\ ADVANCED |

b aml_l;++
Compiling

Milan Stevanovic

Apress’

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

Contents at a Glance

About the AUthOr ... ———————————— Xv
About the Technical ReVIEWErScccsrvemsmisssmsssmssssmssssmssssmssssssssssssssssssssssnssssnssssssnsnsassnsass xvii
AcknOowIedgmEeNnts.......cccciiiisssssnmmnnmmmmmmsssssssssssnnnmesssssssssnnnnnnsessssssssssnnnnnnsessssssssnnnnnnnnnessssssns Xix
INtrodUCTiONceiiieesissannsssannssssnnnsssnnnsssnnnsssnnnsssnnnsssnnnsssannsssnnnsssnnnsssannsssnnnssssnnenssnnnsssnnnsssnnns xxi
Chapter 1: Multitasking 0S BaSICS ...uuusessrrsssssnsssssssssssssssssnssssssssnsssssssssnssssssssnssssssnnnssssssnns 1
Chapter 2: Simple Program Lifetime Stagesccuccmmmnnmmmmmmmssssnmmmissssmmmsssssssmsssssssessssans 9
Chapter 3: Program Execution Stages........ccuummmmmmmsmmmmmmsssnsnmmsssssssmmssssssnsssssssssssssssssnsnssss 43
Chapter 4: The Impact of Reusing Conceptccccccuvimmmsssmmmssssmmssssmmsssssssssssesssssesssssssnns 53
Chapter 5: Working with Static LIbrariescccovuunemmmmnnsssssmmmnsssssnmmssssssssssssssssssssssssssenans 75
Chapter 6: Designing Dynamic Libraries: BaSiCS......ccctuuumsummmmmssssnsmmsssssnsnssssssnsnssssssnsnssssss 81
Chapter 7: Locating the LiDrariesc..ccccusemmsssssmssesssnsesssnsenss 115
Chapter 8: Designing Dynamic Libraries: Advanced TOPICSccccurrssssssnsssssssssssssssnsssssans 137
Chapter 9: Handling Duplicate Symbols When Linking In Dynamic Librariesccuuu 155
Chapter 10: Dynamic Libraries Versioningccueussassssssnsess 187
Chapter 11: Dynamic Libraries: Miscellaneous TOPICSccuttuummmmssssmssssssssssssssssnsssssssnssss 233
Chapter 12: LinuX TOOIDOX ...ccuuruissnmnmmssssansmmssssnnnssssssnnnsessssnsnssssssnsnssssssnnnssssssnnnsssssnnnnnsssnn 243
Chapter 13: LinuX HOW T0’Scuuuseenmmssssnnsssssssnsnssssssssnssssssssnssssssnnsssssssnnnsssssnnnnsssssnnnnsnsans 277
Chapter 14: Windows TOOIDOX ...cceeurrssssensmmssssnssssssssssnssssssssssssssssnnsssssssnsssssssnnnsssssnnnnssssns 291
L1 . 309

Introduction

It took me quite some time to become aware of an amazing analogy that exists between the culinary art and the art of
computer programming.

Probably the most obvious comparison that comes to mind is that both the culinary specialist and the programmer
have similar ultimate goals: to feed. For a chef, it is the human being, for which plenty of raw ingredients are used to
provide edible nutrients as well as gastronomic pleasure, whereas for the programmer it is the microprocessor, for
which a number of different procedures are used to provide the code that not only needs to produce some meaningful
actions, but also needs to be delivered in the optimum form.

As much as this introductory comparison point may seem a bit far-fetched or even childish, the subsequent
comparison points are something that I find far more applicable and far more convincing.

The recipes and instructions for preparing dishes of all kinds are abundant and ubiquitous. Almost every popular
magazine has a culinary section dedicated to all kinds of foods, and all kind of food preparation scenarios, ranging
from quick-and-easy/last-minute recipes all the way to really elaborate ones, from ones focusing on nutrition tables
of ingredients to ones focusing on the delicate interplay between extraordinary, hard-to-find ingredients.

However, at the next level of expertise in the culinary art, the availability of resources drops exponentially.

The recipes and instructions for running the food business (volume production, running the restaurant, or catering
business), planning the quantities and rhythm of delivery for food preparation process, techniques and strategies
for optimizing the efficiency of food delivery, techniques for choosing the right ingredients, minimizing the decay of
stored ingredients—this kind of information is substantially more hard to find. Rightfully so, as these kinds of topics
delineate the difference between amateur cooking and the professional food business.

The situation with programming is quite similar.

The information about a vast variety of programming languages is readily available, through thousands of books,
magazines, articles, web forums, and blogs, ranging from the absolute beginner level all the way to the “prepare for
the Google programming interview” tips.

These kinds of topics, however, cover only about half of the skills required by the software professional. Soon after
the immediate gratification of seeing the program we created actually executing (and doing it right) comes the next
level of important questions: how to architect the code to allow for easy further modifications, how to extract reusable
parts of the functionality for future use, how to allow smooth adjustment for different environments (starting from
different human languages and alphabets, all the way to running on different operating systems).

As compared to the other topics of programming, these kinds of topics are rarely discussed, and to this day
belong to the form of “black art” reserved for a few rare specimens of computer science professionals (mostly software
architects and build engineers) as well as to the domain of university-level classes related to the compiler/linker design.

One particular factor—the ascent of Linux and the proliferation of its programming practices into a multitude
of design environments—has brought a huge impetus for a programmer to pay attention to these topics. Unlike the
colleagues writing software for “well-cushioned” platforms (Windows and Mac, in which the platform, IDEs, and
SDKs relieve the programmer of thinking about certain programming aspects), a Linux programmer’s daily routine is
to combine together the code coming from variety of sources, coding practices, and in forms which require immediate
understanding of inner workings of compiler, linker, the mechanism of program loading, and hence the details of
designing and using the various flavors of libraries.

xxi

INTRODUCTION

The purpose of this book is to discuss a variety of valuable pieces of information gathered from a scarce and
scattered knowledge base and validate it through a number of carefully tailored simple experiments. It might be
important to point out that the author does not come from a computer science background. His education on
the topic came as a result of being immersed as electrical engineer in the technology frontier of the Silicon Valley
multimedia industry in the time of the digital revolution, from the late 90s to the present day. Hopefully, this
collection of topics will be found useful by a wider audience.

Audience (Who Needs This Book and Why)

The side effect of myself being a (very busy, I must say proudly) software design hands-on consultant is that I regularly
come in contact with an extraordinary variety of professional profiles, maturity, and accomplishment levels. The solid
statistic sample of the programmer population (of Silicon Valley, mostly) that I meet by switching office environments
several times during a work week has helped me get a fairly good insight into the profiles of who may benefit from
reading this book. So, here they are.

The first group is made of the C/C++ programmers coming from a variety of engineering backgrounds
(EE, mechanical, robotics and system control, aerospace, physics, chemistry, etc.) who deal with programming on
a daily basis. A lack of formal and more focused computer science education as well as a lack of non-theoretical
literature on the topic makes this book a precious resource for this particular group.

The second group is comprised of junior level programmers with a computer science background. This book
may help concretize the body of their existing knowledge gained in core courses and focus it to the operational level.
Keeping the quick summaries of Chapters 12-14 somewhere handy may be worthwhile even for the more senior
profiles of this particular group.

The third group is made of folks whose interest is in the domain of OS integration and customization.
Understanding the world of binaries and the details of their inner working may help “clean the air” tremendously.

About the Book

Originally, I did not have any plans to write this particular book. Not even a book in the domain of computer science.
(Signal processing? Art of programming? Maybe...but a computer science book? Naaah...)

The sole reason why this book emerged is the fact that through the course of my professional career I had to deal
with certain issues, which at that time I thought someone else should take care of.

Once upon a time, I made the choice of following the professional path of a high-tech assassin of sort, the guy
who is called by the citizens of the calm and decent high tech communities to relieve them from the terror of nasty
oncoming multimedia-related design issues wreaking havoc together with a gang of horrible bugs. Such a career
choice left pretty much no space for exclusivity in personal preferences typically found by the kids who would eat the
chicken but not the peas. The ominous “or else” is kind of always there. Even though FFTs, wavelets, Z-transform,
FIR and IIR filters, octaves, semitones, interpolations and decimations are naturally my preferred choice of tasks
(together with a decent amount of C/C++ programming), I had to deal with issues that would not have been my
personal preference. Someone had to do it.

Surprisingly, when looking for the direct answers to very simple and pointed questions, all I could find was a
scattered variety of web articles, mostly about the high-level details. I was patiently collecting the “pieces of the puzzle”
together, and managed to not only complete the design tasks at hand but also to learn along the way.

One fine day, the time came for me to consolidate my design notes (something that I regularly do for the variety
of topics I deal with). This time, however, when the effort was completed, it all looked...well...like a book. This book.

Anyways...

Given the current state of the job market, I am deeply convinced that (since about the middle of the first decade
of 21st century) knowing the C/C++ language intricacies perfectly—and even algorithms, data structures, and design
patterns—is simply not enough.

xxii

INTRODUCTION

In the era of open source, the life reality of the professional programmer becomes less and less about “knowing
how to write the program” and instead substantially more about “knowing how to integrate existing bodies of code.”
This assumes not only being able to read someone else’s code (written in variety of coding styles and practices), but
also knowing the best way to integrate the code with the existing packages that are mostly available in binary form
(libraries) accompanied by the export header files.

Hopefully, this book will both educate (those who may need it) as well as provide the quick reference for the most
of the tasks related to the analysis of the C/C++ binaries.

Why am I illustrating the concepts mostly in Linux?

It's nothing personal.

In fact, those who know me know how much (back in the days when it was my preferred design platform) I used
to like and respect the Windows design environment—the fact that it was well documented, well supported, and
the extent to which the certified components worked according to the specification. A number of professional level
applications I've designed (GraphEdit for Windows Mobile for Palm, Inc., designed from scratch and crammed with
extra features being probably the most complex one, followed by a number of media format/DSP analysis applications)
has led me toward the thorough understanding and ultimately respect for the Windows technology at the time.

In the meantime, the Linux era has come, and that’s a fact of life. Linux is everywhere, and there is little chance
that a programmer will be able to ignore and avoid it.

The Linux software design environment has proven itself to be open, transparent, simple and straight to-the-point.
The control over individual programming stages, the availability of well-written documentation, and even more
“live tongues” on the Web makes working with the GNU toolchain a pleasure.

The fact that the Linux C/C++ programming experience is directly applicable to low-level programming on MacOS
contributed to the final decision of choosing the Linux/GNU as the primary design environment covered by this book.

But, wait! Linux and GNU are not exactly the same thing!!!

Yes, I know. Linux is a kernel, whereas GNU covers whole lot of things above it. Despite the fact that the GNU compiler may
be used on the other operating systems (e.g. MinGW on Windows), for the most part the GNU and Linux go hand-in-hand
together. To simplify the whole story and come closer to how the average programmer perceives the programming scene,
and especially in contrast with the Windows side, I'll collectively refer to GNU + Linux as simply “Linux.”

The Book Overview

Chapters 2-5 are mostly preparing the terrain for making the point later on. The folks with the formal computer
science background probably do not need to read these chapters with focused attention (fortunately, these chapters
are not that long). In fact, any decent computer science textbook may provide the same framework in far more detail.
My personal favorite is Bryant and O’Hallaron’s Computer Systems - A Programmer’s Perspective book, which I highly
recommend as a source of nicely arranged information related to the broader subject.

Chapters 6-12 provide the essential insight into the topic. I invested a lot of effort into being concise and trying
to combine words and images of familiar real-life objects to explain the most vital concepts whose understanding is a
must. For those without a formal computer science background, reading and understanding these chapters is highly
recommended. In fact, these chapters represent the gist of the whole story.

Chapters 13-15 are kind of a practical cheat sheet, a form of neat quick reminders. The platform-specific set of
tools for the binary files analyses are discussed, followed by the cross-referencing “How Tos” part which contains
quick recipes of how to accomplish certain isolated tasks.

Appendix A contains the technical details of the concepts mentioned in Chapter 8. Appendix A is available online
only at www. apress. com. For detailed information about how to locate it, go to www.apress.com/source-code/. After
understanding the concepts from Chapter 8, it may be very useful to try to follow the hands-on explanations of how
and why certain things really work. I hope that a little exercise may serve as practical training for the avid reader.

xxiii

www.apress.com
www.apress.com/source-code/

CHAPTER 1

Multitasking OS Basics

The ultimate goal of all the art related to building executables is to establish as much control as possible over

the process of program execution. In order to truly understand the purpose and meaning of certain parts of the
executable structure, it is of the utmost importance to gain the full understanding of what happens during the
execution of a program, as the interplay between the operating system kernel and the information embedded inside
the executable play the most significant roles. This is particularly true in the initial phases of execution, when it is too
early for runtime impacts (such as user settings, various runtime events, etc.) which normally happen.

The mandatory first step in this direction is to understand the surroundings in which the programs operate.

The purpose of this chapter is to provide in broad sketches the most potent details of a modern multitasking operating
system’s functionality.

Modern multitasking operating systems are in many aspects very close to each other in terms of how the most
important functionality is implemented. As a result, a conscious effort will be made to illustrate the concepts in
platform-independent ways first. Additionally, attention will be paid to the intricacies of platform-specific solutions
(ubiquitous Linux and ELF format vs. Windows) and these will be analyzed in great detail.

Useful Abstractions

Changes in the domain of computing technology tend to happen at very fast pace. The integrated circuits technology
delivers components that are not only rich in variety (optical, magnetic, semiconductor) but are also getting
continually upgraded in terms of capabilities. According to the Moore’s Law, the number of transistors on integrated
circuits doubles approximately every two years. Processing power, which is tightly associated with the number of
available transistors, tends to follow a similar trend.

As was found out very early on, the only way of substantially adapting to the pace of change is to define overall
goals and architecture of computer systems in an abstract/generalized way, at the level above the particulars of the
ever-changing implementations. The crucial part of this effort is to formulate the abstraction in such a way that any
new actual implementations fit in with the essential definition, leaving aside the actual implementation details as
relatively unimportant. The overall computer architecture can be represented as a structured set of abstractions,
as shown in Figure 1-1.

CHAPTER 1 © MULTITASKING OS BASICS

Virtual Machine

< >
Process
>

P Virtual Memory ., Instruction Set

ld) Ll

Operating System
, Byte Stream cPu
< ”
Main Memory
1/0 Devices

Figure 1-1. Computer Architecture Abstractions

The abstraction at the lowest level copes with the vast variety of I/O devices (mouse, keyboard, joystick, trackball,
light pen, scanner, bar code readers, printer, plotter, digital camera, web camera) by representing them with their
quintessential property of byte stream. Indeed, regardless of the differences between various devices’ purposes,
implementations, and capabilities, it is the byte streams these devices produce or receive (or both) that are the detail
of utmost importance from the standpoint of computer system design.

The next level abstraction, the concept of virtual memory, which represents the wide variety of memory
resources typically found in the system, is the subject of extraordinary importance for the major topic of this book.
The way this particular abstraction actually represents the variety of physical memory devices not only impacts the
design of the actual hardware and software but also lays a groundwork that the design of compiler, linker, and loader
relies upon.

The instruction set that abstracts the physical CPU is the abstraction of the next level. Understanding the
instruction set features and the promise of the processing power it carries is definitely the topic of interest for the
master programmer. From the standpoint of our major topic, this level of abstraction is not of primary importance
and will not be discussed in great detail.

The intricacies of the operating system represent the final level of abstraction. Certain aspects of the operating
system design (most notably, multitasking) have a decisive impact on the software architecture in general. The
scenarios in which the multiple parties try to access the shared resource require thoughtful implementation in which
unnecessary code duplication would be avoided—the factor that directly led to the design of shared libraries.

Let’s make a short detour in our journey of analyzing the intricacies of the overall computer system and instead
pay special attention to the important issues related to memory usage.

Memory Hierarchy and Caching Strategy

There are several interesting facts of life related to the memory in computer systems:

e The need for memory seems to be insatiable. There is always a need for far more than is
currently available. Every quantum leap in providing larger amounts (of faster memory)
is immediately met with the long-awaiting demand from the technologies that have been
conceptually ready for quite some time, and whose realization was delayed until the day when
physical memory became available in sufficient quantities.

e Thetechnology seems to be far more efficient in overcoming the performance barriers of processors
than memory. This phenomenon is typically referred to as “the processor-memory gap.’

e The memory’s access speed is inversely proportional to the storage capacity. The access times
of the largest capacity storage devices are typically several orders of magnitude larger than that
of the smallest capacity memory devices.

CHAPTER 1 © MULTITASKING OS BASICS

Now, let’s take a quick look at the system from the programmer/designer/engineer point of view. Ideally, the system
needs to access all the available memory as fast as possible—which we know is never possible to achieve. The immediate
next question then becomes: is there anything we can do about it?

The detail that brings tremendous relief is the fact that the system does not use all the memory all of the time,
but only some memory for some of the time. In that case, all we really need to do is to reserve the fastest memory for
running the immediate execution, and to use the slower memory devices for the code/data that is not immediately
executed. While the CPU fetches from the fast memory the instructions scheduled for the immediate execution,
the hardware tries to guess which part of the program will be executed next and supplies that part of the code to the
slower memory to await the execution. Shortly before the time comes to execute the instructions stored in the slower
memory, they get transferred into the faster memory. This principle is known as caching.

The real-life analogy of caching is something that an average family does with their food supply. Unless we live in
very isolated places, we typically do not buy and bring home all the food needed for a whole year. Instead, we mostly
maintain moderately large storage at home (fridge, pantry, shelves) in which we keep a food supply sufficient for a
week or two. When we notice that these small reserves are about to be depleted, we make a trip to the grocery and buy
only as much food as needed to fill up the local storage.

The fact that a program execution is typically impacted by a number of external factors (user settings being just
one of these) makes the mechanism of caching a form of guesswork or a hit-or-miss game. The more predictable the
program execution flows (measured by the lack of jumps, breaks, etc.) the smoother the caching mechanism works.
Conversely, whenever a program encounters the flow change, the instructions that were previously accumulated end
up being discarded as no longer needed, and a new, more appropriate part of the program needs to be supplied from
the slower memory.

The implementation of a caching principle is omnipresent and stretches across several levels of memory, as illustrated
in Figure 1-2.

CPU registers
L1 Cache
L2 Cache smaller/faster
L3 Cache
Main Memory /l larger/slower
Local Disks /l/l
Remote Storage

Figure 1-2. Memory caching hierarchy principle

Virtual Memory

The generic approach of memory caching gets the actual implementation on the next architectural level, in which the
running program is represented by the abstraction called process.

Modern multitasking operating systems are designed with the intention to allow one or more users to concurrently
run several programs. It is not unusual for the average user to have several applications (e.g. web browser, editor, music
player, calendar) running simultaneously.

The disproportion between the needs of the memory and the limited memory availability was resolved by the
concept of virtual memory, which can be outlined by the following set of guidelines:

e Program memory allowances are fixed, equal for all programs, and declarative in nature.

Operating systems typically allow the program (process) to use 2N bytes of memory, where
N is nowadays 32 or 64. This value is fixed and is independent of the availability of the
physical memory in the system

CHAPTER 1 © MULTITASKING OS BASICS

e The amount of physical memory may vary. Usually, memory is available in quantities that are
several times smaller than the declared process address space. It is nothing unusual that the
amount of physical memory available for running programs is an uneven number.

e Physical memory at runtime is divided into small fragments (pages), with each page being
used for programs running simultaneously.

e The complete memory layout of the running program is kept on the slow memory (hard disk).
Only the parts of the memory (code and data) that are about to be currently executed are
loaded into the physical memory page.

The actual implementation of the virtual memory concept requires the interaction of numerous system resources
such as hardware (hardware exceptions, hardware address translation), hard disk (swap files), as well as the lowest
level operating system software (kernel). The concept of virtual memory is illustrated in Figure 1-3.

Process A

Process B

Physical Memory

Process G

Figure 1-3. Virtual memory concept implementation

CHAPTER 1 © MULTITASKING OS BASICS

Virtual Addressing

The concept of virtual addressing is at the very foundation of the virtual memory implementation, and in many ways
significantly impacts the design of compilers and linkers.

As a general rule, the program designer is completely relieved of worrying about the addressing range that his
program will occupy at runtime (at least this is true for the majority of user space applications; kernel modules are
somewhat exceptional in this sense). Instead, the programming model assumes that the address range is between
0 and 2~ (virtual address range) and is the same for all programs.

The decision to grant a simple and unified addressing scheme for all programs has a huge positive impact on the
process of code development. The following are the benefits:

e Linking is simplified.

e Loadingis simplified.

¢ Runtime process sharing becomes available.
¢ Memory allocation is simplified.

The actual runtime placement of the program memory in a concrete address range is performed by the operating
system through the mechanism of address translation. Its implementation is performed by the hardware module
called a memory management unit (MMU), which does not require any involvement of the program itself.

Figure 1-4 compares the virtual addressing mechanism with a plain and simple physical addressing scheme
(used to this day in the domain of simple microcontroller systems).

Physical Addressing

Virtual Addressing

%vvv

Figure 1-4. Physical vs. virtual addressing

CHAPTER 1 © MULTITASKING OS BASICS

Process Memory Division Scheme

The previous section explanted why it is possible to provide the identical memory map to the designer of (almost) any
program. The topic of this section is to discuss the details of the internal organization of the process memory map. It is
assumed that the program address (as viewed by the programmer) resides in the address span between 0 and 2%,
N being 32 or 64.

Various multitasking/multiuser operating systems specify different memory map layouts. In particular, the Linux
process virtual memory map follows the mapping scheme shown in Figure 1-5.

operating system functionality for
SYSTEM controlling the program execution

environment variables
argv (list of command line arguments)
argc (number of command line arguments)

STACK local variables for main() function

local variables for other function

v

SHARED

functions from linked dynamic libraries
MEMORY
HEAP
DATA initialized data

uninitialized data

functions from linked static libraries
TEXT

other program functions

main function (main.o)

startup routines (crt0.0)

0x00000000

Figure 1-5. Linux process memory map layout

CHAPTER 1 © MULTITASKING OS BASICS

Regardless of the peculiarities of a given platform’s process memory division scheme, the following sections of
the memory map must be always supported:

¢ Code section carrying the machine code instructions for the CPU to execute (.text section)

e Data sections carrying the data on which the CPU will operate. Typically, separate sections
are kept for initialized data (.data section), for uninitialized data (.bss section), as well as for
constant data (.rdata section)

e The heap on which the dynamic memory allocation is run
e The stack, which is used to provide independent space for functions

e The topmost part belonging to the kernel where (among the other things) the process-specific
environment variables are stored

A beautifully detailed discussion of this particular topic written by Gustavo Duarte can be found at
http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory.

The Roles of Binaries, Compiler, Linker, and Loader

The previous section shed some light on the memory map of the running process. The important question that comes
next is how the memory map of the running process gets created at runtime. This section will provide an elementary
insight into that particular side of the story.

In a rough sketch,

e The program binaries carry the details of the blueprint of the running process memory map.

e The skeleton of a binary file is created by the linker. In order to complete its task, the linker
combines the binary files created by the compiler in order to fill out the variety of memory
map sections (code, data, etc.).

e The task of initial creation of the process memory map is performed by the system utility
called the program loader. In the simplest sense, the loader opens the binary executable
file, reads the information related to the sections, and populates the process memory map
structure.

This division of roles pertains to all modern operating systems.

Please be aware that this simplest description is far from providing the whole and complete picture. It should be
taken as a mild introduction into the subsequent discussions through which substantially more details about the topic
of binaries and process loading will be conveyed as we progress further into the topic.

Summary

This chapter provided an overview of the concepts that most fundamentally impact the design of modern multitasking
operating systems. The cornerstone concepts of virtual memory and virtual addressing not only affect the program
execution (which will be discussed in detail in the next chapter), but also directly impact how the program executable
files are built (which will be explained in detail later in the book).

http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory

CHAPTER 2

Simple Program Lifetime Stages

In the previous chapter, you obtained a broad insight into aspects of the modern multitasking operating system’s
functionality that play a role during program execution. The natural next question that comes to the programmer’s
mind is what to do, how, and why in order to arrange for the program execution to happen.

Much like the lifetime of a butterfly is determined by its caterpillar stage, the lifetime of a program is greatly
determined by the inner structure of the binary, which the OS loader loads, unpacks, and puts its contents into the
execution. It shouldn’t come as a big surprise that most of our subsequent discussions will be devoted to the art of
preparing a blueprint and properly embedding it into the body of the binary executable file(s). We will assume that
the program is written in C/C++.

To completely understand the whole story, the details of the rest of the program’s lifetime, the loading and
execution stage, will be analyzed in great detail. Further discussions will be focused around the following stages of the
program’s lifetime:

1. Creating the source code
2. Compiling

3. Linking

4. Loading

5. Executing

The truth be told, this chapter will cover far more details about the compiling stage than about the subsequent
stages. The coverage of subsequent stages (especially linking stage) only starts in this chapter, in which you will
only see the proverbial “tip of the iceberg.” After the most basic introduction of ideas behind the linking stage, the
remainder of the book will deal with the intricacies of linking as well as program loading and executing.

Initial Assumptions

Even though it is very likely that a huge percentage of readers belong to the category of advanced-to-expert programmers,
I'will start with fairly simple initial examples. The discussions in this chapter will be pertinent to the very simple, yet very
illustrative case. The demo project consists of two simple source files, which will be first compiled and then linked together.
The code is written with the intention of keeping the complexity of both compiling and linking at the simplest possible level.

In particular, no linking of external libraries, particularly not dynamic linking, will be taking place in this demo
example. The only exception will be the linking with the C runtime library (which is anyways required for the vast
majority of programs written in C). Being such a common element in the lifetime of C program execution, for the
sake of simplicity I will purposefully turn a blind eye to the particular details of linking with the C runtime library,
and assume that the program is created in such a way that all the code from the C runtime library is “automagically”
inserted into the body of the program memory map.

By following this approach, I will illustrate the details of program building’s quintessential problems in a simple
and clean form.

CHAPTER 2 * SIMPLE PROGRAM LIFETIME STAGES

Code Writing

Given that the major topic of this book is the process of program building (i.e., what happens after the source code is
written), I will not spend too much time on the source code creation process.

Except in a few rare cases when the source code is produced by a script, it is assumed that a user does it by typing
in the ASCII characters in his editor of choice in an effort to produce the written statements that satisfy the syntax
rules of the programming language of choice (C/C++ in our case). The editor of choice may vary from the simplest
possible ASCII text editor all the way to the most advanced IDE tool. Assuming that the average reader of this book is a
fairly experienced programmer, there is really nothing much special to say about this stage of program life cycle.

However, there is one particular programming practice that significantly impacts where the story will be
going from this point on, and it is worth of paying extra attention to it. In order to better organize the source code,
programmers typically follow the practice of keeping the various functional parts of the code in separate files,
resulting with the projects generally comprised of many different source and header files.

This programming practice was adopted very early on, since the time of the development environments made
for the early microprocessors. Being a very solid design decision, it has been practiced ever since, as it is proven to
provide solid organization of the code and makes code maintenance tasks significantly easier.

This undoubtedly useful programming practice has far reaching consequences. As you will see soon, practicing
itleads to certain amount of indeterminism in the subsequent stages of the building process, the resolving of which
requires some careful thinking.

Concept illustration: Demo Project

In order to better illustrate the intricacies of the compiling process, as well as to provide the reader with a little
hands-on warm-up experience, a simple demo project has been provided. The code is exceptionally simple; it is
comprised of no more than one header and two source files. However, it is carefully designed to illustrate the points of
extraordinarily importance for understanding the broader picture.

The following files are the part of the project:

e Source file main.c, which contains the main() function.

e Header file function.h, which declares the functions called and the data accessed by the
main() function.

e Source file function.c, which contains the source code implementations of functions and
instantiation of the data referenced by the main() function.

The development environment used to build this simple project will be based on the gce compiler running on
Linux. Listings 2-1 through 2-3 contain the code used in the demo project.
Listing 2-1. function.h

#pragma once

#define FIRST_OPTION
#ifdef FIRST_OPTION
#define MULTIPLIER (3.0)

#else
#tdefine MULTIPLIER (2.0)#endif

float add and multiply(float x, float y);

10

CHAPTER 2 © SIMPLE PROGRAM LIFETIME STAGES

Listing 2-2. function.c

int nCompletionStatus = 0;

float add(float x, float y)

{
float z = x + y;
return z;
}
float add and multiply(float x, float y)
{
float z = add(x,y);
z *= MULTIPLIER;
return z;
}

Listing 2-3. main.c

#include "function.h"
extern int nCompletionStatus = 0;
int main(int argc, char* argv[])
{
float x
float y
float z;

1.0;
5.0;

z = add_and_multiply(x,y);
nCompletionStatus = 1;
return 0;

Compiling

Once you have written your source code, it is the time to immerse yourself in the process of code building, whose
mandatory first step is the compiling stage. Before going into the intricacies of compiling, a few simple introductory
terms will be presented first.

Introductory Definitions

Compiling in the broad sense can be defined as the process of transforming source code written in one programming
language into another programming language. The following set of introductory facts is important for your overall
understanding of the compilation process:

e The process of compiling is performed by the program called the compiler.

e The input for the compiler is a translation unit. A typical translation unit is a text file
containing the source code.

e Aprogram is typically comprised of many translation units. Even though it is perfectly possible
and legal to keep all the project’s source code in a single file, there are good reasons (explained
in the previous section) of why it is typically not the case.

11

CHAPTER 2 * SIMPLE PROGRAM LIFETIME STAGES

The output of the compilation is a collection of binary object files, one for each of the input
translation units.

In order to become suitable for execution, the object files need to be processed through
another stage of program building called linking.

Figure 2-1 illustrates the concept of compiling.

o 10110 1100101001001
o 11 o~ 1001001010010
o o
o O 1001001010010010
111
int function_sum(int x, int y) 1010010101001010101
{ 0101010111011011011 | 100
return (x +) o 001
} XyZ.C Compilation 1001001010010010}86 XyZ.0
int main(int argc, char* argv[]) 1001010010101001001
U ! 1101101101101101101 | 100
!ntx=5z 001
A sum.c 1001010101010001001 |sum.o
’ 1001001001001001001
z = function_sum(x, y);
return 0; 1001001001001001001
} . 0100100101001001010
main.c main.o

Figure 2-1. The compiling stage

Related Definitions

The following variety of compiler use cases is typically encountered:

Compilation in the strict meaning denotes the process of translating the code of a higher-level
language to the code of a lower-level language (typically, assembler or even machine code)
production files.

If the compilation is performed on one platform (CPU/OS) to produce code to be run on some
other platform (CPU/QS), it is called cross-compilation. The usual practice is to use some of
the desktop OSes (Linux, Windows) to generate the code for embedded or mobile devices.

Decompilation (disassembling) is the process of converting the source code of a lower-level
language to the higher-level language.

Language translation is the process of transforming source code of one programming
language to another programming language of the same level and complexity.

Language rewriting is the process of rewriting the language expressions into a form more
suitable for certain tasks (such as optimization).

The Stages of Compiling

The compilation process is not monolithic in nature. In fact, it can be roughly divided into the several stages

(pre-processing, linguistic analysis, assembling, optimization, code emission), the details of which will be
discussed next.

12

CHAPTER 2 © SIMPLE PROGRAM LIFETIME STAGES

Preprocessing

The standard first step in processing the source files is running them through the special text processing program
called a preprocessor, which performs one or more of the following actions:

e Includes the files containing definitions (include/header files) into the source files, as
specified by the #include keyword.

e Converts the values specified by using #define statements into the constants.

e Converts the macro definitions into code at the variety of locations in which the macros
are invoked.

e Conditionally includes or excludes certain parts of the code, based on the position of #if,
#elif, and #endif directives.

The output of the preprocessor is the C/C++ code in its final shape, which will be passed to the next stage,
syntax analysis.

Demo Project Preprocessing Example

The gcc compiler provides the mode in which only the preprocessing stage is performed on the input source files:
gce -i <input file> -o <output preprocessed file>.i

Unless specified otherwise, the output of the preprocessor is the file that has the same name as the input file and
whose file extension is .i. The result of running the preprocessor on the file function. c looks like that in Listing 2-4.

Listing 2-4. function.i

1 "function.c"
#1"

#1"

1 "function.h" 1

11 "function.h"
float add and multiply(float x, float y);
2 "function.c" 2

int nCompletionStatus = 0;

float add(float x, float y)

{
float z = x + y;
return z;
}
float add and multiply(float x, float y)
{
float z = add(x,y);
z *= MULTIPLIER;
return z;
}

13

CHAPTER 2 * SIMPLE PROGRAM LIFETIME STAGES

More compact and more meaningful preprocessor output may be obtained if few extra flags are passed to the
gcc, like

gcc -E -P -1 <input file> -o <output preprocessed file>.i
which results in the preprocessed file seen in Listing 2-5.

Listing 2-5. function.i (Trimmed Down Version)

float add_and multiply(float x, float y);
int nCompletionStatus = 0;

float add(float x, float y)

{
float z = x + y;
return z;
}
float add and multiply(float x, float y)
{
float z = add(x,y);
z *= 3.0;
return z;
}

Obviously, the preprocessor replaced the symbol MULTIPLIER, whose actual value, based on the fact that the
USE_FIRST_OPTION variable was defined, ended up being 3.0.

Linguistic Analysis

During this stage, the compiler first converts the C/C++ code into a form more suitable for processing (eliminating
comments and unnecessary white spaces, extracting tokens from the text, etc.). Such an optimized and compacted
form of source code is lexically analyzed, with the intention of checking whether the program satisfies the syntax
rules of the programming language in which it was written. If deviations from the syntax rules are detected, errors or
warnings are reported. The errors are sufficient cause for the compilation to be terminated, whereas warnings may or
may not be sufficient, depending on the user’s settings.

More precise insight into this stage of the compilation process reveals three distinct stages:

¢ Lexical analysis, which breaks the source code into non-divisible tokens. The next stage,

e Parsing/syntax analysis concatenates the extracted tokens into the chains of tokens,
and verifies that their ordering makes sense from the standpoint of programming language
rules. Finally,

e Semantic analysis is run with the intent to discover whether the syntactically correct
statements actually make any sense. For example, a statement that adds two integers and
assigns the result to an object will pass syntax rules, but may not pass semantic check (unless
the object has overridden assignment operator).

During the linguistic analysis stage, the compiler probably more deserves to be called “complainer,” as it tends to
more complain about typos or other errors it encounters than to actually compile the code.

14

CHAPTER 2 © SIMPLE PROGRAM LIFETIME STAGES

Assembling

The compiler reaches this stage only after the source code is verified to contain no syntax errors. In this stage, the
compiler tries to convert the standard language constructs into the constructs specific to the actual CPU instruction
set. Different CPUs feature different functionality treats, and in general different sets of available instructions,
registers, interrupts, which explains the wide variety of compilers for an even wider variety of processors.

Demo Project Assembling Example
The gcc compiler provides the mode of operation in which the input files’ source code is converted into the ASCII text
file containing the lines of assembler instructions specific to the chip and/or the operating system.

$ gcc =S <input file> -o <output assembler file>.s

Unless specified otherwise, the output of the preprocessor is the file that has the same name as the input file and
whose file extension is .s.

The generated file is not suitable for execution; it is merely a text file carrying the human-readable mnemonics
of assembler instructions, which can be used by the developer to get a better insight into the details of the inner
workings of the compilation process.

In the particular case of the X86 processor architecture, the assembler code may conform to one of the two
supported instruction printing formats,

e AT&T format
e Intel format

the choice of which may be specified by passing an extra command-line argument to the gcc assembler. The choice of
format is mostly the matter of the developer’s personal taste.

AT&T Assembly Format Example

When the file function.c is assembled into the AT&T format by running the following command
$ gcc -S -masm=att function.c -o function.s
it creates the output assembler file, which looks the code shown in Listing 2-6.

Listing 2-6. function.s (AT&T Assembler Format)

.file "function.c"

.globl nCompletionStatus

.bss

.align 4

.type nCompletionStatus, @object

.size nCompletionStatus, 4
nCompletionStatus:

.zero 4

.text

.globl add

.type add, @function

15

CHAPTER 2 * SIMPLE PROGRAM LIFETIME STAGES

add:

.LFBO:
.cfi_startproc
pushl %ebp
.cfi_def _cfa_offset 8
.cfi_offset 5, -8
movl %esp, %ebp
.cfi_def cfa_register 5
subl $20, %esp
flds 8(%ebp)
fadds 12(%ebp)
fstps -4(%ebp)
movl -4(%ebp), %eax
mov1l %eax, -20(%ebp)
flds -20(%ebp)
leave
.cfi_restore 5
.cfi_def cfa 4, 4
ret
.cfi_endproc

.LFEO:

.size add, .-add

.globl add_and_multiply

.type add_and_multiply, @function
add_and_multiply:
.LFB1:

.cfi_startproc

pushl %ebp

.cfi_def cfa_offset 8

.cfi_offset 5, -8

movl %esp, %ebp
.cfi_def cfa_register 5
subl $28, %esp

movl 12(%ebp), %eax
movl %eax, 4(%esp)
mov1l 8(%ebp), %eax
mov1l %eax, (%esp)
call add

fstps -4(%ebp)

flds -4(%ebp)

flds .LC1

fmulp %st, %st(1)
fstps -4(%ebp)

mov1l -4(%ebp), %eax
movl %eax, -20(%ebp)
flds -20(%ebp)
leave

.cfi_restore 5
.cfi def cfa 4, 4
ret

.cfi_endproc

16

CHAPTER 2 © SIMPLE PROGRAM LIFETIME STAGES

.LFE1:
.size add_and_multiply, .-add_and _multiply
.section .rodata
.align 4

.LC1:

.long 1077936128
.ident "GCC: (Ubuntu/Linaro 4.6.3-1ubuntus5) 4.6.3"
.section .note.GNU-stack,"",@progbits

Intel Assembly Format Example

The same file (function.c) may be assembled into the Intel assembler format by running the following command,
$ gcc -S -masm=intel function.c -o function.s
which results with the assembler file shown in Listing 2-7.

Listing 2-7. function.s (Intel Assembler Format)

.file "function.c"
.intel_syntax noprefix
.globl nCompletionStatus

.bss
.align 4
.type nCompletionStatus, @object
.size nCompletionStatus, 4
nCompletionStatus:
.zero 4
.text
.globl add
.type add, @function
add:
.LFBO:
.cfi_startproc
push ebp

.cfi_def _cfa_offset 8
.cfi_offset 5, -8

mov ebp, esp
.cfi_def cfa register 5

sub esp, 20

1d DWORD PTR [ebp+8]

fadd DWORD PTR [ebp+12]

fstp DWORD PTR [ebp-4]

mov eax, DWORD PTR [ebp-4]
mov DWORD PTR [ebp-20], eax
f1d DWORD PTR [ebp-20]
leave

.cfi_restore 5
.cfi_def cfa 4, 4
ret

.cfi_endproc

17

CHAPTER 2 * SIMPLE PROGRAM LIFETIME STAGES

.LFEO:

.size add, .-add

.globl add_and_multiply

.type add_and_multiply, @function
add_and_multiply:
.LFB1:

.cfi_startproc

push ebp

.cfi_def cfa offset 8

.cfi_offset 5, -8

mov ebp, esp

.cfi_def _cfa_register 5

sub esp, 28

mov eax, DWORD PTR [ebp+12]
mov DWORD PTR [esp+4], eax
mov eax, DWORD PTR [ebp+8]
mov DWORD PTR [esp], eax
call add

fstp DWORD PTR [ebp-4]

fld DWORD PTR [ebp-4]

fld DWORD PTR .LC1

fmulp st(1), st

fstp DWORD PTR [ebp-4]

mov eax, DWORD PTR [ebp-4]
mov DWORD PTR [ebp-20], eax
f1d DWORD PTR [ebp-20]
leave

.cfi_restore 5
.cfi_def cfa 4, 4

ret
.cfi_endproc
.LFE1:
.size add_and_multiply, .-add_and_multiply
.section .rodata
.align 4
.LC1:

.long 1077936128
.ident "GCC: (Ubuntu/Linaro 4.6.3-1ubuntus5) 4.6.3"
.section .note.GNU-stack,"",@progbits

Optimization

Once the first assembler version corresponding to the original source code is created, the optimization effort starts, in
which usage of the registers is minimized. Additionally, the analysis may indicate that certain parts of the code do not
in fact need to be executed, and such parts of the code are eliminated.

18

CHAPTER 2 © SIMPLE PROGRAM LIFETIME STAGES

Code Emission

Finally, the moment has come to create the compilation output: object files, one for each translation unit. The assembly
instructions (written in human-readable ASCII code) are at this stage converted into the binary values of the corresponding
machine instructions (opcodes) and written to the specific locations in the object file(s).

The object file is still not ready to be served as the meal to the hungry processor. The reasons why are the
essential topic of this whole book. The interesting topic at this moment is the analysis of an object file.

Being a binary file makes the object file substantially different than the outputs of preprocessing and assembling
procedures, both of which are ASCII files, inherently readable by humans. The differences become the most obvious
when we, the humans, try to take a closer look at the contents.

Other than obvious choice of using the hex editor (not very helpful unless you write compilers for living), a
specific procedure called disassembling is taken in order to get a detailed insight into the contents of an object file.

On the overall path from the ASCII files toward the binary files suitable for execution on the concrete machine,
the disassembling may be viewed as a little U-turn detour in which the almost-ready binary file is converted into the
ASCII file to be served to the curious eyes of the software developer. Fortunately, this little detour serves only the
purpose of supplying the developer with better orientation, and is normally not performed without a real cause.

Demo Project Compiling Example

The gcc compiler may be set to perform the complete compilation (preprocessing and assembling and compiling), a
procedure that generates the binary object file (standard extension .0) whose structure follows the ELF format guidelines.
In addition to usual overhead (header, tables, etc.), it contains all the pertinent sections (.text, .code, .bss, etc.). In order to
specify the compilation only (no linking as of yet), the following command line may be used:

$ gcc -c <input file> -o <output file>.o

Unless specified otherwise, the output of the preprocessor is the file that has the same name as the input file and
whose file extension is .o.

The content of the generated object file is not suitable for viewing in a text editor. The hex editor/viewer is a bit
more suitable, as it will not be confused by the nonprintable characters and absences of newline characters. Figure 2-2
shows the binary contents of the object file function.o generated by compiling the file function. c of this demo project.

19

CHAPTER 2 * SIMPLE PROGRAM LIFETIME STAGES

00000000 7f 45 4c 46 01 01 01 GG 6O 00 00 00 60 00 00 00 |
00000010 01 00 03 00 01 00 00 GO 0O 00 00 00 00 00 00 00 |
00000020 6¢c 01 0O 00 00 0O 0O 0@ 34 00 0O GO 00 00 28 00 |
00000030 0d 00 0a 00 55 89 e5 83 ec 14 d9 45 08 d8 45 6c |..
00000040 d9 5d fc 8b 45 fc 89 45 ec d9 45 ec c9 c3 55 89 |.
00000050 e5 83 ec 1c 8b 45 Oc 89 44 24 04 8b 45 08 89 04 |..... E..DS..E...
00000060 24 e8 fc ff ff ff d9 5d fc d9 45 fc d9 65 @0 00 |S......]..E....
00000070 00 00 de c9 d9 5d fc 8b 45 fc 89 45 ec d9 45 ec |.....]..E..E..E
00000080 c9 c3 00 00 00 00 40 40 00 47 43 43 33 20 28 55 |...... @@.ccc: (
00000090 62 75 6e 74 75 2f 4c 69 6e 61 72 6f 20 34 2e 36 |buntu/Linaro 4.
000000a@ 2e 33 2d 31 75 62 75 6e 74 75 35 29 20 34 2e 36

I
000000bO 2e 33 00 00 14 00 0O OO 0O 00 60 00 01 7a 52 00 |.3........... ZR.
000000c® 01 7c 08 01 1b 6c 04 04 88 01 00 00 1c 00 00 00 |.|...uveueunnnnn |
000000d0 1c 00 OO 00 00 OO 0O OO 1a 00 60 0O 00 41 Ge 08 |............. A..]|
000000e® 85 02 42 0d 05 56 c5 Oc 04 04 00 00 1c 00 00 00 |..B..V.......... |
000000f@ 3c 00 00 00 1a 00 0O OO 34 00 00 00 00 41 Oe 08 [<....... 4,....A..]|
00000100 85 02 42 6d 05 70 c5 Oc 04 04 00 00 60 2e 73 79 |..B..p........ sy|

00000110 6d 74 61 62 00 2e 73 74 72 74 61 62 00 2e 73 68 |mtab..strtab..sh]|
00000120 73 74 72 74 61 62 00 2e 72 65 6C 2e 74 65 78 74 |strtab..rel.text|
00000130 00 2e 64 61 74 61 00 2e 62 73 73 00 2e 72 6f 64 |..data..bss..rod]|
00000140 61 74 61 00 2e 63 6f 6d 6d 65 6e 74 00 2e 6e 6f |ata..comment..no|
00000150 74 65 2e 47 4e 55 2d 73 74 61 63 6b 00 2e 72 65 |te.GNU-stack..re]
00000160 6¢c 2e 65 68 5f 66 72 61 6d 65 00 00 00 00 00 00 |l.eh_frame...... |
00000170 00 00 OO 00 00 OO GO OO 0O 00 00 0O 00 00 00 00 |.........cocn... |

*
00000190 00 00 00 00 1f 00 00 GO ©O1 00 00 00 06 00 00 00 |......civvvuunns

00000120 0O 00 00 00 34 00 00 GO 4e 00 00 00 0O 00 00 00 [....4...N....... |
000001b0 00 00 00 00 04 00 0O OO0 0O 00 00 00 1b 00 00 00 |......... p—
000001cO 09 00 00 00 00 OO GO OO 0O 00 0O 0O 68 04 00 00 |............h...
000001d0 10 00 00 60 Ob 0O 0O GO ©61 00 6O 00 64 60 00 00 |................ |
000001e®@ 08 00 00 00 25 00 0O GO ©1 00 00 00 03 00 00 00 |....%.......o...

000001f0 0O 00 0O 00 84 0O 0O GO OO 0O 00 00 00 00 00 00 |......cvvvvunnns
00000200 00 00 00 00 04 0O 0O OO0 06O 00 00 00 2b 00 00 00 |

00000210 08 00 00 00 03 00 00 GO 0O 00 00 00 84 00 00 00 |

00000220 04 00 00 00 00 OO 0O OO 0O 0O 00 00 04 00 00 00 |......ovvveuunnn]
00000230 00 00 00 00 30 00 00 0O 0O1 00 00 00 02 00 00 00 |..

00000240 00 00 00 00 84 00 0O OO 04 00 00 00 00 00 00 00 |.....ecveuvennns |
00000250 0O 00 0O 00 04 OO OO GO OGO GO 6O 0O 38 00 00 00 |............ 8...]|
00000260 ©1 00 00 00 30 00 OO GO OO0 0O 00 00 88 00 00 00 |....0...........]|
00000270 2b 00 00 00 00 00 0O OO 0O 00 00 00 01 00 00 00 |+.......vveuunnn]
00000280 01 00 0O 00 41 00 0O OO 01 GO 00 00 00 00 00 00 |....A......ccu.n |
00000290 00 00 00 00 b3 00 00 OO0 00 00 00 00 00 00 00 00 |.....eevewruennn |
00000230 00 00 0O 00 01 OO GO GO ©0O 0O 00 00 55 00 00 00 |............ U...|
000002b0 01 00 00 00 02 00 0O PO 0O 00 00 00 b4 00 00 00 |.........envnnnn |
000002cO 58 00 0O 00 0O OO 0O GO OO0 0O 00 00 04 00 00 00 [X.....oivevvunnn |
000002d0 00 00 6O 00 51 OO 0O GO 069 00 6O 0O 00 60 00 00 |....Q........... |
000002e® 00 00 0O 00 78 04 00 0O 10 00 00 00 Ob 00 00 00 |....X...eeeuon..|

Figure 2-2. Binary contents of an object file

Obviously, merely taking a look at the hex values of the object file does not tell us a whole lot. The disassembling
procedure has the potential to tell us far more.

The Linux tool called objdump (part of popular binutils package) specializes in disassembling the binary files,
among a whole lot of other things. In addition to converting the sequence of binary machine instructions specific to a
given platform, it also specifies the addresses at which the instructions reside.

20

CHAPTER 2

SIMPLE PROGRAM LIFETIME STAGES

It should not be a huge surprise that it supports both AT&T (default) as well as Intel flavors of printing the

assembler code.

By running the simple form of objdump command,

$ objdump -D <input file>.o

you get the following contents printed on the terminal screen:

disassembled output of function.o (AT&T assembler format)

function.o:

Disassembly of section .text:

00000000 <add>:

0: 55

1: 89 e5

3: 83 ec 14
6: d9 45 08
9: d8 45 Oc
c: d9 5d fc
f: 8b 45 fc
12: 89 45 ec
15: d9 45 ec
18: 9

19: c3

0000001a <add_and_multiply>:
la: 55

1b: 89 e5

1d: 83 ec 1c

20: 8b 45 oOc

23: 89 44 24 04
27: 8b 45 08

2a: 89 04 24

2d: e8 fc ff ff ff
32: d9 5d fc

35: d9 45 fc

38: d9 05 00 00 00 00
3e: de 9

40: d9 5d fc

43: 8b 45 fc

46: 89 45 ec

49: d9 45 ec

4c: 9

4d: c3

file format elf32-i386

push
mov
sub
flds
fadds
fstps
mov
mov
flds
leave
ret

push
mov
sub
mov
mov
mov
mov
call
fstps
flds
flds
fmulp
fstps
mov
mov
flds
leave
ret

%ebp

%esp,%ebp
$0x14,%esp
0x8(%ebp)

oxc (%ebp)
-0x4(%ebp)
-0x4(%ebp) ,%eax
%eax, -0x14(%ebp)
-0x14(%ebp)

%ebp

%esp,%ebp
$ox1c,%esp

oxc (%ebp) , %heax
%eax,0x4(%esp)
0x8(%ebp) , heax
%eax, (%esp)

2e <add_and_multiply+0x14>
-0x4(%ebp)
-0x4(%ebp)

0x0

%st,%st(1)
-0x4(%ebp)
-0x4(%ebp) ,%eax
%eax, -0x14(%ebp)
-0x14(%ebp)

21

CHAPTER 2 * SIMPLE PROGRAM LIFETIME STAGES

Disassembly of section .bss:

00000000 <nCompletionStatus>:

0: 00 00

Disassembly of section .rodata:

00000000 <.rodata>:

0: 00 00
2: 40
3: 40

add

add
inc
inc

Disassembly of section .comment:

00000000 <.comment>:

0: 00 47 43

3: 43

4 3a 20

6: 28 55 62

9: 75 6e

b: 74 75

d: 2f

e 4c

f: 69 6e 61 72 6f 20 34
16: 2e 36 2e 33 2d 31 75
1d: 62 75

1f: 6e

20: 74 75

22: 35 29 20 34 2e
27: 36 2e 33 00

add
inc
cmp
sub
jne
je
das
dec
imul

%al, (%eax)

%al, (%eax)
heax
%eax

%al,ox43(%edi)

%ebx

(%eax),%ah

%d1,0x62 (%ebp)

79 <add_and_multiply+ox5f>
82 <add_and_multiply+0x68>

%esp
$0x34206172,0x61(%esi),%ebp

CS SS XOTr %CS:%Ss:0x75627531,%ebp

outsb
je
Xor
SS XOr

Disassembly of section .eh_frame:

00000000 <.eh_frame>:

0: 14 00
2: 00 00
4: 00 00
6: 00 00
8: 01 7a 52
b: 00 01
d: 7c 08
f: 01 1b
11: Oc 04
13: 04 88
15: 01 00
17: 00 1c 00
la: 00 00
1c: 1c 00
le: 00 00
20: 00 00

22

adc
add
add
add
add
add
jl

add
or

add
add
add
add
sbb
add
add

%ds: (%esi), (%dx)

97 <add_and_multiply+ox7d>
$0x2e342029, %eax

%cs:%ss: (%eax),%eax

$0x0,%al

%al, (%eax)

%al, (%eax)

%al, (%eax)
%edi,0x52 (%edx)
%al, (%ecx)

17 <.eh_frame+0x17>
%ebx, (%ebx)
$ox4,%al
$0x88,%al

%eax, (%eax)

%bl, (%eax,%eax,1)
%al, (%eax)
$0x0,%al

%al, (%eax)

%al, (%eax)

CHAPTER 2 © SIMPLE PROGRAM LIFETIME STAGES

22: 00 00 add %al, (%eax)

24: 1a 00 sbb (%eax),%al

26: 00 00 add %al, (%eax)

28: 00 41 Oe add %al,oxe(%ecx)

2b: 08 85 02 42 0d 05 or %al,0x50d4202 (%ebp)
31: 56 push %esi

32: c5 0c 04 1ds (%esp,%eax,1),%ecx
35: 04 00 add $0x0,%al

37: 00 1c 00 add %bl, (%eax,%eax,1)
3a: 00 00 add %al, (%eax)

3c: 3c 00 cmp $0x0,%al

3e: 00 00 add %al, (%eax)

40: 1a 00 sbb (%eax),%al

42: 00 00 add %al, (%eax)

44: 34 00 Xor $0x0,%al

46: 00 00 add %al, (%eax)

48: 00 41 Oe add %al,oxe(%ecx)

4b: 08 85 02 42 0d 05 or %al,0x50d4202 (%ebp)
51: 70 c5 jo 18 <.eh_frame+0x18>
53: 0c 04 or $ox4,%al

55: 04 00 add $0x0,%al

Similarly, by specifying the Intel flavor,
$ objdump -D -M intel <input file>.o
you get the following contents printed on the terminal screen:

disassembled output of function.o (Intel assembler format)
function.o: file format elf32-i386

Disassembly of section .text:

00000000 <adddgt:

0: 55 push ebp

1: 89 e5 mov ebp,esp

3: 83 ec 14 sub esp,0x14

6: d9 45 08 fld DWORD PTR [ebp+0x8]

9: d8 45 Oc fadd DWORD PTR [ebp+0xc]

c: d9 5d fc fstp DWORD PTR [ebp-0x4]

f: 8b 45 fc mov eax,DWORD PTR [ebp-0x4]
12: 89 45 ec mov DWORD PTR [ebp-0x14],eax
15: d9 45 ec fld DWORD PTR [ebp-0x14]
18: 9 leave
19: a3 ret

23

CHAPTER 2 * SIMPLE PROGRAM LIFETIME STAGES

0000001a <add_and_multiply>:

la: 55 push
1b: 89 e5 mov
1d: 83 ec 1c sub
20: 8b 45 oc mov
23: 89 44 24 04 mov
27: 8b 45 08 mov
2a: 89 04 24 mov
2d: e8 fc ff ff ff call
32: d9 5d fc fstp
35: d9 45 fc fld
38: d9 05 00 00 00 00 fld
3e: de c9 fmulp
40: d9 5d fc fstp
43: 8b 45 fc mov
46: 89 45 ec mov
49: d9 45 ec f1d
4c: 9 leave
4d: c3 ret
Disassembly of section .bss:
00000000 <nCompletionStatus>:

0: 00 00 add
Disassembly of section .rodata:
00000000 <.rodata>:

0: 00 00 add

2: 40 inc

3: 40 inc
Disassembly of section .comment:
00000000 <.comment>:

0: 00 47 43 add

3: 43 inc

4: 3a 20 cmp

6: 28 55 62 sub

9: 75 6e jne

b: 74 75 je

d: 2f das

e: 4c dec

f: 69 6e 61 72 6f 20 34 imul

16: 2e 36 2e 33 2d 31 75

1d: 62 75

1f: oe outs
20: 74 75 je
22: 35 29 20 34 2e X0r
27: 36 2e 33 00

ebp

ebp,esp

esp,0xic

eax,DWORD PTR [ebp+0xc]
DWORD PTR [esp+0x4],eax
eax,DWORD PTR [ebp+0x8]
DWORD PTR [esp],eax

2e <add_and_multiply+0x14>
DWORD PTR [ebp-0x4]
DWORD PTR [ebp-0x4]
DWORD PTR ds:0x0
st(1),st

DWORD PTR [ebp-0x4]
eax,DWORD PTR [ebp-0x4]
DWORD PTR [ebp-0x14],eax
DWORD PTR [ebp-0x14]

BYTE PTR [eax],al

BYTE PTR [eax],al
eax
eax

BYTE PTR [edi+0x43],al

ebx

ah,BYTE PTR [eax]

BYTE PTR [ebp+0x62],d1

79 <add_and_multiply+0x5f>
82 <add_and_multiply+0x68>

esp
ebp,DWORD PTR [esi+0x61],0x3420672

cs ss xor ebp,DWORD PTR cs:ss:0x75627531

dx,BYTE PTR ds:[esi]
97 <add_and_multiply+ox7d>
eax, 0x2e342029

ss xor eax,DWORD PTR cs:ss:[eax]

Disassembly of section .eh_frame:

00000000 <.eh frame>:

0: 14 00 adc
2: 00 00 add
4: 00 00 add
6: 00 00 add
8: 01 7a 52 add
b: 00 01 add
d: 7c 08 jl
f: 01 1b add
11: Oc 04 or
13: 04 88 add
15: 01 00 add
17: 00 1c 00 add
1la: 00 00 add
1c: 1c 00 sbb
le: 00 00 add
20: 00 00 add
22: 00 00 add
24: 1a 00 sbb
26: 00 00 add
28: 00 41 Oe add
2b: 08 85 02 42 0d 05 or
31: 56 push
32: c5 Oc 04 lds
35: 04 00 add
37: 00 1c 00 add
3a: 00 00 add
3c: 3c 00 cmp
3e: 00 00 add
40: 1a 00 sbb
42: 00 00 add
44: 34 00 xor
46: 00 00 add
48: 00 41 Oe add
4b: 08 85 02 42 0d 05 or
51: 70 c5 jo
53: 0Oc 04 or
55: 04 00 add

CHAPTER 2

al,oxo

BYTE PTR [eax],al

BYTE PTR [eax],al

BYTE PTR [eax],al

DWORD PTR [edx+0x52],edi
BYTE PTR [ecx],al

17 <.eh_frame+0x17>
DWORD PTR [ebx],ebx
al,ox4

al,ox88

DWORD PTR [eax],eax

BYTE PTR [eax+eax*1],bl
BYTE PTR [eax],al

al,oxo

BYTE PTR [eax],al

BYTE PTR [eax],al

BYTE PTR [eax],al
al,BYTE PTR [eax]

BYTE PTR [eax],al

BYTE PTR [ecx+0xe],al
BYTE PTR [ebp+0x50d4202],al
esi

ecx,FWORD PTR [esp+eax*1]
al,oxo

BYTE PTR [eax+eax*1],bl
BYTE PTR [eax],al

al,oxo

BYTE PTR [eax],al
al,BYTE PTR [eax]

BYTE PTR [eax],al

al,oxo

BYTE PTR [eax],al

BYTE PTR [ecx+Oxe],al
BYTE PTR [ebp+0x50d4202],al
18 <.eh_frame+0x18>
al,ox4

al,oxo

SIMPLE PROGRAM LIFETIME STAGES

25

CHAPTER 2 * SIMPLE PROGRAM LIFETIME STAGES

Object File Properties

The output of the compilation process is one or more binary object files, whose structure is the natural next topic of
interest. As you will see shortly, the structure of object files contains many details of importance on the path of truly
understanding the broader picture.

In a rough sketch,

¢ Anobjectfile is the result of translating its original corresponding source file. The result of
compilation is the collection of as many object files as there are source files in the project.

After the compiling completes, the object file keeps representing its original source file in
subsequent stages of the program building process.

e The basic ingredients of an object file are the symbols (references to the memory addresses in
program or data memory) as well as the sections.

Among the sections most frequently found in the object files are the code (.text),
initialized data (.data), uninitialized data (.bss), and some of the more specialized sections
(debugging information, etc.).

e The ultimate intention behind the idea of building the program is that the sections obtained
by compiling individual source files be combined (tiled) together into the single binary
executable file.

Such binary file would contain the sections of the same type (.text, .data, .bss, ...) obtained
by tiling together the sections from the individual files. Figuratively speaking, an object file
can be viewed as a simple tile waiting to find its place in the giant mosaic of the process
memory map.

e The inner structure of the object file does not, however, suggest where the individual sections
will ultimately reside in the program memory map. For that reason, the address ranges of each
section in each of the object files is tentatively set to start from a zero value.

The actual address range at which a section from an object file will ultimately reside in the
program map will be determined in the subsequent stages (linking) of program building process.

e Inthe process of tiling object files’ sections into the resultant program memory map, the only
truly important parameter is the length of its sections, or to say it more precisely, its address
range.

e The object file carries no sections that would contribute to the stack and/or heap. The
contents of these two sections of the memory map are completely determined at runtime, and
other than the default byte length, require no program-specific initial settings.

e The object file’s contribution to the program’s .bss (uninitialized data) section is very
rudimentary; the .bss section is described merely by its byte length. This meager information
is just what is needed for the loader to establish the .bss section as a part of the memory in
which some data will be stored.

In general, the information is stored in the object files according to a certain set of rules epitomized in the form of
binary format specification, whose details vary across the different platforms (Windows vs. Linux, 32-bit vs. 64-bit, x86
vs. ARM processor family).

Typically, the binary format specifications are designed to support the C/C++ language constructs and the
associated implementation problems. Very frequently, the binary format specification covers a variety of binary file
modes such as executables, static libraries, and dynamic libraries.

On Linux, the Executable and Linkable Format (ELF) has gained the prevalence. On Windows, the binaries
typically conform to the PE/COFF format specification.

26

CHAPTER 2 © SIMPLE PROGRAM LIFETIME STAGES

Compilation Process Limitations

Step by step, the pieces of the gigantic puzzle of program building process are starting to fall in place, and the broad
and clear picture of the whole story slowly emerges. So far, you've learned that the compilation process translates
the ASCII source files into the corresponding collection of binary object files. Each of the object files contains
sections, the destiny of each is to ultimately become a part of gigantic puzzle of the program’s memory map, as
illustrated in Figure 2-3.

Program memory map

;e |[fileto

e | file2.0

file N.o

Figure 2-3. Tiling the individual sections into the final program memory map

The task that remains is to tile the individual sections stored across individual object files together into the body
of program memory map. As mentioned in the previous sections, that task needs to be left to another stage of the
program building process called linking.

The question that a careful observer can’t help but asking (before going into the details of linking procedure) is
exactly why do we need a whole new stage of the building process, or more precisely, exactly why can’t the compilation
process described thus far complete the tiling part of the task?

There are a few very solid reasons for splitting the build procedure, and the rest of this section will try to clarify
the circumstances leading to such decision.

27

CHAPTER 2 * SIMPLE PROGRAM LIFETIME STAGES

In short, the answer can be provided in a few simple statements. First, combining the sections together
(especially the code sections) is not always simple. This factor definitely plays certain role, but is not sufficient; there
are many programming languages whose program building process can be completed in one step (in other words,
they do not require dividing the procedure into the two stages).

Second, the code reuse principle applied to the process of program building (and the ability to combine together
the binary parts coming from various projects) definitely affirmed the decision to implement the C/C++ building as a
two-step (compiling and linking) procedure.

What Makes Section Combining so Complicated?

For the most part, the translation of source code into binary object files is a fairly simple process. The lines of code are
translated into processor-specific machine code instructions; the space for initialized variables is reserved and initial
values are written to it; the space for uninitialized variables is reserved and filled out with zeros, etc.

However, there is a part of the whole story which is bound to cause some problems: even though the source code
is grouped into the dedicated source files, being part of the same program implies that certain mutual connections
must exist. Indeed, the connections between the distinct parts of the code are typically established through either the
following two options:

e Function calls between functionally separate bodies of code:

For example, a function in the GUI-related source file of a chat application may call a function
in the TCP/IP networking source file, which in turn may call a function located in the
encryption source file.

e External variables:

In the domain of the C programming language (substantially less in the C++ domain), it was a
usual practice to reserve globally visible variables to maintain the state of interest for various
parts of code. A variable intended for broader use is typically declared in one source file as
global variable, and referenced from all other source files as extern variable.

A typical example is the errno variable used in standard C libraries to keep the value of the last
encountered error.

In order to access either of the two (which are commonly referred to as symbols), their addresses (more precisely,
the function’s address in the program memory and/or the global variable’s address in data memory) must be known.

However, the actual address cannot be known before the individual sections are incorporated into the
corresponding program section (i.e., before the section tiling is completed!!!). Until then, a meaningful connection
between a function and its caller and/or access to the external variable is impossible to establish, which are both
suitably reported as unresolved references. Please notice that this problem does not happen when the function
or global variable is referenced from the same source file in which it was defined. In this particular case, both the
function/variable and their caller/user end up being the part of the same section, and their positions relative to each
other are known before the “grand puzzle completion.” In such cases, as soon as the tiling of the sections is completed,
the relative memory addresses become concrete and usable.

As mentioned earlier in this section, solving this kind of problem still does not mandate that a build procedure
must be divided into two distinct stages. As a matter of fact, many different languages successfully implement a
one-pass build procedure. However, the concept of reusing (binary reusing in this case) applied to the realm of
building the program (and the concept of libraries) ultimately confirms the decision to split the program building
into the two stages (compiling and linking).

28

CHAPTER 2 © SIMPLE PROGRAM LIFETIME STAGES

Linking
The second stage of the program building process is linking. The input to the linking process is the collection of
object files created by the previously completed compiling stage. Each object file can be viewed as binary storage
of individual source file contributions to the program memory map sections of all kinds (code, initialized data,
uninitialized data, debugging information, etc.). The ultimate task of the linker is to form the resultant program
memory map section out of individual contributions and to resolve all the references. As a reminder, the concept of
virtual memory simplified the task of linker inasmuch as allowing it to assume that the program memory map that the
linker needs to populate is a zero-based address range of identical size for each and every program, regardless of what
address range the process will be given by the operating system at runtime.

For the sake of simplicity, I will cover in this example the simplest possible case, in which the contributions
to the program memory map sections come solely from the files belonging to the same project. In reality, due to
advancement of binary reuse concept, this may not be true.

Linking Stages

The linking process happens through a sequence of stages (relocation, reference resolving), which will be discussed in
detail next.

Relocation

The first stage of a linking procedure is nothing else than tiling, a process in which sections of various kinds contained
in individual object files are combined together to create the program memory map sections (see Figure 2-4). In order
to complete this task, the previously neutral, zero-based address ranges of contributing sections get translated into the
more concrete address ranges of resultant program memory map.

Code
0x08003210} ' { 0x00003210 —
- 0x08000000 0x00000000 -

Program memory map

Object file

Figure 2-4. Relocation, the first phase of the linking stage

The wording “more concrete” is used to emphasize the fact that the resultant program image created by the
linker is still neutral by itself. Remember, the mechanism of virtual addressing makes it possible that each and every
program has the same, identical, simple view of the program address space (which resides between 0 and 2V), whereas
the real physical address at which the program executes gets determined at runtime by the operating system, invisible
to the program and programmer.

Once the relocation stage completes, most (but not all!) of the program memory map has been created.

29

CHAPTER 2 * SIMPLE PROGRAM LIFETIME STAGES

Resolving References

Now comes the hard part. Taking sections, linearly translating their address ranges into the program memory map
address ranges was fairly easy task. A much harder task is to establish the required connections between the various
parts of the code, thus making the program homogenous.

Let’s assume (rightfully so, given the simplicity of this demo program) that all the previous build stages (complete
compilation as well as section relocation) have completed successfully. Now is the moment to point out exactly which
kinds of problems are left for the last linking stage to resolve.

As mentioned earlier, the root cause of linking problems is fairly simple: pieces of code originated from different
translation units (i.e., source files) and are trying to reference each other, but cannot possibly know where in memory
these items will reside up until the object files are tiled into the body of program memory map. The components of
the code that cause the most problems are the ones tightly bound to the address in either program memory (function
entry points) or in data memory (global/static/extern) variables.

In this particular code example, you have the following situation:

e The function add_and_multiply calls the function add, which resides in the same source file
(i.e., the same translation unit in the same object file). In this case, the address in the program
memory of function add() is to some extent a known quantity and can be expressed by its
relative offset of the code section of the object file function.o.

e Now function main calls function add_and_multiply and also references the extern variable
nCompletionStatus and has huge problems figuring out the actual program memory address
at which they reside. In fact, it only may assume that both of these symbols will at some point
in the future reside somewhere in the process memory map. But, until the memory map is
formed, two items cannot be considered as nothing else than unresolved references.

The situation is graphically described in Figure 2-5.

30

CHAPTER 2 © SIMPLE PROGRAM LIFETIME STAGES

function.o

nCompletionStatus ‘
add —[]
[]' Locally

resolved
reference

—O

A add_and_multiply

main.o

Figure 2-5. The problem of unresolved references in its essential form

In order to solve these kinds of problems, a linking stage of resolving the references must happen. What linker
needs to do in this situation is to

¢ Examine the sections already tiled together in the program memory map.
e Find out which part of the code makes calls outside of its original section.

e TFigure out where exactly (at which address in the memory map) the referenced part of the
code resides.

e And finally, resolve the references by replacing dummy addresses in the machine instructions
with the actual addresses of the program memory map.

31

CHAPTER 2 * SIMPLE PROGRAM LIFETIME STAGES

Once the linker completes its magic, the situation may look like Figure 2-6.

Program memory map

nCompletionStatus
l]

=i add —

Locally
resolved
reference

—O

add_and_multiply

>

main

nCompletionStatus

C——

add_and_multiply()

=

Figure 2-6. Resolved references

Demo Project Linking Example

There are two ways to compile and link the complete demo project to create the executable file so that it’s ready for
running.

In the step-by-step approach, you will first invoke the compiler on both of the source files to produce the object
files. In the subsequent step, you will link both object files into the output executable.

$ gcc -c function.c main.c
$ gcc function.o main.o -o demoApp

32

CHAPTER 2

SIMPLE PROGRAM LIFETIME STAGES

In the all-at-once approach, the same operation may be completed by invoking the compiler and linker with just
one command.

$ gcc function.c main.c -o demoApp

For the purposes of this demo, let’s take the step-by-step approach, as it will generate the main.o object file,
which contains very important details that I want to demonstrate here.

The disassembling of the file main.o,

$ objdump -D -M intel main.o

reveals that it contains unresolved references.

disassembled output of main.o (Intel assembler format)
file format elf32-i386

main.o:

Disassembly of section .text:

00000000 <main>:

0: 55
1: 89
3: 83
6: 83
9: b8
e: 89
12: b8
17: 89
1b: 8b
1f: 89
23: 8b
27: 89
2a: e8
2f: d9
33: 7
3a: 00
3d: b8
42: 9
43: 3

e5
e4
ec
00
44
00
44
44
44
44
04
fc
5C
05
00
00

fo
20
00
24
00
24
24
24
24
24
f
24
00
00
00

80
14
a0
18
18
04
14

ff
1c
00

00

3f

40

£f
00 00 01

00

push
mov
and
sub
mov
mov
mov
mov
mov
mov
mov
mov
call
fstp
mov

mov
leave
ret

ebp

ebp,esp

esp,oxfffffffo

esp,0x20

eax, 0x31800000

DWORD PTR [esp+0x14],eax
eax, 0x40a00000

DWORD PTR [esp+0x18],eax
eax,DWORD PTR [esp+0x18]
DWORD PTR [esp+0x4],eax
eax,DWORD PTR [esp+0x14]
DWORD PTR [esp],eax

2b <main + ox2b»

DWORD PTR [esp+0xic]
DWORD PTR ds:0x0,0x1

eax, 0x0

Line 2a features a call instruction that jumps to itself (strange, isn’t it?) whereas line 33 features the access of the
variable residing at the address 0x0 (even more strange). Obviously, these two obviously strange values were inserted
by the linker purposefully.

33

CHAPTER 2 * SIMPLE PROGRAM LIFETIME STAGES

The disassembled output of the output executable, however, shows that not only the contents of the main.o
object file have been relocated to the address range starting at the address 0x08048404, but also these two troubled
spots have been resolved by the linker.

$ objdump -D -M intel demoApp

disassembled output of demoApp (Intel assembler format)
080483ce <add_and_multiply>:

80483ce: 55 push ebp
80483cf: 89 e5 mov ebp,esp
80483d1: 83 ec 1c sub esp,0xic
80483d4: 8b 45 oc mov eax,DWORD PTR [ebp+0xc]
80483d7: 89 44 24 04 mov DWORD PTR [esp+0x4],eax
80483db: 8b 45 08 mov eax,DWORD PTR [ebp+0x8]
80483de: 89 04 24 mov DWORD PTR [esp],eax
80483e1: e8 ce ff ff ff call 80483b4 <add>
80483e6: d9 5d fc fstp DWORD PTR [ebp-0x4]
80483e9: d9 45 fc fld DWORD PTR [ebp-0x4]
80483ec: d9 05 20 85 04 08 fld DWORD PTR ds:0x8048520
80483f2: de 9 fmulp st(1),st
80483f4: d9 5d fc fstp DWORD PTR [ebp-0x4]
80483f7: 8b 45 fc mov eax,DWORD PTR [ebp-0x4]
80483fa: 89 45 ec mov DWORD PTR [ebp-0x14],eax
80483fd: d9 45 ec fld DWORD PTR [ebp-0x14]
8048400: 9 leave
8048401: c3 ret
8048402: 90 nop
8048403: 90 nop

08048404 <main>:
8048404: 55 push ebp
8048405 89 e5 mov ebp,esp
8048407: 83 e4 fo and esp,oxfffffffo
804840a: 83 ec 20 sub esp,0x20
804840d: b8 00 00 80 3f mov eax, 0x31800000
8048412: 89 44 24 14 mov DWORD PTR [esp+0x14],eax
8048416: b8 00 00 a0 40 mov eax, 0x40a00000
804841b: 89 44 24 18 mov DWORD PTR [esp+0x18],eax
8048417: 8b 44 24 18 mov eax,DWORD PTR [esp+0x18]
8048423: 89 44 24 04 mov DWORD PTR [esp+0x4],eax
8048427: 8b 44 24 14 mov eax,DWORD PTR [esp+0x14]
804842b: 89 04 24 mov DWORD PTR [esp],eax
804842e: e8 9b ff ff ff call 80483ce <add_and_multiply>
8048433: d9 5c 24 1c fstp DWORD PTR [esp+0xic]
8048437: c7 05 18 a0 04 08 01 mov DWORD PTR ds:0x804a018,0x1
804843e: 00 00 00
8048441: b8 00 00 00 00 mov eax, 0x0
8048446: 9 leave t:

The line at the memory map address 0x8048437 references the variable residing at address 0x804a018. The only
open question now is what resides at that particular address?

34

CHAPTER 2 © SIMPLE PROGRAM LIFETIME STAGES

The versatile objdump tool may help you get the answer to that question (a decent part of subsequent chapters is
dedicated to this exceptionally useful tool).
By running the following command

$ objdump -x -j .bss demoApp

you can disassemble the .bss section carrying the uninitialized data, which reveals that your variable
nCompletionStatus resides exactly at the address 0x804a018, as shown in Figure 2-7.

milan@milan$ objdump -x -j .bss demoApp

o)
o

SYMBOL TABLE: (o]

08042010 1 d .bss 00000000 .bss

08043010 1 0 .bss 00000001 completed.6159

08042014 1 0 .bss 00000004 dtor_1idx.6161

08043018 g 0 .bss 00000004 nCompletionStatus

Figure 2-7. bss disassembled

Linker’s Viewpoint
“When you've got a hammer in your hand, everything looks like a nail”

—Handy Hammer Syndrome

But seriously, folks....

Now that you know the intricacies of the linking task, it helps to zoom out a little bit and try to summarize the
philosophy that guides the linker while running its usual tasks. As a matter of fact, the linker is a specific tool, which,
unlike its older brother the compiler, is not interested in the minute details of the written code. Instead, it views the
world as a set of object files that (much like puzzle pieces) are about to be combined together in a wider picture of
program memory map, as illustrated by Figure 2-8.

35

CHAPTER 2 * SIMPLE PROGRAM LIFETIME STAGES

Exported symbols Local symbols
(needed by other (needed by local
translation units) unit only)

(T 1 1 1
Code segment /-
i

Data segment I: ©)

(.data, .bss,...) =
5 o Symbols need
o g to be resolved; they
o o are located inside the
° o other translation units

P
Other segments... |:®

Figure 2-8. The linker’s view of the world

It does not take a whole lot of imagination to find out that Figure 2-8 has a lot of resemblance with the left part of
Figure 2-9, whereas the linker’s ultimate task could be represented by the right part of the same figure.

Figure 2-9. Linker’s view of the world as seen by humans

36

CHAPTER 2 © SIMPLE PROGRAM LIFETIME STAGES

Executable File Properties

The ultimate result of the linking procedure is the binary executable file, whose layout follows the rules of the
executable format suitable for the target platform. Regardless of the actual format differences, the executable file
typically contains the resultant sections (.text, .data, .bss, and many more narrowly specialized ones) created by
combining the contributions from individual object files. Most notably, the code (.text) section not only contains the
individual tiles from object files, but the linker modified it to make sure that all the references between the individual
tiles have been resolved, so that the function calls between different parts of code as well as variable accesses are
accurate and meaningful.

Among all the symbols contained in the executable file, a very unique place belongs to the main function, as from
the standpoint of C/C++ programs it is the function from which the entire program execution starts. However, this is
not the very first part of code that executes when the program starts.

An exceptionally important detail that needs to be pointed out is that the executable file is not entirely made of
code compiled from the project source files. As a matter of fact, a strategically important piece of code responsible
for starting the program execution is added at the linking stage to the program memory map. This object code, which
linker typically stores at the beginning of the program memory map, comes in two variants:

e crt0is the “plain vanilla” entry point, the first part of program code that gets executed under
the control of kernel.

e crtl is the more modern startup routine with support for tasks to be completed before the
main function gets executed and after the program terminates.

Having these details in mind, the overall structure of the program executable may be symbolically represented by
Figure 2-10.

Process-specific data 1
. structures
fa',ffri';tcf, er (e.g., page tables,
p task and mm structs, Kernel
kernel stack) erne
virtual
Physical memory memory
Identical for
each process
Kernel code and data
J
" User stack)
besp —»
v
Originated
: from program
Memory mapped region source code
for shared libraries
Process
brk — i I‘;;’;gfér
Run-time heap (via malloc) y
Uninitialized data (.bas)
Initialized data (.data)
0x08048000 (32) _,, Program text (.text) /
0x40000000 (64) 0 Startup routine (crtl) [

Figure 2-10. Overall structure of an executable file

37

CHAPTER 2 * SIMPLE PROGRAM LIFETIME STAGES

As you will see later in the chapter devoted to dynamic libraries and dynamic linking, this extra piece of code,
which gets provided by the operating system, makes almost all the difference between an executable and a dynamic
library; the latter does not have this particular part of the code.

More details of the sequence of steps happening when a program execution starts will be discussed in the
next chapter.

Variety of Section Types

Much like running an automobile cannot be imagined without the motor and a set of four wheels, executing the
program cannot be imagined without the code (.text) and the data (.data and/or .bss) sections. These ingredients are
naturally the quintessential part of the most basic program functionality.

However, much like the automobile is not only the motor and four wheels, the binary file contains many more
sections. In order to finely synchronize the variety of operational tasks, the linker creates and inserts into the binary
file many more different section types.

By convention, the section name starts with the dot (.) character. The names of the most important section types
are platform independent; they are called the same regardless of the platform and the binary format it belongs to.

Throughout the course of this book, the meanings and roles of certain section types in the overall scheme of
things will be discussed at length. Hopefully, by the time the book is read through, the reader will have a substantially
wider and more focused understanding of the binary file sections.

In Table 2-1, the specification of the Linux’ prevalent ELF binary format brings the following (http://man7.org/
linux/man-pages/man5/elf.5.html) list of various section types provided in the alphabetical order. Even though the
descriptions of individual sections are a bit meager, taking a glance at the variety of sections at this point may give
reader fairly good idea about the variety available.

Table 2-1. Linker Section Types

Section Name Description

.bss This section holds the uninitialized data that contributes to the program’s memory image.
By definition, the system initializes the data with zeros when the program begins to run.
This section is of type SHT_NOBITS. The attribute types are SHF_ALLOC and SHF_WRITE.

.comment This section holds version control information. This section is of type SHT_PROGBITS.
No attribute types are used.

.ctors This section holds initialized pointers to the C++ constructor functions. This section is of type
SHT_PROGBITS. The attribute types are SHF_ALLOC and SHF_WRITE.

.data This section holds initialized data that contributes to the program’s memory image. This
section is of type SHT_PROGBITS. The attribute types are SHF_ALLOC and SHF_WRITE.

.datal This section holds initialized data that contributes to the program’s memory image.
This section is of type SHT_PROGBITS. The attribute types are SHF_ALLOC and SHF_WRITE.

.debug This section holds information for symbolic debugging. Thecontents are unspecified.
This section is of type SHT_PROGBITS. No attribute types are used.

.dtors This section holds initialized pointers to the C++ destructor functions. This section is of type
SHT_PROGBITS. The attribute types are SHF_ALLOC and SHF_WRITE.

.dynamic This section holds dynamic linking information. The section’s attributes include the
SHF_ALLOC bit. Whether the SHF_WRITE bit is set is processor-specific. This section is of type
SHT_DYNAMIC. See the attributes above

(continued)

38

http://man7.org/linux/man-pages/man5/elf.5.html
http://man7.org/linux/man-pages/man5/elf.5.html

CHAPTER 2 © SIMPLE PROGRAM LIFETIME STAGES

Table 2-1. (continued)

Section Name

Description

.dynstr

.dynsym

fini

.gnu.version

.gnu.version_d

.gnu_version.r

.got

.got.plt

.hash

.init

.interp

Jine

.note

.note.GNU-stack

.plt

This section holds the strings needed for dynamic linking, most commonly the strings that
represent the names associated with symbol table entries. This section is of type SHT_STRTAB.
The attribute type used is SHF_ALLOC.

This section holds the dynamic linking symbol table. This section is of type SHT_DYNSYM.
The attribute used is SHF_ALLOC.

This section holds executable instructions that contribute to the process termination code.
When a program exits normally, the system arranges to execute the code in this section. This
section is of type SHT_PROGBITS. The attributes used are SHF_ALLOC and SHF_EXECINSTR.

This section holds the version symbol table, an array of EIfN_Half elements. This section is of
type SHT_GNU_versym. The attribute type used is SHF_ALLOC.

This section holds the version symbol definitions, a table of EIfN_Verdef structures.
This section is of type SHT_CNU_verdef. The attribute type used is SHF_ALLOC.

This section holds the version symbol needed elements, a table of EIfN_Verneed structures.
This section is of type SHT_GNU_versym. The attribute type used is SHF_ALLOC.

This section holds the global offset table. This section is of type SHT_PROGBITS. The attributes
are processor-specific.

This section holds the procedure linkage table. This section is of type SHT_PROGBITS.
The attributes are processor-specific.

This section holds a symbol hash table. This section is of type SHT_HASH. The attribute used is
SHF_ALLOC.

This section holds executable instructions that contribute to the process initialization code.
When a program starts to run, the system arranges to execute the code in this section before
calling the main program entry point. This section is of type SHT_PROGBITS. The attributes
used are SHF_ALLOC and SHF_EXECINSTR.

This section holds the pathname of a program interpreter. If the file has a loadable segment
that includes the section, the section’s attributes will include the SHF_ALLOC bit. Otherwise,
that bit will be off. This section is of type SHT_PROGBITS.

This section holds the line number information for symbolic debugging, which describes
the correspondence between the program source and the machine code. The contents are
unspecified. This section is of type SHT_PROGBITS. No attribute types are used.

This section holds information in the “Note Section” format. This section is of type
SHT_NOTE. No attribute types are used. OpenBSD native executables usually contain a .note.
openbsd.ident section to identify themselves, for the kernel to bypass any compatibility ELF
binary emulation tests when loading the file.

This section is used in Linux object files for declaring stack attributes. This section is of type
SHT_PROGBITS. The only attribute used is SHF_EXECINSTR. This indicates to the GNU linker that
the object file requires an executable stack.

This section holds the procedure linkage table. This section is of type SHT_PROGBITS.
The attributes are processor-specific.

(continued)

39

CHAPTER 2 * SIMPLE PROGRAM LIFETIME STAGES

Table 2-1. (continued)

Section Name Description

.reINAME This section holds relocation information as described below. If the file has a loadable
segment that includes relocation, the section’s attributes will include the SHF_ALLOC bit.
Otherwise, the bit will be off. By convention, “NAME” is supplied by the section to which the
relocations apply. Thus a relocation section for .text normally would have the name .rel.text.
This section is of type SHT_REL.

.relaNAME This section holds relocation information as described below. If the file has a loadable
segment that includes relocation, the section’s attributes will include the SHF_ALLOC bit.
Otherwise, the bit will be off. By convention, “NAME” is supplied by the section to which the
relocations apply. Thus, a relocation section for .text normally would have the name .rela.text.
This section is of type SHT_RELA.

.rodata This section holds read-only data that typically contributes to a nonwritable segment in the
process image. This section is of type SHT_PROGBITS. The attribute used is SHF_ALLOC.

.rodatal This section holds read-only data that typically contributes to a nonwritable segment in the
process image. This section is of type SHT_PROGBITS. The attribute used is SHF_ALLOC.
.shrstrtab This section holds section names. This section is of type SHT_STRTAB. No attribute types
are used.
.strtab This section holds strings, most commonly the strings that represent the names associated

with symbol table entries. If the file has a loadable segment that includes the symbol string
table, the section’s attributes will include the SHF_ALLOC bit. Otherwise the bit will be off. This
section is of type SHT_STRTAB.

.symtab This section holds a symbol table. If the file has a loadable segment that includes the symbol
table, the section’s attributes will include the SHF_ALLOC bit. Otherwise, the bit will be off. This
section is of type SHT_SYMTAB.

.text This section holds the “text,” or executable instructions, of a program. This section is of type
SHT_PROGBITS. The attributes used are SHF_ALLOC and SHF_EXECINSTR.

A Variety of Symbol Types

The ELF format provides a vast variety of linker symbol types, far larger than you can imagine at this early stage
on your path toward understanding the intricacies of the linking process. At the present moment, you can clearly
distinguish that symbols can be of either local scope or of broader visibility, typically needed by the other modules.
Throughout the book material later on, the various symbol types will be discussed in substantially more detail.
Table 2-2 features the variety of symbol types, as shown in the man pages (http://1inux.die.net/man/1/nm)
of the useful nm symbol examination utility program. As a general rule, unless explicitly indicated (like in the case
of “U” vs. “u”), the small letter denotes local symbols, whereas the capital letter indicates better symbol visibility
(extern, global).

40

http://linux.die.net/man/1/nm

CHAPTER 2 © SIMPLE PROGRAM LIFETIME STAGES

Table 2-2. Linker Symbol Types

Symbol Type

Description

“A"
“B" or U‘b"

HC"

“D" or lld"

u_n

HG" or g

usn

llN"

u_ "

p

HR" or llrﬂ

HS" or MS"

“T" or Mt"
HU"

u__n

“V" or HV”

Hw" or llw.”

“wn

ugn
H

The symbol’s value is absolute, and will not be changed by further linking.
The symbol is in the uninitialized (.bss) data section.

The symbol is common. Common symbols are uninitialized data. When linking, multiple
common symbols may appear with the same name. If the symbol is defined anywhere, the
common symbols are treated as undefined references.

The symbol is in the initialized data section.

The symbol is in an initialized data section for small objects. Some object file formats permit more
efficient access to small data objects, such as a global int variable as opposed to a large global array.

For PE format files, this indicates that the symbol is in a section specific to the implementation
of DLLs. For ELF format files, this indicates that the symbol is an indirect function. This is a GNU
extension to the standard set of ELF symbol types. It indicates a symbol that, if referenced by a
relocation, does not evaluate to its address, but instead must be invoked at runtime. The runtime
execution willthen return the value to be used in the relocation.

The symbol is a debugging symbol.

The symbols is in a stack unwind section.

The symbol is in a read only data section.

The symbol is in an uninitialized data section for small objects.
The symbol is in the text (code) section.

The symbol is undefined. In fact, this binary does not define this symbol, but expects that it
eventually appears as the result of loading the dynamic libraries.

The symbol is a unique global symbol. This is a GNU extension to the standard set of ELF symbol
bindings. For such a symbol, the dynamic linker will make sure that in the entire process there is
just one symbol with this name and type in use.

The symbol is a weak object. When a weak defined symbol is linked with a normal defined
symbol, the normal defined symbol is used with no error. When a weak undefined symbol is
linked and the symbol is not defined, the value of the weak symbol becomes zero with no error.
On some systems, uppercase indicates that a default value has been specified.

The symbol is a weak symbol that has not been specifically tagged as a weak object symbol.
When a weak defined symbol is linked with a normal defined symbol, the normal definedsymbol
is used with no error. When a weak undefined symbol is linked and the symbol is not defined, the
value of the symbol is determined in a system-specific manner without error.On some systems,
uppercase indicates that a default value has been specified.

The symbol is a stabs symbol in an a.out object file. In this case, the next values printed are the
stabs other field, the stabs desc field, and the stab type. Stabs symbols are usedto hold debugging
information.

The symbol type is unknown, or object file format-specific.

41

CHAPTER 3

Program Execution Stages

The purpose of this chapter is to describe the sequence of events that happens when the user starts a program. The
analysis is primarily focused on pointing out the details of interplay between the operating system and the layout of
the executable binary file, which is tightly connected with the process memory map. Needless to say, the primary
focus of this discussion is the execution sequence of the executable binaries created by building the code in C/C++.

Importance of the Shell

The program execution under the user’s control typically happens through a shell, a program that monitors a user’s
actions on the keyboard and mouse. Linux features many different shells, the most popular being sh, bash, and tcsh.

Once the user types in the name of the command and presses the Enter key, the shell first tries to compare the
typed command name against the one of its own built-in commands. If the program name is confirmed to not be any
of the shell’s supported commands, the shell tries to locate the binary whose name matches the command string.

If user typed in only the program name (i.e. not the full path to the executable binary), the shell tries to locate the
executable in each of the folders specified by the PATH environment variable. Once the full path of executable binary
is known, the shell activates the procedure for loading and executing the binary.

The mandatory first action of the shell is to create a clone of itself by forking the identical child process. Creating
the new process memory map by copying the shell’s existing memory map seems like a strange move, as it is very
likely that a new process memory map will have nothing in common with the memory map of the shell. This strange
maneuver is made for a good reason: this way the shell effectively passes all of its environment variables to the new
process. Indeed, soon after the new process memory map is created, the majority of its original contents get
erased/zeroed out (except the part carrying the inherited environment variables) and overwritten with the memory
map of the new process, which becomes ready for the execution stage. Figure 3-1 illustrates the idea.

43

CHAPTER 3 © PROGRAM EXECUTION STAGES

(Process specific data \

Process specific data A
structures structures
(e.g, page tables, (e.g, page tables, Kernel
task and mm structs, task and mm structs, H
kernel stack) kernel stack) }Vlrtual
Physical memory Physical memory memory
Kernel code and data Kernel code and data) Environment
| i
7 variables
Process
Memory mapped region 1
for shared libraries vi rtual
A }memory
Run-time heap (via malloc)
Uninitialized data (.bas)
Initialized data (.data)
Program text (.text)

milan@milan

milan@milan$ firefox

Shell first creates a copy of its
Own process memory map
which will be used by a new
process.

Soon thereafter, the kernel will
wipe of the newly created
memory map, retaining only the
part carrying the environment
variables.

From that point on, everything

is ready for the loader to fill in
the empty memory map with the
contents found in the binary file
of the launched program.

Figure 3-1. The shell starts creating the new process memory map by copying its own process memory map,
with the intention to pass its own environment variables to the new process

From this point on, the shell may follow one of two possible scenarios. By default, the shell waits for its forked
clone process to complete the command (i.e. that the launched program completes the execution). Alternatively, if
the user types in an ampersand after the program name, the child process will be pushed to the background, and the
shell will continue monitoring the user’s subsequently typed commands. The very same mode may be achieved by
the user not appending the ampersand after the executable name; instead, after the program is started, the user may
press Ctrl-Z (which issues the SIGSTOP signal to the child process) and immediately after type “bg” (which issues the
SIGCONT signal to the child process) in the shell window, which will cause the identical effect (pushing the shell child

process to the background).

44

CHAPTER 3 PROGRAM EXECUTION STAGES

A very similar scenario of starting the program happens when user applies a mouse click to the application
icon. The program that provides the icon (like a gnome-session and/or Nautilus File Explorer on Linux) takes the
responsibility of translating the mouse click into the system() call, which causes a very similar sequence of events to
happen as if the app were invoked by typing into the shell window.

Kernel Role

As soon as the shell delegates the task of running the program, the kernel reacts by invoking a function from the
exec family of functions, all of which provide pretty much the same functionality, but differ in the details of how
the execution parameters are specified. Regardless of which particular exec-type function is chosen, each of them
ultimately makes a call to the sys_execve function, which starts the actual job of executing the program.

The immediate next step (which happens in function search_binary _handler (file fs/exec.c) is to identify the
executable format. In addition to supporting the most recent ELF binary executable format, Linux provides backwards
compatibility by supporting several other binary formats. If the ELF format is identified, the focus of action moves into
the load_elf binary function (file fs/binfmt_elf.c).

After the executable format is identified as one of the supported formats, the effort of preparing the process
memory map for the execution commences. In particular, the child process created by the shell (a clone of the shell
itself) is passed from shell to the kernel with the following intentions:

e The kernel obtains the sandbox (the process environment) and, more importantly, the
associated memory, which can be used to launch the new program.

The first thing that kernel will do is to completely wipe off most of the memory map.
Immediately after, it will delegate to the loader the process of populating the wiped off
memory map with the data read from the new program'’s binary executable fileSharePoint.

e By cloning the shell process (through the fork() call), the environment variables defined
in the shell are passed onto the child process, which helps that the chain of environment
variables’ inheritance not get broken.

Loader Role

Before going into the details of loader functionality, it is important to point out that the loader and linker have
somewhat different perspectives on the contents of the binary file.

Loader-Specific View of a Binary File (Sections vs. Segments)

The linker can be thought of as a highly sophisticated module capable of precisely distinguishing a wide variety of
sections of various natures (code, uninitialized data, initialized data, constructors, debugging information, etc.).
In order to resolve the references, it must intimately know the details of their internal structure.

On the other hand, the loader’s responsibilities are far simpler. For the most part, its task is to copy the sections
created by linker into the process memory map. To complete its tasks, it does not need to know much about the inner
structure of the sections. Instead, all it worries about is whether the sections’ attributes are read-only, read-write,
and (as it will be discussed later) whether there needs to be some patching applied before the executable is ready for
launching.

Note As will be shown later in discussions about the process of dynamic linking, the loader capabilities are a bit
more complex than mere copying blocks of data.

45

CHAPTER 3 = PROGRAM EXECUTION STAGES

It hence does not come as a big surprise that the loader tends to group the sections created by the linker into
segments based on their common loading requirements. As shown in Figure 3-2, the loader segments typically
carry several sections that have in common access attributes (read or read-and-write, or most importantly, to be

|
j
|
|
|
—|
|
{
|
|
|
{

As shown in Figure 3-3, using the readelf utility to examine the segments illustrates the grouping of many
different linker sections into the loader segments.

Segments

Sections

LOADER

LINKER

//// NN

Figure 3-2. Linker vs. loader

46

CHAPTER 3 PROGRAM EXECUTION STAGES

milan@milan$ readelf --segments libmreloc.so

ELf file type is DYN (Shared object file)

Entry point ©x390

There are 7 program headers, starting at offset 52

Program Headers:

Type offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
LOAD 0Xx000000 0x00000000 OxOOOOO000 OXx00540 OXAO540 R E 0x1000
LOAD 0x000f0c 0x00001f0c Ox00001fOC Ox00104 Ox0010c RW 0x1000
DYNAMIC 0x000f20 0x00001f20 0x00001f20 Ox000c8 OxO00c8 RW Ox4
NOTE 0x000114 0x00000114 O0x00000114 0x00024 0x00024 R 0x4
GNU_EH_FRAME 0x0004c4 0x000004c4 0x000004c4 0x0001c OXO001c R Ox4
GNU_STACK 0x000000 0x00000000 0x00000000 OxOOO00 OXO0000 RW Ox4
GNU_RELRO 0x000f0c 0x00001Ff0c 0x00001f0c Ox000f4 Ox000f4 R Ox1

Section to Segment mapping:
Segment Sections...

00 .note.gnu.build-id .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r
.rel.dyn .rel.plt .init .plt .text .fini .eh_frame_hdr .eh_frame
01 .ctors .dtors .jcr .dynamic .got .got.plt .data .bss
02 .dynamic
03 .note.gnu.build-id
04 .eh_frame_hdr
05
06 .ctors .dtors .jcr .dynamic .got
milan@milan$

Figure 3-3. Sections grouped into segments

Program Loading Stage

Once the binary format is identified, the role of the kernel’s loader module comes to play. The loader first tries to
locate the PT_INTERP segment in the executable binary file, which will assist it in the dynamic loading task.

In order to avoid the pitfalls of the proverbial “cart ahead of the horse” situation—since the dynamic loading is yet
to be explained—Ilet’s assume the simplest possible scenario in which the program is statically linked and there is no
need for dynamic loading of any kind.

STATIC BUILD EXAMPLE

The term static build is used to indicate the executable, which does not have any of the dynamic linking
dependencies whatsoever. All the external libraries needed for creating such executable are statically linked.

As a consequence, the obtained binary is fully portable, as it does not require the presence of any system shared
library (not even 1ibc) in order to be executed. The benefit of full portability (which seldom requires such drastic
measures) comes at the price of the greatly enlarged byte size of the executable.

Other than full portability, the reason for the statically built executable may be purely educational, as it lends itself
well to the process of explaining the original, simplest possible roles of the loader.

47

CHAPTER 3 © PROGRAM EXECUTION STAGES

The effect of static building may be illustrated with the example of plain and simple “Hello World” example. Let’s
use the same source file to build the two applications, one of which is built with the -static linker flag; see
Listings 3-1 and 3-2.

Listing 3-1. main.cpp

#include <stdio.h>

int main(int argc, char* argv[])

{
printf("Hello, world\n");

return 0;

Listing 3-2. build.sh

gcc main.cpp -o regularBuild
gcc -static main.cpp -o staticBuild

The comparison of the byte sizes of the two executables will show that the byte size of the executable built
statically is much larger (about 100 times in this particular example).

The loader continues by reading in the program’s binary file segments’ headers to determine the addresses and

byte lengths of each of the segments. An important detail to point out is that at this stage the loader still does not write
anything to the program memory map. All the loader does at this stage is to establish and maintain a set of structures
(vm_are_struct for example), carrying the mappings between the segments of executable file (actually page-wide
parts of each of the segments) and the program memory map.

The actual copying of segments from the executable happens after the program execution starts. By that time

the virtual memory mapping between the page of physical memory granted to the process and the program memory
map has been established; the first paging requests start arriving from the kernel requesting that page-wide ranges of
program segments be available for execution. As a direct consequence of such policy, only the parts of the program
that are actually needed at runtime happen to get loaded (Figure 3-4).

48

CHAPTER 3 PROGRAM EXECUTION STAGES

Program
memory
map

(its description
maintained in
the set of
structures)

Program Physical Memory

executable

Figure 3-4. Program loading stage

Executing Program Entry Point

From the usual C/C++ programming perspective, the program entry point is the main() function. From the point of
program execution, however, it is not. Prior to the point when the execution flow reaches the main() function, a few
other functions get executed, which level the playfield for the program to run.

Let’s take a closer look at what typically happens in Linux between the program loading and the execution of the
main() function’s first line of code.

The Loader Finds the Entry Point

After loading the program (i.e. preparing the program blueprint and copying the necessary sections to the memory for
its execution), the loader takes a quick look at the value of e_entry field from the ELF header. This value contains the
program memory address from which the execution will start.

Disassembling the executable binary file typically shows that the e_entry value carries nothing less than the first
address of the code (.text) section. Coincidentally, this program memory address typically denotes the origin of the
_start function.

49

CHAPTER 3 © PROGRAM EXECUTION STAGES

The following is the disassembly of section . text:

08048320 <_start>:

8048320: 31 ed Xor ebp,ebp
8048322: 5e pop esi

8048323: 89 e1 mov ecx,esp
8048325: 83 e4 fo and esp,oxfffffffo
8048328: 50 push eax

8048329: 54 push esp

804832a: 52 push edx

804832b: 68 60 84 04 08 push 0x8048460
8048330: 68 f0 83 04 08 push 0x80483f0
8048335: 51 push ecx

8048336: 56 push esi

8048337: 68 d4 83 04 08 push 0x80483d4
804833c: e8 cf ff ff ff call 8048310 <__libc_start_main@plt>
8048341: f4 hlt

The Role of _start() Function

The role of the _start function is to prepare the input arguments for the __1ibc_start_main function that will be
called next. Its prototype is defined as

int _ libc_start main(int (*main) (int, char * *, char * *), /* address of main function */

int argc, /* number of command line args */
char * * ubp_av, /* command line arg array */
void (*init) (void), /* address of init function */
void (*fini) (void), /* address of fini function */
void (*rtld fini) (void), /* address of dynamic linker fini function */
void (* stack_end) /* end of the stack address */
);

In fact, all that the instructions prior to the call instruction do is to stack up the required arguments for the call in
the expected order.

In order to understand what exactly these instructions do and why, please take a look at the next section, which
is dedicated to explaining the stack mechanism. But before going there, let’s first complete the story about starting the
program execution.

The Role of __libc_start_main() Function

This function is the key player in the process of preparing the environment for the program to run. It not only sets up
the environment variables for the program during the program execution, but it also does the following:

e Starts up the program’s threading.

e Callsthe init() function, which performs initializations required to be completed before the
main() function starts.

The GCC compiler through the __ attribute ((constructor)) keyword supports custom
design of the routines you may want to be completed before your program starts.

50

CHAPTER 3 PROGRAM EXECUTION STAGES

e Registersthe fini()and rtld fini() functions to be called to cleanup after the program
terminates. Typically, the action of _fini() is inverse to the actions of the _init() function.

The GCC compiler, through the _attribute ((destructor)) keyword, supports custom
design of the routines you may want to complete before your program starts.

Finally, after all the prerequisite actions have been completed, the __1ibc_start_main() calls the main()
function, thus making your program run.

Stack and Calling Conventions

As anyone with programming experience above the absolute beginner level knows, the typical program flow is in
fact a sequence of function calls. Typically, the main function calls at least one function, which in turn may call huge
number of other functions.

The concept of stack is the cornerstone of the mechanism of function calls. This particular aspect of program
execution is not of paramount importance for the overall topic of this book, and we will not spend much more time
discussing the details of how stack works. This topic has been a commonplace one for a long time, and there is no
need to reiterate the well-known facts.

Instead, only the few important points related to the stack and functions will be pointed out.

e The process memory map reserves certain area for the needs of the stack.

e The amount of stack memory used at runtime actually varies; the larger the sequence of
function calls, the more of stack memory is in use.

e The stack memory is not unlimited. Instead, the amount of available stack memory is bound
with the amount of memory available for allocation (which is the part of the process memory
known as heap).

Functions Calling Conventions

How a function passes the arguments to the function it calls is very interesting topic. A variety of very elaborate
mechanisms of passing the variables to the functions have been designed, resulting in specific assembly language
routines. Such stack implementation mechanisms are typically referred to as calling conventions.

As a matter of fact, many different calling conventions have been developed for X86 architecture, such as cdecl,
stdcall, fastcall, thiscall, to name just a few. Each of them is tailored for a specific scenario from a variety of
design standpoints. The article titled “Calling Conventions Demystified” by Nemanja Trifunovic
(www. codeproject.com/Articles/1388/Calling-Conventions-Demystified) provides an interesting insight into
the differences between various calling conventions. The legendary Raymond Chen’s series of blog articles titled
“The History of Calling Conventions,” which came a few years later (http://blogs.msdn.com/b/oldnewthing/
archive/2004/01/02/47184.aspx), are probably the most complete single source of information about the topic.

Without spending too much time on this particular topic, a detail of particular importance is that among all
the available calling conventions, one of them in particular, the cdecl calling convention, is strongly preferred for
implementing the interface of dynamic libraries exported to the other world. Stay tuned for more details, as the
discussions in Chapter 6 about library ABI functions will provide better insight into the topic.

51

http://www.codeproject.com/Articles/1388/Calling-Conventions-Demystified
http://blogs.msdn.com/b/oldnewthing/archive/2004/01/02/47184.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/01/02/47184.aspx

CHAPTER 4

The Impact of Reusing Concept

The code reuse concept is omnipresent and has found an impressive variety of ways of manifesting itself. Its impact
on the process of building programs happened much before the well-known transition from procedural programming
languages toward the object-oriented ones.

The initial reasons for dividing the tasks between compiler and linker have been already described in the
previous chapters. Briefly, it all started from the useful habit of keeping code in separate source files; then, at compile
time it became obvious that compiler could not easily complete the task of resolving the references simply because
tiling the code sections into the ultimate puzzle of program memory map had to happen first.

The idea of code reuse added the extra argument to the decision of splitting the compiling and linking stages.
The amount of indeterminism brought in by the object files (all sections having zero-based address ranges plus
unresolved references), which initially certainly looked like a drawback, in light of the code sharing idea actually
started looking like a precious new quality.

The code reuse concept applied to the domain of building the program executables found its first realization in
the form of static libraries, which are bundled collections of object files. Later on, with the advent of multitasking
operating systems, another form of reusing called dynamic libraries came to prominence. Nowadays both concepts
(static as well as dynamic libraries) are in use, each having pros and cons, hence requiring a deeper understanding
of their functionality’s inner details. This chapter describes in great detail these two somewhat similar, but also
substantially different, concepts.

Static Libraries

The idea behind the concept of static libraries is exceptionally simple: once the compiler translates a collection of
translation units (i.e., source files) into the binary object files, you may want to keep the object files for later use in
other projects, where they may be readily combined at link time with the object files indigenous to that other project.

In order for it to be possible to integrate the binary object files into some other project, at least one additional
requirement needs to be satisfied: that the binary files be accompanied by the export header include file, which will
provide the variety of definitions and function declarations of at least these functions that can be used as entry points.
The section titled “The Conclusion: The Impact of the Binary Reuse Concept” explains why some functions are more
important than others.

There are several ways a set of object files may be put to use in various projects:

e The trivial solution is to save the object files generated by the compiler, and copy
(cut-and-paste) or transfer in any way possible to a project that needs them (where they will
be linked alongside the other object files into the executable), as shown in Figure 4-1.

53

CHAPTER 4 * THE IMPACT OF REUSING CONCEPT

.-

=

xport header

Source files

Export header

e —_—————
- -
- ~o

-
-

PROJECT 2

Object files

—~——

110110
000111

' -

et [R PROJECTT - - N\ f--mmmmmm oo

110110
000111

7
STt B

110110
000111

Object files

Figure4-1. A trivial method of binary code reuse, the precursor to static libraries

e The better way is to bundle the object files into a single binary file, a static library.
It is far simpler and far more elegant to deliver a single binary file to the other project than
each object file separately (Figure 4-2).

54

CHAPTER 4 © THE IMPACT OF REUSING CONCEPT

110110
000111

Object files “

Source files

Export || se—
header

0110
110110

!
000111
__________ 7 4
R e i oo

E Lo N
R

-

M =n+5
N/=2;
Source files Object files
———————————— PROJECT2 - - - -~ ---------~-------~

Figure 4-2. The static library as form of binary code reuse

e The obvious requirement in this case is that linker understands the static library file format
and is capable of extracting its contents (i.e., object files bundled together) in order to link
them in. Fortunately, this requirement has been met by probably each and every linker since
the early days of microprocessor programming.

e Letitbe noted also that the process of creating a static library is by no means irreversible.
More specifically, a static library is merely an archive of object files, which can be manipulated
in a number of ways. Through the easy use of appropriate tools, a static library can be
dismantled into the collection of original object files; one or more object files may be thrown
out from the library, new object files can be added, and finally, the existing object files may be
replaced by a newer version.

Whichever of these two approaches you decide to follow, the trivial one or the more sophisticated static library
approach, you essentially have the process of binary code reuse happening, as the binary files generated in one
project are used in the other projects. The overall impact of binary code reuse to the landscape of software design will
be discussed in detail later.

55

CHAPTER 4 © THE IMPACT OF REUSING CONCEPT

Dynamic Libraries

Unlike the concept of static libraries, which has been around since the early days of assembler programming, the
concept of dynamic libraries came to full acceptance much later. The circumstances that led to its creation and
adoption are tightly related to the appearance of multitasking operating systems.

In any analysis of the functioning of a multitasking operating system, one particular notion quickly comes to
prominence: regardless of the variety of concurrent tasks, certain system resources are unique and must be shared by
everybody. The typical examples of shared resources on the desktop system are the keyboard, the mouse, the video
graphics adapter, the sound card, the network card, and so on.

It would be counterproductive and even disastrous if each and every application that intends to access the
common resources had to incorporate the code (either as a source or as a static library) that provides control over the
resource. This would be greatly inefficient, clumsy, and a lot of storage (both hard disk and memory) would be wasted
on storing the duplicates of the same code.

The day-dreaming of better and more efficient operating systems led to the idea of having a sharing mechanism
that would assume neither compiling in the duplicate source files nor linking in the duplicate object files. Instead,
it would be implemented as some kind of runtime sharing. In other words, the running application would be
capable of integrating in its program memory map the compiled and linked parts of some other executable,
where the integration would happen on-demand, as-per-need, at runtime. This concept is referred to as dynamic
linking/dynamic loading, which will be illustrated in more detail in the next section.

From the very early design stages one important fact became obvious: of all the parts of the dynamic library,
it only makes sense to share its code (.text) section, but not the data with the other processes. In the culinary analogy,

a bunch of different chefs can share the same cookbook (code). However, given that different chefs may be concurrently
preparing utterly different dishes from the same cookbook, it would be disastrous if they shared the same kitchen
utensils (data).

Obviously, if a bunch of different processes had access to the dynamic library data section, the variable
overwriting would happen at arbitrary moments, and the execution of the dynamic library would be unpredictable,
which would render the whole idea meaningless. This way, by mapping only the code section, the multiple
applications are free to run the shared code each in its own compartment, separately from each other.

Dynamic vs. Shared Libraries

The ambitions of operating system designers early on were to avoid unnecessary multiple presence of the same
pieces of operating system code in the binaries of each and every application that may need them. For example, each
application that needed to print the document would have to incorporate the complete printing stack, ending up with
the printer driver, in order to provide the printing feature. If the printer driver changed, the whole army of application
designers would need to recompile their applications; otherwise, a chaos would emanate due to the runtime presence
of plethora of different printer driver versions.

Obviously, the right solution would be to implement the operating system in such a way that the following
would happen:

¢ The commonly needed functionality is provided in the form of dynamic libraries.

e The application that needs the access at common functionality would need to merely load the
dynamic library at runtime.

The basic idea behind the concept of dynamic libraries is illustrated in the Figure 4-3.

56

CHAPTER 4 © THE IMPACT OF REUSING CONCEPT

BUILD TIME RUNTIME

g

Source

'

Shared
1 Source
v _files

Physical Memory

P W

(]
files EXECUTABLE PROJECT files Executable \\
| Startup

routine

Figure 4-3. The dynamic libraries concept

The first solution to this problem (i.e., the first version of dynamic linking implementation, known as load time
relocation (LTR)), achieved the goal with partial success. The good news was that applications were relieved of
carrying the unnecessary baggage of operating system code in its binaries; instead, they were deployed with only the
app-specific code, whereas all system-related needs were satisfied by dynamically linking the modules supplied by
the operating system.

The bad news, however, was that if multiple applications needed certain system functionality at runtime, each
of the applications had to load their own copy of the dynamic library. The underlying cause of this limitation was the
fact that the load time relocation technique modified the symbols of the .text section of the dynamic library to fit the
particular address mapping of the given application. For another application, which would load the dynamic library
into the possibly different address range, the modified library code simply would not fit the different memory layout.

As a result, multiple copies of the dynamic libraries resided in the processes’ memory maps at runtime. This
is something that we could live with for some time, but the long term goals of the design were far more ambitious:
to provide a more efficient mechanism that would allow the dynamic library to be loaded just once (by whatever
application happens to load it first) and be made available to any other application that tried to load it next.

This goal was achieved through the concept known as position independent code (PIC). By changing how the
dynamic library code accessed the symbols, only one copy of the dynamic library loaded into the memory map of any
process would become shareable by memory mapping it to any application’s process memory map (Figure 4-4).

57

CHAPTER 4 © THE IMPACT OF REUSING CONCEPT

Processs-specific data
structures
(e.g., page tables,
task and mm structs,
kernel stack)

Processs-specific data
structures
(e.g., page tables,
task and mm structs,
kernel stack)

Processs-specific data
structures
(e.g., page tables,
task and mm structs,
kernel stack) User stack

Ce

Startup routine (cri1)

Startup routine (crt1) Physic emory

Figure 4-4. The advances brought by the PIC technique of dynamic linking

Furthermore, it is not unusual that the operating system loads certain common system resources (top level
drivers, for example) into the physical memory, knowing that it will most likely be needed by the plethora of running
processes. The effect of dynamic linking is that each of the processes has the perfect illusion that they are the sole
owners of the driver.

Since the invention of PIC concept, the dynamic libraries designed to support it were called shared libraries.
Nowadays, the PIC concept is prevalent, and on 64-bit systems it is strongly favored by the compilers, so the naming
distinction between the terms dynamic vs. shared library is disappearing, and the two names are used more or less
interchangeably.

The concept of virtual memory paved the foundation of the success of the idea of runtime sharing (epitomized
by the concept of position-independent code). The initial idea is fairly simple: if the real process memory map (with
real, concrete addresses) is nothing but the result of 1:1 mapping of the zero-based process memory map, what
really prevents us from creating a monster, a real process memory map obtained by mapping parts of more than one
different processes? In fact, this is exactly how the mechanism of runtime sharing of dynamic libraries works.

The successful implementation of the PIC concept represents a cornerstone of modern multitasking operating systems.

58

CHAPTER 4 © THE IMPACT OF REUSING CONCEPT

Dynamic Linking in More Detail

The concept of dynamic linking is at the very core of the concept of dynamic libraries. It is practically impossible to

fully understand how the dynamic libraries work without understanding the complex interplay between the dynamic

library, the client executable, and the operating system. The focus of this section is to provide the necessary broad

level understanding of the process of dynamic linking. Once its essence is understood, the subsequent sections of this
document will pay the due attention to the details.
So, let’s see what really happens during the process of dynamic linking.

Part 1: Building the Dynamic Library

As the previous figures suggest, the process of building a dynamic library is a complete build, as it encompasses

both compilation (converting the source into the binary object files) as well as resolving the references. The product
of the dynamic library building process is the binary file whose nature is identical to the nature of executable, the

only difference being that dynamic library lacks the startup routines that would allow it to be started as independent
program (Figure 4-5).

Export symbols

< >
no
® =

Source files

Figure 4-5.

110110 Dynamic
» » 000111 Iibrary

—————————————— PROJECT - - - - == === === = - - - - -

Building the dynamic library

Here are some notes to consider:

In Windows, building a dynamic library strictly requires that all the references must be
resolved. If the dynamic library code calls a function in some other dynamic library, that other
library and the references symbol it contains must be known at build time.

In Linux, however, the default option allows some more flexibility, allowing that some the
symbols be unresolved with the expectation that they will eventually show up in the final
binary after some other dynamic library is linked in. Additionally, the Linux linker provides
the option to fully match the Windows linker’s strictness.

In Linux, it is possible to modify the dynamic library to make it runnable by itself (still
researching whether such option exists on Windows). In fact, the libc (C runtime library) is
executable by itself; when invoked by typing its filename into the shell window, it prints a
message on the screen and terminates. For more details of how to implement such feature,
please check Chapter 14.

59

CHAPTER 4 © THE IMPACT OF REUSING CONCEPT

Part 2: Playing by Trust While Building the Client Executable (Looking
for the Symbols Only)

The next stage in the scenario of using a dynamic library happens when you try to build the executable that intends on
using the dynamic library at runtime. Unlike the static libraries scenario in which the linker is creating the executable
on its own at will, the scenario of linking the dynamic libraries is peculiar in that the linker tries to combine its current
work with the existing results of the previously completed linking procedure that created dynamic library binary.

The crucial detail in this part of the story is that linker pays almost all of its attention to the dynamic library’s
symbols. It appears that at this stage the linker is almost not interested in any of the sections, neither code (.text), nor
data (.data/.bss).

More specifically, the linker in this stage of operation “plays it by trust.”

It does not examine the binary of the dynamic library thoroughly; it neither tries to find the sections or their
sizes, nor attempts to integrate them into the resultant binary. Instead, it solely tries to verify that the dynamic library
contains the symbols needed by the resultant binary. Once it finds it, it completes the task and creates the executable
binary (see Figure 4-6).

EXECUTABLE

o2t

110110
x=A — — > | oottt
s oo
Source files Object files I

At build time, linker only
looks for the shared library
symbols;

integration of shared lib
segments will happen at
load time.

Shared
library

Figure 4-6. Build time linking with a dynamic library

The approach of “playing by trust” is not completely unintuitive. Let’s consider a real-life example: if you tell
someone that in order to mail a letter he needs to go to the kiosk in the nearby square and buy a postage stamp, you
are essentially basing your advice on reasonable amount of trust. You do know that there should be a kiosk on the
square, and that it carries postage stamps. The fact that you don’t know the particular details of the kiosk operation
(working hours, who works there, the price of postage stamps) does not diminish the validity of your advice, as
at runtime all these less important details will be resolved. The idea of dynamic linking is based on completely
analogous assumptions.

Let it be noticed, however, that this amount of trust leaves open doors for many interesting scenarios, all of which
fall under the “build with one, load the other” paradigm. The practical implications vary from peculiar software design
tricks all the way to the whole new paradigm (plug-ins), both of which will be discussed later in the book.

60

CHAPTER 4 © THE IMPACT OF REUSING CONCEPT

Part 3: Runtime Loading and Symbol Resolution

The events happening at load time are of crucial importance, as this is the time when the confidence that the linker
had in the dynamic library’s promises needs to be confirmed. Previously, the build procedure (possibly completed on
a build machine “A”) examined the copy of dynamic library binary in the search for symbols that executable needs.
Now what needs to happen at runtime (possibly on different, runtime machine “B”) is the following:

1. The dynamic library binary file needs to be found.

Each operating system has a set of rules stipulating in which directory the loader should
look for the dynamic libraries’ binaries.

2. The dynamic library needs to be successfully loaded into the process.
This is the moment where the promise of build-time linking must be fulfilled at runtime.

In fact, the dynamic library loaded at runtime must carry the identical set of symbols
promised to be available at build time. More specifically, in the case of function symbols
the term “identical” means that the function symbols found in the dynamic library at
runtime must exactly match the complete function signature (affiliations, name, list of
arguments, linkage/calling convention) promised at build time.

Interestingly enough, it is not required that the actual assembly code (i.e., the sections
contents) of the dynamic library found at runtime matches the code found in the dynamic
library binary used during the build time. This opens up a lot of interesting scenarios
which will be discussed in detail later on.

3. The executable symbols need to be resolved to point to the right address in the part of
process of memory map where the dynamic library is mapped into.

It is this stage the integration of dynamic library into the process memory map truly
deserves to be called dynamic linking, as unlike the conventional linking it happens at
load time.

If all the steps of this stage completed successfully, you may have your application executing the code contained
in the dynamic library, as illustrated in Figure 4-7.

61

CHAPTER 4 © THE IMPACT OF REUSING CONCEPT

Process-specific
data structures
Process-specific
data structures
User stack
Startup routine (crt1) PhyS|C Memory

Figure 4-7. Load time linking of a dynamic library

Peculiarities of Dynamic Linking on Windows

As itis true that the dynamic linking happens in two phases (build time vs. runtime) in which the linker focuses on
different details of dynamic library binary, there is no substantial reason as to why the same identical copy of the
dynamic library binary couldn’t be used in both of the phases.

Even though in the build-time dynamic linking phase only the library symbols play a role, there is nothing wrong
if the exact same copy of the binary file is used in the runtime phase as well.

This principle is mostly followed throughout the variety of operating systems, including Linux. In Windows,
however, in the attempt to make the separation between the dynamic linking stages clearer, things are made slightly
more complicated in a way that can confuse beginners a bit.

Special Binary File Types Related to Dynamic Linking in Windows

In Windows, the distinction between the different phases of dynamic linking is accentuated by using slightly different
binary file types in each of the phases. Namely, when a Windows DLL project is created and built, the compiler
produces several different files.

62

CHAPTER 4 © THE IMPACT OF REUSING CONCEPT

Dynamically Linked Library (.dll)

This file type is in fact the dynamic library, a shared object used at runtime by the processes through the mechanism
of dynamic linking. More specifically, the majority of facts presented so far about the principles on which the dynamic
library functions are fully applicable to the DLL files.

Import Library File (.lib)

A dedicated import library (.lib) binary file is used on Windows specifically at the “Part2” phase of dynamic linking
(Figure 4-8). It contains only the list of DLL symbols and none of its linker sections, and its purpose is solely to present
the set of dynamic library’s exported symbols to the client binary.

Import library

Shared
library

Figure 4-8. Windows import library

The file extension of the import library file (.lib) is the potential source of confusion, as the same file extension is
also used to indicate the static libraries.

Another detail that deserves a bit of discussion is the fact that this file is called import library but in fact plays a
role in the process of exporting the DLL symbols. As it is true that the choice of naming does depend on the side from
which we look at the process of dynamic linking, it is also true that this file belongs to the DLL project, gets created by
building DLL project, and may be disseminated to uncountable many applications. For all of these reasons, it should
not be wrong to adopt the “from DLL outward” direction, and hence use the name export library.

The obvious proof that someone else at Microsoft shared this viewpoint at least to an extent can be found in the
section discussing the use of __declspec keyword, where the naming (__declspec(dllexport))is used to indicate
export from DLL toward the client apps (i.e., in the outward direction).

One of the reasons why folks at Microsoft decided to stick with this particular naming convention is that the
DLL project produces another type of library file that may be used instead of this one in the scenarios of circular
dependencies. That another file type is called an export file (.exp) (see below), and in order to distinguish between
the two, the existing naming has been retained.

Export File (.exp)

The export file has the same nature as the import library file. However, it is typically used in the scenario when two
executables have circular dependencies that make impossible to complete the building of either one. In such case, the
exp file is provided with the intention to make it possible for at least one of the binaries to successfully compile, which
in turn can be used by the other dependent binaries to complete their builds.

63

CHAPTER 4 © THE IMPACT OF REUSING CONCEPT

Note Windows DLLs are strictly required to resolve all the symbols at build time. On Linux, however, it is possible to
leave some dynamic library symbols unresolved with the expectation that missing symbols will eventually appear in the
process memory map as a result of dynamically linking in some other dynamic libraries.

Unique Nature of Dynamic Library

It is important to understand early on that in the ensemble of binary types the dynamic library has fairly unique
nature, the details of which are important to keep in mind when dealing with the usual related design issues.

When looking at the other binary types, the opposite natures of the executables and the static libraries become
obvious almost immediately. The creation of a static library does not involve the linking stage, whereas in the case of
the executable it is the mandatory last step. As a consequence, the nature of the executable is far more completed, as it
contains resolved references, and due to the embedded extra start routines, it is ready for execution.

In that regard, despite the word “library,” which suggests similarities between the static and dynamic libraries,
it is the fact that the nature of the dynamic library is far closer to the nature of the executable.

Property 1: Dynamic Library Creation Requires the Complete Build Procedure

The process of creating the dynamic library involves not only compiling but the linking stage as well. Despite what
the naming similarities suggest, the completeness of the dynamic library build process (i.e., linking in addition to
compiling) makes the dynamic library far more similar to the executable than to the static library. The only difference
is that executable contains the startup code that allows the kernel to start the process. It is definitely possible

(in Linux for sure) to add a few lines of code to the dynamic library that make it possible to execute the library from
the command line as if it were an executable binary type. For more details, please check Chapter 14.

Property 2: The Dynamic Library Can Link In Other Libraries

This is a really interesting fact: it is not only the executable that can load and link the dynamic library, but it can be
also another dynamic library. Hence, we can no longer say “executable” to indicate the binary that links in a dynamic
library; we must use other more appropriate term.

Note | decided to hereafter use the term “client binary” to indicate the executable or the dynamic library that loads
a dynamic library.

Application Binary Interface (ABI)

When the interfacing concept is applied to the domain of programming languages, it is typically used to denote

the structure of function pointers. C++ adds a few extra meanings by defining it as a class of function pointers;
additionally, by declaring the function pointers to be equal to NULL, the interface gets an extra kick of abstraction as it
becomes unsuitable for instantiation, but can be used as idealistic model for other classes to implement it.

The interface exported by a software module to the clients is typically referred to as an application programming
interface (API). When applied to the domain of binaries, the concept of an interface gets one additional domain-specific
flavor called an application binary interface (ABI). It is not wrong to think of ABI as a set of symbols (primarily a set of
function entry points) created in the process of compiling/linking of the source code interface.

64

CHAPTER 4 © THE IMPACT OF REUSING CONCEPT

The ABI concept comes in handy when explaining more precisely what happens during the dynamic linking.

e During the first (build-time) phase of the dynamic linking, the client binary in fact links
against the library’s exported ABI.

AsIpointed out, at build time the client binary in fact only checks whether the dynamic
library exports the symbols (function pointers such as the ABI) and does not care at all
about the sections (the function bodies).

e In order to successfully complete the second (runtime) phase of dynamic linking, the binary
specimen of the dynamic library available at runtime must export the unchanged ABI, identical
to that found at build time.

The second statement is considered as the basic requirement of dynamic linking.

Static vs. Dynamic Libraries Comparison Points

Even though I just barely touched on the concepts behind the static and dynamic libraries, some comparisons
between the two can be already drawn.

Differences in Import Selectiveness Criteria

The most interesting difference between the static and dynamic libraries is the difference in selectiveness criteria
applied by a client binary that tries to link them.

Import Selectiveness Criteria for Static Libraries

When the client binary links the static library, it does not link in the complete static library contents. Instead, it links in
strictly and solely only the object files containing the symbols that are really needed, as shown in Figure 4-9.

Client binary

Static library

Figure 4-9. Import selectiveness criteria for static libraries

The byte length of the client binary gets increased, albeit only by the amount of relevant code ingested from the
static library.

65

CHAPTER 4 © THE IMPACT OF REUSING CONCEPT

Note Despite the fact that the linking algorithm is selective when choosing which object files to link in, the
selectivity does not go beyond the granularity of individual object files. It still could happen that in addition to the symbols
that are really needed, the chosen object file contains some symbols that are not needed.

Import Selectiveness Criteria for Dynamic Libraries

When the client binary links the dynamic library, it features the selectivity only at the level of the symbol table,
in which only the dynamic library symbols that are really needed become mentioned in the symbol table.

In all other regards, the selectivity is practically nonexistent. Regardless of how small a portion of the dynamic
library functionality is concretely needed, the entire dynamic library gets dynamically linked in (Figure 4-10).

Client binary

abodefghi] :',: -

Dynamic library

Figure 4-10. Import selectiveness criteria for dynamic libraries

The increased amount of code only happens at runtime. The byte length of the client binary does not get
increased significantly. The extra bytes needed for the bookkeeping of new symbols tend to amount to small byte
counts. However, linking the dynamic library imposes the requirement that the dynamic library binary will need to be
available at runtime on the target machine.

Whole Archive Import Scenario

An interesting twist happens when the static library’s functionality needs to be presented to the binary clients through
the intermediary dynamic library (Figure 4-11).

66

CHAPTER 4 © THE IMPACT OF REUSING CONCEPT

Client binary

abcdefghi]|

Dynamic library

abcdefghi]|

Static library

Figure 4-11. “Whole archive” scenario of importing static library

The intermediary dynamic library itself does not need any of the static library’s functionality. Therefore,
according to the formulated import selectiveness rules, it will not link in anything from the static library. Yet, the sole
reason why the dynamic library is designed is to ingest the static library functionality and export its symbols for the
rest of the world to use.

How to mitigate these opposite requirements?

Fortunately, this scenario has been early identified, and adequate linker support has been provided through the
--whole-archive linker flag. When specified, this linker flag indicates that one or more libraries listed thereafter will be
unconditionally linked in entirely, regardless of whether the client binary that links them needs their symbols or not.

In recognition of this scenario, the Android native development system in addition to supporting the
LOCAL_STATIC_LIBRARIES build variable, the native build system also supports the LOCAL_WHOLE_STATIC_LIBRARIES
build variable, like so:

$ gcc -fPIC <source files> -WI,--whole-archive -l<static libraries> -o <shlib filename>

Interestingly, there is a counter-action linker flag (--no-whole-archive). Its effect is to counteract the effect of
--whole-archive for all subsequent libraries being specified for linking on the very same linker command line.

$ gcc -fPIC <source files> -o <executable-output-file> \
-W1,--whole-archive -1<libraries-to-be-entirely-linked-in> \
-W1,--no-whole-archive -1l<all-other-libraries>

Somewhat similar in nature to the --whole-archive flag is the -rdynamic linker flag. By passing this linker flag
you are basically requesting that the linker exports all the symbols (present in the . symtab section) to the dynamic
(.dynsym) section, which basically makes them usable for the purposes of dynamic linking. Interestingly, this flag
does not seem to require the -W1 prefix.

67

CHAPTER 4 © THE IMPACT OF REUSING CONCEPT

Deployment Dilemma Scenarios

When designing the software deployment packages, the build engineers typically face a requirement to minimize the
byte size of the deployment package. In one of the simplest possible scenarios, the software product that needs to be
deployed is comprised of an executable that delegates the task of providing certain part of its functionality to a library.
Let’s say that the library may come in both flavors, the static as well as the dynamic library. The basic question that
the build engineer faces is which kind of linking scenarios to utilize in order to minimize the byte size of the deployed
software package.

Choice 1: Linking with a Static Library

One of the choices that a build engineer faces is to link the executable with the static version of the library. This
decision comes with pros and cons.

e Pros: The executable is completely self-contained, as it carries all the code it needs.

¢ Cons: The executable byte size gets increased by the amount of code ingested from the static
library.

Choice 2: Linking with a Dynamic Library

Another possibility, of course, is to link the executable with the dynamic version of the library. This decision also
comes with pros and cons.

e Pros: The executable byte size does not get changed (except maybe by the small symbols
bookkeeping expense).

e Cons: There is always a chance that the required dynamic library for whatever reason is not
physically available on the target machine. If precaution is taken and the required dynamic
library gets deployed together with the executable, several potential problems may ensue.

e First, the overall byte size of the deployment package definitely gets larger, as you now
deploy an executable and a dynamic library.

e Second, the deployed dynamic library version may not match the requirements of the
other applications that may rely on it.

e Third, fourth, and so on, there is a whole set of problems that may happen when dealing
with the dynamic libraries, known under the name “DLL hell”

Final Verdict

The linking with static libraries is a good choice when the application links in relatively smaller portions of relatively
smaller number of static libraries.

The linking with dynamic libraries comes as a good choice when the application depends on the dynamic
libraries expected with the great certainty to exist at runtime on the target machine.

The likely candidates are OS-specific dynamic libraries, such as C runtime library, graphic subsystems,
user space top level device drivers, and/or the libraries coming from very popular software packages. Table 4-1
summarizes the differences between dealing with static vs. dynamic libraries.

68

Table 4-1. Comparison Points Summary

CHAPTER 4 © THE IMPACT OF REUSING CONCEPT

Comparison Category Static Libraries

Dynamic Libraries

Build Procedure Incomplete:
Compiling: yesLinking: no
Nature of Binary Archive of object file(s)

All the sections exist, but the majority of
references are unresolved (except local
references).

Can’t exist standalone; the circumstances
of the clientbinary determine plenty of
details.

All of its symbolshave some meaning only
within the client executable.

Integration With Happens during the executable building
Executable process,completed during the linking
stage.

Efficient: Only the needed object files
from the archive get linked into the
executable.

The byte size of the client binary gets
increased, though.

Impact on Executable Increases the executable size, as sections

Size get addedto the executable sections.
Portability Excellent, as everything the app needs is
within its binary.

The absence of external dependencies
makes the portability easy.

Complete:
Compiling: yesLinking: yes

The executable without the startup
routines.

Contains resolved references (except when
intended otherwise), some of which are
intended to be globally visible.

Very independent (in Linux, with a few
simple additions the missing startup
routines can be effectively added).

Highly specialized in certain strategic tasks;
once loaded into the process, typically

very dependable and reliable in providing
specialized services.

Happens through two separate phases of
dynamic linking:

1) Linking against the available symbols

2) Symbols and sections integration at
load time

Inefficient: The complete library gets
loaded into the process regardless of
which part of library is really needed.

The byte size of client binary almost does
not change. However, the availability of
the dynamic library binary at runtime is
one extra thing to worry about.

Reduces the executable size, as only

the app-specific code resides in the app
executable, whereas the shareable parts are
extracted into the dynamic library.

Varies.

Good for OS-standard dynamic libraries
(libc, device drivers, etc.), as they are
guaranteed to exist on runtime machine.

Less good for app-specific or vendor-specific
scenarios.

Plenty of scenarios for potential problems

exist (versioning, missing libraries, search
paths, etc.)

(continued)

69

CHAPTER 4 © THE IMPACT OF REUSING CONCEPT

Table 4-1. (continued)

Comparison Category

Static Libraries

Dynamic Libraries

Ease of Combining

Ease of Converting

Suitable for
Development

Misc/Other

Very limited.
Can’t create a static library by using the

other libraries (neither static nor dynamic).

Can only link all of them together into the
same executable.

Fairly easy.

The standard function of the archiver
utility is the extraction of ingredient object
files. Once extracted, they can be
eliminated, replaced, or recombined
into a new static or dynamic library.

Only in very exceptionally special cases (in
the “Tips and Tricks” section, see the topic
about linking the static lib into a dynamic
lib on 64-bit Linux) this may not be good
enough, and you might need to recompile
the original sources.

Cumbersome.

Even the smallest changes in the code
require recompiling all executables that
link the library.

Simpler, older, ubiquitous form
of binary sharing applied even
in the simplest microcontroller
developmentenvironments.

Excellent.

A dynamic library can link in one or more
static libraries, and/or one of more dynamic
libraries.

In fact, Linux can be viewed as “Legoland,”
a set of constructions made by dynamic
libraries linking with the other dynamic
libraries. The magnitude of integration

is greatly facilitated by the availability of
source code.

Practically impossible for most mortals.

Some commercial solutions have been seen
that attempt with various degree of success
to implement the conversion of a dynamic
to a static library.

Excellent.

The best way to work on an isolated feature
is to extract it into the dynamic library.

As long as the exported symbols (function
signatures, and/or data structure layouts)
are not changed, recompiling the library
does not require recompiling the rest of the
code.

Newer way of binary code reuse.

Modern multitasking system can’t even be
imagined without them.

Essential to the concept of plug-ins.

70

CHAPTER 4 © THE IMPACT OF REUSING CONCEPT

Useful Comparison Analogies

Tables 4-2 through 4-4 list several very useful and illustrative analogies, which may help you better understand the
role of compilation process.

Table 4-2. Legal Analogy

Binary Type

Legal Equivalent

Static Library

Dynamic Library

Executable

The law paragraph

In general, it is written in a kind of indeterministic fashion. For example: If a person
(which person?) is convicted of conducting a class A misdemeanor (which particular
misdemeanor? what exactly did the person do?), he or she will be sentenced to pay the
fine not exceeding 2000 dollars (exactly how much?), or to serve the prison term

not exceeding 6 months (exactly how long?) or both (which one of the three possible
combinations?).

Concrete accusation

John Smith is convicted of resisting arrest and disobeying the police officer. The prosecution
requests that he pay a fine of $1,500 and spend 30 days in jail.

Serving the sentence

All references (who, what, when, and possibly why) are resolved: the law violations
have been proven in the court of law, the judge sentenced John Smith according to the
letter of law, and everything is ready for him to serve his sentence in the nearby state
correction facility.

Table 4-3. Culinary Analogy

Binary Type

Culinary Equivalent

Static Library

Dynamic Library

Executable

Raw food ingredients (e.g., raw meat or raw vegetables)

Definitely suitable for consumption, but can’t be served right away, as they need a certain
amount of processing (marinating, adding spices, combining with other ingredients and
most importantly, termic processing) which must be completed first.

Pre-cooked or ready-made dish

Ready for consumption, but serving it as-is makes very little sense. However, if the rest of the
lunch is ready, it will make a great addition to the served meal.

Complete lunch course

This consists of the fresh bread of the day, salad of the hour, and the prepared main course,
which can be enriched by a certain amount of a warmed-up dish that was cooked a few
days ago.

71

CHAPTER 4 © THE IMPACT OF REUSING CONCEPT

Table 4-4. Tropical Jungle Expedition Analogy

Binary Type

Expedition Role Equivalent

Executable

Dynamic Library

Static Library

British lord, the leader of the expedition

Decorated combat veteran, known for his excellent survival skills and instincts. Assigned by
the British Geographic Society to investigate rumors that in the depths of tropical jungles
exist the temples of long-lost advanced civilizations, hiding numerous material and scientific
treasures. He is entitled to logistic support from the local British consular department, which
takes care of coordinating the effort with the local authorities and provides all kinds of help
with supplies, money, logistics, and transportation.

Local hunter, the expedition guide

This guy was born and raised in the expedition target geographic area. He speaks all local
languages, knows all tribal religions and cultures; has plenty of personal connections in the
area; knows all dangerous places and how to avoid them; has exceptional survival skills; is

a good hunter, excellent trail blazer, and can predict weather changes. Highly specialized in
everything related to the jungle, and can completely take care of himself. Most of his adult time
has been spent as a hired guide for expeditions like this one. Between expeditions he does
pretty much nothing, other than spending his time with the family, going fishing and hunting,
etc. Has neither the ambition nor the financial power to start anything himself.

Young personal assistant

Young British lad from the aristocratic family. Little or no real life experience, but Oxford
degree in archeology and knowledge of ancient languages, as well as the operational
knowledge of stenography, telegraphy, and Morse code earns him a place on the team. Even
though his skills are potentially applicable to many roles and many scenarios, he has never
been in the tropical areas, does not speak local languages, and will for the most part depend
on higher authority and/or higher expertise of various kinds. Most likely he will have no formal
authority over the course of expedition and no power of making the decisions of any kind
except in the domain of his immediate expertise, and only when asked to do so.

Note In the culinary analogy, you (the software designer) are running a restaurant in which (through the process of
building the executables) you prepare a meal for the hungry CPU who is hardly waiting to start munching the meal.

The Conclusion: The Impact of Binary Reuse Concept

As soon as the concept of binary reuse was proven to work, it had the following immediate consequences to the
landscape of software design:

¢ The appearance of dedicated projects whose intention is not to build executable code, but
instead to build a binary bundle of reusable code.

e Assoon as the practice of building the code for others to use starting gaining momentum, the
necessity to follow the encapsulation principle came to prominence.

72

CHAPTER 4 © THE IMPACT OF REUSING CONCEPT

The essence of the idea of encapsulation is that if we are building something for others

to use, it is always good if such export products come with clearly separated essential
features from the less important inner functionality details. One of the mandatory ways to
achieve it is to declare the interface, the set of quintessential functions that a user is most
interested in using.

The interface (set of quintessential/the most important functions) is typically declared in the
export header file (an include file that provides the top-level interface between the reusable
binary code and the potential user).

In a nutshell, the way to distribute the code for others to use is to deliver the software package carrying the
set of binary files and the set of export header files. The binary files export the interface, mostly the set of functions
quintessential for using the package.

The next wave of consequences followed immediately thereafter:

The appearance of SDKs (software development kits), which are, in the most basic version,
a set of export headers and binaries (static and/or dynamic libraries) intended for integration
with binaries created while compiling source files indigenous to the client project.

The appearance of the “one engine, variety of GUIs” paradigm.

There are plenty of examples where the popular engine gets used by different applications
presenting the different GUIs to the user, but running the same engine (loaded from

the same dynamic libraries) in the background. Typical examples in the domain of
multimedia are ffmpeg and avisynth.

A potential for controlled exchange of intellectual properties.

By delivering binaries instead of source code, the software companies may deliver their
technology without disclosing the ideas behind it. The availability of disassemblers makes
this story somewhat more complicated, but in the long run the basic idea still applies.

73

CHAPTER 5

Working with Static Libraries

In this chapter, I will review the typical life cycle in dealing with static libraries. I will start with simple guidelines for
creating static library, then I will provide the overview of typical use case scenarios, and finally I will take a closer look
at certain expert-level design tips and tricks.

Creating Static Library

A static library is created when the object files created by compiler from the set of source files are bundled together
into a single archive file. This task is performed by a tool called an archiver.

Creating Linux Static Library
On Linux, the archiver tool, called simply ar, is available as part of GCC toolchain. The following simple example

demonstrates the process of creating static library out of two source files:

$ gcc -c first.c second.c
$ ar rcs libstaticlib.a first.o second.o

By Linux convention, static libraries names start with prefix /ib and have the file extension .a.
In addition to performing its basic task of bundling the object files into the archive (static library), the ar can
perform several additional tasks:

e Remove one or more object files from library.
e Replace one or more object files from the library.
e Extract one or more object files from the library.

The complete list of supported features can be found on the ar tool man page (http://linux.die.net/man/1/ar).

Creating a Windows Static Library

The task of creating the static library on Windows does not substantially differ from the same task performed in Linux.
Even though it can be completed from the command line, the fact of life is that in the vast majority of cases the task of
creating the static library is performed by creating a dedicated Visual Studio (or other similar IDE tool) project with
the option of building the static library. When examining the project command line, you can see in Figure 5-1 that the
task boils down to essentially the same use of an archiver tool (albeit a Windows version).

75

http://linux.die.net/man/1/ar

CHAPTER 5 © WORKING WITH STATIC LIBRARIES

Win32 Application Wizard - DemoStaticLibrary

]
o Application Settings
3.1;_;' (o',
Overview Application type:
Application Settings Windows application
") Console application
DLL

@ Static library
Additional options:

[¥] Precompiled header

< Previous

Add common header files for:

Finish

] (

Cancel]

Figure 5-1. Creating a Win32 static library

Using the Static Library

Static libraries are used at the linking stage of projects that build executables or dynamic libraries. The static libraries’
names are typically passed to the linker together with the list of object files that need to be linked in. If the project also
links in the dynamic libraries, their names are the part of the same list of linker input arguments.

Recommended Use Case Scenarios

Contiguration: | Active{Uebug)

Common Properties
a Configuration Properties
General
Debugging
VC++ Directories
C/C++

Librarian

[

General
Command Line
XML Document Generator
. Browse Information
» Build Events
Custom Build Step

The static libraries are the most basic way of binary sharing the code, which has been available for a long time before
the invention of dynamic libraries. In the meantime, the more sophisticated paradigm of dynamic libraries has taken
over the domain of binary code sharing. However, there are still a few scenarios in which resorting the use of static
libraries still makes sense.
The static libraries are perfectly suitable for all the scenarios implementing the core of various (mostly
proprietary) algorithms, ranging from elementary algorithms such as search and sort all the way to very complex
scientific or mathematical algorithms. The following factors can supply the extra push toward deciding to use the

static library as the form of delivering the code:

76

e The overall code architecture can be described more as a “wide collection of various abilities”
instead of a “module with the strictly defined interface.”

e The actual computation does not rely on a specific OS resource (such as a graphics card’s
device driver, or high priority system timers, etc.) that requires loading the dynamic libraries.

CHAPTER 5 © WORKING WITH STATIC LIBRARIES

e The end user wants to use your code, but does not necessarily want to share it with anybody else.

e Code deployment requirements suggest the need for monolithic deployment (i.e. small overall
number of binary files delivered to the client’s machine).

Using the static library always means tighter control over the code, albeit at the price of reduced flexibility.

The modularity is typically reduced, and the appearance of new code versions typically means recompiling every
application that uses it.

In the domain of multimedia, the signal processing (analysis, encoding, decoding, DSP) routines are typically
delivered in the form of static libraries. On the other hand, their integration into the multimedia frameworks (DirectX,
GStreamer, OpenMAX) are implemented in the form of dynamic libraries which link in the algorithm-related static
libraries. In this scheme, the simple and strict duties of communicating with the framework are delegated to the thin
shell of dynamic library part, whereas the signal processing complexities belong to the static library part.

Static Libraries Tips and Tricks

The following section covers the list of important tips and tricks related to the use of static libraries.

Potential for Losing the Symbol Visibility and Uniqueness

The way the linker integrates the static library sections and symbols into the client binary is genuinely fairly simple
and straightforward. When linked into the client binary, the static library sections get seamlessly combined with
the sections coming from the client binary’s indigenous object files. The static library symbols become the part of
the client binary symbols list and retain their original visibility; the static library’s global symbols become the client
binary’s global symbols, and the static library’s local symbols become the client binary’s local symbols.

When the client binary is the dynamic library (i.e. not the application), the outcome of these simple and
straightforward rules of integration may be compromised by the other dynamic libraries’ design rules.

Where is the twist?

The implicit assumption in the concept of dynamic libraries is the modularity. It is not wrong to think of a
dynamic library as of a module that is designed to be easily replaced when the need emerges. In order to properly
implement the modularity concept, the dynamic library code is typically structured around the interface, the set of
functions that exposes the module’s functionality to the outer world, whereas the internals of the dynamic library are
typically kept away from the prying eyes of the library users.

As the luck would have it, the static libraries are typically designed to provide the “heart and soul” of the dynamic
libraries. Regardless of how precious the static library contribution is to the overall functionality of its host dynamic
library, the rules of designing the dynamic libraries stipulate that they should export (i.e., make visible) only the bare
minimum required for library to communicate with the outer world.

As a direct consequence of such design rules (as you will see in the following chapters), the visibility of the static
library symbols ends up being subdued. Instead of remaining globally visible (which they were immediately after the
linking completed), the static library symbols immediately become either demoted into the private ones or may even
become stripped out (i.e., completely eliminated from the list of dynamic library symbols).

On the other hand, a peculiar yet very important detail is that the dynamic libraries enjoy the complete
autonomy over their local symbols. In fact, several dynamic libraries may be loaded into the same process, each
dynamic library featuring local symbols that have the same names as the other dynamic libraries’ local symbols. Yet
the linker manages to avoid any naming conflicts.

The allowed existence of multiple instances of the same-named symbols may lead to a number of unwanted
consequences. One scenario is known as the multiple instances of singleton class paradox, which will be illustrated in
more detail in Chapter 10.

77

CHAPTER 5 © WORKING WITH STATIC LIBRARIES

Counterindicated Use Case Scenarios

Say you have a piece of code that provides certain functionality, and you must decide whether or not to encapsulate it
in the form of a static library. Here are some typical scenarios in which the static library case is counterindicated:

e When linking the static library requires linking several dynamic libraries (except maybe the
1ibc), then the static library probably should not be used, and the matching dynamic library
option should be favored.

The matching dynamic library option may mean one of the following:

e The existing dynamic library version of the same library should be used.

or

e The library source code (if available) should be rebuilt to create the dynamic library.
or

e The available static library should be dismantled into the object files, which (except in a
few rare cases) may be used in the build project that builds the dynamic library.

This is completely analogous to the situation that happens when a person with special needs
(special eating habits, or special medical/environmental conditions requirements) decides to
stay at friend’s house when visiting the town in which the friend lives. In order for the friend to
accommodate the guest’s special needs, he needs to significantly rearrange his everyday life
in order to make unusual extra trips to the specialty food stores, or provide special conditions
which he himself does not really need in his everyday life. It makes far more sense for the
visitor to take a more independent role, such as getting a hotel room or to arranging the
support for his specific needs; and once his own references are resolved, get in touch with the
friend whose town he is visiting.

e Ifthe functionality you implement requires the existence of single instance of a class
(singleton pattern), following the good dynamic library design practices will ultimately lead
to the strong suggestion to encapsulate your code in a dynamic instead of a static library. The
rationale behind this was explained in the previous paragraph.

A good real life example of this scenario is the design of a logging utility. It typically
features a single instance of a class visible to a variety of functionality modules,
specializing in serializing all possible log statements and sending the log stream to the
recording medium (stdout, hard disk or network file, etc.).

If the functionality modules are implemented as dynamic libraries, hosting the logger class
in another dynamic library is strongly suggested.

Specific Rules of Linking Static Libraries
Linking static libraries in Linux adheres to the following set of rules:
e Linking static libraries happens sequentially, one static library by one.

e Linking static libraries starts from the last static library on the list of static libraries passed to
the linker (from command line or through the makefile), and goes backwards, toward the first
library on the list.

e Thelinker searches the static libraries in detail, and of all the object files contained in the
static library it links in only the object file, which contains symbols that are really needed by
the client binary.

78

CHAPTER 5 © WORKING WITH STATIC LIBRARIES

As a result of these specific rules, it is sometimes required to specify the same static library more than once on the
same list of static libraries passed to the linker. The chances of this happening increase when a static library provides
several unrelated sets of functionalities.

Converting Static to Dynamic Library
Static library can be converted to dynamic library fairly simply. All you need to do is the following:

e Use the archiver (ar) tool to extract all the object files from the library, like
$ ar -x <static library>.a

which results with the collection of object files extracted from the static library into the
current folder.

On Windows, you may use the 1ib. exe tool which is available through the Visual Studio
console. Based on the MSDN online documentation (http://support.microsoft.com/
kb/31339) it is possible to extract at least one object file (you first need to list the static
library contents, which can be also achieved by using the 1ib. exe tool).

e Build the dynamic library from the set of the extracted object files to the linker.

This recipe works in almost all cases. The special cases in which additional requirements must be satisfied are
featured next.

Static Libraries Issues on 64-bit Linux
Using the static libraries on 64-bit Linux comes with an interesting corner case scenario. Here is the outline:

e Linking the static library into the executable does not differ from doing the same thing on
32-bit Linux.

e However, linking the static library into the shared library requires that the static library be built
with either the - fPIC compiler flag (suggested by the compiler’s error printout) or with the
-mcmodel=1arge compiler flag.

This is quite interesting scenario.

First, a mere mentioning of the -fPIC compiler flag in the context of static libraries may be a bit confusing.

As I'will discuss in the next chapter dealing with dynamic libraries, using the - fPIC flag has been traditionally
associated with building dynamic libraries.

It is a popular belief that passing the - fPIC flag to the compiler is one of the two key requirements strictly
required by dynamic libraries, but never ever required for compiling static library. Any mention of the -fPIC compiler
flag in the context of static libraries is a bit shocking.

As matter of fact, this belief is not exactly correct but it’s fairly error-safe. The truth is that the use of - fPIC flag is
not the decisive factor of whether the static or dynamic library will be created; it is the -shared linker flag.

Back to the harsh reality. The true reason why the compiler insists on compiling the static library with the
-fPIC flag is that on 64-bit platform the range of address offsets cannot be covered by the usual compiler assembler
constructs in which the 32-bit registers are used. The compiler needs a kick of sort (the use of -fPIC or the
-mcmodel=1arge compiler flags) in order to implement the same code with the 64-bit registers.

79

http://support.microsoft.com/kb/31339
http://support.microsoft.com/kb/31339

CHAPTER 5 © WORKING WITH STATIC LIBRARIES

Resolving the Problem In Real Life Scenarios

Itis not completely impossible to get the software package designed much before the era of 64-bit operating systems,
in which the static library was built without the -fPIC (or -mcmodel=1arge) flag. Also, the folks who deliver their static
libraries are not necessarily the superstars of dealing with the issues related to compilers/linkers/libraries/ (unlike the
guys who complete reading this book ;). If you have had luck (as I have) in getting the static library from the third party
developers who were not aware of this particular scenario, there is some bad news: there is no easy workaround for
this kind of problem.

Trying to dismantle the static library into the object file does not change the situation even for a tiny bit; the
object files haven’t been compiled with the compiler flags required for this particular scenario, and no library
conversion magic can help avoiding the need to recompile the static library sources.

The only true solution to this kind of a problem is that someone who has the source code (the code distributor
or the end user) modifies the build parameters (edit the Makefile) by adding the required flags to the set of
compiler flags.

If that is any consolation, imagine that you don’t have the library source code at all. Now, that would be scary, huh?

80

CHAPTER 6

Designing Dynamic Libraries: Basicy

Chapter 5 covered the details of the basic ideas behind the static libraries concept, so now it’s time to examine the
details of dealing with dynamic libraries. This is important because these details affect the everyday work of the
programmer/software designer/software architect.

Creating the Dynamic Library

The compilers and linkers typically provide a rich variety of flags which may ultimately provide a lot of flavors to the
process of building a dynamic library. For things to be really interesting, even the simplest, widely used recipe that
requires one compiler and one linker flag may not be as plain and simple as it initially looks, and the deeper analysis
may uncover a really interesting set of facts. Anyways, let’s start from the beginning.

Creating the Dynamic Library in Linux
The process of building dynamic libraries has traditionally consisted of the following minimum set of flags:
e -fPIC compiler flag
e -sharedlinker flag
The following simple example demonstrates the process of creating the dynamic library out of two source files:

$ gcc -fPIC -c first.c second.c
$ gcc -shared first.o second.o -o libdynamiclib.so

By Linux convention, dynamic libraries start with the prefix 1ib and have the filename extension . so.

If you follow this recipe, there’s little chance you'll go astray. If these flags are passed to the compiler and linker,
respectively, whenever you intend to build a dynamic library, the ultimate result will be the correct and usable
dynamic library. However, taking this recipe as undisputed and universal truth is not the right thing to do. More
precisely, as much as there is really nothing wrong with passing the -shared flag to the linker, the use of the -fPIC
compiler flag is a really intriguing topic, which deserves some extra attention.

The rest of this section will be primarily focused on the Linux side (even though some of the concepts live in
Windows, too).

About the -fPIC Compiler Flag

The details about using the -fPIC flag can be best illustrated trough the sequence of following questions and answers.

81

CHAPTER 6 * DESIGNING DYNAMIC LIBRARIES: BASICS

Question 1: What does -fPIC stand for?

The “PIC” in -fPIC is the acronym for position-independent code. Before the concept of position-independent

code came to prominence, it was possible to create dynamic libraries that the loader was capable of loading into the
process memory space. However, only the process that first loaded the dynamic library could enjoy the benefits of its
presence; all other running processes that needed to load the same dynamic library had no choice other than loading
another copy of the same dynamic library into memory. The more processes needed to load a particular dynamic
library, the more copies in memory had to exist.

The underlying cause of such limitations was a suboptimal loading procedure design. Upon loading the dynamic
library into the process, the loader altered the dynamic library’s code (.text) segment in a way that made all the
dynamic library’s symbols meaningful solely within the realm of the process that loaded the library. Even though
this approach was suitable for the most basic runtime needs, the ultimate result was that the loaded dynamic library
was irreversibly altered so that it would be fairly hard for any other process to reuse the already loaded library.

This original loader design approach is known as load-time relocation and will be discussed in greater detail in
subsequent paragraphs.

The PIC concept was clearly a huge step ahead. By redesigning the loading mechanism to avoid tying the loaded
library’s code (.text) segment to the memory map of the first process that loaded it, the desired extra functionality
notch was achieved by providing the way for multiple processes to seamlessly map to its memory map the already
loaded dynamic library.

Question 2: Is the use of the -fPIC compiler flag strictly required to build
the dynamic library?

The answer is not unique. On 32-bit architecture (X86), it is not required. If not specified, however, the dynamic
library will conform to the older load-time relocation loading mechanism in which only the process that loads the
dynamic library first will be able to map it into its process memory map.

On 64-bit architectures (X86_64 and 1686), the simple omission of the -fPIC compiler flag (in an attempt to
implement the load-time relocation mechanism) will result with the linker error. A discussion of why this happens
and how to circumvent the problem will be provided later in this book. The remedy for this kind of situation is to pass
either the -fPIC flag or -mcmodel=1arge to the compiler.

Question 3: Is the use of the -fPIC compiler flag strictly confined to the domain
of dynamic libraries? Can it be used when building the static library?

It is popular belief that the use of the -fPIC flag is strictly confined to the realm of dynamic libraries. The truth is a bit
different.

On 32-bit architecture (X86), it does not really matter if you compile the static library with -fPIC flag or not. It will
have a certain impact on the structure of the compiled code; however, it will have negligible impact on the linking and
overall runtime behavior of the library.

On 64-bit architecture (X86_64 for sure), things are even more interesting.

e The static library linked into the executable may be compiled with or without the -fPIC
compiler flag (i.e., it does not matter whether you specify it or not).

However:

e The static library linked into the dynamic library must be compiled with -fPIC flag !!!
(Alternatively, instead of the - fPIC flag, you may specify the -mcmodel=1arge compiler flag.)

If the static library was not compiled with either of the two flags, the attempt to link it in
into the dynamic library results in the linker error shown in Figure 6-1.

82

CHAPTER 6 * DESIGNING DYNAMIC LIBRARIES: BASICS

Jusr/binfld: ../staticLib/libstaticlinkingdemo.a(testStaticLinking.o):
relocation R_X86_64_32 against ".rodata’ can not be used when making a
shared object; recompile with -fPIC

../staticLib/libstaticlinkingdemo.a: could not read symbols: Bad value

Figure 6-1. Linker error

An interesting technical discussion related to this problem may be found in the following web article:
www. technovelty.org/c/position-independent-code-and-x86-64-1libraries.html.

Creating the Dynamic Library in Windows

The process of building a simple dynamic library in Windows requires following a fairly simple recipe. The sequence
of screenshots (Figures 6-2 through 6-6) illustrates the process of creating the DLL project. Once the project is created,
building the DLL requires nothing more than launching the Build command.

E

New Project

| RecetTemptes e e e

Installed Templates

Search Installed Templates 2

[Win32 Console Application Visual C++ AYPS Vil G
4 Visual C++
ATL
CLR
General
MFC
Test
Win32
Other Languages
Other Project Types
Database
Test Projects

Online Templates

A project for creating a Win32 application,
; : console application, DLL, or static library
Win32 Project Visual C++

wl

Name: DemoDLL
Location: CiUsers\milan\ d Browse..,

Solution name: DemoDLL || Create directory for solution
|| Add to source control

Figure 6-2. The first step in creating Win32 dynamic library (DLL)

83

http://www.technovelty.org/c/position-independent-code-and-x86-64-libraries.html

CHAPTER 6 = DESIGNING DYNAMIC LIBRARIES: BASICS

Welcome to the Win32 Application Wizard

Overview These are the current project settings:
Application Settings :
L]

Click Finish from any window to accept the current settings.

After you create the project, see the project’s readme. txt file for information
about the project features and files that are generated.

[<revocs) (Chet>) (Frish) (_Conedl)

Figure 6-3. Click the Next button to specify DLL choice

84

CHAPTER 6 * DESIGNING DYNAMIC LIBRARIES: BASICS

Overview Application type:
(*) Console application
© DLL
() Static library

Additional options:
[7] Empty project
[T Export symbols

[V] Precompiled header

Add common header files for:
[[an
[CTmrc

Figure 6-4. Available Win32 DLL Settings

85

CHAPTER 6 * DESIGNING DYNAMIC LIBRARIES: BASICS

Configuration: |Active(Debug)

v| Platform: [Active(Win32) v| [Configuration Manager... |

> Common Properties
4 Configuration Properties

General
Debugging
VC++ Directories

a C/Cs+

General
Optimization
Preprocessor
Code Generation
Language
Precompiled Headers
Output Files
Browse Information
Advanced
| Command Line
Linker
Manifest Tool
XML Document Generator
Browse Information
Build Events
Custom Build Step

1, »

All Options

/21 fnologo /W3 /WX- /Od /Oy- /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_USRDLL" /D "DEMODLL_EXPORTS"
/D "_WINDLL" /D "_UNICODE" /D "UNICODE" /Gm /EHsc /RTC1 /GS Ap:precise /Zc:wehar_t /ZcforScope /Yu"StdAfxh"
/Fp"Debug\DemoDLL pch"” /Fa"Debug\" /Fo"Debug\" /Fd"Debug'vc100.pdb" /Gd /analyze- /emorReport:queue

Addtional Options Inherit from parent or project defaults

[ooc][concel]| Appty |

Figure 6-5. Created DLL compiler flags

86

CHAPTER 6 * DESIGNING DYNAMIC LIBRARIES: BASICS

DemoDLL Property Pages
Configuration: | Active(Debug) * | Platform: |Active(Win32) Vl [Configuration Manager... l
General ~| M Options
Optimization AUT:"C:\Users\icelero'\Projects‘product-1\runk \Media Engine \Windows\32B#\GP Ulntel_MultiResP PFLVTranscoder
p “DemoDLL\Debug'DemoDLLdl" /INCREMENTAL /NOLOGO /DLL "kemel32lib" "user32lib" "gdi32Jib" "winspool ib"
TTADCEON “comdig32ib" "advapi32lib" "shell32b" "ole32ib" "oleaut32Jib" "uuid ib" "odbc32lib" “odbccp32lib” /MANIFEST
Code Generation /ManifestFile:"Debug\DemoDLL dll intermediate manifest” /ALLOWISOLATION /MANIFESTUAC:"level="aslnvoker

Language uiAccess=Talse™ /DEBUG /PDB:"C:\Users\icelero\Projects'\product-1\trunk'\MediaEngine\Windows\32B¢
; \GPUlIntel_MuttiResPPFLVTranscoder\DemoDLL\Debug\DemoDLL pdb” /SUBSYSTEM:-WINDOWS /PGD:"C:\Users\icelero

Precompiled Heade — | \Projects'\product-1\tunk\MediaEngine\Windows\32B#\GP Ulntel_MutiResPPFLVTranscoder\DemoDLL\Debug

Output Files \DemoDLLpgd" /TLBID:1 /DYNAMICBASE /NXCOMPAT /MACHINE:X86 /ERRORREPORT-QUEUE

Browse Information
Advanced
Command Line
4 Linker
General
Input
Manifest File
Debugging
System
Optimization
Embedded IDL
Advanced
Command Line
Mandest Tool Addtional Options Inhesit from parent or project defautts (7]
XML Document Genera
. Browse Information
- Build Events
Custom Build Step

4 nr (3

[oK] I Cancel Apply

Figure 6-6. Created DLL linker flags

Designing Dynamic Libraries

The process of designing a dynamic library in general does not differ much from designing any other piece of
software. Given the specific nature of dynamic libraries, there are a few specific points of importance that need to be
discussed in detail.

Designing the Binary Interface

By its nature, a dynamic library in general provides a specific functionality to the outer world, the manner of which
should minimize the client’s involvement in the inner functionality details. The way it is achieved is through the
interface, where the client is relieved to the maximum extent of knowing anything it does not need to worry about.

The concept of interfacing, which is omnipresent in the domain of object-oriented programming, obtains an
extra flavor in the domain of binary code reuse. As explained in “The Impact of the Binary Reuse Concept” section in
Chapter 5, the immutability of the application binary interface (ABI) between the build-time and runtime phases of
dynamic linking is the most basic requirement of successful dynamic linking.

At first glance, the design of the ABI does not differ much from the design of the API. The basic meaning of the
concept of the interface remains unchanged: a set of functions that need to be made available to the client in order to
use the services provided by specialized module.

87

CHAPTER 6 * DESIGNING DYNAMIC LIBRARIES: BASICS

Indeed, as long as the program is not written in C++, the design effort of the dynamic library’s ABI does not
require any more thinking than designing the API of a reusable software module. The fact that the ABI is just a set of
linker symbols that needs to be loaded at runtime does not make things substantially different.

However, the impact of the C++ language (most notably, the lack of strict standardization) requires additional
thinking when designing the dynamic library ABI.

C++ Issues

An unfortunate fact of life is that progress in the domain of programming languages was not symmetrically followed
by the design of linkers, or to say precisely, by the strictness of the normative bodies that bring the standards in the
software domain. The good reasons for not doing so will be pointed out throughout this section. An excellent article
illustrating these issues is “Beginner’s Guide To Linkers” at waw. lurklurk.org/linkers/linkers.html.

Let start with the plain facts and review a few of the issues.

Issue #1: C++ Imposes More Complex Symbol Name Requirements

Unlike the C programming language, the mapping of C++ functions to the linker symbols brings a lot more challenges
to the linker design. The object-oriented nature of C++ brings the following extra considerations:

e Ingeneral, C++ functions are rarely standalone; they instead tend to be affiliated with various
code entities.

The first thing that comes to mind is yes, in C++, functions generally belong to the classes
(and as such even have the special name: methods). Additionally, classes (and therefore
their methods) may belong to the namespaces. The situation gets even more complicated
when templates come to the play.

In order to uniquely identify the function, the linker must somehow include the function
affiliation information to the symbol it creates for the function entry point.

e The C++ overloading mechanism allows that different methods of the same class have the
same name, the same return value, but differ in terms of input arguments lists.

In order to uniquely identify the functions (methods) sharing the same name, the linker
must somehow add the information about the input arguments to the symbol it creates for
the function entry point.

The linker design efforts to respond to these substantially more complex requirements resulted in the technique
known as name mangling. In a nutshell, name mangling is the process of combining the function name, the
function’s affiliation information, and the function’s list of arguments to create the final symbol name. Usually, the
function affiliation is prepended (prefixed), whereas the function signature information is appended (postfixed) to the
function name.

The major source of trouble is that the name mangling conventions are not uniquely standardized, and to
this day remain vendor-specific. The Wikipedia article (http://en.wikipedia.org/wiki/Name_mangling#How
different_compilers_mangle_the_same_functions)illustrates the differences in name mangling implementations
across different linkers. As stated in the article, plenty of factors other than just the ABI play a role in implementing
the mangling mechanism (exception handling stack, layout of virtual tables, structure and stack frame padding).
Given the multitude of various requirements, the Annotated C++ Reference Manual even recommends maintaining
individual mangling schemes.

88

http://www.lurklurk.org/linkers/linkers.html
http://en.wikipedia.org/wiki/Name_mangling#How_different_compilers_mangle_the_same_functions
http://en.wikipedia.org/wiki/Name_mangling#How_different_compilers_mangle_the_same_functions

CHAPTER 6 * DESIGNING DYNAMIC LIBRARIES: BASICS

C-STYLE FUNCTIONS

When using the C++ compiler, interesting things happen when using C-style functions. Even though the

C functions do not require mangling, the linker by default creates mangled names for them. In cases when it
is desired to avoid mangling, a special keyword must be applied in order to suggest to the linker to not apply
mangling.

The technique is based on using the extern "C" keyword. When a function is declared (typically in a header file)
in the following way

#ifdef _ cplusplus
extern "C"

{
#endif // _ cplusplus

int myFunction(int x, int y);

#ifdef _ cplusplus

}
#endif // _ cplusplus

the ultimate result is that linker creates its symbol deprived of any mangling. Later in this chapter the section
about exporting ABI will contain a more detailed explanation of why is this technique is a very important one.

Issue #2: Static Initialization Order Fiasco

One of the legacies of the C languages is that linker can handle fairly simply initialized variables, be it simple data
types or the structures. All that linker needs to do is to reserve the storage in the .data section and write the initial
value into that location. In the domain of the C language, the order in which the variables are initialized is generally of
no particular importance. All that matters is that the variables initialization be completed before the program starts.

In C++, however, the data type is an object in general, and its initialization is completed at runtime through
the process of object construction, which is completed when the class constructor method completes its execution.
Obviously, the linker needs to do far many more things in order to initialize the C++ objects. To facilitate the linker’s
job, the compiler embeds into the object file the list of all constructors that need to be executed for a specific file, and
stores this information into the specific object file segment. At link time, the linker examines all the object files and
combines these construction lists into the final list that will be executed at runtime.

It is important to mention at this point that the linkers do observe the order of executing the constructors
based on the inheritance chain. In other words, it is guaranteed that the base class constructor will be executed first,
followed by the constructors of derived classes. This much of a logic embedded into the linker is sufficient for most of
the possible scenarios.

The linker, however, is not indefinitely smart. There is unfortunately a whole category of cases in which a
programmer does not in any way deviate from the C++ syntax rules, yet the linker’s limited logic nevertheless causes
very nasty crashes that happen before the program is loaded, way before any debugger can catch it.

The typical scenario of this kind happens when the initialization of an object relies on some other object being
initialized beforehand. I will first explain the underlying mechanism of the problem, and then suggest ways for the
programmer to avoid them. In circles of C++ programmers this class of problems is typically referred to as a static
initialization order fiasco.

89

CHAPTER 6 * DESIGNING DYNAMIC LIBRARIES: BASICS

Note An excellent illustration of the problem and the solution is presented in Scott Meyer’s quintessential “Effective
C++" book (“Item 47: Ensure that non-local static objects are initialized before they’re used”).

Problem Description

Non-local static objects are the instances of a C++ class whose visibility scope exceeds the boundaries of a class.
More specifically, such objects may be one of the following:

e Defined at global or namespace scope
e Declared static in a class
e Defined static at file scope

Such objects are routinely initialized by the linker before the program starts running. For each of such objects,
the linker maintains the list of constructors required to create such object, and executes them in the order specified by
the chain of inheritance.

Unfortunately, this is the only object initialization ordering scheme that the linker recognizes and implements.
Now is the time for the special twist in the whole story.

Let’s assume that one of these objects depends on some other object being initialized beforehand. Assume for
example that you have two static objects:

e Object A (instance of class a), which initializes the network infrastructure, queries the list
of available networks, initializes the sockets, and establishes the initial connection with the
authentication server.

e ObjectB (instance of class b), which is required to send the message over the network to the
remote authentication server, by calling the interface methods on the instance of class b.

Obviously, the correct order of initialization is that object B gets initialized after object A. It is obvious that
violating the order of object initialization has a very real potential for wreaking havoc. Even if the designers have been
careful enough to envision cases when the initialization is not completed (i.e., checking the pointer values before
making the actual calls), the best that can happen is that class B’s task does not get completed when expected.

As a matter of fact, there is no rule that dictates the order in which the initialization of static objects will happen.
Attempts to implement the algorithm that would examine the code recognize such scenarios and suggest the correct
ordering to the linker have proven to belong to the category of problems that are very hard to solve. The presence of
other C++ language features (templates) only aggravates the path to the problem solution.

As the ultimate consequence, the linker may decide to initialize the non-local static object in any order. To make
things worse, the linker’s decision of which order to follow may depend on an unimaginable number of unrelated
runtime circumstances.

In real life, such problems are scary for a variety of reasons. First, they are hard to track as they result in crashes
happening before the process loading is connected, much before the debugger can be of any help. Additionally, the
crash occurrences may not be persistent; the crash may happen every now and then, or in some scenarios every time
with different symptoms.

90

CHAPTER 6 * DESIGNING DYNAMIC LIBRARIES: BASICS

Avoiding the Problem

Even though the problem is not for the faint of the heart, there is a way to avoid the ugly mess. The linker rules do not
specify the order of initializing the variables, but the order is very precisely specified for the static variables declared
inside a function body. Namely, the object declared as static inside the function (or class method) is initialized when
its definition is encountered for the first time during a call to that function.

The solution to this problem becomes obvious. The instances should not be kept free-roaming in the data
memory. Instead, they should be

e Declared as static variables inside a function.

¢ A function should be conveniently used as the only way to access such a variable (returning
the reference to the object, for example) defined static at file scope.

In summary, the following two possible solutions are traditionally applied toward solving these kinds of problems:

e SOLUTION 1: Provide the custom implementation of the _init() method, a standard method
called immediately when the dynamic library is loaded, in which a class static method
instantiates the object, thus forcing initialization by the construction. Consequently, the
custom implementation of the standard _fini(), a standard method called immediately
before the dynamic library is unloaded, may be provided in which the object deallocation may
be completed.

e SOLUTION 2: Replace direct access to such object with a call to a custom function. Such
function will contain a static instance of the C++ class, and will return the reference to
it. Before the first access, a variable declared static will be constructed, ensuring that its
initialization will happen before the first actual call. The GNU compiler as well as the C++11
standard guarantees that this solution is thread safe.

Issue #3: Templates

The concept of templates is introduced with the purpose of eliminating duplicated and possibly scattered
implementations of the same algorithms that mutually differ only in the data type on which the algorithm operates.
As useful the concept is, it introduces additional problems to the linking procedure.

The essence of the problem is that different specializations of templates have completely different machine
code representations. As luck would have it, once written, the template may be specialized in about gazillion ways,
depending on how the template user wanted to use it. The following template

template <class T>
T max(T x, Ty)

if (x>y) { return x;}
else { return y;}

}

may be specialized for as many data types that support comparison operator (simple data types ranging from
char all the way to double are the immediate candidates).

When the compiler encounters the template, it needs to materialize it into some form of machine code. But, it
can’t be done until all other source files have been examined to figure out which particular specialization took place
in the code. As this may be relatively easy for the case of standalone applications, the task requires some serious
thinking when the template is exported by a dynamic library.

91

CHAPTER 6 * DESIGNING DYNAMIC LIBRARIES: BASICS

There are two general approaches to solving these kinds of problems:

e The compiler can generate all possible template specializations and create weak symbols for
each of them. The complete explanation of the weak symbols concept can be found in the
discussion about linker symbol types. Note that the linker has the freedom to discard weak
symbols once it determines that they are actually not needed in the final build.

e The alternative approach is that the linker does not include the machine code
implementations of any of the template specializations up until the very end. Once everything
else is completed, the linker may examine the code, determine exactly which specializations
are really needed, invoke the C++ compiler to create the required template specializations,
and finally, insert the machine code into the executable. This approach is favored by the
Solaris C++ compiler suite.

Designing the Application Binary Interface

In order to minimize potential troubles, improve the portability to different platforms, and even enhance the
interoperability between the modules created by different compilers, it is highly recommended to practice the
following guidelines.

Guideline #1: Implement the Dynamic Library ABI as a Set of C-style Functions
There are a plenty of good reasons of why this advice makes a lot of sense. For example, you can

e Avoid various issues based on C++ vs. linker interaction

e Improve cross-platform portability

e Improve interoperability between the binaries produced by different compilers. (Some of the
compilers tend to produce binaries that can be used by the other compilers. Notable examples
are the MinGW and Visual Studio compilers.)

In order to export the ABI symbols as C-style functions, use the extern "C" keyword to direct the linker to not
apply the name mangling on these symbols.

Guideline #2: Provide the Header File Carrying the Complete ABI Declaration

The “complete ABI declaration” means not only function prototypes, but also the preprocessor definitions, structures
layouts, etc.

Guideline #3: Use Widely-Supported Standard C Keywords

More specifically, using your project-specific data type definitions, or platform-specific data types, or anything that
is not universally supported across different compilers and/or different platforms is nothing but an invitation for
problems down the road. So, try not to act as a fancy-smart-wizz guy; try instead to write your code as plainly and
simply as possible.

Guideline #4: Use a Class Factory Mechanism (C++) or Module (C)

If the inner functionality of the dynamic library is implemented by a C++ class, it still does not mean that you
should violate guideline #1. Instead, you should follow the so-called class factory approach (Figure 6-7).

92

CHAPTER 6 * DESIGNING DYNAMIC LIBRARIES: BASICS

Caller

Class Factory

\:I)

o
Interface < 8 Interface

Figure 6-7. The class factory concept

The class factory is a C-style function that represents one or more C++ classes to the outer world (similar to a
Hollywood agent who represents many star actors in negotiations with film studios).

As arule, the class factory has intimate knowledge of the C++ class layout, which is typically achieved by
declaring it as a static method of the same C++ class.

When called by the interested client, the class factory creates an instance of the C++ class it represents. In order
to keep the details of the C++ class layout away from the prying eyes of the client, it never forwards the instance of the
class back to the caller. Instead, it casts the C++ class to a C-style interface and casts the pointer to the created C++
object as the interface pointer.

Of course, in order for this scheme to function correctly, the C++ class represented by the class factory is
mandated to implement the export interface. In the particular case of C++, it means that the class should publicly
inherit the interface. That way, casting the class pointer to the interface pointer comes very naturally.

Finally, this scheme requires that a certain allocation tracking mechanism keeps track of all the instances
allocated by class factory function. In Microsoft Component Object Model (COM) technology, the reference counting
makes sure that the allocated object gets destroyed when it’s no longer being used. In other implementations, it is
suggested to keep the list of pointers to the allocated objects. At termination time (delineated by a call to a cleanup
function of a kind), each list element would be deleted, and the list finally cleaned up.

The C equivalent of the class factory is typically referred to as module. It is the body of code that provides the
functionality to the outer world through a set of carefully designed interface functions.

The modular design is typical for low-level kernel modules and device drivers, but its application is by no means
limited to that particular domain. The typical module exports functions such as Open() (or Initialize()), one or
more worker functions (Read(), Write(), SetMode(), etc.), and finally, Close() (or Deinitialize()).

Very typical for modules is the use of handle, the module instance identifier of a kind, very frequently
implemented as void pointer, a predecessor of this pointer in C++.

The handle typically gets created within the Open() method and is returned to the caller. In calls to the other
module interface methods, the handle is the mandatory first function argument.

In the cases where C++ is not an option, designing the C module is completely viable equivalent to the
object-oriented concept of a class factory.

93

CHAPTER 6 * DESIGNING DYNAMIC LIBRARIES: BASICS

Guideline #5: Export Only the Really Important Symbols

By being modular in nature, the dynamic library should be designed so that its functionality is exposed to the outer
world through a cleanly defined set of function symbols (the application binary interface, ABI), whereas the symbols
of all other functions used only internally should be accessible to the client executables.

There are several benefits to this approach:

e The protection of the proprietary contents is enhanced.

e Thelibraryloading time may be tremendously improved as a result of significant reduction in
number of exported symbols.

e The chance of conflicted/duplicated symbols between the different dynamic libraries
becomes significantly reduced.

The idea is fairly simple: the dynamic library should export only the symbols of the functions and data that are
absolutely needed by whoever loads the library, and all the other symbols should be made invisible. The following
section will bring more details about controlling the dynamic library symbols visibility.

Guideline #6: Use Namespaces to Avoid Symbol Naming Collision

By encompassing the dynamic library’s code into the unique namespace, you eliminate the chances that the different
dynamic libraries feature identically named symbols (the function Initialize() is an excellent example of a function
that may likely appear in dynamic libraries of completely different scopes of functionality).

Controlling Dynamic Library Symbols’ Visibility

From the high-level perspective, the mechanism of exporting/hiding the linker symbols is solved almost identically
in both Windows and Linux. The only substantial difference is that by default all Windows DLL linker symbols are
hidden, whereas in Linux all the dynamic library linker symbols are by default exported.

In practice, due to a set of features provided by GCC in an attempt to achieve cross-platform uniformity, the
mechanisms of symbol exporting look very similar and do pretty much the same thing, in the sense that ultimately
only the linker symbols comprising the application binary interface are exported, whereas all remaining symbols are
made hidden/invisible.

Exporting the Linux Dynamic Library Symbols

Unlike in Windows, in Linux all of the dynamic library’s linker symbols are exported by default, so they are visible
by whoever tries to dynamically link the library. Despite the fact that such default makes dealing with the dynamic
libraries easy, keeping all the symbols exported/visible is not the recommended practice for many different reasons.
Exposing too much to the customers’ prying eyes is never a good practice. Also, loading just the required minimum
number of symbols vs. loading a gazillion of them may make a noticeable difference in time required to load the library.
It is obvious that some kind of control over which symbols get exported is needed. Furthermore, since such control
is already implemented in Windows DLLs, achieving parallelism would tremendously facilitate the portability efforts.
There are several mechanisms for how control over symbol exporting may be achieved at build time.
Additionally, the brute-force approach may be applied by running the strip command-line tool over the dynamic
library binary. Finally, it is possible to combine several different methods toward the same goal of controlling the
visibility of the dynamic library’s symbols.

94

CHAPTER 6 * DESIGNING DYNAMIC LIBRARIES: BASICS

The Symbol Export Control at Build Time
The GCC compiler provides several mechanisms of setting up the visibility of linker symbols:

METHOD 1: (affecting the whole body of code)
-fvisibility compiler flag

As stated by the GCC man page (http://linux.die.net/man/1/gcc), by passing the
-fvisibility=hidden compiler flag it is possible to make every dynamic library symbols un-exported/invisible
to whoever tries to dynamically link against the dynamic library.

METHOD 2: (affecting individual symbols only)
__attribute ((visibility("<default | hidden>")))

By decorating the function signature with the attribute property, you instruct the linker to either allow (default) or
not allow (hidden) exporting the symbol.

METHOD 3: (affecting individual symbols or a group of symbols)

#pragma GCC visibility [push | pop]
This option is typically used in the header files. By doing something like this

#pragma visibility push(hidden)
void someprivatefunction 1(void);
void someprivatefunction 2(void);

void someprivatefunction N(void);
#ipragma visibility pop

you are basically making invisible/unexported all the functions declared in between the #pragma statements.
These three methods may be combined in any way the programmer finds it suitable.

The Other Methods

The GNU linker supports a sophisticated method of dealing with the dynamic library versioning, in which a simple
script file is passed to the linker (through the -W1,--version-script,<script filename> linker flag). As much as the
original purpose of the mechanism is to specify the version information, it also has the power to affect the symbol
visibility. The simplicity with which it accomplishes the task makes this technique the most elegant way of controlling
the symbol visibility. More details about this technique can be found in Chapter 11 in the sections discussing the
Linux libraries versioning control.

The Symbol Export Control Demo Example

In order to illustrate the visibility control mechanism, I've created a demo project in which two otherwise
identical dynamic libraries have been built with different visibility settings. The libraries are appropriately named
libdefaultvisibility.soand libcontrolledvisibility.so. After the libraries are built, their symbols are
examined by using the nm utility (which is covered in detail in Chapters 12 and 13).

95

http://linux.die.net/man/1/gcc

CHAPTER 6 * DESIGNING DYNAMIC LIBRARIES: BASICS

The Default Symbols Visibility Case

The source code of 1ibdefaultvisibility.so is shown in Listing 6-1.

Listing 6-1. libdefaultvisibility.so

#include "sharedLibExports.h"

void mylocalfunctioni(void)

{

printf("functioni\n");
}
void mylocalfunction2(void)
{

printf("function2\n");
}
void mylocalfunction3(void)
{

printf("function3\n");
}
void printMessage(void)
{

printf("Running the function exported from the shared library\n");
}

The examination of the symbols present in the built library binary brings no surprises, as the symbols of all
functions are exported and visible, as shown in Figure 6-8.

milan@milan$ nm -D libdefaultvisibility.so

W JuResidaternfiacens
000204ed T _Ziémylocalfunctionlv
69000510 T _Ziémylocalfunction2v
06220540 T _Z16mylocalfunction3v

T
T
T
00002010 A ==brc cract
w __cxa_finalize
w __gmon_start__
A _edata
A _end
T

“fint

00002010
00002018
000005d8
0000A2hA =EreC
62000570 T printMessage
U puLs
milan@milan$

Figure 6-8. All library symbols are originally exported/visible

96

CHAPTER 6 * DESIGNING DYNAMIC LIBRARIES: BASICS

The Controlled Symbols Visibility Case

In the case of a dynamic library in which you want to control the symbol visibility/exportability, the -fvisibility
compiler flag was specified in the project Makefile, as shown in Listing 6-2.

Listing 6-2. The -fvisibility Compiler Flag

#

Compiler

#

INCLUDES = $(COMMON_INCLUDES)
DEBUG_CFLAGS = -Wall -g -00
RELEASE CFLAGS = -Wall -02

VISIBILITY_FLAGS = -fvisibility=hidden -fvisibility-inlines-hidden

ifeq ($(DEBUG), 1)

CFLAGS = $(DEBUG_CFLAGS) -fPIC $(INCLUDES)
else

CFLAGS = $(RELEASE_CFLAGS) -fPIC $(INCLUDES)
endif

CFLAGS += $(\IISIBILITY_FLAGS)

COMPILE = g++ $(CFLAGS)

When the library is built solely with this particular symbol visibility setting, the examination of the symbols
indicated that the function symbols haven’t been exported (Figure 6-9).

milan@milan$ nm -D libcontrolledvisibility.so
w _Jv_RegisterClasses

00002010 A __bss_start
w __cxa_finalize
W __gmon_start__
00002010 A _edata
00002018 A _end
00000538 T _fini
00000304 T _init
U puts

milan@milan$
Figure 6-9. All library symbols are now hiden

Next, when the function signature decoration with the visibility attributes is applied, as shown in Listing 6-3,
the net effect is that the function declared with the _attribute ((visibility("default"))) becomes visible
(Figure 6-10).

97

CHAPTER 6 * DESIGNING DYNAMIC LIBRARIES: BASICS

Listing 6-3. The Function Signature Decoration with the Visibility Attributes Applied

#include "sharedLibExports.h"

#if 1

#define FOR_EXPORT __ attribute__ ((visibility("default")))
#else

#define FOR_EXPORT

#endif

void mylocalfunctioni(void)

{
printf("functioni\n");
}
...etc...
//
// also supported:
// FOR_EXPORT void printMessage(void)
// but this is not supported:
// void printMessage FOR_EXPORT (void)
// nor this:
/7 void printMessage(void) FOR_EXPORT
/7

// i.e. attribute may be declared anywhere
// before the function name

void FOR_EXPORT printMessage(void)
{

}

printf("Running the function exported from the shared library\n");

milan@milan$ nm -D libcontrolledvisibility.so
w _Jv_RegisterClasses
00002010 A _ bss_start
w __ cxa_finalize
w __gmon_start__
00002010 A _edata
00002018 A _end
00000538 T _finil
0000022 T"TiitL
500004ce T printMessage
U puts
milan@milan$

Figure 6-10. Visibility control applied to function printMessage

98

CHAPTER 6 * DESIGNING DYNAMIC LIBRARIES: BASICS

Using the strip Utility

Another mechanism of controlling the symbols visibility is available. It is not as sophisticated and it is not
programmable. Instead, it is implemented by running a strip command-line utility (Figure 6-11). This approach is
far more brutal, as it has the power to completely erase any information about any of the library symbols, to the point
that none of the usual symbol examination utilities will be able to see any of the symbols at all, be it in the .dynamic
section or not.

milan@milan$ strip --strip-symbol _Zi16mylocalfunctioniv libcontrolledvisibility.so
milan@milan$ strip --strip-symbol _Ziémylocalfunction2v libcontrolledvisibility.so
milan@milan$ strip --strip-symbol _Zié6mylocalfunction3v libcontrolledvisibility.so
milan@milan$ nm libcontrolledvisibility.so

0000128 a _DYNAMIC

00000420
0000040

frame_dummy
printMessage
pUtsS@EGLIBC_2.0
milan@milan$

00001ff4 a _GLOBAL_OFFSET_TABLE_

w _Jv_RegisterClasses
00001f18 d __CTOR_END__
00001f14 d __ CTOR_LIST__
00001120 d __DTOR_END__
00001f1lc d _ DTOR_LIST__
000006bc r __FRAME_END__
00001f24 d __JCR_END__
00001f24 d __JCR_LIST__
00002010 A _ bss_start

w _cxa_finalize@@EGLIBC 2.1.3
00000520 t __do_global_ctors_aux
00000330 t __do_global_dtors_aux
0000200c d __dso_handle

W __gmon_start__
00000457 t __1686.get_pc_thunk.bx
00002010 A _edata
00002018 A _end
00000558 T _fini
0000032c T _init
00002010 b completed.6159
00002014 b dtor_idx.6161

t

T

[=

Figure 6-11. Using the strip utility to eliminate certain symbols

Note More information about the strip utility can be found in Chapter 13.

Exporting the Windows Dynamic Library Symbols

In Linux, all the linker symbols found in the dynamic library are by default accessible by the client executables.
In Windows, however, this is not the case. Instead, only the symbols that have been properly exported become visible
to the client executable. The important part of enforcing this limitation is the use of a separate binary (import library)
during the build-time phase, which contains only the symbols planned to be exported.

The mechanism of exporting the DLL symbols is fortunately completely under the programmer’s control. In fact,
there are two supported mechanisms of how the DLL symbols may be declared for export.

99

CHAPTER 6 = DESIGNING DYNAMIC LIBRARIES: BASICS

Using the __declspec(dllexport) Keyword

This mechanism is standardly provided by Visual Studio. Check the “Export symbols” checkbox in the new project
creation dialog, as shown in Figure 6-12.

‘Win32 Application Wizard - milanDLLdemo
— >.«-\ - Application Settings
G

Overview Application type: Add commeon header files for:

Application Settings (©) Windows application Can
() Console application [[ImMFc
©@DLL
() Static library

Additional options:
[C] Empty project
[¥] Export symbols

[Finish][cancel |

Figure 6-12. Selecting the “Export symbols” option in Win32 DLL Wizzard dialog

Here you specify that you want the project wizard to generate the library export header containing the snippets of
code looking somewhat like Figure 6-13.

100

CHAPTER 6 * DESIGNING DYNAMIC LIBRARIES: BASICS

milanDLLdemo.h > [ERUERIMNEGE, TRGT

(Global Scope)
//-The following ifdef block is the standard way of creating macros which make exporting
//-from a DLL simpler. All files within this DLL are compiled with the MILANDLLDEMO_EXPORTS
//-symbol defined on the command line. This symbol should not be defined on any project
//-that uses this DLL. This way any other project whose source files include this file see
//-MILANDLLDEMO_API functions as being imported from a DLL, whereas this DLL sees symbols
//-defined with this macro as being-exported.
#ifdef MILANDLLDEMO_EXPORTS
#define MILANDLLDEMO_API _ declspec(dllexport)
#else
#define MILANDLLDEMO_API _ declspec(dllimport)
#endif

// This class is exported from the milanDLLdemo.dll
class MILANDLLDEMO_API CmilanDLLdemo {
public:

CmilanDLLdemo(void);

// TODO: add your methods here.

¥
extern MILANDLLDEMO_API int nmilanDLLdemo;

MILANDLLDEMO_API int fnmilanDLLdemo(void);

Figure 6-13. Visual Studio generates project-specific declaration of __declspec(dllexport) keywords

As Figure 6-13 shows, the export header can be used both inside the DLL project and by the client executable
project. When used within the DLL project, the project-specific macro evaluates to the _declspec(dllexport)
keyword within the DLL project, whereas within the client executable project it evaluates to __declspec(d1limport).
This is enforced by Visual Studio, which automatically inserts the preprocessor definition into the DLL project
(Figure 6-14).

101

CHAPTER 6 = DESIGNING DYNAMIC LIBRARIES: BASICS

milanDLLdemo Property Pages ? [=
Configuration: | Active(Debug) w | Platform: |Active(Win32) Vl [Configuration Manager...]
" Common Properties | [Preprocessor Definitions WIN32;_DEBUG; WINDOWS; USRDLL:MILANDLLDEMO_|
4 Configuration Properties Undef{ o - —
reprocess 53
enal S p or Definitions -2 |[==3]
Debugging Ignore] WIN32 A
VC++ Directories Preprd _DEBUG
a C/Ce+ Prepro _WINDOWS
il d Keep & MILANDLLDEMO_EXPORTS “-setiffmmmmn
Optimization R T
Preprocessor
Code Generation —
Language < b
Precompiled Headers 5
Output Files Inherited values:
Browse Information _WINDLL "
Advanced _UNICODE
. UNICODE
Command Line
i Linker
» Manifest Tool

» XML Document Generator
i Browse Information

b Build Events [¥]Inherit from parent or project defaults
» Custom Build Step

(o) ema]

I Preproces
Defines a prepr e e P

’ OK] Cancel] Apply

Figure 6-14. Visual Studio automatically generates the project-specific preprocessor definition

When the project-specific keyword that evaluates to __declspec(dllexport) is added to the function
declaration, the function linker symbol becomes exported. Otherwise, omitting such a project-specific keyword is
guaranteed to prevent the exporting of the function symbol. Figure 6-15 features two functions, of which only one is
declared for export.

102

CHAPTER 6 * DESIGNING DYNAMIC LIBRARIES: BASICS

#include-"stdafx.h”
#include-"milanDLLdemo.h"

//-This-is-an-example-of-an-exported-variable
| | /*-MILANDLLDEMO_API-*/-int-nmilanDLLdemo=0;

| //-This-is-an-example-of-an-exported-function.
| EIMILANDLLDEMO_API - int - fnmilanDLLdemo(void)
{

| |+ return 256;

L3

[=lint-notExportingThisFunction(void)

{

* return--1;

L}

Figure 6-15. Visual Studio automatically generates example of using project-specific symbol export control keyword

Now is the perfect moment to introduce the Visual Studio dumpbin utility which you may use to analyze the DLL
in the search for exported symbols. It is the part of Visual Studio tools, and can be used only by running the special
Visual Studio Tools command prompt (Figure 6-16).

. Microsoft DirectX SDK (June 2010)
. Microsoft DirectX SDK (March 2009) =l
. Microsoft Silverlight S
. Microsoft Silverlight 3 SDK
| Microsoft Silverlight 4 SDK icelero
. Microsoft SQL Server 2008
. Microsoft Sync Framework
. Microsoft Visual Studio 2010

© Microsoft Visual Studio 2010 Docum,_—

o0 Microsoft Visual Studio 2010 NRic
1. Microsoft Windows SDK Tools
|, Team Foundation Server Tools
1. Visual Studio Tools

{& Dotfuscator Software Services Computer

Documents

e e e e e e I

Pictures

Games

@ Manage Help Settings - ENU
MFC-ATL Trace Tool Control Panel
& spy+-
\. Visual Studio 2010 Remote Debu Devices and Printers

mle- BN Visual Studio Command Prompt
BH Visual Studio x64 Cross Tools Co ~ [BRECENAAEEIEINE

| 1 Back] Help and Support

I |533r:h programs and files Fel | | @m.

Figure 6-16. Launching Visual Studio command prompt to access the collection of binary analysis command-line tools

103

CHAPTER 6 = DESIGNING DYNAMIC LIBRARIES: BASICS

Figure 6-17 shows what the dumpbin tool (invoked with the /EXPORT flag) reports about the symbols exported
by your DLL.

[

[N Visual Studio Command Prompt (2010) ol ===

:smilanDLLdemosDebug>dunpbin #/EXPORTS milanDLLdemo.dll
icrosoft (R> COFF/PE Dumper Uersion 168.80.40219.01
opyright (C> Microsoft Corporation. MAll rights reserved.

ump of file milanDLLdemo.d11
ile Type: DLL
Section contains the following exports for milanDLLdemo.dll

AABRBBAA characteristics
5172E312 time date stamp Sat Apr 20 11:48:58 2813
6.88 version
1 ordinal bhase
4 number of functions
4 number of names

m

ordinal hint RUA name
B 800111684 ?78CmilanDLLdemoPRQAERKZ = PILT+255<{??BCmilanDLLdemolR

QRERRZ>
1 80011172 ?74CmilanDLLdenoPRQAEAAVBRABUBRRZ = RILT+365¢(??4Cnilan
LLdemoPRQAEAAVBEABUBREZ>
. 3 2 A0P1188C ?fnmilanDLLdemoBRYAHRZ = BILT+135(?fnmilanDLLdemoBBEYAH

4 3 88017130 ?nmilanDLLdemoPB3HA = ?nmilanDLLdemo@@3HA <int nmilanD
LLdemo >

Summary

1888 .data
1000 .idata
2080 .rdata
1080 .reloc
1888 .rsrc
4880 .text
10008 .texthss

c :\milanDLLdemo\Debug>

Figure 6-17. Using dumpbin.exe to view the list of DLL exported symbols

Obviously, the symbol of function declared with the project-specific export symbol ends up being exported by
the DLL. However, the linker processed it according to the C++ guidelines, which use name mangling. The client
executables usually do not have problems interpreting such symbols, but if they do, you may declare the function as
extern "C", which will result with the function symbol following the C-style convention (Figure 6-18).

104

CHAPTER 6 * DESIGNING DYNAMIC LIBRARIES: BASICS

[

B Visual Studio Command Prompt (2010) EI X7

:\milanDLLdemoNDebug>dunpbin Z/EXPORTS milanDLLdemo.dll -
icrosoft (R> COFF-/PE Dumper Uersion 10.00.48219.61
opyright (C> Microsoft Corporation. All rights reserved.

ump of file milanDLLdemo.dll
File Type: DLL
Section contains the following exports for milanDLLdemo.dll

AARPAAAA characteristics
5172E630 time date stamp Sat Apr 20 12:82:08 2013
0.88 version
1 ordinal base
4 number of functions
4 number of names

ordinal hint RUA name
B BBAA1L160FF 778CmilanDLLdemoPRQAERRZ = PILT+258¢(?7BCmilanDLLdemoRR

QAEGRZ>
2 1 8BP11172 ?774CmilanDLLdemoBRQAEAAVBRABUBERZ = CPILT+365(?74Cmilan
DLLdemoREQAEAAVBRABUBREZ>
3 2 800817130 ?nmilanDLLdemoPE3HA = ?nmilanDLLdemoP@3HA <{int nmilanD
LLdemo >
3 APA11118 FfnmilanDLLdemo '= RILT+275¢{_fnmilanDLLdemo>

Summary f |

1888 .data L
18098 .idata

2000 .rdata

1888 .reloc

1888 .rsrc

4000 .text

10008 .texthss

c :\milanDLLdemo\Debug>

Figure 6-18. Declaring the function as extern "C"

Using the Module-definition File (.def)

The alternative way of controlling the export of DLL symbols is through the use of module-definition (.def) files.
Unlike the previously described mechanism (based on the _declspec(dllexport) keywords), which can be specified
through the project creation wizard by checking the “Export symbols” checkbox, the use of a module-definition file
requires some more explicit measures.

For starters, if you plan on using the . def file, it is recommended to not check the “Export symbols” checkbox.
Instead, use the File = New menu to create a new definition (.def) file. If this step is completed correctly, the project
settings will indicate that the module definition file is officially part of the project, as shown in Figure 6-19.

105

CHAPTER 6 = DESIGNING DYNAMIC LIBRARIES: BASICS

"milanDLLdemo Property Pages

Configuration: | Active(Debug)

[5 Common Properties

4 Configuration Properties
General
Debugging
VC++ Directories
C/Ce+
Linker
General
Input
Manifest File
Debugging
System
Optimization
Embedded IDL
Advanced
Command Line
Manifest Tool
XML Document Generator
Browse Information
i Build Events
Custom Build Step

T

I = I

0
v‘ Platform: | Active(Win32) '] [Configuration Manager... ‘
Additional Dependencies kemeBz.Iib;user32.lib;gdi32.Iib;winspool.lib;comdlg32.lib;ad

Ignore All Default Libraries
Ignore Specific Default Libraries

Module Definition File milanDLLDemo.def ll]

Add Medule to Assembly
Embed Managed Resource File
Force Symbol References
Delay Loaded Dlls

Assembly Link Resource

Module Definition File
The /DEF option passes a module-definition file (.def) to the linker. Only one .def file can be specified to LINK.

[ok][cancel | Apply

Figure 6-19. Module-definition (.def) file is officially part of the project

106

Alternatively, you may manually write the . def file, add it manually to the list of project source files, and finally,
manually edit the linker properties page to look as shown in Figure 6-19. The module-definition file that specifies the
demo function for export looks like Figure 6-20.

CHAPTER 6 * DESIGNING DYNAMIC LIBRARIES: BASICS

Solution Explorer ~ 4 X @ milanDLLDemo.def X-

B 2| E R LIBRARY MILANDLLDEMO

7 Solution ‘milanDLLdemo’ (1 proj
4 7] milanDLLdemo
{zd External Dependencies
a4 |7 Header Files
h] milanDLLdemo.h
] stdaf.h
h] targetver.h
|1 Resource Files
4 |7 Source Files
Qj dllmain.cpp
¢+ milanDLLdemo.cpp
=] milanDLLDemo.def
¢+ stdafx.cpp
| ReadMe.txt

EXPORTS
fnmilanDLLdemo @1

Figure 6-20. Module-definition file example

Under the EXPORTS line it may contain as many lines as there are functions whose symbols you plan on
exporting.

An interesting detail is that the use of the module-definition file results in function symbols exported as C-style
functions, without you needing to declare the function as extern "C". Whether this is an advantage or disadvantage
depends on the personal preferences and design circumstances.

One particular advantage of using the module definition (.def) files as the method of exporting the DLL symbols
is that in certain cross-compiling scenarios the non-Microsoft compilers tend to support this option.

One such example is using the MinGW compiler, which compiles an open source project (e.g. ffmpeg) to create
Windows DLLs and associated .def files. In order for DLL to be dynamically linked at build time, you need to use its
import library, which was unfortunately not generated by the MinGW compiler.

Fortunately, the Visual Studio Tools provide the 1ib.exe command-line utility which can generate the import
library file based on the contents of the . def file (Figure 6-20). The lib tool is available through the Visual Studio Tools
command prompt. The example in Figure 6-21 illustrates how the tool was used after the cross-compiling session in
which the MinGW compiler run on Linux produced the Windows binaries (but did not supply the import libraries).

107

CHAPTER 6 = DESIGNING DYNAMIC LIBRARIES: BASICS

#:\MilanFFMpegWin32Build>dir *.def
Uolume in drive ¥ is UBOX_UBoxShared
Uolume Serial Number is 9AE?-8879

Directory of X:“WinFFMpegBuiltOnLinux

92/14-2013 11:51 AM ?.812 avcodec—53.def
B2-14-2013 11:51 AM 115 avdevice-53.def
B2-14-2013 11:51 AM 5.187 avfilter—2.def
B82-14-2013 11:51 AM 5,119 avformat—53.def
02/14-2013 11:51 AM 4,762 avutil-51.def
#2,14-2813 11:51 AM 232 postproc—51.def
A2-14-2813 11:51 AM 155 swresample-@.def
B2-14-2013 11:51 AM 7.884 swscale—-2.def
8 File<(s> 29.586 bytes

A Dir(s> 465.880,.082,.432 hytes free
#:\MilanFFMpegWin32Build>1lib /machine:886 ~def:avcodec—53.def sout:avcodec.lib

Microsoft (R> Library Manager Uersion 180.80.40219.081
Copyright (C> Microsoft Corporation. All rights reserved.

Creating library avcodec.lib and object avcodec.exp
K:\MilanFFMpegWin32Build>1ib /machine:X86 ~sdef:avdevice-53.def sout:avdevice.lib

Microsoft <R> Library Manager Uersion 10.08.46219.61
Copyright <(C)> Microsoft Corporation. All rights reserved.

Creating library avdevice.lib and object avdevice.exp
X:\MilanFFMpegWin32Build>1lib /machine:#86 ~def:avfilter—-2.def sout:avfilter.lib

Microsoft (R> Library Manager Uersion 10.860.48219.61
Copyright <(C)> Microsoft Corporation. All rights reserved.

Creating library avfilter.lib and object avfilter.exp
K :xMilanFFMpegWin32Build>1ib /machine:¥86 ~def:avformat-53.def sout:avformat.lib

Microsoft (R> Library Manager Uersion 10.00.40219.61
Copyright <(C)> Microsoft Corporation. All rights reserved.

Creating library avformat.lib and object avformat.exp
{:\MilanFFMpegWin32Build>1lib /machine:%86 ~def:avutil-51.def sout:avutil.lib
Microsoft <(R> Library Manager Uersion 10.80.40219.61
Copyright <C> Microsoft Corporation. All rights reserved.

Creating library avutil.lib and obhject avutil.exp
{:\MilanFFMpegWin32Build>1ib /machine:%86 ~def:postproc-51.def ~out:postproc.lib

Microsoft <(R> Library Manager Uersion 10.80.40219.01
Copyright <C> Microsoft Corporation. All rights reserved.

Creating library postproc.lib and object postproc.exp
ii;ﬂilanFFHpeguin32Build)lib smachine:=886 ~def:swresample-B.def Jout:swresanple.
i

Microsoft <(R)> Library Manager Uersion 10.00.40219.81
Copyright <{C> Microsoft Corporation. All rights reserved.

Creating library swresample.lib and object swresample.exp
#:~\MilanFFMpegWin32Build>1ib /machine:886 ~def:swscale-2.def sout:swscale.lib
Microsoft <(R)> Library Manager Uersion 10.00.40219.61
Copyright <{C> Microsoft Corporation. All rights reserved.

Creating library swscale.lib and object swscale.exp

®:s\MilanFFMpegWin32Build>

Figure 6-21. Generating import library files for DLLs generated by MingW compiler based on specified module
definition (.def) files

108

CHAPTER 6 * DESIGNING DYNAMIC LIBRARIES: BASICS

Shortcomings of dealing with the module definition file (.def)
While experimenting with the . def files, the following shortcomings have been perceived:

e Aninability to discern the C++ class methods from C functions: If within a DLL you have a class,
and the class has a method of the same name as the C function you specified for export in the
.def file, the compiler will report a conflict while trying to figure out which of the two should
be exported.

o extern "C" quirks: In general, the function declared for export inside the . def file does not
need to be declared as extern "C" as the linker will take care that its symbol follows the C
convention. However, if you decide to nevertheless decorate the function as extern "C",
make sure to do it in both header file and in the source . cpp file (the latter of which should
not be normally required). Failing to do so will somehow confuse the linker, and the client
application will not be able to link your exported function symbol. For the problem to be
harder, the dumpbin utility output will not indicate any difference whatsoever, making the
problem harder to resolve.

Linking Completion Requirements

The dynamic library creation process is a complete build procedure, as it involves both the compiling and the linking
stage. In general, the linking stage gets completed once every linker symbol has been resolved, and this criterion
should be observed regardless of whether the target is an executable or dynamic library.

In Windows, this rule is strictly enforced. The linking process is never considered complete and the output binary
never gets created until every dynamic library symbol had been resolved. The complete list of dependent libraries is
searched up until the last symbol reference has been resolved.

In Linux, however, this rule is a bit twisted by default when building the dynamic libraries, as it is allowed that the
linking of dynamic library gets completed (and the binary file created) even though not all of the symbols have been
resolved.

The reason behind allowing this deviation from the strictness of the otherwise solid rule is that it is implicitly
assumed that the symbols missing during the linking stage will eventually somehow appear in the process memory
map, very likely as a result of some other dynamic library being loaded at runtime. The needed symbols not supplied
by the dynamic library are marked as undefined (“U”).

As arule, if the expected symbol for whatever reason does not appear in the process’ memory map, the operating
system tends to neatly report the cause by printing the text message on the stderr stream, specifying the missing symbol.

This flexibility in the Linux rules of linking the dynamic libraries has been proven on a number of occasions as a
positive factor, allowing certain very complex linking limitations to be effectively overcome.

--no-undefined Linker Flag

Despite the fact that linking the dynamic libraries is far more relaxed in Linux by default, the GCC linker supports the
option of establishing the linking strictness criteria matching those followed by the Windows linker.

Passing the --no-undefined flag to the gcc linker will result with the unsuccessful build if each and every symbol
is not resolved at build time. This way, the Linux default of tolerating the presence of unresolved symbols is effectively
reverted into the Windows-like strict criteria.

Note that when invoking the linker through the gcc, the linker flags must be preceded by the -W1, prefix, such as:

$ gcc -fPIC <source files> -1 <libraries> -Wl,~--no-undefined -o <shlib output filename>

109

CHAPTER 6 * DESIGNING DYNAMIC LIBRARIES: BASICS

Dynamic Linking Modes

The decision to link the dynamic library may be made at different stages of the program life cycle. In some scenarios,
you know up front that your client binary will need to load certain dynamic library no matter what. In other scenarios,
the decision about loading certain dynamic library comes as the result of runtime circumstances, or user preferences
set at runtime. Based on when the decision about dynamically linking is actually made, the following dynamic linking
modes can be distinguished.

Statically Aware (Load-Time) Dynamic Linking

In all the discussions so far, I have implicitly assumed this particular scenario. Indeed, it happens very frequently that
the need for a particular dynamic library’s functionality is needed from the very moment when the program is started
all the way to the program’s termination, and this fact is known up front. In this scenario, the build procedure requires
the following items.

At compile time:

¢ The dynamic library’s export header file, specifying everything that pertains to the library’s
ABl interface

Atlink time:
e The list of dynamic libraries required by the project

e The paths to the dynamic library binaries needed by the client binary in order to set up the list
of expected library symbols.

For more details about how the paths may be specified, please check the “Build-Time Library
Location Rules” section.

e Optional linker flags specifying the details of the linking process

Runtime Dynamic Linking

The whole beauty of the dynamic linking feature is the ability for the programmer to determine at runtime whether
the need for a certain dynamic library really exists and/or which particular library needs to be loaded.

Many times, the design requires that a number of dynamic libraries exist, each of which supports the identical
ABI, and that only one of them gets loaded depending on the user’s choice. A typical example for such a scenario is
the multiple language support where, based on the user’s preferences, the application loads the dynamic library that
contains all the resources (strings, menu items, help files) written in the user’s language of choice.

In this scenario, the build procedure requires the following items.

At compile time:

e The dynamic library’s export header file, specifying everything that pertains to the library’s
ABI interface

At link time:

e Atleast the filename of the dynamic library to be loaded. The exact path of the dynamic library
filename typically gets resolved implicitly, by relying on the set of priority rules governing the
choice of paths in which the library binary is expected to be found at runtime.

All major operating systems provide a simple set of API functions that allow programmer to fully exploit this
precious feature (Table 6-1).

110

CHAPTER 6 * DESIGNING DYNAMIC LIBRARIES: BASICS

Table 6-1. API Functions

Purpose Linux Version Windows Version
Library Loading dlopen() LoadLibrary()
Finding Symbol dlsym() GetProcAddress()
Library Unloading dlclose() FreeLibrary()
Error Reporting dlerror() GetlLastError()

Regardless of the operating system and/or programming environment, the typical paradigm of using these

functions can be described by the following pseudocode sequence:

1)

2)

3)

4)

handle = do_load library("<library path>", optional flags);
if(NULL == handle)
report_error();

pFunction = (function type)do find library symbol(handle);
if(NULL == pFunction)

{
report_error();
unload library();
handle = NULL;
return;

}

pFunction(function arguments); // execute the function

do_unload library(handle);
handle = NULL;

Listings 6-4 and 6-5 provide simple illustrations of runtime dynamic loading.

Listing 6-4. Linux Runtime Dynamic Loading

#include <stdlib.h>
#include <stdio.h>
#include <dlfcn.h>

#define PI (3.1415926536)

typedef double (*PSINE_FUNC)(double x);

int main(int argc, char **argv)

{

void *pHandle;

pHandle = dlopen ("libm.so", RTLD LAZY);
if(NULL == pHandle) {
fprintf(stderr, "%s\n", dlerror());
return -1;

}

111

CHAPTER 6 * DESIGNING DYNAMIC LIBRARIES: BASICS

PSINE_FUNC pSineFunc = (PSINE_FUNC)dlsym(pHandle, "sin");
if (NULL == pSineFunc) {

fprintf(stderr, "%s\n", dlerror());

dlclose(pHandle);

pHandle = NULL;

return -1;

}

printf("sin(PI/2) = %f\n", pSineFunc(PI1/2));
dlclose(pHandle);

pHandle = NULL;

return 0;

Listing 6-5 illustrates the Windows runtime dynamic loading, in which we try to load the DLL, locate the symbols
of functions DIIRegisterServer() and/or DllUnregisterServer() and execute them.

Listing 6-5. Windows Runtime Dynamic Loading

#include <stdio.h>
#include <Windows.h>

#ifdef _ cplusplus

extern "C"

{

#endif // _ cplusplus

typedef HRESULT (*PDLL_REGISTER SERVER)(void);
typedef HRESULT (*PDLL_UNREGISTER SERVER)(void);
#ifdef _ cplusplus

}

#endif // _ cplusplus

enum

{
CMD_LINE_ARG_INDEX EXECUTABLE_NAME = 0,
CMD_LINE_ARG_INDEX INPUT DLL,
CMD_LINE_ARG_INDEX REGISTER OR_UNREGISTER,
NUMBER_OF SUPPORTED_CMD_LINE_ARGUMENTS

} CMD_LINE_ARG_INDEX;

int main(int argc, char* argv[])

{
HINSTANCE dllHandle = ::LoadLibraryA(argv[CMD_LINE_ARG_INDEX_INPUT DLL]);
if(NULL == dllHandle)

{
printf("Failed loading %s\n", argv[CMD_LINE_ARG_INDEX_INPUT DLL]);

return -1;

}

112

CHAPTER 6 * DESIGNING DYNAMIC LIBRARIES: BASICS

if(NUMBER_OF SUPPORTED CMD_LINE_ARGUMENTS > argc)
{
PDLL_REGISTER_SERVER pDllRegisterServer =
(PDLL_REGISTER SERVER)GetProcAddress(dllHandle, "D1lRegisterServer");
if(NULL == pDllRegisterServer)

printf("Failed finding the symbol \"DllRegisterServer\"");
: :Freelibrary(d1l1Handle);
dllHandle = NULL;

return -1;
}
pD11RegisterServer();
else
{

PDLL_UNREGISTER_SERVER pDllUnregisterServer =
(PDLL_UNREGISTER SERVER)GetProcAddress(dl1lHandle, "DllUnregisterServer");
if(NULL == pDllUnregisterServer)
{
printf("Failed finding the symbol \"DllUnregisterServer\"");
::Freelibrary(dllHandle);
dllHandle = NULL;
return -1;
}
pDllUnregisterServer();

}

: : Freelibrary(d11Handle);
dllHandle = NULL;
return 0;

}

Dynamic Linking Modes Comparison

There are very few substantial differences between the two modes of dynamic linking. Even though the moment
in which the dynamic linking happens differs, the actual mechanism of dynamic linking is completely identical in
both cases.

Furthermore, the dynamic library that can be loaded statically aware can also be dynamically loaded at runtime.
There are no elements of the dynamic library design that would qualify the library strictly for use in one vs. another
scenario.

The only substantial difference is that in the statically aware scenario has one extra requirement that needs to be
satisfied: you need to provide the build-time library location. As will be shown in the next chapter, this task requires
some finesses that a good software developer needs to be aware of in both Linux and Windows environments.

113

CHAPTER 7

Locating the Libraries

The idea of binary code sharing is at the core of the concept of libraries. Somewhat less obvious is that it typically
means that the single copy of the library binary file will reside in a fixed location on a given machine, whereas
plenty of different client binaries will need to locate the needed library (either at build time or at runtime). In order
to address the issue of locating the libraries, a variety of conventions have been devised and implemented. In this
chapter, I will discuss the details of these conventions and guidelines.

Typical Library Use Case Scenarios

The use of libraries has proven to be a very powerful way of sharing code across the software community. It is a very
common practice that companies with accumulated expertise in certain domains deliver their intellectual property in
the form of libraries, which third parties may integrate into their products and deliver to customers.

The practice of using the libraries happens through two distinct use case scenarios. The first use case scenario
happens when the developers try to integrate the third-party libraries (static or dynamic) in their product. Another
scenario happens when libraries (in this case specifically dynamic libraries) need to be located at runtime in order for
the application installed on a client’s machine to run properly.

Both use case scenarios introduce the problem of locating the library binary files. The way these problems have
been structurally resolved will be described in this chapter.

Development Use Case Scenario

Typically, the third-party package containing the library, export headers, and possibly few extras (such as documentation,
online help, package icons, utility applications, code and media samples, etc.) is installed on a predetermined path on
the developer’s machine. Immediately after, the developer may create a plethora of projects residing at many different
paths on her machine.

Obviously, each and every project that requires linking with third-party libraries needs to have access to the
library binaries. Otherwise, it would be impossible to finish building the project.

Copying the third-party library to each and every project that a developer may create is definitely a possibility,
albeit a very poor choice. Obviously, having copies of the library in the folder of each project that may need it defeats
the original idea of code reuse standing behind the concept of libraries.

The acceptable alternative would be to have just one copy of the library binaries, and a set of rules helping the
client binary projects to locate it. Such set of rules, commonly referred to as build time library location rules, is
typically supported by the development platform’s linker. These rules basically stipulate how the information about
the path of the libraries needed to complete the client binary linking may be passed to the linker.

The build time library location rules are fairly elaborate and tend to come in a variety of options. Each of the
major development platforms usually provides very sophisticated set of options of how these rules may be enforced.

It is very important to understand that the build time library location rules are pertinent to both static and
dynamic libraries. Regardless of the actual differences between linking static vs. dynamic libraries, the linker
nevertheless must know the location of the needed library binaries.

115

CHAPTER 7 * LOCATING THE LIBRARIES

End User Runtime Use Case Scenario

Once the developers have integrated the third-party libraries, their products are ready to be delivered to the end
clients. Based on the vast variety of design criteria and real-life considerations, the structure of the delivered product
may come in the wide variety of choices:

¢ Inthe simplest possible case, the product package contains only a single application file. The
intended use is that the client simply runs the application.

This case is fairly trivial. In order to access and run the application, all the user needs to
do is to add its path to the overall PATH environment variable. Anybody other than the
completely computer illiterate person is capable of completing this simple task.

e Inthe more complex scenarios, the product package contains a mix of dynamic libraries and
one or more utility applications. The dynamic libraries may be either directly forwarded
third-party libraries, or may be created by the package vendor, or may be a combination of both.

The intended use is that a variety of applications dynamically link with the supplied dynamic
libraries. The typical examples of such a scenario in the domain of multimedia are the
multimedia frameworks such as DirectX or GStreamer, as each of them supplies (or counts
on being available at runtime) an elaborate set of dynamic libraries, each providing a certain
well-defined set of functionalities.

Much like in the development use case scenario, the meaningful approach to the problem assumes that there
will be only one copy of the required dynamic libraries, residing at the path where the installation procedure deployed
them. On the other hand, these libraries may be need by a multitude of client binaries (other dynamic libraries or the
applications) residing at a plethora of different paths.

In order to structure the process of finding the dynamic libraries binaries at runtime (or slightly before, at load
time), a set of runtime library location rules needs to be established. The runtime library location rules are usually
fairly elaborate. Each of the development platforms provides its own flavor of sophisticated options of how these rules
may be enforced.

Finally—at the risk of reiterating the obvious—the runtime library location rules pertain only to the dynamic
libraries. The integration of static libraries is always completed much before the runtime (i.e., at the linking stage of
the client binary build process), and there is never a need to locate the static libraries at runtime.

Build Time Library Location Rules

In this section, I will discuss the techniques of providing the build time paths to the library binary files. Beyond the
simplest possible move of just furnishing the full path to the linker, there are some extra levels of finesse that deserve
your attention.

Linux Build Time Library Location Rules

The important part of the recipe of how the build time library location rules are implemented on Linux belongs to the
Linux libraries naming conventions.

Linux Static Library Naming Conventions

The Linux static library filenames are standardly created according to the following pattern:
static library filename = 1lib + <library name> + .a

The middle part of the library’s filename is the library’s actual name, which is used to submit the library to the linker.

116

CHAPTER 7 © LOCATING THE LIBRARIES

Linux Dynamic Library Naming Conventions

Linux features a very elaborate dynamic libraries naming convention scheme. Even though the original intention was
to address the library versioning issues, the naming convention scheme impacts the library location mechanisms. The
following paragraphs will illustrate the important points.

Dynamic Library Filename vs. Library Name

The Linux dynamic library filenames are standardly created according to the following pattern:
dynamic library filename = lib + <library name> + .so + <library version information>

The middle part of the library’s filename is the library’s actual name, which is used to submit the library to the
linker, and later on to the build time library search as well as the runtime library search procedures.

Dynamic Library Version Information

The library version information carried by the last part of the library’s filename adheres to the following convention:
dynamic library version information = <M».<m».<p>

where each of the mnemonics may represent one or more digits indicating
e M:major version
e m:minor version
e p:patch (minor code change) version

The importance of dynamic library versioning information will be discussed in detail in Chapter 11.

Dynamic Library Soname

By definition, the dynamic library’s soname can be specified as
library soname = lib + <library name> + .so + <library major version digit(s)>

For example, the soname of the library libz.so0.1.2.3.4 would be libz.so.1.

The fact that only the major version digits play a role in the library’s soname implies that the libraries whose
minor versions differ will still be described by the same soname value. Exactly how this feature is used will be
discussed in the Chapter 11 section dedicated to the topic of dynamic library versions handling.

The library soname is typically embedded by the linker into the dedicated ELF field of the library’s binary file.
The string specifying the library soname is typically passed to the linker through the dedicated linker flag, like so:

$ gcc -shared <list of object files> -Wl,-soname,libfoo.so.1 -o libfoo.s0.1.0.0

The utility programs for examining the contents of the binary files typically provide the option for retrieving the
soname value (Figure 7-1).

117

CHAPTER 7 * LOCATING THE LIBRARIES

milan@milan:~$ readelf -d /lib/i386-1inux-gnu/libz.s0.1.2.3.4

Dynamic section at offset 0x13ee8 contains 23 entries:

Tag Type Name/Value
0x00000001 (NEEDED) Shared library: [libc.so0.6]
0x0000000e (SONAME) Library soname: [libz.so.1]
0x0000000c (INIT) 0x1400
0x0000000d (FINI) 0Oxe668
ox6ffffefs (GNU_HASH) 0x138
AvARARRAAME (CTDTARY Avadr

Figure 7-1. Library soname embedded in the library binary’s ELF header

Linker’s vs. Human’s Perception of Library Name

Please notice that the library name as described by these conventions is not necessarily used in human conversation
to denote the library. For example, the library providing the compression functionality on a given machine may
reside in the filename libz.s0.1.2.3.4. According to the library naming convention, this library’s name is simply “z’,
which will be used in all the dealings with the linker and loader. From the human communication prospective, the
library may be referred to as “libz’; as for example in the following bug description in a bug tracking system: “Issue
3142: problem with missing libz binary”. To avoid the confusion, sometimes the library name is also referred to as

the library's linker name.

Linux Build Time Library Location Rules Details

The build time library path specification is implemented on Linux in the form of so-called -L -1 option. The truly
correct way of using these two options may be described by the following set of guidelines:

e Break the complete library path into two parts: the folder path and the library filename.
e Pass the folder path to the linker by appending it after the - L linker flag.
e Passthe library name (linker name) only to linker by appending it after the -1 flag.
For example, the command line for creating the application demo by compiling the file main.cpp and linking in

with the dynamic library 1ibworkingdemo. so located in the folder . ./sharedLib may look something like this:

$ gcc main.o -L../sharedlLib -Iworkingdemo -o demo

N AN

| |
library folder path library name only

(not the full library filename !)

In the cases when the gcc line combines compiling with linking, these linker flags should be prepended with
the -W1, flag, like so:

$ gcc -Wall -fPIC main.cpp -Wl,-L../sharedLib -WI,-Iworkingdemo -o demo

118

CHAPTER 7 © LOCATING THE LIBRARIES

Beginners’ Mistakes: What Can Possibly Go Wrong and How to Avoid It

The typical problems happen to the impatient and inexperienced programmer in scenarios dealing with dynamic
libraries, when either of the following situations happen:

e The full path to a dynamic library is passed to the -1 option (-L part being not used).

e The part of the path is passed through the -L option, and the rest of the path including the
filename passed through the -1 option.

The linker usually formally accepts these variations of specifying the build time library paths. In the case when
the path to static libraries is provided, these kinds of “creative freedoms” do not cause problems down the road.

However, when the path to the dynamic library is passed, the problems introduced by deviating from the truly
correct way of passing the library path start showing up at runtime. For example, let’s say that a client application
demo depends on the library 1ibmilan. so, which resides on the developer’s machine in the following folder:

/home/milan/mylibs/case_a/libmilan.so.
The client application is successfully built by the following linker command line:
$ gcc main.o -1/home/milan/mylibs/case_a/libmilan.so -o demo

and runs just fine on the same machine.

Let’s assume now that the project is deployed to a different machine and given to a user whose name is “john.”
When that user tries to run the application, nothing will happen. Careful investigation (techniques of which will
be discussed in the Chapters 13 and 14) will reveal that the application requires at runtime the dynamic library
libmilan.so (which is OK) but it expects to find it at the path /home/milan/mylibs/case_a/.

Unfortunately, this folder does not exist on the user “john”s machine!

Specitying relative paths instead of absolute paths may only partially alleviate the problem. If, for example, the
library path is specified as relative to the current folder (i.e., . ./mylibs/case_a/libmilan.so), then the application
on john’s machine would run only if the client binary and the required dynamic library are deployed to john’s
machine in the folder structure that maintains the exact relative positions between the executable and dynamic
library. But, if john dares to copy the application to a different folder and tries to execute it from there, the original
problem will reappear.

Not only that, but the application may stop working even on the developer’s machine where it used to work
perfectly. If you decide to copy the application binary at a different path on the developer’s machine, the loader will
start searching for the library on the paths relative to the point where the app binary resides. Very likely such path will
not exist (unless you bother to re-create it)!

The key to understanding the underlying cause of the problem is to know that the linker and the loader do not
equally value the library paths passed under the - L vs. under the -1 option.

In fact, the linker gives far more significance to what you passed under the -1 option. More specifically, the part
of the path passed through the -L option finds its use only during the linking stage, but plays no role thereafter.

The part specified under the -1 option, however, gets imprinted into the library binary, and continues playing
important role during the runtime. In fact, when trying to find the libraries required at runtime, the loader first reads
in the client binary file trying to locate this particular information.

If you dare to deviate from the strict rule, and pass anything more than just the library filename through the -1
option, the application built on milan’s machine when deployed and run on john’s machine will look for the dynamic
library at hardcoded path, which most likely exists only on developer’s (milan) machine but not at user’s (john)
machine. An illustration of this concept is provided in Figure 7-2.

119

CHAPTER 7 © LOCATING THE LIBRARIES

B home P Home Demo FirstExample sharedLib

Name * Size Type
v ‘milan 12items folder
v gl Demo 1item folder

v |l FirstExample 1item folder
v || sharedLib 3items Folder

£ libfirst.so 8.4kB Link to shared library
8.4 kB Link to shared library

]
libfirst.s0.1.0.0 8.4 kB shared library

-L/home/milan/Demo/FirstExample/sharedLib -Ifirst

BUILD TIME

RUNTIME

First] Client binary

v | usr

> il bin lib[First].so

> |l 9ames
3 ‘include

> “bﬁ”ES"- . Required library is successfully located on the runtime
libfirstds0.1.0.0 machine even though it resides in completely different
folder structure.

Figure 7-2. The -L convention plays a role only during library building. The impact of -l convention, however, remains
important at runtime, too

Windows Build Time Library Location Rules

There are several ways how the information about the dynamic library required at link time may be passed to the
project. Regardless of the way chosen to specify the build time location rules, the mechanism works for both static and
dynamic libraries.

120

CHAPTER 7 © LOCATING THE LIBRARIES

Project Linker Settings
The standard option is to supply the information about the DLL required by the linker as follows:

e Specify the DLLs import library (.lib) file in the list of linker inputs (Figure 7-3).

Transcoder Property Pages l“El
Configuration: | Active(Debug) | Platform: | Active(Win32) Vl [Configuration Manager... |
» Common Properties Additional Dependencies uafxcwd.lib;libcmtd.liblibmfx.lib;dxva2.lib;d3d9.lib;dwmz
4 Configuration Properties Ignore All Default Libraries
General Ignore Specific Default Libraries uafxcwd.libjlibemt.lib;
Debugging Module Definition File
VC++ Directories Add Module to Assembly
b C_.-'CH- Embed Managed Resource File
@ Linker Force Symbol References
a;“ui""' Delay Loaded Dlls dwmapi.dil;%(DelayLoadDLLs)
Manifest File ESEuRr HkBesoyros Additional Dependencies
Debugging .
System tfafxcwd.![b -
L libemtd.lib -
Optimization libmfx.lib i
Embedded IDL dhova lib
Advanced d3da.lib
Command Line y .
> Manifest Tool
i XML Document Generator Inherited values:
1> Browse Information ~
1> Build Events
i» Custom Build Step
| Additional Dependencies
Specifies additional items to add to t| [¥]Inherit from parent or project defaults
] 11 B
! [OK] [Cancel J
4

Figure 7-3. Specify needed libraries in the list of dependencies

e Add the import library’s path to the set of library path directories (Figure 7-4).

121

CHAPTER 7 * LOCATING THE LIBRARIES

XML Document Generator
Browse Information

Specify Section Attributes

Inherited values:

Transcoder Property Pages 2 °&=]
Configuration: |Active(Debug) =] Putform: [Activewin2) ~ [configuration Manager... |
[+ commen Properties Output File $(OutDin)$(TargetName)$(TargetExt)
4 Configuration Properties Show Progress Mot Set
General Version
Debugging Enable Incremental Linking Yes (/INCREMENTAL)
VC++ Directories Suppress Startup Banner Yes (/NOLOGO)
CfCes Ignore Import Library No
A Linkes Register Output Mo
Genenl Per-user Redirection Ne
]h::::icst =9 Additional Library Directories C:\P: e e R e e e
Debugging Link Library Dependencies Ves| Additional Library Directories I‘
System Ll.sg Library Dependency Inputs Ne r=ir
Optimization Link Status : = =
Embedded IDL Prevent Dl Binding C:\Program F!Iesl\.inteI\MeduaSDK_2013\!lh\wm32 oy -
R Treat Linker Warning As Errors :\P!ogrf_:vc\ "l“ﬂ‘]!"_tfrw ;da';‘se !('2!13\'?;’(2’3?,(“"0?‘:'5‘w'"ﬂ £
Command Line Force File Output ACrossPlatiorm\FEM p!g"MGndOws"S?Eil::Exports'\lih -
Manifest Toel Create Hot Patchable Image % = .

Build Events
Custorn Build Step

Additional Library Directories
Allows the user to override the environmental library path (

| Inherit from parent or project defaults

Macros> >
coxs

Figure 7-4. Specify the library paths

#pragma Comment

The library requirement may be specified by adding a line like this one to a source file:
#pragma comment(lib, "<import library name, full path, or relative path>");

Upon encountering this directive, the compiler will insert a library search record in the object file, which will
eventually be picked up by the linker. If only the library filename is provided in the double quotes, the search for the
library will follow the Windows library search rules. Typically, this option is used to exercise more precision during the
process of searching for libraries, and it is hence more usual to specify the library full path and version than otherwise.

One huge advantage of specifying the build-time library requirements in this way is that by being in the source code,
it gives the designer the ability to define the linking requirements depending on preprocessor directives. For example,

#ifdef CUSTOMER_XYZ

#pragma comment(lib, "<customerXYZ-specific library>");
#else

#ifdef CUSTOMER_ABC

#pragma comment(lib, "<customerABC-specific library>");
#else

#ifdef CUSTOMER_MPQ

#pragma comment(1lib, "<customerMPQ-specific library>");
#endif // CUSTOMER_MPQ

#endif // CUSTOMER_ABC

#endif // CUSTOMER_XYZ

122

CHAPTER 7 © LOCATING THE LIBRARIES

Implicit Referencing of the Library Project

This option may be used only in special case when both the dynamic library project and its client executable project
are the parts of the same Visual Studio solution. If the DLL project is added to the client app project’s list of references,
the Visual Studio environment will provide everything (automatically and mostly invisibly to the programmer) needed
for building and running the app.

For starters, it will pass the complete path of the DLL to the application’s linker command line. Finally, it will
perform the copying of the DLL to the application’s runtime folder (typically Debug for the debug version, and Release
for the release version), thus satisfying in the easiest possible way the rules of runtime library location.

Figures 7-5 through 7-8 illustrate the recipe of how to do it, using the example of the solution
(SystemExamination) comprised of the two related projects: a SystemExaminer DLL which is statically aware linked
in by the SystemExaminerDemoApp application.

I will not specify the DLL dependency by relying on the first method described previously (i.e. by specifying the
DLL's import library (.1ib) file in the list of linker inputs). This seemingly peculiar and a bit counter-intuitive detail is
illustrated by the Figure 7-5.

Sclution Explorer v 1 X
|5
4 Solution TmplicitLibraryReferencingDemo’ (2 pry
.:..q g:::;ﬁp DemoApp Property Pages ’I‘ 5
Configuration: [Active(Dehug] w | Platform: |Active(Win32) ~ Configuration Manager...
4 Common Properties Additional Dependencies q
Framework and References Ignore All Default Libraries
4 Configuration Properties Ignore Specific Default Libraries

General Module Definition File

Debugging Add Module to Assembly

VC++ Directories Embed Managed Resource File

C_"rc“ Force Symbol References

4 Linker Delay Loaded Dils

General Assembly Link Resource
Input
Manifest File
Debugging
System
Optimization
Embedded IDL
Advanced there is no need to specify

library dependencies in the

Command Line
usual way

Manifest Tool
» Resources
XML Document Generator
» Browse Infermation
Build Events
» Custom Build Step
Additional Dependencies
Specifies additional items to add to the link command line [i.e. kemel32.lib]

Cancel] Apply

Figure 7-5. In this method, you don’t need to specify the library dependency directly

123

CHAPTER 7 © LOCATING THE LIBRARIES

Instead, it will be sufficient to set the client binary project to reference the dependency library project. Visit the
Common Properties » Frameworks and References tab (Figure 7-6).

Solution Explorer >~ 0 x
@ | @&
2 Solution ImplicitLibraryReferencingDemo’ (2 on

% DemoDLlLI DemoApp Property Pages [t

Configuration: [Act'wt{Dehug] = | Platform: [Adivt(Winﬂ] '] [Configuraticn Manager...]

o0 Add Reference

Name Projects |

"4 Common Properties | Targeted

Framework and References| Referenc

4 Configuration Properties
General

Debugging . = . .
Project N Project Direct
VC++ Directories roject Name roject Directory

C/Cas DemoDLL Ci\Users\milan\ImplicitLibraryReferencingDemo\DemoDLL\

a Linker
General
Input aerator
Manifest File
Debugging
System
Optimization
Embedded IDL
Advanced
Command Line
Manifest Tool
Resources
XML Document Ger
Browse Informatior
Build Events
Custom Build Step [

< m r Add New Reference...

Figure 7-6. Adding a reference to the dependency library project

124

CHAPTER 7 © LOCATING THE LIBRARIES

Figure 7-7 shows the referencing the dependency library project completed.

Solution Explorer v B X
& a&a
A Solution TmplicitLibraryReferencingDemo’ (2 pry
el A -
= DemoApp Property Pages
™ DemoDLL P 9
N/A N/A
4 Commeon Properties Targeted framework: .NETFramework,Version=v4.0
Framework and References| References:
a Configuration Properties [l;lame.) 4 Build Properties =
General
Dikusain }& DemoDLL Copy Local : | True
ve gg. gct . Copy Local Satellite Assembli False
CfC++ rectores Reference Assembly Cutput True
; Link 4 Project Reference Properties
4 Linker
Gintial Link Library Dependencies True
Input Project Identifier {90B35A4B-58C0-4B2B-BF21-FE138983)
Manifest File Use Library Dependency Inpu False 1
Debugging 4 Reference Properties 1
System Assembly Name DemoDLL
Optimization Culture
Embedded IDL Description
Advanced Full Path C:\Users\milan\ImplicitLik
Command Line Identity {90B35A4B-5BC0-4B2B-BF21
» Manifest Teol Label DemoDLL
» Resources Name DemoDLL
» XML Document Generator Public Key Token
» Browse Information Strong Name False A
> Build Events
Build Properti
» Custom Build Step = =
- m r Add New Refi R Ref: e
Cancel Apply

Figure 7-7. Referencing the dependency library project is completed

125

CHAPTER 7 * LOCATING THE LIBRARIES

The ultimate result will be that the build time path of the required DLL is passed into the linker’s command line,
as shown in Figure 7-8.

Solution Explorer v 3 X
|| a
3 Solution 'ImplicitLibraryReferencingDemo’ (2 pn
."!;1 ~
e DemoDL'Ll DemoApp Property Pages ¥
Jre —
Configuration: [Active(Dehug] v] Platform: [Active(WinBZ] - Configuration Manager...
4 Common Properties Al Options

Eramework and References| /OUT: \:\Um\mlm\!nﬁcﬂmewRefmamDem\DeM\Dm.-\m exa” /INCREMENTAL /NOLOGO “kemel32kb™
Confi ion P . “user32lib" "gdi32ib" “winspool Ib” cumlgvlb “advapi32ib” "shell32lib" "ole32lb" "oleaut32lib” "wuid Ib” "odbc32 lib”
Configuration Properties "odbecp32lib™ 'C\Use‘s\mllan\ln I Demo"\Debu \DemoDLLHJ /MANIFEST /ManfestFie:"Debug
General \DemoApp exe ik est / vel= asinvoker uiAccess=Talse™ /DEBUG
Debugging /PDB: ‘C\Uws\lmlan\lnph::tLbraryRefuenangDm\Debu \Demoﬁppptb SSUBSYSTEM:WINDOWS /PGD:"C:\Users
- s ‘milan'\Implicit Library Referencing Demo'\Debug'\DemoApp pgd” /TLBID: 1 /DYNAMICBASE /NXCOMPAT /MACHINE:XE6
VC++ Directories /JERRORREPORT-QUEUE

y C/C++

Linker
General
Input
Manifest File
Debugging

Y

System
Optimization
Embedded IDL
Advanced
Command Line
Manifest Tool
» Resources
XML Document Generator
» Browse Information Addisonal Options bt fom parert & ool defacts [T
» Build Events
» Custom Build Step

Cancel] Apply

Figure 7-8. The result of implicit referencing: the exact path to the library is passed to the linker

Runtime Dynamic Library Location Rules

The loader needs to know the exact location of the dynamic library’s binary file in order to open, read, and load it into
the process. The variety of the dynamic libraries that may be needed for a program to run is vast, ranging from the
always needed system libraries, all the way to the custom, proprietary, project-specific libraries.

From the programmer’s perspective, the hardcoding of the paths of each and every dynamic library’s path seems
plain wrong. It would make much more sense if a programmer could just provide the dynamic library filename, and
the operating system would somehow know where to look for the library.

All major operating systems have recognized the need to implement such a mechanism, which would be capable
of searching and finding the dynamic library at runtime based upon the library filename provided by the program.
Not only a set of predetermined library locations have been defined, but also the search order has been defined,
specifying where the operating system will look first.

Finally, knowing the runtime location of the dynamic library is equally important regardless of whether the
dynamic library is loaded statically-aware or at runtime.

126

CHAPTER 7 © LOCATING THE LIBRARIES

Linux Runtime Dynamic Library Location Rules

The algorithm for searching for the dynamic library at runtime is governed by the following set of rules, listed in the
higher order of priority.

Preloaded Libraries

The unquestionable highest priority above any library search is reserved for the libraries specified for preloading,
as the loader first loads these libraries, and then starts searching for the others. There are two ways of specifying the
preloaded libraries:

e Bysetting the LD_PRELOAD environment variable.
export LD_PRELOAD=/home/milan/project/libs/1libmilan.so:$LD_PRELOAD

e Through the /etc/ld.so.preload file.

This file contains a whitespace-separated list of ELF shared libraries to be loaded before
the program.

Specifying the preloaded libraries is not the standard design norm. Instead, it is used in special scenarios, such as
design stress testing, diagnostics, and emergency patching of the original code.

In the diagnostic scenarios, you can quickly create a custom version of a standard function, lace it with the debug
prints, and build a shared library whose preloading will effectively replace the dynamic library that is standardly
providing such function.

After the loading of the libraries indicated for preloading is finished, the search for other libraries listed as
dependencies begins. It follows an elaborate set of rules, whose complete list (arranged from the topmost priority
method downwards) is explained in the following sections.

rpath

From the very early days, the ELF format featured the DT_RPATH field used to store the ASCII string carrying the search
path details relevant for the binary. For example, if executable XYZ depends on the runtime presence of the dynamic
library ABC, than XYZ might carry in its DT_RPATH the string specifying the path at which the library ABC could be
found at runtime.

This feature clearly represented a nice step ahead in allowing the programmer to establish tighter control
over the deployment issues, most notably to avoid the broad scale of possible mismatches between the versions of
intended vs. available libraries.

The information carried by the DT_RPATH field of the executable XYZ would be ultimately read out at runtime
by the loader. An important detail to remember is that the path from which the loader is started plays a role in
interpreting the DT_RPATH information. Most notably, in the cases where the DT_RPATH carries a relative path,
it will be interpreted not relative to the location of library XYZ but instead relative to the path from which the loader
(i-e., application) is started. As good as it is, the concept of rpath has undergone certain modifications.

According to web sources, somewhere around 1999 when version 6 of the C runtime library was in the process of
superseding version 5, certain disadvantages of rpath had been noticed, and it was mostly replaced by a very similar
field called runpath (DT_RUNPATH) of the ELF binary file format.

Nowadays, both rpath and runpath are available, but runpath is given higher regard in the runtime search
priority list. Only in the absence of its younger sibling runpath (DT_RUNPATH field), the rpath (DT_RPATH field) remains
the search path information of the highest priority for the Linux loader. If, however, the runpath (DT_RUNPATH) field of
the ELF binary is non-empty, the rpath is ignored.

127

CHAPTER 7 * LOCATING THE LIBRARIES

The rpath is typically set by passing the linker the -R or -rpath flag immediately followed by the path you want to
assign as runpath. Additionally, by convention, whenever the linker is indirectly invoked (i.e., by calling gcc or g++),
linker flags need to be prepended by the -W1, prefix (i.e “minus W1 comma”):

$ gcc -Wl,-R/home/milan/projects/ -1lmilanlibrary

N N N

|| |

| actual rpath value

||

| run path linker flag

|
-W1, prefix required when invoking linker

indirectly, through gcc instead of
directly invoking 1d

Alternatively, the rpath may be set by specifying the LD_RUN_PATH environment variable:
$ export LD_RUN_PATH=/home/milan/projects:$LD_RUN_PATH

Finally, the rpath of the binary may be modified after the fact, by running the chrpath utility program. One
notable drawback of the chrpath is that it can’t modify the rpath beyond its already existing string length. More
precisely, chrpath can modify and delete/empty the DT_RPATH field, but cannot insert it or extend it to a longer string.

The way to examine the binary file for the value of the DT_RPATH field is to examine the binary’s ELF header (such
as running readelf -dorobjdump -f).

LD LIBRARY PATH Environment Variable

It was very early on during the development of library search path concept when a need was recognized for a kind
of a temporary, quick-and-dirty yet effective mechanism that could be used by developers to experiment and test
their designs. The need was addressed by providing the mechanism in which a specific environment variable
(LD_LIBRARY_PATH) would be used to satisfy these needs.

When the rpath (DT_RPATH) value is not set, this path supplied this way is used as the highest priority search
path information.

Note In this priority scheme, there is an uneven battle between the value embedded in the binary file and the
environment variable. If things stayed the same, the presence of rpath in the binary would make troubleshooting the
problems with a third-party software product impossible. Fortunately, the new priority scheme addressed this problem
by recognizing that the rpath is too dictatorial and by providing a way to temporarily override its settings. The rpath’s
younger sibling runpath is given the power to silence the rogue and authoritarian rpath, in which case LD_LIBRARY PATH
has a chance of temporarily getting the highest priority treatment.

The syntax of setting up the LD_LIBRARY_PATH is identical to the syntax of setting any kind of path variable. It can
be done in the particular shell instance by typing for example something like this:

$ export LD_LIBRARY_PATH=/home/milan/projects:$LD_LIBRARY_PATH

Once again, the use of this mechanism should be reserved for the experimentation purposes. The production
versions of the software products should not rely on this mechanism at all.

128

CHAPTER 7 " LOCATING THE LIBRARIES

runpath

The runpath concept follows the same principle as the rpath. It is the field (DT_RUNPATH) of the ELF binary format, which
can be set at build time to point to the path where the dynamic library should look. As opposed to the rpath, whose
authority is unquestionable, the runpath is designed to be lenient to the urgent needs of LD_LIBRARY_PATH mechanism.

The runpath is set in a way very similar to how the rpath is set. In addition to passing the -R or -rpath linker flag,
an additional - -enable-new-dtags linker flag needs to be used. As already explained in the case of rpath, whenever
the linker is called indirectly, through calling gcc (or g++) instead of invoking directly 1d, by convention the linker flags
need to be prepended by the -W1, prefix:

$ gcc -Wl,-R/home/milan/projects/ -Wl,--enable-new-dtags -lmilanlibrary

N N N

| | I
| actual rpath value both rpath and runpath set

|
|
| | to the same string value
| run path linker flag

|

-W1, prefix required when invoking linker
indirectly, through gcc instead of
directly invoking 1ld

As arule, whenever the runpath is specified, the linker sets both rpath and runpath to the same value.

The way to examine the binary file for the value of the DT_RUNPATH field is to examine the binary’s ELF header
(such as running readelf -horobjdump -f).

From the priority standpoint, whenever DT_RUNPATH contains a non-empty string, the DT_RPATH field is ignored
by the loader. This way the dictatorial power of rpath is subdued and the will of LD_LIBRARY_PATH gets the chance of
being respected when it is really needed.

The useful utility program patchelf is capable of modifying the runpath field of the binary file. At the present
moment, it is not the part of the official repository, but its source code and the simple manual can be found at
http://nixos.org/patchelf.html. Compiling the binary is fairly simple. The following example illustrates the
patchelf use:

$ patchelf --set-rpath <one or more paths> <executable>
A

I
multiple paths can be defined,

separated by a colon (:)

Note Even though the patchelf documentation mentions rpath, the patchelf in fact acts on the runpath field.

Idconfig Cache

One of the standard code deploy procedures is based on running the Linux 1dconfig utility (http://linux.die.net/
man/8/1dconfig). Running the ldconfig utility is usually one of the last steps during the standard package installation
procedure, which typically requires passing the path to a folder containing libraries as input argument. The result is that
ldconfig inserts the specified folder path to the list of dynamic library search folders maintained in the /etc/1d.so.conf
file. At the same token, the newly added folder path is scanned for dynamic libraries, the result of which is that the
filenames of found libraries get added to the list of libraries’ filenames maintained in the /etc/1d.so.cache file.

For example, the examination of my development Ubuntu machine reveals the contents of /etc/1d.so.conf file

in Figure 7-9.

129

http://nixos.org/patchelf.html
http://linux.die.net/man/8/ldconfig
http://linux.die.net/man/8/ldconfig

CHAPTER 7 © LOCATING THE LIBRARIES

milan@milan$ cat /etc/ld.so.conf
include [fetc/ld.so.conf.d/*.conf

milan@milan$ ls -alg /etc/ld.so.conf.d/

total 24

drwxr-xr-x 2 root 4096 Aug 17 2012 .

drwxr-xr-x 131 root 12288 Feb 5 16:09 ..

lrwxrwxrwx 1 root 40 Feb 5 15:14 1386-1linux-gnu_GL.conf -> fetc/alternativ
es/1386-1inux-gnu_gl_conf

-fW-r--r-- 1 root 188 Apr 19 2012 1686-linux-gnu.conf
“W-r=-r-- 1 root 44 Apr 19 2012 libc.conf
milan@milan-ub-1204-32-1ts:~$ cat /etc/ld.so.conf.d/*
Jusr/lib/1386-1linux-gnu/mesa

Multiarch support

/1ib/1386-1inux-gnu

Jusr/lib/1386-1inux-gnu

/1ib/1686-1inux-gnu

Jusr/1ib/1686-1inux-gnu

libc default configuration

Jusr/local/lib

milan@milan$

Figure 7-9. The contents of /etc/ld.so.conf file

When ldconfig prescans all the directories listed in the /etc/1d. so. conf file, it finds gazillion dynamic libraries
whose filenames it keeps in the /etc/1d. so. cache file (only a small part of which is shown in Figure 7-10).

milan@milan$ cat fetc/ld.so.cache
o
0
o
0

.50.011bSDL-1.2.50.0/usr/1Lib/1386-1inux-gnu/1ibsSDL-1.2.50.01ibQtXmlPatterns.so0.4
Jusr/1ib/1386-1inux-gnu/libQtXmlPatterns.so.4libQtXml.so0.4/usr/1ib/1386-1inux-gn
u/1ibQtXml.s0.41ibQtSvg.so.4/usr/1ib/1386-linux-gnu/1ibQtSvg.so0.41ibQtSql.s0.4/u
sr/lib/1386-1inux-gnu/1ibQtsql.so.4libQtscript.so.4/usr/1ib/1386-1inux-gnu/1ibQt
Script.so.41libQtOpenGL.so.4/usr/1ib/1386-11nux-gnu/1ibQtOpenGL.so.41libQtNetwork.
so0.4/usr/1ib/1386-1inux-gnu/libQtNetwork.so.41ibQtGui.so.4/usr/1ib/1386-1inux-gn
u/1ibQtGui.so.41libQtGConf.s0.1/usr/1lib/1ibQtGConf.s0.111ibQtDee.s0.2/usr/1ib/1ibQ
tDee.so.2libQtDeclarative.so.4/usr/1lib/1386-1inux-gnu/1libQtDeclarative.so.41ibQt
DBus.so0.4fusr/1lib/1386-1inux-gnu/1ibQtDBus.so.41ibQtCore.so.4/usr/1ib/1386-1inux
-gnu/libQtCore.so.41ibQtCLucene.so.4/usr/1ib/1386-1inux-gnu/libQtCLucene.so0.41lib
QtBamf.so.1/usr/1lib/1ibQtBamf.so.111bORBitCosNaming-2.s0.0/usr/lib/1386-linux-gn
u/1ibORBitCosNaming-2.s0.011bORBit-2.50.0/usr/1ib/1386-1inux-gnu/1ibORBit-2.50.0
1ibORBit-imodule-2.50.0/usr/1ib/1386-1inux-gnu/1ibORBit-imodule-2.50.011bLLVM-3.
0.s50.1/usrf1lib/i386-1inux-gnu/1ibLLVM-3.0.50.111bI810XVMC.50.1/usr/1ib/11bIB10Xv
MC.so.1libIntelXvMC.so.1/usr/lib/libIntelXvMC.s0.111bIDL-2.50.0/usr/lib/1386-1in
ux-gnu/1ibIDL-2.50.81ibICE.s0.6/usr/1ib/1386-1inux-gnu/1ibICE.s0.61ibGeoIPUpdate
.50.0/usr/1ib/1ibGeoIPUpdate.so.01libGeoIP.so0.1/usr/1ib/1ibGeoIP.s0.11ibGLU.s0.1/
usr/1ib/i386-1linux-gnu/1libGLU.s0.11ibGLEWMX.50.1.6/usr/1ib/1386-Linux-gnu/1libGLE
Wmx.s0.1.6LibGLEW.s0.1.6/usr/1ib/1386-1inux-gnu/libGLEW.s0.1.61ibGL.s0.1/usr/1ib
/1386-1inux-gnu/mesa/1ibGL.s0.111bFS.50.6/usr/1ib/1ibFS.50.611ibFLAC.50.8/usr/1lib
/1386-1inux-gnu/1ibFLAC.so.8LibFLAC++.50.6/usr/1ib/1386-1inux-gnu/1ibFLAC++.50.6
libBrokenLocale.so.1/1ib/1386-11inux-gnu/libBrokenLocale.so.1libBrokenLocale.so/u
sr/lib/1386-1inux-gnu/libBrokenLocale.sold-1linux.s0.2/1ib/1386-1inux-gnu/ld-1inu
%x.50.21d-1inux.s0.2/lib/1d-1inux.so.2milan@milan$

Figure 7-10. The contents (small part) of the /etc/ld.so.cache file

130

CHAPTER 7 © LOCATING THE LIBRARIES

Note Some of the libraries referenced by the /etc/1d.so.con¥ file may reside in the so-called trusted library paths.
If the -z nodeflib linker flag was used when building the executable, the libraries found in the 0S trusted library paths
will be ignored during the library search.

The Default Library Paths (/lib and /usr/lib)

The paths /1ib and /usx/1ib are the two default locations where Linux OS keeps its dynamic libraries. The third
party programs designed to be used with superuser privileges and/or to be available to all users typically deploy their
dynamic library into one of these two places.

Please notice that the path /usr/local/1ib does not belong to this category. Of course, nothing prevents you
from adding to the priority list by using one of the previously described mechanisms.

Note If the executable was linked with the -z nodeflib linker flag, all the libraries found in the OS trusted library
paths will be ignored during the library search.

Priority Scheme Summary

In summary, the priority scheme has the following two operating versions.
When RUNPATH field is specified (i.e. DT_RUNPATH is non-empty)

1. LD_LIBRARY_PATH
2. runpath (DT_RUNPATH field)
3. 1d.so.cache
4. defaultlibrary paths (/1ib and /usr/1ib)
In the absence of RUNPATH (i.e. DT_RUNPATH is empty string)

1. RPATH of the loaded binary, followed by the RPATH of the binary, which loads it all the way
up to either the executable or the dynamic library which loads all of them

2. LD_LIBRARY_PATH
3. 1d.so.cache
4. defaultlibrary paths (/1ib and /usr/1ib)

For more details on this particular topic, please check the Linux loader man page (http://1linux.die.net/man/1/1d).

Windows Runtime Dynamic Library Location Rules

In the simplest, popular, most widespread knowledge about the topic, the following two locations are used the most
as the favorite paths to deploy the DLL needed at runtime:

e Thevery same path in which the application binary file resides

e One of the system DLL folders (such as C: \Windows\System or C: \Windows\System32)

131

http://linux.die.net/man/1/ld

CHAPTER 7 * LOCATING THE LIBRARIES

However, this is not where the story ends. The Windows runtime dynamic library search priority schemes are
far more sophisticated as the following factors play a role in the priority scheme:

e The Windows Store applications (Windows 8) have the different set of rules than the Windows
Desktop Applications.

e Whether the DLL of the same name is already loaded in the memory.
e Whether the DLL belongs to the group of known DLLs for the given version of Windows OS.

For more precise and up-to-date information, it makes the most sense to check the official Microsoft

documentation about this topic, currently residing at http://msdn.microsoft.com/en-us/library/windows/
desktop/ms682586(v=vs.85).aspx.

Linux Demo of Build Time and Runtime Conventions

The following example illustrates the positive effects of tightly following the -L and -R conventions. The project
used in this example is comprised of the dynamic library project and its test application project. In order to
demonstrate the importance of applying the -L convention, the two demo applications are created. The first one,
aptly named testApp_withMinusL demonstrates the positive effects of using the -L linker flag. The other one
(testApp_withoutMinusL) demonstrates what kind of troubles may happen if the -L convention is not followed.

Both applications also rely on rpath option to specify the runtime location of the required dynamic library.
The dynamic library’s project folder and the apps’ project folder are structured like Figure 7-11.

L— Minus_L_investigation
— demoMinusL
— demoNoMinusL
— deploy
L— 1libdynamiclinkingdemo.so
— illustratingMinusLImportance.png
— Makefile
— sharedLib
}— exports
| L— sharedLibExports.h
}— 1libdynamiclinkingdemo.so
— Makefile
src
L— testDynamicLinking.c
— testApp_withMinusL
— demoMinusL
[— Makefile
- SrC
L— main.c
—— testApp_withoutMinusL
— demoNoMinusL
— Makefile

- SIC
L—

main.c

9 directories, 15 files

Figure 7-11. The folder structure of project designed to illustrate the benefits of strictly following the -L -l conventions

132

http://msdn.microsoft.com/en-us/library/windows/desktop/ms682586(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682586(v=vs.85).aspx

CHAPTER 7
The Makefile of the application not relying on the -L convention looks like Listing 7-1.

Listing 7-1. Makefile Not Relying on the -L Convention

Import includes
COMMON_INCLUDES = -I../sharedlLib/exports/

Sources/objects
SRC_PATH = ./src
OBJECTS $(SRC_PATH)/main.o

Libraries

SYSLIBRARIES = \
-lpthread \
-1m \
-1d1
DEMOLIB_PATH = ../deploy
specifying full or partial path may backfire at runtime !!!
DEMO_LIBRARY = «./deploy/libdynamiclinkingdemo.so
LIBS = $(SYSLIBRARIES) $(DEMO_LIBRARY) -W1,-Bdynamic
Outputs
EXECUTABLE = demoNoMinusL
Compiler
INCLUDES = $(COMMON_INCLUDES)
DEBUG_CFLAGS = -Wall -g -00
RELEASE_CFLAGS = -Wall -02
ifeq ($(DEBUG), 1)
CFLAGS = $(DEBUG_CFLAGS) $(INCLUDES)
else
CFLAGS = $(RELEASE_CFLAGS) $(INCLUDES)
Endif
COMPILE = g++ $(CFLAGS)
Linker
RUNTIME LIB PATH = -W1,-R$(DEMOLIB_PATH)
LINK = g++

Build procedures/target descriptions
default: $(EXECUTABLE)
%.0: %.c
$(COMPILE) -c $< -0 $@
$(EXECUTABLE): $(OBJECTS)
$(LINK) $(OBIECTS) $(LIBS) $(RUNTIME_LIB_PATH) -o $(EXECUTABLE)
clean:
rm $(OBJECTS) $(EXECUTABLE)
deploy:
make clean; make; patchelf --set-rpath ../deploy:./deploy $(EXECUTABLE);\
cp $(EXECUTABLE) ../;

LOCATING THE LIBRARIES

133

CHAPTER 7 * LOCATING THE LIBRARIES
The Makefile of the application following the -L convention looks like Listing 7-2.

Listing 7-2. Makefile Following the -L Convention

Import includes
COMMON_INCLUDES = -I../sharedlLib/exports/

Sources/objects

SRC_PATH = ./src
OBJECTS = $(SRC_PATH)/main.o
Libraries
SYSLIBRARIES = \
-lpthread \
-1m \
-1d1
SHLIB BUILD_PATH = ../sharedLib
DEMO_LIBRARY = -L$(SHLIB_BUILD PATH) -ldynamiclinkingdemo
LIBS = $(SYSLIBRARIES) $(DEMO_LIBRARY) -W1,-Bdynamic
Outputs
EXECUTABLE = demoMinusL
Compiler
INCLUDES = $(COMMON_INCLUDES)
DEBUG_CFLAGS = -Wall -g -00
RELEASE_CFLAGS = -Wall -02

ifeq ($(DEBUG), 1)

CFLAGS $(DEBUG_CFLAGS) $(INCLUDES)
else

CFLAGS = $(RELEASE_CFLAGS) $(INCLUDES)
endif

COMPILE = g++ $(CFLAGS)

Linker

DEMOLIB_PATH = ../deploy

RUNTIME LIB PATH = -W1,-R$(DEMOLIB_PATH)

LINK

g++

Build procedures/target descriptions
default: $(EXECUTABLE)
%.0t %.c
$(COMPILE) -c $< -0 $@
$(EXECUTABLE): $(OBJECTS)
$(LINK) $(OBIECTS) $(LIBS) $(RUNTIME_LIB PATH) -o $(EXECUTABLE)
clean:
rm $(OBIECTS) $(EXECUTABLE)
deploy:
make clean; make; patchelf --set-rpath ../deploy:./deploy $(EXECUTABLE);\
cp $(EXECUTABLE) ../;

134

CHAPTER 7 © LOCATING THE LIBRARIES

When the process of building the dynamic library is completed, its binary is deployed to the deploy folder, which
resides the two levels of depth above the folder in which the application Makefile resides. Hence, the build-time path
needs to be specified as . . /deploy/libdynamiclinkingdemo.so

Figure 7-12 illustrates the advantage of adhering to the -L convention: the immunity of the program to the change
of the runtime library paths.

/Minus_L_investigation$ 1s -alg

21:30 .

21:34 ..

21:33 demoMinuslL

21:33 demoNoMinusL

21:30 deploy

21:15 Makefile

21:33 sharedLib

21:33 testApp_withMinusL

21:33 testApp_withoutMinusL Library specified as -L<path> -1 <name> may be handled

/Minus_L_investigations neatly in both linking as well as at runtime (where its
/Minus_L_investigation$

/Minus_L_investigation$ name may be cleanly combined with rpath.)
/Minus_L_1investigatigps
JMinus_L i tT0ationS 1dd demoMinusL
inux-gate.so.1 => (0xb77d9000)
libdynamiclinkingdemo.so => ./deploy/libdynamiclinkingdemo.so (0xb77d4060)
libc.so.6 => /1ib/i386-1inux-gnu/libc.so0.6 (0xb7612000)
1ib/1d-linux.s0.2 (0xb77da0ceo)
/Minus_L_T igation$s
/Minus_L_investigation$
/Minus_L_1investigation$
/Minus_L_1investigation$
/Minus_tl~(nvestigation$ 1dd demoNoMinusL
linux-gate.so.1 => (0xb7700000)
../deploy/libdynamiclinkingdemo.so => not found
libc.so.6 => f1ib/1386-1inux-gnu/libc.so.6 (0xb753cPE0)
/1ib/1d-1inux.so0.2 (0xb7701000)
[Minus_L_Useestigation$
/Minus_L_investigatliuns
/Minus_L_investigation$
/Minus_L_1investigation$ mkdir ../deploy
/Minus_L_1investigetion$ cp ./deploy/libdynamiclinkingdemo.so ../deploy/
/Minus_L_investigation’
/Minus_L_investigatiend
/Minus_L_iswestigations
/Minus~L_investigation$ 1dd demoNoMinusL
linux-gate.so.1 => (0xb77d1000)
.. /deploy/libdynamiclinkingdemo.so (0xb77ccee0)
libc.so.6 => /1ib/i386-1inux-gnu/libc.so0.6 (@xb760a000)
/1ib/1d-1inux.so0.2 (0xb77d2000)
/Minus_L_1investigation$ '

MNANRNRNRMNRNRNRN

%]

Figure 7-12. The benefit of carefully following the -L -l conventions. Following the convention typically means being
worry free at runtime

When the build time library path was specified with the -L option, the library name is effectively separated from
the path and as such imprinted into the client binary file. When the time comes to conduct the runtime search, the
imprinted name (i.e., not the path plus name, but solely the library name!) fits really well with the implementation of
the runtime search algorithm.

135

CHAPTER 8

Designing Dynamic Libraries:
Advanced Topics

The purpose of this chapter is to discuss the details of the dynamic linking process. A crucial factor in this process is
the memory mapping concept. Basically, it allows a dynamic library that is already loaded in the memory map of a
running process to be mapped into the memory map of another process running concurrently.

The important rule of dynamic linking is that different processes do share the code segment of the dynamic
library, but do not share the data segments. Each of the processes loading the dynamic library is expected to provide
its own copy of the data on which the dynamic library code operates (i.e., the library’s data segment). Following the
culinary analogy, several chefs in several restaurants can concurrently use the same book of recipes (instructions).

It is very likely, however, that different chefs will use different recipes from the same book. Also, it is given that the
dishes prepared by the recipes from the same cook book will be served to different customers. Obviously, despite the
fact that the chefs read from the same recipe book, they each should use their own set of dishes and kitchen utensils.
Otherwise, it would be a huge mess.

As great and simple as the whole story looks now, several technical problems needed to be solved along the way.
Let’s take a closer look.

Why Resolved Memory Addresses Are a Must

Before going into the details of the technical problems encountered during the design of dynamic linking implementations,
it is worth reiterating a few simple facts rooted in the domain of assembly language and machine instructions that
ultimately determine so many other details.

Namely, certain groups of instructions expect that the address of the operand in memory be known at runtime.
In general, the following two groups of instructions strictly require the precisely calculated addresses:

e Data access instructions (mov, etc.) require the address of the operand in memory. For
example, in order to access a data variable, the mov assembler instruction of X86 architecture
requires the absolute memory address of the variable in order to transfer the data between the
memory and a CPU register.

The following sequence of assembly instructions is used to increment a variable stored in memory:
mov eax, ds:0xBFD10000 ; load the variable from address OxBFD10000 to register eax

add eax, 0x1 ; increment the loaded value
mov ds:0xBFD10000, eax ; store the result back to the address 0xBFD10000

137

CHAPTER 8 ' DESIGNING DYNAMIC LIBRARIES: ADVANCED TOPICS

e Subroutine calls (call, jmp, etc.) require the address of function in code segment. For
example, in order to call a function, the call instruction must be supplied with the code
segment memory address of the function entry point.

The following sequence of assembly instructions performs the actual function call:
call 0x0A120034 ; calling function whose entry point resides at address 0x0A120034
which is equivalent to

push eip + 2 ; return address is current address + size of two instructions
jmp 0x0A120034 ; jumping to the address of my function

For things to be somewhat easier, there are scenarios in which merely a relative offset plays a role. The addresses
of static variables as well as the entry points of functions of local scope (both declared by using the static keyword in
the sense of C programming language) may be resolved by knowing only the relative offset from the instructions that
reference them. Both data access and/or subroutine call assembler instructions do have the flavors that require the
relative offset instead of the absolute address. This, however, does not remove the overall problem; it only diminishes
it to an extent.

General Problem of Resolving References

Let’s consider the simplest possible case in which the executable (application) is the client binary that loads a single
dynamic library. The following set of known facts describes the working scenario:

e Afixed, predetermined part of the process memory map blueprint is provided by the
executable binary.

¢ Once the dynamic loading is completed, the dynamic library becomes a legitimate part of
the process.

e The connection between the executable and the dynamic library naturally happens by
the executable calling one or more functions implemented and properly exported by a
dynamic library.

Here comes the interesting part.

The process of loading the library into the process memory map begins by translating the library segment’s
address range to a new location. In general, the address range where the dynamic library will be loaded is not known
in advance. Instead, it is determined at load time by the internal algorithm of the loader module.

The level of indeterminism in this scenario is only slightly diminished by the fact that the executable format
stipulates the address range where the dynamic library may be loaded. However, the stipulated range of allowed
addresses is fairly broad, as it was designed to accommodate many dynamic libraries loaded at the same time. This
clearly does not help much in guessing where exactly the dynamic library will eventually be loaded.

The process of address translation (illustrated in Figure 8-1) that happens during the dynamic library loading is
the crucial problem of dynamic linking, which makes the whole concept rather complex.

138

CHAPTER 8 * DESIGNING DYNAMIC LIBRARIES: ADVANCED TOPICS

LOADER

0XA0120000 ‘

N\

0x00000000

Figure 8-1. Address translation inevitably happens as the loader tries to find a place for the dynamic library in the
process memory map

What exactly is the problem with the address translation?

The address translation is not the problem per se. You've seen in previous chapters that the linker routinely
performs this simple operation when trying to tile the object files together into the process memory map. However,
it is very important which module performs the address translation.

More specifically, there are substantial differences in the scenario in which the linker performs the address
translation from the scenario in which the loader does the same thing.

e When performing the address translation, the linker in general has a “clean slate/virgin snow”
situation. None of the object files taken in by the linker during the tiling process have any of
the references resolved. This gives the linker a huge degree of freedom to juggle the object files
when trying to find the right place for them. Upon completing the initial placement of object
files, the linker scans the list of unresolved references, resolves them, and stamps the correct
addresses into the assembly instructions.

e Theloader, on the other hand, operates within significantly different circumstances. It takes
as input the dynamic library binary, which already passed the complete building process, and
has resolved all the references. In other words, all of the assembler instructions are stamped
with the correct addresses.

In the particular cases in which the linker imprinted the absolute addresses into the assembler
instructions, the address translation performed by the loader makes imprinted addresses
completely meaningless. Executing such fundamentally disrupted instructions gives bogus
results at best, and has a potential of being very dangerous. Obviously, the address translation
performed during the dynamic loading kind of falls into the broad category of the “elephant in
the china store” paradigm.

In summary, the address translation of the loader cannot be avoided, as it is inherent to the idea of dynamic
loading. However, it immediately imposes a very serious kind of problem. Fortunately, even though it cannot be
avoided, a few ways of dancing around it have been successfully implemented.

139

CHAPTER 8 ' DESIGNING DYNAMIC LIBRARIES: ADVANCED TOPICS

Which Symbols Are Likely to Suffer from Address Translation?

It is almost a no-brainer that the functions and variables declared static (in the C language sense, as in relevant only
for the file in which they reside) are out of danger. Indeed, since only the nearby instructions need to access these
symbols, all the accesses can be implemented by supplying the relative address offsets.

What is the situation with the functions and variables that are not declared static?

As it turns out, not being declared static still does not mean that such function or variable will inevitably be
doomed to suffer from the address translation.

In fact, only the functions and variables whose symbols are exported by the dynamic library are guaranteed
to suffer from the negative effects of the address translation. In fact, when the linker knows that a certain symbol
is exported, it implements all the accesses via the absolute addresses. The address translation then renders such
instructions unusable.

The code example analyzed in Appendix A illustrates this point, in which two non-static variables are featured in
the code, of which only one is exported by the dynamic library. As the analysis shows, the exported variable is the one
that gets affected by the dynamic loading address translation.

Problems Caused by Address Translation

There are times when address translation during dynamic loading can cause problems. Fortunately, these can be
systematized into two general scenarios.

Scenario 1: Client Binary Needs to Know the Address of Dynamic
Library Symbols

This is the most basic scenario, which happens when the client binary (an executable or a dynamic library) counts on
symbols of a loaded dynamic library being available at runtime, but does not know what the ultimate address will be,
as illustrated in Figure 8-2.

140

CHAPTER 8 * DESIGNING DYNAMIC LIBRARIES: ADVANCED TOPICS

Absolute address = ?

% function_xyz()

Figure 8-2. Scenario 1: The client binary must resolve dynamic library symbols

If you assume the usual approach where the task of resolving the symbol addresses traditionally belongs to the
linker (and linker only), you are in a troubled situation. Namely, the linker already completed its task of building both
the client binary as well as the library, which is being dynamically loaded.

It quickly becomes very obvious that certain “out of the box” thinking needs to be applied in order to resolve this
kind of situation. The solution leads into the direction of granting a part of the linker’s responsibilities of resolving the
symbols to the loader.

In the new scheme of things, the new ability of the loader to take some of the linker’s abilities is typically
implemented as a module commonly referred to as a dynamic linker.

Scenario 2: Loaded Library No Longer Knows the Addresses of Its
Own Symbols

Typically, the ABI functions exported by the dynamic libraries are the well encapsulated entry points into the library’s
inner functionality. The typical sequence that happens at runtime is that the client binary typically calls one of the ABI
methods, which in turn calls the library’s internal functions, which are of no particular interest to the client binary and
hence not exported.

A possible different scenario (albeit somewhat less frequently encountered) is when a dynamic library ABI
function internally calls the other ABI function.

Let’s assume, for example, that a dynamic library hosts a module that exports the two interface functions:

e Initialize()

e Uninitialize()

141

CHAPTER 8 © DESIGNING DYNAMIC LIBRARIES: ADVANCED TOPICS

The internal execution flow of each of the two functions will very likely assume the sequence of calls of library
internal functions, declared with a static scope. Calling the internal methods is typically performed by the assembler
call family of instructions featuring relative addresses. The address translation does not negatively affect the
implementation of call functions, as illustrated in Figure 8-3.

Regardless of the fact
that the absolute
address of ABI function

is not known, the 0 Library’s internal function, declared

relative offsets to the _ ‘static’, accessible by relative
library’s internal static address offset

functions are sufficient
to implement the call
instructions.

The address translation 0
did not cause trouble at
least in this part of the
overall picture.

Library’s exported function
(accessible by absolute address)

Due to the address
translation, the symbol
address is unknown.

Figure 8-3. Regardless of address translation, the calls to local functions (which may may be implemented as relative
Jjumps) can be easily resolved

It is perfectly possible, however, that the library designers decide to provide the Reinitialize() interface
function. It would neither be surprising nor wrong that this function internally first calls the Uninitialize() interface
function, immediately followed by the call to the Initialize() interface function.

By being the ABI interface function, the Reinitialize() function’s entry point must belong to the set of dynamic
library’s exported symbols. The jump instructions that refer to this function may not be implemented as relative
jumps. Instead, the linker must implement the jump/call instructions as jumps to the absolute addresses.

Obviously, now you have an interesting kind of situation. The damaged party in this scenario is no longer only
the client binary, but the loaded library as well. After the memory translation is performed by the loader, the function
addresses are no longer applicable. The assembler call instructions that the linker nicely imprinted with the absolute
addresses are not only meaningless, but potentially dangerous, as their jump target is no longer where it was originally
planned to be, as shown in Figure 8-4.

142

CHAPTER 8 * DESIGNING DYNAMIC LIBRARIES: ADVANCED TOPICS

Due to the address

translation, the symbol

address is unknown.
Library’s exported function
(accessible by absolute address)

& Calling one exported ABI function
6 from the other become bogus, as
the address translation rendered
the absolute address embedded
into the call assembly instruction
practically useless.

Library’s exported function
(accessible by absolute address)

Figure 8-4. Scenario 2: One ABI function internally calling another suffers from unresolved references problems. Both
Junction entry points are designated for export, which urges the compiler to implement calls as absolute jumps. Resolving
the absolute addresses is not possible until the loader completes the address translation

Again, the identical problem that you face with the ABI functions exists with the dynamic library’s global
scope variables.

Linker-Loader Coordination

It was recognized early on that in the dynamic linking scenario the linker can not completely solve everything that it
normally solves during the building of monolithic executable.

During the initial stage of dynamic linking, the loader loads the code segment of the dynamic library into the
new address range. Even though the linker legitimately finished the task of resolving the references when building the
dynamic library, it is simply not enough; the address translation process rendered the absolute addresses imprinted
into the assembler call instructions invalid.

The fact that the “earthquake” happens after the linker did all it could do implies that there must be “someone
smart” to fix the troubles after the fact. That “someone smart” was chosen to be the loader.

Overall Strategy

Knowing all the previously described constraints, the cooperation between the linker and loader has been established
according to the following set of broad guidelines:

e The linker recognizes its own limitations.

e The linker precisely estimates the damage, prepares the directives for fixing it, and embeds the
directives into the binary file.

e Theloader precisely follows the linker directives and applies the corrections after the address
translation is completed.

143

CHAPTER 8 ' DESIGNING DYNAMIC LIBRARIES: ADVANCED TOPICS

Linker Recognizes Its Own Limitations

When creating a dynamic library, in addition to being witty in figuring out the relationships between the various parts
of the puzzle, the linker also must be smart enough to recognize what will be disrupted as result of the code segment
loading into the different range of addresses.

First, the code address range of the dynamic library memory map is zero-based, unlike with executables,
in which case the linker deals with the more specific non-zero based address ranges.

Second, when recognizing that the addresses of certain symbols cannot be resolved before the load time, the
linker stops trying; instead, it fills the unresolved symbols with temporary values (typically being some obviously
wrong values, such as all zeros or so).

This does not mean, however, that linker has given up the quest of completing the task.

Linker Precisely Estimates the Damage, and Prepares Directives for Fixing It

It is completely possible to classify all the scenarios in which the loader address translation will render ineffective the
previously resolved references. Such cases happen whenever the assembler instructions require absolute addresses.
When completing the linking stage of building the dynamic library, the linker can identify such occurrences and
somehow let the loader know of them.

In order to provide support for linker-loader coordination, the binary format specifications support brand new
sections whose purpose is solely to provide the place for the linker to leave the directives for the loader of how to fix
the damage caused by address translation happening during the dynamic loading. Furthermore, a specific simple
syntax has been devised so that the linker can precisely specify to the loader the course of action to take. Such sections
are called relocation sections in the binary, of which the .rel.dyn section is the oldest.

In general, the relocation directives are written into the binary by the linker, to be read later by the loader.
They specify

e Atwhich addresses the loader needs to apply some patching after laying out the final memory
map of the whole process.

e What exactly the loader needs to do in order to correctly patch the unresolved addresses.

The Loader Precisely Follows the Linker Directives

The last phase belongs to the loader. It reads in the dynamic library created by the linker, reads in the loader segments
(each carrying a variety of linker sections), and lays them all out into the process memory map, alongside the code
belonging to the original executable.

Finally, it locates the .rel.dyn section, reads in the directives that the linker left, and according to these
directives performs patching of the original dynamic library. When patching is completed, the memory map is ready
for launching the process.

Obviously, the task of handling the dynamic library loading requires that some more intelligence be granted to
the loader than what it needs for its basic tasks.

Tactics

In general, the exchange of information between the linker and the loader happens through the specific . rel.dyn
section inserted by the linker into the body of the binary. The only question is in which of the binary files will the linker
insert the .xel.dyn section?

The answer is simple: it is the squeaky wheel that gets the oil. The binary whose code section needs repair will
generally carry the .rel.dyn section.

Concretely, in Scenario 1, the linker embeds the .rel.dyn section into the client binary (the executable or
dynamic library whose instructions were “damaged” by the loading of a new dynamic library), as this is where the
address translation of loaded libraries caused troubles. Figure 8-5 illustrates the idea.

144

Linker directives for
loader:

After the library is ..
loaded and address *.
range of its code T
section is determined,
certain instructions in the
code section of the L.
executable which L’
suffered fromthe -*
address range

translation need

to be patched.

.

Address range of
loaded dynamic
library

rel.dyn section

Client binary

CHAPTER 8

DESIGNING DYNAMIC LIBRARIES: ADVANCED TOPICS

Figure 8-5. In Scenario 1, the linker directives are embedded into the client binary file

In Scenario 2, however, the linker embeds the .rel.dyn section into the binary of the loaded library, as it needs
help reconstructing the coherence between the addresses and instructions that point to them (Figure 8-6).

145

CHAPTER 8 ' DESIGNING DYNAMIC LIBRARIES: ADVANCED TOPICS

Linker directives for the
loader:

After the library is loaded
and the address range of
code section is determined
certain instruction in the
code section of loaded
________________ library which suffered from
address range translation
Address range of need to be patched.

loaded dynamic

library
rel.dyn section
function_xyz()
Client binary Dynamic library

Figure 8-6. In Scenario 2, the linker directives are embedded into the dynamic library

In this particular example, you have the simplest possible scenario in which an executable loads a dynamic
library. A far more realistic case is that a dynamic library itself may load another dynamic library, which in turn may
load yet another dynamic library, etc. Any of the dynamic libraries in the middle of the chain of dynamic loading may
be in dual role. Scenario 1 as well as Scenario 2 may happen to be applicable to the same binary.

Linker Directives Overview

The binary format specifications typically specify in detail the syntax rules of communication between the linker

and the loader. The linker directives for the loader generally tend to be very simple, yet very precise and to the point
(Figure 8-7). Hence the structuring the information carried by the linker directives does not take tremendous amount
of effort to implement and understand.

146

Offset

P8043000
P804a864
P8043008
P804600C
P8046010
08042014

offset

P00004b8
PBOOZGOS
P80004c8
P00004d0

peeee4ea
Pﬂﬂﬂlfea
leeemfec
0000 1ffo

Figure 8-7.

Info
00000107
oooo0207
00000307
00000407
00000507
oeooe607

Info
00000008
00000008
00000801
00000801
00000b0O1
00000106
00000206
00000306

Type
R_386_JUMP_SLOT
R_386_JUMP_SLOT
R_386_JUMP_SLOT
R_386_JUMP_SLOT
R_386_JUMP_SLOT
R_386_JUMP_SLOT

Type
R_386_RELATIVE
R_386_RELATIVE
R_386_32
R_386_32
R_386_32
R_386_GLOB_DAT
R_386_GLOB_DAT
R_386_GLOB_DAT

Examples of linker directives

Sym.Value
00000000
00000000
00000000
00000000
00000000
00000000

Sym.Value

0000201c
0000201c
0000200c¢
00000000
00000000
00000000

CHAPTER 8 * DESIGNING DYNAMIC LIBRARIES: ADVANCED TOPICS

Sym. Name

printf
shlib_abi_function
__gmon_start__
dl_iterate_phdr
__libc_start_main
putchar

Sym. Name

shlibNonStaticAccessed
shlibNonStaticAccessed
shlibNonStaticVvariable
__cxa_finalize
__gmon_start__
_Jv_RegisterClasses

In particular, the ELF file format carries the detailed definitions of how the linker specifies the directives for
the loader. The directives are stored primarily in the .rel.dyn section as well as in a few other specialized sections
(rel.plt, got, got.plt). The tools such as readelf or objdump can be used to display the contents of the directives.
Figure 8-7 shows some of the examples.

The interpretation of the fields of the directive syntax is the following:

where

Offset specifies the code section byte offset to the assembler instruction operand, which is
rendered meaningless by the address translation and needs repair.

Info is described by the ELF format specification as

#define
#define
#define

#define
#define
#define

ELF32_R_SYM(i) ((i)>>8)
ELF32 R TYPE(i) ((unsigned char)(i))
ELF32_R_INFO(s,t) (((s)<<8)+(unsigned char)(t))

ELF64 R_SYM(i) ((i)»>32)
ELF64_R_TYPE(i) ((i)8OxFfffffffL)
ELF64_R_INFO(s,t) (((s)<<32)+((t)&oxfffffffL)

e ELFxx_R_SYMdenotes the symbol table index with respect to which the relocation must
be made:

One of the sections of the binary file carries the list of symbols. This value simply

represents the index of the symbol table item that represents this particular symbol. The
readelf and objdump can provide the complete list of symbols contained in the binary’s
symbol table.

e ELFxx_R_TYPE denotes the type of relocation to apply. A detailed description of available
relocation types is shown below.

Type specifies the type of action that the loader needs to perform on the assembler instruction
operand in order to repair the problems caused by the address translation. The ELF binary
format shown in Figure 8-8 (Figure 1-22 of the ELF specification) specifies the following
relocation types.

147

CHAPTER 8 © DESIGNING DYNAMIC LIBRARIES: ADVANCED TOPICS

Figure 1-22: Relocation Types

Name Value Field Calculation
R_386_NCNE 0 none none
R_386_32 1 word32 | S + A
R_386_PC32 2 word32 | S + A - P
R_386_GOT32 3 word32 | G + A - P
R_386_PLT32 4 word32 | L + A - P
R_386_COPY 5 none none
R_386_GLOE_DAT 6 word32 | S
R_386_JMP_SLOT 7 word32 S
R_386_RELATIVE 8 word32 B + A
R_386_GOTOFF 9 word32 S + A - GOT
R_386_GOTPC 10 word32 GOT + A - P

Some relocation types have semantics beyond simple calculation.

R_386_GOT32

R_386_PLT32

R_386_COPY

R_386_GLOB_DAT

R_3862_JMP_SLOT

R_386_RELATIVE

R_386_GOTOFF

R_386_GOTEC

This relocation type computes the distance from the base of the global offset
table to the symbol's global offset table entry. It additionally instructs the link
editor to build a global offset table.

This relocation type computes the address of the symbol's procedure linkage
table entry and additionally instructs the link editor to build a procedure linkage
table.

The link editor creates this relocation type for dynamic linking. Its offset
member refers to a location in a writable segment. The symbol table index
specifies a symbol that should exist both in the current object file and in a shared
object. During execution, the dynamic linker copies data associated with the
shared obiject’s symbol to the location specified by the offset.

This relocation type is used to set a global offset table entry to the address of the
specified symbol. The special relocation type allows one to determine the
correspondence between symbols and global offset table entries.

The link editor creates this relocation type for dynamic linking. Its offset
member gives the location of a procedure linkage table entry. The dynamic
linker modifies the procedure linkage table entry to transfer control to the desig-
nated symbol’s address [see ““Procedure Linkage Table” in Part 2].

The link editor creates this relocation type for dynamic linking. Its offset
member gives a location within a shared object that contains a value represent-
ing a relative address. The dynamic linker computes the corresponding virtual
address by adding the virtual address at which the shared object was loaded to
the relative address. Relocation entries for this type must specify 0 for the sym-
bol table index.

This relocation type computes the difference between a symbol's value and the
address of the global offset table. It additionally instructs the link editor to build
the global offset table.

This relocation type resembles R_386_PC32, except it uses the address of the
global offset table in its calculation. The symbol referenced in this relocation
normally is _GLOBAL_OFFSET_TABLE_, which additionally instructs the link
editor to build the global offset table.

Figure 8-8. Overview of linker directive types (from ELF format specification)

148

CHAPTER 8 * DESIGNING DYNAMIC LIBRARIES: ADVANCED TOPICS

e Sym.Value specifies the tentative, temporary offset within the code section (in case of
functions) or within the data segment (in case of variables) where the symbol currently resides
in the original binary file. It is assumed that the address translation will affect these values.

e Sym.Name specifies the human readable symbol name (function name, variable name)

Linker-Loader Coordination Implementation Techniques

Throughout the evolution of the dynamic linking concept, the two implementation techniques have been used: Load
Time Relocation (LTR) and Position Independent Code (PIC).

Load Time Relocation (LTR)

Chronologically, the first implementation of the dynamic linking concept came in the form of the so-called Load
Time Relocation. Broadly speaking, this technique was the first dynamic loading technique that really worked.
Its immediate benefit was the ability to relieve the application binaries from the need to carry along unnecessary
“luggage” (the code that handles the usual chores specific to the operating system).

The immediate benefits that the LTR concept brought was that not only the byte size of applications’ binaries
became substantially smaller, but also the way certain OS-specific tasks were executed became unified across the
wide variety of applications.

Despite the obvious benefits that this concept brought, it had several major drawbacks. First, this technique
modifies (patches) the dynamic library code with the literal values of addresses of variables and functions, meaningful
only in the context of the application that loaded it first. In the context of any other application (which would very
possibly feature the different process’ memory map layout), the code modifications would very likely be useless,
meaningless, and simply not applicable.

As a consequence, if several applications needed the services of a dynamic library at the same time, it would
mean that you would have exactly that many copies of the same dynamic library in memory.

The second drawback was that a proportionally large amount of code modifications would be required. With
this technique in place, the loader needs to modify/patch exactly as many places in the code that reference a certain
variable or call a certain function. In cases where the application loads plenty of dynamic libraries, the load time
grows to significant and noticeable initial latency during the application start.

The third drawback was that the writable code (.text) segment poses a potential security threat.

With this technique in place, the dream of loading the dynamic library into the physical memory only once, and
mapping it into the plethora of different applications’ memory maps different address, was not achievable.

Figure 8-9 illustrates the idea behind the Load Time Relocation concept.

149

CHAPTER 8 © DESIGNING DYNAMIC LIBRARIES: ADVANCED TOPICS

Dynamic library
code (.text section)

+
® o

symbols

.

+

Dynamic library
code (.text section)

+

® 9

After the loading is
completed, the final
addresses of symbols
are known. Now is the
time to connect the
instruction with the
symbols they reference.

Load time relocation
approach modifiles the
dynamic library source
(.text section) by hard
coading the instructions
address operands to
point to the addresses
of the current process
memory map.

Figure 8-9. LTR concept and its limitations

All the drawbacks were addressed with the design of the newer and in many aspects superior Position
Independent Code (PIC) approach, which quickly became the prevalent choice of linking techniques.

Position Independent Code (PIC)

The limitations of the Load Time Relocation scheme have been addressed in the next implementation of the dynamic
linking, the technique known as Position Independent Code (Figure 8-10). The unwanted direct modifications of the
dynamic library code segment instructions have been avoided by taking an extra step of indirection. In the lingo of
programming languages, the approach can be described as using pointer-to-pointer instead of pointer.

150

Dynamic library
code (.text section)

However, hardcoding

the addresses makes

the dynamic library
unusable for the any other
process memory map

in which symbols

happen to reside on
different addresses.

CHAPTER 8 * DESIGNING DYNAMIC LIBRARIES: ADVANCED TOPICS

Dynamic library
code (.text section)

Dynamic library Dynamic library
code (.text section) code (.text section)

Fixed
address
offset

V'

Global offset table
(GOT) A4
which maintain A
the storage slots
for each of the

Variable
address

¢ needed symbol offset
symbols ‘ addresses
L 2
Address
Global offset table (GOT) maintain the storage slots carrying offset

addresses of each of the unresolved symbols.

The GOT offset is constant, and known at link time. Hence, the CPU
instructions referencing GOT slot are independent of particular
process memory map layout.

The content of storage slots, however, depend on the particular
process memory map layout. Once everything is loaded and symbol
addresses are known, the loader visit the GOT and updates the
storage slots with the right values of symbol addresses.

Figure 8-10. PIC concept

Basically, the symbol addresses are supplied to the needy instructions in two steps. In order to get the symbol
address, first a mov instruction accesses the address-of-address location and loads its contents (a needed symbol
address) into an available CPU register. Immediately after, the retrieved symbol address now stored in a register may
be used as the operand in the subsequent instructions (mov for data, call for function calls).

The special twist in the solution is that the symbol addresses are kept in a so-called global offset table (GOT)
for which the linker reserves a dedicated .got section. The distance between the . text section and .got section is
constant and known at link time. For each of the symbols that need to be resolved, the global offset table maintains a
dedicated slot at the known and fixed offset from the table start.

Given the fixed GOT distance and fixed slot offset (both known at link time), it becomes possible for a compiler
to implement the code instructions to reference the fixed locations. Most importantly, the implemented code does
not depend on the actual symbol addresses, and can be used without any changes directly mapped into a plethora of
other processes.

The final adjustment to the peculiarities of a specific memory map layout is completed by the loader. In this scheme,
however, the loader does not irreversibly modify the code (. text section). Instead, once the symbol addresses are
known, the loader patches the .got section, which is (much like the data sections) always implemented per process.

151

CHAPTER 8 ' DESIGNING DYNAMIC LIBRARIES: ADVANCED TOPICS

Note In order to implement this scheme, a substantial design effort was needed, which is spread beyond the
linker-loader boundaries. In fact, in order to implement the PIC concept, the story must start at the compiler level.
In particular, the -fPIC flag must be passed to compiler. The “fPIC” or simply “PIC” mnemonic eventually became a synonym
with dynamic linking.

Lazy Binding

The fact that the referencing of the symbols in the PIC approach passes through the extra level of indirection provides
the potential for achieving the additional performance benefits at runtime. The strategy of implementing the extra
performance kick is based on the fact that the loader does not waste precious time setting up the contents of the .got
and .got.plt sections until the program starts.

The assembler instructions that reference the symbols are set to point to the intermediary point anyway, and
there is nothing terribly wrong with the overall shape of the code that would put a stop to the program loading.

In fact, the loader normally does not even bother to complete setting up the contents of the .got and .got.plt
sections until absolutely necessary. Such moments happen after the program already started, and only when the
execution flow comes to the instructions referencing the symbols whose addresses are kept in the .got and
.got.plt sections.

The obvious benefit of the loader’s procrastination (commonly referred to as lazy binding) is that the loading
process gets completed faster, which makes the application start quicker. A small one-time performance penalty
happens when the loader quickly makes up for its initial (albeit premeditated) carelessness. That happens only as per
need, and only once, at the very first occurrence of symbol referencing. The fewer of the dynamic library’s symbols
that actually get referenced at runtime, the more performance savings the loader is able to achieve.

The lazy binding concept is an extra feature of the PIC approach, which obviously adds another good reason for
developers to choose the PIC over the LTR implementation. In fact, the PIC approach is a favorite implementation of
the Scenario 1 type problem when the client binary is the executable file (i.e., application).

Rules and Limitations of the Recursive Chain of Dynamic Linking

The scenarios you've examined in detail so far pertain to the simplest possible dynamic linking scenarios. After taking
a closer look at the atomic level, now let’s step back a little and take a look at the molecular level of the dynamic
linking, as it features certain rules and limitations which are not obvious at the atomic level of the story.

In reality, the structure of a typical program may be described as the recursive chain of dynamic linking, in
which each of the dynamic libraries in the chain loads several other dynamic libraries. Visually, the recursive chain
ofloading can be represented as the elaborate tree structure with plenty of side connections between the branches.
The length of individual branches in some cases may end up being really large. As interesting as the complexity of the
recursive chain of dynamic linking may be, and as impressive the length of its branches may look, these are not the
most potent details in the whole story.

Far more important is the emerging fact that in the chain of dynamic loading each of the participating dynamic
libraries may find itself playing the roles of both Scenario 1 and Scenario 2. Figure 8-11 illustrates the point.

152

CHAPTER 8 * DESIGNING DYNAMIC LIBRARIES: ADVANCED TOPICS

n

y /

[

I— Scenario 1
I Scenario 2

Figure 8-11. A branch of typical recursive chain of dynamic linking

In other words, a dynamic library in the chain of loading may need to both resolve the references of the library it
loads as well as to re-resolve the reference of its own symbols. This makes the whole story a bit more interesting.

A certain set of strong implementation preferences residing at this molecular level stipulate the implementation
details, which I will briefly review in the next section.

Strong Implementation Preferences

Regardless of the scenario, there are always two ways of how the linker-loader coordination may be implemented:
either the LTR or the PIC approach may be applied. The choice of the linker-loader coordination technique is not
absolutely free. In addition to the designer’s choice based on each technique’s pros and cons, there are a few other
limitations that need to be explicitly pointed out:

Position Independent Code (PIC) is the strongly preferred technique of executable resolving
the references of the first level of loaded libraries (the scenario marked with the encircled
letter A in Figure 8-11).

In terms of choosing between LTR or PIC, the dynamic libraries in the chain of loading may feature a
variety of combinations. A dynamic library implementing LTR may in turn dynamically load the next
dynamic library, which implements the PIC, which in turn may dynamically load the library which
implements ...you choose—whatever your choice is, it is allowed.

A single dynamic library utilizes strictly one of the linker-loader coordination techniques

to resolve both Scenario 1 as well as Scenario 2 (if needed). It cannot happen that the same
dynamic library resolves Scenario 1 by the LRT approach and Scenario 2 problems by the PIC
approach (or vice versa).

153

CHAPTER 8 ' DESIGNING DYNAMIC LIBRARIES: ADVANCED TOPICS

Figure 8-12 illustrates the described rules.

Both are LTR
BothareLRRKF @ / \ ~------
Both are PIC //’ [
Both are LTR > 5 LTR
> } LTR /
> y pic /.
/
LTR
ol
I I Scenario 1
PIC s Scenario 2

Figure 8-12. Strong implementation preferences (at the molecular level) governing the implementation of the recursive
chain of dynamic linking

154

CHAPTER 9

Handling Duplicate Symbols When
Linking In Dynamic Libraries

The concept of dynamic linking clearly represented a huge step forward in the domain of software design.
The unprecedented flexibility it brought opened up a lot of avenues for technical progress and a lot of new doors
to substantially new concepts.

By the same token, the complexity of how the dynamic libraries function internally has brought several distinct
challenges to the domain of the software toolchain (compilers, linkers, loaders). The early recognized need for the linker
and loader to cooperate more tightly and the techniques of implementing it were discussed in the previous chapter.

However, this is not where the story ends.

Another interesting paradigm closely associated with the domain of dynamic libraries is the issue of handling
duplicate symbols. More specifically, when dynamic libraries are input ingredients in the linking process, the linker
deviates from the usual, commonsensical approach typically followed in cases when individual object files and/or
static libraries are combined into the binary file.

Duplicate Symbols Definition

The most common problem that may happen during the process of resolving the references is the appearance of
duplicate symbols, which happens when, in the final stage of linking, the list of all available symbols contains two or
more symbols of the same name.

As a side note, the linker algorithm for its own internal purposes typically applies modifications of the original
symbol names. As a direct consequence, the reported duplicate issues printed out by the linker may refer to names
somewhat differing from the original names. The symbol name modifications may range from simple name decorations
(e.g., prepending the underscore) all the way to the systematic handling of C++ function affiliation issues. Fortunately,
the modifications are typically performed in a strictly uniform and predictable fashion.

Typical Duplicate Symbols Scenarios

The causes of duplicate symbols may vary. In the simplest possible case, it just happened that the different designers
chose the most obvious name for their modules classes, functions, structures (e.g., class Timer, function getLength()
or variables lastError or 1ibVersion). Trying to combine these designers’ modules inevitably leads to discovering
that duplicate symbols exist.

The other possibilities cover the typical cases when the data type instance (of a class, structure, or a simple
data type) is defined in a header file. More than one inclusion of the header file inevitably creates the duplicate
symbols scenario.

155

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

Duplicate C Symbols

The C language imposes fairly simple criteria for two or more symbols to be considered duplicates of each other. As
long as the names of functions, structures, or data types are identical, the symbols are considered identical.
For example, buidling the following code will fail:

file: main.c
#include <stdio.h>

int function with_duplicated_name(int x)

{
printf("%s\n", _ FUNCTION);
return 0;

}

int function with_duplicated_name(int x, int y)

{
printf("%s\n", _ FUNCTION);
return 0;

}

int main(int argc, char* argv[])

{
function with duplicated name(1);
function with duplicated name(1,2);
return 0;

}

It will produce the following error message:

main.c:9:5: error: conflicting types for 'function_with_duplicated_name'
main.c:3:5: note: previous definition of 'function_with _duplicated name' was here
main.c: In function 'main’:

main.c:17:5: error: too few arguments to function 'function_with_duplicated_name'
main.c:9:5: note: declared here

gec: error: main.o: No such file or directory

gec: fatal error: no input files

compilation terminated.

Duplicate C++ Symbols

Being an object-oriented programming language, C++ imposes more relaxed duplicate symbols criteria. In terms
of namespaces, classes/structures, and simple data types, using identical names still remains as the sole criteria of
duplicate symbols. However, in the domain of functions, the duplicate symbols criteria is no longer limited to the
function names alone, but also take into account the list of arguments.

The principles of function (methods) overloading allows using the same name for different methods of the same
class having different lists of input arguments, as long as the return value type does not differ.

The same principle applies to the corner cases of two or more functions belonging to the same namespace
not being members of any class. Even though such functions are not affiliated with any class, the more elastic C++
duplicate criteria applies - they are considered duplicate only if their names are identical and their list of input
arguments are identical.

156

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

Building the following code will be successfully completed:
file: main.cpp
#include <iostream>

using namespace std;

class CTest

{
public:
CTest(){ x = 0;};
~CTest(){};
public:
int runTest(void){ return x;};
private:
int x;
};
int function_with_duplicated_name(int x)
{
cout << _ FUNCTION << "(x)" << endl;
return 0;
}
int function _with_duplicated_name(int x, int y)
{
cout << _ FUNCTION _ << "(x,y)" << endl;
return 0;
}

int main(int argc, char* argv[]){
CTest test;
int x = test.runTest();

function with duplicated name(x);
function with duplicated name(x,1);
return 0;

}

file: build.sh
g++ -Wall -g -00 -c main.cpp
g++ main.o -o clientApp

Running the produced binary will create the following output:

function_with_duplicated_name(x)
function_with_duplicated_name(x,y)

157

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

However, trying to add the declaration of the following method to main.cpp

float function with duplicated name(int x)
{
cout << _ FUNCTION _ << "(x)" << endl;
return 0.0f;

}

will violate the basic rules of C++ function overloading, which will result with the following build failure:

main.cpp: In function 'float function with_duplicated_name(int)':

main.cpp:23:42: error: new declaration 'float function_with_duplicated_name(int)'
main.cpp:17:5: error: ambiguates old declaration 'int function_with_duplicated_name(int)'
g++: error: main.o: No such file or directory

g++: fatal error: no input files

compilation terminated.

Duplicate Symbols Default Handling

When individual object files or static libraries are being linked together into the resultant binary file, the linker strictly
follows the zero-tolerance policy against the duplicate symbols.

When the linker detects the duplicate symbols, it prints out an error message specifying the files/lines of code
where the duplicate symbols occurrences happen, and the linking is declared a failure. This basically means that
developers need to go back to the drawing board and try to resolve the problem, which very likely means that the code
needs to be recompiled.

The following example illustrates what happens when you try to link into the same client binary the two static
libraries featuring duplicate symbols. The project is comprised of two very simple static libraries featuring duplicate
symbols as well as the client application that attempts to link them both:

Static Library libfirst.a:

file: staticlibfirstexports.h
#pragma once

int staticlibfirst function(int x);
int staticlib_duplicate function(int x);

file: staticlib.c
#include <stdio.h>

int staticlibfirst function(int x)

{
printf("%s\n", _ FUNCTION_);

return (x+1);

}

int staticlib duplicate function(int x)

printf("%s\n", _ FUNCTION);
return (x+2);

158

CHAPTER 9

file: build.sh
gcc -Wall -g -00 -c staticlib.c
ar -rcs libfirst.a staticlib.o

Static Library libsecond.a:

file: staticlibsecondexports.h
#pragma once

int staticlibsecond function(int x);
int staticlib duplicate function(int x);

file: staticlib.c
#include <stdio.h>

int staticlibsecond function(int x)

{
printf("%s\n", _ FUNCTION);
return (x+1);

}

int staticlib duplicate function(int x)
{
printf("%s\n", _ FUNCTION_);
return (x+2);

}

file: build.sh
gcc -Wall -g -00 -c staticlib.c
ar -rcs libsecond.a staticlib.o

ClientApplication:

file: main.c

#include <stdio.h>

#include "staticlibfirstexports.h"
#include "staticlibsecondexports.h”

int main(int argc, char* argv[])

{
int nRetValue = 0;
nRetValue += staticlibfirst function(1);
nRetValue += staticlibsecond function(2);
nRetValue += staticlib duplicate function(3);
printf("nRetValue = %d\n", nRetValue);
return nRetValue;

}

file: build.sh

HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

gcc -Wall -g -00 -I../libFirst -I../libSecond -c main.c
gcc main.o -L../libFirst -1first -L../libSecond -lsecond -o clientApp

159

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

Due to the presence of duplicate symbols in both static libraries, trying to build the client application results with
the linker error:

/home/milan/Desktop/duplicateSymbolsHandlingResearch/01_duplicateSymbolsCriteria/02_duplicatesIn
TwoStaticLibs/01_plainAndSimple/libSecond/staticlib.c:10: multiple definition of
'staticlib_duplicate_function'
«o/1ibFirst/libfirst.a(staticlib.o):/home/milan/Desktop/duplicateSymbolsHandlingResearch/01_dupl
icateSymbolsCriteria/02_duplicatesInTwoStaticLibs/01_plainAndSimple/libFirst/staticlib.c:10: first
defined here

collect2: 1d returned 1 exit status

Commenting out the call to the duplicate function does not help avoiding the linker failure. Obviously, the
linker first tries to tile together everything coming from the input static libraries and individual object files (main. c).
If the duplicate symbols happen this early in the linking game, the linker declares a failure, regardless of the fact that
nobody tried to reference the duplicated symbols.

Duplicate Local Symbols Are Allowed

Interestingly, local functions declared with the static keyword in the C language meaning of that keyword (i.e.,
visibility scope limited only to the functions residing in the same source file) do not get registered as duplicates.
Modify the source files of the static libraries in your example with the following code:

Static Library libfirst.a:
file: staticlib.c
static int local staticlib duplicate function(int x)

{
printf("libfirst: %s\n", _ FUNCTION_);
return 0;

}

int staticlibfirst function(int x)

{
printf("%s\n", _ FUNCTION_);
local staticlib duplicate function(x);
return (x+1);

}

Static Library libsecond.a:
file: staticlib.c
static int local staticlib_duplicate function(int x)

{
printf("libsecond: %s\n", _ FUNCTION);
return 0;

}

int staticlibsecond function(int x)

{
printf("%s\n", _ FUNCTION_);
local staticlib duplicate function(x);
return (x+1);

}

160

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES
ClientApplication:
file: main.c
#include <stdio.h>
#include "staticlibfirstexports.h"

#include "staticlibsecondexports.h”

int main(int argc, char* argv[])

{
staticlibfirst function(1);
staticlibsecond function(2);
return 0;

}

The client application will now build successfully and produce the following output:

staticlibfirst function
libfirst: local staticlib_duplicate function
staticlibsecond_function
libsecond: local staticlib_duplicate function

Obviously, the linker keeps the separate compartments for the local functions. Even though their symbol names
are completely identical, the collision does not happen.

Duplicate Symbols Handling When Linking in Dynamic Libraries

When dynamic libraries are added to the mix of input ingredients at the linking stage, the way the linker handles the
duplicate symbols becomes a lot more interesting and lot more involved. First and foremost, the linker abandons the
policy of zero-tolerance for duplicate symbols, and does not immediately declare the linking failure. Instead, it applies
the approximate, less-than-ideal approach to resolve the symbols naming collision.

In order to illustrate the linker’s altogether different approach to this specific scenario, the simple demo project
is created. It is comprised of the two dynamic libraries featuring the duplicate symbols and the client application that
links them both:

Shared Library libfirst.so:

file: shlibfirstexports.h
#pragma once

int shlibfirst function(int x);
int shlib duplicate function(int x);

file: shlib.c
#include <stdio.h>

static int local shlib duplicate function(int x)

{
printf("shlibFirst: %s\n", _ FUNCTION_);
return O;

161

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

int shlibfirst function(int x)

{
printf("shlibFirst: %s\n", _ FUNCTION_);
local shlib duplicate function(x);
return (x+1);

}

int shlib duplicate function(int x)

{
printf("shlibFirst: %s\n", _ FUNCTION_);
local shlib duplicate function(x);
return (x+2);

}

file: build.sh

gcc -Wall -g -00 -fPIC -c shlib.c

gcc -shared shlib.o -W1,-soname,libfirst.so.1 -o libfirst.so0.1.0.0
ldconfig -n .

In -s libfirst.so.1 libfirst.so

Shared Library libsecond.so:

file: shlibsecondexports.h
#pragma once

int shlibsecond function(int x);
int shlib duplicate function(int x);

file: shlib.c
#include <stdio.h>

static int local shlib duplicate function (int x)

{
printf("shlibSecond: %s\n", _ FUNCTION_);
return 0;

}

int shlibsecond function(int x)

{
printf("shlibSecond: %s\n", _ FUNCTION_);
local shlib duplicate function(x);
return (x+1);

}

int shlib duplicate function(int x)

{
printf("shlibSecond: %s\n", _ FUNCTION_);
local shlib duplicate function(x);
return (x+2);

}

162

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

file: build.sh

gcc -Wall -g -00 -fPIC -c shlib.c

gcc -shared shlib.o -W1,-soname,libsecond.so.1 -o libsecond.s0.1.0.0
ldconfig -n .

1n -s libsecond.so.1 libsecond.so

ClientApplication:
file: main.c
#include <stdio.h>
#include "shlibfirstexports.h"

#include "shlibsecondexports.h"

int main(int argc, char* argv[])

{
int nRetValue = 0;
nRetValue += shlibfirst function(1);
nRetValue += shlibsecond function(2);
nRetValue += shlib duplicate function(3);
return nRetValue;

}

file: build.sh

gcc -Wall -g -00 -I../libFirst -I../libSecond -c main.c
gcc main.o -Wl,-L../libFirst -Wl,-1first \
-W1,-L../1ibSecond -W1,-1lsecond \
-W1,-R../1ibFirst \
-W1,-R../1ibSecond \
-0 clientApp

Even though the two shared libraries feature the duplicates and even one of the duplicates
(shlib_duplicate_function) is notlocal function, building the client application completes successfully.
Running the client application, however, brings a bit of surprise:

shlibFirst: shlibfirst_function
shlibFirst: local_shlib_duplicate_function
shlibSecond: shlibsecond_function
shlibSecond: local_shlib duplicate function
shlibFirst: shlib duplicate function
shlibFirst: local_shlib_duplicate_function

Obviously, the linker found some way of resolving the duplicate symbols. It solved it by picking one of the
symbol occurrences (the one in shlibfirst.so) and directed all the references to shlib_duplicate function to that
particular symbol occurrence.

This linker’s decision is clearly a very controversial step. In real-world scenarios, the identically named functions
of different dynamic libraries may carry substantially different functionality. Imagine, for example, that each of the
dynamic libraries libcryptography.so, 1ibnetworkaccess.so, and 1ibaudioport. so feature the Initialize()
method. Imagine now that the linker decided that the call to Initialize() always means only initializing one of the
libraries (and never initializing the other two).

163

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

Obviously, these kinds of scenarios should be carefully avoided. In order to do it right, the way of how the linker
“thinks” should be thoroughly understood first.

The details of the linker’s internal algorithm for handling dynamic library duplicate symbols will be discussed
later in this chapter.

General Strategies of Eliminating Duplicate Symbols Problems

In general, the best approach to resolving the duplicate symbols is to reinforce the symbol affiliations to their
particular modules, as it usually eliminates the vast majority of potential duplicate symbols problems.

In particular, resorting to the use of namespaces is the most recommended technique, as it has been proven to
work across plenty of different scenarios, regardless of the form in which the code is made available to the software
community (static library vs. shared library). This feature is confined to the domain of the C++ language and requires
the use of the C++ compiler.

Alternatively, if for whatever reason the use of a strictly C compiler is strongly preferred, prepending the function
names with the unique prefix may be used as a viable, yet somewhat less powerful and less flexible, alternative.

Duplicate Symbols and Dynamic Linking Modes

Before going into the details of the linker’s new approach to handling the duplicate symbols, it is important to point
out a few significant facts.

The runtime dynamic loading of dynamic libraries (through the dlopen() or LoadLibrary() calls) imposes
practically no risk of having duplicate symbols. The retrieved dynamic library symbols are typically assigned (through
the d1sym() or GetProcAddress() calls) to the variable whose name is very likely already chosen to not duplicate any
of the existing symbols in the client binary.

On the contrary, it is the statically aware linking of dynamic libraries that represents the typical scenario in which
the duplicate symbols occurrences happen.

The genuine reason for deciding to link in a dynamic library is the interest in the set of the dynamic library’s ABI
symbols or its subset. Very frequently, however, the dynamic library may carry a lot more symbols of remote or no
importance to the client binary project, and the unawareness of their presence may lead to an unintentional choice of
a duplicate named function or data coming from different dynamic libraries.

There is only so much precaution that dynamic library developers can take in order to make the things better.
Reducing the export of the dynamic library symbols to only the essential set of symbols is definitely a measure that
may significantly reduce the probability of symbol names collision. However, this highly recommended design
practice does not directly act against the very root of the problem. Regardless of how frugal you are in exporting your
dynamic library symbols, it is still possible that different developers choose the most straightforward names for the
symbols, which results with two or more binary files contending about the right to use the symbol name.

Finally, it is important to point out that you are not dealing with the peculiarity of a specific linker on specific
platform; the Windows linker (Visual Studio 2010 certainly) almost completely follows the same set of rules in
determining how to handle the duplicate symbols encountered during the process of dynamic linking.

164

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

Linker’s Criteria in the Approximate Algorithm of Resolving
Dynamic Libraries’ Duplicate Symbols

In the search for the best candidate to represent the duplicated symbol name, the linker makes the decision based on
the following circumstances:

e Location of the duplicated symbols: The linker assigns different levels of importance to the
symbols located in different parts of the process memory map. A more detailed explanation
follows immediately.

o Specified linking order of the dynamic libraries: If two or more symbols reside in the code parts
of equal priorities, the symbol residing in the dynamic library that was passed to the linker
earlier in the list of specified dynamic libraries will win the bout to represent the duplicated
symbol over the symbol residing in the dynamic library declared later on in the list.

Location, Location, Location: Code Priority Zoning Rules

The variety of linker symbols participating in building the client binary may reside in a variety of locations. The
first criterion that the linker applies toward resolving name collisions between symbols is based on the comparison
between the following symbols priority scheme.

First Level Priority Symbols: Client Binary Symbols

The initial ingredient of building the binary file is the collection of its object files, which are either indigenous to the
project or come in the form of the static library. In the case of Linux, the sections coming from these ingredients
typically occupy the lower part of the process memory map.

Second Level Priority Symbols: Dynamic Library Visible Symbols

The dynamic library exported symbols (residing in the dynamic section of the dynamic libraries) are taken by the
linker as the next priority level in the priority scheme.

Third Level Priority (Unprioritized, Noncompeting) Symbols

The symbols declared as static are typically never the subject of the duplicated symbol name conflicts, regardless of
whether they belong to the client binary or to the statically aware linked dynamic library.

To the same group belong the dynamic library’s stripped off symbols, which obviously do not participate in the
stage of linking the client binary. Figure 9-1 illustrates the symbols priority zoning approach.

165

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

Visible local symbols;
invisible/stripped off symbols

-7 .dynsym:
exported
dynamic
symbols

Dynamic libraries

Visible local symbols;
invisible/stripped off symbols

.dynsym:
exported
dynamic

110110
000111

Object files
and
static libraries

(zero tolerance
for duplicate
symbols)

Figure 9-1. Linker’s priority zoning

Analyses of Specific Duplicate Names Cases

The following sections cover several use cases.

Case 1: Client Binary Symbol Collides with Dynamic Library ABI Function

This scenario can be basically described as the symbol belonging to priority zone 1 colliding against the symbol
belonging to priority zone 2 (Figure 9-2).

166

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

Dynamic library

3

Figure 9-2. Case 1: The client binary symbol collides with the dynamic library ABI symbol

As a general rule, the symbol related to the higher priority code zone always wins; in other words, it gets chosen
by the linker as the target of all the references to the duplicate named symbol.

The following project is created to demonstrate this particular scenario. It consists of a static library, a dynamic
library, and the client application that links them both (the dynamic library is statically aware linked). The libraries
feature a duplicate name symbol:

Static Library libstaticlib.a:

file: staticlibexports.h
#pragma once

int staticlib first function(int x);
int staticlib_second function(int x);

int shared static duplicate function(int x);

file: staticlib.c
#include <stdio.h>
#include "staticlibexports.h"

int staticlib_first function(int x)

{
printf("%s\n", _ FUNCTION);
return (x+1);

167

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

int staticlib_second function(int x)

{
printf("%s\n", _ FUNCTION_);
return (x+2);
}
int shared static duplicate function(int x)
{
printf("staticlib: %s\n", _ FUNCTION);
return O;
}

file: build.sh
gcc -Wall -g -00 -c staticlib.c
ar -rcs libstaticlib.a staticlib.o

Shared Library libshlib.so:

file: shlibexports.h
#pragma once

int shlib function(void);
int shared static_duplicate function(int x);

file: shlib.c
#include <stdio.h>

#include "staticlibexports.h"

int shlib_function(void)

{
printf("sharedLib: %s\n", _ FUNCTION);

return 0;

}

int shared static duplicate function(int x)

{
printf("sharedLib: %s\n", _ FUNCTION);
return 0O;

}

file: build.sh

gcc -Wall -g -00 -I../staticlib -c shlib.c

gcc -shared shlib.o -Wl,-soname,libshlib.so.1 -o libshlib.so0.1.0.0
ldconfig -n .

In -s libshlib.so.1 libshlib.so

168

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

ClientApplication:

file: main.c

#include <stdio.h>

#include "staticlibexports.h"
#include "shlibexports.h"

int main(int argc, char* argv[])

{
int nRetValue = 0;
nRetValue += staticlib first function(1);
nRetValue += staticlib second function(2);
shlib_function();
shared static_duplicate function(1);
printf("nRetValue = %d\n", nRetValue);
return nRetValue;

}

file: build.sh

gcc -Wall -g -00 -I../staticlLib -I../sharedLib -c main.c

gcc main.o -W1,-L../staticlib -lstaticlib \
-W1,-L../sharedLib -1shlib \
-W1,-R../sharedLib \
-0 clientApp

The client application builds successfully and produces the following output:

staticlib first function

staticlib_second function

sharedLib: shlib_function

staticlib: shared_static_duplicate_function
nRetValue = 6

Obviously, the linker picks the static library symbol as it belongs to the higher priority code zone.

Change the build order, as shown here:

file: buildDifferentLinkingOrder.sh

gcc -Wall -g -00 -I../staticlLib -I../sharedLib -c main.c

gcc main.o -Wl,-L../sharedLib -1shlib \
-W1,-L../staticlib -1staticlib \
-W1,-R../sharedLib \
-0 clientAppDifferentLinkingOrder

Note that the change in code does not change the final outcome:

$./clientAppDifferentLinkingOrder
staticlib first function

staticlib_second function

sharedlLib: shlib_function

staticlib: shared_static_duplicate_function
nRetValue = 6

169

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

Windows-Specific Twist

The Visual Studio linker has a slightly different way of implemented this ruling in this particular case (i.e., when the
static library features the symbol of the same name with the dynamic library ABI symbol).

When the static library appears as first on the list of libraries, the DLL's symbols is silently ignored, which is
exactly as expected.

However, if the DLL is specified as the first on the list of libraries, what happens is not what you might expect (i.e.,
that the static library symbol always prevails). Instead, the linking fails with a message saying something like

StaticlLib (staticlib.obj): error LNK2005: function xyz already defined \

in SharedlLib.lib (SharedLib.d1l)
ClientApp.exe: fatal error LNK1169: one or more multiply defined symbols found
BUILD FAILED.

Case 2: ABI Symbols of Different Dynamic Libraries Collide

This scenario can be basically described as two symbols both belonging to the priority zone 2 colliding against each
other (Figure 9-3).

-
-
-
-
-
-
-
-
-
-
-
-
/\ o

Dynamic library

— \ 3
~
<
<
~
-~
~
<
<
S~
~o.
~
~
~
~\ J

Figure 9-3. Case 2: ABI symbols of different dynamic libraries collide

170

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

Clearly, since none of the symbols have the zoning advantage, the decisive factor in this case will be the linking order.

In order to demonstrate this particular scenario, the following demo project is created, which consists of two shared
libraries featuring the duplicate ABI symbols and the client app that statically aware links both dynamic libraries. To
provide a few more important details, one of the shared library ABI functions internally calls the duplicated ABI function:

Shared Library libfirst.so:

file: shlibfirstexports.h
#pragma once

int shlib _function(void); // duplicate ABI function
int shlibfirst function(void);

file: shlib.c
#include <stdio.h>

int shlib function(void)

{
printf("shlibFirst: %s\n", _ FUNCTION_);
return 0;
}
int shlibfirst function(void)
{
printf("%s\n", _ FUNCTION_);
return 0;
}

file: build.sh

gcc -Wall -g -00 -c shlib.c

gcc -shared shlib.o -W1,-soname,libfirst.so.1 -o libfirst.so0.1.0.0
ldconfig -n .

In -s libfirst.so.1 libfirst.so

Shared Library libsecond.so:

file: shlibsecondexports.h
#pragma once

int shlib_function(void);
int shlibsecond function(void);
int shlibsecond another function(void);

file: shlib.c
#include <stdio.h>

int shlib function(void)

{
printf("shlibSecond: %s\n", _ FUNCTION_);
return 0;

171

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

int shlibsecond function(void)

{
printf("%s\n", _ FUNCTION_);
return 0O;
}
int shlibsecond another function(void)
{
printf("%s\n", _ FUNCTION);
shlib_function(); // internal call to the duplicate ABI function
return 0;
}

file: build.sh

gcc -Wall -g -00 -fPIC -c shlib.c

gcc -shared shlib.o -WI,-soname,libsecond.so.1 -o libsecond.s0.1.0.0
ldconfig -n .

1In -s libsecond.so.1 libsecond.so

ClientApplication:

file: main.c

#include <stdio.h>

#include "shlibfirstexports.h"
#include "shlibsecondexports.h"

int main(int argc, char* argv[])

{
shlib_function(); // duplicate ABI function
shlibfirst function();
shlibsecond function();
shlibsecond another function(); // this one internally calls shlib function()
return 0;
}

file: build.sh

gce -Wall -g -00 -I../libFirst -I../libSecond -c main.c

gcc main.o -W1,-L../libFirst -Wl,-1first \
-W1l,-L../1ibSecond -Wl,-1second \
-W1,-R../1libFirst \
-W1,-R../1ibSecond \
-0 clientApp

Even though the two shared libraries feature the duplicates and even one of the duplicates
(shlib_duplicate_function) is notlocal function, building the client application completes successfully.
Running the client application results in the following output:

$./clientApp

shlibFirst: shlib function
shlibfirst function
shlibsecond_function
shlibsecond_another function
shlibFirst: shlib_function

172

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

Obviously, the linker picked the shl1ibFirst’s version of the duplicate symbol to uniquely represent the
duplicated symbol name. Furthermore, even though shlibsecond_another function() internally calls the
duplicated sh1ib_function(), it does not affect the final outcome of the linking stage.

Being the ABI symbol (the part of the .dynsym section), the duplicated function symbol always gets resolved in
the same way, regardless of the fact that it resides in the same source file with the remaining ABI functions.

No Impact of Different Function Calls Order

As the part of the investigation, the impact of the reversed function call order is examined (see Listing 9-1).

Listing 9-1. main_differentOrderOfCalls.c

#include <stdio.h>
#include "shlibfirstexports.h"
#include "shlibsecondexports.h"

int main(int argc, char* argv[])

{
// Reverse order of calls - first shlibsecond methods
// get called, followed by the shlibfirst methods
shlibsecond function();
shlibsecond another function();
shlib function(); // duplicate ABI function
shlibfirst function();
return 0;

}

This particular change did not affect the final outcome in any way. Obviously, the important moments of the
linking stage that critically impact the duplicate symbol resolution process happen during an earlier stage of linking.

Impact of Different Linking Order

Building the application with the different linking order, however, yields different results:

file: buildDifferentLinkingOrder.sh

gcc -Wall -g -00 -I../shlibFirst -I../shlibSecond -c main.c

gcc main.o -W1,-L../shlibSecond -1lsecond \
-Wl,-L../shlibFirst -1lfirst \
-W1,-R../shlibFirst \
-W1,-R../shlibSecond \
-0 clientAppDifferentLinkingOrder

$./clientAppDifferentLinkingOrder
shlibSecond: shlib_function
shlibfirst function
shlibsecond_function
shlibsecond_another function
shlibSecond: shlib_function

Obviously, the specified reversed linking order affected the linker’s decision. The shlibSecond’s version of
duplicated shlib_function is now chosen to represent the duplicated symbol.

173

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

Case 3: Dynamic Library ABI Symbol Collides with Another
Dynamic Library Local Symbol

This scenario can be basically described as a symbol belonging to priority zone 2 colliding against a symbol belonging
to priority zone 3 (Figure 9-4).

-
-
-
-
-
-
-
-
-

Dynamic library

1 Dynamic library

Figure 9-4. Case 3: Dynamic library ABI symbol collides with another dynamic library local symbol

As a general rule, much like in the Case 1 example, the symbol related to the higher priority code zone always wins
the bout; in other words, it gets chosen by the linker as the target of all the references to the duplicate named symbol.

In order to illustrate this particular scenario, the following demo project is created; it consists of two shared
libraries (featuring the duplicate symbols) and the client application that statically aware links both libraries:

Shared Library libfirst.so:

file: shlibfirstexports.h
#pragma once

int shlib function(void);
int shlibfirst function(void);

file: shlib.c
#include <stdio.h>

174

CHAPTER 9

int shlib function(void)

{
printf("shlibFirst: %s\n", _ FUNCTION_);
return 0O;
}
int shlibfirst function(void)
{
printf("%s\n", _ FUNCTION_);
return O;
}

file: build.sh
gcc -Wall -g -00 -c shlib.c

HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

gcc -shared shlib.o -W1,-soname,libfirst.so.1 -o libfirst.so.1.0.0

ldconfig -n .
In -s libfirst.so.1 libfirst.so

Shared Library libsecond.so:

file: shlibsecondexports.h
#pragma once

int shlibsecond function(void);

file: shlib.c
#include <stdio.h>

static int shlib_function(void)

{
printf("shlibSecond: %s\n", _ FUNCTION_);
return 0;
}
int shlibsecond function(void)
{
printf("%s\n", _ FUNCTION);
shlib function();
return 0;
}

file: build.sh
gcc -Wall -g -00 -c shlib.c

gcc -shared shlib.o -WI,-soname,libsecond.so.1 -o libsecond.s0.1.0.0

ldconfig -n .
In -s libsecond.so.1 libsecond.so

175

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

ClientApplication:

file: main.c

#include <stdio.h>

#include "shlibfirstexports.h"
#include "shlibsecondexports.h"

int main(int argc, char* argv[])

{
shlibfirst function();
shlibsecond function();
return 0;

}

file: build.sh

gcc -Wall -g -00 -I../shlibFirst -I../shlibSecond -c main.c

gcc main.o -W1,-L../shlibFirst -1first \
-W1l,-L../shlibSecond -lsecond \
-W1,-R../shlibFirst \
-W1,-R../shlibSecond \
-0 clientApp

Building the client application completed successfully. Running the client application results with the
following output:

$./clientApp

shlibFirst: shlib _function
shlibsecond function
shlibSecond: shlib_function

Here we have a bit of interesting situation.

First, when the client binary invokes the duplicate named shlib_function, the linker has no doubts that this
symbol should be represented by the shlibFirst library method, simply because it resides in the code zone of higher
priority. The first line of the client app output witnesses to this fact.

However, much before the linker deliberation happened, during the building of the dynamic library itself, the
internal calls of shlibsecond function() toitslocal sh1ib_function() was already resolved, simply because the
two symbols are local to each other. This is the reason why the internal call of one shlibSecond function to another
shlibSecond function does not get affected by the process of building the client binary.

As expected, when the linker’s decision is determined by the differences in the code zone priorities, reversing the
linking order has no impact on the final outcome.

Case 4: Dynamic Library Non-exported Symbol Collides with
Another Dynamic Library Non-exported Symbol

This scenario can be basically described as two symbols both belonging to priority zone 3 collide against each other
(Figure 9-5).

176

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

\
AY
\
A}
\
AY
\
\
\

Dynamic library

W +O0 O+

1 Dynamic library

Figure 9-5. Case 4: Dynamic library’s non-exported symbol collides with another dynamic library’s non-exported symbol

The symbols belonging to code zone 3 are mostly invisible to the process of building the client binary. These
symbols are either declared to be of local scope (and completely not interesting to the linker), or stripped off (invisible
to the linker).

Even though the symbol names may be duplicated, these symbols do not end up in the linker’s list of symbols
and do not cause any conflicts. Their importance is strictly confined to the domain of the dynamic libraries of which
they are a part.

In order to illustrate this particular scenario, the following demo project is created; it consists of one static library,
one shared library, and the client application that links both libraries. The dynamic library is linked statically aware.

Each of the binaries features local functions whose names are the duplicates of the names of local functions
found in the remaining modules. Additionally, the client application has the local function identically named as the
function of the shared library whose symbols is intentionally stripped off.

Static Library libstaticlib.a:

file: staticlibexports.h
#pragma once

int staticlib_function(int x);
file: staticlib.c

#include <stdio.h>
#include "staticlibexports.h”

177

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

static int local function(int x)

{
printf("staticLib: %s\n", _ FUNCTION);
return 0O;
}
int staticlib_function(int x)
{
printf("%s\n", _ FUNCTION);
local function(x);
return (x+1);
}

file: build.sh
gcc -Wall -g -00 -c staticlib.c
ar -rcs libstaticlib.a staticlib.o

Shared Library libshlib.so:
file: shlibexports.h
#pragma once

int shlib function(void);

file: shlib.c
#include <stdio.h>
#include "staticlibexports.h"

static int local function(int x)

{
printf("sharedLib: %s\n", _ FUNCTION_);
return O;
}
static int local function_strippedoff(int x)
{
printf("sharedLib: %s\n", _ FUNCTION);
return 0;
}
int shlib function(void)
{
printf("sharedLib: %s\n", _ FUNCTION_);
local function(1);
local function_strippedoff(1);
return 0;
}

file: build.sh

gcc -Wall -g -00 -I../staticLib -c shlib.c

gcc -shared shlib.o -W1,-soname,libshlib.so.1 -o libshlib.s0.1.0.0
strip -N local_function_strippedoff 1libshlib.so.1.0.0

ldconfig -n .

1n -s libshlib.so.1 libshlib.so

178

CHAPTER 9

Client Application:

file: main.c

#include <stdio.h>

#include "staticlibexports.h"
#include "shlibexports.h"

static int local function(int x)

{
printf("clientApp: %s\n", _ FUNCTION);
return 0;

}

static int local function strippedoff(int x)

{
printf("clientApp: %s\n", _ FUNCTION);

return O;
}
int main(int argc, char* argv[])
{
shlib function();
staticlib function(1);
local function(1);
local function_strippedoff(1);
return 0;
}

file: build.sh

HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

gcc -Wall -g -00 -I../staticLib -I../sharedlLib -c main.c

gcc main.o -Wl,-L../staticLib -lstaticlib \
-W1l,-L../sharedLib -1shlib \
-W1,-R../sharedlLib \
-0 clientApp

As expected, the client application is built successfully and produced the following output:

sharedLib: shlib_function

sharedLib: local function

sharedLib: local function_strippedoff
staticlib_function

staticlib: local function

clientApp: local function

clientApp: local_function_strippedoff

Obviously, the linker did not perceive any duplicate symbol issue. All the local/stripped off symbols have been
resolved within their particular modules, and did not conflict with any of identically-named local/stripped off

symbols in the other modules.

179

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

Interesting Scenario: Singleton in Static Library

Now that you know how the linker handles the unprioritized/non-competing domain of dynamic libraries’ local/stripped
off symbols, it is much easier to understand the interesting scenario described in Chapter 6 as a “multiple instances of
a singleton class” problem (one of the counter-indicated scenarios for using the static libraries).

Imagine for a moment the following real-world scenario: say you need to design a unique process-wide logging
utility class. It should exist in one instance and should be visible to all of the different functional modules.

The implementation paradigm would be normally based on the singleton design pattern. Let’s assume for a
moment that the home of your singleton class is a dedicated static library.

In order to get access to the logging utility, several dynamic libraries hosting your functional modules link in that
particular static library. Being merely part of the dynamic library inner functionality (i.e., not part of dynamic library’s
ABI interface), the singleton class symbols have not been exported. The singleton class symbols automatically start
belonging to the unprioritized/noncompeting code zone.

Once the process starts and all the dynamic libraries are loaded, you end up having a situation in which several
dynamic libraries live in the same process, each of them having a singleton class in their own “private backyards.” Lo
and behold, due to the non-competing nature of the dynamic libraries’ local symbols zone, all of a sudden you end up
having multiple (nicely coexisting) instances of your singleton logging utility class.

The only problem is that you wanted a single, unique singleton class instance, not many of them!!!

In order to illustrate this particular scenario, the next demo project is created with the following components:

e Astaticlibrary hosting the singleton class

e Two shared libraries, each linking in the static library. Each of the shared libraries export
only one symbol: a function that internally calls the singleton object methods. Singleton class
symbols coming in from the linked static library are not exported.

e Aclient application that links in the static library in order to access the singleton class itself. It
also statically aware links in both of the shared libraries.

The client app and both shared libraries make their own calls to the singleton class. As you will see shortly, the
app will feature three different instances of the singleton class:

Static Library libsingleton.a:

file: singleton.h
#pragma once

class Singleton

{
public:
static Singletond GetInstance(void);
public:
~Singleton(){};
int DoSomething(void);
private:
Singleton(){};
Singleton(Singleton const &); // purposefully not implemented
void operator=(Singleton const8); // purposefully not implemented
private:
static Singleton* m_pInstance;
b

180

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

file: singleton.cpp
#include <iostream>
#include "singleton.h"
using namespace std;

Singleton* Singleton::m_pInstance = NULL;

Singletond Singleton::GetInstance(void)

{
if(NULL == m_pInstance)
m_pInstance = new Singleton();
return *m_pInstance;
}
int Singleton::DoSomething(void)
{
cout << "singleton instance address = " << this << endl;
return 0;
}

file: build.sh

for 64-bit 0S must also pass -mcmodel=large compiler flag
g++ -Wall -g -00 -c singleton.cpp

ar -rcs libsingleton.a singleton.o

Shared Library libfirst.so:

file: shlibfirstexports.h
#pragma once

#ifdef _ cplusplus
extern "C"

{
#endif // _ cplusplus

int shlibfirst function(void);

#ifdef _ cplusplus

}
#endif // _ cplusplus

file: shlib.c
#include <iostream>
#include "singleton.h"
using namespace std;

#ifdef _ cplusplus
extern "C"

{
#endif // _ cplusplus

181

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

int shlibfirst function(void)

{
cout << _ FUNCTION_ _ << ":" << endl;
Singletond singleton = Singleton::GetInstance();
singleton.DoSomething();
return O;
}

#ifdef _ cplusplus

}
#endif // _ cplusplus

file: build.sh

m -rf *.o0 1lib*

g++ -Wall -g -00 -fPIC -I../staticlib -c shlib.cpp
g++ -shared shlib.o -L../staticlLib -1singleton \

-W1,--version-script=versionScript \
-Wl,-soname,libfirst.so.1 -o libfirst.so.1.0.0
ldconfig -n .

In -s libfirst.so.1 libfirst.so

file: versionScript
{
global:
shlibfirst function;
local:

X
b

};

Shared Library libsecond.so:

file: shlibfirstexports.h
#pragma once

#ifdef _ cplusplus
extern "C"

{
#endif // _ cplusplus

int shlibsecond function(void);

#ifdef _ cplusplus

}
#endif // _ cplusplus

file: shlib.c
#include <iostream>
#include "singleton.h"
using namespace std;

182

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

#ifdef _ cplusplus
extern "C"

{
#endif // _ cplusplus

int shlibsecond function(void)

{
cout << _ FUNCTION_ _ << ":" << endl;
Singletond singleton = Singleton::GetInstance();
singleton.DoSomething();
return 0;
}
#ifdef _ cplusplus
}

#endif // __cplusplus

file: build.sh

m -xf *.o0 lib*

g++ -Wall -g -00 -fPIC -I../shlibFirst -I../staticlLib -c shlib.cpp

g++ -shared shlib.o -L../staticlLib -lsingleton \
-W1,--version-script=versionScript \
-W1,-soname,libsecond.so.1 -o libsecond.so0.1.0.0

ldconfig -n .

In -s libsecond.so.1 libsecond.so

file: versionScript

global:
shlibsecond_function;
local:

* .
>

};
ClientApplication:

file: main.c

#include <iostream>

#include "shlibfirstexports.h"
#include "shlibsecondexports.h"
#include "singleton.h"

using namespace std;

int main(int argc, char* argv[])

{
shlibfirst function();
shlibsecond function();
cout << "Accesing singleton directly from the client app" << endl;
Singletond singleton = Singleton::GetInstance();
singleton.DoSomething();
return O;

183

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

file: build.sh
g++ -Wall -g -00 -I../staticlib -I../shlibFirst -I../shlibSecond -c main.cpp
g++ main.o -L../staticlib -lsingleton \

-L../shlibFirst -1first \

-L../shlibSecond -lsecond \

-W1,-R../shlibFirst \

-W1,-R../shlibSecond \

-0 clientApp

The client application produced the following output:

shlibfirst function:

singleton instance address = 0x9a201008
shlibsecond_function:
singleton instance address = 0x9a201018

Accesing singleton directly from the client app
singleton instance address = 0x9a201028

Note It is left to the diligent reader to find out that the runtime dynamic loading (dlopen) would not change anything
in this regard.

As a final note on this topic, a thread-safer singleton version in which the singleton instance would be a function
static variable instead of a class-static variable was tried:

Singletond Singleton::GetInstance(void)
{
Static Singleton uniquelnstance;
return uniquelnstance;

This approach resulted with only somewhat better results, in which both of the shared libraries print out the
identical singleton instance address value, albeit the client app printed out substantially different singleton instance
address values.

Solving the Problem

To not be completely pessimistic, there are several ways to solve this class of problem.

One of the possibilities is based on relaxing the symbol export criteria for a little bit by allowing the dynamic
libraries to additionally export the singleton class symbols. After being exported, the singleton symbols will no longer
belong to the unprioritized/non-competing category of symbols allowed to exist in gazillion of instances. Instead,
they will be promoted into the “competing ABI symbols” category. According to the elaborated rules, the linker would
then pick just one of the symbols and direct all the references to that particular singleton class symbol.

The ultimate solution to the problem would be to host the singleton class in a dynamic library. That way, the vast
majority of the possible unwanted scenarios would be completely eliminated. None of the ABI design rules would be
violated, and the design of new modules will not be facing the ludicrous extra design requirements.

184

CHAPTER 9 © HANDLING DUPLICATE SYMBOLS WHEN LINKING IN DYNAMIC LIBRARIES

Final Remark: Linking Does Not Provide Any Kind of
Namespace Inheritance

The use of namespaces is definitely the most powerful tool to completely avoid the unpleasant surprises coming from
too much reliance on the linker’s internal reasoning in handling the duplicate symbols.

Regardless of the fact that one shared library may link another shared library, which may link yet another
shared library, which eventually may link the static library, protecting the uniqueness of the symbols carried by a
library sitting somewhere in the middle of the chain of linking requires that exactly that particular library’s code be
encapsulated in its own proprietary namespace.

Expecting that the namespace of the topmost library will shield the uniqueness of the symbols of the library in
between possible clashes with the other dynamic libraries is just plain wrong.

The only solid plan, the one that really works, is that each and every library, static or dynamic, should feature its
own dedicated namespace.

185

CHAPTER 10

Dynamic Libraries Versioning

Most of the time, code development is work in progress. As a result of striving to provide more and more features,

as well as to solidify the existing body of code, the code inevitably changes. More frequently than not, the design’s
quantum leaps tend to break the compatibility between the software components. The ideal of achieving backwards
compatibility typically requires a dedicated and focused effort. A very important role in these efforts belongs to the
versioning concept.

Given the fact that dynamic libraries provide functionality that is typically used by far more than one client binary,
the precision of tracking the library versions and the discipline in respecting the indicated versioning information
requires an extra level of strictness. Failure to notice and react to the discrepancies between the functionality provided
by the different versions of a dynamic library may mean not only the malfunctioning of a single application, but
sometimes chaos in the broader functionality of the operating system (file system, networking, windowing system, etc).

Gradation of Versions and their Impact on Backwards
Compatibility

Not all code changes have the same impact on the module’s functionality. Some of the changes are cosmetic in nature,
others represent bug fixes, and still others bring in substantial changes that break away from the paradigms that
existed before. The gradation of overall importance of changes is manifested in the sophisticated versioning scheme
whose details deserve dedicated discussion.

Major Version Code Changes

As arule, changes in the dynamic library code that break previously supported functionality should result with
the incremented major version number. The symptoms of disrupted previous functionality cover a wide range of
possibilities, including the following:

e Asubstantial change in provided runtime functionality, such as the complete elimination
of a previously supported feature, substantial change of requirements for a feature to be
supported, etc.

¢ [Inability of the client binary to link against the dynamic library due to a changed ABI, such
as removed functions or whole interfaces, changed exported function signatures, reordered
structure or class layout, etc.

e Completely changed paradigms in maintaining the running process or changes requiring the
major infrastructure changes (such as switching to a completely different type of database, starting
to rely on different forms of encryption, starting to require different types of hardware, etc.).

187

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

Minor Version Code Changes

Changes in the dynamic library code that introduce new functionality without breaking the existing functionality
typically result with the incremented minor version number. The code changes that qualify for the increment of
dynamic library minor version numbers typically do not impose recompiling/relinking of the client binaries, nor
cause substantially changed runtime behavior. The added features typically do not represent radical turns, but rather
a mild enhancement of the existing assortment of available choices.

Modifications of ABI interfaces are not automatically precluded in the case of minor version increment code
changes. The ABI modifications in the case of minor version changes, however, mostly mean additions of new
functions, constants, and structures or classes—in other words, changes that do not impact the definition and use
of the previously existing interfaces. Most importantly, the client binaries that relied on the previous version do not
require rebuilding in order to use the new minor version of the dynamic library.

Patch Version

Code changes that are mostly of internal scope, which neither cause any change in the ABI interface nor bring
a substantial functionality change typically qualify for the “patch” status.

Linux Dynamic Library Versioning Schemes

The Linux-specific implementation of the versioning concept will be discussed in detail, as the sophistication with
which it resolves some of the most important questions related to the dynamic libraries versioning problem definitely
deserves attention. Two distinct versioning schemes are currently in use: the versioning scheme based on the library’s
soname and the individual symbols versioning scheme.

Linux Soname-based Versioning Scheme
Linux Library Filename Carries the Version Information

As mentioned in chapter 7, the last part of the filename of a Linux dynamic library represents the library’s versioning
information:

library filename = 1lib + <library name> + .so + <library version information»
The library version information typically uses the format
dynamic library version information = <M».<m>.<p>
where the M represents one or more digits indicating the library major version, the m represents one or more

digits indicating the library minor version, and the p stands for one or more digits indicating the library patch
(i.e., very minor change) number.

The Usual Dynamic Library Upgrade Practices

In typical real-world scenarios, arrivals of new minor versions of dynamic libraries tend to happen fairly frequently.
The expectations of the minor version upgrade causing any problems are generally very low, especially if the vendor
follows solid testing procedures before publishing the new code.

188

CHAPTER 10 * DYNAMIC LIBRARIES VERSIONING

Most of the time, installation of the new minor version of the dynamic library should be a fairly simple and
smooth procedure, such as a simple file copying of a new file.

However, regardless of how small the chances are that a new minor version breaks existing functionality, there is
still a possibility that it will happen. In order to be able to elegantly step back and restore the previous version of the
dynamic library which worked flawlessly, the simple file copying needs to be replaced by a bit more subtle approach.

Preamble: The Flexibility of Softlinks

By definition, a softlink is the element of the file system that carries a string containing the path to another file.
In fact, we may say that softlink points to an existing file. In most aspects, the operating system treats the softlink as
the file to which it points. The access to a softlink and redirection to the file it represents impose negligible
performance penalties.

The softlink may be easily created.

$ 1n -s <file path> <softlink path>
It can also be redirected to point to another file.
$ 1In -s -f <another file> <existing softlink>
Finally, the softlink may be destroyed when no longer needed.

$ m -rf <softlink path>

Preamble: Library Soname vs. Library Filename
As mentioned in the Chapter 7 discussion about the Linux library naming conventions, the library file name should
adhere to the following scheme:
library filename = lib + <library name> + .se + <library complete version information>
The soname of the Linux dynamic library is defined as

library soname = 1ib + <library name> + .so + <(only the)library major version digit(s)>

Obviously, the soname is almost identical to the library filename, the only difference being that it does not carry
the complete versioning information but only carries the dynamic library major version. As you will see, this fact plays
particularly important role in the dynamic libraries versioning schemes.

Combining Softlink and Soname in the Library Upgrade Scheme

The softlink’s flexibility lends itself really well to scenarios of upgrading the dynamic libraries. The following
guidelines describe the procedure:

e Inthe same folder where the actual dynamic library filename resides, a softlink is maintained
which points to the actual library file.

e Its name exactly matches the soname of the library to which it points. That way, the softlink
in fact carries the library name in which the versioning information is somewhat relaxed
(i.e. carries no more than the major version information).

189

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

e Asarule, the client binaries are never (i.e., only exceptionally rarely) linked against the
dynamic library filename carrying the fully detailed version information. Instead, as you will
see in detail shortly, the client binary build procedure is purposefully set to result with the
client binary being linked against the library soname.

e Thereasoning behind this decision is fairly simple: specifying the full and exact versioning
information of the dynamic library would impose too many unnecessary restrictions, as it
would directly prevent linking against any newer version of the same library.

Figure 10-1 illustrates the concept.

libxyz.s0.3

Figure 10-1. The role of the softlink whose name matches the library’s soname

Extra Softlink Needed as Convenience for Development Scenarios

When building the client binary, you need to determine the build-time location of the dynamic library, during which
you are expected to follow the rules of the “-L -1” convention. Even though it is possible to pass the exact dynamic
library filename (or softlink/soname) to the linker by adding the colon character between the “-1” and the filename
(-l:<filename>), such as

$ gcc -shared <inputs> -I:libxyz.so.1 -o <clientBinary>

it is the informal but well settled convention to pass only the library name deprived from any versioning information.
For example,

$ gcc -shared <inputs> -1m -1dl -lpthread -1xml2 -1xyz -o <clientBinary>
indicates that the client binary requires linking with libraries whose names are libm, libd], libpthread, libxml2,
and libxyz, respectively.

For that reason, in addition to the softlink carrying the library’s soname, it is typical to provide the softlink
carrying just the library name plus . so file extension, as illustrated in Figure 10-2.

190

CHAPTER 10 * DYNAMIC LIBRARIES VERSIONING

Client binary
in development gcc -shared -IxHyﬂz

L ; | /

Build time
ik imo)
Runtime

libxyz.s0.3

Figure 10-2. The use of softlinks during build time vs. during runtime

There are several ways to provide the extra softlink. The most structured way to do it is through the package
deployment configuration (pkg-config). A somewhat less structured way is to do it in the deployment target of the
makefile that governs the building of the dynamic library. Finally, it is always possible to create the softlink manually
from the command line or by setting up a simple script to do it.

Analysis of Soname-based Versioning Scheme

The described scheme obviously combines two flexibilities: the inherent flexibility of a softlink with the soname’s
versioning flexibility. Here is how the two flexibilities play together in the overall scheme of things.

The Softlink’s Role

Since the operating system treats the softlink as the file it points to, and inherently provides efficient dereferencing
mechanisms, the loader has no particular problem connecting the client binary through the softlink with the actual
library file available at runtime.

When a new version of a dynamic library arrives, it takes very little effort and time to copy its file into the same
folder where the older version already resides, and to modify the softlink to point to the newer version file.

$ 1In -s -f <new version of dynamic library file> <existing soname>

The benefits of this scheme are obvious:
e Noneed to rebuild the client binary.

¢ Noneed to erase or overwrite the current version of the dynamic library file. Both files can
coexist in the same folder.

e Easy, elegant, on-the-fly setting up the client binary to use the newer version of the
dynamic library.

e The ability to elegantly restore the client binary’s connection with the older dynamic library
version in cases when the upgrade results with the unexpected functionality.

191

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

Version Safeguarding Role of Soname

As mentioned in the previous section, not all kinds of changes in the dynamic library code will have a disruptive
impact on the client binary functionality. The minor version increments are reasonably expected to not cause any
major problems (such as the inability to dynamically link or run, or severe unwanted and unexpected runtime
changes). The upgrades require major version increments; on the other hand, they are extremely risky proposition,
and should be taken with extreme caution.

It does not require a whole lot of thinking to conclude that the soname is in fact designed to act like a fairly elastic
safeguard of a kind.

e Byusingitas a dynamic library identifier in the process of building the client binary, you
basically impose limits on the major version of the dynamic library.

The loader is designed to be smart enough to recognize the attempt to upgrade the dynamic
library to a major version different from what the soname suggests and prevent it from
happening.

e By purposefully omitting the details about the minor version and patch number, you implicitly

allow the minor version changes to happen without much of a hassle.

As great as this all sounds, this scheme is fairly safe only in the scenarios in which you have good reason to expect
that the changes brought by the new library version will not break the overall functionality, which is the case when at
most the minor version changes. Figure 10-3 illustrates version safeguarding role of soname.

iowyzs0 [Wairvarsion o

Minor versions

Figure 10-3. Soname safeguards against linking with incompatible major versions of shared library, but does not
interfere with minor version upgrades

In situations when the new dynamic library features an upgraded major version, this scheme is by design
prevented from running. Explaining how exactly the limitation measures work in this case requires us to dive a little
bit deeper into the implementation details.

Technicalities of the Soname Implementation

As fundamentally solid as it sounds, the scheme based on using soname would not be nearly as powerful unless its
implementation featured a very important facet. More specifically, the soname gets embedded into the binaries. The
ELF format reserves the dedicated fields of the dynamic section that are used (depending on the purpose) to carry the
soname information. During the linking stage, the linker takes the specified soname string and inserts it into the ELF
format field of choice.

192

CHAPTER 10 * DYNAMIC LIBRARIES VERSIONING

The “undercover life” of the soname starts when the linker imprints it into the dynamic library, with the purpose
of declaring the library’s major version. However, it does not end there. Whenever a client binary links against the
dynamic library, the linker extracts the dynamic library’s soname and inserts it into the client binary’s file as well,
albeit this time with a bit different purpose—to indicate the versioning requirements of the client binary.

Soname Embedded into the Dynamic Library File

When building a dynamic library, you can use the dedicated linker flag to specify the library soname.

$ gcc -shared <list of linker inputs> -Wl,-soname,<soname> -o <library filename>

The linker embeds the specified soname string into the DT_SONAME field of the binary, as shown in Figure 10-4.

milan@milan$
total 12

drwxrwxr-x 2
drwxr-xr-x 7
SrW-rw-r-- 1
-rW-rw-r-- 1
milan@milan$
milan@milan$
milan@milans
total 24

drwxrwxr-x 2
drwxr-xr-x 7
-rwxrwxr-x 1
“TW-rW-r-- 1
-fTW-rw-r-- 1
-fW-rw-r-- 1
milan@milan$

1s -alg

milan 4096 Dec 11 22:41 .

milan 4096 Dec 10 00:10 ..

milan 43 Dec 11 22:40 test.c

milan 41 Dec 11 23:01 test.h

gcc -fPIC -c test.c -0 test.o

gcc -shared test.o -Wl,-soname,libtest.so.1 -o libtest.s0.1.0.0
1s -alg

milan 4096 Dec 11 22:42

milan 4096 Dec 10 00:10 ..

milan 6864 Dec 11 22:42 libtest.so0.1.0.0
milan 43 Dec 11 22:40 test.c

milan 41 Dec 11 23:01 test.h

milan 864 Dec 11 22:41 test.o

readelf -d libtest.so0.1.0.0

Dynamic section at offset Oxf20 contains 21 entries:

Tag Type Name/Value

0x00000001 (NEEDED) Shared library: [libc.so0.6]
0x0000000e (SONAME) Library soname: [libtest.so.1]
0x0000000c (INIT) 0x304

0x0000000d (FINI) 0x478

oooo

Figure 10-4. Soname gets embedded into the DT_SONAME field of the binary file

Soname Propagated into the Client Binary File

When client binary gets linked (either directly or through the softlink) with the dynamic library, the linker gets the
dynamic library soname and inserts it into the DT_NEEDED field of the client binary, as shown in Figure 10-5.

193

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

milan@milan$ 1n -s libtest.so.1 libtest.so
milan@milan$ 1s -alg

total 32
drwxrwxr-x 3 milan 4096 Dec 11 23:23 .

drwxr-xr-x 7 milan 4096 Dec 10 00:10 ..

drwxrwxr-x 2 milan 4096 Dec 11 23:21 clientBinary

Trwxrwxrwx 1 milan 12 Dec 11 23:23 libtest.so -> libtest.so.1
Trwxrwxrwx 1 milan 16 Dec 11 23:22 libtest.so.1 -> libtest.so0.1.0.0
-rwxrwxr-x 1 milan 6662 Dec 11 22:42 libtest.so0.1.0.0

-rw-rw-r-- 1 milan 43 Dec 11 22:40 test.c

-rw-rw-r-- 1 milan 41 Dec 11 23:01 test.h

-rw-rw-r-- 1 milan 864 Dec 11 22:41 test.o

milan@milan$ c<d clientBinary/

milan@milan:clientBinary$ 1s -alg

total 12

drwxrwxr-x 2 milan 4096 Dec 11 23:20 .

drwxrwxr-x 3 milan 4096 Dec 11 23:21 ..

-rw-rw-r-- 1 milan 110 Dec 11 23:17 main.c

milan@milan:clientBinary$ gcc -I../ -c main.c -o main.o
milan@milan:clientBinary$S gcc -shared -L../ -ltest main.o -o clientBinary
milan@milan:clientBinary$ 1s -alg

total 24

drwxrwxr-x 2 milan 4096 Dec 11 23:21 .

drwxrwxr-x 3 milan 4096 Dec 11 23:21 ..

-rwxrwxr-x 1 milan 6683 Dec 11 23:21 clientBinary

-rw-rw-r-- 1 milan 110 Dec 11 23:17 main.c

-rw-rw-r-- 1 milan 952 Dec 11 23:21 main.o

milan@milan:clientBinary$ readelf -d clientBinary

Dynamic section at offset 0xf18 contains 22 entries:

Tag Type Name/Value
0x00000001 (NEEDED) Shared library: [libtest.so.1]
0x00000001 (NEEDED) Shared library: [libc.so0.6]
0x0000000c (INIT) 0x320
0x0000000d (FINI) 0x498

o

]

o]

o

Figure 10-5. Linked library soname gets propagated into the client binary

That way, the versioning information carried by the soname gets propagated further, establishing firm versioning
rules between all parties involved (the linker, the dynamic library file, the client binary file, and the loader).

Unlike the library filenames, which can be fairly easily modified by everybody (ranging from a younger sibling
with too many fingers per brain cell and too much time all the way to malicious hackers), changing the soname
value is neither a simple nor a practical task, as it requires not only modifications of the binary file but also thorough
familiarity with the ELF format.

The Support from the Other Utility Programs (1dconfig)

In addition to being supported by all the necessary players in the dynamic linking scenario (i.e., the linker, the binary
files, the loader), the other tools tend to support the soname concept. The ldconfig utility program is a notable
example in that regard. In addition to its original scope of responsibilities, this tool has an extra “Swiss knife” feature.

When -n <directory> command line arguments are passed, the ldconfig opens up all the dynamic library files
(whose names conform to the library naming convention!), extracts their soname, and for each of them creates a
softlink whose name is equal to the extracted soname.

194

CHAPTER 10 * DYNAMIC LIBRARIES VERSIONING

The -1 <specific library file> option is even more flexible, as in this case the dynamic library filename may
be absolutely any legal filename. No matter what the filename may look like (be it the fully fledged original library
name with the full versioning information or a severely altered filename), the soname embedded into the specified
file gets extracted and the correct softlink gets created unambiguously pointing to the library file.

To demonstrate this, a small experiment was run in which the original library name was purposefully altered.
Yet the ldconfig managed to create the correct softlink, as shown in Figure 10-6.

milan@milan$ 1ls -alg

total 28

drwxrwxr-x 2 milan 4096 Dec 11 23:01

drwxr-xr-x 7 milan 4096 Dec 10 00:10 ..

-rwxrwxr-x 1 milan 6662 Dec 11 22:42 libtest.so0.1.0.0
milan@milanS mv libtest.so0.1.0.0 purposefullyChangedName
milan@milan$ 1s -alg

total 28

drwxrwxr-x 2 milan 4096 Dec 11 23:02 .

drwxr-xr-x 7 milan 4096 Dec 10 00:10 ..

-rwxrwxr-x 1 milan 6864 Dec 11 22:42 purposefullyChangedName
milan@milan$ ldconfig -1 purposefullyChangedName
milan@milan$ 1s -alg

total 28

drwxrwxr-x 2 milan 4096 Dec 11 23:02 .

drwxr-xr-x 7 milan 4096 Dec 10 00:10 ..

Lrwxrwxrwx 1 milan 23 Dec 11 23:02 libtest.so.1 -> purposefullyChangedName
-rwxrwxr-x 1 milan 6864 Dec 11 22:42 purposefullyChangedName
milan@milan$s

Figure 10-6. Regardless of the library name, ldconfig extracts its soname

Linux Symbol Versioning Scheme

In addition to controlling the versioning information of the whole dynamic library, the GNU linker supports an extra
level of control over the versioning, in which the version information may be attributed to individual symbols. In
this scheme, the text files known as version scripts featuring a fairly simple syntax are passed to the linker during the
linking stage, which the linker inserts into the ELF sections (.gnu.version and similar ones) specialized in carrying
the symbol versioning information.

The Advantage of Symbol Versioning Mechanism

The symbol versioning scheme is in many aspects more sophisticated than the soname-based versioning. A particularly
interesting detail of the symbol versioning approach is that it allows a single dynamic library binary file to simultaneously
carry several different versions of the same symbol. The different client binaries that need different versions of the same
dynamic library will be loading the same, one and only binary file, and yet will be able to link against the symbols of a
specified version.

For comparison, when the soname-based versioning method is used, in order to support several major versions
of the same library, you need exactly that many different binaries (each carrying a different soname value) to be
physically present on the target machine. Figure 10-7 illustrates the difference between the versioning schemes.

195

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

Soname versioning scheme Symbol versioning scheme
Client binary Client binary
“Cl! “C”
<: <;\ libxyz.so
Client binary libxyz.s0.3 Client binary
HB” < HB” <

Different symbol
versions

Client binary libxyz.50.2 Client binary
“AH < “All <
libxyz.so.1

Figure 10-7. Comparison of soname-based and symbol-based versioning schemes

As an added bonus, due to the richness of the features supported by the script file syntax, it is also possible to
control the symbol visibility (i.e., which symbols are exported by the library and which remain hidden), in the manner
whose elegance and simplicity surpasses all the symbol visibility methods described so far.

Symbol Versioning Mechanisms Analysis Model

In order to fully understand the symbol versioning mechanism, it is important to define the usual use case scenarios
in which it gets used.

Phase 1: Initial Version

In the beginning, let’s say that a first ever published version of the dynamic library gets happily linked with the client
binary “A” and everything runs great. Figure 10-8 describes this early phase of development cycle.

Client binary

Dynamic library
version 1.0.0

Figure 10-8. Chronologically earliest client binary “A” links in library version 1.0.0

This is, however, just the beginning of the story.

196

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

Phase 2: Minor Version Changes

With every day that passes, the dynamic library development progress inevitably brings changes. Even more
importantly, not only does the dynamic library get changed, but also a new slew of client binaries (“B,” “C,” etc.)
emerge, which did not exist at the time when the linking of dynamic library with the first client binary “A” happened.
This stage is illustrated by Figure 10-9.

Client binary

Client binary

Dynamic library Dynamic library

version 1.0.0 version 1.0.0 New features

Figure 10-9. Somewhat newer client binary “B” links in newer library version (1.1.0)

Some of the dynamic library changes may have no implications on the already existing client binaries’
functionality. Such changes are rightfully considered the minor version changes.

Phase 3: Major Version Changes

Occasionally, the dynamic library code changes happen to bring differences that are too radical and mean a complete
breakup with what the previous library versions provided. The new client binaries (“C”) created at the time of these
new changes typically have no problem getting along with the new paradigm.

The older client binaries (“A” and “B”), however, may end up in the situation illustrated by Figure 10-10, which is
similar to an elderly couple at a rock'n’roll wedding reception waiting forever for the band to play their favorite Glenn
Miller tune.

197

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

Client binary

Client binary

Client binary

Dynamic library Dynamic library
version 1.0.0 version 1.0.0 Substantial
functionality changes

Dynamic library
version 2.0.0

Figure 10-10. The latest and greatest client binary “C” links in the newest dynamic library version (2.0.0), which is
incompatible for use by the older client binaries “A” and “B”

The task of software developers is to make the transition of the functionality upgrades as smooth as possible.
Breaking the compatibility with the existing infrastructure is seldom a wise move. The more the library is popular
among the developers, the less recommended it is to break away from the library’s expected functionality. The true
solution to the problem is that the new dynamic library keeps providing for both older and newer functionality
versions, at least for some time. This idea is illustrated in Figure 10-11.

Client binary

Client binary

Client binary

Dynamic library
version 1.0.0 version 1.0.0

Dynamic library

Dynamic library
version 2.0.0
Symbol versioning allows old
and new functionalities to coexist

Figure 10-11. Symbol versioning resolves incompatibility issues

198

CHAPTER 10 * DYNAMIC LIBRARIES VERSIONING

The Basic Implementation Ingredients

The symbol versioning scheme is implemented by combining the linker version script with the . symver assembler
directive, both of which will be elaborated in detail next.

Linker Version Script

The most basic implementation of the symbol visibility control mechanism is based on the GNU linker reading in the
symbol version information supplied in the form of the version script text file.

Let’s start a simple demo from the example of a simple dynamic library (1ibsimple.so) which features the three
functions shown in Listing 10-1.

Listing 10-1. simple.c

int first function(int x)

{
return (x+1);
}
int second_function(int x)
{
return (x+2);
}
int third function(int x)
{
return (x+3);
}

Let’s say now that you want the first two library functions (but not the third one!) to carry the versioning
information. The way to specify the symbol version is to create a fairly simple version script file, which may look
somewhat like the code in Listing 10-2.

Listing 10-2. simpleVersionScript

LIBSIMPLE 1.0 {
global:
first_function; second_function;

local:

*.
)

};

Finally, let’s now build the dynamic library. The version script filename may be conveniently passed to the linker
by using the dedicated linker flag, like so:

$ gcc -fPIC -c simple.c
$ gcc -shared simple.o -Wl,--version-script,simpleVersionScript -o libsimple.so.1.0.0

The linker extracts the information from the script file and embeds it into the dedicated ELF format section

dedicated to versioning. More information on how the symbol versioning information gets embedded into the ELF
binary files will follow shortly.

199

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

.symver Assembler Directive

Unlike the version script file that represents the “bread and butter” of the symbol versioning concept, used in all
phases and all scenarios, the symbol versioning paradigm relies on another ingredient—the . symver assembler
directive—to resolve the tough corner cases.

Let’s assume a scenario of major version changes in which a function signature did not change between the
versions, but the underlying functionality has changed quite a bit. Further, there’s a function that originally used
to return a number of linked elements, but in the latest version was redesigned to return the total number of bytes
occupied by the linked list (or vice versa). See Listing 10-3.

Listing 10-3. Example of substantially different implementations of the same function which qualify for different
major versions

// VERSION 1.0:
unsigned long list occupancy(struct List* pStart)

// here we scan the list, and return the number of elements
return nElements;

}

// VERSION 2.0:
unsigned long list occupancy(struct List* pStart)

// here we scan the list, but now return the total number of bytes
return nElements*sizeof(struct List);

Obviously, the clients of the library’s first version will face problems, as the value returned by function will no
longer match what is expected.

As stated previously, the credo of this versioning technique is to provide the different versions of the same symbol
in the same binary file. Nicely said, but how to do it? An attempt to build both function versions will result in the linker
reporting the duplicate symbols. Fortunately, the GCC compiler supports the custom . symver assembler directive,
which helps alleviate the problem (see Listing 10-4).

Listing 10-4. The same pair of different versions of the function featured in Listing 10-3, this time with properly
applied symbol versioning

__asm__(".symver list occupancy_1_0, list_occupancy@MYLIBVERSION 1.0");

unsigned long list_occupancy_1_o(struct List* pStart)

// here we scan the list, and return the number of elements
return nElements;

}
// default symbol version indicated by the additional "@"
// |
// v

__asm__(".symver list_occupancy_2 0, list occupancy@@MYLIBVERSION_2.0");
unsigned long list_occupancy 2_0(struct List* pStart)

{

// here we scan the list, but now return the total number of bytes
return nElements*sizeof(struct List);

200

CHAPTER 10 * DYNAMIC LIBRARIES VERSIONING

How Does This Scheme Work?

In order to eliminate the linker facing the duplicate symbols problem, you can create different names for different
versions of the same function, which will be used for internal purposes only (i.e. will not be exported). These two
functions are list_occupancy 1 0andlist_occupancy 2 0.

From the outer world perspective, however, the linker will create the symbol featuring the expected function
name (i.e. 1ist_occupancy()), albeit decorated with the appropriate symbol version information, appearing in the
two different versions: 1ist_occupancy@MYLIBVERSION 1.0 and list_occupancy@MYLIBVERSION 2.0.

As a consequence, both the older and the newer client binary will be able to identify the symbol they expect.

The older client binary will be happy to see that the symbol 1ist_occupancy@MYLIBVERSION 1.0 exists. Its calls to this
intermediary function symbol will be internally routed to the right place—to the 1ist_occupancy 1 0() dynamic
library function, which is the real symbol.

Finally, the brand new client binaries, which do not particularly care about the previous versions history, will choose
the default symbol, indicated by the extra @ character in the name (in this case, 1ist_occupancy@@MYLIBVERSION 2.0).

Sample Project Analysis: Phase 1 (Initial Version)

Now that you understand how the basic implementation ingredients (version script and/or . symver assembler
directive) work, it’s time to take a closer look at a real example. To illustrate the important points, let’s go back to the
original example used to illustrate the linker version script (i.e. the library 1ibsimple. so featuring three functions, the
first two of which will be subject to symbol versioning). In order to make the demo more convincing, some printf’s will
be added to the original code; see Listing 10-5 through Listing 10-8.

Listing 10-5. simple.h

#pragma once

int first function(int x);
int second function(int x);
int third function(int x);

Listing 10-6. simple.c

#include <stdio.h>
#include "simple.h"

int first function(int x)

{
printf(" lib: %s\n", _ FUNCTION_);
return (x+1);

}

int second function(int x)

{
printf(" lib: %s\n", _ FUNCTION);
return (x+2);

}

int third function(int x)

{
printf(" lib: %s\n", _ FUNCTION);
return (x+3);

}

201

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

Listing 10-7. simpleVersionScript

LIBSIMPLE 1.0 {
global:
first_function; second_function;

local:

X
b

};

Listing 10-8. build.sh

gcc -Wall -g -00 -fPIC -c simple.c
gcc -shared simple.o -Wl,--version-script,simpleVersionScript -o libsimple.so.1.0.0

Now that the library is built, let’s take a closer look at how the ELF format supports the symbol versioning concept.

ELF Format Support

The section analysis of the library file indicates that there are three sections of fairly similar names that are used to
carry the version information, as shown in Figure 10-12.

milan@milan$ readelf -S libsimple.so
There are 35 section headers, starting at offset 0x154c:

Section Headers:

[Nr] Name Type Addr off Size ES Flg Lk Inf Al
[o] NULL 00000000 000000 000000 0O 0 0 0
[1] .note.gnu.build-i NOTE 00000114 000114 000024 00O A © 0 4
[2] .gnu.hash GNU_HASH 00000138 000138 00002c 04 A 3 0 4
[3] .dynsym DYNSYM 000PO164 000164 00AE8O 16 A 4 1 4
[4] .dynstr STRTAB 000001e4 0001e4 000098 00 A © 0 1
L 5] .gnu.version VERSYM 0000027c 00027c 000010 02 A 3 0 2
[6] .gnu.version_d VERDEF 0000028c 00028c 000038 0O A 4 2 4
[7] .gnu.version_r VERNEED 000002c4 0002c4 000030 0O A 4 1 4

Figure 10-12. ELF format support for versioning information

Invoking the readelf utility with the -V command line argument provides a report about the contents of these
sections in a particularly neat way, as shown in Figure 10-13.

202

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

milan@milan$ readelf -v libsimple.so

Version symbols section '.gnu.version' contains 8 entries:
Addr: 000000000000027c Offset: 0x00027c Link: 3 (.dynsym)
000: 0 (*local*) 3 (GLIBC_2.1.3) 4 (GLIBC_2.0) 0 (*local¥)
004: 0 (*local*) 2 (LIBSIMPLE_1.0) 2 (LIBSIMPLE_1.0) 2 (LIBSIMPLE_1.0)

Version definition section '.gnu.version_d' contains 2 entries:
Addr: 0x000000000000028c Offset: ©@x00028c Link: 4 (.dynstr)
000000: Rev: 1 Flags: BASE Index: 1 Cnt: 1 Name: libsimple.so0.1.0.0
Ox001c: Rev: 1 Flags: none Index: 2 Cnt: 1 Name: LIBSIMPLE_1.0

Version needs section '.gnu.version_r' contains 1 entries:
Addr: 0x00000000000002c4 Offset: @x0002c4 Link: 4 (.dynstr)
000000: Version: 1 File: libc.so.6 Cnt: 2
0x0010: Name: GLIBC_2.0 Flags: none Version: 4
0x0020: Name: GLIBC_2.1.3 Flags: none Version: 3

milan@milan$

Figure 10-13. Using readelf to list contents of version-related sections

It becomes apparent that the

e .gnu.version_dsection describes the versioning information defined in this particular
library (hence the appendix “_d” in the section name).

e .gnu.version_r section describes the versioning information of the other libraries, which is
referenced by this library (hence the appendix “_r” in the section name).

e .gnu_versionsection provides the summary list of all version information related to the library.

It is interesting at this point to verify whether the version information got associated with the symbols specified in
the version script.

Of all the available ways (nm, objdump, readelf) to examine the binary file symbols, it is again the readelf utility
that provides the answer in the nicest form in which the association of symbols with the specified version information
becomes apparent, as illustrated in Figure 10-14.

[milan@milan$ readelf --symbols libsimple.so | grep function
6: 00000488 44 FUNC GLOBAL DEFAULT 12 second_ @ALIBSIMPLE_1.0
7: 0000045cC 44 FUNC GLOBAL DEFAULT 12 first_ @@QLIBSIMPLE_1.0
52: 000004b4 44 FUNC LOCAL DEFAULT 12 third_
64: 0000045cC 44 FUNC GLOBAL DEFAULT 12 first_
66: 00000488 44 FUNC GLOBAL DEFAULT 12 second_

milan@milan$ readelf --dyn-syms libsimple.so | grep function

6: 00000488 44 FUNC GLOBAL DEFAULT 12 second_ @@QLIBSIMPLE_1.0
7: 0000045c 44 FUNC GLOBAL DEFAULT 12 first_ @@LIBSIMPLE_1.0
milan@milan$

Figure 10-14. Using readelf to print symbol versioning information

Clearly, the versioning information specified in the version script and passed to the linker found its way into the
binary file and certainly became the attribute of the symbols intended for versioning.

As an interesting side note, the disassembling of the binary file, however, shows that there is no such thing as
first function@@LIBVERSIONDEMO 1.0. All you can find is the symbol of the real first_function. The disassembling
at runtime (by running gdb) shows the same thing.

Obviously, the exported symbol decorated with the symbol versioning information is a kind of fiction (useful, but
still a fiction), whereas the only thing that counts in the end is the symbol of the real, existing function.

203

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

Propagation of Version Symbol Information to the Client Binaries

Another round of interesting findings happens when you examine the client binaries that link against your symbol-
versioned dynamic library. In order to explore the symbol versioning in that particular direction, let’s create a simple
demo application that references the versioned symbols; see Listing 10-9.

Listing 10-9. main.c

#include <stdio.h>
#include "simple.h"

int main(int argc, char* argv[])

{
int nFirst = first function(1);
int nSecond = second function(2);
int nRetValue = nFirst + nSecond;
printf("first(1) + second(2) = %d\n", nRetValue);
return nRetValue;

}

Let’s now build it.

$ gcc -g -00 -c -I../sharedlLib main.c
$ gcc main.o -Wl,-L../sharedLib -lsimple \
-W1,-R../sharedlLib -o firstDemoApp

Please notice that in order to exercise solely the symbol versioning mechanism, specifying the library soname has
been purposefully omitted.

It does not come as a big surprise that the demo app, being an ELF binary file, also carries the version related
sections (as shown by the section inspection illustrated in the Figure 10-15).

.milan@milans readelf -S ./firstDemoApp
There are 36 section headers, starting at offset 0x1454:

Section Headers:

[Nr] Name Type Addr off Size ES Flg Lk Inf Al
[o] NULL 00000000 000000 0OODOO 0O (0] e o
[1] .interp PROGBITS 08048154 000154 000013 00 A O 0 1
[2] .note.ABI-tag NOTE 08048168 000168 000020 0O A 0O 0 4
[3] .note.gnu.build-i NOTE 08048188 000188 0POO24 00 A O O 4
[4] .gnu.hash GNU_HASH 080481ac 00Olac 0GOO20 84 A 5 0 4
[5] .dynsym DYNSYM 080481cc 0001lcc 0POO8O 10 A 6 1 4
[6] .dynstr STRTAB 0804824c 00024c 00OOa7 00 A 0O e 1
[7] .gnu.version VERSYM 0804824 0002f4 000010 02 A 5 e 2
[8] .gnu.version_r VERNEED 08048304 000304 000040 0O A 6 2 4

Figure 10-15. Demo application also features versioning-related sections

It is far more important that the demo dynamic library’s symbol version information was ingested by the client
binary through the process of linking, as shown in Figure 10-16.

204

CHAPTER 10 * DYNAMIC LIBRARIES VERSIONING

'milan@milans readelf -v ./firstDemoApp

Version symbols section '.gnu.version' contains 8 entries:

Addr: 00000000080482f4 Offset: 0x0002f4 Link: 5 (.dynsym)
000: 0 (*local*) 2 (GLIBC_2.0) 3 (LIBSIMPLE_1.0) 3 (LIBSIMPLE_1.0)
004: 0 (*local*) 2 (GLIBC_2.0) 0 (*local*) 1 (*global*)

Version needs section '.gnu.version_r' contains 2 entries:
Addr: 0x0000000008048304 Offset: 0x000304 Link: 6 (.dynstr)
000000: Version: 1 File: libsimple.so Cnt: 1
0x0010: Name: LIBSIMPLE_1.0 Flags: none Version: 3
0x0020: Version: 1 File: libc.so.6 Cnt: 1
0x0030: Name: GLIBC_2.@8 Flags: none Version: 2
milan@milan$

Figure 10-16. Client binary “ingests” the symbol versioning info from library it linked in

Exactly like it happens in the previously described soname-based versioning scenario, the symbol versioning
mechanism also gets passed from the dynamic library to its client binary. This way, a form of contract between the
client binary and the dynamic library versioning has been established.

Why is this important? From the moment in which the linking of the client binary with the dynamic library
happened, the dynamic library code may pass through a multitude of changes and accordingly through the multitude
of minor and major versions.

Regardless of the dynamic library changes, its client binary will keep carrying on the versioning information that
was present at the time of the linking. If exactly that version (and of course exactly the functionality associated with
that particular version) happens to be missing, the broken backwards compatibility will be strongly indicated.

Before advancing further, let’s make sure that your versioning scheme does not prevent the app from running.
The simple experiment is shown in Figure 10-17.

milan@milan$./firstDemoApp
1ib: first_function

lib: second_function
first(1) + second(2) = 6
milan@milan$

Figure 10-17. Versioning scheme working correctly

Sample Project Analysis: Phase 2 (Minor Version Changes)

Once you understand the basics of how the symbol versioning scheme operates, it’s time to simulate the scenario in
which the dynamic library development results with the non-disruptive changes (i.e., minor version) changes. In the
attempt to simulate the real-life scenarios, the following steps will be taken:

¢ You will modify the dynamic library by adding a few more functions. Only one of the newly
added functions will be exported. The versioning script will be enriched by the extra item
announcing the LIBSIMPLE_1.1 minor version upgrade.

e The original client binary (i.e., the initial simple demo application) will be purposefully left
untouched. By not rebuilding it, it will perfectly mimic the legacy application, built at the time
when the dynamic library featured the initial version 1.0.

205

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

e The new client binary (another simple demo application) will be created and linked against
the updated dynamic library. This way, it will serve as an example of a brand new client
binary, created at the time of the latest and greatest dynamic library version 1.1, unaware of
any of the previous library versions.

e To simplify the demo, its code will not be significantly different from the original simple demo
application. The most notable difference is that it will call the new ABI function, which did not
exist prior to the latest 1.1 version.

Listings 10-10 and 10-11 show what the source file of the modified dynamic library looks like now.

Listing 10-10. simple.h

#pragma once

int first function(int x);
int second function(int x);
int third function(int x);

int fourth function(int x);
int fifth function(int x);

Listing 10-11. simple.c

#include <stdio.h>
#include "simple.h"

int first function(int x)

{
printf(" lib: %s\n", _ FUNCTION);
return (x+1);

}

int second function(int x)

{
printf(" lib: %s\n", _ FUNCTION_);
return (x+2);

}

int third function(int x)

{
printf(" lib: %s\n", _ FUNCTION_);
return (x+3);

}

int fourth function(int x) // exported in version 1.1

{
printf(" lib: %s\n", _ FUNCTION_);
return (x+4);

}

206

CHAPTER 10

int fifth_function(int x)

{
printf(" lib: %s\n", _ FUNCTION);

return (x+5);

Listing 10-12 shows how the version script will look after the changes.

Listing 10-12. simpleVersionScript

LIBSIMPLE 1.0 {
global:
first function; second_function;

local:
X
bl
b
LIBSIMPLE 1.1 {
global:
fourth_function;
local:
ko
)
s

The new demo application source file will look like Listing 10-13.

Listing 10-13. main.c

#include <stdio.h>
#include "simple.h"

int main(int argc, char* argv[])

{

int nFirst = first function(1);

int nSecond = second function(2);

int nFourth = fourth function(4);

int nRetValue = nFirst + nSecond + nFourth;

printf("first(1) + second(2) + fourth(4) = %d\n", nRetValue);
return nRetValue;

Let’s now build it.

$ gcc -g -00 -c -I../sharedLib main.c
$ gcc main.o -W1,-L../sharedLib -1lsimple \
-W1,-R../sharedlLib -o newerApp

DYNAMIC LIBRARIES VERSIONING

207

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

Let’s now take a closer look at the effects of this little versioning adventure, which perfectly mimics the real life
scenario happening when dynamic library minor versions gets upgraded.

First, as shown in Figure 10-18, the versioning information now features not only the original version (1.0) but
also the newest version (1.1)

milan@milan$ readelf -V libsimple.so
Version symbols section '.gnu.version' contains 10 entries:
Addr: 00000000000002c2 Offset: Ox0002c2 Link: 3 (.dynsym)
000: 8 (*local*) 4 (GLIBC_2.1.3) 5 (GLIBC_2.0) 8 (*local*)
004: 0 (*local*) 3 (LIBSIMPLE 1.1) 2 (LIBSIMPLE_1.0) 2 (LIBSIMPLE_1.0)
008: 2 (LIBSIMPLE_1.0) 3 (LIBSIMPLE 1.1)
Version definition section '.gnu.version_d' contains 3 entries:
Addr: 0x00000000000002d8 Offset: 0x0002d8 Link: 4 (.dynstr)
000000: Rev: 1 Flags: BASE Index: 1 Cnt: 1 Name: libsimple.so.1.0.0
0x001c: Rev: 1 Flags: none Index: 2 Cnt: 1 Name: LIBSIMPLE_1.0
0x0038: Rev: 1 Flags: none Index: 3 Cnt: 1 Name: LIBSIMPLE 1.1
Version needs section '.gnu.version_r' contains 1 entries:
Addr: 0x000000000000032c Offset: 0x00032c Link: 4 (.dynstr)
000000: Version: 1 File: libc.so.6 Cnt: 2

0x0010: Name: GLIBC_2.0 Flags: none Version: 5
0x0020: Name: GLIBC 2.1.3 Flags: none Version: 4
milan@milan$

Figure 10-18. Complete versioning information ingested by the client binary

The set of exported symbols is now comprised of both version 1.0 and version 1.1 symbols, as shown in Figure 10-19.

milan@milan$ readelf --dyn-sym libsimple.so

Symbol table '.dynsym' contains 10 entries:
Num: Value Size Type Bind Vis Ndx Name

0: 0oeo000B0 ® NOTYPE LOCAL DEFAULT UND
1: 00000000 0 FUNC WEAK DEFAULT UND _ cxa_finalize@GLIBC_2.1.3 (4)
2: 00ooOO06 ® FUNC GLOBAL DEFAULT UND puts@GLIBC_2.0 (5)
3: 00oooooo ® NOTYPE WEAK DEFAULT UND _ gmon_start__
4: 00000000 O NOTYPE WEAK DEFAULT UND _Jv_RegisterClasses
5: 00OOB556 44 FUNC GLOBAL DEFAULT 12 fourth function@E@LIBSIMPLE 1.1
6: 00000000 ® OBJECT GLOBAL DEFAULT ABS LIBSIMPLE_1.0
7: 0000048 44 FUNC GLOBAL DEFAULT 12 second_function@@LIBSIMPLE_ 1.0
8: 000004cc 44 FUNC GLOBAL DEFAULT 12 first_function@@LIBSIMPLE_1.0
9: ANAAOOOO ® OBJECT GLOBAL DEFAULT ABS LIBSIMPLE_1.1

milan@milan$

Figure 10-19. Symbols of different versions present in the shared library

Let’s see now how the things look with the newer, more modern client binary (newerApp) built for the first time
after version 1.1 came out. As illustrated in Figure 10-20, the linker read out the information about all the versions
supported by the dynamic library and inserted it into the newer app’s client binary.

208

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

'milan@?m_ilans readelf -V ./newerApp

Version symbols section '.gnu.version' contains 9 entries:

Addr: 0000000008048322 Offset: 0x000322 Link: 5 (.dynsym)
000: 0 (*local*) 2 (GLIBC_2.0) 3 (LIBSIMPLE_1.0) 4 (LIBSIMPLE 1.1)
004: 3 (LIBSIMPLE_1.0) 0 (*local*) 2 (GLIBC_2.0) 8 (*local¥*)
008: 1 (*global*)

Version needs section '.gnu.version_r' contains 2 entries:
Addr: 0x0000000008048334 Offset: 0x000334 Link: 6 (.dynstr)
000000: Version: 1 File: libsimple.so Cnt: 2
0x0010: Name: LIBSIMPLE 1.1 Flags: none Version: 4
0x0020: Name: LIBSIMPLE_1.0 Flags: none Version: 3
0x0030: Version: 1 File: libc.so.6 Cnt: 1
0x0040: Name: GLIBC_2.0 Flags: none Version: 2
milan@milan$

Figure 10-20. Newer client binary ingested complete versioning info (both old and newer symbol versions)

The list of dynamic library symbols on whose presence the client binary counts on at runtime contains the
symbols of both versions. Figure 10-21 illustrates the point.

milan@milan$ readelf --dyn-syms ./newerApp

Symbol table '.dynsym' contains 9 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 00000000 ® NOTYPE LOCAL DEFAULT UND
1: 00000000 © FUNC GLOBAL DEFAULT UND printf@GLIBC_2.0 (2)
2: O0DODOOO © FUNC GLOBAL DEFAULT UND second function@LIBSIMPLE 1.0 (3)
3: 00000000 ® FUNC GLOBAL DEFAULT UND fourth_function@LIBSIMPLE_1.1 (4)
4: 00PLOBOO ® FUNC GLOBAL DEFAULI UND Tirst_trunction@dLIBSIMPLE_1.0 (3)
5: PAEOOE0O © NOTYPE WEAK DEFAULT UND __gmon_start__
6: 00000000 0 FUNC GLOBAL DEFAULT UND __libc_start_main@GLIBC_2.0 (2)
7: Oopooooe 0 NOTYPE WEAK DEFAULT UND _Jv_RegistercClasses
8: 0804864c 4 OBJECT GLOBAL DEFAULT 15 _I0_stdin_used

milan@milan$

Figure 10-21. Symbols of all versions ingested from the shared library

Now, in order to verify that the addition of the new functionality and modified versioning information works as
expected, you can try to run both the old and new application. As shown in Figure 10-22, running the old app will
prove that the new minor version of the dynamic library did not bring any unpleasant surprises.

milan@milan$./newerApp

1ib: first_function

1ib: second_ function

1ib: fourth_function

first(1) + second(2) + fourth(4) = 14
milan@milan$./firstDemoApp

1ib: first_function

1ib: second_function

first(1) + second(2) = 6
milan@milan$

Figure 10-22. Both older and newer app link the same library, but use the symbols of different versions

209

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

Sample Project Analysis: Phase 3 (Major Version Changes)

In the previously analyzed examples I've covered cases in which the new code changes generally did not impact how
the clients used the existing code base. Such code changes are rightfully recognized as minor version increments.

I will not try to cover much more dramatic situations, in which the code changes seriously undermine the way of
how the clients used the code, thus clearly falling into the major version increments category.

The Case of Changed ABI Function Behavior

Potentially the most unpleasant code changes happen when seemingly nothing happens with the dynamic library
symbols (i.e., the functions do not have their prototypes altered, and/or the structures do not have their layout
changed), but the underlying meaning of what the functions do with the data—and most importantly, the values they
return—does change.

Imagine for a moment that you have a function that used to return the time value in milliseconds. One fine day,
the developers figured out that the millisecond as a measure was not precise enough, and decide to return the value in
nanoseconds instead (which is 1,000 times larger).

This scenario is what we will use as the topic of the next example; I'll show how problems of this nature may
be solved by clever use of the symbol versioning mechanism. (I do agree that example is a bit childish/fantastic/
naive. Indeed, there are about a million ways how the chaos ensuing from this change may be avoided. For example,
you could introduce a new ABI function with the word “nanoseconds” in the name, which would return time in
nanoseconds. Even then, an example like this one is sufficiently good for the demo purposes.)

Back to the topic, let’s assume that the demo dynamic library export header hasn’t changed at all, so the function
prototypes are unchanged. However, the most recent design requirements dictate that the first_function() from
now on needs to return a value different from what it used to return.

int first function(int x)

{
printf(" lib: %s\n", _ FUNCTION);
return 1000%(x+1);

Needless to say, this kind of change is bound to wreak havoc with the existing client binaries. Their existing code
infrastructure simply does not expect a value of that order of magnitude. It is possible that stepping out of the bounds
of arrays causes an exception. In graph-plotting scenarios, the value would be way out of bounds, etc.

So now you need a way to make sure that the old customers get the usual treatment (i.e., the existing client
binaries’ calls to first function() return the value it used to), whereas the new customers get the benefit of a
new design.

The only problem is that you have to resolve the conflict; the same function name must be used in two
substantially different scenarios. Fortunately, the symbol versioning mechanism proves it is able to handle problems
of this kind.

As afirst step, you will modify the version script to indicate support for the new major version; see Listing 10-14.

Listing 10-14. simpleVersionScript

LIBSIMPLE 1.0 {
global:
first_function; second_function;
local:

*.
5

};

210

LIBSIMPLE 1.1 {
global:
fourth_function;

local:

X e
)

};
LIBSIMPLE_2.0 {
global:
first_function;
local:
*5
};

CHAPTER 10 * DYNAMIC LIBRARIES VERSIONING

Next, you will apply the recipe based on using the .symver assembler directive, as shown in Listing 10-15.

Listing 10-15. simple.c (only the changes shown here)

_asm__(".symver first function_1_0,first function@LIBSIMPLE_1.0");
int first function_1_o0(int x)

{

printf(" lib: %s\n", _ FUNCTION);

return (x+1);

_asm__(".symver first function 2_0,first_function@@LIBSIMPLE 2.0");

int first function_2_o(int x)

{

printf(" lib: %s\n", _ FUNCTION_);

return 1000*(x+1);

As shown in Figure 10-23, the dynamic library now features one extra piece of versioning information.

211

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

milan@milan$ readelf -V libsimple.so
Version symbols section '.gnu.version' contains 12 entries:
Addr: ooo00000000002fe Offset: O0xo002fe Link: 3 (.dynsym)
000: 0 (*local*) 5 (GLIBC_2.0) 6 (GLIBC_2.1.3) 0 (*local*)
004: 0 (*local*) 3 (LIBSIMPLE_1.1) 2 (LIBSIMPLE_1.8) 4 (LIBSIMPLE 2.0)
008: 2 (LIBSIMPLE_1.0) 4 (LIBSIMPLE 2.0) 3 (LIBSIMPLE_1.1) 2h(LIBSIMPLE_1.0)

Version definition section '.gnu.version_d' contains 4 entries:
Addr: 0x0000000000000318 Offset: 0x000318 Link: 4 (.dynstr)
000000: Rev: 1 Flags: BASE Index: 1 Cnt: 1 Name: libsimple.so0.1.0.0
0x001c: Rev: 1 Flags: none Index: 2 Cnt: 1 Name: LIBSIMPLE_1.0
0x0038: Rev: 1 Flags: none Index: 3 Cnt: 1 Name: LIBSIMPLE_ 1.1
0x0054: Rev: 1 Flags: none Index: 4 Cnt: 1 Name: LIBSIMPLE_ 2.0
Version needs section '.gnu.version_r' contains 1 entries:
Addr: @x0000000000000388 Offset: 0x000388 Link: 4 (.dynstr)
000000: Version: 1 File: libc.so.6 Cnt: 2
0x0010: Name: GLIBC_2.1.3 Flags: none Version: 6
0x0020: Name: GLIBC_2.0 Flags: none Version: 5
milan@milans$

Figure 10-23. The latest and greatest library version contains all the symbol versions

Interestingly, as shown in Figure 10-24, it looks like the . symver directive actually did its magic.

milan@milan$ readelf --dyn-syms libsimple.so

symbol table '.dynsym' contains 12 entries:
Num: Value Size Type Bind Vis Ndx Name

0: 0DEOOGBO ® NOTYPE LOCAL DEFAULT UND
1: 00000000 ® FUNC GLOBAL DEFAULT UND printf@GLIBC_2.0 (5)
2: 0Doeooooo ® FUNC WEAK DEFAULT UND _ cxa_finalize@GLIBC_2.1.3 (6)
3: Ooeooooe @ NOTYPE WEAK DEFAULT UND __gmon_start__
4: 00000000 © NOTYPE WEAK DEFAULT UND _Jv_RegisterClasses
: 00OOO5Ta 54 FUNC GLOBAL DEFAULT 12 fourth_function@@LIBSIMPLE_1.1
clalelalalelale] ® OBJECT GLOBAL DEFAULT ABS LIBSIMPLE_1.0©
© OBJECT GLOBAL DEFAULT ABS LIBSIMPLE_2.0

5

6:

7: 00oGOo000
8: 0000058e 54 FUNC GLOBAL DEFAULT 12 second_function@@LIBSIMPLE_1.0
9: 00000552 60 FUNC GLOBAL DEFAULT 12 first_function@@LIBSIMPLE_2.0
10: ©ooeooc00 © OBJECT GLOBAL DEFAULT ABS LIBSIMPLE_1.1
11: 0000051cC 54 FUNC GLOBAL DEFAULT 12 first function@LIBSIMPLE 1.0

milan@milanS$ nm libsimple.so | grep function

00000630 t ftifth_

00000552 T first_ @@LIBSIMPLE_2.0
0000051c T first @LIBSIMPLE_ 1.0
0000051c t first_ 1.0

00000552 t first_ _2_0

000005fa T fourth_

0000058e T second_

000005c4 t third_

milan@milan$

Figure 10-24. Both versions of first_function() exist

212

CHAPTER 10 * DYNAMIC LIBRARIES VERSIONING

The ultimate effect of the whole . symver scheme is the magic of exporting two versions of the first_function()
symbol, despite the fact that a function of such name no longer exists because it was replaced by first function 1 0()
and first function 2 o().

In order to clearly show the implementation differences, you will create the new application whose source does
not differ from previous version (see Listing 10-16).

Listing 10-16. main.c

#include <stdio.h>
#include "simple.h"

int main(int argc, char* argv[])
{
int nFirst = first_function(1); // seeing 1000 times larger return value will be fun!
int nSecond = second function(2);
int nFourth = fourth function(4);
int nRetValue = nFirst + nSecond + nFourth;
printf("first(1) + second(2) + fourth(4) = %d\n", nRetValue);
return nRetValue;

The new app name will be chosen accordingly:

$ gcc -g -00 -c -I../sharedlLib main.c
$ gcc main.o -WL,-L../sharedLib -Isimple \
-W1,-R../sharedLib -o ver2PeerApp

The runtime comparison will clearly show that the old clients will have their functionality unaffected by the
major version changes. The contemporary app, however, will count on the new functionality brought by version 2.0.
Figure 10-25 summarizes the point.

milan@milan$./firstDemoApp

lib: first_function_1 0

1lib: second_function

first(1) + second(2) = 6
milan@milan$. /newerApp

1lib: first_function_1 0

1lib: second_function

lib: fourth_function
first(1) + second(2) + fourth(4)
milan@milan$./ver2PeerApp

lib: first_function_2_0

lib: second_function

lib: fourth_function
first(1) + second(2) + fourth(4)
milan@milan$

14

2012

Figure 10-25. Three apps (each of which rely on different symbol versions of the same dynamic library) run as intended

213

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

The Case of Changed ABI Function Prototype

The previously described case is a bit bizarre. Due to the numerous ways it can be avoided, the chances of it
happening in real life are fairly low. From an education standpoint, however, it is precious as the procedure of fixing
such problem is the simplest as can be.

A far more usual case that falls under the major version code changes is when the signature of a function needs to
be changed. For example, let’s assume that for the new use case scenarios the first function() needs to accept an
additional input argument.

int first function(int x, int normfactor);

Obviously, you now need to support the functions of the same name but of different signatures. In order to
demonstrate this problem, let’s create another version, shown in Listing 10-17.

Listing 10-17. simpleVersionScript
LIBSIMPLE 1.0 {

global:
first function; second_function;
local:
X
)
};
LIBSIMPLE 1.1 {
global:
fourth function;
local:
X
)
};
LIBSIMPLE 2.0 {
global:
first function;
local:
X
)
b
LIBSIMPLE_3.0 {
global:
first_function;
local:
X
)
};

In general, the solution for this problem does not substantially differ from the previous case, as the recipe based
on the . symver assembler directive will be used much in the same way as in the previous example (see Listing 10-18).

214

CHAPTER 10 * DYNAMIC LIBRARIES VERSIONING

Listing 10-18. simple.c (only the changes shown here)

__asm__(".symver first function_ 1 0,first function@LIBSIMPLE 1.0");
int first function_1 o(int x)
{

printf(" lib: %s\n", _ FUNCTION);

return (x+1);

}

_asm__(".symver first_function_2_o,first_function@LIBSIMPLE_2.0");
int first_function_2_o(int x)
{

printf(" lib: %s\n", _ FUNCTION);

return 1000*(x+1);

}

_asm__(".symver first_function_3_0,first_function@@LIBSIMPLE_3.0");
int first function_3_o(int x, int noxmfactor)

{
printf(" lib: %s\n", _ FUNCTION);
return normfactor*(x+1);

The most substantial difference, however, is that the export header must be modified, as shown in Listing 10-19.

Listing 10-19. simple.h

#pragma once

// defined when building the latest client binary
#ifdef SIMPLELIB_VERSION_3_0O

int first_function(int x, int normfactor);

#else

int first_function(int x);

#endif // SIMPLELIB_VERSION_3_0

int second function(int x);
int third function(int x);

int fourth function(int x);
int fifth _function(int x);

Only the client binary built with the SIMPLELIB_VERSION_3_0 preprocessor constant passed to the compiler
will include the new first_function() prototype.

$ gcc -g -00 -c -DSIMPLELIB_VERSION 3_0 -I../sharedLib main.c
$ gcc main.o -Wl,-L../sharedLib -lsimple \
-W1,-R../sharedlLib -o ver3PeerApp

It will be a nice little exercise for the reader to verify that in all other aspects (versioning information, symbols
presence, runtime outcomes) the example meets his/her expectations.

215

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

Version Script Syntax Overview

The version scripts shown in the code examples so far feature only a subset of the broad range of supported syntax
features. The purpose of this section is to provide a brief overview of the supported options.

Version Node

The basic entity of the version script is the version node, the named construct encapsulated between the curly
brackets describing certain version, such as

LIBXYZ_1.0.6 {

. <some descriptors reside here>
};

The version node usually encapsulates several keywords controlling different aspects of the versioning process,
whose variety will be discussed in more detail shortly.

Version Node Naming Rules

The node name is typically chosen to precisely describe the full version described by the node. Usually, the name
ends with digits separated by dots or underscores. It is a common sense practice that the nodes representing the later
versions come after the nodes representing earlier versions.

However, this is just a practice that makes the life of humans easier. The linker does not particularly care how you
name your version nodes, nor does it care what order they appear in the file. All that it really requires that the names
are different.

A similar situation is with the dynamic libraries and their client binaries. What really matters to them is the
chronology in which the version nodes were added to the version files—which particular version was present at the
time they were built.

Symbols Export Control

The global and local modifiers of a version node directly control the symbol exporting. The semicolon-separated list
of symbols declared under the global label will be exported, as opposed to the symbols declared under the local label.

LIBXYZ 1.0.6 {
global:
first_function; second_function;
local:

*.
)

};
Even though it is not the primary topic of the versioning scheme, this mechanism of exporting the symbols is in

fact completely legitimate (and in many aspects the most elegant) way of specifying the list of exported symbols.
An example of how this mechanism works will be provided in subsequent sections.

216

CHAPTER 10 * DYNAMIC LIBRARIES VERSIONING

Wildcard Support

The version script supports the same set of wildcards that the shells support for expression matching operations. For
example, the following version script declares as global all the functions whose name starts with “first” or “second:”

LIBXYZ 1.0.6 {
global:
first¥*; second¥;
local:
*5

};

Additionally, the asterisk under the local label specifies all other functions to be of the local scope (those not to
be exported). Filenames specified under double quotes are to be taken verbatim, regardless of any wildcard characters
they may contain.

Linkage Specifier Support

The version script may be used to specify the extern "C" (no name mangling) or extern "C++" linkage specifier.

LIBXYZ_1.0.6 {
global:
extern "C" {
first function;
}

local:

%o
)

};

Namespace Support

The version scripts also support the use of namespace in specifying the affiliation of the versioned and/or exported
symbols.

LIBXYZ 1.0.6 {
global:
extern "C++" {
libxyz_namespace::*
}

local:

%
b

};

Unnamed Node

An unnamed node can be used to specify the unversioned symbols. Additionally, its purpose may be to host the
symbols export specifiers (global and/or local).

In fact, when the control over the symbol export is your only motive for using the versioning script mechanism,
itis very usual to have a version script containing only one unnamed node.

217

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

Version Script Side Feature: Symbol Visibility Control

A side feature of the version script mechanism is that it also provides control over the symbol visibility. The symbols
listed in the version script node under the global tab end up being exported, whereas the symbols listed under the
local tab do not get exported.

It is perfectly legal to use the version script mechanism solely for the purpose of specifying the symbols to export.
However, it is highly recommended in such case to use the unnamed script version nodes, as demonstrated in the
simple demo illustrated by Figure 10-26.

milan@milan$ 1s -alg

total 20

drwxrwxr-x 2 milan 4096

drwxrwxr-x 4 milan 4096 ..

-rwxrwxr-x 1 milan 170 build.sh

-rw-rw-r-- 1 milan 53 exportControlScript

-rw-rw-r-- 1 milan 169 scriptvisibilityControl.c

milan@milan$ cat build.sh

gcc -Wall -fPIC -c¢ scriptvisibilityControl.c

gcc -shared scriptvisibilityControl.o \
-Wl,--version-script,exportControlScript \
-0 libscriptcontrolsexportdemo.so

milan@milan$ cat scriptvisibilityControl.c

int first_function(int x)

{
return 0;
}
int second_function(int x)
{
return 0;
}
int third_function(int x)
{
return 0;
}
milan@milan$ cat exportControlScript
{
global:
first_function;
local:
I

milan@milan$./build.sh

milan@milan$ nm libscriptcontrolsexportdemo.so | grep function
0000037c T first_function

00000386 t second_function

00000390 t third_function

milan@milan$

Figure 10-26. Version script can be used as the most elegant way of controlling the symbol visibility, as it does not
require any modifications of the source code

Windows Dynamic Libraries Versioning

The versioning implementation in Windows follows an identical set of principles as its Linux counterpart. The code
changes that significantly break away from the existing runtime functionality or require rebuilding of client binaries
lead to the major version changes. The additions/expansions of the provided functionality that do not disrupt the
functionality of the existing client binaries qualify for the minor version changes.

218

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

The code changes that mostly affect the details of inner functionality are referred to in Linux as patches and in
Windows as build versions. Other than the obvious naming differences, there are no substantial differences between
the two concepts.

DLL Version Information

As with Linux dynamic libraries, the versioning information of Windows dynamic libraries (DLL) is optional. Unless a
conscious design effort is made to specify such information, it will not be appearing as part of the DLL. As a good design
rule, however, all the major DLL vendors (starting with Microsoft, of course) make sure the dynamic libraries they supply
carry the version information. When available, the DLL version information is provided as a dedicated tab on the file
property pages, which may be retrieved by right-clicking the file icon in the File Explorer pane, as shown in Figure 10-27.

ﬁ .. » Computer » Windows(C:) » Windows » System32 »

- [@7] Open with... Bum New folder

Name Date modified Type Size
%) msverl10_clr0400.dil 9/11/2013 8:39 PM Application extens... 836 KB
% msvert.dil . Application extens... 620 KB |

grepWin... — :
(%) mevfw32.dIl 1T Application extens... 141 KB

L »
% msvide32.dlI a0 M Application extens... 38 KB
%, MSVidCtl.dll KDiff3 » IM Application extens... 3,565 KB
%) mswmdm.dil r ™
= e Open with... - msvertdil Properties S
'ii‘ s [Scan selected files with Avira
%) msxmi3.dll B Tetpad | General | Securty | Detalls | Previous Versions |
%, msxm3r.dil & WinM
inMerge]

%) msxmi6.dil 2 : Propesty Value [

Restore previous versions e |
%) msxmibr.dll Description
% msyuv.dil Send to File description ~ Windows NT CRT DLL
&) MTril+ 2 Type Application extension
B Tt 64 = Fieverson 7.0.7601.17744

rl+
) Copy Product name Microsoft® Windows® Operating System

& MTrigger2 Product version 7.0.7601.17744
& Mtrigger2 Create shortcut Cooyri @M &G gion. Al ights
[mtstocom # Delete Size 620 KB
%) mixclu.dil # Rename Date modfied ~ 12/16/2011 12:46 AM
%) mtxdm.dil - Language English (United States)
t:" Properties Original filename msvert.dil
% mixex.dll T
1% mixocidll 7/13/20Q
2] muifontsetup.dl 11/20/24
%) MUILanguageCleanup.dil 7/13/200
[MuiUnattend 7/13/200
& MultiDigiMon 11/20/2C
&) mycomput.dil 7/13/200
% mydocs.dll 11/20/2G Remove Properties and Personal Information
B Mystify 11/20/2(
i) NAPCLCFG 6/10/200 Lok) [Lcanca][ooy
% NAPCRYPT.DLL 11720720 il

Figure 10-27. Example of DLL version information

219

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

Specifying DLL Version Information

In order to illustrate the most important aspects of the Windows DLL versioning, a demo Visual Studio solution is

created featuring two projects:
e VersionedDLL project, which builds the DLL whose version information is provided

e VersionedDLLClientApp project, which builds the client application that loads the versioned
DLL and tries to retrieve its versioning information

The usual way to supply the versioning information to the DLL project is to add the dedicated version resource
element to the library resource file, as shown in Figure 10-28.

Solution Explorer

v I X | VersionedDLL.cpp X

(Global Scope)
=1// VersionedDLL.cpp : Defines t
/!

- o

e

g Solution 'DLLVersioningDemo' (2 projects)
4 [21 VersionedDLL
@ External Dependencies
4 |LZ Header Files
|h] stdafich
|h] targetver.h
|h] VersionedDLL.h

#include "stdafx.h"
#include "VersionedDLL.h"

Iy,

// This is an example of an export

[Cd Resprimmafilan LAIENC TAMENNL L ANT dmd wllmes=damadnt
4 | Sou Add * | =] New kem... Ctrl+Shift+A
¢ Fﬁ Class Wizard... Ctrl+Shift+X i Existing Item... Shift+Alt+ A
G+ . -
cj | & Cut Ctrl+X 4 New Filter
| Rea <3 Copy Ctrl+C ¢ Class...
[Version & Paste Ctrl+V “% Resource...
X De("Add Resource (=)
Re
5 Accelerator
#- R Cursor
HTML
Hel
=] Ribbon =
3be String Table
iouw Toolbar

O Version

Figure 10-28. Adding the version field to the project resource file

220

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

Once the version resource is added to the DLL project resource file, it can be viewed and modified through the
Visual Studio resource editor.

As Figure 10-29 indicates, the versioning information provides two distinct versioning components, FILEVERSION
as well as PRODUCTVERSION. Despite the fact that in the vast majority of real life scenarios these two components
have the identical values, certain differences exist in how the values of these components are set. If a DLL is used in
more than one project, its file version number will likely be noticeably larger that its product version number.

v 1 X} VersionedDLL.rc -...SION_INFO - Version

Key ‘ Value
FILEVERSION 16,24,7123,1

PRODUCTVERSION 41,71

Solution Explorer
GSIES
E Solution 'DLLVersioningDemo' (2 projects)
4 [21] VersionedDLL

VersionedDLL.cpp

s Bxtemal Dependencies FILEFLAGSMASK 3L
4 | Header Files
|h] resource.h FILEFLAGS 0L
\h] stdafx.h FILEOS VOS_NT_WINDOWS32
[h] targetverh FILETYPE VFT_UNKNOWN
h] VersionedDLL.h
Ln] Versione FILESUBTYPE VFT2_UNKNOWN
a4 |7 Resource Files
_:i VersionedDLL.rc Block Header English (United States) (040904b0)
4 | SourceFiles CompanyName WindowsDLLVersioningResearchCorp
& dlimain.cpp FileDescripti DLL which demonstrates versioni
& stdafx.cpp ileDescription which demonstrates versioning
¢+ VersionedDLL.cpp FileVersion 16.24.71231
| ReadMe.txt InternalName simple versioned DLL
[VersionedDLLClientApp LegalCopyright Copyright (C) 2013
OriginalFilename VersionedDLL.dII
ProductName VersionedDLL.dlII
ProductVersion 4171

Figure 10-29. Using the Visual Studio editor to set file version and product version information

Normally, when the DLL is just created, the version (major version, minor version, build number) are typically
set to fairly small and fairly rounded values, such as 1.0.0. In this example, however, I've purposefully chosen for the
sake of a convincing demo to not only set the versioning information to fairly large numeric values, but also so that the
FILEVERSION values differ from the PRODUCTVERSION values.

When library is built, the version information specified by editing the version resource file can be viewed by
right-clicking the file icon on the File Explorer pane, and choosing the Properties menu item (Figure 10-30).

221

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

I VersionedDLL.rc -...SION_INFO - Version > RTINS
Key |Value @ - —
«| . » DLLVersioningDemo » Debug
FILEVERSION 16, 24,7123,1 o |
PRODUCTVERSION 4171 Organize = [=7 Open with... Share with « New folde
FILEFLAGSMASK O3fL Mame .
»{ Favorites
FILEFLAGS Ox0L = -
Bl Desktop |%| VersionedDLL.dll
FILEOS VOS_NT_WINDOWS32 ' i
FILETYPE VET UNKNOWN - VersionedDLL.dIl Properties 5]
FILESUBTYPE VFT2_UNKNOWN | General | Securtty | Details | Previous Versions
Block Header English (United States) (040904b0) Property Value
CompanyName WindowsDLLVersioningResearchCorp Description
FileDescription DLL which demonstrates versioning File description DLL which demonstrates versioning
FileVersion 16.24.711231 Type Application extension
InternalName simple versioned DLL File version 162471231
" iah . Product name VersionedDLL.dI
LegalCopyright Copyright (C) 2013 Product version 4.1.7.1
OriginalFilename VersionedDLL.dII Copyright Copyright (C) 2013
ProductMame VersionedDLL.dlI Size 305KB
ProductVersion 4171 Date modfied ~ 12/21/2013 3:33 FM
Language English (United States)
Output Original flename VersionedDLL.dil
I Show output from: |Bui|d
All outputs are up-to-date.
All outputs are up-to-date.
ManifestResourceCompile:
All outputs are up-to-date.
Link:
Creating library C:\Users\icelero\Desktop\DLL
Manifest:
All tput -to-date.
LinkEng:d::n:F:;:: Up-to-date LI Bemove Froperties and Personal Infomation
All outputs are up-to-date.
VersionedDLL.vexproj -»> C:\Users\icelero\Desktop\ Cancel Aooh
FinalizeBuildStatus: I 2K I [=
Nalatine File "Nehus\Varsinnednl | .unsuccassfulhoi

Figure 10-30. Set values appearing in the properties of built DLL binary file

Querying and Retrieving DLL Version Information

The DLL version information may be of particular importance to several interested parties and in a multitude of
scenarios. The client binaries whose functionality critically depends on the DLL version may want to programmatically
examine the DLL version details in order to take an appropriate course of further actions. The installation/deployment
packages may first retrieve the version information of the existing DLLs in order to decide whether or not to replace/
overwrite the existing DLLs with newer versions of the same file. Finally, the persons performing the system
administration maintenance or troubleshooting duties may wish to take a closer look at the DLL version.

In this section I will focus primarily on the programmatic ways the DLL version information may be retrieved.

222

VERSIONINFO Structure

The DLLVERSIONINFO structure, declared in the <shlwapi.h> header file, is typically used to pass the versioning
information. Figure 10-31 shows its layout details.

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

Data Tools Test Window | Help

&l ___‘,| b | Debug

-} win32

-/ | % | DLLVERSIONINFO

»w—dﬂ&:‘-.yz

Shiwapi.h > EuET R

VersionedDLL.rc -...SION_INFO - Version

VersionedDLL.cpp

(Global Scope)

—

Figure 10-31. DLLVERSIONINFO structure

#endif // _WIN32_IE >= @x05@0

gendif // NO_SHLWAPI_GDI

-Itypedef struct _DLLVERSIONINFO

{
DWORD cbSize;
DWORD dwMajorVersion;
DWORD dwMinorVersion;
DWORD dwBuildNumber;
DWORD dwPlatformID;

} DLLVERSIONINFO;

Find and Replace > 0 X
[# Find In Files ~ | A‘; Quick Replace ~
Find what:
DLLVERSIONINFO)
Look in:

Visual C++ Include Directories
[V]Include sub-folders
[E Find options

+ | Result options
P

Find All

// Platform IDs for DLLVERSIONINFO

Linking Requirements

The software modules that need to access the versioning related functionality must be linked with the version.d11
(i.e., its import library version.1ib must be specified in the list of linker inputs), as illustrated by Figure 10-32.

223

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

VersionedDLL Property Pages [-® |
Configuration: |Activer{[)ebug) "i Platform: | Active(Win32) 'l [Configuration Manager... |
Commeon Properties . Additional Dependencies version.lib;%({AdditionalDependencies)

4 Configuration Properties Ignore All Default Libraries
General Ignore Specific Default Libraries
Debugging Module Definition File VersionedDLLdef
VC++ Directories Add Module to Assembly
C/Ces Embed Managed Resource File

a Linker

Force Symbol References
Delay Loaded Dils
Assembly Link Resource

General

Input

Manifest File

Debugging

System

Optimization

Embedded IDL

Advanced

Command Line
Manifest Tool
Resources
XML Document Generator
Browse Information
Build Events
Custom Build Step

Additional Dependencies
Specifies additional items to add to the link command line [i.e. kernel32.lib]

0K] I Cancel _.
Figure 10-32. Linking against version.lib (version.dll) is required

The ways that the DLL version information may be retrieved will be discussed next.

Elegant Way: Calling the DLL's DliGetVersion Function

Well-designed DLLs typically export the implementation of the D11GetVersion() function, whose signature adheres
to the following specification:

HRESULT CALLBACK D1llGetVersion(DLLVERSIONINFO *pdvi);

This is mentioned in the in MSDN documentation at http://msdn.microsoft.com/enus/library/windows/
desktop/bb776404(v=vs.85).aspx. The DLLs provided by the Microsoft typically provide the expected functionality.

It is not complicated for the custom designed DLLs to implement it as well. Here is the outline of the recipe: the
function prototype must be properly declared and exported, illustrated by Listing 10-20, as well as by Figure 10-33.

Listing 10-20. VersionedDIll.h

// The following ifdef block is the standard way of creating macros which make exporting

// from a DLL simpler. All files within this DLL are compiled with the VERSIONEDDLL_EXPORTS
// symbol defined on the command line. This symbol should not be defined on any project

// that uses this DLL. This way any other project whose source files include this file see
// VERSIONEDDLL_API functions as being imported from a DLL, whereas this DLL sees symbols
// defined with this macro as being exported.

224

http://msdn.microsoft.com/enus/library/windows/desktop/bb776404(v=vs.85).aspx
http://msdn.microsoft.com/enus/library/windows/desktop/bb776404(v=vs.85).aspx

CHAPTER 10 * DYNAMIC LIBRARIES VERSIONING

#ifdef VERSIONEDDLL_EXPORTS

#define VERSIONEDDLL API _ declspec(dllexport)
#else

#tdefine VERSIONEDDLL API _ declspec(dllimport)
#endif

#include <Shlwapi.h>

VERSIONEDDLL API HRESULT CALLBACK D1lGetVersion(DLLVERSIONINFO* pdvi);

Common Properties . Additional Dependencies version.lib;%(AdditionalDependencies)
4 Configuration Properties Ignore All Default Libraries
General Ignore Specific Default Libraries
Debugging Module Definition File VersionedDLL.def
VC++ Directories Add Module to Assembly
C/C++

Embed Managed Resource File

4 Linker Force Symbol References
General Delay Loaded Dlls
Input

Assemblv Link Resource

VersionedDLL.def X
LIBRARY VERSIONEDDLL

EXPORTS
DllGetVersion @1

Figure 10-33. Properly exporting DllGetVersion() function from DLL

There are several ways the function may be implemented.

e The DLLVERSIONINFO structure members may be set to the predetermined set of values.
It is preferred to have the version values in the form of parameterized constants (instead of
literal constants).

e The DLLVERSIONINFO structure may be populated by loading the DLL resources, extracting the
version information strings, and parsing out the details about major, minor, build version.

Listing 10-21 illustrates the combination of both methods. If the version resource retrieval failed, the predetermined
values may be returned. (For the sake of simplicity, the literal constants are used in this listing. We all know that it can be
accomplished in more structured way).

Listing 10-21. VersionedDLL.cpp
#define SERVICE_PACK_HOTFIX_NUMBER (16385)

VERSIONEDDLL API HRESULT CALLBACK D1lGetVersion(DLLVERSIONINFO* pdvi)

{
if(pdvi->cbSize != sizeof(DLLVERSIONINFO) &&
pdvi->cbSize != sizeof(DLLVERSIONINFO2))
{

}

return E_INVALIDARG;

225

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

if(FALSE == extractVersionInfoFromThisDLLResources(pdvi))
{

// should not happen that we end up here,

// but just in case - try to save the day

// by sticking in the actual version numbers

// TBD: use parametrized value instead of literals

pdvi->dwMajorVersion = 4;

pdvi->dwMinorVersion = 1;

pdvi->dwBuildNumber 7;

pdvi->dwPlatformID DLLVER_PLATFORM_WINDOWS;

if(pdvi->cbSize == sizeof(DLLVERSIONINF02))

DLLVERSIONINFO2 *pdvi2 = (DLLVERSIONINFO2*)pdvi;
pdvi2->dwFlags = 0;
pdvi2->ullVersion = MAKEDLLVERULL(pdvi->dwMajorVersion,
pdvi->dwMinorVersion,
pdvi->dwBuildNumber,
SERVICE PACK HOTFIX NUMBER);
}

return S_OK;

The details of the function that extracts the version information from the DLL resources follow immediately
in Listing 10-22.

Listing 10-22. VersionedDLL.cpp (upper part)
extern HMODULE g hModule;

BOOL extractVersionInfoFromThisDLLResources(DLLVERSIONINFO* pDLLVersionInfo)
{
static WCHAR fileVersion[256];
LPWSTR lpwstrVersion = NULL;
UINT nVersionLen = 0;
DWORD dwLanguageID = 0;
BOOL retVal,;

if(NULL == pDLLVersionInfo)
return FALSE;

HRSRC hVersion = FindResource(g hModule,
MAKEINTRESOURCE (VS_VERSION INFO),
RT_VERSION);
if(NULL == hVersion)
return FALSE;

HGLOBAL hGlobal = LoadResource(g_hModule, hVersion);

if(NULL == hGlobal)
return FALSE;

226

CHAPTER 10 * DYNAMIC LIBRARIES VERSIONING

LPVOID lpstrFileVersionInfo = LockResource(hGlobal);
if(NULL == lpstrFileVersionInfo)
return FALSE;

wsprintf(fileVersion, L"\\VarFileInfo\\Translation");
retVal = VerQueryValue (lpstrFileVersionInfo,

fileVersion, (LPVOID*)&lpwstrVersion, (UINT *)&nVersionLen);
if(retval && (4 == nVersionLen))

{
memcpy (&dwLanguageID, lpwstrVersion, nVersionlLen);
wsprintf(fileVersion, L"\\StringFileInfo\\%02X%02X%02X%02X\\ProductVersion",
(dwLanguageID & 0xff00)>>8,
dwLanguageID & oOxff,
(dwLanguageID & 0xff000000)>>24,
(dwLanguageID & 0xff0000)>>16);
}
else

wsprintf(fileVersion,L"\\StringFileInfo\\%04X04BO\\ProductVersion",GetUserDefaultLangID());

if(FALSE == VerQueryValue (lpstrFileVersionInfo,
fileVersion,
(LPVOID*)&1lpwstrVersion,
(UINT *)&nVersionLen))

{
}

LPWSTR pwstrSubstring = NULL;

WCHAR* pContext = NULL;

pwstrSubstring = wcstok s(lpwstrVersion, L".", &pContext);
pDLLVersionInfo->dwMajorVersion = wtoi(pwstrSubstring);

return FALSE;

pwstrSubstring = wcstok s(NULL, L".", 8pContext);
pDLLVersionInfo->dwMinorVersion = wtoi(pwstrSubstring);

pwstrSubstring = wcstok s(NULL, L".", &pContext);
pDLLVersionInfo->dwBuildNumber = wtoi(pwstrSubstring);

pwstrSubstring = wcstok s(NULL, L".", 8pContext);
pDLLVersionInfo->dwPlatformID = wtoi(pwstrSubstring);

pDLLVersionInfo->chSize = 5*sizeof(DWORD);

UnlockResource(hGlobal);
FreeResource(hGlobal);

return TRUE;

227

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

The important part of the recipe is that the good moment to capture the value of DLL's module handle is when
the D11Main() function gets called, as shown in Listing 10-23.

Listing 10-23. dllmain.cpp

// dllmain.cpp : Defines the entry point for the DLL application.
#include "stdafx.h"

HMODULE g_hModule = NULL;

BOOL APIENTRY D11Main(HMODULE hModule,
DWORD ul_reason_for_call,
LPVOID lpReserved

)

switch (ul_reason_for call)
{
case DLL_PROCESS DETACH:
g _hModule = NULL;
break;
case DLL_PROCESS_ATTACH:
g_hModule = hModule;
case DLL_THREAD_ATTACH:
case DLL _THREAD DETACH:
break;
}

return TRUE;

Finally, Listing 10-24 shows how the client binary retrieves the versioning information.

Listing 10-24. main.cpp (client app)

BOOL extractDLLProductVersion(HMODULE hD1l, DLLVERSIONINFO* pDLLVersionInfo)
{
if(NULL == pDLLVersionInfo)
return FALSE;

DLLGETVERSIONPROC pDllGetVersion;
pD1lGetVersion = (DLLGETVERSIONPROC) GetProcAddress(hDll, "D1lGetVersion");
if(NULL == pDllGetVersion)

return FALSE;

ZeroMemory(pDLLVersionInfo, sizeof(DLLVERSIONINFO));
pDLLVersionInfo->cbhSize = sizeof(DLLVERSIONINFO);
HRESULT hr = (*pDllGetVersion)(pDLLVersionInfo);
if(FAILED(hr))

return FALSE;

return TRUE;

228

CHAPTER 10 * DYNAMIC LIBRARIES VERSIONING

Brutal Alternative: Examining File Version Directly

If it happens that the DLL does not export the D11GetVersion() function, you may resort to the more brutal measure
of extracting the versioning information embedded in the file resources. The complete effort of implementing this
approach resides on the client binary side. As can be easily concluded by comparing the following code with the code
laid out in the previous approach description, the same methodology is applied, based on loading the resources from
the file, extracting the version string and extracting the version numbers thereof (see Listing 10-25).

Listing 10-25. main.cpp (client app)

BOOL versionInfoFromFileVersionInfoString(LPSTR lpstrFileVersionInfo,

{

DLLVERSIONINFO* pDLLVersionInfo)

static WCHAR fileVersion[256];
LPWSTR lpwstrVersion = NULL;
UINT nVersionlLen = 0;

DWORD dwLanguageID = 0;

BOOL retVal;

if(NULL == pDLLVersionInfo)
return FALSE;

wsprintf(fileVersion, L"\\VarFileInfo\\Translation");
retVal = VerQueryValue (lpstrFileVersionInfo,

fileVersion, (LPVOID*)&lpwstrVersion, (UINT *)&nVersionLen);
if(retVal && (4 == nVersionLen))

{
memcpy (&dwLanguageID, lpwstrVersion, nVersionLen);
wsprintf(fileVersion, L"\\StringFileInfo\\%02X%02X%02X%02X\\FileVersion",
(dwLanguageID & 0xff00)>>8,
dwLanguageID & Oxff,
(dwLanguageID & 0xff000000)>>24,
(dwLanguageID & 0xff0000)>>16);
}
else

wsprintf(fileVersion,L"\\StringFileInfo\\%04X04BO\\FileVersion",GetUserDefaultLangID());

if(FALSE == VerQueryValue (lpstrFileVersionInfo,
fileVersion,
(LPVOID*)&lpwstrVersion,
(UINT *)&nVersionLen))

{
}

LPWSTR pwstrSubstring = NULL;

WCHAR* pContext = NULL;

pwstrSubstring = wcstok s(lpwstrVersion, L".", &pContext);
pDLLVersionInfo->dwMajorVersion = _wtoi(pwstrSubstring);

return FALSE;

229

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

pwstrSubstring = wcstok s(NULL, L".", 8pContext);
pDLLVersionInfo->dwMinorVersion = wtoi(pwstrSubstring);

pwstrSubstring = wcstok s(NULL, L".", &pContext);
pDLLVersionInfo->dwBuildNumber = wtoi(pwstrSubstring);

pwstrSubstring = wcstok s(NULL, L".", &pContext);
pDLLVersionInfo->dwPlatformID = wtoi(pwstrSubstring);

pDLLVersionInfo->cbSize = 5*sizeof(DWORD);
return TRUE;

}
BOOL extractDLLFileVersion(DLLVERSIONINFO* pDLLVersionInfo)
{

DWORD dwVersionHandle = 0;

DWORD dwVersionInfoSize = GetFileVersionInfoSize (DLL_FILENAME, &dwVersionHandle);

if(0 == dwVersionInfoSize)

return FALSE;

LPSTR 1lpstrFileVersionInfo = (LPSTR) malloc (dwVersionInfoSize);

if (lpstrFileVersionInfo == NULL)

return FALSE;

BOOL bRetValue = GetFileVersionInfo(DLL_FILENAME,
dwVersionHandle,
dwVersionInfoSize,
1pstrFileVersionInfo);

if(bRetValue)

{

bRetValue = versionInfoFromFileVersionInfoString(lpstrFileVersionInfo, pDLLVersionInfo);

}

free (lpstrFileVersionInfo);

return bRetValue;

}
int main(int argc, char* argv[])
{

//

// Examining the DLL file ourselves

//

memset (&dvi, 0, sizeof(DLLVERSIONINFO));
if(extractDLLFileVersion(&dvi))

{
printf("DLL File Version (major, minor, build, platformID) = %d.%d.%d.%d\n",
dvi.dwMajorVersion, dvi.dwMinorVersion,
dvi.dwBuildNumber, dvi.dwPlatformID);
}

230

CHAPTER 10 © DYNAMIC LIBRARIES VERSIONING

else
printf("DLL File Version extraction failed\n");

FreelLibrary(hD1l);

return 0;

Finally, the result of running the demo app which demonstrates both approaches (DLL querying and “brute force”)

is shown in Figure 10-34.

(oo /=

| »

B C:\Windows\system32\cmd.exe
DLL Product Uersion <major. minor, build. platformID> = 4.1.7.1
DLL File Version (major. minor, build, platfoemID> = 16.24.7123.1

Press any key to continue

Figure 10-34. Programmatically extracting DLL product version as well as the file version

231

CHAPTER 11

Dynamic Libraries: Miscellaneous
Topics

After understanding the most profound ideas behind the concept of dynamic libraries, and before diving into the
details of the toolbox of the software professional dealing with libraries on daily basis, it is a good moment to take

a closer look at a few remaining issues. First, let’s take a closer look at the concept of plug-ins, the omnipresent
mechanism of seamlessly extending the basic functionality of a framework. Then, I will point out a few practical
implications stemming from the concept of dynamic libraries. Finally, I will take a closer look at a few miscellaneous
topics which a developer may encounter in the everyday work.

Plug-in Concept

Probably the most important concept made possible by the advancement of dynamic linking is the concept of
plug-ins. There is nothing substantially hard to understand in the concept itself, as we encounter it in plethora of
everyday scenarios, most of which don’t require any technical background. A good example of the plug-in concept is
the drill and the variety of drill bits that can be changed as per the needs of particular situation and the decision of the
end user (Figure 11-1).

233

CHAPTER 11 © DYNAMIC LIBRARIES: MISCELLANEOUS TOPICS

x

.

-

| TS

e T — F-
e e
T

91"'-‘- .

¢
]
]
]

w

— e

b
)
i
}
{
|

Pr——

” r——
o—
Sy —
o ———
A] i .'_-

Figure 11-1. Drill and bits, an everyday example of the plug-in concept

The software concept of plug-ins follows the same principle. Basically, there is a major application (or execution
environment) that performs a certain action on a certain processing subject (for example, the photo processing
application that modifies a picture’s properties), and there is a set of modules that specialize in performing a very
specific action on the processing subject (for example, blurring filter, sharpening filter, sepia filter, color contrast filter,
high pass filter, averaging filter, etc.), a concept which is very easy to comprehend.

But that’s not all.
Not all of the systems comprising the flagship application and the associated modules deserve to be called

“plug-in architecture.” In order for architecture to support the plug-in model, the following requirements need to be
satisfied as well:
e Adding or removing the plug-ins should not require that the application be recompiled;
instead, the application should be capable of determining the availability of plug-ins at
runtime.

e The modules should export their functionality through a runtime loadable mechanism of
some kind.

e The system should be functional regardless of which plug-ins are available at runtime to end user.

234

CHAPTER 11 © DYNAMIC LIBRARIES: MISCELLANEOUS TOPICS

In reality, the above requirements are typically supported through the following design decisions:

e Plug-ins are implemented as dynamic libraries. Regardless of the inner functionality, all
plug-in dynamic libraries export the standardized interface (a set of functions allowing the
application to control the plug-in execution).

¢ The application loads the plug-ins through the process of dynamic library loading.
The following two options are typically supported:

e The application looks at the predefined folder and tries loading all the dynamic libraries
that it finds there at runtime. Upon loading, it tries to find the symbols corresponding
to the interface that the plug-ins are expected to export. If the symbols are not found
(or only some of them are found), the plug-in library is unloaded.

e The user, through a dedicated GUI option at runtime, specifies the plug-in location and
tells the application to load the plug-in and start providing its functionality.

Rules of Exporting

Rigorously strict rules for each and every plug-in architecture do not exist. However, a common sense set of guidelines
does exist. According to the paragraph explaining the impact of the C++ language on linker problems, the majority of
plug-in architectures tend to follow the simplest possible scheme in which a plug-in exports a pointer to the interface
comprised of C-linkage functions.

Even though the plug-ins’ inner functionality may be implemented as a C++ class, such a class typically
implements the interface exported by its dynamic library container, and passing a pointer to the class instance (casted
as the pointer to the interface) to the application is usual practice.

Popular Plug-in Architectures

There is vast variety of popular programs that support the plug-in architecture, such as (but not limited to):
e Image processing applications (Adobe Photoshop, etc.)
e Video processing applications (Sony Vegas, etc.)

e Sound processing (Steinberg VST plug-in architecture, universally supported across all major
audio editors)

e Multimedia frameworks (GStreamer, avisynth) and popular applications (Winamp, mplayer)
e Texteditors (a vast number of which have plug-ins providing certain functionalities)

e Software development integrated development environments (IDEs) supporting a variety of
features through the plug-ins

e Version control systems’ front-end GUI applications
e Web browsers (NPAPI plug-in architecture)
e Etc.

For each of these plug-in architectures there is typically a published plug-in interface document stipulating in
detail the interaction between the application and the plug-in.

235

CHAPTER 11 © DYNAMIC LIBRARIES: MISCELLANEOUS TOPICS

Tips and Tricks

The very last step on your journey to fully understanding the concept of dynamic libraries requires that you take a
little step back and organize everything you've learned so far into another set of simple facts. Formulating things in a
different manner may sometimes mean a lot of difference in the domain of everyday design practices.

Practical Implications of Working with Dynamic Libraries

After all the details about the dynamic libraries have been examined, the most potent truth about them is that linking
against dynamic libraries is kind of linking on promise. Indeed, during the build stage, all that the client executable
worries about are the dynamic libraries symbols. It is only at the runtime loading stage that the contents of the
dynamic library sections (code, data, etc.) come to play. There are several real-life implications stemming from the
described set of circumstances.

Compartmentalized, Faster Development

The concept of dynamic libraries allows a lot of freedom for a programmer. As long as the set of symbols important to
the client executable does not change, the programmer is free to keep modifying the actual dynamic library code as
long and as much as desired.

This simple fact has a tremendous impact on the programming everyday routines, as it tends to greatly reduce
unnecessary compile time. Instead of having to recompile the whole body of code whenever a minuscule change
of code happens, by using the dynamic libraries, the programmers can reduce the need to rebuild the code to the
dynamic library itself. It is no wonder that programmers often decide to host code under development in the dynamic
library, at least up until the development is completed.

Runtime Quick Substitution Ability

At build time, the client binary doesn’t need the fully fledged dynamic library with all bells and whistles in place.
Instead, all that the client binary really needs at build time is the set of dynamic library’s symbols—nothing more and
nothing less than that.

This is really interesting. Please take a deep breath, and let’s take a look at what this claim really means.

The dynamic library binary file that you use at build time and the dynamic library file that is loaded at runtime
may be substantially different in every aspect, except in one: the symbols must match.

In other words (and yes, this is true and exactly how it was meant to be), for the statically-aware building
purposes you may use dynamic library whose code (flash and blood) is yet about to be implemented, but its symbols
(the skeleton) are already in their final shape.

Or, you may use a library whose code you know will change, as long as you may be assured that the set of
exported symbols will not change.

Or, you may use the dynamic library suitable for one specific flavor (such as language pack) at build time, but link
at runtime with another dynamic library—as long as the both dynamic library binaries export the same set of symbols.

This is really, really interesting. An extreme example of how we may benefit from this important finding happens
in the domain of Android native programming. During the effort to develop a module (dynamic library or native
application), it is not completely uncommon for whole teams of developers unnecessarily and unwisely to take the
time-consuming path of adding their source code into the gigantic Android source tree whose building may take
several hours.

236

CHAPTER 11 © DYNAMIC LIBRARIES: MISCELLANEOUS TOPICS

Alternatively, a far more effective procedure is to develop a module as a standalone Android project, unrelated
to the Android source tree. In a matter of minutes, the Android native dynamic libraries necessary to complete the
build phase may be copied (“adb pulled” in Android lingo) from any working Android device/phone and added to the
project build structure. Instead taking several hours, the build procedure now takes several minutes at most.

Even though the code (the . text section) of the dynamic library pulled from the nearest available Android
phone may significantly differ from the code found in the Android source tree, the list of symbols is very likely
identical in both dynamic libraries. Obviously, the quick replacement library pulled from the Android device may
satisfy the build requirements, whereas at runtime “the right one” of the dynamic library binary will be loaded.

Miscellaneous Tips

In the remainder of this chapter, I will cover the following interesting tidbits of knowledge:

e Converting the dynamic library to executable
¢ Conflicting runtime memory handling scenarios of Windows libraries

¢ Linker weak symbols

Converting Dynamic Library to Executable

As was pointed out earlier in the introductory discussions about dynamic libraries, the difference between the
dynamic library and executable is in the fact that later has startup routines which allow the kernel to actually start the
execution. In all other aspects, especially if compared to the static libraries, it appears that the dynamic library and
executable are of the same nature, such as the binary file in which all the references have been resolved.
Given so many similarities and so little differences, is it possible to convert the dynamic library to the executable?
The answer to this question is positive. It’s most certainly possible on Linux (I'm still looking to confirm the
claim on Windows as well). As a matter of fact, the library implementing C runtime library (Libc.so) is in fact truly
executable. When invoked by typing its filename in the shell window, you get the response shown in Figure 11-2.

milan@milan$ /lib/i386-1inux-gnu/libc.so0.6
GNU C Library (Ubuntu EGLIBC 2.15-0ubuntul@) stable release version 2.15, by Roland
McGrath et al.
Copyright (C) 2012 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.
Compiled by GNU CC version 4.6.3.
Compiled on a Linux 3.2.14 system on 2012-04-19.
lAvailable extensions:
crypt add-on version 2.1 by Michael Glad and others
GNU Libidn by Simon Josefsson
Native POSIX Threads Library by Ulrich Drepper et al
BIND-8.2.3-T5B
libc ABIs: UNIQUE IFUNC
For bug reporting instructions, please see:
<http://www.debian.org/Bugs/>.
milang@milans

Figure 11-2. Running libc.so as executable file

237

CHAPTER 11 © DYNAMIC LIBRARIES: MISCELLANEOUS TOPICS

The question that naturally comes next is how to implement the library in order to make it executable?
The following recipe makes it possible:

e Implement the main function inside the dynamic library—the function whose prototype is
int main(int argc, char* argv[];

e Declare the standard main() function as the library entry point. Passing the -e linker flag is
how you accomplish this task.

gcc -shared -Wl,-e,main -o<libnames

e Turn the main() function into a no-return function. This can be done by inserting the
_exit(0) call as the last line of the main() function.

e Specify the interpreter to be the dynamic linker. The following line of code would do it:
#ifdef _ LP64__

const char service interp[] attribute ((section(".interp")))
"/1ib/x86_64-1inux-gnu/1ld-1inux-x86-64.50.2";

#else

const char service interp[] _ attribute ((section(".interp"))) =
"/1ib/1d-1inux.so0.2";

#endif

e Built the library without the optimization (with the -00 compiler flag).

A simple demo project is made to illustrate the idea. In order to prove the truly dual nature of the dynamic library
(i.e., even though it now can be run as executable, it still remains capable of functioning as a regular dynamic library),
the demo project contains not only the demo dynamic library, but also the executable that dynamically loads it and
calls its printMessage() function. The Listing 11-1 illustrates the details of executable shared library project:

Listing 11-1.
file: executableSharedLib.c

#include "sharedLibExports.h"
#include <unistd.h> // needed for the _exit() function

// Must define the interpretor to be the dynamic linker

#ifdef LP64

const char service interp[] _ attribute ((section(".interp")))
"/1ib/x86_64-1inux-gnu/ld-1inux-x86-64.s0.2";

#else

const char service interp[] _ attribute ((section(".interp")))
"/1ib/1d-1inux.so0.2";

#endif

void printMessage(void)

{
}

printf("Running the function exported from the shared library\n");

238

CHAPTER 11 © DYNAMIC LIBRARIES: MISCELLANEOUS TOPICS

int main(int argc, char* argv[])

{
printf("Shared library %s() function\n", _ FUNCTION);
// must make the entry point function to be a 'no-return' function type
_exit(0);

}

file: build.sh

g++ -Wall -00 -fPIC -I./exports/ -c src/executableSharedlLib.c -o src/executableSharedLib.o
g++ -shared -Wl,-e,main ./src/executableSharedLib.o -pthread -1Im -1dl -o
../deploy/libexecutablesharedlib.so

The Listing 11-2 illustrates the details of the demo app whose purpose is to prove that by becoming executable
our shared library did not loose its original functionality:

Listing 11-2.
file: main.c

#include <stdio.h>
#include "sharedLibExports.h"

int main(int argc, char* argv[])

{
printMessage();
return 0;

}

file: build.sh

g++ -Wall -02 -I../sharedlLib/exports/ -c src/main.c -o src/main.o
g++ ./src/main.o -lpthread -Im -1dl -L../deploy -lexecutablesharedlib -W1,-Bdynamic -WI,-R
../deploy -o demoApp

When you try to use it, the results shown in Figure 11-3 appear.

239

CHAPTER 11 © DYNAMIC LIBRARIES: MISCELLANEOUS TOPICS

milan@milan$ tree

— demoApp
— deploy
L— 1libexecutablesharedlib.so
— Makefile
— Notes
L— README. txt
— sharedLib
exports
L— sharedLibExports.h
libexecutablesharedlib.so
Makefile
src
}— executablesharedLib.c
L— executablesharedLib.o
— testApp
demoApp
Makefile
sSrc
b— main.c

L— main.o

7 directories, 13 files

milan@milan$./deploy/libexecutablesharedlib.so
Shared library main() function

milan@milan$./demoApp

Running the function exported from the shared library
milan@milans

Figure 11-3. Illustrating dual nature (dynamic lib, executable) of the demo library

The project source code tarball provides the more insight into the details.

Conflicting Runtime Memory Handling of Windows Libraries

In general, once the dynamic library gets loaded into the process, it becomes a legitimate part of the process and
pretty much inherits all the privileges of the process, including access to the heap (the pool of memory on which
dynamic memory allocation runs). For these reasons, it is perfectly normal that a dynamic library function allocates
memory buffer, and passes it to a function belonging to the other dynamic library (or to executable code) where the
memory can be deallocated when no longer needed.

However, there is a special twist to the whole story which needs to be carefully examined.

Typically, regardless of how many dynamic libraries are loaded into the process, they all link against the same
instance of C runtime library, which provides the memory allocation infrastructure—the malloc and free (or in the
case of C++, new and delete), as well as the implementation of the list keeping track of the allocated memory buffers.
If this infrastructure is unique per process, there are really no reasons why the described scheme in which anybody
can deallocate the memory allocated by anybody else should not work.

The interesting case, however, may happen in the domain of Windows programming. Visual Studio provides
(at least) two base DLLs on top of which all the executables (applications/dynamic libraries) are built—the usual C
runtime library (msvcrt.d11) as well as Microsoft Foundation Classes (MFC) library (mfx42.d11). Sometimes projects
requirement may happen to dictate the mixing and matching of the DLLs built upon on different base DLLs, which
may immediately cause very unpleasant deviations from the expected rules.

Let’s say for the sake of clarity that in the same project you have the following two DLLs loaded at runtime: DLL
“A) built on msvcrt.dll, and DLL “B,” built on MFC DLL. Let’s now assume that DLL “A” allocates memory buffers and
passes it to DLL “B,” which uses them and then deallocates them. In this case, the attempt to deallocate the memory
will result in a crash (the exception looking like the one in Figure 11-4).

240

CHAPTER 11 © DYNAMIC LIBRARIES: MISCELLANEOUS TOPICS

void __cdecl _unlock (
int locknum

)
{
/:lc
* leave the critical section.
*/
LeaveCriticalSection(_locktable[locknum].lock);
} r gh
Microsoft Visual Studio
#ifdef Windows has triggered a breakpoint in FLVTranscoderTestApp.exe. -

spragn| /By
#endif This may be due to a corruption of the heap, which indicates a bug in
_exe or any of the DLLs it has loaded.

J,rx:(x

* lock This may also be due to the user pressing F12 while|| NG <€

* has focus.

*Purpo

* The output window may have more diagnostic information. -
* I Break][Continue l Ignore

*

*

Figure 11-4. Error message dialog typical for between-DLLs-conflict memory issues

The cause of the problem is that there are two bookkeeping authorities around the available pool of heap memory;
both C runtime DLL and MFC DLL maintain their own, separate lists of the allocated buffers (see Figure 11-5).

DLL linked against DLL linked against
msvcrtl.dil mfx42.dll

msvcert.dll

Heap memory

Figure 11-5. The mechanism of runtime problems caused by unrelated memory allocation bookkeepings maintained
by different DLLs

241

CHAPTER 11 © DYNAMIC LIBRARIES: MISCELLANEOUS TOPICS

Normally, when sending the buffer for deallocation, the memory allocation infrastructure searches the list of
allocated memory addresses, and if the buffer passed for deallocation is found in the list, the deallocation can be
successfully completed. If, however, the allocated buffer is maintained in one list (say, maintained by the C runtime DLL)
and passed for deallocation to the other list (say, maintained by the MFC DLL), the buffer’s memory address will not
be found in the list, and the deallocation call will throw an exception. Even if you handle the exception silently, it is
questionable whether the application will be capable of sending the buffer to the right DLL for deallocation, thus
causing memory leaks.

For things to be worse, virtually none of the usual memory-bound checking tools have been able to detect and
report anything wrong. In the defense of the tools, you can notice that in fact none of the typical memory violations
happen in this particular case (such as writing past the buffer boundaries, overwriting buffer address, etc). This all
makes the problem unpleasant to deal with, and unless you have an idea upfront about the potential problems, it may
be really tough to pinpoint the cause, let alone the solution to the problem.

The solution to the problem is exceptionally simple: the memory buffers allocated in one DLL should be
ultimately passed back to the same DLL to be deallocated. The only problem is that in order to apply this simple
solution you need to have access to the source code of both DLLs, which may not always be possible.

Linker Weak Symbols Explained

The idea of a linker weak symbol is in its essence similar to the overriding feature of object-oriented languages
(which is one of the manifestations of polymorphism principle). When applied to the domain of linking, the idea of
weak symbols practically means the following:

e Compilers (most notably, gcc) support the language construct, allowing you to declare a
symbol (a function and/or a global or function-static variable) as weak.

The following example demonstrates how to declare a C function as a weak symbol:
int __attribute__((weak)) someFunction(int, float);

e The linker takes this information to handle such symbol in a very unique way.

e Ifanother identically named symbol appears during the linking, and is not declared weak,
that another symbol will replace the weak symbol.

e Ifanother identically named symbol appears during the linking and is declared weak, the
linker is free to decide which of the two will be actually implemented.

e The presence of two non-weak (i.e., strong) symbols of the same name is considered an
error (the symbol is already defined).

e If during the linking no other identically named symbols appear, the linker may not
implement such symbol. If the symbol is a function pointer, the safeguarding the code is a
must (in fact, it is strongly recommended to do it always).

An excellent illustration of the concept of weak symbols is found in Winfred C.H. Lu’s blog post at
http://winfred-1lu.blogspot.com/2009/11/understand-weak-symbols-by-examples.html. The actual
real-life scenario of when such features may come handy is described in Andrew Murray’s blog post at
www.embedded-bits.co.uk/2008/gcc-weak-symbols/.

242

http://winfred-lu.blogspot.com/2009/11/understand-weak-symbols-by-examples.html
http://www.embedded-bits.co.uk/2008/gcc-weak-symbols/

CHAPTER 12

Linux Toolbox

The purpose of this chapter is to introduce the reader to a set of tools (utility programs as well as other methods) for
analyzing the contents of the Linux binary files.

Quick Insight Tools

The easiest and the most immediate insight into the nature of a binary file can be obtained by using the file and/or
size utility programs.

file Utility Program

The command-line utility named simply file (http://1linux.die.net/man/1/file) is used to find out details about
just about any file type. It can quickly come in handy because it determines the most basic info about the binary file
(Figure 12-1).

$ file /Jusr/bin/gst-inspect-0.10

Jusr/bin/gst-inspect-0.10: ELF 32-bit LSB executable, Intel 80386, version 1 (SY

SV), dynamically linked (uses shared 1ibs), for GNU/Linux 2.6.24, BuildID[shal]=0x41b8f8a4
1450a5b090992220ee852afe2f9d00c2, stripped

3

3

S file Jusr/1lib/i386-1inux-gnu/xen/libpthread.a

Jusr/1ib/1386-1inux-gnu/xen/libpthread.a: current ar archive

3

S

$ file /1ib/i386-1inux-gnu/libc-2.15.s0

/1ib/1386-1inux-gnu/1ibc-2.15.50: ELF 32-bit LSB shared object, Intel B0386, version 1 (SY
SV), dynamically linked (uses shared 1ibs), BuildID[shal]=0xe4aPe031bf20aaf48f716bee471e36
£5262d7730, for GNU/Linux 2.6.24, stripped

S

Figure 12-1. Using the file utility

size Utility Program

The command-line utility named size (http://linux.die.net/man/1/size) may be used to instantly obtain an
insight into the ELF sections byte lengths (Figure 12-2).

243

http://linux.die.net/man/1/file
http://linux.die.net/man/1/size

CHAPTER 12 LINUX TOOLBOX

S size /Jusr/bin/gst-inspect-0.10

text data bss dec hex filename

29056 836 20 29912 74d8 fusr/binfgst-inspect-0.10
S
S
$ size /1ib/1386-1inux-gnu/1libc-2.15.s0

text data bss dec hex filename

1696633 11508 11316 1719457 1a3cal /lib/i386-1linux-gnu/libc-2.15.s0
$

S
$ size fusr/1lib/i386-1linux-gnu/xen/libdl.a
text data bss dec hex filename

83 0 0 83 53 dlopen.o (ex Jfusr/lib/i386-1linux-gnu/xen/1libdl.a)
49 e 0 49 31 dlclose.o (ex fusr/lib/i386-1linux-gnu/xen/libdl.a)
83 G} 0 83 53 dlsym.o (ex fusr/lib/1386-1inux-gnu/xen/1ibdl.a)
91 0 0 91 5b dlvsym.o (ex Jusr/1ib/1386-1linux-gnu/xen/1libdl.a)
49 0 0 49 31 dlerror.o (ex fusr/lib/i386-1inux-gnu/xen/libdl.a)
49 G} 0 49 31 dladdr.o (ex fusr/1lib/1386-1linux-gnu/xen/1libdl.a)
49 0 0 49 31 dladdri.o0 (ex fusr/lib/i386-1inux-gnu/xen/libdl.a)
91 0 0 91 5b dlinfo.o (ex fusr/1ib/i386-1linux-gnu/xen/1libdl.a)
91] 0 91 5b dlmopen.o (ex fusr/lib/i386-1inux-gnu/xen/libdl.a)

Figure 12-2. Using the size utility

Detailed Analysis Tools

Detailed insight into the binary file properties may be obtained by relying on the collection of utilities collectively
referred to as binutils (www.gnu.org/software/binutils/). I will illustrate the use of the 1dd, nm, objdump, and
readelf utilities. Even though it formally does not belong to the binutils, the shell script called 1dd (written by
Roland McGrath and Ulrich Drepper) nicely fits in the same compartment of the toolbox, and hence its use will be
illustrated as well.

1dd

The command 1ldd (http://1inux.die.net/man/1/1dd) is an exceptionally useful tool, as it shows the complete list of
the dynamic libraries which a client binary will try to statically aware load (i.e., the load-time dependencies).

When analyzing the load-time dependencies, 1dd first examines the binary file trying to locate the ELF format
field in which the list of the most immediate dependencies has been imprinted by the linker (as suggested by the
linker command line during the build process).

For each of the dynamic libraries whose names have been found embedded within the client binary file, 1dd
tries to locate their actual binary files according to the runtime library location search rules (as described in detail in
Chapter 7). Once the binaries of the most immediate dependencies have been located, 1dd runs the next level of its
recursive procedure, trying to find their dependencies. On each of the “second generation” dependencies, 1dd runs
another round of investigation, and so on.

Once the described recursive search is completed, 1dd gathers the list of reported dependencies, trims out the
duplicates, and prints out the result (as shown in Figure 12-3).

244

www.gnu.org/software/binutils/
http://linux.die.net/man/1/ldd

CHAPTER 12 * LINUX TOOLBOX

milan@milan:~$ 1dd /usr/bin/gst-inspect-0.10

linux-gate.so.1 => (@xb772f000)

libgstreamer-0.10.s50.0 => /jusr/lib/1386-1linux-gnu/libgstreamer-0.10.s0.0 (0xb7633000)
1libgobject-2.0.50.0 => Jusr/lib/i386-1inux-gnu/libgobject-2.0.50.0 (0xb75e4000)
libglib-2.0.50.0 => /1ib/1386-1inux-gnu/libglib-2.0.50.0 (8xb74e2000)
libpthread.so.0 => /1ib/i386-1inux-gnu/libpthread.so.0 (0xb74cf000)

libc.so.6 => /1lib/1386-1inux-gnu/libc.so.6 (0xb7325000)

libgmodule-2.0.50.0 => Jusr/lib/i386-1inux-gnu/libgmodule-2.0.s50.08 (0xb7320000)
libxml2.s50.2 => fusr/lib/1386-1inux-gnu/libxml2.s0.2 (0xb71d3000)

1ibm.so.6 => /1ib/1386-1inux-gnu/libm.so.6 (0xb71a36000)

librt.so.1 => /1ib/1386-1inux-gnu/librt.so.1 (0xb719d060)

libdl.so0.2 => /1ib/1386-1inux-gnu/libdl.s0.2 (0xb7198600)

1libffi.so0.6 => fusr/1ib/1386-1inux-gnu/libffi.so.6 (0xb7191600)

libpcre.so.3 => /1ib/1386-1inux-gnu/libpcre.so.3 (0xb7155000)
J1ib/1d-1linux.so0.2 (0xb7730000)

1libz.so.1 => /1ib/1386-1inux-gnu/libz.so.1 (0xb713e000)

milan@milan:~$

Figure 12-3. Using the ldd utility

Before using 1dd it is important to be aware of its limitations:

1dd cannot identify the libraries dynamically loaded at runtime by calling the dlopen()
function. In order to obtain this kind of information, different approaches must be applied.
For more details, please visit Chapter 13.

According to its man page, running certain 1dd versions may actually represent a
security threat.

Safer Idd Alternatives

As stated in the man page:

Be aware, however, that in some circumstances, some versions of ldd may attempt to obtain the
dependency information by directly executing the program. Thus, you should never employ ldd on
an untrusted executable, since this may result in the execution of arbitrary code. A safer alternative
when dealing with untrusted executables is the following (and also shown in Figure 12-4):

$ objdump -p /path/to/program | grep NEEDED

milan@milan:~$ objdump -p /usr/bin/gst-inspect-0.10 | grep NEEDED

libgstreamer-0.10.s50.0
libgobject-2.0.50.0
1ibglib-2.0.50.0
libpthread.so.0
libc.so0.6

milan@milan:~$ D

Figure 12-4. Using objdump to (only partially) substitute the ldd utility

The same result may be achieved by using the readelf utility (Figure 12-5):

$ readelf -d /path/to/program | grep NEEDED

245

CHAPTER 12 ' LINUX TOOLBOX

milan@milan:~$ readelf -d Jusr/bin/gst-inspect-0.10 | grep NEEDED
0x00000001 () Shared library: [libgstreamer-0.10.s0.0]
0x00000001 () Shared library: [libgobject-2.0.s50.0]
0x00000001 () Shared library: [libglib-2.0.s0.0]
0x00000001 () Shared library: [libpthread.so.0]
0x00000001 () Shared library: [libc.s0.6]
milan@milan:~$

Figure 12-5. Using readelf to (only partially) substitute the ldd utility

Obviously, in the analysis of dependencies both tools do not go deeper than merely reading out the list of the
most immediate dependencies from the binary file. From a security standpoint, this is definitely a safer method of
finding the answer.

However, the provided list is nowhere near being as exhaustively complete as typically provided by 1dd. In order
to match it, you would probably need to conduct the recursive search on your own.

nm

The nm utility (http://linux.die.net/man/1/nm)is used to list the symbols of a binary file (Figure 12-6). The output
line that prints out the symbol also indicates the symbol type. If the binary contains C++ code, the symbols are printed
by default in the mangled form. Here are some of the most typically used input argument combinations:

e $ nm <path-to-binary> lists all symbols of a binary file. In case of shared libraries, it means
not only the exported (of the .dynamic section) but all other symbols as well. If the library has
been stripped (by using the strip command), nm without arguments will report no symbols
found.

e $ nm -D <path-to-binary> lists only the symbols in the dynamic section (i.e., exported/
visible symbols of a shared library).

e $ nm -C <path-to-binary lists the symbols in demangled format (Figure 12-6).

006884ach T pspell_aspell_dummy()

00094040 T acommon::BetterList::set_cur_rank()

00093ed® T acommon::BetterList::set_best_from_cur()

00094000 T acommon::BetterList::init()

000945f® T acommon::BetterList::BetterList()

000945f0 T acommon::BetterList::BetterList()

00096c20 W acommon::BetterList::~BetterList()

00096af® W acommon::BetterList::~BetterList()

00096af® W acommon::BetterList::~BetterList()

0009330 T acommon::BetterSize::set_cur_rank()

00093f10 T acommon::BetterSize::set best from_cur()

00093ef® T acommon::BetterSize::init()

00096aad® W acommon::BetterSize::~BetterSize()

00096a70 W acommon::BetterSize::~BetterSize()

00096a70 W acommon::BetterSize::~BetterSize()

0002dd50 W acommon::BlockSList<acommon::StringPair>::clear()

0002df50 W acommon::BlockSList<acommon::StringPair>::add_block(unsigned int)
0005dad® W acommon::BlockSList<acommon::String>::add block(unsigned int)
00082900 W acommon::BlockSList<aspeller::Conds const*>::add_block(unsigned int)

Figure 12-6. Using the nm utility to list unmangled symbols

246

http://linux.die.net/man/1/nm

CHAPTER 12 * LINUX TOOLBOX

$ nm -D --no-demangle <path-to-binary> prints the dynamic symbols of shared library and

strictly requires that the symbols are not demangled (Figure 12-7).

00084acH
00094040
00093ed0
00094000
00094570
00094570
00096c20
00096af0
00096af0
00093130
00093f10
00093ef0
000e962a0
00096270
00096a70
0002dd50
0002df50
0005daoe
00082900
0005d740

T _Z19pspell_aspell_dummyv

T _ZN7acommoni@BetterListi12set_cur_rankEv

T _ZN7acommonl@BetterList17set_best_from_curkv

T _ZN7acommoni@BetterList4initEv

T _ZN7acommonl@BetterListC1Ev

T _ZN7acommonl@BetterListC2Ev

W _ZN7acommonl@BetterListDOEvV

W _ZN7acommonl@BetterListD1Ev

W _ZN7acommonl@BetterListD2Ev

T _ZN7acommonl@BetterSizel2set_cur_rankEv

T _ZN7acommonl@BetterSizel7set_best_from_curEv

T _ZN7acommonl@BetterSized4initEv

W _ZN7acommon1@BetterSizeDOEvV

W _ZN7acommonl@BetterSizeD1Ev

W _ZN7acommonl@BetterSizeD2Ev

W _ZN7acommon10BlockSListINS_10StringPairEESclearEv

W _ZN7acommon10BlockSListINS_10StringPairEE9add_blockEj
W _ZN7acommon10BlockSListINS_6StringEE9add_blockEj

W _ZN7acommon10BlockSListIPKN8aspeller5CondsEE9add_blockEj
W _ZN7acommon10BlockSListIPKcE9add blockEj

Figure 12-7. Using the nm utility to list mangled symbols

This option is extremely useful in detecting the most usual bug when designing the shared
library—the case when the designer forgets the extern "C” specifier in the ABI function

declaration/definition (which happens to be exactly what the client binary expects to find).

$ nm -A <library-folder-path>/* | grep symbol-name is useful when you search for a
symbol in multitude of binaries located in the same folder, as -A option prints the name of
each library in which a symbols is found (Figure 12-8).

milan@milan-ub-1204-32-1ts:/usr/1ibS nm -DA * | grep pspell_aspell_dummy

libaspell.so.15:00084acO® T _Z19pspell_aspell_dummyv
libaspell.s0.15.2.0:00084acO T _Z19pspell_aspell_dummyv
libpspell.so0.15:00000430 T _Z19pspell_aspell_dummyv
1ibpspell.s0.15.2.0:00000430 T _Z19pspell_aspell_dummyv

Figure 12-8. Using nm to recursively search for the presence of a symbol in the set of libraries

$ nm -u <path-to-binary> is useful when you want to list the library’s undefined symbols

(i.e., the symbols that the library itself does not contain, but counts on to be provided at
runtime, possibly by some other loaded dynamic library).

The web article at waw. thegeekstuff.com/2012/03/1inux-nm-command/ lists the 10 most useful nm commands.

247

http://www.thegeekstuff.com/2012/03/linux-nm-command/

CHAPTER 12 LINUX TOOLBOX

objdump

The objdump (http://1linux.die.net/man/1/0bjdump) utility program is probably the single most versatile binary
analysis tool. Chronologically, it is older than readelf, which parallels its abilities in many cases. The advantage of
objdump is that in addition to ELF, it supports about 50 other binary formats. Also, its disassembling capabilities are
better than those of readelf.

The following sections cover the tasks that most frequently make use of objdump.

Parsing ELF Header

The objdump -f command-line option is used to obtain an insight into the object file’s header. The header provides
plenty of useful information. In particular, the binary type (object file/static library vs. dynamic library vs. executable)
as well as the information about the entry point (start of the . text section) may be quickly obtained (Figure 12-9).

milan@milan$ objdump -f ./driverApp/driver

./driverApp/driver: file format elf32-1386
architecture: 1386, flags 0x00000112:

EXEC_P, HAS_SYMS, D_PAGED

start address 0x080484c0

milan@milan$ objdump -f ./sharedLib/libmreloc.so

./sharedLib/1libmreloc.so: file format elf32-1386
architecture: 1386, flags 0x00000150:

HAS_SYMS, DYNAMIC, D_PAGED

start address 0x00000390

milan@milan$ objdump -f ./ml_mainreloc.o
./ml_mainreloc.o: file format elf32-1386
architecture: 1386, flags 0x00000011:

HAS_RELOC, HAS_SYMS
start address 9x00000000

Figure 12-9. Using objdump to parse the ELF header of various binary file types

When examining the static library, objdump -f prints out the header of each and every object file found in the
library.

Listing and Examining Sections

The objdump -h option is used to list the available sections (Figure 12-10).

http://linux.die.net/man/1/objdump

CHAPTER 12 * LINUX TOOLBOX

[milan@milan$ objdump -h libmreloc.so

libmreloc.so: file format elf32-i386
Sections:
Idx Name Size VMA LMA File off Algn

0 .note.gnu.build-id 00000024 00000114 00000114 00000114 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA

1 .gnu.hash 00000040 00000138 00000138 00000138 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA

2 .dynsym 000000b0 00000178 00000178 00000178 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA

3 .dynstr 0000007c 00000228 00000228 00000228 2**Q

CONTENTS, ALLOC, LOAD, READONLY, DATA

4 .gnu.version 00000016 000002a4 00000234 000002a4 2**1
CONTENTS, ALLOC, LOAD, READONLY, DATA

5 .gnu.version_r 00000020 000002bc ©00002bc 000002bc 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA

6 .rel.dyn 00000038 000002dc 000002dc 000002dc 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA
7 .rel.plt 0000O010 00000314 00000314 00000314 2%*2
CONTENTS, ALLOC, LOAD, READONLY, DATA
8 .init 0000002e 00000324 00000324 00000324 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE
9 .plt 00000030 00000360 00000360 00000360 2**4
CONTENTS, ALLOC, LOAD, READONLY, CODE
10 .text 00000118 00000390 00000390 00000390 2**4
CONTENTS, ALLOC, LOAD, READONLY, CODE
11 .fini 0000001a 00000428 00000438 00000438 2**2
o
Q
o
o
21 .bss 00000008 00002010 00002010 00001010 2**2
ALLOC
22 .comment 00o0eOZa 00000000 OOOOOOOOD 00001010 2*%*0

CONTENTS, READONLY

23 .debug_aranges 00000020 00000000 00000000 ©000103a 2**0
CONTENTS, READONLY, DEBUGGING

24 .debug_info 00000075 00000000 00000000 00001058 2**0
CONTENTS, READONLY, DEBUGGING

25 .debug_abbrev 00000058 00000000 00000000 000010cf 2**0
CONTENTS, READONLY, DEBUGGING

26 .debug_line 0000003f 00000000 00000000 00001127 2**0
CONTENTS, READONLY, DEBUGGING

27 .debug_str 0000004c 00000000 00000000 00001166 2**0
CONTENTS, READONLY, DEBUGGING

28 .debug_loc 00000038 00000000 00000000 000011b2 2**0
CONTENTS, READONLY, DEBUGGING

milan@milan$

Figure 12-10. Using objdump to list the binary file sections

When it comes to section examinations, objdump provides dedicated command switches for the sections that
are most frequently topic of interest for the programmers. In the following sections, I1ook at some of the notable
examples.

249

CHAPTER 12 ' LINUX TOOLBOX

Listing All Symbols

Running objdump -t <path-to-binary> provides output that is the full equivalent of running nm
(Figure 12-11).

<path-to-binary>

milan@milan$ objdump -t libdemol.so
libdemol.s0: file format elf32-i386
SYMBOL TABLE:
00080114 1 d .note.gnu.build-id 00000000 .note.gnu.build-id
00080138 1 d .gnu.hash 60000000 .gnu.hash
oeeee174 1 d .dynsym 60000000 .dynsym

224 1 d .dynstr 68600000 .dynstr
geesezbs 1 d .gnu.version ©0008000 .gnu.version
eeoe0zcc 1 d .gnu.version_r eoooeoo0 .gnu.version_r
geesezfc 1 d .rel.dyn 60000000 .rel.dyn
oooee3zc 1 d .rel.plt 60000000 .rel.plt
0eee033c 1 d .init ooo00OGO Anit
00000370 1 d .plt 00000000 .plt

3a0 1 d .text oo0000000 text
0e0004bs 1 d .fini o0ooc0E0 fini
oeeee4da 1 d .rodata 60000000 .rodata
eeeee4dfs 1 d .eh_frame_hdr coeeoeee .eh_frame_hdr
oeoeesid 1 d .eh_frame 60600008 .eh_frame
eeeeifec 1 d .ctors 00600060 .ctors
eeoe1fid 1 d .dtors 00ooeeE8 .dtors
#0081flc 1 d .jer 0OBOEOEE jer
eeee1fze 1 d .dynamic 60000000 .dynamic
ocee1fes 1 d .got ©000GOEE .got
oeee1ffa 1 d .got.plt 60000000 .got.plt
gooezees 1 d .data oo0ooceee .data
0eee200c 1 d .bss 00000060 .bss
oeoeeces 1 d .comment 60000000 .comment
oceeecee 1 d .debug_aranges 600000060 .debug_aranges
oeeeecee 1 d .debug_info 60000000 .debug_info
eeeeecee 1 d .debug_abbrev coeO8800 .debug_abbrev

1 d .debug_line 60000000 .debug_line

0eee0000 1 d .debug_str Goeoe000 .debug_str
oceee00e 1 d .debug_loc 606000000 .debug_loc
0eee0000 1 df *ABS* 00000000 crtstuff.c
geeeifec 1 0 .ctors 00000000 __CTOR_LIST__
00081714 1 0 .dtors 00000060 __DTOR_LIST__
eeee1fic 1 0 .jcr @EBEEOEE __JCR_LIST__

3a0 1 F .text 00000000 __do_global_dtors_aux
eeee200c 1 0 .bss ©000OOE1 completed.6159
oeeeze1e 1 0 .bss ooooooe4 dtor_idx.6161
ooooe420 1 F .text 00000000 frame_dummy
oeeesees 1 df *ABS* 00000000 crtstuff.c
oooo1fie 1 0 .ctors 00000000 __CTOR_END__
00000570 1 0 .eh_frame 00000000 __FRAME_END__
seee1fic 1 0 .jer 6EOOBOOB __JCR_END__
00008480 1 F .text 00000000 __do_global_ctors_aux
feeeeee8 1 df *ABS* 00000000 sharedLibiFunctions.c
80860457 1 F .text 080000080 __1686.get_pc_thunk.bx
00001718 1 0 .dtors ©0000000 __DTOR_END__
08062008 1 0 .data 60000008 __dso_handle
eeee1fze 1 0 *ABS* 00000000 _DYNAMIC
eeee1ffd 1 0 *ABS* 600606066 _GLOBAL_OFFSET_TABLE_
oGeocoeoe F *UND* ©80000008 printf@@CLIBC_2.0
0000200c g *ABS* 00000000 _edata
0000604b8 g F .fini 00000000 _fini
00000000 w F *UND* 00000000 __cxa_finalize@@GLIBC_2.1.3
00000000 w *UND* 00000000 __gmon_start__
00002014 g *ABS* 00000000 _end
0080260C g *ABS* 9O000O00 __bss_start
000006000 w *UND* 00000008 _Jv_RegisterClasses
0680045¢c g F .text 6000001c sharedLibiFunction
0000033c g F .init 60000000 _init
milangmilan$

Figure 12-11. Using objdump to list all symbols

250

CHAPTER 12 * LINUX TOOLBOX

Listing Dynamic Symbols Only

Running objdump -T <path-to-binary> provides output that is the full equivalent of running nm -D <path-to-binary>
(Figure 12-12).

-milan@milan.s objdump -T libdemol.so

libdemo1.so: file format elf32-1386

DYNAMIC SYMBOL TABLE:

00000000 DF *UND* 00000000 GLIBC_2.0 printf

00000000 w DF *UND* 00000000 GLIBC_2.1.3 __ cxa_finalize
00000000 W D *UND* 00000000 __gmon_start__
0000060 w D *UND* 00000000 _Jv_RegisterClasses
0000200C g D *ABS* 00000000 Base _edata

00002014 ¢ D *ABS* 00000000 Base _end

0000200C g D *ABS* 00000000 Base __bss_start
0000033c g DF .init 00G0GEEOG Base _init

000004b8 g DF .fini 0000OEOG Base _fini

0000045¢c g DF .text 0000001c Base sharedLibiFunction

Figure 12-12. Using objdump to list only dynamic symbols

Examining Dynamic Section

Running objdump -p <path-to-binary> examines the dynamic section (useful for finding DT_RPATH and/or
DT_RUNPATH settings). Please notice that in this scenario you care about the final part of displayed output
(Figure 12-13).

251

CHAPTER 12 ' LINUX TOOLBOX

milan@milan$ objdump -p demoApp
demoApp: file format elf64-x86-64

Program Header:
PHDR off 0x0000000000000040 vaddr 0x00000000003Fff040 paddr Ox00000000003ffE40 alig

o}

o]

o]

o

Dynamic Section:

NEEDED libpthread.so.0
NEEDED libdl.so0.2
NEEDED libdynamiclinkingdemo.so
NEEDED libstdc++.50.6
NEEDED libm.so.6
NEEDED libgcc_s.so0.1
NEEDED libc.so0.6
RUNPATH ../deploy:. /deploy
INIT 0x00000000004005d8
FINI 0x0000000000400808
HASH Ox00000000003ff4dO
GNU_HASH 0x000000000031 1490
STRTAB 0x00000000003fF270
SYMTAB 0x00000000003ff388
STRSZ 0x0000000000000115
SYMENT 0x0000000000000018
DEBUG 0x0000000000000000
PLTGOT 0x0000000000600fe8
PLTRELSZ 0x0000000000000048
PLTREL 0x0000000000000007
JMPREL 0x0000000000400590
RELA 0x0000000000400578
RELASZ 0x0000000000000018
RELAENT 0x0000000000000018
VERNEED 0x0000000000400538
VERNEEDNUM 0x0000000000000002
VERSYM 0x0000000000400522

Version References:
required from libstdc++.s0.6:
Ox056bafd3 0x00 03 CXXABI_1.3
required from libc.so.6:
0x09691a75 0x00 02 GLIBC_2.2.5

milan@milan$

Figure 12-13. Using objdump to examine the library dynamic section

Examining Relocation Section

Running objdump -R <path-to-binary> examines the relocation section (Figure 12-14).

252

sharedLib/libmreloc.so:

OFFSET TYPE
00002008 R_386_RELATIVE
00000450 R_386_32
00000458 R_386_32
0000045d R_386_32
00001fe8 R_386_GLOB_DAT
00001fec R_386_GLOB_DAT
00001ff0 R_386_GLOB_DAT
00002000 R_386_JUMP_SLOT
00002004 R_386_JUMP_SLOT

DYNAMIC RELOCATION RECORDS

CHAPTER 12

milan@milan$ objdump -R sharedLib/libmreloc.so

file format elf32-1386

VALUE

ABS

myglob

myglob

myglob
__cxa_finalize
__gmon_start__
_Jv_RegisterClasses
__cxa_finalize
__gmon_start__

Figure 12-14. Using objdump to list the relocation section

Examining Data Section

LINUX TOOLBOX

Running objdump -s -j <section name> <path-to-binary> provides the hex dump of the values carried by the
section. In Figure 12-15, it is the . got section.

Contents of section .got:
8049ff0 00000000
milan@milan$

milan@milan$ objdump -s -j .got driver

driver: file format elf32-i386

Figure 12-15. Using objdump to examine the data section

Listing and Examining Segments

Running objdump -p <path-to-binary> displays information about the ELF binary segments. Note that only the first
part of the displayed output pertains to this particular task (Figure 12-16).

253

CHAPTER 12 ' LINUX TOOLBOX

demoApp:

PHDR
STACK
LOAD
INTERP
LOAD
NOTE
EH_FRAME
LOAD
RELRO

DYNAMIC

milan@milanS objdump -p demoApp

file format elf64-x86-64

Program Header:

off
filesz
of f
filesz
off
filesz
off
filesz
off
filesz
off
filesz
off
filesz
off
filesz
off
filesz
off
filesz

Ox0000000000000040
Ox0000000000000230
0x0000000000001000
Ox0000000000000000
0x0000000000000000
Ox0000000000001000
Ox0000000000000510
Ox000000000000001C
Ox0000000000001000
0x00000000000008dC
Ox0000000000001254
Ox0000000000000044
Ox000000000000181cC
Ox0000000000000024
0x0000000000001da8
0x0000000000000280
0x0000000000001da8
0x0000000000000258
0x0000000000001dde
0x0000000000000210

vaddr
memsz
vaddr
memsz
vaddr
memsz
vaddr
memsz
vaddr
memsz
vaddr
memsz
vaddr
memsz
vaddr
memsz
vaddr
memsz
vaddr
memsz

Figure 12-16. Using objdump to list segments

Disassembling the Code

Here are a few examples of how objdump may be used to disassemble the code:

254

0x00000000003ff040
0x0000000000000230
0x0000000000000000
0x0000000000000000
0x00000000003F 000
0x0000000000001000
0x00000000003fF510
0x000000000000001C
0x0000000000400000
0x00000000000008dC
Ox0000000000400254
0x0000000000000044
0x000000000040081cC
0x0000000000000024
0x0000000000600da8
0x0000000000000290
0x0000000000600das8
0x0000000000000258
0x0000000000600dd0
0x0000000000000210

o000

paddr
flags
paddr
flags
paddr
flags
paddr
flags
paddr
flags
paddr
flags
paddr
flags
paddr
flags
paddr
flags
paddr
flags

0x00000000003FFO40
r-x
0x0060000000600000
rw-
0x00000000003FFO00
TwW-
0x00000000003FF510
r__
0x0000000000400000
r-x
Ox0000000000400254
r--
0x000000000040081C
r--
0x0000000000600das
rw-
0X0000000000600das
r.-—
0x0000000000600dd0
rw-

align
align
align
align
align
align
align
align
align

align

Disassembling and specifying assembler notation flavor (Intel style in this case), as shown in
Figure 12-17.

2%*3

2%%3

2**12

2%*Q

2**12

2%%2

2%*2

2%*12

2**Q

2%%3

CHAPTER 12

milan@milan$ objdump -d -Mintel libmreloc.so | grep -A 18 ml_

0000044c <nl_tunc>:

44c: 55 push
44d: 89 e5 mov
44f: al 60 00 00 60 mov
454: 03 45 08 add
457: a3 0o oo o0 o0 mov
45c: al 00 0o oo 60 mov
461: 03 45 Oc add
464: 5d pop
465: c3 ret
466: 968 nop
milan@milan$

ebp

ebp,esp

eax,ds:0x0

eax,DWORD PTR [ebp+0x8]
ds:0x0,eax

eax,ds:0x0

eax,DWORD PTR [ebp+0xc]
ebp

milan@milan$ objdump -d -Mintel driver | grep -A 10 "<main>"

08048646 <main=:

B048646: 55

8048647: 89 e5

B048649: 83 e4 fO

804864c: 83 ec 20

804864f: c7 44 24 04 00 00 60

BO4B656: [:1:]

8048657: c7 04 24 74 85 04 08

804865e: e8 2d fe ff ff

B8048663: 8b 45 08

8048666 : 89 44 24 04
milan@milan$

push ebp

mov ebp,esp

and esp,oxfffffffe

sub esp,0x20

mov DWORD PTR [esp+0x4],0x0

mov DWORD PTR [esp],©0x8048574
call 8048490 <dl_iterate_phdr@plt>
mov eax,DWORD PTR [ebp+0x8]

mov DWORD PTR [esp+0x4],eax

Figure 12-17. Using objdump to disassemble the binary file

e Disassembling and Intel style and interspersing the original source code (Figure 12-18).

milan@milan$ objdump -d -S -M intel ./libdemol.so | grep -A 26 "<sharedLiblFunction>"

0000045c <sharedLibiFunction>:
#include "sharedLibiFunctions.h”

void sharedLibiFunction(int x)

{

45c: 55 push
45d: 89 es mov
4s5f: 83 ec 18 sub

printf("sharedLibiFunction(%d)

462: b8 d4 04 00 6O mov
467 : 8b 55 08 mov
46a: 89 54 24 04 mov
46e: 89 04 24 mov
471: e8 fc ff ff ff call
}

476: €9 leave
477: c3 ret
478: 90 nop
479: 90 nop
47a: 90 nop
47b: 90 nop
47c: 90 nop
47d: 90 nop
47e: 90 nop
47f: 90 nop

00000480 <__do_global_ctors_aux>:
milan@gmilan$

ebp

ebp,esp

esp,0x18

is called\n", x);

eax,Ox4d4

edx,DWORD PTR [ebp+0x8]

DWORD PTR [esp+0x4],edx

DWORD PTR [esp],eax

472 <sharedLib1Function+0x16>

Figure 12-18. Using objdump to disassemble the binary file (Intel syntax)

LINUX TOOLBOX

255

CHAPTER 12 ' LINUX TOOLBOX

This option works only if the binary is built for debug (i.e., with the -g option).

e Disassembling specific sections.

Other than .text section that carries the code, the binary may contain other sections (.p1t, for
example) that also contain the code. By default, objdump disassembles all the sections carrying
the code. However, there may be scenarios in which you are interested in examining the code

carried strictly by a given section (Figure 12-19).

milan@milan$ objdump -d -M intel -j .plt driver

driver:

Disassembly of section .plt:

08048470 <strstr@plt-0x10>:

B048470: ff 35 f8 97 04 o8
8048476 ff 25 fc 9T 04 08
804847cC: 00 oo

08048480 <strstr@plt>:

8048480: ff 25 00 a0 04 08
8048486: 68 00 00 €0 00
804848b: e9 ed ff ff ff

08048490 <printf@plt>:

8048490 ff 25 04 a0 04 08
8048496: 68 08 00 €@ ee
804849b: e9 do ff ff ff

080484a0 <ml_func@plt=:

80484a0: ff 25 08 ab 04 08
80484a6: 68 10 00 @0 00
80484ab: e9 co ff ff ff

©80484b0 <__gmon_start__@plt=:

80484b0: ff 25 Oc a0 04 o8
80484b6: 68 18 00 @0 oo
80484bb: e9 be ff ff ff

080484ch <dl_iterate_phdr@gplts:

80484co: ff 25 10 a0 04 88
80484co6: 68 20 00 €0 00
80484ch: e9 ae ff ff ff

080484d0 <__ libc_start_main@plt>:

80484de: ff 25 14 a0 04 08
80484d6: 68 28 00 €@ 00
80484db: e9 99 ff ff ff

080484ed <putchar@plt=:

80484e0: ff 25 18 a0 04 08
80484e6: 68 30 00 €0 00
80484eb: e9 80 ff ff ff
milangmilans

file format elf32-1386

push
jmp
add

jmp
push
jmp

jmp
push
jmp

jmp
push
jmp

jmp
push
imp

jmp
push
jmp

jmp
push
jmp

jmp
push
imp

DWORD PTR ds:0x8049ff8
DWORD PTR ds:@x8049ffc
BYTE PTR [eax],al

DWORD PTR ds:0x8042000
exo
8048470 <_init+0x38>

DWORD PTR ds:0x804a004
ox8
8048470 <_init+0x38>

DWORD PTR ds:0x804a2008
0x10
8048470 <_init+0x38>

DWORD PTR ds:0x804a00c
0x18
8048470 <_init+0x38>

DWORD PTR ds:0x804a010
0x20
8048470 <_init+0x38>

DWORD PTR ds:0x804a014
0x28
8048470 <_init+0x38>

DWORD PTR ds:0x804a018
0x30
8048470 <_inilt+0x38>

Figure 12-19. Using objdump to disassemble a specific section

256

CHAPTER 12 LINUX TOOLBOX

objdump nm equivalents
objdump can be used to provide full equivalents of the nm command:
e % nm <path-to-binary>

equivalent is
$ objdump -t <path-to-binary>

e $ nm -D <path-to-binary>

equivalent is
$ objdump -T <path-to-binary>

e % nm -C <path-to-binary>

equivalent is

$ objdump -C <path-to-binary>

readelf

The readelf (http://1linux.die.net/man/1/readelf) command-line utility provides almost completely duplicate
functionality found in the objdump utility. The most notable differences between the readelf and objdump are

e readelf supports only ELF binary format. On the other hand, the objdump can analyze about
50 different binary formats, including the Windows PE/COFF format.

e readelf does not depend on the Binary File Descriptor library (http://en.wikipedia.org/
wiki/Binary File Descriptor library), which all GNU object file parsing tools depend on,
thus providing the independent insight into the contents of ELF format

The following two sections provide an overview of the most common tasks that make use of objdump.

Parsing ELF Header

The readelf -h command-line option is used to obtain an insight into the object file’s header. The header provides
plenty of useful information. In particular, the binary type (object file/static library vs. dynamic library vs. executable) as
well as the information about the entry point (the start of the . text section) may be quickly obtained (Figure 12-20).

257

http://linux.die.net/man/1/readelf
http://en.wikipedia.org/wiki/Binary_File_Descriptor_library
http://en.wikipedia.org/wiki/Binary_File_Descriptor_library

CHAPTER 12 ' LINUX TOOLBOX

milan@milan$ readelf -h driverApp/driver
ELF Header:
Magic: 7f 45 4c 46 01 01 01 00 0O OO0 00 OO 0O 06 0O 6O

Class: ELF32
Data: 2's complement, little endian
Version: 1 (current)
0S/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: Intel 80386
Version: 0x1
Entry point address: 0x80484c0
Start of program headers: 52 (bytes into file)
Start of section headers: 6196 (bytes into file)
Flags: 0x0
Size of this header: 52 (bytes)
Size of program headers: 32 (bytes)
Number of program headers: 9
Size of section headers: 40 (bytes)
Number of section headers: 36
Section header string table index: 33
milan@milan$

milan@milan$ readelf -h sharedLib/libmreloc.so
ELF Header:
Magic: 7f 45 4c 46 01 01 01 00 OO 00 00 0O 0O 00 0O 00

Class: ELF32
Data: 2's complement, little endian
Version: 1 (current)
0S/ABI: UNIX - System V
ABI Version: 0
Type: DYN (Shared object file)
Machine: Intel 80386
Version: ox1
Entry point address: 0x390
Start of program headers: 52 (bytes into file)
Start of section headers: 4884 (bytes into file)
Flags: 0x0
Size of this header: 52 (bytes)
Size of program headers: 32 (bytes)
Number of program headers: 7
Size of section headers: 40 (bytes)
Number of section headers: 33
Section header string table index: 30
milan@milan$

Figure 12-20. (continued)

258

CHAPTER 12

ELF Header:
Magic:
Class:
Data:
Version:
0S/ABI:
ABI Version:

Type:

Machine:

Version:

Entry point address:

Start of program headers:
Start of section headers:
Flags:

Size of this header:

Size of program headers:
Number of program headers:
Size of section headers:
Number of section headers:

milan@milan$

milan@milan$ readelf -h ml_mainreloc.o

7f 45 4c 46 01 01 01 0O 0O 0O 0O OO OO 0O OO 6O

ELF32

2's complement, little endian
1 (current)

UNIX - System V

<]

REL (Relocatable file)
Intel 80386

0x1

0x0

0 (bytes into file)
832 (bytes into file)
0x0

52 (bytes)

0 (bytes)

0

40 (bytes)

21

Section header string table index: 18

LINUX TOOLBOX

Figure 12-20. Examples of using readelf to examine the ELF header of executable, shared library, and object

file/static library

When examining the static library, readelf -h prints out the header of each and every object file found in

the library.

Listing and Examining Sections

The readelf -S option is used to list the available sections (Figure 12-21).

259

CHAPTER 12 ' LINUX TOOLBOX

milan@milan$ readelf -S libmreloc.so
There are 33 section headers, starting at offset 0x1314:

Section Headers:

[Nr] Name Type Addr off Size ES Flg Lk Inf Al
[0] NULL 00000000 000000 0O0C0OO 00 0 0 0
[1] .note.gnu.build-i NOTE 00000114 000114 000024 00 A 0 0 4
[2] .gnu.hash GNU_HASH 00000138 000138 000040 04 A 3 0 4
[3] .dynsym DYNSYM 00000178 000178 0000ObO 10 A 4 1 4
[4] .dynstr STRTAB 00000228 000228 00007c 00 A 0 0 1
[5] .gnu.version VERSYM 00000224 0002a4 000016 62 A 3 0 2
[6] .gnu.version_r VERNEED 000002bc 0002bc 0GOG20 @@ A 4 1 4
[7] .rel.dyn REL 000002dc 0002dc 000038 08 A 3 0 4
[8] .rel.plt REL 00000314 000314 000010 68 A 3 10 4
[9] .init PROGBITS 00000324 000324 00002e 00 AX ©O 0 4
[18] .plt PROGBITS 00000360 000360 000030 04 AX ©O 0 16
[11] .text PROGBITS 00000390 000390 000118 00 AX O 0 16
[12] .finl PROGBITS 00000428 000428 00001a 00 AX ©O 0 4
[13] .eh_frame_hdr PROGBITS 000004c4 0004c4 00001c 00 A 0 0 4
[14] .eh_frame PROGBITS 0000040 0004e@ 000060 00 A © 0 4
[15] .ctors PROGBITS 00001f0c 000fOC 0OOOOB 0@ WA © 0 4
[16] .dtors PROGBITS 00001f14 000f14 0OOEE8 06 WA O 0 4
[17] .jcr PROGBITS 00001f1lc 000fic 000004 66 WA © © 4
[18] .dynamic DYNAMIC 00001720 00020 0000Oc8 08 WA 4 0 4
[19] .got PROGBITS 00001fe8 00Ofe8 0000OC 04 WA O 0 4
[20] .got.plt PROGBITS 00001ff4 000ff4 000014 04 WA © o 4
[21] .data PROGBITS 00002008 001008 000008 00 WA ©O 0 4
[22] .bss NOBITS 00002010 001010 0OO0O8 00 WA ©O 0 4
[23] .comment PROGBITS 00000000 001010 000023 01 MS ©O o 1
[24] .debug_aranges PROGBITS 00000000 00103a 000020 00 0 0 1
[25] .debug_info PROGBITS 00000000 00105a 000075 00 0 0 1
[26] .debug_abbrev PROGBITS 00000000 0010cf 000058 00 e o0 1
[27] .debug_line PROGBITS 00000000 001127 00EO3f 00 0 0 1
[28] .debug_str PROGBITS 00000000 001166 00004c 01 MS ©O 0 1
[29] .debug_loc PROGBITS 00000000 0011b2 000038 00 o 0 1
[30] .shstrtab STRTAB 00000000 001lea 000129 00 0 0 1
[31] .symtab SYMTAB 00000000 00183c 0003b0 10 32 49 4
[32] .strtab STRTAB 00000000 001bec 060182 00 0 0 1

Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings)
I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)
0 (extra 0S processing required) o (05 specific), p (processor specific)

Figure 12-21. Using readelfto list sections

When it comes to section examinations, readelf provides dedicated command switches for the sections that are
most frequently topics of interest for programmers, such as the . symtab, .dynsym, and .dynamic sections.

Listing All Symbols

Running readelf --symbols provides output that is the full equivalent of running nm <path-to-binary> (Figure 12-22).

260

CHAPTER 12 * LINUX TOOLBOX

milan@milan$ readelf --symbels libdemol.so

Symbol table '.dynsym' contains 11 entries:
Num: Value Size Type Bind Vis Ndx Name

0: 69860080 © NOTYPE LOCAL DEFAULT UND
1: 89600606 ® FUNC GLOBAL DEFAULT UND printf@GLIBC_2.8 (2)

2: 98000GOO ® FUNC WEAK DEFAULT UND __cxa_finalize@GLIBC_2.1.3 (3)
3: 99600EO0 © NOTYPE WEAK DEFAULT UND __gmon_start__

4: 00800000 ® NOTYPE WEAK DEFAULT UND _Jv_RegisterClasses

5: 8980200C © NOTYPE GLOBAL DEFAULT ABS _edata

6: 600862014 © NOTYPE GLOBAL DEFAULT ABS _end

7: 8880200c ® NOTYPE GLOBAL DEFAULT ABS __bss_start

8: 8986033C ® FUNC GLOBAL DEFAULT 9 _init

9: 898604b8 ® FUNC GLOBAL DEFAULT 12 _fint

10: 9800845c 28 FUNC GLOBAL DEFAULT 11 sharedLibiFunction

Symbol table '.symtab' contains 60 entries:
Num: Value Size Type Bind vis Ndx Name

B: 06800006 NOTYPE LOCAL DEFAULT UND
1: oooo0114 SECTION LOCAL DEFAULT 1
2: 00000138 SECTION LOCAL DEFAULT 2
3: 0oeoe174 SECTION LOCAL DEFAULT 3
4: 00000224 SECTION LOCAL DEFAULT 4
5: e9e002be SECTION LOCAL DEFAULT 5
6: 88BOB2CC SECTION LOCAL DEFAULT 6
7: epese2fc SECTION LOCAL DEFAULT 7
&: 0080032C SECTION LOCAL DEFAULT 8
9: 0080033cC SECTION LOCAL DEFAULT 9
10: 00000370 SECTION LOCAL DEFAULT 18
11: 00800320 SECTION LOCAL DEFAULT 11
12: 6AABE4bE SECTION LOCAL DEFAULT 12
13: 000004d4 SECTION LOCAL DEFAULT 13
14: oeeeo4fs SECTION LOCAL DEFAULT 14

15: 00000514
16: epeslfec
17: 80001f14
18: 88801flic
19: 08001f20
20: eseo1fes
21: 09001ff4
22: 00802008
23: B000200C
24: 88000000
25: 6BOBOBOE
26: 00000000
27: 00800000
28: 00000000
29: 80000000
30: 68000000
31: 68000008
32: eseo1foc
33: epe01fi4
34: 08801f1c
35: 80800320
36: 0000200c
37: 88002010
38: 00000420
39: 00000000
40: 00801F10
41: 00000570
42: 000011c
43: 00000480
44: BOOBOOOA
45: 00000457
46: 00001F18
47: 00002008
48: 00001720
49: 00001Ff4
50: 88000000
51: 8080200C
52: 000004b8
53: 80800000
54: 60600000
55: 00002014
S6: 8800200c
57: 60800000

SECTION LOCAL DEFAULT 15

SECTION LOCAL DEFAULT 16

SECTION LOCAL DEFAULT 17

SECTION LOCAL DEFAULT 18

SECTION LOCAL DEFAULT 19

SECTION LOCAL DEFAULT 20

SECTION LOCAL DEFAULT 21

SECTION LOCAL DEFAULT 22

SECTION LOCAL DEFAULT 23

SECTION LOCAL DEFAULT 24

SECTION LOCAL DEFAULT 25

SECTION LOCAL DEFAULT 26

SECTION LOCAL DEFAULT 27

SECTION LOCAL DEFAULT 28

SECTION LOCAL DEFAULT 29

SECTION LOCAL DEFAULT 30

FILE LOCAL DEFAULT ABS crtstuff.c

OBJECT LOCAL DEFAULT 16 __CTOR_LIST__

OBJECT LOCAL DEFAULT 17 __DTOR_LIST__

OBJECT LOCAL DEFAULT 18 __JCR_LIST__

FUNC LOCAL DEFAULT 11 __do_glebal_dtors_aux
OBJECT LOCAL DEFAULT 23 completed.6159
OBJECT LOCAL DEFAULT 23 dtor_idx.6161

FUNC LOCAL DEFAULT 11 frame_dummy

FILE LOCAL DEFAULT ABS crtstuff.c

OBJECT LOCAL DEFAULT 16 __CTOR_END__

OBJECT LOCAL DEFAULT 15 __FRAME_END__

OBJECT LOCAL DEFAULT 18 __JCR_END__

FUNC LOCAL DEFAULT 11 __do_gleobal_ctors_aux
FILE LOCAL DEFAULT ABS sharedLibiFunctions.c
FUNC LOCAL DEFAULT 11 __1686.get_pc_thunk.bx
OBJECT LOCAL DEFAULT 17 __DTOR_END__

OBJECT LOCAL DEFAULT 22 _ dso_handle

OBJECT LOCAL DEFAULT ABS _DYNAMIC

OBJECT LOCAL DEFAULT ABS _GLOBAL_OFFSET_TABLE_
FUNC GLOBAL DEFAULT UND printf@@GLIBC_2.8
NOTYPE GLOBAL DEFAULT ABS _edata

FUNC GLOBAL DEFAULT 12 _fini

FUNC WEAK DEFAULT UND __cxa_finalize@@GLIBC 2.1
NOTYPE WEAK DEFAULT UND __gmon_start__
NOTYPE GLOBAL DEFAULT ABS _end

NOTYPE GLOBAL DEFAULT ABS __bss_start

NOTYPE WEAK DEFAULT UND _Jv_RegisterClasses

OO LSOO

58: 0000045c 28 FUNC GLOBAL DEFAULT 11 sharedLibiFunction
59: 6000833c FUNC GLOBAL DEFAULT 9 _init
milan@milan$

Figure 12-22. Using readelf to list all symbols

261

CHAPTER 12 ' LINUX TOOLBOX

Listing Dynamic Symbols Only

Running readelf --dyn-syms provides output that is the full equivalent of runningnm -D <path-to-binary>
(Figure 12-23).

%ilan@milans readelf --dyn-syms libdemol.so

Ssymbol table '.dynsym' contains 11 entries:
Num: Value Size Type Bind Vis Ndx Name

0: 00000000 ® NOTYPE LOCAL DEFAULT UND

1: 00000000 ® FUNC GLOBAL DEFAULT UND printf@GLIBC_2.0 (2)

2: 00000000 ® FUNC WEAK DEFAULT UND __cxa_finalize@GLIBC_2.1.3 (3)

3: 00000000 © NOTYPE WEAK DEFAULT UND __gmon_start__

4: 00000000 ® NOTYPE WEAK DEFAULT UND _Jv_RegisterClasses

5: 0eo0200C ® NOTYPE GLOBAL DEFAULT ABS _edata

6: 00002014 ® NOTYPE GLOBAL DEFAULT ABS _end

7: 06000206C ® NOTYPE GLOBAL DEFAULT ABS __ bss_start

8: 0000033cC ® FUNC GLOBAL DEFAULT 9 _init

9: 00OOO4bS8 ® FUNC GLOBAL DEFAULT 12 _fini

10: 0000045cC 28 FUNC GLOBAL DEFAULT 11 sharedLibiFunction
Imtlan@ntlans

Figure 12-23. Using readelf to list dynamic symbols

Examining the Dynamic Section

Running readelf -d examines the dynamic section (useful for finding DT_RPATH and/or DT_RUNPATH settings),
as shown in Figure 12-24.

262

CHAPTER 12 * LINUX TOOLBOX

milan@milan$ readelf -d demoApp
Dynamic section at offset 0x1dd® contains 28 entries:
Tag Type Name/value
0x0000P0ONOPOAARO1 (NEEDED) Shared library: [libpthread.so0.0]
0x0000000000000001 (NEEDED) Shared 1ibrary: [libdl.so0.2]
0x0000000000000001 (NEEDED) Shared library: [libdynamiclinkingdemo.so]
Ox0000000000000001 (NEEDED) Shared library: [libstdc++.s50.6]
0x0000000000000001 (NEEDED) Shared library: [libm.so0.6]
0x0000000000000001 (NEEDED) Shared library: [libgcc_s.so0.1]
0x0000000000000001 (NEEDED) Shared library: [libc.so0.6]
0x000000000000001d (RUNPATH) Library runpath: [../deploy:./deploy]
0x000000000000000c (INIT) 0x4005d8
0x000000000000000d (FINI) 0x400808
0x0000000000000004 (HASH) ox3ffado
0x000000006Ffffef5 (GNU_HASH) 0x3ff490
0x0000000000000005 (STRTAB) 0x3ff270
0x000OPPOAOOROOROE (SYMTAB) ox3ff3ss8
0x000000000000000a (STRSZ) 277 (bytes)
0x000000000000000b (SYMENT) 24 (bytes)
0x0000000000000015 (DEBUG) oxe
0x0000000000000003 (PLTGOT) Ox600fe8
0x0000000000000002 (PLTRELSZ) 72 (bytes)
0x0000000000000014 (PLTREL) RELA
0x0000000000000017 (IMPREL) 0x400590
0x0000000000000007 (RELA) 0x400578
0x0000000000000008 (RELASZ) 24 (bytes)
0x0000000000000009 (RELAENT) 24 (bytes)
0x000000006ffffffe (VERNEED) 0x400538
0x000000006FFFFFFf (VERNEEDNUM) 2
0x000000006FFFfFfO (VERSYM) 0x400522
0x0000000000000000 (NULL) 0x0
milan@milan$

Figure 12-24. Using readelf to display the dynamic section

Examining the Relocation Section

Running readelf -r examines the relocation section, as shown in Figure 12-25.

263

CHAPTER 12 ' LINUX TOOLBOX

milan@milan$ readelf -r libmreloc.so

Relocation section '.rel.dyn' at offset ©x2dc contains 7 entries:

‘ offset Info Type Sym.Value Sym. Name
|0eeeZE|ea 00000008 R_386_RELATIVE

P3303450 00000401 R_386_32 0000200C myglob
00000458 00000461 R_386_32 60002006C myglob
|eaeea45d 00000401 R_386_32 0000200c myglob
Ieaeelfea 00000106 R_386_GLOB_DAT 00000000 _ cxa_finalize
|aaea1fec 00000206 R_386_GLOB_DAT 00000000 __gmon_start__

00001ff0 00000306 R_386_GLOB_DAT 00000000 _Jv_RegisterClasses

Relocation section '.rel.plt' at offset Ox314 contains 2 entries:

‘ offset Info Type Sym.Value Sym. Name
|eaeezaoe 00000107 R_386_JUMP_SLOT 00000000 _ cxa_finalize
00002004 00000207 R_386_JUMP_SLOT ~ 00000600 __gmon_start__
milan@milan$

Figure 12-25. Using readelf to list relocation (.rel.dyn) section

Examining the Data Section

Running readelf -x provides the hex dump of the values carried by the section. In Figure 12-26, it is the . got section.

milan@milan$ readelf -x .got driver

Hex dump of section '.got':
0x08049ff0 00000060

milan@milan$

Figure 12-26. Using readelf to provide a hex dump of a section (the .got section in this example)

Listing and Examining Segments

Running readelf --segments displays information about the ELF binary segments (Figure 12-27).

264

CHAPTER 12 * LINUX TOOLBOX

Figure 12-27. Using readelf to examine segments

Detecting the Debug Build

milan@milan$S readelf --segments libmreloc.so
ELf file type is DYN (Shared object file)
Entry point 0x390
There are 7 program headers, starting at offset 52
Program Headers:
Type offset virtAddr PhysAddr FileSiz MemSiz Flg Align
LOAD 0x000000 OxDOOO0ODOO OxODOOOODOOO OxO00540 Ox00540 R E 0x1000
LOAD 0x000f0c 0x00001fOc Ox00001fOC Ox00104 Ox0010Cc RW ©x1000
DYNAMIC 0x000T20 0x00001T20 0x00001T20 Ox0OOC8 OXxOPOOC8 RW 0x4
NOTE 0x000114 0x00000114 O0x00000114 0x00024 0x00024 R Ox4
GNU_EH_FRAME 0x0004c4 0x000004c4 0x000004c4 0x0001c Ox0001c R 0x4
GNU_STACK 0x000000 OxOO0OONOOO OxOOOOONOO OxXxOO0O0O OxOOOOO0 RW Ox4
GNU_RELRO 0x000f0c Ox00001fOCc 0x00001fOc Ox00OFf4 Ox000T4 R ox1
Section to Segment mapping:
Segment Sections...
00 .note.gnu.build-id .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r
.rel.dyn .rel.plt .init .plt .text .fini .eh_frame_hdr .eh_frame
01 .ctors .dtors .jcr .dynamic .got .got.plt .data .bss
02 .dynamic
03 .note.gnu.build-1id
04 .eh_frame_hdr
05
06 .ctors .dtors .jcr .dynamic .got
milan@milan$

The readelf command has very good support for displaying all kind of debugging-specific information contained in
the binary (Figure 12-28).

265

CHAPTER 12 LINUX TOOLBOX

READELF(1) GNU Development Tools READELF(1)

NAME
readelf - Displays information about ELF files.

SYNOPSIS
readelf [-a|--all]
[-h]|--file-header]
[-1]|--program-headers|--segments]
[-S|--section-headers|--sections]
[-g|--section-groups]
[-t]--section-details]
[-e]|--headers]
[-s]|--syms|--symbols]
[--dyn-syms]
[-n]--notes]
[-r]|--relocs]
[-u]=--unwind]
[-d]|--dynamic]
[-V]=--version-info]
[-A]--arch-specific]
[-D]|--use-dynamic]
[-x <number or name>|--hex-dump=<number or name>]
[-p <number or name>|--string-dump=<number or name>]
[-R <number or name>|--relocated-dump=<number or name>]
[-c|--archive-index]
[-w[lLiaprmfFsoRt] |
--debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aran
ges,=macro,=frames,=frames-interp,=str,=1loc,=Ranges,=pubtypes,=trace_info,=trace
_abbrev,=trace_aranges,=gdb_1index]]

Figure 12-28. Readelf provides the option to examine binary file debug information

To quickly determine whether the binary was built for debug or not, in the case of a debug build, the output
of running readelf --debug-dump with any of available options will be comprised of a number of lines printed on
stdout. On the contrary, if the binary was not built for debugging, the output will be an empty line. One of the quick
and practical ways of limiting the output spew in the case when the binary contains the debugging information is to
pipe the readelf output to the wc command:

$ readelf --debug-dump=line <binary file path>| wc -1

Alternatively, the following simple script may be used to display the readelf’s findings in plain and simple text
form. It requires that the path to the binary file be passed as an input argument.

file: isDebugVersion.sh
if readelf --debug-dump=line $1 > /dev/null; then echo "$1 is built for debug"; fi

Deployment Phase Tools

After you successfully build your binary files and start thinking about the details of the deploying stage, utilities such
as chrpath, patchelf, strip, and 1dconfig may come handy.

266

CHAPTER 12 * LINUX TOOLBOX

chrpath

The chrpath command-line utility program (http://linux.die.net/man/1/chrpath) is used to modify the rpath
(DT_RPATH field) of the ELF binaries. The basic concept behind the runpath field is described in Chapter 7, under the
“Linux Runtime Library Location Rules” section.

The following details illustrate the use (Figure 12-29) as well as some of the limitations (Figure 12-30) of chrpath:

e Itcanbe used to modify DT_RPATH within its original string length.
e Itcan be used to delete the existing DT_RPATH field.
However, be cautious!
e Ifthe DT_RPATH string is initially empty, it cannot be substituted with new non-empty string.
e Itcanbe used to convert DT_RPATH to DT_RUNPATH.

e It cannot substitute the existing DT_RPATH string with the longer string.

milan@milan$ readelf -d demo_rpath | grep RPATH
0x0000000f (RPATH) Library rpath: [/home/milan/Desktop/Test]
milan@milan$ chrpath -r /home/john/Desktop/Test ./demo_rpath

./demo_rpath: RPATH=/home/milan/Desktop/Test) o o
./demo_rpath: new RPATH: /home/john/Desktop/Test 1) can modify the existing RPATH within the
milan@milanS readelf -d demo_rpath | grep RPATH original string length

0x0000000f (RPATH) Library rpath: [/home/john/Desktop/Test]
milan@milan$ chrpath -c ./demo_rpath
./demo_rpath: RPATH converted to RUNPATH 2) can convert RPATH to RUNPATH

./demo_rpath: RUNPATH=/home/john/Desktop/Test
milan@milan$ readelf -d demo_rpath | grep PATH

0x0000001d (RUNPATH) Library runpath: [/home/john/Desktop/Test]
milan@milan$ 3) can't make RPATH string longer
milan@milan$ chrpath -r /exceptionally/long/new/rpath/for/demo/purposes ./demo_rpath
./demo_rpath: RUNPATH=/home/john/Desktop/Test
new rpath '/exceptionally/long/new/rpath/for/demo/purposes' too large; maximum length 24
milan@milan$

milan@milan$ readelf -d demo_rpath | grep PATH

0x0000000f (RPATH) Library rpath: [/home/milan/Desktop/Test]
milan@milan$ chrpath -d demo_rpath chrpath can delete the existing RPATH
milan@milan$ readelf -d demo_rpath | grep PATH

milan@milan$

Figure 12-29. Using the chrpath utility to modify RPATH

267

http://linux.die.net/man/1/chrpath

CHAPTER 12 ' LINUX TOOLBOX

milan@milan$ 1s -alg

total 12

drwxrwxr-x 2 milan 4096 Apr 28 12:30 .

drwxr-xr-x 4 milan 4096 Apr 28 12:14 ..

-rw-rw-r-- 1 milan 95 Apr 28 12:15 main.cpp
milan@milan$ gcc main.cpp -o demo_no_rpath_set_initially
milan@milan$ readelf -d ./demo_no_rpath_set_initially

Dynamic section at offset 0xf28 contains 20 entries:

Tag Type Name /Value

0x00000001 (NEEDED) Shared library: [libc.so0.6]
0x0000000c (INIT) 0x80482b0

0x0000000d (FINI) 0x804849c¢

ox6ffffefs (GNU_HASH) 0x80481ac

0x00000005 (STRTAB) 0x804821c

0x00000006 (SYMTAB) 0x80481cc

0x0000000a (STRSZ) 74 (bytes)

0x0000000b (SYMENT) 16 (bytes)

0x00000015 (DEBUG) 0x0

0x00000003 (PLTGOT) 0x8049ff4

0x00000002 (PLTRELSZ) 24 (bytes)

0x00000014 (PLTREL) REL if the RPATH string is empty
0x00000017 (JMPREL) 0x8048298 (nonexistent) chrpath can not
0x00000011 (REL) 0x8048290 replace it with a new non-empty
0x00000012 (RELSZ) 8 (bytes) value

0x00000013 (RELENT) 8 (bytes)

ex6ffffffe (VERNEED) 0x8048270

ox6fffFfff (VERNEEDNUM) 1

ox6ffffffe (VERSYM) 0x8048266

0x00000000 (NULL) 0x0

milan@milan$ chrpath -c /home/milan/Desktop/ ./demo_no_rpath_set_initially
open: Is a directory

elf_open: Is a directory

milan@milans$

Figure 12-30. Limitations of the chrpath utility

patchelf

The useful patchelf (http://nixos.org/patchelf.html) command-line utility program is currently not part of
the standard repositories, but it is possible to build it from the source tarball. Simple, basic documentation is also
available.
This utility can be used to set and modify the runpath (DT_RUNPATH field) of the ELF binaries. The basic concept
behind the runpath field is described in the Chapter 7, under the “Linux Runtime Library Location Rules” section.
The simplest way of setting up the runpath is to issue a command like this one:

$ patchelf --set-rpath <one or more paths> <executable>

|
multiple paths can be defined,

separated by a colon (:)

268

http://nixos.org/patchelf.html

CHAPTER 12 LINUX TOOLBOX

The capabilities of patchelf of modifying the DT_RUNPATH field far exceed the chrpath capabilities of modifying
the DT_RPATH field, as it can modify the string value of DT_RUNPATH in any way imaginable (substituting with a shorter
or longer string, inserting multiple paths, erasing, etc.).

strip

The strip command-line utility program (http://linux.die.net/man/1/strip) can be used to eliminate all
the library symbols that are not needed in the process of dynamic loading. An illustration of the strip effects was
demonstrated in Chapter 7, under the “Exporting the Linux dynamic library symbols” section.

ldconfig

In Chapter 7 (devoted to the Linux runtime library location rules), I indicated that one of the ways (albeit not the
highest priority) to specify the paths where the loader should look for libraries at runtime is through the use of
ldconfig cache.

The 1dconfig command-line utility program (http://1linux.die.net/man/8/1dconfig) is typically executed as
the very last step of a package installation procedure. When a path containing the shared library is passed as input
argument to ldconfig, it searches the path for the shared libraries, and updates the set of files it uses for bookkeeping:

e Thefile /etc/1d.so.conf containing the list of folders it standardly scans

e Thefile /etc/1d.so.cache file, which contain the ASCII textual list of all libraries found
throughout the scans of variety of paths that were passed as input argument

Runtime Analysis Tools

The analyses of runtime issues may benefit by using the tools such as strace, addr21ine, and especially GNU
debugger (gdb).

strace

The strace (http://1linux.die.net/man/1/strace) command-line utility program tracks down the system calls
made by the process as well as the signals received by the process. It can be helpful in figuring out the runtime
dependencies (i.e., not only load-time dependencies for which the 1dd command is suitable). Figure 12-31 illustrates
the typical strace output.

269

http://linux.die.net/man/1/strip
http://linux.die.net/man/8/ldconfig
http://linux.die.net/man/1/strace

CHAPTER 12 ' LINUX TOOLBOX

ilan@milan$ strace

xecve("./driver", ["./driver"], [/* 36 vars */]) = 0@

rk(e) = 0x80cfoo0

ccess("” fetc/1d.so.nohwcap”, F_OK) -1 ENOENT (No such file or directory)
map2(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, ©0) = 0xb7732000
ccess(" fetc/1d.so.preload”, R_OK) -1 ENOENT (No such file or directory)
pen(”../sharedLib/tls/1686/sse2/cmov/libmreloc.so"”, O_RDONLY|O_CLOEXEC) = -1 ENOENT (No
pen("../sharedLib/tls/1686/sse2/libmreloc.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such
pen(”../sharedLib/tls/1686/cmov/1libmreloc.so”, O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such
pen(”../sharedLib/tls/i686/1ibmreloc.so”, O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file
pen("../sharedLib/tls/sse2/cmov/libmreloc.so"”, O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such
pen(”../sharedLib/tls/sse2/libmreloc.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
pen("../sharedLib/tls/cmov/1libmreloc.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
pen("../sharedLib/tls/libmreloc.so"”, O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

such file or directory)
file or directory)

file or directory)

or directory)

file or directory)

pen("”..
pen("”..
pen("..

J/sharedLib/1i686/sse2/cmov/1ibmreloc.so"”, O_RDONLY|O_CLOEXEC) = -1 ENOENT (No
/sharedLib/i686/sse2/libmreloc.so”, O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such
/sharedLib/1686 /cmov/libmreloc.so”, O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such

such file or directory)
file or directory)
file or directory)

/sharedLib/1686/1libmreloc.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file
/sharedLib/sse2/cmov/libmreloc.so”, O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such
/sharedLib/sse2/libmreloc.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file
/sharedLib/cmov/libmreloc.so0", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file
/sharedLib/libmreloc.so", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\1\1\1\0\8\0\0\0\0\0\0\6\3\0\3\0\1\0\0\0\260\3\0\0004\0\0\0"...,
stat64(3, {st_mode=S_IFREG|0775, st_size=7727, ...}) =0

etcwd(" /home/milan/Desktop/Test/loadTimeRelocation/example2/driverApp”, 128) = 63
map2(NULL, 8216, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0xb77370860
map2(0xb7738000, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3,
lose(3) =0
pen(”../sharedLib/tls/i686/sse2/cmov/1libc.s0.6", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No
pen(”../sharedLib/tls/i686/sse2/libc.s0.6", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such
pen("../sharedLib/tls/i686/cmov/libc.s0.6", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such
pen(”../sharedLib/tls/1686/11bc.s0.6", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file
pen("../sharedLib/tls/sse2/cmov/1libc.s0.6", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such
pen(”../sharedLib/tls/sse2/1libc.so.6", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
pen(”../sharedLib/tls/cmov/1ibc.s0.6", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
pen("../sharedLib/tls/libc.so.6", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
pen("../sharedLib/1686/sse2/cmov/1libc.s0.6", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
pen(”../sharedLib/i686/sse2/1ibc.s0.6", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
pen("../sharedLib/i686 /cmov/libc.s0.6", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
pen("../sharedLib/i686/1ibc.s0.6", O_RDONLY|O_CLOEXEC) = -1 ENOENT (Mo such file or directory)
pen("../sharedLib/sse2/cmov/libc.s0.6", O_RDONLY|O_CLOEXEC) -1 ENOENT (No such file or directory)
pen("../sharedLib/sse2/1libc.s0.6", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
pen("../sharedLib/cmov/libc.s0.6", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
pen(”../sharedLib/1ibc.s0.6", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

pen(” /etc/1ld.so.cache”, O_RDONLY|O_CLOEXEC) = 3

stat64(3, {st_mode=S_IFREG|0644, st_size=70585, ...}) =0
map2(NULL, 76505, PROT_READ, MAP_PRIVATE, 3, ©) = 0xb7725000

or directory)
file or directory)
or directory)
or directory)

pen("..
pen("”..
pen("”..
pen(”..
pen(”..

512) = 512

8) = 8xb7738000

such file or directory)
file or directory)
file or directory)

or directory)

file or directory)

Figure 12-31. Using the strace utility

addr2line

The addr2line (http://linux.die.net/man/1/addr21ine) command-line utility program can be used to convert the
runtime address into information about the source file and the line number corresponding to the address.

If (and if only) the binary is built for debug (by passing the-g -00 compiler flags), using this command may be
very helpful when analyzing crash information in which the program counter address where the crash happened is
printed on the terminal screen as something like this:

#00 pc 0000d8cc6 /usr/mylibs/libxyz.so

270

http://linux.die.net/man/1/addr2line

CHAPTER 12 * LINUX TOOLBOX

Running the addr21line on such console output
$ addr2line -€ -f -e /usr/mylibs/libxyz.so 0000d8cc6
will result with output that may look like this:

/projects/mylib/src/mylib.c: 45

gdb (GNU Debugger)

The legendary GNU debugger tool known as gdb can be used to perform the runtime code disassembling. The advantage of
disassembling the code at runtime is that all the addresses have already been resolved by the loader, and the addresses are
for the most part final.

The following gdb commands can be useful during the runtime code disassembling:

o setdisassembly-flavor <intel | att>
e disassemble <function name>
The following two flags may come handy when invoking the disassemble command:

e The /1 flag requires that the assembler instructions be additionally shown in hexadecimal
notation (Figure 12-32).

(gdb) set disassembly-flavor intel
(qdb) disassemble /r main
Dump of assembler code for function main:

0x08048875 <+0>: 55 push ebp

0x08048876 <+1>: 89 e5 mov ebp,esp

0x08048878 <+3>: 83 e4 fo and esp,oxfffffffo

0x0804887b <+6>: 83 ec 20 sub esp,0x20

0x0804887e <+9>: c7 44 24 14 00 00 00 00 mov DWORD PTR [esp+0x14],0x0
0x08048886 <+17>: c7 44 24 04 00 00 00 00 mov DWORD PTR [esp+0x4],0x0
Ox0804888e <+25>: c7 04 24 5f 87 04 08 mov DWORD PTR [esp],0x804875T
Ox08048895 <+32>: e8 a6 fc ff ff call 0©x8048540 <dl_iterate_phdr@plt>
Ox0804889a <+37>: al 30 ad 04 08 mov eax,ds:0x804a030

0x0804889f <+42>: 83 co 01 add eax,0x1

0x080488a2 <+45>: 89 44 24 18 mov DWORD PTR [esp+0x18],eax
0x080488a6 <+49>: 8b 45 o8 mov eax ,DWORD PTR [ebp+0x8]
0x080488a9 <+52>: 89 44 24 04 mov DWORD PTR [esp+0x4],eax
0x080488ad <+56>: 8b 44 24 18 mov eax,DWORD PTR [esp+0x18]
0x080488b1 <+60>: 89 04 24 mov DWORD PTR [esp],eax

0x080488b4 <+63>: e8 a7 fc ff ff call 0x8048560 <initialize@plt>
0x080488b9 <+68>: B89 44 24 14 mov DWORD PTR [esp+0x14],eax
0x080488bd <+72>: bgs f8 8b 04 08 mov eax,0x8048bf8

Ox080488c2 <+77>: 8b 54 24 14 mov edx ,DWORD PTR [esp+0x14]
0x080488c6 <+81>: 89 54 24 Oc mov DWORD PTR [esp+0xc],edx

Figure 12-32. Using gdb to show the disassembled code combined with hex values of instructions

e The /mflagintersperses the assembler instructions with the C/C++ lines of code (if available),
as shown in Figure 12-33.

271

CHAPTER 12 ' LINUX TOOLBOX

(gdb) disassemble /m main
Dump of assembler code for function main:
117 {
0x08048875 <+0>: push ebp
0x08048876 <+1>: mov ebp,esp
0x08048878 <+3>: and esp,oxfffffffo
0x0804887b <+6>: sub esp,0x20
118 int t = 0;
0x0804887e <+9>: mov DWORD PTR [esp+0x14],0x0
119 dl_iterate_phdr(header_handler, NULL);
Ox08048886 <+17>: mov DWORD PTR [esp+0x4],0x0
0x0804888e <+25>: mov DWORD PTR [esp],0x804875f
0x08048895 <+32>: call 0x8048540 <dl_iterate_phdr@plt>
120
121 int first = shlibNonStaticAccessedAsExternVariable + 1;
Ox0804889a <+37>: mov eax,ds:0x804a030
Bx0804889f <+42>: add eax,0xl
Ox080488a2 <+45>: mov DWORD PTR [esp+0x18],eax
122 t = initialize(first, argc);
0x080488a6 <+49>: mov eax,DWORD PTR [ebp+0x8]

Figure 12-33. Interspersed (assembly and source code) disassembly flavor

To combine these two flags, type them together (i.e., /1m) instead of separately (i.e., /r /m), as shown in
Figure 12-34.

(gdb) disassemble /mr main
Pump of assembler code for function main:
117 {
0x08048875 <+0>: 55 push ebp
Ox08048876 <+1>: 89 e5 mov ebp,esp
0x08048878 <+3=: 83 e4 fO and esp,Ooxfffffffo
0x0804887b <+6>: 83 ec 20 sub esp,0x20
118 int t = 0;
0x0804887e <+9>: Cc7 44 24 14 00 00 00 00 mov DWORD PTR [esp+0x14],0x0
119 dl_iterate_phdr(header_handler, NULL);
0x08048886 <+17>: c7 44 24 04 00 00 00 00 mov DWORD PTR [esp+Ox4],0x0
0x0804888e <+25>: Cc7 04 24 5f 87 04 08 mov DWORD PTR [esp],0x804875f
0Xx08048895 <+32>: e8 a6 fc ff ff call 0x8048540 <dl_iterate_phdr@plt>
120
121 int first = shlibNonStaticAccessedAsExternVariable + 1;
0x0804889a <+37>: al 30 ad 04 08 mov eax,ds:0x804a030
0x0804889f <+42>: 83 co 01 add eax,0x1
0x080488a2 <+45>: 89 44 24 18 mov DWORD PTR [esp+0x18],eax

Figure 12-34. Combining /r and /m disassembly flags

272

CHAPTER 12 LINUX TOOLBOX

Static Library Tools

The vast majority of tasks related to the static libraries can be performed by the archiver ar utility. By using ar, you
may not only combine the object files into the static library, but also list its contents, remove individual object files,
or replace them with the newer version.

ar

The following simple example illustrates the usual stages of using the ar tool. The demo project is comprised of four
source files (first.c, second.c, third.c, and fourth.c) and one export header file that can be used by the client
binaries (shown in following five examples).

first.c

#include "mystaticlibexports.h"

int first function(int x)

{
}

return (x+1);

second.c

#include "mystaticlibexports.h"

int fourth function(int x)

{
}

third.c

return (x+4);

#include "mystaticlibexports.h"

int second function(int x)

{
}

return (x+2);

Jourth.c

#include "mystaticlibexports.h"

int third function(int x)

{
}

return (x+3);

273

CHAPTER 12 LINUX TOOLBOX

mystaticlibexports.h

#pragma once

int first function(int x);
int second function(int x);
int third function(int x);
int fourth function(int x);

Let’s assume that you have the object files created by compiling each of the source files:
$ gcc -Wall -c first.c second.c third.c fourth.c

The following screen snapshots illustrate the various stages of dealing with the static library.

Creating the Static Library

Running ar -rcs <library name> <list of object files> combines the specified object files into the static
library (Figure 12-35).

milan@milan$ ar -rcs libmystaticlib.a first.o second.o third.o fourth.o
milan@milan$ 1s -alg
total 48

drwxrwxr-x 2 milan 4096 Dec 25 11:37 .

drwxrwxr-x 5 milan 4096 Dec 25 10:48 ..

-rw-rw-r-- 1 milan 78 Dec 25 10:36 first.c

-rw-rw-r-- 1 milan 864 Dec 25 11:35 first.o

-rw-rw-r-- 1 milan 79 Dec 25 10:36 fourth.c

-rw-rw-r-- 1 milan 868 Dec 25 11:35 fourth.o

-rWw-rw-r-- 1 milan 3854 Dec 25 11:37 libmystaticlib.a
-rw-rw-r-- 1 milan 124 Dec 25 10:37 mystaticlibexports.h
-rw-rw-r-- 1 milan 79 Dec 25 10:35 second.c

-rw-rw-r-- 1 milan 868 Dec 25 11:35 second.o

-rw-rw-r-- 1 milan 78 Dec 25 10:35 third.c
-rw-rw-r-- 1 milan 864 Dec 25 11:35 third.o
milan@milan$ file libmystaticlib.a
libmystaticlib.a: current ar archive

Figure 12-35. Using ar to combine object files to static library

Listing the Static Library Object Files

Running ar -t <library name> prints out the list of the object files carried by the static library (Figure 12-36).

milan@milan$ ar -t libmystaticlib.a
first.o

second.o

third.o

fourth.o

milan@milan$

Figure 12-36. Using ar to print out the list of static library’s object files

274

CHAPTER 12 * LINUX TOOLBOX

Deleting an Object File from the Static Library

Let’s say that you want to modify the file first.c (to fix a bug, or simply to add extra feature) and for the time being
you don’t want your static library to carry the first.o object file. The way to delete the object file from the static
libraryistorunar -d <library name> <object file to remove> (Figure 12-37).

milan@milan$ ar -t libmystaticlib.a
first.o

second.o

third.o

fourth.o

milan@milan$ ar -d libmystaticlib.a first.o
milan@milan$ ar -t libmystaticlib.a
second.o

third.o

fourth.o

milan@milan$

Figure 12-37. Using ar to delete an object file from static library

Adding the New Object File to the Static Library

Let’s say that you are happy with the changes you made in the file first.c and you have recompiled it. Now you
want to put the newly created object file first.o back into the static library. Running ar -r <library name>
<object file to append> basically appends your new object file to the static library (Figure 12-38).

milan@milan$ cat first.c
#include <stdio.h>
#include "mystaticlibexports.h"

int first_function(int x)

printf("%s\n", __ FUNCTION_);
return (x+1);

milan@milan$ gcc -Wall -I../staticLib -c first.c
milan@milan$ ar -r libmystaticlib.a first.o
milan@milan$ ar -t libmystaticlib.a

second.o

third.o

fourth.o

first.o

milan@milan$

Figure 12-38. Using ar to add new object file to static library
Please notice that the order in which the object files reside in the static library has been changed. The new file has

been effectively appended to the archive.

275

CHAPTER 12 LINUX TOOLBOX

Restoring the Order of Object Files

If you insist on your object files appearing in the original order that existed prior to your code changes, you may
correct it. Running ar -m -b <object file before> <library name> <object file to move> accomplishes the
task (Figure 12-39).

milan@milan$ ar -t libmystaticlib.a
second.o

third.o

fourth.o

first.o

milan@milan$ ar -m -b second.o libmystaticlib.a first.o
milan@milan$ ar -t libmystaticlib.a
first.o

second.o

third.o

fourth.o

milan@milan$

Figure 12-39. Using ar to restore the order of object files within the static library

276

CHAPTER 13

Linux How To’s

The previous chapter provided a review of the useful analysis utilities available in Linux, so now is a good moment
to provide an alternative view of the same topic. This time the focus will not be on the utilities per se, but rather on
showing how some of the most frequently performed tasks can be completed.

There is typically more than one way to complete an analysis task. For each of the tasks described in this chapter,
alternative ways of completing the task will be provided.

Debugging the Linking

Probably the most powerful aid in debugging the linking stage is the use of the LD_DEBUG environment variable
(Figure 13-1). It is suitable for testing not only the build process but also the dynamic library loading at runtime.

milan@milan$ LD_DEBUG=help cat
Valid options for the LD_DEBUG environment variable are:

libs display library search paths

reloc display relocation processing
files display progress for input file
symbols display symbol table processing
bindings display information about symbol binding
versions display version dependencies
scopes display scope information

all all previous options combined
statistics display relocation statistics
unused determined unused DSOs

help display this help message and exit

To direct the debugging output into a file instead of standard output
a filename can be specified using the LD_DEBUG_OUTPUT environment variable.
milan@milan$

Figure 13-1. Using the LD_DEBUG environment variable to debug linking

277

CHAPTER 13 LINUX HOW TO’S

The operating system supports a predetermined set of values to which LD_DEBUG may be set before running the
desired operation (build or execution). The way to have them listed is to type

$ LD_DEBUG=help cat

As with any other environment variable, there are several ways to set the value of LD_DEBUG:
e Immediately, on the same line from which the linker is invoked

e Once for the lifetime of terminal shell

$ export LD _DEBUG=<chosen_option>

which can be reversed by
$ unset LD DEBUG

e From within the shell profile (such as .bashrc) file, setting it for each and every terminal
session. Unless your daily job is to test the linking process, this option is probably not the most
optimal one.

Determining the Binary File Type

There are a few simple ways to determine the binary type:

e The file utility (among the wide variety of file types it can handle) provides probably the
simplest, quickest, and most elegant way to determine the nature of binary file.

e readelf ELF header analysis provides, among other details, information about the binary file
type. Running

$ readelf -h <path-of-binary> | grep Type
will display one of the following choices:

e EXEC (executable file)

e DYN (shared object file)

e REL (relocatable file)

In the case of static libraries, the REL output will appear once for each of the object files carried
by the library.

e objdump EFL header analysis may provide similar analysis with a bit less detailed report. The
output of this command

$ objdump -f <path-of-binary>

will have a line containing one of the following values:
e EXEC_P (executable file)

e DYNAMIC (shared object file)

e No type indicated, in the case of an object file

In the case of a static library, an object file will appear once for each of the object files carried
by the library.

278

CHAPTER 13 ' LINUX HOW TO’S

Determining the Binary File Entry Point

Determining the binary file entry point is a task that varies in complexity from the very simple (in the case of
executable files) to the somewhat more involved (determining the entry point of the dynamic library at runtime), both
of which will be illustrated in this section.

Determining the Executable Entry Point

The entry point of executable (i.e., the address of the first instruction in the program memory map) can be
determined by either

e readelf ELF header analysis, which provides, among other details, information about the
binary file type. Running

$ readelf -h <path-of-binary> | grep Entry
will display a line looking somewhat like this:
Entry point address: Ox<address>

e objdump EFL header analysis, which may provide the similar analysis with a bit less detailed
report. The output of this command

$ objdump -f <path-of-binary> | grep start
will displ.ne looking somewhat like this:

start address Ox<address>

Determining the Dynamic Library Entry Point

When the entry point of a dynamic library is looked for, the investigation is not as straightforward. Even though it
is possible to use one of the previously described methods, the provided information (typically a low-valued hex
number, such as 0x390) is not particularly useful. Given the fact that the dynamic library is mapped into the client
binary process memory map, the library's true entry point may be determined only at runtime.

Probably the simplest way is to run the executable that loads the dynamic library in the gnu debugger. If the
LD_DEBUG environment variable is set, the information about the loaded library will be printed out. All you need to do
is to set the break point on the main() function. This symbol is very likely to exist regardless of whether the executable
was built for debugging or not.

In cases when the dynamic library is linked in a statically aware fashion, by the time the program execution
reaches the breakpoint there, the loading process will already be completed.

In cases of runtime dynamic loading, probably the easiest approach is to redirect the massive screen printout to
the file for visual inspection later on.

Figure 13-2 illustrates the method that relies on the LD_DEBUG variable.

279

CHAPTER 13 ' LINUX HOW TO’S

milan@milan$ LD_DEBUG=files gdb -q ./driver

3226:
3226: file=libreadline.so0.6 [0]; needed by gdb [0]
3226: file=libreadline.so0.6 [0]; generating link map
3226: dynamic: 0xb775bb88 base: 0xb7726000 size: 0x00039de4
3226: entry: 0xb7730efe phdr: 0xb7726034 phnum: 7
3226: °

o]

<

Reading symbols from /home/milan/driverApp/driver...done.
(gdb) b main
Breakpoint 1 at 0x804864f: file driver.c, line 28.

(gdb) r
Starting program: /home/milan/driverApp/driver
3229:
3229: file=libtinfo.so0.5 [0]; needed by /bin/bash [0]
3229: file=libtinfo.s0.5 [0]; generating link map
Q
O
3229: °
3229: file=libmreloc.so [0]; needed by /home/milan/driverApp/driver [0]
3229: file=1libmreloc.so [0]: generating link map
3229: dynamic: 0xh7fdof20 [base: 6xb7fdg8eee| size: ©x00002018
3229: entry: 0xb7fd8390 phdr:|0xb7fd8634 phnum: 7
3229: \
3229:
o Please notice that
o entry - base = 0x390,
o which is the value read out

by readelf from the library binary

Breakpoint 1, main (argc=1, argv=0xbffff344) at driver.c:28
28 dl_1iterate_phdr(header_handler, NULL);

(gdb) set disassembly-flavor intel

(gdb) disassemble 0xb7fds390

Dump of assembler code for function __do_global_dtors_aux:

0xb7fd8390 <+0>: push ebp

0xb7fd8391 <+1>: mov ebp,esp

Oxb7fd8393 <+3>: push esi

0xb7fd8394 <+4>: push ebx

Oxb7fd8395 <+5>: call oxb7fd8447 < 1i686.get pc thunk.bx>

Figure 13-2. Determining the dynamic library entry point at runtimeList Symbols

List Symbols

The following approaches may be followed when trying to list the symbols of executables and libraries:
e nmutility
e readelf utility
In particular,

e Alist of all visible symbols may be obtained by running

$ readelf --symbols <path-to-binary>

280

CHAPTER 13 ' LINUX HOW TO’S

e Alist of only the symbols exported for dynamic linking purposes may be obtained
by running

$ readelf --dyn-syms <path-to-binary>
e objdump utility

In particular,

e Alist of all visible symbols may be obtained by running
$ objdump -t <path-to-binary>

e Alist of only the symbols exported for dynamic linking purposes may be obtained
by running

$ objdump -T <path-to-binary>

List and Examine Sections

There are several ways of obtaining the information about the binary sections. The quickest and most rudimentary
insight can be obtained by running the size command. For a more structured and more detailed insight, you can
typically rely on tools like objdump and/or readelf, the latter being specialized strictly in the ELF binary format.
Typically, the mandatory first step is to list all the sections present in the binary file. Once such insight is obtained,
the content of a specific segment is examined in detail.

Listing the Available Sections
The list of sections of the ELF binary file can be obtained by one of the following methods:

e readelf utility
$ readelf -S <path-to-binary>
e objdump utility

$ objdump -t <path-to-binary>

Examining Specific Sections

By far the most frequently examined sections are the ones containing the linker symbols. For that reason, a wide
variety of tools has been developed to address this specific need. For the same reason, even though it belongs under
the broad category of examining the sections, the paragraph describing the symbols extraction has been presented
first as a separate topic.

281

CHAPTER 13 LINUX HOW TO’S

Examining the Dynamic Section

The dynamic section of the binary (the dynamic library in particular) contains plenty of interesting information.
Listing the contents of this particular section may be accomplished by relying on one of the following:

e readelf utility

$ readelf -d <path-to-binary>
e objdump utility

$ objdump -p <path-to-binary>

Among the useful pieces of information that may be extracted from dynamic section, here are the ones that are
extremely valuable:

e Thevalues of DT_RPATH or DT_RUNPATH fields
e The value of the dynamic library SONAME field
e Thelist of required dynamic libraries (DT_NEEDED field)

Determining Whether Dynamic Library is PIC or LTR

If the dynamic library is built without the -fPIC compiler flag, its dynamic section features the TEXTREL field, which
otherwise would not be present. The following simple script (pic_or_1tr.sh) can help you determine whether the
dynamic library was built with -fPIC flag or not:

if readelf -d $1 | grep TEXTREL > /dev/null; \
then echo "library is LTR, built without the -fPIC flag"; \
else echo "library was built with -fPIC flag"; fi

Examining the Relocation Section

This task may be accomplished by relying on the following:
e readelf utility

$ readelf -r <path-to-binary>
e objdump utility

$ objdump -R <path-to-binary>

Examining the Data Section

This task may be accomplished by relying on the following:
e readelf utility

$ readelf -x <section name> <path-to-binary>

e objdump utility

$ objdump -s -j <section name> <path-to-binary>

282

CHAPTER 13 ' LINUX HOW TO’S

List and Examine Segments

This task may be accomplished by relying on the following:
e readelf utility

$ readelf --segments <path-to-binary>
e objdump utility

$ objdump -p <path-to-binary>

Disassembling the Code

In this section, you will examine different approaches to disassembling the code.

Disassembling the Binary File

The best tool for this particular task is the objdump command. In fact, this is probably the only case in which readelf
does not provide a parallel solution. In particular, the . text section may be disassembled by running

$ objdump -d <path-to-binary>
Additionally, you may specify the printout flavor (AT&T vs. Intel).
$ objdump -d -M intel <path-to-binary>

If you want to see the source code (if available) interspersed with the assembly instructions, you may run the
following:

$ objdump -d -M intel -S§ <path-to-binary>

Finally, you may want to analyze the code in a given section. Other than the .text section, which is notorious for
carrying code, some other sections (.plt, for example) can contain source code.

By default, objdump disassembles all the sections carrying code. To specify the individual section to disassemble,

use -j option:

$ objdump -d -S -M intel -j .plt <path-to-binary>

Disassembling the Running Process

The best way is to rely on the gdb debugger. Please refer to the previous chapter’s section devoted to this
wonderful tool.

283

CHAPTER 13 LINUX HOW TO’S

Identifying the Debug Build

It seems that the most reliable way to recognize whether the binary has been built for debug (i.e., with the -g option)
is to rely on the readelf tool. In particular, running

$ readelf --debug-dump=line <path-to-binary>

will provide non-empty output in the case of debug version of the binary file.

Listing Load-time Dependencies

To list the set of shared libraries on which an executable (application and/or shared library) depends on at load time,
please take a closer look at the discussion devoted to the 1dd command (in which both the 1dd method and a safer
method based on the objdump) have been mentioned).

In a nutshell, running 1dd

$ 1dd <path-to-binary>

will provide the complete list of dependencies.
Alternatively, relying on objdump or readelf to examine the dynamic section of the binaries is a bit safer
proposition, which comes at the cost of providing only the first level of dependencies.

$ objdump -p /path/to/program | grep NEEDED
$ readelf -d /path/to/program | grep NEEDED

Listing the Libraries Known to the Loader

To list all the libraries whose runtime paths are known and available to the loader, you may rely on the ldconfig
utility. Running

$ ldconfig -p

will print the complete list of libraries known to the loader (i.e., currently present in the /etc/1d.so. cache file)
together with their respective paths.

Consequently, searching for a particular library in the entire list of libraries available to the loader can be
accomplished by running

$ ldconfig -p | grep <library-of-interest>

Listing Dynamically Linked Libraries

As opposed to the tasks listed so far in this chapter, this particular task has not been mentioned in the context of the
binary analysis tools. The reason is simple: the binary file analysis tools are of little use at runtime when the runtime
dynamic library loading happens. Tools such as 1dd do not cover the dynamic libraries loaded at runtime by the call to
dlopen() function.

The following methods will provide the complete list of dynamic libraries loaded. The list includes both the
libraries dynamically linked as statically aware as well as the libraries dynamically linked at runtime.

284

CHAPTER 13 ' LINUX HOW TO’S

strace Utility

Calling strace <program command line>is a useful method for listing the sequence of system calls among which
open() and mmap() are the most interesting for us. This method reveals the complete list of loaded shared
libraries. Whenever a shared library is mentioned, typically the few output lines below the mmap () call reveals
the loading address.

LD_DEBUG Environment Variable

Given its flexibility and wide array of choices, this option is always on the list of tools for tracking down everything
related to the linking/loading process. For this particular problem, the LD_DEBUG=files option may provide plenty of
printouts carrying the excessive information about the libraries dynamically loaded at runtime (their names, runtime
paths, entry point addresses, etc.).

/proc/<ID>/maps File

Whenever a process runs, the Linux operating system maintains a set of files under the /proc folder, keeping track of
the important details related to the process. In particular, for the process whose PID is NNNN, the file at location
/proc/<NNNN>/maps contains the list of libraries and their respective load addresses. For example, Figure 13-3 shows
what this method reports for the Firefox browser.

milan@milan$ ps -ef | grep firefox
milan 15536 14480 8 22:57 pts/o 00:00:07 fusr/lib/ /
milan 15596 14480 0 22:58 pts/o 00:00:00 grep --color=auto
milan@milan$ cat /proc/15536/maps

a2c00000-a32dOOEOO rw-p OAOOAEOO 0O:00
a2e00000-a2f00000 rw-p 0POOEOEOO 0O:00
azffcovo-azffdeece ---p 00000000 00:00
a2ffdeeo-a37fdeee rw-p 00000000 00:00
a37fdeee-a37fe0od ---p 0OOOOOOO OO:00
a37fe000-a3ffe000 rw-p 00000000 00:00
a3ffe000-a3fffoe0 ---p 00000000 0O:00
a3fffeo0-a47ffoeee rw-p 00000000 00:00
a47ffo00-34800000 ---p 00000000 0O:00
a4800000-a5100000 rw-p 00000000 00:00

[cNcBcRclolNoNolNolclol

29964000-a999¢c000 r-xp 0000OOOO 08:01 7868984 Jusr/1lib/i386-1linux-gnu/libcroco-0.6.s
a999c000-a999doee ---p 00038000 08:01 7868984 Jusr/1ib/1386-linux-gnu/libcroco-0.6.s0
s
s

=]

a999do00-a999feee r--p 00038000 08:01 7868984 Jusr/1ib/1386- linux-gnu/libcroco-0.6.s0.
a999f000-a99a0000 rw-p 0003a000 08:01 7868984 Jusr/1ib/1386-1inux-gnu/1libcroco-0.6.so0.
a99a0000-a99d7000 r-xp 00000000 08:01 7869354 Jusr/1ib/1386-1inux-gnu/librsvg-2.s0.2.3
a99d7000-a399d8000 r--p 00036000 08:01 7869354 Jusr/1ib/i386-1inux-gnu/1librsvg-2.50.2.36.1

a99d8000-a99d9000 rw-p 00037000 08:01 7869354 Jusr/1ib/1386- linux-gnu/librsvg-2.50.2.36.1
a99d9000-a39a00000 r--p 00000000 08:01 9568812 fusr/share/xul-ext/ubufox/chrome/ubufox. jar

e

3.0.
3.0.
3.0.
3.0.
6.1

Figure 13-3. Examining /proc/<PID>/maps file to examine process memory map

285

CHAPTER 13 LINUX HOW TO’S

REMARK 1:

A potential small problem may be that certain applications complete quickly, not leaving enough time to
examine the process memory map. The simplest and quickest solution in this case would be to start the process
through the gdb debugger and put a breakpoint on the main function. While the program execution stays blocked on
the breakpoint, you will have unlimited time to examine the process memory map.

REMARK 2:
If you are sure that only one instance of the program is currently being executed, you can eliminate the need to look
for the process PID by relying on the pgrep (process grep) command. In the case of Firefox browser, you would type

$ cat /proc/ pgrep firefox”/maps

Isof Utility

The 1sof utility analyses the running process and prints out in the standard output stream the list of all files opened
by a process. As stated in its man page (http://1linux.die.net/man/8/1sof), an open file may be a regular file, a
directory, a block special file, a character special file, an executing text reference, a library, a stream, or a network file
(Internet socket, NFS file, or UNIX domain socket).

Among the broad selection of file types it reports being open, it also reports the list of dynamic libraries loaded
by the process, regardless of whether the loading was performed statically aware or dynamically (by running
dlopen at runtime).

The following snipped illustrates how to get the list of all shared libraries opened by the Firefox browser shown
in Figure 13-4:

$ 1sof -p “pgrep firefox’

milan@milan:~/Desktops ps -ef | grep firefox

milan 3463 2625 10 20:59 pts/3 00:00:01 fusr/lib/ /

milan 3506 2625 0O 20:59 pts/3 00:00:00 grep --color=auto
milan@milan:~/Desktop$ lsof -p 3463 | grep "\.so"

firefox 3463 milan mem REG 8,1 458376 7867630 Jusr/lib/firefox/libnssckbi

firefox 3463 milan mem REG 8,1 394592 7867626 Jfusr/lib/firefox/libfreebl3

firefox 3463 milan mem REG 8,1 22080 7344057 /1ib/1386-1inux-gnu/libnss_dns-2.15
firefox 3463 milan mem REG 8,1 268144 7867915 fusr/lib/firefox/libsoftokn3
firefox 3463 milan mem REG 8,1 161096 7867492 fusr/lib/firefox/libnssdbm3
firefox 3463 milan mem REG 8,1 239248 7868934 Jusr/1lib/i386-1inux-gnu/libcroco-0.6 .3.0.1
firefox 3463 milan mem REG 8,1 227972 7869354 fusr/lib/i386-1linux-gnu/librsvg-2 .2.36.1

(=]

o

o

o

o

(]
firefox 3463 milan mem REG 8,1 985712 7869397 fusr/lib/i386-1linux-gnu/libstdc++ .6.0.16
firefox 3463 milan mem REG 8,1 30684 7344054 /1ib/1386-1inux-gnu/librt-2.15
firefox 3463 milan mem REG 8,1 13946 7344862 [1ib/1386-1inux-gnu/libdl-2.15
firefox 3463 milan mem REG 8,1 124663 7344852 [1ib/1386-1inux-gnu/libpthread-2.15
firefox 3463 milan mem REG 8,1 5408 7865724 fusr/lib/i386-1inux-gnu/libgthread-2.8 .0.32€0.4
firefox 3463 milan mem REG 8,1 9624 7867962 [usr/lib/firefox/libmozalloc
firefox 3463 milan mem REG 8,1 13604 7867057 fusr/lib/firefox/libplds4
firefox 3463 milan mem REG 8,1 17700 7867631 fusr/lib/firefox/libplc4
firefox 3463 milan mem REG 8,1 134344 7344053 /1lib/i386-1inux-gnu/ld-2.15

milan@milan:~/Desktop$s

Figure 13-4. Using the Isof utility to examine process memory map

Note that 1sof provides the command line option of running the process examination periodically. By specifying
the examination period you may catch the moments in which the runtime dynamic loading and unloading happens.

286

http://linux.die.net/man/8/lsof

CHAPTER 13 ' LINUX HOW TO’S

When running 1sof with the -r option, the periodic process examination goes on in an endless loop, requiring
the user to press Ctrl-C to terminate. Running 1sof with the +r option has the effect of 1sof terminating when no
more open files are detected.

Programmatic Way

It is also possible to write code so that it prints out the libraries being loaded by the process. When application code
incorporates calls to the d1_iterate phdr() function, its printouts at runtime may help you determine the complete list of
shared libraries that it loads as well as the extra data associated with each library (such as the loaded library start address).

To illustrate the concept, demo code comprised of a driver app and two simple dynamic libraries has been
created. The app's source file is shown in in the following example. One of the dynamic libraries is dynamically linked
statically aware, whereas the other library is dynamically loaded by invoking the dlopen() function:

#define _GNU_SOURCE

#include <link.h>

#include <stdio.h>

#include <dlfcn.h>

#include "sharedLibiFunctions.h"
#include "sharedLib2Functions.h"

static const char* segment type to string(uint32_t type)

switch(type)
case PT_NULL: /7 0
return "Unused";
break;
case PT_LOAD: /1
return "Loadable Program Segment";
break;
case PT_DYNAMIC: /72
return "Dynamic linking information";
break;
case PT_INTERP: /13
return "Program interpreter”;
break;
case PT_NOTE: /] 4
return "Auxiliary information";
break;
case PT_SHLIB: /15
return "Reserved";
break;
case PT_PHDR: /1 6
return "Entry for header table itself";
break;
case PT_TLS: /17
return "Thread-local storage segment";
break;
// case PT_NUM: // 8 /* Number of defined types */
case PT_LOOS: // 0x60000000
return "Start of 0S-specific”;
break;

287

CHAPTER 13 LINUX HOW TO’S

//

//
//
//
//

}

static const char* flags to string(uint32_t flags)

{

288

case PT_GNU_EH_FRAME: // 0x6474€550
return "GCC .eh_frame_hdr segment";
break;

case PT_GNU_STACK: // 0x6474e551
return "Indicates stack executability";
break;

case PT_GNU_RELRO: // 0x6474e552
return "Read-only after relocation”;

break;
case PT_LOSUNW: // ox6ffffffa
case PT_SUNWBSS: // ox6ffffffa
return "Sun Specific segment";
break;

case PT_SUNWSTACK: // ox6ffffffb
return "Sun Stack segment";

break;
case PT_HISUNW: /] Ox6Fffffff
case PT_HIOS: /1 ox6fffffff
case PT_LOPROC: // 0x70000000
case PT_HIPROC: /] ox7fffffff
default:

return "???";

}

switch(flags)

case 1:
return "--x";
break;

case 2:
return "-w-";
break;

case 3:
return "-wx";
break;

case 4:
return "r--";
break;

case 5:
return "r-x";
break;

case 6:
return "rw-";
break;

case 7:
return "rwx";
break;

/* End of 0S-specific */
/* Start of processor-specific */
/* End of processor-specific */

}

CHAPTER 13

default:
return "???";
break;

}

static int header handler(struct dl phdr info* info, size t size, void* data)

{

int

int j;
printf("name=%s (%d segments) address=%p\n",
info->dlpi_name, info->dlpi_phnum, (void*)info->dlpi_addr);
for (j = 0; j < info->dlpi_phnum; j++) {
printf("\t\t header %2d: address=%10p\n", j,
(void*) (info->dlpi addr + info->dlpi phdr[j].p vaddr));
printf("\t\t\t type=0x%X (%s),\n\t\t\t flags=0x%X (%s)\n",
info->dlpi phdr[j].p_type,
segment_type to string(info->dlpi phdr[j].p type),
info->dlpi_phdr[j].p_flags,
flags to_string(info->dlpi phdr[j].p_flags));

}
printf("\n");
return 0;

main(int argc, char* argv[])

// function from statically aware loaded library
sharedLibiFunction(argc);

// function from run-time dynamically loaded library
void* pLibHandle = dlopen("libdemo2.so", RTLD GLOBAL | RTLD NOW);
if(NULL == pLibHandle)

printf("Failed loading libdemo2.so, error = %s\n", dlerror());
return -1;

}

PFUNC pFunc = (PFUNC)dlsym(pLibHandle, "sharedLib2Function");
if(NULL == pFunc)

{

printf("Failed identifying the symbol \"sharedLib2Function\"\n");
dlclose(pLibHandle);
pLibHandle = NULL;
return -1;
}
pFunc(argc);
if(2 == argc)
getchar();
if(3 == argc)
d1_iterate_phdr(header handler, NULL);
return 0;

LINUX HOW TO’S

The central place in this code example belongs to the call to the d1_iterate phdr() function. This function
essentially extracts the relevant process mapping information at runtime and passes it to the caller. The caller is
responsible for providing the custom implementation of the callback function (header _handler() in this example).
Figure 13-5 shows what the produced screen printout may look like.

289

CHAPTER 13 ' LINUX HOW TO’S

milan@milan$./driverApp 1 2 | grep -A 20 libdemo

name=../sharedLib1/1
header

header
header
header
header
header
header

name=../sharedLib2/1
header

header
header
header
header
header

header

milan@milan$

1.s0 (7 segments) address=0xb77adooe
0: address=0xb77adoee
type=0x1 (Loadable Program Segment),
flags=0x5 (r-x)
1: address=0xb77aefoc
type=0x1 (Loadable Program Segment),
flags=0x6 (rw-)
2: address=0xb77aef20
type=0x2 (Dynamic linking information),
flags=06x6 (rw-)
3: address=0xb77ad114
type=0x4 (Auxiliary information),
flags=0x4 (r--)
4: address=0xb77ad4fs
type=0x6474E550 (GCC .eh_frame_hdr segment),
flags=0x4 (r--)
5: address=0xb77adooo
type=0x6474E551 (Indicates stack executability),
flags=0x6 (rw-)
6: address=0xb77aefoc
type=0x6474E552 (Read-only after relocation),

2.s0 (7 segments) address=0xb77c3000
0: address=0xb77c3000
type=0x1 (Loadable Program Segment),
flags=0x5 (r-x)
1: address=0xb77c4foc
type=0x1 (Loadable Program Segment),
flags=0x6 (rw-)
2: address=0xb77c4f20
type=06x2 (Dynamic linking information),
flags=0x6 (rw-)
3: address=0xb77c3114
type=0x4 (Auxiliary information),
flags=0x4 (r--)
4: address=0xb77c34f8
type=0x6474E550 (GCC .eh_frame_hdr segment),
flags=0x4 (r--)
5: address=0xb77c3000
type=0x6474E551 (Indicates stack executability),
flags=06x6 (rw-)
6: address=0xb77c4foc
type=0x6474E552 (Read-only after relocation),

Figure 13-5. The programmatic way (relying on di_iterate_phdr() call) of examining the dynamic library loading
locations in the process memory map

Creating and Maintaining the Static Library

The majority of the tasks related to dealing specifically with the static libraries can be completed by using the Linux ar
archiver. Completing tasks such as disassembling the static library code or inspecting its symbols does not differ from
how it is performed on the applications or dynamic libraries.

290

CHAPTER 14

Windows Toolbox

The purpose of this chapter is to introduce the reader to the set of tools (utility programs as well as other methods)
for analyzing the contents of the Windows binary files. Even though the Linux objdump utility has some capabilities of
analyzing the PE/COFF format, the strict focus in this chapter will be on indigenous Windows tools, which are more
likely to be up to par with any changes to the PE/COFF format which may happen along the way.

Library Manager (lib.exe)

The Windows 32-bit Library Manager 1ib.exe comes as a standard part of the Visual Studio development tools
(Figure 14-1).

PERL I L L LR SRR TR S r

. Microsoft Silverlight B Visual Studio Command Prompt (2010) -
. Microsoft Silverlight 3 SDK Setting environment for using Microsoft Uisual Studio 2018 x86 tools. a
Microsoft Silverlight 4 SDK C:\Progran Piles\Microsoft Uisual Studio 18.8\UC>1lib.exe L
Microsoft SQL Server 2008 Microsoft (R)> Library Manager Uersion 10.00.48219.81 5
. Copyright (C> Microsoft Corporation. All rights reserved.
. Microsoft Sync Framework
. Microsoft Visual Studio 2010 usage: LIB [options] [files]
& Microsoft Visual Studio 2010 Docum options:
o0 Microsoft Visual Studic 2010 /DEFI:filenane]
Microsoft Windows SDK Tools ~ERRORREPORT :{NONE | PROMPT ! QUEUE :SEND>
. /EXPORT :symbo1l
Team Foundation Server Tools | ZEXTRACT : membe rname
Visual Studi I 1 #INGLUDE:s ymbho 1
r.sua Studio Teols . CLIBPATH:dor
{& Dotfuscator Software Services s/LIST[:filename]
@ o /LTCG
“F Manage Help Settings - ENU #MACHINE:{ARMIEBCiI1A64iMIPS iMIPS16 iMIPSFPU iMIPSFFU16 |
MFC-ATL Trace Tool SH4ITHUMBIX64 1X86>
3. 5 /NAME: f ilename
Py++ /NODEFAULTLIBL: 1ibraryl
. Visual Studio 2010 Remote Debu #NOLOGO
o . Z0UT :f ilename
e B Visual Studio Command Prompt /REMOVE: membernamne
R i - /SUBSYSTEM: (BOOT_I’IPPLICHI‘ION‘OONSOLE‘EFIJPPLICRUON‘
B Visual Studio x64 Cross Tools Co EFL_BOOT_SERUICE DRIVER [EFI ROH:EFI_RUNT IME_DRIVER!
NATIVE ! POSIX iWINDOWS iWINDOWSCEXL, HL.8H#1]
4 Back #UERBOSE
ZURI:=NO1
||:;___ arch programs and files 0 C:\Progran Files\Microsoft Uisual Studio 18.8\VC>_ I

Figure 14-1. Using the lib.exe utility

This utility program not only handles the static libraries much in the same way as its Linux counterpart
(archiver ar), but also plays a role in the domain of dynamic libraries as the tool that can create import libraries
(the collection of DLL symbols, file extension . 1ib) as well as the export files (capable of resolving the circular
dependencies, file extension .exp). Detailed documentation about 1ib.exe can be found at the MSDN site
(http://msdn.microsoft.com/en-us/library/7ykb2ks5f.aspx).

291

http://msdn.microsoft.com/en-us/library/7ykb2k5f(v=vs.71).aspx)

CHAPTER 14 © WINDOWS TOOLBOX

lib.exe as a Static Library Tool

In this section I will illustrate the typical roles in which the 1ib.exe tool may be really useful.

lib.exe as a Default Archiver Tool

When Visual Studio is used to create a C/C++ static library project, 1ib.exe is set as default archiver/librarian tool,
and the project settings’ Librarian tab is used to specify the command line options for it (Figure 14-2).

Solution Explorer
@ |8
~7) Solution 'mystaticlib' (1 project)
« [myﬂat'd'b] mystaticlib Property Pages
zd External Dependencies
4 & Header FI|E.S . Configuration: | Active(Debug) v | Platform: |Active(Win32)
h] mystaticlibexports.h
L Resource Files . Common Properties Qutput File
4 | Source Files 4 Configuration Properties Additional Dependencies
¢ first.cpp General Additional Library Directories
¢ fourth.cpp Debugging Suppress Startup Banner
&l second.cpp VC++ Directories Module Definition File Name
Co+ H
- Lh'::d';:p C/C++ Ignore All Default Libraries
L Readlfle: 4 |Librarian Ignore Specific Default Libraries
o Export Named Functions
Command Line L e Dt

Figure 14-2. Using lib.exe as default archiver

By default, building the static library project invokes 1ib.exe after the compilation stage, which happens without
any action required by the developer. However, this is not necessarily where the use of 1ib.exe must end. It is possible
torun lib.exe from the Visual Studio command prompt much in the same way as the Linux ar archiver is used to
perform the same kinds of tasks.

lib.exe as a Command Line Utility

In order to illustrate the use of 1ib.exe you will create a Windows static library fully matching the functionality of the
Linux static library used to demonstrate the use of ar in Chapter 10. The demo project is comprised of four source
files (first.c, second.c, third.c, and fourth.c) and one export header file which can be used by the client binaries.
These files are shown in the following five examples.

file: first.c
#include "mystaticlibexports.h”

int first function(int x)

{
}

return (x+1);

292

CHAPTER 14 © WINDOWS TOOLBOX

file: second.c
#include "mystaticlibexports.h"

int fourth function(int x)

{
}

file: third.c
#include "mystaticlibexports.h"

return (x+4);

int second_function(int x)

{
}

file: fourth.c
#include "mystaticlibexports.h"

return (x+2);

int third function(int x)

{
}

file: mystaticlibexports.h
#pragma once

int first function(int x);
int second function(int x);
int third function(int x);
int fourth function(int x);

return (x+3);

Creating a Static Library

Let’s assume that you compiled all four source files and that you have available four object files (first.obj, second.obj,
third.obj, and fourth.obj). Passing the desired library name to 1ib.exe (after the /0UT flag) followed by the list of
participating object files will have the effect of creating the static library, as shown in Figure 14-3.

293

CHAPTER 14 © WINDOWS TOOLBOX

c:\Users\milan\mystaticlib\mystaticlib\Debug>dir *.o0hj
Uolume in drive C has no label.

Uolume Serial Numbher is F4F?7-CFD4

Directory of c:\Usersi\milansmystaticlib\mystaticlib\Debug

12,25,2013 B6:48 PM 2,626 first.obj

12/25,2013 ©6:48 PM 2,635 fourth.obj

12/25/2013 ©6:48 PM 2,635 second.obj

12/25,2013 ©06:48 PM 2,626 third.obj
4 File<s> 18,522 hytes

A Dir(s> 132.602,314,752 hytes free

c:\Users\milan\mystaticlib\mystaticlib\Debhug>libh.exe /0UT:mystaticlib.lib
/NOLOGO first.obj second.obj third.obhj fourth.obj

c:\Users\milan\mystaticlib\mystaticlib\Debug>dir *.1lib
Uolume in drive C has no label.
Uolume Serial Number is F4F?-CFD4

Directory of c:\Users\milansmystaticlib\mystaticlib\Debug
12,25,2013 086:58 PM 11,148 mystaticlib.lib

1 File<(s> 11,140 bytes
B Dirds> 132,602,302.464 bytes free

c:\Users\milan\mystaticlib\mystaticlib\Debhug>

Figure 14-3. Using lib.exe to combine object files into a static library

In order to completely mimic the default settings supplied by Visual Studio when creating the static library
project, I've added the /NOLOGO argument.

Listing the Static Library Contents

When the /LIST flag is passed to 1ib.exe, it prints out the list of object files currently contained by the static library,
as shown in Figure 14-4.

c:\Users\milan\mystaticlib\mystaticlib\Debhug>lib.exe /LIST mystaticlib.lib
Microsoft (R> Library Manager Uersion 10.00.40219.61
GCopyright <C> Microsoft Corporation. All rights reserved.

first.obhj
second.obhj
third.obj
fourth.obhj

c:\Users\milan\mystaticlib\mystaticlib\Debug>

Figure 14-4. Using lib.exe to list the object files of static library

Removing Individual Object Files from the Static Library
The individual object files can be removed from the static library by passing the /REMOVE flag to 1ib.exe (Figure 14-5).

294

CHAPTER 14 © WINDOWS TOOLBOX

c:\Users\milan\mystaticlib\mystaticlib\Debug>lib.exe /REMOUE:first.obj mystaticlib.lib
Microsoft C(R> Library Manager Uersion 10.80.48219 .01
Copyright (C> Microsoft Corporation. All rights reserved.

c:\Users\milan\mystaticlib\mystaticlib\Debug>lib.exe /LIST mystaticlib.lib
Microsoft {R> Library Manager Uersion 10.00.40219.01
Copyright (C> Microsoft Corporation. All rights reserved.

fourth.obj
third.obj
second.obhj

c:\Users milan\mystaticlib\mystaticlib\Debug>

Figure 14-5. Using lib.exe to remove individual object file from static library

Inserting the Object File into the Static Library

The new object file may be added to the existing static library by passing the library filename followed by the list of
object files to be added. This syntax is very similar to the scenario of creating the static library, except that the /0UT
flag may be omitted (Figure 14-6).

c:\Users\mnilan\mystaticlib\mystaticlib\Debug>lib.exe /LIST mystaticlib._lib
Microsoft (R) Library Manager Uersion 10.00.40219.01
Copyright (C) Microsoft Corporation. All rights reserwved.

fourth.obj
third.obj
second.obj

c:\Users\milan\mystaticlib\mystaticlib\Debug>lib.exe mystaticlib.lib first.obj
Microsoft (R} Library Manager Uersion 10.00.40219.01
Copyright (C> Microsoft Corporation. All rights reserved.

c:\Users\milan\mystaticlib\mystaticlib\Debug>lib.exe ~LIST mystaticlib.lib

Microsoft <(R> Library Manager Uersion 10.80.48219.81
Copyright <(C> Microsoft Corporation. All rights reserved.

first.obj
second.obj
third.ohj
fourth.obj

c:\Usersi\nilan\mystaticlib\mystaticlib\Debug>

Figure 14-6. Using lib.exe to insert object file to static library

Extracting the Individual Object File from the Static Library

Finally, the individual object files may be extracted from the static library. In order to demonstrate it, I first purposefully
deleted the original object file (first.obj) whose extraction from the static library is planned to happen (Figure 14-7).

295

CHAPTER 14 © WINDOWS TOOLBOX

c:\Users\milan\mystaticlib\mystaticlib\Debug>dir *.o0bj
Uolume in drive C has no label.

Uolume Serial Number is F4F7-CFD4
Directory of c:\Userssmilan‘mystaticlib\mystaticlib\Debug

12,25,2013 B6:59 PM 2,626 first.ohj

12,25,2013 ©6:58 PM 2,635 fourth.obhj

12,25,2013 B6:58 PM 2,635 second.obhj

12,25,2013 B6:58 PM 2,626 third.ohj
4 Pile(s> 10,522 hytes

A Dird(s)> 132,601,.217.024 hytes free
c:\Users\milan\mystaticlib\mystaticlib\Debhug>del first*_.obj
c:\Users\milan\mystaticlib\mystaticlib\Debug>dir *.o0bhj

Uolume in drive C has no label.
Uolume Serial Number is F4F7-CFD4

Directory of c:\Users\milanmystaticlib\mystaticlib\Debuy

12/25,2013 B6:58 PM 2,635 fourth.obj

12,25,2013 ©B6:58 PM 2,635 second.ohj

12,25,2013 B6:58 PM 2. 826 third.obj
3 Filed(s> 7.896 bytes

@ Dir(s> 132.601,221.120 bytes free

c:\Users\milan\mystaticlib\mystaticlib\Debug>libh.exe /LIST mystaticlib.lib
Microsoft (R)> Library Manager Uersion 10.00.40219.01
Copyright <(C> Microsoft Corporation. HAll rights reserved.

first.obj
second.obhj
third.obj
fourth.obhj

c:\Users\milan\mystaticlib\mystaticlib\Debhug>1lib.exe /EXTRACT:first.obj

mystaticlib.lib
Microsoft (R)> Library Manager Uersion 10.00.460219.081
Copyright (C> Microsoft Corporation. HAll rights reserved.

c:\Users\milan\mystaticlib\mystaticlib\Debug>dir *.o0bj
Uolume in drive C has no label.

Uolume Serial Number is F4F7-CFD4
Directory of c:\Users\milan‘mystaticlibsmystaticlib\Debug

12,25,2813 B6:59 PM 2,626 first.ohg

12,25,2013 B6:58 PM 2,635 fourth.obj

12,25,2013 B6:58 PM 2,635 second.ohj

12,25,2013 B6:58 PM 2,626 third.ohj
4 Piled(s> 10,522 hytes

@ Dird(s)> 132,601,217,.024 bytes free

c:\Users\milan\mystaticlib\mystaticlib\Debug>

Figure 14-7. Using lib.exe to extract an individual object file from the static library

lib.exe in the Realm of Dynamic Libraries (Import Library Tool)

lib.exe is also used to create the DLL import library (.1ib) file and export file (.exp) based on the available export
definition file (.def). When working strictly within the Visual Studio environment, this task is typically automatically
assigned to 1ib.exe. A far more interesting scenario happens when the DLL is created by a third-party compiler
which does not create the corresponding import library and export file. In such cases, 1ib.exe must be run from the
command line (i.e., the Visual Studio command prompt).

296

CHAPTER 14 © WINDOWS TOOLBOX

The following example illustrates how 1ib.exe can be used to create the missing import libraries after the cross
compiling session in which MinGW compiler run on Linux produced the Windows binaries, but did not supply the
needed import libraries (Figure 14-8).

A:sMilanFFMpegWin3d2Build>dir *.def
Uolume in drive ¥ is UBOX_UBoxShared
Uolume Serial Mumber is 9AE7-B879

Directory of X¥:\WinFFMpegBuiltOnLinux

B2,/14,2613 11:51 AN 7.812 avcodec-53.def
P2,14,2613 11:51 AN 115 avdevice-53.def
82/14-2813 11:51 AM 5,187 avfilter—-2.def
82-14-2813 11:51 AM 5,119 avformat-53.def
02/14-2813 11:51 AN 4,762 avutil-51.def
02/14-2013 11:51 AN 232 postproc-51.def
82-14-2813 11:51 AM 155 swresample—8.def
B2/14-2013 11:51 AN 7.884 suscale-2.def
8 File 586 bytes

(s> 29,
A Dirds) 465.880,082,.432 bytes free
A:\MilanFFMpegWin32Build>1ib /machine:¥86 /def :avcodec—-53.def Aout:avcodec.lib

Microsoft (R> Library Manager Uersion 10.80.40219.61
Copyright (C)> Microsoft Corporation. All rights reserved.

Creating library avcodec.lib and object avcodec.exp
R:\MilanFFMpegWin32Build>1lib /machine:¥B86 /def:avdevice-53.def sout:avdevice.libh

Microsoft <(R)> Library Manager Uersion 10.80.40219.61
Copyright (C> Microsoft Corporation. All rights reserved.

Creating library avdevice.lib and object avdevice.exp
%:\MilanFFMpegWin32Build>1lib /machine:¥86 ~sdef:avfilter-2.def Jout:avfilter.lib

Microsoft (R> Library Manager Uersion 10.88.48219.81
Copyright <C> Microsoft Corporation. All rights reserved.

Creating library avfilter.lib and obhject avfilter.exp
B:\MilanFFMpegWin32Build>1lib /machine:¥86 /def:avformat-53.def sout:avformat.lib

Microsoft <(R)> Library Manager VUersion 10.80.40219.81
Copyright <(C)> Microsoft Corporation. All rights reserved.

Creating library avformat.lib and ohject avformat.exp
4:s\MilanFFMpegWin32Build>1ib /machine:¥86 ~sdef:avutil-51.def sout:avutil.lib
Microsoft <R> Library Manager Uersion 10.80.40219.061
Copyright <C> Microsoft Corporation. All rights reserved.

Creating library avutil.lib and object avutil.exp

{:\MilanFFMpegWin32Build>1lib /machine:¥86 ~/def:-postproc-51.def Aout:postproc.lib

Microsoft (R)> Library Manager Uersion 10.00.46219.01
Copyright (C> Microsoft Corporation. All rights reserved.

Creating library postproc.lib and object postproc.exp
{:\MilanFFMpegWin32Build>1ib /machine :¥86 /def :swresample-B.def sout:swresample.
1lib
Hicrosoft (R> Library Manager Uersion 10.80.40219.61
Copyright {C> Microsoft Corporation. All rights reserved.

Creating library swresample.lib and object swresample.exp
#:\MilanFFMpegWin32Build>1ib /machine:¥86 /def:swscale—-2.def sout:swscale.lib
Microsoft (R)> Library Manager Uersion 10.80.40219.61
Copyright <C> Microsoft Corporation. All rights reserved.

Creating library swscale.lib and object swscale.exp

K :i\MilanFFMpegWin32Build>

Figure 14-8. Using lib.exe to create an import library based on DLL and its definition (.DEF)_file

297

CHAPTER 14 © WINDOWS TOOLBOX

dumpbin Utility

The Visual Studio dumpbin utility (http://support.microsoft.com/kb/177429) is for the most part the Windows
equivalent of Linux objdump utility, as it performs the examination and the analysis of the important details of
executable, such as exported symbols, sections, disassembling the code (.text) sections, list of object files in static
library, etc.

This tool is also a standard part of the Visual Studio package. Similar to the previously described 1ib tool, it is
standardly run from the Visual Studio Command Prompt (Figure 14-9).

@ Visual Studio Command Prompt (2010) oG-/

Setting environment for using Microsoft Uisual Studio 2018 xB6 tools. -

C:“Program Files“\Microsoft Uisual Studio 18.8“UC>dumpbin
Microsoft (R> COFF/PE Dumper Version 10.00.48219.81
Copyright (C> Microsoft Corporation. All rights reserved.

m

usage: DUMPBIN [options] [files]

options:

/ALL

/ARCHIVEMEMBERS
/CLRHEADER

/DEPENDENT S

/DIRECTIVES
/DISASML:{BYTES iNOBYTES>» 1
/ERRORREFORT = {NONE : PROMPT : QUEUE i SEND>
+EXPORTS

/FP0O

+HEADERS
/IMPORTS[:filename]
/LINENUMBERS
/LINKERMEMBERL:<112>1
/LOADCONFIG

/0UT:filename

/PDATA

/PDBPATHL :VERBOSE]
/RANGE:vaMin[.,vaMax]
/RAUDATAL: {HONEI1I2I4IB}[#11
/RELOCATIONS
/SECTION:name

/SUMMARY

/SYMBOLS

/TLS

/UNWINDINFO

C:“Program Files“\Microsoft Uisual Studio 18.8~UC> e

Figure 14-9. Using the dumpbin utility

The typical tasks described in the following sections can be completed by running dumpbin.

Identifying the Binary File Type

When run without the extra flags, dumpbin reports the binary file type (Figure 14-10).

298

http://support.microsoft.com/kb/177429

CHAPTER 14 © WINDOWS TOOLBOX

:\Usersimilan\DLLUersioningDemo\UersionedDLL\Debug>dumpbhin dllmain.ohj
icrosoft (R> COFF/PE Dumper Uersion 10.80.40219.81
opyright (C> Microsoft Corporation. All rights reserved.

ump of file dllmain.obj
ile Type: COFF OBJECT
Summary

4 _hss

1F58 .debugsS
64 .debugST
41 .drectve
4 .rtcSIMZ
4 .rtcSTMZ
5D .text

c:\Users\milan\DLLUersioningDemo\UersionedDLL\Debhug>cd ..\..\Debug

c:\Users\milan\DLLUersioningDemo\Debug>dumpbin UersionedDLL.d1l1l
Microsoft (R> COFF/PE Dumper Uersion 10.080.40219 .61
Copyright <(C> Microsoft Corporation. All rights reserved.

Dump of file UersionedDLL.d1ll
IFile Type: DLL
Summary

1680 .data
1008 .idata
2000 .rdata
1080 .reloc
18868 .rsrc
4000 .text
10088 .texthss

c :\Users\milan\DLLUersioningDemo\Debug>dumpbin UersionedDLLClientApp.exe
Microsoft <(R> COFF/PE Dumper VUersion 10.00.40219.01
Copyright <(C> Microsoft Corporation. HAll rights reserved.

DPump of file UersionedDLLClientApp.exe
File Type: EXECUTABLE IMAGE
Summary

1080 .data
10808 .idata
2080 .rdata
1888 .reloc
1880 .rsrc
4008 .text
10080 .texthss

c:\Users\milan\DLLVersioningDemo\Debhug>

Figure 14-10. Using the dumpbin utility to identify binary file types

Listing the DLL Exported Symbols
Running dumpbin /EXPORTS <dll path> provides the list of exported symbols (Figure 14-11).

299

CHAPTER 14 © WINDOWS TOOLBOX

c :\Users\milan\DLLUersioningDemo\Debug>dumphin ~/EXPORTS UersionedDLL.dl1l
Microsoft (R> COFF/PE Dumper Uersion 10.608.468219.61
Copyright <(C)> Microsoft Corporation. All rights reserved.

Dump of file UersionedDLL.dll
[File Type: DLL
Section contains the following exports for UERSIONEDDLL.d1l1l

A0PBBABB characteristics
52B625A0 time date stamp Sat Dec 21 15:34:56 2613
B8.080 version
1 ordinal base
1 number of functions
1 number of names

ordinal hint RUA name
1 8 98311887 D11GetlUersion = EILT+1308(?D11GetVersionBRYGJPAU_DLLUER
SIONINFORERZ)
Summary
1888 .data
18008 .idata
2008 .rdata
1008 .reloc
1808 .rsrc
4000 .text

18008 .texthss

c:\Users\milan\DLLUersioningDemo\Debhug>

Figure 14-11. Using dumpbin utility to list exported symbols of DLL file

Listing and Examining the Sections

Running dumpbin /HEADERS <binary file path> prints out the complete list of sections present in the file (Figure 14-12).

300

CHAPTER 14 © WINDOWS TOOLBOX

:\Users\milan\DLLUersioningDemo\Debug>dumpbin /HEADERS UersionedDLL.dll
icrosoft <(R> COFF/PE Dumper Uersion 10.00.40219.61
opyright (C> Microsoft Corporation. All rights reserved.

ump of file VersionedDLL.dll
E signature found
[File Type: DLL

FILE HEADER VALUES
14C machine (x86>
7 number of sections
52B6?27A6 time date stamp Sat Dec 21 23:41:26 2013
@ file pointer to symbol tahle
B number of symbhols
E@ size of uptional header
2182 characteristics
Executable
32 bit word machine
DLL

OPTIONAL HEADER VALUES
10B magic # (PE32)
o)
o]
o
SECTION HEADER #1
.texthss name
10080 virtual size
1000 virtual address (100016000 to 10010FFF>
size of raw data
@ file pointer to raw data
@ file pointer to relocation table
g file pointer to line numbers
a
7]

numbher of relocations
number of line numbers
flags

Code

Uninitialized Data
Execute Read Write

SECTION HEADER #2
.text name
3CA3 virtual size
11600 virtual address (10011000 to 100814CA2>
3EBB size of raw data
480 file pointer to raw data (A00BB408 to OOBB41FF>
@ file pointer to relocation table
@ file pointer to line numbers
8 number of relocations
B number of line numbers
600AAA208 flags
Code
Execute Read

[E6BBB0A

[eele

Figure 14-12. Using dumpbin to list the sections

Once the section names are listed, the individual section info can be obtained by running
dumpbin /SECTION:<section name> <binary file path> (Figure 14-13).

301

CHAPTER 14 © WINDOWS TOOLBOX

c:\Users milan\DLLUersioningDemo:\Debhug>dumphin /SECTION:.text UersionedDLL.dl1l
Microsoft (R> COFF/PE Dumper Uersion 10.00.40219.01
Copyright <(C> Microsoft Corporation. All rights reserved.

Dump of file VUersionedDLL.d1ll
IFile Type: DLL

SECTION HEADER #2
-.text name
3CA3 virtual size
11088 virtual address (10011008 to 18814CA2>
3EAB size of raw data
400 file pointer to raw data (ABBPR400 to OBBB41FF)
B file pointer to relocation table
B file pointer to line numbers
B number of relocations
B number of line numbers
b0BBBB20 flags
Code
Execute Read

Summary
4008 .text

c :\Users\milan\DLLUersioningDemo\Debug>dumpbhin /SECTION:.data UersionedDLL.d1ll
Microsoft (R> COFF/PE Dumper Uersion 10.00.40219.01
Copyright (C> Microsoft Corporation. All rights reserved.

Dump of file VUersionedDLL.d1ll
IFile Type: DLL

SECTION HEADER #4
.data name
7CO virtual size
17080 virtual address (100170080 to 100177BF>
200 size of raw data
S5EAB file pointer to raw data (PPABBSEBD to VOBBSFFF)
B file pointer to relocation table
B file pointer to line numbers
A number of relocations
B number of line numbers
ICODPOB40 f lags
Initialized Data
Read Urite

Summary

1888 .data

c :\Users\milan\DLLUersioningDemo\Debug>

Figure 14-13. Using dumpbin to get detailed insight into a specific section

Disassembling the Code
Running dumpbin /DISASM <binary file path> provides the disassembled listing of the complete binary file (Figure 14-14).

302

Figure 14-14. Using dumpbin to disassemble the code

Identifying the Debug Build

CHAPTER 14 WINDOWS TOOLBOX
c:\Users\milan\DLLUersioningDemo\Debug>dumpbin /DISASM VersionedDLL.d1l1l
Microsoft (R> COFF/PE Dumper Uersion 10.080.46219.01
Copyright <(C> Microsoft Corporation. All rights reserved.

Dump of file VUersionedDLL.d1ll
File Type: DLL
10811888: CC int 3
18811881: CC int 3
18811882: CC int 3
18811883: CC int 3
18811884: CC int 3
BILT+B¢(_wcstok_s):
18011885: E9 l4 bA 60 88 Jmp _uwcstok_s
RILT+5(__wtoid:
1AA1188A: E9 F9? 6% 60 68 Jmp __uwtoi
RBILT+18<__ RIC_GetErrDesc):
1081168F: E9 2C 13 60 68 Jmp __RTC_GetErrDesc
BILT+15¢__malloc_dbg>:
108116814: E? E? 1E 660 68 Jmp __malloc_dhy
BRILT+20{@__security_check cook1e@4).
108116819: E? D2 2A 668 60 Jjmp @__security_check_cookieRP4
BILT+25¢(_IsDebuggerPresent(B):
10811681E: E? 29 2C 60 60 mp _IsDebuggerPresent8
BILT+38<¢ GetUserDePaultLanng@B).
10811823: E? 66 69 660 00 Jjmp _GetUserDefaultLangIDEO
CILT+35¢__RIC_Terminate>:
10011628: E? A3 1E 660 88 Jjmp __RTIC_Terminate
CILT+48¢{_4YideCharToMultiByte@32)>:
18081182D: E? 84 2C 00 @ Jmp _WideCharToMultiByte@32
PILT+45¢_D11MainB12):
16811832: E? 79 03 00 @8 Jmp _D11Main12
o]
o
e}
180116B4: E8 91 FA FF FF call PILT+325¢(_RIC_CheckEsp>
188116B%: 89 45 A4 mov dword ptr [ebp-5Chl.eax
188116BC: 8B F4 mowv esi.esp
188116BE: 8B 45 A4 mov eax.dvord ptyr [ebp-5Chl
1AR116C1: 50 push eax
188116C2: FF 15 38 83 61 10 call dvord pty [__imp wtoil
108116C8: 83 C4 64 add esp.4
18A116CB: 3B F4 cmp esi,esp
188116CD: E8 78 Fa FF FF call BILT+325¢(__ RTC_CheckEsp>
1868116D2: 8B 4D B8 mov ecx,dword ptr L[ebp+81]
1868116D5: 89 41 18 mov dword ptr [ecx+1Bhl,eax
188116D8: 8B 45 @8 mov eax,dword ptr [ebp+81
188116DB: C?7 V8 14 60 B8 B8 mov dword ptr [eax].14h
180116E1: 8B F4 nov esi,esp
180116E3: 8B 45 BC mowv eax,dword ptr L[ebp—-44hl
10A116E6: 58 push eax
108116E?7: FF 15 28 82 01 10 call dword ptr [__imp__FreeResourcel4]
188116ED: 3B F4 cmp esi,esp
o
O
O

The dumpbin utility is used to identify the debug version of a binary file. The indicators of a debug build vary depending

on the actual binary file type.

303

CHAPTER 14 © WINDOWS TOOLBOX

Object Files

Running dumpbin /SYMBOLS <binary file path> on the object files (*.0b7j) will report the object file built for debugging
as file of type COFF OBJECT (Figure 14-15).

\Users\milan\DLLVersioningDemo\UersionedDLL\Debug>dumpbin /SYMBOLS dllmain.obj
icrosoft (R)> COFF/PE Dumper Uersion 10.00.46219.81

opyright (C> Microsoft Corporation. All rights reserved.

ump of file dllmain.obj
ile Type: COFF OBJECT
gFF SYMBOL TABLE

@ BBABYD1B ABS notype Static i Bcomp.id
A1 APABBABA1L ABS notype Static | Bfeat.Bd
P2 PPPBRBBE SECT1 notype Static | .drectve
Section length 41, #relocs 8. #linenuns B, checksum 7]
Relocation CRC 600000888
85 B0PBRBBE SECT2 notype Static ! .debug$s
Section length 1E24, #irelocs 2, #linenums B, checksum a
Relocation CRC SEBBAGDY
A8 ABAARBAA SECT3 notype Static i .bss
Section length 4, #irelocs 8. #linenums B. checksum 7]
Relocation CRC B800DBBO
OB 90PBPBER SECT3 notype External | 7g_hModulePEIPAUHINSTANCE__BCA <
truct HINSTANCE__ * g_hModule>
BC 0POPEOBA SECT4 notype Static I .text
Section length 5D. #relocs 2, #linenums B, checksum ASF7AEGC, select
ion 1 <{pick no duplicates>
Relocation CRC D94D?8ES
BOF AAAAAAAA SECTS notype Static ! .debug$$
Section length 12C. #relocs 5. #linenums B. checksum B. select
ion 5 {pick associative Section Bx4)
Relocation CRC 638EBSAE
12 B00BPBBAB SECT4 notype External i _D1lMain@12
13 900BABAA SECI6 notype Static i .rtc$TMZ
Section length 4, #relocs 1, #linenums B, checksum B, select
ion 5 <pick associative Section Bx4>
Relocation CRC 4C2E11CC
16 000GOGOA SECT6 notype Static ! _RIC_Shutdown.»tc$THZ
17 0008AARA UNDEF notype (O External ' _RIC_Shutdown
18 000AARAA SECT? notype Static i .rtcSIMZ
Section length 4, #relocs 1. #linenums B, checksum B, select
ion 5 ¢pick associative Section Bx4)>
Relocation CRC 5D907A%E
1B 0000ABAA SECT? notype Static ! __RIC_InitBase.rtc$IMZ
E1c 0000068080 UNDEF notype <> External | _RIC_InitBase
1D PPABAPAB SECT8 notype Static ! “debugsT
Section length 64, #relocs @, #linenums B, checksum e

Relocation CRC APARPAABAA
String Table Size = Bx7B bytes
Summary

4 .bss

1F50 .debug$S
64 .debugST
41 .drectuve
4 .rtc$IMZ
4 .prtcSTHZ
5D .text

c:SUserssmilansDLLVersioningDemosVersionedDLLNDebug>

Figure 14-15. Using dumpbin to detect the debug version of the object file

The release version of the same file will be reported as file type ANONYMOUS OBJECT (Figure 14-16).

304

CHAPTER 14 © WINDOWS TOOLBOX

c \Users\mllan\DLLUers1on1ngl)emo\Uers10nedDLL\Release>dumpb1n /SYMBOLS dllmain.o
chrosoft (R> COFF/PE Dumper Uersion 10.60.408219.61

Copyright <(C)> Microsoft Corporation. All rights reserved.

Dump of file dllmain.obj

File Type: ANONYMOUS OBJECT

c:\Users\milan\DLLUersioningDemo\UersionedDLL\Re lease>

Figure 14-16. Indication of the release built of the object file

DLLs and Executables

The certain indicator that a DLL or executable file was built for debugging is the presence of . idata section in the
output of running the dumpbin /HEADERS option. The purpose of this section is to support the “edit and continue”
feature that is available in debug mode only. More specifically, to enable this option the /INCREMENTAL linker flag is
required and typically set for Debug and disabled for Release configuration (Figure 14-17).

305

CHAPTER 14 © WINDOWS TOOLBOX

c:\Users\milan\DLLUersioningDemo\Debug>dumpbin /HEADERS UersionedDLL.dll
Microsoft (R> COFF/PE Dumper Uersion 10.00.46219.061
Copyright <(C> Microsoft Corporation. All rights reserved.

Dump of file UersionedDLL.d1ll

PE signature found
File Type: DLL

FILE HEADER UALUES
14C machine {(x86>
? number of sections
52B697A6 time date stamp Sat Dec 21 23:41:26 2013
@ file pointer to symbol table
B numbher of symhols
E@ size of optional header
2182 characteristics
Executabhle
32 hit word machine
DLL

o/
o
0

SECTION HEADER #5
.idata name
9261 virtual size
18888 virtual address (18018888 to 18818960)
ABB size of raw data
6000 file pointer to raw data (B0BB6OBA to BBBB69FF)>
B file pointer to relocation table
B file pointer to line numbers
8 number of relocations
B number of line numhers
CAPPBB40 flags
Initialized Data
Read Write

000

Figure 14-17. Using dumpbin to detect the debug version of DLL

Listing the Load Time Dependencies

The complete list of the dependency libraries and the symbols imported from them may be obtained by running
dumpbin /IMPORTS <binary file path> (Figure 14-18).

306

CHAPTER 14

chrnsnft (R> COFF-/PE Dumper Uersion 10.00.40219.01
Copyright (C> Microsoft Corporation. All r»rights reserved.

Dump of file UVersionedDLL.d1l1
File Type: DLL
Section contains the following imports:

UERSION.d11
188183AC Import Address Table
108181F@ Import Name Tahle
B time date stamp
@ Index of first forwarder reference

E VerQuerylaluel

KERNEL32.d11
10018220 Import Address Table
10018064 Import Mame Table
B time date stamp
B Index of fiwst forwarder reference

4A5 SetUnhandledExceptionFilter
4D3 UnhandledExceptionFilter
165 FreeResource

29C GetlserDefaultLangID

354 LockResource

341 LoadResource

14E FindResourcel!

1C8 GetCurrentProcess

245 GetProcAddress

54D lstrlenfl

3B1 RaiseException

367 MultiByteToWideChar
388 IsDebuggerPresent
511 WideCharToMultiByte
162 FreeLibrary

2E? InterlockedCompareExchange
4B2 Sleep

2EC InterlockedExchange
CA DecodePointer

EA EncodePointer

USER32.d11
1881837C Import Address Table
188181CA Import Name Tabhle
B time date stamp
@ Index of first forwarder reference

333 wsprintfy

Figure 14-18. Using dumpbin to list loading dependencies

Dependency Walker

c:\Userssmilans\DLLUersioningDemos\Debug>dumpbin /IMPORTS UersionedDLL.d1l1

WINDOWS TOOLBOX

The Dependency Walker (a.k.a. depends . exe, see www.dependencywalker.com/) is the utility capable of tracking down
the dependency chain of loaded dynamic libraries (Figure 14-19). It is not only capable of analyzing the binary file

(in which case it parallels the Linux 1dd utility), but it also can perform the runtime analyses in which it can detect
and report the runtime dynamic loading. It was originally developed by Steve Miller, and was part of the Visual Studio

suite of tools up until the VS2005 version.

307

http://www.dependencywalker.com/

CHAPTER 14 © WINDOWS TOOLBOX

[« W —— - - | - -
L DependencyWiker— [depends.dll] = —
B2 File Edit View Options Profile Window Help
FH O R AELE S HFBREDMN
= (1§ DEPENDS.DLL » [P | Ordinal | Hint | Function | Entry Point |
(= 0§ KERNEL32.DLL
.. 1§ API-MS-WIN-CORE-RTLSUPPORT-L1-1-0.DLL =
3§ NTOLL.DLL
{05 KERNELBASE.DLL
(3§ API-MS-WIN-CORE-PROCESSTHREADS-L1-1-0.DLL
(35 API-MS-WIN-CORE-HEAP-L1-1-0.DLL E Ordinal # | Hint | Function | Entry Point
[C1§ API-MS-WIN-CORE-MEMORY-L1-1-0.DLL @ [100001)|NA | N/A 05000014 B0
15 API-MS-WIN-CORE-HANDLE-11-1-0.DLL @8 |200002)| N/A | N/A 0x00001724
- [J§ API-MS-WIN-CORE-SYNCH-L1-1-0.DLL - | @8 [3(0x0003)|N/A N/A 000001908
< —_— e] ; 08 |400004)| N/A N/A 0:00001D5C
@ | cmannncyl misa NIA nANNNTITON
* | Module File Time Stamp | Link Time Stamp | File Size | Attr. | Link Chech
(J5| API-MS-WIN-CORE-DEBUG-L1-1-0.DLL 11/29/201210:38p | 11/29/201210:39p 3072 | HA 00000ED
(J§| API-MS-WIN-CORE-ERRORHANDLING-L1-1-0.DLL 11/29/201210:38p | 11/29/201210:39p 3,072 | HA 0x0000DE
| 35| API-MS-WIN-CORE-FIBERS-11-1-0.DLL 11/29/201210:38p | 11/29/201210:39p 3,072 | HA 00000CO
i O8] API-MS-WIN-CORE-FILE-L1-1-0.DLL 11/29/201210:38p | 11/29/201210:39p 5120 | HA 0:000016

< m

Figure 14-19. Using the Dependency Walker utility

308

Index

A

addr2line command-line utility program, 270
Application binary interface (ABI), 64, 87
ar tool, 273

B

Binary code reuse
culinary analogy, 71
dynamic libraries (see Dynamic libraries)
expedition analogy, 72
legal analogy, 71
software design, 72
static libraries
object files, 53, 55
trivial method, 54
static vs. dynamic libraries (see Static vs.
dynamic libraries)
Binary file entry point
dynamic library entry point, 279
executable entry point, 279
Build time library location rules
DLLSs import library (.lib) file, 121
implicit referencing, 123
library’s path, 121
linker’s vs. human’s perception, 118
Linux build time library, 118
Linux dynamic library
dynamic library filename vs.
library name, 117
library soname embedded, 118
library vs. information, 117
Linux static library, 116
-L vs. -1 option, 119
#pragma comment, 122

C

chrpath command-line utility program, 267
Class factory mechanism, 92-93
Compiling stage
assembling
AT&T format, 15
demo project, 15
intel format, 17
binary contents, 20
code emission, 19
compilation process limitations
external variables, 28
function calls, 28
grand puzzle completion, 28
linking, 27
program’s memory map, 27
ELF format, 19
file function.c, 19
introductory definitions, 11
linguistic analysis, 14
objdump command, 20-21
object file properties, 26
optimization, 18
preprocessing, 13
related definitions, 12
terminal screen, 21, 23

D

Default archiver tool, 292
Dependency Walker, 307
Designing dynamic libraries
application binary interface
class factory mechanism, 92-93
complete ABI declaration, 92

309

INDEX

Designing dynamic libraries (cont.)
C-style functions, 92
namespaces, 94
standard C keyword, 92
symbols, 94

binary interface
ABI, 88
C++ issues, 88
templates, 91
variables initialization, 89
linking completion requirements, 109
symbols’ visibility
Linux symbols (see Linux dynamic
library symbols)
Windows symbols (see Windows dynamic
library symbols)
Designing dynamic library
address translation process, 138-139
client binary, 141
dynamic linker, 141
functions and variables, 140
Initialize() interface function, 142
Reinitialize() interface function, 142
Uninitialize() interface function, 142
assembly instructions, 137
data access instructions, 137
linker-loader coordination (see Linker-loader
coordination)

dl_iterate_phdr() function, 287, 289

DLL compiler flags, 86

DLL linker flags, 87

dlopen() function, 284, 287

dumpbin utility

binary file type, 298
debug build
DLLs and executables, 305
object files, 304
disassemble, 302
DLL Exported Symbols, 299
listing and examining, 300
load time dependency, 306
Visual Studio package, 297
Duplicate symbols
classes, functions
and structures, 155
C symbols, 156
C++ symbols, 156
main.cpp, 158
default handling
linker error, 160
local functions, 160-161
static library, 158-159
definition, 155

310

Dynamic libraries, 53, 57
ABI, 65
client application, 172, 176
demo project, 174-176
function call order, 173
linking order, 171, 173
priority zone, 170, 174
shlib_function(), 173, 176
binary file, 61
building process, 59
build time linking, 60
client application, 163
client binary symbol
client application, 169
duplicate name symbol, 167-168
priority zone, 166
static library symbol, 169
Visual Studio linker, 170
compartmentalized,
faster development, 236
creation
in Linux, 81
in Windows, 83
designing (see Designing dynamic libraries)
duplicate symbols (see Duplicate symbols)
dynamically Linked Library (.dll), 63
dynamic linking, 59
comparison, 113
runtime, 110-113
statically aware (Load-Time), 110
executable file
demo library source code, 238
libc.so, 237
main() function, 238
output, 238-239
export file (.exp), 63
import library (.lib), 63
Initialize() method, 163-164
linker weak symbol, 241
linking mode, 164
linking order, 165
linking stage, 161-162
loading time process, 61
load time linking, 62
namespace(s), 164
namespace inheritance, 185
non-exported symbol
client application, 179
components, 180
implementation paradigm, 180
priority zone, 176
shared library, 177-178
singleton class, 180-183

singleton instance, 184
solution, 184
unprioritized/noncompeting
code zone, 180
operating system, 56
PIC technique, 58
playing by trust approach, 60
plug-in model
architecture, 235
drill and bits, 233-234
exporting, 235
requirements, 234-235
priority zoning rules, 165
runtime dynamic linking
API functions, 111
build procedure, 110
Linux runtime dynamic loading, 111
pseudocode sequence, 111
Windows runtime dynamic loading, 112
runtime memory handling, 239
runtime quick substitution ability, 236
vs. shared libraries, 56
shlib_duplicate_function, 163
symbols, 61, 236
unique nature, 64
versioning
Linux dynamic library versioning schemes
(see Linux dynamic library versioning schemes)
major version code changes, 187
minor version code changes, 188
patch version, 188
Windows Dynamic Libraries Versioning
(see Windows dynamic libraries versioning)

Dynamic linking, 61

binary file types, 62
building process, 59
build time vs. runtime, 62

E

Executable entry point, 279

F

fPIC compiler flag, 81-82

G H

Global offset table (GOT), 151
GNU debugger, 271

LJ, K

Initialize() interface function, 142

L

ldconfig command-line utility program, 269
LD_DEBUG environment variable, 277
lib.exe
DLL import library, 296
static library tool (see Static library tool)
Visual Studio development tools, 291
Library location
build time library location rules (see Build time
library location rules)
end user runtime library, 116
-L and -R conventions, 132, 135
Linux runtime dynamic library location rules
default library paths, 131
ldconfig Cache, 129

INDEX

LD_LIBRARY_PATH environment variable, 128

operating versions, 131
preloaded library, 127
rpath, 127
runpath, 129
static and dynamic libraries, 115
windows runtime dynamic library
location rules, 131
Linker error, 83
Linker-loader coordination
limitations, 144
linker directives
ELF file format, 147
readelf/objdump tools, 147
.rel.dyn section, 144-145
relocation types, 148
LTR, 149
PIC
GOT, 151
implementation, 154
lazy binding, 152
load time relocation scheme, 150
pointer-to-pointer approach, 150
recursive chain of dynamic linking, 152
relocation sections, 144
Linking stage
all-at-once approach, 33
.bss disassemble, 35
definition, 29
disassembled output, 34
linker’s viewpoint, 35
objdump tool, 35
reference resolving
data memory variables, 30
problems, 31
program memory map, 30
relocation, 29
step-by-step approach, 32

311

INDEX

Linux dynamic library symbols
build time, 95
fvisibility Compiler Flag, 97
libdefaultvisibility.so, 96
library symbols, 96-97
visibility attributes, 98
Linux dynamic library
versioning schemes
Soname-based versioning scheme
softlink, 189-191
Soname safeguards, 192
technicalities, 192

symbol versioning scheme (see Linux symbol

versioning scheme)
Linux symbol versioning scheme
advantages, 195
initial version
build.sh, 202
client binaries, 204
ELF format support, 202
simple.c, 201
simple.h, 201
simpleVersionScript, 202
linker version script, 199
major version
ABI function behavior, 210
ABI function prototype, 214
minor version
client binary, 208
dynamic library symbols, 209
main.c, 207
older and newer app, 209
shared library, 208
simple.c, 206-207
simple.h, 206
simpleVersionScript, 207
symbol versioning mechanism, 196
symver assembler directive, 200
version scripts
linkage specifier support, 217
namespace support, 217
symbols export control, 216
symbol visibility control, 218
unnamed node, 217
version node, 216
version node naming rules, 216
wildcard support, 217
Linux tasks
binary file type, 278
data section, 282
debug build, 284
debug linking, 277
disassemble code, 283
dynamic library entry point, 279

312

dynamic library loading, 284
LD_DEBUG, 285
Isof utility, 286
/proc/<ID>/maps file, 285
programmatic way, 287
strace utility, 285

dynamic section, 282

ELF binary file, 281

executable entry point, 279

executables and libraries symbols, 280

loader, 284

load time dependency, 284

relocation section, 282

static library, 290

Linux toolbox

deploying stage
chrpath, 267
ldconfig, 269
patchelf, 268
strip, 269

file utility program, 243

1dd
limitations, 245
objdump, 245
readelf, 246
recursive search, 244

nm utility
mangled symbols, 247
$ nm -D <path-to-binary>, 246
$ nm <path-to-binary>, 246
recursively search, 247
symbol type, 246
unmangled symbols, 246

objdump
binary file sections, 249
disassemble code, 254
examine segments, 253
examine data section, 253
library dynamic section, 252
list all symbols, 250
list and examine section, 248
list dynamic symbol, 251
nm equivalent, 257
parse ELF header, 248
relocation section, 252

readelf
debug information, 265
dynamic section display, 263
dynamic symbols, 262
examine segments, 265
hex dump, 264
list and examine sections, 259
parsing ELF header, 257
relocation section, 263

runtime analysis tools
addr2line, 270
gdb, 271
strace, 269
size utility program, 243
static library tools
add object file, 275
ar tool, 273
creation, 274
delete object file, 275
object file list, 274
restore object file, 276
load_elf_binary function, 45
Load-time dependency, 244
Load time relocation (LTR), 57, 149

M, N

mmap() call, 285
Multitasking operating systems
abstractions, 1
binaries, compiler, linker, and loader, 7
memory hierarchy and caching
computer systems, 2
principle, 3
real-life analogy, 3
process memory division scheme, 6
virtual addressing, 5
virtual memory
guidelines, 3-4
implementation, 4

(0

objdump EFL header analysis, 278-279
open() call, 285

PQ

patchelf command-line
utility program, 268
Position independent code (PIC), 57
GOT, 151
implementation, 154
lazy binding, 152
load time relocation scheme, 150
pointer-to-pointer approach, 150
recursive chain of
dynamic linking, 152
/proc folder, 285
Program execution stages
entry point
calling conventions, 51
e_entry field, 49

INDEX

__libc_start_main() function, 50
main() function, 49
stack, 51
_start() function, 50
kernel role, 45
loader role
byte size, 48
dynamic loading, 47
program memory map, 48-49
sections vs. segments, 45
static building, 48
shell
child process, 44
new process memory map, 43-44
PATH environment, 43
sh, bash, and tcsh, 43
system() call, 45
Program’s lifetime stages
code writing, 10
compiling stage (see Compiling stage)
demo project, 10
executable file properties
main function, 37
object code, 37
section types, 38
structure, 37
symbol types, 40
initial assumptions, 9
linking stage (see Linking stage)

R

readelf ELF header analysis, 278-279
Reinitialize() interface function, 142
Runtime dynamic linking, 110

S, T

Statically aware (Load-Time)
dynamic linking, 110
Static vs. dynamic libraries
build procedure, 69
deployment dilemma scenarios, 68
ease of combining, 70
ease of converting, 70
impact on executable size, 69
import selectiveness criteria, 65
Integration with executable, 69
misc/other, 70
nature of binary, 69
portability, 69
pros and cons, 68
suitable for development, 70
whole archive scenario, 67

313

INDEX

Static libraries, 53
archiver tool, 75
64-bit Linux, 79-80
code implementation, 76
counterindication, 78
vs. dynamic library, 79
linking, 78
Linux creation, 75
modularity, 77
multimedia domain, 77
symbol visibility and uniqueness, 77
windows creation, 75
Static library tool
default archiver tool, 292
object files
creation, 293
extract, 295
insert, 295
listing, 294

remove individual object files, 294

types, 292
strace command-line
utility program, 269
strip command-line utility program, 269
sys_execve function, 45

314

UV

Uninitialize() interface function, 142

W, X,Y,Z
Windows dynamic libraries versioning
project resource file, 220
properties menu item, 221
querying and retrieving
brutal alternative, 229
DIllGetVersion function, 224
linking requirements, 223
VERSIONINFO structure, 223
Visual Studio editor, 221
Windows dynamic library symbols
dumpbin.exe, 104
“Export symbols” option, 100
extern “C’; 105

module-definition (.def) file, 106-108

Visual Studio, 101-103
Windows toolbox
Dependency Walker, 307

dumpbin utility (see dumpbin utility)

Library Manager (see lib.exe)

Advanced C and C++
Compiling

Milan Stevanovic

Apress

Advanced C and C++ Compiling
Copyright © 2014 by Milan Stevanovic

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material

is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6667-9
ISBN-13 (electronic): 978-1-4302-6668-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning

Lead Editor: Michelle Lowman

Developmental Editor: James Markham

Technical Reviewers: Nemanja Trifunovi¢, Ben Combee, Miroslav Risti¢

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf,
Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Jill Balzano

Copy Editor: Mary Behr

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm. com, or visit
www. springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales-eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www. apress . com. For detailed information about how to locate your book’s source code, go to waw. apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

The book is dedicated to Milena, Pavle, and Selina.

iii

Contents

About the AUROKcccccmiiiemmniesnsisss s a s s n s nnnnmnnnnnnn s Xv
About the Technical REVIEWErSusssssmsssassssasssssssssssssasssssssssnsssassssassssnsssassssassssnsssassssans xvii
Acknowledgments........cccumsssmmmsssnnmsssnnssssnnssssnnsssssnsssssnssssanssssanssssansssssnsssssnnssssnnssssnnnsssnnnsss Xix
1L L0 T Xxi
Chapter 1: Multitasking 0S BaSICScuusceumrmssssnnnmsssssnnnssssssnssssssssnsssssssssnssssssssnsssssssnnssssssans 1
USETUl ADSTFACLIONScocieicreeiicrise et 1
Memory Hierarchy and Caching Strategy..........cccceerriernnresnierssre s 2
VIrUAL MBIMOTY ...t sae s s sae s saesassaesae e saesaesaesa e e e e e e e na e saesaesaesaenaesaesassassnennsnnns 3
Virtual AAAreSSiNg ...c.cceceeseriersersessesses s s s s s e s e s s e s e s e e e s snssn s e s e s snsnnssnssnssn e nrannesnnnnnsnesnannnnnns 5
Process Memory DiviSiOn SCNEME.........ccouoviieriseresrssesnsssesssse s sss s e ssess s ssssssssssssssssssasens 6
The Roles of Binaries, Compiler, Linker, and LOAUET...........ccocvrerrerrerrersessensessessessesssssessassasssssassenns 7

B 1111 1T SRS 7
Chapter 2: Simple Program Lifetime Stagescccuemmmmmssmmnmnnssnnnmmmsssssnmmssssssssssssssssssssnns 9
INitial ASSUMPLIONSc.eeeeeeeecerece e s s e r e r e a e s renn e nr e en e snenrennennennennennannnnan 9
COUE WITEINGviueeererreseseseesssessssesessssesss s ssessssesse e s e se s sss e ssa s s e sa e sse s s e sne s ssessnsnssessnsessnnsnsens 10
Concept illustration: DEMO PrOJECTcccovrrerererreese e ns s nn s s 10

0] 101 SRS 11
INtroductory DEfiNItiONSc.coiviiececece e e a e nen 11
Related DEfiNItIONScococreririir s 12

The Stages 0f COMPIIING.......cccvrrererrerrererre s e re s ra s s e sae e s e sasaesas e sae e saenesaesasaesas e sae e sae e naesansenanneres 12
ODJECT File PIrOPEILIESc.ceccccccese e se e e e enes 26
Compilation Process LIMItAtIONSccccvverrerrrcreri e sere s resseres e ses s ssesesse s ssessssesaesessssassssassesassesassessssasasasaens 27

vii

CONTENTS

3 (] SRS 29
LiNKING STAQGES ...eeveereerereerererersersesersesessesessesassesassessssessesssssssssesassessssesssssssessssesssessesesssssssensssessssessssesassensesassensnsens 29
LINKEE'S VIBWPOINTceeveerecrersereesessesessesesesessesassessssssssssssesassessssessssesssssssssassesssessssesssssssssssesassessssesassessssasassansens 35

Executable File Properties..........ccvoviicerseisnses s ses s ses e s s ssssssssssssssssnssnssssssssnssssnnnns 37
Variety 0F SECHION TYPES.....ccceerereeerireriecri ettt e s e e s e AR e e e s Re e e s Re e e e snens e e s 38
A Variety Of SYMDOI TYPES....cccou et e e e e s e e e s e e s se e s Re e e sannnnn s 40

Chapter 3: Program Execution Stages......ccccuuemmmmmsssnnnmmssssssnsssssssssssssssssnssssssssssssssssnnssssss 43

Importance of the SREll ... renen 43

LT 0T I 45

LOAAEN ROIEeeceircirinicirt it 45
Loader-Specific View of a Binary File (Sections vS. SEgMENTS)........cccecvrerriererrereserenerereresessessssessssessesessesesaens 45
Program LOAAING STAQEcceevereerirererererereseraeseraesessesessesassesassessssessssessssassessssessesesssssssenassesassesassesassessssassenasaens 47

Executing Program Entry POInt ..ot 49
The Loader Finds the Entry POINt..........coecr et s 49
The Role 0f _Start() FUNCLION ... s a s r e s s s p s 50
The Role of __libc_start_main() FUNCHION ... s sn s 50
Stack and Calling CONVENTIONS ..o s a s e se e e a s p e nennnas 51

Chapter 4: The Impact of Reusing Conceptccuureemmmnsssnnnmmssssssssmsssssssssssssssssssssssssssnsss 53

STALIC LIDrariEsceveicirisciri s 53

DYNAMIC LIDFAIES ...coveeieeeeiiesese e s sss s sn s sne s s s sss s s sss s s sas s snsssssssnsnsnnens 56
Dynamic vS. SRAred LIDFAriS........ccoveercrerneseririreescsesse s ss s s s nsnsnnes 56
Dynamic Linking in MOre DEtail...........cccoceurrenenirnecirnee e s 59
Peculiarities of Dynamic LinKing 0N WiNAOWS..........cccovriienerenrnnencsesesesesesssesssessssssssssesssssssssssssssssssssssssssssssssaes 62
Unique Nature of DYNamiC LIDFArY.........ccocoerenerernenesissese s ssses s sssessssssssesssssssssssssssssssssssssssssssssassaes 64
Application Binary INtErface (ABI).........ccccureererersieseserrssesesesessesesessssssssesssssesssnns 64

Static vs. Dynamic Libraries Comparison POINtS.........ccccvvrvrvnnnnnnssessessesses s e e sessessenens 65
Differences in IMport SEIECHVENESS CHLBIIacceererererereriererrereeserseserseresersssessesessesessesassesessessssessssessessssssssaens 65
Deployment DIlEMMA SCENANIOS........cccererrereriererrersesereserersssessssersssessesssssssssesssessesessssssssssssessssessssessssessssassssssaens 68

Useful CompariSON ANAIOGIES.......cceererrerrerrerersessersessessesssssessessessssssssssssssssssssssssssssssssssssssessassassans 4l

The Conclusion: The Impact of Binary Reuse Concept.........ccocvvrvrververrssesses s 72

viii

CONTENTS

Chapter 5: Working with Static Librariescccccmnmnnmmssmnsmmimmmmsssmssssss s 75
Creating Static LIDrary ... sn s sn s sn s sn s sn e sn e sn e nnenn e nn 75
Creating LinUX STAtiC LIDFAIYccovriercrirnescsirs e sss e s sss s s s s sssssssssssssnsnnes 75
Creating @ Windows StatiC LIDFArycccccerirricrinrinrnnesisse s sesss s sessesessessssessssessesessssessesessessssessssessssesssssssens 75
USing the STatic LIDFary ..o ses e sesses s sassassassasssssssssssssssssassasssssassssnnns 76
Recommended USe CaSE SCENANOSuuurirrerismssissisissss s ssses 76
Static Libraries Tips and TrCKS.......ccceeriernrirerniers e se e sss e snssesnens 77
Potential for Losing the Symbol Visibility and UniQUENESS..........cccccvirrrcnrnnicncrnne e sesss e sessssssenes 77
Counterindicated USe Case SCENAMOS.........cvvurmrsisisisisisisisisisisisisisisssiss s ssees 78
Specific Rules of Linking STatic LIDFariescccveerernicrnscsesse e se s sssse s e ssssessssessssnnnes 78
Converting Static to Dynamic LIDIary ... s s sn e snsnens 79
Static Libraries I1SSUes 0N 64-bit LINUX ... 79

Chapter 6: Designing Dynamic Libraries: BasiCS......cccuvummmmmmmmmssassmmmssssssssssssssssssssssssssnssss 8 1

Creating the Dynamic LIDrary..........cciennicecnern s se s sesnens 81
Creating the Dynamic LiDrary in LINUX........ccouceeiereeeneeensnessnessssessssesssssssssssssssssessssesssssssssssssssssessssssssssssssssssssssens 81
Creating the Dynamic Library in WinQOWS.........ccccoeeieniennesnsesssesse s sssessssessssessssessssssssssssesssssssssesssssssssssnens 83

Designing Dynamic LIDraries.........ccvvrvrrninsinss s sn s e s e s sns s s ssssnnns 87
Designing the BiNary INTEraCeoveeeceerrereririrecsr e s nenr s 87
Designing the Application Binary INTErfacecococeereiesnnnescrrre s s 92
Controlling Dynamic Library Symbols’ VISIDlityc.coovereererninncnrnesescs e sesesss e sessssenes 94
Linking Completion REQUIrEMENTS..........ccceurreiererirrnescrirsesesesesse s se s sa s se s sessssssssesssnnss 109

Dynamic LiNKING MOUEScoccvvererierierirerstrser sttt se et se s sa s e sn s sa s s sns e ssassnssnssss s s 110
Statically Aware (Load-Time) DynamiC LiNKINGccccocvrerrrereerererereseresersessssessesessesessessssessssessesessssesssssssesasaens 110
RuNntime DYNAMIC LINKING.......cccvieeerereriertesereseresereseseraesersesessessssesassesssssssssssassassessssessenssssssssessssessssesssssssssasaens 110
Dynamic Linking Modes COMPATISONcccceeerererrererrereesersesersesessersssessessssesssssssssessssessesssssssssessssessssesssssssssasaens 113

Chapter 7: Locating the Libraries.........cccivunmmmmmmmnssmmmmmsssssnmmssssmmnsssssmsssssssssssssnnns 115

Typical Library Use Case SCENATIOScceververrerrersersersessessessesssssessessessessesssssessssssssssssssssssssssnes 115
Development USE CaSE SCENAII0........cccererererererererersersesersesersesessessssersesesssssssssassessssessesssssssssessssersssesssssssesasaens 115
End User Runtime USe Case SCENAII0 ..o ssssssssssssssens 116

ix

CONTENTS

Build Time Library LOCation RUIES..........cccvrerverrerrerrerserrerses st ses e e s e e snssnssnssssssssnsssssnsses 116
Linux Build Time Library LOCAtion RUIES.........ccecevuriererrereererrerereresersssessssessesssssssssessssessesssssssssessssessssesssssssssanaens 116
Windows Build Time Library LOCAtion RUIES..........ceccvereruerererererersersssessesessssessessssessssessesesssssssessssessssesssssssssnaes 120

Runtime Dynamic Library LOCation RUIESccccvercercrsrserer s e s 126
Linux Runtime Dynamic Library LOCation RUIESccoevereeiennierirserrs e ses e e s e s e sssssssesssnens 127
Windows Runtime Dynamic Library LOCation RUIESccceererniernnncnne s sessessssessssessssesnes 131

Linux Demo of Build Time and Runtime Conventions............ccocvcvennnnnnmnesnssssssssesessessssessenns 132

Chapter 8: Designing Dynamic Libraries: Advanced TOPICSccccurrrsssssssssssssnssssssssnsssssss 137

Why Resolved Memory Addresses Are @ MUST ... 137

General Problem of ResoIving REfEreNnCEScccvererererererres s ses s ssssss s sas s ssssasssssenses 138
Which Symbols Are Likely to Suffer from Address Translation?............cocevevrverrrernrenesenesesesesesessessesessesenes 140

Problems Caused by Address Translation.............ccocverersrsnsessssss s 140
Scenario 1: Client Binary Needs to Know the Address of Dynamic Library Symbols...........ccocereeenrernicncnennns 140
Scenario 2: Loaded Library No Longer Knows the Addresses of Its Own Symbolsccccceevnicnecncenenens 141

Linker-Loader CoOrdinationccccoveeenmnennsinssssssssse s s ss s s ss s sssssssssssssssssssnsssssesns 143
OVEIAIl STFAIEOYveveeecerereeererir e e s e e R et e A e R e e s e Re e e e e Re e e s e nrann s 143
L (1 144
LiNKEr DIir@CHVES QVEIVIBW........cueceeeerueeseresseesesessssesesesss s sesssse s e ssssssssesssssssssssssssssssssssssssssssssesssssssssssnsssssassaes 146

Linker-Loader Coordination Implementation TEChNIQUESccvceerirreerierieeriense e seesseenaens 149
Load Time RelOCAION (LTR).....ccverererererersersesersesesserssersesessesessessssessssessssessssssssssssessssessensssssssssssssessssesssnsssssanaens 149
Position Independent COAE (PIC)........ccveeruererererererierersersesersesessessssersssessesessesssssssssessssessesssssssssessssessssessssssssnanaens 150

Chapter 9: Handling Duplicate Symbols When Linking In Dynamic Librariescccuu. 155

Duplicate Symbhols Definitionccocvvrverininninsrrr s 155
Typical Duplicate SYMDOIS SCENANIOScccvereriererrereereresererersersssersssersesersesessessssesssessssessessssessssessssessesessssssaes 155

Duplicate Symbols Default Handlingcccvvrvrircscscs s 158
Duplicate Local SymboIS Are AIIOWE.........cccceeererieriricresiee e sse e sas e sss s sesessesnssessssessssessssssssssnnens 160

Duplicate Symbols Handling When Linking in Dynamic Librariesc.cccovenniennsesesessesennennes 161
General Strategies of Eliminating Duplicate SymbolS Problemscccovvernninencnnnesesessesesesesee e 164

Linker’s Criteria in the Approximate Algorithm of Resolving Dynamic Libraries’ Duplicate Symbols................ 165

CONTENTS

Analyses of Specific Duplicate Names CaSESccuverereerrrersrrsersrssssss s ssssssssssssssssasssssssssses 166
Case 1: Client Binary Symbol Collides with Dynamic Library ABI FUNCEONccoceeevevrererererreree e sereenenaens 166
Case 2: ABI Symbols of Different Dynamic Libraries COllEcccovverrererereriererieresrereseresesesessersssessesessesasaens 170
Case 3: Dynamic Library ABI Symbol Collides with Another Dynamic Library Local Symbol............cccceevernnnene 174
Case 4: Dynamic Library Non-exported Symbol Collides with Another Dynamic Library
NON-EXPOrted SYMDOL......ccviiieiirirri i —————————— 176

Final Remark: Linking Does Not Provide Any Kind of Namespace Inheritancecccc....... 185

Chapter 10: Dynamic Libraries Versioningccccussseessssssssssssssssssssssssssssssssssnsssssssssnsssss 187

Gradation of Versions and their Impact on Backwards Compatibility..........cccceevercrcercercnnnee 187
Major Version Code CRANGESc.orcerireruceniririse i ss s se s s s e p s snsn s 187
Minor Version Code ChanQgES.........cocc it se s e sa e a e s s s b e e b s n et sne e nanaen 188
PatCh VEISION ... 188

Linux Dynamic Library Versioning SChEMESc.ccovrmrnnminennnmnensssesssssesssssssssssssssssssssssssesns 188
Linux Soname-based Versioning SCREMEc.oveeceirirerenirnescseses e sesssnnss 188
Linux Symbol Versioning SCHEME..........ccccvurueierererneseriresesesessssesssessssssssessssssssesssassaes 195

Windows Dynamic Libraries VErsioningccccuevververnnsensensessessessessessessessessessesssssssssssssssssssses 218
DLL Version INFOrMALION ... 219
Specifying DLL Version INfOrmMation............cccverrerrererieresseresrersssessesessesessessssessssesssssssessssessssessesessssssssnsssssansens 220
Querying and Retrieving DLL Version INfOrmMation...........ccceeevererrererseresesesersesessessssessssesssssssessssessssesssssssesasaens 222

Chapter 11: Dynamic Libraries: Miscellaneous TOPICScuutruurrssssssssssssssssssssssssssnssnssnnss 233

g (U0 T 0 1 T o S 233
RUIES OF EXPOILING ..vvevreereeereerireeseseresersssessssessesessessssessssessssessessssessssesssssssessssssassesassessensssssssessssessssesssnsssensnsens 235
POPUIAr PIUG-iN ArCRITECIUIES......vecveeererereeereerersesesereseraesersesessesessesasessesessesasassassessssessessssssssessssesssnessensssenanaens 235

TIPS AN THCKS...cceiereririr s e s r s sn s e n e r e e e nn e nn e nn e nnnnnnnas 236
Practical Implications of Working with Dynamic LIDrariesccceovrernenniesnsessscsesesssessessssessssessssessessssens 236
L TE e L T LT L T S 237

Chapter 12: LINuX TOOIDOX .uuueuusssssssssssssssssssssssnssssssssssssssssssnsssssssssssssssnnnsssssssssssssnnnnnsssssss 243

QUICK INSIGNE TOOIS ... e e se s s e e s e 243
file ULIlITY PrOQraAMottt e e e e e b e b R e e e e n e e nennnis 243
SIZE ULIIITY PrOQram ...ttt s s e e s e bt e b et n e e ne e e e g nan s 243

xi

CONTENTS

Detailed ANAlYSIS TOOISc.cvverrerierrerrererse st se s sn e sa e n e e sn e n e sn e nn e nn e n s 244
oo 244
1 246
0] 114 248
7201 257
Deployment Phase TOOISccvcreerrennensinsisssses s se s s e s s e s s s sns s snssnssnsssnnes 266
(111 0 L SRS 267
072 (3 T | RS S 268
L] 1 SRS 269
[0 [10] 1o OO RSRRSRRSTN 269
Runtime AnalySiS TOOIS........c.ccveerierisiiesisesssn e s sre s 269
1 1 269
T 270
GAD (GNU DEDUGUET) ..eeuvereeerrrrseeseresseesesessesesesessssssssesssssssssssssssssssssasssssssssssssssssessnsssssssssssssssssssssssssesssssssassnes 271
1 Lo I o 010 273
. 273
Chapter 13: LINUX HOW T0’S .uccuusssssemssnnmmmssssssssssssnssssssssssssssnsssssssssssssssnnnnnsssssssssssnnnnnnsnnnss 277
Debugging the LINKINGcccceverererererersesse e sssssessesssssssssssssssssssssssssssssssassssssssassssssssssssssssnssnes 277
Determining the Binary File TYPEc.coueeeeeceee e sn e nn s 278
Determining the Binary File Entry Point..........ccocoiiiiinicnssnesncsssssesssse s s snsesnas 279
Determining the Executable ENtry POINt..........ccco oo 279
Determining the Dynamic Library Entry POINtcccoorreiennncccsr e sssnnns 279
IS A1 0] S 280
List and EXamine SECIONS ... s 281
Listing the Available SECHONS..........co e nn e 281
Examining SPECiIfiC SECHIONSc.ccuiieeiericrncre e e r e s s e e s e s a e e ne e e nnnne 281
List and EXaming SEgMENTS........cccvciernimienniesnss s sn s ssssssasssssens 283
Disassembling the COde.........ccuvrvrrrrrrrrrr e n e n e s sn e n s 283
Disassembling the BINArY FIleccvveevrrrerrerereresrersesersesessesessesassessesessesessssassessssesssssssssssssssssessssesssssssssanaens 283
Disassembling the RUNNING PrOCESSccccvererererererrersesersesessessssessssessssessesssssssssessssessessssssssssssssessssesssssssssasaens 283

xii

CONTENTS

Identifying the Debug BUild ..o 284
Listing Load-time Dependencies..........cccceererereressessessessesssssessenes 284
Listing the Libraries Known to the Loader...........cceoeeeeerececcccce e 284
Listing Dynamically LinKed LIDraries.........ccoovererernnensnsssesssssesssssesssssessssssssssssssssssssssssssssssses 284
CeY 1 =T 11 285
LD_DEBUG Environment Variable ... 285
(0 THT R |0 A1 0L 285
T 1 286
Programmatic WAYcccecceereriererererrereesersesersesessesssessesessesesssssssessssessessssesssassassesssnessesssasssssessssessssesasssssssanaens 287
Creating and Maintaining the Static Library...........cccoovvrenniernsniccnscss s 290
Chapter 14: Windows TOOIDOXccccceerrrrrsmmssssnssnnssnsnns 29 1
Library Manager (liD.BXE)cereeerrerrerrersersessersessessessessesssssesssassenes 291
lib.exe as @ Static LIDrary TOOL.........ccvcerinienrinne s sa s e a s a s et e b st se s 292
lib.exe in the Realm of Dynamic Libraries (Import Library TOOI)ccccoeeirennienniessscsesesesssesessessssessesessessnsens 296
AUMPDIN VLY .. n e sn e sn e sn s sn e n e sn e nn e nnen 297
Identifying the BiNary File TYPEcoeeceerereccrirsescir s nenn s 298
Listing the DLL EXpOrted SYMDOIScoeuruieecrireesctrin et 299
Listing and Examining the SECHONScooiceerrnescrresesess s 300
DisasSemBbBIiNg the COUE ..o ne e pn s 302
Identifying the DEDUQG BUII ..o 303
Listing the Load Time DEPENUENCIES........covrererererrrererereeesesesesseesessssssesessssssesesssssssssssssssssesssssssssssssssssssssssssaes 306
DePendenCy WAIKETcccuceeerieeeiriee e s sse s e s s e s sne s e sse s e s ssne s s sn e ssessnessessnessessnesnnnsneans 307
INA@X . ueiinninnenne s ————————————————————_——_ 309

xiii

About the Author

Milan Stevanovic is a senior multimedia software consultant based in the San
Francisco Bay Area. The span of his engineering experience covers a multitude of
disciplines, ranging from the board level analog and digital hardware design, and
assembly programming, all the way to C/C++ design and software architecture. His
professional focus has been in the domain of the analysis of a variety of compressed
multimedia formats, and design related to a variety of multimedia frameworks
(GStreamer, DirectX, OpenMAX, ffmpeg) in Linux (desktop, embedded, Android
native) as well as in Windows.

He has designed multimedia software for numerous companies (C-Cube,
Philips, Harman, Thomson, Gracenote, Palm, Logitech, Panasonic, Netflix), creating
a variety of cutting edge technology products (ZiVA-1 and ZiVA-3 DVD decoder
chip, Philips TriMedia media processor, Palm Treo and Palm Pre mobile phones,
Netflix application for Android).

He is an original member of the developer duo (together with David Ronca)
that created the avxsynth open source project (the first successful port of avisynth
to Linux).

He holds a MSEE degree from Purdue University (1994) and an undergraduate degree in EE (1987) and Music - flute
performance (1990) from the University of Belgrade.

XV

About the Technical Reviewers

Nemanja Trifunovi¢ was born in Kragujevac, Serbia. Now he lives in Boston area with his wife and daughters.

He wrote his first program at the age of 13 on a Sinclair Spectrum and became a professional software developer after
he graduated. Currently he is a Development Expert at SAP, working on HANA database system. In the past he worked
at Microsoft, Lionbridge and Lernout & Hauspie Speech Products. He is one of the most distinguished Code Project
contributors of programming-related articles (see www.codeproject.com/Members/Nemanja-Trifunovic,
www.codeproject.com/Articles/Nemanja-Trifunovic#articles).

Ben Combee is a lead developer on the Enyo JS framework. In a past life, he worked on the CodeWarrior for Palm
OS and CodeWarrior for Win32 tools at Metrowerks, plus many projects at Palm, including the Foleo netbook and on
the architecture of Palm webOS.

Miroslav Ristié, by a chain of events, instead of becoming a jet fighter pilot, graduated and received his MSc in
Computer Engineering at University of Novi Sad, Serbia. Currently he lives in the San Francisco Bay area, pursuing his
career goals. His interests span a wide variety of topics. He is very passionate about creating things from scratch. He is
happily married to the extraordinary and astounding lady of his dreams, Iva.

xvii

www.codeproject.com/Members/Nemanja-Trifunovic
www.codeproject.com/Articles/Nemanja-Trifunovic#articles

Acknowledgments

There are many people who have made a lasting impact on the way I think and reason, and how I see the world,
especially the world of technology. Since this is my first published book, which I imagine is a special occasion for
every author, I'll take the freedom to express my gratitude to a long list of people.

Had I not encountered a collection of superstar professors teaching at my 12th Belgrade Gimnasium, my entire
life path would have probably taken a significantly different direction (no, I wouldn’t have ended up on the wrong
side of the law; I would have probably become a professional musician/ arranger/composer, a Quincy Jones or Dave
Grusin of a kind). The math skills I gained as a student of professor Stevan Sijacki were my ticket to EE undergraduate
studies, even though a music career was originally planned. My physics professor Ljubinka Proki¢ and her insisting
on clarity and precision, plus her love and devotion to both physics and to her students, shaped my approach toward
knowledge in general, summed up best by Einstein’s “if you can’t explain it simply, you don’t understand it well enough.”
Finally, the language and literature professor Jelena Hristodulo taught me the most important of all lessons: that those
who dive deeper for “whys” instead of swimming on the surface between “whats” are bound to truly understand the
world around them and substantially change it. Even though she had poets and philosophers in mind, I find that this
recipe applies surprisingly well to people with technical backgrounds.

Without Dr. George Wodicka, whose research assistant I was at Purdue University, I probably wouldn’t be in the
US today, so 20+ years of my Silicon Valley career wouldn’t have happened, and very likely this book would have never
been written.

The encouragement from Dr. George Adams of Purdue University to take his Computational Models and
Methods core course was a decisive first step on the long journey of my career transformation from a young hardware
design engineer to a seasoned software professional with 20+ years of experience.

The strong belief of David Berkowitz, my manager at Palm, that my multimedia design skills could and should
expand into Linux territory was one of the decisive moments of my career. His unique people skills and his ability to
create a cohesive team made my time in his Palm Multimedia Group team a memorable experience. The atmosphere
in the Palm cafeteria after watching the video broadcast of the Palm Pre presentation that blew the tech world out of
its socks at the CES show in Las Vegas made that January 08, 2009 the single most memorable day of my professional
career. My engineering skillset became enriched by plenty of significant experiences and directions, some of which
directly led me to the material presented in this book.

Working with Saldy Antony was another truly inspirational experience. After the years we spent together in the
Philips TriMedia team, our careers went in different directions. While I stayed deeply immersed in the immediate
details of multimedia, he tremendously spread his skillsets into the domain of software architecture and software
management. When our paths crossed again at 2-Wire and later at Netflix, the open source era has already stepped
into the life of a professional multimedia development. With each passing day, the everyday work of the multimedia
software professional meant a lot less writing of code and more integrating existing third party/open source code. The
talks with Saldy in which he tried to convince me that I should enhance my skillset with the skills of a software build
engineer definitely had some effect on me. However, seeing him in action, rolling up his sleeves in the spare time
between the management-level meetings, joining the team in the cubicles and swiftly resolving any problem related
to the compiler, linker, libraries, and code deployment issues definitely had a lasting impression on me. This was when
I decided to “hug the monster” and learn what I originally did not consider vital to my personal role in the industry.

The invitation from David Ronca, the manager of the Netflix Encoding Technology Group, to work on something
really interesting is another cornerstone in the journey of creating this book. The “something really interesting” was
the open source project of converting the popular avisynth Windows video post-production tool to Linux,

Xix

ACKNOWLEDGMENTS

the project known as avxsynth. His exceptionally clear vision and firmly set architectural requirements combined
with the freedom he gave me to investigate the implementation details ultimately led to tremendous success.

The project, accomplished in a period of only 2.5 months, was also an immense learning experience for me.
Encountering and surpassing the difficulties along the way required spending hours researching topics and forming
my personal treasury of related tips and tricks. Daily talks with my group members (Dr. Anne Aaron, Pradip Gajjar,
and especially Brian Feinberg, the walking archive of rare pieces of knowledge) over David’s signature lattes have
helped me get an idea how much more I still have to learn.

The encounter with Apress Editorial Director Steve Anglin was a movie-like experience. The last time I saw
anyone even remotely similar to him was when I was watching a detective TV series in 1970s as a kid back home
in Belgrade, Serbia. Smart, communicative, quick thinking, immediately recognizing the right things, reacting on a
hunch in the nick of time, and straight to the point, he was the kind of professional I almost stopped believing ever
existed. Collaboration with him made the process of publishing this book a memorable experience.

The Apress Acquisition Editor Michelle Lowman carried through the decisive effort to proofread and present the
book materials through the several rounds of Apress team discussions, for which I am deeply thankful.

My special thanks also goes to my Apress editorial team (Ewan Buckingham, Kevin Shea, Jill Balzano,

James Markham, and the army of others with whom I haven’t had direct contact). The ‘british lord’ character which

I use in the book to point out the nature of the executable file was not in fact inspired by Ewan Buckingham, but it
would not be a mistake if it were. His control over the major flow of the publishing effort was sovereign and right to the
point in many occasions.

Without the last minute intervention from my talented niece Jovana Stefanovic and her Brosnan-Clooney DSP
algorithm, my cover photo would look like just like me, or maybe even worse.

Finally, the input from my team of proofreaders (Nemanja Trifunovi¢, Miroslav Risti¢, Ben Combee), support
from friends (David Moffat, Pradip Gajjar) and from the mysterious bunch collectively known as “Arques 811
ex-Philips group” (especially Daniel Ash and Thierry Seegers) has proven to be very valuable. I am deeply thankful
for their efforts and time taken from their busy professional lives to provide feedback about the book’s content.

Finally, without the love and support from my wife, Milena, son, Pavle, and daughter, Selina, and their
patience during many weekends and evenings spent working on the book’s material, the whole project would not
have happened.

XX

	Advanced C and C++
Compiling
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgment
	Introduction
	Chapter 1: Multitasking OS Basics
	Useful Abstractions
	Memory Hierarchy and Caching Strategy
	Virtual Memory
	Virtual Addressing
	Process Memory Division Scheme
	The Roles of Binaries, Compiler, Linker, and Loader
	Summary

	Chapter 2: Simple Program Lifetime Stages
	Initial Assumptions
	Code Writing
	Concept illustration: Demo Project

	Compiling
	Introductory Definitions
	Related Definitions
	The Stages of Compiling
	Preprocessing
	Demo Project Preprocessing Example

	Linguistic Analysis
	Assembling
	Demo Project Assembling Example
	AT&T Assembly Format Example
	Intel Assembly Format Example

	Optimization
	Code Emission
	Demo Project Compiling Example

	Object File Properties
	Compilation Process Limitations
	What Makes Section Combining so Complicated?

	Linking
	Linking Stages
	Relocation
	Resolving References
	Demo Project Linking Example

	Linker’s Viewpoint

	Executable File Properties
	Variety of Section Types
	A Variety of Symbol Types

	Chapter 3: Program Execution Stages
	Importance of the Shell
	Kernel Role
	Loader Role
	Loader-Specific View of a Binary File (Sections vs. Segments)
	Program Loading Stage

	Executing Program Entry Point
	The Loader Finds the Entry Point
	The Role of _start() Function
	The Role of __libc_start_main() Function
	Stack and Calling Conventions
	Functions Calling Conventions

	Chapter 4: The Impact of Reusing Concept
	Static Libraries
	Dynamic Libraries
	Dynamic vs. Shared Libraries
	Dynamic Linking in More Detail
	Part 1: Building the Dynamic Library
	Part 2: Playing by Trust While Building the Client Executable (Looking for the Symbols Only)
	Part 3: Runtime Loading and Symbol Resolution

	Peculiarities of Dynamic Linking on Windows
	Special Binary File Types Related to Dynamic Linking in Windows
	Dynamically Linked Library (.dll)
	Import Library File (.lib)
	Export File (.exp)

	Unique Nature of Dynamic Library
	Property 1: Dynamic Library Creation Requires the Complete Build Procedure
	Property 2: The Dynamic Library Can Link In Other Libraries

	Application Binary Interface (ABI)

	Static vs. Dynamic Libraries Comparison Points
	Differences in Import Selectiveness Criteria
	Import Selectiveness Criteria for Static Libraries
	Import Selectiveness Criteria for Dynamic Libraries
	Whole Archive Import Scenario

	Deployment Dilemma Scenarios
	Choice 1: Linking with a Static Library
	Choice 2: Linking with a Dynamic Library
	Final Verdict

	Useful Comparison Analogies
	The Conclusion: The Impact of Binary Reuse Concept

	Chapter 5: Working with Static Libraries
	Creating Static Library
	Creating Linux Static Library
	Creating a Windows Static Library

	Using the Static Library
	Recommended Use Case Scenarios

	Static Libraries Tips and Tricks
	Potential for Losing the Symbol Visibility and Uniqueness
	Counterindicated Use Case Scenarios
	Specific Rules of Linking Static Libraries
	Converting Static to Dynamic Library
	Static Libraries Issues on 64-bit Linux
	Resolving the Problem In Real Life Scenarios

	Chapter 6: Designing Dynamic Libraries: Basics
	Creating the Dynamic Library
	Creating the Dynamic Library in Linux
	About the -fPIC Compiler Flag
	Question 1: What does - fPIC stand for?
	Question 2: Is the use of the -fPIC compiler flag strictly required to build the dynamic library?
	Question 3: Is the use of the -fPIC compiler flag strictly confined to the domain of dynamic libraries? Can it be used when...

	Creating the Dynamic Library in Windows

	Designing Dynamic Libraries
	Designing the Binary Interface
	C++ Issues
	Issue #1: C++ Imposes More Complex Symbol Name Requirements
	Issue #2: Static Initialization Order Fiasco
	Problem Description
	Avoiding the Problem

	Issue #3: Templates

	Designing the Application Binary Interface
	Guideline #1: Implement the Dynamic Library ABI as a Set of C-style Functions
	Guideline #2: Provide the Header File Carrying the Complete ABI Declaration
	Guideline #3: Use Widely-Supported Standard C Keyword s
	Guideline #4: Use a Class Factory Mechanism (C++) or Module (C)
	Guideline #5: Export Only the Really Important Symbols
	Guideline #6: Use Namespaces to Avoid Symbol Naming Collision

	Controlling Dynamic Library Symbols’ Visibility
	Exporting the Linux Dynamic Library Symbols
	The Symbol Export Control at Build Time
	The Other Methods

	The Symbol Export Control Demo Example
	The Default Symbols Visibility Case
	The Controlled Symbols Visibility Case
	Using the strip Utility

	Exporting the Windows Dynamic Library Symbols
	Using the __declspec(dllexport) Keyword
	Using the Module-definition File (.def)

	Linking Completion Requirements
	--no-undefined Linker Flag

	Dynamic Linking Modes
	Statically Aware (Load-Time) Dynamic Linking
	Runtime Dynamic Linking
	Dynamic Linking Modes Comparison

	Chapter 7: Locating the Libraries
	Typical Library Use Case Scenarios
	Development Use Case Scenario
	End User Runtime Use Case Scenario

	Build Time Library Location Rules
	Linux Build Time Library Location Rules
	Linux Static Library Naming Conventions
	Linux Dynamic Library Naming Conventions
	Dynamic Library Filename vs. Library Name
	Dynamic Library Version Information
	Dynamic Library Soname

	Linker’s vs. Human’s Perception of Library Name
	Linux Build Time Library Location Rules Details
	Beginners’ Mistakes: What Can Possibly Go Wrong and How to Avoid It

	Windows Build Time Library Location Rules
	Project Linker Settings
	#pragma Comment
	Implicit Referencing of the Library Project

	Runtime Dynamic Library Location Rules
	Linux Runtime Dynamic Library Location Rules
	Preloaded Libraries
	rpath
	LD_LIBRARY_PATH Environment Variable
	runpath
	ldconfig Cache
	The Default Library Paths (/lib and /usr/lib)
	Priority Scheme Summary

	Windows Runtime Dynamic Library Location Rules

	Linux Demo of Build Time and Runtime Conventions

	Chapter 8: Designing Dynamic Libraries: Advanced Topics
	Why Resolved Memory Addresses Are a Must
	General Problem of Resolving References
	Which Symbols Are Likely to Suffer from Address Translation?

	Problems Caused by Address Translation
	Scenario 1: Client Binary Needs to Know the Address of Dynamic Library Symbols
	Scenario 2: Loaded Library No Longer Knows the Addresses of Its Own Symbols

	Linker-Loader Coordination
	Overall Strategy
	Linker Recognizes Its Own Limitations
	Linker Precisely Estimates the Damage, and Prepares Directives for Fixing It
	The Loader Precisely Follows the Linker Directives

	Tactics
	Linker Directives Overview

	Linker-Loader Coordination Implementation Techniques
	Load Time Relocation (LTR)
	Position Independent Code (PIC)
	Lazy Binding
	Rules and Limitations of the Recursive Chain of Dynamic Linking
	Strong Implementation Preferences

	Chapter 9: Handling Duplicate Symbols When Linking In Dynamic Libraries
	Duplicate Symbols Definition
	Typical Duplicate Symbols Scenarios
	Duplicate C Symbols
	Duplicate C++ Symbols

	Duplicate Symbols Default Handling
	Duplicate Local Symbols Are Allowed

	Duplicate Symbols Handling When Linking in Dynamic Libraries
	General Strategies of Eliminating Duplicate Symbols Problems
	Duplicate Symbols and Dynamic Linking Modes

	Linker’s Criteria in the Approximate Algorithm of Resolving Dynamic Libraries’ Duplicate Symbols
	Location, Location, Location: Code Priority Zoning Rules
	First Level Priority Symbols: Client Binary Symbols
	Second Level Priority Symbols: Dynamic Library Visible Symbols
	Third Level Priority (Unprioritized, Noncompeting) Symbols

	Analyses of Specific Duplicate Names Cases
	Case 1: Client Binary Symbol Collides with Dynamic Library ABI Function
	Windows-Specific Twist

	Case 2: ABI Symbols of Different Dynamic Libraries Collide
	No Impact of Different Function Calls Order
	Impact of Different Linking Order

	Case 3: Dynamic Library ABI Symbol Collides with Another Dynamic Library Local Symbol
	Case 4: Dynamic Library Non-exported Symbol Collides with Another Dynamic Library Non-exported Symbol
	Interesting Scenario: Singleton in Static Library
	Solving the Problem

	Final Remark: Linking Does Not Provide Any Kind of Namespace Inheritance

	Chapter 10: Dynamic Libraries Versioning
	Gradation of Versions and their Impact on Backwards Compatibility
	Major Version Code Changes
	Minor Version Code Changes
	Patch Version

	Linux Dynamic Library Versioning Schemes
	Linux Soname-based Versioning Scheme
	Linux Library Filename Carries the Version Information
	The Usual Dynamic Library Upgrade Practices
	Preamble: The Flexibility of Softlinks
	Preamble: Library Soname vs. Library Filename
	Combining Softlink and Soname in the Library Upgrade Scheme
	Extra Softlink Needed as Convenience for Development Scenarios

	Analysis of Soname-based Versioning Scheme
	The Softlink’s Role
	Version Safeguarding Role of Soname

	Technicalities of the Soname Implementation
	Soname Embedded into the Dynamic Library File
	Soname Propagated into the Client Binary File
	The Support from the Other Utility Programs (ldconfig)

	Linux Symbol Versioning Scheme
	The Advantage of Symbol Versioning Mechanism
	Symbol Versioning Mechanisms Analysis Model
	Phase 1: Initial Version
	Phase 2: Minor Version Changes
	Phase 3: Major Version Changes

	The Basic Implementation Ingredients
	Linker Version Script
	.symver Assembler Directive
	How Does This Scheme Work?

	Sample Project Analysis: Phase 1 (Initial Version)
	ELF Format Support
	Propagation of Version Symbol Information to the Client Binaries

	Sample Project Analysis: Phase 2 (Minor Version Changes)
	Sample Project Analysis: Phase 3 (Major Version Changes)
	The Case of Changed ABI Function Behavior
	The Case of Changed ABI Function Prototype

	Version Script Syntax Overview
	Version Node
	Version Node Naming Rules
	Symbols Export Control
	Wildcard Support
	Linkage Specifier Support
	Namespace Support
	Unnamed Node
	Version Script Side Feature: Symbol Visibility Control

	Windows Dynamic Libraries Versioning
	DLL Version Information
	Specifying DLL Version Information
	Querying and Retrieving DLL Version Information
	VERSIONINFO Structure
	Linking Requirements
	Elegant Way: Calling the DLL’s DllGetVersion Function
	Brutal Alternative: Examining File Version Directly

	Chapter 11: Dynamic Libraries: Miscellaneous Topics
	Plug-in Concept
	Rules of Exporting
	Popular Plug-in Architectures

	Tips and Tricks
	Practical Implications of Working with Dynamic Libraries
	Compartmentalized, Faster Development
	Runtime Quick Substitution Ability

	Miscellaneous Tips
	Converting Dynamic Library to Executable
	Conflicting Runtime Memory Handling of Windows Libraries
	Linker Weak Symbols Explained

	Chapter 12: Linux Toolbox
	Quick Insight Tools
	file Utility Program
	size Utility Program

	Detailed Analysis Tools
	ldd
	Safer ldd Alternatives

	nm
	objdump
	Parsing ELF Header
	Listing and Examining Sections
	Listing All Symbols
	Listing Dynamic Symbols Only
	Examining Dynamic Section
	Examining Relocation Section
	Examining Data Section
	Listing and Examining Segments
	Disassembling the Code
	objdump nm equivalents

	readelf
	Parsing ELF Header
	Listing and Examining Sections
	Listing All Symbols
	Listing Dynamic Symbols Only
	Examining the Dynamic Section
	Examining the Relocation Section
	Examining the Data Section
	Listing and Examining Segments
	Detecting the Debug Build

	Deployment Phase Tools
	chrpath
	patchelf
	strip
	ldconfig

	Runtime Analysis Tools
	strace
	addr2line
	gdb (GNU Debugger)

	Static Library Tools
	ar
	Creating the Static Library
	Listing the Static Library Object Files
	Deleting an Object File from the Static Library
	Adding the New Object File to the Static Library
	Restoring the Order of Object Files

	Chapter 13: Linux How To’s
	Debugging the Linking
	Determining the Binary File Type
	Determining the Binary File Entry Point
	Determining the Executable Entry Point
	Determining the Dynamic Library Entry Point

	List Symbols
	List and Examine Sections
	Listing the Available Sections
	Examining Specific Sections
	Examining the Dynamic Section
	Determining Whether Dynamic Library is PIC or LTR

	Examining the Relocation Section
	Examining the Data Section

	List and Examine Segments
	Disassembling the Code
	Disassembling the Binary File
	Disassembling the Running Process

	Identifying the Debug Build
	Listing Load-time Dependencies
	Listing the Libraries Known to the Loader
	Listing Dynamically Linked Libraries
	strace Utility
	LD_DEBUG Environment Variable
	/proc/<ID>/maps File
	lsof Utility
	Programmatic Way

	Creating and Maintaining the Static Library

	Chapter 14: Windows Toolbox
	Library Manager (lib.exe)
	lib.exe as a Static Library Tool
	lib.exe as a Default Archiver Tool
	lib.exe as a Command Line Utility
	Creating a Static Library
	Listing the Static Library Contents
	Removing Individual Object Files from the Static Library
	Inserting the Object File into the Static Library
	Extracting the Individual Object File from the Static Library

	lib.exe in the Realm of Dynamic Libraries (Import Library Tool)

	dumpbin Utility
	Identifying the Binary File Type
	Listing the DLL Exported Symbols
	Listing and Examining the Sections
	Disassembling the Code
	Identifying the Debug Build
	Object Files
	DLLs and Executables

	Listing the Load Time Dependencies

	Dependency Walker

	Index

