numbers. The  code for this function, called 
fibnum ( ) , is presented in Listing 8.7. 
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#define NOT-FOUND -1 

int fibsrch( int data[], int size, int key ) 

int tmP, index, adj, fmin2, fmin3; 

tmp = fibnum(size); 
adj = size - fib(tmp); 
index = fib(tmp- 1) ; 
fmin2 = fib(tmp-2); 
fmin3 = fib(tmR-33); 

if ( key > datalindexl / *  adj for size ! =  fib numb * /  
index = index + adj; 

while( index >= 0 && index < size ) { 

if( key == data [index] 

else if ( key < data[indexl ) { 

return( index );  

index = index - fmin3; 
tmp = fmin2; 
fmin2 = fmin3; 
fmin3 = tmp - fmin3; 

index = index + fmin3; 
fmin2 = fmin2 - fmin3; 
fmin3 = fmin3 - fmin2; 

1 else { 

1 
1 

return( NOT-FOUND 1;  

listing 8.6 
Fibonacci search. 
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listing 8.7 
Compute a Fibonacci 
number. 

8 Searching 

i n t  fibnum( i n t  num ) 

{ 

i n t  i ,  P# q I  tmp; 

i f  

i f  

0 )  
return( 0 1; 

num == 1 )  
return( 1 ); 

num == 

p = 0;  
q = 1; 
f o r (  i = 1; p+q <= num; i++ ) {  

tmp = q; 
9 += Pi  
p = tmp 

1 

return( i ) ; 

1 

Binary Tree Searching 

As you may recall, in Chapter 6 we discussed the construction of an 
ordered binary tree (OBT). An OBT has the property that far a 
given node n, the data values contained in its left subtree are less than 
data(n) and the data values contained in its right subtree are greater 
than dot&). 

Once the tree is constructed, we can search for keys in an OBT 
in a straightforward manner. Compare the search key with the data value 
stored in the root node; if they are equal return. If key < data(root), 
traverse the left subtree; otherwise, traverse the right subtree. Recursively 
reapply this logic until you either locate the desired key or encounter 
a terminal node. In the latter case, the function returns a value indicating 
that it could not locate the key. 

Listing 8.8 contains the code for the algorithm treesrch ( 1. A 
brief inspection will show that it is very similar to the traversal 
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listing 8.8 
Ordered binary tree 
search. 

struct bt-node { 

int data; 
struct bt-node *lchild; 
struct bt-node *rchild; 

struct bt-node * 
treesrch( struct bt-node 
{ 

if( node == NULL 1 
return( NULL ) 

*node, int key ) 

else if( key == node->data ) 

else if ( key < node->data ) 

else 

return( node 1;  

return( treesrch(node->lchild, key) );  

return( treesrch (node ->rchild, key) 1 ; 
I 

algorithms discussed in Chapter 6. The  function assumes that its search 
tree was constructed using an insertion algorithm similar to the 
one presented in Listing 6.5. Upon success, it returns a pointer to the 
matching node; otherwise it returns the value NULL. 

Complexity T h e  complexity of this algorithm depends on the shape of 
the search tree. For a full or complete binary tree, we can expect an 
O(log, n) complexity (where n represents the number of nodes in the 
tree). However, as noted in Chapter 6, insertion algorithms can produce 
skewed trees. (This typically occurs when the insertion routine receives 
keys in relatively sorted order.) Thus, in the worst case, complexity can 
degrade to O(n) (linear). In practice, however, keys are usually random 
enough that we may expect a fairly balanced tree. This fact, combined 
with its relatively easy implementation, makes treesrch ( ) the 
algorithm of choice for many applications. 
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8.4 HASHING 

The  searching techniques we have discussed thus far share one com- 
mon attribute: Their efficiency is inversely proportional to the 
number of comparisons they perform. As highlighted in the preceding 
sections, as we eliminate comparisons, we improve the perfor- 
mance of the algorithms. 

There is, however, another way in which we can improve the 
performance of searching algorithms. Consider a scenario in which the 
keys themselves point directly to records. That is, information encoded 
directly within a key can point us to its associated record. Thus, we would 
no longer require multiple searches to access a record; rather, we could 
simply examine the key and know where to look. 

We can effectively achieve this capability using a technique called 
hashing or scatter storage. With hashing, we determine the location 
(or address) of a record by performing an arithmetic computation on 
its key. The  result of this computation (called a hashingfunction) 
yields the location of the record in a table (called a hash table). Specifi- 
cally, a hash function maps all possible key values into specific slots in 
the hash table. Once we store a record in the table, we can retrieve 
it using the same process. That is, the hashing function we use initially 
to insert keys into the hash table is the same one we use to search 
for records later. 

Hash tables are sequential and contiguous. Each slot in the table 
is called a bucket. The  contents of buckets can either be the record 
itself or a pointer to where the record actually resides (out on disk, 
for example). The  latter is a common approach used by many 
professional database management systems. Buckets may hold (or 
reference) more than one key. 

Although, as we will see, there are some difficulties that we must 
address, the justification for studying hashing techniques should be obvi- 
ous. Hashing allows us to search and retrieve records quickly and 
efficiently. 

Simple Hashing Example 

As alluded to earlier, there are several concerns we must address. T h e  
best way to highlight them is by way of example. 

Let’s assume we have to build an application that supports a 
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#deiine DIGIT1 5 
#define DIGIT2 6 

int hash-tel( char tel-number[] ) 

{ 
int digitl, digit2; 

digitl = tel-number[DIGITll - '0'; /* Convert to int * /  
digit2 = tel-number[DIGIT21 - '0'; /* Convert to int * /  

return( digitl*lO + digit2 ) ;  I }  
listing 8.9 
Hashing function. 

customer service department for some company. T o  simplify the operation, 
for both representatives and customers, we will key account records 
by telephone number. Thus, when answering a call, the service 
representative will retrieve account information by entering the cus- 
tomer's telephone number into the system. 

Because access time is important to us-we do not want customers 
to endure a long wait while the system retrieves their account 
information-we will use a hashing-based solution. Specifically, we 
will hash on the right-most two digits of the customer telephone 
number. Because our hash function can only return values in the range 
of 0 through 99, we build a hash table with 100 buckets. Thus, our first 
hashing function might be similar to the one presented in Listing 8.9. 

The  day finally comes and our application cuts live: We enter our 
first customer, 5551024, into slot 24 of our table. We then enter 
our second customer, 5552048, into slot 48. T h e  application continues 
along quite smoothly until the day customer 5554048 calls to open an 
account. We then realize that our hashing function is not perfect. That 
is, the function maps keys 5552048 and 5554048 into the same bucket. 
This is called a collision. A collision occurs whenever a hash function 
maps two distinct keys to the same bucket. 

As simple as this example might seem, it highlights some of the 
more important issues surrounding hashing: 
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Hashing functions must generate bucket addresses quickly. If the 
hashing algorithm is too inefficient it will overshadow the 
advantages this technique provides, and we would likely use one 
of the other searching techniques discussed in this chapter. 
Along with being efficient, our hashing function should minimize 
the number of collisions that might occur. That is, we would 
like the algorithm to distribute keys evenly throughout the entire 
hash table. 
Regardless of the type of hashing function, we will likely experi- 
ence collisions because the domain of keys is usually larger than the 
number of buckets we can (or wish to) allocate in our hash table. 

The  following sections address these concerns in more detail. We 
will begin by discussing collision resolution and then continue 
with a discussion of efficient hashing functions. 

Collision Resolution Strategies 

As mentioned earlier, a collision occurs whenever a hashing function 
maps two (or more) distinct keys into the same bucket. Regardless of its 
relative sophistication, a hashing function will likely generate its share 
of collisions. The  main reason is that the size of the key domain 
is typically larger than we can (or want to) make the hash table. For 
example, we probably could not allocate enough buckets for all potential 
accounts if we did index customer records by their complete tele- 
phone numbers. 

Theoretically, we could develop a hashing function that guaran- 
tees a one-to-one mapping of keys to buckets. However, it will likely 
negate one of the major advantages of hashing: speed. 

Thus, because it is effectively a foregone conclusion that collisions 
will occur, our only recourse is to develop methods to resolve them. 
In the sections that follow, we will discuss two important collision 
resolution strategies: chaining and open addressing. 

Chaining 

Separate Chaining 

Stated simply, the problem with collisions is that the hash function 
maps more than one key to the same bucket. A direct solution to the 
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/Hash Table (HT) 

Figure 8.3 
Hash chains. 

problem is to allow buckets to hold more than one key. We can 
effectively accomplish this by employing a technique called 
chaining. 

With chaining, hash table slots do not hold data; rather each ele- 
ment in the table is a pointer to a linked list. Thus, if our hashing 
function maps two (or more) keys to the same bucket, we just insert 
them into a linked list. 

An example of this technique is depicted in Figure 8.3, wherein 
we use chaining to resolve collisions in an employee database. T h e  hashing 
algorithm is based on the hire date of each employee. Specifically, the 
hash function returns the day of the month each employee was hired. 
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struct hash-node I 
int data; / *  The data we need to store * /  
char key[ MAX-KEY 1 ; / *  The ‘key‘ for this record * /  
struct hash-node *next; / *  Ptr to next node in chain * /  

I ;  

struct hash-node *hash-table[ HASH-SIZE I; 

struct hash-node *get-hash( char *key 1 
{ 

int slot; 
struct hash-node *first-elem; 

slot = hash-function( key ) ;  
first-elem = hash-table [ slot 1 ; 
return( mod-seg_srch(first-elem, key) 1; 

I 

void ins-hash( struct hash-node *new-elem ) 

{ 
int slot; 

slot = hash-function( new-elem->key ) ; 
new-elem->next = hash-table [slot] ; 
hash-table[slotl = new-elem; 

I 

listing 8.10 
Example chaining functions. 

Thus, if we hired another employee on the second day of some month, 
we would insert the new individual’s record in the chain currently 
headed by the element Smith. 

Listing 8.10 contains examples of some routines that manage 
chained hash lists similar to the one presented in Figure 8.3. Central to 
this algorithm is the structure hash-node. Its members include key 
and data fields, as well as a link field that points to the next element in 
the chain. Note that a definition for macro, =-KEY, is application 
dependent. 
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T h e  hash table, hash-table [ I ,  is an array of pointers to 
hash-node structures. In effect, each element in the array is a head 
pointer for a linked list. We defer the discussion of appropriate 
values for the macro HASH-SIZE until we discuss hashing functions 
later; for now, just assume some reasonable size. 

T h e  function ins-hash( ) inserts new elements into a hash 
chain; the slot is determined by a call to the routine hash-function ( ) . 
(We will discuss hashing functions in detail later in this section.) We 
have omitted a complementary deletion function; its implementation is 
similarly straightforward and is left as an exercise for the reader. 

T h e  function get-hash ( ) returns a pointer to an existing hash 
element determined by its one argument. Note that it uses a 
modified version of a sequential search routine-alled 
mod-seg-srch ( )-to scan the chain. This version performs an ex- 
haustive search on a linked list, rather thaq an array; it returns either a 
pointer to the matched element or the value NULL, signifying a failed 
search. Its implementation is also left as an exercise. 

Complexity T o  sim lify our discussion of the complexity of chaining, 
let’s define the ter R probe to denote every reference we make to our 
hash structure. For example, we require three probes to access the 
record Jones (Fig. 8.3): one to select the list pointer (slot 2), and two 
additional probes fo list elements (one each for Smdh and Jones). In a 

Parisio requires four probes. For a given hash structure, the time we 
need to process a q d ery will be proportional to the number of probes it 
requires. As a result, we will use probe count as the metric for 
measuring hashing complexity. 

are the 11 that are represented in Figure 8.3. We can begin to compute 
the average number of probes by noting that there are 

similar manner, refe, i encing the record Tartaro requires two probes, and 

Assume that the only records currently in our employee database 

Five chains that require at least two probes (all non-empty chains) 
Four chains that require a t  least three probes (chains 2, 4, 27, 

Two chains that require a t  least four probes (chains 4 and 27). 
and 30) 
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Thus, we can compute the average number of probes as follows: 

= 2.73 
(5 x 2) + (4 x 3) + (2 x 4) 

11 

Note that the preceding value is specific to this one table and its 
current contents. As an alternative, we can provide a more general descrip- 
tion of hashing complexity. T o  begin, let n denote the number of 
records we need to store and let m denote the size of the hash table. We 
can now define the load factor A of a hash table as follows: 

n A = -  
m 

The  load factor represents the average length of a chain. For our 
example, the load factor for the table of Figure 8.3 is 

11 
- = .035 
31 

Note that when using chaining, load factors may be greater or less 
than 1. 

If we assume that our hash function generates a relatively even 
distribution of keys throughout the entire hash table, and that 
every key is equally likely, then we can define the following: 

$(A): The  expected number of probes required for a successful search 
U(A): T h e  expected number of probes required for an unsuccessful 

search. 

As stated earlier, chaining requires one probe for the list header 
and one probe for each referenced list element. If A represents 
the average chain length and we must inspect every element in a 
chain during an unsuccessful search, then U(A) becomes 

U(A) = 1 + A 

Computing S(A) is only slightly more problematic. First, recall 
from our complexity analysis of a sequential search that a successful 
search will access, on average, half the elements in the chain. Thus, 
if R represents the length of a given chain, a successful search requires 
i (k  + 1) probes. However, we know that the expected length of a 
chain, on average, is no longer than A. Thus, S ( A )  becomes 

1 1 1 
2 2 2 

S(A) = -(k + 1) = -(1 + A + 1) = 1 + -A 
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Note that the worst case occurs when all keys (most likely due 
to a poor choice of hashing function) hash to the same bucket. If 
n represents the number of keys in the table, worst-case complexity 
can be computed as follows: 

U(X) = 1 + n 
1 S(X) = 1 + -n 
2 

AdvantageslDisadvantages Some of the advantages of chaining include 
easy insertion and deletion of nodes. T h e  costs include the extra space 
required for the pointers and the additional coding required for the 
dynamic links. If records are large as compared to the size of pointers, 
the advantages of chaining usually outweigh the disadvantages. 

Improvements and Extensions 

Ordered Chains 

We can improve on the basic chaining strategy. First, we can order 
the chains. As in the case of seg-srch2 ( 1 (Listing 8.2), we can im- 
prove-by half-the time required to determine that a given key is 
not part of the chain. 

Modified Hash Table 

For our next improvement, note that even if the element we are 
searching for is first in its chain, we still require two probes: one for the 
hash table slot and one to access the first element. We can eliminate 
the need for that initial probe if we store the first element in the hash 
table itself. That is, the hash table is no longer just an array of pointers; 
rather, it is an array of list structures. Figure 8.4 provides an example. It 
depicts the hash table of Figure 8.3 as it would appear if we had 
employed this technique. 

This technique not only saves us the cost of a probe, it also 
reclaims the additional space required by the pointers in the origi- 
nal hash table. However, we should use this strategy only when the 
keys are relatively small and when we expect our hash table to be relatively 
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26 

21 

28 

29 

30 

31 Figure 8.4 
Modified hash table. 

full; otherwise, we will waste too much space on empty slots. (Records 
are usually larger than pointers.) 

Coalesced Chaining 

The  final improvement we will discuss is an extension of the previous 
idea. If the modified hash table is composed of node structures, 
why use separate chains to handle collisions? We could use empty 
slots in the hash table itself. We illustrate an example of this technique, 
referred to as coalesced chaining, in Figure 8.5, which depicts the hash 
table of Figure 8.3 as it might appear if we employed coalesced chaining. 

With coalesced chaining, we no longer allocate new nodes with 
each collision; rather, we just appropriate the next available slot 
in the hash table. However, there is a price to pay for this feature in 
that a later arriving element might be displaced as a result of a prior 
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appropriation. For example, note that in Figure 8.5 the key Bowman 
is no longer in slot number 6. This is because the Kuehimein record 
arrived first and appropriated the bucket that would have otherwise 
been used by Bowman. 

The  way we handle such an event is to add the new record to 
the list that contains the element that appropriated its slot. This 
is how the technique derives its name: Keys with different hash values 
merge into the same chain; thus, the chains coalesce. 

Insertion operations remain similar to that of separate chaining. 
The  only difference is that we allocate new nodes in the table 
rather than from a separate buffer pool (or dynamic memory). 

We implement retrieval operations exactly as in the case of sepa- 
rate chaining. Chains will likely contain elements with different hash 
values. However, all keys with the same hash value will reside in the 
same chain. Thus, we need to search only one chain to locate a given key. 

At first glance, deleting coalesced elements might seem as easy 
as deleting elements from a linked list: Locate the deleted node’s 
predecessor and have it point to the deleted node’s successor. How- 
ever, a closer inspection reveals that it is not that easy. For example, let’s 
assume we wanted to delete Kuehlmein from the hash table of Figure 
8.5. After we performed the aforementioned processing, the hash table 
would appear as depicted in Figure 8.6. Obviously, the problem that 
arises is that after the deletion, we can no longer access the key 
Bowman. That is, because its hash value is 6-and that slot appears 
empty-we have no chain to follow. 

T o  overcome this problem, we can use a special key value that 
denotes deleted. Thus, a deleted node’s pointer remains in place 
and maintains the continuity of the chain. This is illustrated in Fig- 
ure 8.7. 

Open Addressing 

T h e  second method that we use for collision resolution is called open 
addressing. As in the modified hash table, this technique calls for 
us to store keys directly in the hash table. However, rather than using 
linked lists, we will store (and search for) colliding keys directly within 
the hash table itself. That is, we will use some alternate means by 
which we will determine a secondary bucket address for a colliding 



Figure 8.6 
Coalesced chain- 
incorrect deletion. 
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Slot Key Data Link 

c- --[: Me ted  node 

Figure 8.7 
Coalesced chain- 
correct deletion. 

:orre( :ted deletion 
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key. For example, we might use a secondary hashing function to 
generate a new index. 

With open addressing, the order in which we search through buck- 
ets is called the probe sequence. A probe sequence begins with the 
initial bucket address generated by the primary hashing algorithm. If 
this address results in a collision, we repeatedly generate secondary bucket 
addresses until we either locate the key we are searching for or locate 
an empty slot for an insertion. The  two methods we will discuss for 
generating secondary probe sequences are called linear probing and 
rehashing. 

Linear Probing 

T h e  first open addressing technique we will discuss is called linear 
probing. It derives its name from the fact that, when a collision occurs, we 
simply search successive slots in the hash table. If we are inserting a 
key, we search for the next free bucket; if we are searching for a key, we 
continue until we encounter an empty slot. When we reach the end 
of the table, we simply wrap around back to the beginning. Thus, we 
search buckets in the following order: 

SLOTinitial = primary - hash(kq) 

SLOT,,,, = (SLOT,,,,, + 1) mod m 

where m represents the size of the hash table. 
For an example of this technique, refer to Figure 8.8. Figure 8.8a 

depicts the initial state of our data structure. We are about to insert 
Jones and Baker into the table; assume both keys have a primary hash 
value of 2. However, the key Smith already occupies that position. As a 
result, we begin searching the table for the next available position to 
perform the insertion. In the case of Jones, the next free bucket is slot 3 
(Fig. 8.8b); for Baker, the next available bucket is slot 7 (Fig. 8.8~).  

Clustering Linear probing is a very simple technique and performs well 
if the hash table remains relatively empty. However, it has one major 
drawback As the hash table becomes about half full, it suffers from a 
phenomenon that we refer to as clustering. That is, once a block of 
contiguous slots develops in the table, it becomes a likely candidate for 
additional collisions. Moreover, as clusters grow, they tend to merge 
and form even larger clusters. 
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Slot Key Slot Key Slot Key 

Initial state of Insert Jones - primary Insert Baker - primary 
Figure 8.8 hash table hash value = 2 hash value = 2 
Linear probing. (a )  ( b )  ( C) 

As an example of this phenomenon, consider an empty hash table 
and an associated hashing function. T h e  probability of selecting any 
given bucket, say slot 10, is l/m, where m is the size of the hash table. 
However, if we enter a record into slot 9, we increase the probability of 
filling slot 10 on the next insertion: A key can hash to either bucket 9 
or 10, and we would fill slot 10. If both buckets 8 and 9 were filled, the 
probability would increase again. 

Linear Probing Complexity Obviously, the problem with clustering is 
that it increases search times. This is true for both successful and 
unsuccessful searches. In general, for a successful search, S(X) is the 
average of the number of probes required to locate each individual key. 
T h e  analysis for U(h) (an unsuccessful search) can be divided into two 
components. If a slot is empty, we only require one probe. Otherwise, 
we must examine every slot in the cluster. The  following are the final 
formulas, based on the load factor, for S(h) and U(h) when using linear 
probing. (The derivations are beyond the scope of this text; consult the 
bibliography for a list of references that provide a comprehensive 
discussion of the derivations.) 

$(A) = l ( 1  2 + &) 
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Rehashing 

One might think that we could minimize clustering by changing the 
probe offset to a value other than 1 (for example, i). However, we 
just end up with clusters of the form 

s, s + imod  m, s + 2imod m, . . . 
where s is the original hash slot and m is the size of the table. 

T h e  only way we can minimize clustering is to generate the probe 
sequences in a manner that is independent of a key’s primary position in 
the table. We can accomplish this by using a technique called mhashing 
(sometimes referred to as double dashing or secondary hashing). With this 
technique, we use an alternate hashing function to generate an incre- 
ment. We then repeatedly apply the increment to the previous slot address 
until we locate the element or encounter an empty bucket. 

As an example of this technique, recall that for our employee 
database the primary hash function was based on the employee’s 
date of hire. We could develop a secondary hashing function based 
on the employee’s date of birth. That is, we could use the day as 
an increment to scan through the hash table. However, because we 
only rehash once, we must ensure that the secondary hashing algorithm 
generates an increment that will eventually probe mery slot in the 
hash table. As a trivial example, consider what would happen if our second- 
ary hashing function was 

neavpos = oldpos + 2 mod m 

and that our table size m was an even number. T h e  increment gener- 
ated by the secondary function would only probe the even-numbered slots 
in the table. 

In general, to ensure that our probe sequence will reach every 
slot in the table, the secondary hashing function (hmhz(kq)) should return 
a value that is greater than zero and relatively prime with respect to 
m. Specifically, if m and hmhz(kq) share a common divisor d, then 
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if that were the case, then the probe mfd would be the same as the 
first, and we will not visit all the buckets in the hash table. The  way to 
ensure that this will not happen is to choose a table size that is a prime 
number (as we have done, using the value 31, in our example). 
Thus, we can improve the performance of open addressing-based hash 
functions and minimize the effects of clustering. 

Hashing Functions 

The  hashing strategies we discussed earlier are only as good as their 
associated hashing algorithms. We look for two important features 
in a hashing function: It should be easy to compute and it should 
distribute keys evenly over the entire range of the hash table. 

In some cases, applications themselves will suggest a particular 
hashing algorithm-other times we must experiment. If we know, a priori, 
what keys we will process, we can develop a very efficient hashing 
algorithm specific to our needs. This is not typically the case, 
however, and we are thus forced to build generalized functions. In 
the following sections, we will describe several methods. 

Truncation 

The  first method we will discuss is called truncation. Using this tech- 
nique, we selectively ignore parts of the key. This is similar to our first 
example wherein we used the last two digits of customer telephone 
numbers as our hash key. Although fast, truncation typically fails 
to distribute keys evenly. 

Division 

If we have an integer-based key, we can divide the key by the size 
of the hash table and use the remainder as our bucket address. 
Simply put, we can compute the hash slot as 
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#define HASH-TABLE-SIZE 'some-value' 

int hash-function( int key ) 

{ 

1 

As mentioned earlier, the distribution of keys depends heavily on 
the value selected for the modulus operation. T h e  best choice is 
a prime number. Thus, do not use a hash table size of 1000; use 997 
or 1009 instead. 

Another concern that we must address is that keys are often alpha- 
betic. However, we can easily convert alphabetic keys into integer 
values using the following formula: 

return( key % HASH-TABLE-SIZE 1;  

i=L 

where L represents the length of the key, c represents characters in 
the original key, and R represents the base (radix) of the character 
set (typical values include 128 and 256). Listing 8.11 contains the 
example function, str-to-int ( ) , which converts string keys 
into integer values. In addition, it shows an example of how we might 
incorporate the function into a hashing algorithm. 

Hashing by this method is simple and fast. However, there is one 
minor consideration. Because it uses division, this technique might be too 
slow on small processors or on machines lacking hardware support for 
arithmetic computations. 

Folding 

One disadvantage of the division method discussed earlier is that some 
string keys may convert to integer values larger than the processor's 
word size. One way to address this problem is to apply a technique 
called folding. 

With folding, we partition the key into several parts and then 
recombine the pieces in some convenient way to reconstruct a key that 
will fit within a given size restriction. (Note that we can also incorporate 
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#define RADIX 128 
#define HASH-TABLE-SIZE 1009 

long str-to-int( char key[] 1 
{ 

long i, nkey = 0; 

for( i = 0; key[il != NULL; i++ 1 
nkey = nkey * RADIX + key [il ; 

return( nkey 1 ;  
1 

int new-hash-function( char key[] 1 
c 

1 
return( str-to-int(key1 % HASH-TABLE-SIZE 1; 

listing 8.11 
Function to convert string keys to numeric. 

truncation to eliminate unwanted-r unneeded-omponents of 
the key.) 

To  demonstrate this technique, let’s return to our telephone num- 
ber example. We could partition a number into its area code, exchange, 
and extension. We could then add the pieces together before we 
hashed. For example, we can partition the telephone number 800-555- 
1000 into the segments 800,555, 1000; adding them yields a key value 
of 2355. 

Because all segments have an effect on the resultant key, folding 
typically achieves a greater distribution of key values as compared 
to using truncation alone. As a result, this folding is often chosen in 
lieu of truncation (even in cases where it is not explictly needed). 

7 - v-11: Searching is a common task in computer programs. In many cases, the 
perceived usefulness of an application will be predicated on the speed at 
which it can locate and retrieve information. 

SUMMARY 
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We can improve the performance of searching algorithms by ordering 
the datasets. This allows us to search for elements in a much more intelli- 
gent manner. Examples include binary search, interpolation search, 
and indexed sequential search. 

T h e  complexity of some algorithms is expressed in terms of a recur- 
rence relation. T o  be of practical value, we must transform such complexi- 
ties into their equivalent closed form. 

Another method by which we can store and retrieve data quickly is 
called hashing. T h e  basic principle behind hashing is that the key, 
after undergoing a transformation, points directly to the location of a 
given record. Despite its efficiency, hashing introduces several unique 
problems. First, we must address the problem of collisions. The  two 
major techniques for resolving collisions are chaining and open 
addressing. 

Second, we must develop an efficient hashing function. Specifically, 
the hashing routine must not only be fast, it must distribute keys evenly 
across the entire hash table. 

1. Implement all the searching routines discussed in this chapter. 
Compare execution times and the number of actual comparisons they 
each require. Be sure to vary the size and distribution of your 
test datasets. 

2. Implement a secondary index routine based on the function 
in&-seg ( ) (Listing 8.3). 

3. Design and implement a function that build indexes for sorted 
tables. 

4. Rewrite the binary search algorithm using recursion. Which 
method is faster? 

5. Determine the number of different ways the data 1, 2, 3, . . . , 10 
can be arranged in an ordered binary tree. 

6. Write a recursive function that determines the maximum number 
of comparisons required to locate a record in a given OBT. (Hint: 
Consider the tree’s height.) 

E X E R C I S E S  
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7. Design and implement a function that performs an interpolation 
search on ordered arrays. 

8. Compare the execution efficiency of your function from the previ- 
ous exercise with that of binsrch ( ) . Be sure to vary the size 
and distribution of your sample datasets. 

9. While searching for the keys (A, C, M, P, W, 2) on a dataset 
consisting of the alphabet, trace the execution of both the 
interpolation and binary searching techniques. 

10. Design and implement an iterative version of treesrch ( ) . 
11. Discuss the relative advantages and disadvantages of the two major 

collision resolution strategies used in hashing. 

12. Assume a hashing function that returns the last digit of a telephone 
number. Practically speaking, what should be the maximum 
size of our hash table? 

13. Draw the state of a hash table after inserting the following tele- 
phone number keys (in the order presented): 5551212, 5551001, 
5552001, 5552223, 5556001. Assume that we are using a strategy 
of linear probing and that we have, as a hashing algorithm, a function 
that returns (as an integer) the last digit of the key. Count the 
number of probes each key requires. 

14. Repeat the preceding exercise, but this time assume we are us- 
ing chaining. 

15. Implement the modified sequential search algorithm introduced 
in Listing 8.10. 

16. Design and implement a deletion function for coalesced chaining. 

17. Assume a hashing implementation that uses coalesced chaining, 
and design and implement a function that reorganizes all the keys 
after a deletion. 

18. Design and implement a deletion function for linear probing. 



Sorting Technipes 

9.1 I NTRO DUCT1 0 N 

In this chapter, we will focus our attention on the design and imple- 
mentation of efficient sorting techniques. Sorting is the process whereby 
we arrange data (records) based on some sorting criteria (rules). Sorting 
criteria range from the obvious (alphabetical, numerical, etc.) to the not 
so obvious (some disk controllers prioritize 1/0 requests based on the 
proximity of the data blocks with respect to the current position 
of the drive’s read/write head). 

Records are usually ordered based on their key values. Note that 
keys may be complex (spanning several fields) and the sorting criteria 
may specify more than just one key (e.g., sort by last name, then by 
first name). We refer to the additional sort keys as subkeys. 

There are several important attributes that we must consider when 
discussing sorting algorithms: 

Execution time Determine an algorithm’s complexity and compare 
it to the complexity of other sorting algorithms. Moreover, 
determine if the algorithm’s performance is affected by the compo- 
sition (the relative order) of its dataset. For example, some 

259 

C H A P T E R  9



260 9 Sorting Techniques 

Initial state: 5 4 1 3 2 

Afterlstpass: 4 1 3 2 5 

After2ndpass: 1 3 2 4 5 
Figure 9.1 
Bubble sort example. After3rd pass: 1 2 3 4 5 

sorting routines perform efficiently when the data are sorted (or 
nearly so); others perform poorly. 

Space requirements Can the algorithm sort in place or does it require 
additional storage? Optimally, we would like an efficient algorithm 
that does not require additional space. 

Does the algorithm preserve the original order of records 
with equal keys? For example, two distinct records could have 
the same key (e.g., Smith, John). In such cases, a sorting routine 
could position them in any order relative to each other. If the 
algorithm preserves their original order-that is, the order in which 
they appeared in the input stream-it is considered stable. 

Stability 

The  sections that follow discuss a number of sorting techniques. 

9.2 BUBBLE SORT 

One of the most direct methods of sorting is a bubble SOKL We can 
describe the technique as follows: 

Step through an array of unsorted elements, comparing adjacent 

If they are out of order, switch them. 
When you complete an entire scan without switching any ele- 

cells. 

ments, the data are sorted and processing may terminate. 

Figure 9.1 illustrates a bubble sort making several passes over a 
dataset. The  function begins by comparing key, with key2, then keyz 
with key3, and so on. After the first pass completes, the largest element 
is in its final position; after the second pass, the second largest element 
is in its final position. This is how the technique derives it name: 
During the first pass the largest element bubbles to the top; during 
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void bbl-sort ( i n t  data[], i n t  no-elems ) 

c 
i n t  top, flag, tmp, i; 

top = no-elms; 
do I 

flag = 0; 
top-- ; 
for(  i = 0 ;  i < top; i++ ) {  

if ( data[il > data[ i+ lI  ) { 

tmp = data[i l ;  
dataCil = dataCi+11; 
d a t a [ i + l l  = tmg; 
flag++ ; 

1 
1 

1 while( flag > 0 1 ;  
1 listing 9.1 

Bubble sort algorithm. 

the second pass the second largest element bubbles into position; and 
so on. Processing continues in this manner until all elements have been 
moved into their final position. It might require a moment’s reflection 
to convince oneself that the technique indeed works. 

An example of this sorting technique appears in Listing 9.1. The  
function bbl-sort ( ) requires two arguments: the array to sort 
and its size. T h e  outer do loop controls execution. That is, the function 
will iterate until the inner loop makes a pass without swapping 
any elements. This is indicated by the value stored in the variable 
flag. T h e  inner loop does most of the work; it steps through each 
cell of the array, swapping adjacent elements as required. 

Analysis 

T h e  inner loop executes n times, once for each element of the array. 
In the worst case, the outer loop will also iterate once for each element. 
This yields a complexity of O(n2). Average-case behavior of 
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Initial state: 4 2 5 3 1 

ls tpass:  1 2 5 3 4 

2ndpass: 1 2 5 3 4 

Figure 9.2 3rd pass: 1 2 3 5 4 
Selection sort 
example. 4th pass: 1 2 3 4 5 

bbl-sort ( ) is predicated on its input. For example, if the data are 
sorted, then only one pass is required. However, it turns out that the 
average-case behavior of this algorithm is only slightly better than 
the worst-case behavior and still yields a complexity of O(n2). (The 
actual analysis is beyond the scope of this text.) Also note that, 
because it never exchanges the positions of equal keys, bbl-sort ( ) 

is a stable sorting algorithm. 

9.3 SELECTION SORT 

Another simple sorting method is called selection son'. The  idea behind 
this technique is as follows: 

Search the data array for the smallest element. 
Exchange that element's position with the element in slot 1. 
Now locate the second smallest element and exchange its position 

Continue in this manner, searching for each successive element, 
with the element in slot 2. 

until the entire array is sorted. 

Obviously, the algorithm derives its name from the fact that it selects 
the element it will position during each pass through the array. 

Figure 9.2 depicts several passes of the algorithm on a sample 
dataset. During the first pass, the function identified the element 
1 as the smallest and switched its position with that of element 4. No 
exchange occurred during the second pass because element 2 was 
already in its final position. 

same element several times. This is highlighted in passes 1 and 
Note that, by virtue of its design, selection sort may move the 
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void sel-sort( int data[], int no-elems ) 

{ 
int i, j, min, tmp; 

for( i = 0; i < no-elems; i++ ) {  

min = i; 
for( j = i+l; j < no-elems; j++ ) 

if ( data[jl < data[minl ) 

min = j; 
tmp = data[i]; 
data [il = data [minl ; 
data[min] = tmp; 

1 
1 

listing 9.2 
Selection sort 
algorithm. 

4, where the function repositions element 4 during both passes. How- 
ever, the algorithm will only perform, at most, one exchange during 
each pass. 

Listing 9.2 contains the code for the function sel-sort ( 1. Its 
two arguments indicate the data array and its size. During each 
iteration of the outer loop, the inner loop locates the smallest remaining 
element and saves its index in the variable min. The  actual ex- 
change occurs when the inner loop terminates. Note that as the outer 
loop moves through the list, the low-order elements (i.e., index values 
less than i) are in sorted order. 

Analysis 

The  outer loop iterates n times; with each iteration of the outer loop, 
the inner loop performs a comparison for each unsorted element. 
This yields a complexity of O(nZ). Due to its design, the function’s 
behavior remains constant regardless of the composition of its 
dataset. Thus, the average-case complexity is also O(nz). sel-sort ( ) 
is not a stable algorithm. That is, during the exchange, the relative 
position of equal keys can be reversed. 
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Initial state: 4 2 3 1 5 

Istpass: 2 4 3 1 5 

Figure 9.3 2nd pass: 2 3 4 1 5 
Insertion sort 
example. 3rd pass: 1 2 3 4 5 

One other point. As noted earlier, only one exchange takes place 
with each iteration of the outer loop. Thus, despite its simplicity 
and somewhat poor performance, sel-sort ( 1 is useful for datasets 
with large records and small keys. 

9.4 INSERTION SORT 

Another straightforward method of sorting is called insertion serf. This 
sorting method can be likened to the way some people arrange a 
hand of playing cards. T o  begin, the first card is placed into the hand. 
Then, as each successive card is received, it is inserted into the 
hand in order. The  player makes room for each new card by shifting 
cards of higher value to the right. 

We can mimic this sorting technique in a computer program (see 
Fig. 9.3). The  element in slot 1 of the array will serve as the first card. 
New elements are dealt by scanning the array from slots 2 to n. We 
then determine where the new element belongs and insert it into the 
hand (i.e., the low-order portion of the array). 

Listing 9.3 contains the code for the function ins-sort ( 1. Its 
outer loop, which selects elements for insertion, indexes from 1 
to no-elems - 1. Note that we initialize i to the value 1; thus, the 
element in slot 0 serves as the initial card. The  actual insertion 
takes place in the inner loop. This section of code scans the already 
sorted portion of the array (i.e., the low-order indices) in reverse order, 
shifting elements to the right as required. This both determines the 
correct location of, and makes room for, the new element. When the inner 
loop terminates, the function stores the new element into the vacated 
slot. Note that like sel-sort ( ) , the low-order elements are sorted; 
however, unlike sel-sort ( ) , this algorithm may move (shift) ele- 
ments several times. 
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void ins-sort( int data[], int no-elems ) 

{ 
int i, j, tmp;  

fo r (  i = 1; i < no-elems; i++ I {  
tmp = data[il; 
j =  i - 1; 
while( (data[jl > tmp) && (j >= 0 )  

data[j+ll = dataljl; 
; j -- 

I 
data[j+lI = tmp; 

I 
I 

listing 9.3 
Insertion sort 
algorithm. 

Analysis 

It should be obvious that ins-sort ( ) is stable. Specifically, the 
while loop does not move equal keys across each other. 

As with the preceding algorithms, ins-sort ( ) has both worst- 
case and average-case complexities of O(n2). However, observe 
that when the dataset is ordered (or nearly so), it performs compara- 
tively few shifts. As a result, it can be the algorithm of choice for applica- 
tions that must add new elements to preexisting, sorted lists. 

At this point you might be wondering whether O ( d )  is the fastest 
we can sort. T h e  sections that follow address that issue and discuss 
more efficient sorting techniques. 

9.5 QUICKSORT 

We will begin our discussion of advanced sorting techniques with one 
of the most popular sorting algorithms: quicksort (also called partition sort). 
Quicksort was originally developed in 1960 by C. A. R. Hoare and has 
been studied, analyzed, and ‘tweaked’ ever since. We begin our discussion 
with a description of the basic algorithm; we will then address several 
improvements and extensions. 



266 

Figure 9.4 
Quicksort example. 

9 Sorting Techniques 

/Partitioning element 
Initial state: 4 7 3 5 2 1 6 

After lstpass: 3 2 1 4 7 5 6 

2nd pass: 

lstsubarray 3 2 1 
2nd subarray 7 5 6  

Unfortunately, quicksort has no real-life analogue from which we 
can derive a pedagogical metaphor. We are compelled, therefore, 
to jump right in. So let’s begin with a brief overview of the algorithm 
(assume n is the size of our data array): 

Select one element, x, from the array. We will refer to this element 
as the partitioning element for reasons that will become clear 
shortly. (Initially, the choice of partitioning element will be arbi- 
trary; we will discuss and refine the selection criteria later.) 
Determine the final position of x in the sorted array. For now 
assume it is some location data[i]. 
Rearrange all the other elements of the array such that all elements 
in slots data[O] through data[; - 11 are 5 x, and all elements 
in slots data[i + 11 through data[n] are 2 x. 

data[i - 11 and data[i + 11, . . . , data[n] until all elements are sorted. 

Figure 9.4 provides an example. During the initial pass, the func- 
tion arbitrarily selects the element in array slot 0 (value 4) as the 
partitioning element. When the first pass completes, this element is 
in its final position and the function can proceed with recursive 
calls on the two subarrays. 

If you consider the problem at all, it quickly becomes obvious 
that the most difficult task is determining the final position of the parti- 
tioning element. Specifically, how can we determine the final position 
of some element x unless we sort the entire array? After a moment 
of reflection you might observe that we do not need to sort the array 
to determine x’s final position. All we need to know is the number of other 

Recursively apply the algorithm on the two subarrays data[O], . . . , 
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/Partitioning element 

Initial state: 15 6 9 21 .... 4 19 

During Istpass: 15 6 9 21 .... 4 19 

/- Yi 
Figure 9.5 
Quicksort: Partitioning 
the elements. 

Afterexchange: 15 6 9 4 .... 21 19 

i 
. / "" ---l 
I 

elements that will be positioned either above or below x in the array. 
It then becomes a simple calculation to determine x's final location. 

At this point, you are probably ready to start coding: Select a 
partitioning element x, count the number of elements less than x, 
move x into its final position, and recursively process the two subarrays 
on either side of x. We have, however, one more problem. When 
it processes each subarray, the function assumes that the values they 
contain are logically positioned. That is, all values in the left subarray are 
I x; all values contained in the right subarray are 2 x. Once the 
partitioning element is in position, there is no provision for moving 
elements between the newly created subarrays. Therefore, we cannot 
position x without also rearranging the other array elements. 

The  solution to this problem is the very heart of the quicksort 
algorithm. Consider the following scenario: Select two index vari- 
ables i and j .  Simultaneously, move i through the array from left to 
hght (i.e., from 0 to n), and movej  through the array from right to left (i.e., 
from n to 0). When i encounters a condition where data[zl > x a n d j  
encounters a condition where data[jl < x, exchange elements (i.e., 
data[#] w datab].) T h e  function continues in this manner until the 
indices cross (i.e., w h e n j  5 i). This ensures that all elements are 
partitioned correctly. Thus, when x is finally positioned, all elements 
< x will be positioned below x in the array, and all elements > x 
will be positioned above x in the array. See Figure 9.5 for an example. 

Note that the elements, as they are rearranged, are not sorted. 
Rather, the algorithm decides whether to reposition elements 
based solely on their value relative to the final position of the parti- 
tioning element. Sorting only occurs as a result of recursively reapplying 
the algorithm on all subarrays. 
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listing 9.4 
Quicksort algorithm. 

9 Sorting Techniques 

void gck-sort( int data[], int lo, int hi ) 

{ 
int i, j, tmp, part-elem; 

if( hi > lo ) {  

part-elem = data [hi] ; 
i = 10-1; 
j = hi; 
while( 1 ) {  

while( data[++il < part-elem ) 

while( data[--jl > part-elem 1 

if( i >= j ) 

; 

; 

break; 

tmp = datalil; 
data[il = data[jl; 
dataljl = tmp; 

1 

tmp = datalil; 
datalil = datalhil; 
data[hi] = tmg; 

gck-sort( data, lo, i-1 ); 

gck-sort( data, i+ 1, hi 1; 
1 

1 

We are now ready to implement the basic algorithm. As presente'd 
in Listing 9.4, the function gck-sort ( requires three argu- 
ments. The  first points to the data array and the latter two are, respec- 
tively, its lower and upper bounds. (The need for an index to track 
the lower bound will be made clear shortly.) The  initial call sets these 
values to 0 and n respectively (the size of the array). Note that, 
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when using languages that support zero-based arrays (e.g., C), we must 
set hi to n - 1 (i.e., the index of the high-order slot). 

T h e  initial if statement is a sanity check to ensure that 
gck-sort ( ) was invoked with reasonable arguments. T h e  function then 
selects the partitioning element (data [hi] ) and initializes its index 
variables. The  outer while ( 1) statement is an infinite loop that 
drives the main body of the function. Contained in that loop are two 
nested while loops. Their purpose is to step their respective index vari- 
ables through the data array searching for elements that need reposi- 
tioning. When the inner loops terminate, the function tests whether i 
and j have crossed. If they have, the outer loop terminates; 
gck-sort ( ) then repositions the partitioning element and recursively 
invokes itself on the two newly created subarrays. If i and j have not 
crossed, the function swaps elements in positions data i 1 and 
data [ j ] and continues with the next iteration of the outer while 
loop. 

Analysis 

Let’s begin with the average-case analysis of quicksort. Assume a 
random dataset of size n. T h e  time required to partition elements 
is O(n) (linear). Each time we partition a subarray, we create two 
additional subarrays. If we assume that each partition will generate 
subarrays of about the same size (e.g., n/2) ,  the overall complexity of 
quicksort can be expressed by the following recurrence relation: 

Based on our discussions in Chapter 8, the closed form of this recur- 
rence relation is 

f ( n )  = n log, n 

Thus, quicksort has an average-case complexity of O(n log, n). 
For quicksort, the worst case occurs when the data are sorted (or 

nearly so). Each recursive call would only sort one element. T h e  
function would thus require n recursive calls, each requiring O(n) time 
to partition the elements. This yields an overall worst-case complexity of 
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O(n2). In the sections that follow we discuss simple ways to ensure 
that quicksort will not encounter the pathological case. One final point: 
It should be obvious that quicksort is not a stable sorting method. 

Improvements to Quicksort 

Remove Recursion 

As you may recall from Chapter 4, all recursive algorithms have an 
equivalent iterative solution. Thus, the first improvement we can 
make to quicksort is to tranform the basic algorithm from recursive 
to iterative. 

The  driving loop of this new function will use a stack to track 
unprocessed subarrays. The  values pushed and popped will be 
the upper and lower bounds of each subarray; initially, the stack con- 
tains values denoting the entire array. 

With each iteration of the loop, the function 

Pops a subarray off the stack 
Processes it (as discussed earlier) 
Pushes the two resulting subarrays onto the stack. 

The  function terminates when the stack becomes empty. 

Secondary Sorting Routine 

For our next improvement, consider that regardless of the size of the 
original array, quicksort will ultimately begin processing small subarrays. 
(We will define small shortly.) In a recursive solution, the overhead 
required to process these small subarrays is obvious. However, iterative 
versions of the algorithm will also be affected by this overhead. 

This begs the obvious question: How can we minimize the impact 
of, small subarrays? Approaching the problem directly, you might try opti- 
mizing quicksort for small arrays. However, let’s be more clever. In- 
stead of trying t o j x  quicksort, let’s just choose another algorithm. T h e  
idea is that when subarrays become smaller than some given size m, 
we will employ a secondary sorting algorithm. 

Two questions now arise: Which algorithm should we use? And 
what are suitable values for m? Let’s begin with the first question. 
Observe that as a result of the partitioning that has taken place, ele- 
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ments in subarrays are close in value. Thus, we would want to use 
an algorithm that works efficiently on datasets that are nearly sorted. 
As noted earlier, ins-sort ( ) works well in such cases and is an appro- 
priate choice here. As for the second question, an exact value for m 
is implementation dependent. However, it need not be perfect. Versions 
of quicksort modified in this manner will perform approximately the 
same for values of m in the range of 10 to 25. 

We can carry this idea one step further. Quicksort does not need 
to invoke the secondary sorting routine for each subarray of size < m. 
Consider that if each subarray is nearly sorted, then the entire set of 
subarrays of size < m is also nearly sorted. We can modify quicksort to 
ignore all small subarrays during its partitioning phase. That is, it will 
not invoke any sorting routine whatsoever. When it completes the 
partitioning phase, quicksort can then invoke the secondary sorting 
routine just once and have it complete the sort for the entire array. 

Median-of-Three Partitioning 

T h e  final improvement we will discuss focuses on the selection of the 
partitioning element. In our complexity analysis, we noted that quicksort’s 
performance degrades when its dataset is already (or nearly) sorted. 
This problem is a direct result of repeatedly using the same relative 
element for array partitioning. 

For example, consider a case in which quicksort is processing a 
dataset that is already sorted. With each recursive call, the function 
selects data [hi] as its partitioning element. Based on this selection, 
the function will partition the array into two subarrays: one of size l o  to 
hi-1 and one of size 0. In effect, the function creates only one 
subarray for each element because there are no elements greater than 
data [hi]. This causes the performance to degrade toward O(n2).  

We could be assured of better overall performance if we could 
improve the selection of the partitioning element. Specifically, the 
closer the partitioning element is to the middle of the array, the better 
the function will perform. A first suggestion might be to use a random 
number to select a partitioning element. However, the cost associated 
with a pseudo-random number generator might be prohibitive. 

A better solution is a technique referred to as median-ofthree parti- 
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Figure 9.6 
Example heap. 

tioning. This method calls for the function to select the partitioning 
element from a set of three: data [lo], data [middle], 
data [h i ] .  Specifically, the algorithm selects the median of those 
three elements based on key value. This technique is an inexpen- 
sive way to ensure that the partitioning element is not located at either 
extreme of the array. 

Final Remarks 

The  three modifications we have discussed can result in a 20% to 30% 
overall improvement in the performance of quicksort. There have 
been a number of other improvements suggested (e.g., median-of- 
five), but they result in only a marginal gain in performance. That is, the 
improvement in performance is not commensurate with the added 
complexity. 

9.6 HEAPSORT 

The  next sorting method we will discuss is called heapsorl. This algo- 
rithm derives its name from the data structure it employs. Before we 
discuss the sorting technique itself, let’s take a look at its data structure. 

A Reap is a complete binary tree with the property that the key 
associated with any given node n is greater than the keys of its 
children. Figure 9.6 provides an example. 
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Figure 9.7 
Binary tree prior to 
heap. D 

A heap has many uses; one of the most common is to implement 
priority queues. Referring back to Figure 9.6, we see that the 
element positioned at the root always has the highest priority. This 
can be a convenient way for applications-such as a print spooler-to 
schedule prioritized tasks. 

When we remove an element from a heap, we must re-heap the 
tree. That is, one of the deleted node’s children (the greater) will become 
the new parent; one of that node’s children will replace it; and so on. 
Thus, implementing a heap is a two-stage process. Initially, we must 
transform a complete binary tree into a heap. Then, as elements are 
inserted and removed, we must maintain the integrity of the heap. 

Let’s take a closer look at the process of transforming a complete 
binary tree into a heap. Consider the tree depicted in Figure 9.7. T o  
transform it into heap, we would have to switch node D with node B; 
once moved, we would again need to switch node B with node A. Although 
simple in theory, this technique has one shortcoming in that a child 
cannot easily access its parent. One solution is to add back pointers to 
each node. However, this treats a symptom, not the problem. A better 
solution is to use an array. Recall from Chapter 6 that when using an array 
implementation of a binary tree, the children of any node i are located 
at 2 i  and 2i  + 1; its parent is located at Lila]. Thus, via simple 
formulas, we can reference any node’s parent and children. 

In Chapter 6 we also noted one negative aspect of using arrays to 
implement trees. T h e  problem concerned sparse trees and the program- 
ming difficulties associated with the empty array slots. However, by 
definition, a heap is based on a compiete binary tree, which guaran- 
tees that there will be no empty slots within the array. 



274 9 Sorting Techniques , 

void buildheap( int data[], int size ) 

I 
int i; 

for( i = size/2; i >= 0; i-- 1 
fom-heap( data, i, size ) ;  

1 

void form-heap( int data[], int lo, int hi ) 

I 
int trnp, desc; 

if( 2*(10+1)-1 > hi ) 
return; 

/ *  Nothing to do * /  

if( (2*(10+1)) <= hi && data[2*(lo+l)l > data[2*(lo+l)-ll 

else 
desc = 2 * (lo+l); / *  Right Child * /  

desc = 2 * (lo+l) - 1; / *  Left Child */  

if( data1101 < data[descl ) {  
tmp = data[lol; 
data[lol = data[descl ; 
data[descl = tmp; 
fom-heap( data, desc, hi ); 

1 
1 

listing 9.5 
Functions to create a heap. 

T o  transform a binary tree into a heap, start at the end of the 
array and move up toward the root, switching elements as required. T h e  
code appearing in Listing 9.5 automates this task using two functions: 
f om-heap ( ) and buildheap ( ) . 

The  function f om-heap ( ) takes three arguments: a pointer to 
the data array and two integer variables that delineate its lower and upper 
bounds. Its task is to form a heap beginning at element lo. The  first 
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if statement determines whether l o  has any children; the func- 
tion returns immediately l o  it has none. T h e  function then decides 
which child to process-the greater of the two-and assigns its index to 
desc. Then, if the child is greater than its parent, it switches the two 
elements and invokes itself recursively to continue the process at the next 
level in the tree. Note that form-heap ( ) assumes that if no switch 
is required, the rest of the tree below this point is already in heap form. 
Keep this in mind as we discuss buildheap ( ) . 

T h e  function buildheap ( ) is the driving routine for 
f om-heap ( ) . It requires two arguments: the array and its size. Its 
one loop begins by calculating the middle of the array. Then, 
while decrementing its control variable, the function iteratively in- 
vokes form-heap ( ) with i as its middle parameter (i.e., 
f om-heap ( ) ' s  l o  argument). This means that from node i through 
all of i's descendants, the tree will be formed into a heap. Again keep in 
mind that f om-heap ( ) will terminate as soon as it identifies a case 
where the parent is greater than both of its children. The  entire 
array is in heap form when buildheap ( ) terminates. 

sort. Consider that a$er the initial heap of the array, the largest element 
is in the root positioh. If we were to remove that element and re- 
heap the tree, the stcond largest element would now be in the root 
position. We could broceed in this manner until we had processed all 
elements. 

Note that the process we just described sorts elements in reverse 
order. We could make quick work of this problem by simply in- 
verting the heap. However, this solution does not address one other 
problem: Where should we store the records as we remove them 
from the heap? We could create and maintain a separate array, but 
that is wasteful. 

As an alternative, consider that when we remove the root node 
from the heap, the tree has one less element. After we re-heap, 
we can reuse this otherwise empty slot to store the removed element. 
We continue in this manner with each successive element; when the 
processing completes, the entire array will have been sorted in place. 

We can now formalize our presentation of the heapsort algorithm: 

These two fundtions can now serve as the foundation for a heap- 

1. Build the initial heap. 
2. Exchange the root node with the (current) last node of the array. 



276 

void heap-sort( int data[], int size ) 

{ 
int tmp, i; 

I buildheap( data, size 1 ;  
I 

for( i = size; i > 0; i-- ) {  

I 
tmp = dataI01; 
data101 = data[il; 
data[il = trnp; 
fom-heap( data, 0, i-1 1 ;  

1 
1 listing 9.6 

Heapsort function. 

9 Sorting Techniques 

Analysis 

Initially (via buildheap ( ) ), f om-heap ( ) is called once for each 
node that has a child: O(n). In heap-sort ( ) , fom-heap ( ) is called 
n - 1 times with a maximum depth of hog& + 1)1. As a result, the 
overall complexity becomes O(n log, n). Note that, because of the 
way the heap is formed, heap-sort ( ) is not naturally stable. 

9.7 MERGESORT 

The  final sorting technique we will study is called mergesort. As its 
name implies, merging plays a major role in this sorting algorithm. Merging 
is the process by which we combine two (or more) datasets into one. 
For example, consider two sorted arrays: A of size m, and B of size 
n. Merging these two datasets would create a third sorted array-C of 
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merge( C, A, B, m, n ) 
I 

i = 1; 
j = 1; 
k = 1; 

/ /  Index into array A 
/ /  Index into array B 
/ /  Index into array C 

while( i <= m and j <= n ) {  
if( A[il <= BCjl 1 

C[k++l = A[i++l; 
else 

C[k++l = B[j++l; 
1 

if( i <= m ) / /  Process remaining elements 
while( i <= m 1 

C[k++l = A[i++l; 
else 

while( j <= m ) 
C[k++l = B[j++l; 

1 

listing 9.7 
Merging algorithm-pseudo-code. 

size nz + n-that contains all elements from both arrays. Listing 
9.7 presents a pseudo-code description of such an algorithm. 

The  function merge ( ) begins processing by initializing its control 
variables. With each iteration of the initial while loop, the func- 
tion selects and stores into C the next largest element from A or B; it 
then advances control variables as appropriate. Note that the first loop 
terminates when one of the control variables reaches the end of its 
corresponding array. Therefore, merge ( ) must determine which array 
has not been exhausted and then copy all of its remaining elements 
into C. 

T o  understand how merging can help us sort, we need to alter 
our view of array storage temporarily. Just for a moment, imagine an array 
not as a set of elements, but rather as a set of adjacent subarrays. For 
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Figure 9.8 
Mergesort example. 

9 Sorting Techniques 

Initial state: 

After 1st pass: 

After 2nd pass: 

After 3rd pass: 

Final pass: 

example, we could view an array of size n as n adjacent arrays of 
size 1. 

Obviously, if the subarrays are of size 1, they are, in effect, sorted. 
Now consider what would happen if we were to merge adjacent 
pairs of subarrays. This would create adjacent subarrays of size 2 (also 
sorted). We could repeat this process to create adjacent subarrays 
of sizes 4, 8, and so on. Eventually, we would reach a case where only 
two subarrays remain; when we merge these, the entire array is 
sorted. Figure 9.8 illustrates this process. 

Implementation 

Our first task is to modify the function merge ( ) .  Previously, it re- 
quired two separate source arrays. We will now modify it so that 
it will merge adjacent subarrays within the same array. Listing 9.8 
contains the code for the modified algorithm. Note that in this 
version, merge ( ) requires five arguments: The  first two are the des- 
tination and source arrays; the latter three are index variables that 
denote which adjacent pair of subarrays to merge in the source array. 

Listing 9.9 contains two other functions that complete the imple- 
mentation of the mergesort algorithm. The  first, mrgsass ( ) , is 
the function that drives merge ( ) . It is invoked with four arguments: 
The  first two are the arrays (destination and source); size is the size of 
the array and len is the length of the subarray for each pass. The  
function divides the array from [ ] into subarrays of size len and invokes 
merge ( ) once for each adjacent pair. Take note of the special proc- 
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void 
merge( int to[], int from[], int low, 

{ 

int mid, int high ) 

int ilow, ihigh, ito; 

ilow = ito = low; 
ihigh = mid + 1; 
while( ilow <= mid hh ihigh <= high ) { 

if( from[ilow] < from[ihighl ) {  

to[ito] = from[ilowl; 
ilow++ ; 

to[ito] = from 
ihigh++ ; 

1 else { 

1 
ito++ ; 

1 

ihigh] ; 

while( ilow <= mid ) 

to [ito++ 1 = from[ilow++ 1 ; 

while( ihigh <= high ) 

to[ito++] = from[ihigh++l; 
1 listing 9.8 

Mergesort algorithm. 

essing for cases where the from [ ] array cannot be partitioned into an 
even number of subarrays. 

The  second function, mrg-sort ( ) , is the driving routine for the 
entire mergesort algorithm. It is invoked with two arguments: the 
array to sort and its size. Its driving loop calculates the length of the 
subarray and calls mrgjass ( ) . 

Note that during each iteration of its while loop, mrg-sort ( ) 

calls mrggass ( ) twice, alternating the first two arguments. That is to 
say, during the first call mrggass ( ) sorts from data [ I into tmp [ I ; 
the second call reverses that order. This saves the time that we would 
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void 
mrggass( i n t  t o [ ] ,  i n t  from[], i n t  s ize ,  i n t  len ) 

while( low < s i z e  - 2*len ) { 

merge( to ,  from, low, low+len-1, low+2*len-l ); 

low += 2 * len; 
1 

i f (  low+len-1 < s ize  ) {  

1 else { 

merge( to ,  from, low, low+len-1, s i z e  ); 

while( low <= s ize  ) { 
tollowl + from[lowl; 
low++ ; 

1 
1 

vo-l mrg-sort ( 

c 
i n t  

n t  da ta [ ] ,  ,at s ize  

t m g [  2048 1 ;  
i n t  len = 1; 

/* malloc */ 
/* len of subfile */ 

while( len < s ize  ) { 

mrggass(  tm, data, s i z e ,  l e n  ); 

len *= 2; 
mrggass(  data, tmp, s i z e ,  len );  
len *= 2; 

1 
1 

listing 9.9 
Mergesort algorithm. 
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otherwise spend copying elements from tmp [ I back to data [ 1 after 
each pass. 

One final note: In this version, mrg-sort ( ) allocates auxiliary 
storage statically (i.e., int t m g  120481 ). A more practical ap- 
proach would be to allocate the additional storage dynamically using 
a function similar to malloc ( ) . (Refer to Chapter 5 for a more detailed 
discussion of this topic.) 

Analysis 

As depicted in Figure 9.8, mergesort requires several passes: 

Pass No. Subarray Size 

1 1 
2 2 
3 4 

j t h  2'- 1 

This yields a total of hog, nl passes. Each call to merge ( ) re- 
quires one scan of the array O(n). Thus, the overall complexity of 
mergesort is O(n log, n). Note that the function requires additional 
space proportional to n. 

during merges. Thus, we can ensure that the relative position of 
the keys remains unchanged during processing. 

T h e  algorithm is also stable. T h e  function only moves records 

7 - V'D I .  : There is a wide variety of internal sorting techniques available to 
programmers. They range in complexity from O(n log, n) to O(nz). In 
addition, they vary with respect to storage requirements and stability. 

Many sorting algorithms are affected by the organization of their data- 
sets. Some perform well when the data are (nearly) sorted; others 
do not. As a result, the behavior of sorting algorithms is expressed 
using two complexities: worst case and average case. 

One of the most popular sorting algorithms is called quicksort. Al- 
though comparatively efficient, its complexity can be improved using 
simple modifications. It also has the virtue of sorting data in place. 
Two other popular techniques are called heapsort and mergesort. 

SUMMARY 
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1. We can improve the performance of the bubble sort algorithm by 
eliminating unnecessary comparisons. For example, consider 
an array of 50 elements. If during one scan of the array the last 
exchange occurred at location 35, we can assume that slots 36 
through 50 are sorted. Therefore, the function can terminate the 
next pass at slot 34. Add the necessary code to the function 
bbl-sort ( ) to implement this feature. Compare the new algo- 
rithm’s performance to that of the original. 

2. How does the function qck-sort ( ) (Listing 9.4) put an end to 
its recursion? 

3. At the end of its outer while loop, the function qck-sort ( ) 

exchanges the partitioning element (data [hi] ) with data [il . Ex- 
plain why we can place the partitioning element a t  the ich location. 

4. Implement both the secondary sorting routine and the median- 
of-three improvements to the basic quicksort algorithm. 

5. Modify your function of the previous exercise to use a pseudo- 
random number generator, rather than median-of-three parti- 
tioning, to select its partitioning element. Compare the performance 
of the two functions. 

6. Which of the algorithms in this chapter are stable? Which are not? 
Provide example datasets to support your claims. Are your 
answers implementation dependent? If so, provide examples. 

7. Analyze the behavior of all the sorting algorithms presented in 
this chapter when presented with sorted data. Perform the same analy- 
sis for datasets sorted in reverse order. 

8. Implement a recursive version of the quicksort algorithm that uses 
a selection sort for small subfiles. Use an array size of 1000. 
Begin with M = 15 as your performance metric; then vary its 
value and note the results. 

9. Carry out the same tasks as described in the previous exercise on 
an iterative implementation of quicksort. Compare your results. 

E X E R C I S E S  
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10. Consider a complete binary tree wherein the data value for each 
node is equal to its index. Is this tree a heap? 

11. Given an array containing the values 10, 9, . . . , 1, show the state 
of the heap after the initial call to buildheap ( ) . 

12. Design and implement a version of mergesort that sorts in place. 

13. Write a general-purpose routine to insert and delete elements in 
a heap. 



Acrostic PZGXX Ze 
A P P E N D I X  

In Chapter 4, we briefly described a backtracking algorithm that solved 
acrostic puzzles. In this appendix, we undertake a more thorough examina- 
tion of the program. 

Simply stated, an acrostic puzzle is a crossword puzzle without 
the clues: You are supplied the words and the diagram and, through 
trial and error, you must enter all the words into their appropriate slots 
(see Fig. A.l). We urge you-if you are not familiar with these 
types of puzzles-to try solving one manually before reading on. 

Before we can describe an automated solution, we need to address 
some basic details. First, we must develop a way to input a puzzle descrip- 
tion to our program. T o  simplify this example, we will place puzzle 
descriptions in files (the format of which will be described later). 
Thus, to invoke our program, we will type a command similar to 
the following: 

kross guzzle-file 

The  puzzle description file is divided into two sections. Section 
I contains the layout of the puzzle. As depicted in Figure A.2, it 
begins with a line that contains the identifying string @guzzle. Fol- 
lowing that, there is a series of l ines-one for each row of the puzzle- 
that contain a combination of blanks and dashes. These characters 
represent the black boxes and the character locations of the puzzle, 
respectively. Note that you must ensure that all puzzle-description 
lines are of equal length (the program checks for this). 

Section I1 of the puzzle description file begins with a line con- 
taining the identifying string @words (refer to Fig. A.2). Immediately 
following begins the list of words, one per line, that the program will 
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BEST 
ERA 
TAMP 
TO 
TOPS 

Figure A.l 
A sample acrostic 
puzzle and solution. 

@puzzle 

x-x- 

-M- 
_ _ - -  

@words 
best 
tamp 
tops 

Figure A 2  era 
Sample input file. to 

Solution 
(b)  

(Section I) 

('x' = Blank) 

(Section II) 

insert into the puzzle. You may enter words in any order. However, take 
the time to ensure that all words are spelled correctly. T h e  program, 
as you might expect, is rather unforgiving in this regard. 

T h e  overall operation of the program is as follows: 

Read the puzzle and word list into internal data structures. 
Attempt to find a solution for the puzzle. 
If there is a solution, print it. 

Figure A.3 contains sample program output for the puzzle pre- 
sented in Figure A.2. 

Let's begin our analysis of the program by examining its data 
structures. T h e  program uses a two-dimensional character array, 
called guzzle [ I [ I  , to store the internal representation of the puzzle. 
T h e  array is initialized by the function readguz ( ) as it scans Section I 

best Figure A.3 
Sample program tamp 

xrxo 

output. OMS 

('x' = Blank) 
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of the description file. By convention, a hyphen (-) represents a charac- 
ter location; a blank denotes a black box. 

After loading the diagram, readpuz ( ) reads and stores the word 
list into a structure array called list [ 1. Each element of this array 
represents words of the same length. The  words themselves are stored 
in a subarray referred to by the simple appellation w, which is an array of 
type struct words. Each element of this structure contains two 
members: 

word 
flag 

This is a character array that holds the actual word. 
This is a status field that indicates the state of the word (i.e., 

used, free, etc.). 

As an example of how the program uses these structures, consider 
how it might search for a five-letter word to fill a particular slot in 
the puzzle. It begins by indexing into the fifth slot of list [ 1 .  It then 
scans each element of the subarray w until it locates a free word that fits 
into the desired puzzle slot. Note that, as a programming convenience, 
we have offset the array index to eliminate unneeded entries (e.g., 
words of length 1 or 2). 

Once kross has completed initializing its data structures, it in- 
vokes the function solve ( ) to solve the puzzle. This is where 
we find all the backtracking logic (see Listing A.l). solve ( 1 is a 
recursive procedure that performs the following processing: 

1. It begins each invocation by choosing, and determining the size 
of, the next puzzle slot it must fill (horizontal or vertical). This proc- 
essing is performed by the function next ( ) and is, by necessity, 
a rather messy bit of code. 

2. It then selects, at random (i.e., sequentially), an appropriately 
sized word from the available list. It uses the function itfits ( ) to 
determine whether the word fits into the slot (in typical crossword 
puzzle fashion). 

3. If it fits, solve ( ) enters the new word into the puzzle. Just prior 
to doing so, solve ( ), with the aid of the function enter ( 1, takes 
a snapshot of the current puzzle state. 

a solution. 

no more slots to fill), it returns the value SOLVED. 

4. The  function then invokes itself recursively, continuing toward 

5. If, at any point, the function completes the puzzle (i.e., there are 
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1: solve( length, width ) 

2: int 1 engt h , width ; 
3: { 
4: int 1, w, i, len, tmp, type; 
5: char old[ WORDLEN - MINWORD + 1 1 ; 
6: 
7: w = width; 
8: 1 = length; 

= next( &l, &w, &type );  

len == 0 
return( SOLVED ; 

9: len 
10 : if( 
11 : 
12 : 
13 : for 
14 : 
15 : 
16 : 
17 : 
18 : 
19 : 
20 : 
21: 
22 : 
23 : 
24 : 
25 : 1 
26: 

i = O;i<MAXWORD&&WORD(len,i) 01 !=NULL;i++){ 
if( FLAG(len, i) == FREE 

&& itfits(1, w, WORD(len, i), type) ) { 
FLAG(len, i) = USED; 
enter( old, 1, w, WORD(len,i), type ) ;  

prev = type; 
tmp = solve( 1, w ) ;  

if( tmp == SOLVED ) 

restore( old, 1, w, type 1; 
FLAG(Len, i) = FREE; 

return( SOLVED 1 ; 

1 

27 : return( FAIL );  
28: 1 

listing A.l 
The function solve ( 1. 

6. If a given recursive call fails to find a solution, solve ( ) 

Restores the puzzle to its previous state. This is accomF 
via a call to the function restore ( 1. 

isheL 

Returns the word that it just tried back to the free list. 
Repeats the steps 2-5 with the next available word. If none 
remains, solve ( ) returns the value FAIL. 
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Let’s trace the execution of the function solve ( ) as it begins 
to solve our sample puzzle from Figure A.2. All the line numbers referenced 
throughout the discussion correspond to Listing A. 1. Also, to simplify 
our example, the random selection of words is the order in which 
they appear in Figure A.2. 

First, we need a four-letter word to fill the I across position. The  
function randomly selects best (line 14), marks it as USED (line 16), and 
inserts it into the puzzle (line 17). Solve ( ) then calls itself recursively 
to continue processing (line 19). 

The  next invocation of the function needs a three-letter word for 
the 2 down position; it selects era and inserts it into the puzzle. 
The  next call to solve ( ) must now fill the 3 down position. Thus, 
it selects the next available four-letter word, tamp (line 13), checks 
to see that it fits (line 14), and inserts it into the puzzle (line 17). 

The  next slot the function needs to fill is 4 across. As usual, it 
selects the next available four-letter word-in this case, tops. This time, 
however, the itfits ( ) test (line 15) fails. Recognizing that the last 
four-letter word has been used (line 13), the function restores the 
puzzle to its previous state (line 22) and then initiates a backtrack 
(line 27). 

After backtracking, the immediately preceding invocation of the 
function now resumes processing at the point where it, again, needs to 
fill the 3 down position. It discards what was its first choice, tamp (lines 
22 and 23) and selects the next available word, tops (line 14). Note that 
the function put the word tops back on the available list just prior to 
performing the backtrack. From this point on, the function solves the 
puzzle without any additional difficulties. The  complete program ap- 
pears in Listing A.2. 

1. Implement and test the operation of the kross program. 

2. Create several puzzles of your own and test them with the 
kross program. 

3. Rewrite the kross program to use dynamic data structures. 

4. Modify the word search routines used by kross to utilize the 
hashing techniques discussed in Chapter 8. 

E X E R C I S E S  
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#include <"stdio. hn> 
#include <"stdlib. h"> 
#include <"string. h"> 

#define ALL 1 
#define PUZ 2 
#define DOWN 1 
#define ACROSS 2 

#define MINWORD 2 
#define MAXPUZ 25 
#define MAXWORD 50 
#define WORDLEN 15 

#define EMPTY 0 
#define FREE 1 
#define USED 2 

#define FAIL -1 
#define SOLVED 3 

#define BLANK ' 
#define PADCHAR - 
#define WORDS '8@words'8 
#define PUZZLE "@guzzle" 

#define FLAG(x, y )  list[ x - WINWORD 1 . ~ 1  y 1 . f lg  
#define WORD(x, y )  l i s t [  x - MINWORD I .w[ y I .word 

i n t  main( i n t  ac, char *av[ l ) ;  
i n t  solve( i n t  length, i n t  width 1;  
i n t  next( i n t  *len, i n t  *wht, i n t  * t  ); 
i n t  itfits( i n t  1, i n t  w, char *word, i n t  t 1;  

void readguz( FILE *fg ); 
void g u z g r i n t (  void 1; 
void res tore(  char *old, i n t  1, i n t  w, i n t  t ); 
void en ter (  char *old, i n t  1, i n t  w, char *word, i n t  t );  

i n t  length, width; 
char guzzle[ MAXPUZ 1 MAXPUZ 1 ;  

s t r u c t  words { 
i n t  f lg;  
char word[ WORDLEN 1 ; 

1; continued on p.  290 
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struct wordlist { 

} list [ WORDLEN - MINWORD ] ; 
struct words w [ MAXWORD 1 ; 

int main( int ac, char *av[] ) 
{ 

1 

/ *  * 
* 
* 
* /  

void 
E 

. .  

continued from p .  289 

int i, j; 
FILE *fp; 

if( ac != 2 ) {  
fprintf ( stderr, "usage: kross puzzlef ile\nff ) ; 
exit( 1 ) ;  

1 
if( (fp = fopen( av[ll, ,,rfr ) )  == NULL ) I  

fprintf ( stderr, "Cannot open ' % s f  to read!\nf', 
av[ll 1;  
exit( 1 ); 

1 

readpuz( fp ); 
if( solve(0, -1) == SOLVED ) 

else 
puzgrint ( 1 ; 

printf ( "No Solution! ! \n" ) ; 

return( 0 1 ;  

readpuz(F1LE *fp) 

int i; 
char buf 85 1; 

/*  * Puzzle Section 
*/  
length = 0; 
if( fgets( buf, sizeof buff fp ) == NULL ) {  

fprintf ( stderr, "%s: Premature EOF! \n", PUZZLE ) ; 
exit( 1 ); 

1 continued on p.  292 
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continued fmm p .  290 
if( strncmp(buf, PUZZLE, strlen(PUZZLE)) ) {  

fprintf ( stderr, "%s: BAD FORMAT!\n", PUZZLE ); 

exit( 1 ) ;  

1 

if( fgets(buf,sizeof buf,fp) == NULL 
I I !strncmp(buf,WORDS, strlen(W0RDS)) ) { 

fprintf ( stderr, "%s: Premature EOF! \n", PUZZLE ) ; 

exit( 1 1; 
1 
width = strlen( buf ) - 1; 

do { 

} while 

/ *  

if( (strlen( buf ) - 1) ! =  width ) {  

fprintf ( stderr, "Line %d: bad width! \n" , 

exit( 1 1; 
width ) ; 

1 
for( i = 0; i < width; i++ ) {  

if( buf[ i 1 == BLANK 1 

else if( buf[il == PADCHAR 

else { 

puzzle[ length 1 i 1 = NULL; 

puzzle[ length 1 i 1 = buf i 1; 

fprintf( stderr, 
"BAD CHAR %d L# %d\n", 
buf[il, length ) ;  

exit( 1 1; 
1 

1 
puzzle[ length 1 width 1 = NULL; 
length += 1; 
fgets(buf,sizeof buf,fp)!=NULL && 

strncmp( WORDS, buff strlen(W0RDS) 1 !=  0 );  

* Words Section 
*/  continued on p .  292 
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1 

/*  
* 
* 
* 
* /  

continued from p. 291 
while(fgets(buf, sizeof buf, fp) !=  NULL ) {  

for( i = 0; i < W O R D ;  i++ ) {  

if( FLAG(strlen(buf1-1, i) == EMPTY ) { 

StmCpy( WORD(strlen(buf) -1, i), 
buf, strlen(buf) -1 1;  

strlen(buf) -1, i) = FREE; FLAG 
break; 

1 
1 

if( i >= W O R D  ) {  

fprintf ( stderr, "Out of space %d %s\n", 

exit( 1 1; 
1 

strlen(buf1-1, buf 1;  

1 

void puzgrint ( ) 
{ 

int i, j; 

for( i = 0; i < length; i++ ) { 

for( j = 0; j < width; j++ ) {  

if( guzzle[il [jl 1 
putchar ( guzzle [il t j 1 

else 
putchar( BLANK 1;  

1 
putchar( '\n' ) ;  

1 
1 

; 

continued on p.  293 
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int solve( int length, int width ) 

{ 
int 1, w, i, len, tmp, type; 
char old[WORDLEN - MINWORD + 11 ; 
w = width; 
1 = length; 
len = next( hl, hw, &type ) ;  

if( len == 0 ) 

return( SOLVED ) ; 

for( i=O; i<MAXWORD hh WORD(len, i)[O] != NULL; i++ ) 

{ 
if( FLAG(len, i) == FREE 

&& itfits(1, w, WORD(len, i), type) ) {  

FLAG(len, i) = USED; 
enter ( old, 1, w, WORD(len, i) , type 
prev = type; 
if ( solve(1, w) == SOLVED ) 

restore( old, 1, w, type );  

FLAG(len, i) = FREE; 

return ( SOLVED ) ; 

1 
1 

i 

return( FAIL ) ;  
1 continued on p.  294 
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1 = flen; 
w = *wht; 

/ *  
* Check current position for across: down would 
* have been done already. 
* /  
if( w != -1 && ( ( w  - 1) < o I 1 puzzle[11 tw-11 == NULL 

&& puzzle[l] [w] && (w + 1 )  < width && puzzle[ll [ w + l l  ) I  
/ *  
* Across! 

* /  
*t = ACROSS; 

/ *  
* Necessary evil 
* /  
*wht = w + 1; 

tmp = 0; 
while( puzzle [l] [w]  ! = NULL && w < width ) { 

w += 1; 
tmp += 1; 

1 
return( tmg 1; 

1 else if( prev == DOWN I I w == -1 
w += 1; continued on p .  295 
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/ *  
* Check for next possible position 
* /  
for(; 1 < length; 1 += 1 ) { 

for(; w < width; w += 1 ) {  
if( ( (1 - 1) < o 1 1  puzzle[l- 

continued from p.  294 

I [wl == NULL) 
&& puzzle[ll [wl != NULL && (1+1) < length 
&& puzzle[l+ll [wl != NULL ) {  

/ *  
* Down!  
*/  
*t = DOWN; 
prev = DOWN; 
*wht = w; 
*len = 1; 
tmp = 0; 
while (puzzle [l] [w] !=NULL&&l<length) { 

1 += 1; 
tmp += 1; 

1 
return( tmp ) ; 

1 
if( ((w - 1) < o 1 1  puzzle[11 [w-11 == NULL ) 

&& puzzle[ll [w] && (w+l) < width 
&& puzzle[ll [w+ll ) { 

/ *  
* Across ! 
* /  
*t = ACROSS; 
prev = ACROSS; 
*len = 1; 
*wht = w + 1; 
tmp = 0; 
if( w == - 1 ) w -  - 0; 
while(puzzle[ll [wl 
!=NULL&&w<width) { 

w += 1; 
trnp += 1; 

1 continued on p .  296 
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return( tmp 1;  continued from p.  295 
1 

1 
w = 0; 

1 

/ *  * Puzzle completed! 
*/  

return( 0 1; 

if( t == ACROSS && W != -1 ) 
1; w -= 

cp = word; 
while( *cp ) {  

if ( *cp != puzzle[ll [wl 
&& puzzle[ll [wl !=  PADCHAR 

return( 0 1;  
if( t == ACROSS ) 

w += 1; 
else 

1 += 1; 
cp++ ; 

1 
return( 1 1;  

1 
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E 
char *cp; 

if( t == ACROSS ) 
1; w -= 

cp = word; 
while( *cp ) { 

*old++ = puzzle[ll [wl ; 
puzzle[ll [wl = *cp; 
if( t == ACROSS ) 

else 

cp++; 

w += 1; 

1 += 1; 

1 
*old = NULL; 

1 

continued from p.  296 

listing A.2 
The complete kross program. 



C f o r  Programmers 
A P P E N D I X  

B.l INTRODUCTION 

This appendix provides a brief introduction to the C programming 
language. It is not intended to serve as an exhaustive tutorial. It will, 
however, acquaint readers with the basic features of the language. We 
assume the reader has had some prior programming experience in a high- 
level language. In addition, we also assume that the reader has re- 
viewed the section in Chapter 1 titled “What You Need to Know.” The  
grammar specified throughout this appendix adheres to the American 
National Standards Institute (ANSI) definition for C. 

Quick Tour of C 

T o  highlight many of the features we will discuss, Listing B. 1 contains 
a simple, somewhat contrived, C program. All the program does 
is scan an array to locate and print the value of its largest element. 
An example of the program’s output appears in Figure B . l .  

Program Structure 

A C program is composed of one or more functions, one of which must 
be named main( ) . Listing B . l  contains two function definitions, 
main ( ) and find-max ( ) . Program execution begins with the first 
executable instruction in main ( ) and continues until either main ( ) 
executes a return statement or the program invokes one of the 
standard exit routines (e.g., exit ( )). 

A complete C program can-and usually does-span more than 

298 
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#include (stdi0.h) 

/*  

/*  Preprocessor Directive * /  

* Preprocessor Macros h Symbolic Constants 
*/  

#define NO-OF-ELEMENTS 10 
#define MAX(A, B) ( ( A )  > (B) ? 

int find-max( int beg, int end ); 

int data[ NO-OF-ELEMENTS 1 ; 

int main ( ) 
{ 

int max; 
int i = 0; 

while( i < NO-OF-ELEMENTS ) 

{ 
data[ i 1 = i; 
i = i + l ;  

1 

( A )  : (B) ) 

/ *  Function Declaration * /  

/*  Variable Definition * /  

/*  Function Definition * /  

/*  Automatic Class Vars * /  

/ *  While Loop * /  

maX = find-max( 0, NO-OF-ELEMENTS ) ; 

printf( "The value of max is: %d\n", max ); 

return( 0 1;  
1 

int find-max(int beg, int end) /*  Definition of find-maxo * /  
{ 

int i, max; 

max = data[ beg 1 ; / *  External Variable */  
for( i = 0; i < end; i++ 

max = MAX( max, data[il 1; / *  Macro Reference * /  

return( max 1; 
1 

listing B.l 
Sample C program. 
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Figure B.l 
Sample program 
output. 

Basic Types 

Appendix B 

The value of max is: 9 

one source module (file). That is, you can define functions in more than 
one source file and then compile and link the modules together to 
form one executable program. For example, we could have placed the 
function find-max ( ) in its own, separate source file. 

During compilation, source files can include additional C and 
preprocessor statements from other files, usually called header$les. 
We refer to the resulting code, passed onto the C compiler, as a 
compilation unit. In Listing B.l, we included one header file stdi0.h. 

8.2 DATATYPES 

C supports several basic data types 

char A variable large enough to hold any character of the native 
character set. It is usually one byte in size and may store other (small 
integer) values as well. 
int  
tion environment. For example, ints are typically two bytes on 
16-bit processors, four bytes on 32-bit processors. 
float 
of this data type is machine dependent. 
double 
sion of this data type is machine dependent. 

In the program of Listing B.l, we declared several variables of type 
int .  

An integer type that reflects the natural word size of the execu- 

Single-precision floating-point values. The  size and precision 

Double-precision floating-point values. The  size and preci- 

Qualifiers 

The  basic types may have qualifiers applied to them. Two that apply 
only to ints are short and long. The  intent of these two qualifi- 
ers is to provide integers of different sizes where appropriate. For 
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example, on most processors a short is typically 16 bits, a long is 32 
bits. Compiler vendors may choose sizes that befit the execution envi- 
ronment with the proviso that shorts are at least 16 bits and longs are 
at least 32 bits. You may omit the keyword int when you use these 
qualifiers. For example, both of the following type declarations 
are equivalent: 

short i ; 
short int i; 

Programmers may apply the qualifier long to doubles as well. 
A declaration of type long double (both keywords are required 
in this case) implies extended-precision floating point. However, as 
with doubles, the actual size is machine dependent. 

The  qualifiers signed and unsigned may be applied to any 
integer or char type. Values that are unsigned may only hold positive 
values or zero; signed values may hold negative quantities. 

Constants 

C recognizes several types of constants. An integer constant is a se- 
quence of digits; its data type is int. If the digit sequence begins with 
a leading zero, the compiler interprets its value in octal; a leading Ox 
(zero followed by an x-ei ther  case) signifies hexadecimal. T h e  characters 
a through f (in either case) represent the hexadecimal digits 10 
through 15, respectively. In Listing B.l, we use an integer literal 
in the declaration of the variable i. 

If a digit sequence terminates with either an upper- or lowercase 
L, the value is treated as a long. A trailing U (either case) indicates 
unsigned. Programmers may combine both suffixes to signify un- 
signed long. Several examples follow. 

15 / *  Decimal int, value = 15 
017 / *  Octal int, value = 15 
OxF / *  Hexadecimal int, value = 15 

* /  
*/  
*/  

15u /* Decimal - unsigned int, value = 15 * /  
017L /* Octal - long, value = 15 * /  
OxFul / *  Hex - unsigned long, value = 15 * /  
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Character Constants 

A character constant is a sequence of one or more characters enclosed 
within single quotes ('). T o  express the literal value x we write 
'x'. We may also use the following so-called escape sequences to 
express characters that are otherwise difficult to represent: 

New1 ine 
Horizontal Tab 
Vertical Tab 
Carriage Return 
Formf eed 
Audible Bell 
Backspace 
Backs lash 
Question Mark 
Single Quote 
Double Quote 
Octal Value 
Hexadecimal Value 

\n 
\t 
\v 
\r 
\f 
\a 
\b 
\ \  
\ ?  

\ #  

\ " 
\ddd 
\ Oxdd 

We can use the octal and hexadecimal escape sequences to repre- 
sent any character using its value in the native mode character set. 
For example, we could specify an ASCII bell character using any of 
the following forms: \a, or \007, or \Ox7. We may use escape sequences 
anywhere a character would otherwise be expected. For example, we 
used an \n sequence in the call to printf ( ) in Listing B. l .  

String Constants 

A string constant is a sequence of characters enclosed within double 
quotes ("). For an example, refer to the first argument in the call to 
grintf ( )  in Listing B. l .  Please note that there is no data type 
string in C; nor is string a reserved word of the grammar. 
Internally, C compilers represent strings as arrays of characters termi- 
nated by a NULL character. As a result, string literals in C have a data 
type of array of characters. (Refer to the section on arrays later in 
this appendix.) 
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Symbolic Constants 

Symbolic constants are a feature of the preprocessor. A statement of 
the form 

#define SYMBOLIC-NAME REPLACEMENT-VALUE 

directs the preprocessor to replace all unquoted occurrences of the 
string SYMBOLIC-NAME with REPLACEMENT-VALUE. Refer to the sym- 
bol, NO-OF-ELEMENTS, as it appears in Listing B.l for an example. 

const Qualifier 

C also provides a const qualifier that may be applied to variable 
declarations. A statement of the form 

const double PI = 3.1459; 

signifies to the compiler that the variable PI cannot be modified. As 
a result, you must initialize all const variables when you declare them. 

B.3 DECLARATIONS 

Identifier Names 

A C identifier (i.e., the name of a variable, function, or label) is a 
sequence of one or more letters, digits, and underscores. An identifier 
name must begin with a letter or the underscore; the first 31 characters 
are significant. 

Declaration Syntax 

Variable declarations have the general form 

ope  ident@er-name [ = initial-vahe 1 ; 
where type represents a data type and ident&?r-name is a valid C 
identifier name. Optionally, you may also initialize variables using values 
expressed as compile-time constants. Listing B. 1 contains several vari- 
able declarations; we also provide some additional examples below: 
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int i = 15; / *  
signed int j; / *  
short k = 0, m; / *  
unsigned n; /* 
float f; / *  
long double x; / *  

Signed Int * /  
Signed Int * /  
Signed Short * /  
Unsigned Int * /  
Float * /  
Extended Precision * /  

Arrays 

C allows programmers to create arrays using statements of the gen- 
eral form 

type array - name [ const-expr ] ; 

where type represents the data type specified for each element of the 
array, array-name is a valid C identifier name, and const-expr 
represents a compile-time constant expression that specifies the size 
of (i.e., number of elements in) the array. The  variable, data [ 1, in Listing 
B.l, is an example of an array declaration in C. 

We reference individual array elements by their ofiet  rather than 
their index. Thus, valid element references for an array declared as 

int a[ 10 1 ;  
are from 0 to 9. There are several examples of array references in 
Listing B.l. 

We may create multidimensional arrays simply by adding addi- 
tional sets of brackets: 

int three-dim[31[71[91; 

The  preceding statement creates a three-dimensional array. C compil- 
ers ensure that memory allocation for arrays is contiguous. (Refer to the 
discussion of pointers later in this appendix.) 

Structures 

C programmers can create aggregate data types called structs. For 
example, the statement 

struct emp { 

int id; 
char name [lo1 ; 

1 ;  
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declares a struct with a tag (i.e., name) of emg. This structure has 
two memben: an integer variable named id, and a character array named 
name[]. 

We can declare instances of a struct using statements such as 

struct emg x; 

We can reference individual structure members using the dot (.) 
operator, as in 

x.id = 1024; 

We can also declare and reference arrays of structures: 

struct emg managers[ 10 I;  

managers [il .id = 1024; 

B.4 OPERATOR SET 

Unary 

Unary operators require one operand. C has several, including the 
following: 

- Unary minus (negation) operator 
! Logical Not operator 
- Bitwise Not operator 
* Indirection operator (see below) 
sc Address operator (see below) 
+ + Increment operator 
-- Decrement operator. 

We can use both the increment and decrement operators can be 
used in eitherpreJix (e.g., ++i) o r p o s ~ x  (e.g., i ++) form. T h e  
position of the operator is significant. When used in prefix form, the 
interpretation is increment then mahate; when used in postfix form 
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the interpretation is evaluate then increment. For example, consider the 
following two code fragments: 

i = 10; 
x = ++i; 

i = 10; 
x = i++; 

(1) ( 2 )  

In both cases, the result contained in i is 11. However, in case 1, x 
is set to 11; in case 2, x is set to 10. The  for loop of Listing B.l 
contains an example of the increment operator. 

Binary 

Binary operators require two operands. Let’s begin with the basic 
arithmetic set: 

+ Addition operator 
- Subtraction operator 
* Multiplication operator 
/ Division operator 
% Modulus operator (integer remainder). 

In Listing B.l, we use a binary addition operator (+) in the body of 
the while loop. 

The  relational operators include 

< Less than operator 
<= 
> Greater than operator 
>= 
-- -- Equality operator 
! = Inequality operator. 

Less than or equal operator 

Greater than or equal operator 

Expressions that employ relational operators evaluate to either 
the integer value 1 (signifying true), or the integer value 0 (signifying 
false). (See the section on conditional expressions later in this appen- 
dix.) Several examples of relational operators appear in Listing B.l .  

T h e  logical operators include 
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&& Logical And operator 
1 1  Logical Or operator 
! Logical Not operator. 

You can use the logical operators to create complex expressions. 
For example, the statement 

i f ( a > b  && c < d  
do-somethingo; 

asserts two conditions before invc 
do-something ( ) . 

Ling the funcc-on 

C is often referred to as a high-level, low-level language. One 
reason for the latter half of the appellation is the bitwise opera- 
tor set: 

& Bitwise And operator 
I Bitwise Inclusive-or operator 
A Bitwise Exchsive-or operator 

>> Right shift operator. 

These operators can only be applied to integer-based operands. 

Left shift operator 

Ternary 

C has one ternary operator, also called the conditionaf operator. Its 
syntax is 

mprt ? exprz : expr, 

We evaluate the entire expression beginning with mprI: If mprl 
evaluates to true (see the discussion on expression evaluation later), 
then we evaluate exprz; otherwise, we evaluate expr3. For example, we 
could determine the smaller of two values using the following statement: 

min-Val = a < b ? a : b; 

We use the conditional operator in the definition of the macro, MAX, 
in Listing B.l. 
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Assignment Operators 

The  basic assignment operator in C is the equal sign (=). (PASCAL 
programmers please take note.) C also provides a set of compound 
assignment operators, which take the form 

expr <binary operator> = expression 

These operators combine a binary expression with an assignment. For 
example, if we want to increment a variable by some value other 
than 1, say 10, we could write 

i += 10; 

B.5 EXPRESSIONS AND STATEMENTS 

Comments 

C comments begin with the unquoted character sequence / *  and 
terminate with the unquoted sequence */. Comments in C do 
not nest. 

Expressions 

A primary expression in C includes identifiers, constants, strings, and 
nested expressions enclosed within parentheses. 

Conditional Expressions 

In C, the interpretation of any conditional expression (e.g., i f  ( con- 
dition ) )  can be stated simply: Zero is false, non-zero is true. C program- 
mers tend to rely heavily on this construct and write expressions such as 

if( i % 2 ) 

do-something(); 

which will invoke the function do-something ( ) only when i con- 
tains an odd value. 

This can also lead to interesting results when combined-exron- 
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eously-with the simple assignment operator ( = ). For example, 
given the assignments 

i = 10; 
j = 11; 

the expression 

if( i = j 1 / *  ERROR: assignment NOT 
equality * /  

do-somethingo; 

will evaluate to true because: 

1. We are assigning i to j, not comparing their values. 
2. T h e  result of an assignment statement is the value being assigned 

3. T h e  result of the expression (1 1) is non-zero. 
(in this case 11). 

However, when used correctly, this construct can add power and 
expressiveness to our C programs. For example, consider the fol- 
lowing code fragment: 

while( ( a [ i + + l  = getchar()) !=  '\n' ); 

In it, we 

1. Perform an 1/0 operation. 
2. Assign the result to an array element. 
3. Increment an index variable. 
4. Perform a relational comparison. 

Note that all of this processing occurs within the conditional expression 
of a while loop. 

Statements 

In C, statements are terminated with a semicolon (;). Readers familiar 
with some other languages-most notably PASCAL-should take note. 
In C, the semicolon is a statement terminator, not a statement separator. 
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Compound Statements 

A compoundstatement (sometimes called a block) is a series of one or 
more statements enclosed within braces: 

{ 
statement-1; 
statement-2; 

at at ement-n ; 
1 

You may use a compound statement wherever a single statement 
is valid. 

B.6 CONTROL FLOW 

The if Statement 

The  basic form of the if statement is 

if( condition ) 

statement; 

You may add an optional else clause: 

if( condition ) 

else 
true-statement; 

false-statement; 

Unless you explicitly use braces, C associates an else with the closest 
preceding if. In the following example, 

if( condition1 ) 

if( condition2 
statement 1 ; 

else 
statement2; 
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the compiler associates the else with the inner if, not the outer 
one. If that is not your intention, you must use braces: 

if( condl ) 

{ 
if( cond2 ) 

statementl; 
1 
else 

statement2; 

The switch Statement 

C’s switch statement is a multiway branch: 

switch( expr ) 

{ 
case const-expr: 

statements; 
case const-expr: 

statements; 
default: 

statements; 
1 

The  value of expr-which must evaluate to an integer (or character)- 
is compared against the case labels. If there is a match, execution begins 
with the first statement associated with the label. If there is no match, 
execution begins at the optional default label (if there is one). It is 
important to note that cases fall through. That is, regardless of the 
entry point, execution continues through to the end of the switch 
unless a break statement (discussed later) is encountered. In the 
latter case, execution resumes with the statement following the 
switch. 

The while loop 

T h e  syntax for the while loop is 

while( condition ) 

statement; 
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Execution continues as long as condition evaluates to true (i.e., 
non-zero). 

The do-while Loop 

The  do-while loop has the form 

do 
statement; 

while( condition ); 

Like the while loop, this loop continues to iterate while its control 
expression is true. However, this construct guarantees at least one 
iteration because it has its condition test positioned at the end. 

The fo r  loop 

The  syntax of a for loop is as follows: 

for( exprl; expr2; exgr3 1 
statement; 

exgrl is the loop initialization statement; it is executed once, just 
prior to the loop’s first iteration. expr2 is the loop conditional 
statement; the loop will continue to iterate while the condition remains 
true. exgr3 is the loop increment statement; it is executed after 
each iteration of the loop body. The  semicolons are the only symbols 
required between the parentheses. The  preceding for loop is equivalent 
to the following while loop: 

exprl; 
while( exgr2 ) 

{ 
statement; 
expr3 ; 

I 

loop Termination and Continuation 

T h e  keyword statement break may be used within the body of a 
loop or switch. If executed, it causes program execution to pass 
to the statement following its enclosing construct. 
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T h e  keyword statement continue may be used only within the 
body of a loop. If executed, it immediately causes program execu- 
tion to begin the next iteration of the innermost enclosing loop. 

B.7 POINTERS 

The  C declaration for a pointer is 

data - type "ptr- name; 

where data-type determines the type of object at whichptr-name may 
point. For example, we can define a pointer to integer as 

i n t  * igtr ; 

Note that igtr does not hold integer values; rather, it can hold the 
addresses of other integer variables. 

T h e  statement 

igtr = &i; 

assigns the address of i to igtr. That is, we say that igtr points at 
i, and that we can access the contents of i indimctrly through iptr. T h e  
symbol & is a unary operator that yields the address of its operand. 

Once assigned, we can use a pointer to modify the contents of 
the memory cell at which it points. Assuming all of the preceding 
declarations and assignments, the statement 

*igtr = 6; 

is equivalent to the assignment 

i = 6; 

T h e  * operator dereferences the pointer igtr; thus, we access i indirectly 
via the pointer. Pointer dereferencing is dynamic. That is, the cell at which 
a pointer is pointing, at the time of dereferencing, is the one that 
is modified. 

B.8 THE C PREPROCESSOR 

C's preprocessor is a separate program-automatically invoked by the 
compiler-that does just what its name implies: processes C source 
files before passing the modified source code on to the compiler. It 
has several important features. 



31 4 Appendix B 

Symbolic Constants 

Symbolic constants are defined as follows: 

#define MAX-SCORES 1 0  

A statement of this form causes the preprocessor to replace all un- 
quoted occurrences of the string MAX-SCORES with the string 10 .  
For example, consider the following code fragment: 

#define MAX-SCORES 1 0  

main() 
{ 

i n t  i; 
i n t  t o t a l [  MAX-SCORES 1 ;  

i f  ( i > = MAX-SCORES ) 

1 

After preprocessing, the following statements would be presented to 
the compiler: 

main ( 1 
{ 

i n t  i; 
i n t  t o t a l [  1 0  1; 

i f (  i >= 1 0  ) 
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Macros with Arguments 

Symbolic constants may also accept arguments. For example, consider 
the following definition: 

#define SQUARE (x) ( (x) * (x) ) 

T h e  expansion of SQUARE is now dependent on its use. If we code 

z = SQUARE(y); 

the preprocessor will expand it to 

z = ((y)*(y)); 

Note that x serves as a place holder. That is, whatever argument we 
place in the x position will appear wherever x appears in the 
expansion. 

Include Files 

Another widely used feature of the preprocessor is the file inclusion 
facility. The  following preprocessor directive: 

#include “def 8 .  h“ 

directs the preprocessor to replace the #include statement with the 
entire contents of the file def s . h. The  included file may con- 
tain any valid C and preprocessor statements, including nested 
#include’s. 

There is another form of the #include directive: 

#include (filename) 

T h e  angle brackets direct the preprocessor to search a predetermined 
location for one of several system-supplied header files. T h e  exact 
location is system dependent, and the files contain definitions of a 
global nature. 

1. What effect, if any, would changing the position of the increment 
operator from prefix to postfix have on each of the following 
statements? 
a. ++i;  

E X E R C I S E S  
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b. for( i = 0; i < 10; ++i ) 

c. j = ++i;  
aCi1 = i; 

2. Given the following macro definition from Listing B.l ,  

#define MAX(A, B) ( (A) > (B) ? (A) : (B) ) 

what is the value of all variables after executing the following 
statements? 

int a, b, c; 

a = 20; 
b = 20; 
c = MAX( a++, b 1; 

3. What value is assigned to c after executing the following assign- 
ment statement? 

int a, b, c; 

a = 20; 
b = 10; 
c = a < b ;  

4. How many times, if any, will the following loop execute? 

int a, b, c; 

i = -5; 
while( i ) 

do-something(); 
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LIFO (last-in, first-out) structure 33–36 

Linear list  32–33 

   See also Ordered list 

Linear probing 251–253 

Linked-list deletion 89–92 103–105 

Linked-list insertion 87–92 103–105 

Linked lists 87–92 

 using pointers 92–105 

List(s) 

 adjacency 201–202 

 circular, queue as 53–54 55 

 concatenation of 107–109 

 doubly linked 125–127 128 

 generalized 127 129–137 

 linked  87–92 
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  insertion with 87–92 103–105 
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 tree as  144 
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 with pointers 103–105 

List insertion 89–92 

 with pointers 103–105 

List reversal 106–107 

List traversal 105–106 

 iterative 105–106 

 recursive 105–106 

list_equal() 132 134 
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Macro   9–10 

main()   7 8 299 

Maintainability 5 

 of algorithm 17 

make_tree() 191 

malloc()  110 
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mrg_pass() 278–280 

mrg_sort() 278–280 

Multidimensional arrays 32 

Multigraph 196 197 

N 

nextqueen() 69–77 

Node   143 

 degree of 143 

 depth of 144 

 height of 143–144 

 level of 143 

 non-terminal 143 
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Non-deterministic programming 78 

Numbers 

 factorial 

  iterative solution for 62 

  recursive algorithm for 62–65 

 Fibonacci, algorithm for 20–24 
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Parentheses, stacks processing of 37–39 40 

Parenthesis index 38 

Partition sort 265–272 

Path   141 

 in graph 198 

Platform  17–18 

Pointer(s)  94–95 

 in C programming language 95–97 313 

 dereferencing of 96–97 

 example of 97–99 
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Preprocessor 

 of C programming language 8–11 313–315 

 file inclusion facility of 10–11 
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Probing, linear 251–253 
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Pseudo-code 13–14 

Public interface 5 
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Record  99 
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