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Chapter 1

Sorting, Searching, and Merging

In this chapter, we will explain the following:

How to sort a list of items using selection and insertion sort•	

How to add a new item to a sorted list so that the list remains sorted•	

How to sort an array of strings•	

How to sort related (parallel) arrays•	

How to search a sorted list using •	 binary search

How to search an array of strings•	

How to write a program to do a frequency count of words in a passage•	

How to merge two sorted lists to create one sorted list•	

1.1 Sorting an Array: Selection Sort
Sorting is the process by which a set of values are arranged in ascending or descending order. There are many reasons 
to sort. Sometimes we sort in order to produce more readable output (for example, to produce an alphabetical listing). 
A teacher may need to sort her students in order by name or by average score. If we have a large set of values and we 
want to identify duplicates, we can do so by sorting; the repeated values will come together in the sorted list.

Another advantage of sorting is that some operations can be performed faster and more efficiently with sorted 
data. For example, if data is sorted, it is possible to search it using binary search—this is much faster than using a 
sequential search. Also, merging two separate lists of items can be done much faster than if the lists were unsorted.

There are many ways to sort. In this chapter, we will discuss two of the “simple” methods: selection and insertion 
sort. In Chapter 10, we will look at more sophisticated ways to sort. We start with selection sort.

Consider the following list of numbers stored in a C array, num:
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Sorting num in ascending order using selection sort proceeds as follows: 
1st pass

Find the smallest number in the entire list, from positions •	 0 to 6; the smallest is 15, found  
in position 4.

Interchange the numbers in positions •	 0 and 4. This gives us the following:

2nd pass

Find the smallest number in positions •	 1 to 6; the smallest is 33, found in position 5.

Interchange the numbers in positions •	 1 and 5. This gives us the following:

3rd pass

Find the smallest number in positions •	 2 to 6; the smallest is 48, found in position 5.

Interchange the numbers in positions •	 2 and 5. This gives us the following:

4th pass

Find the smallest number in positions •	 3 to 6; the smallest is 52, found in position 6.

Interchange the numbers in positions •	 3 and 6. This gives us the following:

5th pass

Find the smallest number in positions •	 4 to 6; the smallest is 57, found in position 4.

Interchange the numbers in positions •	 4 and 4. This gives us the following:
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6th pass

Find the smallest number in positions •	 5 to 6; the smallest is 65, found in position 6.

Interchange the numbers in positions •	 5 and 6. This gives us the following:

The array is now completely sorted.  Note that once the 6th largest (65) has been placed in its final position (5),  
the largest (79) would automatically be in the last position (6).

In this example, we made six passes. We will count these passes by letting the variable h go from 0 to 5. On each 
pass, we find the smallest number from positions h to 6. If the smallest number is in position s, we interchange the 
numbers in positions h and s.

In general, for an array of size n, we make n-1 passes. In our example, we sorted seven numbers in six passes.  
The following is a pseudocode outline of the algorithm for sorting num[0..n-1]: 
 
        for h = 0 to n - 2
           s = position of smallest number from num[h] to num[n-1]
           swap num[h] and num[s]
        endfor
 

We can implement this algorithm as follows, using the generic parameter, list:
 
        void selectionSort(int list[], int lo, int hi) {
        //sort list[lo] to list[hi] in ascending order
           int getSmallest(int[], int, int);
           void swap(int[], int, int);
           for (int h = lo; h < hi; h++) {
              int s = getSmallest(list, h, hi);
              swap(list, h, s);
           }
        }
 

The two statements in the for loop could be replaced by this: 
 

swap(list, h, getSmallest(list, h, hi));
 

We can write getSmallest and swap as follows:
 
        int getSmallest(int list[], int lo, int hi) {
        //return location of smallest from list[lo..hi]
           int small = lo;
           for (int h = lo + 1; h <= hi; h++)
              if (list[h] < list[small]) small = h;
           return small;
        }
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        void swap(int list[], int i, int j) {
        //swap elements list[i] and list[j]
           int hold = list[i];
           list[i] = list[j];
           list[j] = hold;
        }
 

To test whether selectionSort works properly, we write Program P1.1. Only main is shown. To complete the 
program, just add selectionSort, getSmallest, and swap.

Program P1.1

        #include <stdio.h>
        #define MaxNumbers 10
        int main() {
           void selectionSort(int [], int, int);
           int num[MaxNumbers];
           printf("Type up to %d numbers followed by 0\n", MaxNumbers);
           int n = 0, v;
           scanf("%d", &v);
           while (v != 0 && n < MaxNumbers) {
              num[n++] = v;
              scanf("%d", &v);
           }
           if (v != 0) {
              printf("More than %d numbers entered\n", MaxNumbers);
              printf("First %d used\n", MaxNumbers);
           }
           //n numbers are stored from num[0] to num[n-1]
           selectionSort(num, 0, n-1);
           printf("\nThe sorted numbers are\n");
           for (int h = 0; h < n; h++) printf("%d ", num[h]);
           printf("\n");
        }
 

The program requests up to ten numbers (as defined by MaxNumbers), stores them in the array num, calls 
selectionSort, and then prints the sorted list.

The following is a sample run of the program:

Type up to 10 numbers followed by 0
57 48 79 65 15 33 52 0
The sorted numbers are
15 33 48 52 57 65 79

Note that if the user enters more than ten numbers, the program will recognize this and sort only the first ten.
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1.1.1 Analysis of Selection Sort
To find the smallest of k items, we make k-1 comparisons. On the first pass, we make n-1 comparisons to find the 
smallest of n items. On the second pass, we make n-2 comparisons to find the smallest of n-1 items. And so on, until 
the last pass where we make one comparison to find the smaller of two items. In general, on the jth pass, we make n-j 
comparisons to find the smallest of n-j+1 items. Hence:

        total number of comparisons = 1 + 2 + ...+ n-1 = ½ n(n-1) » ½ n2

We say selection sort is of order O(n2) (“big O n squared”). The constant ½ is not important in “big O” notation 
since, as n gets very big, the constant becomes insignificant.

On each pass, we swap two items using three assignments. Since we make n-1 passes, we make 3(n-1) 
assignments in all. Using “big O” notation, we say that the number of assignments is O(n). The constants 3 and 1 are 
not important as n gets large.

Does selection sort perform any better if there is order in the data? No. One way to find out is to give it a sorted list 
and see what it does. If you work through the algorithm, you will see that the method is oblivious to order in the data. 
It will make the same number of comparisons every time, regardless of the data.

As we will see, some sorting methods, such as mergesort and quicksort (see Chapters 6 and 10) require extra 
array storage to implement them. Note that selection sort is performed “in place” in the given array and does not 
require additional storage.

As an exercise, modify the programming code so that it counts the number of comparisons and assignments 
made in sorting a list using selection sort.

1.2 Sorting an Array: Insertion Sort
Consider the same array as before:

Now, think of the numbers as cards on a table that are picked up one at a time, in the order they appear in the 
array. Thus, we first pick up 57, then 48, then 79, and so on, until we pick up 52. However, as we pick up each new 
number, we add it to our hand in such a way that the numbers in our hand are all sorted.

When we pick up 57, we have just one number in our hand. We consider one number to be sorted.
When we pick up 48, we add it in front of 57 so our hand contains the following:

 
        48 57
 

When we pick up 79, we place it after 57 so our hand contains the following:
 
        48 57 79
 

When we pick up 65, we place it after 57 so our hand contains the following:
 
        48 57 65 79
 

At this stage, four numbers have been picked up, and our hand contains them in sorted order.
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When we pick up 15, we place it before 48 so our hand contains the following:
 
        15 48 57 65 79
 

When we pick up 33, we place it after 15 so our hand contains the following:
 
        15 33 48 57 65 79
 

Finally, when we pick up 52, we place it after 48 so our hand contains the following:
 
        15 33 48 52 57 65 79
 

The numbers have been sorted in ascending order.
The method described illustrates the idea behind insertion sort. The numbers in the array will be processed one 

at a time, from left to right. This is equivalent to picking up the numbers from the table, one at a time. Since the first 
number, by itself, is sorted, we will process the numbers in the array starting from the second.

When we come to process num[h], we can assume that num[0] to num[h-1] are sorted. We insert num[h] among 
num[0] to num[h-1] so that num[0] to num[h] are sorted. We then go on to process num[h+1]. When we do so, our 
assumption that num[0] to num[h] are sorted will be true.

Sorting num in ascending order using insertion sort proceeds as follows:
1st pass

Process •	 num[1], that is, 48. This involves placing 48 so that the first two numbers are sorted; 
num[0] and num[1] now contain the following:

The rest of the array remains unchanged.
2nd pass

Process •	 num[2], that is, 79. This involves placing 79 so that the first three numbers are sorted; 
num[0] to num[2] now contain the following:

The rest of the array remains unchanged.
3rd pass

Process •	 num[3], that is, 65. This involves placing 65 so that the first four numbers are sorted; 
num[0] to num[3] now contain the following:



Chapter 1 ■ Sorting, Searching, and Merging

7

The rest of the array remains unchanged.
4th pass

Process •	 num[4], that is, 15. This involves placing 15 so that the first five numbers are sorted.  
To simplify the explanation, think of 15 as being taken out and stored in a simple variable  
(key, say) leaving a “hole” in num[4]. We can picture this as follows:

The insertion of 15 in its correct position proceeds as follows:

Compare •	 15 with 79; it is smaller, so move 79 to location 4, leaving location 3 free. This gives 
the following:

Compare •	 15 with 65; it is smaller, so move 65 to location 3, leaving location 2 free. This gives 
the following:

Compare •	 15 with 57; it is smaller, so move 57 to location 2, leaving location 1 free. This gives 
the following:

Compare •	 15 with 48; it is smaller, so move 48 to location 1, leaving location 0 free. This gives 
the following:
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There are no more numbers to compare with •	 15, so it is inserted in location 0, giving  
the following:

We can express the logic of placing •	 15 (key) by comparing it with the numbers to its left, 
starting with the nearest one. As long as key is less than num[k], for some k, we move num[k]  
to position num[k + 1] and move on to consider num[k-1], providing it exists. It won’t exist 
when k is actually 0. In this case, the process stops, and key is inserted in position 0.

5th pass

Process •	 num[5], that is, 33. This involves placing 33 so that the first six numbers are sorted. 
This is done as follows:

Store •	 33 in key, leaving location 5 free;

Compare •	 33 with 79; it is smaller, so move 79 to location 5, leaving location 4 free.

Compare •	 33 with 65; it is smaller, so move 65 to location 4, leaving location 3 free.

Compare •	 33 with 57; it is smaller, so move 57 to location 3, leaving location 2 free.

Compare •	 33 with 48; it is smaller, so move 48 to location 2, leaving location 1 free.

Compare •	 33 with 15; it is bigger, so insert 33 in location 1. This gives the following:

We can express the logic of placing •	 33 by comparing it with the numbers to its left, starting 
with the nearest one. As long as key is less than num[k], for some k, we move num[k] to 
position num[k + 1] and move on to consider num[k-1], providing it exists. If key is greater 
than or equal to num[k] for some k, then key is inserted in position k+1. Here, 33 is greater 
than num[0] and so is inserted into num[1].

6th pass

Process •	 num[6], that is, 52. This involves placing 52 so that the first seven (all) numbers are 
sorted. This is done as follows:

Store •	 52 in key, leaving location 6 free.

Compare •	 52 with 79; it is smaller, so move 79 to location 6, leaving location 5 free.

Compare •	 52 with 65; it is smaller, so move 65 to location 5, leaving location 4 free.
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Compare •	 52 with 57; it is smaller, so move 57 to location 4, leaving location 3 free.

Compare •	 52 with 48; it is bigger, so insert 52 in location 3. This gives the following:

The array is now completely sorted.
The following is an outline of how to sort the first n elements of an array, num, using insertion sort:

        for h = 1 to n - 1 do
           insert num[h] among num[0] to num[h-1] so that num[0] to num[h] are sorted
        endfor

Using this outline, we write the function insertionSort using the parameter list.

        void insertionSort(int list[], int n) {
        //sort list[0] to list[n-1] in ascending order
           for (int h = 1; h < n; h++) {
              int key = list[h];
              int k = h - 1; //start comparing with previous item
              while (k >= 0 && key < list[k]) {
                 list[k + 1] = list[k];
                 --k;
              }
              list[k + 1] = key;
           } //end for
        } //end insertionSort

The while statement is at the heart of the sort. It states that as long as we are within the array (k >= 0) and the 
current number (key) is less than the one in the array (key < list[k]), we move list[k] to the right  
(list[k + 1] = list[k]) and move on to the next number on the left (--k).

We exit the while loop if k is equal to -1 or if key is greater than or equal to list[k], for some k. In either case, 
key is inserted into list[k + 1].

If k is -1, it means that the current number is smaller than all the previous numbers in the list and must be 
inserted in list[0]. But list[k + 1] is list[0] when k is -1, so key is inserted correctly in this case.

The function sorts in ascending order. To sort in descending order, all we have to do is change < to > in the while
condition, like this:

        while (k >= 0 && key > list[k])

Now, a key moves to the left if it is bigger.
We write Program P1.2 to test whether insertionSort works correctly. Only main is shown. Adding the function 

insertionSort completes the program.
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Program P1.2

        #include <stdio.h>
        #define MaxNumbers 10
        int main() {
           void insertionSort(int [], int);
           int num[MaxNumbers];
           printf("Type up to %d numbers followed by 0\n", MaxNumbers);
           int n = 0, v;
           scanf("%d", &v);
           while (v != 0 && n < MaxNumbers) {
              num[n++] = v;
              scanf("%d", &v);
           }
           if (v != 0) {
              printf("More than %d numbers entered\n", MaxNumbers);
              printf("First %d used\n", MaxNumbers);
           }
           //n numbers are stored from num[0] to num[n-1]
           insertionSort(num, n);
           printf("\nThe sorted numbers are\n");
           for (int h = 0; h < n; h++) printf("%d ", num[h]);
           printf("\n");
        }
 

The program requests up to ten numbers (as defined by MaxNumbers), stores them in the array num, calls 
insertionSort, and then prints the sorted list.

The following is a sample run of the program:

Type up to 10 numbers followed by 0
57 48 79 65 15 33 52 0
The sorted numbers are
15 33 48 52 57 65 79

Note that if the user enters more than ten numbers, the program will recognize this and sort only the first ten.
We could easily generalize insertionSort to sort a portion of a list. To illustrate, we rewrite insertionSort 

(calling it insertionSort1) to sort list[lo] to list[hi] where lo and hi are passed as arguments to the function.
Since element lo is the first one, we start processing elements from lo+1 until element hi. This is reflected in the 

for statement. Also now, the lowest subscript is lo, rather than 0. This is reflected in the while condition k >= lo. 
Everything else remains the same as before.
 
        void insertionSort1(int list[], int lo, int hi) {
        //sort list[lo] to list[hi] in ascending order
           for (int h = lo + 1; h <= hi; h++) {
              int key = list[h];
              int k = h - 1; //start comparing with previous item
              while (k >= lo && key < list[k]) {
                 list[k + 1] = list[k];
                 --k;
              }
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              list[k + 1] = key;
           } //end for
        } //end insertionSort1 

1.2.1 Analysis of Insertion Sort
In processing item j, we can make as few as one comparison (if num[j] is bigger than num[j-1]) or as many as j-1 
comparisons (if num[j] is smaller than all the previous items). For random data, we would expect to make ½(j-1) 
comparisons, on average. Hence, the average total number of comparisons to sort n items is as follows:

We say insertion sort is of order O(n2) (“big O n squared”). The constant ¼ is not important as n gets large.
Each time we make a comparison, we also make an assignment. Hence, the total number of assignments is  

also ¼ n(n-1) » ¼ n2.
We emphasize that this is an average for random data. Unlike selection sort, the actual performance of insertion 

sort depends on the data supplied. If the given array is already sorted, insertion sort will quickly determine this by 
making n-1 comparisons. In this case, it runs in O(n) time. One would expect that insertion sort will perform better 
the more order there is in the data.

If the given data is in descending order, insertion sort performs at its worst since each new number has to travel 
all the way to the beginning of the list. In this case, the number of comparisons is ½ n(n-1) » ½ n2. The number of 
assignments is also ½ n(n-1) » ½ n2.

Thus, the number of comparisons made by insertion sort ranges from n-1 (best) to ¼ n2 (average) to ½ n2 (worst). 
The number of assignments is always the same as the number of comparisons.

As with selection sort, insertion sort does not require extra array storage for its implementation.
As an exercise, modify the programming code so that it counts the number of comparisons and assignments 

made in sorting a list using insertion sort.

1.3 Inserting an Element in Place
Insertion sort uses the idea of adding a new element to an already sorted list so that the list remains sorted. We can 
treat this as a problem in its own right (nothing to do with insertion sort). Specifically, given a sorted list of items from 
list[m] to list[n], we want to add a new item (newItem, say) to the list so that list[m] to list[n + 1] are sorted.

Adding a new item increases the size of the list by 1. We assume that the array has room to hold the new item.  
We write the function insertInPlace to solve this problem.
 
        void insertInPlace(int newItem, int list[], int m, int n) {
        //list[m] to list[n] are sorted
        //insert newItem so that list[m] to list[n+1] are sorted
           int k = n;
           while (k >= m && newItem < list[k]) {
              list[k + 1] = list[k];
              --k;
           }
           list[k + 1] = newItem;
        } //end insertInPlace
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Using insertInPlace, we can rewrite insertionSort (calling it insertionSort2) as follows:
 
        void insertionSort2(int list[], int lo, int hi) {
        //sort list[lo] to list[hi] in ascending order
           void insertInPlace(int, int [], int, int);
           for (int h = lo + 1; h <= hi; h++)
              insertInPlace(list[h], list, lo, h - 1);
        } //end insertionSort2

1.4 Sorting an Array of Strings
Consider the problem of sorting a list of names in alphabetical order. In C, each name is stored in a character array.  
To store several names, we need a two-dimensional character array. For example, we can store eight names as shown 
in Figure 1-1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 T a y l o r , V i c t o r \ 0

1 D u n c a n , D e n i s e \ 0

2 R a m d h a n , K a m a l \ 0

3 S i n g h , K r i s h n a \ 0

4 A l i , M i c h a e l \ 0

5 S a w h , A n i s a \ 0

6 K h a n , C a r o l \ 0

7 O w e n , D a v i d \ 0

Figure 1-1.  Two-dimensional character array

Doing so will require a declaration such as the following:
 
        char list[8][15];
 

To cater for longer names, we can increase 15, and to cater for more names, we can increase 8.
The process of sorting list is essentially the same as sorting an array of integers. The major difference is 

that whereas we use < to compare two numbers, we must use strcmp to compare two names. In the function 
insertionSort shown at the end of Section 1.3, the while condition changes from this:
 
        while (k >= lo && key < list[k])
 
to the following, where key is now declared as char key[15]:

        while (k >= lo && strcmp(key, list[k]) < 0)    

Also, we must now use strcpy (since we can’t use = for strings) to assign a name to another location. Here is the 
complete function:
 
        void insertionSort3(int lo, int hi, int max, char list[][max]) {
        //Sort the strings in list[lo] to list[hi] in alphabetical order.
        //The maximum string size is max - 1 (one char taken up by \0).
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           char key[max];
           for (int h = lo + 1; h <= hi; h++) {
              strcpy(key, list[h]);
              int k = h - 1; //start comparing with previous item
              while (k >= lo && strcmp(key, list[k]) < 0) {
                 strcpy(list[k + 1], list[k]);
                 --k;
              }
              strcpy(list[k + 1], key);
           } //end for
        } //end insertionSort3
 

Note the declaration of list (char list[][max]) in the parameter list. The size of the first dimension is left 
unspecified, as for one-dimensional arrays. The size of the second dimension is specified using the parameter max; 
the value of max will be specified when the function is called. This gives us a bit more flexibility since we can specify 
the size of the second dimension at run time.

We write a simple main routine to test insertionSort3 as shown in Program P1.3.

Program P1.3

        #include <stdio.h>
        #include <string.h>
        #define MaxNameSize 14
        #define MaxNameBuffer MaxNameSize+1
        #define MaxNames 8
        int main() {
           void insertionSort3(int, int, int max, char [][max]);
           char name[MaxNames][MaxNameBuffer] = {"Taylor, Victor", "Duncan, Denise",
              "Ramdhan, Kamal", "Singh, Krishna", "Ali, Michael",
              "Sawh, Anisa", "Khan, Carol", "Owen, David" };
 
           insertionSort3(0, MaxNames-1, MaxNameBuffer, name);
           printf("\nThe sorted names are\n\n");
           for (int h = 0; h < MaxNames; h++) printf("%s\n", name[h]);
        } //end main
 

The declaration of name initializes it with the eight names shown in Figure 1-1. When run, the program produces 
the following output:

The sorted names are
Ali, Michael
Duncan, Denise
Khan, Carol
Owen, David
Ramdhan, Kamal
Sawh, Anisa
Singh, Krishna
Taylor, Victor
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1.5 Sorting Parallel Arrays
It is quite common to have related information in different arrays. For example, suppose, in addition to name, we have 
an integer array id such that id[h] is an identification number associated with name[h], as shown in Figure 1-2.

nam e id

0 Taylor, Victor 3050

1 Duncan, Denise 2795

2 Ramdhan, Kamal 4455

3 Singh, Krishna 7824

4 Ali, Michael 6669

5 Sawh, Anisa 5000

6 Khan, Carol 5464

7 Owen, David 6050

Figure 1-2.  Two arrays with related information

Consider the problem of sorting the names in alphabetical order. At the end, we would want each name to have 
its correct ID number. So, for example, after the sorting is done, name[0] should contain “Ali, Michael” and id[0] 
should contain 6669.

To achieve this, each time a name is moved during the sorting process, the corresponding ID number must also 
be moved. Since the name and ID number must be moved “in parallel,” we say we are doing a parallel sort or we are 
sorting parallel arrays.

We rewrite insertionSort3 to illustrate how to sort parallel arrays. We simply add the code to move an ID 
whenever a name is moved. We call it parallelSort.
 
        void parallelSort(int lo, int hi, int max, char list[][max], int id[]) {
        //Sort the names in list[lo] to list[hi] in alphabetical order, ensuring that
        //each name remains with its original id number.
        //The maximum string size is max - 1 (one char taken up by \0).
           char key[max];
           for (int h = lo + 1; h <= hi; h++) {
              strcpy(key, list[h]);
              int m = id[h];        // extract the id number
              int k = h - 1;        //start comparing with previous item
              while (k >= lo && strcmp(key, list[k]) < 0) {
                 strcpy(list[k + 1], list[k]);
                 id[k + 1] = id[k];  // move up id number when we move a name
                 --k;
              }
              strcpy(list[k + 1], key);
              id[k + 1] = m;        // store the id number in the same position as the name
           } //end for
        } //end parallelSort
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We test parallelSort by writing the following main routine:
 
        #include <stdio.h>
        #include <string.h>
        #define MaxNameSize 14
        #define MaxNameBuffer MaxNameSize+1
        #define MaxNames 8
        int main() {
           void parallelSort(int, int, int max, char [][max], int[]);
           char name[MaxNames][MaxNameBuffer] = {"Taylor, Victor", "Duncan, Denise",
              "Ramdhan, Kamal", "Singh, Krishna", "Ali, Michael",
              "Sawh, Anisa", "Khan, Carol", "Owen, David" };
           int id[MaxNames] = {3050,2795,4455,7824,6669,5000,5464,6050};
 
           parallelSort(0, MaxNames-1, MaxNameBuffer, name, id);
           printf("\nThe sorted names and IDs are\n\n");
           for (int h = 0; h < MaxNames; h++) printf("%-18s %d\n", name[h], id[h]);
        } //end main
 

When run, it produces the following output:

The sorted names and IDs are
Ali, Michael      6669
Duncan, Denise    2795
Khan, Carol       5464
Owen, David       6050
Ramdhan, Kamal    4455
Sawh, Anisa       5000
Singh, Krishna    7824
Taylor, Victor    3050

1.6 Binary Search
Binary search is a fast method for searching a list of items for a given one, providing the list is sorted (either ascending 
or descending). To illustrate the method, consider a list of 13 numbers, sorted in ascending order and stored in an 
array num[0..12].

Suppose we want to search for 66. The search proceeds as follows:

	 1.	 First, we find the middle item in the list. This is 56 in position 6. We compare 66 with 56. 
Since 66 is bigger, we know that if 66 is in the list at all, it must be after position 6, since the 
numbers are in ascending order. In our next step, we confine our search to locations 7 to 12.

	 2.	 Next, we find the middle item from locations 7 to 12. In this case, we can choose either 
item 9 or item 10. The algorithm we will write will choose item 9, that is, 78.
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	 3.	 We compare 66 with 78. Since 66 is smaller, we know that if 66 is in the list at all, it must be 
before position 9, since the numbers are in ascending order. In our next step, we confine 
our search to locations 7 to 8.

	 4.	 Next, we find the middle item from locations 7 to 8. In this case, we can choose either item 
7 or item 8. The algorithm we will write will choose item 7, that is, 66.

	 5.	 We compare 66 with 66. Since they are the same, our search ends successfully, finding the 
required item in position 7.

Suppose we were searching for 70. The search will proceed as described above until we compare 70 with 66  
(in location 7).

	 1.	 Since 70 is bigger, we know that if 70 is in the list at all, it must be after position 7, since the 
numbers are in ascending order. In our next step, we confine our search to locations 8 to 8. 
This is just one location.

	 2.	 We compare 70 with item 8, that is, 72. Since 70 is smaller, we know that if 70 is in the list at 
all, it must be before position 8. Since it can’t be after position 7 and before position 8,  
we conclude that it is not in the list.

At each stage of the search, we confine our search to some portion of the list. Let us use the variables lo and hi  
as the subscripts that define this portion. In other words, our search will be confined to num[lo] to num[hi].

Initially, we want to search the entire list so that we will set lo to 0 and hi to 12, in this example.
How do we find the subscript of the middle item? We will use the following calculation:

 
        mid = (lo + hi) / 2;
 

Since integer division will be performed, the fraction, if any, is discarded. For example, when lo is 0 and hi is 12, 
mid becomes 6; when lo is 7 and hi is 12, mid becomes 9; and when lo is 7 and hi is 8, mid becomes 7.

As long as lo is less than or equal to hi, they define a nonempty portion of the list to be searched. When lo is 
equal to hi, they define a single item to be searched. If lo ever gets bigger than hi, it means we have searched the 
entire list and the item was not found.

Based on these ideas, we can now write a function binarySearch. To be more general, we will write it so that the 
calling routine can specify which portion of the array it wants the search to look for the item.

Thus, the function must be given the item to be searched for (key), the array (list), the start position of the 
search (lo), and the end position of the search (hi). For example, to search for the number 66 in the array num, shown 
earlier, we can issue the call binarySearch(66, num, 0, 12).

The function must tell us the result of the search. If the item is found, the function will return its location. If not 
found, it will return -1.
 
        int binarySearch(int key, int list[], int lo, int hi) {
        //search for key from list[lo] to list[hi]
        //if found, return its location; otherwise, return -1
           while (lo <= hi) {
              int mid = (lo + hi) / 2;
              if (key == list[mid]) return mid; // found
              if (key < list[mid]) hi = mid - 1;
              else lo = mid + 1;
           }
           return -1; //lo and hi have crossed; key not found
        } //end binarySearch
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If item contains a number to be searched for, we can write code as follows:

        int ans = binarySearch(item, num, 0, 12);
        if (ans == -1) printf(“%d not found\n”, item);
        else printf(“%d found in location %d\n”, item, ans);
 

If we want to search for item from locations i to j, we can write the following:

        int ans = binarySearch(item, num, i, j);

1.7 Searching an Array of Strings
We can search a sorted array of strings (names in alphabetical order, say) using the same technique we used for 
searching an integer array. The major differences are in the declaration of the array and the use of strcmp, rather than 
== or <, to compare two strings. The following is the string version of binarySearch:
 
        int binarySearch(int lo, int hi, char key[], int max, char list[][max]) {
        //search for key from list[lo] to list[hi]
        //if found, return its location; otherwise, return -1
           while (lo <= hi) {
              int mid = (lo + hi) / 2;
              int cmp = strcmp(key, list[mid]);
              if (cmp == 0) return mid; // found
              if (cmp < 0) hi = mid - 1;
              else lo = mid + 1;
           }
           return -1; //lo and hi have crossed; key not found
        } //end binarySearch
 

The function can be tested with main shown in Program P1.4.

Program P1.4

        #include <stdio.h>
        #include <string.h>
        #define MaxNameSize 14
        #define MaxNameBuffer MaxNameSize+1
        #define MaxNames 8
        int main () {
           int binarySearch(int, int, char [], int max, char [][max]);
           int n;
           char name[MaxNames][MaxNameBuffer] = {"Ali, Michael","Duncan, Denise",
              "Khan, Carol","Owen, David", "Ramdhan, Kamal",
              "Sawh, Anisa", "Singh, Krishna", "Taylor, Victor"};
           n = binarySearch(0, 7, "Ali, Michael", MaxNameBuffer, name);
           printf("%d\n", n);  //will print 0, location of Ali, Michael
           n = binarySearch(0, 7, "Taylor, Victor", MaxNameBuffer, name);
           printf("%d\n", n); //will print 7, location of Taylor, Victor
           n = binarySearch(0, 7, "Owen, David", MaxNameBuffer, name);
           printf("%d\n", n); //will print 3, location of Owen, David
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           n = binarySearch(4, 7, "Owen, David", MaxNameBuffer, name);
           printf("%d\n", n); //will print -1, since Owen, David is not in locations 4 to 7
           n = binarySearch(0, 7, "Sandy, Cindy", MaxNameBuffer, name);
           printf("%d\n", n); //will print -1 since Sandy, Cindy is not in the list
        } //end main
 

This sets up the array name with the names in alphabetical order. It then calls binarySearch with various names 
and prints the result of each search.

One may wonder what might happen with a call like this:
 
        n = binarySearch(5, 10, MaxNameBuffer, "Sawh, Anisa", name);
 

Here, we are telling binarySearch to look for “Sawh, Anisa” in locations 5 to 10 of the given array. However, 
locations 8 to 10 do not exist in the array. The result of the search will be unpredictable. The program may crash or 
return an incorrect result. The onus is on the calling program to ensure that binarySearch (or any other function) is 
called with valid arguments.

1.8 Example: Word Frequency Count
Let’s write a program to read an English passage and count the number of times each word appears. The output 
consists of an alphabetical listing of the words and their frequencies.

We can use the following outline to develop our program:
 
        while there is input
           get a word
           search for word
           if word is in the table
              add 1 to its count
           else
              add word to the table
              set its count to 1
           endif
        endwhile
        print table
 

This is a typical “search and insert” situation. We search for the next word among the words stored so far. If the 
search succeeds, we need only increment its count. If the search fails, the word is put in the table, and its count set to 1.

A major design decision here is how to search the table, which, in turn, will depend on where and how a new 
word is inserted in the table. The following are two possibilities:

	 1.	 A new word is inserted in the next free position in the table. This implies that a sequential 
search must be used to look for an incoming word since the words would not be in any 
particular order. This method has the advantages of simplicity and easy insertion, but 
searching takes longer because more words are put in the table.

	 2.	 A new word is inserted in the table in such a way that the words are always in alphabetical 
order. This may entail moving words that have already been stored so that the new word 
may be slotted in the right place. However, since the table is in order, a binary search can 
be used to search for an incoming word.

For (2), searching is faster, but insertion is slower than in (1). Since, in general, searching is done more frequently 
than inserting, (2) might be preferable.
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Another advantage of (2) is that, at the end, the words will already be in alphabetical order and no sorting will be 
required. If (1) is used, the words will need to be sorted to obtain the alphabetical order.

We will write our program using the approach in (2). The complete program is shown as Program P1.5.

Program P1.5

        #include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#define MaxWords 50
#define MaxLength 10
#define MaxWordBuffer MaxLength+1
int main() {
   int getWord(FILE *, char[]);
   int binarySearch(int, int, char [], int max, char [][max]);
   void addToList(char[], int max, char [][max], int[], int, int);
   void printResults(FILE *, int max, char [][max], int[], int);
   char wordList[MaxWords][MaxWordBuffer], word[MaxWordBuffer];
   int frequency[MaxWords], numWords = 0;

   FILE * in = fopen("passage.txt", "r");
   if (in == NULL){
      printf("Cannot find file\n");
      exit(1);
   }

   FILE * out = fopen("output.txt", "w");
   if (out == NULL){
      printf("Cannot create output file\n");
      exit(2);
   }

   for (int h = 0; h < MaxWords; h++) frequency[h] = 0;

   while (getWord(in, word) != 0) {
      int loc = binarySearch (0, numWords-1, word, MaxWordBuffer, wordList);
      if (strcmp(word, wordList[loc]) == 0) ++frequency[loc]; //word found
      else //this is a new word
         if (numWords < MaxWords) { //if table is not full
            addToList(word, MaxWordBuffer, wordList, frequency, loc, numWords-1);
            ++numWords;
         }
         else fprintf(out, "'%s' not added to table\n", word);
   }
   printResults(out, MaxWordBuffer, wordList, frequency, numWords);

        } // end main
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int getWord(FILE * in, char str[]) {
// stores the next word, if any, in str; word is converted to lowercase
// returns 1 if a word is found; 0, otherwise
   char ch;
   int n = 0;
   // read over white space
   while (!isalpha(ch = getc(in)) && ch != EOF) ; //empty while body
   if (ch == EOF) return 0;
   str[n++] = tolower(ch);
   while (isalpha(ch = getc(in)) && ch != EOF)
      if (n < MaxLength) str[n++] = tolower(ch);
   str[n] = '\0';
   return 1;
} // end getWord
 
int binarySearch(int lo, int hi, char key[], int max, char list[][max]) {
//search for key from list[lo] to list[hi]
//if found, return its location;
//if not found, return the location in which it should be inserted
//the calling program will check the location to determine if found
   while (lo <= hi) {
      int mid = (lo + hi) / 2;
      int cmp = strcmp(key, list[mid]);
      if (cmp == 0) return mid; // found
      if (cmp < 0) hi = mid - 1;
      else lo = mid + 1;
   }
   return lo; //not found; should be inserted in location lo
} //end binarySearch
 
void addToList(char item[], int max, char list[][max], int freq[], int p, int n) {
//adds item in position list[p]; sets freq[p] to 1
//shifts list[n] down to list[p] to the right
   for (int h = n; h >= p; h--) {
      strcpy(list[h+1], list[h]);
      freq[h+1] = freq[h];
   }
   strcpy(list[p], item);
   freq[p] = 1;
} //end addToList
 
void printResults(FILE *out, int max, char list[][max], int freq[], int n) {
   fprintf(out, "\nWords        Frequency\n\n");
   for (int h = 0; h < n; h++)
      fprintf(out, "%-15s %2d\n", list[h], freq[h]);
} //end printResults
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When Program P1.5 was run with this data, it produced the output that follows:
 

The quick brown fox jumps over the lazy dog. Congratulations!
If the quick brown fox jumped over the lazy dog then
Why did the quick brown fox jump over the lazy dog?
To recuperate!

 
Here is the output:

Words       Frequency
brown           3
congratula      1
did             1
dog             3
fox             3
if              1
jump            1
jumped          1
jumps           1
lazy            3
over            3
quick           3
recuperate      1
the             6
then            1
to              1
why             1

The following are comments on Program P1.5:

For our purposes, we assume that a word begins with a letter and consists of letters only. If you •	
want to include other characters (such as a hyphen or apostrophe), you need change only the 
getWord function.

•	 MaxWords denotes the maximum number of distinct words catered for. For testing the 
program, we have used 50 for this value. If the number of distinct words in the passage 
exceeds MaxWords (50, say), any words after the 50th will be read but not stored, and a message 
to that effect will be printed. However, the count for a word already stored will be incremented 
if it is encountered again.

•	 MaxLength (we use 10 for testing) denotes the maximum length of a word. Strings are declared 
using MaxLength+1 (defined as MaxWordBuffer) to cater for \0, which must be added at 
the end of each string.

•	 main checks that the input file exists and that the output file can be created. Next, it initializes 
the frequency counts to 0. It then processes the words in the passage based on the outline 
shown at the start of Section 1.8.

•	 getWord reads the input file and stores the next word found in its string argument. It returns 1 
if a word is found and 0, otherwise. If a word is longer than MaxLength, only the first MaxLength 
letters are stored; the rest are read and discarded. For example, congratulations is truncated 
to congratula using a word size of 10.
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All words are converted to lowercase so that, for instance, •	 The and the are counted as the  
same word.

•	 binarySearch is written so that if the word is found, its location is returned. If the word is not 
found, then the location in which it should be inserted is returned. addToList is given the 
location in which to insert a new word. Words to the right of, and including, this location are 
shifted one position to make room for the new word.

In declaring a •	 function prototype, some compilers allow a two-dimensional array parameter 
to be declared as in char [][], with no size specified for either dimension. Others require 
that the size of the second dimension must be specified. Specifying the size of the second 
dimension should work on all compilers. In our program, we specify the second dimension 
using the parameter max, whose value will be supplied when the function is called.

1.9 Merging Ordered Lists
Merging is the process by which two or more ordered lists are combined into one ordered list. For example, given two 
lists of numbers, A and B, as follows:
 
        A: 21 28 35 40 61 75
        B: 16 25 47 54
 
they can be combined into one ordered list, C, as follows:
 
        C: 16 21 25 28 35 40 47 54 61 75
 

The list C contains all the numbers from lists A and B. How can the merge be performed?
One way to think about it is to imagine that the numbers in the given lists are stored on cards, one per card, and 

the cards are placed face up on a table, with the smallest at the top. We can imagine the lists A and B as follows:
 
        21    16
        28    25
        35    47
        40    54
        61
        75
 

We look at the top two cards, 21 and 16. The smaller, 16, is removed and placed in C. This exposes the number 25.
The top two cards are now 21 and 25. The smaller, 21, is removed and added to C, which now contains 16 21.  

This exposes the number 28.
The top two cards are now 28 and 25. The smaller, 25, is removed and added to C, which now contains 16 21 25. 

This exposes the number 47.
The top two cards are now 28 and 47. The smaller, 28, is removed and added to C, which now contains 16 21 25 

28. This exposes the number 35.
The top two cards are now 35 and 47. The smaller, 35, is removed and added to C, which now contains 16 21 25 

28 35. This exposes the number 40.
The top two cards are now 40 and 47. The smaller, 40, is removed and added to C, which now contains 16 21 25 

28 35 40. This exposes the number 61.
The top two cards are now 61 and 47. The smaller, 47, is removed and added to C, which now contains 16 21 25 

28 35 40 47. This exposes the number 54.
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The top two cards are now 61 and 54. The smaller, 54, is removed and added to C, which now contains 16 21 25 
28 35 40 47 54. The list B has no more numbers.

We copy the remaining elements (61 75) of A to C, which now contains the following:
 
        16 21 25 28 35 40 47 54 61 75
 

The merge is now completed.
At each step of the merge, we compare the smallest remaining number of A with the smallest remaining number 

of B. The smaller of these is added to C. If the smaller comes from A, we move on to the next number in A; if the smaller 
comes from B, we move on to the next number in B.

This is repeated until all the numbers in either A or B have been used. If all the numbers in A have been used,  
we add the remaining numbers from B to C. If all the numbers in B have been used, we add the remaining numbers 
from A to C.

We can express the logic of the merge as follows:
 

while (at least one number remains in both A and B) {
   if (smallest in A < smallest in B)
      add smallest in A to C
      move on to next number in A
   else
      add smallest in B to C
      move on to next number in B
   endif
}
if (A has ended) add remaining numbers in B to C
else add remaining numbers in A to C

1.9.1 Implementing the Merge
Assume that an array A contains m numbers stored in A[0] to A[m-1] and an array B contains n numbers stored in 
B[0] to B[n-1]. Assume that the numbers are stored in ascending order. We want to merge the numbers in A and B 
into another array C such that C[0] to C[m+n-1] contains all the numbers in A and B sorted in ascending order.

We will use integer variables i, j, and k to subscript the arrays A, B, and C, respectively. “Moving on to the next 
position” in an array can be done by adding 1 to the subscript variable. We can implement the merge with the 
following code:
 

i = 0;      //i points to the first (smallest) number in A
j = 0;      //j points to the first (smallest) number in B
k = -1;     //k will be incremented before storing a number in C[k]
while (i < m && j < n) {
   if (A[i] < B[j]) C[++k] = A[i++];
   else C[++k] = B[j++];
}
if (i == m) //copy B[j] to B[n-1] to C
   for ( ; j < n; j++) C[++k] = B[j];
else        // j == n, copy A[i] to A[m-1] to C
   for ( ; i < m; i++) C[++k] = A[i];

 



Chapter 1 ■ Sorting, Searching, and Merging

24

Program P1.6 shows a simple main function that tests the previous logic. We write the merge as a function that, 
given the arguments A, m, B, n, and C, performs the merge and returns the number of elements, m + n, in C. When run, 
the program prints the contents of C, like this:
 
        16 21 25 28 35 40 47 54 61 75

Program P1.6

#include <stdio.h>
int main () {
   int merge(int[], int, int[], int, int[]);
   int A[] = {21, 28, 35, 40, 61, 75};
   int B[] = {16, 25, 47, 54};
   int C[20];
   int n = merge(A, 6 , B, 4, C);
   for (int h = 0; h < n; h++) printf("%d ", C[h]);
   printf("\n\n");
} //end main
 
int merge(int A[], int m, int B[], int n, int C[]) {
   int i = 0;  //i points to the first (smallest) number in A
   int j = 0;  //j points to the first (smallest) number in B
   int k = -1; //k will be incremented before storing a number in C[k]
   while (i < m && j < n) {
      if (A[i] < B[j]) C[++k] = A[i++];
      else C[++k] = B[j++];
   }
   if (i == m) ///copy B[j] to B[n-1] to C
      for ( ; j < n; j++) C[++k] = B[j];
   else // j == n, copy A[i] to A[m-1] to C
      for ( ; i < m; i++) C[++k] = A[i];
   return m + n;
} //end merge
 

As a matter of interest, we can also implement merge as follows:
 
int merge(int A[], int m, int B[], int n, int C[]) {
   int i = 0;  //i points to the first (smallest) number in A
   int j = 0;  //j points to the first (smallest) number in B
   int k = -1; //k will be incremented before storing a number in C[k]
   while (i < m || j < n) {
      if (i == m) C[++k] = B[j++];
      else if (j == n) C[++k] = A[i++];
      else if (A[i] < B[j]) C[++k] = A[i++];
      else C[++k] = B[j++];
   }
   return m + n;
} //end merge
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The while loop expresses the following logic: as long as there is at least one element to process in either A or B,  
we enter the loop. If we are finished with A (i == m), copy an element from B to C. If we are finished with B (j == n), 
copy an element from A to C. Otherwise, copy the smaller of A[i] and B[j] to C. Each time we copy an element from 
an array, we add 1 to the subscript for that array.

While the previous version implements the merge in a straightforward way, it seems reasonable to say that this 
version is a bit neater.

EXERCISES 1

1.	 A survey of ten pop artists is made. Each person votes for an artist by specifying the number 
of the artist (a value from 1 to 10). Each voter is allowed one vote for the artist of their choice. 
The vote is recorded as a number from 1 to 10. The number of voters is unknown beforehand, 
but the votes are terminated by a vote of 0. Any vote that is not a number from 1 to 10 is 
a spoiled vote. A file, votes.txt, contains the names of the candidates. The first name is 
considered as candidate 1, the second as candidate 2, and so on. The names are followed by 
the votes. Write a program to read the data and evaluate the results of the survey.

Print the results in alphabetical order by artist name and in order by votes received (most votes  
first). Print all output to the file results.txt.

2.	 Write a program to read names and phone numbers into two arrays. Request a name and 
print the person’s phone number. Use binary search to look up the name.

3.	 Write a program to read English words and their equivalent Spanish words into two arrays. 
Request the user to type several English words. For each, print the equivalent Spanish word. 
Choose a suitable end-of-data marker. Search for the typed words using binary search. 
Modify the program so that the user types Spanish words instead.

4.	 The median of a set of n numbers (not necessarily distinct) is obtained by arranging the 
numbers in order and taking the number in the middle. If n is odd, there is a unique middle 
number. If n is even, then the average of the two middle values is the median. Write a 
program to read a set of n positive integers (assume n < 100) and print their median; n is not 
given but 0 indicates the end of the data.

5.	 The mode of a set of n numbers is the number that appears most frequently. For example, the 
mode of 7 3 8 5 7 3 1 3 4 8 9 is 3. Write a program to read a set of n positive integers 
(assume n < 100) and print their mode; n is not given, but 0 indicates the end of the data.

6.	 An array chosen contains n distinct integers arranged in no particular order. Another array 
winners contains m distinct integers arranged in ascending order. Write code to determine 
how many of the numbers in chosen appear in winners.

7.	 A multiple-choice examination consists of 20 questions. Each question has 5 choices, labeled 
A, B, C, D, and E. The first line of data contains the correct answers to the 20 questions in the 
first 20 consecutive character positions, for example:

BECDCBAADEBACBAEDDBE
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Each subsequent line contains the answers for a candidate. Data on a line consists of a 
candidate number (an integer), followed by one or more spaces, followed by the 20 answers 
given by the candidate in the next 20 consecutive character positions. An X is used if a 
candidate did not answer a particular question. You may assume all data is valid and stored 
in a file called exam.dat. Here is a sample line:
 
        4325   BECDCBAXDEBACCAEDXBE
 
There are at most 100 candidates. A line containing a “candidate number” 0 indicates only 
the end of the data.

Points for a question are awarded as follows—correct answer: 4 points; wrong answer:  
-1 point; no answer: 0 points.

Write a program to process the data and print a report consisting of candidate number and 
the total points obtained by the candidate, in ascending order by candidate number. At the 
end, print the average number of points gained by the candidates.

8.	 A is an array sorted in descending order. B is an array sorted in descending order. Merge  
A and B into C so that C is in descending order.

9.	 A is an array sorted in descending order. B is an array sorted in descending order. Merge  
A and B into C so that C is in ascending order.

10.	 A is an array sorted in ascending order. B is an array sorted in descending order. Merge  
A and B into C so that C is in ascending order.

11.	 An array A contains integers that first increase in value and then decrease in value,  
for example:

It is unknown at which point the numbers start to decrease. Write efficient code to copy the 
numbers in A to another array B so that B is sorted in ascending order. Your code must take 
advantage of the way the numbers are arranged in A.

12.	 Two words are anagrams if one word can be formed by rearranging all the letters of the 
other word, for example: section, notices. Write a program to read two words and determine 
whether they are anagrams.

Write another program to read a list of words and find all sets of words such that words 
within a set are anagrams of each other.
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Chapter 2

Structures

In this chapter, we will explain the following:

What a structure is•	

How to declare a structure•	

How to use •	 typedef to work with structures more conveniently

How to work with an array of structures•	

How to search an array of structures•	

How to sort an array of structures•	

How to declare •	 nested structures

How to use structures to manipulate fractions•	

How to use structures to solve a “voting” problem•	

How structures can be passed to a function•	

2.1 Defining Structures
In C, a structure is a collection of one or more variables, possibly of different types, grouped together under a single 
name for convenient handling.

There are many situations in which we want to process data about a certain entity or object but the data consists 
of items of various types. For example, the data for a student (the student record) may consist of several fields such  
as a name, address and telephone number (all of type string), number of courses taken (integer), fees payable 
(floating-point), names of courses (string), grades obtained (character), and so on.

The data for a car may consist of manufacturer, model and registration number (string), seating capacity and fuel 
capacity (integer), and mileage and price (floating-point). For a book, we may want to store author and title (string), 
price (floating-point), number of pages (integer), type of binding—hardcover, paperback, spiral (string)—and number 
of copies in stock (integer).

Suppose we want to store data for 100 students in a program. One approach is to have a separate array for each 
field and use subscripts to link the fields together. Thus, name[i], address[i], fees[i], and so on, refer to the data  
for the ith student.

The problem with this approach is that if there are many fields, the handling of several parallel arrays becomes 
clumsy and unwieldy. For example, suppose we want to pass a student’s data to a function via the parameter list.  
This will involve the passing of several arrays. Also, if we are sorting the students by name, say, each time two names 
are interchanged, we have to write statements to interchange the data in the other arrays as well. In such situations,  
C structures are convenient to use.
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2.2 How to Declare a Structure
Consider the problem of storing a date in a program. A date consists of three parts: the day, the month, and the year. 
Each of these parts can be represented by an integer. For example, the date “September 14, 2006” can be represented 
by the day, 14; the month, 9; and the year 2006. We say that a date consists of three fields, each of which is an integer.

If we want, we can also represent a date by using the name of the month, rather than its number. In this case,  
a date consists of three fields, one of which is a string and the other two are integers.

In C, we can declare a date type as a structure using the keyword struct. Consider this declaration:
 
        struct date {int day, month, year;};
 

It consists of the word struct followed by some name we choose to give to the structure (date, in the example); 
this is followed by the declarations of the fields enclosed in left and right braces. Note the semicolon at the end of the 
declaration just before the right brace—this is the usual case of a semicolon ending a declaration. The right brace is 
followed by a semicolon, ending the struct declaration.

We could also have written the declaration as follows, where each field is declared individually:
 
        struct date {
           int day;
           int month;
           int year;
        } ;
 

This could be written as follows, but the former style is preferred for its readability:
 
        struct date {int day; int month; int year;};
 

Given the struct declaration, we can declare variables of type struct date, as follows:
 
        struct date dob; //to hold a "date of birth"
 

This declares dob as a “structure variable” of type date. It has three fields called day, month, and year. This can be 
pictured as follows:

We refer to the day field as dob.day, the month field as dob.month, and the year field as dob.year.  
In C, the period (.), as used here, is referred to as the structure member operator.

In general, a field is specified by the structure variable name, followed by a period, followed by the field name.
We could declare more than one variable at a time, as follows:

 
        struct date borrowed, returned; //for a book in a library, say
 

Each of these variables has three fields: day, month, and year. The fields of borrowed are referred to by  
borrowed.day, borrowed.month, and borrowed.year. The fields of returned are referred to by returned.day, 
returned.month, and returned.year.
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In this example, each field is an int and can be used in any context in which an int variable can be used.  
For example, to assign the date “November 14, 2013” to dob, we can use this:

        dob.day = 14;
        dob.month = 11;
        dob.year = 2013;

This can be pictured as follows:

We can also read values for day, month, and year with the following:

        scanf("%d %d %d", &dob.day, &dob.month, &dob.year);

If today was a struct date variable holding a date, we could assign all the fields of today to dob, say, with the 
following:

        dob = today;

This one statement is equivalent to the following:

        dob.day = today.day;
        dob.month = today.month;
        dob.year = today.year;

We can print the “value” of dob with this:

        printf("The party is on %d/%d/%d\n", dob.day, dob.month, dob.year);

For this example, this will print the following:

        The party is on 14/11/2013

Note that each field has to be printed individually. We could also write a function printDate, say, which prints  
a date given as an argument. For example, given this…

        void printDate(struct date d) {
           printf("%d/%d/%d \n", d.day, d.month, d.year);
        }

The following call…

        printDate(dob);

will print this:

        14/11/2013
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We note, in passing, that C provides a date and time structure, tm, in the standard library. In addition to the date, 
it provides, among other things, the time to the nearest second. To use it, your program must be preceded by the 
following:
 
        #include <time.h>
 

The construct struct date is a bit cumbersome to use, compared to single word types such int or double. 
Fortunately, C provides us with typedef to make working with structures a little more convenient.

2.2.1 typedef
We can use typedef to give a name to some existing type, and this name can then be used to declare variables of  
that type. We can also use typedef to construct shorter or more meaningful names for predefined C types or for  
user-declared types, such as structures. For example, the following statement declares a new type-name Whole,  
which is synonymous with the predefined type int:
 
        typedef int Whole;
 

Note that Whole appears in the same position as a variable would, not right after the word typedef. We can then 
declare variables of type Whole, as follows:
 
        Whole amount, numCopies;
 

This is exactly equivalent to the following:
 
        int amount, numCopies;
 

For those accustomed to the term real of languages like Pascal or FORTRAN, the following statement allows 
them to declare variables of type Real:
 
        typedef float Real;
 

In this book, we use at least one uppercase letter to distinguish type names declared using typedef.
We could give a short, meaningful name, Date, to the date structure shown earlier with the following declaration:

 
        typedef struct date {
           int day;
           int month;
           int year;
        } Date;
 

Recall that C distinguishes between uppercase and lowercase letters so that date is different from Date. We could, 
if we wanted, have used any other identifier, such as DateType, instead of Date.

We could now declare “structure variables” of type Date, such as the following:
 
        Date dob, borrowed, returned;
 

Notice how much shorter and neater this is compared to the following:
 
        struct date dob, borrowed, returned;
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Since there is hardly any reason to use this second form, we could omit date from the earlier declaration and 
write this:
 
        typedef struct {
           int day;
           int month;
           int year;
        } Date;
 

Thereafter, we can use Date whenever the struct is required. For example, we can rewrite printDate as follows:
 
        void printDate(Date d) {
           printf("%d/%d/%d \n", d.day, d.month, d.year);
        }
 

To pursue the date example, suppose we want to store the “short” name—the first three letters, for example 
Aug—of the month. We will need to use a declaration such as this:
 
        typedef struct {
           int day;
           char month[4]; //one position for \0 to end string
           int year;
        } Date;
 

We can represent the date “November 14, 2013” in a Date variable dob with the following:
 
        dob.day = 14;
        strcpy(dob.month, "Nov");
        dob.year = 2013;
 

And we can write printDate as follows:
 
        void printDate(Date d) {
           printf("%s %d, %d \n", d.month, d.day, d.year);
        }
 

The following call…
 
        printDate(dob);
 
will print this:
 
        Nov 14, 2013
 

Suppose we want to store information about students. For each student, we want to store their name, age, and 
gender (male or female). Assuming that a name is no longer than 30 characters, we could use the following declaration:
 
        typedef struct {
           char name[31];
           int age;
           char gender;
        } Student;
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We can now declare variables of type Student, as follows:
 
        Student stud1, stud2;
 

Each of stud1 and stud2 will have its own fields—name, age, and gender. We can refer to these fields with this:
 
        stud1.name   stud1.age   stud1.gender
        stud2.name   stud2.age   stud2.gender
 

As usual, we can assign values to these fields or read values into them. And, if we want, we can assign all the fields 
of stud1 to stud2 with the following statement:
 
        stud2 = stud1;

2.3 Working with an Array of Structures
Suppose we want to store data on 100 students. We will need an array of size 100, and each element of the array will 
hold the data for one student. Thus, each element will have to be a structure—we need an “array of structures.”

We can declare the array with the following, similar to how we say “int pupil[100]” to declare an integer array 
of size 100:
 
        Student pupil[100];
 

This allocates storage for pupil[0], pupil[1], pupil[2], …, up to pupil[99]. Each element pupil[j] consists  
of three fields that can be referred to as follows:
 
        pupil[j].name   pupil[j].age   pupil[j].gender
 

First we will need to store some data in the array. Assume we have data in the following format (name, age, gender):
 
        "Jones, John" 24 M
        "Mohammed, Lisa" 33 F
        "Singh, Sandy" 29 F
        "Layne, Dennis" 49 M
        "END"
 

Suppose the data are stored in a file input.txt and in is declared as follows:
 
        FILE * in = fopen("input.txt", "r");
 

If str is a character array, assume we can call the function getString(in, str) to store the next data 
string in quotes in str without the quotes. Also assume that readChar(in) will read the data and return the next 
nonwhitespace character.

Exercise: Write the functions getString and readChar.
We can read the data into the array pupil with the following code:

 
        int n = 0;
        char temp[31];
        getString(in, temp);

4
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        while (strcmp(temp, "END") != 0) {
           strcpy(pupil[n].name, temp);
           fscanf(in, "%d", &pupil[n].age);
           pupil[n].gender = readChar(in);
           n++;
           getString(in, temp);
        }
 

At the end, n contains the number of students stored, and pupil[0] to pupil[n-1] contain the data for those 
students.

To ensure that we do not attempt to store more data than we have room for in the array, we should check that n 
is within the bounds of the array. Assuming that MaxItems has the value 100, this can be done by changing the while 
condition to the following:
 
        while (n < MaxItems && strcmp(temp, "END") != 0)
 
or by inserting the following just after the statement n++; inside the loop:
 
        if (n == MaxItems) break;

2.4 Searching an Array of Structures
With the data stored in the array, we can manipulate it in various ways. For instance, we can write a function to search 
for a given name. Assuming the data is stored in no particular order, we can use a sequential search as follows:
 
        int search(char key[], Student list[], int n) {
        //search for key in list[0] to list[n-1]
        //if found, return the location; if not found, return -1
           for (int h = 0; h < n; h++)
              if (strcmp(key, list[h].name) == 0) return h;
           return -1;
        } //end search
 

Given the previous data, the following call:
 
        search("Singh, Sandy", pupil, 4)
 
will return 2, and the following call will return -1:
 
        search("Layne, Sandy", pupil, 4)

2.5 Sorting an Array of Structures
Suppose we want the list of students in alphabetical order by name. It will be required to sort the array pupil.  
The following function uses an insertion sort to do the job. The process is identical to sorting an int array, say,  
except that the name field is used to govern the sorting.
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        void sort(Student list[], int n) {
        //sort list[0] to list[n-1] by name using an insertion sort
           for (int h = 1; h < n; h++) {
              Student temp = list[h];
              int k = h - 1;
              while (k >= 0 && strcmp(temp.name, list[k].name) < 0) {
                 list[k + 1] = list[k];
                 k = k - 1;
              }
              list[k + 1] = temp;
           } //end for
        } //end sort
 

Observe this statement:
 
        list[k + 1] = list[k];
 

This assigns all the fields of list[k] to list[k + 1].
If we want to sort the students in order by age, all we need to change is the while condition. To sort in ascending 

order, we write this:
 
        while (k >= 0 && temp.age < list[k].age) //move smaller numbers to the left
 

To sort in descending order, we write this:
 
        while (k >= 0 && temp.age > list[k].age) //move bigger numbers to the left
 

We could even separate the list into male and female students by sorting on the gender field. Since F comes 
before M in alphabetical order, we can put the females first by writing this:
 
        while (k >= 0 && temp.gender < list[k].gender) //move Fs to the left
 

And we can put the males first by writing this:
 
        while (k >= 0 && temp.gender > list[k].gender ) //move Ms to the left

2.6 How to Read, Search, and Sort a Structure
We illustrate the ideas discussed earlier in Program P2.1. The program performs the following:

Reads data for students from a file, •	 input.txt, and stores them in an array of structures

Prints the data in the order stored in the array•	

Tests •	 search by reading several names and looking for them in the array

Sorts the data in alphabetical order by •	 name

Prints the sorted data•	

The program also illustrates how the functions getString and readChar may be written. getString lets us read  
a string enclosed within any “delimiter” characters. For example, we could specify a string as $John Smith$ or  
"John Smith". This is a very flexible way of specifying a string. Each string can be specified with its own delimiters, 
which could be different for the next string. It is particularly useful for specifying strings that may include special 
characters such as the double quotes without having to use an escape sequence like \".
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Program P2.1

        #include <stdio.h>
        #include <stdlib.h>
        #include <string.h>
        #include <ctype.h>
        #define MaxStudents 100
        #define MaxNameLength 30
        #define MaxNameBuffer MaxNameLength+1
        typedef struct {
           char name[MaxNameBuffer];
           int age;
           char gender;
        } Student;
 
        int main() {
           Student pupil[MaxStudents];
           char aName[MaxNameBuffer];
           void getString(FILE *, char[]);
           int getData(FILE *, Student[]);
           int search(char[], Student[], int);
           void sort(Student[], int);
           void printStudent(Student);
           void getString(FILE *, char[]);
 
           FILE * in = fopen("input.txt", "r");
           if (in == NULL) {
              printf("Error opening file: %s.\n", strerror(errno));
              exit(1);
           }
 
           int numStudents = getData(in, pupil);
           if (numStudents == 0) {
              printf("No data supplied for students");
              exit(1);
           }
 
           printf("\n");
           for (int h = 0; h < numStudents; h++) printStudent(pupil[h]);
           printf("\n");
 
           getString(in, aName);
           while (strcmp(aName, "END") != 0) {
              int ans = search(aName, pupil, numStudents);
              if (ans == -1) printf("%s not found\n", aName);
              else printf("%s found at location %d\n", aName, ans);
              getString(in, aName);
           }
 
           sort(pupil, numStudents);
           printf("\n");
           for (int h = 0; h < numStudents; h++) printStudent(pupil[h]);
        } //end main
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        void printStudent(Student t) {
           printf("Name: %s Age: %d Gender: %c\n", t.name, t.age, t.gender);
        } //end printStudent
 
        int getData(FILE *in, Student list[]) {
           char temp[MaxNameBuffer];
           void getString(FILE *, char[]);
           char readChar(FILE *);
 
           int n = 0;
           getString(in, temp);
           while (n < MaxStudents && strcmp(temp, "END") != 0) {
              strcpy(list[n].name, temp);
              fscanf(in, "%d", &list[n].age);
              list[n].gender = readChar(in);
              n++;
              getString(in, temp);
           }
           return n;
        } //end getData
 
        int search(char key[], Student list[], int n) {
        //search for key in list[0] to list[n-1]
        //if found, return the location; if not found, return -1
           for (int h = 0; h < n; h++)
              if (strcmp(key, list[h].name) == 0) return h;
           return -1;
        } //end search
 
        void sort(Student list[], int n) {
        //sort list[0] to list[n-1] by name using an insertion sort
           for (int h = 1; h < n; h++) {
              Student temp = list[h];
              int k = h - 1;
              while (k >= 0 && strcmp(temp.name, list[k].name) < 0) {
                 list[k + 1] = list[k];
                 k = k - 1;
              }
              list[k + 1] = temp;
           } //end for
        } //end sort
 
        void getString(FILE * in, char str[]) {
        //stores, in str, the next string within delimiters
        // the first non-whitespace character is the delimiter
        // the string is read from the file 'in'
 
           char ch, delim;
           int n = 0;
           str[0] = '\0';
           // read over white space
           while (isspace(ch = getc(in))) ; //empty while body
           if (ch == EOF) return;
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           delim = ch;
           while (((ch = getc(in)) != delim) && (ch != EOF))
              str[n++] = ch;
           str[n] = '\0';
        } // end getString
 
        char readChar(FILE * in) {
           char ch;
           while (isspace(ch = getc(in))) ; //empty while body
           return ch;
        } //end readChar
 

If the file input.txt contains the following data:
 
        "Jones, John" 24 M
        "Mohammed, Lisa" 33 F
        "Singh, Sandy" 29 F
        "Layne, Dennis" 49 M
        "Singh, Cindy" 16 F
        "Ali, Imran" 39 M
        "Kelly, Trudy" 30 F
        "Cox, Kerry" 25 M
        "END"
        "Kelly, Trudy"
        "Layne, Dennis"
        "Layne, Cindy"
        "END"
 
the program prints this:
 
        Name: Jones, John Age: 24 Gender: M
        Name: Mohammed, Lisa Age: 33 Gender: F
        Name: Singh, Sandy Age: 29 Gender: F
        Name: Layne, Dennis Age: 49 Gender: M
        Name: Singh, Cindy Age: 16 Gender: F
        Name: Ali, Imran Age: 39 Gender: M
        Name: Kelly, Trudy Age: 30 Gender: F
        Name: Cox, Kerry Age: 25 Gender: M
 
        Kelly, Trudy found at location 6
        Layne, Dennis found at location 3
        Layne, Cindy not found
 
        Name: Ali, Imran Age: 39 Gender: M
        Name: Cox, Kerry Age: 25 Gender: M
        Name: Jones, John Age: 24 Gender: M
        Name: Kelly, Trudy Age: 30 Gender: F
        Name: Layne, Dennis Age: 49 Gender: M
        Name: Mohammed, Lisa Age: 33 Gender: F
        Name: Singh, Cindy Age: 16 Gender: F
        Name: Singh, Sandy Age: 29 Gender: F
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2.7 Nested Structures
C allows us to use a structure as part of the definition of another structure—a structure within a structure, called  
a nested structure. Consider the student structure. Suppose that, instead of age, we want to store the student’s date 
of birth. This might be a better choice since a student’s date of birth is fixed, whereas his age changes, and the field 
would have to be updated every year.

We could use the following declaration:
 
        typedef struct {
           char name[31];
           Date dob;
           char gender;
        } Student;
 

If mary is a variable of type Student, then mary.dob refers to her date of birth. But mary.dob is itself a Date 
structure. If necessary, we can refer to its fields with mary.dob.day, mary.dob.month, and mary.dob.year.

If we want to store a name in a more flexible way, for example, first name, middle initial, and last name,  
we could use a structure like this:
 
        typedef struct {
           char first[21];
           char middle;
           char last[21];
        } Name;
 

The Student structure now becomes the following, which contains two structures, Name and Date:
 
        typedef struct {
           Name name;
           Date dob;
           char gender;
        } Student;
 

If st is a variable of type Student,

        st.name refers to a structure of the type Name,
        st.name.first refers to the student’s first name, and
        st.name.last[0] refers to the first letter of her last name.

Now, if we want to sort the array pupil by last name, the while condition becomes the following:
 
        while (k >= 0 && strcmp(temp.name.last, pupil[k].name.last) < 0)
 

A structure may be nested as deeply as you want. The dot (.) operator associates from left to right. If a, b and c  
are structures, like this:
 
        a.b.c.d
 
is interpreted as follows:
 
        ((a.b).c).d
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2.8 Working with Fractions
Consider the problem of working with fractions, where a fraction is represented by two integer values: one for the 
numerator and the other for the denominator. For example, is represented by the two numbers 5 and 9.

We will use the following structure to represent a fraction:

        typedef struct {
           int num;
           int den;
        } Fraction;

If a is variable of type Fraction, we can store in a with this:

        a.num = 5;
        a.den = 9;

This can be pictured as follows:

We can also read two values representing a fraction and store them in a with a statement such as this:

        scanf("%d %d", &a.num, &a.den);

We can write a function to print a fraction. For example, the following will print 5/9 when called with 
printFraction(a):

        void printFraction(Fraction f) {
           printf("%d/%d", f.num, f.den);
        }

2.8.1 Manipulating Fractions
We can write functions to perform various operations on fractions. For instance, since the following is true:

+a
+ =

c ad bc

b d bd

we can write a function to add two fractions as follows:

        Fraction addFraction(Fraction a, Fraction b) {
           Fraction c;
           c.num = a.num * b.den + a.den * b.num;
           c.den = a.den * b.den;
           return c;
        }
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Similarly, we can write functions to subtract, multiply, and divide fractions.
 
        Fraction subFraction(Fraction a, Fraction b) {
           Fraction c;
           c.num = a.num * b.den - a.den * b.num;
           c.den = a.den * b.den;
           return c;
        }
 
        Fraction mulFraction(Fraction a, Fraction b) {
           Fraction c;
           c.num = a.num * b.num;
           c.den = a.den * b.den;
           return c;
        }
 
        Fraction divFraction(Fraction a, Fraction b) {
           Fraction c;
           c.num = a.num * b.den;
           c.den = a.den * b.num;
           return c;
        }
 

To illustrate their use, suppose we want to find the following:

2 3 5

5 7 8
 + 
 

of

We can do this with the following statements:
 
        Fraction a, b, c, sum, ans;
        a.num = 2; a.den = 5;
        b.num = 3; b.den = 7;
        c.num = 5; c.den = 8;
        sum = addFraction(b, c);
        ans = mulFraction(a, sum);
        printFraction(ans);
 

Strictly speaking, the variables sum and ans are not necessary, but we’ve used them to simplify the explanation. 
Since an argument to a function can be an expression, we could get the same result with this:
 
        printFraction(mulFraction(a, addFraction(b, c)));
 

When run, this code will print the following, which is the correct answer:
 
        118/280
 

However, if you want, you can write a function to reduce a fraction to its lowest terms. This can be done by 
finding the highest common factor (HCF) of the numerator and denominator. You then divide the numerator and 
denominator by their HCF. For example, the HCF of 118 and 280 is 2 so 118/280 reduces to 59/140. Writing this 
function is left as an exercise.
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2.9 A Voting Problem
This example will be used to illustrate several points concerning the passing of arguments to functions. It further 
highlights the differences between array arguments and simple-variable arguments. We will show how a function can 
return more than one value to a calling function by using a structure.

•	 Problem: In an election, there are seven candidates. Each voter is allowed one vote for the 
candidate of their choice. The vote is recorded as a number from 1 to 7. The number of voters 
is unknown beforehand, but the votes are terminated by a vote of 0. Any vote that is not a 
number from 1 to 7 is an invalid (spoiled) vote.

•	 Exercise: A file, votes.txt, contains the names of the candidates. The first name is considered 
as candidate 1, the second as candidate 2, and so on. The names are followed by the votes. 
Write a program to read the data and evaluate the results of the election. Print all output to the 
file, results.txt.

Your output should specify the total number of votes, the number of valid votes, and the number of spoiled votes. 
This is followed by the votes obtained by each candidate and the winner(s) of the election.

Here’s the raw data:
 
        Victor Taylor
        Denise Duncan
        Kamal Ramdhan
        Michael Ali
        Anisa Sawh
        Carol Khan
        Gary Owen
 
        3 1 2 5 4 3 5 3 5 3 2 8 1 6 7 7 3 5
        6 9 3 4 7 1 2 4 5 5 1 4 0
 

Your program should send the following output to results.txt:

Invalid vote: 8
Invalid vote: 9
 
Number of voters: 30
Number of valid votes: 28
Number of spoilt votes: 2
 
Candidate       Score
 
Victor Taylor     4
Denise Duncan     3
Kamal Ramdhan     6
Michael Ali       4
Anisa Sawh        6
Carol Khan        2
Gary Owen         3
 
The winner(s):
Kamal Ramdhan
Anisa Sawh
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We now explain how we can solve this problem using C structures. Consider these declarations:
 
        typedef struct  {
           char name[31];
           int numVotes;
        } PersonData;
        PersonData candidate[8];
 

Here, candidate is an array of structures. We will use candidate[1] to candidate[7] for the seven candidates;  
we will not use candidate[0]. This will allow us to work more naturally with the votes. For a vote (v, say), candidate[v] 
will be updated. If we used candidate[0], we would have the awkward situation where for a vote v, candidate[v-1] 
would have to be updated.

An element candidate[h] is not just a single data item but a structure consisting of two fields. These fields can be 
referred to as follows:
 
        candidate[h].name and candidate[h].numVotes
 

To make the program flexible, we will define symbolic constants with this:
 
        #define MaxCandidates 7
        #define MaxNameLength 30
        #define MaxNameBuffer MaxNameLength+1
 
and change the earlier declarations to the following:
 
        typedef struct  {
           char name[MaxNameBuffer];
           int numVotes;
        } PersonData;
        PersonData candidate[MaxCandidates+1];
 

The solution is based on the following outline:
 
        initialize
        process the votes
        print the results
 

The function initialize will read the names from the file in and set the vote counts to 0. The file is passed as an 
argument to the function. We will read a candidate’s name in two parts (first name and last name) and then join them 
together to create a single name that we will store in person[h].name. Data will be read for max persons. Here is the 
function: 
 
        void initialize(PersonData person[], int max, FILE *in) {
           char lastName[MaxNameBuffer];
           for (int h = 1; h <= max; h++) {
              fscanf(in, "%s %s", person[h].name, lastName);
              strcat(person[h].name, " ");
              strcat(person[h].name, lastName);
              person[h].numVotes = 0;
           }
        } //end initialize
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Processing the votes will be based on the following outline:
 
        get a vote
        while the vote is not 0
           if the vote is valid
              add 1 to validVotes
              add 1 to the score of the appropriate candidate
           else
              print invalid vote
              add 1 to spoiltVotes
           endif
           get a vote
        endwhile
 

After all the votes are processed, this function will need to return the number of valid and spoiled votes. But how 
can a function return more than one value? It can if the values are stored in a structure and the structure returned as 
the “value” of the function.

We will use the following declaration:

        typedef struct {
           int valid, spoilt;
        } VoteCount;

And we will write processVotes as follows:
 
        VoteCount processVotes(PersonData person[], int max, FILE *in, FILE *out) {
           VoteCount temp;
           temp.valid = temp.spoilt = 0;
 
           int v;
           fscanf(in, "%d", &v);
           while (v != 0) {
              if (v < 1 || v > max) {
                 fprintf(out, "Invalid vote: %d\n", v);
                 ++temp.spoilt;
              }
              else {
                 ++person[v].numVotes;
                 ++temp.valid;
              }
              fscanf(in, "%d", &v);
           } //end while
           return temp;
        }  //end processVotes
 

Next, we write main, preceded by the compiler directives and the structure declarations. 
 
        #include <stdio.h>
        #include <string.h>
        #define MaxCandidates 7
        #define MaxNameLength 30
        #define MaxNameBuffer MaxNameLength+1
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        typedef struct  {
           char name[MaxNameBuffer];
           int numVotes;
        } PersonData;
        PersonData candidate[MaxCandidates];
 
        typedef struct {
           int valid, spoilt;
        } VoteCount;
 
        int main() {
           void initialize(PersonData[], int, FILE *);
           VoteCount processVotes(PersonData[], int, FILE *, FILE *);
           void printResults(PersonData[], int, VoteCount, FILE *);
 
           PersonData candidate[MaxCandidates+1];
           VoteCount count;
           FILE *in = fopen("votes.txt", "r");
           FILE *out = fopen("results.txt", "w");
 
           initialize(candidate, MaxCandidates, in);
           count = processVotes(candidate, MaxCandidates, in, out);
           printResults(candidate, MaxCandidates, count, out);
 
           fclose(in);
           fclose(out);
        } //end main
 

The declarations of PersonData and VoteCount come before main. This is done so that other functions can refer to 
them, without having to repeat the entire declarations. If they were declared in main, then the names PersonData and 
VoteCount would be known only in main, and other functions would have no access to them.

Now that we know how to read and process the votes, it remains only to determine the winner(s) and print the 
results. We will delegate this task to the function printResults.

Using the sample data, the array candidate will contain the values shown in Figure 2-1 after all the votes have 
been tallied (remember, we are not using candidate[0]).

name numVotes
1 Victor Taylor 4
2 Denise Duncan 3
3 Kamal Ramdhan 6
4 Michael Ali 4
5 Anisa Sawh 6
6 Carol Khan 2
7 Gary Owen 3

Figure 2-1.  The array candidate after votes are processed
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To find the winner, we must first find the largest value in the array. To do this, we will call a function getLargest 
with the following, which will set win to the subscript of the largest value in the numVotes field from candidate[1] to 
candidate[7] (since MaxCandidates is 7):
 
        int win = getLargest(candidate, 1, MaxCandidates);
 

In our example, win will be set to 3 since the largest value, 6, is in position 3. (6 is also in position 5, but we just 
need the largest value, which we can get from either position.)

Here is getLargest:
 
        int getLargest(PersonData person[], int lo, int hi) {
        //returns the index of the highest vote from person[lo] to person[hi]
           int big = lo;
           for (int h = lo + 1; h <= hi; h++)
              if (person[h].numVotes > person[big].numVotes) big = h;
           return big;
        } //end getLargest
 

Now that we know the largest value is in candidate[win].numVotes, we can “step through” the array, looking for 
those candidates with that value. This way, we will find all the candidates, if there is more than one, with the highest 
vote and declare them as winners.

An outline of printResults is as follows:
 
        printResults
           print the number of voters, valid votes and spoilt votes
           print the score of each candidate
           determine and print the winner(s)
 

The details are given in the function printResults:
 
        void printResults(PersonData person[], int max, VoteCount c, FILE *out) {
           int getLargest(PersonData[], int, int);
           fprintf(out, "\nNumber of voters: %d\n", c.valid + c.spoilt);
           fprintf(out, "Number of valid votes: %d\n", c.valid);
           fprintf(out, "Number of spoilt votes: %d\n", c.spoilt);
           fprintf(out, "\nCandidate       Score\n\n");
 
           for (int h = 1; h <= max; h++)
              fprintf(out, "%-15s %3d\n", person[h].name, person[h].numVotes);
 
           fprintf(out, "\nThe winner(s)\n");
           int win = getLargest(person, 1, max);
           int winningVote = person[win].numVotes;
           for (int h = 1; h <= max; h++)
              if (person[h].numVotes == winningVote)
                 fprintf(out, "%s\n", person[h].name);
        } //end printResults
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Suppose it were required to print the names of the candidates in descending order by numVotes. To do this,  
the structure array candidate must be sorted in descending order using the numVotes field to control the sorting.  
This could be done by the following function call:
 
        sortByVote(candidate, 1, MaxCandidates);
 
sortByVote uses an insertion sort and is written using the formal parameter person (any name will do), as shown here:
 
        void sortByVote(PersonData person[], int lo, int hi) {
        //sort person[lo..hi] in descending order by numVotes
           PersonData insertItem;
           for (int h = lo + 1; h <= hi; h++) { // process person[lo+1] to person[hi]
              // insert person h in its proper position
              insertItem = person[h];
              int k = h -1;
              while (k >= lo && insertItem.numVotes > person[k].numVotes) {
                 person[k + 1] = person[k];
                 --k;
              }
              person[k + 1] = insertItem;
           }
        } //end sortByVote
 

Observe that the structure of the function is pretty much the same as if we were sorting a simple integer array. 
The major difference is in the while condition where we must specify which field is used to determine the sorting 
order. (In this example, we also use >, rather than <, since we are sorting in descending order rather than ascending 
order.) When we are about to process person[h], we copy it to the temporary structure, insertItem. This frees 
person[h] so that person[h-1] may be shifted into position h, if necessary. To shift an array element to the right,  
we use the following simple assignment:
 
        person[k + 1] = person[k];
 

This moves the entire structure (two fields, in this example).
If we need to sort the candidates in alphabetical order, we could use the function sortByName:

 
        void sortByName(PersonData person[], int lo, int hi) {
        //sort person[lo..hi] in alphabetical order by name
           PersonData insertItem;
           for (int h = lo + 1; h <= hi; h++) { // process person[lo+1] to person[hi]
              // insert person j in its proper position
              insertItem = person[h];
              int k = h -1;
              while (k > 0 && strcmp(insertItem.name, person[k].name) < 0) {
                 person[k + 1] = person[k];
                 --k;
              }
              person[k + 1] = insertItem;
           }
        } //end sortByName
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The function sortByName is identical with sortByVote except for the while condition, which specifies which field 
is used in comparisons and the use of < for sorting in ascending order. Note the use of the standard string function, 
strcmp, for comparing two names. If strcmp(s1, s2) is negative, it means that the string s1 comes before the string 
s2 in alphabetical order.

As an exercise, rewrite the program for solving the voting problem so that it prints the results in descending order 
by votes and in alphabetical order.

2.10  Passing Structures to Functions
In the voting problem, we saw examples where candidate, an array of structures, was passed to various functions.  
We now discuss some other issues that arise in passing a structure to a function.

Consider a structure for a “book type” with the following fields:
 
        typedef struct {
           char author[31];
           char title[51];
           char binding;        //paperback, hardcover, spiral, etc.
           double price;
           int quantity;        //quantity in stock
        } Book;
        Book text;
 

This declares a new type called Book, and text is declared as a variable of type Book.
We could pass individual fields to functions in the usual way; for a simple variable, its value is passed, but, for an 

array variable, its address is passed. Thus:
 
        fun1(text.quantity);    // value of text.quantity is passed
        fun2(text.binding);     // value of text.binding is passed
        fun3(text.price);       // value of text.price is passed
 
but,
 
        fun4(text.title);       // address of array text.title is passed
 

We could even pass the first letter of the title, as follows:
 
        fun5(text.title[0]);    // value of first letter of title is passed
 

To pass the entire structure, we use this:
 
        fun6(text);
 

Of course, the header for each of these functions must be written with the appropriate parameter type.
In the last example, the fields of text are copied to a temporary place (called the run-time heap), and the copy is 

passed to fun6; that is, the structure is passed “by value.” If a structure is complicated or contains arrays, the copying 
operation could be time-consuming. In addition, when the function returns, the values of the structure elements must 
be removed from the heap; this adds to the overhead—the extra processing required to perform a function call.

To avoid this overhead, the address of the structure could be passed. We will show how to do this when we 
discuss pointers in the next chapter.
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EXERCISES 2

1.	 Do Chapter 1, Exercise 1 using structures.

2.	 Write a program to read names and phone numbers into a structure array. Request a name 
and print the person’s phone number. Use binary search to look up the name.

3.	 Do Chapter 1, Exercise 3 using a structure array to hold the words.

4.	 Do Chapter 1, Exercise 6 using a structure to hold a candidate’s data.

5.	 Write a function that, given two date structures, d1 and d2, returns -1 if d1 comes before d2, 
0 if d1 is the same as d2, and 1 if d1 comes after d2.

6.	 Write a function that, given two date structures, d1 and d2, returns the number of days that 
d2 is ahead of d1. If d2 comes before d1, return a negative value.

7.	A  time in 24-hour clock format is represented by two numbers; for example, 16 45 means 
the time 16:45, that is, 4:45 p.m. Using a structure to represent a time, write a function  
that, given two time structures, t1 and t2, returns the number of minutes from t1 to t2.  
For example, if the two given times are 16 45 and 23 25, your function should return 400.

8.	 Modify the function so that it works as follows: if t2 is less than t1, take it to mean a time for 
the next day. For example, given the times 20:30 and 6:15, take this to mean 8.30 p.m. to 
6.15 a.m. of the next day. Your function should return 585.

9.	A  length, specified in meters and centimeters, is represented by two integers. For example, 
the length 3m 75cm is represented by 3 75. Using a structure to represent a length, write 
functions to compare, add, and subtract two lengths.

10.	A  file contains the names and distances jumped by athletes in a long-jump competition. 
Using a structure to hold a name and distance (which is itself a structure as in 8), write a 
program to read the data and print a list of names and distance jumped in order of merit 
(best jumper first).

11.	A t a school’s bazaar, activities were divided into stalls. At the close of the bazaar, the manager 
of each stall submitted information to the principal consisting of the name of the stall, the 
income earned, and its expenses. Here’s some sample data:

 
        Games 2300.00 1000.00
        Sweets 900.00 1000.00

 
 	U sing a structure to hold a stall’s data, write a program to read the data and print a report 

consisting of the stall name and net income (income - expenses), in order of decreasing  
net income (that is, with the most profitable stall first and the least profitable stall last).  
In addition, print the number of stalls, the total profit or loss of the bazaar, and the stall(s)  
that made the most profit. Assume that a line containing xxxxxx only ends the data.
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12. a data file contains registration information for six courses—CS20a, CS21a, CS29a, CS30a, 
CS35a, and CS36a. each line of data consists of a seven-digit student registration number 
followed by six (ordered) values, each of which is 0 or 1. a value of 1 indicates that the 
student is registered for the corresponding course; 0 means the student is not. thus,  
1 0 1 0 1 1 means that the student is registered for CS20a, CS29a, CS35a, and CS36a,  
but not for CS21a and CS30a. You may assume that there are no more than 100 students 
and a registration number 0 ends the data. Write a program to read the data and produce 
a class list for each course. each list consists of the registration numbers of those students 
taking the course.
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Chapter 3

Pointers

In this chapter, we will explain the following:

What a pointer is•	

How to declare pointer variables•	

How to dereference a pointer•	

How a function can change the value of a variable in a “calling” function•	

Some issues involved in passing an array as an argument to a function•	

How to work with character pointers•	

The meaning of pointer arithmetic•	

How to use pointers to structures•	

How to use pointers to functions to write general-purpose routines•	

What are •	 void pointers and how to use them

3.1 Defining Pointers
In C, arguments to functions are passed “by value.” Suppose the function test is called with the variable num as an 
argument.
 
        test(num);
 

The value of num is copied to a temporary location, and this location is passed to test. In this scenario, test has 
no access whatsoever to the original argument num and, hence, cannot change it in any way.

Does this mean that a function can never change the value of a variable in another function? It can, but in order 
to do so, it must have access to the address of the variable—the location in memory where the variable is stored.

If a computer has 1 million bytes of memory, its memory locations range from 0 to 999,999. Among other things, 
memory locations are used for storing the values of variables. Suppose a variable num has the value 36 and this value is 
stored at memory location 5000. We say the storage address (or, simply, the address) of num is 5000.

The operator &, when applied to a variable, returns the address of the variable. For example, suppose num is stored 
at address 5000. Then the value of &num is 5000.

The term pointer is used to refer to an address in memory. A pointer variable is one that can hold the address of  
a memory location.



Chapter 3 ■ Pointers

52

If ptr is a pointer variable, we can assign a value to it.
 
        ptr = &num;
 

This statement stores the address of num (whatever it may be) in ptr. We say that ptr “points to” num.
But how do we declare ptr to be a pointer variable? First, we observe that, in C, a given pointer variable can 

“point to” values of one type only (see “3.8 Void Pointers”). The declaration of the pointer variable specifies the type. 
For example, the following declaration is read as int pointer ptr and declares ptr to be a pointer variable, which can 
“point to” (hold the address of) int values only:
 
        int *ptr;
 

Of course, since ptr can assume only one value at a time, it can point to only one integer at any given time.  
The declaration could also have been written as follows:
 
        int* ptr;
 
or
 
        int * ptr; 

Caution■■  I f you want to declare three pointers to int, it might be tempting to use this: 

        int* a, b, c; 

However, this would be wrong. As written, only a is a pointer variable; b and c are just int. This might be more obvious 
had it been written as follows:
 

        int *a, b, c; 

The correct way to declare a, b, and c as pointers is as follows:
 
        int *a, *b, *c; 

Suppose the address of num is 5000 and the value of num is 17. This statement assigns the value 5000 to ptr:
 
        ptr = &num;
 

Assuming ptr is stored at location 800, this can be pictured as follows:
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We use *ptr to refer to “the value pointed at by ptr”1 (in effect, the value of num), and it can be used in any context 
that an integer can. For example, if m is int, then the following assigns the value 24 (17 + 7) to m:
 
        m = *ptr + 7;
 

It is sometimes helpful to think of * and & as cancelling out each other. For instance, if ptr = &num, then we can 
use the following:
 
        *ptr º *(&num) º num;
 

An interesting assignment is as follows:
 
        num = *ptr + 1;
 

This is exactly equivalent to the following:
 
        num = num + 1;
 

It could even be written like this:
 
        (*ptr)++;
 

This says to increment whatever ptr is pointing at. The brackets around *ptr are necessary. Without the brackets, 
*ptr++ would mean “take the value pointed to by ptr and then increment the value of ptr” (see “3.5 Pointer Arithmetic” 
for what it means to increment a pointer). To increment num by a value other than 1 (5, say), you could write this:
 
        (*ptr) += 5;
 

In many respects, ptr is just like any other variable, and we can change its value if necessary. For example,  
the following assigns the address of m to ptr:
 
        ptr = &m;
 

The old value of ptr is lost. Now ptr points to the value of m rather than num.

3.2 Passing Pointers as Arguments
Consider the problem of getting a function to change the value of a variable in the “calling” function. Specifically,  
we will attempt to write a function to add 6 to its integer argument. A naive attempt might be Program P3.1.  
The comments are for reference only.

Program P3.1

        #include <stdio.h>
        int main() {
           void test(int);
           int n = 14;

1Getting the value pointed to is called dereferencing the pointer.
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           printf("%d\n", n);      // before calling test
           test(n);
           printf("%d\n", n);      //after return from test
        } //end main
 
        void test(int a) {
           a = a + 6;
           printf("%d\n", a);      // within test
        } //end test
 

When run, this program will print the following:

14              (before calling test)
20              (within test)
14              (after return from test)

At the end, the value of n is still 14. Clearly, test was unable to change the value of n.
As written, there is no way for test to change the value of n (declared in main) since it has no access to n.  

The only way test can change the value of n is if the address of n is passed to test. This can be achieved by calling 
test with this:
 
        test(&n);
 

But now, since the actual argument is a pointer, we must change the definition of the formal parameter in test so 
that it is also a pointer. Program P3.2 incorporates the changes.

Program P3.2

        #include <stdio.h>
        int main() {
           void test(int *);
           int n = 14;
           printf("%d\n", n);      // before calling test
           test(&n);
           printf("%d\n", n);      // after return from test
        } //end main
 
        void test(int *a) {
           *a = *a + 6;
           printf("%d\n", *a);     // within test
        } //end test
 

The following function prototype indicates that the argument to test is an integer pointer:
 
        void test(int *);
 

The formal parameter a is declared accordingly. The integer value “pointed at” by a is denoted by *a. When test 
is called with the following, the address of n (5000, say) is passed to it:
 
        test(&n);
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test, therefore, has access to whatever value is stored at this address and may change it if desired. In this case, it adds 
6 to the value at location 5000, effectively adding 6 to the value of n. When run, Program P3.2 will print the following:

14      (before calling test)
20      (within test)
20      (after return from test)

At the end, the value of n in main has been changed to 20 by the function test.
It should now be clear why it is necessary to put the ampersand (&) in front of variables when we use the standard 

input function scanf(...) to read data. The only way scanf(...) can put a value into an actual argument is if its 
address is passed to it. For example, in the following statement, the address of n is passed to scanf:
 
        scanf("%d", &n);
 

This enables scanf to store the value read in the location occupied by n.
For the cognoscenti, even with pointers, it is still true that, in C, arguments are passed by value and a function 

cannot change the value of an original argument passed to it. Suppose ptr = &n and consider the following call:
 
        test(ptr);
 

The value of the argument, ptr, is determined. Suppose it is 5000. This value is copied to a temporary location, 
and this location is passed to test where it is known as a. Thus, the value of a is 5000.

When interpreted as an address, this is the address of the variable n, in main. Thus, the function has access to n 
and can change it, if desired. But note that test cannot change the value of the original argument ptr since only a 
copy of ptr was passed. However, as we have seen, it can change the value pointed to by ptr.

3.3 More on Passing an Array as an Argument
We have learned that when an array name is used as an actual argument, the address of its first element is passed to 
the function. Consider Program P3.3.

Program P3.3

        #include <stdio.h>
        int main() {
           void test(int val[], int max);
           int j, list[5];
 
           for (j = 0; j < 5; j++) list[j] = j;
           test(list, 5);
           for (j = 0; j < 5; j++) printf("%d ", list[j]);
           printf("\n");
        } //end main
 
        void test(int val[], int max) {
        // add 25 to each of val[0] to val[max - 1]
           int j;
           for (j = 0; j < max; j++) val[j] += 25;
        } //end test
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When run, this program prints the following:

25 26 27 28 29

In main, the elements list[0] to list[4] are set to 0, 1, 2, 3, and 4, respectively.
When the following call is made, the address of list[0] is passed to test where it becomes known as val[0]:

 
        test(list, 5);
 

The function adds 25 to each of val[0] to val[4]. But since val[0] to val[4] occupy the same storage as 
list[0] to list[4], the function effectively adds 25 to list[0], list[1], list[2], list[3], and list[4].

The call
 
        test(list, 5);
 
could be replaced by the following since, in both cases, the address of the first element of list is passed to  
the function:
 
        test(&list[0], 5);
 

In other words, an array name is a pointer—the address of the first element of the array.
An interesting variation is the following call:

 
        test(&list[2], 3);
 

Here, the address of element list[2] is passed to test. In the function, this address is matched with val[0].  
The net effect is the following:
 
        val[0]  matches with    list[2];
        val[1]  matches with    list[3];
        val[2]  matches with    list[4];
 

These elements are incremented by 25 so that the program prints this:

0  1  27  28  29

In case you are wondering, it would be invalid to attempt something like this:
 
        test(&list[2], 5);
 

This implies that, starting at list[2], there are at least five elements in the array, and, in our case, there are 
only three. What would happen is that, in the function, val[3] and val[4] would be associated with the locations 
in memory immediately following list[4]. The contents of these locations would be altered with unpredictable 
consequences.
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3.4 Character Pointers
Suppose word is declared as an array of characters.
 
        char word[20];
 

We have emphasized that the array name word is a synonym for the address of its first element, word[0]. Thus:
 
        word º &word[0]
 

In effect, word “points to” the first character of the array and is, in fact, a pointer—a character pointer, to be more 
precise. However, word is not a pointer variable but, rather, a pointer constant. We can’t change its value, which is the 
address of word[0].

Whenever a string constant appears in a program, the characters without the quotes are stored somewhere in 
memory; \0 is added at the end, and the address of the first character is used in place of the string. For example,  
in the following
 
        printf("Enter a number:");
 
what is actually passed to printf is a character pointer whose value is the address of the first character of the 
following string, stored somewhere in memory and terminated by \0:
 
        Enter a number:
 

Consider this declaration:
 
        char *errorMessage;
 

It is permitted to write the following:
 
        errorMessage = "Cannot divide by 0\n";
 

The effect is that the characters of the string (properly terminated by \0) are stored somewhere in memory 
(starting at address 800, say), and the address of the first character (800) is assigned to errorMessage. This can be 
used as follows:
 
        printf("%s", errorMessage);
 
or, simply, as follows:
 
        printf(errorMessage);
 

Note that errorMessage is a pointer variable whose value can be changed, if desired. For example, the following 
sets errorMessage to point to the new string:
 
        errorMessage = "Negative argument to square root\n";
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Of course, the string previously pointed at by errorMessage now becomes inaccessible. If we wanted to save 
the old value of errorMessage, we could have done something like the following, assuming that oldMessage is also a 
character pointer:
 
        oldMessage = errorMessage;
 

It is important to observe that this assignment simply stores the (pointer) value of errorMessage in oldMessage. 
No characters are copied. For example, suppose the following was stored starting at address 500:
 
        "Cannot divide by 0\n"
 

After the assignment above, the value of oldMessage is 500 and, hence, points to the string. There is nothing 
wrong or invalid in having several variables point to the same location. It is the same as, for instance, several integer 
variables having the same value.

3.5 Pointer Arithmetic
We saw earlier that a pointer variable could be assigned to another pointer variable. C also permits us to increment 
and decrement pointer variables, but these operations have special meanings when applied to pointers.

Consider the following:
 
        char *verse = "The day is done";
 

The string "The day is done" is stored somewhere in memory, and verse is assigned the address of the first 
character, T. In addition:
 
        verse + 1  is the address of 'h';
        verse + 2  is the address of 'e';
        verse + 3  is the address of ' ';
                   etc.
 

If required, we could change the value of verse with constructions such as this:
 
        verse++;
        verse += j;
 

As an example, the following will print the characters of the string pointed at by verse, one per line:
 
        while (*verse != '\0')
           printf("%c\n", *verse++);
 
*verse refers to the character currently pointed at by verse. After this character has been printed, verse is 
incremented to point to the next character.

The previous discussion relates to character pointers. But suppose ptr is a pointer to integers. What is the 
meaning of this:
 
        ptr + 1 or ptr + k?
 

To illustrate the ideas involved, consider an integer array num declared as follows:
 
        int num[5];
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We know by now that the name num refers to the address of num[0]. What is new is the following:
 
        num + 1  is the address of  num[1];
        num + 2  is the address of  num[2];
        num + 3  is the address of  num[3];
        num + 4  is the address of  num[4];
 

This holds true regardless of how many storage locations are occupied by an integer. For example, suppose an 
integer occupies 4 bytes and the address of num[0] is 800.

The value of the array name num is 800, and the value of, say, num + 1 (pointer arithmetic) is the address of 
num[1], that is, 800 + 4 = 804. Similarly:
 
        the value of num + 2  is 808;
        the value of num + 3  is 812;
        the value of num + 4  is 816;
 

In general, suppose a pointer, p, is declared to point at a type of value that occupies k locations of storage. 
Incrementing p by 1 has the effect of adding k to the current value of p so that p now points to the next item of the type 
that p is declared to point at.

Thus, using pointer arithmetic, “adding 1” means getting the address of the next item (no matter how many 
locations away), and “adding j” means getting the address of the jth item beyond the current one. Thus, p + j is the 
address of the jth element beyond the one pointed to by p.

Since, for example, num + 2 is the address of num[2], i.e., &num[2], it follows that *(num + 2) is equivalent to 
*(&num[2]), that is, num[2]. (Think of * and & as cancelling each other.)

The following prints the values in the array num, one per line:
 
        for (int h = 0 ; h < 5; h++)
            printf("%d\n", *(num + h));
 
*(num + h) could be replaced by num[h], and the effect would be the same.

You might wonder, in this example, about the meaning of num + 5. Theoretically, this is the address of element 
num[5], but this element does not exist. However, it is not invalid to attempt to use num + 5. But if, for instance, we 
attempt to print *(num + 5), we will print whatever happens to be stored in memory at the address designated by  
num + 5 or, worse, get a memory access or address error. In either case, the moral is that you must not attempt to refer 
to array elements you have not declared and, hence, for which storage has not been allocated.

We will illustrate the intimate relationship between arrays and pointers by writing two versions of a function, 
length, which finds the length of a string.

Suppose word is declared as follows:
 
        char word[MaxLength];  // MaxLength is a symbolic constant
 

Then in order to find the length of a string stored in word, you can call the following function:
 
        length(word);
 
length assumes that word consists of characters terminated by \0. The value returned is the number of characters 
excluding \0. Since what is passed to the function is the address of the first character (in other words, &word[0]), the 
function can be written with the formal parameter declared either as an array or as a pointer. Which version is used 
has no effect on how the function is called. First we write the array version.
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        int length(char string[]) {
           int n = 0;
           while (string[n] != '\0') n++;
           return n;
        }

Now we write the pointer version.

        int length(char *strPtr) {  // string pointer
           int n = 0;
           while (*strPtr != '\0') {
              n++;
              strPtr++;
           }
           return n;
        }

We could even increment strPtr as part of the while test, giving the following:

        int length(char *strPtr) {
           int n = 0;
           while (*strPtr++ != '\0') n++;
           return n;
        }

Which version is better? It depends on your point of view. Whereas the array version is more readable, the pointer 
version is more efficient. In the array version, it is clear that at each step we are looking at the nth element of the string. 
This is not so obvious in the pointer version. However, evaluating string[n] requires evaluation of the subscript n, 
which is then converted into the address of element n. The pointer version deals with the address directly.

We have mentioned that an array name is a constant and, hence, its value can’t be changed. There may appear 
to be a conflict in that the function, when passed the array name, increments it (strPtr++) to move on to the next 
character.

But remember that the formal parameter in the function definition is a variable. When the function is called with 
length(word), say, the value of word (the address of the first character) is copied to a temporary location, and this 
location is passed to the function, where it is known as strPtr. The effect is that strPtr is simply initialized to the 
value of word. Incrementing strPtr in the function has no effect on the value of word in the calling function.

3.6 Pointers to Structures
Just as it is possible to take the address of an int or double variable, so too can we take the address of a structure 
variable. In Chapter 2, we mentioned that when we make the call fun6(text);, where text is a structure variable of 
type Book, the fields of text are copied to the run-time heap and the copy is passed to fun6. That is, the structure is 
passed “by value.” If a structure is complicated or contains arrays, the copying operation could be time-consuming. 
In addition, when the function returns, the values of the structure elements must be removed from the heap, and this 
adds to the overhead—the extra processing required to perform a function call.

To avoid this overhead, the address of the structure could be passed, as follows:

        fun7(&text);
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Of course, in fun7, the corresponding formal parameter must be declared appropriately, such as the following:
 
        void fun7(Book *bp)
 

Now, only a single value (the address) has to be copied to (and later removed from) the heap. And given the 
address, the function has access to the original argument text and can change it, if desired.

It is also possible to pass the address of an individual field to a function. For array fields, this happens 
automatically, as follows:
 
        fun4(text.title);      // address of text.title is passed
 

For simple variables, the structure name (not the field name) must be preceded by &, as follows:
 
        fun3(&text.price);      // address of text.price is passed
 

For example, we could read values for price and quantity with this:
 
        scanf("%lf %d", &text.price, &text.quantity); //"lf" since price is double
 

Using the declaration
 
        typedef struct {
           char name[31];
           int age;
           char gender;
        } Student;
 
consider the following:
 
        Student child, *sp;
 

This declares child to be a structure variable of type Student. It also declares sp to be a pointer to a structure  
of the type Student. In other words, the values that sp can assume are addresses of variables of type Student.  
For example, the following statement is valid and assigns the address of the structure variable child to sp:
 
        sp = &child;
 

If the fields of child are stored starting at memory location 6000, then the value 6000 is assigned to sp.
As with pointers to other types, *sp refers to the structure that sp is pointing at. In this example, *sp is a synonym 

for child. We can refer to the fields of the structure that sp is pointing at by using the dot operator (.), as follows:
 
        (*sp).name, (*sp).age and (*sp).gender
 

The brackets around *sp are required since . has higher precedence than *. Without them, *sp.age, for instance, 
would be interpreted as *(sp.age). This implies that sp.age is a pointer; since it is not, it will produce an error.

Pointers to structures occur so frequently in C that a special alternative notation is provided. If sp is pointing to a 
structure of type Student, then we can use -> (a minus sign followed by a greater-than sign) to specify a field, as follows:
 
        sp -> name      refers to the ‘name’ field,
        sp -> age       refers to the ‘age’ field, and
        sp -> gender    refers to the ‘gender’ field,
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We will see many examples of the use of pointers to structures in the next chapter.
The following list summarizes valid operations on structures:

A field can be accessed using the “structure member” (•	 .) operator, as in text.author.

A structure variable can be assigned the value of another structure variable of the same type.•	

The address-of operator •	 & can be applied to a structure name to give the address of the 
structure, for example, &text. & can also be applied to an element of a structure. However, & 
must precede the structure name, not the field name. For example, &text.price is valid, but 
text.&price and &price are not.

If •	 p is a pointer to a structure, then *p refers to the structure. For example, if p contains the 
address of the structure, text then

        (*p).title   //brackets required since . has higher precedence than *

refers to the title field. However, the structure pointer (arrow) operator -> (a minus sign 
immediately followed by >) is more commonly used to refer to a field, as in: 

        p -> title 

3.7 Pointers to Functions
In the same way that an array name is the address of its first element, so too a function name is the address of the 
function. To put it another way, a function name is a pointer to the function in much the same way that an array name 
is a pointer to the array. In C, a pointer to a function can be manipulated in much the same way as other pointers;  
in particular, it can be passed to functions. This is especially handy for writing general-purpose routines.

Consider the problem of producing two-column tables such as tables of squares, reciprocals, square roots, weight 
conversions, temperature conversions, and so on. In each table, the first column consists of an ascending sequence of 
integers, and the second has the associated values.

We could write separate functions for each type of table we wanted to produce. But we could also write one 
function (called makeTable, say) that produced the various tables. Which specific table is produced depends on which 
function is passed to makeTable.

How do we specify a function as a parameter? Consider the following function definition:
 
        void makeTable(int first, int last, double (*fp) (int)) {
           for (int j = first; j <= last; j++)
              printf("%2d   %0.3f\n", j, (*fp)(j));
        }
 

The heading says that makeTable takes three arguments; the first two are integers and the third, fp, is a pointer 
to a function that takes an int argument and returns a double value. The brackets around *fp in the following are 
necessary:
 
        double (*fp) (int)
 

If they are omitted, the following would mean that fp is a function returning a pointer to a double, which is quite 
different from what is intended:
 
        double *fp (int)
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In the printf statement, the function call (*fp) (j) is interpreted as follows:

•	 fp is a pointer to a function; *fp is the function.

•	 j is the actual argument to the function call; the brackets around j are the usual brackets 
around a function’s argument(s).

The value returned by the call should be a •	 double, which would match the %f specification.

The brackets around •	 *fp are necessary since () has higher precedence than *. Without them, 
*fp(j) would be equivalent to *(fp(j)), which is meaningless in this context.

But how do we use makeTable to produce a table of reciprocals, say? Suppose we want to produce the table  
from 1 to 10. We would like to use a statement such as the following to get the required table, where reciprocal is a 
function that takes an int value and returns a double value—the reciprocal of the integer:
 
        makeTable(1, 10, reciprocal);
 

It could be written as follows:
 
        double reciprocal(int x) {
           return 1.0 / x;
        }
 

Note that in the following call the function name reciprocal is a pointer to a function, so it matches the third 
parameter of makeTable:
 
        makeTable(1, 10, reciprocal);
 

Program P3.4 shows all the pieces put together in one complete program.

Program P3.4

        #include <stdio.h>
        int main() {
           void makeTable(int, int, double (*fp) (int));
           double reciprocal(int);
           makeTable(1, 10, reciprocal);
        } //end main
 
        void makeTable(int first, int last, double (*fp) (int)) {
           for (int h = first; h <= last; h++)
              printf("%2d   %0.3f\n", h, (*fp)(h));
        } //end makeTable
 
        double reciprocal(int x) {
           return 1.0 / x;
        } //end reciprocal
 



Chapter 3 ■ Pointers

64

When run, Program P3.4 produces the following output:

1        1.000
2        0.500
3        0.333
4        0.250
5        0.200
6        0.167
7        0.143
8        0.125
9        0.111
0        0.100

If we now want to create a table of squares, all we need are the following.
Here’s the function prototype in main:

 
        double square(int);
 

Here’s the function call in main:
 
        makeTable(1, 10, square);
 

Here’s the function definition:
 
        double square(int x) {
           return x * x;
        }
 

As another example, consider the problem of evaluating the following definite integral using the Trapezoidal Rule 
with n strips:

The rule states that an approximation to the previous integral is given by the following, where h = (b – a)/n:

h{ ( f (a)  +  f (b))/2  +  f (a + h)  +  f (a + 2h)  +   ...   +  f (a  +  (n–1) h) }

We want to write a general function integral, which, given a, b, n, and a function, f, returns the value of the 
integral. To evaluate the integrals of different functions, we would need only to pass the appropriate function to 
integral. Consider the following version of integral:
 
        double integral(double a, double b, int n, double (*fp) (double)) {
           double h, sum;
           h = (b - a) / n;
           sum = ((*fp)(a) + (*fp)(b)) / 2.0;
           for (int j = 1; j < n ; j++)
              sum += (*fp)(a + j * h);
           return h * sum;
        } //end integral
 

b

a

f(x)dx∫
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The following declaration says that fp is a pointer to a function that takes a double argument and returns a 
double value:
 
        double (*fp) (double)
 

*fp denotes the function, and (*fp)(a) is a call to the function with argument a.
To show how integral can be used, suppose we want to find an approximation to the following using 20 strips:

We would need to write a function such as quadratic.
 
        double quadratic(double x) {
           return x * x + 5.0 * x + 3.0;
        }
 

The following call would return the value of the integral:
 
        integral(0, 2, 20, quadratic) 

3.8 Void Pointers
As we have emphasized, a pointer variable in C can point to only one type of value. However, C allows the declaration 
and use of void (also called generic) pointers—pointers that may point to any type of object. For example, the 
following declares pv as a void pointer:
 
        void *pv;
 

And the following declares getNode as a function that returns a void pointer:
 
        void *getNode(int size);
 

Any valid address can be assigned to a void pointer. In particular, a pointer to int (or double or float, and so on) 
can be assigned to a void pointer variable. Given double d, *dp;, you can write the following:
 
        dp = &d; //assign the address of d to dp
        pv = dp; //assign a double pointer to a void pointer variable
 

Even though pv and dp have the same pointer value after the previous assignment, it is invalid to think of *pv as  
a double. In other words, we should not attempt to dereference a void pointer. However, if we know that pv contains a 
double pointer, we can tell this to C using a cast and dereference it, like this:
 
        * (double *) pv
 
void pointers are useful for writing general-purpose functions where you do not want to restrict a function to 
returning a specific type of pointer. Also, declaring a function parameter as a void pointer allows the actual argument 
to be any type of pointer.

2
2

0

(x 5x 3)dx+ +∫
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For example, suppose we want to write a function to accept an address and print the value stored at that address. 
If we know that the address will be a double pointer, say, we can write the function like this:
 
        void dprint(double *p) {
           printf("%0.3lf\n", *p); //print to 3 decimal places
        }
 

But what if we want the function to work no matter what type of pointer is passed? We can try to specify the 
parameter as a void pointer, as follows, but this won’t work:
 
        void vprint(void *p) {   //this won’t work
           printf("%0.3lf\n", *p);
        }
 

Remember that an address is just a positive integer (8000, say). When this number is sent to the function,  
vprint will not know what type of value is stored at that address, so it will not know how to interpret *p in printf.  
(In dprint, shown earlier, it knows that *p is a double value.)

So, in addition to the pointer, we need to tell the function what type of value is stored so the pointer can be 
dereferenced correctly. We can do this via another argument (t, say). To illustrate, we write the following function 
assuming t = 1 means an int pointer is passed and t = 2 means a double pointer is passed:
 
        void print(void *p, int t){
           if (t == 1) printf("%d\n", *(int *) p);
              else if (t == 2) printf("%0.3lf\n", *(double *) p);
              else printf("error: unknown type\n");
        } //end print
 

Consider the following code:
 
        int n = 375;
        double d = 2.71865;
        print(&n, 1); //int pointer passed
        print(&d, 2); //double pointer passed
 

When executed, this will print the following:

375
2.719

The function print can be easily extended to handle other types.
C permits a void pointer to be assigned to any other type of pointer, as follows:

 
        float *fp =  pv;
 

However, it is up to you to ensure that the assignment makes sense. For instance, if pv contains an int pointer, 
it makes no sense to assign it to a float pointer variable. On the other hand, if you know that pv contains a float 
pointer, then the assignment is meaningful.
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Programming note: if you use a C++ compiler to compile your C programs, you will get an error if you try to assign 
a void pointer to another pointer type. You will need to cast the void pointer to the appropriate type before assigning, 
as follows:
 
        fp = (float *) pv;
 

Even though assigning a void pointer without casting is permitted in C, good programming practice dictates you 
should use a cast anyway.

EXERCISES 3 

1.	 What is meant by “an argument is passed by value”?

2.	 Which type of argument in C is not passed by value? How is it passed?

3.	H ow is it possible for a function to change the value of an actual argument?

4.	I n main, there are two int variables, a and b. Write a function that, when called, interchanges 
the values of a and b so that the change is known in main.

5.	I n main, there are three int variables, a, b, and c. Write a function that, when called, stores 
the sum of a and b in c so that c is changed in main.

6.	E xplain the differences between a character pointer and a character array.

7.	T he character pointer msgPtr is pointing to a string of characters. What happens when 
msgPtr is assigned to another character pointer, oldPtr?

8.	H ow is a pointer similar to an integer?

9.	H ow does pointer arithmetic differ from ordinary integer arithmetic?

10.	 What is the difference between num[j] and *(num + j)?

11.	I f ps is a pointer to a structure that contains an int field score, what is the difference 
between (*ps).score and ps -> score?

12.	I f a function f is continuous in the interval [a, b] and f(a)f(b) < 0, then, since f changes sign, 
there must exist some c in [a, b] for which f(c) = 0. Assume there is one such c. It can be 
found as follows:

Bisect the interval [•	 a, b].

Determine in which half •	 f changes sign.

This is repeated giving a sequence of intervals, each smaller than the last and each containing c. The 
procedure can be terminated when the interval is arbitrarily small or f is 0 at one of the endpoints.

Write a function that, given f, a, and b, returns an approximation to c. Test your function using the 
function 5x2 + 3x - 14 with a solution in the interval [1, 2].
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13.	 Write a function to calculate the value of the following definite integral using Simpson’s rule 
(below) with n strips; n must be even:

An approximation to the integral is given by the following, where h = (b – a)/n:

Test your function on some simple integrals.

What happens if the number of strips increases?

14.	 What is a void pointer? How are void pointers useful?

15.	A n int pointer is assigned to a void pointer variable, vp. How can we print the value pointed 
to by vp? 

16.	I t is permitted to assign a void pointer to another type of pointer variable. What should you 
be mindful of in making such an assignment?

17.	A part from void pointers, where else can you use the word void in C?

b
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Chapter 4

Linked Lists

In this chapter, we will explain the following:

The notion of a linked list•	

How to write declarations for working with a linked list•	

How to count the nodes in a linked list•	

How to search for an item in a linked list•	

How to find the last node in a linked list•	

The difference between static storage and dynamic storage allocation•	

How to allocate and free storage in C using •	 malloc, calloc, sizeof, and free

How to build a linked list by adding a new item at the end of the list•	

How to insert a node into a linked list•	

How to build a linked list by adding a new item at the head of the list•	

How to delete items from a linked list•	

How to build a linked list by adding a new item in such a way that the list is always sorted•	

How to use linked lists to determine whether a phrase is a palindrome•	

How to save a linked list•	

The differences between using linked lists and arrays for storing a list of items•	

How to represent a linked list using arrays•	

How to merge two sorted linked lists•	

The concept of a circular list and a doubly linked list•	

4.1 Defining Linked Lists
When values are stored in a one-dimensional array (x[0] to x[n]), say), they can be thought of as being organized as a 
“linear list.” Consider each item in the array as a node. A linear list means that the nodes are arranged in a linear order 
such that the following is true:
 
        x[0] is the first node
        x[n] is the last node
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        if 0 < k <= n, then x[k] is preceded by x[k - 1]
        if 0 <= k < n then x[k ] is followed by x[k + 1]

Thus, given a node, the “next” node is assumed to be in the next location, if any, in the array. The order of the 
nodes is the order in which they appear in the array, starting from the first. Consider the problem of inserting a new 
node between two existing nodes, x[k] and x[k + 1].

This can be done only if x[k + 1] and the nodes after it are moved to make room for the new node. Similarly, the 
deletion of x[k] involves the movement of the nodes x[k +1], x[k + 2], and so on. Accessing any given node is easy;  
all we have to do is provide the appropriate index (subscript).

In many situations, we use an array for representing a linear list. But we can also represent such a list by using an 
organization in which each node in the list points explicitly to the next node. This new organization is referred to as a 
linked list.

In a (singly) linked list, each node contains a pointer that points to the next node in the list. We can think of each 
node as a cell with two components, like this:

where data can actually be one or more fields (depending on what needs to be stored in a node), and next points to 
the next node of the list. (You can use any names you want instead of data and next.)

Since the next field of the last node does not point to anything, we must set it to a special value called the null 
pointer. In C, the null pointer value is denoted by the standard identifier NULL, defined in <stdlib.h> and <stdio.h>.

In addition to the cells of the list, we need a pointer variable (top, say) that points to the first item in the list. If the 
list is empty, the value of top is NULL.

The electrical earth symbol is used to represent the null pointer:

Traversing a linked list is like going on a treasure hunt. You are told where the first item is. This is what top does. 
When you get to the first item, it directs you to where the second item is (this is the purpose of next). When you get to 
the second item, it tells you where the third item is (via next), and so on. When you get to the last item, its null pointer 
tells you that you are at the end of the hunt (the end of the list).

How can we represent a linked list in a C program? Since each node consists of at least two fields, we will need to 
use a struct to define the format of a node. The data component can consist of one or more fields (possibly including 
structures, perhaps nested). The type of these fields will depend on what kind of data needs to be stored.

But what is the type of the next field? We know it’s a pointer, but a pointer to what? It’s a pointer to a structure that 
is just like the one being defined!1 As an example, suppose the data at each node is a positive integer. We can define 
the node as follows (using num instead of data):

        struct node {
           int num;
           struct node *next;
        };

1This is usually called a self-referencing structure.
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Or we define it using typedef, like this:
 
        typedef struct node {
           int num;
           struct node *next;
        } Node, *NodePtr; // we also declare a name for "struct node *"
 

The variable top can now be defined as a pointer to a node, like this:
 
          Node *top;

or

          NodePtr top;
 

As explained earlier, the struct declaration of node, as we have written it, does not allocate any storage for any 
variables. It simply specifies the form that such variables will take. However, the declaration of top does allocate 
storage, but only for a pointer to a node. The value of top can be the address of a node, but, so far, there are no nodes 
in the list. How can storage be allocated to nodes of the list? We will see how to do this in Section 4.2, but first we will 
look at some basic operations that may be performed on a linked list.

4.2 Basic Operations on a Linked List 
For illustrative purposes, let’s assume we have a linked list of integers. We ignore, for the moment, how the list might 
be built.

4.2.1 Counting the Nodes in a Linked List
Perhaps the simplest operation is to count the number of nodes in a list. To illustrate, we write a function that, given a 
pointer to a linked list, returns the number of nodes in the list.

Before we write the function, let’s see how we can traverse the items in the list, starting from the first one. 
Suppose top points to the head of the list. Consider the following code:
 
        NodePtr curr = top;
        while (curr != NULL) curr = curr -> next;
 

Initially, curr points to the first item, if any, in the list. If it is not NULL, the following statement is executed:
 
        curr = curr -> next;
 

This sets curr to point to “whatever the current node is pointing to,” in effect, the next node. For example, 
consider the following list:

Initially, curr points to (the node containing) 36. Since curr is not NULL, it is set to point to whatever 36 is 
pointing to, that is, (the node containing) 15.

The while condition is tested again. Since curr is not NULL, curr = cur -> next is executed, setting curr to 
point to whatever 15 is pointing to, that is, 52.
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The while condition is tested again. Since curr is not NULL, curr = cur -> next is executed, setting curr to 
point to whatever 52 is pointing to, that is, 23.

The while condition is tested again. Since curr is not NULL, curr = cur -> next is executed, setting curr to 
point to whatever 23 is pointing to, that is, NULL.

The while condition is tested again. Since curr is NULL, the while loop is no longer executed.
Note that each time curr is not NULL, we enter the while loop. But the number of times that curr is not NULL is the 

same as the number of items in the list. So, to count the number of items in the list, we just have to count how many 
times the while body is executed.

To do this, we use a counter initialized to 0 and increment it by 1 inside the while loop. We can now write the 
function as follows (we call it length):
 
        int length(NodePtr top) {
           int n = 0;
           NodePtr curr = top;
           while (curr != NULL) {
              n++;
              curr = curr -> next;
           }
           return n;
        } //end length
 

Note that if the list is empty, curr will be NULL the first time, and the while loop will not be executed. The function 
will return 0, the correct result.

Strictly speaking, the variable curr is not necessary. The function will work fine if we omit curr and replace curr 
by top in the function. At the end of the execution of the function, top will be NULL.

You may be worried that you have lost access to the list, but do not be. Remember that top in length is a copy of 
whatever variable (head, say) is pointing to the list in the calling function. Changing top has no effect whatsoever on 
head. When length returns, head is still pointing to the first item in the list.

4.2.2 Searching a Linked List
Another common operation is to search a linked list for a given item. For example, given the following list, we may 
want to search for the number 52:

Our search should be able to tell us that 52 is in the list. On the other hand, if we searched for 25, our search 
should report that 25 is not in the list.

Suppose the number we are searching for is stored in the variable key. The search proceeds by comparing key 
with each number in the list, starting from the first one. If key matches with any item, we have found it. If we get to the 
end of the list and key does not match any item, we can conclude that key is not in the list.

We must write the logic so that the search ends if we find a match or we reach the end of the list. Put another way, 
the search continues if we have not reached the end of the list and we do not have a match. If curr points to some item 
in the list, we can express this logic as follows:
 
        while (curr != NULL && key != curr -> num) curr = curr -> next;
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C guarantees that the operands of && are evaluated from left to right and evaluation ceases as soon as the truth 
value of the expression is known, in this case, as soon as one operand evaluates to false or the entire expression has 
been evaluated. We take advantage of this by writing the condition curr != NULL first. If curr is NULL, the && is false, 
and the second condition key != curr -> num is not evaluated.

If we wrote the following and curr happens to be NULL, our program will crash when it tries to retrieve
curr -> num:

 
        while (key != curr -> num && curr != NULL) curr = curr -> next; //wrong
 

In effect, this asks for the number pointed to by curr, but if curr is NULL, it does not point to anything. We say we 
are trying to “dereference a NULL pointer,” which is an error.

Let’s write the search as a function that, given a pointer to the list and key, returns the node containing key if it is 
found. If it’s not found, the function returns NULL.

We assume the node declaration from the previous section. Our function will return a value of type NodePtr.  
Here it is:
 
        NodePtr search(NodePtr top, int key) {
           while (top != NULL && key != top -> num)
              top = top -> next;
           return top;
        } //end search
 

If key is not in the list, top will become NULL, and NULL will be returned. If key is in the list, the while loop is exited 
when key is equal to top -> num; at this stage, top is pointing to the node containing key, and this value of top  
is returned.

4.2.3 Finding the Last Node in a Linked List
Sometimes we need to find the pointer to the last node in a list. Recall that the last node in the list is distinguished by 
its next pointer being NULL. Here is a function that returns a pointer to the last node in a given list. If the list is empty, 
the function returns NULL.
 
        NodePtr getLast(NodePtr top) {
           if (top == NULL) return NULL;
           while (top -> next != NULL)
              top = top -> next;
           return top;
        } //end getLast
 

We get to the while statement if top is not NULL. It therefore makes sense to ask about top -> next. If this is not 
NULL, the loop is entered, and top is set to this non-NULL value. This ensures that the while condition is defined the 
next time it is executed. When top -> next is NULL, top is pointing at the last node, and this value of top is returned.

4.3 Dynamic Storage Allocation: malloc, calloc, sizeof, free
Consider the problem of reading positive integers (terminated by 0) and building a linked list that contains the 
numbers in the order in which they were read. For example, consider the following data:
 
        36 15 52 23 0
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Say we want to build the following linked list:

One question that arises is, how many nodes will there be in the list? This, of course, depends on how many 
numbers are supplied. One disadvantage of using an array for storing a linear list is that the size of the array must be 
specified beforehand. If, when the program is run, it finds that it needs to store more items than this size allows, it may 
have to be aborted.

With the linked list approach, whenever a new node must be added to the list, storage is allocated for the node, 
and the appropriate pointers are set. Thus, we allocate just the right amount of storage for the list—no more, no less.

We do use extra storage for the pointers, but this is more than compensated for by more efficient use of storage 
as well as easy insertions and deletions. Allocating storage “as needed” is usually referred to as dynamic storage 
allocation. (On the other hand, array storage is referred to as static storage.)

In C, storage can be allocated dynamically by using the standard functions malloc and calloc. In order to use 
these functions (and free, later), your program must be preceded by this header line:
 
        #include <stdlib.h>
 

This line is also needed to use NULL, the null pointer definition in C.

4.3.1 malloc
The prototype for malloc is as follows, where size_t is an implementation-defined unsigned integer type defined in 
the standard header <stddef.h>:
 
        void *malloc(size_t size);
 

Typically, size_t is the same as unsigned int or unsigned long int. For all intents and purposes, we can think 
of size as a positive integer.

malloc allocates size bytes of memory and returns a pointer to the first byte. The storage is not initialized.  
If malloc is unable to find the requested amount of storage, it returns NULL.

When your program calls malloc, it is important to verify that the requested storage has been successfully 
allocated. To use the storage allocated, the pointer returned must be assigned to a pointer variable of the appropriate 
type. For example, assuming that cp is a character pointer, the following statement allocates 20 bytes of storage and 
stores the address of the first byte in cp:
 
        cp = malloc(20);
 

To be safe, your program should check that cp is not NULL before continuing.
In general, a pointer to one type may not be directly assigned to a pointer of another type; however, assignment is 

possible if an explicit cast is used. For example, given these declarations:
 
        int *ip;
        double *dp;
 
the following assignment is invalid:
 
        ip = dp;        // wrong
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However, it is valid to write the following:
 
        ip = (int *) dp;        // right
 
but it is up to the programmer to ensure that this assignment is meaningful.

On the other hand, values of type void * may be assigned to pointers of other types without using a cast. In the 
previous example, no cast is required to assign the void * returned by malloc to the character pointer cp. However, 
even though assigning a void pointer without casting is permitted in C, good programming practice dictates that you 
should use a cast anyway. In the previous example, it is better to use this:
 
        char *cp = (char *) malloc(20);
 

4.3.2 calloc
The prototype for calloc is as follows:
 
        void *calloc(size_t num, size_t size);
 

calloc allocates num * size bytes of memory and returns a pointer to the first byte. (Another way of looking at it 
is that calloc allocates enough memory for an array of num objects each of size size.) All bytes returned are initialized 
to 0. If calloc is unable to find the requested amount of storage, it returns NULL.

When your program calls calloc, it is important to verify that the requested storage has been successfully 
allocated. To use the storage allocated, the pointer returned must be assigned to a pointer variable of the appropriate 
type. As an example, assuming that cp is a character pointer, the following statement allocates 10 × 20 = 200 bytes of 
storage and stores the address of the first byte in cp:
 
        char *cp = calloc(10, 20);
 

To be safe, the program should check that cp is not NULL before continuing. As mentioned, it is good 
programming practice to use this:
 
        char *cp = (char *) calloc(10, 20);
 

calloc is useful for allocating storage for arrays. For example, if we know that a double variable occupies 8 bytes 
and we want to allocate space for 25 elements, we could use this:
 
        double *dp = (double *) calloc(25, 8);
 

When executed, dp will point to the first element of the array, dp + 1 will point to the second, and, in general,  
dp + j - 1 will point to the jth element.

If we do not know the size of a type, and even if we do, we should use sizeof (see the next section).

4.3.3 sizeof
sizeof is a standard unary operator that returns the number of bytes needed for storing its argument. For example, 
the following returns the number of bytes needed for storing an int variable:
 
        sizeof (int)
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The argument to sizeof is either a type or a variable. If it is a type (like int or float or double), it must be 
enclosed in parentheses. If it is a variable or a type defined using typedef, the parentheses are optional. For example, 
if root is a variable of type double, then both sizeof root and sizeof (root) are valid and return the number of 
bytes needed for storing root. Similarly, sizeof Book and sizeof (Book) are both valid and return the number of 
bytes needed for storing a Book structure (see Section 2.10).

sizeof is used mainly for writing portable code, where the code depends on the number of bytes needed for 
storing various data types. For example, an integer may occupy 2 bytes on one machine but 4 bytes on another.  
Using sizeof (int) (instead of 2 or 4) in your program ensures that the program will work on either machine.

sizeof is used quite often with the functions malloc and calloc. For example, the following statement allocates 
enough storage for storing a double variable and assigns the address of the first byte to dp:
 
        double *dp = malloc(sizeof (double));
 

Another example is as follows:
 
        float *fp = calloc(10, sizeof (float));
 

Here, storage is allocated for 10 floats, and the address of the first is stored in fp.
You can also use type names defined with typedef as the argument to sizeof. Using the previous declarations, 

the following allocates enough storage for one Node structure and assigns the address of the first byte to np:
 
        Node *np = malloc(sizeof (Node));

4.3.4 free
The function free is related to malloc and calloc. It is used to free storage acquired by calls to malloc and calloc.  
Its prototype is as follows:
 
        void free(void *ptr);
 

It releases the storage pointed to by ptr. For example, to free the storage pointed to by np, shown earlier,  
you could use this:
 
        free(np);
 

Observe that even though free expects a void pointer, it is not necessary to explicitly cast np (a Node pointer) into 
a void pointer. Of course, it is perfectly acceptable, but a bit cumbersome, to use this:
 
        free((void *) np);
 

It is a fatal error to attempt to free storage not obtained by a call to malloc or calloc, using pointers to memory 
that has been freed and freeing pointers twice.

Note■■  A lert readers may wonder how C knows how much memory to free. Easy. For each block allocated (using  
malloc, say), C keeps track of its size, usually by storing the size adjacent to the block.



Chapter 4 ■ Linked Lists

77

4.4 Building a Linked List: Adding New Item at the Tail
Consider again the problem of building a linked list of positive integers in the order in which they are given.  
Say the incoming numbers are (0 terminates the data) as follows:
 
        36 15 52 23 0
 

And say we want to build the following linked list:

In our solution, we start with an empty list. Our program will reflect this with the following statement:
 
        top = NULL;
 

The symbolic constant NULL, denoting the null pointer value, is defined in <stdio.h> and <stdlib.h>.
When we read a new number, we must do the following:

	 1.	 Allocate storage for a node.

	 2.	 Put the number in the new node.

	 3.	 Make the new node the last one in the list.

We assume the following declaration for defining a node:
 
        typedef struct node {
           int num;
           struct node *next;
        } Node, *NodePtr;
 

Let’s write a function called makeNode that, given an integer argument, allocates storage for the node, stores the 
integer in it, and returns a pointer to the new node. It will also set the next field to NULL. Here is makeNode:
 
        NodePtr makeNode(int n) {
           NodePtr np = (NodePtr) malloc(sizeof (Node));
           np -> num = n;
           np -> next = NULL;
           return np;
        }
 

Consider the following call:
 
        makeNode(36);
 

First, storage for a new node is allocated. Assuming an int occupies 4 bytes and a pointer occupies 4 bytes, the 
size of Node is 8 bytes. So, 8 bytes are allocated starting at address 4000, say. This is illustrated by the following:
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makeNode then stores 36 in the num field and NULL in the next field, giving us this:

The value 4000 is then returned by makeNode.
When we read the first number, we must create a node for it and set top to point to the new node. In our example, 

when we read 36, we must create the following:

If n contains the new number, this can be accomplished with a statement such as this:
 
        if (top == NULL) top = makeNode(n);
 

From the previous example, makeNode returns 4000, which is stored in top. Effectively, top now “points to” the 
node containing 36. There are no arrows inside the computer, but the effect is achieved with the following:

For each subsequent number, we must set the next field of the current last node to point to the new node.  
The new node becomes the last node. Suppose the new number is 15. We must create this:

But how do we find the last node of the existing list? One method is to start at the top of the list and follow the 
next pointers until we encounter NULL. This is time-consuming if we have to do it for each new number. A better 
approach is to keep a pointer (last, say) to the last node of the list. This pointer is updated as new nodes are added. 
The code for this could be written like this:
 
        np = makeNode(n);               //create a new node
        if (top == NULL) top = np;      //set top if first node
        else last -> next = np;         //set last -> next for other nodes
        last = np;                      //update last to  new node
 

Suppose there is just one node in the list; this is also the last node. In our example, the value of last will be 4000. 
Suppose the node containing 15 is stored at location 2000. We have the following situation:
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The previous code will set the next field at location 4000 to 2000 and set last to 2000. The following is the result:

Now top (4000) points to the node containing 36; this node’s next field is 2000 and, hence, points to the node 
containing 15. This node’s next field is NULL, indicating the end of the list. The value of last is 2000, which is the 
address of the last node in the list.

Program P4.1 reads the numbers and creates the linked list as discussed. To verify that the list has been built 
correctly, we should print its contents. The function printList traverses the list from the first node to the last, printing 
the number at each node.

Program P4.1 

        #include <stdio.h>
        #include <stdlib.h>
        typedef struct node {
           int num;
           struct node *next;
        } Node, *NodePtr;
 
        int main() {
           void printList(NodePtr);
           NodePtr makeNode(int);
           int n;
           NodePtr top, np, last;
 
           top = NULL;
           if (scanf("%d", &n) != 1) n = 0;
           while (n != 0) {
              np = makeNode(n);   //create a new node containing n
              if (top == NULL) top = np;   //set top if first node
              else last -> next = np;   //set last -> next for other nodes
              last = np;   //update last to  new node
              if (scanf("%d", &n) != 1) n = 0;
           }
           printList(top);
        } //end main
 
        NodePtr makeNode(int n) {
           NodePtr np = (NodePtr) malloc(sizeof (Node));
           np -> num = n;
           np -> next = NULL;
           return np;
        } //end makeNode
 
        void printList(NodePtr np) {
           while (np != NULL) {  // as long as there's a node
              printf("%d\n", np -> num);
              np = np -> next;  // go on to the next node
           }
        } //end printList
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The following statement deserves some mention:

        if (scanf("%d", &n) != 1) n = 0;

Normally, we would simply have written this:

        scanf("%d", &n);

But, here, we take advantage of the value returned by scanf to do some error checking.
When scanf is called, it stores data in the requested variable(s) and returns the number of values successfully 

stored. So, if we ask it to read one value, it should return 1 unless some error occurred (like end-of-file being reached 
or non-numeric data found when a number was expected). If we ask it to read two values and only one is assigned,  
it will return 1.

In this program, if a value was not successfully read into n, scanf will return 0. In this case, n is set to 0, forcing an 
exit from the while loop.

4.5 Insertion into a Linked List
A list with one pointer in each node is called a one-way, or singly linked, list. One important characteristic of such a 
list is that access to the nodes is via the “top of list” pointer and the pointer field in each node. (However, other explicit 
pointers may point to specific nodes in the list, for example, the pointer last, shown earlier, which pointed to the last 
node in the list.) This means that access is restricted to being sequential. The only way to get to node 4, say, is via nodes 
1, 2, and 3. Since we can’t access the kth node directly, we will not be able, for instance, to perform a binary search on a 
linked list. The great advantage of a linked list is that it allows for easy insertions and deletions anywhere in the list.

Suppose we want to insert a new node between the second and third nodes. We can view this simply as insertion 
after the second node. For example, suppose prev points to the second node and np points to the new node.

We can insert the new node by setting its next field to point to the third node and the next field of the second 
node to point to the new node. Note that the second node is all we need to do the insertion; its next field will give us 
the third node. The insertion can be done with this:

        np -> next = prev -> next;
        prev -> next = np;

The first statement says, “Let the new node point to whatever the second node is pointing at, in other words, the 
third node.” The second statement says, “Let the second node point to the new node.” The net effect is that the new 
node is inserted between the second and the third. The new node becomes the third node, and the original third node 
becomes the fourth node. This changes the previous list into this:
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Does this code work if prev were pointing at the last node so that we are, in fact, inserting after the last node?  
Yes. If prev is the last node, then prev -> next is NULL. Therefore, the following statement sets np -> next to NULL so 
that the new node becomes the last node:
 
        np -> next = prev -> next;
 

As before, prev -> next is set to point to the new node. This is illustrated by changing this:

to this:

In many situations, it is required to insert a new node at the head of the list. That is, we want to make the new 
node the first node. Assuming that np points to the new node, we want to convert this:

to this:

This can be done with the code:
 
        np -> next = top;
        top = np;
 

The first statement sets the new node to point to whatever top is pointing at (that is, the first node), and the 
second statement updates top to point to the new node.
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You should observe that the code works even if the list is initially empty (that is, if top is NULL). In this case,  
it converts this:

into this:

4.6 Building a Linked List: Adding a New Item at the Head
Consider again the problem of building a linked list of positive integers but, this time, we insert each new number 
at the head of the list rather than at the end. The resulting list will have the numbers in reverse order to how they are 
given. Say the incoming numbers are as follows (0 terminates the data):
 
        36 15 52 23 0
 

And say we want to build the following linked list:

The program to build the list in reverse order is actually simpler than the previous one. We show only the main 
function of Program P4.2. The rest of the program is identical to Program P4.1.

The only changes are in the while loop. As each new number is read, we set its link to point to the first node,  
and we set top to point to the new node, making it the (new) first node.

Program P4.2 

        //add new numbers at the head of the list
        int main() {
           void printList(NodePtr);
           NodePtr makeNode(int);
           int n;
           NodePtr top, np;
           top = NULL;
           if (scanf("%d", &n) != 1) n = 0;
           while (n != 0) {
              np = makeNode(n);   //create a new node containing n
              np -> next = top;   //set link of new node to first node
              top = np;   //set top to point to new node
              if (scanf("%d", &n) != 1) n = 0;
           }
           printList(top);
        } //end main
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Program P4.1 inserts incoming numbers at the tail of the list. This is an example of adding an item to a queue.  
A queue is a linear list in which insertions occur at one end and deletions (see the next section) occur at the other end.

Program P4.2 inserts incoming numbers at the head of the list. This is an example of adding an item to a stack. 
A stack is a linear list in which insertions and deletions occur at the same end. In stack terminology, when we add an 
item, we say the item is pushed onto the stack. Deleting an item from a stack is referred to as popping the stack.

We will treat with stacks and queues more fully in Chapter 5.

4.7 Deletion from a Linked List
Deleting a node from the top of a linked list is accomplished by doing this:
 
        top = top -> next;
 

This says let top point to whatever the first node was pointing at (that is, the second node, if any). Since top is 
now pointing at the second node, effectively the first node has been deleted from the list. This statement changes  
the following:

to this:

Of course, before we delete, we should check that there is something to delete, in other words, that top is not NULL.
If there is only one node in the list, deleting it will result in the empty list; top will become NULL.
Deleting an arbitrary node from a linked list requires more information. Suppose curr (for “current”) points to 

the node to be deleted. Deleting this node requires that we change the next field of the previous node. This means we 
must know the pointer to the previous node; suppose it is prev (for “previous”). Then deletion of node curr can be 
accomplished by doing this:
 
        prev -> next = curr -> next;
 

This changes the following:

to this:
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Effectively, the node pointed to by curr is no longer in the list—it has been deleted.
You may wonder what happens to nodes that have been deleted. In our earlier discussion, deletion meant “logical 

deletion.” That is, as far as processing the list is concerned, the deleted nodes are not present. But the nodes are still in 
memory, occupying storage, even though we may have lost the pointers to them.

If we have a large list in which many deletions have occurred, then there will be a lot of “deleted” nodes scattered 
all over memory. These nodes occupy storage even though they will never, and cannot, be processed. We may need to 
delete them physically from memory.

As discussed in Section 4.3, C provides us with a function, free, to free the storage space occupied by nodes that 
we need to delete. The space to be freed should have been obtained by a call to malloc or calloc. The function call 
free(p) frees the space pointed to by p.

To illustrate its use, deleting the first node of the list can be accomplished by doing the following, where old is the 
same kind of pointer as top:
 
        old = top;          // save the pointer to the node to be deleted
        top = top -> next;  // set top to point to the 2nd node, if any
        free(old);          // free the space occupied by the first node
 

To delete a node from elsewhere in the list where curr points to the node to be deleted and prev points to the 
previous node, we can use this:
 
        prev -> next = curr -> next; // logical deletion
        free(curr);                  // free the space occupied by the deleted node
 

The free statement will change the following:

to this:

The storage occupied by curr no longer exists as far as our program is concerned.

4.8 Building a Sorted Linked List
As a third possibility, suppose we want to build the list of numbers so that it is always sorted in ascending order. Say 
the incoming numbers are as follows (0 terminates the data):
 
        36 15 52 23 0
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And say we want to build the following list:

When a new number is read, it is inserted in the existing list (which is initially empty) in its proper place. The first 
number is simply added to the empty list.

Each subsequent number is compared with the numbers in the existing list. As long as the new number is greater 
than a number in the list, we move down the list until the new number is smaller than, or equal to, an existing number 
or we come to the end of the list.

To facilitate the insertion of the new number, before we leave a node and move on to the next one, we must save 
the pointer to it in case the new number must be inserted after this node. However, we can know this only when we 
compare the new number with the number in the next node.

To illustrate these ideas, consider the following sorted list and suppose we want to add a new number (30, say)  
to the list so that it remains sorted:

Assume the number before a node is the address of the node. Thus, the value of top is 400.
First, we compare 30 with 15. It is bigger, so we move on to the next number, 23, remembering the address  

(400) of 15.
Next, we compare 30 with 23. It is bigger, so we move on to the next number, 36, remembering the address (200) 

of 23. We no longer need to remember the address (400) of 15.
Next, we compare 30 with 36. It is smaller, so we have found the number before which we must insert 30. This is 

the same as inserting 30 after 23. Since we have remembered the address of 23, we can now perform the insertion.
We will use the following code to process the new number, n:

 
        prev = NULL;
        curr = top;
        while (curr != NULL && n > curr -> num) {
           prev = curr;
           curr = curr -> next;
        }
 

Initially, prev is NULL and curr is 400. The insertion of 30 proceeds as follows:

•	 30 is compared with curr -> num, 15. It is bigger, so we set prev to curr (400) and set curr to 
curr -> next, 200; curr is not NULL.

•	 30 is compared with curr -> num, 23. It is bigger, so we set prev to curr (200) and set curr to 
curr -> next, 800; curr is not NULL.

•	 30 is compared with curr -> num, 36. It is smaller, so we exit the while loop with prev being 
200 and curr being 800.



Chapter 4 ■ Linked Lists

86

We have the following situation:

If the new number is stored in a node pointed to by np, we can now add it to the list (except at the head, see next)
graphic, with the following code:
 
        np -> next = curr;  //we could also use prev -> next for curr
        prev -> next = np;
 

This will change the following:

to the following:

As an exercise, verify that this code will work if the number to be added is bigger than all the numbers in the list. 
Hint: when will the while loop exit?

If the number to be added is smaller than all the numbers in the list, it must be added at the head of the list and 
becomes the new first node in the list. This means the value of top has to be changed to the new node.

The while loop shown previously will work in this case as well. The while condition will be false on the very first 
test (since n will be smaller than curr -> num). On exit, we simply test whether prev is still NULL; if it is, the new node 
must be inserted at the top of the list.

If the list were initially empty, the while loop will exit immediately (since curr will be NULL). In this case also, the 
new node must be inserted at the top of the list, becoming the only node in the list.

Program P4.3 contains all the details. The insertion of a new node in its proper position in the list is delegated to 
the function addInPlace. This function returns a pointer to the top of the modified list.

Program P4.3 

        #include <stdio.h>
        #include <stdlib.h>
 
        typedef struct node {
           int num;
           struct node *next;
        } Node, *NodePtr;
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        int main() {
           void printList(NodePtr);
           NodePtr addInPlace(NodePtr, int);
           int n;
           NodePtr top = NULL;
           if (scanf("%d", &n) != 1) n = 0;
           while (n != 0) {
              top = addInPlace(top, n);
              if (scanf("%d", &n) != 1) n = 0;
           }
           printList(top);
        } //end main
 
        NodePtr addInPlace(NodePtr top, int n) {
        // This functions inserts n in its ordered position in a (possibly empty)
        // list pointed to by top, and returns a pointer to the new list
           NodePtr np, curr, prev, makeNode(int);
 
           np = makeNode(n);
           prev = NULL;
           curr = top;
           while (curr != NULL && n > curr -> num) {
              prev = curr;
              curr = curr -> next;
           }
           if (prev == NULL) { //new number must be added at the top
              np -> next = top;
              return np; //the top of the list has changed to the new node
           }
           np -> next = curr;
           prev -> next = np;
           return top; //the top of the list has not changed
        } //end addInPlace
 
        NodePtr makeNode(int n) {
           NodePtr np = (NodePtr) malloc(sizeof (Node));
           np -> num = n;
           np -> next = NULL;
           return np;
        } // end makeNode
 
        void printList(NodePtr np) {
           while (np != NULL) {  // as long as there's a node
              printf("%d\n", np -> num);
              np = np -> next;  // go on to the next node
           }
        } //end printList
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4.9 Example: Palindrome
Consider the problem of determining whether a given string is a palindrome (the same when spelled forward or 
backward). The following are examples of palindromes (ignoring case, punctuation, and spaces):
 
        civic
        Racecar
        Madam, I'm Adam.
        A man, a plan, a canal, Panama.
 

If all the letters were of the same case (upper or lower) and the string (word, say) contained no spaces or 
punctuation marks, we could solve the problem as follows:
 
        compare the first and last letters
        if they are different, the string is not a palindrome
        if they are the same, compare the second and second to last letters
        if they are different, the string is not a palindrome
        if they are the same, compare the third and third to last letters
 

We continue until we find a nonmatching pair (and it’s not a palindrome) or there are no more pairs to compare 
(and it is a palindrome).

This method is efficient, but it requires us to be able to access any letter in the word directly. This is possible if the 
word is stored in an array and we use a subscript to access any letter. However, if the letters of the word are stored in a 
linked list, we cannot use this method since we can access the letters only sequentially.

To illustrate how linked lists may be manipulated, we will use linked lists to solve the problem using the  
following idea:

	 1.	 Store the original phrase in a linked list, one character per node.

	 2.	 Create another list containing the letters only of the phrase, all converted to lowercase and 
stored in reverse order; call this list1.

	 3.	 Reverse list1 to get list2.

	 4.	 Compare list1 with list2, letter by letter, until we get a mismatch (the phrase is not a 
palindrome) or we come to the end of the lists (the phrase is a palindrome).

Consider the phrase Damn Mad!; this will be stored as follows:

Step 2 will convert it to this:



Chapter 4 ■ Linked Lists

89

Step 3 will reverse this list to get the following:

Comparing list1 and list2 will reveal that Damn Mad! is a palindrome.
We will write a program that prompts the user to type a phrase and tells her if it is a palindrome. It then prompts 

for another phrase. To stop, the user must press Enter.
We will write a function, getPhrase, that will read the data and store the characters of the phrase in a linked list, 

one character per node. The function will return a pointer to the list. This function must build the linked list in the 
order in which the characters are read—each new character is added at the end of the list.

We will write another function, reverseLetters, which, given a pointer to a list of characters, creates another list 
containing the letters only, all converted to lowercase and stored in reverse order. As each letter is encountered,  
it is converted to lowercase and added to the front of the new list.

To complete the job, we will write a function called compare that implements step 4 in the previous list.
These functions are shown in Program P4.4, which solves the palindrome problem. The following is a sample run 

of the program:
 
        Type a phrase. (To stop, press "Enter" only): Damn Mad!
        is a palindrome
        Type a phrase. (To stop, press "Enter" only): So Many Dynamos!
        is a palindrome
        Type a phrase. (To stop, press "Enter" only): Rise to vote, sir.
        is a palindrome
        Type a phrase. (To stop, press "Enter" only): Thermostat
        is not a palindrome
        Type a phrase. (To stop, press "Enter" only): A Toyota’s a Toyota.
        is a palindrome
        Type a phrase. (To stop, press "Enter" only):
 

Program P4.4 

        #include <stdio.h>
        #include <stdlib.h>
        #include <ctype.h>
 
        typedef struct node {
           char ch;
           struct node * next;
        } Node, *NodePtr;
 
        int main() {
           NodePtr getPhrase();
           NodePtr reverseLetters(NodePtr);
           int compare(NodePtr, NodePtr);
           NodePtr phrase, s1, s2;
 
           printf("Type a phrase. (To stop, press 'Enter' only): ");
           phrase = getPhrase();



Chapter 4 ■ Linked Lists

90

           while (phrase != NULL) {
              s1 = reverseLetters(phrase);
              s2 = reverseLetters(s1);
              if (compare(s1, s2) == 0) printf("is a palindrome\n");
              else printf("is not a palindrome\n");
              printf("Type a word. (To stop, press 'Enter' only): ");
              phrase = getPhrase();
           }
        } //end main

        NodePtr getPhrase() {
           NodePtr top = NULL, last, np;
           char c = getchar();
           while (c != '\n') {
              np = (NodePtr) malloc(sizeof(Node));
              np -> ch = c;
              np -> next = NULL;
              if (top == NULL) top = np;
              else last -> next = np;
              last = np;
              c = getchar();
           }
           return top;
        } //end getPhrase

        NodePtr reverseLetters(NodePtr top) {
           NodePtr rev = NULL, np;
           char c;
           while (top != NULL) {
              c = top -> ch;
              if (isalpha(c)) { // add to new list
                 np = (NodePtr) malloc(sizeof(Node));
                 np -> ch = tolower(c);
                 np -> next = rev;
                 rev = np;
              }
              top = top -> next; //go to next character of phrase
           }
           return rev;
        } //end reverseLetter

        int compare(NodePtr s1, NodePtr s2) {
        //return -1 if s1 < s2, +1 if s1 > s2 and 0 if s1 = s2
           while (s1 != NULL) {
              if (s1 -> ch < s2 -> ch) return -1;
              else if (s1 -> ch > s2 -> ch) return 1;
              s1 = s1 -> next;
              s2 = s2 -> next;
           }
           return 0;
        }
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Note■■  T he solution presented was used mainly to show how linked lists can be manipulated. The palindrome problem 
can be solved more efficiently using arrays, where we would have direct access to any character of the given phrase.  
For instance, we would be able to compare the first and last letters directly. Even in the solution presented here, we  
could clean up the phrase as it is being input by retaining letters only and converting them to lowercase. As an exercise, 
write a program to solve the problem using arrays.

4.10 Saving a Linked List
When we create a linked list, the actual “pointer” value in a node is determined at runtime depending on where in 
memory storage for the node is allocated. Each time the program is run, the pointer values will change. So, what do 
we do if, having created a linked list, we need to save it for later use?

Since it would be useless to save the pointer values, we must save the contents of the nodes in such a way  
that we would be able to re-create the list when needed. The simplest way to do this is to write the items to a file (see 
Chapter 8) in the order that they appear in the linked list. Later, we can read the file and re-create the list as each item 
is read.

Sometimes we may want to compact a linked list into an array. One reason might be that the linked list is sorted 
and we want to search it quickly. Since we are restricted to a sequential search on a linked list, we can transfer the 
items to an array where we can use a binary search.

For example, suppose we have a linked list of at most 50 integers pointed to by top. If num and next are the fields 
of a node, we can store the integers in an array called saveLL with the following code:
 
        int saveLL[50], n = 0;
        while (top != NULL & n < 50) {
           saveLL[n++] = top -> num;
           top = top -> next;
        }
 

On completion, the value of n will indicate how many numbers were saved. They will be stored in 
saveLL[0..n-1].

4.11 Arrays vs. Linked Lists
Arrays and linked lists are the two common ways to store a linear list, and each has its advantages and disadvantages.

The big difference between the two is that we have direct access to any element of an array by using a subscript, 
whereas to get to any element of a linked list, we have to traverse the list starting from the top.

If the list of items is unsorted, we must search the list using a sequential search whether the items are stored in 
an array or a linked list. If the list is sorted, it is possible to search the array using a binary search. Since binary search 
requires direct access to an element, we cannot perform a binary search on a linked list. The only way to search a 
linked list is sequential.

Inserting an item at the tail of a list stored in an array is easy (assuming there is room), but inserting an item at the 
head requires that all the other items be moved to make room for the new one. Inserting an item in the middle would 
require about half of the items to be moved to make room for the new one. Inserting an item anywhere in a linked list 
is easy since it requires setting/changing just a couple links.

w
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Similarly, deleting an item from a linked list is easy regardless of where the item is located (head, tail, middle). 
Deleting an item from an array is easy only if it is the last one; deleting any other item would require other items to be 
moved to “close the space” previously occupied by the deleted item.

Maintaining an array in sorted order (when new items are added) is cumbersome since each new item has to be 
inserted “in place,” and, as we’ve seen, this would normally require that other items be moved. However, finding the 
location in which to insert the item can be done quickly using a binary search.

Finding the position at which to insert a new item in a sorted linked list must be done using a sequential search. 
However, once the position is found, the item can be quickly inserted by setting/changing a couple links.

Table 4-1 summarizes the strengths and weaknesses of storing a list of items in an array versus storing them in a 
linked list.

Table 4-1.  Storing List of Items in an Array vs. in Linked List

Array Linked List

Direct access to any element Must traverse list to get to element

If unsorted, sequential search If unsorted, sequential search

If sorted, binary search If sorted, sequential search

Easy-to-insert item at the tail of the list Easy to insert item anywhere in the list

Must move items to insert anywhere but the tail Easy to insert item anywhere in the list

Deletion (except the last one) requires items to be moved Deletion of any item is easy

Need to move items when adding a new item to a sorted list Adding a new item to a sorted linked list is easy

Can use binary search on a sorted list to find the position at 
which to insert new item

Must use sequential search to find the position  
at which to insert new item in a sorted linked list

4.12 Storing a Linked List Using Arrays
We have seen how to create a linked list using dynamic storage allocation. When we need to add another node to a 
linked list, we request the storage for that node. If we need to delete a node from a linked list, we first delete it logically 
by changing pointers and then physically by freeing the storage occupied by the node.

It is also possible to represent a linked list using arrays. Consider, once again, the following linked list:
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We can store this as follows:

Here, the links (pointers) are merely array subscripts. Since an array subscript is just an integer, top is an int 
variable, and next is an int array. In this example, the data happens to be integers (so data is an int array), but it 
could be of any other type, even a structure. (Typically, you would use a struct array, with next being one of the fields 
and the other fields holding the data.)

The value of top is 5, so this says that the first item in the list is found at array index 5; data[5] holds the data  
(36, in this case), and next[5] (1, in this case) tells us where to find the next (second) item in the list.

So, the second item is found at array index 1; data[1] holds the data (15), and next[1] (7) tells us where to find 
the next (third) item in the list.

The third item is found at array index 7; data[7] holds the data (52), and next[7] (3) tells us where to find the 
next (fourth) item in the list.

The fourth item is found at array index 3; data[3] holds the data (23), and next[3] (-1) tells us where to find the 
next item in the list. Here, we use -1 as the null pointer, so we’ve come to the end of the list. Any value that cannot be 
confused with a valid array subscript can be used to denote the null pointer, but it is common to use -1.

All the operations described in this chapter for working with linked lists (for example, adding, deleting, and 
traversing) can be performed in a similar manner on linked lists stored using arrays. The main difference is that, 
previously, if curr points to the current node, curr -> next points to the next node. Now, if curr points to the current 
node, next[curr] points to the next node.

One disadvantage of using arrays to store a linked list is that you must have some idea of how big the list is 
expected to be in order to declare the arrays. Another is that storage for deleted items cannot be freed. However, the 
storage can be reused to store new items.

4.13 Merging Two Sorted Linked Lists
In Section 1.8, we considered the problem of merging two ordered lists. There, we showed how to solve the problem 
when the lists were stored in arrays. We now will show how to solve the same problem when the lists are stored as 
linked lists.
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Suppose the given lists are as follows:

We want to create one linked list with all the numbers in ascending order, like this:

We could create the merged list by creating a new node for each number that we add to the list C. In other  
words, we leave the lists A and B untouched. However, we will perform the merge by not creating any new nodes. All 
numbers will remain in their original nodes. We will simply adjust pointers to create the merged list. At the end, the 
lists A and B will no longer exist.

We will use the same algorithm that we used in Section 1.9. Here it is for easy reference:
 
        while (at least one number remains in A and B) {
           if (smallest in A < smallest in B)
              add smallest in A to C
              move on to next number in A
           else
              add smallest in B to C
              move on to next number in B
           endif
        }
        if (A has ended) add remaining numbers in B to C
        else add remaining numbers in A to C
 

We assume that the nodes of the lists are defined like this:
 
        typedef struct node {
           int num;
           struct node *next;
        } Node, *NodePtr;
 
and A, B, and C are declared like this:
 
        NodePtr A, B, C = NULL;
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A and B point to the given lists, and C will point to the merged list. Initially, C is NULL. Each new number must be 
added at the tail of C. To make this easy to do, we will keep a pointer to the current last node in C (we call it last).

The previous algorithm translates into the code shown here. To keep the presentation simple for now, this code 
assumes that both A and B are nonempty. We will deal with an empty A or B later.
 
        NodePtr C = NULL, last == NULL;
        while (A != NULL && B != NULL) {
           if (A -> num < B -> num) {
              //add node pointed to by A to the tail of C;
              A = A -> next ;
           }
           else {
              //add node pointed to by B to the tail of C;
              B = B -> next ;
           }
        }
        if (A == NULL) last -> next = B;
        else last -> next = A;
 

Note the last if statement and how easy it is to “add the remaining elements” of a list to C. All we have to do is set 
the current last node of C to point to the list (A or B).

To complete the translation, we must show how to add a node (pointed to by N, say) to the tail of C. If C is empty, N 
becomes the only node in the list. If C is not empty, the current last node of C is set to point to N. In either case,  
N becomes the current last node of C. Thus, the following:
 
        //add node pointed to by A to the tail of C;
 
is translated into this:
 
        if (C == NULL) C = A; else last -> next = A;
        last = A;
 

The case for adding the node pointed to by B is handled by replacing A with B.
In Program P4.5, we write a function called merge that, given the sorted lists A and B, performs the merge and 

returns a pointer to the merged list. This function also deals with the case when either A or B is empty. We test merge 
by using the code from Program P4.1 to create two sorted lists, merge them, and print the merged list.

Recall that Program P4.1 builds a list in the order in which the numbers are supplied. Thus, you must enter 
the numbers for a list in ascending order. As an exercise, you can use code from Program P4.3 to build the lists in 
ascending order regardless of the order in which the numbers are supplied.

A sample run of Program P4.5 is shown here:
 
        Enter numbers for the first list (0 to end)
        2 4 6 8 10 12 0
        Enter numbers for the second list (0 to end)
        1 3 5 7 0
 
        The merged list is
        1 2 3 4 5 6 7 8 10 12
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Program P4.5 

        #include <stdio.h>
        #include <stdlib.h>
        typedef struct node {
           int num;
           struct node *next;
        } Node, *NodePtr;
 
        int main() {
           void printList(NodePtr);
           NodePtr makeList(void);
           NodePtr merge(NodePtr, NodePtr);
           NodePtr A, B;
 
           printf("Enter numbers for the first list (0 to end)\n");
           A = makeList();
           printf("Enter numbers for the second list (0 to end)\n");
           B = makeList();
           printf("\nThe merged list is\n");
           printList(merge(A, B));
        } //end main
 
        NodePtr makeList() {
           NodePtr makeNode(int), np, top, last;
           int n;
           top = NULL;
           if (scanf("%d", &n) != 1) n = 0;
           while (n != 0) {
              np = makeNode(n);   //create a new node containing n
              if (top == NULL) top = np;   //set top if first node
              else last -> next = np;   //set last -> next for other nodes
              last = np;   //update last to  new node
              if (scanf("%d", &n) != 1) n = 0;
           }
           return top;
        } //end makeList
    
        NodePtr makeNode(int n) {
           NodePtr np = (NodePtr) malloc(sizeof (Node));
           np -> num = n;
           np -> next = NULL;
           return np;
        } //end makeNode
 
        void printList(NodePtr np) {
           while (np != NULL) {  // as long as there's a node
              printf("%d ", np -> num);
              np = np -> next;  // go on to the next node
           }
           printf("\n\n");
        } //end printList
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        NodePtr merge(NodePtr A, NodePtr B) {
           NodePtr C = NULL, last = NULL;
           // check if either A or B is empty
           if (A == NULL) return B;
           if (B == NULL) return A;
           //both lists are non-empty
           while (A != NULL && B != NULL) {
              if (A -> num < B -> num) {
                 if (C == NULL) C = A; else last -> next = A;
                 last = A;
                 A = A -> next ;
              }
              else {
                 if (C == NULL) C = B; else last -> next = B;
                 last = B;
                 B = B -> next ;
              }
           } //end while
           if (A == NULL) last -> next = B;
           else last -> next = A;
           return C;
        } //end merge
 

4.14 Circular and Two-Way Linked Lists
So far, our discussion has been primarily about one-way (singly linked) lists. Each node contains one pointer that tells 
us the location of the next item. The last node has a null pointer, indicating the end of the list. While this is the most 
commonly used type of list, two common variations are the circular list and the two-way (or doubly linked) list.

4.14.1 Circular Lists
In a circular list, we let the last item point back to the first, as follows:

Now, there is no null pointer to tell us when we have reached the end of the list, so we must be careful in 
traversing that we do not end up in an infinite loop. In other words, say we were to write something like this:
 
        NodePtr curr = top;
        while (curr != NULL) {
           //do something with node pointed to by curr
           curr = curr -> next;
        }
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This loop will never terminate since curr never becomes NULL. To avoid this problem, we can save the pointer of 
our starting node and recognize when we have returned to this node. Here’s an example:
 
        NodePtr curr = top;
        do {
           //do something with node pointed to by curr
           curr = curr -> next;
        } while (curr != top) {
 

Alert readers will observe that since the body of a do...while loop is executed at least once, we should ensure 
that the list is not empty before going into the loop and trying to dereference a null pointer.

Circular lists are useful for representing situations that are, well, circular. For example, in a card or board game in 
which players take turns, we can represent the order of play using a circular list. If there are four players, they will play 
in the order 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, and so on. After the last person plays, it’s the turn of the first.

In the children’s game count-out, the children are arranged in a circle and some variation of “eenie, meenie, mynie, 
mo; sorry, child, you’ve got to go” is used to eliminate one child at a time. The last remaining child wins the game.

We will write a program that uses a circular list to find the winner of the game described as follows:

The count-out game: n children (numbered 1 to n) are arranged in a circle. A sentence consisting of m words is 
used to eliminate one child at a time until one child is left. Starting at child 1, the children are counted from 1 to m and 
the mth child is eliminated. Starting with the child after the one just eliminated, the children are again counted from 1 
to m and the mth child eliminated. This is repeated until one child is left. Counting is done circularly, and eliminated 
children are not counted. Write a program to read values for n and m (> 0), play the game as described, and print the 
number of the last remaining child.

It is possible to use an array (child, say) to solve this problem. To declare the array, we would need to know the 
maximum number (max, say) of children to cater for. We could set child[1] to child[n] to 1 to indicate that all n 
children are initially in the game. When a child (h, say) is eliminated, we would set child[h] to 0 and start counting 
out from the next child still in the game.

As the game progresses, several entries in child will be set to 0, and when we count, we must ensure that 0s are 
not counted. In other words, even when a child has been eliminated, we must still inspect the array item and skip it if 
0. As more children are eliminated, we will need to inspect and skip more zero entries. This is the main disadvantage 
of using an array to solve this problem.

We can write a more efficient solution using a circular linked list. First, we create the list with n nodes. The value 
at each node is the child’s number. For n = 4, the list will look like the following, assuming curr points to the first child:

Suppose m = 5. We start counting from 1; when we reach 4, the count of 5 takes us back to child 1, which is 
eliminated. The list will look like this:
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As shown, child 1 is no longer in the list; the storage for this node would be freed. We count to 5 again, starting 
from child 2. The count ends at child 3, which is eliminated by setting child 2’s pointer to point to child 4. The list will 
look like this:

Finally, we count to 5 starting at child 4. The count ends at child 4, which is eliminated. Child 2 is the winner.
Note that this solution (as opposed to the array version) really does eliminate a child from the game by deleting 

its node. Eliminated children are neither inspected nor counted since they are gone! This is more in keeping with the 
way the game is played.

Program P4.6 plays the game and finds the winner as described earlier.

Program P4.6 

        #include <stdio.h>
        #include <stdlib.h>
 
        typedef struct node {
           int num;
           struct node *next;
        } Node, *NodePtr;
 
        int main() {
           NodePtr curr, linkCircular(int), playGame(NodePtr, int, int);
           int n, m;
 
           do {
              printf("Enter number of children and length of count-out: ");
              scanf("%d %d", &n, &m);
           } while (n < 1 || m < 1);
 
           curr = linkCircular(n); //link children in a circular list
           curr = playGame(curr, n-1, m); //eliminate n-1 children
           printf("The winning child: %d\n", curr -> num);
        } //end main
 
        NodePtr makeNode(int n) {
           NodePtr np = (NodePtr) malloc(sizeof (Node));
           np -> num = n;
           np -> next = NULL;
           return np;
        } //end makeNode
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        NodePtr linkCircular(int n) {
           //link n children in a circular list; return pointer to first child
           NodePtr first, np, makeNode(int);

           first = np = makeNode(1);      //first child
           for (int h = 2; h <= n; h++) { //link the others
              np -> next = makeNode(h);
              np = np -> next;
           }
           np -> next = first; //set last child to point to first
           return first;
        } //end linkCircular

        NodePtr playGame(NodePtr first, int x, int m) {
           NodePtr prev, curr = first;
           //eliminate x children
           for (int h = 1; h <= x; h++) {
              //curr is pointing at the first child to be counted;
              //count m-1 more to get to the mth child
              for (int c = 1; c < m; c++) {
                 prev = curr;
                 curr = curr -> next;
              }
              //delete the mth child
              prev -> next = curr -> next;
              free(curr);
              curr = prev -> next; //set curr to the child after the one eliminated
           }
           return curr;
        } //end playGame

4.14.2 Two-Way (Doubly Linked) Lists
As the name implies, each node will contain two pointers—one points to the next node, and the other points to the 
previous node. While this requires more work to implement and maintain, there are some advantages.

The obvious one is that it is now possible to traverse the list in both directions, starting from either end.  
If required, reversing the list is now a simple operation.

If we land at a node (the current node) in a singly linked list, there is no way to get to (or know) the previous node 
unless that information was kept as the list was traversed. With a doubly linked list, we have a direct pointer to the 
previous node so we can move in either direction.

One possible disadvantage is that more storage is required for the extra link. Another is that adding and deleting 
nodes is more complicated since more pointers have to be set.
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EXERCISES 4

1.	 Write a function that, given a pointer to a linked list of integers, returns 1 if the list is sorted in 
ascending order and returns 0 otherwise.

2.	 Write code to reverse the nodes of a linked list by manipulating pointer fields only. No new 
nodes must be created.

3.	 Write a function to sort a linked list of integers as follows:

(a)	 Find the largest value in the list.

(b)	D elete it from its position and insert it at the head of the list.

(c)	S tarting from what is now the second element, repeat (a) and (b).

(d)	S tarting from what is now the third element, repeat (a) and (b).

Continue until the list is sorted.

4.	 Write a function to free all the nodes of a given linked list.

5.	 Write a function that takes three arguments—a pointer to a linked list of integers and two 
integers, n and j—and inserts n after the jth element of the list. If j is 0, n is inserted at the 
head of the list. If j is greater than the number of elements in the list, n is inserted after the 
last one.

6.	T he characters of a string are held on a linked list, one character per node.

(a)	 Write a function that, given a pointer to a string and two characters, c1 and c2, replaces 
all occurrences of c1 with c2.

(b)	 Write a function that, given a pointer to a string and a character, c, deletes all 
occurrences of c from the string. Return a pointer to the modified string.

(c)	 Write a function that, given a pointer to a string, converts all lowercase letters to 
uppercase, leaving all the other characters unchanged.

(d)	 Write a function that creates a new list consisting of the letters only in the given list, all 
converted to lowercase and stored in alphabetical order. Return a pointer to the new list.

(e)	 Write a function that, given pointers to two strings, determines whether the first is a 
substring of the other.

7.	 Write a function that, given an integer n, converts n to binary and stores each bit in one node 
of a linked list with the least significant bit at the head of the list and the most significant bit 
at the tail. For example, given 13, the bits are stored in the order 1 0 1 1, from head to tail. 
Return a pointer to the head of the list.

8.	 Write a function that, given a pointer to a linked list of bits stored as in 7, traverses the list 
once and returns the decimal equivalent of the binary number.
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9.	 You are given two pointers, b1 and b2, each pointing to a binary number stored as in 7. You 
must return a pointer to a newly created linked list representing the binary sum of the given 
numbers with the least significant bit at the head of the list and the most significant bit at the 
tail of the list. Write functions to do this in two ways:

 (i)	 Using the functions from 7 and 8

(ii)	P erforming a “bit-by-bit” addition

10.	R epeat exercises 7, 8, and 9, but this time, store the bits with the most significant bit at the 
head of the list and the least significant bit at the tail.

11.	T wo words are anagrams if one word can be formed by rearranging all the letters of the other 
word, for example treason, senator. A word is represented as a linked list with one letter per 
node of the list.

Write a function that, given w1 and w2 each pointing to a word of lowercase letters, returns 1 if the words 
are anagrams and 0 if they are not. Base your algorithm on the following: for each letter in w1, search w2 
for it; if found, delete it and continue. Otherwise, return 0.

12.	T he children’s game of “count-out” is played as follows:  n children (numbered 1 to n) are 
arranged in a circle. A sentence consisting of m words is used to eliminate one child at a time 
until one child is left.

Starting at child 1, the children are counted from 1 to m, and the mth child is eliminated. Starting with 
the child after the one just eliminated, the children are again counted from 1 to m, and the mth child 
eliminated. This is repeated until one child is left. Counting is done circularly, and eliminated children  
are not counted.

Write a program to read values for n  and m and print the number of the last remaining child. Use a 
linked list to hold the children.

Hint: Let the last node point to the first, creating a circular list.

13.	T he digits of an integer are held on a linked list in reverse order, one digit per node. Write a 
function that, given pointers to two integers, performs a digit-by-digit addition and returns 
a pointer to the digits of the sum stored in reverse order. Note: This idea can be used to add 
arbitrarily large integers.
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Chapter 5

Stacks and Queues

In this chapter, we will explain the following:

The notion of an abstract data type•	

What a stack is•	

How to implement a stack using an array•	

How to implement a stack using a linked list•	

How to create a header file for use by other programs•	

How to implement a stack for a general data type•	

How to convert an expression from infix to postfix•	

How to evaluate an arithmetic expression•	

What a queue is•	

How to implement a queue using an array•	

How to implement a queue using a linked list•	

5.1 Abstract Data Types
We are familiar with the notion of declaring variables of a given type (double, say) and then performing operations on 
those variables (for example, add, multiply, and assign) without needing to know how those variables are stored in the 
computer. In this scenario, the compiler designer can change the way a double variable is stored, and the programmer 
would not have to change any programs that use double variables. This is an example of an abstract data type.

An abstract data type is one that allows a user to manipulate the data type without any knowledge of how the 
data type is represented in the computer. In other words, as far as the user is concerned, all he needs to know are the 
operations that can be performed on the data type. The person who is implementing the data type is free to change its 
implementation without affecting the users.

In this chapter, we will show how to implement stacks and queues as abstract data types.

5.2 Stacks
A stack as a linear list in which items are added at one end and deleted from the same end. The idea is illustrated by a 
“stack of plates” placed on a table, one on top the other. When a plate is needed, it is taken from the top of the stack. 
When a plate is washed, it is added at the top of the stack. Note that if a plate is now needed, this “newest” plate is the 
one that is taken. A stack exhibits the “last in, first out” property.
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To illustrate the stack idea, we will use a stack of integers. Our goal is to define a data type called Stack so that a 
user can declare variables of this type and manipulate it in various ways. What are some of these ways?

As indicated earlier, we will need to add an item to the stack; the term commonly used is push. We will also need 
to take an item off the stack; the term commonly used is pop.

Before we attempt to take something off the stack, it is a good idea to ensure that the stack has something on it,  
in other words, that it is not empty. We will need an operation that tests whether a stack is empty.

Given these three operations—push, pop, and empty—let’s illustrate how they can be used to read some numbers 
and print them in reverse order. For example, say we have these numbers:
 
        36 15 52 23
 

And say we want to print the following:
 
        23 52 15 36
 

We can solve this problem by adding each new number to the top of a stack, S. After all the numbers have been 
placed on the stack, we can picture the stack as follows:
 
        23      (top of stack)
        52
        15
        36      (bottom of stack)
 

Next, we remove the numbers, one at a time, printing each as it is removed.
We will need a way of telling when all the numbers have been read. We will use 0 to end the data. The logic for 

solving this problem can be expressed as follows:
 
        create an empty stack, S
        read(num)
        while (num != 0) {
           push num onto S
           read(num)
        }
        while (S is not empty) {
           pop S into num //store the number at the top of S in num
           print num
        }
 

We now show how we can implement a stack of integers and its operations.

5.2.1 Implementing a Stack Using an Array
In the array implementation of a stack (of integers), we use an integer array (ST, say) for storing the numbers and an 
integer variable (top, say) that contains the index (subscript) of the item at the top of the stack.

Since we are using an array, we will need to know its size in order to declare it. We will need to have some 
information about the problem to determine a reasonable size for the array. We will use the symbolic constant 
MaxStack. If an attempt is made to push more than MaxStack elements onto the stack, we will report a stack 
overflow error.
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We can use the following to define the data type Stack:
 
        typedef struct {
           int top;
           int ST[MaxStack];
        } StackType, *Stack;
 

Valid values for top will range from 0 to MaxStack-1. When we initialize a stack, we will set top to the invalid 
subscript, -1.

We can now declare a stack variable, S, with this:
 
        Stack S;
 

Observe that Stack is declared as a pointer to the structure we call StackType. So, for instance, S is a pointer to a 
structure consisting of the variable top and the array ST. This is necessary since top and ST would need to be changed 
by the push and pop routines and the changes known to the calling function (main, say). This can be achieved by 
passing a pointer to them, in effect, the Stack variable.

To work with a stack, the first task is to create an empty stack. This is done by allocating storage for a StackType, 
assigning its address to a Stack variable, and setting top to -1. We can use the following:
 
        Stack initStack() {
           Stack sp = (Stack) malloc(sizeof(StackType));
           sp -> top = -1;
           return sp;
        }
 

In main, say, we can declare and initialize a stack, S, with this:
 
        Stack S = initStack();
 

When this statement is executed, the situation in memory can be represented by that shown in Figure 5-1.

S

0

?

1

?

2

?

3

?

4

?

5

?ST

-1top

Figure 5-1.  Array representation of stack in memory

This represents the empty stack. In working with stacks, we will need a function that tells us whether a stack is 
empty. We can use the following:
 
        int empty(Stack S) {
           return (S -> top == -1);
        }
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This simply checks whether top has the value -1.
The major operations on a stack are push and pop. To push an item, n, onto a stack, we must store it in ST and 

update top to point to it. The basic idea is as follows:
 
        add 1 to top
        set ST[top] to n
 

However, we must guard against trying to add something to the stack when it is already full. The stack is full when 
top has the value MaxStack-1, the subscript of the last element. In this case, we will report that the stack is full and  
halt the program. Here is push:
 
        void push(Stack S, int n) {
           if (S -> top == MaxStack - 1) {
              printf("\nStack Overflow\n");
              exit(1);
           }
           ++(S -> top);
           S -> ST[S -> top] = n;
        }
 

To illustrate, after the numbers 36, 15, 52, and 23 have been pushed onto S, our picture in memory looks like 
Figure 5-2.

S

0

36

1

15

2

52

3

23

4 5
ST

3top

Figure 5-2.  Stack view after pushing 36, 15, 52, and 23

Finally, to pop an item off the stack, we return the value in location top and decrease top by 1. The basic idea is as 
follows:
 
        set hold to ST[top]
        subtract 1 from top
        return hold
 

Again, we must guard against trying to take something off an empty stack. What should we do if the stack is empty 
and pop is called? We could simply report an error and halt the program. However, it might be better to return some 
“rogue” value, indicating that the stack is empty. We take the latter approach in our function, pop.:
 
        int pop(Stack S) {
           if (empty(S)) return RogueValue; //a symbolic constant
           int hold = S -> ST[S -> top];
           --(S -> top);
           return hold;
        }
 



Chapter 5 ■ Stacks and Queues

107

Note that even though we have written pop to do something reasonable if it is called and the stack is empty,  
it is better if the programmer establishes that the stack is not empty (using the empty function) before calling pop.

We now write Program P5.1, which reads some numbers, terminated by 0, and prints them in reverse order.  
The following shows a sample run of the program:
 
        Enter some integers, ending with 0
        1 2 3 4 5 6 7 8 9 0
 
        Numbers in reverse order
        9 8 7 6 5 4 3 2 1
 

Program P5.1

        #include <stdio.h>
        #include <stdlib.h>
        #define RogueValue -9999
        #define MaxStack 10
 
        typedef struct {
           int top;
           int ST[MaxStack];
        } StackType, *Stack;
 
        int main() {
           Stack initStack();
           int empty(Stack);
           void push(Stack, int);
           int pop(Stack);
           int n;
           Stack S = initStack();
           printf("Enter some integers, ending with 0\n");
           scanf("%d", &n);
           while (n != 0) {
              push(S, n);
              scanf("%d", &n);
           }
           printf("Numbers in reverse order\n");
           while (!empty(S))
              printf("%d ", pop(S));
           printf("\n");
        } //end main
 
        Stack initStack() {
           Stack sp = (Stack) malloc(sizeof(StackType));
           sp -> top = -1;
           return sp;
        } //end initStack
 
        int empty(Stack S) {
           return (S -> top == -1);
        } //end empty
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        void push(Stack S, int n) {
           if (S -> top == MaxStack - 1) {
              printf("\nStack Overflow\n");
              exit(1);
           }
           ++(S -> top);
           S -> ST[S -> top]= n;
        } //end push
 
        int pop(Stack S) {
           if (empty(S)) return RogueValue;
           int hold = S -> ST[S -> top];
           --(S -> top);
           return hold;
        }   //end pop 

It is important to observe that the code in main that uses the stack does so via the functions initStack, push, pop, 
and empty and makes no assumption about how the stack elements are stored. This is the hallmark of an abstract data 
type—it can be used without the user needing to know how it is implemented.

Next, we will implement the stack using a linked list, but main will remain the same for solving the problem of 
printing the numbers in reverse order.

5.2.2 Implementing a Stack Using a Linked List
The array implementation of a stack has the advantages of simplicity and efficiency. However, one major disadvantage 
is the need to know what size to declare the array. Some reasonable guess has to be made, but this may turn out to be 
too small (and the program has to halt) or too big (and storage is wasted).

To overcome this disadvantage, a linked list can be used. Now, we will allocate storage for an element only when 
it is needed.

The stack is implemented as a linked list with new items added at the head of the list. When we need to pop the 
stack, the item at the head is removed.

We will define a Stack data type as a pointer to the linked list, defined by its “top” variable. So, a Stack variable 
points to the variable that points to the first item in the linked list. As in the case of the array implementation, this is 
necessary so that changes made in the push and pop routines will be known in the calling function. We will use the 
following declarations:
 
        typedef struct node {
           int num;
           struct node *next;
        } Node, *NodePtr;
 
        typedef struct {
           NodePtr top;
        } StackType, *Stack;
 

After 36, 15, 52, and 23 (in that order) have been pushed onto a stack, S, we can picture it as shown in Figure 5-3.  
S is a pointer to top, which is a pointer to the linked list of stack elements.
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The empty stack is represented as shown in Figure 5-4.

S
top

23 52 15 36

Figure 5-3.  Stack view after pushing 36, 15, 52, and 23

S
top

Figure 5-4.  Empty stack

Creating an empty stack involves allocating storage for a StackType structure that consists of the single pointer 
variable, top, and setting top to NULL. Here is the function, initStack:
 
        Stack initStack() {
           Stack sp = (Stack) malloc(sizeof(StackType));
           sp -> top = NULL;
           return sp;
        }
 

We can test for an empty stack with this:
 
        int empty(Stack S) {
           return (S -> top == NULL);
        }
 

This simply checks whether top is NULL.
To push an item onto a stack, we need to allocate storage for a node and add it to the head of the list. Here is push:

 
        void push(Stack S, int n) {
           NodePtr np = (NodePtr) malloc(sizeof(Node));
           np -> num = n;
           np -> next = S -> top;
           S -> top = np;
        }
 

To pop an item from the stack, we first check whether the stack is empty. If it is, a rogue value is returned.  
If not, the item at the head of the list is returned and the node containing the item is deleted. Here is pop:
 
        int pop(Stack S) {
           if (empty(S)) return RogueValue;
           int hold = S -> top -> num;
           NodePtr temp = S -> top;
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           S -> top = S -> top -> next;
           free(temp);
           return hold;
        }

Putting these functions together with main from Program P5.1 gives us Program P5.2, which reads a set of 
numbers, terminated by 0, and prints them in reverse order.

Program P5.2

        #include <stdio.h>
        #include <stdlib.h>
        #define RogueValue -9999

        typedef struct node {
           int num;
           struct node *next;
        } Node, *NodePtr;

        typedef struct stackType {
           NodePtr top;
        } StackType, *Stack;

        int main() {
           Stack initStack();
           int empty(Stack);
           void push(Stack, int);
           int pop(Stack);
           int n;

           Stack S = initStack();
           printf("Enter some integers, ending with 0\n");
           scanf("%d", &n);
           while (n != 0) {
              push(S, n);
              scanf("%d", &n);
           }
           printf("Numbers in reverse order\n");
           while (!empty(S))
              printf("%d ", pop(S));
           printf("\n");
        } //end main

        Stack initStack() {
           Stack sp = (Stack) malloc(sizeof(StackType));
           sp -> top = NULL;
           return sp;
        }

        int empty(Stack S) {
           return (S -> top == NULL);
        }
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        void push(Stack S, int n) {
           NodePtr np = (NodePtr) malloc(sizeof(Node));
           np -> num = n;
           np -> next = S -> top;
           S -> top = np;
        }
 
        int pop(Stack S) {
           if (empty(S)) return RogueValue;
           int hold = S -> top -> num;
           NodePtr temp = S -> top;
           S -> top = S -> top -> next;
           free(temp);
           return hold;
        } 

5.3 Creating a Stack Header File
Now that we have created a set of declarations/functions for manipulating an integer stack, we can put them together 
in one file so that any user can have access to them without having to repeat the code in their program. To illustrate, 
we create a file called stack.h, say, and put the following in it:
 
        #include <stdlib.h>
        #define RogueValue -9999
 
        typedef struct node {
           int num;
           struct node *next;
        } Node, *NodePtr;
 
        typedef struct stackType {
           NodePtr top;
        } StackType, *Stack;
 
        Stack initStack() {
           Stack sp = (Stack) malloc(sizeof(StackType));
           sp -> top = NULL;
           return sp;
        }
 
        int empty(Stack S) {
           return (S -> top == NULL);
        } //end empty
 
        void push(Stack S, int n) {
           NodePtr np = (NodePtr) malloc(sizeof(Node));
           np -> num = n;
           np -> next = S -> top;
           S -> top = np;
        } //end push
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        int pop(Stack S) {
           if (empty(S)) return RogueValue;
           int hold = S -> top -> num;
           NodePtr temp = S -> top;
           S -> top = S -> top -> next;
           free(temp);
           return hold;
        } //end pop
 

Next, we put stack.h in the “include library” of C functions. Typically, most C compilers will have a folder called 
include. This is the same folder that contains files such as stdio.h, string.h, and so on. Simply put stack.h in this 
folder.1 Now, any program that wants to use the stack functions must contain this declaration:
 
        #include <stack.h>
 

For example, Program P5.2 can now be written as Program P5.3.

Program P5.3

        #include <stdio.h>
        #include <stack.h>
 
        int main() {
           int n;
           Stack S = initStack();
           printf("Enter some integers, ending with 0\n");
           scanf("%d", &n);
           while (n != 0) {
              push(S, n);
              scanf("%d", &n);
           }
           printf("\nNumbers in reverse order\n");
           while (!empty(S))
              printf("%d ", pop(S));
           printf("\n");
        }
 

Note how much shorter this program is, now that the stack declarations/functions are hidden away in stack.h.

5.4 A General Stack Type
To simplify our presentation, we have worked with a stack of integers. We remind you of those places in the program 
that are tied to the decision to use integers.

In the declaration of •	 Node, we declare an int called num.

In •	 push, we pass an int argument.

In •	 pop, we return an int result.

1Some compilers may already have a file called stack.h. In this case, you can add your declarations to this file or just use another 
name for your file.
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No changes are needed in initStack and empty.
This means that if we need a stack of characters, for example, we will have to change int to char in all of the 

previously mentioned places. Similar changes will have to be made for stacks of other types.
It would be nice if we could minimize the changes needed when a different type of stack is required. We now will 

show how this could be done.
Our first generalization lets us have a stack of any type, including structures. So, for instance, if we have a 

structure representing a fraction (see Section 2.4 in Chapter 2), we can have a stack of fractions. We can also have 
stacks of primitive types such as int, char, and double. To this end, we declare a structure called StackData; this 
structure will contain the field or fields that will comprise a stack element.

Consider the following:
 
        typedef struct {
           //declare all the data fields here
           char ch; //for example
        } StackData;
 

Whichever kind of stack we want, we declare the data fields within the structure. In the earlier example, if we 
want a stack of characters, we declare one field of type char.

Now, a linked list node will consist of two fields: a data field of type StackData and a field that points to the next 
node. Here is its declaration:
 
        typedef struct node {
           StackData data;
           struct node *next;
        } Node, *NodePtr;
 

The only change from before is that we use StackData instead of int.
The major change in push is in the function heading. We change this:

 
        void push(Stack S, int n)
 
to this:
 
        void push(Stack S, StackData d)
 

In the function body, we change this:
 
        np -> num = n;
 
to this:
 
        np -> data = d;
 

The major change in pop is also in the function heading. We change this:
 
        int pop(Stack S)
 
to this:
 
        StackData pop(Stack S)
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In the function body, we change this:
 
        int hold = S -> top -> num;
 
to this:
 
        StackData hold = S -> top -> data;
 

For variation, we will write pop such that if it is called and the stack is empty, a message is printed and the 
program halts.

With these changes, it is now easy to change the kind of stack we want to work with. We will need to change only 
the declaration of StackData, including the field or fields we want for our stack elements.

To illustrate, suppose we want to read a line of data and print it reversed. We need a stack of characters.  
We declare StackData as follows:
 
        typedef struct {
           char ch;
        } StackData;
 

Suppose the following statements are stored in an include file, stack.h:
 
        #include <stdlib.h>
 
        typedef struct node {
           StackData data;
           struct node *next;
        } Node, *NodePtr;
 
        typedef struct stackType {
           NodePtr top;
        } StackType, *Stack;
 
        Stack initStack() {
           Stack sp = (Stack) malloc(sizeof(StackType));
           sp -> top = NULL;
           return sp;
        }
 
        int empty(Stack S) {
           return (S -> top == NULL);
        }
 
        void push(Stack S, StackData d) {
           NodePtr np = (NodePtr) malloc(sizeof(Node));
           np -> data = d;
           np -> next = S -> top;
           S -> top = np;
        }
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        StackData pop(Stack S) {
           if (empty(S)) {
              printf("\nAttempt to pop an empty stack\n");
              exit(1);
           }
           StackData hold = S -> top -> data;
           NodePtr temp = S -> top;
           S -> top = S -> top -> next;
           free(temp);
           return hold;
        }
 

The StackData declaration is not included here. This is desirable since each user may need a different type of 
stack and must be given the opportunity to declare whatever she wants StackData to be. She can do this in her own 
program as illustrated in Program P5.4, which reads a line of input and prints it reversed.

Program P5.4

        #include <stdio.h>
 
        typedef struct {
           char ch;
        } StackData;
 
        #include <stack.h>
 
        int main() {
           StackData temp;
           char c;
           Stack S = initStack();
           printf("Type some data and press Enter\n");
           while ((c = getchar()) != '\n') {
              temp.ch = c;
              push(S, temp);
           }
           printf("\nData in reverse order\n");
           while (!empty(S))
              putchar(pop(S).ch);
           putchar('\n');
        } //end main
 

Note the placement of #include stack.h—it comes after the declaration of StackData. This is necessary since 
there are functions/declarations in stack.h that make reference to StackData.

Note also that the stack functions work with the data type StackData. Even though we want a “stack of 
characters,” a character must be stored in a StackData variable (temp is used) before it can be pushed onto the stack. 
Similarly, pop returns a StackData value; we must retrieve the ch field of the value returned to get at the character.

The following is a sample run of Program P5.4:
 
        Type some data and press Enter
        Was it a rat I saw?
 
        Data in reverse order
        ?was I tar a ti saW
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As another example, if a programmer needs to work with a stack of fractions, she can use this:
 
        typedef struct {
           int num;
           int den;
        } StackData; 

5.4.1 Example: Convert from Decimal to Binary
Consider the problem of converting a positive integer from decimal to binary. We can use an integer stack, S, to do this 
using repeated division by 2 and saving the remainders. Here is the algorithm:
 
        initialize S to empty
        read the number, n
        while (n > 0) {
          push n % 2 onto S
           n = n / 2
        }
        while (S is not empty) print pop(S)
 

This algorithm is implemented as Program P5.5.

Program P5.5

        #include <stdio.h>
 
        typedef struct {
           int bit;
        } StackData;
 
        #include <stack.h>
 
        int main() {
           StackData temp;
           int n;
           Stack S = initStack();
           printf("Enter a positive integer: ");
           scanf("%d", &n);
           while (n > 0) {
              temp.bit = n % 2;
              push(S, temp);
              n = n / 2;
           }
           printf("\nIts binary equivalent is ");
           while (!empty(S))
              printf("%d", pop(S).bit);
           printf("\n");
        } //end main 
 

Note, again, that each bit must be stored in a StackData variable (temp is used). A sample run of Program P5.5 is 
shown here:
 
        Enter a positive integer: 99
 
        Its binary equivalent is 1100011 



Chapter 5 ■ Stacks and Queues

117

5.5 Converting Infix to Postfix
Consider the expression 7 + 3 * 4. What is its value? Without any knowledge about which operation should be 
performed first, we would probably work out the value from left to right as (7 + 3 = 10) * 4 = 40. However, normal rules 
of arithmetic state that multiplication has higher precedence than addition. This means that, in an expression like  
7 + 3 * 4, multiplication (*) is performed before addition (+). Knowing this, the value is 7 + 12 = 19.

We can, of course, force the addition to be performed first by using brackets, as in (7 + 3) * 4. Here, the brackets 
mean that + is done first.

These are examples of infix expressions; the operator (+, *) is placed between its operands. One disadvantage of 
infix expressions is the need to use brackets to override the normal precedence rules.

Another way of representing expressions is to use postfix notation. Here, the operator comes after its operands 
and there is no need to use brackets to specify which operations to perform first. For example, the postfix form of
 
        7 + 3 * 4 is 7 3 4 * +

and the postfix form of

        (7 + 3) * 4 is 7 3 + 4 *
 

One useful observation is that the operands appear in the same order in both the infix and postfix forms but 
operators differ in order and placement.

Why is postfix notation useful? As mentioned, we do not need brackets to specify the precedence of operators. 
More importantly, though, it is a convenient form for evaluating the expression.

Given the postfix form of an expression, it can be evaluated as follows:
 
        initialize a stack, S, to empty
        while we have not reached the end of the expression
           get the next item, x, from the expression
           if x is an operand, push it onto S
           if x is an operator, pop its operands from S, apply the operator and
                    push the result onto S
        endwhile
        pop S; // this is the value of the expression
 

Consider the expression (7 + 3) * 4 whose postfix form is 7 3 + 4 *. It is evaluated by traversing from left to right.

	 1.	 The next item is 7; push 7 onto S; S contains 7.

	 2.	 The next item is 3; push 3 onto S; S contains 7 3 (the top is on the right).

	 3.	 The next item is +; pop 3 and 7 from S; apply + to 7 and 3, giving 10; push 10 onto S;  
S contains  10.

	 4.	 The next item is 4; push 4 onto S; S contains  10 4.

	 5.	 The next item is *; pop 4 and 10 from S; apply * to 10 and 4, giving 40; push 40 onto S;  
S contains  40.

	 6.	 We have reached the end of the expression; we pop S, getting 40—the result of the 
expression.
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Note that when operands are popped from the stack, the first one popped is the second operand, and the second 
one popped is the first operand. This does not matter for addition and multiplication but would be important for 
subtraction and division. As an exercise, convert the following to postfix form and step through its evaluation using 
the earlier algorithm: (7 – 3) * (9 – 8 / 4).

The big question, of course, is how do we convert an infix expression to postfix? Before presenting the algorithm, 
we observe that it will use an operator stack. We will also need a precedence table that gives the relative precedence 
of the operators. Given any two operators, the table will tell us whether they have the same precedence (like + and -) 
and, if not, which has greater precedence.

As the algorithm proceeds, it will output the postfix form of the given expression.
Here is the algorithm:

	 1.	 Initialize a stack of operators, S, to empty.

	 2.	 Get the next item, x, from the infix expression; if none, go to step 8 (x is either an operand, 
a left bracket, a right bracket, or an operator).

	 3.	 If x is an operand, output x.

	 4.	 If x is a left bracket, push it onto S.

	 5.	 If x is a right bracket, pop items off S and output popped items until a left bracket appears 
on top of S; pop the left bracket and discard.

	 6.	 If x is an operator, then do the following:
 
              while (S is not empty) and (a left bracket is not on top of S) and
                 (an operator of equal or higher precedence than x is on top of S)
                 pop S and output popped item
              push x onto S
 
	 7.	 Repeat from step 2.

	 8.	 Pop S and output the popped item until S is empty.

You are advised to step through the algorithm for the following expressions:
 
        3 + 5
        7 – 3 + 8
        7 + 3 * 4
        (7 + 3) * 4
        (7 + 3) / (8 – 2 * 3)
        (7 – 8 / 2 / 2) * ((7 – 2) * 3 – 6)
 

Let’s write a program to read a simplified infix expression and output its postfix form. We assume that an 
operand is a single-digit integer. An operator can be one of +, –, *, or /. Brackets are allowed. The usual precedence 
of operators apply: + and – have the same precedence, which is lower than that of * and /, which have the same 
precedence. The left bracket is treated as an operator with very low precedence, less than that of + and –.

We will implement this as a function precedence that, given an operator, returns an integer representing 
its precedence. The actual value returned is not important as long as the relative precedence of the operators is 
maintained. We will use the following:
 
        int precedence(char c) {
           if (c == '(') return 0;
           if (c == '+' || c == '-') return 3;
           if (c == '*' || c == '/') return 5;
        } //end precedence
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We could also write precedence using a switch statement as follows:
 
        int precedence(char c) {
           switch (c) {
              case '(': return 0;
              case '+':
              case '-': return 3;
              case '*':
              case '/': return 5;
           }//end switch
        } //end precedence
 

The actual values 0, 3, and 5 are not important. Any values can be used as long as they represent the relative 
precedence of the operators.

We will need a function to read the input and return the next nonblank character. The end-of-line character will 
indicate the end of the expression. Here is the function (we call it getToken):
 
        char getToken() {
           char ch;
           while ((ch = getchar()) == ' ') ; //empty body
           return ch;
        } //end getToken
 

The operator stack is simply a stack of characters that we will implement using this:
 
        typedef struct {
           char ch;
        } StackData;
 

Step 6 of the algorithm requires us to compare the precedence of the operator on top of the stack with the current 
operator. This would be easy if we can “peek” at the element on top of the stack without taking it off. To do this, we 
write the function peek and add it to stack.h, the file containing our stack declarations/ functions.
 
        StackData peek(Stack S) {
           if (!empty(S)) return S -> top -> data;
           printf("\nAttempt to peek at an empty stack\n");
           exit(1);
        }
 

Putting all these together, we now write Program P5.6, which implements the algorithm for converting an infix 
expression to postfix.

The job of reading the expression and converting to postfix is delegated to readConvert. This outputs the postfix 
form to a character array, post. So as not to clutter the code with error checking, we assume that post is big enough to 
hold the converted expression. The function returns the number of elements in the postfix expression.

The function printPostfix simply prints the postfix expression.
The following is a sample run of Program P5.6:

 
        Type an infix expression and press Enter
        (7 – 8 / 2 / 2) * ((7 – 2) * 3 – 6)
 
        The postfix form is
        7 8 2 / 2 / - 7 2 – 3 * 6 - *
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Program P5.6

        #include <stdio.h>
        #include <ctype.h>
        typedef struct {
           char ch;
        } StackData;

        #include <stack.h>

        int main() {
           int readConvert(char[]);
           void printPostfix(char[], int);
           char post[50];

           int n = readConvert(post);
           printPostfix(post, n);
        } //end main

        int readConvert(char post[]) {
           char getToken(void), token, c;
           int precedence(char);
           StackData temp;
           int h = 0;
           Stack S = initStack();
           printf("Type an infix expression and press Enter\n");
           token = getToken();
           while (token != '\n') {
              if (isdigit(token)) post[h++] = token;
              else if (token == '(') {
                 temp.ch = token;
                 push(S, temp);
              }
              else if (token == ')')
                 while ((c = pop(S).ch) != '(') post[h++] = c;
              else {
                 while (!empty(S) && precedence(peek(S).ch) >= precedence(token))
                    post[h++] = pop(S).ch;
                 temp.ch = token;
                 push(S, temp);
              }
              token = getToken();
           } //end while
           while (!empty(S)) post[h++] = pop(S).ch;
           return h; //the size of the expression
        } //end readConvert

        void printPostfix(char post[], int n) {
           printf("\nThe postfix form is \n");
           for (int h = 0; h < n; h++) printf("%c ", post[h]);
           printf("\n");
        } //end printPostfix

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



Chapter 5 ■ Stacks and Queues

121

        char getToken() {
           char ch;
           while ((ch = getchar()) == ' ') ; //empty body
           return ch;
        } //end getToken
 
        int precedence(char c) {
           if (c == '(') return 0;
           if (c == '+' || c == '-') return 3;
           if (c == '*' || c == '/') return 5;
        } //end precedence
 

Program P5.6 assumes that the given expression is a valid one. However, it can be easily modified to recognize 
some kinds of invalid expressions. For instance, if a right bracket is missing, when we reach the end of the expression, 
there would be a left bracket on the stack. (If the brackets match, there would be none.) Similarly, if a left bracket is 
missing, when a right one is encountered and we are scanning the stack for the (missing) left one, we would not find it.

You are urged to modify Program P5.6 to catch expressions with mismatched brackets. You should also modify it 
to handle any integer operands, not just single-digit ones. Yet another modification is to handle other operations such 
as %, sqrt (square root), sin (sine), cos (cosine), tan (tangent), log (logarithm), exp (exponential), and so on.

5.5.1 Evaluating a Postfix Expression
Program P5.6 stores the postfix form of the expression in a character array, post. We now write a function that, given 
post, evaluates the expression and returns its value. The function uses the algorithm  at the beginning of Section 5.5.

We will need an integer stack to hold the operands and intermediate results. Recall that we needed a character 
stack to hold the operators. We can neatly work with both kinds of stacks if we declare StackData as follows:
 
        typedef struct {
           char ch;
           int num;
        } StackData;
 

We use the char field for the operator stack and the int field for the operand stack. Here is eval:
 
        int eval(char post[], int n) {
           int a, b, c;
           StackData temp;
            
           Stack S = initStack();
           for (int h = 0; h < n; h++) {
              if (isdigit(post[h])) {
                 temp.num = post[h] - '0'; //convert to integer
                 push(S, temp);
              }
              else {
                 b = pop(S).num;
                 a = pop(S).num;
                 if (post[h] == '+') c = a + b;
                 else if (post[h] == '-') c = a - b;



Chapter 5 ■ Stacks and Queues

122

                 else if (post[h] == '*') c = a * b;
                 else c = a / b;
                 temp.num = c;
                 push(S, temp);
              } //end outer else
           } //end for
           return pop(S).num;
        } //end eval
 

We can test eval by adding it to Program P5.6 and putting its prototype, as follows, in main:
 
        int eval(char[], int);
 

We also change the declaration of StackData to the one shown above and add the following as the last statement  
in main:
 
        printf("\nIts value is %d\n", eval(post, n));
 

The following is a sample run of the modified program:
 
        Type an infix expression and press Enter
        (7 – 8 / 2 / 2) * ((7 – 2) * 3 – 6)
 
        The postfix form is
        7 8 2 / 2 / - 7 2 – 3 * 6 - *
 
        Its value is 45 

5.6 Queues
A queue is a linear list in which items are added at one end and deleted from the other end. Familiar examples are 
queues at a bank, a supermarket, a concert, or a sporting event. People are supposed to join the queue at the rear and 
exit from the front. We would expect that a queue data structure would be useful for simulating these real-life queues.

Queues are also found inside the computer. There may be several jobs waiting to be executed, and they are held 
in a queue. For example, several people may each request something to be printed on a network printer. Since the 
printer can handle only one job at a time, the others have to be queued.

These are the basic operations we want to perform on a queue:

Add an item to the queue; we say •	 enqueue.

Take an item off the queue; we say •	 dequeue.

Check whether the queue is empty.•	

Inspect the item at the head of the queue.•	

Like with stacks, we can easily implement the queue data structure using arrays or linked lists. We will use a 
queue of integers for illustration purposes.
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5.6.1 Implementing a Queue Using an Array
In the array implementation of a queue (of integers), we use an integer array (QA, say) for storing the numbers and two 
integer variables (head and tail) that indicate the item at the head of the queue and the item at the tail of the queue, 
respectively.

Since we are using an array, we will need to know its size in order to declare it. We will need to have some 
information about the problem to determine a reasonable size for the array. We will use the symbolic constant MaxQ. 
In our implementation, the queue will be declared full if there are MaxQ-1 elements in it and we attempt to add 
another.

We use the following to define the data type Queue:
 
        typedef struct {
           int head, tail;
           int QA[MaxQ];
        } QType, *Queue;
 

Valid values for head and tail will range from 0 to MaxQ-1. When we initialize a queue, we will set head and tail 
to 0.

We can now declare a queue variable, Q, with this:
 
        Queue Q;
 

Observe that Queue is declared as a pointer to the structure we call QType. So, for instance, Q is a pointer to a 
structure consisting of the variables head and tail and the array QA. This is necessary since head, tail, and QA would 
need to be changed by the enqueue and dequeue routines and the changes known to the calling function (main, say). 
This can be achieved by passing a pointer to them, in effect, the Queue variable.

To work with a queue, the first task is to create an empty queue. This is done by allocating storage for a QType, 
assigning its address to a Queue variable, and setting head and tail to 0. Later, we will see why 0 is a good value to use. 
We can use the following:
 
        Queue initQueue() {
           Queue qp = (Queue) malloc(sizeof(QType));
           qp -> head = qp -> tail = 0;
           return qp;
        }
 

In main, say, we can declare and initialize a queue, Q, with this:
 
        Queue Q = initQueue();
 

When this statement is executed, the situation in memory can be represented as shown in Figure 5-5.

Q

0 1 2 3 4 5
QA

0head 0tail

Figure 5-5.  Array representation of a queue



Chapter 5 ■ Stacks and Queues

124

This represents the empty queue. In working with queues, we will need a function that tells us whether a queue is 
empty. We can use the following:
 
        int empty(Queue Q) {
           return (Q -> head == Q -> tail);
        }
 

Shortly, we will see that given the way we will implement the enqueue and dequeue operations, the queue will be 
empty whenever head and tail have the same value. This value will not necessarily be 0. In fact, it may be any of the 
values from 0 to MaxQ-1, the valid subscripts of QA.

Consider how we might add an item to the queue. In a real queue, a person joins at the tail. We will do the same 
here by incrementing tail and storing the item at the location indicated by tail.

For example, to add 36, say, to the queue, we increment tail to 1 and store 36 in QA[1]; head remains at 0.
If we then add 15 to the queue, it will be stored in QA[2], and tail will be 2.
If we now add 52 to the queue, it will be stored in QA[3], and tail will be 3.
Our picture in memory will look like Figure 5-6.

Q

0 1 2 3 4 5
QA

0head 3tail

36 15 52

Figure 5-6.  State of the queue after adding 36, 15, and 52

Q

0 1 2 3 4 5
QA

1head 4tail

36 15 52 23

Figure 5-7.  State of the queue after removing 36 and adding 23

Note that head points “just in front of” the item that is actually at the head of the queue, and tail points at the 
last item in the queue.

Now consider taking something off the queue. The item to be taken off is the one at the head. To remove it,  
we must first increment head and then return the value pointed to by head.

For example, if we remove 36, head will become 1, and it points “just in front of” 15, the item now at the head. 
Note that 36 still remains in the array, but, for all intents and purposes, it is not in the queue.

Suppose we now add 23 to the queue. It will be placed in location 4, with tail being 4 and head being 1.  
The picture now looks like Figure 5-7.
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There are three items in the queue; 15 is at the head, and 23 is at the tail.
Consider what happens if we continuously add items to the queue without taking off any. The value of tail will 

keep increasing until it reaches MaxQ-1, the last valid subscript of QA. What do we do if another item needs  
to be added?

We could say that the queue is full and stop the program. However, there are two free locations, 0 and 1. It would 
be better to try to use one of these. This leads us to the idea of a circular queue. Here, we think of the locations in the 
array as arranged in a circle: location MaxQ-1 is followed by location 0.

So, if tail has the value MaxQ-1, incrementing it will set it to 0.
Suppose we had not taken off any item from the queue. The value of head would still be 0. Now, what if, in 

attempting to add an item, tail is incremented from MaxQ-1 to 0? It now has the same value as head. In this situation, 
we declare that the queue is full.

We do this even though nothing is stored in location 0, which is, therefore, available to hold another item. The 
reason for taking this approach is that it simplifies our code for detecting when the queue is empty and when it is full.

To emphasize, when the queue is declared full, it contains MaxQ-1 items.
We can now write enqueue, a function to add an item to the queue.

 
        void enqueue(Queue Q, int n) {
           if (Q -> tail == MaxQ - 1) Q -> tail = 0;
           else ++(Q -> tail);
           if (Q -> tail == Q -> head) {
              printf("\nQueue is full\n");
              exit(1);
           }
           Q -> QA[Q -> tail] = n;
        } //end enqueue
 

We first increment tail. If, by doing so, it has the same value as head, we declare that the queue is full. If not,  
we store the new item in position tail.

Consider the previous diagram. If we delete 15 and 52, it changes to that shown in Figure 5-8.

Q

0 1 2 3 4 5
QA

3head 4tail

36 15 52 23

Figure 5-8.  Queue after removing 15, 52

Now, head has the value 3, tail has the value 4, and there is one item in the queue, 23, in location 4. If we delete 
this last item, head and tail would both have the value 4, and the queue would be empty. This suggests that we have 
an empty queue when head has the same value as tail, as indicated earlier.

We can now write the function dequeue for removing an item from the queue.
 
        int dequeue(Queue Q) {
           if (empty(Q)) {
              printf("\nAttempt to remove from an empty queue\n");
              exit(1);
           }
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           if (Q -> head == MaxQ - 1) Q -> head = 0;
           else ++(Q -> head);
           return Q -> QA[Q -> head];
        }   //end dequeue
 

If the queue is empty, an error is reported, and the program is halted. If not, we increment head and return the 
value in location head. Note, again, that if head has the value MaxQ-1, incrementing it sets it to 0.

As in the case of a stack, we can create a file called queue.h and store our declarations and functions in it so they 
can be used by other programs. So far, queue.h would contain the items shown here:
 
        #include <stdlib.h>
 
        typedef struct {
           int head, tail;
           int QA[MaxQ];
        } QType, *Queue;
 
        Queue initQueue() {
           Queue qp = (Queue) malloc(sizeof(QType));
           qp -> head = qp -> tail = 0;
           return qp;
        }
 
        int empty(Queue Q) {
           return (Q -> head == Q -> tail);
        }
 
        void enqueue(Queue Q, int n) {
           if (Q -> tail == MaxQ - 1) Q -> tail = 0;
           else ++(Q -> tail);
           if (Q -> tail == Q -> head) {
              printf("\nQueue is full\n");
              exit(1);
           }
           Q -> QA[Q -> tail] = n;
        }
 
        int dequeue(Queue Q) {
           if (empty(Q)) {
              printf("\nAttempt to remove from an empty queue\n");
              exit(1);
           }
           if (Q -> head == MaxQ - 1) Q -> head = 0;
           else ++(Q -> head);
           return Q -> QA[Q -> head];
        }
 

To test our queue operations, we write Program P5.7, which reads an integer and prints its digits in reverse order. 
For example, if 12345 is read, the program prints 54321. The digits are extracted, from the right, and stored in a  
queue. The items in the queue are taken off, one at a time, and printed.
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Program P5.7

        #include <stdio.h>
        #define MaxQ 10
        #include <queue.h>
 
        int main() {
           int n;
           Queue Q = initQueue();
           printf("Enter a positive integer: ");
           scanf("%d", &n);
           while (n > 0) {
              enqueue(Q, n % 10);
              n = n / 10;
           }
           printf("\nDigits in reverse order: ");
           while (!empty(Q))
              printf("%d", dequeue(Q));
           printf("\n");
        }
 

Note the order of the header statements. The user is free to define the value of MaxQ; this value will be used by the 
declarations in queue.h.

5.6.2 Implementing a Queue Using a Linked List
As with stacks, we can implement a queue using linked lists. This has the advantage of us not having to decide 
beforehand how many items to cater for. We will use two pointers, head and tail, to point to the first and last 
items in the queue, respectively. Figure 5-9 shows the data structure when four items (36, 15, 52, and 23) are 
added to the queue.

tail
Q

head

36 15 52 23

Figure 5-9.  Linked list representation of a queue

We will implement the queue so that it works with a general data type that we will store in a structure called 
QueueData. We will use the following framework:
 
        typedef struct {
           //declare all the data fields here
           int num; //for example
        } QueueData;
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Whichever kind of queue we want, we declare the data fields within the structure. In the earlier example,  
if we want a queue of integers, we declare one field of type int.

A linked list node will consist of two fields: a data field of type QueueData and a field that points to the next node. 
Here is its declaration:
 
        typedef struct node {
           QueueData data;
           struct node *next;
        } Node, *NodePtr;
 

We will define the Queue data type as a pointer to a structure containing two NodePtrs, head and tail, as follows:
 
         typedef struct {
           NodePtr head, tail;
        } QueueType, *Queue;
 

We can declare a queue with the following statement:
 
        Queue Q;
 

The empty queue, Q, is represented by Figure 5-10.

Q
head tail

Figure 5-10.  An empty queue (linked list representation)

Creating an empty queue involves allocating storage for a QueueType structure that consists of two variables,  
head and tail, and setting them to NULL. Here is the function, initQueue:
 
        Queue initQueue() {
           Queue qp = (Queue) malloc(sizeof(QueueType));
           qp -> head = NULL;
           qp -> tail = NULL;
           return qp;
        }
 

We can test for an empty queue with this:
 
        int empty(Queue Q) {
           return (Q -> head == NULL);
        }
 

This simply checks whether head is NULL.
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To add an item to the queue, we need to allocate storage for a node and add it to the tail of the list. Here is 
enqueue:
 
        void enqueue(Queue Q, QueueData d) {
           NodePtr np = (NodePtr) malloc(sizeof(Node));
           np -> data = d;
           np -> next = NULL;
           if (empty(Q)) {
              Q -> head = np;
              Q -> tail = np;
           }
           else {
              Q -> tail -> next = np;
              Q -> tail = np;
           }
        }
 

If the queue is empty, the new item becomes the only one in the queue; head and tail are set to point to it. If the 
queue is not empty, the item at the tail is set to point to the new one, and tail is updated to point to the new one.

To take an item off the queue, we first check whether the queue is empty. If it is, we print a message and end the 
program. If not, the item at the head of the queue is returned, and the node containing the item is deleted.

If, by removing an item, head becomes NULL, it means that the queue is empty. In this case, tail is also set to NULL.
Here is dequeue:

 
        QueueData dequeue(Queue Q) {
           if (empty(Q)) {
              printf("\nAttempt to remove from an empty queue\n");
              exit(1);
           }
           QueueData hold = Q -> head -> data;
           NodePtr temp = Q -> head;
           Q -> head = Q -> head -> next;
           if (Q -> head == NULL) Q -> tail = NULL;
           free(temp);
           return hold;
        } //end dequeue
 

As before, we can store all these declarations and functions, except QueueData, in a file called queue.h so that 
other programs can use them. The contents of queue.h are shown here:
 
        #include <stdlib.h>
 
        typedef struct node {
           QueueData data;
           struct node *next;
        } Node, *NodePtr;
 
        typedef struct queueType {
           NodePtr head, tail;
        } QueueType, *Queue;
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        Queue initQueue() {
           Queue qp = (Queue) malloc(sizeof(QueueType));
           qp -> head = NULL;
           qp -> tail = NULL;
           return qp;
        } //end initQueue

        int empty(Queue Q) {
           return (Q -> head == NULL);
        } //end empty

        void enqueue(Queue Q, QueueData d) {
           NodePtr np = (NodePtr) malloc(sizeof(Node));
           np -> data = d;
           np -> next = NULL;
           if (empty(Q)) {
              Q -> head = np;
              Q -> tail = np;
           }
           else {
              Q -> tail -> next = np;
              Q -> tail = np;
           }
        } //end enqueue

        QueueData dequeue(Queue Q) {
           if (empty(Q)) {
              printf("\nAttempt to remove from an empty queue\n");
              exit(1);
           }
           QueueData hold = Q -> head -> data;
           NodePtr temp = Q -> head;
           Q -> head = Q -> head -> next;
           if (Q -> head == NULL) Q -> tail = NULL;
           free(temp);
           return hold;
        } //end dequeue

To use these functions, a user only needs to declare what he wants QueueData to be. To illustrate, we rewrite 
Program P5.7, which reads an integer and prints its digits in reverse order. It is shown as Program P5.8.

Program P5.8

        #include <stdio.h>
        typedef struct {
           int num;
        } QueueData;
        #include <queue.h>
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        int main() {
           int n;
           QueueData temp;
           Queue Q = initQueue();
           printf("Enter a positive integer: ");
           scanf("%d", &n);
           while (n > 0) {
              temp.num = n % 10;
              enqueue(Q, temp);
              n = n / 10;
           }
           printf("\nDigits in reverse order: ");
           while (!empty(Q))
              printf("%d", dequeue(Q).num);
           printf("\n");
        } //end main
 

Note that the declaration of QueueData must come before #include <queue.h>. Also, since enqueue expects a 
QueueData argument, the digits of the integer must be stored in the int field of a QueueData variable (temp is used) 
before being passed to enqueue.

Stacks and queues are important to systems programmers and compiler writers. We have seen how stacks 
are used in the evaluation of arithmetic expressions. They are also used to implement the “calling” and “return” 
mechanism for functions. Consider the situation where function A calls function C, which calls function B, which calls 
function D. When a function returns, how does the computer figure out where to return to? We show how a stack can 
be used to do this.

Assume we have the following situation, where a number, like 100, represents the return address, which is the 
address of the next instruction to be executed when the function returns:
 
        function A      function B      function C      function D
            .               .               .               .
            C;              D;              B;              .
        100:            200:            300:
            .               .               .               .
 

When A calls C, the address 100 is pushed onto a stack, S. When C calls B, 300 is pushed onto S. When B calls D, 
 200 is pushed onto S. At this stage, the stack looks like the following, and control is in D:
 
        (bottom of stack) 100  300  200 (top of stack)
 

When D finishes and is ready to return, the address at the top of the stack (200) is popped and execution 
continues at this address. Note that this is the address immediately following the call to D.

Next, when B finishes and is ready to return, the address at the top of the stack (300) is popped, and execution 
continues at this address. Note that this is the address immediately following the call to B.

Finally, when C finishes and is ready to return, the address at the top of the stack (100) is popped, and execution 
continues at this address. Note that this is the address immediately following the call to C.

Naturally, queue data structures are used in simulating real-life queues. They are also used to implement queues 
in the computer. In a multiprogramming environment, several jobs may have to be queued while waiting  
on a particular resource such as processor time or a printer.

Stacks and queues are also used extensively in working with more advanced data structures such as trees and 
graphs. We will discuss trees in Chapter 9.
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EXERCISES 5

1.	 What is an abstract data type?

2.	 What is a stack? What are the basic operations that can be performed on a stack?

3.	 What is a queue? What are the basic operations that can be performed on a queue?

4.	 Modify Program P5.6 to recognize infix expressions with mismatched brackets.

5.	P rogram P5.6 works with single-digit operands. Modify it to handle any integer operands.

6.	 Modify Program P5.6 to handle expressions with operations such as %, square root, sine, 
cosine, tangent, logarithm, and exponential.

7.	A n integer array post is used to hold the postfix form of an arithmetic expression such that 
the following is true:

A positive number represents an operand.

-1 represents +.

-2 represents -.

-3 represents *.

-4 represents /.

0 indicates the end of the expression.

8.	 Show the contents of post for the expression (2 + 3) * (8 / 4) - 6.

9.	 Write a function eval that, given post, returns the value of the expression.

10.	 Write declarations/functions to implement a stack of double values.

11.	 Write declarations/functions to implement a queue of double values.

12.	A  priority queue is one in which items are added to the queue based on a priority number. 
Jobs with higher-priority numbers are closer to the head of the queue than those with lower-
priority numbers. A job is added to the queue in front of all jobs of lower priority but after all 
jobs of greater or equal priority.

13.	 Write declarations and functions to implement a priority queue. Each item in the queue has a job 
number (integer) and a priority number. Implement, at least, the following functions: (i) initialize 
an empty queue, (ii) add a job in its appropriate place in the queue, (iii) delete and dispose of the 
job at the head of the queue, and (iv) given a job number, remove that job from the queue.

14.	E nsure your functions work regardless of the state of the queue.

15.	A n input line contains a word consisting of lowercase letters only. Explain how a stack can be 
used to determine whether the word is a palindrome.

16.	 Show how to implement a queue using two stacks.

17.	 Show how to implement a stack using two queues.

18.	A  stack, S1, contains some numbers in arbitrary order. Using another stack, S2, for temporary 
storage, show how to sort the numbers in S1 such that the smallest is at the top of S1 and 
the largest is at the bottom.
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Chapter 6

Recursion

In this chapter, we will explain the following:

What a recursive definition is•	

How to write recursive functions in C•	

How to convert from decimal to binary•	

How to print a linked list in reverse order•	

How to solve Towers of Hanoi•	

How to write an efficient power function•	

How to sort using merge sort•	

What are •	 static variables

How to use recursion to keep track of pending subproblems•	

How to implement backtracking using recursion by finding a path through a maze•	

6.1 Recursive Definition
A recursive definition is one that is defined in terms of itself. Perhaps the most common example is the factorial 
function. The factorial of a non-negative integer, n (written as n!), is defined as follows:
 
        0! = 1
        n! = n(n - 1)!, n > 0
 

Here, n! is defined in terms of (n - 1)!, but what is (n - 1)! exactly? To find out, we must apply the definition of 
factorial! In this case, we have this:
 
        (n - 1)! = 1, if (n - 1) = 0
        (n - 1)! = (n - 1)(n - 2)! if (n - 1) > 0
 

So what is 3! now?

Since 3 > 0, it is 3•	 ×2!

Since 2 > 0, 2! is 2•	 ×1! and 3! is 3×2×1!

Since 1 > 0, 1! is 1•	 ×0! and 3! is 3×2×1×0!

Since 0! is 1, we have 3! is 3•	 ×2×1×1 = 6.
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Loosely, we say that n! is the product of all integers from 1 to n.
Let’s rewrite the definition using programming notation; we call it fact.

 
        fact(0) = 1
        fact(n) = n * fact(n - 1), n > 0
 

The recursive definition of a function consists of two parts.

The •	 base case, which gives the value of the function for a specific argument. This is also called 
the anchor, end case, or terminating case, and it allows the recursion to terminate eventually.

The recursive (or general) case where the function is defined in terms of itself.•	

Shortly, we will write fact as a C function. Before we do, we give a nonmathematical example of a recursive 
definition. Consider how you might define ancestor. Loosely, we can say that an ancestor is one’s parent, grandparent, 
or great-grandparent, and so on. But we can state this more precisely as follows:
 
        a is an ancestor of b if
             (1) a is a parent of b, or
             (2) a is an ancestor of c and c is a parent of b
 

(1) is the base case and (2) is the general, recursive case where ancestor is defined in terms of itself.
A less serious example is the meaning of the acronym LAME. It stands for LAME, Another MP3 Encoder. 

Expanding LAME, we get LAME, Another MP3 Encoder, Another MP3 Encoder, and so on. We can say that LAME is a 
recursive acronym. It’s not a true recursive definition, though, since it has no base case.

6.2 Writing Recursive Functions in C
We have seen many examples of functions that call other functions. What we have not seen is a function that calls 
itself—a recursive function. We start off with fact.
 
        int fact(int n) {
           if (n < 0) return 0;
           if (n == 0) return 1;
           return n * fact(n - 1);
        }
 

In the previous statement, we have a call to the function fact, the function we are writing. The function  
calls itself.

Consider the following statement:
 
        int n = fact(3);
 

It is executed as follows:

	 1.	 3 is copied to a temporary location, and this location is passed to fact where it becomes 
the value of n;.

	 2.	 Execution reaches the last statement, and fact attempts to return 3 * fact(2). However, 
fact(2) must be calculated before the return value is known. Think of this as just a call to 
a function fact with argument 2.
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	 3.	 As usual, 2 is copied to a temporary location, and this location is passed to fact where 
it becomes the value of n. If fact were a different function, there would be no problem. 
But since it’s the same function, what happens to the first value of n? It has to be saved 
somewhere and reinstated when this call to fact finishes.

	 4.	 The value is saved on something called the runtime stack. Each time a function calls itself, 
its arguments (and local variables, if any) are stored on the stack before the new arguments 
take effect. Also, for each call, new local variables are created. Thus, each call has its own 
copy of arguments and local variables.

	 5.	 When n is 2, execution reaches the last statement, and fact attempts to return.

	 6.	 2 * fact(1). However, fact(1) must be calculated before the return value is known. 
Think of this as just a call to a function fact with argument 1.

	 7.	 This call reaches the last statement, and fact attempts to return 1 * fact(0). However, 
fact(0) must be calculated before the return value is known. Think of this as just a call to 
a function fact with argument 0.

	 8.	 At this time, the runtime stack contains the arguments 3, 2, and 1. The call fact(0) 
reaches the second statement and returns a value of 1.

	 9.	 The calculation 1 * fact(0) can now be completed, returning 1 as the value of fact(1).

	 10.	 The calculation 2 * fact(1) can now be completed, returning 2 as the value of fact(2).

	 11.	 The calculation 3 * fact(2) can now be completed, returning 6 as the value of fact(3).

We should emphasize that this recursive version of fact is merely for illustrative purposes. It is not an efficient 
way to calculate a factorial—think of all the function calls, the stacking and unstacking of arguments, just to multiply 
the numbers from 1 to n. A more efficient function is as follows:
 
        int fact(int n) {
           int f = 1;
           while (n > 0) {
              f = f * n;
              --n;
           }
           return f;
        }
 

Another example of a function that can be defined recursively is the highest common factor (HCF) of two positive 
integers, m and n.
 
        hcf(m, n) is
           (1) m, if n is 0
           (2) hcf(n, m % n), if n > 0
 

If m = 70 and n = 42, we have:
 
         hcf(70, 42) = hcf(42, 70 % 42) = hcf(42, 28) = hcf(28, 42 % 28)
                 = hcf(28, 14) = hcf(14, 28 % 14) = hcf(14, 0) = 14
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We can write hcf as a recursive C function.
 
        int hcf(int m, int n) {
           if (n == 0) return m;
           return hcf(n, m % n);
        }
 

As a matter of interest, we can also write hcf as an iterative (as opposed to recursive) function, using  
Euclid’s algorithm.
 
        int hcf(int m, int n) {
           int r;
           while (n > 0) {
              r = m % n;
              m = n;
              n = r;
           }
           return m;
        }
 

Effectively, this function does explicitly what the recursive function does implicitly.
Yet another example of a recursively defined function is that of the Fibonacci numbers. We define the first 

two Fibonacci numbers as 1 and 1. Each new number is obtained by adding the previous two. So, the Fibonacci 
sequence is 1, 1, 2, 3, 5, 8, 13, 21, and so on.

Recursively, we define the nth Fibonacci number, F(n), as follows:
 
        F(0) = F(1) = 1
        F(n) = F(n - 1) + F(n - 2), n > 1
 

This is a C function to return the nth Fibonacci number:
 
        int fib(int n) {
           if (n == 0 || n == 1) return 1;
           return fib(n - 1) + fib(n - 2);
        }
 

Again, we emphasize that while this function is neat, concise, and easy to understand, it is not efficient.  
For example, consider the calculation of F(5).
 
        F(5) = F(4) + F(3) = F(3) + F(2) + F(3) = F(2) + F(1) + F(2) + F(3)
        = F(1) + F(0) + F(1) + F(2) + F(3) = 1 + 1 + 1 + F(1) + F(0) + F(3)
        = 1 + 1 + 1 + 1 + 1 + F(2) + F(1) =  1 + 1 + 1 + 1 + 1 + F(1) + F(0) + F(1)
        = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
        = 8
 

Notice the number of function calls and additions that have to be made, whereas we can calculate F(5) 
straightforwardly using only four additions. You are urged to write an efficient, iterative function to return the nth 
Fibonacci number.
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6.3 Converting a Decimal Number to Binary Using Recursion
In Section 5.4.1, we used a stack to convert an integer from decimal to binary. We will now show how to write a 
recursive function to perform the same task.

To see what needs to be done, suppose n is 13, which is 1101 in binary. Recall that n % 2 gives us the last bit of  
the binary equivalent of n. If, somehow, we have a way to print all but the last bit, we can then follow this with n % 2. 
But “printing all but the last bit” is the same as printing the binary equivalent of n/2.

For example, 1101 is 110 followed by 1; 110 is the binary equivalent of 6, which is 13/2, and 1 is 13 % 2. So, we can 
print the binary equivalent of n as follows:

 
        print binary of n / 2
        print n % 2

 
We use the same method to print the binary equivalent of 6. This is the binary equivalent of 6/2 = 3, which is 11, 

followed by 6 % 2, which is 0; this gives 110.
We use the same method to print the binary equivalent of 3. This is the binary equivalent of 3/2 = 1, which is 1, 

followed by 3 % 2, which is 1; this gives 11.
We use the same method to print the binary equivalent of 1. This is the binary equivalent of 1/2 = 0 followed by  

1 % 2, which is 1; if we “do nothing” for 0, this will give us 1.
We stop when we get to the stage where we need to find the binary equivalent of 0. This leads us to the  

following function:
 
        void decToBin(int n) {
           if (n > 0) {
              decToBin(n / 2);
              printf("%d ", n % 2);
           }
        }
 

The call decToBin(13) will print 1101.
Note how much more compact this is than Program P5.5 . However, it is not more efficient. The stacking/unstacking 

that is done explicitly in Program P5.5 is done by the recursive mechanism provided by the language when a function 
calls itself. To illustrate, let’s trace the call decToBin(13).

	 1.	 On the first call, n assumes the value 13.

	 2.	 While the call decToBin(13) is executing, the call decToBin(6) is made; 13 is pushed onto 
the runtime stack, and n assumes the value 6.

	 3.	 While the call decToBin(6) is executing, the call decToBin(3) is made; 6 is pushed onto 
the stack, and n assumes the value 3.

	 4.	 While the call decToBin(3) is executing, the call decToBin(1) is made; 3 is pushed onto 
the stack, and n assumes the value 1.

	 5.	 While the call decToBin(1) is executing, the call decToBin(0) is made; 1 is pushed onto 
the stack, and n assumes the value 0.

	 6.	 At this stage, the stack contains 13, 6, 3, 1.

	 7.	 Since n is 0, this call of the function returns immediately; so far, nothing has been printed.

	 8.	 When the call decToBin(0) returns, the argument on top of the stack, 1, is reinstated as the 
value of n.
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	 9.	 Control goes to the printf statement, which prints 1 % 2, that is, 1.

	 10.	 The call decToBin(1) can now return, and the argument on top of the stack, 3, is reinstated 
as the value of n.

	 11.	 Control goes to the printf statement, which prints 3 % 2, that is, 1.

	 12.	 The call decToBin(3) can now return, and the argument on top of the stack, 6, is reinstated 
as the value of n.

	 13.	 Control goes to the printf statement, which prints 6 % 2, that is, 0.

	 14.	 The call decToBin(6) can now return, and the argument on top of the stack, 13, is 
reinstated as the value of n.

	 15.	 Control goes to the printf statement, which prints 13 % 2, that is, 1.

	 16.	 The call decToBin(13) can now return, and 1101 has been printed.

We can summarize the previous description as follows:
 
        decToBin(13)    ➞      decToBin(6)
                                print(13 % 2)
                        ➞      decToBin(3)
                                print(6 % 2)
                                print(13 % 2)
                        ➞      decToBin(1)
                                print(3 % 2)
                                print(6 % 2)
                                print(13 % 2)
 
                        ➞      decToBin(0) = do nothing
                                print(1 % 2) = 1
                                print(3 % 2) = 1
                                print(6 % 2) = 0
                                print(13 % 2) = 1
 

One of the most important properties of recursive functions is that when a function calls itself, the current 
arguments (and local variables, if any) are pushed onto a stack. Execution of the function takes place with the new 
arguments and new local variables. When execution is completed, arguments (and local variables, if any) are popped 
from the stack, and execution resumes (with these popped values) with the statement following the recursive call.

Consider the following function fragment and the call test(4, 9):
 
        void test(int m, int n) {
           char ch;
              .
           test(m + 1, n - 1);
           printf("%d %d", m, n);
              .
        }
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The function executes with m = 4, n = 9 and the local variable, ch. When the recursive call is made, the following 
happens:

	 1.	 The values of m, n, and ch are pushed onto a stack.

	 2.	 test begins execution, again, with m = 5, n = 8, and a new copy of ch.

	 3.	 Whenever this call to test finishes (perhaps even after calling itself one or more times), 
the stack is popped, and the program resumes execution with printf (the statement  
after the recursive call) and the popped values of m, n, and ch. In this example, 4 9 would 
be printed.

6.4 Printing a Linked List in Reverse Order
Consider the problem of printing a linked list in reverse order.

One way of doing this is to traverse the list, pushing items onto an integer stack as we meet them. When we reach 
the end of the list, the last number would be at the top of the stack, and the first would be at the bottom. We then pop 
items off the stack and print each one as it is popped.

As we may expect by now, we can use recursion to perform the stacking/unstacking. We use the following idea:
 
        to print a list in reverse order
             print the list, except the first item, in reverse order
             print the first item
 

Using the previous list, this says print (15 52 23) in reverse order followed by 36:

To print (•	 15 52 23) in reverse order, we must print (52 23) in reverse order followed by 15.

To print (•	 52 23) in reverse order, we must print (23) in reverse order followed by 52.

To print (•	 23) in reverse order, we must print nothing (the rest of the list when 23 is removed) in 
reverse order followed by 23.

At the end, we would have printed: 23 52 15 36.
Another way to look at this is as follows:

 
        reverse(36 15 52 23)    ➞      reverse(15 52 23) 36
                                ➞      reverse(52 23) 15 36
                                ➞      reverse(23) 52 15 36
                                ➞      reverse() 23 52 15 36
                                ➞      23 52 15 36
 

top

36 15 52 23
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Here is the function, assuming that the pointer to the head of the list is of type NodePtr and the node fields are 
num and next:

        void reverse(NodePtr top) {
           if (top != NULL) {
              reverse(top -> next);
              printf("%d ", top -> num);
           }
        }

The key to working out a recursive solution to a problem is to be able to express the solution in terms of itself but 
on a “smaller” problem. If the problem keeps getting smaller and smaller, eventually it will be small enough that we 
can solve it directly.

We see this principle in both the “decimal to binary” and “print a linked list in reverse order” problems. In the 
first problem, the conversion of n is expressed in terms of n/2; this will, in turn, be expressed in terms of n/4, and so 
on, until there is nothing to convert. In the second problem, printing the list reversed is expressed in terms of printing 
a shorter list (the original list minus the first element) reversed. The list gets shorter and shorter until there is nothing 
to reverse.

6.5 Towers of Hanoi
The Towers of Hanoi puzzle is a classic problem that can be solved using recursion. Legend has it that when the world 
was created, some high priests in the Temple of Brahma were given three golden pins. On one of the pins were placed 
64 golden disks. The disks were all different sizes with the largest at the bottom, the smallest on the top, and no disk 
placed on top of a smaller one.

They were required to move the 64 disks from the given pin to another one according to the following rules:

Move one disk at a time; only a disk at the top of a pin can be moved, and it must be moved to •	
the top of another pin.

No disk must be placed on top of a smaller one.•	

When all 64 disks have been transferred, the world will come to an end.
This is an example of a problem that can be solved easily by recursion but for which a nonrecursive solution is 

quite difficult. Let’s denote the pins by A, B, and C with the disks originally placed on A and the destination pin being 
B. Pin C is used for the temporary placement of disks.

Suppose there is one disk. It can be moved directly from A to B. Next, suppose there are five disks on A, as shown 
in Figure 6-1.

B CA

Figure 6-1. Towers of Hanoi with five disks

Assume we know how to transfer the top four from A to C using B. When this is done, we have Figure 6-2.
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We can now move the fifth disk from A to B, as shown in Figure 6-3.

B CA

Figure 6-2.  After four disks have been moved from A to C

B CA

Figure 6-3.  The fifth disk is placed on B

It remains only to transfer the four disks from C to B using A, which we assume we know how to do. The job is 
completed as shown in Figure 6-4.

B CA

Figure 6-4.  After the four disks have been moved from C to B

We have thus reduced the problem of transferring five disks to a problem of transferring four disks from one pin 
to another. This, in turn, can be reduced to a problem of moving three disks from one pin to another, and this can be 
reduced to two and then to one, which we know how to do. The recursive solution for n disks is as follows:

Transfer •	 n - 1 disks from A to C using B.

Move •	 nth disk from A to B.

Transfer •	 n - 1 disks from C to B using A.

Of course, we can use this same solution for transferring n - 1 disks.
The following function transfers n disks from startPin to endPin using workPin:

 
        void hanoi(int n, char startPin, char endPin, char workPin) {
           if (n > 0) {
              hanoi(n - 1, startPin, workPin, endPin);
              printf("Move disk from %c to %c\n", startPin, endPin);
              hanoi(n - 1, workPin, endPin, startPin);
           }
        }
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When called with the statement:
 
        hanoi(3, 'A', 'B', 'C');  //transfer 3 disks from A to B using C
 
the function prints this:
 
        Move disk from A to B
        Move disk from A to C
        Move disk from B to C
        Move disk from A to B
        Move disk from C to A
        Move disk from C to B
        Move disk from A to B
 

How many moves are required to transfer n disks?

If •	 n is 1, one move is required: (1 = 21 - 1).

If •	 n is 2, three moves are required: (3 = 22 - 1).

If •	 n is 3, seven moves (see as shown earlier) are required: (7 = 23 - 1).

It appears that, for n disks, the number of moves is 2n - 1. It can be proved that this is indeed the case.
When n is 64, the number of moves is:

 
        264 - 1 = 18,446,744,073,709,551,615
 

Assuming the priests can move one disc per second, never make a mistake, and never take a rest, it will take them 
almost 600 billion years to complete the task. Rest assured that the world is not about to end any time soon!

6.6 Writing Power Functions
Given a number, x, and an integer, n ³ 0, how do we calculate x raised to the power n, that is, xn? We can use the 
definition that xn is x multiplied by itself n - 1 times. Thus, 34 is 3 × 3 × 3 × 3. Here is a function that uses this method:
 
        double power(double x, int n) {
           double pow = 1.0;
           for (int h = 1; h <= n; h++) pow = pow * x;
           return pow;
        }
 

Note that if n is 0, power returns 1, the correct answer.
As written, this function performs n multiplications. However, we can write a faster function if we adopt a 

different approach. Suppose we want to calculate x16. We can do it as follows:

If we know •	 x8 = x8, we can multiply x8 by x8 to get x16, using just one more multiplication.

If we know •	 x4 = x4, we can multiply x4 by x4 to get x8, using just one more multiplication.

If we know •	 x2 = x2, we can multiply x2 by x2 to get x4, using just one more multiplication.

We know x; therefore, we can find x2 using one multiplication. Knowing x2, we can find x4 using one more 
multiplication. Knowing x4, we can find x8 using one more multiplication. Knowing x8, we can find x16 using one 
more multiplication. In all, we can find x16 using just four multiplications.
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What if n were 15? First, we would work out x15/2, that is, x7 (call this x7). We would then multiply x7 by x7  to give x14. 
Recognizing that n is odd, we would then multiply this value by x to give the required answer. To summarize:
 
        xn = xn/2.xn/2, if n is even and
             x.xn/2.xn/2, if n is odd
 

We use this as the basis for a recursive power function that calculates xn more efficiently than the previous function.
 
        double power(double x, int n) {
           double y;
           if (n == 0) return 1.0;
           y = power(x, n/2);
           y = y * y;
           if (n % 2 == 0) return y;
           return x * y;
        }
 

As an exercise, trace the execution of the function with n = 5 and n = 6.

6.7 Merge Sort
Consider, again, the problem of sorting a list of n items in ascending order. We will illustrate our ideas with a list of 
integers. In Section 1.8, we saw how to merge two sorted lists by traversing each list once. We now show how to use 
recursion and merging to sort a list. Consider this:
 
        sort a list
           sort first half of list
           sort second half of list
            merge sorted halves into one sorted list
        end sort
 

Clearly, if we can sort the two halves and then merge them, we will have a sorted list. But how do we sort the 
halves? We use the same method! Here’s an example:
 
        sort first half of list
           sort first half of first half of list (one quarter of the original list)
           sort second half of first half of list (one quarter of the original list)
            merge sorted halves into one sorted list
        end sort
 

For each piece we have to sort, we break it into halves, sort the halves, and merge them. When do we stop using 
this process on a piece? When the piece consists of one element only, there is nothing to do to sort one element.  
We can modify our algorithm as follows:
 
        sort a list
           if the list contains more than one element then
              sort first half of list
              sort second half of list
               merge sorted halves into one sorted list
           end if
        end sort
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We assume the list is stored in an array, A, from A[lo] to A[hi]. We can code the algorithm as a C  
function as follows:
 
        void mergeSort(int A[], int lo, int hi) {
           void merge(int[], int, int, int);
           if (lo < hi) { //list contains at least 2 elements
              int mid = (lo + hi) / 2; //get the mid-point subscript
              mergeSort(A, lo, mid); //sort first half
              mergeSort(A, mid + 1, hi); //sort second half
              merge(A, lo, mid, hi); //merge sorted halves
           }
        }
 

This assumes that merge is available and the following statement will merge the sorted pieces in A[lo..mid]  
and A[mid+1..hi] so that A[lo..hi] is sorted:
 
        merge(A, lo, mid, hi);
 

We will show how to write merge shortly.
But first, we show how this function sorts the following list stored in an array, num:

The function will be called with:
        mergeSort(num, 0, 6);

In the function, num will be known as A, lo will be 0, and hi will be 6. From these, mid will be calculated as 3, 
giving rise to two calls.
 
        mergeSort(A, 0, 3);
        mergeSort(A, 4, 6);
 

Assuming that the first will sort A[0..3] and the second will sort A[4..6], we will have the following result:

merge will merge the pieces to produce:
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Each of these calls will give rise to two further calls. The first will produce:
 
        mergeSort(A, 0, 1);
        mergeSort(A, 2, 3);
 

The second will produce:
 
        mergeSort(A, 4, 5);
        mergeSort(A, 6, 6);
 

As long as lo is less than hi, two further calls will be produced. If lo is equal to hi, the list consists of one element 
only, and the function simply returns. The following shows all the calls generated by the initial call to mergeSort,  
in the order in which they are generated:
 
        mergeSort(A, 0, 6)
           mergeSort(A, 0, 3)
              mergeSort(A, 0, 1);
                 mergeSort(A, 0, 0);
                 mergeSort(A, 1, 1);
              mergeSort(A, 2, 3);
                 mergeSort(A, 2, 2);
                 mergeSort(A, 3, 3);
           mergeSort(A, 4, 6);
              mergeSort(A, 4, 5);
                 mergeSort(A, 4, 4);
                 mergeSort(A, 5, 5);
              mergeSort(A, 6, 6);
 

To complete the job, we need to write merge. We can describe merge as follows:
 
        void merge(int A[], int lo, int mid, int hi) {
        //A[lo..mid] and A[mid+1..hi] are sorted;
        //merge the pieces so that A[lo..hi] are sorted
 

Note what must be done: we must merge two adjacent portions of A back into the same locations. The problem 
with this is that we cannot merge into the same locations while the merge is being performed since we may overwrite 
numbers before they are used. We will have to merge into another (temporary) array and then copy the merged 
elements back into the original locations in A.

We will use a temporary array called T; we just need to make sure it is big enough to hold the merged elements. 
This implies it must be at least as big as the array to be sorted. In merge, we will denote its size by the symbolic 
constant MaxSize. Here is merge:
 
        void merge(int A[], int lo, int mid, int hi) {
        //A[lo..mid] and A[mid+1..hi] are sorted;
        //merge the pieces so that A[lo..hi] are sorted
           int T[MaxSize];
           int i = lo;
           int j = mid + 1;
           int k = lo;
           while (i <= mid || j <= hi) {
              if (i > mid) T[k++] = A[j++];
              else if (j > hi) T[k++] = A[i++];
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              else if (A[i] < A[j]) T[k++] = A[i++];
              else T[k++] = A[j++];
           }
           for (j = lo; j <= hi; j++) A[j] = T[j];
        }
 

We use i to subscript the first part of A, j to subscript the second part, and k to subscript T. The function merges 
A[lo..mid] and A[mid+1..hi] into T[lo..hi].

The while loop expresses the following logic: as long as we haven’t processed all the elements in both parts, we 
enter the loop. If we are finished with the first part (i > mid), copy an element from the second part to T. (Since (i > mid) 
would continue to remain true each time through the loop, we will end up copying the remaining elements from the 
second part to T.) If we are finished with the second part (j > hi), copy an element from the first part to T. (Since (j > hi) 
would continue to remain true each time through the loop, we will end up copying the remaining elements from the 
first part to T.) Otherwise, we copy the smaller of A[i] and A[j] to T.

At the end, we copy the elements from T to the corresponding locations in A.
We can test mergeSort with the following:

 
        #include <stdio.h>
 
        #define MaxSize 20
        int main() {
           void mergeSort(int[], int, int);
           int num[] = {4,8,6,16,1,9,14,2,3,5,18,13,17,7,12,11,15,10};
           int n = 18;
           mergeSort(num, 0, n-1);
           for (int h = 0; h < n; h++) printf("%d ", num[h]);
           printf("\n\n");
        }
 

When combined with mergeSort and merge, it produces the following output:
 
        1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 

In passing, we note that merge sort is a much faster sorting method than either selection sort or insertion sort.
Programming note: Each time we enter merge, storage is allocated for T, and this storage is released when the 

function returns. This is because, as declared, T is a local variable. If we want, we can declare T as a static variable, 
like this:
 
        static int T[MaxSize];
 

We simply put the word static before the normal declaration. We could also write:
 
        int static T[MaxSize];
 

Now, storage is allocated for T when we enter the function the first time only. It is not released when the function 
returns but remains in existence until the program ends. The values in T are also retained between calls to the 
function. We take a more detailed look at static variables next.
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6.8 static Variables
In general, a variable is declared to be static by prefixing its normal declaration with the word static, as follows:
 
        static int lineCount;
 

We could also use the following since the properties of a variable may be stated in any order:
 
        int static lineCount;
 

Initialization may be specified, as follows:
 
        static int lineCount = 0;
 

In the absence of explicit initialization, C guarantees that static variables will be initialized to 0, but it is better 
programming practice to initialize your variables explicitly.

A static variable can be either internal or external.

6.8.1 Internal Static
If the declaration appears inside a function, as follows, then the variable is known only inside the function; in other 
words, it is local to the function:
 
        void fun() {
           static int lineCount = 0;
                 .
        }
 

Variables of the same name in other parts of the program will cause no conflict. Storage is allocated to an internal 
static variable once. If specified, initialization is done at this time. This storage (and the value it contains) is retained 
between calls to the function.

Thus, if the value of lineCount is 5 when the function returns the first time, the second call of the function can 
assume that the value of lineCount is 5. In this example, lineCount can be used to count the total number of lines 
printed by all the calls to this function.

6.8.2 External Static
If the declaration appears outside of all functions, as follows, then the variable is known from the point of declaration 
to the end of the file containing the declaration: 
 
        int fun1() {
              .
              .
        }
 
        static int lineCount = 0;
 
        void fun2() {
              .
              .
        }
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In this example, lineCount is known to fun2 and any functions that come after it in the file; it is not known  
to fun1.

If necessary, lineCount can be incremented by any function following the declaration, provided it is in the same 
file. Thus, it can be used to count the total number of lines printed by all the functions that use it.

Normally, a function name is external; that is, it is known throughout the program, which may span several files. 
If we want to restrict the scope of a function to a particular file, we can precede its normal declaration with the word 
static, as follows:
 
        static int fun(...)
 

Here, fun will be unknown outside the file in which this declaration appears.
The term static denotes permanence. Whether internal or external, a static variable is allocated storage only 

once, which is retained for the duration of the program. A static variable also affords a degree of privacy. If it is 
internal, it is known only in the function in which it is declared. If it is external, it is known only in the file in which it 
is declared.

6.9 Counting Organisms
Consider the following arrangement:
 
        0 1 0 1 1 1 0
        0 0 1 1 0 0 0
        1 1 0 1 0 0 1
        1 0 1 0 0 1 1
        1 1 0 0 0 1 0
 

Assume that each 1 represents a cell of an organism; 0 means there is no cell. Two cells are contiguous if they are 
next to each other in the same row or same column. An organism is defined as follows:

An organism contains at least one 1.•	

Two contiguous 1s belong to the same organism.•	

There are five organisms in the arrangement shown. Count them!
Given an arrangement of cells in a grid, we want to write a program to count the number of organisms present.
A glance at the grid will reveal that, given a cell (1), the organism can extend in either of four directions.  

For each of these, it can extend in either of four directions, giving 16 possibilities. Each of these gives rise to four more 
possibilities, and so on. How do we keep track of all these possibilities, knowing which have been explored and which 
are still waiting to be explored?

The easiest way to do this is to let the recursive mechanism keep track for us.
To count the number of organisms, we need a way to determine which cells belong to an organism. To begin,  

we must find a 1. Next, we must find all 1s that are contiguous to this 1, then 1s that are contiguous to those, and so on.
To find contiguous 1s, we must look in four directions, North, East, South, and West (in any order). When we look, 

there are four possibilities:

	 1.	 We are outside the grid, and there is nothing to do.

	 2.	 We see a 0, and there is nothing to do.

	 3.	 We see a 1 that has been seen previously; there is nothing to do.

	 4.	 We see a 1 for the first time; we move into that position and look in four directions  
from there.
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Step 3 implies that when we meet a 1 for the first time, we would need to mark it in some way so that if we come 
across this position later, we will know it has been met before and we will not attempt to process it again.

The simplest thing we can do is to change the value from 1 to 0; this ensures that nothing is done if this position 
is met again. This is fine if all we want to do is count the organisms. But if we also want to identify which cells make up 
an organism, we will have to mark it differently.

Presumably, we will need a variable that keeps count of the number of organisms. Let’s call it orgCount. When a 1 
is encountered for the first time, we will change it to orgCount + 1. Thus, the cells of organism 1 will be labeled 2, the 
cells of organism 2 will be labeled 3, and so on.

This is necessary since, if we start labeling from 1, we would not be able to distinguish between a 1 representing a 
not-yet-met cell and a 1 indicating a cell belonging to organism 1.

This “adding 1 to the label” is necessary only while we are processing the grid. When we print it, we will subtract 1 
from the label so that, on output, organism 1 will be labeled 1, organism 2 will be labeled 2, and so on.

In writing the program, we assume that the grid data is stored in an array G and consists of m rows and n columns. 
We will use MaxRow and MaxCol to denote maximum values for m and n, respectively. Data for the program consists of 
values for m and n, followed by the cell data in row order. For example, data for the previous grid will be supplied  
as follows:
 
        5 7
        0 1 0 1 1 1 0
        0 0 1 1 0 0 0
        1 1 0 1 0 0 1
        1 0 1 0 0 1 1
        1 1 0 0 0 1 0
 

We assume that the data will be read from a file, cell.in, and output will be sent to the file cell.out.
The gist of the program logic is as follows:

 
        scan the grid from left to right, top to bottom
        when we meet a 1, we have a new organism
        add 1 to orgCount
        call a function findOrg to mark all the cells of the organism
 

The function findOrg will implement the four possibilities outlined previously. When it sees a 1 in grid position 
(i, j), say, it will call itself recursively for each of the grid positions to the North, East, South, and West of (i, j).  
All the details are shown in Program P6.1.

Program P6.1

        #include <stdio.h>
        #define MaxRow 20
        #define MaxCol 20
 
        int G[MaxRow][MaxCol];
        int orgCount = 0;
 
        int main() {
           void findOrg(int, int, int, int);
           void printOrg(FILE *, int m, int n);
           int i, j, m, n;
           FILE * in = fopen("cell.in", "r");
           FILE * out = fopen("cell.out", "w");
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           fscanf(in, "%d %d", &m, &n);
           for (i = 0; i < m; i++)
              for (j = 0; j < n; j++)
                 fscanf(in, "%d", &G[i][j]);

           for (i = 0; i < m; i++)
              for (j = 0; j < n; j++)
                 if (G[i][j] == 1) {
                    orgCount++;
                    findOrg(i, j, m, n);
                 }
                  
           printOrg(out, m, n);
        } //end main

        void findOrg(int i, int j, int m, int n) {
           if (i < 0 || i >= m || j < 0 || j >= n) return; //outside of grid
           if (G[i][j] == 0 || G[i][j] > 1) return; //no cell or cell already seen
           // else G[i][j] = 1;
           G[i][j]= orgCount + 1; //so that this 1 is not considered again
           findOrg(i - 1, j, m, n);
           findOrg(i, j + 1, m, n);
           findOrg(i + 1, j, m, n);
           findOrg(i, j - 1, m, n);
        } //end findOrg

        void printOrg(FILE * out, int m, int n) {
           fprintf(out, "\nNumber of organisms = %d\n", orgCount);
           fprintf(out, "\nPosition of organisms are shown here\n\n");
           for (int i = 0; i < m; i++) {
              for (int j = 0; j < n; j++)
                 if (G[i][j] > 1) fprintf(out, "%2d ", G[i][j] - 1);
                    //organism labels are one more than they should be  
                 else fprintf(out, "%2d ", G[i][j]);
              fprintf(out, "\n");
           }
        } //end printOrg

When run with the earlier grid, this program produced the following output:

        Number of organisms = 5

        Position of organisms are shown here:

        0  1  0  2  2  2  0
        0  0  2  2  0  0  0
        3  3  0  2  0  0  4
        3  0  5  0  0  4  4
        3  3  0  0  0  4  0
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Consider how findOrg identifies organism 1. In main, when i = 0 and j = 1, G[0][1] is 1, so the call  
findOrg(0, 1, ...) will be made with G as follows:
 
        0 1 0 1 1 1 0
        0 0 1 1 0 0 0
        1 1 0 1 0 0 1
        1 0 1 0 0 1 1
        1 1 0 0 0 1 0
 

In findOrg, since G[0][1] is 1, it will be set to 2, and four calls to findOrg will be made as follows:
 
        findOrg(-1, 1, ...); //immediate return since i < 0
        findOrg(0, 2, ...);  //immediate return since G[0][2] is 0
        findOrg(1, 1, ...);  //immediate return since G[1][1] is 0
        findOrg(0, -1, ...); //immediate return since j < 0
 

All of these calls return immediately, so only G[0][1] is marked with a 2.
Next, consider how findOrg identifies organism 3. In main, when i = 2 and j = 0, G[2][0] is 1, so the call 

findOrg(2, 0, ...) will be made with G as follows:
 
        0 2 0 3 3 3 0
        0 0 3 3 0 0 0
        1 1 0 3 0 0 1
        1 0 1 0 0 1 1
        1 1 0 0 0 1 0
 

(Recall that, at this stage, the label of an organism is 1 more than the number of the organism.) For this example, 
we will use the notation N, E, S, and W (rather than subscripts) to indicate a grid position to the North, East, South, 
and West, respectively. At this stage, orgCount is 3 so that the cells will be labeled with 4.

The following are the calls generated to findOrg from the initial findOrg(2, 0, ...):
 
        findOrg(2, 0, ...) //G[2][0] is labelled with 4
           findOrg(N...) //returns immediately since G[N] is 0
           findOrg(E...) //G[E] is 1, relabelled with 4, gives rise to 4 calls
              findOrg(N...) //returns immediately since G[N] is 0
              findOrg(E...) //returns immediately since G[E] is 0
              findOrg(S...) //returns immediately since G[S] is 0
              findOrg(W...) //returns immediately since G[W] is 4
           findOrg(S...) //G[S] is 1, relabelled with 4, gives rise to 4 calls
              findOrg(N...) //returns immediately since G[N] is 4
              findOrg(E...) //returns immediately since G[E] is 0
              findOrg(S...) //G[S] is 1, relabelled with 4, gives rise to 4 calls
                 findOrg(N...) //returns immediately since G[N] is 4
                 findOrg(E...) //G[E] is 1, relabelled with 4, gives rise to 4 calls
                    findOrg(N...) //returns immediately since G[N] is 0
                    findOrg(E...) //returns immediately since G[E] is 0
                    findOrg(S...) //returns immediately since G[S] is outside grid
                    findOrg(W...) //returns immediately since G[W] is 4
                 findOrg(S...) //returns immediately since G[S] is outside grid
                 findOrg(W...) //returns immediately since G[W] is outside grid
              findOrg(W...) //returns immediately since G[W] is outside grid
           findOrg(W...) //returns immediately since G[W] is outside grid
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When the call findOrg(2, 0, ...) finally returns, G would be changed to this:
 
        0 2 0 3 3 3 0
        0 0 3 3 0 0 0
        4 4 0 3 0 0 1
        4 0 1 0 0 1 1
        4 4 0 0 0 1 0
 

The third organism (labeled 4) has been identified. Note that each cell in the organism gave rise to four calls to 
findOrg.

6.10 Finding a Path Through a Maze
Consider the following diagram that represents a maze:
 
        ##########
        # #   #  #
        # # # ## #
        #   #    #
        # ###### #
        # # #S##
        #     ## #
        ##########
 

Problem: Starting at S and moving along the open spaces, try to find a way out of the maze. The following shows 
how to do it with x’s marking the path:
 
        ##########
        # #xxx#  #
        # #x#x## #
        #xxx#xxxx#
        #x######x#
        #x# #x##xx
        #xxxxx## #
        ##########
 

We want to write a program that, given a maze, determines whether a path exists. If one exists, mark the path with 
x’s.

Given any position in the maze, there are four possible directions in which one can move: North (N), East (E), 
South (S), and West (W). You will not be able to move in a particular direction if you meet a wall. However, if there is 
an open space, you can move into it.

In writing the program, we will try the directions in the order N, E, S, and W. We will use the following strategy:
 
        try N
        if there is a wall, try E
        else if there is a space, move to it and mark it with x
 

Whenever we go to an open space, we repeat this strategy. So, for instance, when we go East, if there is a space, 
we mark it and try the four directions from this new position.
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Eventually, we will get out of the maze, or we will reach a dead-end position. For example, suppose we get to the 
position marked C:
 
        ##########
        #C#   #  #
        #B# # ## #
        #A  #    #
        #x###### #
        #x# #x##
        #xxxxx## #
        ##########
 

There are walls in all directions except South, from which we came. In this situation, we go back to the previous 
position and try the next possibility from there. This is called backtracking. In this example, we go back to the position 
south of C (call this B).

When we were at B, we would have gotten to C by trying the North direction. Since this failed, when we go back to 
B, we will try the “next” possibility, that is, East. This fails since there is a wall. So, we try South; this fails since we have 
already been there. Finally, we try West, which fails since there is a wall.

So, from B, we go back (we say backtrack) to the position from which we moved to B (call this A).
When we backtrack to A, the “next” possibility is East. There is a space, so we move into it, mark it with x, and try 

the first direction (North) from there.
When we backtrack from a failed position, we must “unmark” that position; that is, we must erase the x. This is 

necessary since a failed position will not be part of the solution path.
How do we backtrack? The recursive mechanism will take care of that for us, in a similar manner to the “counting 

organisms” problem. The following shows how:
 
        int findPath(P) { //find a path from position P
           if P is outside the maze, return 0
           if P is at a wall, return 0
           if P was considered already, return 0
           //if we get here, P is a space we can move into
           mark P with x
           if P is on the border of the maze, we are out of the maze; return 1
           //try to extend the path to the North; if successful, return 1
           if (findPath(N)) return 1;
           //if North fails, try East, then South, then West
           //however, if North succeeds, there is no need to try other directions
           if (findPath(E)) return 1;
           if (findPath(S)) return 1;
           if (findPath(W)) return 1;
           //if all directions fail, we must unmark P and backtrack
           mark P with space
           return 0; //we have failed to find a path from P
        } //end findPath 
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6.10.1 Writing the Program
First we must determine how the maze data will be supplied. In the previous example, the maze consists of eight rows 
and ten columns. If we represent each wall by 1 and each space by 0, the maze is represented by the following:
 
        1 1 1 1 1 1 1 1 1 1
        1 0 1 0 0 0 1 0 0 1
        1 0 1 0 1 0 1 1 0 1
        1 0 0 0 1 0 0 0 0 1
        1 0 1 1 1 1 1 1 0 1
        1 0 1 0 1 0 1 1 0 0
        1 0 0 0 0 0 1 1 0 1
        1 1 1 1 1 1 1 1 1 1
 

The start position, S, is at row 6, column 6. The first line of data will specify the number of rows and columns of 
the maze and the coordinates of S. Thus, the first line of data will be as follows:
 
        8 10 6 6
 

This will be followed by the maze data, shown earlier.
When we need to mark a position with an x, we will use the value 2.
Our program will read data from the file maze.in and send output to maze.out. The complete program is shown 

as Program P6.2. When this program is run with the previous data, it produces the following output:
 
        ##########
        # #xxx#  #
        # #x#x## #
        #xxx#xxxx#
        #x######x#
        #x# #S##xx
        #xxxxx## #
        ########## 

Program P6.2

        #include <stdio.h>
        #define MaxRow 20
        #define MaxCol 20
 
        int m, n, sr, sc;
        int G[MaxRow+1][MaxCol+1];
 
        int main() {
           void getData(FILE *);
           int findPath(int, int);
           void printMaze(FILE *);
 
           FILE * in = fopen("maze.in", "r");
           FILE * out = fopen("maze.out", "w");
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           getData(in);
           if (findPath(sr, sc)) printMaze(out);
           else fprintf(out, "\nNo solution\n");
 
           fclose(in);
           fclose(out);
        } //end main
 
        void getData(FILE * in) {
           fscanf(in, "%d %d %d %d", &m, &n, &sr, &sc);
           for (int r = 1; r <= m; r++)
              for (int c = 1; c <= n; c++)
                 fscanf(in, "%d", &G[r][c]);
        } //end getData
             
        int findPath(int r, int c) {
           if (r < 1 || r > m || c < 1 || c > n) return 0;
           if (G[r][c] == 1) return 0; //into a wall
           if (G[r][c] == 2) return 0; //already considered
 
           // else G[r][c] = 0;
           G[r][c] = 2; //mark the path
           if (r == 1 || r == m || c == 1 || c == n) return 1;
           //path found - space located on the border of the maze
 
           if (findPath(r-1, c)) return 1;
           if (findPath(r, c+1)) return 1;
           if (findPath(r+1, c)) return 1;
           if (findPath(r, c-1)) return 1;
           G[r][c] = 0; //no path found; unmark
           return 0;
        } //end findPath
 
        void printMaze(FILE * out) {
           for (int r = 1; r <= m; r++) {
              for (int c = 1; c <= n; c++)
                 if (r == sr && c == sc) fprintf(out,"S");
                 else if (G[r][c] == 0) fprintf(out," ");
                 else if (G[r][c] == 1) fprintf(out,"#");
                 else fprintf(out,"x");
              fprintf(out, "\n");
           }
        } //end printMaze
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EXERCISES 6

1.	 Write an iterative function to return the n th Fibonacci number.

2.	P rint an integer with commas separating the thousands. For example, given 12058,  
print 12,058.

3.	 A is an array containing n integers. Write a recursive function to find the number of times a 
given integer x appears in A.

4.	 Write a recursive function to implement selection sort.

5.	 Write a recursive function to return the largest element in an integer array.

6.	 Write a recursive function to search for a given number in an int array.

7.	 Write a recursive function to search for a given number in a sorted int array.

8.	 What output is produced by the call W(0) of the following function?
 
void W(int n) {
   printf("%3d", n);
   if (n < 10) W(n + 3);
   printf("%3d", n);
}
 

9.	 What output is produced by the call S('C') of the following function?
 
void S(char ch) {
   if (ch < 'H') {
      S(++ch);
      printf("%c ", ch);
   }
}
 

10.	I n 9, what output will be produced if the statements within the if statement are 
interchanged?

11.	I n 9, what will happen if ++ch is changed to ch++?

12.	 Write a recursive function, length, that, given a pointer to a linked list, returns the number of 
nodes in the list.

13.	 Write a recursive function, sum, that, given a pointer to a linked list of integers, returns the 
sum of the values at the nodes of the list.

14.	 Write a recursive function that, given a pointer to the head of a linked list of integers,  
returns 1 if the list is in ascending order and 0 if it is not.
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15.	 What is printed by the call fun(18, 3) of the following recursive function?
 
void fun(int m, int n) {
   if (n > 0) {
      fun(m-1, n-1);
      printf("%d ", m);
      fun(m+1, n-1);
   }
}
 

16.	 What is returned by the call test(7, 2) of the following recursive function?
 
int test(int n, int r) {
   if (r == 0) return 1;
   if (r == 1) return n;
   if (r == n) return 1;
   return test(n-1, r-1) + test(n-1, r);
}
 

17.	 Write a recursive function that takes an integer argument and prints the integer with one 
space after each digit. For example, given 7583, it prints 7 5 8 3 .

18.	 Consider points (m, n) in the usual Cartesian coordinate system where m and n are positive 
integers. In a north-east path from point A to point B, one can move only up and only right  
(no down or left movements are allowed).  Write a function that, given the coordinates of any 
two points A and B, returns the number of north-east paths from A to B.

19.	T he eight-queens problem can be stated as follows: place 8 queens on a chess board so that 
no two queens attack each other. Two queens attack each other if they are in the same row, 
same column, or same diagonal. Clearly, any solution must have the queens in different rows 
and different columns.

One approach to solving the problem is as follows. Place the first queen in the first column of the first 
row. Next, place the second queen so that it does not attack the first. If this is not possible, go back and 
place the first queen in the next column and try again.

After the first two queens have been placed, place the third queen so that it does not attack the first two. 
If this is not possible, go back and place the second queen in the next column and try again.

At each step, try to place the next queen so that it does not conflict with those already placed. If you 
succeed, try to place the next queen. If you fail, you must backtrack to the previously placed queen and 
try the next possible column. If all columns have been tried, you must backtrack to the queen before this 
queen and try the next column for that queen.

The idea is similar to finding a path through a maze. Write a program to solve the eight-queens problem.  
Use recursion to implement the backtracking.
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Chapter 7

Random Numbers, Games,  
and Simulation

In this chapter, we will explain the following:

Random numbers•	

The difference between random and pseudorandom numbers•	

How to generate random numbers on a computer•	

How to write a program to play a guessing game•	

How to write a program to drill a user in arithmetic•	

How to write a program to play Nim•	

How to simulate the collection of bottle caps to spell a word•	

How to simulate queues in real-life situations•	

How to estimate numerical values using random numbers•	

7.1 Random Numbers
If you were to throw a six-sided die 100 times, each time writing down the number that shows, you would have written 
down 100 random integers uniformly distributed in the range 1 to 6.

If you tossed a coin 144 times and, for each toss, wrote down 0 (for heads) or 1 (for tails), you would have written 
144 random integers uniformly distributed in the range 0 to 1.

If you were standing by the roadside and, as vehicles passed, you noted the last two digits of the registration 
number (for those vehicles that have at least two digits), you would have noted random integers uniformly distributed 
in the range 0 to 99.

Spin a roulette wheel (with 36 numbers) 500 times. The 500 numbers that appear are random integers uniformly 
distributed in the range 1 to 36.

The word random implies that any outcome is completely independent of any other outcome. For instance,  
if a 5 showed on one throw of the die, then this has no bearing on what would show on the next throw. Similarly,  
a 29 on the roulette wheel has no effect whatsoever on what number comes up next.

The term uniformly distributed means that all values are equally likely to appear. In the case of the die, you have 
the same chance of throwing a 1 or a 6 or any other number. And, in a large number of throws, each number will occur 
with roughly the same frequency.
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In the case of a coin, if we toss it 144 times, we would expect heads to appear 72 times and tails to appear 72 times. 
In practice, these exact values are not normally obtained, but if the coin is a fair one, then the values would be close 
enough to the expected values to pass certain statistical tests. For example, a result of 75 heads and 69 tails is close 
enough to the expected value of 72 to pass the required tests.

Random numbers are widely used in simulating games of chance (such as games involving dice, coins, or cards), 
in playing educational games (such as creating problems in arithmetic), and in modeling real-life situations on a 
computer.

For example, if we want to play a game of Snakes and Ladders, throwing the die is simulated by the computer 
generating a random number from 1 to 6. Suppose we want to create problems in addition for a child, using only the 
numbers from 1 to 9. For each problem, the computer can generate two numbers (for example, 7 and 4) in the range  
1 to 9 and give these to the child to add.

But suppose we want to simulate the traffic pattern at a road intersection governed by traffic lights. We want to 
time the lights in such a way that the waiting time in both directions is as short as possible. To do the simulation on 
a computer, we will need some data as to how fast vehicles arrive at and leave the intersection. This must be done by 
observation in order for the simulation to be as useful as possible.

Suppose it is determined that a random number of vehicles (between 5 and 15) going in direction 1 arrive at 
the intersection every 30 seconds. Also, between 8 and 20 vehicles arrive every 30 seconds going in direction 2. The 
computer can simulate this situation as follows:

	 1.	 Generate a random number, r1, in the range 5 to 15.

	 2.	 Generate a random number, r2, in the range 8 to 20.

r1 and r2 are taken as the numbers of vehicles that arrive at the intersection from each direction in the first 30 
seconds. The process is repeated for successive 30-second periods.

7.2 Random and Pseudorandom Numbers
The value that appears when a die is thrown has no effect on what comes up on the next throw. We say that the throws 
have independent outcomes and the values thrown are random integers in the range 1 to 6. But when a computer is 
used to generate a sequence of random numbers in a given interval, it uses an algorithm.

Normally, the next number in the sequence is generated from the previous number in a prescribed and 
predetermined manner. This means the numbers in the sequence are not independent of each other, like they are 
when we throw a die, for instance. However, the numbers generated will pass the usual set of statistical tests for 
randomness, so, to all intents and purposes, they are random numbers. But, because they are generated in a very 
predictable manner, they are usually called pseudorandom numbers.

In modeling many types of situations, it does not usually matter whether we use random or pseudorandom 
numbers. In fact, in most applications, pseudorandom numbers work quite satisfactorily. However, consider an 
organization running a weekly lottery where the winning number is a six-digit number. Should a pseudorandom 
number generator be used to provide the winning number from one week to the next?

Since the generator produces these numbers in a completely predetermined way, it would be possible to predict 
the winning numbers for weeks to come. Clearly, this is not desirable (unless you are in charge of the random number 
generator!). In this situation, a truly random method of producing the winning numbers is needed.

7.3 Generating Random Numbers by Computer
In what follows, we make no distinction between random and pseudorandom numbers since, for most practical 
purposes, no distinction is necessary. Almost all programming languages provide some sort of random number 
generator, but there are slight differences in the way they operate.
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In C, we can work with random numbers using the predefined constant RAND_MAX and the functions rand and 
srand. To use them, your program must be preceded by:

        #include <stdlib.h>

The value of RAND_MAX is the maximum possible value that can be returned by rand. On some systems, it is 
2147483647, which is the largest signed integer representable in 32 bits. On others, it is 32767, which is the largest 
signed integer representable in 16 bits.

The prototype for rand is:

        int rand(void)

It returns the next random number in the series. The value is in the range 0 to RAND_MAX.
The prototype for srand is:

        void srand(unsigned int seed)

It uses seed to establish a starting point for a new series of random numbers. We say we must seed the random 
number generator. Normally, you must call srand to seed the generator before using rand. If you call rand before 
srand, it uses the value 1 as a default seed.

In practice, we would hardly ever use rand in the form provided. This is because, most times, we would need 
random numbers in a specific range (like 1 to 36, say) rather than 0 to 32767. However, we can easily write a function 
that uses rand and srand to provide random numbers from m to n where m < n. Here it is:

        int random(int m, int n) {
        //returns a random integer from m to n, inclusive
           int offset = rand() / (RAND_MAX + 1.0) * (n – m + 1);
           return m + offset;
        } //end random

Programming note: Some C libraries may contain a function called random. To avoid conflict, you can use another 
name for the previous function.

Before using random, we must seed the generator. We can do this in main with this:

        srand(101); //an arbitrary integer

In random, it is important to use 1.0 instead of 1. Since rand returns an integer and RAND_MAX + 1 is also an 
integer, if 1 is used, an integer division would be performed. This would always give 0 since the maximum value of 
rand is RAND_MAX. The value returned by random would always be m.

However, using (the double constant) 1.0 causes RAND_MAX + 1.0 to be evaluated as double, in turn causing 
the value returned by rand to be converted to double and a floating-point division to be performed. The value of 
(n - m + 1) is also converted to double and the multiplication performed. The result obtained is truncated before 
being assigned to the integer variable offset. In effect, the following construct returns a random fraction, f, between 0
(inclusive) and 1 (exclusive):

        rand() / (RAND_MAX + 1.0)
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To illustrate how random works, suppose m = 5 and n = 20. There are 20 - 5 + 1 = 16 numbers in the range 5 to 20.  
We calculate offset as follows, noting that the smallest value of f is 0.0 and the largest is 0.9999 (to four decimal places):

	 1.	 f is multiplied by 16 to give a value from 0.0 to 15.99 (to two decimal places).

	 2.	 When assigned to offset (an int), the fraction is discarded so offset assumes a value 
between 0 and 15.

5 is added to offset, giving a value between 5 and 20. This is the value returned by random.
Another reason for using 1.0 is that, on many systems, the value of RAND_MAX is the largest integer on the system 

(typically, 32767 for a 16-bit int). If we tried to add the integer 1 to it, overflow would occur since we would be trying to 
exceed the largest value that can be stored.

One final note: when we use a given seed (101, say), this determines the sequence of numbers that will be 
generated. If we rerun the program with the same seed, the same sequence will be generated. We can change the 
seed, but this will entail changing the program. We can ask the user to enter a seed, but this puts a burden on the user 
and may confuse her since she may not know the purpose of the number she is being asked to enter.

A common approach is to use the time function provided by C in time.h. In its simplest form, we can use:
 
        srand(time(0));
 

This uses the actual time at which the program is being run to seed the generator. Since this will be different each 
time the program is run, the sequence generated will be different.

Consider the following code that generates and prints 20 random numbers from 1 to 6:
 
        #include <stdio.h>
        #include <stdlib.h>
        int main() {
           int random(int, int);
           srand(101);
           for (int h = 1; h <= 20; h++) printf("%2d", random(1, 6));
           printf("\n\n");
        }
 

When run, it prints the following sequence of random numbers:
 
        1 3 3 6 4 3 4 1 1 6 5 3 4 4 2 5 4 6 5 4
 

Each call to random produces the next number in the sequence. Note that the sequence may be different on 
another computer or on the same computer using a different compiler.

If the code is run a second time, the same sequence will be produced since the seed, 101, is the same.
However, if we change srand(101) to srand(time(0)), two runs of the program will produce different sequences, 

as shown here:
 
        2 6 5 6 4 2 1 6 6 3 2 4 6 3 6 3 3 2 2 1
        5 5 2 3 4 3 6 4 4 2 1 5 1 3 4 3 6 1 1 5
 

Each time the program is run, a different sequence will be generated.
 

Programming note: Strictly speaking, in order to use the function time, you should have #include <time.h> 
at the head of your program. However, some compilers have a declaration for time in stdlib.h, so all you need is 
#include <stdlib.h>.
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7.4 A Guessing Game
To illustrate a simple use of random numbers, let’s write a program to play a guessing game. The program will “think” 
of a number from 1 to 100. You are required to guess the number using as few guesses as possible. The following is a 
sample run of the program. Underlined items are typed by the user:
 
        I have thought of a number from 1 to 100.
        Try to guess what it is.
 
        Your guess? 50
        Too low
        Your guess? 75
        Too high
        Your guess? 62
        Too high
        Your guess? 56
        Too low
        Your guess? 59
        Too high
        Your guess? 57
        Congratulations, you've got it!
 

As you can see, each time you guess, the program will tell you whether your guess is too high or too low and allow 
you to guess again.

The program will “think” of a number from 1 to 100 by calling random(1, 100). You will guess until you have 
guessed correctly or until you give up. You give up by entering 0 as your guess. Program P7.1 contains all the details.

Programming note: It is a good idea to remind the user that he has the option of giving up and how to do so.  
To this end, the prompt can be:
 
        Your guess (0 to give up)? 

Program P7.1

        #include <stdio.h>
        #include <stdlib.h>
        #include <time.h>
 
        int main() {
           int answer, guess, random(int, int);
 
           printf("\nI have thought of a number from 1 to 100.\n");
           printf("Try to guess what it is.\n\n");
 
           srand(time (0));
           answer = random(1, 100);
 
           printf("Your guess? ");
           scanf("%d", &guess);
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           while (guess != answer && guess != 0) {
              if (guess < answer) printf("Too low\n");
              else printf("Too high\n");
              printf("Your guess? ");
              scanf("%d", &guess);
           }
           if (guess == 0) printf("Sorry, answer is %d\n", answer);
           else printf("Congratulations, you've got it!\n");
        } //end main
 
        int random(int m, int n) {
        //returns a random integer from m to n, inclusive
           int offset = rand() / (RAND_MAX + 1.0) * (n - m + 1);
           return m + offset;
        } //end random 

7.5 Drills in Addition
We want to write a program to drill a user in simple arithmetic problems (Program P7.2). More specifically, we want 
to write a program to create addition problems for a user to solve. The problems will involve the addition of two 
numbers. But where do the numbers come from? We will let the computer “think” of the two numbers. By now,  
you should know that, in order to do this, the computer will generate two random numbers.

We also need to decide what size of numbers to use in the problems. This will determine, to some extent, how 
difficult the problems are going to be. We will use two-digit numbers, that is, numbers from 10 to 99. The program can 
be easily modified to handle numbers in a different range.

The program will begin by asking the user how many problems he wants to be given. The user will type the 
number required. He will then be asked how many attempts he wants to be given for each problem. He will enter this 
number. The program then proceeds to give him the requested number of problems.

The following is a sample run of the program. Underlined items are typed by the user; everything else is typed by 
the computer.
 
        Welcome to Problems in Addition
 
        How many problems would you like? 3
        Maximum tries per problem? 2
 
        Problem 1, Try 1 of 2
           80 + 75 = 155
        Correct, well done!
 
        Problem 2, Try 1 of 2
           17 + 29 = 36
        Incorrect, try again
 
        Problem 2, Try 2 of 2
           17 + 29 = 46
        Correct, well done!
 
        Problem 3, Try 1 of 2
           83 + 87 = 160
        Incorrect, try again
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        Problem 3, Try 2 of 2
           83 + 87 = 180
        Sorry, answer is 170
 
        Thank you for playing. Bye...
 

All the details are shown in Program P7.2.

Program P7.2

        #include <stdio.h>
        #include <stdlib.h>
        #include <time.h>
 
        int main() {
           int maxTries, numProblems, answer, response;
           int num1, num2, random(int, int);
 
           printf("\nWelcome to Problems in Addition\n\n");
           printf("How many problems would you like? ");
           scanf("%d", &numProblems);
           printf("Maximum tries per problem? ");
           scanf("%d", &maxTries);
 
           srand(time(0));
 
           for (int h = 1; h <= numProblems; h++) {
              num1 = random(10, 99);
              num2 = random(10, 99);
              answer = num1 + num2;
              for (int try = 1; try <= maxTries; try++) {
                 printf("\nProblem %d, Try %d of %d\n", h, try, maxTries);
                 printf("%5d + %2d = ", num1, num2);
                 scanf("%d", &response);
                 if (response == answer) {
                    printf("Correct, well done!\n");
                    break;
                 }
                 if (try < maxTries) printf("Incorrect, try again\n");
                 else printf("Sorry, answer is %d\n", answer);
              } //end for try
           } //end for h
           printf("\nThank you for playing. Bye...\n");
        } //end main
 
        int random(int m, int n) {
        //returns a random integer from m to n, inclusive
           int offset = rand() / (RAND_MAX + 1.0) * (n - m + 1);
           return m + offset;
        } //end random
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7.6 Nim
One version of the game called Nim is played between two people, A and B, say. Initially, there is a known number  
of matches (startAmount, say) on the table. Each player, in turn, is allowed to pick up any number of matches from  
1 to some agreed maximum (maxPick, say). The player who picks up the last match loses the game. For example,  
if startAmount is 20 and maxPick is 3, the game may proceed as follows:

A picks up 2, leaving 18 on the table.

B picks up 1, leaving 17 on the table.

A picks up 3, leaving 14 on the table.

B picks up 1, leaving 13 on the table.

A picks up 2, leaving 11 on the table.

B picks up 2, leaving 9 on the table.

A picks up 1, leaving 8 on the table.

B picks up 3, leaving 5 on the table.

A picks up 1, leaving 4 on the table.

B picks up 3, leaving 1 on the table.

A is forced to pick up the last match and, therefore, loses the game.
What is the best way to play the game? Obviously, the goal should be to leave your opponent with one match 

remaining on the table. Let’s call this a losing position. The next question to answer is, how many matches must you 
leave so that, no matter how many he picks up (within the rules of the game), you can leave him with one?

In this example, the answer is 5. Whether he picks up 1, 2, or 3, you can always leave him with 1. If he picks up 1, 
you pick up 3; if he picks up 2, you pick up 2; if he picks up 3, you pick up 1. So, therefore, 5 is the next losing position.

The next question is, how many matches must you leave so that, no matter how many he picks up (within the 
rules of the game), you can leave him with 5? The answer is 9. Try it!

And so on. Reasoning this way, we discover that 1, 5, 9, 13, 17, and so on, are all losing positions. In other words, 
if you can leave your opponent with any of these number of matches, you can force a win.

In this example, the moment B left A with 17 matches, B was in a position from which he could not lose, unless he 
became careless.

In general, losing positions are obtained by adding 1 to multiples of maxPick + 1. If maxPick is 3, multiples of 4 
are 4, 8, 12, 16, and so on. Adding 1 gives the losing positions 5, 9, 13, 17, and so on.

We will write a program in which the computer plays the best possible game of Nim. If it can force the user into a 
losing position, it will. If the user has forced it into a losing position, it will pick up a random number of matches and 
hope that the user makes a mistake.

If remain is the number of matches remaining on the table, how can the computer determine what is the best 
move to make?

If remain is less than or equal to maxPick, the computer picks up remain - 1 matches, leaving the user with 1. 
Otherwise, we perform this calculation:
 
        r = remain % (maxPick + 1)
 

If r is 0, remain is a multiple of maxPick + 1; the computer picks up maxPick matches, leaving the user in a losing 
position. In this example, if remain is 16 (a multiple of 4), the computer picks up 3, leaving the user with 13—a losing 
position.

If r is 1, the computer is in a losing position and picks up a random number of matches.
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Otherwise, the computer picks up r - 1 matches, leaving the user in a losing position. In this example, if remain 
is 18, r would be 2. The computer picks up 1, leaving the user with 17—a losing position.

This strategy is implemented in the function bestPick, part of Program P7.3 that pits the computer against a user 
in our version of Nim.

Program P7.3

        #include <stdio.h>
        #include <stdlib.h>
        #include <time.h>
 
        int main() {
           int remain, maxPick, userPick, compPick;
           int bestPick(int, int), min(int, int);
           printf("\nNumber of matches on the table? ");
           scanf("%d", &remain);
           printf("Maximum pickup per turn? ");
           scanf("%d", &maxPick);
           printf("\nMatches remaining: %d\n", remain);
 
           srand(time(0));
           while (1) { //do forever...well, until the game ends
              do {
                 printf("Your turn: ");
                 scanf("%d", &userPick);
                 if (userPick > remain)
                    printf("Cannot pick up more than %d\n", min(remain, maxPick));
                 else if (userPick < 1 || userPick > maxPick)
                    printf("Invalid: must be between 1 and %d\n", maxPick);
              } while (userPick > remain || userPick < 1 || userPick > maxPick);
              remain = remain - userPick;
              printf("Matches remaining: %d\n", remain);
              if (remain == 0) {
                 printf("You lose!!\n");
                 exit(0);
              }
              if (remain == 1) {
                 printf("You win!!\n");
                 exit(0);
              }
              compPick = bestPick(remain, maxPick);
              printf("I pick up %d\n", compPick);
              remain = remain - compPick;
              printf("Matches remaining: %d\n", remain);
              if (remain == 0) {
                 printf("You win!!\n");  exit(0);
              }
              if (remain == 1) {
                 printf("I win!!\n");  exit(0);
              }
           } //end while(1)
        } //end main
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        int bestPick(int remain, int maxPick) {
           int random(int, int);
           if (remain <= maxPick) return remain - 1; //put user in losing position
           int r = remain % (maxPick + 1);
           if (r == 0) return maxPick; //put user in losing position
           if (r == 1) return random(1, maxPick); //computer in losing position
           return r - 1; //put user in losing position
        } //end bestPick
 
        int min(int a, int b) {
           if (a < b) return a;
           return b;
        } //end min
 
        int random(int m, int n) {
        //returns a random integer from m to n, inclusive
           int offset = rand() / (RAND_MAX + 1.0) * (n - m + 1);
           return m + offset;
        } //end random
 

Note the use of the do...while statement for getting and validating the user’s play. The general form is as follows:
 
        do <statement> while (<expression>);
 

As usual, <statement> can be simple (one-line) or compound (enclosed in braces). The words do and while and 
the brackets and semicolon are required. The programmer supplies <statement> and <expression>. A do...while is 
executed as follows:

	 1.	 <statement> is executed.

	 2.	 <expression> is then evaluated; if it is true (nonzero), repeat from step 1. If it is false 
(zero), execution continues with the statement, if any, after the semicolon.

As long as <expression> is true, <statement> is executed. It is important to note that because of the nature of 
the construct, <statement> is always executed at least once. This is particularly useful in a situation where we want 
<statement> to be executed at least once. In this example, we need to prompt the user at least once for his play, hence 
the reason for do...while.

A sample run of P7.3 is shown here:
 
        Number of matches on the table? 30
        Maximum pickup per turn? 5
 
        Matches remaining: 30
        Your turn: 2
        Matches remaining: 28
        I pick up 3
        Matches remaining: 25
        Your turn: 3
        Matches remaining: 22
        I pick up 3
        Matches remaining: 19
        Your turn: 6
        Invalid: must be between 1 and 5
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        Your turn: 1
        Matches remaining: 18
        I pick up 5
        Matches remaining: 13
        Your turn: 4
        Matches remaining: 9
        I pick up 2
        Matches remaining: 7
        Your turn: 9
        Cannot pick up more than 5
        Your turn: 2
        Matches remaining: 5
        I pick up 4
        Matches remaining: 1
        I win!!
 

We note, in passing, that it would be useful to provide instructions for the game when it is run.

7.7 Non-uniform Distributions
So far, the random numbers we have generated have been uniformly distributed in a given range. For instance, when 
we generated numbers from 10 to 99, each number in that range had the same chance of being generated. Similarly, 
the call random(1, 6) will generate each of the numbers 1 to 6 with equal probability.

Now suppose we want the computer to “throw” a six-sided die. Since the computer can’t physically throw the 
die, it has to simulate the process of throwing. What is the purpose of throwing the die? It is simply to come up with a 
random number from 1 to 6. As we have seen, the computer knows how to do this.

If the die is fair, then each of the faces has the same chance of showing. To simulate the throwing of such a die, all 
we have to do is generate random numbers uniformly distributed in the range 1 to 6. We can do this with random(1, 6).

Similarly, when we toss a fair coin, heads and tails both have the same chance of showing. To simulate the tossing 
of such a coin on a computer, all we have to do is generate random numbers uniformly distributed in the range 1 to 2. 
We can let 1 represent heads and 2 represent tails.

In general, if all possible occurrences of an event (such as throwing a fair die) are equally likely, we can use 
uniformly distributed random numbers to simulate the event. However, if all occurrences are not equally likely, how 
can we simulate such an event?

To give an example, consider a biased coin, which comes up heads twice as often as tails. We say that the 
probability of heads is 2/3 and the probability of tails is 1/3. To simulate such a coin, we generate random numbers 
uniformly distributed in the range 1 to 3. If 1 or 2 occurs, we say that heads was thrown; if 3 occurs, we say that tails 
was thrown.

Thus, to simulate an event that has a nonuniform distribution, we convert it to one in which we can use 
uniformly distributed random numbers.

For another example, suppose that, for any day of a given month (June, say), we know the following, and only 
these conditions are possible:
 
                probability of sun = 4/9
                probability of rain = 3/9
                probability of overcast = 2/9
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We can simulate the weather for June as follows:
 
        for each day in June
           r = random(1, 9)
           if (r <= 4) "the day is sunny"
           else if (r <= 7) "the day is rainy"
           else "the day is overcast"
        endfor
 

We note, in passing, that we can assign any four numbers to sunny, any other three to rainy, and the remaining 
two to overcast.

7.7.1 Collecting Bottle Caps
The maker of a popular beverage is running a contest in which you must collect bottle caps to spell the word mango. 
It is known that in every 100 bottle caps, there are 40 As, 25 Os, 15 Ns, 15 Ms, and 5 Gs. We want to write a program to 
perform 20 simulations of the collection of bottle caps until we have enough caps to spell mango. For each simulation, 
we want to know how many caps were collected. We also want to know the average number of bottle caps collected 
per simulation.

The collection of a bottle cap is an event with nonuniform distribution. It is easier to collect an A than a G. To 
simulate the event, we can generate random numbers uniformly distributed in the range 1 to 100. To determine which 
letter was collected, we can use this:
 
        c = random(1, 100)
        if (c <= 40) we have an A
        else if (c <= 65) we have an O
        else if (c <= 80) we have an N
        else if (c <=95) we have an M
        else we have a G
 

In this example, if we want, we can scale everything by a factor of 5 and use the following:
 
        c = random(1, 20)
        if (c <= 8) we have an A
        else if (c <= 13) we have an O
        else if (c <= 16) we have an N
        else if (c <=19) we have an M
        else we have a G
 

Either version will work fine for this problem.
The gist of the algorithm for solving this problem is as follows:

 
        totalCaps = 0
        for sim = 1 to 20
           capsThisSim = perform one simulation
           print capsThisSim
           add capsThisSim to totalCaps
        endfor
        print totalCaps / 20
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The logic for performing one simulation is as follows:

        numCaps = 0
        while (word not spelt) {
           collect a cap and determine the letter
           mark the letter collected
           add 1 to numCaps
        }
        return numCaps

We will use an array cap[5] to hold the status of each letter: cap[0] for A, cap[1] for O, cap[2] for N, cap[3] for 
M, and cap[4] for G. A value of 0 indicates that the corresponding letter has not been collected. When we collect an N, 
say, we set cap[2] to 1; we do so similarly for the other letters. We have collected each letter at least once when all the 
elements of cap are 1.

All these details are incorporated in Program P7.4.

Program P7.4

        #include <stdio.h>
        #include <stdlib.h>
        #include <time.h>

        #define MaxSim 20
        #define MaxLetters 5

        int main() {
           int capsThisSim, totalCaps = 0, doOneSim();

           srand(time(0));
           printf("\nSimulation  Caps collected\n\n");
           for (int sim = 1; sim <= MaxSim; sim++) {
              capsThisSim = doOneSim();
              printf("%6d %13d\n", sim, capsThisSim);
              totalCaps += capsThisSim;
           }
           printf("\nAverage caps per simulation: %d\n", totalCaps/MaxSim);
        } //end main

        int doOneSim() {
           int cap[MaxLetters], numCaps = 0, mango(int []), random(int, int);
           for (int h = 0; h < MaxLetters; h++) cap[h] = 0;
           while (!mango(cap)) {
              int c = random(1, 20);
              if (c <= 8) cap[0] = 1;
              else if (c <= 13) cap[1] = 1;
              else if (c <= 16) cap[2] = 1;
              else if (c <= 19) cap[3] = 1;
              else cap[4] = 1;
              numCaps++;
           }
           return numCaps;
        } //end doOneSim
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        int mango(int cap[]) {
          for (int h = 0; h < MaxLetters; h++)
              if (cap[h] == 0) return 0;
           return 1;
        } //end mango
 
        int random(int m, int n) {
        //returns a random integer from m to n, inclusive
           int offset = rand() / (RAND_MAX + 1.0) * (n - m + 1);
           return m + offset;
        } //end random
 

When run, this program produced the following output:
 
        Simulation  Caps collected
             1            10
             2            10
             3            22
             4            12
             5            36
             6             9
             7            15
             8             7
             9            11
            10            70
            11            17
            12            12
            13            27
            14            10
            15             6
            16            25
            17             8
            18             7
            19            39
            20            71
        Average caps per simulation: 21
 

The results range from as few as 6 caps to as many as 71. Sometimes you get lucky, sometimes you don’t.
Each time the program is run, it will produce different results.

7.8 Simulation of Real-Life Problems
The computer can be used to answer certain questions about many real-life situations by using simulation. The 
process of simulation allows us to consider different solutions to a problem. This enables us to choose, with 
confidence, the best alternative for a given situation.
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However, before the computer simulation is done, we need to collect data to enable the simulation to be as 
realistic as possible. For example, if we want to simulate serving customers at a bank, we would need to know (or at 
least estimate) the following:

The time, •	 t1, between arrivals of customers in the queue

The time, •	 t2, to serve a customer

Of course, t1 could vary greatly. It would depend, for instance, on the time of the day; at certain times, customers 
arrive more frequently than at other times. Also, different customers have different needs, so t2 would vary from one 
customer to the next. However, by observing the system in operation for a while, we can usually make assumptions 
like the following:

•	 t1 varies randomly between one and five minutes.

•	 t2 varies randomly between three and ten minutes.

Using these assumptions, we can do the simulation to find out how the queue length varies when there are  
2, 3, 4, …, and so on, service counters. We assume that there is one queue; the person at the head of the queue goes to 
whichever counter first becomes available. In practice, a bank usually assigns more counters at peak periods than at 
slow periods. In this case, we can do the simulation in two parts, using the assumptions that apply for each period.

These are other situations in which a similar method of simulation applies:

•	 Checkout counters at supermarkets or stores: We are normally interested in a compromise 
between the number of checkout counters and the average queue length. The fewer counters 
we have, the longer the queue will be. However, having more counters means more machines 
and more employees. We want to find the best compromise between the cost of operation and 
service to customers.

•	 Gasoline stations: How many pumps will best serve the needs of the customers?

T•	 raffic lights: What is the best timing of the lights so that the average length of the queues in all 
directions is kept to a minimum? In this case, we would need to gather data such as follows:

How often do cars arrive from direction 1 and from direction 2? The answer to this might •	
be something like this:

Between 5 and 15 cars arrive every minute from direction 1.

Between 10 and 30 cars arrive every minute from direction 2.

How fast can cars leave in direction 1 and in direction 2? The answer might be as follows:•	

20 cars can cross the intersection in direction 1 in 30 seconds.

30 cars can cross the intersection in direction 2 in 30 seconds.

We assume, in this simple situation, that turning is not allowed.

7.9 Simulating a Queue
Consider the situation at a bank or supermarket checkout, where customers arrive and must queue for service. 
Suppose there is one queue but several counters. If a counter is free, the person at the head of the queue goes to it. If 
all counters are busy, the customers must wait; the person at the head of the queue goes to the first available counter.
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To illustrate, suppose there are two counters; we denote them by C1 and C2. To perform the simulation, we need 
to know the frequency with which customers arrive and the time it takes to serve a customer. Based on observation 
and experience, we may be able to say the following:

The time between customer arrivals varies randomly from one to five minutes.•	

The time to serve a customer varies randomly from three to ten minutes.•	

For the simulation to be meaningful, this data must be close to what occurs in practice. As a general rule, a 
simulation is only as good as the data on which it is based.

Suppose we begin at 9 a.m. We can simulate the arrival of the first ten customers by generating ten random 
numbers from 1 to 5, like this:
 
        3 1 2 4 2 5 1 3 2 4
 

This means the first customer arrives at 9:03, the second at 9:04, the third at 9:06, the fourth at 9:10, and so on.
We can simulate the service time for these customers by generating ten random numbers from 3 to 10, like this:

 
        5 8 7 6 9 4 7 4 9 6
 

This means the first customer spends five minutes at the teller, the second spends eight minutes, the third spends 
seven minutes, and so on.

Table 7-1 shows what happens to these ten customers.

The first customer arrives at 9:03 and goes straight to C1. His service time is five minutes, so he •	
will leave C1 at 9:08.

The second customer arrives at 9:04 and goes straight to C2. His service time is 8 minutes,  •	
so he will leave C2 at 9:12.

Table 7-1.  Tracking Ten Customers

Start Service Wait

Customer Arrives Service Counter Time Departs Time

1 9:03 9:03 C1 5 9:08 0

2 9:04 9:04 C2 8 9:12 0

3 9:06 9:08 C1 7 9:15 2

4 9:10 9:12 C2 6 9:18 2

5 9:12 9:15 C1 9 9:24 3

6 9:17 9:18 C2 4 9:22 1

7 9:18 9:22 C2 7 9:29 4

8 9:21 9:24 C1 4 9:28 3

9 9:23 9:28 C1 9 9:37 5

10 9:27 9:29 C2 6 9:35 2
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The third customer arrives at 9:06. At this time, both C1 and C2 are busy so he must wait.  •	
C1 will be the first to become free at 9:08. This customer will begin service at 9:08. His service 
time is seven minutes, so he will leave C1 at 9:15. This customer had to wait in the queue for 
ten minutes.

The fourth customer arrives at 9:10. At this time, both C1 and C2 are busy, so he must wait. •	
C2 will be the first to become free at 9:12. This customer will begin service at 9:12. His service 
time is six minutes, so he will leave C2 at 9:18. This customer had to wait in the queue for two 
minutes.

And so on. Work through the rest of the table to make sure you understand how those values are obtained.
Also observe that once the tellers started serving, they had no idle time. As soon as one customer left, another 

was waiting to be served.

7.9.1 Programming the Simulation
We now show how to write a program to produce Table 7-1. First we observe that it is no more difficult to write the 
program for several counters than it is for two. Hence, we will assume that there are n (n < 10) counters.

We will use an array depart[10] such that depart[c] will hold the time at which counter c will next become free. 
We will not use depart[0]. If we need to handle more than nine counters, we just need to increase the size of depart.

Suppose the customer at the head of the queue arrives at arriveTime. He will go to the first free counter. Counter 
c is free if arriveTime is greater than or equal to depart[c]. If no counter is free, he must wait. He will go to the 
counter with the lowest value in the array depart; suppose this is depart[m]. He will begin service at a time that is the 
later of arriveTime and depart[m].

The program begins by asking for the number of counters and the number of customers to be simulated. The 
simulation starts from time 0, and all times are relative to this. The details are shown in Program P7.5.

Program P7.5

        #include <stdio.h>
        #include <stdlib.h>
        #include <time.h>
         
        #define MaxCounters 9
 
        int main() {
           int  random(int, int), smallest(int[], int, int), max(int, int);
           int depart[MaxCounters + 1];
           int m, n, numCust, arriveTime, startServe, serveTime, waitTime;
 
           printf("\nHow many counters? ");
           scanf("%d", &n);
           printf("\nHow many customers? ");
           scanf("%d", &numCust);
 
           for (int c = 1; c <= n; c++) depart[c] = 0;
           srand(time(0));
           printf("\n                  Start          Service         Wait\n");
           printf("Customer Arrives Service Counter  Time   Departs Time\n\n");
           arriveTime = 0;
           for (int c = 1; c <= numCust; c++) {
              arriveTime += random(1, 5);
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              m = smallest(depart, 1, n);
              startServe = max(arriveTime, depart[m]);
              serveTime = random(3, 10);
              depart[m] = startServe + serveTime;
              waitTime = startServe - arriveTime;
              printf("%5d %8d %7d %6d %7d %8d %5d\n",
                 c, arriveTime, startServe, m, serveTime, depart[m], waitTime);
           } //end for
        } //end main
 
        int smallest(int list[], int lo, int hi) {
        //returns the subscript of the smallest value in list
           int k = lo;
           for (int h = lo + 1; h <= hi; h++)
              if (list[h] < list[k]) k = h;
           return k;
        } //end smallest
 
        int max(int a, int b) {
           if (a > b) return a;
           return b;
        } //end max
 
        int random(int m, int n) {
        //returns a random integer from m to n, inclusive
           int offset = rand() / (RAND_MAX + 1.0) * (n - m + 1);
           return m + offset;
        } //end random
 

A sample run of Program P7.5 is shown here:
 
        How many counters? 2
 
        How many customers? 10
 
                          Start          Service         Wait
        Customer Arrives Service Counter  Time   Departs Time
 
            1        3       3      1       8       11     0
            2        7       7      2       9       16     0
            3       10      11      1       9       20     1
            4       11      16      2       4       20     5
            5       14      20      1       5       25     6
            6       19      20      2       9       29     1
            7       23      25      1       7       32     2
            8       26      29      2       8       37     3
            9       29      32      1       7       39     3
           10       33      37      2       6       43     4
 

As you can see, the waiting time is reasonably short. However, if you run the simulation with 25 customers, you 
will see that the waiting time increases appreciably. What if we added another counter? With simulation, it’s easy to 
test the effect of this without actually having to buy another machine or hire another employee.
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In this case, all we have to do is enter 3 and 25 for the number of counters and customers, respectively. When 
we do, we will find that there is very little waiting time. We urge you to experiment with different data—counters, 
customers, arrival times, and service times—to see what happens.

7.10 Estimating Numerical Values Using Random Numbers
We have seen how random numbers can be used to play games and simulate real-life situations. A less obvious use 
is to estimate numerical values that may be difficult or cumbersome to calculate. We will show how to use random 
numbers to estimate the square root of a number and p (pi).

7.10.1 Estimating
We use random numbers to estimate the square root of 5 based on the following:

It is between 2 and 3.•	

•	 x is less than 5  if x2 is less than 5.

Random numbers, with fractions, between 2 and 3 are generated. A count is kept of those •	
numbers that are less than 5 .

Let •	 maxCount be the total number of random numbers generated between 2 and 3. The user 
will supply maxCount.

Let •	 amountLess be the count of those numbers less than 5 .

An approximation to •	 5  is given by 2 +
amountLess

maxCount
.

To understand the idea behind the method, consider the line segment between 2 and 3 and let the point r 
represent the square root of 5.

If we imagine the line between 2 and 3 completely covered with dots, we would expect that the number of dots 
between 2 and r would be proportional to the length of that segment. In general, the number of dots falling on any line 
segment would be proportional to the length of that segment—the longer the segment, the more dots will fall on it.

Now, each random number between 2 and 3 represents a dot on that line. We would expect that the more 
numbers we use, the more accurate would be our statement that the length of the line between 2 and r is proportional 
to the number of numbers falling on it and, hence, the more accurate our estimate.

Program P7.6 calculates an estimate for 5  based on the above explanation.
When run with 1,000 numbers, this program gave 2.234 as the square root of 5. The value of 5  is 2.236 to three 

decimal places.

Program P7.6

        #include <stdio.h>
        #include <stdlib.h>
        #include <time.h>
 

5
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        int main() {
           int maxCount, amountLess;
           double r;
 
           printf("\nHow many numbers to use? ");
           scanf("%d", &maxCount);
 
           srand(time(0));
           amountLess = 0;
           for (int h = 1; h <= maxCount; h++) {
              r = 2 + rand() / (RAND_MAX + 1.0);
              if (r * r < 5) ++amountLess;
           }
           printf("\nAn approximation to the square root of 5 is %5.3f\n",
                       2 + (double) amountLess / maxCount);
        } //end main 

7.10.2 Estimating p
Consider Figure 7-1, which shows a circle within a square.

Figure 7-1.  Circle within a square

Figure 7-2.  Circle within a square after stabbing with pencil

If you close your eyes and keep stabbing at the diagram repeatedly with a pencil, you may end up with something 
like Figure 7-2 (considering only the dots that fall within the diagram).

Note that some dots fall inside the circle and some fall outside the circle. If the dots were made “at random,” 
it seems reasonable to expect that the number of dots inside the circle is proportional to the area of the circle—the 
larger the circle, the more dots will fall inside it.
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Based on this, we have the following approximation:

area of circle

area of square

number of dots inside circle

number of d
=

oots inside square

Note that the number of dots inside the square also includes those inside the circle. If we imagine the entire 
square filled with dots, then the previous approximation will be quite accurate. We now show how to use this idea to 
estimate p.

Consider Figure 7-3.

C is a quarter circle of radius 1; S is a square of side 1.

Area of C=
π
4

Area of S = 1.

A point (x, y) within C satisfies x2 + y2 £ 1, x ³ 0, y ³ 0.

A point (x, y) within S satisfies 0 £ x £ 1, 0 £ y £ 1.

Suppose we generate two random fractions, that is, two values between 0 and 1; call these values x and y.
Since 0 £ x £ 1 and 0 £ y £ 1, it follows that the point (x, y) lies within S. This point will also lie within C if x2 + y2 £ 1.
If we generate n pairs of random fractions, we have, in fact, generated n points within S. For each of these points, 

we can determine whether the point lies with C. Suppose m of these n points fall within C. From our discussion 
earlier, we can assume that the following approximation holds:

The area of C is π
4

and the area of S is 1. So, we have this:

Hence:                π =
4m

n
.

Based on this, we write Program P7.7 to estimate p.

area of C

area of S

m

n
=

π
4

=
m

n

S

C

(1, 1)(0, 1)

(0, 0) (1, 0)

Figure 7-3.  Quarter circle and a square
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Program P7.7

        #include <stdio.h>
        #include <stdlib.h>
 
        int main() {
           int inS, inC = 0;
           double x, y;
 
           printf("\nHow many numbers to use? ");
           scanf("%d", &inS);
 
           srand(time(0));
           for (int h = 1; h <= inS; h++) {
              x = rand() / (RAND_MAX + 1.0);
              y = rand() / (RAND_MAX + 1.0);
              if (x * x + y * y <= 1) inC++;
           }
           printf("\nAn approximation to pi is %5.3f\n", 4.0 * inC / inS);
        }
 

The value of p to three decimal places is 3.142. When run with 1,000 numbers, this program gave 3.132 as an 
approximation to p. When run with 2,000 numbers, it gave 3.140 as the approximation.

EXERCISES 7

1.	 Write a program to request two numbers, m and n, and print 25 random numbers from m to n.

2.	E xplain what you need to do so that the program in exercise 1 will produce different numbers 
each time it is run for the same values of m and n.

3.	M odify Program P7.1 to play several games in one run. After each game, ask the user if he 
wants to play another.

4.	M odify Program P7.2 to incorporate a scoring system. For example, for two attempts at a 
problem, you can give 2 points for a correct answer on the first attempt and 1 point for a 
correct answer on the second attempt.

5.	M odify Program P7.2 to give a user problems in subtraction.

6.	M odify Program P7.2 to give a user problems in multiplication.

7.	R ewrite Program P7.2 so that it presents the user with a menu that allows her to choose 
what kinds of problems she gets (addition, subtraction, or multiplication).

8.	 Write a program to simulate 1,000 throws of a die and determine the number of 1s, 2s, 3s, 
4s, 5s, and 6s that show. Write the program (a) without using an array and (b) using an array.

9.	 Write a program to simulate the weather for 60 days using the probabilities in Section 7.7.

10.	I n the manufacture of electric bulbs, the probability that a bulb is defective is 0.01. Simulate 
the manufacture of 5,000 bulbs, indicating how many are defective.
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11. a die is weighted such that 1s and 5s come up twice as often as any other number. simulate 
1,000 throws of this die, indicating the frequency with which each number occurs.

12. modify program p7.5 to calculate the average waiting time for customers and the total idle 
time for each counter.

13. one-zero is a game that can be played among several players using a six-sided die. on his 
turn, a player can throw the die as many times as he wants. his score for that turn is the  
sum of the numbers he throws provided he does not throw a 1. if he throws a 1, his score  
is 0. suppose a player decides to adopt the strategy of ending his turn after seven throws.  
(of course, if he throws a 1 before the seventh throw, he must end his turn.) Write a program 
to play ten turns using this strategy. For each turn, print the score obtained. also, print the 
average score for the ten turns.

Generalize the program to request values for numTurns and maxThrowsPerTurn and print the  
results as shown earlier.

14. Write a program to simulate the game of Snakes and Ladders. the board consists of 100 
squares. snakes and ladders are input as ordered pairs of numbers, m and n. For example, 
the pair 17 64 means that there is a ladder from 17 to 64, and the pair 99 28 means that 
there is a snake from 99 to 28.

simulate the playing of 20 games, each game lasting a maximum of 100 moves. print the  
number of games that were completed in the 100 moves and the average number of moves per  
game for completed games.

15. Write a program to play a modified game of nim (in section 7.6) in which there are two heaps 
of matches and a player, on his turn, may choose from either one. however, in this case, a 
player wins if he picks up the last match.

16. using the traffic lights data section 7.9, write a program to simulate the situation at the lights 
for a 30-minute period. print the number of cars in each queue each time the light changes.

17. Write a program to estimate the square root of 59.

18. Write a program to read a positive integer n and estimate the square root of n.

19. Write a program to read a positive integer n and estimate the cube root of n.

20. Write a program to simulate the collection of bottle caps to spell apple. in every 100 caps, A
and E occur 40 times each, and P and L occur 10 times each. do 50 simulations and print the 
average number of caps per simulation.

21. the lotto requires people to pick seven numbers from the numbers 1 to 40. Write a program 
to randomly generate and print five sets of seven numbers each (one set per line). no number 
is to be repeated in any of the sets; that is, exactly 35 of the 40 numbers must be used. if a 
number ( p, say) is generated that has been used already, the first unused number after p is 
used. (assume that 1 follows 40.) For example, if 15 is generated but has been used already, 
16 is tried, but if this has been used, 17 is tried, and so on, until an unused number is found.
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22.	A  function f(x) is defined for 0 £ x £ 1, and such that 0 £ f(x) < 1 for all 0 £ x < 1. Write a 
program to estimate the integral of f(x) from 0 to 1. Hint: estimate the area under the curve 
by generating points (x, y), 0 £ x < 1, 0 £ y < 1.

23.	A  gambler pays $5 to play the following game. He throws two six-sided dice. If the sum of 
the two numbers thrown is even, he loses his bet. If the sum is odd, he draws a card from  
a standard pack of 52 playing cards. If he draws an ace, 3, 5, 7 or 9, he is paid the value of 
the card plus $5 (an ace counts as 1). If he draws any other card, he loses. Write a program 
to simulate the playing of 20 games and print the average amount won by the gambler  
per game.
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Chapter 8

Working with Files

In this chapter, we will explain the following:

How to read data from a file•	

How to send output to a file•	

The difference between text files and binary files•	

The difference between internal and external file names•	

•	 fopen and fclose

•	 getc and putc

•	 feof and ferror

•	 fgets and fputs

How to write a program to compare two text files•	

How to perform input/output with binary files•	

How to work with a binary file of records•	

What are random access files•	

How to create and retrieve records from random access files•	

What are indexed files•	

How to update a random access file using an index•	

8.1 Reading Data from a File
Almost anything we need to store on a computer must be stored in a file. We use text files for storing the kinds of 
documents we create with a text editor or word processor. We use binary files for storing photographic image files, 
sound files, video files, and files of “records.” In this chapter, we show how to create and manipulate text and binary 
files. We also explain how to work with that most versatile kind of file—a random access file.

So far, most of our programs have read data from the standard input stream (the keyboard) and written output 
to the standard output stream (the screen). A few have read from a file and sent output to a file. We now explain file 
input/output in more detail.
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Suppose we want to be able to read data from the file input.txt. The first thing we need to do is declare an 
identifier called a file pointer. This can be done with this statement:
 
        FILE * in;     // read as "file pointer in"
 

The word FILE must be spelled as shown, with all uppercase letters. The spaces before and after * may be 
omitted. So, you could write FILE* in, FILE *in, or even FILE*in. We have used the identifier in; any other will do, 
such as inf, infile, inputFile, or payData.

The second thing we must do is associate the file pointer in with the file input.txt and tell C we will be reading 
data from the file. This is done using the function fopen, as follows:
 
        in = fopen("input.txt", "r");
 

This says to “open the file input.txt for reading” ("r" indicates reading). We will use "w" if we want a file to be 
opened for writing, that is, to receive output. It is usual to combine the previous two statements into one, like this:
 
        FILE * in = fopen("input.txt", "r");
 

Once this is done, a data pointer will be positioned at the beginning of the file. This pointer indicates the position 
in the file from which C will start looking for the next data item. As items are read, the pointer moves through the file. 
You can imagine it always being positioned just after the last item read.

We can now write statements that will read data from the file. We will see how shortly.
It is up to us to ensure that the file exists and contains the appropriate data. If not, we will get an error message 

such as “File not found.” If we need to, we can specify the path to the file.
Suppose the file is located at C:\testdata\input.txt.
We specify that we will be reading data from the file with the following:

 
        FILE * in = fopen("C:\\testdata\\input.txt", "r");
 

Recall that the escape sequence \\ is used to represent \ within a string.

8.1.1 fscanf
Once the file has been opened for reading, we use the statement (more precisely, the function) fscanf to read data from 
the file. It is used in the same way as scanf except that the first argument is the file pointer in. For example, if num is int, 
the following statement will read an integer from the file input.txt (the one associated with in) and store it in num:
 
        fscanf(in, "%d", &num);
 

Note that the argument is the file pointer and not the name of the file. When we have finished reading data from 
the file, we should close it. This is done with fclose, as follows:
 
        fclose(in);
 

There is one argument, the file pointer (not the name of the file). This statement breaks the association of the file 
pointer in with the file input.txt. If we need to, we could now link the identifier in with another file (payData.txt, say) 
using this:
 
        in = fopen("payData.txt", "r");
 

Note that we do not repeat the FILE * part of the declaration, since in has already been declared as FILE *. 
Subsequent fscanf(in, ...) statements will read data from the file payData.txt.
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8.1.2 Finding the Average of Some Numbers in a File
To illustrate the use of fscanf, let’s write Program P8.1 to read several numbers from a file and find their average. 
Suppose the file is called input.txt and contains several positive integers with 0 indicating the end; here’s an example:
 
        24 13 55 32 19 0
 

Program P8.1 shows how to define the file as the place from which the data will be read and how to find  
the average.

Program P8.1

        //read numbers from a file and find their average; 0 ends the data
        #include <stdio.h>
        int main() {
           FILE * in = fopen("input.txt", "r");
           int num, sum = 0, n = 0;
           fscanf(in, "%d", &num);
           while (num != 0) {
              n = n + 1;
              sum = sum + num;
              fscanf(in, "%d", &num);
           }
           if (n == 0) printf("\nNo numbers entered\n");
           else {
              printf("\n%d numbers were entered\n", n);
              printf("The sum is %d\n", sum);
              printf("The average is %3.2f\n", (double) sum/n);
           }
           fclose(in);
        } //end main
 

If the data file contains this:
 
        24 13 55 32 19 0
 
the output will be:
 
        5 numbers were supplied
        The sum is 143
        The average is 28.60
 

The numbers in the file could be supplied in “free format”—any amount could be put on a line. For example,  
the sample data could have been typed on one line as shown earlier or as follows:
 
        24   13
        55 32
              19 0
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or
 
        24   13
        55
          32 19
        0
 
or
 
        24
        13
        55
        32
        19
        0
 

When you try to run this program, it may not run properly because it cannot find the file input.txt. This may 
be because the compiler is looking for the file in the wrong place. Some compilers expect to find the file in the same 
folder/directory as the program file. Others expect to find it in the same folder/directory as the compiler.

Try placing input.txt in each of these folders, in turn, and run the program. If this does not work, then you will 
need to specify the complete path to the file in the fopen statement. For example, if the file is in the folder data, which 
is in the folder CS10E, which is on the C: drive, you will need to use this statement:
 
        FILE * in = fopen("C:\\CS10E\\data\\input.txt", "r"); 

8.2 Sending Output to a File
We have just seen how to read data from a file. We now show you how you can send output to a file.

This is important because when we send output to the screen, it is lost when we exit the program or when we 
switch off the computer. If we need to save our output, we must write it to a file. Then the output is available as long as 
we want to keep the file.

The process is similar to reading from a file. We must declare a file pointer (we will use out) and associate it with 
the actual file (output.txt, say) using fopen. This can be done with the following:
 
        FILE * out = fopen("output.txt", "w");
 

This says to “open the file output.txt for writing” ("w" indicates writing). When this statement is executed, the 
file output.txt is created if it does not already exist. If it exists, its contents are destroyed. In other words, whatever 
you write to the file will replace its original contents. Be careful that you do not open for writing a file whose contents 
you want to keep. In addition to "r" and "w", there are other modes in which a file may be opened. These modes are 
discussed in Section 8.5.

8.2.1 fprintf
Once the file has been opened for writing, we use the statement (more precisely, the function) fprintf to send output 
to the file. It is used in the same way as printf except that the first argument is the file pointer out. For example, if sum 
is int with value 143, the statement:
 
        fprintf(out, "The sum is %d\n", sum);
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will write this to the file output.txt:
 
        The sum is 143
 

Note that the first argument to fprintf is the file pointer and not the name of the file.
When we have finished writing output to the file, we must close it. This is especially important for output files; 

because of the way some operating systems are configured,1 this is the only way to ensure that all output is sent to the 
file. We close the file with fclose, as follows:
 
        fclose(out);
 

There is one argument, the file pointer (not the name of the file). This statement breaks the association of the file 
pointer out with the file output.txt. If we need to, we could now link the identifier out with another file (payroll.txt, 
 say) using the following:
 
        out = fopen("payroll.txt", "w");
 

Note that we do not repeat the FILE * part of the declaration, since out has already been declared as FILE *. 
Subsequent fprintf(out, ...) statements will send output to the file payroll.txt.

For example, in Program P8.1, we can send the output to the file output.txt by replacing the printf statements 
with fprintf, like this:
 
        if (n == 0) fprintf(out, "No numbers entered\n");
        else {
           fprintf(out, "%d numbers were entered\n", n);
           fprintf(out, "The sum is %d\n", sum);
           fprintf(out, "The average is %3.2f\n", (double) sum/n);
        }
 

As explained earlier, you can, if you want, specify the complete path to your file in the fopen statement. For 
instance, if you want to send the output to a file output.txt in the folder results on the C: drive, you can use this:
 
        FILE * out = fopen("c:\\results\\output.txt", "w"); 

8.3 Text and Binary Files
A text file is a sequence of characters organized into lines. Conceptually, we think of each line as being terminated 
by a newline character. However, depending on the host environment, certain character translations may occur. For 
example, if we wrote the newline character \n to a file, it could be translated into two characters—a carriage return 
and a line-feed character.

Thus, there is not necessarily a one-to-one correspondence between characters written and those stored on an 
external device. Similarly, there may not be a one-to-one correspondence between the number of characters stored  
in a file and the number read.

A binary file is simply a sequence of bytes, with no character translations occurring on input or output. Thus, 
there is a one-to-one correspondence between what is read or written and what is stored in the file.

Apart from possible character translations, there are other differences between text and binary files. To illustrate, 
if an integer is stored in 2 bytes (16 bits), the number 3371 is stored as 00001101 00101011.

1For instance, they send output to a temporary buffer in memory, and only when the buffer is full is it sent to the file. If you do not 
close the file, some output may be left in the buffer and never sent to the file.
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If we were to write this number to a text file, it would be written as the character '3', followed by the  
character '3', followed by '7', followed by '1', occupying 4 bytes in all. However, we could simply write the 2 bytes  
as is to a binary file.

Even though we could still think of them as a sequence of two character, the values they contain may not 
represent any valid characters. In this case, the decimal values of the 2 bytes are 13 and 43, which, interpreted as two 
ASCII characters, are the carriage return character (CR) and '+'.

Another way to look at it is that, in general, each byte in a text file contains a human-readable character, whereas, 
in general, each byte in a binary file contains an arbitrary bit pattern. Binary files are important for writing data 
directly from its internal representation to an external device, usually a disk file.

The standard input and output are considered text files. A disk file may be created as a text file or as a binary file. 
We will see how to do so shortly.

8.4 Internal vs. External File Name
The usual way of using a computer is via its operating system. We normally create and edit files using a word 
processor or a text file editor. When we create a file, we give it a name that we use whenever we need to do anything 
with the file. This is the name by which the file is known to the operating system.

We will refer to such a name as an external file name. (The term external is used here to mean “external to a  
C program.”) When we are writing a program, we may want to specify, say, the reading of data from a file. The program 
will need to use a file name, but for several reasons this name should not be an external file name. The major reasons 
are as follows:

The file to be read may not have been created as yet.•	

If the external name is tied to the program, the program will be able to read a file with that •	
name only. If the data is in a file with a different name, either the program will have to be 
changed or the file renamed.

The program will be less portable since different operating systems have different file-naming •	
conventions. A valid external file name on one system may be invalid on another one.

For these reasons, a C program uses an internal file name—this is the file pointer referred to earlier. For instance, 
when we write the following, we associate the internal name, in, with the external file, input.txt:
 
        FILE * in = fopen("input.txt", "r");
 

This is the only statement that mentions the external file name. The rest of the program is written in terms of in. 
Of course, we can be even more flexible and write this:
 
        FILE * in = fopen(fileName, "r");
 

When the program is run, we supply the name of the file in fileName, like this:
 
        printf("Enter file name: ");
        gets(fileName);
 

In the next few sections, we discuss some of the common functions needed for working with files.
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8.5 fopen and fclose
So far, we’ve seen how to use fopen and fclose in simple situations. In this section, we take a closer look at  
these functions.

The standard function fopen returns a pointer to a FILE, and its prototype is declared in stdio.h as follows:
 
        FILE *fopen(char name[], char mode[]);
 
or
 
        FILE *fopen(char *name, char *mode);

or
 
        FILE *fopen(char *, char *);
 

Both parameters are strings (or, more accurately, character pointers). The first specifies an external file name, 
and the second specifies the manner in which the file is to be used, for example, whether text or binary or whether  
for reading or writing. The valid modes are as follows:

•	 "r":open text file for reading. The file must exist.

•	 "w": create text file for writing. If the file exists, its contents are destroyed; otherwise,  
it is created, if possible.

•	 "a": open text file for appending (writing at the end). If the file does not exist, it is created,  
if possible; some systems may report error.

•	 "r+": open text file for both reading and writing. The file must exist.

•	 "w+": create text file for both reading and writing. If the file exists, its contents are destroyed; 
otherwise, it is created, if possible.

•	 "a+": open text file for reading and appending. If the file exists, its contents are retained.  
If the file does not exist, it is created, if possible; some systems may report an error.

A file opened for reading ("r" or "r+") must exist. If it doesn’t, then fopen returns NULL. As indicated earlier, 
certain modes (for example, "w" or "a") require that a file be created. If it cannot be created (for example, the user 
may have exceeded the allotted disk space or the disk may be write-protected), then fopen returns NULL. If the external 
file exists, then opening it for writing causes the old contents to be destroyed.

If a file is opened with "a" or "a+", all write operations occur at the end of the file. This holds even if the file 
pointer is repositioned with fseek or rewind (Section 8.10.1). When a write operation is about to occur, the file pointer 
is positioned at the end of the file. This ensures that existing data cannot be overwritten.

When "b" is added to the previous modes, the files are treated as binary, rather than text. Thus, the following are 
also valid modes:

•	 "rb": open binary file for reading. The file must exist.

•	 "wb": create binary file for writing. If the file exists, its contents are destroyed; otherwise,  
it is created, if possible.

•	 "ab": open binary file for appending (writing at the end). If the file does not exist, it is created, 
if possible; some systems may report an error.

•	 "rb+": open binary file for both reading and writing. The file must exist.
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•	 "wb+": create binary file for both reading and writing. If the file exists, its contents are 
destroyed; otherwise, it is created, if possible.

•	 "ab+": open binary file for reading and appending. If the file exists, its contents are retained.  
If the file does not exist, it is created, if possible; some systems may report an error.

Observe that the basic modes are reading ("r"), writing ("w"), and appending ("a"). Adding "+" allows both 
reading and writing, and adding "b" specifies that the file is to be treated as a binary file. The modes "rb+", "wb+",  
and "ab+" could also be written as "r+b", "w+b", and "a+b", respectively.

Consider this statement:
 
        FILE *inPay = fopen("payrollNov.txt", "r");
 

This says to open the external file payrollNov.txt for reading. If such a file does not exist, an error results, and 
fopen returns NULL. If the file exists, then fopen returns the address of the place in memory where information about 
the file would be kept.

In the example, this address is assigned to inPay, thus establishing a connection between the external file name 
payrollNov.txt and the internal name inPay. Subsequent accesses to the external file are done via the internal name 
only. Once the file has been opened, we can read data from it using fscanf, say. For example, the following statement 
says to read values for name, hours, and rate from the file associated with inPay:
 
        fscanf(inPay, "%s %f %f", name, &hours, &rate);
 

We use fscanf in the same way as scanf, except that the first argument is now a file pointer.
When we are finished using the file, we must close it. This is done via the standard function fclose. The previous 

file may be closed with the following:
 
        fclose(inPay);
 

In the example, this statement severs the association between the internal name inPay and the external file 
payrollNov.txt. If required, the name inPay can now be used with another external file.

It is important to close all files before your program terminates. Failure to do so could result in output being lost 
or a file becoming corrupted.

As used earlier, the name of the external file payrollNov.txt is tied to the program, since it is used in the fopen 
statement. If the data to be processed is in another file, such as payrollDec.txt, then the statement to open the file 
must be changed to the following:
 
        FILE *inPay = fopen("payrollDec.txt", "r");
 

Or, the name of the file must be changed to payrollNov.txt, which may not be desirable.
A more flexible approach is to let the user supply the name of the external file at run time. For instance, if payFile 

is an array of characters large enough to hold the name of the file, then we can use this:
 
        printf("Enter payroll data file name: ");
        gets(payFile);
        inPay = fopen(payFile, "r");
 

Just in case the user types the file name incorrectly or forgot to create the file, we can use the fact that fopen will 
return NULL to check for this, as follows:
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        do {
           printf("Enter payroll data file name: ");
           gets(payFile);
           inPay = fopen(payFile, "r");
           if (inPay == NULL) printf("File does not exist or is not available\n");
        } while (inPay == NULL);

Now, exit from the do...while takes place only when an existing file name is entered. As usual, the assignment 
and test of inPay (against NULL) can be done in one statement.

        if ((inPay = fopen(payFile, "r")) == NULL) printf("File does not exist\n");

To pursue the example, suppose we want to write the payroll report onto an external file called payReportNov.txt.   
Suppose outPay is declared as follows:

        FILE *outPay;

Then the following statement will associate the internal name outPay with the file payReportNov.txt:

        outPay = fopen("payReportNov.txt", "w");

Output can then be sent to the file using fprintf, say, as follows:

        fprintf(outPay, "Name: %s,  Net pay: $%7.2f\n", name, salary);

fprintf is identical to printf, except that the first argument is now a file pointer, indicating where the output is 
to be sent.

As shown earlier, it is best to let the user supply the name of the file at run time and to use a character array 
variable as the first argument to fopen.

8.6 getc and putc
Reading and writing characters one at a time is basic to many C programs. We have used getchar() to read a 
character from the standard input and have used putchar() to send a character to the standard output.

To read a character from a named file, we use getc, as follows, where filePtr is the pointer to the file from which 
characters are being read:

        int ch = getc(filePtr);

The integer value of the next character is returned. On end-of-file, EOF (defined in stdio.h) is returned. Since EOF
must be distinguishable from any possible character that can be returned, it cannot be the value of any character. The 
value of EOF is an integer (usually 0), which must not be the value of any character. For this reason, getc returns an int
rather than char.

To write a character to a file, we can use putc, as follows:

        putc(ch, filePtr);

Note that the file pointer is the second argument to putc.
In C, the file pointers stdin and stdout are predefined to point to the standard input and output, respectively. 

Thus, getchar() is equivalent to getc(stdin) and putchar(ch) is equivalent to putc(ch, stdout).
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8.7 feof and ferror
To keep our programs simple, we have not worried too much about errors that can arise on input/output. 
However, while we hope that such errors will not occur, the possibility is very real, and we now discuss the topic  
in a bit more detail.

When data is being read from a file, several possible conditions can arise.

The data could be read successfully.•	

An attempt may be made to read beyond the end of the file.•	

A read error could occur; for example, the disk may be damaged.•	

The functions that read data return EOF if an attempt has been made to read beyond the end of the file. However, 
many of these functions also return EOF if an error is encountered (for example, trying to write to a file opened for 
reading only). How can a program determine which condition obtained?

The function feof can be used to check the end-of-file condition on a file. Its prototype is:
 
        int feof(FILE *fp);
 

The argument to feof is a file pointer (fp, say). It returns nonzero (true) if the end of the file linked to fp has been 
reached; otherwise, it returns zero (false). For example, to copy a file (associated with fp) to the standard output,  
we could use this:
 
        while (!feof(fp)) putchar(getc(fp));
 

However, there is a subtle danger here. If, for whatever reason, the file becomes unavailable, feof will not return 
true, and the program will be stuck in the loop. As a result, it is better to write the following (ch is an int):
 
        while ((ch = getc(fp)) != EOF) putchar(ch);
 

Now, if a file error is encountered, getc will return EOF, and the loop will terminate.
Testing for end-of-file with EOF is fine for text files. This is because C guarantees that the (integer) value of EOF 

is different from that of any other character. Thus, EOF could be returned only when the end of the file is actually 
reached.

Unfortunately, the same does not hold for binary files. This is because a binary file consists of arbitrary bit 
patterns (as opposed to bit patterns representing characters). Thus, it is entirely possible that the value of an arbitrary 
byte could be the same as the value of EOF. Testing such a byte against EOF would lead to the erroneous conclusion 
that the end of the file had been reached. For binary files, therefore, the safest way to test for end-of-file is to use the 
function feof.

The function ferror accepts a file pointer (fp, say) and returns nonzero (true) if an error occurred during the last 
file operation attempted; otherwise, it returns zero (false). Its prototype is as follows:
 
        int ferror(FILE *fp);
 
and can be used as in the following example (chFile is a FILE *):
 
        fscanf(chFile, "%d %f", &age, &allowance); // int age; float allowance;
        if (ferror(chFile)) fprintf(stderr, "Error reading age, allowance\n");
 

Since the error indication (for a given file) could be set by any file operation, it is important to test for it 
immediately after a given operation. If this is not done, an error may be lost. For example, suppose two scanfs are 
done and then ferror is called. If it returns true, we would not know whether the error was due to the first or the 
second call to scanf.
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8.8 fgets and fputs
These are two standard functions that can be used with arbitrary files: fgets is used to read an entire string (up to,  
and including, the next newline), and fputs is used to output a string that may or may not contain a newline.

The prototype of fgets is as follows:
 
        char *fgets(char line[], int max, FILE *infile);
 

The character array line must have at least max elements. Characters are read from infile and stored in line 
until newline is encountered or max-1 characters have been stored, whichever comes first. If newline is encountered 
and max-1 characters have not yet been stored, \n is added to line. In either case, line is terminated with \0.

If at least one character (other than \0) is stored in line, fgets returns line (which is, in effect, a pointer to the 
characters stored). If end-of-file is encountered and no characters have been stored in line, fgets returns NULL. If an 
error occurs, fgets also returns NULL. Since NULL is returned for both end-of-file and error conditions, the functions 
feof and/or ferror must be used to determine which one occurred. Note that the file pointer is the last argument,  
not the first as in fscanf or fprintf.

fgets is useful for reading strings that may contain blanks or tabs. Recall that the %s option of fscanf cannot be 
used to read a string containing blanks or tabs.

The prototype for fputs is as follows:
 
        int fputs(char strng[], FILE *outFile);
 

strng contains the string (properly terminated by \0) to be written to outFile. It may contain any characters, 
including newlines. The terminating \0 is not written. If successful, fputs returns a non-negative value; if 
unsuccessful, it returns EOF.

8.8.1 Example: Comparing Two Files
This example uses fgets to compare two files, printing the first lines, if any, where they differ.

Program P8.2 reads lines from both files (using fgets) until a mismatch is found or one of the files comes to an 
end. It also illustrates one way of verifying the file name that a user enters, using the function getFileName.

Program P8.2

        #include <stdio.h>
        #include <string.h>
        #define MaxName 20
        #define MaxLine 101
        int main() {
           char name1[MaxName], name2[MaxName];
           char line1[MaxLine], line2[MaxLine];
           FILE *file1, *file2, *getFileName(char *, char *);
           char *eof1, *eof2;
 
           int lineNum = 0;
           file1 = getFileName("First file?", name1);
           file2 = getFileName("Second file?", name2);
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           while (((eof1 = fgets(line1, MaxLine, file1)) != NULL) &&
                    ((eof2 = fgets(line2, MaxLine, file2)) != NULL) &&
                    (strcmp(line1, line2) == 0))
              lineNum++;
           // at this stage, linenum is the number of matching lines found
           if (eof1 == NULL) //first file ended
              if (fgets(line2, MaxLine, file2) == NULL) //second also ended
                 printf("\nFiles are identical\n\n");
              else    //first file ended, second file not ended
                 printf("\n%s, with %d line(s), is a subset of %s\n", name1, lineNum, name2);
           else if (eof2 == NULL)  //first file not ended, second file ended
              printf("\n%s, with %d line(s), is a subset of %s\n", name2, lineNum, name1);
           else {  // mismatch found
              printf("\nThe files differ at line %d\n", ++lineNum);
              printf("The lines are \n%s and \n%s\n", line1, line2);
           }
           fclose(file1);
           fclose(file2);
        } //end main
 
        FILE * getFileName(char *prompt, char *name) {
        //store the filename in 'name' and return the pointer to the file
           FILE *filePtr;
           do {
              printf("%s ", prompt); gets(name);
              if ((filePtr = fopen(name, "r")) == NULL)
                 printf("File does not exist or access denied\n");
           } while (filePtr == NULL);
           return filePtr;
        } //end getFileName
 

If the first file contains this:
 
one and one are two
two and two are four
three and three are six
four and four are eight
five and five are ten
six and six are twelve
 
and the second file contains this:
 
one and one are two
two and two are four
three and three are six
four and four are eight
this is the fifth line
six and six are twelve
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the program will print this:
 
The files differ at line 5
The lines are
five and five are ten
 and
this is the fifth line
 

The following points are for noting:

The maximum length of the file name catered for is •	 MaxName–1.

The maximum line length (including •	 \n) catered for is MaxLine–1.

The file name is read using •	 gets, so it may contain blanks. With gets, \n is never part  
of the string returned.

In the interest of brevity and simplicity, we assume that no errors in reading the files  •	
occur—the files are read until one or the other comes to an end. To cater for errors, we could 
use ferror to determine whether a reading error caused fgets to return NULL. Alternatively, 
we could use feof to determine whether the end of file was actually reached.

8.9 Input/Output for Binary File
As mentioned earlier, a binary file contains data in a form that corresponds exactly with the internal representation of 
the data. For example, if a float variable occupies 4 bytes of memory, writing it to a binary file simply involves making 
an exact copy of the 4 bytes. On the other hand, writing it to a text file causes it to be converted to character form, and 
the characters obtained are stored in the file.

Normally, a binary file can be created only from within a program, and its contents can be read only by a 
program. Listing a binary file, for example, produces only “garbage” and, sometimes, generates an error. Compare a 
text file that can be created by typing into it and whose contents can be listed and read by a human. However, a binary 
file has the following advantages:

Data can be transferred to and from a binary file much faster than for a text file since no data •	
conversions are necessary; the data is read and written as is.

The values of data types such as arrays and structures can be written to a binary file. For a text •	
file, individual elements must be written.

Data stored in a binary file usually occupies less space than the same data stored in a text file. •	
For example, the integer –25367 (six characters) occupies 6 bytes in a text file but only 2 bytes 
in a binary file.

C provides the functions fread and fwrite for use on binary files.

8.9.1 fread and fwrite
Consider the problem of reading integers from the standard input and writing them, in their internal form, to a (binary) 
file. Assume that the numbers are to be stored in the external file num.bin. This can be done with Program P8.3.
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Program P8.3

        #include <stdio.h>
        int main() {
           FILE *intFile;
           int num;
 
           if ((intFile = fopen("num.bin", "wb")) == NULL) {
              printf("Cannot open file\n");
              return -1;
           }
           while (scanf("%d", &num) == 1)
              fwrite(&num, sizeof(int), 1, intFile);
           fclose (intFile);
        } //end main
 

The program reads data from the standard input until an invalid integer is read or end of file is met (for instance, 
if a user types Ctrl-z).

In Program P8.3, num.bin is opened with "wb", which means “open a binary file for writing.” If the file cannot 
be opened, a message is printed, and the program is stopped. (A return statement in main returns control to the 
operating system.)

In the statement:
 
        fwrite(&num, sizeof(int), 1, intFile);
 

•	 &num specifies the starting address of the items to be written.

•	 sizeof(int) specifies the size of each item to be written.

•	 1 specifies that one item is to be written.

•	 intFile specifies the file to which the items are to be written.

In general, fwrite writes a specified number of items to a binary file. Its prototype is (think of size_t as int) :
 
        size_t fwrite(void *buffer, size_t unitSize, size_t numItems, FILE *fp);
 
where

•	 buffer is the starting address of the item(s) to be written.

•	 unitSize is the size of each item.

•	 numItems is the number of items to be written.

•	 fp is the file pointer.

fwrite returns the number of full items written; this could be less than numItems if an error occurs. We usually 
specify unitSize using the sizeof operator. This is particularly useful for structures as well as to ensure portability.  
As another example, if poly is a double array of size 20, then the following writes the entire array to the file specified by fp:
 
        fwrite(poly, sizeof(double), 20, fp);
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Recall that an array name is a synonym for the address of its first element.
Given the declaration:

 
        struct child {
           char name[20];
           int age;
           char gender;
           double allowance;
        } sassy;
 
we could write the entire structure sassy to a file with:
 
        fwrite(&sassy, sizeof(struct child), 1, fp);
 
If class is an array of structures defined as:
 
        struct child class[100];
 
then the 100 structure elements could be written to a file with:
 
        fwrite(class, sizeof(struct child), 100, fp);
 

The function fread has the same format as fwrite and is used for reading a specified number of items from a 
binary file. Its prototype is:
 
        size_t fread(void *buffer, size_t unitSize, size_t numItems, FILE *fp);
 
where

•	 buffer is the address where the items read are to be stored.

•	 unitSize is the size of each item.

•	 numItems is the number of items to be written.

•	 fp is the file pointer.

fread returns the number of full items actually read; this could be less than numItems if an error occurs or if the 
end of file is reached before numItems are read. The functions feof or ferror may be used to distinguish between a 
read error and an end-of-file condition.

Program P8.4 reads the file of integers created earlier and prints them on the standard output. The file is opened 
with "rb", which means open a binary file for reading. Each time a number is read, the return value of fread should 
be 1; if it isn’t, then either the end of file was reached or an error occurred.

Program P8.4

        #include <stdio.h>
        int main() {
           FILE *intFile;
           int num;
 
           if ((intFile = fopen("num.bin", "rb")) == NULL) {
              printf("Cannot open file\n");
              return -1;
           }
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           while (fread(&num, sizeof(int), 1, intFile) == 1)
              printf("%d\n", num);
 
           if (feof(intFile)) printf("\nEnd of list\n");
           else printf("\nError reading file\n");
 
           fclose(intFile);
        } //end main 

8.10  Random Access Files
In the normal mode of operation, data is read from a file in the order in which it is stored. When a file is opened, you 
can think of an imaginary pointer positioned at the beginning of the file. (This is not to be confused with the data type 
FILE * discussed previously.) As items are read from the file, this pointer moves along by the number of bytes read. 
Put another way, this pointer indicates where the next read (or write) operation would occur.

Normally, this pointer is moved implicitly by a read or write operation. However, C provides facilities for moving 
the pointer explicitly to any position in the file. We discuss the functions rewind and fseek. While rewind can be used 
on either text or binary files, fseek is recommended for use with binary files only. For a text file, character translations 
would cause fseek to give unexpected results.

8.10.1 rewind and fseek
The function rewind positions the pointer at the beginning of the file. Its prototype is:
 
        void rewind(FILE *fp);
 

rewind does not return a value. If the end of file or error condition was set for a file, a call to rewind clears the 
condition.

The function fseek allows more flexible movement within a file. Its prototype is:
 
        int fseek(FILE *fp, long offset, int origin);
 

It moves the file pointer to a position that is offset bytes from origin. If successful, fseek returns zero; 
otherwise, it returns nonzero.

origin must be one of the following predefined constants (defined in stdio.h):

•	 SEEK_SET: Beginning of the file

•	 SEEK_CUR: Current position of file pointer

•	 SEEK_END: End of the file

offset is a long integer; if the actual argument is not long, then the function prototype causes automatic 
coercion to long. For example, the following moves the file pointer to a position that is 32 bytes from the beginning of 
the file, that is, to the beginning of the 33rd byte:
 
        fseek(intFile, 32, SEEK_SET);
 

Since 32 is an int, it is automatically converted to long int before being passed to fseek. We could also have 
used 32L.

One of the most common uses of fseek is to retrieve the records of a file in random order. This is illustrated by 
the next example.
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Consider this declaration:
 
        struct partRecord {
           char partNum[7];   // part number
           char name[25];     // name of part
           int amtInStock;    // quantity in stock
           double unitPrice;  // unit selling price
        };
 

Suppose we want to create a file containing the records for several parts. The data for each part will be read from 
a text file, parts.txt; stored in a temporary structure; and then written, as one unit, to a binary file.

Suppose that a part number is a six-character string (e.g., PKL070) and a part name is a maximum of 24 
characters long. (The extra character declared is used for storing \0.) For simplicity, we assume that a part name does 
not contain any spaces. Some sample data is shown here:
 
        PKL070 Park-Lens 8 6.50
        BLJ375 Ball-Joint 12 11.95
        FLT015 Oil-Filter 23 7.95
        DKP080 Disc-Pads 16 9.99
        GSF555 Gas-Filter 9 4.50
 

Program P8.5 reads the data and stores it in a binary file, parts.bin. The data is stored in the same order as in 
the text file.

The program confirms that a given part record has been written successfully to the parts file by checking  
the return value of fwrite. If successful, fwrite should return 1, in this example. Note the specification %lf  
(“percent ell f”) for reading a value into a double variable.

Program P8.5

        #include <stdio.h>
 
        typedef struct partRecord {
           char partNum[7];
           char name[25];
           int amtInStock;
           double unitPrice;
        } PartRecord;
 
        int main() {
           FILE *ftxt, *fbin;
           PartRecord part;
 
           if ((ftxt = fopen("parts.txt", "r")) == NULL) {
              printf("Cannot open parts file\n");
              return -1;
           }
 
           if ((fbin = fopen("parts.bin", "wb")) == NULL) {
              printf("Cannot create file\n");
              return -1;
           }
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           while (fscanf(ftxt, "%s %s %d %lf", part.partNum, part.name,
                             &part.amtInStock, &part.unitPrice) == 4)
              if (fwrite(&part, sizeof(PartRecord), 1, fbin) != 1) {
                 printf("Error in writing file\n");
                 return -1;
              }
 
           fclose(ftxt);
           fclose(fbin);
        } //end main
 

To understand how fseek may be used on the binary parts file, think of the records as being numbered 
consecutively from 1 and suppose that each record is 40 bytes long. The records are stored in the file starting  
at byte 0.
 
        Record 1 occupies bytes 0 – 39;
        Record 2 occupies bytes 40 – 79;
        Record 3 occupies bytes 80 – 119;
 

In general, Record n starts at byte number (n – 1)*40 and occupies the next 40 bytes.
Now, suppose we want to read record n; we must do the following:

	 1.	 Position the file pointer at the beginning of the nth record.

	 2.	 Read a number of bytes equal to the size of a record.

This can be done with:
 
        fseek(fbin, (n - 1)*sizeof(PartRecord), SEEK_SET);
        fread(&part, sizeof(PartRecord), 1, fbin);
 

As usual, we could check the return values to ensure successful completion of the operations. Program P8.6 
requests a record number, reads the record from the file, and prints the record information on the screen. It assumes 
that the record number supplied is a valid one, but keep in mind that a robust program must verify this.

Program P8.6

        #include <stdio.h>
 
        typedef struct partRecord {
           char partNum[7];
           char name[25];
           int amtInStock;
           double unitPrice;
        } PartRecord;
 
        int main() {
           FILE *fbin;
           PartRecord part;
           int n;
 

o
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           if ((fbin = fopen("parts.bin", "rb")) == NULL) {
              printf("Cannot open file\n");
              return -1;
           }
           printf("Enter record number: ");
           scanf("%d", &n);
           while (n != 0) {
              fseek(fbin, (n - 1) * sizeof(PartRecord), SEEK_SET);
              fread(&part, sizeof(PartRecord), 1, fbin);

              printf("\nPart number: %s\n", part.partNum);
              printf("Part name: %s\n", part.name);
              printf("Amount in stock: %d\n", part.amtInStock);
              printf("Price: $%3.2f\n\n", part.unitPrice);

              printf("Enter record number: ");
              scanf("%d", &n);
           }
           fclose(fbin);
        } //end main

Suppose parts.bin was created using the sample data shown here:

        PKL070 Park-Lens 8 6.50
        BLJ375 Ball-Joint 12 11.95
        FLT015 Oil-Filter 23 7.95
        DKP080 Disc-Pads 16 9.99
        GSF555 Gas-Filter 9 4.50

The following is a sample run of P8.6.

        Enter a record number: 3
        Part number: FLT015
        Part name: Oil-Filter
        Amount in stock: 23
        Price: $7.95

        Enter a record number: 1
        Part number: PKL070
        Part name: Park-Lens
        Amount in stock: 8
        Price: $6.50

        Enter a record number: 4
        Part number: DKP080
        Part name: Disc-Pads
        Amount in stock: 16
        Price: $9.99

        Enter a record number: 0
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8.11 Indexed Files
The previous section showed how to retrieve a part record given the record number. But this is not the most natural 
way to retrieve records. More likely than not, we would want to retrieve records based on some key, in this case, the 
part number. It is more natural to ask, “How many of BLJ375 do we have?” rather than “How many of record 2 do we 
have?” The problem then is how to retrieve a record given the part number.

One approach is to use an index. Just as a book index lets us quickly locate information in a book, a file index 
enables us to quickly find records in a file. The index is created as the file is loaded. Later, it must be updated as 
records are added to, or deleted from, the file. In our example, an index entry will consist of a part number and a 
record number.

We will use the following declaration for an index entry:
 
        struct indexEntry {
           char partNum[7];
           int recNum;
        };
 

An array of such structures will be used to hold the entire index. For example, if we want to cater for up to 100 
items, we could use:
 
        struct indexEntry index[100];
 

The index will be kept in order by part number. Let’s illustrate how to create an index for the following records:
 
        PKL070 Park-Lens    8  6.50
        BLJ375 Ball-Joint  12 11.95
        FLT015 Oil-Filter  23  7.95
        DKP080 Disc-Pads   16  9.99
        GSF555 Gas-Filter   9  4.50
 

We assume that the records are stored in the file in the order shown. When the first record is read and stored, the 
index will contain this, meaning that the record for PKL070 is record number 1 in the parts file:
 
        PKL070 1
 

After the second record is read and stored, the index will be as follows, since the index is in order by part number:
 
        BLJ375 2
        PKL070 1
 

After the third record is read and stored, the index will be:

        BLJ375 2
        FLT015 3
        PKL070 1
 

After the fourth record is read and stored, the index will be:
 
        BLJ375 2
        DKP080 4
        FLT015 3
        PKL070 1
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After the fifth record is read and stored, the index will be:
 
        BLJ375 2
        DKP080 4
        FLT015 3
        GSF555 5
        PKL070 1
 

Program P8.7 illustrates how an index can be created as described above.

Program P8.7

        #include <stdio.h>
        #include <stdlib.h>
        #include <string.h>
 
        #define  PartNumSize  6
        #define  MaxName  24
        #define  MaxRecords  100
 
        typedef struct partRecord {
           char partNum[PartNumSize + 1];
           char name[MaxName + 1];
           int amtInStock;
           double unitPrice;
        } PartRecord;
        typedef struct indexEntry {
           char partNum[PartNumSize + 1];
           int recNum;
        } IndexEntry;
 
        int main() {
           IndexEntry index[MaxRecords + 1];
           void createMaster(char *, IndexEntry[], int);
           void saveIndex(char *, IndexEntry[], int);
           createMaster("parts.bin", index, MaxRecords);
           saveIndex("index.bin", index, MaxRecords + 1);
        } //end main
 
        void createMaster(char *fileName, IndexEntry index[], int maxRecords) {
        // stores records in 'fileName';  caters for maxRecords index entries;
        // sets index[0].recNum to the number of index entries actually used
           FILE *ftxt, *fbin;
           PartRecord part;
           int searchResult, search(char[], IndexEntry[], int);
           int numRecords = 0;
 
           if ((ftxt = fopen("parts.txt", "r")) == NULL) {
              printf("Cannot open parts file\n"); return;
           }
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           if ((fbin = fopen("parts.bin", "wb")) == NULL) {
              printf("Cannot create file\n");
              return;
           }
 
           while (fscanf(ftxt, "%s %s %d %lf", part.partNum, part.name,
                                &part.amtInStock, &part.unitPrice) == 4) {
              searchResult = search(part.partNum, index, numRecords);
              if (searchResult > 0)
                 printf("Duplicate part: %s ignored\n", part.partNum);
              else { //this is a new part number
                 if (numRecords == maxRecords) {
                    printf("Too many records: only %d allowed\n", maxRecords);
                    exit(1);
                 }
                 //the index has room; shift entries to accommodate new part
                 
                 for (int j = numRecords; j >= -searchResult; j--)
                       index[j + 1] = index[j];
                 strcpy(index[-searchResult].partNum, part.partNum);
                 index[-searchResult].recNum = ++numRecords;
                 if (fwrite(&part, sizeof(PartRecord), 1, fbin) != 1) {
                    printf("Error in writing file\n"); exit(1);
                 }
                 printf("%s %-11s %2d %5.2f\n", part.partNum, part.name,
                                   part.amtInStock, part.unitPrice);
              }
           }
           index[0].recNum = numRecords;
           fclose(fbin);
        } //end createMaster
 
        int search(char key[], IndexEntry list[], int n) {
        //searches list[1..n] for key. If found, it returns the location; otherwise
        //it returns the negative of the location in which key should be inserted.
           int lo = 1;  int hi = n;
           while (lo <= hi) {               // as long as more elements remain to consider
              int mid = (lo + hi) / 2;
              int cmp = strcmp(key, list[mid].partNum);
              if (cmp == 0) return mid;     // search succeeds
              if (cmp < 0) hi = mid - 1;    // key is 'less than' list[mid].partNum
              else lo = mid + 1;            // key is 'greater than' list[mid].partNum
           }
           return -lo;                      // key not found; insert in location lo
        } //end search
 
        void saveIndex(char *fileName, IndexEntry index[], int max) {
        //save the index in fileName; max is the size of index.
           FILE *indexFile;
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           if ((indexFile = fopen(fileName, "wb")) == NULL) {
              printf("Cannot create file %s. Index not saved\n", fileName);
              exit(1);
           } 

           fwrite(&max, sizeof(int), 1, indexFile);           //save the index size first
           fwrite(index, sizeof(IndexEntry), max, indexFile); //save the index
           fclose(indexFile);
        } //end saveIndex
 

When a part number is read, we look for it in the index. Since the index is kept in order by part number, we search 
it using a binary search. If the part number is present, it means the part has been stored already so this record is 
ignored. If it is not present, this is a new part, so its record is stored in the parts file, parts.bin, provided we have not 
already stored MaxRecords records.

A count is kept (in numRecords) of the number of records read. The part number and the record number are then 
inserted in the proper place in the index array.

When all the records have been stored, the index is saved in another file, index.bin. The value of MaxRecords is 
the first value sent to the file. This is followed by index[0] to index[MaxRecords]. Remember that index[0].recNum 
contains the value of numRecords.

Given that parts.txt contains this:
 
        PKL070 Park-Lens 8 6.50
        BLJ375 Ball-Joint 12 11.95
        PKL070 Park-Lens 8 6.50
        FLT015 Oil-Filter 23 7.95
        DKP080 Disc-Pads 16 9.99
        GSF555 Gas-Filter 9 4.50
        FLT015 Oil-Filter 23 7.95
 

Program P8.7 prints the following:
 
        PKL070 Park-Lens    8  6.50
        BLJ375 Ball-Joint  12 11.95
        Duplicate part: PKL070 ignored
        FLT015 Oil-Filter  23  7.95
        DKP080 Disc-Pads   16  9.99
        GSF555 Gas-Filter   9  4.50
        Duplicate part: FLT015 ignored
 

Next, we write a program that tests our index by first retrieving it from the file. The user is then asked to enter part 
numbers, one at a time. For each, it searches the index for the part number. If it finds it, the index entry will indicate 
the record number in the parts file. Using the record number, the part record is retrieved. If the part number is not 
found in the index, then there is no record for that part. The program is shown as Program P8.8.

Program P8.8

        #include <stdio.h>
        #include <string.h>
        #include <stdlib.h>
        #define PartNumSize  6
        #define MaxName  24
        #define MaxRecords 100
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        typedef struct partRecord {
           char partNum[PartNumSize + 1];
           char name[MaxName + 1];
           int amtInStock; double unitPrice;
        } PartRecord;
        typedef struct indexEntry {
           char partNum[PartNumSize + 1];
           int recNum;
        } IndexEntry;
 
        int main() {
           FILE *partFile;
           IndexEntry index[MaxRecords + 1];
           void retrieveIndex(char *, IndexEntry[]);
           void retrieveRecords(IndexEntry[], FILE *);
 
           if ((partFile = fopen("parts.bin", "rb")) == NULL) {
              printf("Cannot open file\n");  return -1;
           }
           retrieveIndex("index.bin", index);
           retrieveRecords(index, partFile);
           fclose(partFile);
        } //end main
 
        void retrieveRecords(IndexEntry index[], FILE *pf) {
           char pnum[PartNumSize * 2]; //to cater for extra characters typed
           PartRecord part;
           int search(char[], IndexEntry[], int);
 
           int numRecords = index[0].recNum;
           printf("\nEnter a part number (E to end): ");
           scanf("%s", pnum);
           while (strcmp(pnum, "E") != 0) {
              int n = search(pnum, index, numRecords);
              if (n < 0) printf("Part not found\n");
              else {
                 fseek(pf, (index[n].recNum - 1)*sizeof(PartRecord), SEEK_SET);
                 fread(&part, sizeof(PartRecord), 1, pf);
                 printf("\nPart number: %s\n", part.partNum);
                 printf("Part name: %s\n", part.name);
                 printf("Amount in stock: %d\n", part.amtInStock);
                 printf("Price: $%3.2f\n", part.unitPrice);
              }
              printf("\nEnter a part number (E to end): ");
              scanf("%s", pnum);
           } //end while
        } //end retrieveRecords
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        void retrieveIndex(char *fileName, IndexEntry index[]) {
           FILE *indexFile;
           int maxRecords;
            
           if ((indexFile = fopen(fileName, "rb")) == NULL){
              printf("cannot open index file.\n");
              exit(1);
           }
           fread(&maxRecords, sizeof(int), 1,indexFile);
           fread(index, sizeof(IndexEntry), maxRecords, indexFile);
           fclose(indexFile);
        } //end retrieveIndex
 
        int search(char key[], IndexEntry list[], int n) {
        //searches list[1..n] for key. If found, it returns the location; otherwise
        //it returns the negative of the location in which key should be inserted.
           int lo = 1;  int hi = n;
           while (lo <= hi) {               // as long as more elements remain to consider
              int mid = (lo + hi) / 2;
              int cmp = strcmp(key, list[mid].partNum);
              if (cmp == 0) return mid;     // search succeeds
              if (cmp < 0) hi = mid - 1;    // key is 'less than' list[mid].partNum
              else lo = mid + 1;            // key is 'greater than' list[mid].partNum
           }
           return -lo;                      // key not found; insert in location lo
        } //end search
 

The following is a sample run of Program P8.8:
 
        Enter a part number (E to end): DKP080
        Part number: DKP080
        Part name: Disc-Pads
        Amount in stock: 16
        Price: $9.99
 
        Enter a part number (E to end): GSF555
        Part number: GSF555
        Part name: Gas-Filter
        Amount in stock: 9
        Price: $4.50
 
        Enter a part number (E to end): PKL060
        Part not found
 
        Enter a part number (E to end): PKL070
        Part number: PKL070
        Part name: Park-Lens
        Amount in stock: 8
        Price: $6.50
 
        Enter a part number (E to end): E
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If required, we could use the index to print the records in order by part number. We simply print the records 
in the order in which they appear in the index. For example, using our sample data, we have the following 
 index:
 
        BLJ375 2
        DKP080 4
        FLT015 3
        GSF555 5
        PKL070 1
 

If we print record 2, followed by record 4, followed by record 3, followed by record 5, followed by record 1, 
we would have printed them in ascending order by part number. This can be done with the following code:
 
   for (int n = 1; n <= numRecords; n++) {
      fseek(partFile, (index[n].recNum - 1)*sizeof(PartRecord), SEEK_SET);
      fread(&part, sizeof(PartRecord), 1, partFile);
      printf("%s %-11s %2d %5.2f\n", part.partNum, part.name, part.amtInStock, part.unitPrice);
   }

8.12 Updating a Random Access File
The information in a file is not usually static. It must be updated from time to time. For our parts file, we may want to 
update it to reflect the new quantity in stock as items are sold or to reflect a change in price. We may decide to stock 
new parts, so we must add records to the file, and we may discontinue selling certain items, so their records must be 
deleted from the file.

Adding new records is done in a similar manner to loading the file in the first place. We can delete a record 
logically by marking it as deleted in the index or by simply removing it from the index. Later, when the file is 
reorganized, the record could be deleted physically (that is, not present in the new file). But how can we change the 
information in an existing record? To do this, we must do the following:

	 1.	 Locate the record in the file.

	 2.	 Read it into memory.

	 3.	 Change the desired fields.

	 4.	 Write the updated record to the same position in the file from which it came.

This requires that our file be opened for both reading and writing. Assuming that the file already exists, it must be 
opened with mode "rb+". We explain how to update a record whose part number is stored in key.

First we search the index for key. If it is not found, no record exists for this part. Suppose it is found in location k. 
Then index[k].recNum gives its record number (n, say) in the parts file. We then proceed as follows (omitting error 
checking in the interest of clarity):
 
        fseek(partFile, (n - 1) * sizeof(PartRecord), SEEK_SET);
        fread(&part, sizeof(PartRecord), 1, partFile);
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The record is now in memory in the structure variable part. Suppose we need to subtract amtSold from the 
amount in stock. This could be done with this:
 
        if (amtSold > part.amtInStock)
           printf("Cannot sell more than you have: ignored\n");
        else part.amtInStock -= amtSold;
 

Other fields (except the part number, since this is used to identify the record) could be updated similarly. When 
all changes have been made, the updated record is in memory in part. It must now be written back to the file in the 
same position from which it came. This could be done with the following:
 
        fseek(partFile, (n - 1) * sizeof(PartRecord), SEEK_SET);
        fwrite(&part, sizeof(PartRecord), 1, partFile);
 

Note that we must call fseek again since, after the previous fread, the file is positioned at the beginning of the 
next record. We must reposition it at the beginning of the record just read. The net effect is that the updated record 
overwrites the old one.

Program P8.9 updates the amtInStock field of records in the parts file. The user is asked to enter a part number 
and the amount sold. The program searches the index for the part number using a binary search. If found, the record 
is retrieved from the file, updated in memory, and written back to the file. This is repeated until the user enters a 
dummy part number, "E".

Program P8.9

        #include <stdio.h>
        #include <string.h>
        #include <stdlib.h>
 
        #define PartNumSize  6
        #define MaxName  24
        #define MaxRecords 100
 
        typedef struct partRecord {
           char partNum[PartNumSize + 1];
           char name[MaxName + 1];
           int amtInStock;
           double unitPrice;
        } PartRecord;
 
        typedef struct indexEntry {
           char partNum[PartNumSize + 1];
           int recNum;
        } IndexEntry;
 
        int main() {
           FILE *partFile;
           IndexEntry index[MaxRecords + 1];
           void retrieveIndex(char *, IndexEntry[]);
           void updateRecord(int, FILE *);
           int search(char[], IndexEntry[], int);
           char pnum[PartNumSize + 1];
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           if ((partFile = fopen("parts.bin", "rb+")) == NULL) {
              printf("Cannot open file\n");
              return -1;
           }
           retrieveIndex("index.bin", index);
           int numRecords = index[0].recNum;
            
           printf("\nEnter a part number (E to end): ");
           scanf("%s", pnum);
           while (strcmp(pnum, "E") != 0) {
              int n = search(pnum, index, numRecords);
              if (n < 0) printf("Part not found\n");
              else updateRecord(index[n].recNum, partFile);
              printf("\nEnter a part number (E to end): ");
              scanf("%s", pnum);
           } // end while
           fclose(partFile);
        } //end main
 
        void updateRecord(int n, FILE *pf) {
        //update record n in file pf
           PartRecord part;
           int amtSold;
    
           fseek(pf, (n - 1) * sizeof(PartRecord), SEEK_SET);
           fread(&part, sizeof(PartRecord), 1, pf);
           printf("Enter amount sold: ");
           scanf("%d", &amtSold);
           if (amtSold > part.amtInStock)
              printf("You have %d: cannot sell more, ignored\n", part.amtInStock);
           else {
              part.amtInStock -= amtSold;
              printf("Amount remaining: %d\n", part.amtInStock);
              fseek(pf, (n - 1) * sizeof(PartRecord), SEEK_SET);
              fwrite(&part, sizeof(PartRecord), 1, pf);
              printf("%s %-11s %2d %5.2f\n", part.partNum, part.name, part.amtInStock, part.unitPrice);
           } //end if
        } //end updateRecord
 
        void retrieveIndex(char *fileName, IndexEntry index[]) {
           FILE *indexFile;
           int maxRecords;
    
           if ((indexFile = fopen(fileName, "rb")) == NULL){
              printf("cannot open index file.\n");
              exit(1);
           }
           fread(&maxRecords, sizeof(int), 1,indexFile);
           fread(index, sizeof(IndexEntry), maxRecords, indexFile);
           fclose(indexFile);
        } //end retrieveIndex
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        int search(char key[], IndexEntry list[], int n) {
        //searches list[1..n] for key. If found, it returns the location; otherwise
        //it returns the negative of the location in which key should be inserted.
           int lo = 1;  int hi = n;
           while (lo <= hi) {               // as long as more elements remain to consider
              int mid = (lo + hi) / 2;
              int cmp = strcmp(key, list[mid].partNum);
              if (cmp == 0) return mid;     // search succeeds
              if (cmp < 0) hi = mid - 1;    // key is 'less than' list[mid].partNum
              else lo = mid + 1;            // key is 'greater than' list[mid].partNum
           }
           return -lo;                      // key not found; insert in location lo
        } //end search

The following is a sample run of Program P8.9:

        Enter part number (E to end): BLJ375
        Enter amount sold: 2
        Amount remaining: 10
        BLJ375 Ball-Joint  10 11.95

        Enter part number (E to end): BLJ375
        Enter amount sold: 11
        You have 10: cannot sell more, ignored

        Enter part number (E to end): DKP080
        Enter amount sold: 4
        Amount remaining: 12
        DKP080 Disc-Pads   12  9.99

        Enter part number (E to end): GSF55
        Part not found

        Enter part number (E to end): GSF555
        Enter amount sold: 1
        Amount remaining: 8
        GSF555 Gas-Filter   8  4.50

        Enter part number (E to end): E
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EXERCISES 8

1.	 What is the difference between a file opened with "r+" and one opened with "w+"?

2.	 Write a program to determine whether two binary files are identical. If they are different, print 
the first byte number at which they differ.

3.	 Write a program to read a (binary) file of integers, sort the integers, and write them back to 
the same file. Assume that all the numbers can be stored in an array.

4.	R epeat exercise 3, but assume that only 20 numbers can be stored in memory (in an array) 
at any one time. Hint: you will need to use at least two additional files for temporary output.

5.	 Write a program to read two sorted files of integers and merge the values to a third  
sorted file.

6.	 Write a program to read a text file and produce another text file in which all lines are less 
than some given length. Make sure and break lines in sensible places; for example, avoid 
breaking words or putting isolated punctuation marks at the beginning of a line.

7.	 What is the purpose of creating an index for a file?

The following are some records from an employee file. The fields are employee number  
(the key), name, job title, telephone number, monthly salary, and tax to be deducted.

 
       STF425, Julie Johnson, Secretary, 623-3321, 2500, 600
       COM319, Ian McLean, Programmer, 676-1319, 3200, 800
       SYS777, Jean Kendall, Systems Analyst, 671-2025, 4200, 1100
       JNR591, Lincoln Kadoo, Operator, 657-0266, 2800, 700
       MSN815, Camille Kelly, Clerical Assistant, 652-5345, 2100, 500
       STF273, Anella Bayne, Data Entry Manager, 632-5324, 3500, 850
       SYS925, Riaz Ali, Senior Programmer, 636-8679, 4800, 1300
 

a.	H ow can a record be retrieved given the record number?

b.	H ow can a record be retrieved given the key of the record?

c.	�A s the file is loaded, create an index in which the keys are in the order given. How is 
such an index searched for a given key?

d.	�A s the file is loaded, create an index in which the keys are sorted. Given a key, how is 
the corresponding record retrieved?

Discuss what changes must be made to the index when records are added to and deleted from the file.

8.	 For the “parts file” application discussed in this chapter, write functions for (i) adding new 
records and (ii) deleting records.

w
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Chapter 9

Introduction to Binary Trees

In this chapter, we will explain the following:

The difference between a tree and a binary tree•	

How to perform pre-order, in-order, and post-order traversals of a binary tree•	

How to represent a binary tree in a computer program•	

How to build a binary tree from given data•	

What a binary search tree is and how to build one•	

How to write a program to do a word-frequency count of words in a passage•	

How to use an array as a binary tree representation•	

How to write some recursive functions to obtain information about a binary tree•	

How to delete a node from a binary search tree•	

9.1 Trees
A tree is a finite set of nodes such that

(a)	 There is one specially designated node called the root of the tree.

(b)	� The remaining nodes are partitioned into m ≥ 0 disjoint sets T
1
, T

2
, …, T

m
, and each of these 

sets is a tree.

The trees T
1
, T

2
, …, T

m
, are called the subtrees of the root. We use a recursive definition since recursion is an innate 

characteristic of tree structures. Figure 9-1 illustrates a tree. By convention, the root is drawn at the top, and the tree 
grows downward.
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The root is A. There are three subtrees rooted at B, C, and D, respectively. The tree rooted at B has two subtrees,  
the one rooted at C has no subtrees, and the one rooted at D has one subtree. Each node of a tree is the root of a subtree.

The degree of a node is the number of subtrees of the node. Think of it as the number of lines leaving the node. 
For example, degree(A) = 3, degree(C) = 0, degree(D) = 1, and degree(G) = 3.

We use the terms parent, child, and sibling to refer to the nodes of a tree. For example, the parent A has three 
children, which are B, C, and D; the parent B has two children, which are E and F; and the parent D has one child, G, 
which has three children: H, I, and J. Note that a node may be the child of one node but the parent of another.

Sibling nodes are child nodes of the same parent. For example, B, C, and D are siblings; E and F are siblings; and H, 
I, and J are siblings.

In a tree, a node may have several children but, except for the root, only one parent. The root has no parent. Put 
another way, a nonroot node has exactly one line leading into it.

A terminal node (also called a leaf) is a node of degree 0. A branch node is a nonterminal node. In Figure 9-1, C, E, 
F, H, I, and J are leaves, while A, B, D, and G are branch nodes.

The moment of a tree is the number of nodes in the tree. The tree in Figure 9-1 has moment 10.
The weight of a tree is the number of leaves in the tree. The tree in Figure 9-1 has weight 6.
The level (or depth) of a node is the number of branches that must be traversed on the path to the node from the 

root. The root has level 0.
In the tree in Figure 9-1, B, C, and D are at level 1; E, F, and G are at level 2; and H, I, and J are at level 3. The level  

of a node is a measure of the depth of the node in the tree.
The height of a tree is the number of levels in the tree. The tree in Figure 9-1 has height 4. Note that the height  

of a tree is one more than its highest level.
If the relative order of the subtrees T

1
, T

2
, …, T

m
 is important, the tree is an ordered tree. If order is unimportant, 

the tree is oriented.
A forest is a set of zero or more disjoint trees, as shown in Figure 9-2.

A

B C D

E F G

I JH

Figure 9-1.  A tree

J

E F

G

IH

A

B C

D

Figure 9-2.  A forest of three disjoint trees
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While general trees are of some interest, by far the most important kind of tree is a binary tree.

9.2 Binary Trees
A binary tree is a classic example of a nonlinear data structure—compare this to a linear list where we identify a first 
item, a next item, and a last item. A binary tree is a special case of the more general tree data structure, but it is the 
most useful and most widely used kind of tree. A binary tree is best defined using the following recursive definition:

A binary tree

(a)	 is empty

or

(b)	� consists of a root and two subtrees—a left and a right—with each subtree being  
a binary tree

A consequence of this definition is that a node always has two subtrees, any of which may be empty. Another 
consequence is that if a node has one nonempty subtree, it is important to distinguish whether it is on the left or right. 
Here’s an example:

is a different binary tree fromA

B

A

B

The first has an empty right subtree, while the second has an empty left subtree. However, as trees, they are the same.
The following are examples of binary trees.
Here’s a binary tree with one node, the root:

A

Here are binary trees with two nodes:

A

B

F

C

Here are binary trees with three nodes:

A

B C

A

B

C

A

B

C

A

B

C
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Here are binary trees with all left subtrees empty and all right subtrees empty:

A

B

C

A

B

C

Here is a binary tree where each node, except the leaves, has exactly two subtrees; this is called a complete  
binary tree:

E

F B

G

A D

C

Here is a general binary tree:

E

F B

G

A

H

C

N

J K

9.3 Traversing a Binary Tree
In many applications, we want to visit the nodes of a binary tree in some systematic way. For now, we’ll think of “visit” 
as simply printing the information at the node. For a tree of n nodes, there are n! ways to visit them, assuming that 
each node is visited once.

For example, for a tree with three nodes A, B, and C, we can visit them in any of the following orders: ABC, ACB, 
BCA, BAC, CAB, and CBA. Not all of these orders are useful. We will define three that are: pre-order, in-order,  
and post-order.

This is pre-order traversal:

	 1.	 Visit the root.

	 2.	 Traverse the left subtree in pre-order.

	 3.	 Traverse the right subtree in pre-order.

Note that the traversal is defined recursively. In steps 2 and 3, we must reapply the definition of pre-order 
traversal, which says “visit the root, and so on.”
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The pre-order traversal of

A

B C

is A B C.
The pre-order traversal of

E

F B

G

A

H

C

N

J K

is C E F H B G A N J K.

This is in-order traversal:

	 1.	 Traverse the left subtree in in-order.

	 2.	 Visit the root.

	 3.	 Traverse the right subtree in in-order.

Here we traverse the left subtree first, then the root, and then the right subtree.
The in-order traversal of

A

B C

is B A C.
The in-order traversal of 

E

F B

G

A

H

C

N

J K

is F H E B C A G J N K.
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This is post-order traversal:

	 1.	 Traverse the left subtree in post-order.

	 2.	 Traverse the right subtree in post-order.

	 3.	 Visit the root.

Here we traverse the left and right subtrees before visiting the root.
The post-order traversal of

A

B C

is B C A.
The post-order traversal of 

E

F B

G

A

H

C

N

J K

is H F B E A J K N G C.
Note that the traversals derive their names from the place where we visit the root relative to the traversal of 

the left and right subtrees. As another example, consider a binary tree that can represent the following arithmetic 
expression:
 
        (54 + 37) / (72 – 5 * 13)
 

Here is the tree:

+ –

/

*

13

54 37 72

5

The leaves of the tree contain the operands, and the branch nodes contain the operators. Given a node 
containing an operator, the left subtree represents the first operand, and the right subtree represents the second 
operand.

The pre-order traversal is:  / + 54 37 – 72 * 5 13
The in-order traversal is:   54 + 37 / 72 – 5 * 13
The post-order traversal is: 54 37 + 72 5 13 * - /
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The post-order traversal can be used in conjunction with a stack to evaluate the expression. The algorithm  
is as follows:
 
        initialize a stack, S, to empty
        while we have not reached the end of the traversal
           get the next item, x
           if x is an operand, push it onto S
           if x is an operator, pop its operands from S, apply the operator and
                                  push the result onto S
 
        endwhile
        pop S; // this is the value of the expression
 

 Consider the post-order traversal: 54 37 + 72 5 13 * - /. It is evaluated as follows:

	 1.	 The next item is 54; push 54 onto S; S contains 54.

	 2.	 The next item is 37; push 37 onto S; S contains 54 37 (the top is on the right).

	 3.	 The next item is +; pop 37 and 54 from S; apply + to 54 and 37, giving 91; push 91 onto S; S 
contains 91.

	 4.	 The next item is 72; push 72 onto S; S contains 91 72.

	 5.	 The next items are 5 and 13; these are pushed onto S; S contains 91 72 5 13.

	 6.	 The next item is *; pop 13 and 5 from S; apply * to 5 and 13, giving 65; push 65 onto S; S 
contains 91 72 65.

	 7.	 The next item is –; pop 65 and 72 from S; apply – to 72 and 65, giving 7; push 7 onto S; S 
contains 91 7.

	 8.	 The next item is /; pop 7 and 91 from S; apply / to 91and 7, giving 13; push 13 onto S; S 
contains 13.

	 9.	 We have reached the end of the traversal; we pop S, getting 13—the result of the 
expression.

Note that when operands are popped from the stack, the first one popped is the second operand, and the second 
one popped is the first operand. This does not matter for addition and multiplication but is important for subtraction 
and division.

9.4 Representing a Binary Tree
At a minimum, each node of a binary tree consists of three fields: a field containing the data at the node, a pointer to 
the left subtree, and a pointer to the right subtree. For example, suppose the data to be stored at each node is a word. 
We begin by defining a structure with three fields, like this:
 
        typedef struct treenode {
           NodeData data;
           struct treenode *left, *right;
        } TreeNode, *TreeNodePtr;
 



Chapter 9 ■ Introduction to Binary Trees

220

To keep our options open, we have defined TreeNode in terms of a general data type that we call NodeData.  
Any program that wants to use TreeNode must provide its own definition of NodeData.

For example, if the data at a node is an integer, NodeData could be defined like this:
 
        typedef  struct {
           int num;
        } NodeData;
 

A similar definition can be used if the data is a character. But we are not restricted to single-field data.  
Any number of fields can be used. Later, we will write a program to do a frequency count of words in a passage.  
Each node will contain a word and its frequency count. For that program, we define NodeData as follows:
 
        typedef  struct {
           char word[MaxWordSize+1];
           int freq;
        } NodeData;
 

In addition to the nodes of the tree, we will need to know the root of the tree. Keep in mind that once we know the 
root, we have access to all the nodes in the tree via the left and right pointers. Thus, a binary tree is defined solely by its 
root. We define a BinaryTree structure containing a single field, root, like this:
 
        typedef struct {
           TreeNodePtr root;
        } BinaryTree;

9.5 Building a Binary Tree
Let’s write a function to build a binary tree. Suppose we want to build a tree consisting of a single node:

A

The data will be supplied as A @ @ .

Each @ denotes the position of a null pointer. To build the following, we will supply the data as A B @ @ C @ @:

A

B C

Each node is immediately followed by its left subtree and then its right subtree.

By comparison, to build the following, we will supply the data as A B @ C @ @ @.

A

B

C



Chapter 9 ■ IntroduCtIon to BInary trees

221

The two @s after C denote its left and right subtrees (null), and the last @ denotes the right subtree of A (null).  
And to build the following, we supply the data as C E F @ H @ @ B @ @ G A @ @ N J @ @ K @ @.

E

F B

G

A

H

C

N

J K

Given data in this format, the following function will build the tree and return a pointer to its root. It reads data 
from the file specified by in. MaxWordSize is a #defined constant.

        TreeNodePtr buildTree(FILE * in) {
           char str[MaxWordSize+1];
           fscanf(in, "%s", str);
           if (strcmp(str, "@") == 0) return NULL;
           TreeNodePtr p = (TreeNodePtr) malloc(sizeof(TreeNode));
           strcpy(p -> data.word, str);
           p -> left = buildTree(in);
           p -> right = buildTree(in);
           return p;
        } //end buildTree

The function uses the following definition of NodeData:

        typedef struct {
           char word[MaxWordSize+1];
        } NodeData;

Suppose the tree data is stored in the file btree.in. We can create a binary tree, bt, with the following code:

        FILE * in = fopen("btree.in", "r");
        BinaryTree bt;
        bt.root = buildTree(in);

Having built the tree, we should want to check that it has been built properly. One way to do that is to perform 
traversals. Suppose we want to print the nodes of bt in pre-order. We could write a function as follows:

        void preOrder(TreeNodePtr node) {
           void visit(TreeNodePtr);
           if (node != NULL) {
              visit(node);
              preOrder(node -> left);
              preOrder(node -> right);
           }
        } //end preOrder
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where visit could be written as:
 
        void visit(TreeNodePtr node) {
           printf("%s ", node -> data.word);
        } //end visit
 

We could write similar functions for in-order and post-order. Program P9.1 reads data from a file, builds a binary 
tree, and prints the pre-order, in-order, and post-order traversals of the tree.

Program P9.1

        #include <stdio.h>
        #include <string.h>
        #include <stdlib.h>
 
        #define MaxWordSize 20
 
        typedef struct {
           char word[MaxWordSize+1];
        } NodeData;
 
        typedef struct treeNode {
           NodeData data;
           struct treeNode *left, *right;
        } TreeNode, *TreeNodePtr;
 
        typedef struct {
           TreeNodePtr root;
        } BinaryTree;
 
        int main() {
           TreeNodePtr buildTree(FILE *);
           void preOrder(TreeNodePtr);
           void inOrder(TreeNodePtr);
           void postOrder(TreeNodePtr);
 
           FILE * in = fopen("btree.in", "r");
           BinaryTree bt;
           bt.root = buildTree(in);
           printf("\nThe pre-order traversal is: ");
           preOrder(bt.root);
           printf("\n\nThe in-order traversal is: ");
           inOrder(bt.root);
           printf("\n\nThe post-order traversal is: ");
           postOrder(bt.root);
           printf("\n\n");
           fclose(in);
        } // end main
 
        TreeNodePtr buildTree(FILE * in) {
           char str[MaxWordSize+1];
           fscanf(in, "%s", str);
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           if (strcmp(str, "@") == 0) return NULL;
           TreeNodePtr p = (TreeNodePtr) malloc(sizeof(TreeNode));
           strcpy(p -> data.word, str);
           p -> left = buildTree(in);
           p -> right = buildTree(in);
           return p;
        } //end buildTree
 
        void visit(TreeNodePtr node) {
           printf("%s ", node -> data.word);
        } //end visit
 
        void preOrder(TreeNodePtr node) {
           void visit(TreeNodePtr);
           if (node != NULL) {
              visit(node);
              preOrder(node -> left);
              preOrder(node -> right);
           }
        } //end preOrder
 
        void inOrder(TreeNodePtr node) {
           void visit(TreeNodePtr);
           if (node != NULL) {
              inOrder(node -> left);
              visit(node);
              inOrder(node -> right);
           }
        } //end inOrder
 
        void postOrder(TreeNodePtr node) {
           void visit(TreeNodePtr);
           if (node != NULL) {
              postOrder(node -> left);
              postOrder(node -> right);
              visit(node);
           }
        } //end postOrder
 

If btree.in contains C E F @ H @ @ B @ @ G A @ @ N J @ @ K @ @, then the program builds the following tree:

E

F B

G

A

H

C

N

J K



Chapter 9 ■ Introduction to Binary Trees

224

and prints

   The pre-order traversal is: C E F H B G A N J K
   The in-order traversal is: F H E B C A G J N K
   The post-order traversal is: H F B E A J K N G C

The buildTree method is not restricted to single-character data; any string (not containing whitespace since we 
use %s to read the data) can be used.

For example, if btree.in contains
 
           hat din bun @ @ fan @ @ rum kit @ @ win @ @
 
then Program P9.1 prints

   The pre-order traversal is: hat din bun fan rum kit win
   The in-order traversal is: bun din fan hat kit rum win
   The post-order traversal is: bun fan din kit win rum hat

As an exercise, draw the tree and verify that these results are correct.
In passing, note that the in-order and pre-order traversals of a binary tree uniquely define that tree. The same 

holds for in-order and post-order. However, pre-order and post-order do not uniquely define the tree. In other words, 
it is possible to have two different trees A and B where the pre-order and post-order traversals of A are the same as the  
pre-order and post-order traversals of B, respectively. As an exercise, give an example of such a tree.

9.6 Binary Search Trees
Consider one possible binary tree built with the three-letter words shown in Figure 9-3.

era mac

ode

lea tee

ria vim

Figure 9-3.  Binary search tree with some three-letter words

This is a special kind of binary tree. It has the property that, given any node, a word in the left subtree is  
“smaller,” and a word in the right subtree is “greater” than the word at the node. (Here, smaller and greater refer to 
alphabetical order.)

Such a tree is called a binary search tree (BST). It facilitates the search for a given key using a method of searching 
similar to a binary search of an array.

Consider the search for ria. Starting at the root, ria is compared with ode. Since ria is greater (in alphabetical 
order) than ode, we can conclude that if it is in the tree, it must be in the right subtree. It must be so since all the nodes 
in the left subtree are smaller than ode.
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Following the right subtree of ode, we next compare ria with tee. Since ria is smaller than tee, we follow the left 
subtree of tee. We then compare ria with ria, and the search ends successfully.

But what if we were searching for fun?

	 1.	 fun is smaller than ode, so we go left.

	 2.	 fun is smaller than lea, so we go left again.

	 3.	 fun is greater than era, so we must go right.

But since the right subtree of era is empty, we can conclude that fun is not in the tree. If it is necessary to add fun 
to the tree, note that we have also found the place where it must be added. It must be added as the right subtree of era, 
as shown in Figure 9-4.

Thus, not only does the binary search tree facilitate searching, but if an item is not found, it can be easily inserted. 
It combines the speed advantage of a binary search with the easy insertion of a linked list.

The tree drawn in Figure 9-3 is the optimal binary search tree for the seven given words. This means that it is the 
best possible tree for these words in the sense that no shallower binary tree can be built from these words. It gives the 
same number of comparisons to find a key as a binary search on a linear array containing these words.

But this is not the only possible search tree for these words. Suppose the words came in one at a time, and as each 
word came in, it was added to the tree in such a way that the tree remained a binary search tree. The final tree built 
will depend on the order in which the words came in. For example, suppose the words came in this order:
 
           mac  tee  ode  era  ria  lea  vim
 

Initially the tree is empty. When mac comes in, it becomes the root of the tree.

•	 tee comes next and is compared with mac. Since tee is greater, it is inserted as the right 
subtree of mac.

•	 ode comes next and is greater than mac, so we go right;  ode is smaller than tee, so it inserted 
as the left subtree of tee.

•	 era is next and is smaller than mac, so it is inserted as the left subtree of mac.

The tree built so far is shown in Figure 9-5.

era mac

ode

lea tee

ria vim

fun

Figure 9-4.  BST after adding fun
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•	 ria is next and is greater than mac, so we go right;  it is smaller than tee, so we go left; it is 
greater than ode, so it is inserted as the right subtree of ode.

Following this procedure, lea is inserted as the right subtree of era, and vim is inserted as the right subtree of tee, 
giving the final tree shown in Figure 9-6.

lea

mac

era

ode

ria

tee

vim

Figure 9-7.  A degenerate tree

mac

era tee

ode

Figure 9-5.  BST after adding mac, tee, ode, era

lea

mac

era tee

ode vim

ria

Figure 9-6.  BST after adding all seven words

Note that the tree obtained is quite different from the optimal search tree. The number of comparisons required 
to find a given word has also changed. For instance, ria now requires four comparisons; it required three previously, 
and lea now requires three as opposed to two previously. But it’s not all bad news; era now requires two as compared 
to three previously.

It can be proved that if the words come in random order, then the average search time for a given word is 
approximately 1.4 times the average for the optimal search tree, that is, 1.4log

2
n, for a tree of n nodes.

But what about the worst case? If the words come in alphabetical order, then the tree built will be that shown  
in Figure 9-7.
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Searching such a tree is reduced to a sequential search of a linked list. This kind of tree is called a degenerate 
tree. Certain orders of the words will give some very unbalanced trees. As an exercise, draw the trees obtained for the 
following orders of the words:

vim  tee  ria  ode  mac  lea  era•	

era  vim  lea  tee  mac  ria  ode•	

vim  era  lea  tee  ria  mac  ode•	

lea  mac  vim  tee  era  ria  ode•	

9.7 Building a Binary Search Tree
We now write a function to find or insert an item in a binary search tree. Assuming the previous definitions of 
TreeNode and BinaryTree, we write the function findOrInsert. The function searches the tree for a NodeData item, d. 
If it is found, it returns a pointer to the node. If it is not found, the item is inserted in the tree in its appropriate place, 
and the function returns a pointer to the new node.
 
        TreeNodePtr findOrInsert(BinaryTree bt, NodeData d) {
        //searches for d; if found, return pointer to node containing d
        //else insert a node containing d and return pointer to new node
           TreeNodePtr newTreeNode(NodeData);
 
           if (bt.root == NULL) return newTreeNode(d);
           TreeNodePtr curr = bt.root;
           int cmp;
           while ((cmp = strcmp(d.word, curr -> data.word)) != 0) {
              if (cmp < 0) { //try left
                 if (curr -> left == NULL) return curr -> left = newTreeNode(d);
                 curr = curr -> left;
              }
              else { //try right
                 if (curr -> right == NULL) return curr -> right = newTreeNode(d);
                 curr = curr -> right;
              }
           }
           //d is in the tree; return pointer to the node
           return curr;
        } //end findOrInsert
 

The creation of a new node is delegated to newTreeNode.
 
        TreeNodePtr newTreeNode(NodeData d) {
           TreeNodePtr p = (TreeNodePtr) malloc(sizeof(TreeNode));
           p -> data = d;
           p -> left = p -> right = NULL;
           return p;
        } //end newTreeNode
 

This allocates storage for the node, stores d in the data field, and sets the left and right pointers to NULL. It returns 
a pointer to the node created.
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9.7.1 Example: Word Frequency Count
We will illustrate the ideas developed so far by writing a program to do a frequency count of the words in a passage. 
We will store the words in a binary search tree. The tree is searched for each incoming word. If the word is not found, 
it is added to the tree, and its frequency count is set to 1. If the word is found, then its frequency count is incremented 
by 1. At the end of the input, an in-order traversal of the tree gives the words in alphabetical order.

First, we must define the NodeData structure. This will consist of two fields: a word and its frequency.  
Here is the definition:
 
        typedef struct {
           char word[MaxWordSize+1];
           int freq;
        } NodeData;
  

For our program, we will define a word to be any consecutive sequence of uppercase or lowercase letters.  
All words are converted to lowercase before processing. We will write a function called getWord to read a word.

The gist of the algorithm for building the search tree is as follows:
 
        create empty tree; set root to NULL
        while (there is another word) {
           get the word
           search for word in tree; insert if necessary and set frequency to 0
           add 1 to frequency //for an old word or a newly inserted one
        }
        print words and frequencies
 

We now write Program P9.2 to do the frequency count of words in the file wordFreq.in. It simply reflects the 
algorithm above.

Program P9.2

        #include <stdio.h>
        #include <string.h>
        #include <stdlib.h>
        #include <ctype.h>
        #define MaxWordSize 20
 
        typedef struct {
           char word[MaxWordSize+1];
           int freq;
        } NodeData;
 
        typedef struct treeNode {
           NodeData data;
           struct treeNode *left, *right;
        } TreeNode, *TreeNodePtr;
 
        typedef struct {
           TreeNodePtr root;
        } BinaryTree;
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        int main() {
           int getWord(FILE *, char[]);
           TreeNodePtr newTreeNode(NodeData);
           NodeData newNodeData(char [], int);
           TreeNodePtr findOrInsert(BinaryTree, NodeData);
           void inOrder(FILE *, TreeNodePtr);
 
           char word[MaxWordSize+1];
 
           FILE * in = fopen("wordFreq.in", "r");
           FILE * out = fopen("wordFreq.out", "w");
 
           BinaryTree bst;
           bst.root = NULL;
 
           while (getWord(in, word) != 0) {
              if (bst.root == NULL)
                 bst.root = newTreeNode(newNodeData(word, 1));
              else {
                 TreeNodePtr node = findOrInsert(bst, newNodeData(word, 0));
                 node -> data.freq++;
              }
           }
 
           fprintf(out, "\nWords        Frequency\n\n");
           inOrder(out, bst.root); fprintf(out, "\n\n");
           fclose(in);
           fclose(out);
        } // end main
 
        int getWord(FILE * in, char str[]) {
        // stores the next word, if any, in str; word is converted to lowercase
        // returns 1 if a word is found; 0, otherwise
           char ch;
           int n = 0;
           // read over non-letters
           while (!isalpha(ch = getc(in)) && ch != EOF) ; //empty while body
           if (ch == EOF) return 0;
           str[n++] = tolower(ch);
           while (isalpha(ch = getc(in)) && ch != EOF)
              if (n < MaxWordSize) str[n++] = tolower(ch);
           str[n] = '\0';
           return 1;
        } // end getWord
 
        TreeNodePtr findOrInsert(BinaryTree bt, NodeData d) {
        //searches for d; if found, return pointer to node containing d
        //else insert a node containing d and return pointer to new node
           TreeNodePtr newTreeNode(NodeData);
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           if (bt.root == NULL) return newTreeNode(d);
           TreeNodePtr curr = bt.root;
           int cmp;
           while ((cmp = strcmp(d.word, curr -> data.word)) != 0) {
              if (cmp < 0) { //try left
                 if (curr -> left == NULL) return curr -> left = newTreeNode(d);
                 curr = curr -> left;
              }
              else { //try right
                 if (curr -> right == NULL) return curr -> right = newTreeNode(d);
                 curr = curr -> right;
              }
           }
           //d is in the tree; return pointer to the node
           return curr;
        } //end findOrInsert
 
        TreeNodePtr newTreeNode(NodeData d) {
           TreeNodePtr p = (TreeNodePtr) malloc(sizeof(TreeNode));
           p -> data = d;
           p -> left = p -> right = NULL;
           return p;
        } //end newTreeNode
 
        void inOrder(FILE * out, TreeNodePtr node) {
           if (node!= NULL) {
              inOrder(out, node -> left);
              fprintf(out, "%-15s %2d\n", node -> data.word, node -> data.freq);
              inOrder(out, node -> right);
           }
        } //end inOrder
 
        NodeData newNodeData(char str[], int n) {
           NodeData temp;
           strcpy(temp.word, str);
           temp.freq = n;
           return temp;
        } //end newNodeData
 

Since newTreeNode and findOrInsert require NodeData structures as arguments, we must create a NodeData 
structure from a given word to pass as the argument. The function newNodeData stores a given word and frequency  
in a NodeData structure and returns the structure. It is used as shown in the while loop in main.

An in-order traversal of the search tree yields the words in alphabetical order.
When Program P9.2 was run with the following data in wordFreq.in:

The quick brown fox jumps over the lazy dog. Congratulations!
If the quick brown fox jumped over the lazy dog then
Why did the quick brown fox jump over the lazy dog?
Why, why, why? To recuperate! Recuperate?
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it produced the following output:

   Words        Frequency
   brown            3
   congratulations  1
   did              1
   dog              3
   fox              3
   if               1
   jump             1
   jumped           1
   jumps            1
   lazy             3
   over             3
   quick            3
   recuperate       2
   the              6
   then             1
   to               1
   why              4

9.8 An Array as a Binary Tree Representation
A complete binary tree is one in which every nonleaf node has two nonempty subtrees and all leaves are at the same 
level. Figure 9-8 shows some complete binary trees.

A

B C

A
E

F B

G

A

C

N

Figure 9-8. Complete binary trees
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1

2 3

4 5 6 7

Figure 9-9. Numbering the nodes, level by level

The first is a complete binary tree of height 1, the second is a complete binary tree of height 2, and the third is a 
complete binary tree of height 3. For a complete binary tree of height n, the number of nodes in the tree is 2n – 1.

Consider the third tree. Let’s number the nodes as shown in Figure 9-9.
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Starting from 1 at the root, we number the nodes in order from top to bottom and from left to right at each level.
Observe that if a node has label n, its left subtree has label 2n, and its right subtree has label 2n + 1.
If the nodes are stored in an array T[1..7], like this:

1

C

2

E

3

G

4

F

5

B

6

A

7

N

T

then

•	 T[1] is the root.

The left subtree of •	 T[i] is T[2i] if 2i <= 7 and null otherwise.

The right subtree of •	 T[i] is T[2i+1] if 2i+1 <= 7 and null otherwise.

The parent of •	 T[i] is T[i/2] (integer division).

Based on this, the array is a representation of a complete binary tree. In other words, given the array, we can 
easily construct the binary tree it represents.

An array represents a complete binary tree if the number of elements in the array is 2n – 1, for some n.  
If the number of elements is some other value, the array represents an almost complete binary tree.

An almost complete binary tree is one in which

(a)	 all levels, except possibly the lowest, are completely filled.

(b)	 the nodes (all leaves) at the lowest level are as far left as possible.

If the nodes are numbered as shown earlier, then all leaves will be labeled with consecutive numbers from  
n/2+1 to n. The last nonleaf node will have label n/2. For example, consider the tree with ten nodes drawn and labeled 
as in Figure 9-10.

Note that the leaves are numbered from 6 to 10. If, for instance, H were the right subtree of B instead of the left, the 
tree would not be “almost complete” since the leaves on the lowest level would not be “as far left as possible.”

The following array of size 10 can represent this almost complete binary tree:

1

C

2

E

3

G

4

F

5

B

6

A

7

N

T

8

J

9

K

10

H

E

B

G

A

H

C

NF

J K

1

2 3

4 5 6 7

8 9 10

Figure 9-10.  A tree of ten nodes labeled level by level
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In general, if the tree is represented by an array T[1..n], the following are true:

•	 T[1] is the root.

The left subtree of •	 T[i] is T[2i] if 2i <= n and null otherwise.

The right subtree of •	 T[i] is T[2i+1] if 2i+1 <= n and null otherwise.

The parent of •	 T[i] is T[i/2] (integer division).

Looked at another way, there is exactly one almost complete binary tree with n nodes, and an array of size n 
represents this tree.

An almost complete binary tree has no “holes” in it; there is no room to add a node in between existing nodes. 
The only place to add a node is after the last one.

For instance, Figure 9-11 is not “almost complete” since there is a “hole” at the right subtree of B.

With the hole, the left subtree of A (in position 6) is not now in position 6*2 = 12, and the right subtree is not in 
position 6*2+1 =13. This relationship holds only when the tree is almost complete.

Given an array T[1..n] representing an almost complete binary tree with n nodes, we can perform an in-order 
traversal of the tree with the call inOrder(1, n) of the following function:
 
        void inOrder(int h, int n) {
           if (h <= n) {
              inOrder(h * 2, n);
              visit(h); //or visit(T[h]), if you wish
              inOrder(h * 2 + 1, n);
           }
        } //end inOrder
 

We can write similar functions for pre-order and post-order traversals.

By comparison to a complete binary tree, a full binary tree is one in which every node, except a leaf, has exactly 
two nonempty subtrees. Figure 9-12 is an example of a full binary tree.

E

B

H

C

G

A NF

J K
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2 3

4 5 6 7

8 9 10
L M

11 12

Figure 9-11.  Empty right subtree of B makes this not “almost complete”
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Note that a complete binary tree is always full, but as shown in Figure 9-12, a full binary tree is not necessarily 
complete. An almost complete binary tree may or may not be full.

The tree in Figure 9-13 is almost complete but not full (G has one nonempty subtree).

However, if node A is removed, the tree will be almost complete and full.
In the next chapter, we will explain how to sort an array by interpreting it as an almost complete binary tree.

9.9 Some Useful Binary Tree Functions
We will now show you how to write some functions that return information about a binary tree. The functions are all 
recursive, reflecting the recursive nature of a binary tree.

The first counts the number of nodes in a tree.
 
        int numNodes(TreeNodePtr root) {
           if (root == NULL) return 0;
           return 1 + numNodes(root -> left) + numNodes(root -> right);
        }
 

If bt is a BinaryTree, numNodes(bt.root) returns the number of nodes in the tree.

The next function returns the number of leaves in the tree:
 
        int numLeaves(TreeNodePtr root) {
           if (root == NULL) return 0;
           if (root-> left == NULL && root-> right == NULL) return 1;
           return numLeaves(root-> left) + numLeaves(root-> right);
        }
 

E

F B

G

A

C

Figure 9-13.  An almost complete but not full binary tree
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Figure 9-12.  A full binary tree
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And the next returns the height of the tree:
 
        int height(TreeNodePtr root) {
           if (root == NULL) return 0;
           return 1 + max(height (root-> left), height (root-> right));
        }
 

where max can be defined as follows:
 
        #define max(a, b) ((a) > (b) ? (a) : (b))
 

You are advised to test these functions on some sample trees to verify that they return the correct values.

9.10 Binary Search Tree Deletion
Consider the problem of deleting a node from a binary search tree so that it remains a BST. There are three cases to 
consider.

1.	 The node is a leaf.

2.	 (a)	 The node has no left subtree

(b)	 The node has no right subtree

3.	 The node has nonempty left and right subtrees.

We illustrate these cases using the BST shown in Figure 9-14.

Case 1 is easy. For example, to delete P, we simply set the right subtree of N to null. Case 2 is also easy. To delete 
A (no left subtree), we replace it by C, its right subtree. And to delete F (no right subtree), we replace it by A, its left 
subtree.

Case 3 is a bit more difficult since we have to worry about what to do with two subtrees. For example, how do 
we delete L? One approach is to replace L by its in-order successor, N, which must have an empty left subtree. Why? 
Because, by definition, the in-order successor of a node is the first node (in order) in its right subtree. And this first 
node (in any tree) is found by going as far left as possible.

Since N has no left subtree, we will set its left link to the left subtree of L. We will set the left link of the parent of N 
(R in this case) to point to P, the right subtree of N. Finally, we will set the right link of N to point to the right subtree of L, 
giving the tree shown in Figure 9-15.

F
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N T

P

C

B D

Figure 9-14.  A binary search tree
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Another way to look at it is to imagine the contents of node N being copied into node L. And the left link of the 
parent of N is set to point to the right subtree of N.

We will treat the node to be deleted as the root of a subtree. We will delete the root and return a pointer to the root 
of the reconstructed tree. The following is a function, written in pseudocode, to perform this task:
 
        deleteNode(TreeNode T) {
           if (T == null) return null
           if (right(T) == null) return left(T)  //cases 1 and 2b
           R = right(T)
           if (left(T) == null) return R //case 2a
           if (left(R) == null) {
              left(R) == left(T)
              return R
           }
 
           while (left(R) != null) { //will be executed at least once
              P = R
              R = left(R)
           }
           //R is pointing to the in-order successor of T;
           //P is its parent
           left(R) = left(T)
           left(P) = right(R)
           right(R) = right(T)
           return R
        } //end deleteNode
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Figure 9-15.  BST after deletion of L in BST 9.14
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Suppose we call deleteNode with a pointer to the node L in Figure 9-14 as argument. The function will delete L 
and return a pointer to the following tree:

N

J R

P T

Since L was the right subtree of H, we can now set the right subtree of H to point to this tree.

EXERCISES 9

	 1.	 A binary tree consists of an integer key field and pointers to the left subtree, right subtree, and 
parent. Write the declarations required for building a tree and code to create an empty tree.

	 2.	 Each node of a binary tree has fields left, right, key, and parent.

Write a function to return the in-order successor of any given node x. Hint: if the right 
subtree of node x is empty and x has a successor y, then y is the lowest ancestor of x, which 
contains x in its left subtree.

Write a function to return the pre-order successor of any given node x.

Write a function to return the post-order successor of any given node x.

Using these functions, write functions to perform the in-order, pre-order, and post-order 
traversals of a given binary tree.

	 3.	 Write a function that, given the root of a binary search tree, deletes the smallest node and 
returns a pointer to the root of the reconstructed tree.

	 4.	 Write a function that, given the root of a binary search tree, deletes the largest node and 
returns a pointer to the root of the reconstructed tree.

	 5.	 Write a function that, given the root of a binary search tree, deletes the root and returns a 
pointer to the root of the reconstructed tree. Write the function replacing the root by (i) its  
in-order successor and (ii) its in-order predecessor.

	 6.	 Draw a nondegenerate binary tree of five nodes such that the pre-order and level-order 
traversals produce identical results.

	 7.	 Write a function that, given the root of binary tree, returns the width of the tree, that is, the 
maximum number of nodes at any level.

	 8.	 Draw two different binary trees such that the pre-order and post-order traversals of the one 
tree are identical to the pre-order and post-order traversals of the other tree.
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	 9.	 A binary search tree contains integers. For each of the following sequences, state whether  
it could be the sequence of values examined in searching for the number 36. If it cannot, 
state why.

         7 25 42 40 33 34 39 36
         92 22 91 24 89 20 35 36
         95 20 90 24 92 27 30 36
         7 46 41 21 26 39 37 24 36

	 10.	 Draw the binary search tree (BST) obtained for the following keys assuming they are inserted 
in the order given: 56 30 61 39 47 35 75 13 21 64 26 73 18.

There is one almost complete BST for the previous keys. Draw it.

List the keys in an order that will produce the almost complete BST.

Assuming that the almost complete tree is stored in a one-dimensional array num[1..13], 
write a recursive function for printing the integers in post-order.

	 11.	 An imaginary “external” node is attached to each null pointer of a binary tree of n nodes.  
How many external nodes are there?

If I is the sum of the levels of the original tree nodes and E is the sum of the levels of the 
external nodes, prove that E – I = 2n. (I is called the internal path length.)

Write a recursive function that, given the root of a binary tree, returns I.

Write a nonrecursive function that, given the root of a binary tree, returns I.

	 12.	 Draw the binary tree whose in-order and post-order traversals of the nodes are as follows:

         In-order:   G D P K E N F A T L
         Post-order:   G P D K F N T A L E

	 13.	 Draw the binary tree whose in-order and pre-order traversals of the nodes are as follows:

         In-order:   G D P K E N F A T L
         Pre-order:   N D G K P E T F A L

	 14.	 Write a recursive function that, given the root of a binary tree and a key, searches for the key 
using (i) a pre-order, (ii) an in-order, and (iii) a post-order traversal. If found, return the node 
containing the key; otherwise, return null.

	 15.	 Each node of a  binary search tree contains three fields—left, right, and data—with their 
usual meanings; data is a positive integer field. Write an efficient function that, given the root 
of the tree and key, returns the smallest number in the tree that is greater than key. If there 
is no such number, return -1.

	 16.	 Store the following integers in an array bst[1..15] such that bst represents a complete 
binary search tree: 34 23 45 46 37 78 90 2 40 20 87 53 12 15 91.
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	 17.	 Write a program that takes a C program as input and outputs the program, numbering the 
lines, followed by an alphabetical cross-reference listing of all user identifiers; that is, a user 
identifier is followed by the numbers of all lines in which the identifier appears. If an identifier 
appears more than once in a given line, the line number must be repeated the number of 
times it appears.

The cross-reference listing must not contain C reserved words, words within character 
strings, or words within comments.
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Chapter 10

Advanced Sorting

In this chapter, we will explain the following:

What a heap is and how to perform heapsort using •	 siftDown

How to build a heap using •	 siftUp

How to analyze the performance of heapsort•	

How a heap can be used to implement a priority queue•	

How to sort a list of items using quicksort•	

How to find the k•	 th smallest item in a list

How to sort a list of items using Shell (diminishing increment) sort•	

In Chapter 1, we discussed two simple methods (selection and insertion sort) for sorting a list of items. In this 
chapter, we take a detailed look at some faster methods—heapsort, quicksort, and Shell (diminishing increment) sort.

10.1 Heapsort
Heapsort is a method of sorting that interprets the elements in an array as an almost complete binary tree. Consider 
the following array, which is to be sorted in ascending order:

We can think of this array as an almost complete binary tree with 12 nodes, as shown in Figure 10-1.
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Suppose we now require that the value at each node be greater than or equal to the values in its left and right 
subtrees, if present. As it is, only node 6 and the leaves have this property. Shortly, we will see how to rearrange the 
nodes so that all nodes satisfy this condition. But, first, we give this condition a name:

A heap is an almost complete binary tree such that the value at the root is greater than or equal to 
the values at the left and right children, and the left and right subtrees are also heaps.

An immediate consequence of this definition is that the largest value is at the root. Such a heap is referred  
to as a max-heap. We define a min-heap with the word greater replaced by smaller. In a min-heap, the smallest value  
is at the root.

Let’s now convert the binary tree in Figure 10-1 into a max-heap.

10.1.1 Converting a Binary Tree into a Max-Heap
First, we observe that all the leaves are heaps since they have no children.

Starting at the last nonleaf node (6, in the example), we convert the tree rooted there into a max-heap. If the value 
at the node is greater than its children, there is nothing to do. This is the case with node 6, since 84 is bigger than 32.

Next, we move on to node 5. The value here, 48, is smaller than at least one child (both, in this case, 56 and 69).  
We first find the larger child (69) and interchange it with node 5. Thus, 69 ends up in node 5, and 48 ends up in node 11.

Next, we go to node 4. The larger child, 79, is moved to node 4, and 65 is moved to node 9. At this stage, the tree 
looks like that in Figure 10-2.
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Figure 10-1. A binary tree view of the array
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Figure 10-2. The tree after nodes 6, 5, and 4 have been processed
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Continuing at node 3, 43 must be moved. The larger child is 84, so we interchange the values at nodes 3 and 6. 
The value now at node 6 (43) is bigger than its child (32), so there is nothing more to do. Note, however, that if the 
value at node 6 were 28, say, it would have had to be exchanged with 32.

Moving to node 2, 25 is exchanged with its larger child, 79. But 25 now in node 4 is smaller than 65, its right child 
in node 9. Thus, these two values must be exchanged.

Finally, at node 1, 37 is exchanged with its larger child, 84. It is further exchanged with its (new) larger child, 73, 
giving the tree, which is now a heap, shown in Figure 10-3.

10.1.2 The Sorting Process
After conversion to a heap, note that the largest value, 84, is at the root of the tree. Now that the values in the array 
form a heap, we can sort them in ascending order as follows:

Store the last item, 32, in a temporary location. Next, move 84 to the last position (node 12), 
freeing node 1. Then, imagine 32 is in node 1 and move it so that items 1 to 11 become a 
heap. This will be done as follows:

32 is exchanged with its bigger child, 79, which now moves into node 1. 32 is further 
exchanged with its (new) bigger child, 69, which moves into node 2.

Finally, 32 is exchanged with 56, giving us Figure 10-4.

79

69

56

84

73

43 3765

18 25

1

2 3

4 5 6 7

8 9 10
3248

1211

Figure 10-3.  The final tree, which is now a heap
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Figure 10-4.  After 84 has been placed and the heap is reorganized
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At this stage, the second largest number, 79, is in node 1. This is placed in node 11, and 48 is “sifted down” from 
node 1 until items 1 to 10 form a heap. Now, the third largest number, 73, will be at the root. This is placed in node 10, 
and so on. The process is repeated until the array is sorted.

After the initial heap is built, the sorting process can be described with the following:
 
        for k = n downto 2 do
           item = num[k]   //extract current last item
           num[k] = num[1]   //move top of heap to current last node
           siftDown(item, num, 1, k-1)  //restore heap properties from 1 to k-1
        end for
 

where siftDown(item, num, 1, k-1) is based on the following conditions:

•	 num[1] is empty.

•	 num[2] to num[k-1] form a heap.

Starting at position 1, •	 item is inserted so that num[1] to num[k-1] form a heap.

In the sorting process described above, each time through the loop, the value in the current last position (k) is 
stored in item. The value at node 1 is moved to position k; node 1 becomes empty (available), and nodes 2 to k-1 all 
satisfy the heap property.

The call siftDown(item, num, 1, k-1) will add item so that num[1] to num[k-1] contain a heap. This ensures 
that the next highest number is at node 1.

The nice thing about siftDown (when we write it) is that it can be used to create the initial heap from the given 
array. Recall the process of creating a heap described in Section 10.1.1. At each node (h, say), we “sifted the value 
down” so that we formed a heap rooted at h. To use siftDown in this situation, we generalize it as follows:
 
        void siftDown(int key, int num[], int root, int last)
 

This assumes the following: 

•	 num[root] is empty.

•	 num[root+1] to num[last] form a heap.

Starting at •	 root, key is inserted so that num[root] to num[last] form a heap.

Given an array of values num[1] to num[n], we could build the heap with this:
 
        for h = n/2 downto 1 do // n/2 is the last non-leaf node
                siftDown(num[h], num, h, n)
 

We now show how to write siftDown.

Consider Figure 10-5. 
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Except for nodes 1 and 2, all the other nodes satisfy the heap property that they are bigger than or equal to their 
children. Suppose we want to make node 2 the root of a heap. As it is, the value 25 is smaller than its children (79 and 
69). We want to write siftDown so that the call siftDown(25, num, 2, 12) will do the job. Here, 25 is the key, num is 
the array, 2 is the root, and 12 is the position of the last node.

After this, each of nodes 2 to 12 will be the root of a heap, and the call siftDown(37, num, 1, 12) will ensure 
that the entire array contains a heap.

The gist of siftDown is as follows:
 
        find the larger child of num[root]; //suppose it is in node m
        if (key >= num[m]) we are done; put key in num[root]
        //key is smaller than the bigger child
        store num[m] in num[root]  //promote bigger child
        set root to m
 

The process is repeated until the value at root is bigger than its children or there are no children. Here is siftDown:
 
        void siftDown(int key, int num[], int root, int last) {
           int bigger = 2 * root;
           while (bigger <= last) { //while there is at least one child
              if (bigger < last) //there is a right child as well; find the bigger
                 if (num[bigger+1] > num[bigger]) bigger++;
              //'bigger' holds the index of the bigger child
              if (key >= num[bigger]) break;
              //key is smaller; promote num[bigger]
              num[root] = num[bigger];
              root = bigger;
              bigger = 2 * root;
           }
           num[root] = key;
        } //end siftDown
 

We can now write heapSort as follows:
 
        void heapSort(int num[], int n) {
        //sort num[1] to num[n]
           void siftDown(int, int[], int, int);
           //convert the array to a heap
           for (int h = n / 2; h >= 1; h--) siftDown(num[h], num, h, n);
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Figure 10-5.  A heap, except for nodes 1 and 2
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           for (int k = n; k > 1; k--) {
              int item = num[k]; //extract current last item
              num[k] = num[1];   //move top of heap to current last node
              siftDown(item, num, 1, k-1); //restore heap properties from 1 to k-1
           }
        } //end heapSort
 

We can test it with the following:
 
        #include <stdio.h>
        int main() {
           void heapSort(int[], int);
           int num[] = {0, 37, 25, 43, 65, 48, 84, 73, 18, 79, 56, 69, 32};
           int n = 12;
           heapSort(num, n);
           for (int h = 1; h <= n; h++) printf("%d ", num[h]);
           printf("\n");
        } //end main
 

This produces the following output (num[1] to num[12] sorted):
 
        18 25 32 37 43 48 56 65 69 73 79 84
 

Programming note: As written, heapSort sorts an array assuming that n elements are stored from subscripts 1 to n. 
If they are stored from 0 to n-1, appropriate adjustments would have to be made. They would be based mainly on the 
following observations:

The root is stored in •	 num[0].

The left child of node •	 h is node 2h + 1 if 2h + 1 < n.

The right child of node •	 h is node 2h + 2 if 2h + 2 < n.

The parent of node •	 h is node (h – 1) / 2 (integer division).

The last nonleaf node is •	 (n – 1) / 2 (integer division).

You can verify these observations using the tree (n = 12) shown in Figure 10-6.
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Figure 10-6.  A binary tree stored in an array starting at 0
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You are urged to rewrite heapSort so that it sorts the array num[0..n-1]. As a hint, note that the only change 
required in siftDown is in the calculation of bigger. Instead of 2 * root, we now use 2 * root + 1.

10.2 Building a Heap Using siftUp
Consider the problem of adding a new node to an existing heap. Specifically, suppose num[1] to num[n] contain  
a heap. We want to add a new number, newKey, so that num[1] to num[n+1] contain a heap that includes newKey.  
We assume the array has room for the new key.

For example, suppose we have the heap shown in Figure 10-7 and we want to add 40 to the heap. When the new 
number is added, the heap will contain 13 elements. We imagine 40 is placed in num[13] (but do not store it there, 
as yet) and compare it with its parent 43 in num[6]. Since 40 is smaller, the heap property is satisfied; we place 40 in 
num[13], and the process ends.

But suppose we want to add 80 to the heap. We imagine 80 is placed in num[13] (but do not actually store it there, 
as yet) and compare it with its parent 43 in num[6]. Since 80 is bigger, we move 43 to num[13] and imagine 80 being 
placed in num[6].

Next, we compare 80 with its parent 73 in num[3]. It is bigger, so we move 73 to num[6] and imagine 80 being 
placed in num[3].

We then compare 80 with its parent 84 in num[1]. It is smaller, so we place 80 in num[3], and the process ends.
Note that if we were adding 90 to the heap, 84 would be moved to num[3], and 90 would be inserted in num[1].  

It is now the largest number in the heap.
Figure 10-8 shows the heap after 80 is added.
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Figure 10-7.  A heap to which we will add a new item
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Figure 10-8.  The heap after 80 is added
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The following algorithm adds newKey to a heap stored in num[1] to num[n]:
 
        child = n + 1;
        parent = child / 2;
        while (parent > 0) {
           if (newKey <= num[parent]) break;
           num[child] = num[parent]; //move down parent
           child = parent;
           parent = child / 2;
        }
        num[child] = newKey;
        n = n + 1;
 

The process described is usually referred to as sifting up. We can rewrite this algorithm as a function siftUp. We 
assume that siftUp is given an array heap[1..n] such that heap[1..n-1] contains a heap and heap[n] is to be sifted 
up so that heap[1..n] contains a heap. In other words, heap[n] plays the role of newKey in the algorithm above.

We show siftUp as part of Program P10.1, which creates a heap out of numbers stored in a file, heap.in.

Program P10.1

        #include <stdio.h>
        #include <stdlib.h>
        #define MaxHeapSize 100
        int main() {
           void siftUp(int[], int);
           int num[MaxHeapSize + 1];
           int n = 0, number;
           FILE * in = fopen("heap.in", "r");
 
           while (fscanf(in, "%d", &number) == 1) {
              if (n < MaxHeapSize) { //check if array has room
                 num[++n] = number;
                 siftUp(num, n);
              }
              else {
                 printf("\nArray too small\n");
                 exit(1);
              }
           }
           for (int h = 1; h <= n; h++) printf("%d ", num[h]);
           printf("\n");
           fclose(in);
        } //end main
 
        void siftUp(int heap[], int n) {
        //sifts up the value in heap[n] so that heap[1..n] contains a heap
           int siftItem = heap[n];
           int child = n;
           int parent = child / 2;
           while (parent > 0) {
              if (siftItem <= heap[parent]) break;
              heap[child] = heap[parent]; //move down parent
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              child = parent;
              parent = child / 2;
           }
           heap[child] = siftItem;
        } //end siftUp
 

If heap.in contains the following:
 
        37 25 43 65 48 84 73 18 79 56 69 32
 

Program P10.1 will build the heap (described next) and print the following:
 
        84 79 73 48 69 37 65 18 25 43 56 32
 

After 37, 25, and 43 are read, we will have Figure 10-9.

After 65, 48, 84, and 73 are read, we will have Figure 10-10.

And after 18, 79, 56, 69, and 32 are read, we will have the final heap shown in Figure 10-11.
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Figure 10-9.  Heap after processing 37, 25, 43

48

43

84

73

37 6525

1

2 3

4 5 6 7

Figure 10-10.  Heap after processing 65, 48, 84, 73
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Figure 10-11.  Final heap after processing 18, 79, 56, 69, 32
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Note that the heap in Figure 10-11 is different from that of Figure 10-3 even though they are formed from the 
same numbers. What hasn’t changed is that the largest value, 84, is at the root.

If the values are already stored in an array num[1..n], we can create a heap with the following:
 
        for (k = 2; k <= n; k++) siftUp(num, k);

10.3 Analysis of Heapsort
Is siftUp or siftDown better for creating a heap? Keep in mind that the most times any node will ever have to move  
is log

2
n.

In siftDown, we process n/2 nodes, and at each step, we make two comparisons: one to find the bigger child and 
one to compare the node value with the bigger child. In a simplistic analysis, in the worst case, we will need to make 
2*n/2*log

2
n = nlog

2
n comparisons. However, a more careful analysis will show that we need to make, at most, only 4n 

comparisons.
In siftUp, we process n-1 nodes. At each step, we make one comparison: the node with its parent. In a simplistic 

analysis, in the worst case, we make (n-1)log
2
n comparisons. However, it is possible that all the leaves may have to 

travel all the way to the top of the tree. In this case, we have n/2 nodes having to travel a distance of log
2
n, giving 

a total of (n/2)log
2
n comparisons. And that’s only for the leaves. In the end, a more careful analysis still gives us 

approximately nlog
2
n comparisons for siftUp.

The difference in performance is hinged on the following: in siftDown, there is no work to do for half the nodes 
(the leaves); siftUp has the most work to do for these nodes.

Whichever method we use for creating the initial heap, heapsort will sort an array of size n making at most 
2nlog

2
n comparisons and nlog

2
n assignments. This is very fast. In addition, heapsort is stable in the sense that its 

performance is always at worst 2nlog
2
n, regardless of the order of the items in the given array.

To give an idea of how fast heapsort (and all sorting methods that are of order O(nlog
2
n), such as quicksort and 

mergesort) is, let’s compare it with selection sort, which makes roughly ½ n2 comparisons to sort n items (Table 10-1).

The second and third columns show the number of comparisons that each method makes. The last two columns 
show the running time of each method (in seconds) assuming that the computer can process 1 million comparisons 
per second. For example, to sort 1 million items, selection sort will take 500,000 seconds (almost 6 days!), whereas 
heapsort will do it in less than 40 seconds.

Table 10-1.  Comparison of Heapsort with Selection Sort

n selection(comp) heap(comp) select(sec) heap(sec)

100 5,000 1,329 0.005 0.001

1,000 500,000 19,932 0.5 0.020

10,000 50,000,000 265,754 50 0.266

100,000 5,000,000,000 3,321,928 5000 3.322

1,000,000 500,000,000,000 39,863,137 500000 39.863
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10.4 Heaps and Priority Queues
A priority queue is one in which each item is assigned some “priority” and its position in the queue is based on this 
priority. The item with top priority is placed at the head of the queue. The following are some typical operations that 
may be performed on a priority queue:

Remove (serve) the item with the highest priority•	

Add an item with a given priority•	

Remove (delete without serving) an item from the queue•	

Change the priority of an item, adjusting its position based on its new priority•	

We can think of priority as an integer—the bigger the integer, the higher the priority.
Immediately, we can surmise that if we implement the queue as a max-heap, the item with the highest priority 

will be at the root, so it can be easily removed. Reorganizing the heap will simply involve “sifting down” the last item 
from the root.

Adding an item will involve placing the item in the position after the current last one and sifting it up until it finds 
its correct position.

To delete an arbitrary item from the queue, we will need to know its position. Deleting it will involve replacing it 
with the current last item and sifting it up or down to find its correct position. The heap will shrink by one item.

If we change the priority of an item, we may need to sift it either up or down to find its correct position. Of course, 
it may also remain in its original position, depending on the change.

In many situations (for example, a job queue on a multitasking computer), the priority of a job may increase over 
time so that it eventually gets served. In these situations, a job moves closer to the top of the heap with each change; 
thus, only sifting up is required.

In a typical situation, information about the items in a priority queue is held in another structure that can be 
quickly searched, for example a binary search tree. One field in the node will contain the index of the item in the array 
used to implement the priority queue.

Using the job queue example, suppose we want to add an item to the queue. We can search the tree by job 
number, say, and add the item to the tree. Its priority number is used to determine its position in the queue. This 
position is stored in the tree node.

If, later, the priority changes, the item’s position in the queue is adjusted, and this new position is stored in the 
tree node. Note that adjusting this item may also involve changing the position of other items (as they move up or 
down the heap), and the tree will have to be updated for these items as well.

10.5 Sorting a List of Items with Quicksort
At the heart of quicksort is the notion of partitioning the list with respect to one of the values called a pivot. For 
example, given the following list to be sorted:

we can partition it with respect to the first value, 53. This means placing 53 in such a position that all values to the 
left of it are smaller and all values to the right are greater than or equal to it. Shortly, we will describe an algorithm that 
will partition the above array as follows:
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The value 53 is used as the pivot. It is placed in position 6. All values to the left of 53 are smaller than 53, and 
all values to the right are greater. The location in which the pivot is placed is called the division point (dp, say). By 
definition, 53 is in its final sorted position.

If we can sort num[1..dp-1] and num[dp+1..n], we would have sorted the entire list. But we can use the same 
process to sort these pieces, indicating that a recursive procedure is appropriate.

Assuming a function partition is available that partitions a given section of an array and returns the division 
point, we can write quicksort as follows:

        void quicksort(int A[], int lo, int hi) {
        //sorts A[lo] to A[hi] in ascending order
           int partition(int[], int, int);
           if (lo < hi) {
              int dp = partition(A, lo, hi);
              quicksort(A, lo, dp-1);
              quicksort(A, dp+1, hi);
           }
        } //end quicksort

The call quicksort(num, 1, n) will sort num[1..n] in ascending order.

We now look at how partition may be written. Consider the array:

We will partition it with respect to num[1], 53 (the pivot) by making one pass through the array. We will look at 
each number in turn. If it is bigger than the pivot, we do nothing. If it is smaller, we move it to the left side of the array. 
Initially, we set the variable lastSmall to 1; as the method proceeds, lastSmall will be the index of the last item that 
is known to be smaller than the pivot. We partition num as follows:

1. Compare 12 with 53; it is smaller, so add 1 to lastSmall (making it 2) and swap num[2]
with itself.

2. Compare 98 with 53; it is bigger, so move on.

3. Compare 63 with 53; it is bigger, so move on.

4. Compare 18 with 53; it is smaller, so add 1 to lastSmall (making it 3) and swap num[3], 98, 
with 18.

At this stage, we have this:

5. Compare 32 with 53; it is smaller, so add 1 to lastSmall (making it 4) and swap num[4], 63, 
with 32.

6. Compare 80 with 53; it is bigger, so move on.

7. Compare 46 with 53; it is smaller, so add 1 to lastSmall (making it 5) and swap num[5], 98, 
with 46.
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At this stage, we have the following:

	 8.	 Compare 72 with 53; it is bigger, so move on.

	 9.	 Compare 21 with 53; it is smaller, so add 1 to lastSmall (making it 6) and swap num[6], 63, 
with 21.

	 10.	 We have come to the end of the array; swap num[1] and num[lastSmall]; this moves the 
pivot into its final position.

We end up with this:

The division point is denoted by lastSmall (6).
We can express the previous procedure as a function partition1.

 
        int partition1(int A[], int lo, int hi) {
        //partition A[lo] to A[hi] using A[lo] as the pivot
           void swap(int[], int, int);
           int pivot = A[lo];
           int lastSmall = lo;
           for (int h = lo + 1; h <= hi; h++)
              if (A[h] < pivot) {
                 ++lastSmall;
                 swap(A, lastSmall, h);
              }
           //end for
           swap(A, lo, lastSmall);
           return lastSmall;  //return the division point
        } //end partition1
 
        void swap(int list[], int i, int j) {
        //swap list[i] and list[j]
           int hold = list[i];
           list[i] = list[j];
           list[j] = hold; 
        } //end swap
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We can test quicksort and partition1 with this:
 
        #include <stdio.h> 
        int main() {
           void quicksort(int[], int, int);
           int num[] = {0, 53, 12, 98, 63, 18, 32, 80, 46, 72, 21};
           int n = 10;
           quicksort(num, 1, n);
           for (int h = 1; h <= n; h++) printf("%d ", num[h]);
           printf("\n");
        } //end main
 

When run, this produces the following output (num[1] to num[10] sorted):
 
        12 18 21 32 46 53 63 72 80 98
 

Quicksort is one of those methods whose performance can range from very fast to very slow. Typically, it is of 
order O(nlog

2
n), and for random data, the number of comparisons varies between nlog

2
n and 3nlog

2
n. However, 

things can get worse.
The idea behind partitioning is to break up the given portion into two fairly equal pieces. Whether this happens 

depends, to a large extent, on the value that is chosen as the pivot.
In the function, we choose the first element as the pivot. This will work well in most cases, especially for random 

data. However, if the first element happens to be the smallest, the partitioning operation becomes almost useless 
since the division point will simply be the first position. The “left” piece will be empty, and the “right” piece will be 
only one element smaller than the given sublist. Similar remarks apply if the pivot is the largest element.

While the algorithm will still work, it will be slowed considerably. For example, if the given array is sorted, 
quicksort will become as slow as selection sort.

One way to avoid this problem is to choose a random element as the pivot, not merely the first one. While it is still 
possible that this method will choose the smallest (or the largest), that choice will be merely by chance.

Yet another method is to choose the median of the first (A[lo]), last (A[hi]), and middle (A[(lo+hi)/2]) items as 
the pivot.

You are advised to experiment with various ways of choosing the pivot.
Our experiments showed that choosing a random element as the pivot was simple and effective, even for sorted data. 

In fact, in many cases, the method ran faster with sorted data than with random data, an unusual result for quicksort.
One possible disadvantage of quicksort is that, depending on the actual data being sorted, the overhead of the 

recursive calls may be high. We will see how to minimize this in Section 10.5.3. On the plus side, quicksort uses very 
little extra storage. On the other hand, mergesort (which is also recursive) needs extra storage (the same size as the 
array being sorted) to facilitate the merging of sorted pieces. Heapsort has neither of these disadvantages. It is not 
recursive and uses very little extra storage. And, as noted in Section 10.3, heapsort is stable in that its performance is 
always at worst 2nlog

2
n, regardless of the order of the items in the given array.

10.5.1 Another Way to Partition
There are many ways to achieve the goal of partitioning—splitting the list into two parts such that the elements in the 
left part are smaller than the elements in the right part. Our first method, shown earlier, placed the pivot in its final 
position. For variety, we will look at another way to partition. While this method still partitions with respect to a pivot, 
it does not place the pivot in its final sorted position. As we will see, this is not a problem.

Consider, again, the array num[1..n] where n = 10.
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We choose 53 as the pivot. The general idea is to scan from the right looking for a key that is smaller than, or 
equal to, the pivot. We then scan from the left for a key that is greater than, or equal to, the pivot. We swap these two 
values; this process effectively puts smaller values to the left and bigger values to the right.

We use two variables, lo and hi, to mark our positions on the left and right. Initially, we set lo to 0 and hi to 11 
(n+1). We then loop as follows:

	 1.	 Subtract 1 from hi (making it 10).

	 2.	 Compare num[hi], 21, with 53; it is smaller, so stop scanning from the right with hi = 10.

	 3.	 Add 1 to lo (making it 1) .

	 4.	 Compare num[lo], 53, with 53; it is not smaller, so stop scanning from the left with lo = 1.

	 5.	 lo (1) is less than hi (10), so swap num[lo] and num[hi] .

	 6.	 Subtract 1 from hi (making it 9).

	 7.	 Compare num[hi], 72, with 53; it is bigger, so decrease hi (making it 8). Compare num[hi], 
46, with 53; it is smaller, so stop scanning from the right with hi = 8.

	 8.	 Add 1 to lo (making it 2).

	 9.	 Compare num[lo], 12, with 53; it is smaller, so add 1 to lo (making it 3). Compare num[lo], 
98, with 53; it is bigger, so stop scanning from the left with lo = 3.

	 10.	 lo (3) is less than hi (8), so swap num[lo] and num[hi].

At this stage, we have lo = 3, hi = 8 and num as follows:

	 11.	 Subtract 1 from hi (making it 7).

	 12.	 Compare num[hi], 80, with 53; it is bigger, so decrease hi (making it 6). Compare num[hi], 
32, with 53; it is smaller, so stop scanning from the right with hi = 6.

	 13.	 Add 1 to lo (making it 4).

	 14.	 Compare num[lo], 63, with 53; it is bigger, so stop scanning from the left with lo = 4.

	 15.	 lo (4) is less than hi (6), so swap num[lo] and num[hi], giving this:

	 16.	 Subtract 1 from hi (making it 5).

	 17.	 Compare num[hi], 18, with 53; it is smaller, so stop scanning from the right with hi = 5.

	 18.	 Add 1 to lo (making it 5).

	 19.	 Compare num[lo], 18, with 53; it is smaller, so add 1 to lo (making it 6). Compare num[lo], 63,  
with 53; it is bigger, so stop scanning from the left with lo = 6.

	 20.	 lo (6) is not less than hi (5), so the algorithm ends.



Chapter 10 ■ Advanced Sorting

256

The value of hi is such that the values in num[1..hi] are smaller than those in num[hi+1..n]. Here, the values in 
num[1..5] are smaller than those in num[6..10]. Note that 53 is not in its final sorted position. However, this is not  
a problem since, to sort the array, all we need to do is sort num[1..hi] and num[hi+1..n].

We can implement the procedure described above as partition2:
 
        int partition2(int A[], int lo, int hi) {
        //return dp such that A[lo..dp] <= A[dp+1..hi]
           void swap(int[], int, int);
           int pivot = A[lo];
           --lo; ++hi;
           while (lo < hi) {
              do --hi; while (A[hi] > pivot);
              do ++lo; while (A[lo] < pivot);
              if (lo < hi) swap(A, lo, hi);
           }
           return hi;
        } //end partition2
 

With this version of partition, we can write quicksort2 as follows:
 
        void quicksort2(int A[], int lo, int hi) {
        //sorts A[lo] to A[hi] in ascending order
           int partition2(int[], int, int);
           if (lo < hi) {
              int dp = partition2(A, lo, hi);
              quicksort2(A, lo, dp);
              quicksort2(A, dp+1, hi);
           }
        } //end quicksort2
 

In partition2, we choose the first element as the pivot. However, as discussed, choosing a random element will 
give better results. We can do this with the following:
 
        swap(A, lo, random(lo, hi));
        int pivot = A[lo];
 

where random can be written like this:
 
        int random(int m, int n) {
        //returns a random integer from m to n, inclusive
           int offset = rand()/(RAND_MAX + 1.0) * (n - m + 1);
           return m + offset;
        } //end random
 

You are reminded to declare the prototype of random in partition2 and to add the following statement to your 
program since random uses rand and RAND_MAX:
 
        #include <stdlib.h>
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10.5.2 Nonrecursive Quicksort
In the versions of quicksort shown earlier, after a sublist is partitioned, we call quicksort with the left part followed 
by the right part. For most cases, this will work fine. However, it is possible that, for a large n, the number of pending 
recursive calls can get so large so as to generate a “recursive stack overflow” error.

In our experiments, this occurred with n = 7000 if the given data was already sorted and the first element was 
chosen as the pivot. However, there was no problem even for n = 100000 if a random element was chosen as the pivot.

Another approach is to write quicksort nonrecursively. This would require us to stack the pieces of the list 
that remain to be sorted. It can be shown that when a sublist is subdivided, if we process the smaller sublist first, the 
number of stack elements will be restricted to at most log

2
n.

For example, suppose we are sorting A[1..99] and the first division point is 40. Assume we are using partition2, 
which does not put the pivot in its final sorted position. Thus, we must sort A[1..40] and A[41..99] to complete the 
sort. We will stack (41, 99) and deal with A[1..40] (the shorter sublist) first.

Suppose the division point for A[1..40] is 25. We will stack (1, 25) and process A[26..40] first. At this stage we 
have two sublists—(41, 99) and (1, 25)—on the stack that remain to be sorted. Attempting to sort A[26..40] will cause 
another sublist to be added to the stack, and so on. In our implementation, we will also add the shorter sublist to the 
stack, but this will be taken off immediately and processed.

The result mentioned above assures us that there will never be more than log
2
99 = 7 (rounded up) elements on the 

stack at any given time. Even for n = 1,000,000, we are guaranteed that the number of stack items will not exceed 20.
Of course, we will have to manipulate the stack ourselves. Each stack element will consist of two integers (left 

and right, say), meaning that the portion of the list from left to right remains to be sorted. We will assume the stack 
implementation described in Chapter 5 is stored in an include file, stack.h.

We define StackData and newStackData as follows:
 
        typedef struct {
           int left, right;
        } StackData;
 
        StackData newStackData(int a, int b) {
           StackData temp;
           temp.left = a;
           temp.right = b;
           return temp;
        } //end newStackData
 

We now write quicksort3  based on the above discussion.
 
        void quicksort3(int A[], int lo, int hi) {
           int partition2(int[], int, int);
           StackData newStackData(int, int);
           Stack S = initStack();
           push(S, newStackData(lo, hi));
           int stackItems = 1, maxStackItems = 1;
           while (!empty(S)) {
              --stackItems;
              StackData d = pop(S);
              if (d.left < d.right) { //if the sublist is > 1 element
                 int dp = partition2(A, d.left, d.right);
                 if (dp - d.left + 1 < d.right - dp) {  //compare lengths of sublists
                    push(S, newStackData(dp+1, d.right));
                    push(S, newStackData(d.left, dp));
                 }
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                 else {
                    push(S, newStackData(d.left, dp));
                    push(S, newStackData(dp+1, d.right));
                 }
                 stackItems += 2;   //two items added to stack
              } //end if
              if (stackItems > maxStackItems) maxStackItems = stackItems;
           } //end while
           printf("Max stack items: %d\n\n", maxStackItems);
        } //end quicksort3
 

When partition2 returns, the lengths of the two sublists are compared, and the longer one is placed on the stack first 
followed by the shorter one. This ensures that the shorter one will be taken off first and processed before the longer one.

We also added statements to quicksort3 to keep track of the maximum number of items on the stack at any given 
time. When used to sort 100,000 integers, the maximum number of stack items was 13; this is less than the maximum 
possible, log

2
100000 = 17, rounded up.

As written, even if a sublist consists of two items only, the method will go through the whole process of calling 
partition, checking the lengths of the sublists, and stacking the two sublists. This seems an awful lot of work to sort two items.

We can make quicksort more efficient by using a simple method (insertion sort, say) to sort sublists that are 
shorter than some predefined length (8, say). You are urged to write quicksort with this change and experiment with 
different values of the predefined length.

10.5.3 Finding the kth Smallest Number
Consider the problem of finding the kth smallest number in a list of n numbers. One way to do this is to sort the n 
numbers and pick out the kth one. If the numbers are stored in an array A[1..n], we simply retrieve A[k] after sorting.

Another, more efficient way is to use partitioning. We will use the version of partition that places the pivot in its 
final sorted position. Consider an array A[1..99], and suppose a call to partition returns a division point of 40. This 
means the pivot has been placed in A[40] with smaller numbers to the left and bigger numbers to the right. In other 
words, the 40th smallest number has been placed in A[40]. So, if k is 40, we have our answer immediately.

What if k were 59? We know that the 40 smallest numbers occupy A[1..40]. So, the 59th must be in A[41..99], 
and we can confine our search to this part of the array. In other words, with one call to partition, we can eliminate 40 
numbers from consideration. The idea is similar to binary search.

Suppose the next call to partition returns 65. We now know the 65th smallest number and the 59th will be in 
A[41..64]; we have eliminated A[66..99] from consideration. We repeat this process, each time reducing the size of 
the part that contains the 59th smallest number. Eventually, partition will return 59, and we will have our answer.

The following is one way to write kthSmall; it uses partition1:
 
        int kthSmall(int A[], int k, int lo, int hi) {
        //returns the kth smallest from A[lo] to A[hi]
           int partition1(int[], int, int);
           int kShift = lo + k - 1; //shift k to the given portion, A[lo..hi]
           if (kShift < lo || kShift > hi) return -9999;
           int dp = partition1(A, lo, hi);
           while (dp != kShift) {
              if (kShift < dp) hi = dp - 1;   //kth smallest is in the left part
              else lo = dp + 1;      //kth smallest is in the right part
              dp = partition1(A, lo, hi);
           }
           return A[dp];
        } //end kthSmall
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For instance, the call kthSmall(num, 59, 1, 99) will return the 59th smallest number from num[1..99].  
Note, however, that the call kthSmall(num, 10, 30, 75) will return the 10th smallest number from num[30..75].

As an exercise, write the recursive version of kthSmall.

10.6 Shell (Diminishing Increment) Sort
Shell sort (named after Donald Shell) uses a series of increments to govern the sorting process. It makes several 
passes over the data, with the last pass being the same as insertion sort. For the other passes, elements that are a fixed 
distance apart (for instance, five apart) are sorted using the same technique as insertion sort.

For example, to sort the following array, we use three increments—8, 3, and 1:

The increments decrease in size (hence the term diminishing increment sort), with the last one being 1.
Using increment 8, we eight-sort the array. This means we sort the elements that are eight apart. We sort elements 

1 and 9, 2 and 10, 3 and 11, 4 and 12, 5 and 13, 6 and 14, 7 and 15, and 8 and 16. This will transform num into this:

Next, we three-sort the array; that is, we sort elements that are three apart. We sort elements (1, 4, 7, 10, 13, 16), 
(2, 5, 8, 11, 14), and (3, 6, 9, 12, 15). This gives us the following:

Note that, at each step, the array is a little closer to being sorted. Finally, we perform a one-sort, sorting the entire 
list, giving this:

You may ask, why didn’t we just do a one-sort from the beginning and sort the entire list? The idea here is that 
when we reach the stage of doing a one-sort, the array is more or less in order, and if we use a method that works 
better with partially ordered data (such as insertion sort), then the sort can proceed quickly.

When the increment is large, the pieces to sort are small. In the example, when the increment is eight, each piece 
consists of two elements only. Presumably, we can sort a small list quickly. When the increment is small, the pieces to 
sort are bigger. However, by the time we get to the small increments, the data is partially sorted, and we can sort the 
pieces quickly if we use a method that takes advantage of order in the data.

We will use a slightly modified version of insertion sort to sort elements that are h apart rather than one apart.
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Recall that, in insertion sort, when we come to process num[k], we assume that num[1..k-1] are sorted and insert 
num[k] among the previous items so that num[1..k] are sorted.

Suppose the increment is h and consider how we might process num[k] where k is any valid subscript. 
Remember, our goal is to sort items that are h apart. So, we must sort num[k] with respect to num[k-h], num[k-2h], 
num[k-3h], and so on, provided these elements fall within the array. When we come to process num[k], if the previous 
items that are h apart are sorted among themselves, we must simply insert num[k] among those items so that the 
sublist ending at num[k] is sorted.

To illustrate, suppose h = 3 and k = 4. There is only one element before num[4] that is three away; that is num[1]. 
So, when we come to process num[4], we can assume that num[1], by itself, is sorted. We insert num[4] relative to 
num[1] so that num[1] and num[4] are sorted.

Similarly, there is only one element before num[5] that is three away; that is num[2]. So, when we come to process 
num[5], we can assume that num[2], by itself, is sorted. We insert num[5] relative to num[2] so that num[2] and num[5] 
are sorted. Similar remarks apply to num[3] and num[6].

When we get to num[7], the two items before num[7] (num[1] and num[4]) are sorted. We insert num[7] such that 
num[1], num[4], and num[7] are sorted.

When we get to num[8], the two items before num[8] (num[2] and num[5]) are sorted. We insert num[8] such that 
num[2], num[5], and num[8] are sorted.

When we get to num[9], the two items before num[9] (num[3] and num[6]) are sorted. We insert num[9] such that 
num[3], num[6], and num[9] are sorted.

When we get to num[10], the three items before num[10] (num[1], num[4], and num[7]) are sorted. We insert 
num[10] such that num[1], num[4], num[7], and num[10] are sorted.

And so on. Starting at h+1, we step through the array processing each item with respect to previous items that are 
multiples of h away.

In the example, when h = 3, we said we must sort elements (1, 4, 7, 10, 13, 16), (2, 5, 8, 11, 14), and (3, 6, 9, 12, 15). 
This is true, but our algorithm will not sort items (1, 4, 7, 10, 13, 16), followed by items (2, 5, 8, 11, 14) followed by 
items (3, 6, 9, 12, 15).

Rather, it will sort them in parallel by sorting the pieces in the following order: (1, 4), (2, 5), (3, 6), (1, 4, 7), (2, 5, 8), 
(3, 6, 9), (1, 4, 7, 10), (2, 5, 8, 11), (3, 6, 9, 12), (1, 4, 7, 10, 13), (2, 5, 8, 11, 14), (3, 6, 9, 12, 15), and finally (1, 4, 7, 10, 13, 
16). This may sound more difficult, but it is actually easier to code.

The following will perform an h-sort on A[1..n]:
 
        void hsort(int A[], int n, int h) {
           for (int k = h + 1; k <= n; k++) {
              int j = k - h; //j will index elements k - h, k - 2h, k - 3h, etc
              int key = A[k];
              while (j > 0 && key < A[j]) {
                 A[j + h] = A[j];
                 j = j - h;
              }
              A[j + h] = key;
           }
        } //end hsort
 

Alert readers will realize that if we set h to 1, this becomes insertion sort.

Programming note: If we want to sort A[0..n-1], we must use j >= 0 in the while statement and change the for 
statement to:
 
        for (int k = h; k < n; k++)
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Given a series of increments h
t
, h

t-1
, …, h

1
 = 1, we simply call hsort with each increment, from largest to smallest, 

to effect the sort. For example, if the file shell.in contains the following numbers:
 
        67 90 28 84 29 58 25 32 16 64 13 71 82 10 51 57
 

we could read and sort them as described earlier (using increments 8, 3, and 1) with the following main routine:
 
        #include <stdio.h>
        #include <stdlib.h>
        #define MaxSize 100
        int main() {
           void hsort(int[], int, int);
           int num[MaxSize + 1];
           int n = 0, number;
           FILE * in = fopen("shell.in", "r");
 
           while (fscanf(in, "%d", &number) == 1) {
              if (n < MaxSize) num[++n] = number;
              else {
                 printf("\nArray too small\n");
                 exit(1);
              }
           }
           //perform Shell sort with increments 8, 3 and 1
           hsort(num, n, 8);
           hsort(num, n, 3);
           hsort(num, n, 1);
 
           for (int h = 1; h <= n; h++) printf("%d ", num[h]);
           printf("\n");
           fclose(in);
        } //end main
 

We note, in passing, that our code would be more flexible if the increments are stored in an array (incr, say) 
and hsort is called with each element of the array in turn. For example, suppose incr[0] contains the number of 
increments (m, say), and incr[1] to incr[m] contain the increments in decreasing order with incr[m] = 1. We could 
call hsort with each increment as follows:
 
        for (int i = 1; i <= incr[0]; i++) hsort(num, n, incr[i]);
 

One question that arises is how do we decide which increments to use for a given n? Many methods have been 
proposed; the following gives reasonable results:
 
        let h

1
 = 1

        generate h
s+1
 = 3h

s
 + 1, for s = 1, 2, 3,...

        and stop with h
t
 when h

t+2
 ³ n

 
For example, if n = 100, we generate h

1
 = 1, h

2
 = 4, h

3
 = 13, h

4
 = 40, h

5
 = 121. Since h

5
 > 100, we use h

1
, h

2
, and h

3
 as 

the increments to sort 100 items.
The performance of Shell sort lies somewhere between the simple O(n2) methods (insertion, selection) and 

the O(nlog
2
n) methods (heapsort, quicksort, mergesort). Its order is approximately O(n1.3) for n in a practical range 

tending to O(n(log
2
n)2) as n tends to infinity.
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As an exercise, write programming code to sort a list using Shell sort, counting the number of comparisons and 
assignments made in sorting the list.

eXerCISeS 10

1. Write a program to compare the performance of all the sorting methods discussed with 
respect to “number of comparisons” and “number of assignments.” For quicksort, compare 
the performance of choosing the first element as the pivot with choosing a random element.

run the program to sort 10, 100, 1,000, 10,000, and 10,0000 elements supplied in random 
order.

run the program to sort 10, 100, 1,000, 10,000, and 100,000 elements that are already 
sorted.

2. a function makeHeap is passed an integer array A. if A[0] contains n, then A[1] to A[n]
contain numbers in arbitrary order. Write makeHeap such that A[1] to A[n] contain a  
max-heap (largest value at the root). Your function must create the heap by processing the 
elements in the order A[2], A[3], …, A[n].

3. a heap is stored in a one-dimensional integer array num[1..n] with the largest value in 
position 1. give an efficient algorithm that deletes the root and rearranges the other elements 
so that the heap now occupies num[1] to num[n-1].

4. a heap is stored in a one-dimensional integer array A[0..max] with the largest value in 
position 1. A[0] specifies the number of elements in the heap at any time. Write a function 
to add a new value v to the heap. Your function should work if the heap is initially empty and 
should print a message if there is no room to store v.

5. Write code to read a set of positive integers (terminated by 0) and create a heap in an array H
with the smallest value at the top of the heap. as each integer is read, it is inserted among the 
existing items such that the heap properties are maintained. at any time, if n numbers have been 
read, then H[1..n] must contain a heap. assume that H is large enough to hold all the integers.

given the data 51 26 32 45 38 89 29 58 34 23 0, show the contents of H after each 
number has been read and processed.

6. a function is given an integer array, A, and two subscripts, m and n. the function must 
rearrange the elements A[m] to A[n] and return the subscript d such that all elements  
to the left of d are less than or equal to A[d] and all elements to the right of d are greater 
than A[d].

7. Write a function that, given an integer array num and an integer n, sorts the elements num[1]
to num[n] using Shell sort. the function must return the number of key comparisons made in 
performing the sort. You may use any reasonable method for determining increments.

8. a single integer array A[1..n] contains the following: A[1..k] contains a min-heap, and 
A[k+1..n] contains arbitrary values. Write efficient code to merge the two portions so that 
A[1..n] contains one min-heap. do not use any other array.

9. Write a recursive function for finding the kth smallest number in an array of n numbers, 
without sorting the array.
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	 10.	 Write insertion sort using a binary search to determine the position in which A[j] will be 
inserted among the sorted sublist A[1..j-1].

	 11.	 An integer max-heap is stored in an array (A, say) such that the size of the heap (n, say) is stored 
in A[0] and A[1] to A[n] contain the elements of the heap with the largest value in A[1].

Write a function deleteMax that, given an array like A, deletes the largest element and 
reorganizes the array so that it remains a heap.

Given two arrays, A and B, containing heaps as described earlier, write programming code to 
merge the elements of A and B into another array, C, such that C is in ascending order. Your 
method must proceed by comparing an element of A with one in B. You may assume that 
deleteMax is available.

	 12.	 A sorting algorithm is said to be stable if equal keys retain their original relative order after 
sorting. Which of the sorting methods discussed are stable?

	 13.	 You are given a list of n numbers. Write efficient algorithms to find (i) the smallest (ii), the 
largest, (iii) the mean, (iv) the median (the middle value), and (v) the mode (the value that 
appears most often).

Write an efficient algorithm to find all five values.

	 14.	 It is known that every number in a list of n distinct numbers is between 100 and 9,999. 
Devise an efficient method for sorting the numbers.

Modify the method to sort the list if it may contain duplicate numbers.

	 15.	 Modify mergesort and quicksort so that if a sublist to be sorted is smaller than some 
predefined size, it is sorted using insertion sort.

	 16.	 You are given a list of n numbers and another number, x. You must find the smallest number 
in the list that is greater than or equal to x. You must then delete this number from the list 
and replace it by a new number, y, retaining the list structure. Devise ways of solving this 
problem using (i) an unsorted array, (ii) a sorted array, (iii) a sorted linked list, (iv) a binary 
search tree, and (v) a heap.

Which of these is the most efficient?

	 17.	 You are given a (long) list of English words. Write a program to determine which of those 
words are anagrams of each other. Output consists of each group of anagrams (two or more 
words) followed by a blank line. Two words are anagrams if they consist of the same letters, 
such as (teacher, cheater) and (sister, resist).

	 18.	 Each value in A[1..n] is either 1, 2, or 3. You are required to find the minimal number 
of exchanges to sort the array. For example, the following array can be sorted with four 
exchanges, in this order: (1, 3) (4, 7) (2, 9) (5, 9):

Another solution is (1, 3) (2, 9) (4, 7) (5, 9). This array cannot be sorted with fewer than four exchanges.
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Chapter 11

Hashing

In this chapter, we will explain the following:

The fundamental ideas on which hashing is based•	

How to solve the search and insert problem using hashing•	

How to delete an item from a hash table•	

How to resolve collisions using linear probing•	

How to resolve collisions using quadratic probing•	

How to resolve collisions using chaining•	

How to resolve collisions using linear probing with double hashing•	

How to link items in order using arrays•	

11.1 Hashing Fundamentals
Searching for an item in a (large) table is a common operation in many applications. In this chapter, we discuss 
hashing, a fast method for performing this search. The main idea behind hashing is to use the key of an item  
(for example, the vehicle registration number of a vehicle record) to determine where in the table (the hash table) 
the item is stored. The key is first converted to a number (if it is not already one), and this number is mapped (we say 
hashed) to a table location. The method used to convert a key to a table location is called the hash function.

It is entirely possible, of course, for two or more keys to hash to the same location. When this happens, we say we 
have a collision, and we must find a way to resolve the collision. The efficiency (or otherwise) of hashing is determined 
to a large extent by the method used to resolve collisions. Much of the chapter is devoted to a discussion of these 
methods.

11.1.1 The Search and Insert Problem
The classical statement of the search and insert problem is as follows:

Given a list of items (the list may be empty initially), search for a given item in the list. If the item is 
not found, insert it in the list.

Items can be things such as numbers (student, account, employee, vehicle, and so on), names, words, or strings 
in general. For example, suppose we have a set of integers, not necessarily distinct, and we want to find out how many 
distinct integers there are.
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We start with an empty list. For each integer, we look for it in the list. If it is not found, it is added to the list and 
counted. If it is found, there is nothing to do.

In solving this problem, a major design decision is how to search the list, which, in turn, will depend on how the 
list is stored and how a new integer is added. The following are some possibilities:

	 1.	 The list is stored in an array, and a new integer is placed in the next available position 
in the array. This implies that a sequential search must be used to look for an incoming 
integer. This method has the advantages of simplicity and easy addition, but searching 
takes longer as more numbers are put in the list.

	 2.	 The list is stored in an array, and a new integer is added in such a way that the list is always 
in order. This may entail moving numbers that have already been stored so that the new 
number may be slotted in the right place.

However, since the list is in order, a binary search can be used to search for an incoming 
integer. For this method, searching is faster, but insertion is slower than in method 1. 
Since, in general, searching is done more frequently than inserting, this method might be 
preferable to method 1.

Another advantage here is that, at the end, the integers will be in order, if this is important. 
If method 1 is used, the numbers will have to be sorted.

	 3.	 The list is stored as an unsorted linked list so must be searched sequentially. Since the 
entire list must be traversed if an incoming number is not present, the new number can be 
added at the head or tail; both are equally easy.

	 4.	 The list is stored as a sorted linked list. A new number must be inserted “in place” to 
maintain the order. Once the position is found, insertion is easy. The entire list does not 
have to be traversed if an incoming number is not present, but we are still restricted to a 
sequential search.

The list is stored in a binary search tree. Searching is reasonably fast provided the tree does not 
become too unbalanced. Adding a number is easy—it’s only a matter of setting a couple links. 
An in-order traversal of the tree will give the numbers in sorted order, if this is required.

Yet another possibility is the method called hashing. As we will see, this has the advantages of extremely fast 
search times and easy insertion.

11.2 Solving the Search and Insert Problem by Hashing
We will illustrate how hashing works by solving the “search and insert” problem for a list of integers. The list will be 
stored in an array num[1] to num[n]. In our example, we will assume n is 12.

Initially, there are no numbers in the list. Suppose the first incoming number is 52. The idea behind hashing is to 
convert 52 (usually called the key) into a valid table location (k, say). Here, the valid table locations are 1 to 12.

If there is no number in num[k], then 52 is stored in that location. If num[k] is occupied by another key, we say a 
collision has occurred, and we must find another location in which to try to place 52. This is called resolving the collision.

The method used to convert a key to a table location is called the hash function (H, say). Any calculation that 
produces a valid table location (array subscript) can be used, but, as we shall see, some functions give better results 
than others.
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For example, we could use H1(key) = key % 10 + 1. In other words, we add 1 to the last digit of the key.  
Thus, 52 would hash to 3. Note that H1 produces locations between 1 and 10 only. If the table had 100 locations, say, 
the function would be valid, but it may not be a good function to use.

Note also that H(key) = key % 10 would not be a proper hash function here since, for instance, 50 would hash 
to 0 and there is no table location 0. Of course, if locations started from subscript 0, then key % 10 would be valid, 
provided there were at least ten locations.

Another function is H2(key) = key % 12 + 1. The expression key % 12 produces a value between 0 and 11; 
adding 1 gives values between 1 and 12. In general, key % n + 1 produces values between 1 and n, inclusive. We will 
use this function in our example.

H2(52) = 52 % 12 + 1 = 5. We say, “52 hashes to location 5.” Since num[5] is empty, we place 52 in num[5].
Suppose, later, we are searching for 52. We first apply the hash function, and we get 5. We compare num[5]  

with 52; they match, so we find 52 with just one comparison.
Now suppose the following keys come in the order shown:

 
        52  33  84  43  16  59  31  23  61
 

52 is placed in •	 num[5].

33 hashes to 10; •	 num[10] is empty, so 33 is placed in num[10].

84 hashes to 1; •	 num[1] is empty, so 84 is placed in num[1].

43 hashes to 8; •	 num[8] is empty, so 43 is placed in num[8].

At this stage, we have this:

16 hashes to 5; •	 num[5] is occupied and not by 16—we have a collision. To resolve the collision, 
we must find another location in which to put 16. One obvious choice is to try the very next 
location, 6; num[6] is empty, so 16 is placed in num[6].

59 hashes to 12; •	 num[12] is empty, so 59 is placed in num[12].

31 hashes to 8; •	 num[8] is occupied and not by 31—we have a collision. We try the next location, 
9; num[9] is empty, so 31 is placed in num[9].

At this stage, we have this:

23 hashes to 12; •	 num[12] is occupied and not by 23—we have a collision. We must try the next 
location, but what is the next location here? We pretend that the table is “circular” so that 
location 1 follows location 12. However, num[1] is occupied and not by 23. So, we try num[2]; 
num[2] is empty, so 23 is placed in num[2].

Finally, 61 hashes to 2; •	 num[2] is occupied and not by 61—we have a collision. We try the next 
location, 3; num[3] is empty, so 61 is placed in num[3].

g
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The following shows the array after all the numbers have been inserted:

Note that if a number is already in the array, the previous method would find it. For example, suppose we are 
searching for 23.

23 hashes to 12.•	

•	 num[12] is occupied and not by 23.

We try the next location, 1; •	 num[1] is occupied and not by 23.

We next try •	 num[2]; num[2] is occupied by 23—we find it.

Suppose we are searching for 33; 33 hashes to 10, and num[10] contains 33—we find it immediately.
As an exercise, determine the state of num after the previous numbers have been added using the hash function 

H1(key) = key % 10 + 1.
We can summarize the process described with the following algorithm:

 
        //find or insert 'key' in the hash table, num[1..n]
        loc = H(key)
        while (num[loc] is not empty && num[loc] != key) loc = loc % n + 1
        if (num[loc] is empty) { //key is not in the table
           num[loc] = key
           add 1 to the count of distinct numbers
        }
        else print key, " found in location ", loc
 

Note the expression loc % n + 1 for going to the next location. If loc is less than n, loc % n is simply loc, and 
the expression is the same as loc + 1. If loc is n, loc % n is 0, and the expression evaluates to 1. In either case,  
loc takes on the value of the next location.

Alert readers will realize that we exit the while loop when either num[loc] is empty or it contains the key. What 
if neither happens so the while loop never exits? This situation will arise if the table is completely full (no empty 
locations) and does not contain the key we are searching for.

However, in practice, we never allow the hash table to become completely full. We always ensure that there are a 
few “extra” locations that are not filled by keys so that the while statement will exit at some point. In general, the hash 
technique works better when there are more free locations in the table.

How does the algorithm tell when a location is “empty”? We will need to initialize the array with some value that 
indicates “empty.” For instance, if the keys are positive integers, we can use 0 or -1 as the empty value.

Let’s write Program P11.1, which reads integers from a file, numbers.in, and uses a hash technique to determine 
the number of distinct integers in the file.

Program P11.1

        #include <stdio.h>
        #include <stdlib.h>
        #define MaxNumbers 20
        #define N 23
        #define Empty 0
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        int main() {
           FILE * in = fopen("numbers.in", "r");
           int key, num[N + 1];
           for (int h = 1; h <= N; h++) num[h] = Empty;
           int distinct = 0;
           while (fscanf(in, "%d", &key) == 1) {
              int loc = key % N + 1;
              while (num[loc] != Empty && num[loc] != key) loc = loc % N + 1;
              if (num[loc] == Empty) { //key is not in the table
                 if (distinct == MaxNumbers) {
                    printf("\nTable full: %d not added\n", key);
                    exit(1);
                 }
                 num[loc] = key;
                 distinct++;
              }
           }
           printf("\nThere are %d distinct numbers\n", distinct);
           fclose(in);
        } //end main
 

If numbers.in contains this:
 
        25 28 29 23 26 35 22 31 21 26 25 21 31 32 26 20 36 21 27 24
 

Program P11.1 prints the following:

There are 14 distinct numbers

Notes on Program P11.1:

•	 MaxNumbers (20) is the maximum amount of distinct numbers catered for.

•	 N (23) is the hash table size, a little bigger than MaxNumbers so that there is always at least three 
free locations in the table.

The hash table occupies •	 num[1] to num[N]. If you want, num[0] may be used; in this case, the 
hash function could simply be key % N.

If •	 key is not in the table (an empty location is encountered), we first check whether the 
number of entries has reached MaxNumbers. If it has, we declare the table full and do not add 
key. Otherwise, we put key in the table and count it.

If •	 key is found, we simply go on to read the next number.

11.2.1 The Hash Function
In the previous section, we saw how an integer key can be “hashed” to a table location. It turns out that the 
“remainder” operation (%) often gives good results for such keys. But what if the keys were non-numeric, for example, 
words or names?



Chapter 11 ■ Hashing

270

The first task is to convert a non-numeric key to a number and then apply the “remainder.” Suppose the key is a 
word. Perhaps the simplest thing to do is add up the numeric value of each letter in the word. If the word is stored in  
a character array, word, properly terminated by \0, we can do this as follows:
 
        int h = 0, wordNum = 0;
        while (word[h] != '\0') wordNum += word[h++];
        loc = wordNum % n + 1; //loc is assigned a value from 1 to n
 

This method will work, but one objection is that words that contain the same letters would hash to the same 
location. For example, mate, meat, and team will all hash to the same location. In hashing, we must try to avoid 
deliberately hashing keys to the same location. One way around this is to assign a weight to each letter depending on 
its position in the word.

We can assign weights arbitrarily—the main goal is to avoid hashing keys with the same letters to the same 
location. For instance, we can assign 3 to the first position, 5 to the second position, 7 to the third position, and so on. 
The following shows how:
 
        int h = 0, wordNum = 0;
        int w = 3;
        while (word[h] != '\0') {
           wordNum += w * word[h++];
           w = w + 2;
        }
        loc = wordNum % n + 1; //loc is assigned a value from 1 to n
 

The same technique will work if a key contains arbitrary characters.

In hashing, we want the keys to be scattered all over the table. If, for instance, keys are hashed to one area of the 
table, we can end up with an unnecessarily high number of collisions. To this end, we should try to use all of the key. 
For example, if the keys are alphabetic, it would be unwise to map all keys beginning with the same letter to the same 
location. Put another way, we should avoid systematically hitting the same location.

And since hashing is meant to be fast, the hash function should be relatively easy to calculate. The speed 
advantage will be diminished if we spend too much time computing the hash location.

11.2.2 Deleting an Item from a Hash Table
Consider, again, the array after all the sample numbers have been inserted:

Recall that 43 and 31 both hashed initially to location 8. Suppose we want to delete 43. The first thought might be 
to set its location to empty. Assume we did this (set num[8] to empty) and were now looking for 31. This will hash to 8; 
but since num[8] is empty, we will conclude, wrongly, that 31 is not in the table. So, we cannot delete an item simply 
by setting its location to empty since other items may become unreachable.

The easiest solution is to set its location to a deleted value—some value that cannot be confused with empty or a 
key. In this example, if the keys are positive integers, we can use 0 for empty and -1 for deleted.

Now, when searching, we still check for the key or an empty location; deleted locations are inspected and 
skipped. A common error is to stop the search at a deleted location; doing so would lead to incorrect conclusions.
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If our search reveals that an incoming key is not in the table, the key can be inserted in an empty location or a deleted 
one, if one was encountered along the way. For example, suppose we had deleted 43 by setting num[8] to -1. If we now 
search for 55, we will check locations 8, 9, 10, and 11. Since num[11] is empty, we conclude that 55 is not in the table.

We can, if we want, set num[11] to 55. But we could write our algorithm to remember the deleted location at 8.  
If we do, we can then insert 55 in num[8]. This is better since we will find 55 faster than if it were in num[11]. We would 
also be making better use of our available locations by reducing the number of deleted ones.

What if there are several deleted locations along the way? It is best to use the first one encountered since this will 
reduce the search time for the key. With these ideas, we can rewrite our search/insert algorithm as follows:
 
        //find or insert 'key' in the hash table, num[1..n]
        loc = H(key)
        deletedLoc = 0
        while (num[loc] != Empty && num[loc] != key) {
           if (deletedLoc == 0 && num[loc] == Deleted) deletedLoc = loc
           loc = loc % n + 1
        }
        if (num[loc] == Empty) { //key not found
           if (deletedLoc != 0) loc = deletedLoc
           num[loc] = key
        }
        else print key, " found in location ", loc
 

Note that we still search until we find an empty location or the key. If we meet a deleted location and deletedLoc 
is 0, this means it’s the first one. Of course, if we never meet a deleted location and the key is not in the table, it will be 
inserted in an empty location.

11.3 Resolving Collisions
In Program P11.1, we resolve a collision by looking at the next location in the table. This is, perhaps, the simplest way 
to resolve a collision. We say we resolve the collision using linear probing, and we will discuss this in more detail in the 
next section. After this, we will take a look at more sophisticated ways to resolve collisions. Among these are quadratic 
probing, chaining, and double hashing.

11.3.1 Linear Probing
Linear probing is characterized by the statement loc = loc + 1. Consider, again, the state of num after the nine 
numbers have been added:

As you can see, the chances of hashing a new key to an empty location decrease as the table fills up.
Suppose a key hashes to location 12. It will be placed in num[4] after trying locations 12, 1, 2, and 3. In fact, any 

new key that hashes to 12, 1, 2, 3, or 4 will end up in num[4]. When that happens, we will have a long, unbroken chain 
of keys from location 12 to location 6. Any new key hashing to this chain will end up in num[7], creating an even 
longer chain.
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This phenomenon of clustering is one of the main drawbacks of linear probing. Long chains tend to get longer 
since the probability of hashing to a long chain is usually greater than that of hashing to a short chain. It is also easy 
for two short chains to be joined, creating a longer chain that, in turn, will tend to get longer. For example, any key that 
ends up in num[7] will create a long chain from locations 5 to 10.

We define two types of clustering.

•	 Primary clustering occurs when keys that hash to different locations trace the same sequence 
in looking for an empty location. Linear probing exhibits primary clustering since a key that 
hashes to 5, say, will trace 5, 6, 7, 8, 9, and so on, and a key that hashes to 6 will trace 6, 7, 8, 9, 
and so on.

•	 Secondary clustering occurs when keys that hash to the same location trace the same sequence 
in looking for an empty location. Linear probing exhibits secondary clustering since keys that 
hash to 5, say, will trace the same sequence 5, 6, 7, 8, 9, and so on.

Methods of resolving collisions that hope to improve on linear probing will target the elimination of primary  
and/or secondary clustering.

You may wonder if using loc = loc + k where k is a constant greater than 1 (for example, 3) will give any better 
results than loc = loc + 1. As it turns out, this will not alter the clustering phenomenon since groups of k-apart keys 
will still be formed.

In addition, it can even be worse than when k is 1 since it is possible that not all locations will be generated. 
Suppose the table size is 12, k is 3, and a key hashes to 5. The sequence of locations traced will be 5, 8, 11,  
2 (11 + 3 – 12), 5, and the sequence repeats itself. By comparison, when k is 1, all locations are generated.

However, this is not really a problem. If the table size is m and k is “relatively prime” to m (their only common 
factor is 1), then all locations are generated. Two numbers will be relatively prime if one is a prime and the other is 
not a multiple of it, such as 5 and 12. But being prime is not a necessary condition. The numbers 21 and 50 (neither of 
which is prime) are relatively prime since they have no common factors other than 1.

If k is 5 and m is 12, a key hashing to 5 will trace the sequence 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7, 12—all locations are 
generated. A key hashing to any other location will also generate all locations.

In any case, being able to generate all locations is academic since if we had to trace many locations to find an 
empty one, the search would be too slow, and we would probably need to use another method.

Notwithstanding what we’ve just said, it turns out that loc = loc + k, where k varies with the key, gives us one of 
the best ways to implement hashing. We will see how in Section 11.3.4.

So, how fast is the linear method? We are interested in the average search length, that is, the number of locations 
that must be examined to find or insert a given key. In the previous example, the search length of 33 is 1, the search 
length of 61 is 2, and the search length of 23 is 3.

The search length is a function of the load factor, f, of the table, where:

For a successful search, the average number of comparisons is 1 1
1

2 1 f

 
+ − 

, and for an unsuccessful search,  

the average number of comparisons is 
( )2

1 1
1

2 1 f

 
+ 

− 
. Note that the search length depends only on the fraction of  

the table filled, not on the table size.
Table 11-1 shows how the search length increases as the table fills up.

fraction of table filled
number of entries intable

f
number of table locations

= =



Chapter 11 ■ hashing

273

At 90% full, the average successful search length is a reasonable 5.5. However, it can take quite long (50.5 probes) to 
determine that a new key is not in the table. If linear probe is being used, it would be wise to ensure that the table does not 
become more than about 75% full. This way, we can guarantee good performance with a simple algorithm.

11.3.2 Quadratic Probing
In this method, suppose an incoming key collides with another at location loc; we go forward ai + bi2 where a, b are constants 
and i takes on the value 1 for the first collision, 2 if the key collides again, 3 if it collides yet again, and so on. For example, 
if we let a = 1 and b =1, we go forward i + i2 from location loc. Suppose the initial hash location is 7 and there is a collision.

We calculate i + i2 with i = 1; this gives 2, so we go forward by 2 and check location 7 + 2 = 9.
If there is still a collision, we calculate i + i2 with i = 2; this gives 6, so we go forward by 6 and check location 9 + 6 = 15.
If there is still a collision, we calculate i + i2 with i = 3; this gives 12, so we go forward by 12 and check  

location 15 + 12 = 27.
And so on. Each time we get a collision, we increase i by 1 and recalculate how much we must go forward this 

time. We continue this way until we find the key or an empty location.
If, at any time, going forward takes us beyond the end of the table, we wrap around to the beginning. For example, 

if the table size is 25 and we go forward to location 27, we wrap to location 27 – 25, that is, location 2.
For the next incoming key, if there is a collision at the initial hash location, we set i to 1 and continue as explained 

above. It is worth noting that, for each key, the sequence of “increments” will be 2, 6, 12, 20, 30.... We can, of course, 
get a different sequence by choosing different values for a and b.

We can summarize the process just described with the following algorithm:

        //find or insert 'key' in the hash table, num[1..n]
        loc = H(key)
        i = 0
        while (num[loc] != Empty && num[loc] != key) {
           i = i + 1
           loc = loc + a * i + b * i * i
           while (loc > n) loc = loc – n    //while instead of if; see note below
        }
        if (num[loc] == Empty) num[loc] = key
        else print key, " found in location ", loc 

Note   We use while instead of if to perform the “wrap around” just in case the new location is more than twice the 
table size. For instance, suppose n is 25, the increment is 42, and we are going forward from location 20. this will take us 
to location 62. if we had used if, the “wrap around” location would be 62 – 25 = 37, which is still outside the range of 
the table. With while, we will get the valid location 37 – 25 = 12.

Table 11-1. Search Length Increases as the Table Fills Up

  f Successful Search Length Unsuccessful Search Length

0.25 1.2 1.4

0.50 1.5 2.5

0.75 2.5 8.5

0.90 5.5 50.5
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Could we have used loc % n instead of the while loop? In this example, we would get the correct location, but if 
the new location were a multiple of n, loc % n will give 0. This will be an invalid location if the table starts from 1.

With quadratic probing, keys that hash to different locations trace different sequences; hence, primary clustering 
is eliminated. However, keys that hash to the same location will trace the same sequence, so secondary clustering 
remains.

Here are some other points to note:

If •	 n is a power of 2, that is, n = 2m for some m, this method explores only a small fraction of the 
locations in the table and is, therefore, not very effective.

If •	 n is prime, the method can reach half the locations in the table; this is usually sufficient for 
most practical purposes.

11.3.3 Chaining
In this method, all items that hash to the same location are held on a linked list. One immediate advantage of this is 
that items that hash “near” to each other will not interfere with each other since they will not be vying for the same 
free space in the table, as happens with linear probing. One way to implement chaining is to let the hash table contain 
“top of list” pointers. For instance, if hash[1..n] is the hash table, then hash[k] will point to the linked list of all items 
that hash to location k. An item can be added to a linked list at the head, at the tail, or in a position such that the list is 
in order.

To illustrate the method, suppose the items are integers. Each linked list item will consist of an integer value and 
a pointer to the next item. We define the following structure:
 
        typedef struct node {
           int num;
           struct node *next;
        } Node, *NodePtr
    
 
and create a new node containing n with:
 
        Node newNode(int n) {
           Node temp;
           temp.num = n;
           temp.next = NULL;
           return temp;
        }
 

We can now define hash as follows:
 
        NodePtr hash[MaxItems+1]; //MaxItems is a symbolic constant
 
and initialize it with:
 
        for (int h = 0; h <= MaxItems; h++) hash[h] = NULL;
 

Suppose an incoming key, inKey, hashes to location k. We must search the linked list pointed to by hash[k] for 
inKey. If it is not found, we must add it to the list. In our program, we will add it such that the list is in ascending order.

We write Program P11.2 to count the number of distinct integers in the input file, numbers.in. The program uses 
hashing with chaining. At the end, we print the list of numbers that hash to each location.
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Program P11.2

        #include <stdio.h>
        #include <stdlib.h>
        #define N 13
        #define Empty 0
 
        typedef struct node {
           int num;
           struct node *next;
        } Node, *NodePtr;
 
        NodePtr newNode(int n) {
           NodePtr p = (NodePtr) malloc(sizeof(Node));
           p -> num = n;
           p -> next = NULL;
           return p;
        }
 
        int main() {
           int key, search(int, NodePtr[], int);
           void printList(NodePtr);
           FILE * in = fopen("numbers.in", "r");
           NodePtr hash[N+1];
           for (int h = 1; h <= N; h++) hash[h] = NULL;
           int distinct = 0;
           while (fscanf(in, "%d", &key) == 1)
              if (!search(key, hash, N)) distinct++;
 
           printf("\nThere are %d distinct numbers\n\n", distinct);
           for (int h = 1; h <= N; h++)
              if (hash[h] != NULL) {
                 printf("hash[%d]:  ", h);
                 printList(hash[h]);
              }
           fclose(in);
        } //end main
 
        int search(int inKey, NodePtr hash[], int n) {
        //return 1 if inKey is found; 0, otherwise
        //insert a new key in its appropriate list so list is in order
           NodePtr newNode(int);
           int k = inKey % n + 1;
           NodePtr curr = hash[k];
           NodePtr prev = NULL;
           while (curr != NULL && inKey > curr -> num) {
              prev = curr;
              curr = curr -> next;
           }
           if (curr != NULL && inKey == curr -> num) return 1; //found
           //not found; inKey is a new key; add it so list is in order
           NodePtr np = newNode(inKey);
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           np -> next = curr;
           if (prev == NULL) hash[k] = np;
           else prev -> next = np;
           return 0;
        } //end search
 
        void printList(NodePtr top) {
           while (top != NULL) {
              printf("%2d ", top -> num);
              top = top -> next;
           }
           printf("\n");
        } //end printList
 

If numbers.in contains the following numbers:

        24 57 35 37 31 98 85 47 60 32 48 82 16 96 87 46 53 92 71 56
        73 85 47 46 22 40 95 32 54 67 31 44 74 40 58 42 88 29 78 87
        45 13 73 29 84 48 85 29 66 73 87 17 10 83 95 25 44 93 32 39
 
then Program P11.2 produces the following output:

There are 43 distinct numbers
 
hash[1]: 13 39 78
hash[2]: 40 53 66 92
hash[3]: 54 67 93
hash[4]: 16 29 42
hash[5]: 17 56 82 95
hash[6]: 31 44 57 83 96
hash[7]: 32 45 58 71 84
hash[8]: 46 85 98
hash[9]: 47 60 73
hash[10]: 22 35 48 74 87
hash[11]: 10 88
hash[12]: 24 37
hash[13]: 25

If m keys have been stored in the linked lists and there are n hash locations, the average length of a list is m

n
, and 

since we must search the lists sequentially, the average successful search length is 
2

m

n
. The search length can be 

reduced by increasing the number of hash locations.
Another way to implement hashing with chaining is to use a single array and use array subscripts as links. We can 

use the declarations:
 
        typedef struct node {
           int num;   //key
           int next;   //array subscript of the next item in the list
        } Node;
 
        Node hash[MaxItems+1];
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The first part of the table, hash[1..n], say, is designated as the hash table, and the remaining locations are used 
as an overflow table, as shown in Figure 11-1.
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14

15

num next

hash table

overflow table

Figure 11-1.  Array implementation of chaining

Here, hash[1..5] is the hash table, and hash[6..15] is the overflow table.
Suppose key hashes to location k in the hash table:

If •	 hash[k].num is empty (0, say), we set it to key and set hash[k].next to -1, say, to indicate a 
null pointer.

If •	 hash[k].num is not 0, we must search the list starting at k for key. If it is not found, we put it 
in the next free location (f, say) in the overflow table and link it to the list starting at hash[k]. 
One way to link it is as follows:
 
        hash[f].next = hash[k].next;
        hash[k].next = f;
 
Another way to link the new key is to add it at the end of the list. If •	 L is the location of the last 
node in the list, this could be done with the following:
 
        hash[L].next = f;
        hash[f].next = -1;   //this is now the last node
 

If deletions are possible, we will have to decide what to do with deleted locations. One possibility is to keep a list 
of all available locations in the overflow table. When one is needed to store a key, it is retrieved from the list. When an 
item is deleted, its location is returned to the list.
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Initially, we can link all the items in the overflow table as shown in Figure 11-2 and let the variable free point to 
the first item in the list; here, free = 6. Item 6 points to item 7, which points to item 8, and so on, with item 15 at the 
end of the list.
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num next
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overflow table

Figure 11-2.  Link items in overflow table to form “free list”

Suppose 37 hashes to location 2. This is empty, so 37 is stored in hash[2].num. If another number (24, say) hashes 
to 2, it must be stored in the overflow table. First we must get a location from the “free list.” This can be done with:
 
        f = free;
        free = hash[free].next;
        return f;
 

Here, 6 is returned, and free is set to 7. The number 24 is stored in location 6, and hash[2].next is set to 6. At this 
stage, we have free = 7, with the tables having the values shown in Figure 11-3.
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Now, consider how an item may be deleted. There are two cases to consider:

	 1.	 If the item to be deleted is in the hash table (at k, say), we can delete it with this:
 
        if (hash[k].next == -1) set hash[k].num to Empty  //only item in the list
        else { //copy an item from the overflow table to the hash table
           h = hash[k].next;
           hash[k] = hash[h];   //copy information at location h to location k
           return h to the free list   //see next
        }
     
We can return a location (h, say) to the free list with this:
 
        hash[h].next = free;
        free = h;
 

	 2.	 If the item to be deleted is in the overflow table (at curr, say) and prev is the location of the 
item that points to the one to be deleted, we can delete it with this:
 
        hash[prev].next = hash[curr].next;
        return curr to the free list
 

Now consider how an incoming key might be processed. Suppose free is 9  and the number 52 hashes to  
location 2. We search the list starting at 2 for 52. It is not found, so 52 is stored in the next free location, 9. Location 6 
contains the last item in the list, so hash[6].next is set to 9, and hash[9].next is set to -1.
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Figure 11-3.  After adding 24 to the overflow table
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In general, we can perform a search for key and, if not found, insert it at the end of the list with this:
 
        k = H(key)   //H is the hash function
        if (hash[k].num == Empty) {
           hash[k].num = key
           hash[k].next = -1
        }
        else {
           curr = k
           prev = -1
           while (curr != -1 && hash[curr].num != key) {
              prev = curr
              curr = hash[curr].next
           }
           if (curr != -1) key is in the list at location curr
           else {  //key is not present
              hash[free].num = key   //assume free list is not empty
              hash[free].next = -1
              hash[prev].next = free
              free = hash[free].next
           } //end else
        } //end else 

11.3.4  Linear Probing with Double Hashing1

In Section 11.3.1, we saw that using loc = loc + k, where k is a constant greater than 1, does not give us a better 
performance than when k is 1. However, by letting k vary with the key, we can get excellent results since, unlike linear 
and quadratic probing, keys that hash to the same location will probe different sequences of locations in searching for 
an empty one.

The most natural way to let k vary with the key is to use a second hash function. The first hash function will 
generate the initial table location. If there is a collision, the second hash function will generate the increment, k. If the 
table locations run from 1 to n, we can use the following:
 
        convert key to a numeric value, num (if it is not already numeric)
        loc = num % n + 1       //this gives the initial hash location
        k = num % (n – 2) + 1   //this gives the increment for this key
 

We mentioned before that it is wise to choose n (the table size) as a prime number. In this method, we get even 
better results if n - 2 is also prime (in this case, n and n - 2 are called twin primes, for example 103/101, 1021/1019).

Apart from the fact that k is not fixed, the method is the same as linear probing. We describe it in terms of two 
hash functions, H1 and H2. H1 produces the initial hash location, a value between 1 and n, inclusive. H2 produces 
the increment, a value between 1 and n - 1 that is relatively prime to n; this is desirable so that, if required, many 
locations will be probed. As discussed earlier, if n is prime, any value between 1 and n - 1 will be relatively prime to it. 
In the previous example, the second hash function produces a value between 1 and n - 2. Here is the algorithm:
 

1The technique is sometimes referred to as open addressing with double hashing.
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        //find or insert 'key' using "linear probing with double hashing"
        loc = H1(key)
        k = H2(key)
        while (hash[loc] != Empty && hash[loc] != key) {
           loc = loc + k
           if (loc > n) loc = loc – n
        }
        if (hash[loc] == Empty) hash[loc] = key
        else print key, " found in location ", loc
 

As before, to ensure that the while loop exits at some point, we do not allow the table to become completely full. 
If we want to cater for MaxItems, say, we declare the table size to be bigger than MaxItems. In general, the more free 
locations in the table, the better the hash technique works.

However, with double hashing, we do not need as many free locations as with normal linear probe to guarantee 
good performance. This is because double hashing eliminates both primary and secondary clustering.

Primary clustering is eliminated since keys that hash to different locations will generate different sequences of 
locations. Secondary clustering is eliminated since different keys that hash to the same location will generate different 
sequences. This is so since, in general, different keys will generate different increments (k, in the algorithm). It would 
be a rare coincidence indeed for two keys to be hashed to the same values by both H1 and H2.

In practice, the performance of any hashing application can be improved by keeping information on how often 
each key is accessed. If we have this information beforehand, we can simply load the hash table with the most popular 
items first and the least popular last. This will lower the average access time for all keys.

If we do not have this information beforehand, we can keep a counter with each key and increment it each time 
the key is accessed. After some predefined time (a month, say), we reload the table with the most popular items first 
and the least popular last. We then reset the counters and garner statistics for the next month. This way we can ensure 
that the application remains fine-tuned since different items may become popular in the next month.

11.4 Example: Word Frequency Count
Consider, once again, the problem of writing a program to do a frequency count of the words in a passage. Output 
consists of an alphabetical listing of the words with their frequencies. Now, we will store the words in a hash table 
using linear probing with double hashing.

Each element in the table consists of three fields: word, freq, and next. We will use the following structure for 
items to be stored in the table:
 
        typedef struct {
           char word[MaxWordSize + 1];
           int freq, next;
        } WordInfo;
 

We declare and initialize the table with this:
 
        WordInfo wordTable[N+1]; //N - table size
        for (int h = 1; h <= N; h++) strcpy(wordTable[h].word, Empty); //Empty – symbolic constant
 

The table is searched for each incoming word. If the word is not found, it is added to the table, and its frequency 
count is set to 1. If the word is found, then its frequency count is incremented by 1.

In addition, when a word is added to the table, we set links such that we maintain a linked list of the words in 
alphabetical order. The variable first points to the first word in order. For example, suppose five words have been 
stored in the hash table. We link them, via next, as shown in Figure 11-4, with first = 6.
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Thus, the first word is boy, which points to for (1), which points to girl (7), which points to man (4), which points 
to the (3), which does not point to anything (-1). The words are linked in alphabetical order: boy for girl man the. 
Note that the linking works no matter where the hash algorithm places a word.

The hash algorithm first places the word. Then, regardless of where it is placed, that location is linked to maintain 
the words in order. For example, suppose the new word kid hashes to location 2. Then the link of kid will be set to 4 
(to point to man), and the link of girl will be set to 2 (to point to kid).

We print the alphabetical listing by traversing the linked list. Program P11.3 shows all the details.

Program P11.3

        #include <stdio.h>
        #include <ctype.h>
        #include <string.h>
        #define MaxWordSize 20
        #define MaxWords 10
        #define N 13
        #define Empty ""
        typedef struct {
           char word[MaxWordSize + 1];
           int freq, next;
        } WordInfo;
 
        int main() {
           int getWord(FILE *, char[]);
           void printResults(FILE *, WordInfo [], int);
           int search(WordInfo [], char []);
           int addToTable(WordInfo [], char [], int, int);
           char word[MaxWordSize+1];
           WordInfo wordTable[N+1]; //N - table size
 
           for (int h = 1; h <= N; h++) strcpy(wordTable[h].word, Empty);
 
           FILE * in = fopen("wordFreq.in", "r");
           FILE * out = fopen("wordFreq.out", "w");
 
           int first = -1; //points to first word in alphabetical order
           int numWords = 0;
 

1

word freq

for 2 7

next

the 4 -1
man 1 3

boy 1 1
girl 2 4

2

3

4

5

6

7

Figure 11-4.  Words linked in alphabetical order (first = 6)
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           while (getWord(in, word) != 0) {
              int loc = search(wordTable, word);
              if (loc > 0) wordTable[loc].freq++;
              else //this is a new word
                 if (numWords < MaxWords) { //if table is not full
                    first = addToTable(wordTable, word, -loc, first);
                    ++numWords;
                 }
                 else fprintf(out, "'%s' not added to table\n", word);
           }
           printResults(out, wordTable, first);
           fclose(in);
           fclose(out);
        } // end main

        int getWord(FILE * in, char str[]) {
        // stores the next word, if any, in str; word is converted to lowercase
        // returns 1 if a word is found; 0, otherwise
           char ch;
           int n = 0;
           // read over non-letters
           while (!isalpha(ch = getc(in)) && ch != EOF) ; //empty while body
           if (ch == EOF) return 0;
           str[n++] = tolower(ch);
           while (isalpha(ch = getc(in)) && ch != EOF)
              if (n < MaxWordSize) str[n++] = tolower(ch);
           str[n] = '\0';
           return 1;
        } // end getWord

        int search(WordInfo table[], char key[]) {
        //search for key in table; if found, return its location; if not,
        //return -loc if it must be inserted in location loc
           int convertToNumber(char []);
           int keyNum = convertToNumber(key);
           int loc = keyNum % N + 1;
           int k = keyNum % (N - 2) + 1;

           while ((strcmp(table[loc].word, Empty) != 0) &&
                 (strcmp(table[loc].word, key) != 0)) {
              loc = loc + k;
              if (loc > N) loc = loc - N;
           }
           if (strcmp(table[loc].word, Empty) == 0) return -loc;
           return loc;
        } // end search
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        int convertToNumber(char key[]) {
           int h = 0, keyNum = 0, w = 3;
           while (key[h] != '\0') {
              keyNum += w * key[h++];
              w = w + 2;
           }
           return keyNum;
        } //end convertToNumber
 
        int addToTable(WordInfo table[], char key[], int loc, int head) {
        //stores key in table[loc] and links it in alphabetical order
           strcpy(table[loc].word, key);
           table[loc].freq = 1;
           int curr = head;
           int prev = -1;
           while (curr != -1 && (strcmp(key, table[curr].word) > 0)) {
              prev = curr;
              curr = table[curr].next;
           }
           table[loc].next = curr;
           if (prev == -1) return loc; //new first item
           table[prev].next = loc;
           return head; //first item did not change
        } //end addToTable
 
        void printResults(FILE *out, WordInfo table[], int head) {
           fprintf(out, "\nWords        Frequency\n\n");
           while (head != -1) {
              fprintf(out, "%-15s %2d\n", table[head].word, table[head].freq);
              head = table[head].next;
           }
        } //end printResults
 

Using a table size of 13 and MaxWords set to 10, when Program P11.3 was run with the following data in 
wordFreq.in:

        The quick brown fox jumps over the lazy dog. Congratulations!
        If the quick brown fox jumped over the lazy dog then
        Why did the quick brown fox jump over the lazy dog?

it produced the following output:
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'jumped' not added to table
'then' not added to table
'why' not added to table
'did' not added to table
'jump' not added to table
 
Words        Frequency
 
brown            3
congratulations  1
dog              3
fox              3
if               1
jumps            1
lazy             3
over             3
quick            3
the              6 

EXERCISES 11

1.	 Integers are inserted into a hash table H[1..11] using the primary hash function  
h1(k) = 1 + k mod 11. Show the state of the array after inserting the keys 10, 22, 31, 4, 15, 
28, 17, 88, and 58 using (a) linear probing, (b) quadratic probing with probe function i + i2, 
and (c) double hashing with h2(k) = 1 + k mod 9.

2.	 Integers are inserted in an integer hash table list[1] to list[n] using linear probe with 
double hashing. Assume that the function h1 produces the initial hash location and the 
function h2 produces the increment. An available location has the value Empty, and a deleted 
location has the value Deleted.

Write a function to search for a given value key. If found, the function returns the location 
containing key. If not found, the function inserts key in the first deleted location encountered 
(if any) in searching for key, or an Empty location, and returns the location in which key was 
inserted. You may assume that list contains room for a new integer.

3.	I n a hashing application, the key consists of a string of letters. Write a hash function that, 
given a key and an integer max, returns a hash location between 1 and max, inclusive. Your 
function must use all of the key and should not deliberately return the same value for keys 
consisting of the same letters.

4.	 A hash table of size n contains two fields—an integer data field and an integer link 
field—called data and next, say. The next field is used to link data items in the hash table in 
ascending order. A value of -1 indicates the end of the list. The variable top (initially set  
to -1) indicates the location of the smallest data item. Integers are inserted in the hash table 
using hash function h1 and linear probing. The data field of an available location has the 
value Empty, and no item is ever deleted from the table. Write programming code to search 
for a given value key. If found, do nothing. If not found, insert key in the table and link it in its 
ordered position. You may assume that the table contains room for a new integer.
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5.	 In a certain application, keys that hash to the same location are held on a linked list. The hash 
table location contains a pointer to the first item on the list, and a new key is placed at the end 
of the list. Each item in the linked list consists of an integer key, an integer count, and a pointer 
to the next element in the list. Storage for a linked list item is allocated as needed. Assume that 
the hash table is of size n and the call H(key) returns a location from 1 to n, inclusive.

Write programming code to initialize the hash table.

Write a function that, given the key nkey, searches for it if not found, adds nkey in its 
appropriate position, and sets count to 0. If found, add 1 to count; if count reaches 10, delete 
the node from its current position, place it at the head of its list, and set count to 0.

6.	 Write a program to read and store a thesaurus as follows:

Data for the program consists of lines of input. Each line contains a (variable) number of 
distinct words, all of which are synonyms. You may assume that words consist of letters 
only and are separated by one or more blanks. Words may be spelled using any combination 
of uppercase and lowercase letters. All words are to be stored in a hash table using open 
addressing with double hashing. A word can appear on more than one line, but each word 
must be inserted only once in the table. If a word appears on more than one line, then all 
words on those lines are synonyms. This part of the data is terminated by a line containing 
the word EndOfSynonyms.

The data structure must be organized such that, given any word, all synonyms for that word 
can be quickly found.

The next part of the data consists of several commands, one per line. A valid command is 
designated by P, A, D, or E.

P word prints, in alphabetical order, all synonyms of word.

A word1 word2 adds word1 to the list of synonyms for word2.

D word deletes word from the thesaurus.

E, on a line by itself, indicates the end of the data.

7.	 Write a program to compare quadratic probing, linear probing with double hashing, and 
chaining. Data consists of an English passage, and you are required to store all the distinct 
words in the hash tables. For each word and each method, record the number of probes 
required to insert the word in the hash table.

Cater for 100 words. For quadratic probing and double hashing, use a table size of 103.  
For chaining, use two table sizes—23 and 53. For each of the four methods, use the same 
basic hash function.

Print an alphabetical listing of the words and the number of probes for each of the four 
methods. Organize your output so that the performance of the methods can be easily 
compared.
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do-while loop, 98
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program, 98
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D�       �
Decimal-Binary conversion, 116, 137
Dequeue function, 125
Do-while loop, 98
Do-while statement, 168, 191
Dynamic storage allocation, 73
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free function, 76
malloc function, 74
sizeof function, 75

E�       �
Enqueue function, 125, 129
Euclid’s algorithm, 136

F�       �
Fatal error, 76
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File(s), 183. See also Random access files
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advantages, 195
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fread function, 197
fwrite function, 196
garbage, 195

EOF file, 192
fclose function, 190
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fgets vs. fputs, 193
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program, 203
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writing data, 186

fclose function, 187
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File pointer, 184
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fprintf function, 186
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integer values, 39
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definition, 62
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program, 63

Function call, 53

G�       �
Games, 159, 163

guessing game, 163–164
Nim game, 166

bestPick function, 167
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definition, 166
do-while statement, 168
rules, 166

H�       �
Hanoi towers, classic  
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collision resolving
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double hashing, 280
linear probing, 271
quadratic probing, 273
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hash function, 265
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meaning, 266
search and insert problem, 265

search and insert
delete, 270
hash function, 269
problem solving, 266

word frequency count, 281
Heapsort

analysis of, 250
ascending order, 241
binary tree to max-heap

final tree, 243
nodes, 242

binary tree view, 242
priority queue, 251
siftUp, 247
sorting process

ascending order, 243
conditions, 244
heapSort, 245–246
nodes, 244
observations, 246
reorganized, 243
siftDown, 244–245

Highest common factor (HCF), 135

I, J, K�       �
Increment and decrement  

pointers, 58
Indexed files, 202

declaration, 202
program, 203
stored records, 202

Infix-Postfix conversion, 117
InitQueue function, 123, 128
InitStack function, 109
In-order traversal, 217, 222
InsertInPlace function, 11
Insertion sort, 5

analysis of, 11
ascending order, 5
for loop, 10
insertInPlace function, 11
insertionSort2 function, 12
while loop, 9

Integral function, 64

L�       �
Linked lists, 69, 139

vs. array, 92
basic operations, 71

counting, 71
finding, 73
searching, 72

circular linked lists, 97
definition, 97
do-while loop, 98
infinite loop, 97
program, 98

definition, 69
dynamic storage allocation, 73
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free function, 76
malloc function, 74
sizeof function, 75

merging, 93
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creation, 94

node deletion, 83
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palindrome, 88
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program, 89–90
reverseLetters function, 89

program, 77, 82
reverse order problem, 139–140
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program, 86
while loop, 86
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disadvantage, 93
struct array, 93
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Merge sort, 143
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mergeSort function, 144–145
program, 145
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implementation, 23
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definition, 166
do-while statement, 168
rules, 166

Nonrecursive quicksort, 257
Nonuniform distributions, 169

biased coin, 169
bottle caps collection, 170

Null pointer, 220

P�       �
Palindrome, 88

creation, 88
getPhrase function, 89
program, 89
reverseLetters function, 89

Parallel arrays, 14
Passing structure, 47
p estimation, 178
Pointers, 51

character pointers
constant, 57
declaration, 57
program, 57–58

declaration, 52
definition, 51
function(s), 62

definition, 62
integral function, 64
program, 63

function call, 53
increment and decrement pointers, 58
structures, 60

declaration, 61
dot operator, 61
operations, 62
passed by value, 60

using array, 55
void pointers, 65

Pop function, 106, 109
Power functions, 142
Pre-order traversal, 217, 222
printList traverses function, 79
Priority queue, 251
Pseudorandom numbers, 160
Push function, 106, 109

Q�       �
Quadratic probing, 273
Queue(s), 103, 122, 173

array implementation, 123
dequeue function, 125
enqueue function, 125

initQueue function, 123
problem, 124
queue.h file creation, 126
reverse order program, 127

arrival time, 174
definition, 122
linked list implementation, 127

enqueue function, 129
initQueue function, 128
QueueData variable, 127, 131
queue.h file creation, 129
reverse order program, 130

program, 175
service time, 174
tracking ten customers, 174
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comparison, 254
disadvantage, 254
kth smallest number, 258
nonrecursive quicksort, 257
partition1 function, 253
partitioning and pivot, 251
partitioning—splitting, 254
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stage, 252
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rand function, 161
Random access files
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program, 200–201
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updation, 208
Random numbers, 159

in C, 161
arithmetic problems, 164
floating-point division, 161
program, 162
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nonuniform distributions, 169
biased coin, 169
bottle caps collection, 170
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Real-life problems, simulation, 172
checkout counters, 173
gasoline stations, 173
traffic lights, 173

Recursion, 133
in C, 134

Euclid’s algorithm, 136
factorial function execution, 134
Fibonacci number, 136
HCF, 135
runtime stack, 135

counting organisms, 148
cells, 149
definition, 148
findOrg function, 149, 151
program, 149

decimal to binary conversion, 137
definition, 133
hanoi towers, classic problem, 140
linked list, 139

reverse order problem, 139–140
stacking/unstacking, 139

maze, path finding, 152
problem, 152
program, 154

merge sort, 143
algorithm, 143
mergeSort function, 144–145
program, 145

power functions, 142
static variables, 147

declaration, 147
external static, 147
internal static, 147

ReverseLetters function, 89
Runtime stack, 135

S�       �
Searching, 1, 72

binary search, 15
strings, 17
word frequency count, 18

addToList, 22
alphabetical order program, 18
function prototype, 22
MaxLength, 21
MaxWords, 21
truncation, 21

Selection sort, 1
advantages, 1
algorithms, 3
analysis of, 5
ascending order, 2–3
definition, 1

for loop, 3
getSmallest and swap program, 4

Shell (diminishing increment) sort, 259
siftUp, Heapsort, 247
Simulation, 159

Queue, 173
arrival time, 174
program, 175
service time, 174
tracking ten customers, 174

real-life problems, 172
checkout counters, 173
gasoline stations, 173
traffic lights, 173

Sizeof function, 75
Sorted linked list, 84

addInPlace function, 86
in ascending order, 84–86
program, 86
while loop, 86

Sorting, 1
binary search, 15
insertion sort, 5

analysis of, 11
ascending order, 5
for loop, 10
insertInPlace function, 11
insertionSort2 function, 12
while loop, 9

parallel arrays, 14
selection sort, 1

advantages, 1
algorithms, 3
analysis of, 5
ascending order, 2–3
definition, 1
for loop, 3
getSmallest and swap program, 4

strings, 12
insertionSort3 function, 13
strcmp function, 12
strcpy function, 12
two-dimensional character  

array, 12
Square root estimation, 177
srand function, 161
Stack(s), 103

abstract data type, 103
array implementatation, 104

empty function, 105
function call, 105
pop function, 106
push function, 106
reverse order program, 108
stack initialization, 105
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decimal-binary conversion, 116
definition, 104
header file creation, 111
infix-postfix conversion, 117
linked list implementation, 108

initStack function, 109
pop function, 109
push function, 109
reverse order program, 110

postfix expression evaluation, 121
primitive types, 112

StackData variable, 113
Static variables, 147

declaration, 147
external static, 147
internal static, 147

Strcmp function, 12
Strcpy function, 12
Struct array, 93
Structures, 27, 60

array
declaration, 32
getString(in, str) function, 32
sequential search, 33
sorting process, 33

declaration, 61
date type, 28
fields, 28
function printDate, 29
member operator, 28
struct, 28
structure variable, 28
typedef, 30

definition, 27
dot operator, 61
fractions

integer values, 39
manipulation, 39

nested structure, 38
operations, 62
passed by value, 60

passing structure, 47
read, search and sort, 34
voting problem

array candidate, 44
assignment, 46
compiler directives, 43
declaration, 42
descending order, 46
exercise, 41, 48
initialize function, 42
output, 41
printResults function, 45
problem, 41
raw data, 41
sortByName function, 47

T�       �
time function, 162
Trees. See also Binary trees

definition, 213
degree, 214
disjoint trees, 214
root node, 214
sibling nodes, 214
structures, 214
terminal nodes, 214

Two-Way/Doubly Linked Lists, 100
typedef, 30

U�       �
Uniform distribution, 159

V�       �
Void pointers, 65

W, X, Y, Z�       �
While loop, 9, 82, 230
Word frequency count, 281
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Preface

This book assumes you have a working knowledge of basic programming concepts such as variables, constants, 
assignment, selection (if...else), and looping (while, for). It also assumes you are comfortable with writing 
functions and working with arrays. If you are not, it is recommended that you study C Programming: A Beginner’s 
Course (www.amazon.com/C-Programming-A-Beginners-Course/dp/1438287844/) or any other introductory C 
programming book before tackling the material in this book.

The emphasis is not on teaching advanced concepts of the C language per se but, rather, on using C to teach 
advanced programming concepts that any aspiring programmer should know. The major topics covered include 
elementary sorting methods (selection, insertion), searching (sequential, binary), merging, structures, pointers, 
linked lists, stacks, queues, recursion, random numbers, files (text, binary, random access, indexed), binary tress, 
advanced sorting methods (heapsort, quicksort, mergesort, Shell sort), and hashing (a very fast way to search).

Chapter 1 deals with sorting a list using selection and insertion sort, searching a list using sequential and binary 
search, and merging two ordered lists.

Chapter 2 introduces an important concept: structures. Structures allow you to group a set of related data and 
manipulate them as one. This chapter shows you how to search and sort an array of structures and how to create 
useful user-defined types using typedef and struct.

Chapter 3 covers the sometimes elusive but powerful concept of pointers. Many programmers will tell you that 
this is probably the most difficult concept to grasp and the one that gives them the most headaches. I hope that, after 
reading this chapter, you will agree that it does not have to be so.

Chapter 4 deals with linked lists—an important data structure in its own right but also the foundation for more 
advanced structures such as trees and graphs. We will explain how to create a linked list, how to add to and delete 
from a linked list, how to build a sorted linked list, and how to merge two sorted linked lists.

Chapter 5 is devoted specifically to stacks and queues, perhaps the most useful kinds of linear lists. They have 
important applications in computer science. We will show you how to implement stacks and queues using arrays and 
linked lists and how to evaluate an arithmetic expression by converting it to postfix form.

Chapter 6 introduces a powerful programming methodology: recursion. There is no doubt that recursion takes 
a bit of getting used to. But, once you’ve mastered the topic, you will be able to solve a whole new world of problems 
that would be difficult to solve using traditional, nonrecursive techniques. Among other interesting problems, we will 
show you how to solve the Towers of Hanoi problem and how to escape from a maze.

We all like to play games. But what lurks inside these game-playing programs? Random numbers. Chapter 7 
shows you how to use random numbers to play some simple games and simulate real-life situations. We will explain 
how to write an arithmetic drill program, how to play the perfect game of Nim, and how to simulate a queue at 
a supermarket checkout counter or bank, among others. We will also discuss a novel use of random numbers—
estimating numerical values like π (pi).

Almost anything you need to store on a computer must be stored in a file. We use text files for storing the kinds 
of documents we create with a text editor or word processor. We use binary files for storing photographic image files, 
sound files, video files, and files of records. Chapter 8 shows how to create and manipulate text and binary files. It also 
explains how to work with two of the most useful kinds of files: random access and indexed.

Chapter 9 introduces that most versatile data structure—the binary tree. A binary tree combines the advantages 
of an array and a linked list without the disadvantages. For example, a binary search tree allows you to search in 
“binary search time” (as with a sorted array) and insert/delete with the facility of linked lists.

www.amazon.com/C-Programming-A-Beginners-Course/dp/1438287844/
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The sorting methods (selection, insertion) discussed in Chapter 1 are simplistic in that they get the job done but 
will be slow if given a large number of items (a million, say) to sort. For example, they will take about six days (!) to sort 
a million items on a computer that can process a million comparisons per second. Chapter 10 discusses some faster 
sorting methods, namely, heapsort, quicksort, and Shell sort. Heapsort and quicksort will sort the million items on the 
same computer in less than a minute, while Shell sort will take slightly more than one minute. 

Chapter 11 is devoted to hashing, one of the fastest ways to search. It covers hashing fundamentals and discusses 
several ways to resolve collisions, the key to the performance of any hashing algorithm.

Our goal is to provide a good grasp of advanced programming techniques as well as a basic understanding of 
important data structures (linked lists, stacks, queues, binary trees) and how they can be implemented in C. We hope 
this will whet your appetite for a deeper study of this exciting, essential area of computer science.

Many of the exercises require you to write a program. Not providing answers for these was deliberate. Our 
experience is that, in our fast-food culture, students do not spend the necessary time to figure out the solutions when 
answers are available. In any case, the goal of the programming exercises is for you to write the programs.

Programming is an iterative process. When you compile and run your solutions, you will know whether you are 
correct. If you are not, you must try to figure out why the program does not work, make improvements, and try again. 
The only way to learn programming well is to write programs to solve new problems. Providing answers will  
short-circuit this process without any benefits.

The programs in Advanced Topics in C conform to the C99 standard. They can be compiled with any compiler that 
conforms to C99. However, for this book, we used Code::Blocks (http://sourceforge.net/projects/codeblocks/). 
Code::Blocks is a free, open source, cross-platform C/C++ IDE built to meet the needs of the most demanding users. It is 
also easy to use. You can download a version of Code::Blocks that includes the minGW C compiler but it can be used with 
any other C compiler.

The code for the examples shown in this book is available on the Apress web site, www.apress.com. You can find a 
link to it on the book’s information page; go to the Source Code/Downloads tab, which is in the Related Titles section 
of the page.

Thank you for taking the time to read and study this book. We hope your experience will be a successful, 
enjoyable, and rewarding one.

—Noel Kalicharan

http://sourceforge.net/projects/codeblocks/
www.apress.com
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