

YOUR COMMODORE 64:™
A Guide to the
Commodore 64™ Computer

YOUR COMMODORE 64:™
A Guide to the

TM

Commodore 64 Computer

John Heilborn
Ran Talbott

Osborne! McGraw-Hill
Berkeley, California

Disclaimer of Warranties and Limitation of Liabilities

The authors have taken due care in preparing this book and the programs
in it. including research, development, and testing to ascertain their effec­
tiveness. The authors and the publisher make no expressed or implied
warranty of any kind with regard to these programs or the supplementary
documentation in this book. In no event shall the authors or the pub­
lisher be liable for incidental or consequential damages in connection
with or arising out of the furnishing, performance, or use of any of these
programs.

C-64 is a trademark of Commodore Business Machines, Inc. Your Com­
modore 64"· User Guide is not sponsored or approved by or connected
with Commodore Business Machines, Inc. Commodore Business
Machines, Inc., makes no warranty, expressed or implied, of any kind
with regard to the information contained herein, its accuracy, or
completeness.
Datassette is a trademark of Commodore Business Machines, Inc.
C:. is a registered trademark of Commodore Business Machines, Inc.

Published by
Osborne/ McGraw-Hili
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the
U.S.A., please write to Osborne! McGraw-Hill at the above address.

YOUR COMMODORE 64™
Copyright © 1983 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored in a data base
or retrieval system, without the prior written permission of the publisher. with the excep­
tion that the program listings may be entered. stored, and executed in a computer system.
but they may not be reproduced for publication.

4567890 DODO 89g7654

ISBN 0-88134-114-2

Cover illustration by Terry Hoff
Cover design by Yashi Okita
Text design by KLT van Genderen
Unless otherwise mentioned, all photos by Richard Cash

Dedication
The authors would like to dedicate this book to Heinz Max and

Ingeborg Heilborn and to Bill and 10 Talbott, without whom we would
not have been possible.

ACKNOWLEDGMENTS

No book is ever the work of just the authors and, of course, this book
is no exception. We would like to express our thanks to the following
people without whose help this work would never have become a reality:

Michael Tomczyk, whose enthusiasm and insight during a brief meet­
ing in Santa Clara got the whole thing started.

Bill Hindorff, whose technical assistance helped clarify many of the
lesser known aspects of the C-64.

Larry Ercolino, who provided a first-hand encounter in telecommuni­
cations and a seemingly never-ending supply of support and information.

There were many others who also provided help when we needed it
the most, and often at times that were quite inconvenient. Some of these
are Pat McAllister, Jeff Hand, Andy Finkel, Neil Harris, Steve Murri,
Steven Moser, and John Stockman.

Finally, we wish to express our thanks to Denise Penrose whose
editorial guidance was invaluable in helping us complete this book.

JH
RT

Contents

Introduction Xl

1 Introducing the Commodore 64 Computer I
2 Operating the C-64 39
3 Programming the C-64 Computer 57
4 Advanced BASIC Programming 117
5 Game Controllers 155
6 Graphics 169
7
8
A
B
C

Sound 277
Peripheral Devices 305
System Architecture 349
Memory Usage 351
C-64 110 Pinouts 367

o Conversion Tables Trigonometric Functions 373
E Sound and Display Characters and Codes 381
F Error Messages 389
G ;BASIC Statements 395
H BASIC Functions 425

Index 439

Ix

I ntrod uction

The Commodore 64 is one of a new breed of computers. Despite its
low price and small size, it has more features than larger and more expensive
computers did even a few years ago.

If you want to solve math problems, the C-64 can run them for you. If
you need to type letters or mailing lists, the C-64 will do the job quickly and
easily.

But in addition to these functions, common to most computers, the
C-64 offers color text and graphics.

Furthermore, the C-64 can produce tones within a range of nine
octaves. These can be combined to imitate anything from the patter of rain
to a cannonade.

Chapter 1 explains how to unpack and set up the C-64 and its accesso­
ries. It contains a description of all the controls on the C-64, from connec­
tors to keyboard functions.

Chapter 2 guides you through the C-64 screen editor and explains the
two operating modes ofthe C-64: immediate mode and programmed mode.
This is followed by an introduction to the Datassette, the 1541 disk drive,
and the 1525 printer.

Chapter 3 introduces you to programming. All the BASIC instructions
are covered as well as the concepts of loops, branching, Boolean operators,
floating point versus integer numbers, and scientific notation. The chapter
also describes variable types and the construction of arrays.

xl

xii Your Commodore 64

Advanced BASIC programming is the subject of Chapter 4. It will
teach you practical applications of concepts covered in Chapter 3. You will
learn how to write screen display programs, include cursor movement and
string variables as commands in your programs, and develop easy-to-use
I/O intensive programs requiring considerable data entry. Chapter 4 also
discusses the C-64's real time clock and random number generator.

Chapter 5 is a tutorial on game controllers. It will show you how to use
the keyboard as a game controller and how to write programs that access a
joystick or paddle controller.

Chapter 6 covers graphics. It explains how the video display works,
how colors are produced, and how to put characters on the screen. You will
learn how to animate pictures and produce high-resolution graphics using
BASIC.

Chapter 7 discusses sound generation on the C-64 including the C-64
sound registers, the components of sound, and how to use them. You will
learn how to program music into the C-64 and how to save it for playback
later on.

Chapter 8 explains the operation of the major C-64 peripherals: the
Datassette, 1541 disk drive, and 1525 printer. It contains a complete discus­
sion of data file creation, program storage, and high-level disk operations. It
also discusses all the printer commands including double width characters,
reverse printing, and high-resolution graphics.

The appendixes contain tables on all the details discussed in the text,
from the system architecture and block diagrams to the memory maps. You
will also find diagrams showing pinouts for all of the connectors as well as
color, screen, and sound value tables.

CHAPTER

Introducing the
Commodore 64 Computer

When you first unpack the C-64, you will find the equipment shown
in Figure 1-1:

The C-64 computer

Power supply (large plastic box)

TV switch box

Video cable

While your system may include additional components, all systems
include this basic equipment. This chapter identifies each component and
connector provided by Commodore and introduces the function of each.

Place the C-64 on a flat surface such as a table. Make sure that you have
room to put a television near the C-64, ideally directly behind it.

REAR AND SIDE PANEL

All of the switches, connectors, and interfaces are located at the side
and back of the C-64 computer. These components are labeled in Figure 1-2.
It is important that you learn the function and location of each component
as you hook up the computer to avoid damaging it by using connections
incorrectly.

1

2 Your Commodore 64

"'.

FIGURE 1·1. Equipment packed with the Commodore 64

FIGURE 1·2. Rear I side view of the Commodore 64

Chapter 1 Introducing the Commodore 64 Computer 3

PowerSWHch

Make sure the C-64 is OFF at this point. The power switch is located on
the right side of the computer. It is a two-position "rocker" switch.

When you turn the power switch ON, the C-64 will display a dark screen
for a short time. During this period it is initializing itself; that is, it is check­
ing out its internal systems and memory.

When you turn the power OFF, all programs and data in memory that
were not stored onto either diskette or tape will be lost.

Power Connector

The power supply has two cables attached to it. One plugs into any
standard 110 volt AC outlet. The other plugs directly into the power
connector next to the ON/OFF switch on the side of the C-64.

Game Ports

These connectors are used for the various game controllers available
for the C-64, as well as for the light pen and some special application devices.
AT ARI joysticks and paddles will work with this port, as well as those made
by Commodore.

Parallel User Port

The parallel user port is a connector that allows you to hook up devices
(such as the VIC modem) to the C-64.

More advanced users may use this connector for custom applications as
well, since the signals coming from it can be programmed directly by the
C-64.

cassette Interface

The cassette interface is used to connect the Datassette, which is a
special digital tape recorder. You can use it to store and reload programs
and data into the C-64. The Datassette is described later in this chapter.

4 Your Commooore 11

Serial Port

The serial port is used to connect the computer to the model 1525
printer, the 1541 disk drive, and other devices using a serial input/ output config­
uration. Instructions for connecting the printer and disk drive to the C-64
are provided later in this chapter.

Video Ports

The C-64 produces the sound and pictures displayed on your televi­
sion by combining them into a signal called composite video. This signal is
sent out through the video port.

A video monitor (a television without a tuner) is able to convert the
composite video directly into pictures and sound. Connect a monitor to the
monitor video port. A television, however, must be tuned to a particular
channel. That signal is produced and combined with the composite video by
the built-in RF (radio frequency) modulator. Connect your TV to the TV
video port.

When you use the C-64 you can select either channel 3 or channel 4 by
flipping the channel switch on the back of the computer.

Expansion Interface

The expansion interface gives you access to the computer's memory
lines.

Video Display

When you first power up the C-64 it displays 25 rows with 40
characters per row. The computer generates these characters by lighting the
appropriate pattern of dots within an 8 X 8 matrix. This is illustrated in
Figure 1-3. The C-64's character set is quite extensive, containing 256
letters, num bers, and symbols. It is also possible to program custom charac­
ters for special applications. This will be discussed in Chapter 6.

Chapter 1 Introducing the Commodore 64 Computer 5

••• a. 8 X 8 dot matrix b. Sample letter A c. Sample Graphic

FIGURE 1·3. The 8 X 8 dot matrix

POWER UP

Connect the TV switch box to the back of the television by attaching
one end of the cable with the phono jacks (Figure 1-4) to the switch box.

FIGURE 1-4. Television switch box and connections

6 Your Commodore 64

Connect the larger plug of the video cable to the round five-pin video
port on the back of the C-64 (see Figure 1-2).

Finally, plug the power supply cord into the C-64 power connector.
Do not turn on the C-64 yet!

To start using your C-64, follow these steps:

1. Plug the AC power cord into a wall outlet.

2. Switch the power ON. The power switch is located on the right side
near the AC plug.

3. Wait for the READY display. This can take several seconds,
during which the C-64 is going through a self-checking and initializa­
tion process.

The following display should now appear:

**** COMMODORE 64 BASIC V2 ****
64K RAM SYSTEM 38911 BASIC BYTES FREE

•

If you not not get this display, turn the power OFF, wait about ten
seconds, and turn the power ON again. If you still don't get this display,
check the connections. If that does not help, contact your Commodore
dealer.

Chapter 1 Introducing the Commodore 64 Computer 7

THE KEYBOARD

In almost every application the keyboard is used to communicate with
the C-64. The keys are arranged much like those on a standard typewriter.
Unlike typewriter keys, however, the C-64's keys can be used to access as
many as three or four different symbols, characters, or functions.

The keys on the C-64 may be classified by function as follows:

Alphabetic keys
Numeric keys
Special symbol keys

Graphic keys
Function keys
Cursor control keys

Alphabetic Keys

The alphabetic keys include the 26 letters of the alphabet in both upper
and lower case. When the C-64 is powered up, letters are displayed in upper­
case. To display lower-case letters, press the COMMODORF and SHIFT keys
simultaneously. If you are typing lower-case letters and wish to insert an
occasional upper-case letter, use the SHIFT key as you would on a typewriter.
Press SHIFT-COMMODORE again to return to upper-case mode.

8 Your Commodore 64

Numeric Keys

The numeric keys are used to enter the digits 0 through 9.

Special Symbol Keys

The special symbol keys include the following standard punctuation
marks: ! ' " . , ; : ? They also include the following mathematical symbols:
+ = I * f = (note that a slash is used for division, an asterisk for multiplica­
tion, and an up arrow for exponentiation). Other special symbols available
on the C-64 include # $ & @ % £ 7r < > [1 -.

Graphic Keys

The C-64 also has 62 graphic symbols that may be accessed through the
SHIFT or COMMODORE function keys. Using these graphic symbols, you can
create fairly sophisticated display drawings.

The graphic symbols and their names are listed in Table 1-1. Similar
symbols have been grouped to make graphic options immediately obvious.
Note that the square enclosing each of the graphic symbols shown in Table
1-1 and Figure 1-3 is not actually part of the symbol, but has been added to
show the symbol's location within its 8 X 8 grid.

Chapter 1 Introducing the Commodore M Computer 9

TABLE 1·1. Graphic Character Keys

Line Thin Quarter Block
Horizontal Bar Solid T

W Top lIJ Top [ID[iJ Top Left, W Top
T Top Right

rn 3/4 Top rn Bottom mrn Bottom Left, rn Bottom Right
Bottom

[[) 2/3 Top [iJ Left [IJ Diagonal []J Left

[ID Near Middle CiJ Right []] Right

(!J
Quarter Block

Middle Open (Angle)

Thick rnrn Top Left,

rn Bar Top Right Symbol
2/3 Bottom

CiJ CIJ Top wOO Bottom Left, X

(iJ 3/4 Bottom Bottom Right

[ID Bottom IT] Cross

00 Bottom

~ rn Left Corner Diagonal
N· Acute

Line [ID[1J Top Left.

Vertical rn Right
Top Right [iJ Diagonal

Grave

[i] Left [J[i] Bottom Left.
Bottom Right

[j]
Grid

314 Left Half
Block Rounded IT] Full

Corner

[iJ 2/3 Left rn Left

m(j] Top Left,
~ Half Left

Top Right

[[) Near Middle rn Bottom

Wrn Bottom Left, rn Half
Bottom Right Bottom

~ Middle

[ill 2/3 right Triangle
Solid Suit Circle

00 3/4 right rn Top Left rn[tJ Spade, Heart 00 Outline

(ID Right IT] Top Right rnm Diamond, llJ Solid
Club

1 o (our Commodore 64

Function Keys

Any key that "does something," rather than "prints something" is a
function key. For instance, CTRL-RED (pressing the CTRL and RED keys
simultaneously) doesn't print anything, but instead causes all subsequent
characters to be displayed in red on the screen.

RUN STOP

SHIFT

SHIFT

COLOR CONTROL KEYS

~----------~~~~~----~

RESTORE

SHIFT

The SHIFT key is used in conjunction with any other key on the
keyboard to access that key's "shifted" function or character. Most keys
have both a shifted and unshifted character or function. For example,
shifted lower-case letters become upper-case letters, and a shifted CRSR

UP/DOWN causes the cursor to move up.
There are two identical SHIFT keys on the C-64 keyboard. One is at the

lower left corner of the keyboard, while the other is at the lower right.

SHIFT LOCK

You may occasionally need a continuous string of shifted characters.
To make this operation easier, the C-64 has a SHIFT LOCK key that is similar

Chooter '; IntrodUClllg the Commodore 64 Co,mpder 11

to the SHIFT LOCK on a typewriter. Pressing the SHIFT LOCK key until it clicks
will lock the keyboard into shifted mode. Pressing it until it clicks again will
unlock the shifted mode.

Unless the C-64 is running a program, RUN/STOP does nothing.
Pressing SHIFTand RUN/STOP loads and executes a program from the C-64
Datassette.

RETURN

The RETUR:"J key is much like the carriage return key on a typewriter. It
causes the cursor (the flashing square that indicates where the next
character will appear) to return to the left-hand margin of the next line.

The RETURN key is also used to enter instructions in BASIC. After
keying in a line of your program, you press RETURN to enter that line into
memory.

A RETURN executed while the cursor is on the bottom line of the screen
will cause the entire screen to scroll up, moving the cursor to the beginning
of the new blank line generated by the scroll.

1£1 PRI~n "t·lOW IS THE"
20 PRltH "TIt'1E FOR"
3121 PRINT "ALL GOOD"
40 PRINT "PEOPLE"
58 READ :x:
90 A=B+C+D
10£1 IF A=l THEN Ie
110 IF A=20 THEN 50
12121 Prwn "STRRT"
•

12 Your Commodore 64

2121 PF.:ItH "TIt1E FOR"
30 PR I ~-n "ALL GOOD"
40 PR I ~H "PEOPLE"
50 RERD :":
90 R=B+C+D
100 IF R=l THEN 10
110 IF R=20 THEN 50
12[1 PRHlT "~:nART"

•

RMRSE ON/OFF

The R VS ON and RVS OFF keys allow you to exchange the light and dark
parts of the characters on the screen. The default mode for this function is
RVS OFF. The RVS ON is like the negative of a photograph. To reverse the
characters, press CTRL and R VS ON at the same time. All subsequent
characters entered will be displayed in reverse. To switch back again, press
CTRL and RVS OFF.

RUN/STOP

(f;tl
B

In the unshifted mode, the RUN I STOP key will stop any program that is
being executed, returning control of the computer to the keyboard. It will
also display the number ofthe program line that was being executed before
the stop instruction was received.

Chapter 1 Introducing ,he Commodore 64 Computer 13

To demonstrate this, enter the following short program:

113 X = 0
20 PRHH X
313 X = X + 1
413 OOTO 20
99 END

Now type RUN and press RETURl\. You should see a string of numbers
scrolling down the left side of your screen. After pressing RUN/STOP your
screen should look like the following:

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

BREAK It-l 20

•
Unless the C-64 is running a program, RUN! STOP does nothing. Press­

ing SHIFT and RUN/STOP loads and executes a program from the C-64
Datassette.

RESTORE

If pressing the RUN STOP key alone does not stop a program, then press
RUN/STOP and RESTORE simultaneously. If this does not work, turn the
power off and then on.

14 Your Commodore 64

COLOR CONTROL KEYS

Along the top of the keyboard, just under the number keys (1-8), are
located the eight color control keys: black, white, red, cyan (light blue),
purple, green, blue, and yellow. These keys change the color of the charac­
ters being typed on the display. To use these keys you must press CTRL and
the color you wish to use. For example, when you first power up the C-64,
your screen comes up with a cyan border, blue inner field, and light blue
letters. By pressing CTRL and PUR together, you will begin typing purple
letters. By pressing the COMMODORE key and color keys together you can
get eight more colors.

Cursor Control Keys

The remaining keys move the cursor. They are described individually
below.

INSERT / DELETE

CURSOR LEFT/RIGHT

CLEAR/HOME

In the un shifted mode, pressing the CLR; HOME key will make the
cursor jump to the top left-hand corner of the screen (the home position).
To demonstrate this, type LIST and press RETURN. You should see a listing
of the program you entered in the last section. If you turned the computer
off since entering the program, reenter it now. After typing LIST you will
find the cursor beneath the listing, after the word READY.

Chapter 1 Introducing the Commodore 64 Compute~ 15

LI:::T

1IJ ::.:; = 13
20 PRItH :x:
313 X .: .)

(.... + 1
40 GOTO 20
99 END

•

Press the CIRe HOME key. The cursor should jump to the top left-hand
corner of the screen .

• IST

HJ :>~ = 13
213 PPltH ::.::

:30 X = >~ + 1
40 GOTO 20
99 B~D

In the shifted mode, the CLR! HOME key will not only return the cursor
to the home position, but will also erase anything that was on the screen
(clear the screen). Type LIST again. Now press SHIFT and press CLRj HOME

simultaneously.

16 Your Commodore 64

•

CURSOR UP/DOWN

Unshifted, the CRSR UP DOWN key causes the cursor to move down the
screen a single line. Holding down the CRSR UP/DOWN key causes the
cursor to move down until it reaches the bottom of the screen. If the cursor
is on the bottom line of the screen and the unshifted CRSR UP. DOWN is
pressed, the entire screen will be scrolled up and the cursor will be
positioned at the bottom line.

LIST your program again. Now press the CRSR up. DOWN key several
times, or hold it down. When the cursor reaches the bottom of the screen, all
the lines on the screen will move up from one to four lines. This is because
the logical length of the lines is 80 characters, but the display is only 40
characters wide. The logical length of a line is the number of characters the
C-64 can handle internally on each numbered line. Therefore, depending on
how much of a line is left when the cursor reaches the bottom of the screen
(regardless of what is actually displayed) the screen will scroll up one logical
line, producing an effective scroll of one to four partial lines.

Chooter 1 ir'troduCing the Commodore Computer 17

LIST

113 >:: = 121
2121 PRItH ;'::
3121 ;.:: = :x: +
4121 GO TO 2121
99 Et·m

•

3121 ;>t. = i< +
4121 GOTO 20
99 Et~D

•

1

In the shifted mode, the CRSR UP / DOWN key moves the cursor up one
line at a time. When the cursor reaches the top of the screen, it stays there.
The screen will not automatically scroll down (move all the lines down one
or more positions).

18 yOU Comn~dc)re 64

CURSOR LER/RIGHT

In the unshifted mode, the CRSR LEFT/ RIGHT key will move the cursor
right one character position. Press the CRSR LEFT/RIGHT key and hold it
down. Notice what happens when the cursor reaches the end of a line. It
jumps to the leftmost position of the next line down.

10 PRINT "THE QUICk: BRmJt~ FOil
.JUr'1PED OVER THE DOG"

10 PRHn "THE QUICI< BPOWN FO;"::
IIJUr1PED O ER THE DOG"

Chapter 1 Introducing the Commodore 04 Computer 19

Pressing the SHIFT and CRSR keys together will move the cursor left one
character position. When the cursor reaches the left-hand border, it jumps
to the rightmost column of the next line up. This is called wraparound. It
allows you to continue entering lines that are more than 40 characters long
without your having to press RETURN. This is similar to having an automatic
carriage return.

If the cursor is at the right-hand edge of the bottom line and CRSR

RIGHT is pressed, the screen will scroll up a line. The wraparound feature
advances the cursor to the beginning of the next line, effectively producing a
CRSR DOWN.

The CRSR UP / DOWN and CRSR LEFT / RIGHT keys are used to move the
cursor over text without changing the text. To alter the text, move the
cursor to the character you wish to correct. Typing another character will
replace the existing one, allowing you to edit text easily on the screen.

INSERT /OELITE

The INST / DEL key is used to insert or delete characters on the screen. In
the unshifted mode, the INST / DEL key deletes the character to the left of the
cursor. It also moves the rest ofthe characters in the line left one space and
adjusts any other characters in the 80-column logical line of which it is a
part.

1121 PRINT "BIG BROOm"

1121 PRINT "BIG BRO..,"

If you press SHIFT and INST/ DEI together, the computer will insert a
space on the screen. All characters to the right of the cursor will be moved
one position to the right.

1121 A=B+C+D-(4IVF)

1121 A=B+C+D-(4~ IF)

PROGRAMMABLE FUNCTION KEYS

In addition to the keys we have just covered, the C-64 has four program­
mable, dual-function keys. They are labeled fi/f2, f3/f4, f5/f6, and f7/f8. The
functions of these keys are specified by the user.

20 Your Commodore ell

Programming the Function Keys

Most of the function keys can be put into PRI NT statements in the
program mode. For instance, instead of pressing CTRL and RED in the
immediate mode to print in red, you could put the control functions in a
PRINT statement such as

10 PRINT "(CTRU(CYAN)~APPY VALENTINES DAY(CTPL)(REn)(HEAfH)"

When you RUN this line, it will print the words HAPPY V ALEN­
TINE'S DAY in light blue (cyan), followed by a red heart.

With the exception of SHIFT, SHIFT. LOCK, RETURN, RUN/STOP, and
RESTORE, any of the function keys can be programmed into PRINT
statements.

When the function keys are programmed into PRINT statements they
appear on the screen as reverse characters. Table 1-2 shows these symbols.

TABLE 1·2. Special Function Keys

~ CLEAR SCREEN 1 CYAN - fl

~ HOME :::. I'll R PIE =.. f2

0 CURSOR UP 6 GREE\ !!! n

00 CURSOR DOWN = BLllE M f4

I. Ct'l-{SOR ITFI m YELLOW •• f:,

~ CI'RSOR RICH I ~ REVERSE 0\ ~ [6

• BLACK ~ RIVFRS! Ofl •• 17

~ WHllr ... DEIFIE l~ IS

~ RED

Chapter 1 ntroduCing the Commodore 64 Computer 21

THE COMMODORE DATASSEnE

You will soon find that entering all of your programs by hand is
tedious. A data recorder will solve this problem. There are two units that will
work with your C-64; both are basically the same. One is the original
PET I CBM digital cassette drive, and the other is the VIC Datassette (Figure
1-5). One advantage the Datassette has over the older unit is a tape counter.
This makes it easier to locate programs on your tapes. The operation and
installation of these two units is the same. To use them, follow these
instructions.

Look at the cassette interface on the back of the C-64 (Figure 1-2). The
connector has an offset slot between two of the contacts, as shown in Figure
1-6.

The Datassette has a plug with a divider that fits over the connector and

FIGURE 1·5. Commodore Datassette

22 Your CO'll'llodore 64

7

FIGURE 1·6. Datassette connector

into the slot. This makes it difficult to connect it incorrectly, but it can be
done, so be careful. In general, you may find a connector difficult to remove
once it is on , but it is rare to have trouble installing one if it is positioned
correctly. If the divider slides over the slot, you can be sure a proper connec­
tion has been made.

To connect the Datassette to the C-64, follow these steps:

I. Turn the power OFF.

2. Hold the plug so the divider will mate with the connector slot.

3. Gently push the plug onto the interface. Do not force the connection.

4. Make sure the connection fits securely.

5. Turn power ON.

Testing the DatasseHe

Before you go any further, you should check the mechanical operation
of the Datassette. Here is a simple test you can use to make sure that all of
the control functions are operating properly.

l. Turn the C-64 ON. Make sure that none of the cassette keys are de­
pressed and that the cassette drive motor is not running.

Chapter 1 Introducing the Commodore (:4 Computer 23

2. Open the cassette door on the top of the unit by pressing the
STOP / EJECT key on the Datassette. While looking inside the unit,
press the PLA y key on the Datassette. You should see the tape heads
(Figure 1-7) move out toward the spindles. At the same time, the
pinch roller should move out, touch the capstan roller, and begin
rotating counterclockwise.

3. Again press the STOP/EJECT key on the Datassette. The tape heads
should pop back out of view and the spindles should stop rotating.

4. Press the F.FWD (Fast Forward) key. The tape heads should remain
hidden and the take-up spindle (on the right) should begin spinning
counterclockwise very fast.

5. Pressing STOP / EJECT once should stop the take-up spindle.

6. Press the REW (Rewind) key. The supply spindle (on the left) should
begin spinning clockwise very fast.

7. Press the STOP/EJECT key once. The supply spindle should stop
spinning.

8. Very gently press the REC (Record) key. The key should be locked.

9. Get an unused tape. Look at the back of the cassette. It should have
two small tabs blocking the write-protect holes (Figure 1-8).

Pressing the PLAY and RECORD keys simultaneously should start the
take-up spindle rotating; the head assembly should move out and
contact the tape, which should start moving.

Record/ Play Head

FIGURE 1·7. Datassette drive tape head

24 \OeJr Comrr~xLve 64

o • •

1:------_-__ - ~~
G e
L~ ~~

~ //
Write-protect notches /

FIGURE 1·8. W rite-protect notches

If you can perform all these steps, your cassette recorder is ready to
begin operation. If some or all of the above tests fail, check the following:

Make sure the power is ON.

Press only one key at one time (except when checking the record
function).

Press the keys down until they click into place.

If you are still unsuccessful, contact your Commodore dealer.

Cleaning and Demagnetizing
Tape Heads

The head assembly of the Datassette can be seen by opening the drive
door with the power OFF and depressing the PLA Y key. Doing this will allow
you access to the heads for maintenance. Refer to Figure 1-7 for the
locations of the components mentioned in this section.

The tape heads are the devices that make contact with the tape and
either read or write data. Since the tape is actually in contact with the heads,
some ofthe oxide coating on the tape will be transferred to the heads during
normal operation. To assure proper operation of the Datassette it is neces­
sary to clean this oxide film from the heads periodically using a cotton swab
soaked in denatured alcohol. Clean both heads, the capstan, and the pinch

Cha pter ~i Introduc ing the Commodore 64 Computer 25

roller. Allow the area to dry completely before closing the cover.
The process of reading and writing onto a magnetic surface such as a

cassette tape results in the build-up of residual magnetism on the heads of
the cassette recorder. Because ofthis build-up, it is a good idea to demagne­
tize the heads each time you clean them. Skipping this step in your regular
maintenance may eventually result in sufficient loss of fidelity to cause both
read and write errors in your programs.

To demagnetize the heads, you will need a tape head demagnetizer such
as the one in Figure 1-9. This is an inexpensive unit that can be purchased at
most audio equipment stores.

The Datassette should be OFF when you are demagnetizing the tape
heads. Open the cassette drive door and press the PLAY key. Make sure the
demagnetizer is at least two feet away from the Datassette before plugging it
in. Plug in the demagnetizer and slow~y move it toward the Datassette until it
touches one of the heads . Gently move it around on one head surface and
then the other. Then touch all the metal surfaces near the heads and slowly
move back away from the Datassette. When you are at least two feet
away, unplug the demagnetizer.

FIGURE 1·9. A typical tape head demagnetizer

26 Your Commodore 64

Core of Cossette Tapes

When you use a new tape, balance the tension on the tape by fast
forwarding it to the end and then rewinding it to the beginning. This will
help prevent load errors.

Buy short tapes: 15 to 30 minutes at most. This will not only reduce
your search time when running programs from the middle of your tapes, but
will ensure that you are using thicker and stronger tapes that are less likely to
stretch or break with use. Stay away from bargain brands; they tend to cause
load errors more often than high-quality, low-noise tapes.

Store your cassettes in a cool, dry place, away from any magnetism.
NOTE: One of the most hazardous places to store tapes is on or near

your television, which produces a magnetic field strong enough to alter the
data they contain. Never touch the oxide coating on the tape itself; the
surface is easily scratched and can be damaged by the oils on your hands.

Cossette Tape Write-Protect

You can avoid recording (writing) over programs you want to save by
write-protecting them. Look at Figure 1-8; each cassette tape has two
write-protect tabs, one tab for each side ofthe tape. Breaking out a tab locks
out the REC (Record) key on the Datassette. Should you decide, after
breaking out a write-protect tab, that you do want to record a program on
that side of a tape, simply put a piece oftape over the write-protect opening.

DISK DRIVES

The C-64 can use the model 1541 disk drive (Figure l-lO) which has
been designed to interface directly with the C-64 through its serial port.
Table 1-3 shows the specifications for the 1541 disk drive.

The 1541 disk drive can store 174,848 bytes of data per diskette. It
does this by putting more blocks of data on the outer (longer) tracks of the
diskette than do other disk drives.

Chapter 1 Introducing the Commodore 64 Computer 27

FIGURE 1·10. 1541 disk drive

Connecting Disk Drives

To connect a disk drive to the C-64 computer, follow these steps:

1. Unplug the computer's power cord from the electrical outlet.
2. Connect the interface cable supplied with the disk drive to the serial

port on the back of the C-64.

3. Plug the disk drive's power cord into an AC outlet.
4. Plug the C-64 's power cord into an AC outlet.

5. Check all your connections. If they look good, then proceed to the
power-on test.

Power-On Test

To perform a power-on test, follow these steps:

1. Turn the C-64's power ON. Wait until it has completed its initial­
ization.

2. Open the disk drive door and make sure the drive is empty.
3. Turn the disk drive's power ON.

28 Your Commodore 64

TABLE 1·3. 1541 Disk Drive Specifications

Storage
Total disk capacity
Number of program names
Sectors per track
Bytes per sector
Number of tracks
Number of sectors
Disk Memory

2114 (4)

Mechanical
specifications:
Dimensions

Height
Width
Depth

Electronic
specifications:
Power requirements

Voltage
Frequency
Power

Media:
Diskettes

174,848 bytes per diskette
144 per diskette
17-21
256
35
683 (664 blocks free)

2K RAM

97 mm
200 mm
374 mm

100, 120, 220, or 240 VAC
50 or 60 Hz
25 Watts

Standard mini 5-1/4", single-sided,
single-density

<rJ

'" z
i
':;!
:il
<rJ

ffl z
;;;
:::>

'" '" ~
8
~
~
u
:il
~ u.
Q

'" t
~ L-__ ~<

Indicator Ughts

The 1541 disk drive has two indicator lights on its front panel. The
green one will glow when power is applied to the unit. The red one is the disk
activity indicator. It will glow when the drive is running and flash if there is
an error condition.

Loading and Unloading Diskettes

Figure I-II illustrates the various parts of a floppy diskette. The
magnetic surface itself is a disk made of a thin, flexible plastic similar to the
material used in cassette tapes. This fragile disk is enclosed in a protective
jacket. The jacket is then placed in an envelope that protects the read/ write
slot.

Chapter 1 Introducing the Commodore? 64 Computor 29

Protective jacket ---........

Hard/soft-sectored hOle _________

Write-protect notch;
when covered, diskette ---........

contents cannot be altered

FIGURE 1·11. Floppy diskette

/ Read/W~ite slot

;>

ItSI
.;IlOpOlUlU0:J

·c
"0
o

.S

As mentioned earlier, the 1541 disk drive puts more data onto a single
diskette than almost any other disk drive. The way it does this is by putting
more blocks of data (sectors) into the data tracks that are near the outside of
the diskette. Some disk drives put the same number of sectors on each track.
Of those that do this, there are some that use hard-sectored diskettes. These
diskettes have a series of evenly spaced holes near their center. The disk drive
uses these holes to position the sectors. Since the 1541 does not have regularly
spaced sectors, it does not use these holes. The 1541 uses only soft-sectored
diskettes (those with only one hole in them).

To determine what kind of diskette you have, follow this procedure (see
Figure 1-12):

1. Take the diskette out of its envelope (not the jacket), and hold it by
its edges.

2. Gently insert two fingers into the center hole.

3. Rotate the diskette with the two fingers in the center hole until a
small hole in the diskette aligns with the outer small hole in the
jacket.

4. Continue rotating the diskette inside the jacket. If you find only one
hole, the diskette is soft-sectored. If you find more than one hole it is
hard-sectored and cannot be used with the 1541 disk drive.

30 Your Commodore 64

a. Test I b. Test 2 c. Test 3

N

~
~
:t
U
VJ

>­
WJ

~
«:
:t

i;;
OIl

t3
:t

~--~~

FIGURE 1·12. Test for soft-sectored diskette

Loading the Drive

Perform the following steps to load the 1541 disk drive:

1. Make sure the disk drive is OFF (the red activity light is not lit).

2. Hold the diskette by its jacket. Do not touch the exposed sections of
the diskette! The diskette's label should be facing up, with the
write-protect notch (Figure 1-11) on your left.

3. Carefully slide the diskette into the front slot until you hear a click. If
it doesn't slide in smoothly, pull it out and try again. Forcing it can
damage both the diskette and the drive.

4. With two fingers, firmly press down on the latch until it locks down.

Unloading the Drive

To unload the 1541 disk drive, follow these steps:

1. Make sure the disk drive is OFF (the red activity light is not lit).

2. Using two fingers, give the latch a quick press downward and release
it. It should pop up, and the diskette should pop slightly forward out
of the drive slot.

3. Hold the diskette gently with your thumb and forefinger and with­
draw it from the drive. Do not bend or force the diskette!

4. Put the diskette back into its envelope.

Chapter 1 Introducing the Commodore 64 Computer 31

FLOPPY DISKS

If handled properly, floppy diskettes are a convenient method of stor­
ing data. They are, however, quite fragile, and it is just as easy to write over
important data as it is to write it in the first place.

care of Diskettes

Diskettes must be handled with care. All of your information will be
stored on them, and once a diskette is damaged, it is virtually impossible to
retrieve this information. Here are some hints which will help you protect
your diskettes.

1. Whenever the diskette is out of the disk drive, place it in its protec­
tive envelope.

2. Never remove a diskette from its protective jacket!

3. When you label your diskettes, use only a felt-tip pen. Pencils or
ball-point pens may damage the diskette.

4. Do not touch or try to clean the diskette surface. This will damage it.

5. Do not smoke while using diskettes. Tobacco ash or smoke residue
will damage the diskette surface.

6. Keep diskettes away from all magneticfields! Even placing them on
top of your television set or disk drive can cause some distortion of
the data stored on the diskette.

7. Do not expose your diskettes to heat or sunlight.

Diskette Write-Protection

You can prevent the information on your diskettes from being over­
written by write-protecting them. To do this, simply cover the write-protect
notch (Figure 1-11) with the adhesive labels that came with your diskettes,
or with a piece of opaque tape.

If you remove the write-protect notch cover, you will be able to write to
the diskette again.

32 Your Commodore 64

THE 1525 GRAPHIC PRINTER

While you can use almost any printer with the C-64 through the parallel
port or by installing an IEEE 488 interface, the 1525 Graphic Printer operates
directly with the C-64 (Figure 1-13). The 1525 can print any standard C-64
character or symbol, both normal and reversed, and it can be programmed
to print dot graphics.

The 1525 prints characters using a 7 X 5 dot matrix and a 7 X 6 dot
matrix for special symbols. Table 1-4 shows the specifications for the 1525
Graphic Printer.

Connecting the Printer

Follow the steps outlined below to connect the 1525 Graphic Printer to
the C-64:

I. Unplug the computer's power cord from the electrical outlet.

2. Look at the back of the C-64. There are two round , similar con­
nectors in the center of the back. The one with five pins is the video

FIGURE 1·13. Model 1525 graphic printer

Chapter' irtroouClI1Q tho Commodore 64 Computer 33

TABLE 1-4. 1525 Printer Specifications

I. General Specifications

A. Print head 5X7 dot matrix impact dot matrix print (unihammer method)

B. Character set Upper and lower case characters,
numerals. symbols, and C-64 graphics characters

C. Graphic mode .. 7 dots per column
E. Character codes ... C-64 8-bit code

G. Print speed .. 30 characters per sec

H. Maximum line width .. 80 columns
I. Character spacing ... 12 characters per inch

J. Linefeed spacing 6 dots Character mode

9 dots. Graphic mode
7.5 Iinefeeds/sec Graphic mode

M. Paper width ... 4.5 to 8.5 inches acceptable
N. Copies .. (Maximum) Original plus 2 copies

O. Inked ribbon .. Built-in cassette type

P. Physical specifications 234.DX420 WXI36 H
Q. Weight ... Approximately 4.5 kg

2. Electrical Specifications

A. Power .. 120V AC

15 watts max

" '" ~
:I:
U «
::;
v:
v:
w
Z
Vi
;:l

'" w

'" o
Cl
o
::;
::;
o
u
z
o
Vi
~
::;

'" COl
"­
>-
'" Cl
W
f­
Z

'" "-
W L-__ ~'"

port. The other connector has six pins. It is the serial port. Plug the
printer cable (Figure 1-14) into the serial port.

3. The other end of the cable plugs into the six-pin plug on the back of
the 1525 printer.

4. Turn the C-64 ON and wait for it to initialize (the READY display will
appear on the screen).

5. Turn on the 1525 Graphic Printer. The red power light on the top of
the printer should glow and the print head should travel to the center
of the carriage and return to the left.

6. Move the switch on the back of the printer marked T-5-4 to the "T"
position (Figure I-IS). The printer should begin printing the entire
C-64 character set.

The printer should continue printing this until you either turn the
power OFF or switch the T-5-4 switch to "4" or "5."

34 Your Commodore 64

. '

FIGURE 1·14. Printer cable and serial port

II I I I I I I I I

FIGURE 1·15. T-5-4 switch

Chapter 1 Introducng the Commodore 64 Computer 35

7. Move the T-5-4 switch to the "4" position. The printer should stop
printing the test printout.

If the printer does not operate as described above, recheck all your
connections and repeat the procedure described above. If you are still
unsuccessful, consult your Commodore dealer.

Installing the Ribbon

Perform the following steps to install the printer ribbon:

1. Lift off the clear plastic sound cover (Figure 1-16).

2. The small tab on each ribbon cassette should face forward. Making
sure that the ribbon is not twisted (as shown in Figure 1-17), rock
each ribbon cassette to the outside of the machine and press it down
into position.

3. Rotate the ribbon cam out of the way and feed the ribbon between
the cam and its backing plate (Figure 1-18).

4. Replace the front cover and the clear sound cover.

To remove a ribbon, simply reverse the above procedure.

Paper Insertion

The 1525 Graphic Printer uses a continuous form that can be from 4.5
to 8 Y2 inches wide. It is sprocketed on both sides and can have as many as
three parts (one original and two copies) as long as the total thickness does
not exceed 0.2 mm.

The following steps show how to insert paper into the 1525 Graphic
Printer:

I. Turn the printer OFF and unplug its power cord.

2. Lift off the clear plastic sound cover.
3. Open the paper guides (Figure 1-19).

4. Insert the paper from the rear of the printer through the paper
chute.

5. Continue feeding the paper in by hand until it emerges at the front
of the printer.

36 Your Commodore 64

FIGURE 1·16. Removing the front cover of the 1525 printer

FIGURE 1·17. Ribbon cassettes

_ .. _-----
-VIf.1525-
j ,I ~ I" I "up", I.

FIGURE 1·18. Ribbon cam assembly

Cha pter I introduc ing the Commodore 64 Computer 37

6. Lift the paper-bail and feed the paper underneath it, adjusting the
bail glides so they will be evenly spaced across the width of the
paper.

7. Pull the paper through from the front and align the paper guides so
the sprocket holes on the paper mate with the sprockets on the
guides.

NOTE: The paper should not be too tightly stretched or the
sprocket holes may tear; however, if the paper is too loose, it will
wrinkle and bind inside the paper feed mechanism.

8. Close the paper guides and replace the clear plastic sound cover.

9. Advance the paper using the thumbwheel, making sure the paper
moves smoothly through the feed mechanism.

10. Plug in the printer and turn it ON.

Print Head

You may adjust the force of the print head to compensate for paper
thickness and ribbon wear as follows :

I. Turn the printer OFF and unplug its power cord.

-VIC1&2B~ _
10" ,,'u"- ,"'",

FIGURE 1·19. Loading paper into the 1525 printer

38 Your Commodore 64

FIGURE 1·20. Print head pressure adjustment

2. Remove the clear sound cover and the brown front cover from the
printer. (To remove the front cover, it will be necessary to press in
and up on the two thumb rests molded into the front of the cover.)

3. Looking down at the top of the print head you will see the pressure
adjustment lever (Figure 1-20).

4. The lever should be in one of the three position holes. To adjust the
force of the print head, lift the adjustment lever and put it into one of
the other holes. Do not leave the adjustment lever between any of the
holes; it must be resting in one of them to maintain its adjustment.

CHAPTER

Operoti ng the
C-64

This chapter will introduce you to the basic operation of the C-64
and some of its peripheral devices: the Datassette, the 1541 disk drive, and
the 1525 printer. It is especially important for you to become comfortable
with the C-64's keyboard and display and to become familiar with the
computer's two modes of operation: immediate and program modes.

IMMEDIATE MODE

When you turn on the C-64 it is operating in immediate mode. The
flashing cursor signifies that the computer is waiting for instructions and
also shows where the next character you type on the keyboard will appear on
the screen.

In immediate mode, you can use the C-64 as you would a calculator.
You enter statements-instructions to display information, perform a calcu­
lation, or carry out some other function. When you enter a statement and
press the RETURN key, the C-64 processes, or executes, the statement. First,
though, the C-64 checks your entry for syntax-the correct combination of

39

40 Your Commodore 64

characters in a statement. If the syntax is correct, the statement executes. If
it isn't correct, the following message appears:

?SYNTAX ERROR

READY .

•
If you get a syntax error message, check your statement for

typographical errors.
Immediate mode does what its name implies: any statements you enter

will execute immediately after you press RETURN.

The PRINT statement is the most frequently used immediate mode
statement. PRINT instructs the C-64 to display whatever follows it. For
example, PRINT will display the results of calculations such as

PRINT 360+199+100121

which, in this case, would be 1559.

PRINT will also display characters or entire strings of characters. A
string is a sequence of characters that can include letters, numbers, spaces,
and symbols. To display a string such as

AND MILES TO GO BEFORE I SLEEP

on the C-64's screen, you would type the following immediate mode state­
ment and press RETURN:

PI" T ~H" AND t'1 I LES TO GO BEFORE I SLEEP"

The string has quotation marks around it; anything enclosed in quotation
marks in a PRINT statement will display literally as a string of characters.

For example, a PRINT statement such as

PR I ~-n" :36~3+ 199+ 1121121121"

will not calculate anything. The computer will display a string of characters,
which in this case is three numbers connected by plus signs. Conversely, the
statement

PRINT AND MILES TO GO BEFORE I SLEEP

Chooter 2 Operating the Ctl. 41

will not display anything except a syntax error message. The syntax of a
PRINT statement always expects numeric or string information to follow.
The word AN D does not represent a number and is not in quotes; therefore,
the C-64 rejects the statement.

You can abbreviate PRINT by using a question mark. The following
statements produce the same result:

PI<: I tH" GODFRE'T' CAt1BR I DCiE II

or

,,~, II GODFRE'r' CAt'1BR I DOE II

Screen Editing

One of the most powerful features of the C-64 is its screen editor. The
key to using the C-64 's editing capabilities is the cursor. You can move the
cursor in four directions: up, down, left, and right. You can also insert or
delete characters anywhere on the screen, or even clear the entire screen
using a single keystroke.

EDITING TEXT ON THE CURRENT DISPlAY LINE

Occasionally, you may notice a mistake on a line you are currently
entering. You can correct mistakes on a line you are entering by backspacing
to the error and correcting it. For example,

OUR BUDGE'T'

was intended to display as OUR BUDGET. You can change the Y to a T
easily enough. Type in the line above and use the SHIFT and CURSOR

LEFT/RIGHT keys to position the cursor over the Y.

OUR BUDGEtli

OUR BUDGET

To change the Y to a T, simply type T. This replaces the old letter and
moves the cursor one position to the right.

BACKSPACING WITH THE DELETE KEY

If you just entered a character that you would like to retype, press the
INST/ DEL key to remove the incorrect character, and then continue typing.

42 Your Commodore 64

When you used the CRSR LEFT/ RIGHT key, the cursor simply moved over
the characters on the screen without changing them. Try the following
example using the INST / DEL key:

OUR BUDGE.

OUR BUDGET.

SHIFTING AND DELETING TEXT WITH THE DELETE KEY

In the following example, the word BUDGET has been entered with
two U's. It will be necessary to delete one of the U's and move the text to the
left to close up the extra space left by the U.

To do this, use the CRSR LEFT / RIGHT key to position the cursor over
the D and press the INST / DEL key once. This key erases the letter to the left
of the cursor, deleting the U and shifting the text to fill the space.

OUR BUIIDGET

OUR BIIDGET

SHIFTING TEXT TO INSERT CHARACTERS

In the example below, we need to change OUR BUDGET to OUR
FAMIL Y BUDGET. To do this, use the CRSR LEFT/ RIGHT key to position
the cursor over the space between OUR and BUDGET.

FAMIL Y has six letters and you will also need a space at the end of the
word. Hold down the SHIFT key and press INST / DEL seven times. This will
produce seven spaces between the two words. You may now type F AMIL Y
between OUR and BUDGET.

Remember, when you are inserting characters, the character directly
under the cursor is the one that will be shifted to the right. You must also
remember to enter enough spaces for each word you add, plus a space
between each word.

OUREUDGET

OUR. BUDGET

OUR FAMIL'T'm:UDGET

Chooter L OperoTlr,g the C-64 43

EDITING TEXT BETWEEN QUOTATION MARKS

If you are editing text enclosed in quotation marks you will need to take
certain precautions because anything entered within a string will be incorpo­
rated into it (with the exception of quotation marks, RETURN, and RUN/

STOP). This "quote mode" enables you to enter special characters, but it can
be frustrating when you merely want to fix an error in a statement. For
example, the following line should say PRINT "HOT DOGS FOR SALE".
Enter the line exactly as shown; do not type end quotes or press RETURN.

Try to make the necessary change to "HOYT".

PRINT "HO"t'T DOGS FOR SALE

When you tried to backspace to correct "HOYT", the computer printed
a reverse vertical bar. To backspace when editing text in quotation marks,
you will need to exit the quote mode. One way to do this is to type another
set of quotes. While you must enter quote mode to enter a string, you must
exit quote mode to edit the string.

Another method of escaping from the quote mode is to hold SHIFT

down and press RETURN. This will move the cursor down one line, allowing
you to move the cursor up and make any changes you like.

While this may seem like an un welcome "feature," you can write
programs using cursor keys. For instance, the immediate mode statement

HELLO nmJt-l THERE
F'R I NT "'-"ELLO nmJN THERE"

displays the text above the PRINT statement instead of below it, as would
normally be the case.

Arithmetic Calculations

The C-64 can perform the four standard mathematical operations:
addition, subtraction, multiplication, and division. The symbols for
addition and subtraction are the familiar plus sign and minus sign, but an

44 You' Commodore 611

asterisk is used for multiplication and a slash for division. Therefore, to
mUltiply 4 by 4 you would enter

PRltH 4*4

or

To divide 8 by 2 you would enter

F'RItH ::::/2

or

?8/2

PROGRAM MODE

In both immediate mode and program mode, you enter statements and
the computer responds to them. However, immediate mode statements are
very limited. If you were to press the CLEAR SCREEN key, your statement
would be gone.

The immediate mode examples you entered earlier in this chapter were
simple, one-line programs, and they do not do much. Once you become
familiar with your computer you will want to write longer programs. BASIC
programs can be hundreds of statements long; program mode statements
should not be as expendable as immediate mode statements. Therefore, the
C-64 stores program mode statements in main memory. Program mode
statements are more powerful than immediate mode statements because
they execute "under their own power." In immediate mode the computer
executes one statement and then waits for you to key in another statement.
In program mode, statements execute automatically in an order that you
specify.

Program Entry

Programs may be entered using the keyboard or loaded into memory
through the Datassette or disk drive. Each statement entered through the
keyboard has a corresponding line number. When you press RETURN at the
end of each statement, that line is stored in the C-64 's memory.

Chapter 2 Operating the C-6I1 45

You can use any line numbers between 0 and 63999. When you enter
lines in your programs, they will execute in the order they are numbered, not
the order in which they are entered. For instance, if you entered the lines

lee PRIt-H "CRAMDEN!"
90 PRINT "RALPH"
75 PR I NT "THE W I ~~~~ER

they would execute in the following order:

THE W I t·lt·~ER I::;
RALPH
CRAt'1DEt·~ I

It doesn't matter that there are gaps between the numbers used; C-64 BASIC
keeps the line numbers in order as you enter them. You should leave some
numbers unused between your program lines so you can add statements
later. All of this will be covered in greater detail in Chapter 3.

Running a Program

The RUN statement causes the computer to execute any program that
is in memory. Enter the following program:

10 PRHH :x:
20 >(=)<:+1
30 GOTO 10

The GOTO at line 30 tells the computer to return to line 10 and execute
the instruction there.

Typing RUN begins execution at the lowest line number in your
program.

RUN
13
1
2
3
4
5

46 Your Commodore 64

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

RUN followed by a line number starts execution of your program
beginning with the specified line number.

RU~l
o
1

3
4
5
6
7
8
9
1£1
11
12
1:3
14
15
16
17
18
19
2£1
21

USING THE DATASSEnE

The Datassette saves you the time and tedium of keying in programs
over and over again. The Datassette will store BAS I C programs and retrieve
them when you need them.

Chapter 2 Operating the C-64 47

The operations the Datassette will perform go well beyond the scope of
this chapter. Chapter 8 explores the full potential of the Datassette for
storing and retrieving data.

Saving a Program

Make sure the short program you entered in the last section is still in
memory by typing LIST. If it isn't, reenter it. To save it on a cassette, type

SAVE"RALPH"

The C-64 will respond with

PRESS RECORD & PLA¥ ON TAPE

Press PLAY and RECORD simultaneously. If you press just the PLAY key,
the C-64 will send data to the Datassette but nothing will be stored on tape.
After you press PLAY and RECORD, the C-64 will respond with

OK
SAVING RALPH

While the C-64 is saving the program on the Datassette, the cursor
disappears. When it is finished, the Datassette will stop, the C-64 will display
the READY message, and the flashing cursor will return.

Verification

After you save a program on the Datassette, it is a good idea to verify
that it was properly recorded. Occasionally, poor quality tapes or slight
mechanical fluctuations may cause a program to be incorrectly recorded. To
protect yourself from losing programs, always verify them immediately after
you store them.

To verify a program, follow these steps.

1. Rewind the tape and press the STOP I EJECT key.

2. Type VERIFY, followed by the program's name, and press
RETURN.

48 YocJ Commodore 62

A typical verify dialog with the C-64 may look like the following:

VERIF'T' "RALPH"

PRESS PLAY ON TAPE
OK

SEARCHING FOR RALPH
FOU~m RALPH

VERIFYING
OK
READY.

If the program was not saved properly, you will get an error message. If
this happens, you should SAVE it again and reverify it.

Loading a Program

To load a program from the Datassette, simply type LOAD program
name. The C-64 will respond by displaying

PRESS PLAY ON TAPE

After you press the PLAY key, the C-64 will display OK and then

SEARCH I ~m FOR

When you load a program from the Datassette, you do not need to
enter a program name. If you simply type LOAD, the computer will load the
first program it reaches on the tape. Using a program name causes the
computer to look for the file named, skipping any others it finds.

After a program is loaded from tape, you can leave the PLAY key
depressed if you will be loading more information from the tape at a later
time. However, if you do not intend to load another program from tape
soon, it is a good idea to press STOP to release the PLAY key so you will not
accidently try to SAVE a program while the Datassette is in the play mode.
The C-64 can detect when a Datassette key has been pressed, but it cannot
distinguish which key was pressed. Therefore, if PLAY and RECORD are
pressed (to SAVE a program) and you attempt to LOAD, the Datassette
will erase the program instead of reading it.

Chapter 2. Operating the C-64 49

You may occasionally have trouble loading a program from tape.
Instead of displaying

READ'r' .

the C-64 may display the following message:

?LOAD
ERROR
READY •
•
If this happens, rewind the tape and try loading it again. Try this several

times if necessary. If this does not work, there may have been an undetected
problem when the program was saved. Always VERIFY programs after you
SAVE them, and if they are important or have taken considerable time to
enter, make one or more backup copies.

One way to red uce errors during the SA VE proced ure is to fast-forward
a new tape to the end, and then rewind it to the beginning before storing
anything on it. This winding and rewinding process will tend to make the
tape move through the tape mechanism more smoothly. This is because
when tapes are manufactured they are wound onto their spools at high
speed. This process often puts some tension on the tape, and the first time it
is unwound it may jump a bit as it moves through the mechanism. It may
also pull and stick slightly in the cassette. Although these effects are not
usually noticeable in audio applications, they can cause data errors on
computer tapes.

Before entering a LOAD instruction, be sure to rewind the tape to a
point before your program begins; otherwise the C-64 will never find it. A
good practice is to note the number of the tape counter at the beginning of
your program and write it down on the tape label beside the name of the
program. This will also save time when you LOAD programs, since the
computer will not need to go through as much tape before reaching the
program you want.

LOAD and RUN

Pressing SHIFT and RUN / STOP together will automatically LOAD and
R UN the next program on the Datassette. This works only when the
computer is in the immediate mode (not executing an instruction from
within a program).

50 lour COrPIf1000re 64

OPERATING THE 1541 DISK DRIVE

If you have been using a cassette drive, you will appreciate how much
time can be saved over entering programs by hand each time you wish to run
them. The 154 I disk drive can save you even more time because of its much
greater flexibility and faster data access time. This section will cover the
basic operation of the disk drive, listing the diskette directory, and loading
and running programs from a diskette. The disk operations and statements
will be covered in detail in Chapter 7.

Loading a Program

To load a program from a diskette in the 1541 disk drive, type LOAD
"file name",8.

The "8" above is the device number of the disk drive. This device number
is set at the factory. The C-64 will display SEARCHING FOR "file name".
The disk drive will activate, and the red light on the front of the drive will
come on. If the program is on the diskette, the C-64 will also display

LOADI~m
READY.

If not, you will see

?F I LE NOT Fow·m
ERfWR
READY.

If you are not sure of the exact name of a particular file, or don't know
what is on your diskette, type

LOAD",",8

and the disk directory will be loaded into memory. To display the directory,
type

LIST

and the directory will appear on the screen.

o MIdI_OIIl It· It -'

5 "UNIVERSAL WEDGE" PRG
8 "UNIT TO UNITt' PRO
3 "CHANGE 1541" PRG

Chapter 2 Operating tre C-64 51

11 "COPY 1540-1541" PRO
27 "PRINTER DEMO" PRG
12 "SEQUENTI AL " PRO
11 "PERFORMANCE TEST" PRO
5 "CHECK DISK" PRO
17 "LOGIC DIAGNOSTIC" PRG

•
To recall any program from diskette, it is absolutely necessary to enter

the file name exactly as it is found on the directory. Therefore, it is generally
helpful to list the disk directory before loading any programs.

Look at the directory in the previous display. The top row (in reverse
letters) shows the name of the diskette and its ID number. The disk drive
always stores this number, and each time a diskette is accessed it compares
the In number with the number it has stored from the last disk operation. If
the numbers are the same, the disk drive assumes that the same diskette is
being accessed and simply performs its operation (SA VE or LOAD). If the
number on the diskette does not match the one in the disk drive's memory,
the disk drive will create a map of all the files on the diskette and update its
10 memory. This process is called initialization.

As long as no two diskettes have the same 10 number, the disk drive
will always initialize itself automatically when you change diskettes. If you
have two diskettes that have the same ID number, you should manually
initialize the disk drive by using the following command:

OPE~l 1,8,15, "10"

Remember, you need to initialize only when you change diskettes, and
then only if the ID and name of the current diskette are the same as that of
the new diskette.

Note that once a program has been loaded into memory, whether from
tape, from diskette, or by hand, the computer will treat it in the same manner
so the procedures for running, listing, and making changes to the program
remain the same.

FormaHing a Diskette

Before you can record any data on a new diskette, you must first
prepare it using a process called formatting. The computer stores and
retrieves data from the diskette by accessing special locations, called sectors,

52 'yocJr ComfY'coore 64

.r JO~- Sectors

~25~6~b-Yi-es-o-f-d-at~a-st~o"'r-e-d~o~n-~
FIGURE 2·1. A diskette's recorded surface

on the diskette. These locations are laid out on the diskette before any data
can be stored on it. Each sector is a small part of the tracks on the diskette.
Tracks are similar to the grooves in a phonograph record, but are arranged
in concentric circles rather than as a spiral. Figure 2-1 shows what the tracks
on a diskette might look like if you could see them. Each track is divided into
smaller pieces, called sectors, each of which may contain up to 256 bytes of
data. When you buy a new diskette, it is not divided into these sectors and
will not accept anything you try to record on it. Diskettes are not formatted
when you buy them because each disk drive manufacturer uses a slightly
different format on its diskettes. The C-64 diskette must be formatted on a
C-64 disk drive.

Chapter 2. Operating the C-cC; 53

Here are two methods of formatting a diskette.

Method 1:

OPEN 1,8,15
PRINT#I,"Ndrive no.:disk name,IO no."

Example:

OPH4 1.8,15
PR ItHtt 1 , "~l;NHJ DISK,01"

The drive number may be omitted when there is only one disk drive
connected to the C-64.

Method 2:

OPEN 1,8,15,"Ndrive no.:disk name,OI"
Example:

Again, the drive number may be omitted in one-drive systems.
If you have a diskette that has been used before and you wish to

completely erase it and then prepare it for use as a new diskette, you may
simply type OPENl,8,5,"N drive no.:disk name".

Example:

OPEN 1,8.15, "t·l; NHJ DISK"

As before, the drive number is not necessary in one-drive systems, and
in this case the 10 number is intentionally left out. The new disk name is put
onto the diskette, and the old 10 number is used. All the programs and data
stored on the diskette will be erased. 00 not confuse this operation with
initialization, which sets up the disk and drive for use together. Formatting
will erase everything from your diskette.

Saving a Program

Saving a program onto a diskette is nearly the same as saving a program
onto tape using the Datassette. The major difference is in the wording
(syntax) of the command. To save a program on diskette, type the command
SA VE" <program name >",8.

54 Your Commodore 64

If you only have one disk drive you may delete the drive number. For
example, to save the "RALPH" program from earlier in this chapter, enter it
and type

SAVE IRALPH",8

The disk drive should activate, the red light on its front should light, the
video screen should show

SAVING RALPH

and the cursor should disappear. When the program has been saved, the
screen will show the READY message and the cursor will return.

After you save any program it is a good idea to verify it, as with
programs stored on tape. To verify RALPH, which you stored on diskette,
type

VERIFY IRALPH",8

The screen will display

SEARCHING FOR RALPH
VERIFYI~lG
OK

READ'T'.

if the program was successfully saved. If not, you will get the ?VERIFY error
message. If this occurs, try saving and verifying again.

Occasionally, there will be flaws on a diskette's surface. If you try to
save a program and cannot get it to save properly, there may be a slight
defect in the track and sector being accessed. Try another diskette in this
case.

OPERATING THE 1525 GRAPHIC PRINTER

You may use the C-64 graphic printer to print the data from your
programs and to list the programs themselves. The printer may be addressed
in either immediate or program mode.

Chapter 2 Operating the C-64 55

The OPEN Statement

Before you can send data to the printer, you must open a channel to it.
This is done using the following OPEN statement OPEN number between 1
and 255,4.

The first number (between I and 255) is the number you will use to
address the printer. The second number is the printer's device number. It is
always 4.

Here is an example of a printer OPEN statement.

OPEN 1,4

You would now send all the data to be printed by the printer to channel
I by typing

PR I NT* 1, 1\ HmJ NOW BROWN COW II

The printer should print HOW NOW BROWN COW and return,
advancing the paper one row.

In a program, you could alternately print to the printer and the video
screen by simply typing PRINT when you want output to the screen, and
PRINT#l when you want the output printed on the printer. PRINT always
outputs to the primary device (the screen, for example, or another device
selected by a CMD instruction). PRINT# outputs to a file specially
OPENed to that device number.

The CMD Statement

If. you had a program that displayed all its data on the screen and you
wanted it to print everything on the printer instead, you could accomplish
this by adding two lines to the beginning of the program.

OPEN 1,4
CMD 1

The OPEN statement opens a channel to the printer, and the CMD
statement sends all output to the printer. By doing this, every PRINT
statement is automatically sent to the printer.

The CMD statement also allows you to produce a printed listing of a
diskette's directory. To do this, type

LOAD"'",8

56 {CUI Commodore 64

This will load the directory into memory. Now type

OPEN L 4
CMD 1
LIST

This will generate a complete directory listing on the printer. This will
also allow you to produce a printed copy of your disk directory, should you
want to put it in the envelope with the diskette.

To exit from the CMD mode, enter PRINT# device no.

The CLOSE Statement

After you have finished using the printer, you must close the channel to
it. To do this, type CLOSE channel no. If you OPENed channel I (as we
did above), type

CLOSE 1

After using a CMD statement, you will need to precede the CLOSE
statement with a PRINT# statement.

Here is an example.

OPEN L 4
om 1

PRItH#l : CLOSE 1

This will ensure that all files are properly closed. Failing to do this may
cause file errors.

CHAPTER

Programming the
C-64 Computer

This chapter will teach you how to program your C-64 using BASIC,
its built-in language. If you are already familiar with BASIC, Appendixes G
and H will serve as comprehensive reference to each statement in the
language. If you are a beginner, start with this chapter. It will give you the
background necessary to continue through the rest of the book.

ELEMENTS OF A PROGRAMMING LANGUAGE

Program statements must be written following a well-defined set of
rules. These rules, taken together, are referred to as syntax. There are many
different sets of rules that define how program statements are written. Each
set of rules applies to a different programming language. All of the syntax
rules described in this book apply only to C-64 BASIC.

Programming languages are as varied as spoken languages. In addition
to BASIC, other common programming languages are Pascal, FORTRAN,
COBOL, APL, PL! M, PL-l, and FORTH. Uncommon programming
languages number in the hundreds.

UnfortunC'.tely, programming languages, like spoken languages, have
dialects. A BASIC program written for your C-64 may not run on another
computer, even if the other computer is also programmable in BASIC.
These variations in the language syntax are due to the computer's limita-

57

58 'ICJr Commodore: ',:

tions or special features. However, having learned how to program your
C-64 in BASIC, you will have little trouble learning any other computer's
BASIC dialect.

Some programming language syntax rules are obvious. The addition
and subtraction examples in Chapter 2 use obvious syntax. You do not have
to be a programmer to understand these simple calculation statements.
However, most syntax rules seem arbitrary, and sometimes they are. For
example, why use "*" to represent multiplication? One would normally use
"X" for multiplication; but the computer would have no way of differentiat­
ing between the use of the "X" sign to represent multiplication or to
represent the letter "x." Therefore nearly all computer languages use the
asterisk (*) to represent multiplication. Division is universally represented
by a slash (j). Since the standard division sign (-;-) is not present on
computer or typewriter keyboards, some other character had to be selected.
The slash was probably chosen because it made the program expression
look like a fraction.

BASIC statement syntax deals separately with line numbers, data, and
instructions to the computer. We will describe each in turn.

Line Numbers

As we have already stated, in programmed mode every line of a BASIC
program must have a unique line number. The first line of the program must
have the smallest line number, while the last line must have the largest. In
between, line numbers must be in ascending order. The C-64 computer
forces this upon you: no matter where you enter a line on the display, the
C-64 will move it to its proper sequential position. Consider an existing
program with the following line numbers:

120
130
140
150
160
170
180
190

If you enter a new statement with line number 165, the new statement
will initially appear below the existing line 190, but the computer will

Chapter 3 Programming the C-64 Computer 59

automatically insert this statement between lines 160 and 170. This may be
illustrated as follows:

Line numbers displayed
when you entered line 165

120
130
140
150
160
170
180
190

165

Lines stored and
redisp1ayed thus

120
130
140
150
160
165
170
180
190

If the line number for a new statement duplicates an existing line
number, the old statement will be replaced.

C-64 BASIC allows line numbers to range between 1 and 63999. The
C-64 computer interprets digits appearing at the beginning of any line as the
line number. If the line number is larger than 63999, a syntax error message
appears, since you have violated one of the syntax rules for C-64 BASIC.

All BASIC dialects require line numbers to be assigned in ascending
order, as described above. However, the largest line number allowed varies
from one dialect of BASIC to the next.

You use line numbers as addresses, identifying locations within a
program. This is an important concept, since every program will contain the
following two types of statements:

1. Statements that create or modify data.
2. Statements that control the sequence 10 which operations are

performed.
The idea that operations specified by a program must be performed in

some well-defined sequence is a simple enough concept. Program execution
normally begins with the first statement in the program and continues
sequentially. This may be illustrated as follows:

Start-..10,

C 20-'
30,

C40-'
50,

C 60-'
70,

e 80-'
etc.

60 lour Commodore 64

Most programs, however, contain some nonsequential execution se­
quences. That is when line numbers become important, because they are
used to identify a change in execution sequence. This may be illustrated as
follows:

Start---IO-----.,

Data

C20-'
30
40~~GOT070
50
60

C 70
80,
90--'

The statement or statements following a line number specify operations
the computer is to perform, as well as data that must be used while perform­
ing these operations. We will now describe the types of data you may
encounter in a C-64 BASIC program.

There are two kinds of numbers that can be stored in C-64 computers:
floating point numbers (also called real numbers) and integers.

FLOATING POINT NUMBERS

Floating point is the standard number representation used by C-64
computers. All arithmetic is done using floating point numbers. The name
refers to the decimal point's ability to float, allowing fractions with different
numbers of digits. A floating point number can be a whole number, or a
fractional number preceded by a decimal point. The number can be negative
(-) or positive (+). If the number has no sign it is assumed to be positive.
Here are some examples of floating point numbers that are equivalent to
integers.

5
-15
65000
161
o

Here are examples of floating point numbers that include a decimal
point.

0.5
0.0165432
-0.0000009
1.6
24.0055
-64.2
3.1416

Chapter 3. Programming the C-64 Computer 61

Note that if you put commas in a number, you will get a syntax error
message. For example, use 65000, not 65,000.

ROUNDOFF

Numbers always have at least eight digits of precision; they can have up
to nine, depending on the number. C-64 BASIC rounds off additional
significant digits. Usually it rounds up when the next digit is more than 5 and
rounds down when the next digit is 4 or less, but there are some roundoff
quirks.

Here are some examples.
?5555555556

.555555555
•

?5555555557
.555555556

+

?1111111115
.111111111

?1111111116
.111111112

SCIENTIFIC NOTATION

I Appears to round down on 6
or less, up on 7 or more

I Appears to round down on 5 or
less, up on 6 or more

Large floating point numbers are represented using scientific notation.
When numbers with ten or more digits are entered, C-64 BASIC automati­
cally converts these numbers to scientific notation.

READY.
?1111111114

1. 11111111 E +09

READY.
?1111111115

1. 11111112E +1219

62 Your Commodore 64

A number in scientific notation has the following form:

numberE+ee

where

number is an integer, fraction, or combination, as illustrated above. The
"number" portion contains the number's significant digits; it is
called the "coefficient." If no decimal point appears, it is assumed
to be to the right of the coefficient.

E is always the letter E. It substitutes for the word "exponent."

+ is an optional plus sign or minus sign.

ee is a one-digit or two-digit exponent. The exponent specifies the
magnitude of the number: the number of places to the right
(positive exponent) or to the left (negative exponent) that the
decimal point must be moved to give the true decimal point
location.

Here are some examples.

Scientific Notation

2EI
1O.5E+4
66E+2
66E-2
-66E-2
IE-IO
94E20

Standard Notation

20
105000
6600
0.66
-0.66
0.000000000 I
9400000000000000000000

Scientific notation is a convenient way of expressing very large or very
small numbers. C-64 BASIC prints numbers ranging between 0.01 and
999,999,999 using standard notation, but numbers outside ofthis range are
printed using scientific notation. Here are some examples.

?009
9E-03

READY.
1.01

.01

READY.
?999999998.9

9999999999

READ',-'.
7999999999.6

lE+09

Chapter 3 f)rogramrninp the C-64 Computer 63

Even using scientific notation there is a limit to the size of a number that
C-64 BASIC can handle. The limits are

Largest floating point number: + 1.70141183E+38
Smallest floating point number: +2.93873588E-39

Any number of a larger magnitude will give an overflow error. The
following are examples of overflow errors:

?1.70141183E+38
1. 70141183E+38

READY.
?-1.70141183E+38
-1.70141183E+38

READY.
?1.70141184E+38

?OVERFLmJ ERROR
READ'y'.
?-1. 70141184E+38

?OI/ERFLOW ERROR

I Omflow m"

A number that is smaller than the smallest magnitude will yield a zero
result. This may be illustrated as follows:

?2.93873588E-39
2.938735l:::l8E-39

READ'T' •
?-2. 9:3873588E -39
-2. 93873588E-39

READ'T' •
?2.93873587E-39
o
F.:EADY.
?-2.93873587E-39
121

An integer is a number that has no fraction or decimal point. The
number can be negative (-) or positive (+). An unsigned number is assumed

64 Your Commodore 64

to be positive. Because of the way in which they are stored in the computer,
integer numbers must have values in the range -32768 to +32767.

o
1
44
32699
-15

Any integer can also be represented as a floating point number, since
integers are a subset of floating point numbers. C-64 BASIC automatically
converts integer numbers to floating point before using them in arithmetic.

STRINGS

The word string is used to describe data that consists of characters. This
can be anything that is not interpreted as a number.

We have already used strings as messages to be displayed on the C-64's
screen. A string consists of one or more characters enclosed in double
quotation marks.

"HI!"
"SYNERGY"
"12345"
"$10.44 IS THE AMOUNT"
"22 UNION SQUARE, SAN FRANCISCO, CA"

Within a string you can include any alphabetic or numeric characters,
special symbols or graphic characters, cursor control characters (CLR/

HOME, CRSR UP/ DOWN, CRSR LEFT/ RIGHT), and the RVS ON/ OFF key. The
only keys that cannot be used within a string are RUN/STOP, RETURN, and
INST/DEL.

All characters within the string are displayed as they appear. The cursor
control, color control, and RVS ON/OFF keys, however, normally do not
print anything themselves. To show that they are present in a string, certain
reverse field symbols are used, as shown in Table 3-1.

Strings are entered as part of a statement. A statement must fit within
an 88-character line, so the longest string you can enter at the keyboard will
have less than 88 characters, since there must be room for the line number.

Strings of up to 255 characters can be stored in memory. Long strings
are generated by concatenation, the joining together of shorter strings. This
will be explained later in this chapter.

Chapter 3 Programming the C-64 Computer 65

TABLE 3·1. Special String Symbols

Function Key String Symbol

Reverse On CTRL ~ ON ~ (Reverse R)

Reverse Off CTRL ~ OFF !!!!!!!! (Reverse Shifted R)

Home Cursor ~ HOME ~ (Reverse S)

Clear Screen Shifted ~ HOME ~ (Reverse Shifted S)

Cursor Down ~ C~R 00 (Reverse Q)

Cursor Up Shifted ~ C~R D (Reverse Shifted Q)

Cursor Right (C~R] I!.I (Reverse])

Cursor Left Shifted (C~RJ .1 (Reverse Shifted])

VARIABLES

The concept of a variable is easy to understand. Consider the following
statements:

1100 A=B+C
200 ?A

These two statements cause the sum of two numbers to be displayed.
The two numbers are whatever Band C represent at the time the statements
are executed. In the following example

90 B=4.65
95 C=3.72
1100 A=B+C
200 ?A

B is assigned the value 4.65, while C is assigned the value 3.27. Therefore, A
equals 8.37.

66 Your Commodore 64

VARIABLE NAMES

Variable names can be used to represent string data or numeric data. If
you have studied elementary algebra, you will have no trouble under­
standing the concept of variables and variable names. If you have never
studied algebra, then think of a variable name as a name that is assigned to a
mailbox. Anything that is placed in the mailbox becomes the value asso­
ciated with the mailbox name.

A variable name can have one, two, or three characters. The following
character options are allowed:

I' rh;,d ,h""te< mu.c be $ foc, ",;"g m;,bk oc
% for an integer variable. A floating point
variable name can only have two characters.

Second character can be any unshifted letter
(A to Z) or any numeric digit (I, 2, 3,4,5,6,7,8,9,0)
for any type of variable.

L....-__ First character must be an unshifted letter
(A to Z) for any type of variable.

Thus the last character of the variable name tells C-64 BASIC which
type of data the variable represents.

Note that unshiftcd letters are used for the first and second label
characters. Depending on the model of C-64 computer, unshifted letters
may be upper-case or lower-case. Either way, they are the letters displayed
when the SHIFT key is not being depressed.

Floating point variables are the ones most frequently used in C-64
BASIC. Here are some examples of floating point variable names,

A
B
C
Al
AA
Z5

integer variable names,

A%
B%
C%
Al%
MN%
X4%

and string variable names.
A$
M$
MN$
Ml$
ZX$
F6$

Chapter 3 Programming the C-64 Computer 67

Variable names can have more than two alphanumeric characters, but
only the first two characters count. Therefore BANANA and BANDAGE
are interpreted as the same name, since both begin with BA. C-64 BASIC
allows variable names to have up to 86 characters, but such large names are
impractical. Four to eight characters is a more realistic limit; long names
may actually make it harder to read your program. The names below
illustrate the way C-64 BASIC "sees" long variable names.

MAGIC$ interpreted as MA$
N 123456789 interpreted as Nl
MMM$ interpreted as MM$
ABCDEF% interpreted as AB%
CALENDAR interpreted as CA

If you use variable names with more than two characters, keep the
following points in mind:

1. Only the first two characters plus the identifier symbol ($ or %) are
significant. Do not use extended names like LOOPI and LOOP2;
these are interpreted as the same variable: LO.

2. C-64 BASIC has a number of reserved words which have special
meaning within a BASIC statement. Reserved words include
BASIC statements, such as PRINT, and others which we will
discuss later. No variable name can contain a reserved word
embedded anywhere in the name. For example, you cannot use
PRINTER as a variable name, because BASIC would see it as
"PRINT ER." This problem usually shows up as a syntax error in a
line that looks correct. Table 3-4 is a complete list of reserved
words.

3. Additional characters use up memory space that you might need in
longer programs. On the other hand, longer variable names make
programs easier to read. PAR TNO, for example, is more
meaningful than P A as a variable name describing part numbers in
an inventory program.

68 Your Commodore 64

Operators

The BASIC statement

100 7110.2+4.7

tells the C-64 to add 10.2 and 4.7, and then display the sum. The statement

2510 C=A+B

tells the C-64 to add the two floating point numbers represented by the
variable names A and B, and to assign the sum to the floating point number
represented by the variable name C.

The plus sign specifies addition. The plus sign is referred to as an
operator. It is an arithmetic operator, since addition is an arithmetic opera­
tion. There are two other types of operators: relational operators and
Boolean operators. These take a little more explanation, since they reflect
conditions and decisions, rather than arithmetic.

Table 3-2 summarizes the BASIC operators. We will examine each
group of operators in turn, beginning with arithmetic operators.

TABLE 3·2. Operators

.~ ~
... 0
E';
.c .. - - c.
~o

- '" " .. I: 0
0-.- " - .. " ... -.;c.
0::0

'" I: ..
" 0 ... -- " o .. o ...
=c. o

Precedence

High
9

8
7
6
6
5
5

4
4
4
4
4
4

3
2
I

Low

Operator

()

*
+

<>
<
>

<:=. or = <
>= or=>

NOT
AND
OR

Meaning

Parentheses denote order of evaluation

Exponentiation
Unary minus
Multiplication
Division
Addition
Subtraction

Equal
Not equal
Less than
Greater than
Less than or equal
Greater than or equal

Logical complement
Logical AND
Logical OR

C;opicr J ProgromrninCl the CM Comoutcr 69

ARITHMETIC OPERATORS

An arithmetic operator specifies addition, subtraction, multiplication,
division, or exponentiation. Arithmetic operations are performed using
floating point numbers. Integers are automatically converted to floating
point numbers before an arithmetic operation is performed, and the result is
automatically converted back to an integer if an integer variable represents
the result.

The data operated on by any operator is referred to as an operand.
Arithmetic operators each require two operands, which may be numbers,
numeric variables, or a combination of both.

Addition (+). The plus sign specifies that the data (or operand) on the
left of the plus sign is to be added to the data (or operand) on the right. For
numeric quantities this is straightforward addition.

The plus sign is also used to "add" strings. In this case, however, the
plus sign does not add the values of the strings. Instead, the strings are joined
together, or concatenated, to form one longer string. The difference between
numeric addition and string concatenation can be visualized as follows:

Addition of numbers: numl+num2 = num3
Addition of strings: stringl+string2 = stringlstring2

Using concatenation, strings containing up to 255 characters can be
developed.

"FOR"+"WARD" results in "FORWARD"
"HI"+ " "+"THERE" results in "HI THERE"
A$+ B$ results in concatenation of

the two strings represented
by string variable labels
A$ and B$

"1"+ CH$+E$ results in the character "I,"
followed by concatenation of
the two strings represented
by string variable labels
CH$ and E$

If A$ is set eq ual to "FOR" and B$ is set equal to "W ARD," then A$ +
B$ would generate the same results as "FOR" + "WARD."

Should you try to build a string longer than 255 characters, a STRING
TOO LONG error is flagged.

70 Your Commodore 64

Subtraction (-). The minus sign specifies that the operand on the right
of the minus sign is to be subtracted from the operand on the left of the
minus sign. For example,

4-1
100-64
A-B

55-142

results in 3
results in 36
results in the variable

represented by label B
being subtracted from the
variable represented by
label A

results in -87

The unary minus operator identifies a negative number. For example,

-5
-9E4
-B
4--2 Note that 4 -- 2 is the same as 4+ 2

Multiplication (*). An asterisk specifies that the operand on the right of
the asterisk is to be multiplied by the operand on the left of the asterisk. For
example,

100 * 2
50 * 0
A * XI

R% * 14

results in 200
results in 0
results in multiplication of

two floating point numbers
represented by floating point
variables labeled A and X I

results in an integer
represented by integer variable
label R% being multiplied by 14

In the examples above, if variable A is assigned the value 4.2 and
variable Xl is assigned the value 9.63, then the answer would be 40.446. A
and Xl could hold integer values 100 and 2 to duplicate the first example;
however, the two numbers would be held in the floating point format as
100.0 and 2.0, since A and Xl are floating point variables. In order to
multiply 100 by 2, representing these numbers as integers, the example
would have to be A% * X I %.

Division (/). The slash specifies that the operand on the left of the slash
is to be divided by the data (or operand) on the right of the slash.

10/2
6400/4
A/B

4E2/XR

Chapter 3 Programming the C-64 Computer 71

results in 5
results in 1600
results in the floating point

number assigned to "ariable
A being divided by
the floating point number
assigned to variable B

results in 400 being divided
by the floating point number
represented by label XR

The third example, A/ B, can duplicate the first or second examples,
even though A and B represent floating point numbers. The integer numbers
would be held in floating point form, however. A%/ B% could exactly
duplicate either of the first two examples.

Exponentiation (f). The up arrow specifies that the operand on the left
of the arrow is raised to the power specified by the operand on the right of
the arrow. If the data (or operand) on the right is 2, the number on the left is
squared; if the data (or operand) on the right is 3, the number on the left is
cubed; and so on. The exponent can be any number, variable, or expression,
as long as the exponentiation yields a number in the allowed floating point
range. For example,

2 I 2 results in 4
12 I 2 results in 144
I I 3 results in I
A I 5 results in the floating

point number assigned
to variable A being
raised to the 5th power

2 I 6.4 results in 84.4485064
NM I -10 results in the floating

point number assigned
to variable NM being
raised to the negative
10th power

14 I F results in 14 being raised
to the power specified
by floating point variable F

ORDER OF EVALUATION

An expression may have multiple arithmetic operations, as in the
following statement.

72 Your Commodore 64

A+C * 10/212

When this occurs, there is a fixed sequence in which operations are
processed. First comes exponentiation (t), followed by sign evaluation,
followed by multiplication and division (* j), then by addition and sub­
traction (+ -). Operations of equal precedence are evaluated from left to
right. This order of operation can be overridden by the use of parentheses.
Any operation within parentheses is performed first. For example,

4+1 * 2
(4+1) * 2
\00 * 4/2-1
\00 * (4/2-1)
\00 * (4/ (2-1))

results in 6
results in \0
results in 199
results in \00
results in 400

When parentheses are present, C-64 BASIC evaluates the innermost set
first, then the next innermost, and so on. Parentheses can be nested to any
level, and may be used freely to clarify the order of operations being
performed in an expression.

RELATIONAL OPERATORS

Relational operators represent the following conditions: greater than
(», less than «), equal (=), not equal « », greater than or equal
(> =), and less than or equal « =).

1=5-4
14> 66
15> = IS
A<>B

results in true (-I)
results in false (0)
results in true (-I)
the result will depend

on the values assigned
to floating point variables
A and B

C-64 BASIC arbitrarily assigns a value of 0 to a "false" condition and a
value of -1 to a "true" condition. These 0 and -1 values can be used in
equations. For example, in the expression (1 = I) * 4, the equation (1 = \)
is true. True equates to -\, therefore the expression is the same as (-1) * 4,
which results in -4. You can include any relational operators within a C-64
BASIC expression. Here are some more examples.

25+(14) 66) is the same as 25+0
(A+(I = 5-4» * (15) = IS) is the same as (A-I) * (-1)

CI'ooter 3. ;'ro(.Tomming tl-e eM Computer 73

Relational operators can be used to compare strings. For comparison
purposes, the letters of the alphabet have the order A < B, B < C, C < D,
and so on. Strings are compared one character at a time, starting with the
leftmost character.

"A" < "B"
"X" = "XX"

C$ = AHB$

results in true (-I)
results in false (0)
result will depend

on the string values assigned
to the three string variables
C$, B$, and A$

When operating on strings, C-64 BASIC generates a value of -1 for a
"true" result, and a value of 0 for a "false" result.

("JONES" >"DOE") +37 is the same as -1+37
("AAA"< "AA") * (Z9-("OTTER"> "AB")) is the same as 0 * (Z9-(-I))

BOOLEAN OPERATORS

Boolean operators give programs the ability to make logical decisions.
There are three Boolean operators in C-64 BASIC: AND, OR, and NOT.

A simple supermarket shopping analogy can serve to illustrate Boolean
logic. Suppose you are shopping for breakfast cereals with two children.

The AND Boolean operator says that a cereal is selected only if child A
and child B select the cereal.

The OR Boolean operator says that a cereal will be selected if either
child A or child R selects the cereal.

The NOT operator generates a logical opposite. If child B insists on
disagreeing with child A, then child B's decision is always not child A's
decision.

Table 3-3 summarizes the way in which Boolean operators handle
numbers. This table is referred to as a truth table.

Boolean operators primarily control program logic. Here are some
examples.

IF A = 100 AND B = 100 GOTO 10
If both A and B are equal to 100, branch to line 10

IF X < Y AND B> = 44 THEN F = 0
If X is less than Y and B is greater than or equal to 44,
then set F equal to 0

IF A = 100 OR B = 100 GOTO 20
If either A or B has a value of 100, branch to line 20

74 Your COrf\mooore 64

IF X < Y OR B> = 44 THEN F = 0
F is set to 0 if X is less than Y or B is greater than 43

IF A = I AND B = 2 OR C = 3 GOTO 30
Take the branch if both A = I and B = 2; also take
the branch if C =3

A single operand can be tested for true or false. An operand appearing
alone has an implied "< >0" following it. Any nonzero value is considered
true; a zero value is considered false.

IF A THEN B = 2
IF A < > 0 THEN B = 2

The above two statements are equivalent
IF NOT B GOTO 100

Branch if B is false, i.e .. equal to zero. This is
probably better written as

IF B = 0 GOTO 100

All Boolean operations use integer operands. If you perform Boolean
operations using floating point numbers, the numbers are automatically
converted to integers. Therefore, the floating point numbers must fall within
the allowed range of integer numbers.

If you are a novice programmer, you are unlikely to use Boolean
operators in the manner that we are about to describe. If you do not
understand the discussion, skip to the next section.

TABLE 3·3. Boolean Truth Table

The AND operation results in a I only if both numbers are I
I AND I = I
o AND 1=0
I AND 0= 0
o AND 0= 0

The OR operation results in a I if either number is I
I OR 1 = I
OOR I = I
I ORO= I
o OR 0= 0

The NOT operation logically complements each number
NOT 1= 0
NOTO= I

Boolean operators operate on integer operands one binary digit at a
time. C-64 BASIC stores all numbers in binary format, using two's comple­
ment notation to represent negative numbers. Therefore we can illustrate an
AND operation as follows:

43 AND 137 = 9----------,

/1 '----:-89 16 - 10001001
'----------.... 2B I6 - 0010 10 II

09 16 - 00001001

Here is an OR operation.

430R137= 171 --------,

I IL-___ : 8916 - 10001001
'---------2B I6 - 0010 10 II

AB 16 -10101011

Here are two NOT operations.

NOT 43 = 212 ---------,

1-1-----. 2B I6 - 00101011
l l

D416 - 11010100

NOT 137 = 118----------,

..... 1 ----.8916 _ 10001001

! !
7616 - 01110 110

If operands are not integers, they are converted to integer form; the
Boolean operation is performed, and the result is returned as a 0 or 1.

If a Boolean operator has relational operands, then the relational
operand is evaluated to - I or 0 before the Boolean operation is performed.
Thus the operation

A = lOR C< 2

is equivalent to

Consider this more complex operation.

IF A = BAND C < D GOTO 40

First the relational expressions are evaluated. Assume that the first expres­
sion is true and the second one is false. The statement then becomes

IF-I ANDOGOT040

Performing the AND yields a 0 result.

IF 0 GOTO 40

Recall that a single term has an implied "< >O"following it. The expression
therefore becomes

IFO<> 0 GOT040

Thus, the branch is not taken.
In contrast, a Boolean operation performed on two variables may yield

any integer number.

IF A% AND W:[GOTO 40

Assume that N'c = 255 and BI)(= 240. The Boolean operation 255 AND
240 yields 240. The statement, therefore, becomes

IF 240 GOTO 40

or. with the "< >0",

IF 240 < > 0 GOTO 40

Therefore. the branch will be taken.
Now compare the following assignment statements:

A= A AND 10
A = A< 10

In the first example, the current value of A is logically ANDed with 10, and
the result becomes the new value of A. A must be in the integer range
-32768 to +32767. In the second example, the relational expression
A < } 0 is evaluated to -} or 0, so A must end up with a value of -lor O.

Choote'; Prog'oIT,1111g 'he ecc, 77
========~==~======~

Arrays

Arrays are used in many types of computer programs. If you are not
already familiar with arrays, you will need to learn about them. The infor­
mation that follows will be very important to your programming efforts.

Conceptually, arrays are very simple. When you have two or more
related data items, instead of giving each data item a separate variable name,
you give the collection of related data items a single variable name. Then you
select individual items using a position number, which in computer jargon is
referred to as a subscript, or index.

A grocery list, for example, may have six items from the meat and
poultry department, four fruit and vegetable items, and three dairy prod­
ucts. These three groups of items could each be represented by a single
variable name as follows:

MP$(O) = "CHOPPED SIRLOIN"
MP$(l) = "CHUCK STEAK"
MP$(2) = "NEW YORK STEAK"
MP$(3) = "CHICKEN"
MP$(4) = "SALAMI"
MP$(5) = "SAUSAGES"

FV$(O) = "ORANGES"
FV$(l) = "APPLES"
FV$(2) = "BEANS"
FV$(3) = "CARROTS"

DP$(O) = "MILK"
DP$(l) = "CREAM"
DP$(2) = "COTTAGE CHEESE"

MP$ is a single variable name that identifies all meat and poultry products.
FV$ identifies fruits and vegetables, while DP$ identifies dairy products.

A subscript follows each variable name. Thus a specific data item is
identified by a variable name and an index.

Notice that the first index value in the examples above is 0, not I.
Subscripts in BASIC start from 0 because this simplifies the programming
of many scientific and mathematical problems. Many people are un­
comfortable with this practice, however. If you don't feel at home with using
element 0 of an array, simply ignore it and start with a subscript of 1. You
will waste a little memory space, but you are less likely to make program­
ming mistakes if you are not trying to "adapt" yourself to the machine.

We could take the array concept one step further, specifying a single
variable name for the entire grocery list, using two indexes. The first index
(or subscript) specifies the product type, and the second index specifies the
item within the product type. This is one way in which a single grocery list
variable array with two subscripts could replace the three arrays with single
subscripts illustrated above.

78 lour Commodore 64

GL$(O,O) = MP$(O) GL$(I,O) = FV$(O) GL$(2,O) = DP$(O)
GL$(O,I) = MP$(l) GL$(I,I) = FV$(I) GL$(2,1) = DP$(l)
GL$(O,2) = MP$(2) GL$(l,2) = FV$(2) GL$(2,2) = DP$(2)
GL$(O,3) = MP$(3) GL$(I,3) = FV$(3)
GL$(O,4) = MP$(4)
GL$(O,5) = MP$(5)

Arrays can represent integer variables, floating point variables, or
string variables. However, a single array variable can only represent one
data type. In other words, a single variable cannot mix integer and floating
point numbers. One or the other can be present, but not both.

Arrays are a useful shorthand means of describing a large number of
related variables. Consider, for example, a table containing ten rows of
numbers, with twenty numbers in each row. There are 200 numbers in the
table. How would you like it if you had to assign a unique name to each of
the 200 numbers? It would be far simpler to give the entire table one name
and identify individual numbers within the table by their table location.
That is precisely what an array does.

Arrays can have one or more dimensions. An array with a single
dimension is equivalent to a table with just one row of numbers. The
dimension identifies a number within the single row. An array with two
dimensions yields an ordinary table with rows and columns: one dimension
identifies the row, the other dimension identifies the column. An array with
three dimensions yields a "cube" of numbers, or perhaps a stack of tables.
Four or more dimensions yield an array that is hard to visualize, but
mathematically no more complex than a smaller-dimensioned array.

Let us examine arrays in detail.
A single-dimension array element has the following form:

name(i)

where
name is the variable name for the array. Any type

of variable name may be used

is the array index to that element. i must
start at O.

A single-dimension array called A, having five elements, can be visual­
ized as follows:

Chooter 3 Prcgrommlng The C-M Ccrnputer 79

A(O)
t-----I

A(I)
t-----I

A(2)
1-----4

A(3)
1-----4

A(4)
""---_..I

The number of elements in the array is equal to the highest index
number plus I. This takes array element 0 into account.

A two-dimension array element has the following form:

name(i, j)

where
name is the variable name of the array

I is the column index
is the row index.

A two-dimension string array called A$, having two column elements
and three row elements, might be visualized as follows:

A$(O,O) A$(O, I)
t-----+----i

A$(I,O) A$(l,l)

A$(2,O) A$(2, I)

The size of the array is the product of the highest row dimension plus I,
multiplied by the highest column dimension plus I. For the array above, it is
3 X 2 = 6 elements.

Additional dimensions can be added to the array.

name (i,j,k, ...)

Arrays of as many as II elements (index 0 to 10 for a single-dimension
array) may be used routinely in C-64 BASIC. Arrays containing more than
II elements need to be specified in a dimension statement. Dimension
statements are described later in this chapter. If you do not enter the
subscript for an array in your program, it will be treated as a separate
variable by C-64 BASIC. This can lead to hard-to-find bugs in your pro­
gram. You should not exploit this distinction in your programs: other
languages and other dialects of BASIC do not work in the same way. This

--,- ----------

80 Your Commodore tLl

technique could cause confusion for other programmers trying to read your
code. Even you might later decide you had mistakenly left out the subscript,
and try to fix the "error."

BASIC Commands

In Chapter 2 we described a number of commands that can be entered
at the keyboard in order to control C-64 computer operations. R UN is one
such command. Commands can all be executed as BASIC statements.

You are unlikely to execute commands out of BASIC statements when
you first start writing programs. However, when you start writing very large
programs you may run out of memory space. Then you must break a
program into a number of smaller modules and execute them one at a time.

Reserved Words

All of the character combinations that define a BASIC statement's
operations, and all functions, are called reserved words. Table 3-4 lists the
C-64 BASIC reserved words. You will encounter many of these reserved
words in this chapter, but others are not described until later chapters.

When executing BASIC programs, the C-64 computer scans every
BASIC statement, seeking out any character combinations that make up
reserved words. The only exception is text strings enclosed in quotes. This
can cause trouble if a reserved word is embedded anywhere within a variable
name. The C-64 computer cannot identify a variable name by its location in
a BASIC statement. Therefore, you should be very careful to keep reserved
words out of your variable names. This is particularly important with the
short reserved words that can easily slip into a variable name.

C"opter 3. fJrogromming the C-64 Computer 81

TABLE 3-4. Reserved Words

Abbreviations Abbreviations' Abbreviations'

"O~ +- ..
"O~

+- ..
"O~

+- ..
...

Word
......

Word .. - ' -;it; Word .. - -t: .. - -t:
"0. C • "0. C • "0. c. c c c
• .! l: ;:~~ S.!l: .!"' .. ~~l: ~.=~ - -= .. Ii5 U rIl' <UrIl rIlUOO <UrIl rIlUrIl <Uoo

ABS AI as NEXT N- nE TIME'
AND NOT TO U. uS
ASC At as ON USR vt vA
ATN AI aT OPEN 0.., oP VAL V- vE
CHR$ CI cH OR VERIFY wt wA
CLOSE CLr <:10 PEEK p- PE WAIT
CLR CL cL POKE pr PO
CMD C', eM POS
CONT cr cO PRIm ? ?
COS PRINTi P- pR
DATA Dt dA READ R- rE
DEF D- dE REM
DIM D., dI RESTORE REt reS
END E/ eN RETURN REI reT
EXP E'" eX RIGHT. R., rI
FN RND R/ r~j

FOR Fr fO RUN R, rU
PRE F- fR SAVE Sf ~A
OET 0- 9E SGN 51 sO
GET" SIN S., 51
GOSUB 00. 90S SPC S.., sP
GO TO or 90 SQR SI sQ
IF ST
INPUT STATUS
INPUn 1/ iN STEP ST- stE
INT STOP SI sT
LEFT$ LE- ieF STII/:' ST_ stR
LEN SYS SI s'T'
LET L- lE TAB Tt tA
LIST L., 1I TAN
LOAD Lr 10 THEN TI tH
LOO TI
MID$ M., JIll TIME
NEW 11$

tThe C-64's alternate character set is activated by pressing the SHIFT and
COMMODORE keys simultaneously.

82 ComrnOJore 64

BASIC Word Abbreviations

You learned early in this book that the BASIC statement PRINT could
always be entered from the keyboard by the abbreviation" ? ". This is
expanded by the C-64 BASIC interpreter to the full word PRINT.

Most BASIC commands, statements, and functions can be abbreviated
using the first two characters of the keyword, with the second character
entered in shifted mode. With the C-64's normal character set (that is,
upper-case or graphic characters), the second character appears as a graphic
character. For example, the abbreviation for LIST appears as

L"
1 I

C-64 BASIC makes no distinction between the two abbreviations. Either
one is expanded to the word LIST.

If a two-letter abbreviation is ambiguous (does ST mean STEP or
STOP?), the two-letter abbreviation is assigned to the most frequently used
keyword, and the other word (or words) are either not abbreviated or are
abbreviated using the first three characters, with the third entered in shifted
mode. For STEP and STOP, for example, STOP is abbreviated as

~T

SI

STEP is abbreviated as

stE
8r-

To abbreviate STEP, type an unshifted (upper-case) S, an unshifted T, and a
shifted E.

The following sample input lines use two- and three-letter abbrevia­
tions wherever possible. All abbreviated words are expanded to the full
spelling when you list the programs.

------Press SHIFT C~ for lower case.
10 IE .1.=10
20 b=a aN 14+eX(2)
30 dI C(5)
40 fO i=0 to 5
50 rE cO)
60 nE
70 dA l,b,2,4,10,5,16

Chopter 3 Progrommlr>g 11,8 C-64 CU'lputer 83

80 reS
9103 eN
1I ... ------------LIST the program.
Ie l .. t a."'U~
20 b-a and 14+exP(2)
30 dirn(5)
40 for' i=0 to 5
5103 r d c(i)
610 next
70 da.ta 1.6.2.4.10.5.16
80 res.tore
910 e'nd

BASIC statements are
not abbreviated.

-----------Press SHIFT (:: for upper case.

After pressing SHIFT and the keys simultaneously, you will see the abbrevia­
tions displayed with graphics in the place of the shifted characters. The
expanded listing will display upper-case letters.

Refer to Table 3-4. The expansions from abbreviations for the two
functions SPC and TAB include the left parenthesis. This means that if you
use the abbreviation for either of these, you must not type in the left
parenthesis. For example,

expands to

Hl Pri .tt sPc«S)

Syntax error results from two
left parentheses

The correct sequence to key in is

10 ?sPS)

This parenthesis rule applies only to the SPC and TAB functions and is
a format inconsistency you will have to watch for when abbreviating these
function names. For all other functions, you key in both parentheses. For
example,

10 ?rN(1)

84 JI Comn,:xJurc

BASIC Statements

The operation performed by a statement is specified using reserved
words (see Table 3-4).

Statements are not described in detail in this chapter. Refer to Appen­
dixes G and H for complete descriptions of all statements recognized by
C-64 BASIC. This chapter introduces you to programming concepts,
stressing the way statements are used.

Remarks

It is appropriate that any discussion of BAS I C statements begin by
describing the only BASIC statement which the computer will ignore: the
remark. If the first three characters of a BASIC statement are REM, the
computer ignores the statement entirely. So why include such a statement?
The answer is that remarks make your program easier to read.

I[you write a short program with five or ten statements, you will
probably have little trouble remembering what the program does -unless
you leave it around for six months and then try to use it again. If you write a
longer program with 100 or 200 statements, you are quite likely to forget
something very important the very next time you use the program. After you
have written dozens of programs, you cannot possibly remember each one in
detail. The solution to this problem is to document your program by
including remarks that describe what the various parts of the program do.

Good programmers use plenty of remarks in all of their programs. In all
of this chapter's program examples we will include remarks that describe
what is going on, simply to get you into the habit of doing the same thing
yourself.

Remark statements have line number:>; like any other statement. A
remark statement's line number can be used like any other statement's line
number.

Assignment Statements

Assignment statements let you assign values to variables. You will
encounter assignment statements frequently in every type of BASIC pro­
gram. Here are some examples of assignment statements.

Chootor Fro~)rommlng the eM Computer 85

90 REM INITIALIZE VARIABLE X
1013 LET ><=3.24

In statement 100, floating point variable X is
assigned the value 3.24

1513 X=3.24
Equivalent to statement 100 above; the LET is optional

in all assignment statements

215 As ... "ALSO RAH"
The string variable A$ is assigned the two

text words ALSO RAN

Notice that the first assignment statement (line 100) begins with the
word "LET", but the other two don't. Originally, all assignment statements
had to start with lET. The idea was that the computer could identify the
type of statement by looking at the first word. Today, all but a few dialects of
BASIC have dropped this requirement. Although LET is not required by
C-64 BASIC, it is still a reserved word and cannot appear in a variable name.

Here are three statements that assign values to array variable DP$(I),
which we encountered earlier when describing arrays.

200 REM DP' (!) I S THE DA I1~'T' PRODUCTS SHOPP nm LI ST
VARIABLE

210 DPl<e)="MILK"
220 DP$(l)="CREAM"
230 DP$(2)="COTTAOE CHEESE"

Remember, you can put more than one statement on a single line. The
three DP$ assignments could be placed on a single line as follows:

200 REM DP$(I) IS THE DAIR'T' PRODUCTS SHOPPING LIST
VARIABLE

21121 DPI<I2I)III I MILK I :DP$(1)="CREAM":DP$(2)="COTTAOE CHEESE"

A colon must separate adjacent statements appearing on the same line.
Assignment statements can include any of the arithmetic or relational

operators described earlier in this chapter.

90 REM THIS IS A DUMB WA'T' TO ASSIGN A VALUE TO V
1130 1,1=3.24+7.96/8.5

86 Your Commodore 64

This statement assigns the value 4.17647059 to floating point variable
V. It is equivalent to these three statements

90 REM X AND Y NEED TO BE INITIALIZED SEPARATELY FOR
LATER USE

le0 X=7.96
110 YIIII8.S
120 V=3.24+X/Y

which could be written on one line as follows:

1130 X=7.96:V=8.5:V=3.24+X/Y

Here are assignment statements that perform the Boolean operations
described earlier in this chapter.

90 REM THESE EXAMPLES WERE DESCRIBED EARLIER IN
THE CHAPTER

1013 A~=43 AND 137
21313 B%=43 OR 137

The following example shows how a string variable could have its value
assigned using string concatenation:

lee V$="COTTAGE"
200 W$="CHEESE"
300 DP$(2)II:VS+" "HJ$
4013 REM DP$(2) IS ASSIGNED THE STRING VALUE

"COTTAGE CHEESE"

DATA AND READ STATEMENTS

When a number of variables need data assignments, the DATA and
READ statements should be used rather than the LET statement. Consider
the following example:

5 REM INITIALIZE ALL PROGRAM VARIABLES
10 DATA 10.20,-4,16E6
213 READ A.B.C,D

The statement on line 10 lists four numeric data values. These four values are
assigned to four variables on line 20. After the statements on lines 10 and 20
have been executed, A = 10, B = 20, C = 4, and D - 16 X 106 .

If you have one or more DATA statements in your program, you can
visualize them as building a "column" of numbers. For example, a DATA
statement that contains a list of ten numbers would build a ten-entry

Chopte J Programming the C(ll ComOlter 87

column. Two DATA statements, each with a list of five data items, would
build exactly the same column. This may be illustrated as follows:

10 DATA 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

First column entry- (10
) 20

I t 30
40
50

{

60

I
~

10 DATA 10,20,30,40,50
20 DATA 60, 70, 80, 90, 100

70
2 80

90
100

'-- 'V ,,/

2

~ Last column entry

The first READ statement executed in a program starts at the first
column entry, assigning each value to corresponding variables named in the
READ statement. The second and subsequent READ statements take
values from the column, starting at the point where the previous READ
statement left off. This may be illustrated as follows:

10 DATA 10,20, 30,40,50,60, 70, 80,90. 100

: {IO
· / ~~
220 READ ABC A = 10 /" { 40 · ~~~~ /{l!

C=40/ j' 90

~40 READ s,!? / D = 50 100

· ~ A=60
· E = 70

: ~C-F:80
490 READ A, E, F, G G - 90
500 READ B

~B=IOO

88 Your Commodore 64

RESTORE STATEMENT

You can at any time send the pointer back to the beginning of the
numeric column by executing a RESTORE statement. Here is an example
of the use of RESTORE.

10 DATA 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

A= 10
220 REA D A, B, C B = 20 10

. ~C=30_____ 20

. ~g:::: { Ir~g
340 READ C, D 60
350 RESTORE 70

80
90

: A= 10)
E = 20.---/

: ~F=30
490 READ A, E, F, G G= 40
500 READ B
~ B = 50 -+----.-'

Dimension Statement

100

C-64 BASIC normally assumes that a variable has a single dimension,
with index values of 0 through 10. This generates an II-element array. If you
want a single dimension with more or fewer than 11 elements, then you must
include the array variable in a dimension (DIM) statement. You also must
include the array in a dimension statement if it has two or more dimensions,
no matter what number of elements the array has. The following example
provides dimensions for one-dimension array variables MP$, FV$, and
DP$. We used these variables in our earlier discussion of arrays.

DIM MP'(5),FVS(3)JDP$(2)

Crapter 3 Programming the C-M Computer 89

The two-dimension grocery list variable, GL$, would be dimensioned
as follows:

DIM OL$'3,S)

A DIM statement can provide dimensions for any number of variables,
providing the statement fits within an 80-character line.

The number or numbers following a variable name in a DIM statement
is equal to the largest index value that can occur in that particular index
position. But remember, indexes begin at 0. Therefore, MP$(5) dimensions
the variable M P$ to have six values, not five, since indexes 0, 1,2,3,4, and 5
will be allowed. G L$ (3,5), likewise, specifies a two-dimension variable with
24 entries, since the first dimension can have values 0, 1,2, and 3, while the
second dimension can have values ° through 5.

Once you have declared an array variable in a DIM statement, you
must subsequently reference the variable with the specified number of
subscripts; each subscript must have a value between ° and the number
specified in the DIM statement. If any of these syntax rules are broken, you
will get a syntax error.

Branch Statements

Statements within a BASIC program normally execute in ascending
line number order. This execution sequence was explained earlier in this
chapter when we described line numbers. Branch statements change this
execution sequence.

GOTO STATEMENT

GOTO is the simplest branch statement. It allows you to specify the
statement that will be executed next. Consider the following example:

20 A;a4.37
30 OOTO lee
40
510
60
70
810
910
1010
110

90 Your Commodore 64

The statement on line 20 is an assignment statement; it assigns a value
to floating point variable A. The next statement is a GOTO; it specifies that
program execution must branch to line 100. Therefore, the instruction
execution sequence surrounding this part of the program will be line 20, then
line 30, then line 100.

Of course, some other statement should branch back to line 40. Other­
wise the statement on line 40 would never be executed by program logic, as
illustrated above.

You can branch to any line number, even if the line has nothing but a
remark on it. However, the computer ignores the remark, so the effect is the
same as branching to the next line. For example, consider the following
branch:

20 A=4. :37

(~~) GOTO 70

50
6(1
70)REM THERE IS A REMARK, AND
8'71 NOTHI~m ELSE ON THIS LIl'lE
90

The program branches from line 30 to line 70. There is nothing but a
remark on line 70, so the computer moves on to line 80, executing the
statement on this line. Even though you can branch to a remark, you might
as well branch to the next line. This may be illustrated as follows:

212J}A:::4.37

(;~ OOTO 80

60
70 REM THERE IS A REMARK, AND
80 NOTHINO ELSE ON THIS LINE
90

COMPUTED GOTO STATEMENT

There is also a computed GOTO statement that lets program logic
branch to one of two or more different line numbers, depending on the
current value of a variable. Consider the following illustration:

A%

713
A%= 280

A%= 3

9121
10121
110
120
1313
14121
15121
160

Chapter 3 Programming the eM Computer 91

The statement on line 40 is a computed GOTO. When this statement
executes, the program will branch to statement 10 if variable A% = 1, to
statement 70 if variable A% = 2, or to statement 150 if A% = 3. If A% has
any value other than 1, 2, or 3, the program will not branch. Notice that
variable A% is assigned a value in statement 30. The value assigned to A%
depends on the current value of variable B%. The illustration does not show
how variable BSiC is computed, but as long as B% has a value of 3,4, or 5, the
statement on line 40 will cause a branch.

To test the computed GOTO statement, key in the following program:

1121 B%=4
2121 PRINT B%
3121 A%=B%-2
4121 ON A%GOTO 10,70,150
7121 PRINT B%
8121 B%=5
9121 GOTO 3121
15121 PRINT B%
16121 B;I,=3
17121 GOTO 2121

N ow execute this program by typing RUN on any blank line. Do not
type RUN on a line that is already displaying something. If you do, you will
get a syntax error and the program will not be executed.

Can you account for the sequence in which digits are displayed? Try
rewriting the program so that each number is displayed once, in the
sequence 345345345 ...

92 Your Commodore

Control Statements

In every program, the sequence of the statements executed is every bit
as important as the statements themselves. C-64 BASIC has several state­
ments that control the way a program executes, hence the name "control
statements. "

Control statements redirect the execution sequence of a program.
Some control statements choose one of many paths program logic can take;
others execute several statements a specified number of times.

FOR-NEXT Statement

GOTO and computed GOTO statements let you create any type of
statement execution sequence that your program logic requires. But sup­
pose you want to reexecute an instruction (or a group of instructions) many
times. For example, suppose array variable A(I) has 100 elements and each
element needs to be assigned a value ranging from 0 to 99. Writing a hundred
assignment statements would be tedious. It is far simpler to reexecute one
statement 100 times. This can be done using the FOR and NEXT
statements.

10 DIM A(99)
20 FOR 1=0 TO 99 STEP 1
30 A(D=I
40 NEXT I

Statements between FOR and NEXT execute repeatedly. In this case a
single assignment statement appears between FOR and NEXT, so this single
statement is reexecuted repeatedly.

To demonstrate how FOR-NEXT loops work, we will display the A(I)
values created within the loop. Key in the following program:

10 DIM A(99)
20 FOR 1=0 TO 99 STEP 1
30 A(I)-I
35 PRINT A(l)
40 NEXT I
50 REM IF YOU HAVE A OOTO STATEMENT THAT BRANCHES TO

ITSELF, THE
70 REM COMPUTER EXECUTES AN ENDLESS LOOP: IN EFFECT,

IT WAITS
90 OOTO 90

1'\ow key in RUN. One hundred numbers display, starting at 0 and ending at

Chapter 3 Programmir:g tf-]e C64 Comouter 93

99. Press the STOP key to terminate program execution.
Statements between FOR and NEXT reexecute the number of times

specified by the index value directly after FOR. In the illustration above this
index variable is I. I increases in value from 0 to 99 in increments of 1. The
first time the assignment statement is executed, I will equal 0 and the
assignment statement on line 30 will be executed as follows:

30 A(0)=0

I increases by the step, or increment, size, which is specified on line 20 as 1. I
therefore equals 1 the second time the assignment statement on line 30 is
executed. The assignment statement has effectively become

:30 A(1)=1

I continues to increment by the specified step value until the maximum value
of 99 is reached or exceeded.

The step value does not have to be 1; it can have any value. Change the
step value to 5 on line 20 and reexecute the program. Now the assignment
statement is executed only 20 times, since incrementing I by 5 nineteen times
will take it to 95 (the 20th increment will take it to lOa, which is more than
the maximum value of 99).

The step size does not have to be positive. But if the step size is negative,
the initial value of I must be larger than the final value of I. For example, if
the step size is -I and we want to initialize 100 elements of A(I) with values
ranging from 0 to 99, then we would have to rewrite the statement on line 20
as follows:

10 DIM A(99)
20 FOR 1=0 TO 99 STEP -1
30 A(1)=1
35 PRINT AU);
40 NEXT I
80 OOTO 80

Execute this program to test the negative step.
In this example the initial and final values for I, and the step size, are

treated as integers. You must, however, represent these three values using
floating point variables or expressions. Expressions will be evaluated to a
floating point result. The floating point result will be converted to an integer
using the round-off rules described earlier in this chapter.

Because round-off rules can cause problems, you are strongly urged to
use beginning values, ending values, and step sizes as integers. Do not use

94 Your Commodore 64

expressions, since this unnecessarily complicates the program. If you must
calculate one of these values, it is simpler and faster to do so in a separate
statement.

If the step size is 1 (which is frequently the case), you do not have to
include a step size definition. In the absence of any definition, C-64 BASIC
assumes a step size of 1. Therefore, the statement on line 20 could be
rewritten as follows:

ua DIM A(99)
15 REM USE A STEP SIZE OF 1
20 FOR 1=0 TO 99
30 A(D=1
35 PR I NT A (I) ;
40 NEXT I
90 GO TO 80

Also, you do not need to specify the index variable in the NEXT
statement. But if you do, it will make your program easier to read.

NESTED LOOPS

The FOR-NEXT structure is referred to as a program loop, since
statement execution loops from FOR to NEXT and back to FOR. This loop
structure is very common; almost every BASIC program that you write will
include one or more such loops. Loops are so common that they are
frequently nested. The statement sequence occurring between FOR and
NEXT can be of any length; it can run to tens or even hundreds of state­
ments. And within these tens or hundreds of statements, additional loops
may occur. The following illustration shows a single level of nesting:

10 DIM A(99)
20 FOR 1-0 TO 99
30 AU)-1
40 REM DISPLAY ALL VALUES OF A(I) ASSIGNED THUS FAR
50 FOR JllJle TO I
60 PRINT AU)
70 NEXT J
80 NEXT I
90 GOTO 90

Complex loop structures appear frequently, even in relatively short
programs. Here is an example showing the FOR and NEXT statements, but
none of the intermediate statements.

Chapter 3 Programming the C-64 Computer 95

50 FOR 1=1 TO 10
60 FOR X=25 TO 347 STEP 3

· 100 FOR A=9 TO 121 STFP -1

· 140 NEXT A
2121121 FOR B-25 TO 10121 STEP 5

280 NEXT B
3121121 NEXT X
· 50121 FOR 1/=1 TO 20 STEP 2

· 61210 FOR p=1e TO 2121

· 65121 NE)<:T p
7121121 NEXT \,I

· 1121121121 FOR Z=l TO 1121
· 11219121 NEXT Z
12121121 NEXT I

The outermost loop uses index I; it contains three nested loops that use
indexes X, Y, and Z. The first loop contains two additional loops which use
indexes A and B. The second loop contains one nested loop using index P.
The third loop contains no nested loops. Each nested loop must have a dif­
ferent index variable name. Statement execution sequences may be illus­
trated as follows:

96 Your Commodore 64

Loop structures are easy to visualize and use. There is only one com­
mon error to watch out for: do not terminate an outer loop before you
terminate an inner loop. For example, the following loop structure is illegal:

. X-25 TO 347 STEP 3

XT I

If you do not include the index variable in the NEXT statement,
program logic will automatically terminate loops correctly, since there is
only one possible correct loop termination each time a NEXT statement is
encountered.

Every program must have the same number of FOR and NEXT state­
ments, since every loop must begin with a FOR statement and end with a
NEXT statement. For example, suppose there are two FOR statements, but
only one NEXT statement. The second FOR statement constitutes an inner
loop that will execute correctly. But the outer loop has no NEXT statement
to terminate it, so the program will execute incorrectly. Too many NEXT
statements will also cause a syntax error.

Subroutine Statements

Once you start writing programs that are more than a few statements
long, you will quickly find short routines that are used repeatedly. For
example, suppose you have an array variable (such as A(I» that is reinitial­
ized frequently at different points in your program. Would you simply
repeat the three instructions that constitute the FOR-NEXT loop described
earlier? Since there are only three instructions, you may as well do so.

Suppose you have to initialize the array and then execute ten or eleven
instructions that process array data in some fashion. If you had to use this
loop many times within one program, rewriting ten to fifteen statements
each time you wished to use the loop would take time, but more importantly,
it would waste a good deal of computer memory. This may be illustrated as
follows:

Chapter 3 Programming the C-64 Computer 97

Start of program - I
: }

+f~ I Repeated routine

*:/ T
etc.

To solve this problem, you could separate out the repeated statements
and branch to them. This group of statements is referred to as a subroutine.

But a problem arises. Branching from your program to the subroutine
is simple enough, since the subroutine starts at a given line number. How­
ever, where do you branch back to at the end of the subroutine? You could
execute a GOTO statement whenever you wish to branch to a subroutine.

Arbitrarily selected
line numbers

Start of program-+ 10

etc.

Subroutine

_ 2000

100 GOTO 2000 --- ----:,,~
110 " II

-start

" I I /' / I
,," / I

" I I
,,/ / I

190 GOTO 200{J " I I

200 1/ /
I I

I I
I I

I I
. I I

250 GOTO 20001 /

260 I

/

I
I

2150 _end

-- \ " ,,'
I 'y

~ ""--,,/1
/' __ "" 'I
I II
\ / I
, -- I

/
/

I
Return ",,/
where? --

480 GOTO 2000
500

98 Your Commodore 64

This statement branches in the same way as a GOTO, but GOSUB
remembers the line number to which it should return. This is illustrated in
the following section.

GOSUB STATEMENT

110 GOSUB 2000
110 \

t
I
I
I
\
\
\
\
\
\

\ ,
" , ,

'
.... ,-

Subroutine

)0001
_start

2150 RETURN-end

.­,
I

/ .-

I
I

\
I
I
I
I
I

I

The RETURN statement causes a branch back to the line number that
the GOSUB statement remembered. The three-statement loop that
initializes array A(I), if converted into a subroutine, would appear as
follows:

18 REM MRIN PROGRRM
20 REM ~OU CRN DIMENSION R SUBROUTINE"S VARIABLE IN
30 REM THE r1AIN PRODRRM. IT IS R GOOD IDEA TO DIMENSION
~0 REM ALL VARIABLES AT THE STRRT OF THE MAIN PROGRAM.
sa DIM R(99)
70 DOSUB 2000
e0 REM DISPLR~ SOMETHING TO PROVE THE RETURN OCCURRED
9S PRINT "RETURNED"
HIS DOTO 100
2000 REM SUBROUTINE
2010 FOR I-e TO 99
2S20 R(I)-1
2030 PRINT ACI);
2040 NEXT I
2050 RETURN

Chapter 3 Programming the C-64 Computer 99

NESTED SUBROUTINES

Subroutines can be nested. That is to say, a subroutine can itself branch
to, or call, another subroutine, which in turn can call a third subroutine, and
so on. You do not have to do anything special in order to use nested
subroutines. Simply branch to the subroutine using a GOSUB statement;
each subroutine ends with a RETURN statement. C-64 BASIC will
remember the correct line number for each nested return. The following
program illustrates nested subroutines:

10 REM MAIN PROORRM
20 REM YOU CAN DIMENSION A SUBROUTINE~S VARIABLE IN
30 REM THE r~AIN PROORAM. IT IS A OOOD IDEA TO DIMENSION
50 REM ALL VARIABLES AT THE START OF THE MAIN PROGRAM.
60 DIM A(99)
70 OOSUE 2000
813 REM DISPLAY SOMETHING TO PROVE THE RETURN OCCURRED
90 PRINT"RETURNED"
1013 OOTO 1013
213130 REM FIRST LEVEL SUBROUTINE
20113 FOR 1-13 TO 99
2020 A(Dill
2030 OOSUB 30B0
2040 NEXT I
212150 RETURN
31300 REM NESTED SUBROUTINE
31310 PRnn A(I)
3020 RETURN

This program moves the ?A(I) statement out of the subroutine and puts
it into a nested subroutine. Nothing else changes.

COMPUTED GOSUB STATEMENT

Since GOTO and GOSUB statement logic is very similar, it will not
come as any surprise that there is a computed GOS UB statement akin to the
computed GOTO statement. The computed GOSUB statement allows you
to branch to one of two or more subroutines, depending on the value of an
index. Consider the following statement:

90
lee ON A G08UB 10121121.50121.5121121121.230121
1113

When the statement on line 100 is executed, if A = I the subroutine
beginning at line 1000 is called. If A = 2 the subroutine beginning at line 500

100 Your Commodore <'>1

is called. If A = 3 the subroutine beginning at line 5000 is called. If A = 4
the subroutine beginning at line 2300 is called. If A has any value other than
I, 2, 3, or 4, the program will merely continue executing at line 110. The
computed GOSVB statement remembers the next line number (in this case,
110). It does not matter which of the subroutines is called; the called
subroutine's RETURN statement will branch back to the stored line
number (in this case, 110).

You can nest computed GOS UB statements, just as you can nest
standard GOS VB statements.

IF-THEN Statement

The arithmetic and relational operators described earlier in this chapter
are frequently used in IF-THEN statements. This gives a BASIC program
decision-making capabilities. Following IF you enter any expression. If the
expression is true, the statement(s) following THEN are executed. However,
if the expression is false the statement(s) following THEN are not executed.
Here are three simple examples of IF-THEN statements.

10 IF A=B+5 THEN PRINT MSGI
40 IF CCS(lt1" THHl Il-l=0
50 IF Q(14 Al-lD M()Ml GOTD 66

The statement on line 10 causes a PRINT statement to be executed if
the value of floating point variable A is five more than the value of floating
point variable B. The PRINT statement will not be executed otherwise. The
statement on line 40 sets floating point variable IN to 0 if string variable CC$
is any letter of the alphabet in the range A though L. The statement on line
50 causes program execution to branch to line 66 if floating point variable Q
is less than 14 and floating point variable M is not equal to floating point
variable MI. Otherwise, program execution will continue with the state­
ment on the next line (GOTO can substitute for THEN).

If you do not understand the evaluation of expressions following IF,
then refer to the discussion of these expressions at the beginning of this
chapter.

Input/Output Statements

There are a variety of BASIC statements that control the transfer of
data to and from the computer. Collectively, these are referred to as
input/ output statements. The simplest input/ output statements control

Chapter 3. Programming the C-64 Computer 101

data input from the keyboard and data output to the display. There are also
more complex input! output statements that control data transfer between
the computer and peripheral devices such as cassette units, diskette units,
and printers. These more complex inputj output statements are described in
Chapter 8.

Since we have already encountered the PRINT statement, we will
discuss this statement first.

PRINT STATEMENT

You can use the word PRINT or a question mark to create a PRINT
statement.

Why use PRINT instead of DISPLA Y or some abbreviation of the
word display? The answer is that in the early sixties, when the BASIC
programming language was being created, displays were very expensive and
generally unavailable on medium- or low-cost computers. The standard
computer terminal had a keyboard and a printer. Information was printed
where today it is displayed; hence the use of the word "print" to describe a
statement that causes a display.

The PRINT statement will display any data. Text must be enclosed in
quotes. For example, the following statement will display the single word
"TEXT":

10 PRINT "TEXT"
or

10 ?"TEXT"

To display a number, you place the number, or a variable name, after
PRINT. This may be illustrated as follows:

113 A:-::=le
213 ?5,A:-::

The statement at line 20 displays the number 5 and then the number 10 on
the same line.

You can display a mixture of text and numbers by listing the informa­
tion to be displayed after PRINT. Use commas to separate individual items.
The following PRINT statement displays the words "ONE", "TWO",
"THREE", "FOU R", and "FIVE", followed by the numeral for each
number:

10 ?IONE",1,"TWO",2,"THREE",3,"FOUR",4,"FI'1E",5

102 Your Cornmodo'e tl.

If you separate variables with commas, as above, then the C-64
computer automatically assigns II character spaces for each variable
displayed. Try executing the statement illustrated above in immediate mode
to prove this to yourself. If you want the display to remove the empty spaces,
separate the variables with semicolons, as follows:

10 PRIHT "OHE";1;"TWO";2;"THREE",3;"FOUR";4;"FIVE";5

Enter this statement in immediate mode and display it to see how the
semicolon works.

A PRINT statement automatically advances to the next line of the
display unless you suppress it. You can suppress this feature by putting a
comma or a semicolon after the last variable. A comma after the last
variable will continue the display at the next II-character space boundary.
To illustrate this, enter and run the following program:

10 PRINT "ONE"; 1; "HJO"; 2
20 PRI~lT "THREE"; 3

~~O\V add a semicolon to the end of the statement on line 10 and again
execute the program by typing RUN. The two lines of display will now occur
on a single line.

We have been illustrating the numerals by inserting them directly into
the PRI NT statement. You can, if you wish, display the contents of variables
instead. Try entering and running the following program, which uses vari­
able A%(l) to create digits:

10 FOR 1-1 TO 5
20 A~(n=I
30 NEXT
40 PRItH "ONE"; A~(1); "TWO"; A~(2); "THREE"; A~(3);

"FOUR";A~(4)

50 OOTO 50

You can put the displayed words into a string array and move the PR INT
statement into the FOR-NEXT loop by changing the program as follows:

10 DATA "OHE","TWO","THREE","FOUR","FIYE"
20 FOR 1=1 TO 5
30 A~(1)=1
40 READ N. (1)
50 PRINT.H'(I);A~(I)'
60 NEXT
70 OOTO 70

Chapter 3 Programming the CJ·;1 Computer 103

The program shown above is not well written. A%(l) can be eliminated,
and N$ need not be an array variable. Can you rewrite the program using N$
and removing A%(I) entirely?

QUOTES IN STRINGS

Although most BASIC programs will not need to print quotation
marks, there are some that do, such as "electronic typewriters" or other
programs that deal with words rather than numbers.

Since quotation marks indicate the beginning and end of strings, you
cannot put them in the middle of a string. You can, however, put a quotation
mark into a string or a PRINT statement using the BASIC function CHR$.
CHR$ acts like an array of all the possible characters. You supply a
subscript, and CHR$ returns the character corresponding to that number.
The values of the subscripts and the characters they produce are listed in
Appendix E. The value for a quotation mark is 34. Using CHR$, you can
print a quotation mark with a statement such as

100 PR I HTCHRs (34) j "TH I SIS D I SPLAYED It~ QUOTES"; CHR$ (34:;'

If you PRINT a string containing control characters, such as CRSR UP

or HOME, you must take an additional step. In Chapter 2 we described the
quote mode. In quote mode, cursor movement keys are translated into
special characters so they can be stored in strings. This allows your program
to perform these functions while it is running.

"Quote mode" also applies to output. To allow you to LIST programs
containing these control characters, the portion of BASIC that puts
information on the display "watches"for quotes. When it finds a quotation
mark, it goes into quote mode and displays control characters in the
reversed form you see when typing them into a program. This can do
unpleasant things to a carefully planned display.

You can escape from quote mode while printing just as you do when
typing in a program: with a second quotation mark or a RETURN. Since
programs that print quotation marks usually print them in pairs, you will
seldom see a problem. If your program must print only one, you can use
CHR$ to delete the first one, and then print another to leave quote mode.

100 PRINTCHR$(34);CHR$(20);CHR$(34)j"afiV8 QUOTED STRINOII";
CHR$(34)

CHR$(20) deletes the first quotation mark. Only the second one will appear
on the screen.

104 Your Commodore 64

PRINT FORMAnlNG FUNCTIONS

We use the word formatting to describe the process of arranging
information on a display (or a printout) to make it easier to understand or
more pleasing to the eye. Given the PRINT statement and nothing else,
formatting could become a complex and painful chore. For example, sup­
pose you want to display a heading in the middle of the top line of the
display. Does that mean displaying space codes until you reach the first
heading character position? Not only would that be time-consuming and
likely to cause errors, but it would also waste a lot of memory, since each
space code must be converted into a computer instruction. Fortunately,
C-64 BASIC provides three PRINT formatting aids: the SPC, TAB, and
POS functions.

SPC FUNCTION

SPC is a space-over function. You include SPC as one of the terms in a
PRINT statement. After the letters SPC you include, in parentheses, the
number of character positions that you wish to space over. For example,
you could display a heading beginning at the leftmost character position of
the display as follows:

10 PRINT"HEADINO"

To center the heading on the screen you would first space over sixteen
character positions, as follows:

10 PRINT SPC(16); "HEADING"

Notice the semicolon after the SPC function. A comma after SPC will
start displaying text at the next II-character boundary following the
number of spaces specified by SPC.

When you include the SPC function in a PRINT statement you simply
cause the next printed or displayed character to be moved over by the
number of positions specified after SPC; no other PRINT statement syntax
is changed.

TAB FUNCTION

TAB is a tabbing function similar to typewriter tabbing.
Suppose you want to print or display information in columns. You

Chapter 3 Program~ing the C-:'::/l Computer 105

must first calculate the character position of the line where each column is to
begin. This may be illustrated as follows:

Column Number

• o
JONES, P. J.
BURKE, P. L.
ROBINSON, L.W.
etc.

13
431-25-6277
447-71-7614
231-80-8421
etc.

In the illustration above, columns begin at character positions 0 and 13.
N ow, instead of computing space codes as you go from line to line, following
each column entry you simply insert a TAB function in the PRINT
statement.

Consider one line of the display illustrated above. Counting character
positions, you could display the line without tab stops, as follows:

10 PRINT "JOt-lES,P.J. 431-25-6277"

Instead of inserting space codes, you could use the space function and
shorten the statement, as follows:

10 PRIt-lT "JONES,P.J.";SPC(3)j"431-25-6277"

But tabbing is easier because you tab to a known column number instead of
counting spaces.

Note that the entries in the third and fourth columns are numbers that
were entered as text. Try rewriting the PRINT statement to display these as
numbers. The numbers no longer align as theydid when they were displayed
as characters (in Chapter 5 we discuss the quirks associated with display
formatting). In this case, numbers leave a space for a negative sign, and they
do not display zeros occurring after the decimal point. That is why there are
differences.

POS FUNCTION

POS returns the current cursor position. The position is returned as a
number, equal to the column number where the cursor is blinking. Write the
POS function as POS(O).

The following statement demonstrates the capability of POS:

10 PRINT"CURSOR POSITION IS";POS(0)

106 Vour Commodoro c4

Execute this statement in immediate mode. The display will appear as
follows:

?"CURSOR POSITION IS"; POS02l)
CURSOR POSITION IS 18

The cursor was at character position 18 after displaying CURSOR
POSITION IS. If you add some spaces after IS and before the closing
quotes, you will change the number 18 to a larger number.

INPUT STATEMENT

When an INPUT statement is executed, the computer waits for input
from the keyboard; until the computer receives this input, nothing else will
happen.

An INPUT statement begins with the word INPUT, which is followed
by a list of variable names. Entered data is assigned to the named variables.
The variable name type determines the form in which data must be entered.
A string variable name (ending with a $) can be satisfied only by text input;
any number of text characters can be entered for a string variable. To
demonstrate string input, key in the following short program and run it:

10 It~PUT AI
20 PRIm AI
30 GOTO 10

Upon executing an INPUT statement, the computer displays a ques­
tion mark, then waits for your entry. The program illustrated above displays
any text which you enter as you enter it. The text is also displayed a second
time because of the PRINT statement on the next line. The first display
occurs when the INPUT statement on line 10 is executed. The second
display is in response to the PRINT statement on line 20.

You input integer or floating point numeric data by listing the appro­
priate variable names following INPUT. Separate individual entries with
commas. The comma is not used for punctuation in an INPUT statement.
The following example inputs a text word, an integer number, and a floating
point number, then displays these three entries. Enter and run the program.

10 HjPUT AI, A, At::
20 PRINT A.,A,At::
30 OOTO 10

You must enter some text followed by a comma, then an integer
number followed by a comma, then a floating point number followed by
RETURN. Any departure from this input sequence will cause an error;
following an error the computer displays two question marks. You will have
to reenter the data in the correct format. If the computer then displays a
question mark with the message REDO FROM START, enter the data
agam.

N ow rewrite the PRINT statement so that A$, A, and A % are in an
order that differs from the INPUT statement. Rerun the program.

As we discussed earlier, any integer can be represented using a floating
point number. Therefore, you can input an integer value for a floating point
variable. You cannot input a floating point value for an integer variable,
however. You cannot enter text for an integer or a floating point number,
but you can enter a number for a text variable; the number will be inter­
preted as characters rather than a numeric value. Try these variations to
satisfy yourself that you understand the data entry options.

The INPUT statement is very fussy; its syntax is too demanding for any
normal human operator. Imagine the office worker who knows nothing
about programming. On encountering the types of error messages that can
occur if one comma is out of place, one may well give up in despair. You are
therefore likely to spend a lot of time writing "idiot-proof" data entry
programs; these are programs that are designed to watch out for every
conceivable type of mistake an operator can make when entering data. An
idiot-proof program will cope with errors in a way that the operator can
understand. Chapter 4 describes data entry programming in detail.

One simple trick worth noting is the INPUT statement's ability to
display data. You can precede each item of data entry with a short message
telling the operator what to do. The message appears in the I'JPUT state­
ment as text between quotes. A semicolon must occur after the text to be
displayed and before the first input variable name. Here is an example.

10 I t~PUT "alTER THE ~~UMBER 1"; t·~
20 IF He>1 THEN OOTO 50
38 PRlt-lT "OK"
40 GOTO 40
50 PRINT "NO, DUMMY,"
60 GOTO 10

This program prints a message, then waits for a single data entry.
The prompting feature of INPUT does have a pitfall, however: if the

1 08f::Xl' Corr;nodore / ..

prompt string is too long, BASIC tries to read the prompt along with the
input typed at the keyboard. This will happen only if the prompt extends
beyond the end of a row on the screen. To avoid this problem, always make
sure your prompts are less than 40 characters long. The problem can also
arise if the INPUT statement follows a PRINT statement that ends with a
semicolon. Since the prompt starts in the middle of the line, it must be short
enough to ensure that it does not "overflow" to the next row of the display.

If you inadvertently make a prompt too long, you may find yourself
trapped. BASIC will keep telling you to "REDO" your response, then
display the prompt again. To escape from this trap, use the DEL key to delete
the prompt, then type your response. The only other way is to press the
RUN; STOP and RESTORE keys simultaneously. This aborts the program.

"PRESmING" THE RESPONSE TO INPUT

After printing your prompt, INPUT prints a question mark and a
space. Anything to the right of that space on the screen is treated as if it were
typed from the keyboard. By adding backspaces to your prompt, you can
"preset" the response so that the user need only press RETURN. To use this
feature, add two spaces to your prompt string, followed by the response.
Then use CRSR LEFT to move the cursor back to the first of the added spaces.
When INPUT prints its question mark and space, they will replace your two
spaces, positioning the cursor on the response. If the user simply presses
RETURN, INPUT will read the response you have set up on the screen.

You can also preset responses by assigning a value in advance to the
variable you will INPUT. If the user responds with just a RETURN, the value
already in the variable is not changed. Note, however, that if you INPUT
multiple variables, this is an all-or-nothing proposition: if the value for the
first variable is typed in, values for all variables must be given.

GET STATEMENT

The GET statement inputs a single character. No carriage return is
needed. The single character input can be any character the C-64 recognizes,
or it can be a numeric value between 0 and 9. The entry will be interpreted as
a character if a string variable name follows GET. Type in the following
program and run it:

10 GET A.
213 PRINT A.
30 GOTO 10

'.i'er 109

When you run this program, everything will race off the top of the
display. Each time you press a key, the character typed will also race off the
top of the screen. This is because GET does not wait for a character entry,
but assumes the entry is there. You can make GET wait for a specific
character by testing for the character as follows:

1121 GET A.
2121 IF ASO"X" THEt·l GOTO 10
3121 PRItH AS
40 GO TO 10

This program waits for the letter X to be entered. Nothing else will do.
GET can also be programmed to wait for any keyboard entry. This

program logic makes use of the fact that the GET statement string variable is
assigned a null character code until a character is input at the keyboard. The
null code, 00, cannot be entered from the keyboard, but can be specified
within a program using two adjacent quotation marks (" "). Here is the
necessary program logic.

1121 GET AS
2121 IF AS:"" THEN GOTO 10
3121 PRINT AS
4121 GOTO 1121

If the GET statement specifies an integer or floating point variable, the
input is interpreted as a numeric digit. The integer or floating point variable
appearing in a GET statement is assigned a value of 0 until data input is
received. But since you can enter 0 at the keyboard, program logic has no
way of knowing whether the 0 represents a valid entry or the absence of any
entry. This can present problems to programming logic that checks for an
entry, as shown above. GET statements therefore usually receive string
characters.

Programs use the GET statement most frequently when generating
dialog with an operator. For example, a program may wait for an operator
to indicate that he or she is there by entering a specific character (for
example, "Y" for "yes"). Here is the appropriate program logic.

1121 PR I NT "OPERATOR! RRE ',.'OU THEPE? Pr'PE ',.' FOR "'T'ES"
20 GET AS
30 IF AS()"Y" THEN GOTO 20
4121 PRHH "OK, LET'S GET ml ~JITH IT"

Notice that this sequence never displays the character entered at the
keyboard. Try rewriting the program so that any character entered in the
GET statement is displayed.

PEEK and POKE Statements

PEEK and POKE are two C-64 BASIC statements that you will
encounter in later chapters. The C-64 computer has 65,536 individual
memory locations, each of which can store a number ranging between 0 and
255. (This strange upper bound is in fact 2R-I.) All programs and data are
converted into sequences of numbers which are stored in this fashion.

The PEEK statement lets you read the number stored in any C-64
computer memory location. Consider the following PEEK statement:

18 A:Y.=PEEK(28f:1)

This statement assigns the contents of memory location 200 to variable A %.
The PEEK argument may be a number, as shown, an integer variable name,
or an integer expression, but it must evaluate to the address of a memory
location.

The POKE statement writes data into a memory location. For exam­
ple, the statement

2121 POKE 8000JA:Y.

stores the contents of variable A% in memory location 8000. Each POKE
argument may be a number, a variable, or an expression with a value
between 0 and 255. A floating point value is automatically converted to an
integer.

You can PEEK into read! write memory or read-only memory, but you
can POKE only into read/write memory. Read-only memory, as its name
implies, can have its contents read, but cannot be written into.

END and STOP Statements

The EN D and STOP statements halt program execution. You can
continue execution by typing CONT. You do not have to include END or
STO P statements in your program, but these statements do make programs
easier to use.

In many of the programming examples given in this chapter we have
used a GOTO statement that branches to itself in order to stop program
execution. For example, the statement

50 OOTO 513

Cilopt2r 3 Pr8yr:::rnrDlr1g tile c:: (':4 111

will execute endlessly since the GOTO statement selects itself for the execu­
tion. We could replace this statement with a STOP statement. When a
STOP statement is executed, the following message will appear:

BREAK I t·~ :=<XXX

Then execution stops. XXXX is the line number of the STO P statement. If
you have more than one STOP statement in your program, use the line
number to identify which one was executed.

FUNCTIONS

Another element of C-64 BASIC is the junction, which in some ways
looks like a variable, but in other ways acts more like a BASIC statement.

Perhaps the simplest way of illustrating a function is to look at an
example in an assignment statement.

10 AIIISQR(B)

The variable A has been set equal to the square root of the variable B. SQR
specifies the square root function. Here is a string function.

In this example the string variable C$ is set equal to the first two characters
of string variable D$.

Functions can substitute for variables or constants anywhere in a
BASIC statement, except to the left of an equal sign. In other words, you can
say that A = SQR(B), but you cannot say that SQR(A) = H.

We have already used four functions. SPC, TAB, and POS are system
functions used with the PRINT statement to format displays. PEEK is also a
function.

The discussion that follows shows you how to use functions. A brief
incomplete summary of the C-64 BASIC functions is presented here, but
complete descriptions of all functions are given in Appendixes G and H.

You specify a function using an abbreviation (such as SQR for square
root), followed by arguments enclosed in parentheses. In the case of
A = SQR(B), SQR requires a single argument, which in this case is the
variable B. For C$ = LEFT$(D$,2), LEFT$ specifies the function; the two

arguments D$ and 2 are enclosed in parentheses. Generally stated, any
function will have one of the following two formats:

r-------- Single argument for a function
that has just one argument

function (argJ)

Tfun<t;on (TL-a_r!;_-2_) _____ Two arguments for a function

_ that needs two arguments

Letters that specify the function

A few functions need three arguments. Each function argument can be a
constant, a variable, or an expression.

A function appearing in a BASIC statement is evaluated before any
operators. Every function in a BASIC statement is reduced to a single
numeric or string value before any other part of the BAS I C statement is
evaluated. For example, in the following statement the SQR and SIN
functions are evaluated first:

10 B=24.?*(SQR(C)+~)-SIN(0.2+D)

Suppose SQR(C) = 6.72 and SIN(0.2 + D) = 0.625. The statement
on line 10 will first be reduced to

This simpler statement is then evaluated.

Arithmetic Functions

Here is a list of the arithmetic functions that can be used with C-64
BASIC.

INT Converts a floating point argument to its integer
equivalent by truncation.

SGN Returns the sign of an argument: + J for a positive
argument, -I for a negative argument, 0 for 0
argument.

ABS Returns the absolute value of an argument. A
positive argument does not change; a negative
argument is converted to its positive equivalent.

SQR Computes the square root of the argument.

C!,,ooter :3 Progrommlng tile CM Computer 113

EXP Raises the natural logarithm base e to the power of
the argument (ears).

LOG Returns the natural logarithm of the argument.
RND Generates a random number. There are some rules

regarding use of RND; they are described in
Chapter 5.

SIN Returns the trigonometric sine of the argument,
which is treated as a radian quantity.

COS Returns the trigonometric cosine of the argument,
which is treated as a radian quantity.

T AN Returns the trigonometric tangent of the argument,
which is treated as a radian quantity.

ATN Returns the trigonometric arctangent of the
argument, which is treated as a radian quantity.

The following example uses an arithmetic function:

113 A=2.743
213 B=It~HA)+7
313 PRINT B
413 STOP

When you execute this program, the result displayed is 9, since the integer
value of A is 2. As an exercise, change the statement on line 10 to an INPUT
statement. Change line 40 to GOTO 10. Now you can enter a variety of
values for A and watch the integer function at work. Use this program to
experiment with various functions.

Here is a more complex example using arithmetic functions.

10 INPUT A.B
20 IF LOG(A)(0 THEN R=l/A
313 PRINT SQR(R)*EXP(B)
40 OOTO 10

If you understand logarithms, then as an exercise change the statement on
line 20, replacing the LOG function with arithmetic functions that perform
the same operation.

The argument of a function can be an expression; the expression itself
may contain functions. For example, change line 30 to the following state­
ment and rerun the program:

313 PRINT SQR(A*EXP(B)+3)

Now experiment with arithmetic functions by creating PRINT statements
that make complex use of arithmetic functions.

String Functions

String functions allow you to manipulate string data in a variety of
ways. You may never need to use some of the arithmetic functions, but you
must make the effort to learn every string function.

Here is a list of the string functions that can be used with C-64 BASIC.

STR$ Converts a number to its equivalent string of text
characters.

V AL Converts a string of text characters to their
equivalent number (if such a conversion is
possible).

CHR$ Converts an 8-bit binary code to its equivalent
ASCII character.

ASC Converts an ASCll character to its 8-bit binary
equivalent.

LEN Returns the number of characters contained in a
text string.

LEFT$ Extracts the left part of a text string. Function
arguments identify the string and its left part.

RIGHT$ Extracts the right part of a text string. Function
arguments identify the string and its right part.

MID$ Extracts the middle section of a text string.
Function arguments identify the string and the
required mid part.

String functions let you determine the length of a string, extract por­
tions of a string, and convert between numeric, ASCII, and string charac­
ters. These functions take one, two, or three arguments. Here are some
examples.

STR$(14)

LEN("ABC")

LEN(A:HB;!:)

LEFU(ST$,1)

System Functions

In the interest of completeness, C-64 BASIC system functions are listed
below. They perform operations that you are unlikely to need until you are
an experienced programmer. The only system function you are likely to use
fairly soon is the time-of-day function. If you print many variations of a

115

report (or any other material) in a single day, you may wish to print the time
of day at the top of the report. That way you can tell the sequence in which
these reports were generated.

PEEK Fetches the contents of a memory byte.
TIS,TI Fetches system time, as maintained by a program

clock.
FRE Returns available free space-the number of unused

read / write memory bytes.
SYS Transfers to subsystem.
USR Transfers to user assembly language program.

User-Defined Functions

In addition to the many functions that are a standard part of C-64
BASIC, you can define your own arithmetic functions, providing they are
not very complicated. User-defined string functions are not allowed. Here is
an example of a short program that uses a DEl" FN (define function)
statement.

1121 DEFNP(X)-100*X
2e INPUT A
3121 PRINT A,FNP(A)
4e OOTO 2121

Following the DEF FN entry you can have any valid floating point
variable name. In this case P was entered, therefore the function name
becomes l"NP. If the variable name were AB, the function name would be
FNAB.

In the DEF FN statement, a single variable, enclosed in brackets, must
follow FN. This is the only varia ble name that can appear to the right of the
equal sign. This variable name is used within the DEF FN statement only;
you can use it in the body of the program without affecting the function.

CHAPTER

Advanced BASIC
Programming

Although the previous chapter covered most of the inner workings of
C-64 BASIC, you will find that there is much more to be learned about
programming. Whereas Chapter 3 covered the language itself, this chapter
and those that follow will provide programming techniques and hints that
will help you get the most out of your C-64.

Because this chapter concerns itself with more advanced programming,
program examples and explanations will be longer. You will probably want
to enter and run each example in order to better understand the concepts
being discussed.

Many ofthe program examples covered in this chapter are designed for
use in programs you write yourself. Some are written as subroutines, and
others can be turned into subroutines with minor changes.

PROGRAMMING WITH STRINGS

A string can do much more than simply contain data that cannot be
expressed in numeric form. String operations and functions give you the
ability to change and manipulate data.

117

118 Your Commodore (,4

Concatenating Strings

Strings can contain alphabetic or numeric characters or combinations
of these. When handling strings, it may be useful to link shorter strings
end-to-end in a chain-like fashion to create one large string. This linking
process, as you may recall, is called concatenation.

String 1

String 2

String 3

String 4 I String 1 String 2 String 3

Suppose, for example, you want to create one large string, Z$, contain­
ing the alphabet A through Z. To do this, you can link the last character of
A$, shown below, to the first character of J$, and the last character of J$ to
the first character of S$.

A$ JS S$

fA I B I c I 0 61 5 G I H I ta, I K II @ I~I ;j p I Q I Rrr~ I Tic I v}v I x I y I z}

zs I A I B I c I 0 I r I' I (; I H I' I J I K It. I \, I " I 0 I p I Q I R I siT I c I v I w I x I y I z I

When a plus sign appears between two numeric expressions, it adds the
values of the expressions. However, the plus sign will concatenate strings
when string variables appear on either side of it.

The same is not true of the minus sign. Strings cannot be separated or
"de-concatenated" in the same way they are concatenated; they cannot be
"subtracted" the way they are "added."

For instance, to create string X$, containing the contents of J$ and S$
from our original strings A$, J$, S$, and Z$, it would be incorrect to type

(~ I'optc

XS=Z$-A$ 1-.----Incorrect

Try it yourself. Enter the values of A$, J$, S$, and X$ = Z$-A$ into the
C-64 as shown. The computer will respond with the message ?TYPE MIS­
MATCH ERROR IN LINE 50.

10 A$="ABCDEFGHI"
2121 .]$="JKLMNOPQR"
3121 S.="STUVWX'T'Z"
40 Z.=A.+J$+S$
50 X$=Z$-Af. --4--- Incorrect attempt to get J :hrough Z string

6121 PRI~n A$

RUH

?T'T'PE MISMATCH
ERROR IN 5121

The correct way to extract part of a larger string is to use string
functions. With the LEFT$, MID$, and RIGHT$ functions, it is possible to
extract any portion ofa string. In uur example, the letters J through Z can be
extracted as follows:

50 XS=RIGHT$(Z$,17)
X$=

RIGHT$d A I B I c I DIE I FIG I H II I J I K I L TM I :\ I 0 I p I Q I R I S II 11 I V I w I x I y I z I 17)

X$ = I J I K II I ,,1:\ I () I ±iG_I~I' [I [\ [\\ [x [\ [/ 1

The 17 points to the 17th character from the right (RIG HT$) as the first
character of the string and includes the rest of the characters to its right. The
string may also be built by concatenating J$ and S$.

5121 X$=JhSf
X$ = [J I K [LIM I :\ [0 [p I Q I R [+ L" I T I u [v I w I xJYTZJ

X$ = I J I K I L I \1 I i' I 0 I p I () I R I s I' I u I \ I w I x I';T!]

Numeric Strings

A numeric string is a string whose contents can be evaluated as a
number. Numeric strings can be created in two different ways, each yielding
slightly different results.

When numeric variables are assigned to numeric strings using the STR$
function, the sign value preceding the number (blank if positive, - if
negative) is transferred along with the number. This is shown in the follow­
ing short program:

10 AB=12345
20 PI= -1*3.14159265
30 U=STRS(AB)
40 NS=STRS(PI)
513 PRIHT "AB=";AB
613 PRINT "T$=";TS
7'11 PRINT "N.=";NS

RU~l t'--------Space left for sign value
AB= 12345
U= 12345
H$=-3.14159265

However, if a number is entered enclosed in quotation marks, or if the
number is entered as a string with an INPUT or READ statement, then the
numeric string is treated like any other alphabetic or graphic string. No
blank for a positive sign value is inserted before the number. This is demon­
strated in the following program:

I'll AB=12345
2'11 T$="12345"
30 READ R.
413 DATA 12345
50 PRIHT "ABIII"jAB
613 PRIHT "T.=";T.
713 PR UH "RS="; R.

RUt·j
AB= 12345
H=12345
R$=12:345

---- Space inserted
---- No space inserted
---- No space inserted

Concatenate the two numeric strings T$ and Q$ to make a new numeric
string W$ so that the string W$ contains the len digits 1,2,3,4,5,6,7,8,9,0.
Here is one possibility:

I'll T=-12345
20 Q=67890
30 TS=STR$(T)

40 Q.=STR$(Q)
50 WS=T$+Q.
60 PRI~n "WS=

RUt·~

Chapter 4 Advarcea BASIC Progrolliling 121

1__----Create new string W$

~J$= 12345 67:390

Why are there blanks before the 1 and 6? The T$ and Q$ string were
originally positive numeric variables T and Q. When T and Q were con­
verted from numbers into strings, the blank sign positions were transferred
along with the numbers.

Therefore, when T$ and Q$ are concatenated, the new string W$ contains a
first-digit blank, and an embedded blank before the first digit of Q$.

To get rid of the blanks, go back to the separate strings T$ and Q$.
Look again at the contents of T$ and Q$ above. The only values we want in
W$ are the numbers to the right of the sign value in both T$ and Q$. With
the LEFT$, MID$, and RIGHT$ commands, you can select any character
or group of characters from within a given string. We want all the characters
to the right of the first character, which is the sign value (either blank or-).
T$ = MID$(T$,2) does the trick.

Before: After:

Since the first digit needed is in the second position of the string, the
C-64 is instructed to use only the values starting in the second position. We
can concatenate T$ and Q$ and drop the leading blanks all in one statement.

122 Your CommodoreM

W$ = MID$(T$,2)+ MID$(Q$,2) -- ---Accept T$, starting Accept Q$, starting
with second character with second character

Concatenate
T$ and Q$

Our example program, amended to eliminate the sign digits, appears as
follows:

10 T"12345

T = I bl234Si
20 Q-67890

o = I b67890 I
30 U-STRI(T)

T$ =lb[I[2[3[4[S[
40 "$=STR$(Q)

OS = 1 b I 6 1 7 I 8 [9 [0 I

50 WS=MIDt(T$.2)+MID$(Q$.2)

WS = IS II I 2 I 3 I 4 I 5 I ~. 0$1 6 I 7 I H I 9 I 0 1

WS = 1 I [2 [:I [4 I S [6 [7 [8 [9 I 0 I

60 PRINT "141=="; ~J$

I':UH

~J$:::: 1234567890

INPUT AND OUTPUT PROGRAMMING

It is usually easy for beginning programmers to become acquainted
with how BASIC calculates numbers. When writing programs that receive
input from the keyboard and display data on the screen, however, the
programming becomes trickier.

Copter 4 2,j,onced B,-,SIC ProgrO"1"1lng 123
=----=----.~: --::-==---- -=================::::::::::::==::::::::::::====

Nearly every program requires some kind of input from the keyboard.
If you are the person operating the computer, you can probably put together
some INPUT statements that get the required data and process it in your
program. But if someone else is operating the computer, sooner or later the
wrong key will be pressed or an incorrect entry will be made. Every comput­
er operator will make mistakes at some time. You should write programs
that allow for conceivable human errors.

The same is true for output programming. If you display the results of a
program with a set of PRINT statements, those results have to be readable
to the person looking at the display. This does not happen by hacking away
at program statements until the output looks a little better; you must give it
some thought while you are writing the program.

Assume that you want to write a program that inputs names and
addresses. You could write a program to do this quickly and easily enough.

10 REM NAME/ADDRESS PROGRAM
20 DIM NM$(20).AD$(20).CS'(20).ZC$(20)
21 REM ARRAYS ARE:
22 REM NM'() FOR NAME
23 REM AD.() FOR ADDRESS
24 REM CS,() FOR CITY AND STATE
26 REM ZC$() FOR ZIP/POSTAL CODE
30 FOR 1=1 TO 20
40 INPUT "NAME:", NM.(I)
50 INPUT "ADDRESS:",ADf(I)
60 INPUT "C IT';-'. STATE:"; CSt (I)
70 INPUT "ZIP/POSTAL CODE:";ZC:a:(I)
80 NEXT I
90 END

Here is an example of how the program would appear on the display.

RUN
NAME:? NAM THANG
ADDRESS:? 2e00 CONSTITUTION DR.
CITY. STATE:? CASTRO VALLEY. CA.
?EXTRA IGNORED
ZIP/POSTAL CODE:? 91912
NAME:? PETER BILT
ADDRESS:? 200 KNOW PL.
CITY. STATE:? AMARILLO. TEXAS
7EXTRA IGNORED
ZIP/POSTAL CODE:? 65432

124 \:::>ur Corri~lc,jore 64

In this program, the C-64's screen is unformatted. The screen width is 40
characters; most names and addresses entered would wrap around to the line
below the original entry because the entry message, or prompt, takes up sev­
eral spaces on the input line.

While running this program, the person entering names and addresses
might discover a mistake in a name after pressing RETURN. But the operator
can't go back to fix the name when the program is asking for address input.

Other problems with this program are obvious if you enter and run it.
The display is not very easy to read. One entry for a name and address
follows another, all the way down the screen. This kind of clutter will
increase the possibility of incorrect entries.

The INPUT statement on line 60 will cause the program to fail if the
operator puts a comma between the city and state when entering them. The
city and state have to be entered without a comma between them. Try
entering a city and state separated by a comma (for example, OAKLAND,
CALIFORNIA). This is what you get.

ADDRESS'? OAKLANDJ CALIFORNIA
?EXTRA I Ot~ORED

Recall from Chapter 3 that the INPUT statement allows you to enter
more than one item of data on a single line, as long as each one is separated
by a comma. Therefore, when OAKLAND, CALIFORNIA was entered,
C-64 BASIC interpreted it as two separate strings when only one string was
expected-hence the ?EXTRA IGNORED message. In addition to the error
message, the program stored only OAKLAND and discarded CALIFOR­
NIA, which was considered "extra" input.

Screen Layout

Starting the display at row 0, column 0 (the upper left corner), the
rightmost column is 39, and the lowest row is 24. The screen layout in this
grid form is a set of coordinates. A coordinate is the point at which a particular
column and row intersect on the display.

~
0
~

4
:5

10
II
12
13
14
15
16
17
18
19
20
21
22
23
24

Chapter 11. Advanced BASIC Progra:-:1:-:1lng 125

Column
1234567 8 9 101 I 1211141516171819202J?2232425'6'P8293031321B41536373819 - - - -

H- T
! T

I l
~-L !

,
It-~

~-jR=1 I
-

H-I- I I
I I

1 I

I

, ,

--t-
--+-

I
I I I I

A coordinate on the C-64 screen is expressed as (row,co!umn). That is,
the coordinate of the 12th row and 20th column will be expressed as (11,19).
The first column of the fourth row is (3,0), and so on. (Remember that the
row and column numbers start at 0, not 1.)

The coordinates (11,19) would appear at this point on the screen.

I

4

10
I

12
13
14
15
16
17
18
19
20
21
22
23
24

I
I

H

Column
1234567 8 910111211141516171819202122232425262"82930313'11343536173819 - -..

, I T

,

l~ ,

-i I
,

't ffi I.
I
I I I

i --!-
+- -

,
:--

-

hi' T r j i

126 Your Commodore 64

Creating a Formatted Display

Keep in mind the maximum possible length of each entry. For instance,
a name with a job title, such as "MAJOR SEIDELL-DIRECTOR OF
STRATEGIC OPERATIONS", will wrap around to the next display line.
Allow space for such entries when you format a display. Centering prompts
on the display will also make it appear more orderly.

Formatted displays should be used in programs that require a good
deal of data entry. Three distinguishing features of proper data entry tech­
niques are a readable, uncluttered display, clear directions to the operator,
and the ability of the operator to correct mistakes.

Programming Cursor Movement

If you encountered the C-64's quote mode while entering program state­
ments, you will already know how to program cursor movement.

If you edit a program statement containing a string constant, C-64
BASIC will interpret a control key as an actual character within the string
you are trying to edit. For example, when you press the CRSR UP! DOWN key
between the quotes in a string, it will appear as an inverse-video Q on the
screen. Instead of moving the cursor up or down one line as you intended,
C-64 BASIC inserted the CRSR UP! DOWN key into the string. If you print the
string containing the cursor control character, the cursor will move down.

The statement

1010 RS:lllII~'1

sets up a string of 22 CRSR DOWN characters which, when printed by a
PRINT statement, will move the cursor down 22 rows. Likewise, a string
containing 21 CRSR! RIGHT characters will move the cursor to the right 21
spaces.

1020 CS.:" •••••••••••••••• 1"

These strings containing the cursor control characters will allow you to
display a character anywhere on the display screen.

Chapter 4 Advanced BASIC Programming 127

A CURSOR MOVEMENT SUBROUTINE

With three strings containing the cursor control characters to move to
the home position, down, and to the right, it is possible to move to any
coordinate position on the C-64 display. How?

The coordinates of the upper left corner of the screen are (0,0). You can
move the cursor anywhere by printing a string containing the CLRj HOME

key, followed by strings that move the cursor down and to the right.
Here is an example.

1121 REt~ PROGRAMMED CURSOR r'lOVEMENT
2121 PR I NT ,,~": RE~l CLEAR THE SCREEt-l
3121 R~=20:C~=4:GOSUB 11218121
4121 PRINT "IGNORANCE IS BLISS"
5121 GOTO 5121
11210121 REM CURSOR POSITIONING SUBROUTHlE
1019 R.=" 1IIII1JDIDII~1'II1IOOlIOO"
1 02121 CS=" •••••••••••••••••••••• 1"
113313 PR I NT "iI8"; : REt~ MOVE CURSOR TO (e. e)
1940 PRINT LEFTS(RS.R~)jLEFTS(CS.C%)j
leSe RETURN

Line 20 clears the screen, removing any old text from the display. (This
has nothing to do with cursor positioning; it is just "housekeeping" to make
a cleaner display.) The integer variables R% and C% on line 30 stand for
"row" and "column." The three statements combined on line 30 set the row
(20) and the column (4), followed by a GOSUB that moves the cursor to the
coordinates (20,4).

You may not understand why the cursor must go to (0,0) first. In order
for the program to move the cursor to the correct coordinates, it has to know
how many rows and columns the cursor is from the coordinates you
selected. The easiest and most efficient way to do this is to move to (0,0) first,
because the program will always know exactly how many times the cursor
must move in order to reach the coordinates (in this case, 20 rows down and
4 columns right).

Let's take the cursor movement subroutine apart line by line, starting
with lines 1010 and 1020. These two lines are assignment statements that set
up (initialize) the cursor movement strings. R$ contains 22 CRSR DOWN

control characters; C$ contains 21 CRSR RIG HT characters.
Line 1030 prints the CLRjHOME character, thus positioning the cursor

at (0,0). Line 1040 does the real work: it uses the LEFT$ string function to
print the first 20 characters in R$, then the fir<;t 10 characters in C$.

128 VO'.J' Commodore 64

This cursor movement subroutine will be an integral part of creating
and using formatted displays.

The CHR$ Function: Programming
Characters In ASCII

If you cannot press a key to include a character within a text string, you
can still select the character by using its ASCII value.

The CHR$ function translates an ASCII code number into its charac­
ter equivalent. This is the format of the C H R$ function.

PRINT CHR$(xxx)

tL ----ASCII number from 0 to 255 of
desired character or control

To obtain the ASCII code for a character, refer to Appendix B. Scan
the columns until you find the desired character or cursor control, then note
the corresponding ASCII code number. Insert this number between the two
parentheses of the CHR$ function. For example, to create the symbol $
from its ASCII code, look up ASC II code for $ in Appendix B. You will
notice that $ has two ASCII values: 36 and 100. Which value should you use?
Either number works. But for good programming technique, once you select
one number over the other, use that number consistently throughout the
program. Insert 36 into the CHR$ function as follows:

PRINT CHR$(36)

Try displaying this character ($) in immediate mode:

PRINT CHR:f(36)
:f

Now try displaying ASCII code 100.

PR un CHR:f (11313)
:i

The result is the same. Experiment in immediate mode using any ASCII
code from 0 to 255.

You can use the CHR$ function in a PRINT statement as follows:

113 PRINT CHR:f(36)jCHR:i(42)jCHRI(166)

RUN
:fill_

C~opter t1 !\dvo'lcpd S.ASIC ProgrOrlirT,lng 129

The CH R$ function lets you include otherwise unavailable characters such
as RETURN, INSTDEL, and the quote character (") in a PRINT statement's
parameters.

You can also use the CHR$ function to check for special characters
such as RETURN and INSL DEL. Suppose a program must check character
input at the keyboard, looking for a RETURN key. You could check for a
RETURN (which has an ASCII code of 13) as follows:

10 OET X':IF XS()CHRS(13) THEN 10

This test would be impossible if you tried to put RETURN between quotation
marks.

20 IF X$()"~" THEN 10

Impossible

This does not work, because pressing the RETURN key following the first set
of quotation marks automatically moves the cursor to the next line.

20 IF x:ro" :--- Press RETURN key .)

If you attempt to program the INST/ DEL or the RETURN key, you will
encounter some surprising results.

The INSERT key is programmable. Inside the quotation marks of a
PRINT statement, it displays as II .

If you try to program the DELETE key in a PRINT statement you will
merely erase the previous character, unless the DELETE key occurs within a
sequence of inserted characters.

The DELETE key may be entered following an INSERT, but doing so is
not very useful. The only common use of this feature is in concealing
program lines during a listing (hiding answers for a test, for instance).
Hidden data can be easily rediscovered in several ways, however, so using
DELETE characters within program lines is not advisable.

The RETU RN character in a PRINT statement will immediately move
the cursor out of the statement and to the next line.

130 Your CO"1modore 6~
-~-~-~ -~~=-=--=--=-~ =========

Data Entry (Input)

Data entry should be programmed in functional units. A mailing list
program, for example, requires names and addresses to be entered as data.
You should treat each entire name and address as a single functional unit
rather than separate data items. I n other words, your program should ask
for the name and address, allowing the operator to enter all of this informa­
tion and then change any part of it. When the operator is satisfied that the
name and address are correct, the program should process the entire name
and address. The program should then ask for the next name and address.

It is bad programming practice to break data input into its smallest
parts. In a mailing list program, for example, it would be bad programming
practice to ask for just the name, process this data as soon as it is entered,
and then ask for each line of the address, treating each piece of the name and
address as a separate functional unit. This approach makes programs diffi­
cult to change and also renders them less readable.

The goal of any data entry program should be to make it easy for an
operator to spot errors and to give the operator as many chances as possible
to fix them.

PROMPTING MESSAGES

Any program that requires data entry should prompt the operator by
asking questions. Questions are usually displayed on a single line and
require a simple response such as "yes" or "no." For example, a prompt
message such as ANY CHANGES (Y OR N)? would clearly indicate the
question and the available choices.

An operator responds to this message by pressing the Y or N key. Good
programming practice dictates that entries other than Y or N not be
accepted. If the operator replies Y to the ANY CHANGES prompt, another
prompt will display, suchas WHAT ENTRY LINE TO CHANGE (1-6)? In
this case, one of six entry lines could be changed; all the operator needs to do
is enter the number corresponding to the line that was entered in error. Of
course, with this approach each entry line on the display should have an
identifying number.

This type of data entry should be written in subroutines, so the main
program is not clogged up with prompting: messages. Also, because a limited
number of choices is allowed, a subroutine could contain the logic necessary
to check the entry against permitted responses.

Chapter c:: Advanced BASIC Programming 131

This has two implications.

1. The subroutine must receive parameters from the calling program.
For example, if a message asks the operator to enter a number, the
calling program should pass the minimum and maximum allowed
numbers to the subroutine as parameters.

2. The subroutine must return the operator's response to the calling
program. This variable may be a character (for example, Y or N), a
word (such as yes or no), or a number.

A subroutine that prompts for a reply ofY for "yes" or N for "no"uses a
PRINT statement to ask the question, followed by a GET to receive a
one-character response. Since you may have many questions in a program
which require a response of "yes" or "no," the subroutine should also allow
for a prompt to be passed to the subroutine from the main program in a
string variable. Here are the necessary statements.

3000 REM ASK A QUESTION AND RETURN A RESPONSE OF Y OR
N I N ''''~~:f

3010 PRINT "::1"
3020 PR I NT "DO YOU WANT TO r1AKE AN',.. CHANGES? "j

3030 GET Y~lS: I F Yt~$()" N" AND YN$:()" Y" THEN 3030
3040 PRINT YN.
3050 RETURN

The string variable QU$ must be set in the program that calls the
subroutine. The subroutine is generalized; that is, it displays any prompt
sent to it by the main program. The response is returned to the main
program in the string variable YN$.

N ow consider dialog that allows an operator to enter a number.
Assume that the main program passes to the subroutine the lowest allowable
numeric entry in LO% and the highest in HI%. Once the operator enters a
number within range, the subroutine will return the entered number in
NM%. Here is the subroutine that gets the keyboard entry, checks it against
LO% and HI% values, and then passes it back to the main program in
NM%.

3500 REM ASK FOR A NUMERIC SELECTION
3510 REM RETURN THE NUMBER IN NM%
3520 REM NM% MUST BE (= HI% AND)= LO%
3530 PRINT QUI;

132 ,our Com rn \XJ ore 64

354121 GET C$:IF CS=" II THEN 3540
3:5:5121 NM:Y.-VAL(C')
356121 I F ~lM:Y.{LO:y' OR NM:Y.)H I:Y. THEN 354121
357121 PRINT CS;
358121 RETURN

Write a short program that sets values for HI% and LO%, and then
goes to subroutine 3500. Add the previous subroutine and run it.

Can you change the subroutine so that it accepts two-digit input? Try to
write this modified program for yourself. If you cannot do it, wait until the
next section, where you will find the necessary subroutine in the program
that controls the input of a date.

ENTERING A VALID DATE

Most programs at some point need relatively simple data input-more
than a simple yes or no, but less than a full screen display. Consider a date.

You must be careful with such apparently simple data entry. In all
likelihood, the date will be just one item in a data entry sequence. By
carefully designing data entry for each small item, you can avoid having to
restart a long data entry sequence whenever the operator messes up a single
entry.

The date is to be entered as follows:

MM-DD-YY

~~l-~year
~Separator

Day of the month
Separator
Month

The dashes separating the month, day, and year could be slashes or any
other appropriate character. In Europe, the day of the month precedes the
month.

You should program data entry so that it is pleasing to the operator's
eye. The operator should be able to see immediately where data is to be
entered, what type of data is required, and how far the data entry process
has proceeded. A good way of showing where data is to be entered is to
display the entry line in inverse video. For example, the program that asks
for a date might create the following display:

------------------- ._-

Chapter ,1. ;\dvarlced BASIC Programming 133

I'-------Cursor flashing at entry
t character position

DJ-[D-[IJ
T T T Data must be entered into these

character positions

You can create such a display with the following statement:

10 PRINT"<ClR> <CRSRI > <CRSRI >":TAB(20);" <RYS ON>),>),>
<RYSOFF> -<RYSON> bb<RYSOFF> -<RYSON>
)'>)'> <RYS OFF>";CHR$(13);" <CRSRt >";TAB(20);

)'> represents a space code

The PRINT statement above includes cursor controls that position the date
entry to begin at column 6 in row 3. The PRINT statement also clears the
screen so that no residual display surrounds the request for a date. After
displaying the data entry line, the PRINT statement moves the cursor back
to the first position of the entry line by using the RETURN and CRSR UP

characters, followed by a TAB to position 6 on the current display line.
Try using an INPUT statement to receive entry of the month. This can

be done as follows:

20 INPUT t1:t:j

Enter statements in lines 10 and 20, as illustrated above, and execute
them. The INPUT statement will not work. Aside from the fact that a
question mark displaces the first entry line character, the IN PUT statement
picks up the rest of the line following the question mark. Unless you
overwrite the entire date entry display-which requires entering a very large
number-you will get an error message each time you press the RETURN

key, because C-64 BASIC is accepting everything on the line as if it were a
keyboard entry.

This is an occasion to use the GET statement.

10 PR I NT " :lIIIl1II .111 .. 111." j CHR. (13) j ":1" i
20 GET C.: IF C.=" "THEN 20
30 PRINT C.; :MM.=C.
40 GET C.: IF C,-" "THEN 40
50 PRINT C.; :MM.-MM.+C.
60 STOP

These statements accept two-digit input. The input displays in the first part

134 Your Commodore 64

of the date. The two-digit input needs no RETURN or other terminating
character. The program automatically terminates the data entry after two
characters are entered.

Two-digit entries are needed for the month, the day, and the year.
Rather than repeating statements in lines 20 through 50, you could put these
statements into a subroutine and branch to it three times, as follows:

Ie PRINT ":' •••••• " ;CHR'(13); "~";
2B DOSUB 100e:MM.-TC.:PRINTTAB(3)
3B DOSUI 1810:DDS-TC.:PRINTTAB(6)
40 DOSUI llla:VV.-TC.
sa STOP
leaa REM TWO CHARACTER INPUT SUBROUTINE
lB10 DET C.: IF C._"" THEN HU8
182e PRINT C.;
le38 DET CC.:IF CC._"" THEN lB38
lIN0 PRINT CC.
109 TC •• C.+CC.
1068 RETURN

The variables MM$, 00$, and YY$ hold the month, day, and year entries,
respectively. Each entry is held as a two-character string. You should empty
the input buffer before accepting the first input; otherwise, any prior charac­
ters in the input buffer will be read by the first GET statement in the
two-character input subroutine. You need to empty the buffer only once
before the first GET statement.

There are two ways to help the operator recover from errors while
entering a date.

The program can automatically test for valid month, day, and year
entries.
The operator can restart the data entry by pressing a specific key.

The program can check that the month lies between Oland 12. The
program will not bother with leap years, but will check for the maximum
number of days in the specified month. Any year from 00 through 99 is
allowed. Any invalid entry restarts the entire date entry sequence. Also, if
the operator presses the RETURN key, the entire date entry sequence restarts.

The final date entry program now appears in Figure 4-1.
Notice that the date is built up in the 8-character string DT$ as month,

day, and year are entered.

Chapter A.dvarlced 8AS'C C"C')],C1rr"lTnq 135

5 REM ROUTINE TO ACCEPT AND VERIFY A DATE
1121 PRINT "::DII11 .1 .aiI II"; CHRS(13); ":1";
5121 GOSUB 10ee:REM GET MONTH
6121 IF CS=CHRS(13) OR CCS=CHR$(13) THEN 1121
7121 DT.=TC.:PRINT TAB(3)
8121 REM CHECK FOR VALID MONTH
9121 m:-VAL (TC')
95 IF MX(l OR MX)12 THEN Ie
1121121 IF MX<1 OR MX)12 THEN 1121
lie REM GET NUMBER OF DAYS IN MONTH
12121 D%-31
13121 IF MX=2 THEN D%=28
14121 IF MX-4 OR M%==6 OR t1%=9 OR M%=11 THEN Dt~=30
15'11 GOSUB 1'11'110; REt1 GET DAY
16121 IF C'-CHR.(13) OR CC'=CHR'(13) THEN 10
17121 DTS=DTS+ "_" +TC, ; PR ItH TAB (6)
19'11 REM CHECK FOR VALID DAY
2121'11 IF VAL(Tt')(l OR VALCTC'»D% THEN 1121
210 OOSUB Ieee: REM DET YEAR
22'11 DT._DT.+"-"+TC.
23121 IF C.=CHR.(13) OR CC.=CHR'(13) THEN 10
24121 REM CHECK FOR VRLID YERR
270 STOP
lase REM TWO CHRRACTER INPUT SUBROUTINE
HHa OET C,: IF CI=" II THEN 101121
1011 IF VAUB.»10e THEN PRItH"T"
112115 IF C'-CHR.(13) THEN 105121
1016 IF C'("I2I" OR C')"9" THEN 11211121
1029 PRItH CI;
1930 GET CC': IF CCS="" THE~l 103121
1935 IF ee.=CHR.(13) THEN lese
112136 IF CC.("0" OR CC.)"9" THEN 112130
104121 PRINT ce.;
10S0 TC'IIC.+CC,
112160 RETURN

FIGURE 4·1. Simple program to enter and verify a date

136 Your ComlT'odore Ul

Three questions are asked of data as it is entered.

Is the character a RETURN?

If the character is not a RETURN, is it a valid digit?

Is the two-character combination a valid month for the first entry, a
valid day for the second entry, or a valid year for the third entry?

The RETURN has been selected as an abort (restart) character. By
replacing CHR$(13) in lines 60, 160,230, and 1035, you can select any other
abort character. When the operator presses the selected abort key, the entire
date entry sequence restarts. You must check for the abort character in the
two-character input subroutine (at line 1035), since you want to abort after
the first or second digit has been entered.

The main program also checks for an abort character in order to branch
back to the statement in line 10 and restart the entire date entry sequence.
You could branch out of the two-character input subroutine and to the
statement in line to in the calling program, thereby eliminating the abort
character test in the calling program, but this is a bad practice. Every
subroutine should be treated as a module, with specified entry point(s) and
standard subroutine return points.

Using GOTO to branch between the subroutine and the calling pro­
gram is likely to be a source of programming errors. If you branch out of the
subroutine and back to the calling program without going through the
RETURN, you are making yourself vulnerable to all kinds of subtle errors
that you will not understand until you are an experienced programmer.

Program logic that tests for nondigit characters can reside entirely in
the two-rharacter input subroutine. This program ignores nondigit charac­
tclS. Statements in lines 1016 and 1036 test for nondigit characters by
comparing the ASCII value of the input character and the ASCII values for
the allowed numeric digits.

Logic to check for valid month, day, and year must exist within the
calling program since each of these 2-character values has different allowed
limits.

The statement in line 100 tests for a valid month. Statements in lines
120, 130, and 140 compute the maximum allowed day for the month
entered. The statement in line 200 checks for a valid day. The check for a
valid year in line 260 is very simple.

A numeric equivalent of the month is generated in line 90, but not for

ProgrollllTll:>g 137

the day or the year. This is because the day and year are not used very often,
but the month is used in lines 90 through 140. You will save both memory
and execution time by using a numeric representation of the month.

It does take more time to write a good data entry program that checks
for valid data input, allowing the operator to restart at any time. Is the extra
time worthwhile? By all means, yes. You will write a program once, while an
operator may have to run the program hundreds or thousands of times.
Thus, by spending extra programming time once, you may save operators
hundreds or thousands of delays.

Formatted Data Input

The best way of handling multi-item data entry is to display a form and
then fill it in as data is entered. Consider the formatted name-and-address
display earlier in this chapter.

ENTER NAME AND ADDRESS
II NAME:
• STREET:
iI8 C IT'T' :
II STATE;
" ZIP:
• PHONE:

Each entry line has a corresponding number. The form displays the number
in inverse video. The operator enters data starting with item I and ending
with item 6. The operator can then change any specific data entry line.

The following statements clear the screen and display the initial form:

10 REM NAME AND ADDRESS DATA ENTRY
20 REM DISPLAY THE DATA ENTRY
30 PRINT "::1d::tHER NAt1E AND ADDRESS"
40 PRINT ":81. ~~AME: "
50 PR I tH ":a2!1 STREET:"
60 PRINT ";13. CITY: "
70 PRINT "::a4!!!! STATE:"
80 PR I NT "::B!I Z IF': "
90 PRINT "1Ii6. PHONE:"
The program listed in Figure 4-2 is a more complete version of the name­

and-address program. It uses the display format shown above. Key in the
program if you wish. It will help you gain a better understanding of the
program's structure and how it works as it is explained line by line.

In order to format the display itself, lines 10 through 90 print each entry

138 Your Commodore 64

10 REM NAME AND ADDRESS DATA ENTR~
20 REM DI8PLA~ THE DATA ENTRY
313 PRINT ":mIENTER NAME AND ADDRESS"
40 PRINT "all!! NAME: "
50 PR I NT "aJ2!1 STREET: "
613 PR I NT "113!!!!! CITY: "
713 PR I NT "1114!!!!! STATE:"
80 PRINT "IISII :ZIp: "
90 PR I NT "185!1 PHONE:"
100 EDI TI NG%=13
2130 REM GET 313 CHARACTER NAME
210 R%=3: C%=9: U~%=30: GOSUB 8131313
220 NA$::::CCS
2313 IF EDITING% THEN 5130
2513 REM GET 313 CHARACTER STREET
2613 R;:';:-4:C%=9:LN%=30:GOSUB 8131313
270 SRf:=CCf:
280 I F ED IT nm% THEt~ 500
3013 REM GET 313 CHARACTER CITY
310 Ri::-5: C::-;=9: LNi::=313: DOSUB 8131313
3213 CI,-eCI
330 IF EDITING;':: THEN 5013
350 REM GET 12 CHARACTER STATE
360 Ri::=6:Ci::=9:LN%=12:GOSUB 8131313
3713 IF EDITING% THEN 51313
400 REM GET 5 CHARACTER ZIP CODE
410 R%=7:C%=9LN%m5:GOSUB 813130
4213 za .. CC$
430 IF EDITING% THEN 51313
4513 REM GET 14 CHARACTER PHONE NUMBER
460 R%.8:C%~9:LN%c14:GOSUB 8131313
470 PH$::CCS
5013 REM ASK IF ANY CHANGES ARE TO BE MADE
5t0 EDITING%=-l
5213 Ri::=11i3:Ci:: .. 0:GOSUB 9131313
530 GlU.=" A~lY CHAt~GES? II"
5413 GOSUB 313013: REM GET "'T''' OR "t'l"
5513 IF C'-"N" THEN PRalT ":1" j : E~m
5613 REM ASK lolH I CH L HlES ~lEED CHAt·m am,
570 QU.="l<JHICH LINE (1-6)'1: II"
5813 R%-12:LO%=1:HI%-6
590 DOSUB 35013
600 ON NM% GOTO 21313.258.31313.3513.41313.450
610 GOTO 5213
3000 REM ASK A QUESTION AND RETURN A RESPONSE OF Y OR N IN C$
3020 PR I ~lT QUS.:
3030 GOSUB 5130£1: REt1 GET A CHARACTER

FIGURE 4·2. Name and address entry program

394f:1 IF C,{)"Y" A~·m C$O"~'l" THE~l :3121:3121
31359 PRHlT e$;
3060 RETURN
3500 REM ASK FOR A NUMBERIC SELECTION
3510 REM RETURN SELECTION IN NM%
3520 REM NMX ~JST BE LESS THAN HI~ AND MORE THAN LOX
3530 REM CALLING PROGRAM MUST SET HI%.LO% AND QUI.

THE QUESTION ASKED
3540 GOSUB 9ge0:REM POSITION THE CURSOR
3550 PRINT QU,;
3560 GOSUB 5000: REM GET A CHARACTER
3570 NM%=VALCC$)
3580 IF NMX(LO% OR NMX)HI% THEN 3560
3590 PRINT C$;
3600 RETURN
50139 REM DISPLAY FLASHING CURSOR AND GET CHARACTER
50113 FOR I=f:I TO 60
5020 I F I =0 THE~l PR I ~lT "Ill !II";
5B39 I F I =30 THEN PR I tiT " II";
51349 GET C$: IF C:SO"" THEN 1=6121
51359 NEXT I
513613 1 F CS="" THE~'l 513013
5070 RETURN
81210B REM I ~lPlJT SUBROUT I ~lE
812120 SPS=" " : REt1 :30 SPACE:::;
81.340 GOSUB 9000: REM POS I T I ml THE CUR::;OR
8060 PRINT "iii"; LEFTS(SP$, U·lX); "!!]!";
8B70 OOSUB 91210121: REM POSITION THE CURSOR
81130 CC$=""
8110 GET C$: IF C$="" THEt·l 8110
8129 IF C$=CHR.(13) THEN 82130
8139 IF C.=CHR.(20) THEN 8160
8140 IF LENCCCt)(LN% THEN CCI=CC$+CIPRINT CI;
8150 ClOTO 8110
8160 IF CC$="" THEN 811121
8170 PRHlT "11111 !II";
8175 REM DELETE CHARACTER FROM STRING CC'
8180 CC$=LEFT$(CC$.LENCCC$)-l)
819121 OOTO 81113
8200 IF LNX}LEN(CCS) THEN PRINT LEFT$(SPS.LN%-LENCCC$»;
8210 RETUR~~
9000 REM CURSOR POSITIONG SUBROUTINE
9010 RJ="~m.m'ImImIJ.l"
9020 C'=" JIIIII 1111 1111111111111 1111 1111 1111111111111111111111111"
9030 PR I NT ";;a";: REM MO',lE CURSOR TO 0:: 0, 0)
9040 PRINT LEFTCR.R%);LEFT$(CI,C%);
9050 RETURN
9500 OOSUB 512100:PRINT C$; :GOTO 951210

FIGURE 4·2. Name and address entry program (continued)

140 Your Commodore 64

line. The RVS ON control character precedes each PRINT statement line
number, and the RVS OFF character follows it. These characters do not
display anything by themselves, and they do not take up space on the
display. They do change the display mode; that is, any characters following
the RVS ON will display in inverse video. Likewise, any characters following
the RVS OFF will display in normal video.

THE DATA ENTRY SEQUENCE

Once the entry lines are displayed, the entries start at the NAME line.
The program displays a black bar, showing where the entry should start, as
well as how long the entry will be.

The operator can back up on the entry line by pressing the INST/DEL

key to correct any typing errors. When the entry is complete, the operator
presses RETURN and the program goes to the next entry line.

This data entry sequence translates into the following BASIC statements:

21313 REM GET 30 CHARACTER NAME
210 R%=3:C%=9:LN%=30:GOSUB 8000
220 HA$=CC$
2313 IF EDITING%: THEN 5013
250 REM GET 30 CHARACTER STREET
2613 R%=4:C%=9:LN%=30:GOSUB 8000
2713 SR$=CC$
280 IF EDITING%: THEN 5013
3013 REM GET 30 CHARACTER CIT~
310 R%=5:C%:=9:LN%=3el:GOSUB 8000
3213 CI$=CC$
3313 IF EDITING% THEN 500
3513 REM GET 12 CHARACTER STATE
360 R%=6: C;~=9 : U~%= 12 : GOSUB 813130
370 IF EDITING%: THEN 5130
4013 REM GET 5 CHARACTER ZIP CODE
4113 R%=7:C%=9:LN%:=5:GOSUB 80130
420 21$=CC$
4313 IF EDITING% THEN 5013
450 REM GET 14 CHARACTER PHONE NUMBER
460 R%=8:C%=9:LN%=14:GOSUB 80130
470 PH$=CC$

There is some uniformity to these statements, which are in six separate
groups. The groups start at lines 200, 250, 300, 350, 400, and 450, each cor­
responding to an entry the operator is to make. Each group begins with a
REM statement.

Chapter L1 Advcrced BASIC Progrcmmlng 141

Lines 200 through 230 have the same structure as any of the other five
statement groups.

200 REM GET 30 CHARACTER NAME
210 R%=3:C%=9LN%=30:GOSUB 8000
2213 rlA$=CC:f.
230 IF EDITING% THEN 500

Line 210 assigns values to variables and peforms a GOSUB to line 8000.
Line 8000 is a data entry subroutine; it uses variables R % and C% to specify
where on the screen the data entry will occur. LN% contains the maximum
length of the entry. Line 220 assigns the entered data to N A$, the string
variable to hold the name.

Line 230 is a logical test which you can ignore for now; it will be
explained shortly.

N ow check the group starting at line 250. Although the values assigned to
R%, C%, and LN% may differ and line 270 is not exactly the same, the
structure of lines 250-280 is identical to that of lines 200-270. This is the case
for all of the other statement groups.

EDITING DATA ENTRY UNES

Once all six lines are entered, the program displays ANY CHANGES?
and waits for a response of Y or N. If the response is N, the program will
clear the screen and end. If the response is Y, the program will ask which
entry line needs to be changed. At this point, the operator can change any
entry lines at random until all lines are correct.

The following lines of the data entry program in Figure 4-2 perform
these steps:

500 REM ASK IF ANY CHANGES ARE TO BE MADE
510 ED IT I NG;'-;=-1
520 R%=10:C%=0:00SUB 9000
530 QU$=" At~'T' CHAt'lOES? II"
5413 GOSUB 3000: REr1 GET "'T''' OR "N"
550 IF Cf.="t-l" THEN PRIm "::1";: END
560 REM ASK WHICH LINES NEED CHANGING
570 QUS="WHICH LHlE < 1-6)':'}: II"
580 R%12:LO%=1:HI%=6
590 GOSIJB 3500
600 ON Nt1% GOTO 200} 250} 300} 350} 400, 450
610 OOTO 520

Line 510 is of special interest because it "switches on" the editing

142 \our Commodcye .

process. Back at line 100, the integer variable EDITING% was set to O. At
the end of each statement group, the logical test ofEDITING% would cause
program logic to fall through to the next group. Now that EDITING% is
nonzero (equal to -1), program logic can randomly access each statement
group, thus allowing each entry line to be changed in a random fashion.

Lines 520 through 540 call the "yes-or-no" subroutine; if the operator
enters N in response to ANY CHANGES?, the program ends. If the opera­
tor enters Y, program logic continues.

Lines 570 and 580 set variables for the numeric entry subroutine, and
line 590 calls it. The subroutine returns the number of the entry line to
change (1,2,3,4,5, or 6) in the integer variable :\ M%, and program logic
proceeds to line 600.

The ON GOTO statement on line 600 uses the number entered in NM%
to change one of the six name-and-address lines by branching back to any of
the six statement groups. EDITING% plays a critical part here, because the
logical test at the end of each statement group will now cause a branch
directly to line 500, which is the start of the ANY CHANGES? routine. If
EDITING% was zero, this would not happen. Program logic would plod
along to the next entry line unconditionally. Try changing line 510 to
EDITING% = 0, and note the difference in operation.

DATA ENTRY SUBROUTINES

There are six subroutines in this program. Each subroutine has a
specific function. One of the subroutines is not used by the main program,
but is called by the other subroutines.

First look at the subroutine starting at line 3000 and ending at line 3060.
This asks a question that requires a Y or N response. The subroutine
displays the question which was passed to it in string variable QU$. It calls
the subroutine at line 5000, which in turn gets a character from the key­
board. If the character is Y or N, the subroutine ends and returns the
response in C$.

3000 REM ASK A QUESTION AND RETURN A RESPONSE OF Y OR
t~ I t·~ Ci

3020 PR HH QU$ j
31330 GOSUB 5000:REM GET A CHARACTER
313413 IF C$O"',-I" At·m C$O"t-l" THEt·~ 31330
3050 PRItH C$j
3060 RETURt·~

C>,opter 4. !\jvonced 8!,SiC ProgrOi"IITlW1g 143

But why use a subroutine to get a character when a GET statement
would suffice?

A GET statement checks the keyboard for a keypress, but it gives no
clear sign to the operator that a character should be entered. The subroutine
at line 5000 flashes the cursor while waiting for a keypress, thus making it
more obvious that the C-64 is waiting for some kind of entry. Besides, the
get-character subroutine is used by another subroutine in this program. It
makes sense to relegate this low-level function to another subroutine.

The subroutine starting at line 3500 and ending at line 3600 asks for a
single-digit numeric entry. In the name-and-address program, the only
numeric entry is the number ofthe line to change, which ranges from I to 6.

3500 REM ASK FOR A NUMERIC SELECTION
3510 REM RETURN SELECTION IN NM%
3520 REM NM% MUST BE LESS THAN HI% AND MORE THAN LO%
3530 REM CALLIND PRODRAM MUST SET HI%,LO% AND QU$,

THE QUESTION ASKED
3540 DOSUE 9000:REM POSITION THE CURSOR
3550 PRINT QU;i:;
3560 DOSUB 5000: REM DET A CHARACTEF.:
3570 ~~m~=VAL (C$)
3580 IF NM%(LO% OR NM%)HI% THEN 3560
3590 PRINT C$;
3600 RETURt~

This subroutine must have several variables set by the main program
before it is called. First, the maximum and minimum allowable values of the
entry should be in integer variables HI% and LO%. Second, the subroutine
displays a question to the operator contained in QU$, which also has to be
set before calling the subroutine.

This subroutine positions the cursor to a given screen position, and
the coordinates of that position need to be passed to the subroutine in the
variables R% and C%. Line 3540 calls the subroutine at line 9000, which
positions the cursor. Line 3550 displays the prompt, and line 3560 calls the
"get keyboard entry" subroutine.

The subroutine at line 5000 needs no parameters. It simulates a flashing
cursor while waiting for a keyboard entry. A FOR-NEXT statement on line
5010 starts a timing loop that displays an inverse-video space for the first 30
times through the loop. Once the index variable I reaches 30, the statement
on line 5030 erases the cursor. During this time, the subroutine is constantly
checking the keyboard for an entry. If a key is pressed, the statement on line

144Y8L;~ Commodore'
======~====~============

5040 terminates the loop by setting I to 60, and the subroutine ends, passing
back the entered character in C$.

5000 REM DISPLAY FLASHING CURSOR AND GET CHARACTER
5010 FOR 1=0 TO 60
5020 IF I=0 THEt·j PRINT "~ !!!!!II' j

5030 IF 1=30 THEN PRItH ,. II" j

5040 GET C$: IF C$O"" THEN 1=60
5050 t~EXT I
5060 IF C$=" II THEt·j 5000
5070 RETIJR~l

The subroutine starting at line 8000 and ending at line 8210 is designed
to position the cursor and accept a string entry of a specified length. This
subroutine therefore needs to know the screen coordinates (row and
column) of the entry and the length of the entry before it !.':an begin.

LN% contains the length of the entry in characters. R % and C% contain
the row and column of the entry. A variable SP$ is assigned 30 spaces and is
used at two points in the subroutine.

Next the cursor-positionmg subroutine is called by the GOSUB state­
ment on line 8040. Line 8060 prints the RVS ON character, followed by a
block of inverse-video spaces that show the length of the entry to the opera­
tor, and then the RVS OFF character.

8~00 REM INPUT SUBROUTINE
8020 SPf.==" , . REr'1 30 SF'ACE:::
8040 DOSUE 9000: REM POSITiON THE CURSOR
8060 PRItH "~".:Lt:FT$(SPIJU·ji';); "~",
8070 GOSUB 9000· REM POSITION THE CURSOR
81~30 eCI=" II

8110 GET C.:IF C$="" THEt·~ 81H3
8120 IF C$=CHR'l13) THE~ 8200
81313 IF C,=CHR.(20) THEN 8160
8140 IF LENCCCI)(LN% THEN CC$=CC$+CS:PPINT C$;
8150 GOTO 81113
8160 IF eel="" THEt·j 8110
8170 PRINT "11:11 !!!!II";
8175 REM DELETE CHRRACTER FROM STRING CC$
8180 CC'=LEFTS(CCiJLEN(CC$)-l)
8190 OOTO 81113
8200 IF LN%)LENCCC$) THEN PRINT LEFT'(SP$ LN%-LENCCC$));
82113 RETUR~~

Statements on lines 8100 through 8150 accept a character from the
keyboard. If the character enteied is RETURN--that is, equal to CH R$(13)-the
entry is complete. A branch to line 8200 occurs. Any part of the black bar on

the entry line disappears, and the subroutine returns with the full entry
contained in CC$. The subroutine also checks for the INST! DEL key; if this
key was pressed, the subroutine branches to line 8170.

If the character entered is neither RETURN nor I"ISTjDEL, then the
character entered in C$ is concatenated to CC$, which contains all of the
characters entered so far. Notice the logical test on this line.

8140 IF LEN(CC$){LNr. THEN CCf=CC$+C$:PRINT C$j

If the length of CC$ is not yet equal to the maximum number of
characters allowed for the entry (in LN%), then C$ is tacked onto the end of
CC$, the character entered is displayed on the screen, and a branch back to
the GET statement occurs. If the maximum entry length was reached, the
character in C$ is simply ignored.

What do the statements on lines 8160 through 8190 do? A branch to
these statements occurs if the operator presses the INST! DEL key.

If the operator presses INST / DEL but the entry string CC$ is empty, then
no characters need to be deleted. The IF-THEN statement on line 8160
checks for this condition and branches back to line 8110 if no characters
need to be deleted. Otherwise, program logic continues with line 8170.

Line 8 I 70 prints the CRSR LEFT and RVS ON characters to position the
cursor on the last character entered, a space (in inverse video) that wipes out
that character, then a RVS OFF and a CRSR LEFT. What all this does is move
left, delete the last character entered, and move left once again to the space.

Line 8180 deletes the last character of CC$ by measuring the length of
CC$ using the LEN function, subtracting 1, and reassigning CC$ all of its
original characters except the last.

Once the character is deleted from the screen and from CC$, the
subroutine branches back to the GET statement on line 8110.

You should study the name-and-address program carefully and under-
stand the data entry aids that have been included. They are as follows:

Reversing the field on the current entry line clearly indicates what
data is expected and how many characters are available.
An operator does not ha ve to fill in all the characters on an entry line.
When the operator presses the RETU Rl\ key, the balance of the entry
is filled out with blanks.
At any time the operator can backspace and correct errors on an entry
line by pressing the I:-.lSTjDEI. key.

146 \CLJ' Corrrflojore' I

When questions are asked, the program only recognizes meaningful
responses: Y or N for "yes"and "no," or a number between I and 6 to
select an entry line. A data entry subroutine should ignore meaning­
less entries. For example, to recognize Y for "yes" but any other
character besides N for "no" could be disastrous, since accidentally
tapping a key could prematurely take the operator out of the current
data entry. Recognizing N for "no" but any other character for "yes"
would cause the operator to reenter data unnecessarily into some field
if the wrong key was accidentally pressed.

Here are some data entry precautions that could be added:

Check the ZIP code for any nondigit entry. However, postal codes
outside the U.S.A. (Canada, for example) do allow alphanumeric
entries.

Many cautious programmers will ask the question: ARE YOU
SURE? when an operator responds with "no" to the question ANY
CHANGES? This gives the operator who accidentally touched the
wrong key a second chance.

You might add a key that aborts the current data entry and restores
the prior value. For example, if the operator presses the wrong
number to select a field that must be changed, the example program
forces the operator to reenter the line.

Try modifying the name-and-address entry program to include the
additional safety features described above.

THE REAL·TIME CLOCK

Another C-64 computer feature is the real-time clock. This clock keeps
real time in a 24-hour cycle by hours, minutes, and seconds. The reserved
string variable TIME$, or TI$, keeps track of the time.

Setting the Clock

To set the clock, use the following format:

where:

TIME$ = "hhmmss"

hh is the hour between 0 and 23
mm is the minutes between 0 and 59
S5 is the seconds between 0 and 59

For hh, enter the hour of the day from 00 (12 A.M.) to 23 (11 P.M.). The C-64
computer is on a 24-hour cycle so that you can distinguish between A.M. and
P.M. The hours from 00 to 11 designate A.M., and the hours from 12 to 23
designate P.M., returning to 00 at midnight. At midnight, when one 24-hour
cycle ends and another begins, hh, mm, and ss are all set to zero.

When initializing TIME$ to the actual time, type in a time a few seconds
in the future. When that actual time is reached, press the RETUR:\ key to set
the clock.

TIMES. 1 121Zt150"

Accessing the Clock

To retrieve the time, type the following in immediate mode:

?T I r1E.

The computer will display the time in hhmmss format.

?TIMES
120200

The C-64 computer clock keeps time until it is turned off. The clock
must be reset when the computer is turned on again.

Real-Time Clock Operation

The C-64 computer actually keeps track of time injiffies. A jiffy is 1/60
of a second. TIME, or TI, is a reserved numeric variable that automatically
increments every 1 ! 60 of a second. TI M F is set to zero on start-u p and is set
back to zero after 51,839,999 jiffies. TI ME$ is a string variable that is gener­
ated from TIME. When TIME$ is called, the computer displays time in
hours, minutes, and seconds (hhmmss); that is, it converts jiffy time to real
time.

Notice that TIME$ and TI$ are not the string representations ofTI ME

and TI; they are numbers representing real time, calculated from jiffy time
(TIME, TI). The conversion is done as follows: each second is divided into
60 jiffies. One minute is composed of 60 seconds. One hour is made up of 60
minutes. Thus, one second is 60 jiffies, one minute is 3600 jiffies, and one
hour is 216,000 jiffies, as illustrated.

Jiffy

Minute

Hour

=1
= 60 X Jiffy
= 60 Jiffies

= 60 X Second
= 60X (60 Jiffies)
= 3600 Jiffies

= 60 X Minute

---- Second 60 = Jiffy

~
~ Minute/60= Second/60= Jiffy

~
= 60X (3600 Jiffies) ~ Hourj60= Minute/60= Second 60= Jiffy
= 216,000 Jiffies

The following program converts jiffy time (.I) into real time, shown as
hours (H), minutes (M), and seconds (S). A complete program follows the
statement descriptions.

10 J=TI
20 H=INT(J/~16B00)

30 IF H()0 THEN J=J-H*216000

413 N=INHJ/3600)

50 IF M()0 THEN J=J-M*3600

60 S=INHJ/60)

Calculate hours. Integer function
takes only whole number.

If any hours, subtract number of
jiffies in one hour by H to leave
remaining jiffies.

Calculate minutes.
Integer function takes only whole
number.

If any minutes, subtract number of
jiffies in minutes by 7 to leave
remaining jiffies.

Calculate seconds. Integer function
takes only whole number.

Cilaptor 4 f'.dvancecJ BASIC Programming 149

5 PRINT"~EAL TIt1E" :PRINT:PRItH
113 J=TI
15 U=TIME$
213 H=INT(J/26e0e)
313 IF H{)e THEN J=J-H*21600B
413 t1= I IH (J 1361313)
513 IF MC)B .THEN J=J-M-360B
60 S=H~HJ/6e)
713 HS=RIGHT$(STR$CH).2)
S0 MS=RIGHT$(STRS(M).2)
90 S$=RIGHT$(STR$(S).2)
100 PR I NT" H : t'1 : S: "j H$; " : " j t'1$ j " : " : " : " ; S$
1135 PRINT"TIt1E$: "j T$
lie PR HolT "illJ.IJlIIl" j : GOTO 10

In this program, statements 70 through 90 convert the numeric answers
into proper form for tidy printing. Statement 100 prints both the real time
calculated from the program, and TIME$, the real time calculated automat­
ically by the computer. Notice that the result is the same in both cases.

To get an idea of jiffy speed and the conversion from the jiffy clock to
the standard clock, type in the following program, which displays the
running time of both TIME$ and TIME (TI).

5 REM **RUNNING CLOCKS**
Ie PRlt~T"::F.:EAL TIt'lE: ": PRltH: PF.:ltH"']IFF',.' Tlt'lE:"
213 FOR 1=1 TO 235959
313 :PRItn"~"jTAB(13)jTIt1E$

413 :FOR J=1 TO 613 STEP 2
50 : PR ItH " :aw" ; TAB(12) j TI
613 : t'~EXT
70 t'~E;;<T

The FOR-NEXT loop for TIME in line 40 increments by STEP 2
(every two jiffies) for the following reasons:

Displaying 60 jiffies a second is too fast to read, and

Displaying ajiffy takes longer than incrementing the jiffy. This delays
the loop, so the TIME$ display is slower than it should be. By
incrementing and printing every other jiffy, you can minimize this
delay problem. Run this program and you will see that jiffies incre­
ment to 60 within each second. Run this program without STEP 2 in
line 40 and see the time delay when printing TIME$.

Real time: 006604
Jiffy time: 25500

150 Your Commodore 64

Keeping time injiffies is useful for timing program speed. This lets you
test the efficiency of a program. Consider the following short program:

10 PRINT"::14i*KEYBOARD TEST!4E*":PRINT
20 FOR 1=32 TO 127
30 PRINT CHR'(I);
40 NEXT I
50 FOR J=161 TO 255
60 PRINT CHR$(J);
70 NEXT J
80 PR I NT : PR I t-H : PR I tH II **Et~D TEST**"

You can compute execution time for this program as follows:

1. TI (or TIME) is assigned to a variable at the start of the time test.

2. TI (or TIM E) is checked at the end of the time test. Subtract the first
value of TI from the new TI value. This will give you the amount of
jiffy time it took to process the program in question.

The following listing adds these steps:

10 PR I NT" ::14i*KE'rBOARD TEST!4E*": PR INT
15 A=TI
20 FOR 1=32 TO 127
30 PRINT CHRf(I);
40 ~~EXT
S0 FOR J=161 TO 255
60 PRINT CHRS(J);
70 NE:'c:r
80 PRItH: PRINT: PRItH"**E~m TEST**"
100 PRItH: PRINT"TI = "; TI-A

As the program continues, TI increments 60 times every second. Line
100 subtracts the first value of TI (A) from TI's latest value. It took 41 jiffies
to display the keyboard characters. Divide jiffy time (41 jiffies) by 60 (the
number of jiffies in a second).

41/60= 0.6833

Thus, it took 0.6833 seconds to run the program.

RANDOM NUMBERS

Random numbers may be used in games you program on your C-64;
they have more practical uses in statistics and other areas as well. The C-64

Chapter 4 Advanced BASIC Programming 151

will generate random numbers with the RND function.
RND provides a real number between ° and 1. This number is actually

pseudo-random; that is, it is not truly random. However, that is a point
raised by statisticians. The number is a close approximation of randomness.

To determine the degree of randomness the RND function will have,
you provide a starting number, or seed. If you use zero as the seed, that is,
RND(O), the values it generates are based on three separate internal clocks.
The odds against all three clocks having the same values twice in a row are
very high; therefore, any number generated can be considered random.

The sequence of most random numbers generated will always be the
same. The only exceptions are RND(O) and RND(TI). Numbers that are
very nearly random may be obtained using a random seed of O. A predicta­
ble pattern of numbers may be obtained by using a negative number as a
seed.

It may not seem very useful to have a random number with such a small
range of values. To obtain larger numbers, mUltiply the random number by
the maximum value you want.' For instance, to get a random number
betwt:en 0 and 100, mUltiply the random number by 100. Type in the
following program:

1 REM RANDOM
5 X= 100 : REM MULTI PLI ER TO SET ~lAX I MU~l RAt'lGE
1 e R 1 =RND (0) : REM GET RANDO~l NUt1BER
20 R2=K*Rl:REM MULTIPLY TO DESIRED RANGE OF NUMBERS
50 PRINT" RAW #";Rl
55 PRINT"RANGED #";R2

Type RUN and press the RETURN key. The computer will choose a
"raw" or random number, multiply it by 100, and display it.

RAW # .672457317
RANGED. 67.2457317

Set X to a positive number less than 100, then type RUN to see a
different ranged number. Try setting X to any negative real number and
running the program again. This gives you a negative random number with
zero as the greatest possible value.

If you need the result to be rounded to the nearest whole or decimal
number, add the following lines to the program you just entered:

152 Your Commodore

2 Y=3:REM DECIMAL DIGITS WANTED IN NUMBER
30 R3=INT(X*Rl+.5):REM ROUND TO NEAREST WHOLE NUMBER
40 R4=INHX*Rl!f.10-r,... 5)/101',..: F:Et'1 ROIj~m TO ',.. DECH1AL

PLACES
50 PRINT" RAW #".; R1
55 PRlt'lT"RANGED #"; R2
613 PRINT"ROIJNDED ";R3
65 PR I NT" ROut·mED DEC I t1AL " ; F.~4

The variable Y controls the num ber of decimal digits of precision in the
rounded decimal number. Your results will be similar to the following:

RAW # .672457317
RANGED. 67.2457317
ROUNDED 67
ROUNDED DECIMAL 67.246

Generating Random Dice Throws

Random numbers are generated in the range 0 through not quite 1 (the
limit of 1, in calculus terms). You will have to convert the random number to
whatever range you require. Suppose numbers must range from 1 to 6 (as in
one die number of a dice game). You will need to multiply the random
number by 6.

6 * R~D(I)
This returns a real number in a range just greater than 0 but less than 6. Add
1 to get a number between 1 and 6.

6 * RND(I) + 1

Then convert the number to an integer. This discards any fractional part of a
number, returning the number in the range 1 to 6 but in integer form.

INT(6 * RND(O) + I)
or:
A%= 6 * RND(O)+ I

The general cases for converting the RND fraction to whole number
ranges are shown below.

INT (RND(O) * N)
INT (R~D(O) * N + I)
INT (RND (0) * N + M)

Range 0 to N
Range 1 to ~
Range M to ~

Now experiment with a variety of different random number ranges by
modifying the statements illustrated above.

Chapter 4 Advanced BASIC Programming 153

The program below shows - TI being used to generate a random seed.
This program calculates numbers in the range M to N. In this program, the
values of M and N are set in line 10 for a given program run. Note that these
values can be negative. In the following example, the display is an unending
sequence of random numbers between -50 and +50. (Press the STOP key to
end the program.) A different sequence of numbers will be printed each time
the program runs, since - TI provides a random seed. Note that the X value
returned from RND(-TI) is displayed instead of the TI value.

10 M=S0:N=S0
20 X=RND(-TI):PRINT X
30 FOR 1=1 TO 8
40 : Cr.= (N-t'1+ 1) IlERND (1) +M
S0 :PRINT Cr.
60 OOTO 30: REt~ PR I NTS NEW RAt,mot~ t-lUt~BERS

RUN
8. 27633085E-06

-14
29
7
35

-32
-12

48
-18

To illustrate different number ranges, change the values of M and N in
line 10 of the above program. For example, make M = 1 and N = 6; this
will generate an unending sequence of random numbers between 1 and 6.

Random Selection of Playing Cards

A quick scan of the display above shows that numbers repeat within the
first 100 generated. That is, 10 1 numbers will not include every number in
the range -50 to +50 with no duplications. This is fine in, say, a dice game,
but for other applications you may need to produce random numbers in a
certain range" where every number occurs and there are no duplications.
Dealing from a deck of cards is one such application. Once a card has been
selected, it cannot be selected again during the same deal.

The program below shows one way to program shuffling a deck of

154 Your Com,;,odo'c ~L

cards on the C-64. This program fills a 52-element table D% with the num­
bers I through 52 in a random sequence. (Element D% (0) is not used.) The
cards can be pegged to the random numbers in any way, such as

A = 1. 2 = 2, 3 = 3, ... , Q = 12, K = 13
Spades =0, Hearts = 13, Diamonds = 26, Clubs = 42

With this scheme, the Ace of Spades = I + 0 = 1, the Queen of
Spades = 12 + 0 = 12, the Three of Hearts = 3 + 13 = 16, and so on.

In the shuffle program, a 52-element flag table FL keeps track of
whether a card has been chosen. PRINT statements are inserted to display
the seed value, followed by the numbers, in a continuous-line format. Note
that exactly 52 numbers are displayed and that no number is repeated. Each
program run will produce a new random sequence.

10 DIM A(53)
211 E-52
30 FOR R-0 TO 51
40 ACR)-R
50 NEXT R
60 B-INT(RND(0)*E)
70 PRINT A(B),
80 FOR R-B TO E
90 ACR)-ACR+I)
100 NEXT Ii
110 E-E-I
120 IF E)0 THEN 60

RUN
43 25

13
5

46
8 21

36 6
II

39
3 37

38
27

7
47

51
17

10 4 18
15 35 45

I) 33 34 40
22 48 23 16

3:< 26 30
9 2 28

29 44 19
24 12 50 20

You will find several uses for random numbers in the programs you
write, especially if you write game programs. In the next two chapters you
will see how to fully utilize your C-64 's capabilities as a game machine.

CHAPTER

Game Controllers

The programs we have described so far have communicated with you
in a "stop and go" fashion; that is, they stopped and waited for you to type
something at the keyboard, then acted on it. This is fine for balancing a
checkbook or typing letters, but many C-64 applications require a different
style of communication. A program that simulated airplane flying wouldn't
be realistic if the plane stopped in midair while the "pilot" typed instruc­
tions. To make this type of program more realistic (and less tedious to use),
the C-64 takes its directions from a different source. Instead of receiving
instructions through the keyboard, the C-64 can use game controllers, the
joystick and paddle controllers similar to those used in arcade games.

In this chapter we'll show you how to write programs that use these
game controllers. We'll also describe how to use the keyboard "on the run,"
eliminating the stop and wait steps. If you don't have a joystick, our
keyboard example illustrates how to simulate one.

155

156 Your Commodore 6!i

THE JOYSTICK CONTROLLER

The joystick, like old-fashioned airplane control sticks, controls both
up-and-down and side-to-side motion. It does so with four switches: Up,
Down, Left, and Right. Inside the joystick are "fingers" that push these
switches as the stick is moved.

If the stick is moved up, down, or to one side, only one switch is closed.

f=:~ , , , I , I

'.' , ,

rD\ I ,
, I

0 0 0

~)
0 o

Chapter 5 Game Controllers 157

o 0

rr---
" . "'---- 0 0 0 0

I I
I ,
I I

o
I
, I

'.' I ,

I I
I I
I ,
I::.=~

If the stick is moved diagonally, two of the switches are closed.

,
e~--------.... , •
• o

o

o

• o

• (', ""~""---------'

A",

~----.----~~-~~/ '~
~ ~

~ //
~~ ~

/ /
/ ~

o 6~/ •
o

o

o •
• ,

~-------~~,~ , ,
"'"'

158 Your Commodore 64

There is also a Fire button, which has its own switch. Using the method
described in the following sections, your program can tell whether these
switches are open or closed and thus determine which way the joystick is
pointing. By moving the joystick, you can direct elements on the screen.

The CIA Chips

The joystick is connected to the C-64 through integrated circuits called
Complex Interface Adapters (CIAs). Certain pins ofthe CIA chips connect
to the "outside world." These pins receive a signal sent to them (input) or
send a signal out to another device (output). Circuitry in the CIA chip
enables the C-64 to set or examine the signals on these pins using memory
locations. The signals can be read and controlled through PEEKs and
POKEs in BASIC.

Testing the Joystick SwItches

The CIA's input/output pins are divided into two groups of eight. Each
group can be set or examined through a single memory location, with one bit
in that location representing each pin. The switches for control port I are
connected to one group of pins, and the switches for control port 2 are in
another group.

Memory
Location

56320

Memory
Location

56321

Control Port I

Bits

'----up
'-----Down

L..-____ Left

'-------Right
'--------- Fire

Control Port 2

Bits

'----up
'-----Down

L..-____ Left

'-------Right
L..--------Fire

Chapter 5 Game Controllers 159

Since the four directory switches and the Fire button are in the same
memory location, the numbers in the boxes are used with the AND operator
to isolate the bit for a particular switch from the others PEEKed from the
same memory location. This use of AND was discussed in the "Boolean
Operators" section of Chapter 3. In the result of the AND operation, all bits
except the one we want to look at will be forced to a 0 value. (This is called
masking. Just as you use masking tape to cover up woodwork while painting
the walls, computer programs use bit masks to cover up the bits they don't
want to test.) For example, the following statement determines if the Fire
button of control port I is being pushed:

Ie FE = (PEEK(5632e) AND 16) = 13

"AND 16" eliminates the other switch values by "covering up" all bits except
16. The program then compares the result to O. The joystick switches supply
a 0 signal to their VIA pins when the switch is closed and a 1 when open.
When the switch is closed, the button is being pushed.

Let's look at the AND operation in binary.

PEEK location 56320
AND bit number 16

121121131211311121
1211211211211121121121

1211211312112113121121

The result of the AND is 0, since 1 AND 0 is always O. The switch is closed,
the signal is 0, and the button is pushed.

Try entering and running the following program to see how moving the
joystick affects location 56320:

1121 PRINT PEEK(5632121)
2121 FOR 1=1 TO 25121 ; NEXT I

SECot~D
3121 OOTO 1121

REM WAIT ABOUT HALF A

The program checks and displays the value in memory location 56320
every half second. As you move the joystick, notice the changes in the values
displayed on the screen. When a switch in the joystick is closed, its mask
value (16,8,4,2, or 1) is subtracted from the displayed number. To look at
the other joystick, replace 56320 in line 10 with 56321.

160 Your Commodore (4

A Complete Joystick Scanner

We will now look at the programming necessary to convert the joy­
stick's bit locations to physical movement. If you write one program that
uses a joystick, you will probably write others, so we'll provide a standard
subroutine that can be typed into any program. This subroutine sets three
variables for the main program.

XI The X Increment. Controls movement to the right or left.

YI The Y Increment. Controls movement up or down.

FB Tells whether the Fire Button was pressed.

XI is set to -[for left, + [for right, and 0 for neither. YI is set to -[for
down, + 1 for up, and 0 for neither. If the Fire button is pressed, FB will be a
1; otherwise, it will be a O.

63000 XT~ = PEEK(56320) AND 31
63020 XI = SGN(XT~ AND 4) - SGN(XT~ AND 8)
63030 ..,.1 = SGN(XT~ At~D 2) - S[jN(XT~ AND 1)
63040 FB = 1 - SGN(XT~ AND 16)

This program uses some tricks to make it run faster. Let's examine its
operation line by line.

63000

63020
63030

63040

63050

Reads the joystick in control port I and uses the technique
described above to preserve thc keyboard scanner.

These two lines derive the X and Y increments from
the switch values. To reduce the amount of time needed to
calculate them, the SGN function is used. This returns a I if
the switch is off and a 0 if it is on. This is faster than
comparing the result of the AND to zero.

Gets the value of the Fire button.

Returns to the main program.

USING THE JOYSTICK SCANNER

The following simple program illustrates the capabilities of the joystick
scanner. It moves an object around on the screen in response to the move­
ment of the stick.

Chapter 5 Game Cortroliers 161

TABLE 5·1. Paddle Controller Memory Locations

Location

54297
54298
56320
56321

lee PRINT "::1tI";
20e OOSUB 63000
300 IF XI=0 AND ¥I-0 THEN 200

Contents

Left Paddle Position
Right Paddle Position
Paddles A&B Fire Buttons
Paddles C&D Fire Buttons

400 PRINT CHR'(20); : REM DELETE CHAR O~l SCREEN
500 IF XI=-l THEN PRINT "1111";
600 IF XI= 1 THEN PRINT " •• " j
700 IF 1,'1=-1 THEN PRINT "IJI" j

800 IF YIIIt 1 THEN PRINT "~";
900 OOTO 200

THE PADDLE CONTROUERS

The paddle controllers derive their name from their use in the early
ping-pong style video games. Each controller consists of a variable resistor
called a potentiometer or pot. The potentiometer is controlled by a knob
and by a switch similar to the Fire button on the joystick. Like the joystick,
the paddle interface is compatible with controllers like those made by Atari.

The value of the "pot" is read by the SI D chip in the C-64 and converted
to a number between 0 and 255. The switches, on the other hand, are read by
the CIAs, using two of the joystick pins. (Table 5-1 lists the location and
contents of paddle control memory.)

Before you can read the values of the four pots, you will need to disable
the keyboard scanner. This can be done by using a simple two-byte machine
language routine. Then, when you need to read the paddles,just S YS to your
routine and read the paddles. NOTE: You must perform the SYS and read
the paddles in the same BASIC line or else the keyboard scanner will be
re-enabled.

The following routine will read the four paddle values and assign them
to variables A, B, C & 0:

10 PR I NT " (CLEAR/Hot1E)"
20 POKE 8000, 120 : POKE 8001, 96
30 S¥S 8000 POKE 56320, 64 : A=PEEK(54297) : B=PEEK(54298)
40 S¥S 8000 : POKE 56320, 128 : C=PEEK(54297) : D=PEEK(54298)

162 Your Commodore 64

The Fire buttons on the paddle controllers can be read from locations
56320 and 56321. By adding to the following routine, the variables FA, FB,
FC, and FD will indicate whether the Fire buttons are being pressed. A zero
indicates that the button is being pressed.

70 FA = SGN<P~~K(56320) AND 4)
80 FB = SON(P~~K(56320) AND 8)
90 Fe = SGN(P~~K(56321) AND 4)
100 FD = SGN(P~~K(56321) AND 8)

KEYBOARD COMMUNICATION USING
THE GET STATEMENT

In Chapter 3 we introduced the GET and INPUT statements. Many of
the examples so far have used the INPUT statement. Those programs are
the "stop and go" kind; if they need information from the keyboard, they
have to wait for it. If you want to write an "action" program that receives
instructions from the keyboard, you can use the GET statement.

Like INPUT, the GET statement reads information from the keyboard.
But that's where the similarity ends. The main differences are as follows:

1. INPUT reads one or more complete numbers or strings. GET reads
only a single keystroke.

2. Using INPUT, the program waits for you to press RETURN. If
nothing is typed, your program will wait indefinitely. GET, on the
other hand, never waits; if no key was pressed the program tells you
so, but keeps on running.

3. When you are typing in response to an INPUT statement, the "?"
prompts you for input, and the characters you type appear on the
screen. GET has no prompt and doesn't echo what you type.

In other words, with a GET statement a program can determine
whether a key has been pressed, but won't wait if no key is pressed. If the
person using the program types nothing, the program can determine this
and make decisions based on it.

Chapter.h, Game Controllers 163

GET Statement Syntax

The syntax of GET, shown in the following line, is quite simple:

GET variable name

No options are available. You must have exactly one variaable in the "list."
Unlike INPUT, no prompt string is allowed. You can, however, easily display
a prompt string: use a PRINT statement terminated with a semicolon to stop
the C-64 from printing a RETURN.

10 PRHH "THIS IS A PROMPT:";
20 GET AS

The variable used with GET can be any type (integer, floating point, or
string), but a string variable works best. There are two reasons for this.

1. If a numeric variable is used, BASIC attempts to interpret any key
pressed as a number. If you type something other than a number, a
syntax error occurs and the program stops.

2. If no key has been pressed, the numeric variable is assigned a value
of o. The program has no way of determining whether no key was
pressed or a "0" was typed.

With a string variable, you can GET almost any key, including the
cursor control keys and RETURN. (The STOP and RESTORE keys can't be
read, and the various shifts and the CTRL key operate as usual.) If no key is
pressed, GET assigns an empty string to the variable and your program
detects this. If you want to wait until something is typed in, use a line like the
following:

10 GET AS : IF AS = "" THEt-~ 10

Notice that there is no space between the quotes, resulting in an empty
string. If the variable you GET is equal to this empty string, then no key was
pressed.

Echoing Keystrokes

As mentioned earlier, characters entered with GET do not appear on
the screen. Sometimes, however, you need to see what you type. This can be
accomplished by adding a PRINT statement to the program.

164 Your Commodore 64

11'3 GET AS : I F AS = "" THEN 10
21'3 PRINT AS;
31'3 GOTO 11'3

The simple program above will echo to the screen exactly what is typed
at the keyboard. Pressing the STOP key will stop the program.

The Keyboard as Joystick

This section is presented in a "case study" form. Rather than start with
the program listing, we will first show you some of the steps taken in
designing it. Following these steps will help you to understand both the
program listings and the programming process itself.

Our make-believe joystick will act just like the ones made by Commo­
dore. You can make it point in various directions (left, right, up, down, and
diagonally) by pressing different keys. It will also have a Fire button,
although it can't be pushed while a direction key is being held down.

CHOOSING THE KEYS

We will first select the keys that will make up the joystick. Nine keys are
needed: eight for the various pointing directions and one for the Fire button.
The keys should be arranged so that they are easy to use. The arrangement
below uses the keys that are naturally under the right hand when touch­
typing. Their circular pattern is easy to learn and remember.

DESIGNING THE INTERFACE

TO THE MAIN PROGRAM

C'>opter c;. Gome COfltrole's 165

Now let's take a look at the programming necessary to interpret the
keys and simulate the joystick. The subroutine should be compatible with
the one described for the actualjoystick so that you can write programs that
work with either. This subroutine will set the same three variables for the
main program.

XI The X Increment. Controls movement to the right or left.

YI The Y Increment. Controls movement up or down.

FB Tells whether the Fire Button was pressed.

XI is set to -I for left, + 1 for right, and 0 for neither. YI is set to -I for
down, + 1 for up, and 0 for neither. If the K key is pressed, FB will be a 1;
otherwise, it will be a O.

LOADING THE TABLES

The program will interpret the keys by looking them up in a table. It
uses other tables for the Xl and YI values. These tables will be stored as
arrays in the program. The first array (K T$) contains the values of the keys
that make up our joystick. The other two arrays contain the values of XI and
YI that correspond to those keys. For example, KTS(5) contains the letter
"U", which means "up and left," so XT(5) contains -I, and YT(5) contains
1. To save time when scanning the keyboard, we'll build these tables in a
separate subroutine that is executed only once at the beginning of the
program.

62000 REM KEY TABLE VALUES
62100 DATA I, 0, L, " . " , " , " , t1, .J, U
62200 REM X INCREMENT VALUES
62300 DATA O,1,1,1,O,-1,-1,-1
62400 REM Y INCREMENT VALUES
62500 DATA 1,1,0,-1,-1,-1,0,1
62600 FOR 1=0 TO 7: READ KT$(I): NEXT
62700 FOR 1=0 TO 7: READ XTCI): NEXT
62800 FOR 1=0 TO 7: READ YTCI): NEXT
62850 REM MAKE ALL KEYS REPEAT
62900 POKE 650, 128

Your program must call this subroutine before attempting to use the
"joystick" in order to translate the keys correctly.

166 Your Commodore 64

When using this routine, be careful where you place the DATA state­
ments. Remember that the READ statement starts with the first DATA
statement in the program. If you put additional DATA statements in this
program, you may find it helpful to separate the ones above from the
subroutine and group them with your own to keep them in the right order.

THE KEYBOARD INTERPRETER SUBROUTINE

The subroutine to read the keyboard and translate the key has high
statement numbers to force it to the end of the program.

6300121 XI=e: YI=e: FB=e: LI=e
63010 GET KEf
631212121 I F KEf = "" THEt·l RETURt-l
631213121 IF KEf = KT$(LI) THEN YI = YT(LI): XI = XTCLI):

RETUR~l
631214121 LI = LI+l: IF LI (8 THEN 63030
631215121 IF KEf = "K" THEt·l FB = 1
631216121 RETUR~l

This su broutine has a few tricky parts, so we will go over it line by line.

63000

63010

63020

63030
63040

63050

63060

XI, VI, and FB are set to zero first. Since there are three
places where we RETURN, the old values must be erased
before we start.

Checks to see if any key is pressed.

If not, RETURNs, leaving all variables set to zero.

These lines form a loop to scan the key table for
the key that was pressed. A FOR-NEXT loop is not used,
since we want to RETURN immediately if the key is found.
(Remember that you must always terminate a FOR loop
with a NEXT, and we want to stop this loop as soon as
possible.)

Checks for the Fire button.

RETURNs to main program.

USING THE KEYBOARD JOYSTICK

Your program should be entered ahead of statement 62000. You can
SA VE a copy of these routines by themselves to use as a base on which to
build programs.

O:opter GC'lle Contro,lers 167
======================~.

To see what can be done with the "keyboard joystick" routines, try
using them with the demonstration program below.

1121 GOSUB 621210121
2121 A$(0)." LEFT": A$(1)=" ": A;!:(2)="RIGHT"
30 B$(0)=" DmJt·~ ": B$(1) =" ": B$':' 2)="UP
4121 C$(0)="FIRE": C$(1)II"::FIREII"
5121 POKE 65121. 128
11210 PRINT ":1"
110 PRINT "i:I!I"; As(XI+1); "I"; B$(,T'I+1); SpeCS) j C$(FB)
12121 GOSUB 631210121
130 GOTO 110
620121121 REt1 KEY TABLE VALUES
6211210 DATA 1,0. L, " • " • " , " , t1, J, U
622121121 REM X I t~CREt1Hn VALUES
623121121 DATA 121,1,1,1,121,-1.-1,-1
62400 REM Y INCREMENT VALUES
6251219 DATA 1.1.0,-1.-1.-1.0.1
6261210 FOR 1=0 TO 7: READ KTSeI): NEXT
627121121 FOR 1=121 TO 7: READ XTCI): NEXT
628121121 FOR 1=0 TO 7: READ YT(1): NEXT
630121121 XI=0: YI=I2I: FB=0: LI=O
631211121 GET KE$
6312120 IF KE$ = "" THEN RETURN
631213121 IF KE$ = KT'(LI) THEN YI = YTel!): XI = XT(lI):

RETIJRt~
631214121 LI = LI+l: IF LI < B THEN 631213121
631215121 IF KE$ = "K" THEN FB II 1
631216121 RETURN

CHAPTER

Graphics

In this book, "graphics" means the display of pictures, rather than text,
data, or programs, on the screen. The "picture" could be a face, an architectu­
ral drawing, a geometric shape, or simply an arrangement of text characters.

The C-64 has extensive graphics capabilities. Some of these, such as the
built-in graphics characters and the C-64's ability to display text and pictures
in color, have been mentioned in the preceding chapters. In this chapter we will
cover these features in more detail and describe the C-64's other graphics
features, including its ability to use characters you design. As these features are
introduced, we will show you programming techniques for using them to
produce colorful and animated displays.

The Video Interface Chip

The 6566 Video Interface Chip (VIC-II chip) is a complex integrated
circuit that generates the picture and sound that the C-64 produces on your
television. (It's called the "VIC-II" because it's an improved version of the
original VIC chip that was used in Commodore's VIC 20.)

The VIC-II chip acts as a video interface: it translates computer signals
into television signals that produce a picture on the screen.

169

170 Your Cummociore 64

Your program communicates with the VIC-II chip using PEEK and
POKE. Much of the art of C-64 graphics involves knowing what to POKE
and where to PEEK. That is the focus of this chapter.

The C-64 Screen

Let's look again at the screen, our canvas for graphics artistry. Figure 6-1
presents a blank screen. Notice that it is divided into two areas, the border and
the background. The border frames the background; since television screens
do not have straight edges, the border fills the gap between the display and the
edge of the television screen. The background is the working area of the
screen. Both the text and graphics created by your programs are displayed
here. The background consists of 25 rows of 40 characters each, as shown in
Figure 6-2. Notice that the rows are numbered from 0 to 24, and the columns
from 0 to 39. The formulas for manipulating screen data that we will present

Border

Background

FIGURE 6-1. The C -64 screen

C'10oter 6 Grc::phiCS 171

:~ I-++-t+-I-++-t-f-ll-++-t-f-l-t-t+-H-t-t-++-t-f-l-t-+-t-f-l-t-t+-H+-H

::I-++-t+-I-+++-f-lI-+++-f-I-t-t+-H+-t-++-t-f-l-t-t+-H-t-t+~+-H

::I-++-t-f-ll-++++-I-+++-f-I-t-t+-H+-t-+++-f-I-t-t-t·-H-t-t+-H+-H

~~ f-++--+-+-H-+--+-+-+-+-+--+-+-H--H--H,-+-++ +++--+-+-+-+-+--+-+-H--H-HH

~:I-+++-f-lI-+++-f-lI-+++-f-I-t-t+-H+-t-++-t-f-l-t-t+-H-t-t+-H+-H
~~~~-.-~~~~~~~~~~~~~~~~~~~,~ 

FIGURE 6-2. The screen divided into rows and columns 

throughout this chapter are much simpler if you think of the screen as starting 
at row 0, column 0, rather than row 1, column 1. All the discussions and 
examples in this chapter will use this numbering convention. 

Border, Background, and Character Colors 
The colors of the border, background, and the individual characters can 

be set independently. When the C-64 is powered on (or reset with the 
RUN/STOP and RESTORE keys), the background is dark blue and the charac­
ters and border light blue. You can change these colors at any time. 

The background and border colors are stored in the VIC-II chip. They 
can be changed simply by POKEing a number into a memory location. The 
border color is controlled by location 53280, while the background color is 
kept in location 53281. A table of the POKE values for all their possible values 
is provided in Appendix B. 

The color of each character on the screen can be set individually. Each 
character has its own location in an area called color memory. Later in this 
chapter we will explain how to access this color memory directly, but you can 
make the C-64 take care of it for you. On the front of the numeric keys 1 

through 8 are printed abbreviations for eight of the character colors. 



172 Your Commodore Ai' 

Key Abbreviation Color 

I BLK Black 
2 WHT White 

3 RED Red 
4 CYN Cyan 
5 PUR Purple 
6 GRN Green 
7 BLU Blue 
8 YEL Yellow 

To change the color of the characters, press and hold the CTR I, key, then press 
the key for the color you desire. All characters generated at the keyboard or 
by a program will appear in the color selected. Only characters displayed after 
you set the new color will be affected; those already on the screen will not be 
changed. 

There are eight other colors that you can choose from, but they are not 
marked on the keys for you. These colors are set using the Commodore key 
with the number keys. 

Key Color 

I Orange 
2 Brown 
3 Light Red 
4 Dark Gray 
5 Medium Gray 
6 Light Green 
7 Light Blue 
8 Light Gray 

To change to one of these colors, press and hold the Commodore key, then 
press the key for the color you desire. Just as with the "CTRL" colors, only new 
characters will appear in the new color. 

Players and Playfields 

Many graphics programs, especially games and simulations, move one 
or more objects against a fixed background. To avoid confusion with other 
terms, we will refer to the objects as players, and the background as the 
playfie/d. The C-64 offers a variety of ways to build both players and 
playfields. 

Not all players will move, and the playfield may change. In fact, in some 



Chooter c (:;roohics 173 ==============--=========== 

applications the players will stay in one place and the background will move, 
just as in the old movies where the stagecoach sat still while the painted 
scenery rolled by behind it. 

GRAPHICS WITH THE EXTENDED CHARACTER SET 

Simple players can be made using the C-64's built-in graphics characters. 
These are the shapes and symbols printed on the front of the keys. For 
example, the following short program will display a drawing of a car on the 
screen: 

1121121 PFW-n It :':]11 

200 PRH-n " /".,-" " 
:30121 PF.:HH "/ "1." " 
4121121 PRI~·n "I I " 
51210 Pf':INT " 0 0 " 

One of the advantages of creating displays with PRINT statements is 
that you can doodle on the screen in immediate mode until you're satisfied 
with your player, then build the PRINT statements around it. This is how we 
built the car in the program above. Let's look at the process step by step, using 
a simpler example: 

Step 1: Clear the screen. Use the SHIFT and CLR/HOME keys (Figure 
6-3a). 

Step 2: Draw the top half of the diamond. Type SHIFT-N, then SHIFTM 

(Figure 6-3b). Don't press RETURN; if you do, the C-64 will try 
to execute what you just typed and print a READY message on 
your picture. (lfyou type any nongraphics characters, you may 
also get a ?SYNTAX ERROR message.) To avoid this, type 
SHIFT-RETURN. The cursor will still move down to the begin­
ning of the next line, but the C-64 will not try to execute 
your picture. 

Step 3: Draw the bottom half of the diamond. Use SHIFT-RETURN to 
get to the next line. Type SHIFT-M and SHIFT-N to complete the 
diamond (Figure 6-3c). 

Step 4: Home the cursor. Press the CLR/HOME key without pressing the 
SHIFT key (Figure 6-3d). 



174 Your Commodore 64 

a. h. 

c. d. 

/"'-.0 '.0?···.,., ...... 
~ ..• _/ 

eo f 

FIGURE 6-3. Drawing a diamond 



175 Cr>npter (:; 
==-=====--=---===-----= ====- ===' ----

Step 5: Insert four spaces with the INSTjDEL key. This leaves room for a 
line number, a "?" for PRINT, and a double quote to start a 
string (Figure 6-3e). 

Step 6: Type in the PRINT statement. Enter the line number (10), a 
question mark, and the double quote (Figure 6-3f). 

Step 7: Press RETURN. Don't use SHIFT this time. BASIC stores the 
first line of the diamond as a program line. Repeat steps 5 
through 7 for the second line of the drawing, using a line 
number of 20 this time. 

You now have a program that can be RUN to display the diamond 
drawing. This method can be used to reproduce almost anything you can 
sketch on the screen, from a simple square to a complex picture. The only 
restriction is that you can't completely fill the screen, since you will need room 
to insert the PRINT statements. 

Now experiment a bit with some of your own designs. For the moment, 
stay away from reversed characters. They require some special handling that 
we'll cover in the next section. 

Using Reversed Characters 

You may have already noticed that reversed characters have a special use 
in PRINT statements: they represent keys that do not generate "normal" 
characters, such as HOME, the cursor controls, and the color keys. If you 
enter a reversed character directly into a PRINT statement, one of the 
following will happen: 

The character will be interpreted as a "special key" to move the cursor, 
change the color, and so on. 

The character will not match any of the special keys; it will be stored as 
a nonreversed character when you press RETURN. This will happen 
even if the character appears between quotes in the program. 

To PRINT a single reversed character within a string, enter a RVS ON 

(CTRL-9) before the reversed character. The character itself must appear in the 
PRINT statement as a "normal" (nonreversed) character. If you are building 
PRINT statements from a screen sketch, you can insert the RVS ON using the 
Il\ST key. Remember that pressing the INST key puts you in quote mode for 



176 your Commooore 

one character, so the RVS ON will be stored as part of the PRINT statement 
instead of being executed. 

The "reverse on" is reset automatically at the end of the PRINT line. 
(Remember that a PRINT line can span more than one line on the screen. A 
RETURN indicates the end of a PRJ NT line. If aPR J NT statement ends with a 
semicolon, BASIC does not add a carriage return, and characters will still be 
displayed in reverse.) If normal characters follow the reversed ones on the 
PRINT line, insert a RVS OFF (CTRL-O) before the first nonreversed character. 

To illustrate the problem and solution, we will modify the Diamond 
program to produce a solid block instead of an outline. Follow the steps 
displayed in Figure 6-3, but use different characters to make up the player. 

In step 2, after clearing the screen, type RVS ON (CTRL-9), SHIFT-£, 
and (::_*. 

In step 3, type (::_* and SHIrT-£. 

When you list the program, you will notice that the first SHIFT-£ has 
changed to normal, but the (:: -* has not. 

10 PRHH "",,"-" 
2121 PRWT ""-" 

Now run the program, and observe the effect of the reversed (:: -*. The 
second line has turned cyan. 

To change the program so it displays what we originally wanted, follow 
these steps: List the program to display it on the screen. Position the cursor 
over the SHIFT-£ in line 10 and press SHIFT-I:\ST. This inserts a space, and 
temporarily puts the C-64 in quote mode. Type CTRL-9 (RVS ON). Since it is in 
quote mode, the C-64 will insert the RVS ON in the PRINT statement (dis­
played as a reversed "R"), instead of switching to reversed characters. When 
the PRINT statement is executed, the reversed R will be recognized and the 
C-64 will start displaying reversed characters. Change the reversed (:: -* to a 
normal one, so it won't turn the screen cyan again. Move the cursor over and 
type a (:: -* over the old one. 

The program should now look like this: 

1121 PRINT "~" 
2121 PRINT ""-" 



Chopte~ c. GrcprllCS 177 

Run the program again, and you will see that the diamond is now 
correctly displayed. 

Adding Color to Your Display 

Like reversed characters, color displays require special care. The prob­
lem here is somewhat different: the C-64 simply forgets the color of a 
character once it's off the screen. This happens because the color is not 
actually part of the character. As mentioned earlier, there is an area in 
memory set aside to hold the colors ofthe characters on the screen. When you 
list your program, the C-64 sets the color for each character to the active 
character color. When first powered on, it uses blue for the character color. In 
Chapter 2, you learned how to change the color from the keyboard, using the 
CTRL key. As we are about to see, your program can also change it. Once a 
character is gone from the screen, the color memory is reused to show the 
color of the character that takes its place. Only the character itself is stored as 
part of the program. 

As with reversed characters, this problem is solved by inserting control 
characters into the program to set the color. For example, to make the 
diamond red instead of blue, insert a CTRL-3 into line 10 following the "reverse 
on" (reversed R) so that the line looks like the following: 

1~?I PRlt-lT "l.'l~" 

20 PRItH ""''' 

Now run the program. Notice that the entire diamond is red, not just the 
first line. Color controls, unlike the reverse on control, are not reset when you 
start a new line. They remain in effect until a new color is set, or until you reset 
the C-64 with the RUN/STOP and RESTORE keys. 

CREATING DISPLAYS WITH POKE 

Sometimes it is not practical to use PRINT to build a graphics display. 
For example, if several players are moving about on the screen, you may need 
to detect when they collide with each other or with an object on the playfield. 
Or you might want to have a cursor on the screen when reading characters 
with GET. For applications like these, you will want to access the display 
directly. The C-64 allows you to do this using PEEK and POKE. 



178 \·,)ur CornlTlcdore 6.1 

Screen Memory 

The characters displayed on the screen are stored in the C-64's memory. 
The VIC-II chip reads the image of a character from memory as it is being 
displayed on the screen. The characters are stored in an area called screen 
memory, and the colors of the characters are stored in color memory. Because 
these areas are part of the C-64's memory, you can use PEEK and POKE to 
examine and change the contents of the display. 

FINDING SCREEN MEMORY 

In most computers, the location of screen memory is part of the hard­
ware design and cannot be changed. In the C-64, although the number of rows 
and columns in screen memory is fixed, its starting point is not. The VIC-II 
chip uses one of its internal registers to keep track of the start of screen 
memory and this pointer can be changed. Some of the programs we will show 
you later in this chapter will make use of this capacity. Programs that PEEK 
and POKE directly into screen memory must be aware of where the screen is. 
This is easily done. There is a different memory location used by BASIC that 
tells the C-64 where the screen begins. If you PEEK this memory (location 
648), and multiply it by 256, you will get the starting address of screen 
memory. 

10 SB=256*PEEK(648) 

Our sample programs will keep location 648 up-to-date when they move 
screen memory. If you follow this convention in your programs, you can write 
programs that work no matter where screen memory is located. 

SCREEN MEMORY LAYOUT 

The characters you see on the screen are stored in memory as an array of 
25 rows and 40 columns. This array is not a BASIC variable. It is simply a 
WOO-byte area in the C-64's memory that you can access with PEEK and 
POKE, but you will find it helpful to visualize this area as an array. Each 
element of this array holds one character from the screen. Element (0,0) 
contains the character in the upper left corner of the display, and element 
(24,39) holds the character in the lower right corner. 

Once you have found where screen memory starts, using the formula 



Chopter c CrophlCS 179 

from the preceding section, you can readily calculate where to POKE for a 
particular character. The formula is 

POKE location = start of screen + column + 40 * row 

In order to use this formula, you must number screen columns from 0 to 39, 
and rows from 0 to 24. As an example of this formula, type in the following 
program: 

lee SB-256*PEEK(648) 
11e REM FILL SCREE~~ t1EMORY WITH "I)" 
120 FOR 1=0 TO 999 
130 POKE SB+L e 
14e NEXT I 
150 REM WAIT FOR A KEY TO BE PRESSED 
160 GET XS 
170 IF X$="" THEN 16£1 
180 REt1 CHAt·mE BACKGROllt·m TO BLACK 
190 POKE 53281,O 

Before running the program, clear the screen and list the program, 
leaving the listing on the screen. Now run the program and observe the 
results; all the characters on the screen, except spaces, were changed to @'s. 
In fact, the program changed every character to an @, but those that appear 
on the screen as spaces are invisible. When BASIC clears the screen, it 
changes the character color of all characters on the screen to match the 
background. Then, as each character is printed, the C-64 sets its location in 
color memory. Since some of the @'s are displayed as blue characters on a 
blue background, they will be impossible to see. To make them visible, press 
the space bar. The program will change the background color to black, and 
the blue @'s will appear. (This program does not work exactly the same way 
on all C-64's; Commodore made a change to the screen-clearing portion of 
BASIC after some computers had already been shipped. On your computer, 
the "invisible" @-signs may appear in white.) 

You must be aware of this problem of disappearing characters when 
using POKE in a display. Your program must ensure that the color of the 
location you are POKEing is correctly set. The next section describes how to 
do this. 

Color Memory 

Earlier in this chapter we mentioned that the colors of the characters on 
the screen are kept in a special area called color memory. As our most recent 



180 Your Comrr=Xiore ' 

example shows, an understanding of how to use color memory is essential 
when using POKE in displays. So, before proceeding further with POKEing 
screen memory, let's take a look at color memory. 

FINDING COLOR MEMORY 

Unlike screen memory, color memory never moves; it is always in 
locations 55296 through 56295. As with screen memory, there is one location 
in color memory for each character on the screen. The order of character 
colors is the same as that of the characters themselves, so the formula used to 
find a character's location in color memory is like the one used to locate the 
character in screen memory. 

Color memory location = 55296 + column + 40 * row 

CONTENTS OF COLOR MEMORY 

The color of each character is stored in color memory as a number from 
o to 15. The colors produced by these numbers are as follows: 

0 Black 8 Orange 

1 White 9 Brown 

2 Red IO Light Red 

3 Cyan II Dark Gray 

4 Purple 12 Medium Gray 

5 Green 13 Light Green 

6 Blue 14 Light Blue 

7 Yellow 15 Light Gray 

Unlike other areas ofC-64 memory, color memory uses only four bits per 
location. Only four bits are needed to hold the color number (0 to 15). Since 
the upper four bits are not used, Commodore did not include a memory chip 
to hold them. If you POKE a number larger than 15 into a color memory 
location, the part of it held in those "missing" bits will be lost. 

10101010 
1010 

11111111 
1111 

00000111 
0111 

A binary value of 204, when the upper 4 bits are dropped 
is stored as a 12. 
255 
becomes a 15. 
A value of 7, however, 
is not changed. 



Chapter Cl Graphics 181 
~==========~== 

Since there is no memory chip to supply the upper four bits when reading 
color memory locations, they will take on unpredictable values. Remember 
that a bit must be either a 1 or a 0; even if there is no signal present on a chip's 
input pin, the chip must assign it some value. With no signal coming into the 
pins for the upper four bits, the chip arbitrarily gives them either a I or a 0 
value. When PEEKing color memory, always discard the nonexistent bits. 
This can be done by using AND to mask them, as described in Chapter 5. 

10 BY=PEEK(55400) AND 15 

Screen Display Codes 

Once you understand where to POKE to change the display, you will 
need to know what value to put there. Commodore computers, including the 
C-64, do not use the same character code in screen memory that they use in 
programs. Most computers store characters in a standard code called ASCII 
(American Standard Code for Information Interchange). Commodore com­
puters use an "extended" ASCII for all purposes other than repre£enting 
characters in screen memory. The "extensions" are graphics characters and 
certain control codes not used by other manufacturers. Many of the control 
codes do not have a displayable character associated with them. In order to 
make as many graphic codes as possible available on the screen, Commodore 
devised a different code for screen memory. This code eliminates some ASCII 
characters, and changes the values of others. 

Appendix E contains a table showing the screen display codes. If your 
program is POKEing characters that are set at the time you write it, you can 
simply look them up in the table. If you do not know in advance what 
characters you will be POKEing, your program must convert them from 
ASCII to screen display code. This might be necessary if, for example, your 
program uses GET to read instructions from the keyboard, and you want to 
echo the characters in a particular place on the display. 

The conversion to screen code can be done with little effort, because the 
ASCII codes that were changed were moved in blocks of 32 characters. The 
changes are shown in Table 6-1. 

Here is a simple subroutine that takes a key value, K V$, and converts it 
to a screen code, Sc. If the key cannot be translated (a cursor control key, for 
example), it returns a value of -1. The main program can thus tell the 
difference between a displayable and a nondisplayable keystroke. 



182 Your Commodore 64 

TABLE 6·1. ASCII to Screen Code Conversion 

ASCII Code 

0-31 

32-63 

64-95 

96-127 

128-159 

160-191 

192-254 

255 

60000 8C=ASCCKV$) 
60010 IF SC(32 THEN 8C=-1 :RETURN 
60020 IF 8C(64 THEN RETURN 
60030 IF 8C(96 THEN SC-SC-64:RETURN 
60840 IF SC(128 THEN SC=SC-32:RETURN 
60050 IF 8C(160 THEN SC=128:RETURN 
60060 IF 8C(192 THEN SC=SC-64:RETURN 
60070 IF 8CC255 THEN SC=SC-128:RETURN 
60080 SC=126:RETURN 

The Moving Dot Revisited 

Screen Code 

None 
Same 
0-31 

64-95 

None 
96-127 

64-126 

94 

In Chapter 5 we presented a program that moved a dot around the screen 
as an example of using the joystick. Here, for comparison, is how that 
program could be written using POKE instead of PRINT. As before, this 
program is not complete; you must add the appropriate subroutine to use 
either the keyboard or the joystick for control. 

100 REM CLEAR SCREEN 
110 PRItH":'lI" 
120 REM SET COLOR MEMORY 
130 FOR 1=55296 TO 56295 
140 POk:E 1,14 
150 NEXT I 
160 XP=0: ',-JP=0 
170 SB=PEEK(648)*256 
190 REM MAIN LOOP 
190 GOSIJB 6300121 
200 IF (XI=0)ANDCYI=0)ANDCFB=0)THEN 190 



Chaprer I 

~======================= 

21121 REM ERASE OLD DOT 
22121 POKE SB+XP+4e*YPJ32 
23121 REM CALCULATE NEW X POSTION 
24121 XP=XP+XI 
25121 IF XP)39 THEN XP=0 
26121 IF XP<0 THEN XP=39 
27121 REM CALCULATE NEW Y POSTION 
28121 YP=YP+YI 
29121 IF YP)24 THEN YP=12I 
3121121 IF YP(12I THEN YP=24 
31121 REM POKE NEW DOT 
32121 POKE SB+XP+4121*YP.81 
:33121 GOTO 19121 

ANIMATING YOUR PLAYERS 

183 

There are two facets to player animation. The first we have already 
discussed: moving a player around on the screen. The second involves chang­
ing the player itself, so that it apryears to be doing something. To animate a 
player, one or more of the characters that make it up are changed, giving the 
illusion that it is moving. For example, this program produces a windshield, 
with wipers that sweep back and forth. 

1121 DL'T': 15121 
2121 REM BUILD WINDSHIELD 
3121 PR I t-n ":1 ,.---., " 
4121 PRIt~T" I I" 
5121 PR un II '-'" 
6121 REM SWEEP WIPERS TO RIGHT 
7121 FOR 1=1 TO 4 
8121 ON I GOSUB 18121,24121.3121121,36121 
9121 FOR J=1 TO DLY : NEXT 
1121121 ~lEXT 
lie REM SWEEP WIPERS TO LEFT 
12121 FOR 1-3 TO 2 STEP -1 
13121 ON I OOSUB 18121.24121.3121121,36121 
14121 FOR J=1 TO DLY : NEXT 
15121 t~E)C:T 
16121 OOTO 7121 
17121 REM SHOW WIPERS AT 1121 O'CLOCK 
18121 POKE 112165.77 
19121 POKE 112166,32 
2121121 POKE 112167.77 
21121 POKE 112168.32 
22121 RETURt·l 
23121 REM SHOW WIPERS RT 12 O'CLOCK 



184 Your Commodore ~,: 

240 POKE 1065,32 
250 POKE 1066,101 
260 POKE 1067,32 
270 POKE 1068,101 
280 RETURN 
290 REM SHOW WIPERS AT 2 O'CLOCK 
300 POKE 1065,32 
310 POKE 1066,78 
320 POKE 1067,32 
330 POKE 1068,78 
3413 RETURN 
350 REM SHOW WIPERS AT 3 O'CLOCK 
360 POKE 1066,100 
370 POKE 1068,100 
380 F.:ETIJRt·j 

The program has several major parts. We will look at each in detail. 
Lines 30 through 50 clear the screen and display the windshield using PRINT 
statements. 

Lines 70 through 100 sweep the wipers from left to right. They are then 
swept back to the left by lines 120-150. These loops change the display by 
calling, in turn, subroutines that put the wipers in particular positions by 
POKEing characters to the screen. Each subroutine erases the wipers from 
the screen and puts them in a new position. 

Two of the most important lines in the program are lines 90 and 140. 
These FOR-NEXT loops slow down the program. Without such delay loops, 
the display would change too quickly, reducing the movement to a blur. 
Choosing the lengths of the delay loops is crucial to animation. This is 
especially true of programs that produce complex movements. When devel­
oping such programs, you can expect to spend much of your time fine-tuning 
the delays to create a display that moves smoothly at the speed you want. Try 
experimenting with our example program: the length of the delay loops is 
controlled by the variable DLY and the value of this variable is set in line 10. A 
lower value shortens the delay loops, making the display change more 
quickly. Increasing the value lengthens the delay loops, slowing the move­
ment of the wipers. 

It is difficult to do complex animation with the built-in character set 
unless you are working with a very large player. In most cases you must move 
part of your player an entire character space to move it at all. This makes the 
motion somewhat jerky unless the player takes up a large portion of the 
screen. To produce more subtle movements with small players, you must 



Chapter () Graphics 185 

design your own characters. Techniques for making and using your own 
characters will be discussed later in this chapter. 

Combining PRINTed and POKEd Graphics 

As we have seen, both the PRINT and the POKE methods have 
strengths and weaknesses in building graphic displays. For those programs 
that have players moving against a fixed background, a combination of 
PRINT and POKE often works best. Using PRINT statements to display 
graphics on the screen in combination with POKEs that jump to any location 
on the screen can make the development of a program much easier. 

Racetrack Game 

Figure 6-4 is a listing of a simple game called Racetrack, an adaptation 
of a common pencil-and-paper game. This program demonstrates some of 
the techniques we have discussed so far in this chapter. 

le0 GOSIJB 41210121121 
2121121 CR=15 
3121121 CC=2 
356 POKE 53275,254 
400 POKE SB+CC+CR*40,0 
11210121 IF XS()121 AND TI)XT THEN CC=CC+SGN(XS):XT=TI+6121!ABS(XS) 
111210 IF YS()0 AND TI)YT THEN CR=CR+SGN(YS):YT=TI+6121/RBS(YS) 
120121 IF CC(0 OR CC)39 THEN 4000 
1300 IF CR(12I OR CR)24 THEN 41211210 
140121 POKE BR,32 
150121 BR=SB+CC+CR*40 
161210 TG=PEEK(BA) 
17121121 IF TG()0 RND TG()32 THEN 550121 
18121121 POKE BR,0 
19121121 IF TT)TI THEN 1121121121 
21211210 TT=TI +30 
2100 POKE V2,129 
22121121 GOSUB 6301210 
23121121 POKE V2,0 
24121121 XS=XS+XI : YS=YS+YI 
2500 GOTO 112100 
41210121 IF CCCI2I THEN CC~0 

FIGURE 6-4. Racetrack program 



186 Your Commodore 64 

410121 IF CC)39 THEN CC=39 
420121 IF CR(12I THEN CR=0 
430121 IF CR)24 THEN CR=24 
440121 BA=SB+CC+CR*40 
501210 POKE BA,e! 
5100 FOR 1=1 TO 35121 : NEXT 
5200 POKE BA,32 
5300 FOR 1=1 TO 350 : NEXT I 
540121 GET AS: IF A$O"" THHl 1121121 
5500 GOTO 5000 
40000 PR I NT":1" ; 
4010121 SB=256*PEEK(648) 
4021210 FOR I=55296 TO 56295:POKE 1,14 NEXT 
40300 XS=0 Y8=0: XT=0 : YT=0 
4041210 REM JOYSTICK VARIABLES 
4050121 .18=56:321 
40600 UM%=l : DM%=2 : LM%=4 : RM%=8 
4070121 REM SET UP SOUND 
412180121 "12=54283 
412191210 POKE "12+1.8121 
4112100 POKE 54295.0 
411121121 POKE 54296.15 
4120121 PRH~T" __ It'.@#$~~'&:l~:Ir~#*W~~j~'1 j 
413121121 PRItH"!!'II 
4141210 PRltH"~ 
41500 PRItH" 
416013 PRIm" 
4171210 PRItH" 
41812113 PRItH" 
41912113 PRHll" 
4201210 PRall" 
421121121 PF:nll" 
4221210 PR I ~H " 
42300 PRINT" 
4240121 PR I tH" 
4250121 PRINT" 
42600 PR I tH" 
4270121 PF.:ItH" 
4281210 PR I ~H " 
429121121 PRINT" 
4300121 PRINT" 
43100 PRItH" 
4321210 RETURt·l 

~~tt_:W'~ ~~~m'l j 
~mr#.J'-* RI$~~.J.iJl'1 ; 

~1.:¢.~f;~~f::::" ,; 
ii.h?'~~" j 

~i?~!'il-~& ~i: 
~atl@!I.:t~11 ; 
~W»J"~~"~ II j 

it::!! ~Jm w'ff@%.iJ: 
liJl _ _;;'l ~ 
~i ~~~ ~d.il 
~ ~.,m ~ 

~ ~ 

~ -. ~ 
~ ~ 
m • 
~ ~ 
~ . 
m • 

~~!"j 
~"j 

~"j 
II . 

) 

II • 
J 

II • 
) 

II . , 
II • 

.' 
II' 

J 
II • 

J 

" . • 
6301210 SS%=PEEK(JS) 
63121113 XI=SGN(SS% AND 
6312120 YI=SGN(SS% AND 
63121313 RETUF.:t·j 

LM%)-SGN(SS% AND RM%) 
UM%)-SGN(S8% AND DM%) 

FIGURE 6-4. Racetrack program (continued) 



Chapter 6. Graphics 187 

The pencil-and-paper version of Racetrack is played on a sheet of graph 
paper with the course drawn on it. Here is a typical course: 

The C-64 version of the game uses one character location on the screen 
for each square on the graph paper. 

~~;~ iWMfffff"ffi'iI:i_ _ill I 1Il11!!mi@iliJi!: 
~ rr:qT1Nj~ .mHllliE{f.ti. 

~ _.,,#;;#,Jf'~ 

~ ~ 
~ _.-
~ ~ ~ 
~ m;~ ~_ 

~ - ~ ~ -
~ -- ~ ~ ~ 
~ • .s iI iflrA 

i?J 
f..m 

~ 
~ 
I; 

• ~ 
~ ~ 
~~lW?~ ... ~e~~a~ 



188 Your Commodore' CLl 
~~~~~~~~~~~~~== 

The rules of the game are quite simple.

I. The car moves in both the horizontal and vertical dimensions at a
speed of a certain number of squares per second. It can move in both
dimensions at once. For example, to travel diagonally it can move at a
rate of one square up and one square right per second.

2. On each turn (about twice a second), the player can speed up or slow
down by a rate of one square per second in each dimension. For
example, if a player is moving at a rate of 3 squares up and I right, he
can change his speed to 4 up, I right; 2 up, I right; 2 up, 2 right; 2 up, 0
right, and so on.

3. If the car goes off the track, it crashes and the game is over.

The Racetrack program listed in Figure 6-4 is a somewhat crude version
of the game, but it does provide some practical examples of techniques you
can use in writing graphics and animation programs. It uses PRINT to
display a playfield that was originally developed as a screen sketch. It also
contains some examples of using POKE to move the player and PEEK to
detect collisions. We'll start our examination of the program by introducing
the main variables.

Variable
Name Description

CC Car Column -the column number on the screen where the car is to be displayed.

CR Car Ro\\' - -the screen row where the car is located.

TT Test Time the value that TI will have when it is time to test the joystick for the
next turn.

XS X Speed--the car's speed in the X dimension: negative is toward the left,
positive toward the right.

XT X Time-- the value of TI when it is time to move in the X dimension.

YS Y Speed ---the car's speed in the Y dimension: negative is up, positive is down.

YT Y Timc--the value of TI when it is time to move in the Y dimension.

Lines 1000 through 2500 make up the main processing loop of the
program. The program runs continuously through the code, looking for
something to do. On each pass it checks the current time to see if it should
move the car (lines 1000 and 1100) or look at the joystick (line 1600). If any of
these things needs to be done, the timer value for the next occasion is also set.

npter 6 C'C),)11ICS 189
---~-,-------- .-

In lines 1200 and 1300 the program checks to ensure that the car has not
gone off the screen. Lines 1500 and 1600 make sure that the car is not about to
collide with a wall. If either of these is true, the program goes to the "crash"
routine at line 4000.

Lines 2100 and 2300 sound a "tock" each time the program tests the
joystick. (The C-64's sound capabilities are discussed in Chapter 7.)

The "crash" routine (lines 4000 through 5500) brings the car back onto
the screen if it has gone off (lines 4000-4400) and makes it flash at a rate of
about once per second (lines 5000-5300). As soon as the user presses any key,
line 5400 starts the game over.

Racetrack is both an example of graphics techniques and a basis for your
own experiments. You might want to try putting a readout of the number of
turns or seconds used in the infield, modifying the course, or making sure that
the car has really gone all the way around the course, instead of doubling back
to the finish line.

MEMORY "SEGMENTS"

The graphics features we have examined so far have used the screen
memory area in locations 1024-2023. However, the more advanced features
that we will be discussing access other memory locations as well.

One of the characteristics of the VIC-II chip is that it can only access 16K
(16,384) bytes of memory. Since the C-64 has 64K of memory, it would seem
that most of it can't be used by the VIC-II.

To circumvent this problem, the engineers at Commodore divided the
C-64's 64 K of memory into four "segments," each 16K bytes long. They also
designed the C-64 so that your program can select which of these four
segments the VIC-II will use.

Because most of the first segment (the one selected by the C-64 when it is
powered on) is used by BASIC, our program examples will be switching the
VIC-II to other segments. The methods for choosing the right segment and
switching to it are a bit complex, so we hah :-::-served the explanation of them
for the section on "Advanced VIC-II Chip Topics" at the end of this chapter.

However, there are two important points about memory segments you
need to understand before continuing with the rest of this chapter. The first is
that all the memory areas used by the VIC-II (screen memory and the new
ones we'll be telling you about) must be in the same 16K segment.

190 Your Comrrooore ('4

The second item to remember is that pressing RlI~/STOP-R ESTORE does
not completely reset memory. Location 648, as we mentioned earlier, controls
the screen location and RUN/STOP-RESTORE does not restore it to its "power
on" value. If something goes wrong while you are running one of our sample
programs that moves screen memory (hitting the STOP key, typing error
entering the program), it is possible for BASIC to get confused about where
screen memory is. If this happens, the screen editor won't work, and the
computer won't be properly reset by pressing RUN/STOP-RESTORE.

This sort of confusion will almost never happen, but any program that
does a lot of POKEing into memory can cause it by changing the wrong
location in memory. Before RUNning any of our sample programs, or any
program that does many POKEs, be sure you SAVE a copy of it: the typing
fingers you save may be your own!

CUSTOM CHARACTER SETS

The C-64 can easily change the shapes of the characters that appear on
the screen. Most personal computers require hardware changes to use a
different set of characters, but the C-64 allows you to create your own
characters, then switch over to your character set with a simple PO K E. In this
section we will show how the character set is defined, and how to design your
own characters and make them appear on the screen.

How Characters are Displayed

First, let's take a brief look at how television works. If you look closely at
your television screen, you'll notice that the picture is made up of individual
dots arranged in rows. There are about 500 dots on each row and about 500
rows on the screen. Inside the picture tube, a beam of electrons sweeps back
and forth, one row at a time, lighting up each dot as it passes. The incoming
TV signal determines the brightness and color of each dot. Although the
process of generating and receiving a TV signal involves much more, all you
need to know is that the television picture is made up of rows of dots. The
VIC-II chip generates the TV signals.

Chapter Gmphics 191

Character Memory

This leads us to the question of how the VIC-II chip knows which dots to
turn on. You will recall that the characters displayed on the screen are stored
in the screen memory area. As it "paints" the screen, the VIC-II chip steps
through screen memory, picking up the characters one at a time. To determine
which dots to turn on for a particular character, it looks at a table in memory
that contains the character shapes. This table was worked out by Commodore
and stored in a special memory chip in the C-64. This chip, called a ROM
(Read-Only Memory), retains the information that was stored in it at the
factory, even when power is turned off. The area occupied by this table is
called character memory. With a POKE, your program can tell the VIC-II
chip to use a different area for character memory - one that you can fill with
your own table. Finally, the VIC-II chip must know what color to make the
character. This information comes from color memory. We've already exam­
ined the screen and color memory areas, so we'll look at character memory,
then discuss how to use these areas to create displays.

FORMAT OF CHARACTER MEMORY

Each character on the screen is made up of a matrix that is eight dots
wide and eight high. A magnified view of the letter A, for example, would
look like this

The 8X 8 format was chosen because each row of the character conve­
niently fits into one byte of memory, and the eight rows make a nice round
number in the computer's binary number system. This format also greatly
simplifies custom character design. You can layout your character on an

192 Your Commodore 64

ordinary sheet of graph paper, and convert each row to its value and location
in character memory.

The eight bytes that make up the rows of a character are stored next to
each other in character memory, with the top row first. Each dot on a row
corresponds to one bit, with the bit for the leftmost dot having the highest
binary value, 128. A bit value of 1 means the dot is "on" (displayed in the
character color). A value of 0 means the dot is "off" (displayed in the screen
color). This is what the letter A looks like in character memory

Displayed Dots Binary Decimal

00011000 24
00111100 60

01100110 102

01111110 126

01100110 102

01100110 102

01100110 102
00000000 0

Here, for comparison, is the checkerboard character:

Displayed Dots Binary Decimal

11001100 204

00110011 51

11001100 204

00110011 51

11001100 204

00110011 51

11001100 204

00110011 51

O,op"er 193

Notice that the checkerboard character's dots extend to the edge of the
matrix, while the A has space at the sides and bottom. This built-in space is
the only space between adjacent characters on the screen. The 8 X 8 matrices
of characters displayed on the screen actually touch those of adjoining
characters, making the screen a continuous field of dots. Here is a magnified
view of a small section of the screen.

This contact between characters is what enabled us to build players made
up of multiple characters. This also means that you must include spaces in
some of your character definitions. If, for example, you wanted to display the
Greek "lambda" character in a scientific formula, you might define it like this:

Displayed Dots Binary

00000000

01100000

01100000

00110000

00011000

01101100

11000110

00000000

Decimal

o
96
96
48
24

108

198

o

194 Your Commodore 64

Like Commodore, we left white space at the right and the bottom of the
lambda. This makes it line up with the other characters when displayed.

THE MISSING DOTS

Some quick arithmetic will tell you that if there are eight dots in each row
of a character, and 40 characters on each line of the screen, this accounts for
only 320 dots. We stated earlier that there are about 500 dots on each row of
the TV screen. What happened to the others? Some of them are lost because
the electron beam in the picture tube actually sweeps a little beyond the edges
of the screen. Some of them are taken up by the border of the display. So even
though there are over 500 dots on each line of the TV screen, only 320 are
available to you.

FINDING A CHARACTER'S DEFINITION IN CHARACTER MEMORY

Character definition shapes are stored in character memory by screen
code. The screen code is, in effect, a subscript for the character memory array.
Like screen and color memory, the character memory "array" is not a BASIC
variable, but simply a way to visualize the character memory area.

As mentioned earlier, the eight bytes that define a character are stored in
adjacent locations in color memory, with the top row first and the bottom row
last. Here is how the first few bytes of Commodore's built-in character
memory, which starts at location 53248, are used.

Location Contents

53248 Top row of "@"

53249 Second row of "@"

53250 Third row of "@"

53251 Fourth row of "@"

53252 Fifth row of "@"

53253 Sixth row of "@"

53254 Seventh row of "@"

53255 Bottom row of "@"

53256 Top row of A

53257 Second row of A

53263 Bottom row of A

53264 Top row of B

53265 Second row of B

Chapter (J Grapr 11 CS 195

This layout of character memory uses the following formula to find the
definition of a particular row for a given character:

Location = start of character memory + row + 8 * screen code

EXPLORING CHARACTER MEMORY

Examining the contents of character memory requires a bit of "trickery. "
Having the character ROM memory available all the time would take up
valuable memory space. Since most programs don't look at it anyway, Com­
modore designed the C-64 so that character memory is usually hidden. This
leaves an extra 4096 bytes available for programs and data, but it also means
that a little extra programming is necessary for those programs that do need
to see the character definitions.

The following program lets you choose a character and magnify it on the
screen. The program also displays other information-such as where the
character resides in character memory, and the decimal values of the rows­
that will help you become more familiar with how characters are designed.

100 POKE 52,128 : POKE 56.128 : CLR
110 REM COPY CHARACTER MEMORY ROM TO RAN
120 POKE 56334,PEEK(S6334) AND 254
130 POKE I.PEEK'I) AND 251
140 FOR 1=0 TO 2047:POKE 32768+I,PEEK(53248+I) NEXT
150 POKE I.PEEK(1) OR 4
160 POKE 56334.PEEK(56334) OR 1
170 PIXS(0)." ":PIX.(I)=":!l!l"
180 PR I NT" XHARACTER r1AGt~ I F I ER"
190 REM OET A CHARACTER
200 PRnn "SELECT A CHARACTER";
210 OET KVS: IF KV.="" THE"~ 2113
220 OOSUB 490
230 REM IGNORE UNPRINTABLE CHARACTERS
240 IF SCc128 THEN 210
250 REM FIND CHARACTER'S DEFINITION IN CHARACTER MEMORY
260 CB=32768+8*SC
270 PR I ~H "XHARACTER: "; Klli
280 PR ItH "ASC I I 'O/ALUE: "; ASe 0(\1$)
290 PR I ~lT "SCREEN VALUE: "; SC

196 \our Cor-"Y',cjore

300 PRINT "CHARACTER STARTS AT: ";CB
310 PRINT
320 REM PRINT MAGNIFIED VIEW
33121 PR I t·n "II~
340 FOR I=CB TO CB+7
35121 ROW=PEE~: (I)
3613 FR'=RIGHH:((" "+3Hd(Rml)::O, 6)
370 08S= "11:1 Irl"
380 REM TRANSLATE A ROW OF BITS TO A STRING
39121 FOR J=7 TO 0 STEP -1
40121 BIT=SGt-hROW AHD 2t.J)
41121 OS,=OS$+PIX$(BIT)
420 NEXT J
430 OS,=OSS+"Uai !!n"
440 PRIHT OSS+FR$
450 NEXT I
4613 PRIHT "lIi:Il :-]"
47121 PRIHT:PRIHT:PRINT:GOTO 212113
480 REM TRAHSLATE KEYSTROKE TO SCREEN CODE
4913 8C=ASC(KV$)
500 IF 3C { 32 THEN SC=128: RETURN
510 IF Be (64 THEN RETURN
5213 IF se (96 THEH 8C=8C-64: RETURN
530 IF se (128 THEN 8C=SC-32 : RETURN
540 IF se { 16121 THEN 3C=128: RETURN
55121 IF 8C (192 THEN 8C=8C-64 : RETURN
560 IF 8C { 255 THEN 8C=8C-128: RETURN
570 8C=94: RETURH

The tricky part is in lines 120-160 of the program. They make the
contents of the character ROM chip visible and copy them into locations
20480 through 24575. The way that this part of the program works is
discussed in the section on "Advanced VIC-II Chip Topics" later in this
chapter. For now, you should simply enter and use them as they are.

This program will also be helpful in providing practical examples for the
next section, so you should save a copy of it.

Designing Characters

A good way to start designing characters is with a sheet of graph paper (4
or 5 lines per inch works best). Draw a square enclosing an area with eight

197

boxes on each side, to match the C-64's 8 X 8 character matrix. Then number
the columns, so that it looks like this:

I

2 6 3 1

8 4 2 6 8 4 2 I

1--f- -

You now have an area that corresponds to one character on the screen,
with each box representing one dot.

N ow fill in the boxes for the dots that should be "on" (set to the character
color). Here is an example of a simple character.

198 Your Commodore 64

When you are satisfied with the dot pattern, calculate the values of the
rows in screen memory. For each row, add the numbers at the top of those
columns whose dots are "on." Here are the values for our stick man:

Binary Decimal

00111100 60
00111100 60
00011000 24
11111111 255
00111100 60

00111100 60
01100110 102

11001011 195

Your new character is now ready for a screen test.

USING YOUR CHARACTERS ON THE C-64

To use your custom characters on the C-64, there are three steps you
must take:

1. Your program must set aside an area in memory to hold your charac­
ter memory.

2. Your character patterns must be loaded into character memory.

3. Your program must tell the VIC-II chip to start using your character
memory instead of Commodore's.

In order to simplify your initial experiments, you can start by making a
copy of Commodore's characters, replacing them one by one with your own.
To get started, enter and run the following program:

100 REM RESERVE MEMORY
110 POKE 52.128 ; POKE 56.128 : CLR
120 REM POINT VIC-II AT NEW SCREEN

130 POKE 56576, (PEEK(56576) AND 252) OR 1
140 POKE 53272,32
150 REM POINT BASIC AT NEW SCREEN
160 POKE 648,136

n Gnp'1ICS 199

170 PR I NT ":1::l!!ABCDEFGH I JKU~t~OPQRSTU'y'~J)<:'r'Z [£] N-I " ;
180 PRINT CHRI(34)jCHR$(34);CHRI(20);
190 PRINT "#$%&' 0*+, -. " ;
200 PRINT "/0123456789:;(=)?"
21 e REM COP'T' CHARACTER t'1Er~ORY Rot1 TO RAt~
220 POKE 56334,PEEK(56334) AND 254
230 POKE 1.PEEK(1) AND 251
240 FOR 1=0 TO 2047:POKE 32768+I,PEEK(53248+I) NEXT
250 POKE 1,PEEK(1) OR 4
260 POKE 56334.PEEK(56334) OR 1

We will now examine this program line by line. line 110 changes two of
BASIC's internal pointers to make it appear that less program memory is
available. (The method for choosing this POKE value will be explained later.)
It also includes a CLR statement, which forces BASIC to erase any variables
that have been defined and to adjust its other internal pointers to the redurpd
memory size. The POKEs and CLR must be done before any variables are
defined in the program, or the values assigned to those variables will be lost. It
is best to make this statement the first one in any program that defines its own
characters.

Lines 130 and 140 tell the VIC-II chip that screen memory starts at
location 34816, and character memory at location 32768 (the section
"Advanced VIC-II Chip Topics" at the end of this chapter describes how these
values are calculated). When these statements are executed, the characters on
the screen will change to gibberish because we have not yet filled in our
character definitions. Line 160 updates location 648, so BASIC can find our
new screen memory.

Lines 170 through 200 set up an area in screen memory where we can see
the results of changing character memory by PRINTing the characters that
will use our custom character set.

Lines 220 through 260 load our new character memory with the upper­
case and graphics characters from the Commodore set. This will take several
seconds. When the program starts copying the reversed characters, you can
see the characters in the top lines change as their definitions are filled in.

We chose to copy both the nonreversed and reversed characters because
the C-64 generates its cursor by turning bit 7 (the "reverse" bit) in the
character off and on. If we had copied just the nonreversed characters, the

200 Your CommodorE:: 64

character under the cursor would be changing from the normal nonreversed
character to gibberish, because the reversed portion of character memory
would not be filled in.

In the examples that follow, we will be making our changes in the
reversed characters, leaving the normal characters intact. This will make
program listings and immediate mode statements readable on the screen.

As our first experiment, we11 replace the @ sign with our stick man
character. To change the character memory for @, enter the following POKE
statements. You should type the POKE statement once and keep reusing it
with screen editing to avoid rolling the sample characters off the top of the
screen.

pm:E 33792, 6121
POKE 33793, 60
POKE 33794, 24
POKE 33795,255
POKE 33796, 60
POKE 33797, 6121
POKE 33798,11212
POKE :33799, 195

As each POKE is entered, one row of the @ character is changed, until
the @ sign is replaced with our stick man. Now, type CTRL-RVS ON, then @;
the C-64 will display a stick man. Press the CRSR LEFT key until the cursor is
over the stick man. Instead of changing back and forth between reversed and
nonreversed @ signs, the character changes from @ to our stick man and
back.

Now you're ready to experiment with characters of your own design.
SimIll~' ~Jllow the steps we outlined above: POKE the values you calculated
on the worksheet into character memory, and use CTRL-RVS ON to make the
C-64 display your character from the reversed portion of character memory.
We recommend that you experiment with several characters before putting
them to work in programs.

Design Aids for Custom Characters

If you expect to make extensive use of custom characters, you will find it
helpful to have a character editor utility to help you. Such a program should
display the character in both normal and magnified views, allow you to
change individual dots, and calculate the POKE values and locations for you.

You can write your own utility or you can purchase one.
If you wish to write your own utility, several parts of the program can be

taken from the examples in Chapters 5 and 6 of this book. The Character
Magnifier program in this chapter can be used to display the character, and
the Moving Dot program can be used as a base for the subroutine to change
the dots. (Hint: use a delay loop to flash the magnified dot off and on, and use
the Fire button on the joystick to change the dots.)

[fyou plan to use custom characters only occasionally, using the work­
sheet to layout your characters and calculating the POKE values by hand
should be sufficient.

Writing Programs that Make Use of Custom Characters

Once you have your characters defined, you will want to put them to
work for you in programs. Programs that use custom characters are not much
different from those that use the standard character set. You still have the
option of using either PRINT or POKE (or both) to build your displays.
There are two differences, however: the reduced memory available, and the
absence of the standard character set.

HOW TO HANDLE MEMORY LOSS

Custom characters use up memory in two ways. Some memory must be
set aside as character memory. In our examples we use an area of 8192 bytes
for the sake of simplicity, but you can reduce that considerably. The section
"Changing the Location of Screen and Character Memory," near the end of
this chapter, explains how to do this. This memory reduction will not be a
problem for most programs.

Memory is also needed to hold the program and DATA statements to
load your custom characters. This loss will not be large if you use only a few
characters, but can be significant if you are defining many. A DATA state­
ment to hold a custom character definition will use from 25 to 40 bytes,
depending on the number of digits in its values. Remember that spaces in a
DATA statement are stored with the program, so you can reduce the amount
of memory used by eliminating them. While we generally recommend that
you use spaces in your programs to improve readability, the commas that
separate the values in DATA statements can do that job adequately.

202rour Com~lodore 6L:

You can make more memory available to your main program by splitting
it into two programs: one to build the characters and one to do the main
work. If you run the character builder first, the program can be replaced by
the main program when it is finished. You can even do this automatically, by
placing a LOAD statement in the character builder. If you are loading the
program from tape, save the character builder first, then the main program
(the order does not matter on a disk drive). Make the last two statements of
the character builder a CLR and a LOAD.

100 REM LOAD CUSTOM CHARACTERS
110 DATA 5,12,17,32

340 REM PROTECT MEMORY
350 POKE 52,128 ; POKE 56,128
360 REM FORGET VARIABLES
370 CLR
380 REM GET TO WORK
390 LOAD "t'lA I W

The C-64 will load and run the program called MAIN. The CLR is
needed to erase any variables defined in the character builder. BASIC stores
variahles in memory immediately after the program text. Because your main
program will probably be larger than the character builder, part of it will he
stored in the area occupied by the character builder's variables. If the CLR
were not there, and you had a variable in the main program with the same
name as one in the character builder, BASIC might store values assigned to
that variable in the program's area. The result of damaging a program this
way is unpredictable, but you can avoid it easily: always include the CLR
statement before the LOAD, telling BASIC to "forget" the old variables.

ACCESSING THE BUILT·IN CHARACTER SET

Your program may also need to work around the loss of the standard
character set. If your program displays messages, you have two choices: if you
are not redefining all 256 characters, simply leave the alphabetic characters
intact. If you do need 256 characters, you can switch back and forth between
your custom characters and the built-in character set. The section on
"Advanced VIC-II Chip Topics," later in this chapter, explains the techniques
for switching.

Messages from BASIC itself may still be a problem. If you redefine the
alphabetic characters to build players, a simple READY message may look

like Egyptian hieroglyphics. This should not cause any serious difficulty
except when you are debugging your program. If you interrupt it with the
STOP key, or if BASIC finds an error, the messages produced may be some­
what difficult to read. You can return to the normal character set by entering
the statements later in this chapter to switch back and forth between charac­
ter sets from the keyboard. You should also note that RUN/STOP-RESTORE will
bring back the normal character set, but leave your custom character memory
intact and still protected from BASIC. Unfortunately, it will also clear the
screen and erase the error message, so it's not very useful while debugging
programs.

Animating Players

A player built from custom characters can be made to move by modify­
ing its patterns in character memory, but this technique will usually be too
slow if done in BASIC. (Machine language programs can run fast enough to
handle it.) A simpler and faster approach is to define more than one version of
the player in character memory. Your program can then make it move by
changing the version displayed with a POKE to screen memory.

As an example of this method of animation, we have taken our stick man
and put a little meat on his bones by building him with nine characters instead
of one.

204 You CornfY'odc (':'4

To liven him up a bit, we'll make him wave one arm by defining two more
versions of the character that contains it.

To observe him in action, enter the following program:

100 REM RESERVE MEMORY
110 POKE 52,128 : POKE 56,128 : CLR
120 REM POINT VIC-II AT NEW SCREEN AND CHARACTER MEMORY
130 POKE 56576, (PEEK(56576) AND 252) OR 1
140 POKE 53272.32
150 REM POINT BASIC AT NEW SCREEN
160 POKE 648,136
170 REM COPY CHARACTER MEMORY ROM TO RAM
180 POKE 56334,PEEK(56334) AND 254
190 POKE 1,PEEK(I) AND 251
200 FOR 1=0 TO 2047:POKE 32768+I,PEEK(53248+I) NEXT
210 POKE I,PEEK(l) OR 4
220 POKE 56334,PEEK(56334) OR 1
230 REM CLEAR SCREEN AND SET UP DISPLAY AREA
240 DLY=250 : SB=34816
250 PR I t-n II ::1arJAB II
260 PRINT I:a:::DE"
265 PRINT II o:FGH"
270 REM LOAD BASIC PLAYER
280 FOR I=33792 TO 33863 : READ X POKE I,X NEXT I
290 DATA 0,0,0,0)0,0,0)0
300 DATA 28,62,62)62,62)28,62)255
310 DATA 96,96.96.96)96.96,96,96
320 DATA 3,6,6,6,6)6,O,0
330 DATA 255.255.255)255.255.255,126,102
340 DATA 192.0.0.0.0.0.0,0
350 DATA 0.0.0.0.0,0.0.0
360 DATA 102)102.102.102.231)0,0.0
370 DATA 0.0.0.0.0.0.0,0
380 REM LOAD 'EXTRA ARMS'
390 FOR 1=33864 TO 33879 : READ X : POKEI,X NEXT I
400 DATA 0,0.3.6,12,24,48.224
410 DATA 0,0.0,0.0,0,255.255

42121 POKE SB+2, 13121
43121 FOR 1=1 TO DLY NEXT
44121 POKE SB+2,137
45121 FOR 1=1 TO DLY NEXT I
46121 POKE SB+2,138
470 FOR I=1 TO DLY NEXT
48121 POKE SB+2.137
490 FOR 1=1 TO DLY NEXT
5121121 OOTO 42121

205

When you run this program, the new stick man will be placed in the
upper left corner of the screen, and his arm will begin to wave.

Note: There is a long delay preceding the action in this program.

MORE COMPLEX ANIMATION

While the C-64 is capable of much more complex animation than our
stick man example shows, the techniques are the same. Your program can, for
example, have several players in motion at once, or have one player making
different motions simultaneously. Either of these can be done by predefining
the movements with several custom characters.

Let's look at an example of two players in motion at once. We'll create
another stick man who will wave to the first one. Change the stick man
program so that it looks like this:

1121 REM RESERVE MEMORY
1121121 CLR:POKE52. 128:POKE56. 128:CLR
liB OOSUB 11211212121
12121 REM LEFT MAN WAVES
13121 FOR 1=1 TO 2 : GOSUB 228 NEXT J
14121 REM BOTH MEN WAVE
15121 FOR 1=1 TO 5 : GOSUB 320 NEXT J
160 REM RIGHT MAN WAVES
17121 FOR 1=1 TO 2 : GOSUB 51218 NEXT J
18121 REM BOTH MEN REST
19121 FOR 1=1 TO 1121121121 : NEXT J
2121121 GO TO 130
21121 REM WAVE LEFT MAN'S ARM ONLY
22121 POKE 8B+2.13121
23121 FOR 1=1 TO ~LY NEXT
24121 POKE 8B+2.137
25121 FOR I=l TO DLY NEXT I
26121 POKE 98+2,138
270 FOR 1=1 TO DLY NEXT I
28121 POKE 8B+2,137
29121 FOR 1=1 TO DLY NEXT I
3121121 RETUPt·~

206 YOUI Commodore; 64

310 REM WAVE BOTH MEN'8 ARMS
320 POKE 8B+2.130
330 FOR)=1 TO DLY/2 NEXT
3413 POKE 88+8.137
350 FOR 1=1 TO DLY/2 NEXT I
360 POKE 88+2.137
370 FOR 1=1 TO DLY/2 NEXT
380 POKE 88+8.138
390 FOR 1=1 TO DLY/2 NEXT
400 POKE 8B+2.138
4113 FOR 1=1 TO DLY/2 NEXT
420 POKE 8B+8.137
4313 FOR 1=1 TO DLY/2 NEXT I
440 POKE 8B+2.137
450 FOR I=1 TO DLY/2 NEXT I
4613 POKE 88+8.130
4713 FOR 1=1 TO DLY/2 NEXT I
480 RETUR~~
490 REM WAVE RIGHT MAN'S ARM ONLY
51313 POKE 8B+8.137
510 FOR 1=1 TO DLY NEXT 1
5213 POKE 8B+8.138
530 FOR I=1 TO DLY NEXT
540 POKE 8B+8.137
550 FOR 1=1 TO DLY NEXT 1
560 POKE 88+8.130
570 FOR 1=1 TO DLY NEXT I
580 RETLlR~~
590 REM INITIALIZATION
600 REM SET DELAY LOOP LENGTH
610 DL'T'=100
100213 REM POINT VIC-II AT NEW SCREEN AND CHARACTER MEMORY
10030 POkE 56576. (PEEKC56576) AND 252) OR 1
10040 POKE 53272.32
100513 REM POINT BA8IC AT NEW SCREEN
10060 POKE 648.136
10070 REM COPY CHARACTER MEMORY ROM TO RAM
10080 POKE 56334,PEEK(56334) AND 254
10090 POKE I.PEEKel) AND 251
10100 FOR 1=0 TO 2B47:POKE 32768+I.PEEK(53248+I) NEXT
10110 POKE I.PEEK(1) OR 4
10120 POKE 56334,PEEK(56334) OR 1
10130 REM CLEAR SCREEN AND SET UP DISPLAY AREA
101413 DLY=250 : 88=34816
113150 PR I tn II :':l:ii!AB!!!!! ~A'] II
10160 PR 1 tn II :C:DE!!!!! :C:DE II
10170 PR I NT II :f='GH!!!!! IFGH II
10180 REM LOAD BASIC PLAYER
10190 FOR 1=33792 TO 33863 : READ X POKE I,X NEXT I
H1191 REt1

II::;S 207
=-==~~=-=-~:=-------------------=---~==---====:-====------.---

10200 DATA 0,0.0.0.0.0.0.1
10210 DATA 28.62.62.62.62.28.62.255
10220 DATA 96.96.96.96.96.96,96.224
10230 DATA 3.6.6.6.6.6,0,0
10240 DATA 255.255.255.255.255.255.126.102
10250 DATA 192,0.0.0.0.0,0.0
10260 DATA 0.0.0.0.0.0.0.0
10270 DATA 102.102.102,102.231.0.0.0
10280 DATA 0.0.0.0.0.0.0.0
10290 REM LOAD 'EXTRA ARMS'
10300 FOR I=33864 TO 33879 : READ X ; POKE I,X
10310 DATA 0,0.3.6.12.24.48.224
10320 DATA 0.0.0.0.0.0.0.255
10330 RETURt·l

When you run the program, the stick man on the left side of the screen
starts waving. After a moment, the one at the right starts to wave back. Then
the man on the left stops waving, followed by the one on the right, and the
cycle repeats.

The three subroutines that make the men wave (lines 210,310, and 490)
are the key to the motion. The first one, starting at line 210, makes only the
figure on the left wave.

The second subroutine, which begins with line 310, causes both of the
men to wave. Notice that the man on the left moves, then the program pauses
for about half the time it did when moving just one arm before moving the
man on the right. After the right-hand man's arm moves, the program again
delays only half as long as before. This keeps the men moving at about the
same speed, even though both are waving together. The man on the right also
waves in the opposite direction from the man on the left, so they don't appear
to be moving in "lock-step" with each other. These small differences make the
display more interesting.

The last subroutine, starting at line 490, moves only the right-hand stick
man, so the one on the left stops waving.

BIT-MAPPED GRAPHICS

With bit-mapped graphics, your program manipulates individual dots
on the screen instead of whole characters. Bit-mapping gets its name from the
fact that there is an area in memory set aside to represent the contents of the
screen on a dot-by-dot basis. Just as cities, parks, and airports are represented
by symbols on a geographic map, dots on the screen are represented by bits in

208

memory. Bit-mapping can be used to draw finer lines on the screen or to
smooth the motion of a player, since it can move in increments of one dot
instead of a whole character space.

Using bit-mapped graphics on the C-64 is much like using custom
characters. The VIC-II chip handles them in almost exactly the same way: in
each case, it looks up the contents of an 8X 8 dot "cell" in a table, and displays
the dots one row at a time. The difference lies in how the VIC-II decides where
to look in the table; in a character display, it uses the value in screen memory
(the "screen code" for the character) to find the entry in charaCter memory.
When displaying a bit-mapped screen, the VIC-II steps through the table
sequentially. It's as though you had a table of 1000 custom characters, and the
screen contained screen codes numbered 0 through 999.

You can still use many of the concepts and tools that you used for custom
character displays. The main difference is one of programming technique.
Using custom characters, you set up the character memory and change the
display by altering screen memory. In bit-mapped displays, "screen memory"
stays constant, but "character memory" changes.

To understand bit-mapped graphics, let's review our discussion of char­
acter memory, but with a different perspective. From the point of view oftext
display, we think of screen memory as containing characters to be displayed,
with character memory holding the dot patterns that represent the characters.
In bit-mapped (high-resolution) terms, character memory becomes a dot-by­
dot representation of the display, and screen memory is replaced by a counter
to remind the VIC-II chip of where it is on the screen. In both cases, the
VIC-II chip is doing exactly the same thing: looking up dot patterns in
character memory and displaying them on the screen. Only the method for
finding the dot pattern in the table process is different. Recall how we built
one player from several custom characters in the last section. You can think of
bit-mapped graphics as using the entire screen as a single "super player."

High-resolution graphics have two drawbacks. First, they use a large
amount of memory: to completely map the screen in high-resolution mode
takes 8000 bytes of character memory. Second, bit-mapping is an all or
nothing proposition: you can't have bit-mapped graphics and a character
display on the screen at the same time. It is possible, however, to experiment
with high resolution without losing the character display. Since the bit­
mapped display is so similar to a custom character display, we can create a
mini-bit-mapped display using only a small portion of the screen. The

ChopL;r' GropnlC: 209

techniques we used for defining a custom character set can also be used to set
up a 64X64 dot area for bit-mapping experimentation.

The steps in preparing this bit-mapped work area are similar to those for
establishing a custom character set, The Setup program listed below may
seem familiar, because it was written by making some editing changes to the
program we used to set up Our custom character work area.

10121 REt1 HIGH F:ESOLUTION "SETUP" PROGRAt'1
110 REM PROTECT CHARACTER MEMORY
120 POKE 52.128 : POKE 56.128 : CLR
130 REM POINT VIC-II AT NEW SCREEN AND CHARACTER MEMORY
14121 POKE 56576. (PEEK(56576) AND 252) OR 1
150 POKE 53272,32
16121 REM POINT TO NEW SCREEN
17121 POKE 648.136 : SB=34816
18121 REM COPY CHARACTER MEMORY ROM TO RAM
19121 POKE 56334.PEEK(56334) AND 254
2121121 POKE 1.PEEK(1) AND 251
21121 FOR 1=121 TO 112123:POKE 32768+I.PEEK(53248+I) NEXT
22121 POKE I.PEEK(I) OR 4
23121 POKE 56334,PEEK(56334) OR 1
240 REt'1 CLEAR "B I T -t'1AP" AREA 1 ~.~ CHARACTER t'IEt10f;.dT'
250 FOR 1=33792 TO 34303 : POKE 1,O : NEXT I
26121 REM CLEAR SCREEN AND SET UP WORK AREA
:27121 PRINT ":181!HPX (08"
280 PR ItH "IF! IQY !)19"
290 PRI ~H "I1BJRZ"; CHF.:$(34) ; CHR$(34) j CHR:S: (20) ; "*2: II

3121121 PR I NT II IlCKS [4 .. 3; II

31121 PRINT "I."IDLT£:S:.4("
:320 PR 1m" :.Et1U] ~;-5= II
3310 PR I ~H ":lF~·N t&. 6)"
34121 PR I NT II :l3mH.J !n II

Now the upper left corner of the screen has become a bit-mapped work
area in which you can experiment,

Changing the Dots in the Bit-Mapped Work Area

After running the Setup program, the portion of character memory that
defines the work area looks like this:

210 v(~ "
'-...jUl

Memory Memory Memory
Location Column Location Column Location Column

Row O-Nr"",-.:j"l£).,or-- ooO'S=~~::! ~ . ..or--ooO'O--Nr"'>
lr,V)tr)V),c;..o-o-o

0

"

8160 348800 JS2MO I 34817 34881 35265
2 34818 34882 . 35266
3 34819 34883 35267
4 34820 34884 35268

60 34~"D 35240 0 muD 6] 34877 35241 35225
61. 34878 35242 35226
63 34879 35243 35227

To change a dot on the screen, your program must find the right location
to POKE, and the value to put there. The 64 bits of the X dimension are
broken up into eight bytes of eight bits each. To find the correct column of
bytes, use the following formula:

450 COL= IIH 0::/8)

Since each column of bytes in our pseudo-display is 64 rows high, the
column number must be multiplied by 64. The calculation to find the right
location to POKE is

460 PL=33792+Y+64*COL

The bit within that byte is the remainder of the division by 8 we did to
find the column. To calculate the right bit, use

460 PL=33792+Y+64*COL
470 BIT=7-(X-COL*8)

We subtracted the remainder from 7 because our bit-mapped columns
are numbered from left to right, but the bits in a byte are numbered from right
to left.

Just knowing the number of the bit is not enough. Because it will be using
POKE to change the display, your program must calculate the number that
corresponds to that bit. Remember that each bit in the byte represents a
power of 2.

Bit Number I 7 I 61 5 I 4 I 3 I 2 II I 0 I
Value for POKE 128 64 32 16 8 4 2

Chapter 6 Grar::f1lcs 211

Since this is the case, you can easily convert from the bit number to the
POKE value using the exponentiation operator.

480 PII=2 tIl I T

Your program cannot simply POKE blindly into the byte it has found
because there are seven other bits there that you don't want to disturb. To
change just one bit, you must PEEK the byte to be changed, modify only the
correct bit, and then POKE it back. To change only a single bit, you can use
the AND and OR operators. For example, to set a bit to 0 (making its dot the
background color), you can use a variation of the masking technique that was
used to isolate the bits for joystick switches.

5121121 POKE PLJPEEKCPL) AND NOT PI!

Notice the use of the NOT operator. When we were isolating the joystick
switches, we used the value ofthe bit directly. That produced a mask in which
the bit we wanted was aI, and all the others were Os. This time we are using a
mask in which the bit we are interested in is a 0 and all the others are Is. The
AND will force that bit to 0 and leave the others undisturbed. Suppose we
want to turn off bit 3 in location 34882, which currently contains a value of 43.
We could use a BASIC statement like this:

1121 POKE 34882. PEEK(34882) AND t·mT 21'3

t t +L----_ 0000 1000
'--------11110 111

AND
L-___________ 00101011

L---------------OOIO0011

When we POKE the result back into location 34882, only bit 3 has
changed. The other bits kept their old values.

To change the dot back to the background color, use the OR operator.

10 POKE

34882'["EEK 11-3_48_8_2_")_O_R_2_+_~ ______ ~:~:~:~~
- 00101011

212 \'O.!I (omm(Y!~'e

As before, only the value of bit 3 is changed.
This is a lot of work just to change one bit. However, since there are only

eight bits in a byte, there are only eight possible values for the AND mask and
eight for the OR mask. Since there are only eight of each type of mask, it is
practical (and much faster) to calculate them in advance and store them in
tables. The program fragment that follows can be used as a subroutine in
programs that produce bit-mapped displays. It creates two arrays of masks,
called M I % (Make 1) and MO% (Make 0).

100 FOR 1=10 TO 7
11121 t'11%(I)=2-t-I
12121 MI21%(I)=NOT Ml%(I)
13121 NE~n I

Notice that our array indexes, like our bit numbers, start with 0 because
we calculate the bit number using the remainder of a division, which can be O.
The arrays are specified as integer variables because BASIC does Boolean
operations with integers.

Using these precalculated masks not only makes programs faster, but
also makes them easier to read. Compare our earlier examples for setting and
resetting bits with statements that perform the same operations using the
table.

1121 POKE 34882,PEEK(34882) AND M0%(3)
2121 POKE 34882.PEEK(34882) OR Ml%(3)

Even with techniques like precalculating masks, BASIC is usually too
slow for animation of bit-mapped displays; there are just too many bits to
change in order to move a player around the screen. This kind of high-speed
"bit-juggling" is best done in machine language. BASIC is, however, quite
useful for displays that don't move, such as drawings and graphs. For
example, the following program below will draw a triangle on the screen:

1121121 REt'1 HIGH RESOLUT I m~ "SETUP" PFmGRAt1
110 REM PROTECT CHARACTER MEMORY
1210 POKE 52,128 : POKE 56.128 : CLR
1310 REM POINT VIC-II AT NEW SCREEN AND CHARACTER MEMORY
1410 POKE 56576. (PEEK(56576) AND 252) OR 1
1510 POKE 53272,32
1610 REM POINT TO NEW SCREEN
170 POKE 648,136 : SB=34816
18121 REM COpy CHARACTER MEMORY ROM TO RAM
1910 POKE 56334,PEEK(56334) AND 254
210121 POKE I,PEEK(I) AND 251

GraplilCS 213

210 FOR 1=0 TO 1023:POkE 3276B+I.PEEK(53248+I) : NEXT
220 POKE I.PEEK(l) OR 4
230 POKE 56334.PEEk(56334) OR 1
240 REt1 CLEAR "B I T -t1AP" AREA I r'~ CHARACTER t'lENORIT'

250 FOR 1=33792 TO 34303 : POKE 1.0 : NEXT I
260 REN CLEAR SCREEN AND SET UP WORK AREA
270 PR I NT ":1l:nHP:':: (08"
280 PRItH ":i=tIQ',.") 19"
290 PR I~n "ClBJF:Z" j CHRS(34) j CHf<::i(34) j CHR:i(20) j "*2: "
300 PRun "Dl::I(S[#+3j"
310 PRIHT "ClDL H:i. 4("
320 PRINT "IlENUJ:/,-5="
330 PRIm ":Ft4'.llB" 6)"
340 PRItH "33mJ";"'/7?"
350 REM BUILD NASK ARRAY
360 FOR 1=0 TO 7:Ml%(I)=2fI : NEXT I
370 REN DRAW BOTTOM OF TRIANGLE
3810 ',.'=63
390 FOR X=0 TO 63
4010 OOSUB 540
410 ~~E)·.:r
420 REN DRAW LEFT SIDE OF TRIANGLE
43~ FOR X=0 TO 30
440 ',.' = 63-X1+12
450 GOSLIB 540
460 t'~EXT
470 REM DRAW RIGHT SIDE OF TF:IANGLE
480 FOR X=31 TO 62
490 Y = 63-(62-X)*2
500 GOSUB 540
510 NEXT
520 Et·m
530 REN BIT SETTING SUBROUTINE
540 COL=INT(X/8)
550 PL=33792+Y+64~COL
560 BIT=7-(X-COLI+18)
570 POKE PL,PEEKCPL) OR Ml%(BIT)
580 F.:ETURt·~

When you run the program you will see that the triangle is drawn much
too slowly to be useful in a fast-action game. It would be practical, however,
for use in an educational program that displayed geometric shapes.

Using the Entire Screen

The techniques we discussed in the last section work just as well for a full
bit-mapped screen. However, we need to change the formulas for finding the

214 Your Commodore 64

right byte to POKE. A subroutine to do the calculation might look like this:

100 PL = BM+(40*INT(Y/8»+(Y AND 7)+INT(X/S)

We also need to tell the VIC-II to switch to bit-mapped mode. This is
controlled by bit 5 in location 53265. When this bit is set to "1," the VIC-II
changes to a bit-mapped display. The other bits in this location should be
preserved, so use the same masking technique we used for the character
memory bytes:

100 POKE 53265,PEEK(53265) OR 32

There is one more thing you need to know to use bit-mapped graphics:
the colors of the dots are specified differently from character displays. You
may have wondered what happened to screen memory in bit-mapped mode.
Remember that the location in "character memory" doesn't come from screen
memory for bit-mapped displays. This leaves screen memory available for
other purposes, and it is used to store the color codes. Just as for character
displays, a "0" dot in a high-resolution display appears on the screen in the
"background" color, and a "1" dot is the "character" color. But screen
memory is 8 bits wide, not 4, so there is room for 2 color codes. In bit-mapped
mode, each 8X 8 dot "cell" has its own "background" and "character" colors.
The "background" color is stored in bits 0-3, and the "character" color is in
bits 4-7.

+ "Background" color Bit number 171 61L_5_14_1_1_31_2_1_1 1_0_1_
'----- Used when a dot is "0" (off).

"Character" color
Used when a dot is "I" (on).

This gives you more freedom in mixing colors on the screen. To calculate
the value to POKE for a given location on the screen, use the formula:

100 POKE 36867,ePEEK(36867) AND 127) OR «SB/8) AND 128)

Now let's examine how these techniques work in a real program. We've
modified our triangle-drawing program to use a bit-mapped screen. If you
compare it to the version that used custom characters, you'll see that it hasn't
changed much.

Chapter 6 Graphics 215

1121121 REM BIT MAPPED DISPLAY DEMONSTRATION PROGRAM
lie REM PROTECT BIT MAP MEMORY
120 POKE 52,64 : POKE 56.64 : CLR
130 REM POINT VIC-II AT NEW SCREEN AND BIT MAP MEMORY
14121 POKE 56576: (PEEK(56576) AND 252) OR 2
150 PO~:E 5327; ~, 8
16121 REM SET VIC-II TO BIT-MAPPED MODE
17121 POKE 53265,PEEK(53265) OR 32
18121 REM SET POINTER TO BIT MAP AREA
19121 BM=24576 : SB=16384
21210 REr~ CLEAR " BIT -t'lAP" AREA
21121 FOR I=BM TO BM+7999 : POKE 1,121 : NEXT I
22121 REt1 FILL "SCREEN" MEt'lOR',.' WITH COLOR CODES
23121 FOR I =SB TO SB+999 : POKE I, 23121 t~EXT I
24121 REM BUILD MASK ARRAY
25121 FORI=eT07:Ml%(I)=2t(7-I) : NEXT I
26121 REM DRAW BOTTOM OF TRIANGLE
27121 Y=63
28121 FOR x=e TO 63
29121 GOSUE 530
3121121 NEXT
31121 REM DRAW LEFT SIDE OF TRIANGLE
32121 FOR x=e TO 3121
:::3121 Y = 63-X*2
34121 GOSUB 153121
35121 NEXT
36121 REM DRAW RIGHT SIDE OF TRIANGLE
370 FOR X=31 TO 62
38121 Y = 63-(62-X)*2
39121 GOSUB 53121
4121121 NEXT
41121 REM WAIT FOR A KEY TO BE PRESSED
420 GET AS: : IF AS:="" THE~l 42121
43121 REM ALL DONE. RESTORE SYSTEM TO NORMAL
44121 REM GIVE BIT MAP MEMORY BACK TO BASIC
45121 POKE 52,128 : POKE 56,128 : CLR
46121 REM POINT VIC-II AT ORIGINAL SCREEN AND

CHARACTER MEMORY
47121 POKE 56576, (PEEK(56576) AND 252) OR 3
480 REM RETURN TO CHARACTER MODE
49121 POKE 53265,PEEK(53265) AND 223
51210 POKE 53272,21
510 END
52121 REM BIT SETTING SUBROUTINE
53121 PL = BM+(4a*CY AND 248)+(Y AND 7)+(X AND 504)
540 POKE PL.PEEK(PL) OR Ml%(X AND 7)
55121 RETURN

One important difference is that the program goes into a loop when it's
finished. When you press any key, it will return to the "normal" VIC-II

216 Your Commodore 64

segment. When using bit-mapped graphics, you must do this in your pro­
gram: you can't type in the POKEs to do it from the keyboard, because the
keyboard and display only work in character display mode.

This program is also too slow for lively animation. However, in the next
section we will look at a technique for smooth player movement that can be
used in BASIC.

SPRITE GRAPHICS

Using custom characters to animate displays has a drawback in some
cases: while the parts of a player can be moved as little as a single dot, the
player as a whole can only move a full character space at a time. You could get
around this by defining different versions of the player at different offsets in
the X and Y directions, but this would use up your 256 possible custom
characters very quickly. There is, however, an easier way to get fine-tuned
player movement, by using "sprites."

A "sprite" is a special form of player, very similar to the ones we built
using custom characters. But it differs in one very important way: sprites are
completely independent of the rest of the screen display. Sprites can overlap
any character display already on the screen and move about without affecting
it.

To understand how sprites work, start by imagining a background
displayed on a transparent sheet of glass:

lLJl.,~~_o»-~~·~~~
_!~ ~ __ ~ /VL..-_'-"-----'~

Af.L.it "",'.iLtll_ ~ -Av---". ~L<..M. ~
u...A_I~\...7n~ ~~

0/ 1./ '11-0 L., {L ---.r~ __ ./ L/L. . ./l./\.././L- Ul WI v ~.."

Chapter 6 Graphics 217

Although we could also put players made up of built-in or custom
characters on this display, we'll keep things simple for now by assuming that
it's all background. Now, on a second sheet of glass, we'll draw our sprite, an
automobile:

Because the glass is transparent, we can put the car in front of the
background:

218 Your Cor""1odore 64

or behind it:

We can also move the glass with the sprite on it, while leaving the
background fixed:

I
flLJc -1i ~.'J J 1r"-----1L ~ ~ ~~_
~_ V'--'-' ~-~'- ~ /VL.-

.Af.l...J...""",'_/iJl ~.-L\...~ ~Lot..Nt.
Cl '''-_I'"'---~ _"7f, ~ -A'vv>..

.,; L./ ./f..., L.- ~Il_~ ___
~ ''"'" .,L/V/,'-.. /0<1'"

One important difference between sprites and the other types of players
we have used so far is that your program does not have to move the sprite
around in memory to make it move on the screen. It simply tells the VIC-II
where the sprite belongs on the screen by POKEing its position into certain
memory locations. This makes sprites much easier to move.

Chapter 6 Graphics 219

To make the display a bit livelier, we can add more sheets of glass, each
with its own sprite. For example, we could add some trees to the scene:

_ L./\.......r\..... I'\......----Ll.... __ A-/~ '- "v~ _.---r_ ..
. - -

We can arrange these sheets so that the car passes in front of one tree, but
behind the other:

Through all this action, the background display remains unchanged,
requiring no special action by the programmer to keep track of what should

220 vOI:r Commodore

be displayed at a particular location on the screen. The VIC-II chip takes care
of that for you.

As many as eight sprites can appear on the screen at any given moment,
although you can have many more defined in memory and "waiting in the
wings." You may find it helpful to think of the screen as a "frame" that can
hold up to eight sheets of "sprite glass" at once, with other sheets nearby,
ready to be switched with the ones already in place.

Now let's take a closer look at how sprites work, and how you can paint
your own sprite glass, and get it into the "frame."

HOW SPRITES ARE DISPLAYED

Sprites are displayed on the screen in a fashion very similar to ordinary
characters. As we discussed earlier, each character is defined by a table in
memory, with the bits in each memory location telling the VIC-II chip which
dots to turn on and which to turn off. Here, once again, is the table that defines
the letter" A".

Displayed Dots Binary Decimal

00011000 24
00111100 60
01100110 102
01111110 126
01100110 102

01100110 102
01100110 102
00000000 0

Chapter 6 Graphics 221

The table for a sprite is very similar. The big difference is that a sprite is
bigger: sprites are 24 dots wide, and 21 dots high. This requires a bigger table:
a sprite table is 3 bytes wide and 21 bytes tall. Let's take the stick man we
designed earlier in this chapter, and turn him into a sprite.

Notice the empty bytes surrounding the stick man. These must be there.
The size of a sprite is fixed, just like a character, and the empty space is filled
with zeros. This makes a sprite player similar to a player made up of several
custom characters. You may find it helpful to think of a sprite as an oversized
character.

Sprite Memory

Sprite definitions are stored in memory just like character definitions:
the top row first (in the lowest memory locations), followed by the second row,
and so on to the 21 st row. The three bytes that hold the 24 dots of each row are

222 Your Commodore 64

next to each other in memory. If the definition for our stick man sprite were
stored starting at location 32768, it would look like this:

32768 2q 32769
32770 96

top row

32771 .q 32772
32773 96

second row

32774 .q 32775
32776 96

third row

32825 1O~ f 32826 20th row
32827 96 f
32828

IOq 32829 21st row
32830 96

This arrangement in memory does differ from that of a similar player
made up of custom characters. However, the values in the table bytes are the
same, so a custom character player can be converted to a sprite with just a
little work. The design tools and techniques are also quite similar. We'll
examine those a little later in this chapter.

One big difference between sprite memory and the other areas we've
looked at is that there is no specific block of memory reserved for sprites. The
characters displayed on the screen and the character definition tables are
grouped together in their own areas of computer memory. While you can
change the starting location of the screen or character memory areas, they
can't be split up. You can't, for example, put the definitions of the first 128
characters in locations 32768-33791, and the second 128 in locations
34816-35839.

This sort of restriction does not apply to sprites. The VIC-II chip has a
separate pointer for each sprite to the memory locations that contain its

Chapter 6 Graphics 223

definition. So, while all the bytes for each sprite's definition have to be
together, the various sprites can be scattered all over the VIC-II's 16K segment
of memory.

The ability to store sprite definitions throughout the segment is the secret
to keeping sprites available. These sprites can be used not only to expand your
"cast of characters," but to animate them, too. We'll examine the techniques
for using them a little later.

DESIGNING SPRITES

Since a sprite is so much like a custom character player, you might expect
the design processes to be very similar, and indeed they are. Let's begin with a
design form, just as we did for custom characters. Start with the long edge of
your graph paper running horizontally, and draw a box 24 squares wide and
21 tall, so that it looks like this:

224 Your Commodore 64

Notice that the box is toward the left edge of the paper, leaving room for
calculations on the right. Now divide the box into three columns of 8 squares,
and number them like this:

2 6 3 1

8 4 2 6

1

2631 2631

842 18426842 184268421

As in the custom character design form, each box corresponds to a dot
on the screen. The three columns correspond to bytes in sprite memory.

Chapter 6 Graphics 225

In practice, the sprite design form works just like the custom character
form. Here is our stick man again, designed as a sprite:

0 2X 96

62 96

62 96

62 96

0 62 96

0 28 96

62 96
255 224

255 0

6 255

6 255

6 255

6 255 0
6 255

0 126

0 102 0
0 102

102 0
102

102
2)1 0

We left the binary values out in this example. As you get more practice in
converting the dots to numbers, you will probably want to do the same. We
also put in all the zeros for the "empty" bytes. This is a good habit to develop,
since it is easy to forget them otherwise.

If you have written or purchased programs to help design players made
of custom characters, they can also be used for sprites. Just remember that the
bytes are stored in a different order in sprite memory.

Now let's take a look at the programming techniques for using sprites.

226 Your Commodore 64

PUTTING YOUR SPRITE TO WORK

Once you have designed a sprite, there are several programming steps
neccessary to make it work:

I. Reserve memory for your sprite definition.
2. Load the sprite defintion into memory.
3. Tell the VIC-II where the sprite definition is.
4. Tell the VIC-II to start displaying your sprite.
5. Move the sprite onto the screen.

This may sound like a lot of work, but each of these steps is actually quite
simple. In the sections that follow, we'll examine each one in turn.

Loading Your Sprite Definition Into Memory

Just as with custom characters, the first steps in a program using sprites
are to reserve the memory needed for the definitions, then load them into that
memory. This program loads our "stick man" sprite into memory.

100 REM RESERVE MEMORY
110 CLR:POKE 52, 128:POKE 56,128:CLR
120 REM ~OVE SCREEN TO HIGH MEMORY
130 POKE 648,132
140 POKE 56576, (PEEKCS6576)AND 252) OR 1
15121 PRIHT "::']"
160 REM LORD SPRITE
17121 FOR 1=32832 TO 32894 : READ X POKE I,X HEXT
180 REM SPRITE DATA. 2 ROWS PER STATEMEHT
19121 DATA 0,28,96, 121,62.96
20121 DATA 121,62,96, 121,62.96
21121 DATA 121,62.96, 121,28,96
22121 DATA 121,62,96, 121,255,96
23121 DATA 3,255,192, 6,255,121
24121 DATA 6,255,121, 6,255,121
25121 DATA 6,255,121, 6,255,121
26121 DATA 121,126,121, 121,11212,121
270 DATA 121.11212,121, 121,11212,121
280 DATA 121,11212.121, 121,11212,121
29121 DATA 121,231,121

This program is very similar to the one we used to set up the custom
character player. As before, the very first line of the program resets the limits
of memory, and does a "CLR" to reset BASIC's internal memory pointers.

Chapter 6 Graphics 227

The program then POKEs the locations in the CIA (complex interface
adapter) chip that control the VIC-II's "segment" of memory, and BASIC's
pointer to screen memory. Finally, the program uses a READ loop to load the
sprite definition into memory.

Telling the VIC·II Chip Where to Find Your Sprite

Now that the sprite definition is in memory, the VIC-II chip must be told
where to find it. As with screen and character memory, there are "pointers"to
tell the VIC-II where in its 16K segment the sprite definitions reside. Sprite
memory pointers are also incomplete: some of the bits come from memory,
and some are calculated by the VIC-II chip. Instead of supplying only three or
four bits of the location, sprite definition pointers supply eight of them:

1514131211101

L Calculated by VIC-II

l...-___________ From sprite memory pointer

The formula for calculating the POKE value has to change, too. The
following BASIC statement will do this:

100 PV=SDA/64 AND 255

The result of the calculation, "PV", will be assigned the numeric value of
the 8 bits to be supplied to the VIC-II. We divide "SDA" (the Sprite Definition
Address) by 64 because 6 bits of the location number are calculated by the
VIC-II, and 64 is 2 to the 6th power. The division eliminates those calculated
bits. The AND operation is used to eliminate bits from the left. Remember
that there are 16 bits in the number that identifies a memory location (0-
65535), but only 14 bits in a number that identifies a location in the VIC-II's
16K segment. Since a byte can only hold 8 bits, we have to get rid of the
others. The AND makes sure that only values 0 through 255 will be POKEd.
The two bits that select the right 16K segment are the ones we POKEd into the
CIA chip, so we don't have to worry about them being lost.

Let's take a look at this formula in action. We started the definition for
our stick man sprite at location 32832. Watch what happens to the bits as the
calculation progresses.

228 Your Commodore 64

1000000001000000

0000001000000001

0000000011111111

0000000000000001

32832
64

513
AND

255

The correct value to POKE is 1. What would have happened if we had
decided to start our sprite definition at location 32833? The binary value of
32833 is 1000000001000001. The last bit would be lost in our calculation, so
the VIC-II would think that the definition started at location 32832. This
would give us a strange-looking player, because the last eight dots on each row
would be shifted onto the next row. The fact that the VIC-II calculates the last
6 bits ofthe address limits the locations where a sprite definition can begin in
memory.

o
64

128
192
256
320

16192
16256
16320

Now that we know what value to POKE, we need to know where it goes.
As we've mentioned before, computers are binary creatures, like numbers
that are powers of 2. So even though there are only 1000 visible locations in
screen memory, the VIC-II perceives screen memory as being an area of 1024

Chapter {; 229

bytes. The sprite definition pointers are stored in some of the wasted 24 bytes,
so the map of screen memory really looks like this:

Offset Contents

0 Row 0, column 0

I Row 0, column 1

2 Row 0, column 2

3 Row 0, column 3

997 Row 24, column 37

998 Row 24, column 38

999 Row 24, column 39

1000 l\ at used

1001 l\ot used

1014 Not used

1015 Not used

1016 Sprite pointer 0

1017 Sprite pointer 1

1018 Sprite pointer 2

1019 Sprite pointer 3

1020 Sprite pointer 4

1021 S pri te pointer 5

1022 Sprite pointer 6

1023 Sprite pointer 7

In our examples, we are using the segment that starts at location 32768,
with screen memory starting at location 33792, so the sprite pointers start at
location 34808. To make our stick man sprite 0, the correct POKE location is
34808. The statement to tell the VIC-II chip about our sprite definition is

100 POKE :34808,1

230 Your Commodore 64

Type in and execute this statement now. Nothing will change on the
screen yet, because we still have a few more steps to go before our sprite can
make its entrance.

Enabling and Disabling Sprites

Every location on the character display must contain something. Even if
you want nothing to appear, you must display a blank. This is not the case
with sprites. They must be enabled (turned on) and disabled (turned off) by
your program. Although this requires an extra program step, it does have
some advantages. For example, it means you don't have to define a blank
sprite if you don't plan to use all eight at the same time. More important,
though, is that you can build up your sprite without having it appear on the
screen before it's finished.

Sprites are enabled and disabled by bits in location 53269, which is part
of the VIC-II chip:

Bit number I 7 I 6 I 5 I 4 I 31 2 1 I 1 0] Sprite affected t t t 1 __ Sprite 0
I

~Spritel
Sprite 2
Sprite 3

L--------Sprite 4
L-________ Sprite 5

L----------Sprite 6

L-----------Sprite 7

If the bit that controls a sprite is "on" (has a value of 1), the sprite is enabled,
and appears on the screen. If the bit is off, the sprite is disabled. To turn the bit
for a particular sprite off or on without disturbing the others, use AND and
OR for bit-masking, as described earlier. For example, to enable sprite I, you
could use the statement:

100 POKE 53269.PEEK(53269) OR 2

Remember that you must PEEK the value that is already in the byte, so you

Chapter 6 Graphics 231
=-======~

will have the values of the other bits to POKE back into it. To disable a sprite,
use AND to turn its bit off. The statement

100 POKE 53269,PEEK(53269) AND 254

will disable sprite 0, making it disappear from the screen. The statement
above also PEEKs first to preserve the values of the other bits. Here are the
masks to use for enabling and disabling sprites:

Sprite To enable, To disable,
Number OR with AND with

0 1 254
1 2 253
2 4 251
3 8 247
4 16 239
5 32 223
6 64 191
7 128 127

Now enable our example sprite by entering the statement

POkE 53269.PEEK(53269) OR 1

Once again, nothing happens to the screen. Our sprite is actually being
displayed, but it is behind the border, and now we have to tell the VIC-II to
move it onto the screen.

Moving Your Sprite

From our discussions so far, you've probably guessed that sprite posi­
tions are expressed in dots, and that dots, like character rows and columns,
are numbered from the upper left to the lower right corner. But there is one
thing about sprite positioning that may surprise you: the numbering does not
start in the visible area of the screen. The lowest numbered dot is actually in
the border area!

While this may seem strange at first, there is a very good reason for it.
Most of the time, you will not want your sprite to suddenly appear on the
screen. Like an actor in a play, your sprite will usually make an entrance,
moving onto the screen from behind the border. You can't do this unless you

232 Your CcYnmodore 64

have some way to position the sprite in the border area, so the numbering of
the dots actually starts off screen. The numbering looks like this:

49

50

Y

P
0
s

i
0
n

249

250

X-position
~----

23,24
I

I
1
I - --

3431344
I

To avoid confusion with screen character positions, we will refer to the dot
counts as the "X-position" for left-to-right and "Y -position" for top-to­
bottom, rather than as "row" and "column."

Your program controls the X- and Y-positions of sprites by POKEing
locatiN' . .": in the VIC-II chip. Each sprite has its own pair of locations.

Sprite X-position Y-position
Number location location

0 53248 53249
53250 53251

2 53252 53253
3 53254 53255
4 53256 53257
5 53258 53259
6 53260 53261
7 53262 53263

Cc,Clpter Crcp. cs 233

To get the sample sprite (sprite 0) onto the screen, enter these statements:

POKE 5:3248, 100
POKE 53249,1121121

Try a few more POKEs into these locations, and watch what happens to the
position of the sprite. In particular, try POKEing a value of 255 into location
53248, the sprite's X-position.

As you experimented with moving the sprite, you may have noticed that
you couldn't get it near the right-hand edge of the screen. Look back at the
drawing showing the X- and Y-positioning values, and you'll see why. An
X-position value of 255 (the largest number you can POKE into a byte) will
only move a sprite about three-fourths of the way across the screen. To move
the rest of the way, we need a 9-bit number, which can contain values from 0
through 511.

Since a byte can only hold eight bits, the VIC-II must get the ninth bit
from some other location. Eight extra bits are needed (l for each sprite), so
Commodore grouped them together in one location in the VIC-II. These bits
are in the same order as the enable bits, allowing us to use the same bit masks
used to enable or disable the sprite. To see how this is done, let's look at a
complete subroutine that will position a sprite on the screen. This subroutine
is given three variables.

SN The "Sprite Number" (0 through 7)
XP The X-position of the sprite
YP The Y -position of the sprite

Such a subroutine might look like this:

1130130 XL = 53248 + 2 * SN
10010 YL = XL + 1
11211212121 IF XP) 255 THEN 1085121
11211213121 B9 == PEEK (53264) At·m NOT (21''8t~)
1012140 G010 1012160
113135121 B9 = PEEK(53264) OR (21SN)
1121136121 XV = XP AND 255
112107121 POKE XL, XV : POKE 'T'L J 'T'P : POKE 53264., B9

This subroutine probably seems a bit obscure. Let's go over it line by line:

10000 Calculates the memory location to POKE for the
X-position.

10010 Calculates the memory location to POKE for the
Y -position.

10020 Different masking operations must be done. depending on
the value of the 9th bit in the X-position. If XP is less than
256, the 9th bit is a "0."

10030 "B9" is set to the new value for the "bit 9" location in the
VIC-II. The exponentiation gives us a mask in which only
the bit for the chosen sprite is a l. The PEEK gets the
current value, and the OR turns on the bit.

10040 The GOTO skips over the processing for an X-position that
is less than 256.

10050 If the ninth bit is a "0," we must force off the sprite's bit in
the "bit 9" location. By using a NOT, we generate a mask in
which the sprite's bit is a 0, and all others are I 's. The AND
forces the bit off.

10060 The AND with 255 makes sure that we don't try to POKE
too big a number into the X-position location.

10070 This line POKEs the position information into the VIC-II
chip's locations.

This last line of this subroutine is very important. It is usually not a good
programming practice to combine statements on one line, because it makes
programs harder to read. One exception we have already mentioned is a short
FOR-NEXT loop, such as the delay loops used for animation. where putting
everything on on~ line makes the program easier to follow. In the subroutine
above, we combined the POKEs into one line for a different reason: it takes
time to do the calculations for the POKE values. If we calculated and POKEd
each value separately, it could make the motion of the sprite a little choppy.
This is especially true when the X-position goes from 255 to 256. If we
POKEd the X-position location, then calculated the bit 9 location value, the
sprite would jump off the screen while we were doing the calculation, then
jump back on when we POKEd the bit 9 value. Depending on the order in
which the calculations and POKEs are done, this might cause a noticeable
flicker. While you don't have to follow the order of calculations we used, you
will find that you get the most pleasing results by doing the calculations first,
then the POKEs.

Chapter 6 Graphics 235

Animating Sprites

Like custom character players, sprites can be animated by defining
different versions and changing the version displayed "on the fly." There is
one difference, though; while you can redefine part of a custom character
player, you must define a completely new sprite for each position in the
animation sequence. In the section on custom character players, we animated
our stick man by making him wave. Here's a program that does the same thing
with our sprite stick man.

900 REM RESERVE MEMORY
1000 CLR:POKE 52, 128:POKE 56,128:CLR
1010 REM MOVE SCREEN TO HIGH MEMORY
1020 POKE 648,132
1030 POKE 56576, (PEEK(56576)AND 252) OR 1
1040 PRHlTl:'j"
1100 REM LOAD SPRITE 1
12121121 FOR I=32832 TO 32894 : READ X : POKE I,X NEXT
1300 REM SPRITE DATA, 2 ROWS PER STATEMENT
1400 DATA 0.28,96, 0,62.96
141211 DATA 121,62,96, 121,62,96
1402 DATA 0.62,96, 0,28.96
1403 DATA 121,62,96, 121,255,96
141214 DATA 3,255,192, 6,255,0
1405 DATA 6,255,0, 6,255,0
1406 DATA 6,255,121, 6,255,121
141217 DATA 0,126,0, 0,102.121
1408 DATA 121,11212,0, 121,102,0
141219 DATA 121,11212,121, 121,11212,0
141121 DATA 121,231,121
210121 REM LOAD SPRITE 2
2200 FOR 1=32896 TO 32958 : READ X : POkE I.X NEXT
230121 REM SPRITE DATA. 2 ROWS PER STATEMENT
240121 DATA 121,28,0, 0,62,0
2401 DATA 0,62,3, 0,62,6
241212 DATA 121,62,12, 121,28,24
241213 DATA 0,62,48, 0,255,224
241214 DATA 3,255,192, 6,255,121
2405 DATA 6,255,121, 6,255,121
241216 DATA 6,255,0. 6,255.121
241217 DATA 121,126,0, 121,11212,0
241218 DATA 121,11212.121, 0,11212,121
241219 DATA 121,102,121, 121,11212,121
241121 DATA 121,231,121
310121 REM LOAD SPRITE 3
321210 FOR 1=3296121 TO 3312122 : READ X : POKE I,X NEXT
3300 REM SPRITE DATA, 2 ROWS PER STATEMENT
34121121 DATA 121,28,0. 121.62,0

236 H ('YY]rTlO:lore 64

3401 DATA 0,62.13.
34132 DATA 13.62.0.
3403 DATA 13.62.255.
34134 DATA 3.255.192.
3405 DATA 6,255.13.
3406 DATA 6,255,0.
34£17 DATA 0.126.0,
34138 DATA 0.102,O,
34£19 DATA 13.102.0.
3410 DATA 13.231,0

13, 62, ~3
~L 28. £1
£1 .• 255,255
6,255 .. 121
6.255.121
6.255.0
riL 1132 .. 13
0,102 .. 0
0 .. 102, £1

41£1£1 REM ENABLE THE SPRITE
4110 POKE 34808.1
4120 POKE 53269,PEEK(53269) OR
421313 REM PUT IT ON THE SCREEN
4210 POKE 53248,1013
42213 POKE 53249.100
4300 REM START MAKING IT MOVE
43113 POKE 34808,2
4320 FOR I = 1 TO 250 NEXT
43313 POKE 34808.3
4340 FOR I = 1 TO 250 NEXT
43513 POKE 34808.2
4360 FOR I = 1 TO 2513 NEXT
4370 POKE 34808.1
4380 FOR I = 1 TO 250 NEXT
439£1 GOTO 4300

Lines 4300 through 4380 are the key to the animation: we POKE
location 34808, which is the sprite definition pointer for sprite O. No matter
how much of the sprite changes, only one POKE is necessary. If the player's
movements must be complex, as with a figure that walks and waves at the
same time, it is much easier to animate a sprite than a custom character
player. There is a price for this, though; the sprite method will usually require
more memory. In most cases, this will not be a problem, but it is something
you must keep in mind when designing programs.

Now let's liven up the display a bit more. Add these lines to the program:

4222 XP=100:YP=100:SN=100
4224 >::1=3: YI=3
43013 REM START MAKING IT MOVE
43113 POKE 348138.2
4320 GOSUB 4400
4330 POKE 348138.3
4340 GOSUB 44130
4350 POKE 34808.2
4360 GOSUB 4400
43713 POKE 34808.1
43813 GOSUB 4400

4390 GOTO 4300
4400 FOR 1=1 TO 5
4410)<:P=XP;.-X I
4420 'r'PIII'r'P+Y I
4430 GOSUB 10000
4440 IF XP(21 OR XP)320 THEN X!=-XI
4450 IF YP(51 OR YP)228 THEN YI=-YI
4460 FOR J=1 TO 25:NEXT
4470 NEXT I
4480 RETURN
10000 XL = 53248 + 2 * SN
10010 YL = XL ;.- 1
10020 IF XP) 255 THEN 10050
10030)39 = PEEK (53264) AND t·mT (21SN)
10040 OOTO 10060
10050 B9 = PEEK (53264) OR (21St-j)
10060 XV = XP AND 255
10070 POKE XL.XV : POKE YL.YP : POKE 53264.B9

When you RUN the program, the stick man will start to wave again, but
this time he drifts around the screen at the same time. When he hits the
border, he bounces off it, and heads off in a different direction.

We'll be using modified versions ofthis program to illustrate other sprite
concepts. SAVE a copy of it to reduce wear and tear on your typing fingers.

Coloring Sprites

Just as each location in screen memory has a corresponding location in
color memory, each sprite has a location that contains its color. Sprite colors
are stored in the VIC-II chip, not in memory. The memory locations that
control sprite colors are

Location Sprite number

53287 0
53288 I
53289 2
53290 3
53291 4
53292 5
53293 6
53294 7

These locations take the same POKE values that color memory locations do.

238 \cur COIIYTlojore 62

To see sprite colors in action, change the sprite demonstration program
so it looks like this:

100 REt1 F.:ESERVE t'lEt10F.:Y
11121 CLR:POKE 52,128:POKE 56.,128: CLR
120 F.:Etol tKJ'oIE SCF.:EEt'j TO HIGH NEt10F.:'T'
130 POKE 648,132
140 POKE 56576. (PEEK(56576)AND 252) OR 1
15121 PI': I t-H ":':3"
160 REt1 LOAD SPRITE 1
170 FOF.: 1=32832 TO :32894 : F.:EAD X " : POKE LX HE)<T
180 F.Hl SPRITE DATA. 2 F.:O~JS PER STATEt'lEt-H
190 DATA ~L 28. 96 .. ~J., 62., 96
200 DATA BJ 62 .. 96 .. t::L62,96
210 DATA 0.162 .. 96) 121.28.96
220 DATA 'J, 62., 96. I~L255., 96
230 DATA 3,255,192. 6,255.0
24121 DATA 6,255,O, 6,255,0
250 DATA 6,255,121., 6 .. 255,,0
26103 DATA 103,126 .. 0, 121,102,0
27121 DATA 0,102.0, 0.102,0
280 DATA 121.102.121., 121.102.121
290 DATA 0,231. 121
300 REt1 LOAD SPRITE 2
310 FOR I=32896 TO 32958 : READ ;:.:: : POKE LX : t·jEXT
320 REt1 ~:;PR I TE DATA. 2 RmJ::: PER STATEt'lEt-H
330 DATA 0.28,121, 0,62.0
340 DATA 0,62.,3. O,62.6
350 DATA I;:" 62.12. 121.28,24
360 DATA 121.62.48 .. 0.,255,224
37O DATA :3,255,192., 6 .. 255 .. 0
:38121 DATA 6,255.121. 6 .. 255)121
390 DATF: 6,255,0., 6.255,0
41210 DATA 0,126.0, 0.,102,0
410 DATA 103.11212,121, 121.11212.121
42>.3 DATA 0.102.0. 0.102.,121
430 DATA 0.231. 0
44121 REtol LOAD SPRITE 'J

.,J

450 FOR 1=3296121 TO 33022 : READ ;:':' " : POI<E L)<: t·jE)H
46121 "Hl SPRITE DATA, 2 RmJS PEF.: STATEt1Et-H
47103 DATA 121.28.121. 0,62 .. 121
480 DATA 0,62,121, 0.62.0
490 DATA 121,62,0, 121.,28,0
51210 DATA 121,62.,255, 0)255J255
5113 DATA 3,255,192, 6,255,121
52121 DATA 6.255.,121. 6,255.,121
5:3121 DATA 6.255,121, 6)255)0
54121 DATA 121,126,121, .3.11212,121
55121 DATA 121, 102, 0~ 13.11212,,121
56121 DATA 121.11212, O" 0,11212,0

- -- - ----- - -- ----- -- - -----

57121 DATA 0,231,0
580 REM ENABLE THE SPRITE
590 POKE 34808,1
699 POKE 53269.PEEK(53269) OR
610 REM PUT IT ON THE SCREEN
620 st·~=er
63121 XP=10er : XI=l
64121 YP=lerer : YI=l
65121 GOSUB 1121121121121
66121 REM START MAKING IT MOVE
670 POKE 3481218,2
680 GOSUE 76121
690 POKE 3481218,3
7!30 DOSUB 76121
71121 POKE 3481218,2
720 GOSUB 760
73121 POKE 34808,1
7410 GOSUB 760
750 GOTO 660
76121 FOR I = 1 TO 5
77121)-!'P :: xp+~,1.I

780 'r'P = 'r'P+Y I
79121 GOSUB 1121121121121
81210 IF XP(21 OR XP) 32121 THEN XI = -XI GOSUB 86121
819 IF YP(51 OR YP) 228 THEN YI = -YI GOSUB 86121
820 REM FOR J = 1 TO 25 NEXT
83121 t~EXT I
8410 RETURt·~
8510 REt-' t1AKE HI t-, "BLUSH"
860 POKE 53287,1121
87121 FOR J :: 1 TO 25121 : NEXT
880 POKE 53287.- 1
89121 RETURr~
1121121121121 XL = 53248 + 2 * SN
112112119 YL :: XL + 1
112192121 IF XP) 255 THEN 11211215121
1003121 B9 = PEEK (53264) AND t·lDT (2 tSt·~)
1130413 GoTO 101216£1
101350 B9 = PEEK < 53264) OR C 21'St~::o
1121060 XV = XP AND 255
1121107121 POKE XL,XV : POKE YL,YP : POKE 53264,B9
10080 RETURN

239

Now RUN the program, and watch the results. Each time the man bumps
into the wall, he turns red for a moment before continuing.

Sprite Interaction

When sprites move around on the screen, they sometimes overlap each
other or objects in the background display. The sprite world is like the real

240 Commodore e4

world in that two objects can't occupy the same space at the same time. Only
one object can be displayed in a particular dot position at anyone moment.
The VIC-II has a set of rules to determine which object gets priority when two
or more compete for a particular dot. It also has a way to tell your program
when two objects collide. In this section, we'll look at those rules and how you
can use them in your programs.

Display Priorities

In the introduction to sprites, we described them as figures on sheets of
glass. Each sheet can hold only one sprite, so when two sprites try to occupy
the same position, one must pass "behind" the other. The rule for determining
which one gets priority (passes "in front") is very simple: sprite 0 is always in
front of sprite I, which is in front of sprite 2, and so on. Sprite 7, of course, will
pass behind any other sprite. To see this in action, type in and RUN the
following program:

100 REM RESERVE MEMORY
110 CLR:POKE 52. 128:POKE 56.128:CLR
120 REM MOVE SCREEN TO HIGH MEMORY
130 POKE 648.132
140 POKE 56576. (PEEK(56576)AND 252) OR 1
150 Pj;: ItH";:,)"
160 REM LOAD SPRITE 0 (DIAMOND)
170 FOR 1=32832 TO 32894 : READ X : POKE I.X NEXT
180 REM SPRITE DATA. 2 ROWS PER STATEMENT
190 DATA 0.0.0. 0.0.0
200 DATA 0.0.0. 0,0,0
210 DATA 0.24.0, 0.60.0
220 DATA 0.126.0. 0.255.0
230 DATA 1.255.128. 3.255.192
240 DATA 7.255.224. 7.255.224
250 DATA 3,255.192. 1.255.128
260 DATA 0.255.0, 0,126.0
270 DATA 0.60.0, 0.24.0
280 DATA 0.0.0. 0.0,0
290 DATA 0.0.0
300 REM LOAD SPRITE 1 (SQUARE)
310 FOR 1=32896 TO 32958 : POKE 1.255 : NEXT
320 REM ENABLE THE SPRITES
330 POKE 34808.1
:340 POKE 34809. 2
350 POKE 53269.PEEK(53269) OR 3
360 P~M PUT THEM ON THE SCREEN
370 X(0)=50 : XI(0)=3

380 X(I)=51Z1 : XI(1)=-3
39121 'T'P= 15121

Chapter i Graph!c> 241

4121121 FOR SN=12I TO 1 : XP=XCSN) GOSUB 1121121121121 NEXT
41121 REM START MAKING THEM MOVE
42121 FOR SN = 121 TO 1
43121 X(SN) = X(SN)+XI(SN)
44121 ;...:p=;:.: (SI'D
45121 IF X(SN)(21 OR X(SN» 75 THEN XI(SN) = -XI(SN)
46121 GOSUB 1121121121121
47121 REM FOR J = 1 TO 25 NEXT
48(1 t·iE:,,:T
49121 GOTO 41121
1121121121121 XL = 53248 + 2 * SN
11211211121 YL = XL + 1
11211212121 IF XP) ·255 THEN 11211215121
11211213121 B9 = PEEK(53264) F"it'iD NOT (2tSt·i)
11211214121 GOTO 11211216121
11211215121 B9 :::: PEEl< (53264) OR (2 't'St~)
11211216121 XV = XP AND 255
11211217121 POKE XL.XV : POKE YL.YP : POKE 53264.B9
112112180 F.:ETURt·i

When the program is executed, it creates two simple sprites and moves them
back and forth across the screen. The diamond shape is sprite 0 and always
passes in front of the square. Notice that the "transparent" part of the
diamond doesn't blot out the square; only the "visible" part covers up any of
the dots that make up the square. Now interrupt the program and enter these
lines:

33121 POKE 3481218.2
34121 POKE 34809,1

The POKEs switched the sprites, so that the square became sprite 0 and the
diamond sprite 1. Now the diamond passes behind the square. Notice that it
makes no difference where the sprite is in memory; the only thing that counts
is which sprite definition pointer points to it.

The relationships between sprites are only half the story, though. Sprites
can also pass in front of, or behind, the background display. To illustrate this,
add the following lines to the program:

355 REM PUT SQUARE BEHIND BACKGROUND
356 POKE 53275.PEEK(53275) OR 2

When you RUN the program, you'll see that the square (sprite I) passes
behind the background, but the diamond (sprite 0) passes in front of both the
square and the background display. The secret to this is the POKE in line 356,

242

which clears a bit that tells the VIC-II that sprite 1 has a higher priority than
the background. Like many of the other bits that control sprites, there are
eight of them, one per sprite, grouped together in one location, number
53275. The least significant bit controls sprite 0, and the most significant bit
controls sprite 7:

Bit number 1 7 1 6 I 5 1 4 1 31 2 1 I 1 0] Sprite affected

t t t '-Sp""O
~Spritel

Sprite 2
Sprite 3

'---------Sprite 4
'----------Sprite 5

'-----------Sprite 6

'-------------Sprite 7

If a sprite's bit in this location is a 0, it takes priority over the background, and
passes in front of it. If the bit is a I, the sprite passes behind the background.
The bits are, of course, controlled with bit-masking operations. As always,
you must PEEK location 53275 first, to save the values of the other bits. To
put sprite 3 behind the background, you would use a statement like

100 POKE 53275JPEEK(53275) OR 8

To put sprite 7 in front of the background, use

100 POKE 53275JPEEK(53275) AND 127

Splitting the sprite-to-sprite priorities from the sprite-to-background
priorities has a very interesting side effect. Change line 356 of the program to

356 POKE 532?5,1

Now RUN the program, and watch what happens. The square (sprite 1)
is in front of the background, and the diamond (sprite 0) is behind it. But the
diamond passes in front of the square, because sprite 0 always has priority
over sprite 1. So, when the diamond and the square overlap, the background
is in front of the part of the square that is covered by the diamond! This makes
perfect sense as far as the VIC-II's priority rules are concerned, but don't

Cl>~lprer 6 GruphlCs 243

spend too much time trying to imagine how this works with our "sheets of
glass. "

Collisions

In the real world, when two cars collide, the results are noisy and messy.
Fortunately, things are not that bad in the sprite world. Instead, the VIC-II
simply sets some flags to let you know who hit whom.

Being able to detect collisions is very handy for game software. The
process of finding overlaps by calculation uses up a lot of computer time, and
would slow down the action. However, collision detection is also useful for
almost any program that uses sprites to simulate moving objects.

There are two different types of "collisions": one occurs when two sprites
overlap, and the other is a result of a sprite passing in front of or behind an
object in the background display. Each type of collision is recorded in its own
location: location 53279 marks collisons between sprites and the background,
and location 53278 contains bits to identify sprites that collide with each
other. Like many of the other locations in the VIC-II, each location contains
one bit for each sprite, with the least significant bit corresponding to sprite 0,
and the most significant being used for sprite 7. This allows you to use the
same bit masks for examining these locations that are used to set bits in the
"controlling" locations.

Now let's see how collision detection works in a program. The example
below uses the diamond and square sprites from our earlier example, but this
time they don't pass each other: when they touch, they bounce, and reverse
direction. We've also added "walls" in the background that the sprites bounce
off when they touch.

100 REM RESERVE MEMORY
110 CLR:POKE 52. 128:POKE 56.128:CLR
120 REM MOVE SCREEN TO HIGH MEMORY
130 POKE 648.132
140 POKE 56576, (PEEK(56576)AND 252) OR 1
150 PF.~ I NT "::1"
160 REM LOAD SPRITE 0 (DIAMOND)
170 FOR 1=32832 TO 32894 : READ X : POKE I.X NEXT
180 REM SPRITE DATA, 2 ROWS PER STATEMENT
190 DATA 0.0.0. O,O.0
200 DATA 0,0.0. 0.0.0
210 DATA 0.24.0. 0.60,0
220 DATA 0.126.0, 0,255.0
230 DATA 1.255,128. 3.255.192

244 Commodore'
===============

24£1 DATA 7.255,224.
250 DATA 3.255,192.
26121 DATA 121.255.121.
27121 DATA 121. 6~L 0 ..
28£1 DATA 13.121, I!L
29121 DATA IZU':L 121

7.255,2:24
L 255,128
0.126 .. 121
0.24,121
13,121 .• 121

3121121 REM LOAD SPRITE 1 (SQUARE)
31121 FOR 1=32896 TO 32958 : POKE 1,255 NEXT
320 REM BUILD THE WALLS
33121 FOR I = 1 TO 8 : PRINT : NEXT
34121 FOR I = 1 TO 1121 : PRINT"JJ
35121 REM ENABLE THE SPRITES
360 POKE 34808.1
370 POKE 34809.2
38121 POKE 53269.PEEK(53269) OR 3
39121 REM PUT THEM ON THE SCREEN
400 X(0)=6121 : XI(I2I)=2
410 XC 1)=35 : XI (1)=-1
42121 YP=15121
430 FOR SN=0 TO 1 : XP=XCSN)
44121 REM START MAKINO THEM MOVE
45121 FOR SN = 121 TO 1
46121 X(SN) = X(SN)+XICSN)
470 XP=)< (S~D
480 GOSUE 10£11210

GO::;UB 11211211210

49121 REM CHECK FOR COLLISION WITH OTHER SPRITE
51210 IF PEEK(53278) = 121 THEN GOTO 6121121
51£1 REM IMPACT! REVERSE COURSE
52121 XI(B) = -XI (e) : XI(I) = -XI(1)
530 REM BACK UP THE SPRITE WE JUST MOVED
54121 X(SN) = X(SN) + XICSN) * 2

560 GOSUB 101210~1
570 REM CLEAR THE SPRITE COLLISION FLAGS
58121 DD = PEEK(53278)
59121 REM CHECK FOR COLLISION WITH BACKGROUND
6121£1 IF 0:: PEEK <:. 53279) A~·m 21f.;~·D :: 13 THEI'~ CiOTO 690
610 REM HIT THE WALL! REVERSE COURSE
62121 XI(SN) = -XI(SN)
630 REM BACK UP THE SPRIT~ WE JUST MOVED
640 X(SN) = X(SN) + XI(SN)
650 ~::P=XC3t-D
66121 GO~;UB 100£10
67121 REM CLEAR THE BACKGROUND COLLISION FLAG
68121 DD = PEEK(53279)
690 ~'lE:X:T
7~1121 GOTO 4413
10131210 XL == 53248 + 2 * SN
10131£1 YL == XL + 1
1£1£120 IF XP) 255 THEN 113050

1003121 B9 = PEEK(53264) AND NOT (21SN)
10040 ClOro 112112160
112112150 B9 = PEEK (53264) OR (21~:;~'~)
10060 XV = XP AND 255
10070 POKE XL.XV : POKE YL.YP POKE 53264.B9
1 00::::fj F.:ETURt·~

Most of this program should be familiar by now, so we'll concentrate on the
parts that use collision detection.

Line 500 PEEKs location 53278, which contains the flags for sprite-to­
sprite collisions. In our example, we are using only two sprites, so any
nonzero value means that the two have collided. A more complex program,
involving many sprites, would use bit-masking to determine which two sprites
had collided. To detect a collision between sprites 3 and 5, you can use this
statement:

100 IF PEEK(53278) AND 40 = 40 THEN ClOTO 200

Where did the 40 come from? The mask value for sprite 3 is 8, and sprite 5's is
32. By adding 8 and 32, we get a mask that will force off all bits except those
for sprites 3 and 5. The comparison to 40 is important, too; it makes sure that
both bits are on. If sprite 3 had collided with sprite 2, the PEEK value would
be 12 (8 plus 4). If 12 and 40 are ANDed together, the result is 8. This value is
not zero, so a simple IF would see a true result. By comparing the result of the
AND to 40, we know whether both sprites, or just one ofthem, were involved
in the collision.

Your program should check the collision flags after every sprite move. If
it doesn't, it may be difficult to determine exactly who hit whom. For
example, if sprites 2 and 3 are colliding in the upper-left corner of the screen,
and sprites 0 and 4 are colliding at the same time in the lower-right, a PEEK
into location 53278 will return a value of 15, because all four are involved in
collisions. In order to figure out which sprites are touching which, your
program must resort to the calculations that the collision detection mecha­
nism is designed to eliminate. Checking after each move avoids this extra
work.

Line 580 demonstrates another important characteristic of the collision
flags. The REM statement in line 570 says that we are clearing the flags, but
you would expect that to be done with a POKE, not a PEEK. The reason lies
in the electronic design of the VIC-II chip. Whenever a sprite is involved in a
collision, its collision flag bit is set. The bit stays set until the collision flag

246 Your Commodore (L1

location is examined with a PEEK (there are certain advantages to designing
chips this way, and the practice is quite common). If the flag is cleared by
PEEKing, why do we have to PEEK again to clear it? As soon as we cleared
the flags with the first PEEK, the VIC-II discovered that the sprites were still
colliding, so it set them again (it checks every time it scans the display). To
clear the flags, we had to move the sprite, then PEEK again. If the flags
weren't cleared, we would get a false indication. Even though the two sprites
were no longer touching, the VIC-II hadn't communicated to the program,
and would remember the collision until it had. Try deleting line 580 from the
program, and watch what happens. The program thinks that the two sprites
are colliding all the time, so once they touch, they sit there and vibrate,
reversmg every move.

Although we haven't mentioned the sprite-to-background collision
flags, their electronic design is the same as the sprite-to-sprite flags. You'll
need to use the same methods to clear them and to avoid false collisions.

FANCY COLORS

While the combination of standard graphics and custom characters will
meet the needs of most applications, there are some things that cannot be
easily displayed in blue and white (or green and white, or red and green). If
you need fine shading in a display, or want to make it more eye-catching, just
turning a dot on the screen on or off isn't enough.

The C-64 offers two techniques for making your display more colorful.
The first, called "Extended Color Mode," allows you to control the back­
ground color for each character on the screen. The second, "Multicolor
Mode," gives you the ability to use more than two colors in a given character.
Multicolor mode can even be used for high-resolution displays and sprites. In
the sections that follow, we'll show you how these techniques work, and how
to put them to use in your programs.

Extended Color Mode

On a normal character display, there are two ways to draw attention to a
message: you can display it in a different color, or print it in reversed
characters. These are effective if the person using the computer is actively
involved in reading the display, but there are circumstances where you need a
real eyecatcher. One such case might be using the C-64 to control a lab

experiment. It might be necessary for the experimenter to adjust some
equipment across the lab from the computer, or the experiment might run for
a while, leaving time to wash out the test tubes.

If you were already using reversed characters for some other purpose,
such as to highlight instructions for the experiment, you wouldn't want to use
them for an alarm message. You'd want something that really stood out, and
extended color mode does that nicely.

In extended color mode, both the background and character colors are
set for each individual character. The character color is kept in color memory,
just as in a normal display. To set the background color, the VIC-I I takes two
bits from screen memory:

Bit number [2TI] I 51 4 I 3 I 2 II I 0 I t +L... _____ "Screen code"

'------------ Background color

The two bits that control the background color are used to select one of
four locations in the VIC-II chip.

Bit Location
Pair Selected

00 53281 (Background color 0)
01 53282 (Background color I)
10 53283 (Background color 2)
11 53284 (Background color 3)

"Background color 0" is the color of the background for a normal text
display. These four locations, like color memory, hold a color code from 0
through 15. Bits 4 through 7 are ignored when you POKE them, and you must
AND the value with 15 when you PEEK.

There is a price to be paid for the flexibility of choosing background
colors. With bits 6 and 7 used for the background color, the remaining six bits
only allow 64 different characters. If you want to use reversed characters you
must "trick" the computer into displaying them. Finally, using the extra
colors requires a bit of extra programming. However, the result can be a
program that is much easier to use.

248 Your CcnwllodorG ~ ,~

TURNING ON EXTENDED COLOR MODE

It will come as no surprise that extended color mode, like so many of the
graphics features we've discussed, is controlled by a bit in a location in the
VIC-II chip. When bit 6 oflocation 53265 is turned on, the display is changed
to extended color mode. Try executing this statement:

POKE 53265,PEEK(53265) OR 64

The first thing you'll see is that the cursor, instead of changing from dark blue
to light blue (normal space to reversed space), changes from dark blue to red.
Remember that the C-64 turns bit 7 off and on to flash the cursor. On a
standard display, this changes the character from normal to reversed. On an
extended color display, changing bit 7 changes the location from which the
color is taken. When the C-64 is reset, the four background color locations are
initialized to dark blue, white, red, and cyan. A "reversed" space (screen code
160) becomes a red space in extended color mode, because bits 7 and 6 contain
the values 1 and 0 respectively, taking the background color from location
53283.

For a clear picture of the effects of extended color mode, type in and
RUN this program:

100 REM TEST EXTD COLOR MODE CONVERTER
110 PRINT":,)"
120 REM FILL SCREEN
130 SB=256*PEEK(648)
140 FOR 1=0 TO 255 : POKE SB+I,I : NEXT
150 REM FILL COLOR MEMORY
160 FOR 1=0 TO 255 : POKE 55296+1,1 : NEXT
170 REM SET UP COLORS
180 POKE 53282,4
190 POKE 5:328:3, 5
200 POKE 5:3284, 9
210 REM SWITCH EXTENDED COLOR ON AND OFF
220 POKE 53265JPEEK(53265) OR 64
230 FOR 1=1 TO 800 : NEXT
240 POKE 53265.PEEK(53265) AND 191
250 FOR 1=1 TO 800 : NEXT
260 130TO 220

The program fills the first 256 bytes of screen memory with all 255 possible
screen codes, then turns extended color mode on and off. With extended color
mode off, the screen contains all 128 uppercase and graphics characters,
followed by their reversed counterparts. When extended color mode is turned

Ci'opter c GrcuillCS 249

on, the screen becomes 4 groups of 64 characters each, with each group having
a different background color.

The 64 characters appearing on the screen are those with screen codes 0
through 63: the letters. numbers, and punctuation. These are the only charac­
ters you can use in messages that are displayed in extended color mode
(Appendix E contains a chart of the screen codes for all characters). The six
lower bits of a byte can only hold numbers in the range of 0 through 63. If you
POKE a larger number into screen memory, it will spill over into bits 6 and 7,
and change the background color.

CREATING EXTENDED COLOR DISPLAYS WITH POKE

Screen POKEing in extended color mode works just as it does with the
built-in or custom character set. The only difference is that you must add the
appropriate color value in bits 6 and 7. Earlier in this chapter, we showed you
a sample subroutine to convert CHR$ codes to screen codes. Here is a
modified version of that subroutine that does the conversion, then adds the
appropriate color code bits. Like the earlier routine, it takes a character in
variable K V$, and returns the screen code in sc. For this subroutine, a new
variable is needed. This variable, BC, contains the background color (0
through 3) for the character.

12000 REM TRANSLATE CHARACTER FOR EXTENDED COLORS
12010 SC=ASC(KV$)
12020 REM BLANK OUT ILLEGAL CHARACTERS
12030 IF (SC(32) OR (SC)95) THEN SC=32+64*BC : RETURN
12040 IF SC)63 THEN SC=SC-64+64*BC ; RETURN
12050 SC=SC+64*BC : RETURN

This subroutine is much shorter, because only two groups of 32 characters
need to be translated. The others are all changed to blanks.

USING PRINT WITH EXTENDED COLORS

At first glance, it might appear that you can't easily PRINT characters
with different background colors. Sincc there are no BASIC commands to
handle extended color mode directly, adding the color control bits to charac­
ters could quickly turn simple messages into long unreadable strings of CHR$
calls. However, with a bit of the trickery mentioned earlier, you can use
PRINT to display extended color messages, and still be able to read your
program.

The key to controlling the background color is to control the values of
bits 6 and 7 in screen memory. Controlling bit 7 is easy: PRINTing the reverse
on and reverse off control characters will force bit 7 to a one or a zero for the
following characters. The hard part is bit 6; if we directly PRINTed the 64
characters we can use in extended color mode, bit 6 would always be a O. This
would only give us the use of the usual background color, plus background
color 2 (for reversed characters). This may be enough for some programs. If it
is, you won't need the trick we are about to describe. But if you want more
flexibility, read on.

The trick to using background colors 1 and 3 is somehow to force bit 6 to
a value of 1 for the characters to be displayed in those colors. To do this, we'll
use a "translation" technique similar to the one we described for converting
characters to screen codes. This translation will be necessary in many differ­
ent parts of the program (wherever we want to PRINT a message), so we've
written it as a subroutine:

12000 REM TRANSLATE STRING FOR EXTENDED COLORS
12010 REM SET REVERSE IF BC = 2 OR 3
12020 PS$:::::"!I" : IF BC)= 2 THEt·~ PS$="::i"
12030 FOR CP=1 TO LEN(MS$)
12040 PC=ASCCMID$(MS$,CP, 1»
12050 REM CONVERTS 1 CHARACTER
12060 REM CHECK FOR CONTROL CHARACTERS
12070 IF (PC AND 127) < 32 THEN PS,=PS$+CHR$(PC) : RETURN
12080 REM BLANK OUT ILLEGAL CHARACTERS
12090 IF PC) 95 THEN PC = 32
12100 IF BC=0 OR BC=2 THEN 12150 : REM NO MORE WORK NEEDED
12113 REM FORCE BIT 6 ON FOR Be=1 OR 3
12120 IF PC)63 THEN PC=PC+32
12130 IF PC(64 THEN PC=PC+128
12140 REM ALL DONE. ADD BYTE TO OUTPUT STRING
12150 PS$=PS$+CHR$(PC)
12160 t'~EXT
121 70 RETURt~

The subroutine takes a message string, MS$, and the background color,
BC, and uses them to build a print string, PS$. The message string is the text
of the message you want to print, in simple readable characters. The print
string is a string of characters that have been translated, so that the statement

Chapter 6 Graphics 251

will print your message on the right background color. As mentioned earlier,
this is somewhat tricky code, so let's go over it in detail.

Bit 7 in screen memory is controlled by reverse on and reverse off
characters. Line 12020 starts the print string with a reverse off if the back­
ground color is 0 or 1 (bit 7 off), or a reverse on for background colors 2 and 3
(bit 7 on).

Lines 12030 and 12160 form a FOR-NEXT loop that steps the index
variable CP through the message string, one character at a time. The lines
between them convert one character from the message string, and add it to
the print string.

Because BASIC's Boolean and arithmetic operators only work on
numbers, line 12040 converts the character being translated to a number with
the ASC function.

Line 12070 checks the character to see if it is one of the "control
characters" (RETURN, color controls, etc.). Control characters all have values
in the ranges of 0 through 31, and 128 through 159. By ANDing the value of
the character with 127, we need only do one comparison to find all the control
characters. If we do find a control character, we bypass the rest of the
translation, and pass it through unchanged.

The characters we can display have ASCII values in the range of 32
through 95. We have screened out those less than 32 with the check for control
characters, so line 12090 changes all the ones above that range to spaces.

If the background color is 0 or 2, we're ready: bit 7 will be taken care of
by the reverse code we set in line 12020, and bit 6 has been forced to zero.
Therefore, line 12100 skips over the rest of the translation for these colors.

N ow comes the difficult part. For background colors 1 and 3, we need to
make sure that bit 6 is on in screen memory. To do that, we have to change the
ASCII code for the character to one that will give us the right value for bit 6.
To figure out how to do the translation, we consulted the ASCII and screen
code tables in Appendix E and came up with this table:

MS$ code

32-63
64-95

Screen code
needed

96-127
64-95

PS$ code

160-191
96-127

Operation

+ 128
+ 32

The first column is the ASCII value of the character in the message string.
The second column is the screen code that we need to display that character
with bit 6 on. By comparing the screen and character code tables, we found

252 \bur Commodore e4

the ASCII values we needed to get those screen codes and the BASIC
operation that would translate them. From that information we wrote lines
12120 and 12130.

Now we're almost done. We have in the variable PC the ASCII value that
will give us the screen code value we need. Line 12150 finishes the loop by
converting PC back to a string value, and concatenating it to the print string.
When that's done, we repeat the loop until MS$ is completely translated, then
RETURN.

To see the subroutine in action, type in this program, along with the
subroutine, and RUN it.

1121121 REM TEST EXTD COLOR MODE CONVERTER
11121 POKE 53265.PEEK(53265) OR 64
1213 POKE 53281J14
130 POKE 5:3282. 1
140 POKE 53283.5
150 POKE 53284.7
160 PRINT":'lI"
1 70 t18$:::::" BLLlE TEST t1ESSAGE"
180 BC=12I
1913 GOSUB 340
200 PR I ~rr PB$
21121 ~1S$=" ~JH I TE TEST t1ESSAGE"
22121 BC=1
23121 GOSUB 34121
24121 PRINT PSS
25121 r1S$=" GF:EEI·l TEST t1ESSAGE"
260 BC=2
27121 G08UB 34121
280 PR I tH PSI
29121 t1S$= "'T'ELLOW TEST t1ESSAGE"
3121121 BC=::3
31121 G08UB 34121
321.3 PRINT PSI
331.3 END
341.3 REM TRANSLATE STRING FOR EXTENDED COLORS
35121 REM SET REVERSE IF BC ::::: :2 OR 3
36121 PBS= "II" : IF BC)::::: 2 THEt·l PSI:::::"~"
37121 FOR CP=l TO LENCMSI)
38121 PC=ASCCMIDI(MSS,CP, 1»
39121 REM CONVERTS 1 CHARACTER
41211.3 REM CHECK FOR CONTROL CHARACTERS
410 IF (PC AND 127) (32 THEN PSf,=PSf.+CHRICPC) : RETURN
42121 REM BLANK OUT ILLEGAL CHARACTERS
43121 IF PC) 95 THEN PC = 32
441.3 IF BC=e OR BC=2 THEN 490 : REM NO MORE WORK NEEDED
45121 REM FORCE BIT 6 ON FOR BC=1 OR 3

460 IF PC)63 THEN PC=PC+32
470 IF PC(64 THEN PC=PC+128

OiOPTer C>ophlcs 253

480 REM RLL DONE. ADD BYTE TO OUTPUT STRING
490 PSI=PSt+CHR$(PC)
500 NE:O<:T
510 RETURt·4

The program sets the background colors in lines 120-150, and displays a
message in each color. For each color, the process is the same: assign the
message to MS$, set the background color in BC, call the subroutine, and
PRINT PS$. We could have put the PRINT statement in the subroutine, but
we left it out for extra flexibility. Since the main program does the PRINT, it
can use features such as tabbing, or ending the PRINT statement with a
semicolon to continue PRINTing on the same line. You can even mix
background colors on the same line by adding a semicolon at the end of line
240, and RUNning the program again.

FLASHING THE BACKGROUND TO GET ATTENTION

One way to really draw attention to an important message is to make
the background flash off and on. You can see how effective this is just by
looking at the cursor. No matter how full the screen is, your eye is imme­
diately drawn to the cursor by its flashing.

You can make complete messages stand out on the screen simply by
changing the value in one of the background color locations in the VIC-II
chip. To see this effect at work, add the following lines to the sample
program from the last section:

322 REM FLRSH BACkGROUND
323 POKE 53284,14
324 FOR 1=1 TO 500 NEXT
325 POKE 53284,7
326 FOR 1=1 TO 500 NEXT
327 GOTO 323

When you RUN the program, it displays the messages as before, but the
background of the "yellow test message" appears to be flashing off and on.
The key is lines 323-325. They change the value in background color 3 from 7
(yellow) to 14 (blue) and back. When the background is blue, it matches the
rest of the screen, and disappears. When the color is changed back to yellow,
the background flashes on. Even the most determined test tube washer
couldn't miss that, es pecially if you accompanied it with some of the sound
effects you'll learn about in Chapter 7. For the experimenter adjusting

254 Your Commodore 64

equipment, you could change the color from red, to yellow, to green, as the
computer's measurements showed him getting closer to the right settings.

All our examples have used the built-in character set, but you can use
custom characters, too. However, the limitation of 64 possible characters
still applies, so you may run short if your program also copies some of the
built-in characters for messages.

Multicolor Mode

Multicolor mode is designed for those applications that need even more
color than an extended color display. In high-resolution or extended color
mode there are eight dots on each line of a character, but each dot is limited to
being either the character color or the background color. Multicolor mode
trades some of those dots for more colors. In a multicolor character, there are
only four dots per line, but each dot can be one of four colors, instead of just
two.

Since a multicolor character is the same size as a high-resolution charac­
ter, each dot is twice as wide. To get the extra colors of multicolor mode, you
must "paint with a broader brush." There are still eight rows in the character,
so the height of the dot remains the same.

CHARACTER MEMORY DEFINITIONS OF MULTICOLOR CHARACTERS

The dot patterns of multicolor characters are stored in character
memory in the same order as a high-resolution character, but each row (byte)

Chapter 6 Graphics 255

of the pattern looks like this:

Screen Dot 0 I 2 3
~..-"-..

Character Memory Bits I 7 6 I 5 4 I 3 2 I I 0 I

Each dot of a multicolor character is represented by two bits in character
memory, rather than one. There are four possible combinations of those two
bits (00, 01, 10, and 11), giving four possible colors. The colors selected by
those combinations are as follows:

Bit Color
Pair Selected

00 Background color 0
01 Background color I
10 Background color 2
II Character color

The pairs of bits select the color of the double-sized dot in the same way that
bits 6 and 7 select the background color in extended color mode. Notice,
however, that background color 3 is no longer available. Instead, when both
bits are on, the dot is displayed in the color stored in the color memory
location for that character.

ENABLING MULTICOLOR MODE

Like extended color mode, multicolor mode is enabled by a bit in a
location in the VIC-II chip. The controlling bit is bit 4 of location 53270, so
the statement

100 POKE 53270,PEEK(53270) OR 16

will enable multicolor mode, and

100 POKE 53270,PEEK(53270) AND 239

will return to standard color mode.

MAKING A CHARACTER MULTICOLORED

Enabling multicolor mode does not automatically make the entire screen
multicolored. Multicolor mode can be turned on or off for each character.

256 Your Commodore 64

Whether a character is standard color mode or multicolor mode is controlled
by bit 3 in color memory. If that bit is 0, the character is high-resolution. If it
has a value of 1, the character is in multicolor mode. This makes it possible to
mix multicolor characters with standard or with standard color custom
characters. Because that bit has been taken from color memory, only three
bits are left for the color code. On a multicolor display, only the first eight
colors (black, white, red, cyan, purple, green, blue, and yellow) can be used as
character colors.

USING CUSTOM CHARACTER DESIGN TOOLS

Multicolor characters are actually a variation of custom characters, so
you'll find the tools for working with them similar. The programs and
techniques presented earlier in this chapter, and those you may have deve­
loped yourself, will be helpful in multicolor design. However, slight adjust­
ments will be necessary to some of them. For example, to ensure that
characters in the test pattern area are in multicolor mode, change the Setup
program so it looks like this:

100 REM RESERVE MEMORY
110 POKE 52,128 : POKE 56,128 : CLR
120 REM POINT VIC-II AT NEW SCREEN
130 POKE 56576, (PEEK(56576) AND 252) OR 1
140 POKE 53272,32
150 REM POINT BASIC AT NEW SCREEN
160 POKE 648,136
170 PRINT"::'.lI:ii!ABCDEFGHIJKU'lt·mPQRSTIJVW::-::'T'Z(£J -t ! ";
180 PRINT CHR$(34);CHR$(34);CHR$(20);
190 PRINT "#$;';:&' ()i+i+, -. ";
200 PRItH "/0123456789:;(=)?"
210 REM COPY CHARACTER MEMOR'T' ROM TO RAM
220 POKE 56334,PEEK(56334) AND 254
230 POKE I,PEEK(I) AND 251
240 FOR 1=0 TO 2047:POKE 32768+I,PEEK(53248+I) NEXT
250 POKE I,PEEK(I) OR 4
260 POKE 56334,PEEK(56334) OR 1
270 REM SET MULTI COLOR MODE
280 POKE 53270,PEEK(53270) OR 16
290 RE~l MAKE "WORK AREA" CHARACTERS t~UL T I COLOR
300 FOR 1=55296 TO 55359 : POKE I,PEEKeI) OR 8 : NEXT

Our character design form needs to be changed, also, to have four
double-wide dots per line.

Chapler 1:. Gropr,cs 257

1

2 6 3 1

8 4 2 6 8 4 2 1

The calculation of the POKE values is not affected by multicolor mode.
The columns should be added up just as they are for custom characters. The
change in the grouping of the dots is only there to make it easier to visualize
the character as it would appear on the screen.

You will probably find it helpful when designing multicolor characters
to design the character using two worksheets. Do the first in colored pen or
pencil, then translate the colors to their bit values and do the arithmetic on
the second. Figure 6-5 displays our old friend, the stick man, in color.

EXPERIMENTING WITH MULTICOLOR CHARACTERS

Before starting to design your own multicolor characters, you will find
it helpful to develop a feel for the effects of color. You should start by playing
with characters on the screen in multicolor mode.

Load and run the Setup program listed above. As you can see, some of
the characters, especially those made up of horizontal and vertical bars (E,
F, H, and so on), remain more or less recognizable. The rest arejustjumbles
of color. As a rule, high-resolution characters must be modified if they are to
be used in multicolor mode. By changing the definition of the dots in
character memory, multicolor mode tends to turn high-resolution character
patterns into gibberish. There are exceptions. Some of the graphic charac­
ters, especially the "blocky" ones, will simply change colors in multicolor
mode.

258 Your Commodore 64

r--
0 21 8
0 42 8
0 42 12
0 42 12
0 42 12

II t±t ~ f+ #H lEtt
J=H HHI~
c; :., ,. ;

II-J1 : rtftr :r;:#ft;:; ~ i j rr
[>icc;c;

. ' ~-~ •. :--:t! :~.

0 8 12
15 255 252
12 255 192
12 255 192
12 255 192
4 255 192
4 85 64

,,1 0 255 192

H.;,Ji . ~Jj If iL'r-- Wf,
~lt;t'-r

;fm r-

• -=
0 63 0
0 51 0
0 51 0
0 51 0
0 51 0
0 51 0
0 51 0
0 81 64
0 0 0
0 0 0
0 0 0

_ Black mCyan [@i il Light Orange

FIGURE 6-5. Stick man in color

You can simplify your experimentation by typing the following imme­
diate mode command:

POKE 648,9

Location 646 contains the value that BASIC puts in color memory for each
character it displays on the screen. By changing this value you can put
characters into the work area, and BASIC will leave them in multicolor
mode. This makes any messages displayed by BASIC multicolor too, but
you should have little difficulty recognizing them.

Chapter 6. Graphics 259

MIXING MULTICOLOR CHARACTERS WITH OTHER MODES

Because multicolor mode is turned on or off for each character on the
screen, you can put multicolor characters, custom characters, and normal
text on the same screen. For example, try putting the three generations of
stick man characters together on a single display.

Multicolor characters give you a great deal of versatility for designing
players and playfields, but this is not the end of the multicolor story. As we
will see, bit-mapped displays, and even sprites, can be made multicolored.

Multicolored Bit-Mapped Displays

In the section on multicolored character displays, we saw that the
formats of screen, character, and color memory were not changed by multico­
lor mode. Only the way the VIC-II "interpreted" the contents of those
memory locations changed.

The same rule applies to multicolored bit map displays: the locations
and uses of screen memory and the "bit map" in the "character memory" area
are unchanged. The big difference is that the bits in the bit map are used in
pairs in multicolor mode.

PUTTING THE DISPLAY IN MULTICOLOR BIT·MAPPED MODE

Setting both the multicolor and bit-map mode bits in the VIC-II chip will
give you a multicolored, bit-mapped display. Since these bits are in two
separate locations, two POKEs are required.

100 POKE 53265,PEEK(53265) OR 32
110 POKE 53270,PEEK(53270) OR 16

After executing these two statements, the display will be in multicolor bit­
mapped mode. Now let's take a look at what can be done with it.

PROGRAMMING MULTICOLOR BIT·MAPPED DISPLAYS

In our look at bit-mapped displays, we designed a subroutine that would
set a bit on the screen based on its "X-Y position": how many dots it was from
the top and left edges of the screen. That approach slows down the programs

260 Commoocre::

that use it, because it takes time to do the GOSUB and RETURN, but it
makes the main program a lot simpler to write and to read.

Using a subroutine for multicolor bit-mapped displays makes sense, too.
The calculations are just as complex as for high-resolution bit-mapping and
would clutter up the main program. Even though there is a small price to be
paid in speed, the benefits in simpler programming are worth it.

Our multicolor subroutine will be very similar to the high-resolution
one. It also uses the variables X and Y to point to the dot on the screen. This
time, though, the value of X must be between 0 and 159 because the multi­
colored screen is only 160 dots wide. We also need a new variable, "DC," to
hold the dot color that will be set. Like the "Be" variable that we used for the
background color in extended color mode, DC will be a value from 0 to 3,
identifying the source of the color code, not the color code itself.

The bit masks for multicolor mode have different values, because we are
changing 2 bits at a time. The masks to set a dot to the background color
(make both bits 0) are

Dot
Bit Pair
Mask

o
7 6

63
5 4
207

2
3 2
243

3
1 0
252

Remember that we are numbering the dots from left to right across the screen,
while the bits are numbered from right to left. Since the bits are being set to
zero, these masks are used with the AND operator:

100 REM SET DOTS TO BACKGROUND COLOR
110 POKE 27450.PEEK(27450) AND 63 : REM DOT 0
120 POKE 27451.PEEK(27451) AND 207 REM DOT
130 POKE 27452.PEEK(27452) AND 243 REM DOT 2
140 POKE 27453.PEEK(27453) AND 252 : REM DOT 3

To set the dots we need 16 different masks (four possible colors for each
of the four dots controlled by a byte). These masks are

Dot 0 2 3
Background 0 0 0 0
Screen bits 4-7 64 16 4
Screen bits 0-3 128 32 8 2
Color memory 192 48 12 3

Chapter c. Graphics 261

The following masks are used to set bits to 1, so they work with OR.

100 REM SET DOTS TO OTHER COLORS
105 REM DOT 0 FROM SCRREEN MEMORY BITS 4-7
110 POKE 27450,PEEK(27450) AND 63 OR 64
115 REM DOT 1 FROM SCREEN MEMORY BITS 0-3
120 POKE 27451,PEEK(27451) AND 207 OR 32
125 REM DOT 2 FROM COLOR MEMORY
130 POKE 27452,PEEK(27452) AND 243 OR 12

THE DOT·SETTING SUBROUTINE

The listing below actually includes two subroutines. The first one, lines
15000-15030, sets the values in the bit-map area. This subroutine is almost
identical to the one we used for the high-resolution bit-map. The differences
are in calculating the location in the bit-map area (there are four dots per byte
instead of eight), and the masking of bits (changing two bits at a time, instead
of one).

The second subroutine, lines]6000-16080, sets up the masks. It must be
called with a GOSUB 16000 near the beginning of your program. As we have
suggested before, this subroutine was put near the end of the program to
make the main body easier to read. Line 16040 is a formula that calculates the
values of the OR masks. We could have READ them in from DATA state­
ments, but the formula saves memory space and typing.

15000 REM MULTI COLOR BIT SETT I t~G SUBROUT I NE
15010 PL = BM+(40*(Y AND 248))+(Y AND 7)+2*(X AND 252)
15020 POKE PL, PEEK (PL) AND t10% (X A~m 3) OR 01% (X At·m 3, DC)
150:30 RETURH
16000 REM MULTICOLOR BIT MASK BUILDER
16010 DIM CM%(3.3)
16020 FOR 1=0 TO 3
16030 FOR J=0 TO 3
16040 CM%(I,J) = 2t(2*(3-I))*J
16050 NE:X:T J
16060 M0%(I) = 255 AND NOT CM%(I,3)
16070 NEXT I
16080 RETURN

As an example of how this subroutine works, here's the "triangle pro­
gram" from the section on bit-mapped displays, modified for a multicolor
display:

100 REM BIT MAPPED DISPLAY DEMONSTRATION PROGRAM
110 REM PROTECT BIT MAP MEMORY
120 POKE 52,64 : POKE 56,64 : CLR

130 REM POINT VIC-II RT NEW SCREEN AND BIT MAP MEMORY
140 POKE 56576. (PEEK(56576) AND 252) OR 2
150 POKE 53272.8
16121 REM SET VIC-II TO MULTICOLOR BIT-MAPPED MODE
17121 POKE 53265.PEEK(53265) OR 32
18121 POKE 53270.PEEK(5327121) OR 16
19121 REM SET pnTNTER TO BIT MAP AREA
2121121 BM=24576 : SB=16384
210 REt" CLEAF.: "BIT-t1AF'" AF.:EA
22121 FOR I=BM TO BM+7999 POKE 1.121 NEXT T
23121 REt" FILL "::;CREEW' t"Et'10F.d ,,. LoJI TH COLOR CODE':;
24121 FOR I=SB TO 8B+999 POKE 1.230 NEXT I
25121 REM BUILD MASK ARRAY
260 GO::;UB 1612100
27121 DC = 1
28121 REM DRAW BOTTOM OF TRIANGLE
29~3 1.,.1=63
300 FOR X=0 TO 63
:31121 GOSUB 15121[11(:1
32121 r'IE>::T
330 REM DRAW LEFT SIDE OF TRIANGLE
34121 FOR X=0 TO 30

36121 GO::;UB 1512100
3713 t'IE~n
38121 REM DRAW RIGHT SIDE OF TRIANGLE
390 FOR X=31 TO 62
400 Y = 63-(62-X)*2
410 CiI]:::JJB 151211210
42121 NE::<:T
43121 REM WAIT FOR A KEY TO BE PRESSED
44121 GET ,::;$: IF A$="" THHI 44121
45121 REM ALL DONE. RESTORE SYSTEM TO NORMAL
46121 REM GIVE BIT MAP MEMORY BACK TO BASIC
470 POKE 52,128 : POKE 56.128 : CLR
48121 REM POINT VIC-II AT ORIGINAL SCREEN AND CHARACTER

t'lEt1DR'r'
490 POKE 56576. (PEEK(56576) AND 252) OR 3
500 REM RETURN TO CHARACTER MODE
510 POKE 53265,PEEK(53265) AND 223
520 POKE 53270.PEEK(5327121) AND 239
530 POKE 53272.21
540 nm
15000 REM MULTICOLDR BIT SETTING SUBROUTINE
15010 PL = BM+(40*(Y AND 248»+(Y AND 7)+2*(X AND 252)
1502121 POKE PL.PEEKCPL) AND M0%(X AND 3) OR CM%CX AND 3.

DC)
15030 RETURr'1
16000 REM MULTICOLOR BIT MASK BUILDER
16010 DIM CM%(3.3)

1612120 FOR 1=0 TO 3
161213121 FOR J=0 TO 3

\:hooter (Gruor,cs 263

161214121 CM%(I.J) = 2t(2*(3-1»*J
161215121 t~EXT J
161216121 M0%(I) = 255 AND NOT CM%(I.3)
161217121 ~'lEr~T I
161218121 RETURt'i

Compare this program to the high-resolution version. The only change
we made to the main body of the program was to assign a value to "DC, "the
dot color variable! This is a good example of the value of designing and using
standard subroutines. Of course, not all programs can be so easily converted
from high-resolution to multicolor graphics. We cheated a bit by choosing an
example that didn't use all 320 dots of the high-resolution display. Still, the
use of standardized subroutines can make new programs easier to write, and
existing programs easier to read, maintain, and adapt.

Multicolor Sprites

Multicolor sprites are very similar to multicolor characters, just as
standard sprites resemble custom character ... Like multicolor characters and
bit maps, the definitions of multicolor sprites are made up of pairs of bits,
each calling for one of four colors. The difference between the other multi­
color modes and multicolor sprites is where the color codes come from.

Bit Pair

00
01
10
II

Color Displayed

Transparent
Location 53285 (in VIC-II Chip)
Sprite's color location in VIC-II Chip
Location 53286 (in VIC-II Chip)

Locations 53285 and 53286 are used only to hold color codes for
multicolor sprites. Like the other color locations, they have only four bits,
and must be "masked" when your program PEEKs them.

MAKING A SPRITE MULTICOLOR

Location 53276 identifies which sprites are multicolored. Like most
sprite controlling locations, each sprite has a control bit in this byte. When a
sprite's bit is aI, it is displayed in multicolor mode.

Because the sprite's bit in location 53276 determines whether it is multi­
color, all four bits of its color location are available, so all 16 color codes can
be stored there.

264 Your Commodore 64

EXPANDED SPRITES

Now that you've spent many hours designing and building your sprite,
it's time to learn how to blow it up.

In the case of sprites, "blow up" refers to its photographic, not explosive,
meaning (you can, of course, use the animation techniques we described
earlier to simulate an explosion).

If you need a larger than normal sprite, you could combine sprites just as
you would custom characters. However, there is an easier method. The VIC-II
can double the height, width, or both of a sprite with a simple POKE.

Sprite expansion is controlled by locations 53277 and 5327l. As with
other locations, each sprite is controlled by a bit in these locations. When a
sprite's bit in location 53277 is a 1, its width is doubled. Setting its bit in
location 53271 to 1 doubles its height.

Doubling the height or width of a sprite is not exactly the same as putting
two sprites side by side. Each bit in the sprite definition represents two dots
when the sprite is expanded, so there is some loss of resolution. However,
expanded sprites are easier to program than mUltiple combined sprites.

Multicolor sprites can also be expanded. Each bit pair controls an area
four dots wide when the width is expanded, or two dots high when the height
is doubled.

ADVANCED VIC·II CHIP TOPICS

In this section we will cover some aspects of the VIC-II chip that you will
find helpful as you develop more sophisticated programs. If you find some of
the infoT':lation too difficult, just skip over it for now. As you become more
familiar with the C-64, this section will become easier to understand.

The VIC·II Chip's Window into Memory

The VIC-II chip and the rest of the computer "see" memory quite
differently. The 6502 microprocessor in the C-64 computer can access 65,536
bytes of memory. The VIC-II chip, on the other hand, can access only 16,384
bytes. There is another difference between the two. Most of the computer is
based on "normal" bytes of eight bits, but the VIC-II chip uses 12 for screen
memory: eight for the character and four for the color. This was done to make
the VIC-II chip faster, allowing it to get all the information it needs about a
screen character at one time.

Cfjnptcr

-======
265

To enable the two different chips to communicate through the same
memory, the C-64 was designed so the VIC-II chip had a "window" through
which it could access only a part of computer memory. This window allows
the VIC-II chip to read one offour different "segments" of the C-64's memory,
each 16,384 bytes long. The section of memory that the VIC-II uses is selected
by two output pins of CIA chip #2. The settings of those pins are controlled by
bits 0 and I of location 56576. The section of memory selected by the values of
these bits are:

Bit Pair

II
10
01
00

Locations Used

0-16383
16384-32767
32768-49151
49152-65535

The other pins associated with location 56576 are used for different
purposes, so the values ofthe other bits must be preserved. To select a section
of memory, use one of the statements from the following list:

95 REt'l SELECT 121-16:383
10121 POKE 56576,PEEK(56576) At·m 252 OR 3
11215 REt'l SELECT 16:384-32767
110 POKE 56576,PEEK(56576) At~D

.... ,11: ,
o::!: • ..Jo:::. Of': '-,

"-

115 F::E~1 :3ELECT 3276B-49151
120 POKE 56576,PEEK(56576) At·m 25::7: Of<:
125 REt'l SELECT 49152-,65535
130 POKE 56576,PEEK(56576) At·m ,.'.t::' ,

':::',:.JI!..

THE CHARACTER ROM

If the character ROM chip is at memory location 53248, and the VIC-II
can only access 16K of memory at once, how can the VIC-II read the
character tables when it is using, for example, locations 0-16383? Through a
trick of electronic engineering, Commodore designed the C-64 so that the
VIC-II sees the character ROM at locations 4096-8191 and 36864-40959. In
fact, the VIC-lJ doesn't see the character ROM at location 53248! Instead, it
sees an area of RAM that is normally invisible to the rest of the computer.

In the two areas where the VIC-II sees the character ROM, it cannot
access the RAM. That RAM is available only to the 6502 chip.

When selecting the area of memory you use for storing the screen, the bit
map, custom character tables, or sprites, you must keep the fact in mind that
the character ROM is only available in certain sections.

WRITING TO THE ROMS

The character table is not the only ROM in the C-64: the built-in software
(BASIC and input/output routines for the cassette, screen, etc.) is also stored
in ROM chips. These chips occupy locations 40960-49151 and 57344-65535.
Plug-in software cartridges, when they are used, occupy locations 32768-
40959. The 6502 chip can't read the RAM at these locations, but the VIC-II
can.

With certain restri ;tions, you can use these areas for graphics purposes.
When the 6502 reads these locations, it sees the ROM chips, but a write goes
to the RAM. As long as you don't need to read back the value stored there,
you can use the "hidden" RAM for screens, sprites, or bit maps. A good
example would be a bit-mapped background that is set up at the beginning of
the program and never changes while the program is running. The bit map
could be stored in locations 57344-65343, and the screen and sprites in
locations 49152-53247.

To use this technique, you would have to change the bit-setting subroutine
used in our examples, because it relies on being able to PEEK the value
already in the bit map. Your program would need to calculate the values of all
the bits in particular location, then POKE them all at once.

CHANGING THE LOCATION OF SCREEN AND CHARACTER MEMORY

Screen and character memory can be placed anywhere in the VIC-II
chip's window. The starting locations are kept in the chip and may be changed
with POKE. They are combined into a single location, 53272. Each half of
this byte contains a number from 0 to 15, which is the offset in Kbytes (I K =
1024) into the window. The formula to calculate the value to POKE is

(character memory location / 1024) +
16 * (screen memory location / 1024)

Although the character memory location is expressed in units of 1024
bytes, the last bit is ignored. Character memory must begin at offset 0,2048,
4096,6144, 8192, 10240, 12288, or 14336 into the window. When you PEEK
location 53272, bit 0 will take on unpredictable values. If your program needs
to examine the contents of this location, it should mask offthe bit by ANDing
the value with 254 first.

Cr~.Cl;fer 6. Glq::: cs 267

COLOR MEMORY

The color memory chip has two sets of electronic connections: one that
allows the VIC-II chip to read it as the top part of its 12-bit byte, and one that
allows the rest of the computer to access it as the lower part of an 8-bit byte.
The connections for location numbers also differ. While the rest of the
computer perceives color memory only at locations 55296 through 56319, to
the VIC-II chip it appears to be everywhere in its window. Byte 0 in the color
memory chip, which your program sees as location 55296, is read by the
VIC-II chip at locations 0, 1024, 2048, 3072, 4096, and so on up to location
15360 in its window. Byte 1 appears at locations 1, 1025,2049, etc. Thus, no
matter where you move screen memory, the same color memory chip is used.

PRESERVING YOUR MEMORY

In our examples we have shown the POKE statements that keep BASIC
from using the memory set aside for custom characters, bit maps, sprites, and
so forth. If you write programs that use different areas in memory for custom
characters, you will need to understand the rules behind the statements.

Locations 55 and 56 form a pointer to the end of BASIC memory. This is
a 16-bit number that is the location of the byte after the last one available for
BASIC's use. Locations 51 and 52 are a similar pointer for BASIC's string
storage area.

Locations 51 and 55 will normally contain zero after a CLR or a RUN
command, and need not be changed. To calculate the POKE value for
locations 52 and 56, divide the starting location for your character memory
area by 256.

It is essential that the POKEs to limit BASIC's memory be done before
any variables are defined in your program, and that they be followed by a
CLR. Otherwise, BASIC may not recognize the limits you have attempted to
set.

Other software packages may also steal memory from BASIC. It is
probable that most of these other packages, from Commodore as well as
other manufacturers, will use the 4K of memory from 49152 through 53247,
but there will almost certainly be some that do not. If you intend to use
custom characters with one of these programs, check its documentation for
possible conflicts. In some cases, it may be necessary simply to experiment.

Some programs do not honor the BASIC memory limits. These
programs use the value in location 644, which is not checked by BASIC, to
determine the last byte of memory in the C-64. This location can be POKEd
with the same value used for locations 52 and 56, but some caution is
required, because you cannot predict how future cartridges will use this
location. If a program that steals memory works without a particular
cartridge, but fails when that cartridge is installed, this may be the cause of the
problem. If a POKE to location 644 is required, it must be done at the same
time as the POKEs to locations 52 and 56, before the CLR.

Saving and Loading Graphics Data

Using DATA statements to store your custom character sets, sprites, and
bit maps results in several disadvantages. DATA statements use valuable
program space, and BASIC takes a long time to READ and POKE the
information into memory. If you are using a Datassette to store your
program, it can take two minutes or more to LOAD and run a program that
uses a bit-mapped display or custom character set.

A much faster technique is available. Your program can use the same
SAVE and LOAD subroutines that are used by BASIC's SAVE and LOAD
commands.

Earlier in this chapter, we showed you an example of a program that built
the custom character set, then used a LOAD command to bring the main
program into memory. This method solves the problem of program space,
but not time. It also introduces new problems. You must split your program
into 2 parts, and "forget" the variables in the loader program with a CLR
before issuing the LOAD.

BASIC programs cannot use the built-in LOAD and SAVE subroutines
directly, but machine language programs can. To speed up and shrink those
programs that use custom characters and bit-mapped backgrounds, we have
written two machine language programs that can be called from BASIC
programs to save and retrieve large blocks of data on disk or cassette.

To use these programs, you would build your custom character set,
sprites, or bit map, and use the SAVE program to store them on disk. The
program that used the data would include the LOAD program as a
subroutine.

.s 269

THE "SAVE" PROGRAM

Before starting to work on your custom character set or display, you
should type in and SAVE the SAVE program on tape or disk.

lee REM SAVER PROGRAM
11121 PS=49152
12121 DATA 16121. 16.177.253.170.2121121.177.253
13121 DATA 16121. 0. 32,186.255.169. 16.166
14121 DATA 253.164.254. 32.189.255.16121, 18
15121 DATA 177.253.133.251.2121121.177.253.133
16121 DATA 252.16121, 2121.177.253.17121.2121121.177
17121 DATA 253.168,169.251. 32.216.255.176
18121 DATA 2.169. 121.133,251. 96
19121 FOR I=PS TO PS+53 READ X : POKE I,X NEXT
2121121 DCB=5B000 : DA=2B000 : 8I2E=256 DV=8
21121 F I $=" LOAD/SA',IE TEST "
22121 REM STORE FILE NAME
23121 FOR 1=1 TO 16 : POKE DCB+l-1.A8C(MIDI(FIS.I.1»)

t·1E::-::T
24121 POKE DCB+16.DV REM LOAD DEVICE
25121 POKE DCB+ 1 7. 1 ; F.~Et1 IDLE FILE t·1Ur'1BEP
26121 POKE DCB+18,DA-256*INT(DA/256) ; REM LOW ADDRESS
27121 POKE DCB+19.DA/256 ; REM HIGH ADDRESS
28121 DE=DA+SIZE-l : REM LAST LOCATION TO SAVE
29121 POKE DCB+21Z1.DE-256*INTCDE/256) ; REM LOW ADDRESS
3121121 POKE DCB+21.DE/256 : REM HIGH ADDPESS
31121 REM SET UP THE POINTER
32121 POKE 253.DCB-256*INTCDCB!256)
33121 POKE 254.DCB/256
34121 REM TRY THE SAVE
35121 S',.'S PS
36121 IF PEEK(251) ()0 THEN 390
370 PR I tH 11 I T L~ORI<ED! 11

38121 END
39121 PRI~H"ERROR:"; PEEf«(251)
400 am

The SAVE program must be customized before you can use it. There are
five variables whose values will depend on the data you are saving. The first
four are assigned in line 200:

DeB is the location of a 22-byte area where values are stored for the
machine language subroutine. The example program uses
locations 50000-50021. There is no need to change this value,
unless you are using this area of memory for other purposes.

DA is the location of the first byte of data to be saved. This value
will probably not match the one you need.

270 Your Commodore /'1

SIZE is the number of bytes to be saved.

DV is the device number of the disk or tape drive on which the data
will be written. If the data is to be saved to tape, use a value of l.
If you are using a disk drive, use the same number you use with
BASIC LOAD and SAVE commands.

The last variable to be changed is FI$. This variable is assigned on line
210 and is the name of the file that will be created by the save. In order to keep
the machine language program simple and short, there is a restriction on the
file name: it must be exactly 16 characters long. If the name you want to use is
shorter, you must add spaces to fill it out to 16 characters. If the name is
longer, any characters beyond the 16th are ignored (if you don't want to count
characters, just add some extra spaces to make sure that the name is long
enough).

The machine language subroutine is stored in locations 49152 through
49205. If you are storing graphics data there, you must move the subroutine.
The subroutine is designed so it can be moved anywhere, but the area where it
is stored must be protected from BASIC. If you do need to move the program,
change the value of the variable PS in line 110 to the memory location where
the program is to start.

When the data you want saved is ready, LOAD the SAVE program.
Insert the tape or diskette on which the data is to be saved, and RUN the
program.

If the built-in SAVE routine indicates an error, the machine language
subroutine will store the error code in location 251. Chapter 8 describes these
codes (they are the same as those returned in the ST variable). There is one
condition that the SAVE program doesn't catch: if you try to replace an
existing file on the disk drive, the program will display a message saying that
the save worked, but the red light on the disk drive will flash. The original file
must be erased, and the program RUN again (see Chapter 8 for a description
of how to erase files).

THE "LOAD" PROGRAM

The BASIC portion of the LOAD program is very similar to the SAVE
program.

10121 REM LOADER DEMO PROGRAM
11121 PS::49152
120 DATA 160. 16,177.253.170.200.177.253
130 DATA 16121. 121 .. ;::Q. U::f .. 255.169, 16 .. 166

140 DATA 253,164.254. 32.189.255.160, 18
150 DATA 177.253.170.200.177.253.168.169
160 DATA O. 32.213.255.144. 7.133,251
170 DATA 169. 0.133.252, 96.134.253,133
1 :::[:1 DATA ;;~52. 96
190 FOR I=PS TO PS+49 : READ X : POKE I.X NEXT
200 DCB=50000 : DA=20000 : DV=8
210 F I $=" LOAD/SA'",'E TEST "
220 REM STORE FILE NAME
230 FOR 1=1 TO 16 : POKE DCB+I-l.ASC(MID$(FI$,I,1»

~'~E}::T

240 POKE DCB+16.DV REM LOAD DEVICE
250 POKE DCB+17.8 : REM IDLE FILE NUMBER
260 POKE DCB+18,DA-256*INT(DA/256) : REM LOW BYTE
270 POKE DCB+19.DA/256 : REM HIGH BYTE
280 REM SET UP THE POINTER
290 POKE 253,DCB-256*INT(DCB/256)
300 POKE 254.DCB/256
310 REM TRY THE LOAD
320 S'r'S PS
330 IF PEEK(252) = [:I THEN 360
340 PR I tH "I T I'JOR~~ED!"
350 Et·m
360 PR I rH" Ef;,:F::GR : " j PEEK (251 :0
370 Hm

However, it is used differently. The LOAD program is intended to be
used as a part of the program that uses the data that is loaded. It can be used
as a subroutine, by replacing the END statements with RETURNs, and
calling it with a GOSUB.

Like the SAVE program, the LOAD program must be adapted to your
use. The DA, DeB, PS, and FI$ variables must be set according to the
directions given above. The SIZE variable is not used, because the size is
stored with the data when it is saved. Since the LOAD program will be
combined with your own, you must make sure that the DATA statements that
contain the machine language are properly placed. Remember that the first
READ statement gets its information from the first DATA statement. If your
program contains READs that are executed before the LOAD program's,
their DATA statements must precede the ones containing the machine
language subroutine.

If you are using more than one graphics feature in the same program,
such as a combination of sprites and custom characters, you will find it
convenient to assign the values of DA and FI$ in the main program and call
the LOAD subroutine to bring in each block of data. If you call the subroutine

272 Your Commocore ~4

more than once, you should skip over the READ statement after the first
time, by using a GOSUB to line 200, instead of 100.

THE MACHINE LANGUAGE SUBROUTINES

Listings of the machine language subroutines used by the LOAD and
SAVE programs are provided in Figures 6-6 and 6-7. If you are not a machine
language programmer, or do not wish to change them, you needn't bother
with them. You can use the programs without having to understand the
machine code.

SORCIM 650x Assembler ver 3.2
absolute saver subroutine for C-64 BASIC

05/20/83 13: 10 Page 1
A:C64SAVE .ASM

0000
0002
0004
0005
0006
0008
OOOA

0000
OOOF
0011
0013

FFD8
FFBA
FFBD
OOFD

= OOFS

A010
B1FD
AA
C8
B1FD
AOOO
20BAFF

A910
A6FD
A4FE
20BDFF

This subroutine is designed to allow the BASIC programmer
, to save screen image •• sprite defintiions, etc to disk or

tape.

When called, it expects a pointer at location .FD to a
structure of the following form:

Offset Contents
o Filename. 16 characters. blank filled.

16 Device address
17 Logical file number (must not be in use)
19 Starting address (in lo-hi format)
20 Ending address (in lo-hi format)

I On return. location .FB contain. the return code from SAVE

SAVE
SETLFS
SETNAM
DCB equ
START

equ
equ
equ
.FD
equ

.FFD8

.FFSA

.FFBD
I pointer to ctl block
.FB start of save pointer and

return code

, .et UP device address

Idy 1116
Ida (dcb),y , device address
tax I stash in x
iny
Ida
Idy
jn

(dcb),y
110
setlfs

I set UP file name

1116
dcb
dcb+1
SETNAM

logical file number
secondary address of 0 (ignore header)

, set name length
.et name

locat ion

FIGURE 6·6. SAVE subroutine

C~lC1pter:' GrourllCS 273

I put starting address into START

0016 A012 ldy 1t18 point to low byte
0018 B1FD Ida (dcb),y
001A 85FB sta st"rt store it
001C C8 iny point to high byte
0010 B1FD Ida (dcb),y
001F 85FC stoll start+l store it

I set up ending memory address

0021 A014 ldy 1t20 point to low byte
0023' B1FD Ida (dcb),y
0025 AA tax .tore it in)(
0026 C8 iny I point to hillh byte
0027 B1FD Ida (dcb),y

0029 A8 tay store it in y

002A A9FD Ida Itdcb point to startinll location
002C 20D8FF j sr SAVE

SORCIM 650x Assembler ver 3.2
"bsolute .aver subroutine for C-64 BASIC

05/20/83 13:10 Page 2
A:C64SAVE .ASM

002F B002 '0033
0031 A900

0033 85FB
0035 60

0036

bcs
Ida

art"'oy
ItO

I yes
no, set code to 0

done SAVEin9. save error code for caller

error:
rts

end

stoll start
I and 90 back

no ERRORs, 6 Labels, 9D7Bh byte. not used. Prollram LWA 0036h.

FIGURE 6·6. SAVE subroutine (continued)

SORCIM 650x Assembler ver 3.2
absolute loader subroutine for C-64 BASIC

05/20/83 13.10 Palle 1
A.C64LOAD .ASH

This subroutine is desi9ned to allow the BASIC programmer
I to load screen images, sprite defintiions, etc from disk

or tape.

When called, it expects a pointer at location tFD to a
structure of the following form:

Offset Contents
o Filename: 16 characters, blank filled.

16 Device address

FIGURE 6·7. LOAD subroutine

274 Your Commoocr.

FFD5
FFBA

= FFBD
OOFD

• OOFB

0000 A010
0002 B1FD
0004 AA
0005 C8
0006 B1FD
0008 ACOO
OOOA 20BAFF

OOOD A910
OOOF A6FD
0011 A4FE
0013 20BDFF

0016 A012
0018 B1FD
001A AA
001B C8
001C B1FD
001E A8
001F A900
0021 20D5FF

0024 9007 '002D

0026 85FB
0028 A900
002A 85FC
002C 60

17 Lo;ical file number (must not be in use)
18 Start in; address (in lo-hi format)

On return, location $FB contains either the last byte
loaded, or the return code from LOAD

LOAD
SETLFS
SETNAM
DCB equ
ENDLD

equ
"qu
equ
$FD
equ

1t16
(dcb),y

$FFD5
$FFBA
$FFBD
I pointer to ctl
.FB I return

device address
stash in x

block
code/endin9

lo;ieal file number

addre ••

Idy
Ida
tax
iny
Ida
Idy
j 51'

(deb),y
ItO secondary address of 0 (i9nore header)
set lfs

I set up file name

Ida
Idx
Idy
j sr

1t16
deb
dcb+l
SETNAM

utt name len9th
set name

location

let UP memory addr .. s.

Idy 1t18 point to low byte
Ida (dcb),y
tax store it in x
iny point to hi;h byte
Ida (deb), y
tay store it in y
Ida ItO indicate LOAD
J 51' LOAD

I se. if all went well

bcc ok yes

error LOADin;. save error code for caller

.ta
Ida
.ta
rts

endld
ItO
endld+l J

.et hi9h byte to 0
to .how it'. an error code.

and 90 back

SORCIM 650x A •• embler vel' 3.2
ablolute loader .ubroutine for C-64 BASIC

05/20/83 13110 Pa;e 2
AIC64LOAD ,ASM

002D 86FB
002F 84FC
0031 60

0032

no ERRORs,

I all i. ok, so 9ive back memory address

ok: stx
sty
rts

end

"ndld
endld+l

low byte
hi9h byte
back to caller

6 Labels. 9D7Bh bytes not us.d. Pr09ram LWA D 0032h.

FIGURE 6·7. LOAD subroutine (continued)

Chou:"r .~. Grccrcs 275

TV Set Limitations

Televisions are designed for moving images of people, places, and things,
not for computer displays. Although the C-64 supplies the same electronic
signals as your local TV station, the contents of the screen are different, and
this can cause problems when you are designing displays.

Your TV picture is not nearly as sharp as it appears. Your favorite star
may look great from across the room, but from inches away, he or she is just a
mass of dots. You've probably seen this same effect, looking at a newspaper
photograph through a magnifying glass. Your eyes (and imagination)
unconciously fill in and smooth out the picture. Another factor is that the TV
picture changes 30 times per second; before you've had a chance to notice the
flaws in the picture, they're gone.

When using your TV with the computer, you will almost certainly be
much closer than normal "watching" distance. This will emphasize the
picture's lack of solidity. Computer displays usually don't change as fast as
the 8 o'clock movie, so there's more time to notice how ragged the edges are.

However, there's another factor that is much more important; television
picture dots don't usually stand alone. It's very rare for a television picture to
contain a line only one dot wide. A dot on the screen is almost always part of a
larger object. You'll also notice that there aren't many abrupt contrasts of
color. The TV set cannot handle this well.

Computer displays are very different. It's quite common to draw very
narrow lines, with pure, contrasting colors side by side. Unfortunately, the
TV set cannot handle this well.

The electronics needed to be able to precisely display two dots of any
color side by side without distortion is very complex and expensive. Color
terminals that can do this typically cost $8000 to $lO,OOO or more. On the
other hand, equipment to do an adequate job for ordinary television watching
can be built for a small fraction of that cost. In designing your displays, you
must keep in mind the things that TV sets can't do well.

AVOIDING THE TV SET'S WEAKNESSES

There are two things you can do to ensure that your computer displays
are pleasing: choose your colors carefully, and avoid vertical lines that are
only one dot wide.

Color choices are necessary because the way the TV signal is encoded
makes it harder to switch between some colors than between others.

Remember that the electron beam in the TV is sweeping from left to right.] f
you use "difficult" colors, the fringe will appear to the right of the color
change. This also means that you don't have to worry about dots that are on
different rows, because the TV starts out fresh at the beginning of each row.

VERTICAL LINE WIDTHS

The problem of narrow vertical lines is really a symptom of color
changes. If the colors are incompatible, it is possible that it will take more
than one dot to make the change. For example, it takes almost three dots .0
change from dark blue to dark red. A single red dot on a blue background is
almost invisible, and it doesn't look red at all.

As a rule of thumb, when it is easy to switch from one color to a second
color and from the second color to the first, it may be possible to draw lines
one dot wide in those colors. Unfortunately. this is not a hard-and-fast rule.
TV sets vary greatly, and what works on one may not work on another. Even
changing the settings of the TV controls can affect the appearance of the
display. Unless you can be certain that your program will always run on the
same type of equipment, you should avoid using isolated dots, and lines only
one dot wide.

CHAPTER

Sound

This chapter will show you how to produce sound with the C-64. You
will learn how to create convincing sound effects to enhance your programs.

You will also learn how to control the sound registers, mix tones, and use
sound-shaping techniques to produce variations such as tremolo and vibrato.

In addition to showing you how to produce sounds, this chapter also
covers saving and playing back your sounds from either the disk drive or the
Datassette.

THE SOUND REGISTERS

The SID Chip

Like the video display, the sounds that the C-64 makes are created by a
special integrated circuit. This chip is called the "Sound Interface Device," or
"SID." The SID contains three separate sound generators, or "voices," that
are blended together to form the sound you hear through your TV speaker.

277

278 Your Commodore 64

The SID has twenty-five memory locations, called sound registers, that
control sound output. These locations control the volume, the tone, and the
type of sounds produced. Table 7-1 shows the memory location and function
of each of the sound registers.

TABLE 7·1. Sound Register Memory Locations

Memory Location

54272
54273
54274
54275
54276
54277
54278

54279
54280
54281
54282
54283
54284
54285

54286
54287
54288
54289
54290
54291
54292

Sound Register Description

54272 - 54278 VOICE #1

Lower half of tone frequency value
Upper half of tone frequency value
Lower half of pulse-width value
Upper half of pulse-width value
Waveform control register
Attack and Decay control register
Sustain and Release control register

54279 - 54285 VOICE #2

Lower half of tone frequency value
Upper half of tone frequency value
Lower half of pulse-width value
Upper half of pulse-width value
Waveform control register
Attack and Decay control register
Sustain and Release control register

54286 - 54292 VOICE #3

Lower half of tone frequency value
Upper half of tone frequency value
Lower half of pulse-width value
Upper half of pulse-width value
Waveform control register
Attack and Decay control register
Sustain and Release control register

54293 - 54296 SOUND FILTERING FUNCTIONS

54293
54294
54295
54296

Lower half of cutoff filter value
Upper half of cutoff filter value
Resonance and sound filtering values
Mode and volume controls

Memory location 54296 controls the volume of the sounds produced by
the C-64. Sixteen different volume levels can be selected. These range from 0
(off) to 15 (loudest). To control the volume, enter any value between 1 and IS.
By itself, however, the volume control register produces no sound. You must
also set the voice control registers.

Voice Control Registers

Looking at Table 7-1, you'll notice that each of the 3 "voices" has a set of7
memory locations associated with it. These locations control the type of sound
produced by that voice. All 3 sets of voice control registers work the same way,
so even though most of our examples use voice # I, you can use the same values
POKEing notes into voices 2 and 3.

SEnlNG UP THE VOICE CONTROL REGISTERS

When the C-64 is turned on, the voice control registers will take on
random values. If the registers are not POKEd with the right values, the SID
will make unpredictable sounds or no sound at all. To set up the SID chip
properly, enter these POKE statements:

POKE 54274,O
POKE 54275,8
POKE 54276,65
POKE 54277,121
POKE 54278,240

As you read this chapter, you will learn the uses of the various registers and
how to determine your own POKE values. The first two we'll examine control
the frequency of the sound.

POKEING A TONE

Table 7-2 shows the frequencies the SID can produce, the approximate
musical notes achieved, and the values you must POKE into the tone registers
to generate the frequencies.

The lowest audible note the SID can produce is a low C (approximately
16 Hz, or 16 cycles per second). Enter the values for this note into the low tone
registers

POKE 54272, 12:POKE 54273,1

and turn on the maximum volume.

POKE 54296, 15

280 Your Commod0'8 •

To turn off the sound, you can use any of the following methods:

POKE 0 into the tone registers

POKE 0 into the volume register
Simultaneously press RUN/STOP and RESTORE.

The first method puts a nonexistent tone value into the tone registers.
The second method turns the volume register to the minimum position,

which is off.
The third method resets the system and therefore resets all system

variables, such as the tone registers, screen and border colors, and so on.
lt is better to use one of the first two methods, since the third method may
do more than you had in mind.

TABLE 7·2. POKE Values, Frequencies and Musical Equivalents

Upper Tone Lower Tone Frequency Musical
POKE Value POKE Value Produced Note

OCTAVE ONE

12 16 Hz C
28 17 Hz C#
45 18 Hz D
62 19 Hz D#
81 21 H7 E

101 22 Hz F
123 23 Hz F#
145 24 Hz G
169 25 Hz G#
195 27 Hz A
221 29 Hz A#
250 31 Hz B

OCTAVE TWO

2 24 32 Hz C
2 56 34 Hz C#
2 90 37 Hz D
2 125 39 Hz D#
2 163 41 Hz E
2 203 44 Hz F
2 246 46 Hz F#
3 35 49 Hz G
3 83 52 Hz G#

Chapter 7 Saund 281

TABLE 7·2. POKE Values, Frequencies, and Musical Equivalents (continued)

Upper Tone Lower Tone Frequency Musicap
POKE Value POKE Value Produced Note

3 134 55 Hz A
3 187 58 Hz A#
3 244 62 Hz B

OCT A VE THREE

4 48 65 Hz C
4 112 69 Hz C#
4 180 73 Hz D
4 251 76 Hz D#
5 71 82 Hz E
5 151 87 Hz F
5 237 92 Hz F#
6 71 98 Hz G
6 167 104 Hz G#
7 12 110 Hz A
7 119 117 Hz A#
7 233 123 Hz B

OCTAVE FOUR

8 97 131 Hz C
8 225 139 Hz C#
9 104 147 Hz D
9 247 156 Hz D#

10 143 165 Hz E
II 47 175 Hz F
II 218 185 Hz F#
12 142 196 Hz G
13 77 208 Hz G#
14 24 220 Hz A
14 238 233 Hz A#
15 210 247 Hz B

OCTAVE FIVE

16 195 262 Hz C
17 194 277 Hz C#
18 208 294 Hz D
19 238 311 Hz D#
21 30 330 Hz E
22 95 349 Hz F
23 180 370 Hz F#
25 29 392 Hz G
26 155 415 Hz G#
28 48 440 Hz A

TABLE 7·2. POKE Values, Frequencies, and Musical Equivalents (continued)

Upper Tone Lower Tone Frequency Musicap
POKE Value POKE Value Produced Note

29 221 466 Hz A#
31 164 494 Hz B

OCTAVE SIX

33 134 523 Hz C
35 132 554 Hz C#
37 161 587 Hz D
39 221 622 Hz D#
42 60 659 Hz E
44 191 698 Hz F
47 104 740 Hz F#
50 58 784 Hz G
53 55 831 Hz G#
56 97 880 Hz A
59 187 932 Hz A#
63 72 988 Hz B

OCTAVE SEVEN

67 12 1046 Hz C
71 8 1109 Hz C#
75 66 1175 Hz D
79 187 1244 Hz D#
84 121 1319 Hz E
89 127 1397 Hz F
94 209 1480 Hz F#

100 117 1568 Hz G
106 Ito 1661 Hz G#
112 194 1760 Hz A
119 118 1865 Hz A#
126 145 1976 Hz B

OCT A VE EIGHT

134 24 2093 Hz C
142 17 2217 Hz C#
150 132 2349 Hz D
159 119 2489 Hz D#
168 242 2637 Hz E
178 254 2794 Hz F
189 163 2960 Hz F#
200 234 3136 Hz G
212 220 3322 Hz G#
225 132 3520 Hz A
238 237 3729 Hz A#
253 34 3951 Hz B

Chapter 7 Sound 283

THE COMPONENTS OF SOUND

Pure Tones
With the control register values we have been using, the SID produces

continuous frequencies ranging from about I Hz to 3995.669 Hz. A cycle, in
tonal frequencies, refers to a sound that starts at its minimum volume, rises to
its maximum volume, and falls again to its minimum volume.

'-'
E
;oj

"0
?~~--------------~----~

Time

Minimum volume

The actual tone of a sound is a direct function of its frequency (how
quickly it rises and falls). If you double the frequency, you will have a tone
exactly one octave higher than before. Try this program.

10 REM: CLEAR SOUND REGISTERE
20 FOR R~54272 TO 54296: POKE R,O: NEXT
30 REM SET UP REGISTER 4H
40 POKE 54274, 0: POKE 54275, 8
50 POKE 54278, 240: POI<E 54296, 151 T=l
60 POKE 54277, 0: POKE 54276, 65
70 REMI READ FUNCTION KEYS
90 GET A.: IF A.=IOIO THEN 120
100 IF A!II=CHR$ (133) THEN 160
110 IF A$cCHR$(134) THEN 170
120 IF A$=CHR$(135) THEN 180
130 IF A$=CHR$(136) THEN 200
140 GOTO 90
150 REM: POKE TONES INTO SOUND REG. *1
160 POKE 54272,48:POKE 54273, 4:GOTO 90
170 POKE 54272,97:POKE 54273, SluOTO 90
180 POKE 54272, 195: POKE 54273, 16:GOTO 90
190 REM: TOGGLE VOLUME CONTROL
200 IF T=l THEN POKE 54296,O:T=-1IGOTO 90
210 POKE 54296, 151 T=l: GOTO 90

284 Your CommOdore 611

Line 20 POKEs zero into all the tone registers which clears them. This
prevents them from generating random sounds before we enter the sound we
want into them. You may have noticed that every time we want to POKE a
tone value into a sound register, we must use two values. This is because the
C-64 has a range of 65,535 different tones but a single memory location can
only hold 256 different numbers (255 if you delete 0 which produces no sound).
So to produce the full range of 65,535 different sounds, the C-64 uses two
memory locations for each tone value. The numbers in those two locations
combine to make a number that is between 0 and 65,535.

The number produced by these two memory locations is represented as a
16-bit binary number, but you don't have to understand binary numbers to use
the sound registers; just use Table 7-2 to find the note you want and POKE the
indicated values into the sound registers.

Lines 40-60 set up the sound register for continuous tones just as we did
earlier.
Lines 90-130 read the function keys and branch to the routines that play the
note "C" in one of three different octaves (in lines 160-180).

If you press F7 then you will branch to line 200 which turns the sound
ON or OFF. The program then branches back to line 90 and waits for you to
press another key.

SWEEPING THE SCALES

You can change the value in a tone register while it is on. This will switch
immediately from one note to another. This is especially useful for sliding from
one note to the next. Try the following example.

10 FOR R-54272 TO 542961 POKE R,OI NEXT
20 POKE 54272, 01 POKE 54273, °
30 POKE 54274, 0. POKE 54275, 8
40 POKE 54278. 240. POKE 54296 p . 15
50 POKE 54277, 0. POKE 54276, 65
60 FOR F-O TO 65535 STEP 256
70 H-INT(F/256). L-INT(~-(256*H»
80 POKE 54272, Ll POKE 54273, H
90 NEXT
100 FOR R-54272 TO 542961 POKE. R,OI NEXT

This program sweeps the entire range oft ones in the C-64 in increments of
256. You can make the steps smaller or larger by changing the STEP number
in line 50.

Line 60 contains the routine for converting decimal numbers between
65535 and 0 into the correct POKE values for the tone registers. You can use
this routine to create any tone you want.

MULTIPLE TONES

By sounding two or more tones at once, you can add depth to many of
your sound effects. Adding these lines to the sample program will play two
tones at once.

25 POKE 54281, O. pm:E 54282, 8
35 POKE 54285, 240
45 POKE 54284, 01 POKE 54283, 65
75 POKE 54279, LI POKE 54280, H

You can also harmonize. Type NEW and enter the following program:

10 REM --- CLEAR SOUND REGISTERS ---
20 FOR R=54272 TO 542961 POKE R,OI NEXT
30.REM --- SET - UP TONE REGISTERS
40 POKE 54274, 01 POKE 54275, 8
50 POKE 54281, 0; POKE 54282, 8
60 POKE 54288, 0; POKE 54289, 8
70 POKE 54278, 240. POKE 54296, 15
80 POKE 54285, 240 aPOKE 54292, 240
90 POKE 54276, 651 POKE 54283, 6:5: POKE 54290, 65
100 REM --- TURN ON TONES ---
110 POKE 54273, 161 POKE 54272, 195
120 FOR G-O TO 500. NEXT
130 POI<E 54280, 211 POKE 54279, 30
140 FOR G=O TO 500; NEXT
150 POKE 54287, 25; POKE 54286, 29
160 FOR G=O TO 5001 NEXT
170 FOR G=O TO 1500. NEXT
180 REM --- TURN OFF TONE REGISTERS ---
190 FOR R=54272 TO 542961 POKE R,Oa NEXT

With careful planning, you can make listeners think they are hearing
more than three sound registers. Try adding these lines.

162 POKE 54273, 331 POKE 54272, 134
165 FOR G=O TO 500 I NEXT

PULSED TONES

Another method of modifying the sound registers involves quickly turn­
ing them on and off. This method, called pulsing, can create the effect of a
buzzer.

To get a better idea of how pulsing works, look at Figure 7-1 in relation to

286 V8ur Commodore ~

the following program:

10 FOR R=54272 TO 542961 POKE R,OINEXT
20 POKE 54274, 01 POKE 54275, 8
30 POKE 54278, 2401 POKE 54296, 15
40 POKE 54277, 0: POKE 54276, 65
50 FOR T-O TO 15 STEP .3
bO POKE 54272, 01 POKE 54273, 0
70 FOR F=O TO 400: NEXT
80 POKE 54272, 67: POKE 54273, 12
90 NEXT
100 POKE 54296, 0

Lines 10 through 50 set up the sound registers, but there is no sound
output until the tone register is turned on. Line 60 starts the loop that
determines the number of pulses produced (we've chosen 50). Line 70 starts the
sound at 0 (off), as shown in Figure 7-1. Line 80 is the delay loop that
determines the off-time for the pulse. Line 90 turns the sound on. Line 100

OJ

E
;:I

-0
>

POKE 36876, 200
(pulse on)

POKE 36876,200
(pulse on)

------ ---- ---- - ----- ----.-...---POKE 36878,15

o 0

Time

FIGURE 7·1. Pulsed waveforms

Chapter 7 Sound 287

completes the loop, sending the program back to line 60. In line 70, the sound
is immediately turned off again. After repeating 50 times, the loop ends at line
110 by turning the sound register off.

By increasing the length of the delays between pulses, you can tailor this
program to create the sound of a bouncing ping-pong ball. Change line 80 as
follows:

70 FOR FaO TO 400: NEXT

Volume Adjustments

Up to this point we've been using the volume control as an onl off switch.
However, it can also be used to change the nature of the sounds being
produced. You can produce a number of effects simply by varying the volume
of a tone.

FADING TONES

By slowly reducing the volume of the sound, we can make it sound like
the ball is bouncing away. First, change line 50 to read as follows:

50 FOR TaO TO 15 STEP.3

This still produces 50 steps through the loop, but in this application, T must
never exceed 15 (the highest allowable number in the volume register).

Next, POKE the loop value into the volume register by adding the
following line:

55 POKE 54296, 15-T

This causes the volume to decrease with each pass through the loop.
You can also use the loop variable to decrease the length of the delays

between pulses as the volume decreases. This produces a sound resembling a
dropping ball. Try changing line 70 to

70 FOR Faa TO 400-T*26: NEXT

The number 26 was chosen because 400 divided by 15 is approximately 26.
This divides the steps of the delay into 50 even increments. Subtracting the
loop value from 400 reduces the delay in the increments each time through the
loop.

Try changing the tones used in the first ping-pong program to produce

288 Your Commodore 64

the sound of a clock ticking. This can be accomplished by using two different
tone values on alternate loops.

AnACK/SUSTAIN/DECAY

When you playa note on a piano, the sound begins loudly and slowly
fades until it finally fades away completely. The start of the sound is called the
attack. The portion of the sound in which the volume is maintained is called
sustain, and the last part of the sound, in which it fades, is called decay.

...
8
;::I

'0
>

Sustain

Time

All ofthe sounds we've produced so far have had a very fast attack and a
very fast decay. When these parameters are changed, the sounds become quite
different. Here is the original bouncing ball program again.

10 FOR R=54272 TO 542961 POKE R,O.NEXT
20 POKE 54274, 0: POKE 54275, 8
30 POKE 54278, 2401 POKE 54296, 15
40 POKE 54277, 0: POKE 54276, 65
50 FOR T=O TO 15 STEP .3
60 POKE 54272, 0: POKE 54273, 0
70 FOR F~O TO 400. NEXT
80 POKE 54272, 671 POKE 54273, 12
90 NEXT
100 POKE 54296, 0

One way to produce a decay in the sound being produced is by adding a
loop that causes the volume to sweep down each time the tone is produced.

85 FOR V=Q TO 151 POKE 54296,15-VcNEXT

Chapter 7 Souno 289

If we also add some lines to provide attack, the program looks like this.

5 INPUT "ATTACK"; A
7 INPUT "DECAY". D
10 FOR R-54272 TO 54296: POKE R,OINEXT
20 POKE 54274, 0: POKE 54275, 8
30 POKE 54278, 2401 POI<E 54296, 15
40 POKE 54277, 01 POKE 54276, 65
SO FOR T-O TO 15 STEP .3
60 POKE 54272, 0: POKE 54273, 0
70 FOR F=O TO 400. NEXT
80 POKE 54272. 67: POKE 54273, 12
85 FOR VmO TO 15 STEP A: POKE 54296, VINEXT
87 FOR V-O TO 15 STEP DI POKE 54296, 15-VINEXT
90 NEXT
100 POKE 54296, 0

Listen to the differences introduced by different attack/ decay ratios. You
can enter any positive number, including fractions, in the input statement. If
you enter 0 for either the attack or decay, however, the note will never end.

Sustain can be added by including a delay between the attack and the
decay as follows:

9 INPUT "SUSTAIN"; S
96 FOR S8=1 TO 8: NEXT

DECAYS USING THE BUILT·IN FUNCTIONS

The only real disadvantage of producing attacks and decays this way is
that any of the effects that you produce will affect all of the tone registers.
Depending on the sounds you want to produce, this may cause problems.

The C-64 has another way to change the attack, decay and sustain of a
tone. The key to these features is in the sound registers we looked at in Table
7-1.

Figure 7-2 shows the attack and decay control registers for sound
register # 1. They are located in memory location 54277.

By POKEing values between 0 and 15 into the lower four bits of this
memory location (the decay register), we can create decays of different
lengths.

290 Your Commodore 64

Bit Values 128 64 32 16

I I I I I
~

842 I

I I I I I
~

Attack Control Decay Control

FIGURE 7·2. Memory location 54277: attack/ decay control

5 INPUT "DECAY". D
10 FOR R=54272 TO 54296: POKE R,O:NEXT
20 POKE 54274, 01 POKE 54275, 8
30 POKE 54278, O. POKE 54296. 15
40 POKE 54277, D
:SO FOR T=l TO 1
60 POKE 54272, 67: POKE 54273. 12: POKE 54276, 65
70 FOR F-OTO tOOO I NEXT:POKE54273, 0: POKE54272,01

POI<E 54276, 64
80 NEXT
90 POKE 54296, 0

Notice what happens as you use different decay values. The smaller
values (shorter decays) drop to a very low sound level much sooner than the
length of the note (which is determined by the loop in line 85). On the other
hand, the longer delays drop so slowly that they are still fairly loud when the
note stops. You'll need to be aware of the amount of decay you are introduc­
ing whenever you use this function and make the note last as long as your
decay requires.

ATTACKS USING THE BUILT·IN FUNCTIONS

Producing attacks using the built-in attack function is nearly identical
to producing decays. The only real difference is that we need to place the
attack values into the upper portion of memory location 54277. The simplest
way to do this is to mUltiply the attack value by 16 and POKE that value into
memory location 54277. Try changing lines 5 and 40 as follows:

5 INPUT "ATTACK"; A
40 POKE 54277, A.16

Chapter 7 Sound 291

SUSTAIN

When you run this program you will find another interesting feature of
the built-in sound functions. The shorter attack functions cause the sound
volume to rise abruptly and then falljust as abruptly, maintaining a very low
volume level until the end of the note. This is because the sound register
turns the volume down at the end of the attack function. To make it continue
after the attack, you will need to include a sustain value as well. This will
keep the tone at its peak value until the sound times out. This can be
accomplished by POKEing a large value into the upper half of the Sustain/
Release register (memory location 54278 if you are using sound register # I)
in line 30.

30 POKE 54278, 2401 POKE 54296, 15

Another thing to look at is the longer attack functions. If the time-out
value in your delay loop is too short, the sound may turn off before it reaches
maximum volume. To compensate for this, you may need to increase the
length of the time-out delay if you are using very long attack values.

Sustain can also be accomplished by using standard delay loops. Here
is a routine that produces attacks, decays and sustains using only delay
loops.

10 INPUT "ATTACK", A
20 INPUT "DECAY", D
30 INPUT "SUSTAIN", S
40 FOR R-54272 TO 542961 POKE R,O:NEXT
50 POKE 54274, 01 POKE 54275, 8
60 P~E 54279, 2401 POKE 54296, 15
70 POKE 54277, 01 POKE 54276, 65
eo POKE 54272, 01 POKE 54273, 0
100 POKE 54272, 67: POKE 54273, 12
110 FOR v-o TO 15 STEP AI POKE 54296, V:NEXT
120 FOR L-O TO S
125 NEXT
130 FOR v=o TO 15 STEP DI POKE 54296, 15-VINEXT
140 POKE 54296, 0

VIBRATO/TREMOLO

Vibrato and tremolo take place during the sustain portion of the tone.
Vibrato is a passage in which the volume is raised and lowered quickly to
produce a wavering effect. Enter the following lines to produce vibrato:

292 Your Commodore ('4

121 FOR V=O TO S
122 FOR W=O TO 7:POKE 54296, 15-W: NEXT
123 FOR W=8 TO 15:POKE 54296, WI NEXT
125 NEXT

Tremolo is a fast vibrato. If you change lines 122 and 123 to

122 FOR W=15 TO 8 STEP -J: POKE 54296, W: NEXT
123 FOR W=8 TO 15 STEP J: POKE 54296, W: NEXT

and add an input line to enter the vibrato rate

1 H~PUT "I/IB. RATE"; J

you will be able to vary these parameters at the start of each tone. Entering
larger numbers will increase the speed of the vibrato, and smaller numbers
will slow it down. Do not enter numbers larger than 15; they will have no
effect. Entering a 0 will result in an endless loop.

Mixing Tones

Earlier in this chapter we put three harmonizing tones together to
create a chord. It is also possible to combine tones to create entirely new
sounds. Let's take a look at some of these.

BEAT FREQUENCY

A beal frequency is a sound that is prod uced when two tones that are
very close together are played at the same time. Try the following simple
experiment:

10 FOR R=54272 TO 542961 POKE R,O: NEXT
20 POKE 54275, 8: POKE 54296, 15
25 POKE 54282, 8
30 POKE 54278, 2401 POKE 54276, 65
35 POKE 54285, 240 I POI<E 54283, 65
40 INPUT" STARTING FREQUENCY"; F
50 FF:F/.06097
60 H=INT(FF/256):L=INT«FF/256-H)*256)
70 POKE 54272, L: POKE 54273, H
80 FOR G=F-l00 TO F+100
85 FO=G/.06097
87 HO=INT(FO/256):LO=INT«FO/256-HO)*256)
88 POI<E 54279, LO: POKE 54280, HO: NEXT
90 FOR R=54272 TO 54296: POKE R,O: NEXT

Chapter 7 Sound 293

This will allow you to hear the effects of different notes (frequencies) on each
other. Listen for the "beat" that occurs at certain freq uencies. This is caused
by the interaction of the two tones.

Selecting Waveforms

Up to this point, we've been making sounds using only one waveform­
square waves. In addition to these, the C-64 can produce three other kinds of
sounds. These sounds are produced by the different kinds of waveforms
produced. They are: triangle, sawtooth and white noise.

Loo king at the shapes of the waveforms, it is easy to see how they affect
the sound. For example, the square waves we have been using up to this
point rise sharply, stay at that high level for exactly half of their period and
then fall sharply. staying low for the other half.

Maximum
Volume

I Sound Wave
I------i - - - - -

I CYc1!

~ I
~ llme_

Minimum Volume

These kinds of square waves are called symmetrical square waves
because they are at their high level for exactly as long as they are at their low
level. We can modify this symmetry by changing the pulse-width registers.
F or sound register #1, these are memory locations 54274 and 54275. Here is
a routine that sounds a single tone while sweeping the pulse width from one
end of its range to the other in increments of 16.

10 FOR R=54272 TO 542961 POKE R,O: NEXT
20 POKE 54272, 151 POKE 54273, 10
30 POKE 54296, 15: POKE 54278, 240
40 POKE ~4276. 65
50 FOR RmO TO 4095 STEP 16
&0 H-INT(R/256):L=R-2~6'H
70 POKE 54274, LI POKE 54275, H: NEXT
eo FOR G-F-l00 TO F+l00
90 FOR R:or54272 TO 54296: POKE R,OINEXT

294 Your Commodore ('4

When you run this program, the sound begins as a buzzy, tinny sound.
As the pulse width becomes more symmetrical, the sound becomes fuller.
Finally, at the upper end of the pulse-width sweep, the sound becomes buzzy
again.

1 Cycle 1 Cycle 1 Cycle 1 Cycle 1 Cycle 1 Cycle 1 Cycle

,....---- -

-
1% 30% 50% 70% 90% 99%

Pulse width ratio (per 100%) sweep up

The triangle, sawtooth and noise registers are not affected by the pulse
width. To turn on the triangle waveform, change line 40 to POKE the
waveform control register (54276) with 17 instead of 65.

40 POKE ~4276, 17

For a sawtooth, POKE 54276 with 33 instead of 17.

40 POKE 54276, 33

To turn on the noise register, use 129 instead of 33.

40 POKE ~4276, 129

USING THE NOISE REGISTER

The noise register operates exactly like the tone registers. Here's a
bouncing ball program, this time using the noise register.

10 FOR R=~4272 TO 54296: POKE R,O:NEXT
20 POKE ~4274. 01 POKE ~427~~ 8
30 POKE ~4278, 240: POKE ~4277, 0
40 POKE ~4296. 15
~O POKE 54272, 671 POKE 54273, 12
60 FOR T=O TO 1~

70 POKE ~4276, 128
80 FOR F=O TO 400, NEXT

90 POKE 54276, 129
100 NEXT

Chapter 7 Sound 295

110 FOR R=54272 TO 54296: POKE R,OINEXT

Now let's add some decay to the sound.

30 POKE 542?8, 0: POKE 54277, 9
95 FOR N=OT0500: NEXT

By also modifying the repeat rate, we can create a sound similar to a
train as follows:

80 FOR F8 0 TO 400-26*T: NEXT

By mixing sound we can also add a train whistle. Add the following
lines to your program:

11 POKE 54285, 0: POKE 54284, 13
12 POKE 54280, 161 POKE 54279, 195
110 FOR T~O TO 150
120 POKE 54276, 128
125 IF T=30 OR T=35 OR T=70 OR T-75 THEN 180
130 POKE 54276, 129
140 POKE 54296, 15-T/l0
150 FOR N=OT0500-T*31 NEXT
160 NEXT
170 GOTO 200
180 POKE 54283, 32:. POKE 54283, 33
190 GOTO 130
200 FOR R=54272 TO 54296: POKE R,O:NEXT

PROGRAMMING MUSIC ON
THE C-64

By POKEing values and delays into the sound registers we can write
song programs.

5 REM ---- SET UP REGISTERS ----
10 FOR R-54272 TO 54296: POKE R,O:NEXT
20 POKE 54278, 240: POKE 54277, 0
30 POKE 54296, 15
3~ REM ---- START PLAYING MUSIC ----
40 POKE 54272, 134: POKE 54273. 33
50 POKE 54276, 17
bO FOR R=O TO 200: NEXT
70 POKE 54276, 16
BO FOR RzO TO 100. NEXT
90 POKE 54276, 17

296 Your Commodore 64

100 FOR R=O TO 2001 NEXT
110 POKE 54276, 16
120 FOR R=O TO 100: NEXT
130 POKE 54272, 161: POKE 54273, 37
140 POKE 54276, 17
150 FOR R=O TO 200: NEXT
160 POKE ~4276, 16
170 FOR R=O TO 100: NEXT
180 POKE ~4272, 60: POKE 54273, 42
190 POKE 54276, 17
200 FOR R=O TO 200: NEXT
210 POKE 54276, 16
220 FOR R=O TO 100: NEXT
230 POKE 54272, 134: POKE 54273, 33
240 POKE 54276, 17
250 FOR R=O TO 20c): NEXT
260 POKE ~4276, 16
270 FOR R=O TO 1001 NEXT
280 POKE 54272, 601 POKE 54273, 42
290 POKE 54276, 17
300 FOR R-O TO 2001 NEXT
310 POKE 54276, 16
320 FOR R~O TO 1001 NEXT
330 POKE 54272, 1611 POKE 54273, 37
340 POKE 54276, 17
350 FOR R=O TO 6001 NEXT
360 POKE ~4276, 16
370 FOR R=O TO 1001 NEXT
380 POKE 54272, 134, POKE ~4273, 33
390 POKE 54276, 17
400 FOR R-O TO 200. NEXT
410 POKE 54276, 16
420 FOR R-O TO 100.. NEXT
430 POKE 54276, 17
440 FOR R=O TO 200: NEXT
~wV POKE 54276, 16
460 FOR R-O TO 100, NEXT
470 POKE 54272, 1611 POKE 54273, 37
480 POKE ~4276, 17
490 FOR R-O TO 200. NEXT
500 POKE ~4276" 16
~10 FOR R=O TO 1001 NEXT
520 POKE 54272, 601 POKE 54273, 42
530 POKE 54276, 17
540 FOR R=O TO 200. NEXT
5~0 POKE 54276, 16
560 FOR R-O TO 100. NEXT
570 POKE 54272, 134: POKE 54273, 33
580 POKE 54276, 17
590 FOR R-O TO 600. NEXT
600 POKE 54276. 16

610 FOR R=O TO 100. NEXT
620 POKE 54272, 164. POKE 54273, 31
630 POKE ~4276, 17
640 FOR R=O TO 600. NEXT
650 POKE 54276, 16
660 FOR R=O TO 100: NEXT
670 POKE 54272, 134: POKE 54273, 33
680 POKE 54276, 17
690 FOR R=O TO 200: NEXT
700 POKE 54276, 16
710 FOR R-O TO 100: NEXT
720 POKE 54276, 17
730 FOR R-O TO 200: NEXT
740 POKE 54276, 16
750 FOR R=O TO 100: NEXT
760 POKE 54272, 161: POKE 54273, 37
770 POKE 54276, 17
780 FOR R-O TO 200: NEXT
790 POKE 54276, 16
800 FOR RmO TO 100, NEXT
810 POKE 54272, 60: POKE 54273, 42
820 POKE 54276, 17
830 FOR R=O TO 200: NEXT
840 POKE 54276, 16
850 FOR R=O TO 100. NEXT
860 POKE 54272, 191: POKE 54273, 44
870 POKE 54276, 17
880 FOR R=O TO 200: NEXT
890 POKE 54276, 16
900 FOR R-O TO 100: NEXT
910 POKE 54272, 60: POKE 54273, 42
920 POKE 54276, 17
930 FOR R=O TO 200: NEXT
940 POKE 54276, 16
950 FOR R-O TO 100: NEXT
960 POKE 54272. 1611 POKE 54273, 37
970 POKE 54276, 17
980 FOR RaO TO 2001 NEXT
990 POKE 54276, 16
1000 FOR R-O TO 100. NEXT
1010 POKE 54272, 134. POKE 54273, 33
10.20 POKE 54276.. 17
1030 FOR R-O TO 200: NEXT
1040 POKE 54276, 16
1050 FOR R-O TO 1001 NEXT
lobO POKE. 54272. 1~41 POKE 54273, 31
1070 POKE 54276, 17
1080 FOR R-O TO 200. NEXT
1090 POKE 54276, 16
1100 FOR R-o TO 1001 NEXT
1120 POKE 54272, 29: POKE 54273, 25

10 297

298 Your COY'ITIOe)Ore ' -

1130 POKE 54276, 17
1140 FOR R-O TO 200. NEXT
1150 POKE 54276, 16
1160 FOR R=O TO 100. NEXT
1170 POKE 54272, 48& POKE 54273, 28
1180 POKE 54276, 17
1190 FOR R-O TO 200: NEXT
1200 POKE 54276, 16
1210 FOR R=O TO 100: NEXT
1220 POKE 54272,.164: POKE 54273, 31
1230 POKE 54276, 17
1240 FOR R-O TO 200. NEXT
1250 POK~ 54276, 16
1260 FOR R"O TO 100: NEXT
1270 POKE 54272, 134: POKE 54273, 33
1280 POKE 54276, 17
1290 FOR R=O TO 600. NEXT
1300 POKE 54276, 16
1310 FOR R=O TO 100. NEXT
1320 POKE 54276, 17
1330 FOR R=O TO 600: NEXT
1340 POKE 54276, 16
1350 FOR R~54272 TO 54296& POKE R,O:NEXT

This isn't a very long song, but the program is quite long. If you
attempted to put all of the notes of a song into a program this way, you
would probably run out of memory.

Another way to enter music into a song program is by using DATA
statements. A program of this type requires three short sections: a routine
that reads the notes, one that plays them, and one that contains the notes as
data. Try this version of the song.

10 FOR R=54272 TO 542961 POKE R,O: NEXT
20 POKE 54278, 2401 POKE 54296, 15
30 DATA 134,33,200,134,33,200,161,37,200,60,42,200,134,33,

200,60,42,200,161,37
40 DATA 600,134,33,200,134,33,200,161,37,200,60,42,200,

134,33,600,164,31,600
50 DATA 134,33,200,134,33,200,161,37,200,60,42,200,191,44,

200,60,42,200,161,37
6(1 DATA 200,134,33,200, 164.31,200,29,25,200,48,28,200,

164,31,200,134,33,600,134
70 DATA 33,600,999,999,999
80 READ A,B,C
90 IF A-999 THEN 160
100 POKE 54272, AI POKE 54273, B
110 POKE 54276, 17
120 FOR RaO TO C: NEXT
130 POKE 54276, 16

Chapter 7 Sound 299

140 FOR R-O TO\OOI NEXT
150 GOTO 80
160 FOR R~54272 TO 542961 POKE R,OI NEXT

By changing the values in the DATA statement, you can play almost
any song you like. Enter 999 to signal the end of the song, as shown above.

Programming Rhythm

Programming rhythm on the C-64 is much like programming the train
sound we made earlier. Let's start with a simple drum sound.

10 FOR R=54272 TO 54296: POI<E R,OI NEXT
20 POKE 54277, 6~ POKE 54296, 15
30 POKE 54272, 151 POKE 54273, 2
40 DATA 375,150,165,999
50 READ A
bO IF A=999 THEN 100
70 pm~E 54276, 129
80 FOR R= 0 TO AI NEXT
90 POKE 54276, 128: GOTO 50
100 RESTORE: GOTO 50

By using another tone in the same register we can add a bass drum:

10 FOR R=54272 TO 542961 POKE R,O. NEXT
20 POKE 54277, 6: POKE 54296, 15
30 POKE 54272. 15: POKE 54273, 2
40 DATA 33,375,129,150,129,165,999,999
50 READ A,a
60 IF A-999 THEN 100
70 POKE 54276, A
80 FOR R-O TO 8: NEXT
90 POKE 54276, 01 GOTO 50
100 RESTORE: GO TO 50

Changing the loop variable will vary the speed of the rhythm.

80 FOR ReO TO 8/2: NEXT

By adding some additional READ and DATA statements to the
rhythm program we can include a melody. Here's the complete listing.

1121 FOR R=54272 TO 54296: POKR R. 121: NEXT R
20 POKE 54277, 4121; POKE 54296. 15
3121 POKE 54272, IS: POKE 54273. 3
35 POKE 54285. 24121: POKE 54283. 17
4121 DATA 16.185.17.375, 18,21218,129,150,

15121, 19,238,17,375
18,21218,129,

300 IOU Commcdoce

50 DATA 19,238,129,150, 19,238,129,150,
375, 18 , 208, 129, 150

60 DATA 18,208,129,150, 16,195,17,375,
150, 16, 195, 129, 150

70 DATA 16,195,'17,375, 18,208,129,150,
150, 19,238,17,375

SO DATA 25,29,129,150, 25,29,129,150,
375, 19,238,129,150

90 DATA 19,238,129,150, 16,195,17,375,
150 , 16, 195, 129, 150

100 DATA 999,999,999,999
160 READ H,L,R,N
170 IF H=999 THEN 230
180 POI<E 54279,L: POKE 54280, H
190 POKE 54276, R
200 FOR M=O TO N: NEXT
210 POKE 54276, 0
220 GO TO 160
230 RESTORE: GOTO 160

18,208,17,

16,195,129,

18,208,129,

18,208,17,

16,195,129,

The most important thing to keep in mind when working with this kind
of program is that doing more things within your loops (such as adding more
READ statements) adds time to the loop. Test statements, such as the one
on line 170, also take some time. Be sure to account for every line. If you are
unsure of your timing, run the program and listen for timing problems. By
adding to or subtracting from the timing loops, you can usually compensate
for timing errors.

The C-64 Electronic Organ

Here's a program that "GETs" notes from the keyboard and plays
them. We've used the note values from Table 7-2 and POKEd them into the
upper and lower tone registers of sound register # 1.

10 FOR R~54272 TO 54296: POKE R,O: NEXT
20 POI<E 54278, 240
30 GET AS: IF AS="" THEN 30
40 IF A$="Q" THEN U=8IL=97
50 IF A$="2" THEN U=8:L=225
60 IF A$="W" THEN U"'9:L=104
70 IF A$="3" THEN U-9:L"247
80 IF A$:a"E" THEN U=10IL=143
90 IF AS-"R" THEN U=11:L"'47
100 IF A.aIS" THEN U-l1:L=218
110 IF AS-"T" THEN U=12:L=142
120 IF A$="6" THEN U=13IL=77

~~==~---~===--

130 IF A.-"V" THEN U-14.L-24
140 IF A.="7" THEN U-14IL"'238
150 IF A.-"U" THEN U=15:L-210
160 IF A."'"I" THEN U=16IL=195
170 POKE 54272.L:POKE 54273.U
180 POKE 54296.151 POKE 54276. 17
190 FOR G=O TO 500: NEXT
200 POKE 54296.01 POI<E 54276, 16
210 GOTO 30

Chnpter - 5nwd 301

This program was written for only one octave. By increasing the
number of keys read. you can add more octaves. To make the keys play
longer. you can increase the length of the delay loop at line 190 making the
fractional STEP smaller.

C C# D D# E F F# G G# A A# B

Saving Music

An alternative to writing DATA statements by hand is to use the elec­
tronic organ to store your musical values. Let's look at how these can be
saved.

CREATING MUSIC ARRAYS

Adding the following lines to your program will allow you to store the
notes you play into an array. For the purposes of this program, we'll use an
array with 100 notes in it. You can create arrays with more notes in them if

302 Your Commodore 64

you like, but remember, each note is two bytes, and you won't be able to
dimension an array that is larger than your available memory space.

5 DIM UHOO), LUOO)
31 IF A.-" {F3} " THEN U(XI-U. L(X)=L: X=X+ll GOTO 30
32 IF A.<')" {F!} " THEN 40
33 FOR Z-O TO X
34 POKE ~4272, L(Z)& POKE 54273, U(Z)
35 POKE 54296, 151 POKE 54276, 17
36 FOR G-O TO 5001 NEXT
38 POKE 54296,01 POKE 54276, 16: NEXT
39 GOTO 30

Each time you press one ofthe keys on the keyboard, it will be played.
Pressing F! will play back all of the notes stored in memory. To add a note to
the song, press F3 after pressing the note you want.

STORING MUSIC ON THE
DATASSEnE OR DISK

When you turn the C-64 off, any music you have stored into an array
will be lost. If you want to save your songs and play them back later, you will
need to store them on either the disk drive or the Datassette.

Adding the following lines to your program will allow you to store the
music data in your array into a data file on either the Datassette or disk
drive:

45 IF A " {FS} "THEN 300
300 INPUT "FILE NAME", F.
310 INPUT "STORE ON {REVERSE ON}D {REVERSE OFF} ISK OR

{REVERSE ON} C {REVERSE OFF} ASSETTE"; S$
320 IF S'-"D" THEN 350
330 IF S$="C" THEN 360
340 PRINT" {CURSOR UP}";: GOTO 310
350 OPEN1,8,4,F'+",W": GOTO 370
3600PEN1,1,1,F'
370 FOR Z-O TO X
380 PRINT*1, U(Z): PRINT*l,L(ZII NEXT
390 CLOSE 1: GOTO 30
1000 OPEN1~, a, 151 INPUT*lS., A, B$, C, D: PRINTB'I CLOSE15, END

Now, when you press the FS function key, the program will ask you for a
file name and whether you want to save the song on disk or Datassette. It
will then store the contents of the song array in the file you've specified.

READING MUSIC FROM THE
DATASSETTE OR DISK

Choote: 7 Sound 303

To read a song from a music file, you will need to read the information
back into an array that can be read by your electronic organ program. The
following routine accomplishes this.

55 IF A$..," {F7} "THEN 400
400 INPUT "FILE NAME"; F$
410 INPUT "LOAD FROM{REVERSEON}D{REVERSEOFFlI5K OR

{REVERSE ON}C{REVERSE OFF} ASSETTE" J S$
420 IF 5$="0" THEN 450
430 IF S$="C" THEN 460
440 PRINT" {CURSOR UPj"pGOTO 410
450 OPEN1,8,4,F!I!+",R"1 GOTO 470
460 OPEN1,l,O,F$: J=O
47(1 I NPUHtl, U(J): INPUT:ttl,L(J) :BB=STIJ=J+l
480 IF BB=O THEN 470
490 X=J:CLOSE 11 GOTO 30
1000 OPEN15,8,15;INPUT~15,A,B$,C,DI PRINTs.ICLa~5. END

Once you have added these lines to the program, you can use the F7 function
key to load songs that you have stored. When you press the F7 function key,
the program will ask you for a file name, and whether you want to load from
disk or Datassette. It will then load the song array from the file you've
specified.

COMBINING SOUND WITH
ANIMATION

Most video games use sound very effectively. The sounds can be used to
create a mood or to give the player more information about the action that is
taking place on the screen.

Timing

When playing a video game, the player is more dependent on the timing
of the sound than on the visual portion of the game. Try this bouncing ball
program with no sound.

304 'cur CommOdore ~L

5 PRINT" {CLEAR HOMEl"
10 AS="
20 FOR R=O TO 2: PRINT A$;: NEXT
30 FOR T=1104 TO 1143
40 FOR Y=O TO 10: NEXT
~o POKE T-l,32: POKE T,81: NEXT
60 FOR T=1143 TO 1104 STEP -1
70 FOR Y~O TO 10: NEXT
80 POKE T+l,32: POKE T, 81: NEXT
90 GOTO 30

Now we will add sound with the following lines:

15 FOR 1=54272 TO 54296: POKE 1,0: NEXT
16 POKE 54272, 12: POKE 54273,36
17 POI<E 54296, 15: POKE 54278, 240
55 POKE 54276, 17: POKE 54276, 0
85 POI<E 54276, 17: POKE 54276, °

"

The addition of sound helps create the effect of a bouncing ball.
To synchronize the sound with a visual event on the screen, you will

have to be aware ofthc position of the objects on the screen. In the example
above, the timing was straightforward because the sound was created at the
end of each loop. To make simple sounds synchronize with movements, the
s('[;1ds should generally take place when one object collides with another.
The following program determines object movement and sound based on
the numeric position on the screen:

10 FOR 1==54272 TO 54296: POKE 1,0: NEXT
20 POKE 54272, 121 POKE 54273,36
25 POKE 54279, 12: POKE 54280,100
30 POKE 54296, 151 POKE 54278, 240
35 POKE 54285, 240
40 AS="
50 PRINT" {CLEAR HOMEl" J: FOR R=O TO 5: PRINTA$. I NEXT
60 B1-1104: B2=11441 Rl=l: R2=.7
70 POKE Bl,81: POKE Bl-1,32: POKE B1+1,32
80 POKE B2,81: POKE B2-1,32: POKE B2+1,32
90 B1~B1+R1: B2~82+R2
100 IF B1=1104 OR B1=1143 THEN R1=Rl*-laPOKE 54276,17:

POKE 54276,0
i10 IF 82<1144.5 OR 82>1182.5 THEN R2=R2*-1:POKE 54283,

17: POKE 54283,0
120 GOTO 70

Because different tone values are used, it is immediately apparent which
ohject hilS ju:'.t hit the wall.

CHAPTER
--~~-------

Peripheral Devices

The C-64 can be connected to many peripheral devices, including the
1525 Printer, the VIC Datassette, and the 1541 Disk Drive. These devices
expand the capabilities of the C-64 by giving it the ability to produce
permanent copies of its output on either paper or magnetic media such as
cassette tape or floppy diskettes. Storing information on magnetic media can
also increase the amount of memory space available.

With the addition of a modem, the C-64 can communicate by telephone
with any other computer that has a similar device. The modem also allows
access to computer networks, which provide services such as stock market
updates, computer shopping, and electronic mail.

Storing Data

The most common media for storing data on microcomputers are
floppy diskettes and magnetic tape. Diskettes have the advantage of being
random-access devices. That is, they can directly store or retrieve data at any
location on their surface. Tapes store data sequentially (one file after
another) and must be manually rewound to access data that have already
been passed. What they lack in speed and flexibility, however, tape systems
make up in cost. They are much less expensive than disk systems.

305

306

FILES

Computer data are stored infiles. This allows you to locate information
you have placed in a certain category. To look up a word beginning with "C"
in the dictionary, you would turn to the section with the heading "c."
Similarly, to find information on a cassette or diskette, you would instruct
the computer to locate a section (file) with a heading (file name) you
assigned.

C-64 data files can have names that are much longer than the single­
letter headings in the dictionary: file names can be up to 16 characters long.
The length of the files is limited only by the space available on the diskette or
cassette tape. The number of file names on a 1541 diskette is limited to 144.

There are two kinds of files: program files and data files.

Program Files

Whenever you have a program in the computer memory that you wish
to save in order to use it again, you may SA VE it on tape or diskette. To read
it back into the computer, you LOAD it into memory. You should give each
program a unique name so the computer can differentiate one from the
other. When you are using the Datassette to store programs, you don't have
to use file names, since the computer can simply be instructed to LOAD the
first program it encounters. This is not true of the disk drive. You must tell
the computer which file you want when you load or save on a disk.

To use a program file, you load and run it,just as if you had entered the
program by hand. The advantage is that you do not need to enter the
program by hand. In general, the size of a program you store on disk or tape
will be limited to the amount of memory available in your computer. This is
because a program is normally saved in its entirety. You cannot easily save
part of a program and then save the rest of the program later.

One way to handle programs that will not fit into your computer's
available memory space is to break them into shorter programs and simply
load each section of the program separately and run it. In this fashion, you
can execute programs that are much larger than the memory space in your
C-64.

If you decide to do this, make sure that the first program section that
you load is longer than any of the sections it calls. This is necessary because
the program variables will be stored at the end of your program's first

section; if a longer routine is loaded into memory, either your variables or
part of the new program segment will be lost.

To load the next program segment from within a program, just end
your first segment with

LOAD "second program name",8

This will load and run the next segment.

Data Files

Data files do not contain programs, so they cannot be loaded and run.
They contain data that must be loaded into memory by a program or entered
by you in immediate mode.

RECORDS AND FIELDS

The information in a data file can be broken up into records andfields.
This is determined by the program reading the data from the file. To better
understand this concept, consider a data file that contains a passenger's
flight information for a trip from New York to San Francisco and back.

XYZ AIRLINES June 7, 1982

John Doe

1234 Home Place

Small Town, New Jersey

FLIGHT #303

LEA YES JFK Int'! I :45 PM EST
ARRIVE SFO InC! 4:28 PM PST

XYZ AIRLINES June 9, 1982

John Doe

1234 Home Place

Small Town, New Jersey

FLIGHT #215

LEAVES SFO Int'! 9:15 AM PST
ARRIVE JFK Int'l 4:45 PM EST

308 Commodore

The file contains information for the departure and arrival of the flights
John Doe is taking to and from San Francisco. For simplicity, we will say it
is a single file that contains two records: the trip to San Francisco and the
trip back to New York.

Each record contains several fields. The fields are the groups of charac­
ters that form either complete words or numbers. For instance, the word
"JUNE" contains four characters (or bytes) that are stored on the tape or
diskette as the individual characters J, U, N, and E. Logically, however, the
characters should be taken as the whole word: JUNE. Similarly, the
numbers 2, I, and 5 should be taken as the number 215. To distinguish the
data within a record, it is important that the fields be separated.

Data Transfer

The first time you access a tape or diskette file, you may be misled into
thinking that the system is not operating correctly. It would seem logical
that the disk drive or Datassette would operate each time the program reads
or writes from it. This will occasionally be the case, but not always. This is
because the C-64 has a small section of memory allocated as a data buffer.
Each time information is read from the disk or Datassette. the buffer is
filled. Until those data are exhausted, the drive or Datassette will not be
accessed again. Similarly, when you write to the disk or Datassette. data are
first stored in a buffer. When the buffer is full, all the data it contains will be
stored at once.

Logical Files and Physical Units

Input/ output programming describes any programming that controls
the transfer of data between the computer and a peripheral device such as
the Datassette, disk drive, or printer. These are all external physical units. In
order to transfer data to or from one of these physical units, it is necessary to
indicate which one you are accessing. This is because each unit has a specific
kind of interface and a particular way in which it must receive its input (the
computer's output). In addition, if more than one device is connected to the
computer, you will need to indicate which device you are "talking to."

The computer can also receive data from the Datassette and disk drive,
and the data it receives must be put somewhere. Look at the problem in

010pter 8 Perlrf'l~lol l)f?VICeS 309
~~~==========~ 

programming terms. If you want to input data from the keyboard, you 
would use a BASIC statement such as 

10 HlPUT A 

This line stops program execution and waits for you to enter some data from 
the keyboard and press RETURl'. The data are assigned to the variable A. 
Unless the C-64 is told otherwise, all input statements such as the one above 
look for data coming from the keyboard. 

If you want to output some data to the video screen, you might use the 
following statement: 

20 PRItH A 

The value of variable A will appear on the screen. 
The Il\' PUT statement tells the computer it is to receive some data, and 

the PRINT statement instructs the computer to output some data. Although 
data are usually sent from the keyboard and received by the video screen, 
these are not the only devices available. 

To "talk" or "listen" to another device, you will first need to open a 
logical channel to that device. This is accomplished using the OPEN state­
ment. With this statement, you designate what channel you are using and 
what device number you are addressing. Every physical unit (peripheral 
device) has a unique device number. The channel you open is called the file 
and the number you assign to it is its file number. The format for an OPEN 
statement is as follows: 

10 OPEN[n. dn, sa, fIlename 

where: 
fn 

dn 

sa 

.fIlename 

The file number is the number you use to access the file. You may 
choose any number between 0 and 255 

The device number is the number of the peripheral device you are 
addressing 

The secondary addn'" sets up certain parameters for the device being 
used 

The file name is used to specify the file during a read operation. If you 
specify a file name when you write the file and when you rcad it on the 
Datassette, all files will be skippcd until the one you specified is found. 

Table 8-1 shows the device numbers and secondary addresses that 
corre~;pond to the C-64 's logical devices. 



310 Your Commodore 64 

TABLE 8-1. Device Numbers and Secondary Addresses 

Device 
Device Secondary Operation Performed 

Number Address 

Keyboard 0 None 

I 0 Open for read 
Cassette I Open for write 
Drive # 2 Open for write, but add End-

2 of-Table mark (EOT) on close 

Video 
3 None Display 

Line 
Printer 
Models 

4 or 5 7 Alternate character set 

1515 or 1525 

0 Load a program file to the 
Disk computer 
Drives 8* I Save a program file from the 
(all models) computer 

2-14 Unassigned 
15 Open command/ status channel 

Other 
5,6,7 

Device numbers and second-
devices 

and 
ary addresses are selected 

connected 
9 through 

and assigned by the manufac-
to IEEE 488 turer of the device connecting 
Bus 31 to the IEEE 488 Bus. 

12 to 255 
unavailable 

at this 
time 

*Normally 8, but may be set to 9, 10, or II (see the section on multiple disk 
systems). 

Datassette Files 

Now that you have had a chance to look at files in a general way, you 
can apply them to reading from and writing to the Datassette. The VIC 
Datassette is the default external storage device. That means that if you 
don't specify which device you are writing to, the information will go to the 
Datassette. 



R Perioherol lJeviccs 311 

For example, to save a program called FILENAME on the Datassette, 
you would type 

SAVE "FILENAME" 

and press RETU RN. If you have pressed the PLAY and RECORD keys on the 
Datassette, the Datassette will start operating. After your program has been 
saved, the Datassette will stop, the cursor will start flashing again, and the 
computer will display READY on the screen. 

To load the program from the Datassette, type 

LOAD "F I LE"~At1E II 

If the PI.A Y button has been depressed, the Datassette will operate and the 
computer will display 

SEARCHING FOR FILENAME 
As it passes the various programs that precede the one being looked for, it 
will display their names. 

FOUND OTHERFILE 
FOUND WRONOFILE 
FOUND NEXTFILE 

When the program requested is found, it will display 

FOut·m F I LEt'~Ar1E 
LOADlt~G 

WRITING DATA FILES 

Writing program files into a Datassette file is a simple task. Putting 
data into a Datassette file is almost as easy, but it does require a basic 
understanding of how the information is put onto tape. 

The most common method of storing data is by simply printing the data 
one item at a time to the Datassette. This can be done by entering the 
following statements. 

First, you will need to open a file. 

10 OPEN 1,1,:2, II DATA FILE" 
This will open a Datassette file with the number I and the name DATA 
FILE. When the file is closed, it will write an end-ai-file marker onto the 
tape, which indicates to the C-64 that no more records exist in the file. 



312 Your Commooore 

Now you can enter the data from the keyboard. 

213 INPUT AS 

If you were entering numeric data, you could use a numeric variable such 
as A. 

At some point you will want to end the data entry. Let's say that if you 
enter XXX the computer will branch out of the routine. 

30 IF A •• "XXX" THEN 613 

If the input was not XXX, you'll want to save it on tape 

413 PRINT4U, A. 
and go back for more input. 

513 OOTO 20 

If you are done entering data, close the file. 

613 CLOSE 1 

To run this program, you should first wind a fresh tape all the way 
forward and rewind it again until you can see where the nonmagnetic leader 
and the actual magnetic tape meet. Make sure that this is in the center of the 
cassette opening (see Figure 8-1). 

Here's the complete program. 

113 OPEt-~ 1,1,2, "DATA FILE" 
20 INPUT AS 
313 IF AS = "XXX" THE~~ 60 
40 PRINT4tL AS 
S0 OOTO 20 
60 CLOSE: 1 

Now close the lid and run the program. The program will pause (and 
the cursor will disappear) for a few moments while the file is opened and the 
name of the file is written onto the tape. The cursor will return and a 
question mark will appear. Enter some characters and press RETURN. 

After entering a few items, enter xxx. The cursor should disappear 
again; this time the file is being closed and the data and end-of-file marker 
are being written onto the tape. 



Chapter E Perl o hera l Devices 313 

.1 \\d"· 
Magnetic surface 

N 

~ 
~ 
:I: 
V 
or, 

>­
UJ 

~ 
« 
:I: 

~ 

5 
:I: 

~------------------------------------------------------~~ 
FIGURE 8·1. Tape position 

READING DATA FILES 

To read the data back from the tape you will need to open a Datassette 
file for reading. Add the following lines to the end of your Write Data 
program: 

70 PRINT "REWIt~D TAPE" 
80 PR I ~H "WHEr~ THE TAPE IS" 
90 PRINT "REWOUND, PRESS STOP" 
100 PRINT "ON THE DATASSETTE" 
110 PRINT "THEN HIT <RETURN)" 
120 INPUT C 
130 OPEN 1,1,0, "DATA FILE" 

Lines 70 through 110 tell the operator to rewind the tape and to signal 
the C-64 when the rewinding is completed by pressing RETURN. Line 120 
makes the computer wait until the tape has been rewound, and line 130 
opens the data file for reading. 



314 ,our Corr,rn:xY:)re 

Now you can begin reading data from the Datassette. 

140 INPUT#L AI 

This inputs the first record you entered and assigns it to the string variable 
A$. The statement 

150 PRINT AS 

takes the data that you just put into A$ and displays them on the screen. 

Status Register 
There is a special variable name (similar to Tl and TI$) that indicates 

the status of the external devices connected to the C-64. This is the variable 
ST. Table 8-2 interprets the values of ST. 

To determine whether you have reached the end of a file, you can check 
the value of ST from inside your program. If the value of ST is 64 you have 
run out of data. Add the following line: 

160 IF ST () 64 THEN 150 

Your program will branch back to read another record from the file. 
If ST equals 64. all the data have been read and displayed. Close the file. 

170 CLOSE 1 

Then follow the instructions on the screen. The computer will display all of 
the items you entered in the previous section. 

Using GET# to Read Files 

It is also possible to use the GET command, just as you would from 
the keyboard. The GET# instruction reads one byte at a time from the 
Datassette. Change line 140 to 

140 OErtH. A. 

and, in immediate mode, type 

ooro 70 

This time all the data are printed in a vertical column. Why? 
Look at line 140. The GET# function inputs only one character at a 

time. That character is then assigned to variable A$ and printed. The 



TABLE 8·2. Status Byte Returned by External Devices via Variable ST 

Status 

Device 
Operation 00000001 00000010 0()()00100 (JOOOIOOO 00010000 

Read a5 I Read as 2 Read as 4 Read as 8 Read as 16 

Read from Operation Operation Short Long 
Unrecov-
erable 

cassette OK OK Block. Block. read 
drive Data block Data block 

read had read had 
error 

Verify 
fewer bytes more bytes Any 
than ex- than ex-

cassette pected pected 
verify 

drive mismatch 

Disk 
Receiving Transmitting drives None None None 

(all device not device not 

models) available available 

00100000 01000000 
Read as 32 Read as 64 

Checksum End of file 
error. One encounter-
or more ed 
data bits 
read in- None 
correctly 

"lone End of file 

10000000 Ii 
Read as 128 

End of tape 
encountered 

Disk drive 
not present 

n 
:::J 
o 

'& 
CD 

v 
cg 
U 
:::J 
CD o 
o 
CD 

o 
(T) 
GO 

~ 
VI 



316 Your Commooo~e 

computer then does a carriage return, and the next character is input with 
the next GET#. 

At the end of each string, the computer automatically adds a carriage 
return, which acts as a delimiter separating one string from the next. This is 
usually desirable, since it causes the computer to separate the variables. In 
some applications, however, you may want to eliminate th~ trailing carriage 
returns. For example, you may want to conserve space in a tightly-packed 
file in which all the variables or strings are of the same length. In such a case, 
you could leave out the carriage returns and separate the variables yourself. 

Remem ber, however, if you create a file that has no delimiters (carriage 
returns) you must separate the data yourself in your program. To suppress 
the carriage returns you could change line 40 to read 

40 PRIHT#L AS; 

Note: Generally the best programs are the ones that are the simplest. 
Therefore, before you use this method be sure that you need to. Also be 
aware that a file with no delimiters cannot be read by an INPUT# statement 
unless it contains less than 80 characters because the INPUT buffer holds 
only 80 characters. 

Disk Files 

The disk drive can store data and programs just as the Datassette does. 
The major differences between the disk drive and the Datassette are speed 
and accessibility. 

The disk drive can access data much faster than the Datassette, and can 
access them randomly. That is, the drive can access any location on the 
disk's surface to read or write data, while the Datassette must read and write 
all data sequentially. 

HOW DATA ARE STORED ON DISKEnE 

The data are stored on the diskette in concentric rings called tracks. The 
1541 Disk Drive has a total of 35 tracks. Each track may be add ressed 
directly and therefore may be quickly accessed. In general, the disk drive will 
not record data onto an entire track. This would make the files needlessly 
long. To avoid this, each track is divided up into sectors, each of which 
contains 256 bytes. 



Chop'er 8. PenpherOli!!?vices 317 

Look at Figure 8-2. You will see that the tracks on the diskette are not 
all the same length. The ones nearest the outer edge of the diskette are longer 
than the ones near the center. To make the most ofthe space available on the 
diskette, the 1541 Disk Drive puts more sectors into each of the outer tracks. 
The number of sectors per track varies from 17 on the inner tracks to 21 in 
the outer tracks. This means that one 1541 diskette can hold 176,640 bytes. 

Tracks 1-17 (21 sectors/track) 

'----.- Tracks 18-24 (19 sectors / track) 

'------Tracks 25-30 (18 sectors/track) 

'-------Tracks 31-35 (17 sectors/track) 

FIGURE 8·2. 1541 Diskette sectoring pattern (by tracks) 

Center Hole 



318 YOlJr CommODore 

DISKETTE SECTORING 

If you manually rotate the diskette inside its jacket, you will find one or 
more small holes in the diskette which come into alignment with the small 
hole in the jacket. If there is only one hole, the diskette is soft-sectored. If 
there are several holes, the diskette is hard-sectored. The holes in the 
hard-sectored diskette are used on some disk systems to position the sectors 
on the diskette. Since the 1541 Disk Drive provides its own special sectoring, 
you should only use soft-sectored diskettes. 

DISKETTE DIRECTORY 

Track 18 on the 1541 diskettes is used for the directory. The directory 
contains the names, starting sector addresses, and file types of all the files on 
the diskette. 

To list a diskette's directory, load it into memory by entering 

LOAD "S",8 

The name of the directory file is $ (dollar sign), and we are loading it 
from device number 8 (the disk drive). To list the diskette directory, simply 
type 

LIST 

and the directory will be displayed on the screen. 

THE BLOCK AVAILABILITY MAP (BAM) 

The BAM resides on track 18 of the diskette. It contains information 
pertaining to memory space allocation on the diskette. 

INITIALIZATION 

Each time the disk drive is accessed, it compares the identifier number 
on the diskette with the ID number stored in disk memory. If the ID 
num bers match, the disk drive proceeds with the instruction it was given. If 
there is a mismatch, the disk drive automatically initializes the diskette. 

When the diskette is initialized. the contents of the BAM are copied 
into disk memory. This tells the disk drive which sectors are available to be 
written to. If the ID numbers of two diskettes are the same, the disk drive 
will not initialize automatically. It will not update the BAM with the 
allocation information and may write over sections of other programs or 



Chapter 8 Peripherai Devices 319 

data. To avoid this, format your diskettes with different 10 numbers when­
ever possible. 

To manually initialize a diskette, use the following statements: 

OPEN L 8,15 
PRINT .. l, II INITIALIZE" 

A shorter version of this command is 

OPEN 1, 8, 15, "I" 

FORMAnlNG A DISKETTE 

Before you can use a new diskette, you must format it. Formatting 
writes a disk name, an 10 number, and all of the track and sector informa­
tion onto the diskette so that data may be written onto it by the C-64. 

To format a diskette that has never been used before, use the following 
commands: 

OPEN L 8,15 
PRINT#l,"NEW:DISKNAME,ID" 

The disk name can be any l6-character string you choose. The 10 can be any 
number you choose. The Disk Operating System (DOS) uses the [0 number 
to determine which diskette is in your drive. Remember to use a different 
number for each of your diskettes; that way the disk drive will always be able 
to determine whether it should initialize or not. If the [Os of your diskettes 
are all different, the initialization will be automatic; otherwise, you will need 
to do it m~nually each time you change diskettes. 

A good way to ensure that all of your diskettes have different IDs is to 
format an entire box of diskettes at once, numbering them sequentially. 
When you need to use them, you can perform a short version of the 
FORMAT instruction which erases all data on the diskette and renames it, 
leaving the ID number the same. That way, no two diskettes in the box will 
have the same [0 number. To do this, use the following FORMAT 
instruction. 

Note: This will not work on new (previously unformatted) diskettes. 

OPE~~ L 8,15 
PRINT#l, "N:DISKNAME" 



320 yO',; C~fY1fY1ouore 64 

Notice that in the above examples the letter "N" is used instead of the word 
NEW. N is an acceptable abbreviation for the NEW (disk) command. 

Renaming Files 

If you have a file with a name that you feel is inappropriate, you may 
change its name using the RENAME instruction. To rename a file, use the 
following format: 

OPEN L 8,15 
PRINT#1, "RENAr1E; NEW FILEt~At'1E '" OLD FILENAME" 

You may use the abbreviation R in place of the word R EN AME. Thus. 
if you wanted to change a file named DOG.l to CA T.l, you would enter 

OPErl L 8,15 
PRUn#L "R; CAT. 1 :c DOG.1" 

Erasing Files 

To erase a file from your diskette, use the SCRATCH command. Its 
format is shown here. 

OPEt·j 1, 8, 15 
PRUn#l, "SCRATCH; FILEt~Ar'1E" 

The abbreviation S may be used in place ofthe instruction SCRA TCH. 
Therefore, you can also use 

PRINT#1, "S; FILEl'lAt1E" 

to erase programs or data. 

The VALIDATE Command 

The V ALIDA TE command may be used to "clcan up" a diskette. Aftcr 
a time there may be some files on your diskette that were not properly 
closed, or various files that were used as temporary storage and are not even 
part of another file. To perform this housekeeping, use the VALIDATE 
command. It deletes any unclosed files and frees any blocks that were 
previously allocated but not associated with any specific file. 



321 

Copying Files 

¥ou can make a copy of any file on your diskettes by using the COPY 
command. The same command with slightly different syntax will concaten­
ate diskette files as well. 

To make a copy of a program on the same diskette, use the following 
command sequence: 

OPEN 15,8,15 
PR I ~lT"15, "COP'T': NEW F I LEt~AME = OLD F I LENAt1E " 

You may use the abbreviation C in place of the word CO PY, as in the 
following example: 

OPE~~ 15,8,15 
PRINT#l!5, "C.DOO.2 .. DOO.1" 

Disk File Concatenation 

Two or more files may be joined together, or concatenated, to form a 
single file. To create a new file named NEWFILE, for instance, out of the 
data files OLDFILE.O, OLDFILE.l, and OLDFILE.2 on diskette, use the 
following command: 

PRINT#1, "C: NEW FILE'" OLD FILE 1, OLD FILE 2" 

Note: The maximum length of a disk command string is 40 characters, 
so keep your file names short. 

MuHiple-Disk Systems 

If you have a system with more than one disk drive, you may copy files 
from one diskette to another. Before you do, however, you will first need to 
differentiate between disk drives. 

When the 1541 Disk Drives are first powered up, they all have a device 
number of 8. If you connect more than one disk drive to your system, each 
drive will need a different device number. The device number may be either 
8,9, 10, or 11. To change the device number of a disk drive, follow these 
instructions. 



322 Your Commodore:",l 

I. Turn off all drives except the one you are changing. 

2. Open a command file, such as 

OPEN 15,8,15 

3. Enter the following command sequence. Note: Don't worry if you 
don't understand this sequence; this kind of instruction is covered in 
more detail in the section on advanced disk commands. 

PRINT# 15,"t1-~J" CHR$( 119)CHRS (0) CHR$( 2 ) CHR:t: ( 9+32)CHR'(9+64) 

This instruction will change the disk to device number 9. To 
change the disk drive to another device number, add that number, 
instead of 9, to 32 and 64 at the end of the command. 

4. Turn on the next drive and repeat the command sequence above, 
using a different device number for each drive added. 

Note: Do not turn off any drive that has been changed. This will erase 
the new device number. 

Disk Data Flies 

Just as there is a difference in the way that data files and program files 
are handled by the Datassette, there is a difference in the way that data files 
and program files are handled by the disk drive. 

There are three different kinds of information that can be stored on the 
disk drive. The first, program files, has already been covered. The second 
type is sequential data files, and the third, random access files. 

SEQUENTIAL FILES 

Like sequential data files on the Datassette, sequential data files on the 
1541 Disk Drive must be opened before they can be accessed. To open a 
sequential data file to the disk, use the following format: 

OPE'\f lin. dn, sa, "drn.:file name,SEQ. W" 

where: 

I{n is the logical file number 

dn is the device number for the disk drive 



)ei:::es 323 

sa is the secondary address. You can use any number between 2 and 14. 
Both 0 and I are reserved by the C-64 for LOAD and SAVE 
operations and 15 is used to open the command channel 

drn is the drive number. This may be omitted if you have a one-drive 
system 

file name is the name of the file you are accessing 

SEQ indicates that this will be a sequential data file 

W indicates the write mode. You may also read. The READ command 
may be abbreviated as R. 

Here's an example of writing to a file named AIRLINE. 

OPEN 2,8,4, "0: AIRLIt~E, SEQ, W" 

Whenever you open a file on the disk drive, the red activity light on the 
front of the drive will light until the file is closed. If you try to open in write 
mode a sequential file that already exists, the red activity light will flash, 
indicating an error condition. 

If you want to write over a file that already exists, you can modify the 
above OPEN command as follows: 

OPEN 1,8,10,"me:AIRLINE,SEQ,W" 

The @ tells the disk drive that you want to overwrite the data in the specified 
file. 

If the file does not exist, the normal OPEN procedure will be carried 
out by the disk drive. 

USING STRING VARIABLES AS FILE NAMES 

You can use a string in place of a file name if you want to generate file 
names from within a program. 

Here's an example of a program that asks you for the name of the file 
before it is opened. This allows you to use the same program to open 
different files. You might do this in a word processing program that has 
different names for each text file. 

U! INPUT "FILE NAME"; FN. 
20 OPEN 2,8,4, "e:"+FNS+ ",W" 

Line 10 requests a file name. In line 20, the file name is concatenated to 
the OPEN file string. This is important, because the OPEN command must 
be a single string. Using the Plus (+) operator accomplishes this. 



324 Your Commodore 64 

CLOSING DISK FILES 

As a program writes data to a disk file, the data are first written to a 
buffer. When the buffer is full, the data are written onto the diskette. If you 
are done writing data to the diskette and the buffer is not yet filled, the data 
will not be written onto the diskette unless you close the file. Closing a file 
writes the data in the buffer onto the diskette whether or not the buffer is 
full. It is therefore very important that you close all files when you are done 
writing data to them. 

Note: You may keep only ten files open with the C-64, and only five of 
them to the disk drive. Therefore, it is advisable to close channels after 
reading them as well as after writing to them, even though lea ving a channel 
that you have read will not cause the same kind of catastrophic failures as 
failing to close a file that has been written to. 

The PRINT# Command 

The PRINT# command is used to transfer data to the disk drive or any 
other peripheral device. The C-64 automatically sends a carriage return at 
the end of each file record to terminate it properly. In some cases, such as 
printing to the 1525 printer, you may want to send a carriage return and a 
line feed to terminate the records in a file. 

Use logical file numbers 1 through 127 to send a carriage return only, 
and logical file numbers 128 through 255 to send a carriage return-line feed 
after each record. 

Reading a Data File 

The INPUT# and GET# statements work in basically the same way on 
disk files as they do on Datassette files. The INPUT# statement can read 
strings no longer than 80 characters. To read longer strings, it will be 
necessary to use GET# and read the strings one byte at a time. 

Random Access Files 

You can create random access files by directly addressing diskette data 
blocks and memory buffers. Each data block occupies a single sector of the 
diskette. There are eight buffers available on the C-64, but four of them are 
used for the Block Availability Map, variable space, command channel 110, 



Chocter 8 l~eVlces 325 

and the disk controller. This leaves you with only four buffers for random 
access files. Be sure not to open more than four buffers at a time. Opening 
more than four will result in a system error. 

Information is written to diskette random access files using the 
PRINT# command. The files are specified through parameters in the OPEN 
statement. The format for opening a random access file is as follows: 

OPEN lin, dn, sa, "# hur' 

where: 
lin 

dn 

sa 

buf 

is thc logical file number. For performing data transfcrs, use logical file 
numbers between 2 and 14. To perform any utility command, use logical 
file 15. In general, it is a good idea to open the command channel (15) and 
a data channel for each operation 

is the device number 

is the secondary addrcss (it must have a value between 2 and 14) 

is the buffer number allocated to the specified secondary address. You do 
not need to use this specification. If you leave it out, DOS will automati­
cally select a buffer. 

DISK UTILITY INSTRUCTIONS 

The C-64's disk utility instructions are described in this section. Table 
8-3 provides a summary of these commands. 

BLOCK-READ 

The BLOCK-READ command reads any sector (block) into one of the 
memory buffers. To read a block, you would first need to open the com­
mand channel (15) as follows: 

itl OPE~l 15. 8. 15 

N ow a direct access channel must be opened. 

213 OPEN 2.8,4,"++" 

You can select which block you want to read (by track and sector). 

30 INPUT "TRACK"; A 
413 INPUT "SECTOR"; B 



326 Your Commooc;rc 

TABLE 8·3. Disk Utility Instruction Set 

Command Abbreviation Format 

BLOCK-READ B-R PRINT#15, "B-R:"ch;dr;t;s 

BLOCK-ALLOCATE B-A PRINT#15, "B-A:"dr;t;s 

BLOCK-WRITE B-W PRINT#15, "B-W:"ch;dr;t;s 

BLOCK-EXECUTE B-E PRINT#15, "B-E:"ch;dr;t;s 

BUFFER-POINTER B-P PRINT#15, "B-P:"ch;byte 

BLOCK-FREE B-F PRINT#15, "B-F:"dr;t;s 

MEMORY-WRITE* M-W PR I:,\!T# I 5, "M-W:"CHR$(adrl)CHR$ 
(adrh) 
CH R$(#bytes)CHR$(data)CHR$ 
(data)". 

MEMORY-READ* M-R PRINT#15, "M-R"CHR$(adrI)CHR$ 
(adrh) 

MEMORY-EXECUTE* M-E PRINT#15, "M-E"CHR$(adrI)CHR$ 
(adrh) 

UI UA Replacement for BLOCK-READ 

U2 UB Replacement for BLOCK-WRITE 

U3 UC Disk Processor JMP $0500 

U4 UD Disk Processor JMP $0503 

U5 UE Disk Processor JMP $0506 

U6 UF Disk Processor JMP $0509 

U7 UG Disk Processor JMP $050C 

U8 UH Disk Processor JMP $050F 

U9 UI Disk Processor JMP $FFFA 

U: UJ Disk Processor J M P power-up vector 

*You must use the abbreviation for these instructions. 

The following statement reads a block of data into the buffer: 

50 PRINT#15, "B-R:"4i0iA;B 

Let's look at the components of this instruction. 

PRINT# 15 to perform any of the commands in this section, you must use 
the command channel (15) 



Oopter)21!pherol = "')\1(8S 327 

"B-R:" is the abbreviation for "BLOCK-READ:". The colon within the 
quotation marks positions the data that follow the instruction 

4 is the secondary address from line 20 above 

o is the drive number. This is mandatory when you are using the 
direct access instructions 

A is the track number that was input in line 30. Although you may 
use variables to designate track and sector in these instructions, a 
constant can be used as well 

B is the sector num ber. 

All of the data-secondary address, drive number, track number, and 
sector number-in this instruction must be separated by semicolons, as 
shown in the example. 

N ow that the data in your selected block has been transferred to the 
buffer, you will need to use a GET# or an INPUT# statement to extract it 
from the buffer. 

The INPUT# statement retrieves all bytes up to and including the first 
carriage return it finds. Since you may not know the exact data in a sector 
before you read it, you may overrun the length of the INPU1#, which can 
hold only 80 bytes. 

Because of this limitation of the INPUT# statement, it is preferable to 
use the GET# statement when you are unsure of the data you will read. It will 
read the data one byte at a time. 

621 OEn.;?, AS 

There are 256 bytes of data in each block, but not every block is full. To 
read all the data in a block and stop at the end of the file, test the status 
variable (ST) to see if it is zero. 

70 IF ST~0 THEN PRINT A$; :GOTO 60 

Note: Although there is a trailing semicolon in the PRINT statement, 
the display will jump to the next line whenever it reaches a carriage return in 
the data, separating the data just as they were entered. 

If ST= 0, there are still more data, and you can go back and get another 
byte. Otherwise, close all channels when you are done with them. 

ee CLOSE;?: CLOSE15 



328 Vour C)p'~jore 64 

Here is the whole BLOCK-READ program. 

10 OPEN 15,8,15 
20 OPEN 2,8,4, "#" 
30 INPUT "TRACK"; A 
40 INPUT "SECTOR"; B 
510 PRINT4t15, "B-R: "4; 0; Ai B 
610 GET4f2, A$ 
710 IF 8T=0 THEN PRINT A$;: GOTO 60 
80 CLOSE 2: CLOSE 15 

BLOCK-ALLOCATE 

The BAM keeps a record of all blocks that have been allocated (contain 
data). In the higher-level instructions (SAVE and so forth) the DOS (Disk 
Operating System) uses this information to determine where data can be 
written on the diskette. 

When you are using the direct-access functions, however, the DOS does 
not use the BAM and you can write anything into any block on the diskette, 
whether or not it already contains data. You can write data anywhere, even 
over the directory and BAM, but you should avoid this. You can lose 
normal access to everything on your diskette if you write to it indiscrimi­
nately. It is therefore advisable to perform a BLOCK-ALLOCATE instruc­
tion before attempting to write a block. 

The BLOCK-ALLOCATE instruction checks a sector to determine ifit 
already contains data. If it is available (as indicated in the BAM), it marks 
the sector as allocated. If it is already allocated, it leaves the BAM 
unchanged and indicates the next available sector in the error channel. 

Here is a routine to perform a BLOCK-ALLOCATE. 

10 OPEN 15,8,15 
20 INPUT "TRACK"; A 
30 INPUT "SECTOR"; B 
40 PRINT4t15, "B-A: "0; Ai B 

The components of the BLOCK-ALLOCATE instruction are as follows: 

PRINT#15, activates the command channel 
HB_A:" is the BLOCK-ALLOCATE instruction 

o is the drive number 
A is the track number 
B is the sector number. 



Dc 329 
~---~---- ~--- ~- ---~ ~~- ------~ ------- ~ - - ~ ---- -

60 INPUTj15,E,EMI,T,S 
70 PRINT E,Er1' 
80 PRINT T,g 
90 CLOSE 15 
99 END 

After every disk operation the disk status can be read through the error 
channel. This is accessed by reading the values of four variables available to 
the command channel (15). In the case of a BLOCK-ALLOCATE instruc­
tion, the error channel will tell you if the track and sector you chose are 
available. If they are not available, it will give you the number of the next 
available track and sector. 

Line 60 checks the error channel, putting the information contained in 
it into variables E (error code), EM$ (error message), T (track), and S 
(sector). Lines 70 and 80 print the data and lines 90 and 99 close the channel 
and end the program. 

If you were using this as a subroutine within a program, you could use 
the data obtained from the error channel to allocate another block if the one 
you wanted was already occupied, since the next available track and sector 
will have been placed into the error channel. If the sector is free, the message 
"OK" will be displayed. 

BLOCK-WRITE 

Whenever you use BLOCK-WRITE, you should perform a BLOCK­
ALLOCATE first to determine if the sector you want to write to is available. 
If it isn't, you will know the next available sector. 

The following BLOCK-WRITE program uses BLOCK-ALLOCATE 
to check the selected sector: 

10 OPEH 1~5, 8, 15 
20 I t~PUT "TRACK" j A 
30 IHPUT "SECTOR"; B 
40 PRINT#15, "B-A: "0; A; B 
50 INPUT#15,E,EM',T,S 

~ow you must look at EM$ to determine whether the sector you selected is 
available. 

60 IF EM' .. "OK" THEN 100 

If it isn't, then use the values obtained through the error channel as your new 
track and sector. 



Note: If there are no more available sectors on the diskette, the error 
channel will return track 0 and sector O. These do not designate a real sector 
and will cause an error if you try to write to that location. To make sure you 
don't have this problem, recheck the error channel. If there are zeros in 
variables T and S. then you need to check for sectors with lower numbers. 

90 IF A-0 AND B=0 THEN PRINT "DISK FULL":130TO 160 

If you don't get this error, continue with your BLOCK-WRITE. 

100 PRINT "TRACK";Aj"";"SECTOR";B 
105 OPEN 2,9,4,""" 
110 INPUT A. 

If you input an X, the program will terminate data input. 

1213 IF AS=";":" THE~l 150 

If not, then put the data into your file 

130 PRINT4t2, AS 

and go back for more. 

140 OOTO 1113 

Use the following statement to put the data into your selected sector: 

15f:1 PRHlTtH5, "B-W "4; 0; Ai B 

Note: The format of the BLOCK-WRITE instruction is the same as 
that of the BLOCK-R EAD instruction. 

Once more, you must close your files and end the program. 

1613 CLOSE 2: CLOSE 15 

BUFFER·POINTER 

As you have seen. the data buffer stores information that is read in 
from the diskette. The butler pointer keeps track of which byte is being read 
and advances by one each time a byte is read. 



[e::::es 331 

Suppose you wanted to read the data in a specific 240-byte file as 
separate records. The first record resides in bytes I through 120 and the 
other is storcd in bytes 121 through 240. Reading the files in order would be 
easy hecause the BUFFER-POINTER would already be at the point where 
the second file starts after reading the first file. But what if you only wanted 
to read the second file? 

One way to read the second file would be to perform 120 GET# 
instructions, using a short loop, until you got to byte 121. 

This can be accomplished more easily, however. The BUFFER­
POINTER instruction will allow you to point at any byte in the buffer. Its 
format is 

PRINT#15, "B-P:" sa;byte 

where: 
PR INTII15, activates the command channel 

"B-P:" is the BUFFER-POINTER command 

sa; is the secondary address 

byte is the byte you want to access. 

F or example, if you wanted to GET the 120th byte of a block, you 
would use 

PRINT#15, "B-P: "4; 15 

BLOCK-FREE 

The BLOCK-FREE instruction will deallocate any block on the 
diskette. This instruction tells the BAM to mark the block specified as 
available, thus allowing data to be written to the block. 

To perform a BLOCK-FREE, use the following format: 

OPEl\ 15,8,15 

PRINTII15, "B-F:" dr;trk;sec 

where: 
PRINTII15, activates the command channel 

"B-F:" is the BLOCK-FREE command 

dr is the drive number 

trk is the track number 

sec is the sector number. 



Herr i" (l rOl1tine vou can use to free any block on the diskette. 

10 OPEN 15.8.15 
20 INPUT "TRACK"; A 
30 INPUT "SECTOR "; B 
4e PR I HnH 5 J "B-F:" '" j A j B 
50 CLOSE 15 
99 END 

DISKETTE MEMORY MANIPULATION 

The 1 'i41 controller interprets external commands and causes the disk 
drive mpchanism to carry them out. The controller contains a 6502 micro­
processor. similar to the one inside the C-64. It has 2K of RA M and the Disk 
Operating System (DOS). which is contained on two ROM chips. 

Some of this memory is used for the buffers discussed in the last few 
sections; <orne is used for housekeeping purposes such as maintaining the 
BAM data and special file information; and some is availahle for you to use 
for special applications. 

Thr RAM that is available for you to write routines on is the same 
RA M thi1_t is used hy DOS for the buffers. If you decide to write a special 
m<1chine language program into those areas you will have to keep track of 
which area'> vou are lIsing and which areas you will reserve for huffers. 
There are five pa~es of memory, each of which contains 256 hytes. 

Buffer Memory Location 
(Hl'xadecimal) 

#1 ~OO 3FF 
#2 400 4FF 
#3 SOO-SFF 
#4 600--6FF 
#5 700-7FF 

It is not advisable to use buffer #5, because this buffer is often used by 
DOS for variolls hOll'lekeeping activities. Although it is not always in use, 
data placed there may alter DOS procedures or may be written over by 
DOS. 

The memory space in buffers I through 4 is used only by the buffers. If 
you haven't requested a buffer, and you know that one has not heen opened 



by the system, you may use that memory freely. One method IS to specify 
which buffers you want when you open a disk channel and write your 
routines in one or two of the buffers that arc not in use. 

The information that follows is not intended for bt;ginning pro­
grammers. The use of the MEMORY-READ, MEMORY-WRITE, and 
MEMORY-EXECUTE commands requires a thorough understanding of 
machine language programming and the Disk Operating System. 

MEMORY·WRITE 

To store data into the disk drive memory, you will need to use the 
MEMORY-WRITE command. Like POKE in BASIC, this instruction 
puts whatever data you specify into any memory location you want. Take 
the example of a POKE statement. 

POKE 768, 255 

There is only one byte transferred with each POKE statement. The 
MEMOR Y -WRITE command allows you to transfer up to 34 bytes with a 
single statement. To perform the same operation using ME MORY-WRITE 
you would need to convert the decimal memory location into a hexadecimal 
number; 300 is the hexadecimal equivalent of decimal 768. Since you can 
transfer only one byte at a time with a POKE command, BASIC always 
knows how many bytes to expect. With the MEMORY-WRITE command, 
you will need to indicate how many bytes are going to be transferred. In this 
case, only one byte is going to be transferred, so the command will be quite 
short. 

There are some special constraints that must be used with these instruc­
tions since they are actually just extensions of machine code. 

1. The memory address must be entered as two byte~, low byte fir~t, 
then high byte. 

2. All of the data must be transferred as character strings (CHR$). 

3. The 6502 understands only binary data, \ he instruction allows you 
to enter numbers in hexadecimal; but BASIC doesn't use that 
notation. For instance, 

65536 decimal = FFFF hexadecimal 

This is two hexadecimal bytes (FF and FF). To represent them 
in this mode, take the two bytes and convert each to its decimal 



334 YOl If Commodore 

equivalent, 255. The number 65536 would then be stored into the 
1541's memory as CHR$(255)CHR$(255). Any number that can be 
expressed in only one byte (0 to 255) must be entered that way. 

4. You must indicate how many bytes are being transferred. This 
should also be expressed as hexadecimal numbers converted to 
decimal notation, as above. 

5. The MEMORY-WRITE instruction must be abbreviated "M-W". 
No colon or other punctuation is allowed. 

The code, then, to store 255 into memory location 768 ($0300) is as 
follows: 

OPE:t-j 15,8,15 
PRINHt15, "f1-W"CHR:a:(aa)CHR'(03)CHR'( 1 )CHR'(255) 
CLOSE 15 

MEMORY-READ 

It is possible to read any memory location in the 1541 using the 
MEMORY-READ instruction. This instruction allows you to read one byte 
at a time from the disk drive memory, similar to the way PEEK allo\V~ you to 
read one byte at a time from the C-64's memory. 

The BASIC instruction to read memory location 768 would be 

PRINT PE:EK(768) 

The same instruction using the MEMORY-READ instruction would look 
like this. 

413 OPEN 15,8,15 
513 PRINHt15,"M-R"CHR'(00)CHR'(03) 
613 GEHt15, AS 
713 PRINT AS 
813 CLOSE 15 

This is what happened: first, we opened the command (error) channel 
and then requested the MEMORY-READ instruction. On the same line 
(with no additional punctuation) the byte to be read was specified (low byte 
first, then high byte). This is memory location 300·· the same as 76'/<, du.:iOlal 



CllClpler =c'rr~hero .·~'.?S 335 
==========~==== 

-------"-~ 

Note: The instruction "M-R" is the only valid way to invoke this 
instruction. Spelling out the instruction will cause an error. 

After the data in that location are read, they can be transferred to the 
computer through the error channel (# IS). To read them from the error 
channel we used the instruction GET# IS, A$. The values were then avail­
able as variable A$, which we printed to the screen. Finally, we closed the 
command (error) channel. 

Since the data read from the IS41 memory are transmitted through the 
error channel, you should not try to read an error condition from the error 
channel again until you have closed it and reopened it. If you do not do this, 
you will get the data which were transmitted instead of the error message. 

MEMORY-EXECUTE 

The MEMORY-EXECUTE instruction is used to run a machine lan­
guage program that has been entered into the IS41 's memory. The program 
must end with an R TS instruction so that the processor will return control to 
the C-64; otherwise the IS41 's internal memory will probably go into an 
endless loop-~if not worse. 

The format of the MEMORY-EXECUTE (M-E) instruction is essen-
tially the same as that of the MEMORY-READ instruction. 

40 OPE~l 15,8,15 
50 PRINT#15,"M-E"CHR'(00)CHR'(03) 
60 CLOSE 15 

This sequence will send the DOS into a routine that begins at the IS41 's 
memory location 300 (768 decimal). 

USER COMMANDS 

The IS41 makes use of a number of commands called user commands 
(do not mistake these for USR routines, which are a part of BASIC). These 
commands perform a number of convenient functions that arc similar to the 
other commands in this section. 

U1 

The U 1 command is similar to BLOCK-READ. In fact, its format is 
identical. Look at the BLOCK-READ command. B-R is simply replaced 



336 
-------------

with U 1. The B-R command reads only the data in a particular block 
(sector). The UI command reads all the information in the block, including 
the two bytes that precede the 254 data bytes. These bytes contain the link to 
the next block. The link is the track and sector to go to next. 

U2 

rhe U2 command is similar to BLOCK-WRITE. The format of the U2 
command is identical to that of B W. The difference between these two 
cummands is that invoking B-W terminates the file. That is, the track and 
sector link (the two bytes that precede the 254 bytes of data in the block) are 
set to indicate that this bluck is the end of a file. The next track and sector 
are not pointed to. 

Obviously, this can cause some problems If, for instance, you wanted 
to write some data intu the middle of some existing data, using the B-W 
instruction would end the flle III the middle. U2. however. would not. It 
allows you to write in the neXl track a,ld sectOi or to leave it the same. 

U3·U9 

The next few user commands are similal to the MEMORY-EXECUTE 
command. They jump to a specific location iii memory and begin executing 
at that location. The locations they jump to are listed in Table 8-3. 

The syntax for the U3 \,:ulnmand, fur example, is 

OPE~J 15,8,15 
PRINT*15, "1J3;" 
CLOSE 15 

The command U. (or UJ) will jump the DOS to its power-up routine. 
The locations that the user commands jump to are only three bytes long. 
This is because they are intended to contain a J M P machine code instruc­
tion to go to a prugram thdt you define. 



')evlces 337 

THE MODEM 

The modem allows your C -64 computer to communicate with other 
computers over telephone lines. This will allow your C-64 to talk to other 
C-64 's directly and to access the various computer networks. These allow 
you to use your C-64 as a terminal to a large mainframe computer some­
where in the network. The networks give you access to informtion such as 
stock market reports, articles from a variety of publications, airline sche­
dules, and messages from other computer users. 

Installing the Modem 

To install the modem, perform the following steps: 

I. Turn off the power to your C-64. 

2. Plug the modem into the C-64's user port (see Figure 1-2). 

3. Turn the C-64 back on. 

4. Load a program to operate the modem. 

5. Dial the appropriate phone number to reach either the network you 
wish to access or the other computer you are calling. 

If you are accessing one of the networks, you will need to code 
in, on the C-64, your ID and access code numbers. 

If you are accessing another computer, you will need to set your 
modem to "0" (originate), and the computer you are calling must be 
set to "A" (answer). 

6. When you hear a high-pitched tone, unplug the telephone receiver 
and plug the cord into the modem. 

Note: If you have a Trimline telephone, you will need a special 
adapter for the modem; it will not work with this kind of telephone 
because the telephone electronics are in the handset, which you 
unplug when you disconnect the cable. 

7. Put the handset aside. Do not hang it up; this will disconnect the 
modem. 



338 ; :re 'LJ 

Terminology 

The following is a list of common terms used in telecommunications: 

Modem The peripheral device used to convert the signals output by 
your computer into information that can be transmitted over the 
telephone lines. ("Modem" stands for "modulate! demodulate. ") 

Handshaking The process of sending data and waiting for an acknowl-
edgement from the receiving computer. 

Full/ ha({ duplex These are two modes of handshaking. In full duplex 
mode, a computer sends some data and the receiving computer 
repeats the data back to the originating computer. If the data 
returned are the same as those sent, the originating computer 
sends the next byte. If they are incorrect, the data are sent again. 
In half duplex mode, the originating computer sends data and the 
receiving computer simply acknowledges that the data have been 
received. 

Baud rate This indicates the maximum speed at which data are trans­
mitted and received. The VIC Modem sends and receives data at 
300 baud. Another way of describing baud rate is in BPS, or bits 
per second. A system running at 300 baud will send! receive 300 
bits of data per second. 

Answer / originate When you connect to one of the networks, you will 
be calling the system. Since you are originating the call, your 
modem should be set to "originate." This sets up the "introduc­
tory" protocol in the electronics. If you are communicating 
directly with another computer, one computer must be in origi­
nate mode and the other in answer mode. Once communications 
have been established, it makes no difference which is which. 

Parity In order to verify that the data transmitted are correct, some 
computers will send an extra bit called the parity bit along with 
the da tao If the total of all the "ON" (or 1) bits, including the parity 
bit, is aneven number, the transmission is odd parity. If the parity 
bit is missing, the transmission has no parity. To communicate 
properly, both computers must be set to the same parity. 

Word length This is the number of bits in each byte. Most computers 
use a word length of seven or eight bits. 



Choplc' 8 PG'Icherol Devices 339 

Start / stop bits Some computers require that a certain number of null 
bits be transmitted after each byte. These null bits are called stop 
bits. If the system uses these, the most common number is one 
stop bit and one start bit. If this is the case, the total number of 
bits per byte increases to ten. This will slow the effective transmis­
sion rate slightly, but will not impair the operation of the C-64 or 
the modem. 

Line feed At the end of a line of data, the computer will typically send a 
carriage return. Some systems also require a line feed after each 
line or data file. 

ASCII This is the standard coding used to communicate the numbers 1 
through 9 and upper- and lower-case letters. There are also a 
number of standard symbols and special characters used in the 
ASCII (American Standard Code for Information Interchange) 
system. The C-64 uses an extension of the ASCII character set for 
its extended character set, but should use this extended set only 
when communicating with other Commodore computers. 

THE 1525 PRINTER 

The 1525 Printer has a built-in character set that closely resembles the 
character set of the C-64. It includes upper- and lower-case letters, numbers, 
and graphic symbols. You can use the 1525 printer to print fully program­
mable custom graphics of almost any size. 

OPEN Statement 

In order to access the 1525 printer you must open a file to it. The OPEN 
statement for the printer has the following format: 

OPENjn, dn. sa 

where: 
jn The file number is the number you ehoose to access the file. You may choose 

any number between 0 and 255 

dn The device number for the printer may be either 4 or 5. This number may be 
selected using a switch at the rear of the printer 

sa In most cases, you will not use a secondary address when you access the print­
er. The one exception to this is covered in the section on the 1515 printer's 
character sets. 



340 (Our CcrnrnoQ,jre 6Ll 

Once you have opened a file to the printer, all you need to do to print to 
the printer is put your data in a PRINT# statement, such as 

I'RINT#l, "YOUR DATA GOES HERE" 

The printer will print 

YOUR DATA GOES HERE 

CLOSE Statement 

After you have finished accessing a file, whether it is to the printer or 
any other device, you should always close the file. To close a file you would 
use the following format: 

CLOSEfile number 

If you opened a file with a file number of I, such as 

OPEt'l 1,4 

then you would close with 

CLOSE 1 

CMD Statement 

Everything the C-64 outputs will normally be sent to the video display. 
The video display is known as the primary output device. It is possible, 
however, to change this to some other device, such as the printer, so you can 
print listings instead of merely looking at them on the screen. 

This is done with the CMD instruction. The format of a CMD instruc­
tion is 

eM D Jnice number 

Let's instruct the C-64 to use the printer as the primary output device. 
First we'll need to OPEN a file to the printer. 

OPEt'l 1,4 

Then we can use the CMD instruction as follo\vs: 

Ct1D 1 



Olopter C 
====-= 

uev!ccs 341 

Now e\erything that the C-64 would normally display on the screen will 
be printed on the printer, including the READY message, the display, and 
error messages. Your entries will still be displayed on the screen. To see this, 
try performing some PRINT statements. 

EXITING THE CMD MODE 

There are three ways to exit the CMD mode. 

1. Press RUN !STOP and RESTORE at the same time. This will reset the 
entire system and restore the computer to its default condition. 

2. Redirect the CMD instruction to another device, such as the video 
screen, device #3. 

CMD 3 

3. Enter a PRINT# instruction to the primary device. For example, if 
you had made the primary device #1 with CMD 1, you would exit 
this mode with 

PRINnu 

Of the three methods, the last-using a PRINT# instruction-is pre­
ferred because it will exit the CMD mode and also empty the printer buffer. 
Characters may have been left there from an incomplete PRINT statement 
(one that was terminated with a semicolon). 

THE 1525 Printer's Character Sets 

Type your name at the C-64's keyboard. Press RETURN and type some 
hearts (SHIFTS) on the next line. Now press the Commodore symbol key and 
SHIFT at the same time. The letters of your name will become lower-case 
letters and the hearts will become upper-case S's. 

Both the C-64 and the 1525 have two separate character sets available, 
and you can select either set at any time. There are two ways to select the 
different character sets. 

1. Specify a secondary address of 7 when you 0 PEN the printer file. 

OPEl'~ 1) 4) 7 

This will select the alternate character set. 



342 Your Commodore 64 

To access the default character set (the one that is displayed 
when you first turn the C-64 on), OPEN your printer file with 

OPEN 1,4 

leaving out the secondary address. 

2. Print the command CHR$(l4) for the alternate character set or 
CHR$(l42) for the standard character set, as in the following 
example: 

10 OPEN L 4 
2121 PRltH4tl J CHR;S( 17); "LOWER CASE" 
30 PRINnL CHR$( 145) j "UPPER CASE" 
40 CLOSE 1 

Print Formatting 

The formatting instructions TAB and SPC and the comma and semi­
colon help you to position data on the video screen. Although the printer 
also uses these instructions, it does not treat them exactly as the video 
display does. 

THE COMMA 

The comma starts data in two specific locations on the video screen: 
column 0 and column II. Try this example. 

Hl FOR r=0 TO 30 
2121 PRINT L 
3121 NEXT 

Notice that two even columns are displayed, even though the numbers 
in them are of different lengths. On the printer, a comma will put 11 spaces 
between your entries, but they will not necessarily wind up in even columns. 
Try the same program on the printer. 

S OPEN 1,4 
10 FOR r-e TO 30 
20 PRINTI1, L 
30 NEXT 
40 CLOSE 1 

THE SEMICOLON 

The semicolon operates in the same way on the printer as it does on the 
video display. It is used to separate variables without putting spaces 



Cr-'opter b. ~eroherol DCi c:es 343 

between them. Remember, however, that numeric variables will still be 
preceded by a space even with the semicolon. To see this, try the following 
program: 

113 OPEN L 4 
20 A=21 : B=300 AB=57 
30 PRINT#l,A;B;AB 

TAB and SPC 

The TAB and SPC instructions are so similar that they are often 
confused. The TAB function designates an absolute position, and the SPC 
function indicates a relative position. The following TAB statement will 
print an asterisk in column 10 of the screen: 

PRINT TAB(10);"*" 

N ow try the following statement. It will print one asterisk in column 10 
and another in column 11. 

PRINT TAB(10);"Itti";TAB(lB);"*" 

The SPC instruction begins at the current cursor position and counts 
the indicated number of spaces over from that point. Try the following SPC 
statement: 

PRINT SPC(lB);"i4E";SPC(lB);"i4E" 

Although this line looks almost identical to the TAB statement above, it 
prints one asterisk in column 10 and another in column 21. This happens 
because the SPC function starts counting at the space immediately after the 
first asterisk (column 11) and puts the next asterisk ten spaces away. 

Using POS to Tab the Printer 

When used in PRINT# statements, TAB and SPC both act like SPC. 
Note, however, that TAB and SPC cannot appear directly after PRINT# 
(for example, PRfNT#I, T AB(20)). 

To take a look at these two functions, first open the printer file with 

OPEN 1,4 

N ow type in the following line: 

PRINT .. 1, ""SPC( HD; "Mi" j spec 10); "Mil" 



344 Your C0'Y1mOdO'8 :'~4 

This will print one asterisk in column 10 and another in column 21 on the 
printer. 

If you replace the SPC instruction with TAB, you will get exactly the 
same results. Try the following example: 

PRINTIL '"'; TABUB); "*"; TAB( 113); "*" 

To produce the TAB function on the printer, you will need to use the 
POS instruction. POS is sent to the printer as CHR$( 16). Try the following 
example: 

PRINTjl,CHRS(16); "1B*";CHRI(16); "101t!" 

CH R$( 16) is the POS instruction. When the printer encounters this 
command, it uses the two characters immediately following the command 
to determine where on the line to begin printing. 

You can also use the character codes of the numbers to indicate the 
position. 

PRINT#l, CHR$(16); CHRS(49); CHRS(48); "*" 
Note: CHR$(49) is 1 and CHR$(48) is O. 

Printer Graphics 

The printer has several different modes, which are described in Table 
8-4. The characters it receives will be treated differently in each mode. 

By using the various modes, you can print anything from standard text 
to full dot graphics. 

DOUBLE/SINGLE.WIDTH CHARACTERS 

To print double-width characters on the 1525 printer, use the command 
CHR$(l4) before the string you want printed. 

PRItH#L CHR'(4); "THIS SHOULD PRINT WIDE" 

To return to normal width, use the command CHR$(l5). 

PRItH#l J CHR$( 14); "~JIDE"; CHR$( 15); "NARROW" 

REVERSE CHARACTERS 

Reverse field characters can be printed using the command CHR$( 18). 
Try it with this example. 

PRINnl,CHRI(18);"REVERSE CHARACTERS" 



010pTer 8. Periprerol Devices 345 

TABLE 8-4. Printer Modes 

Mode Printer Command 

PRINT DOUBLE-WIDTH CHARACTERS CHR$(l4) 

PRINT SINGLE-WIDTH CHARACTERS CHR$(l5) 

PRIKT REVERSE CHARACTERS CHR$(18) 

PRINT NON-REVERSE CHARACTERS CHR$(146) 

GRAPHICS MODE CHR$(8) 

AL1ERNA1E CHARACTER SET CHR$(17) 

STANDARD CHARACTER SET CHR$(145) 

REPEAT GRAPHICS MODE CHR$(26) 

Notice that the command CH R$( 18) is the same as the CHR$ function, 
which prints reverse characters on the video screen. On the screen, typing 
CTRL R VS ON switches to reverse characters. This also works on the printer 
if you put the instruction in a PRINT# statement like the following: 

PRINT#l,"{CTRl){R ..... S ON)";"RE'y'ERSE CHARACTERS" 

You can use either CHR$( 146) or CTRL RVS OFF to leave reverse mode. 

GRAPHICS 

The command CHR$(8) causes the printer to enter the graphics mode. 
Graphics are created by printing patterns of dots. For instance, a 

smiling face could be made up of dots in the following pattern: 

•••••• 
I • ··1 ••••• •••••• 



346 Your Commodore ~,4 

This pattern is converted into a set of numbers to be sent to the printer. 
This is done as follows: the rows (horizontal dots) are each given a numeric 
value. The top row is 1, the next row down is 2, and so forth, with each 
successive row being double the value of the one above it. The value of the 
seventh row is 64. Add up the numbers in the places that you want to print 
dots. To this number you then add 128, and that is the number that you put 
into the printer. 

Let's examine the smiling face and determine what the value of each 
row should be to print it on the printer. 

A B C D E F G H 

2 

4 

8 

16 

32 

64 

1 -I- 16 + 64 = 81 ------------' 

1 + 16 + 64 = 81 ------------' 

1 + 4 + 16 + 64 = 85 _+__-----______ ----.J 

2+8+32=42----------------------~ 

4 + 8 + 16 = 28---------------------1 

Look at column A. The dark squares represent locations in which the 
printer should print dots. Adding up the values of the locations in column A 
we get: 4 + 8 + 16 = 28. Column B is 2 + 8 + 32 = 42. 

If you continue through all eight columns you will get the values 28, 42, 
85, 81, 81, 85, 42, and 28. 



Chapter:: Peripheral [)ev.ces 347 

To print these as a graphic shape, put the values into CHR$ statements, 
such as the following: 

Ie DATA 28,42,85,81,81,85,42,28 
2121 OPEt~ 1,4 
3121 PRINT.l, CHRS(8)j 
413 FOR R=l TO 8 
513 READ A 
613 PRINT#1,CHR$(A+128)j 
713 NEXT 
80 PRINT .. 1 
90 PRINH*l 

This will print a smiling face on the printer. You can print more smiling 
faces by repeating this pattern. 

You can also use the function keys to produce the special characters. 
Here's a short program that prints whatever text you enter into it, plus a 
smiling face. 

The smiling face will be printed (on the printer only-an asterisk will be 
printed on the screen) each time you hit the Fl key. 

10 OPEN 1,4 
20 GET As: IF As::"" THEN 2121 
3121 IF AS = "(FD" THEt'l 70 
4121 PRINT#l, AS 
50 PRHH AS; 
613 GO TO 2121 
7121 DATA 28,42,85,81,81,85,42,28 
80 PRINT.l,CHR:f(8); 
90 FOR R=l TO 8 
100 READ A 
110 PRINT#l, CHRS(A+128); 
120 NEXT:PRINT "Me"; 
130 PRINT .. 1, CHR.(15) 
140 RESTORE: GOTO 20 

GRAPHICS REPEAT FUNCTION 

The graphics repeat function allows you to print any pattern of seven 
vertical dots as many times as you like (up to 255 times per command). 

Here's an example of a repeat function. 

OPEN 1,4 
PRINT*l, CHR'(26)CHR'(10)CHR'C255) 



348 Your Commodore 64 

This will print a solid horizontal bar seven dots high by ten dots long. 
CHR$(26) is the repeat function, CHR$(lO) is the number of times to 

repeat, and CHR$(255) produces the dot pattern containing seven vertical 
dots. 

This function can easily be incorporated into the smiling face routine 
above and used to expand the face. 

10 DATA 28.42.85,81,81,85,42.28 
20 OPEN 1,4 
30 INPUT "WIDTH";W 
40 PRINTll,CHRS(8); 
50 FOR R-l TO 8 
60 READ A 
70 PRINTI1,CHRS(26) CHR'(W) CHR'(A+128); 
80 NEXT 
90 PRINT#l 

Put different values into the width variable when the program requests 
it and notice how the picture changes. Of course, this becomes impractical 
at some point, since it can become so wide that it is no longer recognizable. 



APPENDIX 
----------~=--------------------------------

System Architecture 
---------

Figure A-I is a block diagram of the C-64's design architecture. It 
illustrates the relationships between several of the system elements described 
in Chapter 1. The arrows show the flow of data between these elements. 

Vidc() 
IntLTf;t,:c MKRAM 

6<;67 

VIC II 
Chip 

65K! 
SID Chip 

FIGURE A·i. System block diagram 

Audio 
Interface 

6510 
:\1icro-

proce,sor 

349 





APPENDIX 

Memory Usage 

The main function of any memory map is to help you utilize the many 
built-in functions of your computer. The following memory guide does not 
catalog every memory location in the C-64 map. Instead, it indicates those 
locations that are the most useable and includes a detailed explanation of what 
each location does and how it works. 

INTERPRETING POINTERS 

Many ofthe memory locations included in this guide are paired. Instead 
of performing the indicated function, these locations point to the location of 
the function listed. This allows you to move certain functions around in 
memory. For example, location 648 (which contains a I-byte address) points 
to the beginning of the screen memory. By changing this number, you can use 
different parts of memory for the screen. By doing this you can set up different 
screens and switch between them by changing the number in this location. 

In addition, some of these locations keep track of functions within the 
computer such as location 144, which monitors the status of the current 1/0 
device logged onto the system. By reading the value in this location, you can 
determine an OK condition or, if necessary, an error condition. 

351 



352 Your Commoci(re !,1 

Those locations that are organized as address pairs contain two numbers 
which represent a single hexadecimal number. To convert these two numbers 
into a decimal value (for PEEKing or POKEing) use the following formula: 

value = lower memory location + (upper memory location X 256) 

Here is a short BASIC routine that will perfom this function for you. 

10 INPUT "VALUE IN LOWER MEMORY LOCATION": L 
20 INPUT "VALUE IN HIGHER MEMORY LOCATION": H 
30 PRINT "DECIMAL VALUE =": L+256*H 

Memory 
Location 

43 &44 

45 &46 

47 &48 

49 & 50 

51 & 52 

55 & 56 

144 

160 - 162 

10 A=PEEK (160) 
20 a-PEEK (161) 

Function 

These locations contain the address of the first 
byte of your BASIC program. 

These locations contain the address of the first 
byte of the variables in your BASIC program. 

These locations contain the address of the begin­
ning of the BASTC arrays. 

The number stored in these locations is one byte 
higher than the end of BASIC arrays. 

The number in these locations point indicate the 
lowest memory location used for storing the 
strings in your BASIC program. 

These two locations indicate the highest memory 
location used by BASIC. 

The 110 status byte. This location stores a number 
which indicates the condition 110 device in opera­
tion. A zero in this location indicates a OK condi­
tion. Table 8-2 (in Chapter eight) gives the error 
codes for any other number in this location. 

The jiffy clock. The number in these three loca­
tions is a straight binary number. To interpret its 
value, use the following routine: 



Aopendix B Memory usage 353 

30 C=PEEK(162) 
40 D=C+«256)*B)+(65536*A) 
50 PRINT D 

192 

197 

198 

631 - 641 

641 - 642 

643 - 644 

648 

649 

650 

651 

This is the cassette motor interlock. Ordinarily it is 
used to turn the Datassette on and off during read 
and write operations. It can also be used as an 1/0 
line to control other low current devices. See Fig­
ure C-6 for the location of the CASSETTE 
MOTOR line of the cassette port. 

The value of the current key being pressed can be 
read in this location. 

This location can be read to determine how many 
characters are currently in the keyboard buffer 
(there are a maximum of ten). Any keystrokes 
after the tenth entry will be lost. 

The keyboard buffer. 

These locations point to the lowest memory loca­
tion of the operating system. 

These locations point to the highest memory loca­
tion of the operating system. 

This location controls the location of screen mem­
ory. The actual location of the screen can be found 
by multiplying the number stored here by 256. 

This location controls the size of the keyboard 
buffer. By changing this value (which is initialized 
to ten whenever the system is reset) you can con­
trol the number of keystrokes that will be stored 
while the computer is operating. 

Repeat key ON! OFF. ON = 128, OFF = 0 

Repeat rate. This location controls the speed of the 
repeat fllnction. 



354 Your Commodore 64 

652 

567 

770 - 771 

788 - 789 

1024 - 2023 

2040 - 2047 

2048 - 40959 

32768 - 40959 

40960 - 49151 

49152 - 53247 

53248 - 54271 

53248 
53249 
53250 
53251 
53252 
53253 
53254 
53255 
53256 

Repeat delay. This location determines how long a 
key must be depressed before it will begin re­
peating. 

Enable/ Disable SHIFT function. This location 
controls the keyboard access to the alternate char­
acter set obtained through (COMMODORE/ 
SHIFT). 

Warm start vector. A SYS to this location has the 
same effect as hitting RUN/STOP-RESTORE. 

Hardware IRQ (Interrupt Request) vector. 

Location of Screen Memory at power up. 

These locations control the locations of the sprites 
in memory. 

Free RAM space. 

These memory locations can be used by an ex­
ternal cartridge. If they are used, the RA M will be 
overlaid. 

BASIC interpreter. 

4K Buffer RAM. This RAM is available for your 
use. If you place data in this area it will not affect 
the normal BASIC RAM down at 2048 - 40959. 

VIC II Chip Control Registers 

Sprite #0: X position 
Sprite #0: Y position 
Sprite #1: X position 
Sprite #1: Y position 
Sprite #2: X position 
Sprite #2: Y position 
Sprite #3: X position 
Sprite #3: Y position 
Sprite #4: X position 



53257 
53258 
53259 
53260 
53261 
53262 
53263 
53264 

53265 

53266 

53267 

53268 

53269 

53270 

53271 

Appendix B Mewory Usage 355 

Sprite #4: X position 
Sprite #5: X position 
Sprite #5: Y position 
Sprite #6: X position 
Sprite #6: X position 
Sprite #7: X position 
Sprite #7: Y position 
Sprites 0-7 MSB of X position 

VIC II Chip Control Register 
Bits 0-2: Smooth Scroll (Y direction) 
Bit 3: 24/25 Row Select (24=0) 
Bit 4: Screen Blanking (Blank=O) 
Bit 5: Enable Bit Map Mode (l=ON) 
Bit 6: Extended Color Text (l =ON) 
Bit 7: Raster Value Register (MSB) 

Raster Value Register (Bits 0-7) 

Light Pen (X Value) 

Light Pen (Y Value) 

Sprite Display Control Register 
Bit 0: Sprite #0 (l=ON) 
Bit 1: Sprite #1 (l=ON) 
Bit 2: Sprite #2 (l=ON) 
Bit 3: Sprite #3 (l=ON) 
Bit 4: Sprite #4 (l=ON) 
Bit 5: Sprite #5 (l=ON) 
Bit 6: Sprite #6 (l=ON) 
Bit 7: Sprite #7 (l=ON) 

VIC II Control Register #2 
Bits 0-2: Smooth Scroll (X direction) 
Bit 3: 38/40 Column Select (1=40) 
Bit 4: Multicolor Mode (l=ON) 
Bits 5-7: Not Used 

Sprite Expansion Register (Y direction) 
Bit 0: Sprite #0 (l=2X) 



356 YOur CC)mmocore « 

53272 

53273 

53274 

53275 

53276 

Bit I: Sprite # I (I =2X) 
Bit 2: Sprite #2 (l=2X) 
Bit 3: Sprite #3 (l=2X) 
Bit 4: Sprite #4 (I=2X) 
Bit 5: Sprite #5 (1=2X) 
Bit 6: Sprite #6 (I=2X) 
Bit 7: Sprite #7 (I=2X) 

VIC II Address Control Register 
Bit 0: Not Used 
Bits 1-3: Character Set Location 
Bits 4-7: Screen Location 

VIC II Interrupt Control Register 
Bit 0: Raster Compare 
Bit 1: Sprite-Background Collision 
Bit 2: Sprite-Sprite Collision 
Bit 3: Light Pen Interrupt 
Bits 4-6: Not Used 

VIC II Interrupt Enable Register 
Bit 0: Raster Compare (I=ON) 
Bit I: Sprite-Background Collision (l=ON) 
Bit 2: Sprite-Sprite Collision (l=ON) 
Bit 3: Light Pen Interrupt (I =ON) 
Bits 4-6: Not Used (l=ON) 

Sprite-Background Priority Register 
Bit 0: Sprite #0 (l=SPRITE) 
Bit I: Sprite #1 (l=SPRITE) 
Bit 2: Sprite #2 (l=SPRITE) 
Bit 3: Sprite #3 (l=SPRITE) 
Bit 4: Sprite #4 (1=SPRITE) 
Bit 5: Sprite #5 (I=SPRITE) 
Bit 6: Sprite #6 (l=SPRITE) 
Bit 7: Sprite #7 (l=SPRITE) 

Sprite Multicolor Control Register 
Bit 0: Sprite #0 (l=Multicolor) 
Bit I: Sprite #1 (I=Multicolor) 
Bit 2: Sprite #2 (l=Multicolor) 



53277 

53278 

53279 

53280 

Appenox B 357 
=====-============~ 

Bit 3: Sprite #3 (1= Multicolor) 
Bit 4: Sprite #4 (1= Multicolor) 
Bit 5: Sprite #5 (l=Multicolor) 
Bit 6: Sprite #6 (1= Multicolor) 
Bit 7: Sprite #7 (l=Multicolor) 

Sprite Expansion Register (X direction) 
Bit 0: Sprite #0 (1=2X) 
Bit I: Sprite #1 (1=2X) 
Bit 2: Sprite #2 (l=2X) 
Bit 3: Sprite #3 (l=2X) 
Bit 4: Sprite #4 (1=2X) 
Bit 5: Sprite #5 (l=2X) 
Bit 6: Sprite #6 (l=2X) 
Bit 7: Sprite #7 (1=2X) 

Sprite-Sprite Collision Register 
Bit 0: Sprite #0 (l=Collision Detect) 
Bit I: Sprite #1 (l=Collision Detect) 
Bit 2: Sprite #2 (l=Collision Detect) 
Bit 3: Sprite #3 (I=Collision Detect) 
Bit 4: Sprite #4 (l=Collision Detect) 
Bit 5: Sprite #5 (\ =Collision Detect) 
Bit 6: Sprite #6 (I=Collision Detect) 
Bit 7: Sprite #7 (I=Collision Detect) 

Sprite-Background Collision Register 
Bit 0: Sprite #0 (l=Collision Detect) 
Bit I: Sprite #1 (l=Collision Detect) 
Bit 2: Sprite #2 (1 =Collision Detect) 
Bit 3: Sprite #3 (1=Collision Detect) 
Bit 4: Sprite #4 (I=Collision Detect) 
Bit 5: Sprite #5 (l=Collision Detect) 
Bit 6: Sprite #6 (l=Collision Detect) 
Bit 7: Sprite #7 (l=Collision Detect) 

Screen Border Color 
0= BLACK 
1 = WHITE 
2= RED 



358 Your Commodore 64 

53281 

53282 

3= CYAN 
4= PURPLE 
5= GREEN 
6= BLUE 
7= YELLOW 
8= ORANGE 
9= BROWN 

10 = LIGHT RED 
11 = DARK GREY 
12 = MEDIUM GREY 
13 = LIGHT GREEN 
14 = LIGHT BLUE 
15 = LIGHT GREY 

Background Color # 1 
0= BLACK 
1 = WHITE 
2= RED 
3= CYAN 
4= PURPLE 
5= GREEN 
6= BLUE 
7= YELLOW 
8= ORANGE 
9= BROWN 

10 = LIGHT RED 
11 = DARK GREY 
12 = MEDIUM GREY 
13 = LIGHT GREEN 
14 = LIGHT BLUE 
15 = LIGHT GREY 

Background Color #2 
0= BLACK 
1 = WHITE 
2= RED 
3= CYAN 
4= PURPLE 
5= GREEN 



53283 

53284 

Apperdx B Memory Usage 359 

6= BLUE 
7= YELLOW 
8 = ORANGE 
9 = BROWN 

10 = LIGHT RED 
11 = DARK GREY 
12 = MEDIUM GREY 
l3 = LIGHT GREEN 
14 = LIGHT BLUE 
15 = LIGHT GREY 

Background Color #2 
0= BLACK 
1 = WHITE 
2= RED 
3 = CYAN 
4= PURPLE 
5 = GREEN 
6 = BLUE 
7= YELLOW 
8 = ORANGE 
9= BROWN 

10 = LIGHT RED 
11 = DARK GREY 
12 = MEDIUM GREY 
13 = LIGHT GREEN 
14 = LIGHT BLU E 
15 = LIGHT GREY 

Background Color #3 
0= BLACK 
1 = WHITE 
2= RED 
3= CYAN 
4= PURPLE 
5 = GREEN 
6 = BLUE 
7= YELLOW 
8 = ORANGE 



360 Your Commodore 64 

53285 

53286 

53287-53294 

54272 - 55295 

54272 - 54278 

54272 

54273 

54274 

54275 

54276 

9= BROWN 
10 = LIGHT RED 
II = DARK GREY 
12 = MEDIUM GREY 
13 = LIGHT GREEN 
14 = LIGHT BLUE 
15 = LIGHT GREY 

Sprite Multicolor Register #0 

Sprite Multicolor Register #1 

Sprite Color Registers 0-7 
0= BLACK 
1 = WHITE 
2= RED 
3= CYAN 
4= PURPLE 
5= GREEN 
6= BLUE 
7= YELLOW 
8= ORANGE 
9= BROWN 

10 = LIGHT RED 
II = DARK GREY 
12 = MEDIUM GREY 
13 = LIGHT GREEN 
14 = LIGHT BLUE 
15 = LIGHT GREY 

SID Chip Control Registers 

Sound Register # 1 

Frequency Control (Low Byte) 

Frequency Control (High Byte) 

Pulse Width Value (Low Byte) 

Pulse Width Value (High Byte) 

Sound Control Register 
Bit 0: Sound ON / OFF (1 =ON) 



B ;lemory I.sc::;;e 361 
====~~==================~= 

54277 

54278 

54279 - 54285 

54279 

54280 

54281 

54282 

54283 

54284 

54285 

54286 - 54292 

54286 

Bit 1: Sync Bit (l=ON) 
Bit 2: Ring Modulation (I =ON) 
Bit 3: Test Bit (Normally not used) 
Bit 4: Triangle Wave (l=ON) 
Bit 5: Sawtooth Waveform (l=ON) 
Bit 6: Square Wave (l =ON) 
Bit 7: White Noise (l=ON) 

Attack! Decay Control Register 
Bits 0-3: Decay Value 
Bits 4-7: Attack Value 

Sustain! Release Control Register 
Bits 0-3: Release Value 

Sound Register #2 

Frequency Control (Low Byte) 

Frequency Control (High Byte) 

Pulse Width Value (Low Byte) 

Pulse Width Value (High Byte) 

Sound Control Register 
Bit 0: Sound ON! OFF (1 =ON) 
Bit I: Sync Bit (l=ON) 
Bit 2: Ring Modulation (I=ON) 
Bit 3: Test Bit (Normally not used) 
Bit 4: Triangle Wave (1 =ON) 
Bit 5: Sawtooth Waveform (l=ON) 
Bit 6: Square Wave (l=ON) 
Bit 7: White Noise (l=ON) 

Attack! Decay Control Register 
Bits 0-3: Decay Value 
Bits 4-7: Attack Value 

Sustain/ Release Control Register 
Bits 0-3: Release Value 
Bits 4-7: Sustain Value 

Sound Register #3 

Frequency Control (Low Byte) 



362 YO,.1i Ccmmoclore 04 

54287 

54288 

54289 

54290 

54291 

54292 

54293 - 54296 

54293 

54294 

54295 

54296 

Frequency Control (High Byte) 

Pulse Width Value (Low Byte) 

Pulse Width Value (High Byte) 

Sound Control Register 
Bit 0: Sound ON / OFF (I =ON) 
Bit I: Sync Bit (I =ON) 
Bit 2: Ring Modulation (I=ON) 
Bit 3: Test Bit (Normally not used) 
Bit 4: Triangle Wave (I =ON) 
Bit 5: Sawtooth Waveform (l=ON) 
Bit 6: Square Wave (l=ON) 
Bit 7: White Noise (I=ON) 

Attack/ Decay Control Register 
Bits 0-3: Decay Value 
Bits 4-7: Attack Value 

Sustain/ Release Control Register 
Bits 0-3: Release Value 
Bits 4-7: Sustain Value 

Sound Filter Functions 

Filter Cutoff Value (Low Byte) 

Filter Cutoff Value (High Byte) 

Filter / Resonance Control Register 
Bit 0: Sound Register #1 Filter (l=ON) 
Bit I: Sound Register #2 Filter (l=ON) 
Bit 2: Sound Register #3 Filter (l=ON) 
Bit 3: External Filter (I =ON) 
Bits 4-7: Resonance Value 
Bits 4-7: Sustain Value 

Mode/Volume Control 
Bits 0-3: Volume Control Register 
Bit 4: Low Pass Filter 
Bit 5: Band Pass Filter 
Bit 6: High Pass Filter 
Bit 7: Sound Register #3 ON/OFF (I=OFF) 



54297 Paddle Controller X-value 

54298 Paddle Controller Y -value 

54299 Oscillator #3 Random Number Generator 

54300 

56320 - 56335 

56320 

56321 

56322 

56323 

56324 - 56327 

56324 

56325 

56326 

56327 

56328 - 56331 

56328 

56329 

56330 

56331 

56332 

Envelope Register 

CIA (Complex Interface Adapter) #1 

Port A 
Bits 0-7: Keyboard Column Key Values 
Bits 0-3: (alt) Direction (Joystick A) 
Bits 2&3: (alt) Paddle Fire Buttons 
Bit 4: (alt) Fire Button (Joystick A) 
Bits 6&7: (alt) Port A Paddle Values 

Port B 
Bits 0-7: Keyboard Row Key Values 
Bits 0-3: (aJt) Direction (Joystick B) 
Bits 2&3: (alt) Paddle Fire Buttons 
Bit 4: (a It) Fire Button (Joystick B) 
Bits 6&7: (alt) Port B Paddle Values 

Port A Input/ Output Direction Register 

Port B Input! Output Direction Register 

Timers 

Timer A (Low Byte) 

Timer A (High Byte) 

Timer B (Low Byte) 

Timer B (High Byte) 

Real Time Clock 

0.1 Seconds 

Seconds 

Minutes 

Bits 0-6: Hours 
Bit 7: AM! PM Indicator 

Serial I! 0 Buffer (Synchronous) 



364 Yet .. C:::ornr"cJore 

56333 

56334 

56335 

56576 - 56831 

56576 

Interrupt Control Register 
Bit 0: Timer A 
Bit I: Timer B 
Bit 2: Clock Alarm 
Bit 3: Serial Port 
Bit 4: Cassette Read/ Serial Bus SRQ Input 
Bit 7: Interrupt Detect Bit 

Control Register A 
Bit 0: Start/Stop Timer (l=Start) 
Bit I: Timer Output (I =ON) 
Bit 2: Timer Mode (I=Toggle 0= Pulse) 
Bit 3: Timer Run Mode (I=One Shot O=Cont) 
Bit 4: Preset Timer (I = Preset) 
Bit 5: Timer Clock Source (\=Int O=System) 

Bit 6: Serial Port I/O Mode (J =Output) 
Bit 7: Real Time Clock Freq (0=60Hz) 

Control Register B 
Bit 0: Start/Stop Timer (l=Start) 
Bit I: Timer Output (l =ON) 
Bit 2: Timer Mode (l=Toggle O=Pulse) 
Bit 3: Timer Run Mode (l=One Shot O=Cont) 
Bit 4: Preset Timer (I = Preset) 
Bits 5&6: Timer B Mode Select 

0= Clock Source: System 
I = Clock On Positive Pulses 
2 = Carry From Timer A 
3 = Carry From Timer A Positive Pulses 

Bit 7: Set Alarm (I =Set) 

2 = Carry From Timer A 
3 = Carry From Timer A Postive Pulses 

Bit 7: Set Alarm (I=Set) 

CIA (Complex Interface Adapter) #2 

Data Port A 
Bits 0&1: VIC II Chip Bank Select 

0= Bank 3 (49152-65535) 
I = Bank 2 (32768-49151) 



56577 

56378 

56379 

56380- 56383 

56380 

56381 

56382 

56383 

56384 - 56387 

56384 

56385 

56386 

56387 

56388 

56389 

l\pperidlx B Memury Usage 365 

2 = Bank 1 (16384-32767) 
3 = Bank 0 (00000-16383) 

Bit 2: RS-232 User Data Output 
Bit 3: ATN Output Signal 
Bit 4: Serial Bus Output Clock Pulse 
Bit 5: Serial Bus Output 
Bit 6: Serial Bus Input Clock Pulse 
Bit 7: Serial Bus Input 

Data Port B (RS-232 User Port) 
Bit 0: Data Received 
Bit 1: Request to Send 
Bit 2: Data Terminal Ready 
Bit 3: Ring Indicator 
Bit 4: Carrier Detect 
Bit 6: Clear to Send 
Bit 7: Data Set Ready 

Port A Input/ Output Direction Register 

Port B Input/ Output Direction Register 

Timers 

Timer A (Low Byte) 

Timer A (High Byte) 

Timer B (Low Byte) 

Timer B (High Byte) 

Real lime Clock 

0.1 Seconds 

Seconds 

Minutes 

Bits 0-6: Hours 
Bit 7: AM/PM Indicator 

Serial I/O Buffer (Synchronous) 

Interrupt Control Register 
Bit 0: Timer A 
Bit I: Timer B 



366 Your Commodore /4 

56390 

56391 

Bit 2: Clock Alarm 
Bit 3: Serial Port 

---------

Bit 4: Cassette Read; Serial Bus SRQ Input 
Bit 7: Interrupt Detect Bit 

Control Register A 
Bit 0: Start/Stop Timer (l=Start) 
Bit I: Timer Output (I =ON) 
Bit 2: Timer Mode (1=Toggle O=Pulse) 
Bit 3: Timer Run Mode (I=One Shot O=Cont) 
Bit 4: Preset Timer (I = Preset) 
Bit 5: Timer Clock Source (1=lnt O=System) 
Bit 6: Serial Port I 0 Mode (I=Output) 
Bit 7: Real Time Clock Freq (O=60Hz) 

Control Register A 
Bit 0: Start/ Stop Timer (I =Start) 
Bit I: Timer Output (1 =ON) 
Bit 2: Timer Mode (I=Toggle O=Pulse) 
Bit 3: Timer Run Mode (I=One Shot O=Cont) 
Bit 4: Preset Timer (1=Preset) 
Bits 5&6: Timer B Mode Select 

0= Clock Source: System 
1 = Clock On Positive Pulses 
2 = Carry From Timer A 
3 = Carry From Timer A Positive Pulses 

Bit 7: Set Alarm (I=Set) 



APPENDIXC 
C-64 I/O Pinouts 

----- -- - ----------

This section contains the pinouts of all the I 10 connectors on the C-64. 
U sing this information you can design your own interfaces for devices that do 
not hook up directly to the C-64. 

Control Port 1 

1 2 3 4 5 Pin No. Type 
0 0 0 0 0 

1 JOYO 
0 0 0 0 

6 7 8 9 
2 JOYl 
3 JOY2 

Control Port 2 
4 JOY3 
5 POTY 

2 3 4 5 
0 0 0 0 0 

6 Fire Hutton 
7 +5 V (50 rnA max) 
8 GND 

0 0 0 0 

6 7 8 9 
9 POT X 

FIGURE Ca1. Game port pinout 

367 



368 Commoou" . 

1 2 3 4 S 6 7 8 9 10 11 12 13 14 IS 16 17 18 19 20 21 22 

I :::::::::::::::::::::: I 
ABC D E F H J K L M N P R STU V W X Y Z 

Pin No. Type Pin No. Type 

I GND 12 BA 
2 +5v 1 , D!'~1A IJ 

3 +Sv 14 D7 
4 IRQ IS D6 
S R/W 16 DS 
6 DOT CLOCK 17 D4 
7 I/O I 18 D3 
~ GAME 19 D2 
9 EX ROM 20 DI 

10 102 21 DO 
II ROM L 22 GND 

Pin No. Type Pin No. Type 

A GND N A9 
B ROM H P A8 
C RESET R A7 
D NMI S A6 
E S 02 T AS 
r A IS U A4 
H A 14 V A3 
J A 13 W A2 
K A 12 X AI 
L A II Y AO 
M A 10 Z GND 

FIGURE C-2. Expansion port pinout 



(Iopendix C Cc,1 I/O Pinouts 369 

Pin No. Type 

1 lUMINANCE 
2 GND 
3 AUDIO OUT 
4 VIDEO OUT 
5 AUDIO IN 

FIGURE C-3. Audio/video port pinout 

Pin No. Type 

I SERIAL SRQ IN 
2 GND 
3 SERIAL ATN IN/OUT 
4 SFRIAL CLK IN/OUT 
5 SERIAL DATA IN/OUT 
6 RESET 

FIGURE C-4. Serial I/O port pinout 



2 3 4 5 6 7 8 9 10 II 12 

~ 
A BCD E F H J K L M N 

Pin No. Type 

I GND 
2 +5 V 
3 RESET 
4 CONTROL I 
5 SP I 
6 CONTROL 2 
7 SP 2 
8 PC 2 
9 SERIAL ATN IN 

10 +9 V (100 mA max) 
II +9 V (100 mA max) 
12 GNU 
A GND 
B FLAG 2 
C PBO 
D PBI 
E PB2 
F PB3 
H PB4 
J PBS 
K PB6 
L PH7 
M PA2 
N GNU 

FIGURE C-S. User port pinout 



.Apper(j'x C C/4 I/O Pirou"s 371 

A B C D E F 

Pin No. Type 

A and I GND 
Band 2 +5V 
C and 3 CASSETTE MOTOR 
D and 4 CASSETTE READ 
E and 5 CASSETTE WRITE 
F and 6 CASSETTE 

FIGURE 0.6. Cassette interface pinout 





APPENDIX 

Conversion Tables 
Trigonometric Functions 

The tables In this section are intended as an aid to mathematical 
programming. 

Hexadecimal-Decimal Integer Conversion 

Table D-I provides for direct conversions between hexadecimal inte­
gers in the range O-FFF and decimal integers in the range 0-4095. For 
conversion of larger integers, the table values may be added to the figures in 
Table D-2. 

Hexadecimal fractions may be converted to decimal fractions as 
follows: 

1. Express the hexadecimal fraction as an integer times 16-n , where n is 
the number of significant hexadecimal places to the right of the 
hexadecimal point. 

o. CA9BF3 16 = CA9 BF3 16 X 16-6 

2. Find the decimal equivalent of the hexadecimal integer 

CA9 BF3 1(, = 13 278 195 10 

3. Multiply the decimal equivalent by l6- n 

13 
X 596 

0.791 

278 
046 

442 

195 
448 X 1016 

096 10 

373 



374 Your CommooofC [4 

TABLE D·1. Hexadecimal-Decimal Integer Conversion 

0 I 2 3 4 5 6 7 8 9 A B C 0 E f 

DO 0000 OUOI 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 
01 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031 
02 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 
03 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063 

04 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079 
05 OG80 0081 0082 0083 0084 OOBS 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095 
06 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111 
07 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127 

08 0118 01 )9 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 
09 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 
OA 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175 
DB 0176 0177 0178 0179 0180 0181 0182 0183 0184 OIBS 0186 0187 0188 0189 0190 0191 

DC 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207 
DO 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223 
OE 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 
Of 0240 0141 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255 

10 0256 0257 0258 0259 0160 0261 0262 0163 0264 0265 0266 0267 0268 0269 0270 0271 
11 0272 0273 0274 0275 0276 0277 0278 0279 0280 028! 0282 0283 0284 0285 0286 0287 
12 0283 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 
1 J 0304 0305 0306 0307 0308 0309 0310 (131 I 0312 0313 0314 0315 0316 0317 0318 0319 

14 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 
, 5 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 
16 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367 
17 0368 0369 0370 0371 0372 0373 0374 0315 0376 0377 0378 0379 0380 0381 0382 0383 

18 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399 
19 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 
IA 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 043 I 
I B 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 

IC 0448 0449 0450 045 'I 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463 
10 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479 
IE 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495 
IF 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 

20 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 
21 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 
22 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 
23 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575 

24 0576 0577 0578 0579 0580 058 I 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591 
25 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 
26 0608 0609 0610 0611 0612 0613 0614 0615 11616 0617 0618 0619 0620 0621 0622 0623 
27 0624 0625 0626 0617 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639 

28 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 
29 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671 
2A 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687 
2B 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 

2C 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 
20 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 
2E 0736 0737 0738 0739 0740 0741 0742 0743 0744, 0745 0746 0747 0748 0749 0750 0751 
2f 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767 



D COrWGrS!Ori Tobies Tngonon"ehc FunctlOflS 375 

TABLE 0·1. Hexadecimal-Decimal Integer Conversion (continued) 

0 I 2 3 4 5 6 7 8 9 A 6 C D l F 

30 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783 
31 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 

32 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 
33 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0531 

34 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841' 0842 0843 0844 0845 0846 0847 
35 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863 
36 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879 
37 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895 

38 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 
39 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 

3A 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 
36 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 

3C 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975 
3D 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991 
3E 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007 
3f 1008 1009 1010 1011 1012 1013 1014 lOIS 1016 1017 1018 1019 1020 1021 1022 Ion 

4C 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 
41 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 
42 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 
43 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 

44 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 
45 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 111 e 1119 
46 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 
47 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 

48 1152 j 153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 
49 1168 1169 1170 Illl 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1153 
4ft 1184 118S 1186 I! 87 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 
4B 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 

4C 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1276 1227 1228 1229 1230 I ?31 
4C 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 
4E 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 
4F 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 

50 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 
51 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 
52 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 

53 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 

54 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 
55 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 
56 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 
57 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 

58 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1413 
59 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 
5~ 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 
58 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 

5C 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 

5D 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 03 
5E 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 I I y 

SF 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 I 35 



376 Your Commodore 64 

TABLE D·1. Hexadecimal-Decimal Integer Conversion (continued) 

0 I 2 3 4 5 6 7 8 9 A 8 C D E F 

60 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 
61 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 
62 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 
63 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 

64 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 
65 1616 1617 16.18 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 
66 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 
67 1648 1649 16:0 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1;62 1663 

68 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 16/6 1677 1678 1679 
69 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 
6A 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 171 I 
68 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 

6C 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1143 
6D 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 175 7 1758 1759 
6E 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 
6F 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 

70 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 
71 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 
72 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 i837 1838 1839 
73 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1653 1854 1855 

74 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 
75 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 
76 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 
77 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 

78 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 
79 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 
71> 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 
78 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 

7C 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 
7D 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 
7E 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 
?F 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 

80 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 
81 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 
82 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 
83 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 

84 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 
85 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 
86 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 
87 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 

88 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 
89 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 
8A 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 
8~ 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 

8C 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 
8D 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 
8E 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 
8F 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 



377 

TABLE 0·1. Hexadecimal-Decimal Integer Conversion (continued) 

0 I 2 3 4 5 6 7 8 q A B C D E F 

90 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 
91 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 
92 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 
93 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 

94 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 
95 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 
96 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 
97 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 

98 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 
99 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 
91> 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 
9B 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 

9C 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 
9D 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 
9E 2578 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 
9f 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 

AO 2550 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 757 J 7574 2575 
AI 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2j88 2589 2590 2591 
A2 2592 2593 2594 2595 25J6 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 
A3 2608 2609 2610 2611 2617 2613 2614 2615 2616 2617 2618 26 \ 9 2620 762 i 2677 2623 

A4 2624 2625 2626 2627 7628 2629 2630 263 I 2632 2633 2634 2635 2636 2637 2638 2639 
A5 2640 2641 2642 2643 7644 2645 2646 2647 2648 2649 2650 2651 7657 2653 2654 2655 
A6 2656 2657 265e 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 7670 2671 
A7 2672 2673 2674 2675 2676 7677 2678 7679 2680 2681 2682 2683 2684 2685 7686 2687 

A8 2688 2689 76 90 76 9 1 2692 2693 2694 2695 2696 1697 20'-18 1699 2700 2701 2702 2703 
A9 2704 7,705 2706 2707 2708 2709 2710 2711 2' 17 2713 27 I 4 2715 2716 2717 2718 2719 
AI> 2720 7721 2772 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 7735 
I>B 2736 273' 2738 7739 2740 2741 2742 2743 7744 2745 2746 2747 2748 2749 2750 275 I 

AC 2752 2753 7754 2755 2756 2757 2758 2759 7760 2761 2762 2763 2764 2765 2766 776: 
AD 2768 7769 2770 7771 2772 2773 2774 2775 2776 2777 27/8 27 79 2780 2781 ?l82 2783 
AE 2784 2785 2786 2787 2788 2789 2790 2791 2792 27 QJ 2794 7795 2796 2797 2798 2799 

Af 2800 280 I 2802 2803 2804 2805 2806 2807 2808 7809 2610 2811 2812 2813 2814 2B 15 

BO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 
B I 2832 2833 2834 2835 2836 283/ 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 
B2 2848 2849 2850 2851 2857 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 
B3 2864 2865 2866 2867 2868 2869 287D 2871 2872 2873 2874 2875 2876 2877 2878 2879 

B4 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 
B5 2896 2897 2898 2899 7900 nOl 1902 7903 2904 2905 2906 2907 2908 2909 2910 2911 
B6 2912 2913 2914 2915 2916 2917 29' 8 2919 2920 2921 2922 2923 2924 2925 2926 2927 
B7 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 n43 

B8 2944 2945 2946 2947 2948 2949 2950 2951 2'157 2G53 295.) 2955 2956 2957 2958 2959 
B9 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 297\1 2971 2972 2973 2974 7975 
B~ 2976 2977 7978 2979 2980 2981 2982 2983 7984 2985 2--)8t 7987 2988 2989 2990 2991 
BB 2997 2993 2994 7'195 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 

Be 3008 3009 3010 3011 3012 3013 3014 3015 3016 3ew 3018 3019 3020 3021 3022 3023 
80 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 
BE 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 
Bf 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 



378 Your Commodore e4 

TABLE 1).1. Hexadecimal-Decimal Integer Conversion (continued) 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

CO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 
C1 3088 3089 3090 3091 3091 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 
C2 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 
C3 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 

C4 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 
C5 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 
C6 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 
C7 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 

C8 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 321 ) 
C9 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 "231 
CI> 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 
CB 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 

CC 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3:>79 
CD 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 
CE 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 
CF 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 

DO 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 
DI 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 33j6 3357 3358 3359 
D2 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 
D3 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 

D4 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 
D5 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 
D6 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 
D7 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 

D8 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 
D9 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 
D,A 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 
DB 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 

DC 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 
DD 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 
DE 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 
DF 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 

EO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 
E 1 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 
E2 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 
E3 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 

E4 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 
E5 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 
E6 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 
E7 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 

E8 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 
E9 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 
EA 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 
EB 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 

EC 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 
EC 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 
EE 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 
EF 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 



Appendix D Corversion Tables Trigonometric FUllclions 379 

TABLE D·1. Hexadecimal-Decimal Integer Conversion (continued) 

0 I 2 3 4 5 6 7 B 9 A B C D [ f 

Fa 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 
fl 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 
F2 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 
F 3 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 389£ 3899 3900 3901 3902 3903 

F4 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 
F5 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 
F6 3936 3937 393R 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 
F 7 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 

F8 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 
f9 3984 3985 3986 39B7 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 
F~ 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 
F B 4016 40 17 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 

Fe 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 
FD 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 
F [ 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 
F F 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 

TABLE D·2. Conversion Values 

~k~odecimal Decimal Hexadecimal Decimal He .. odecimal Decimal He:ll.odecimol Decimol 

O()O 4 090 II 000 69632 30000 196608 400000 4 194 304 
C7 800 8 192 12 000 73 728 40000 262 144 500000 5 242 880 
03 oeD 12 288 13000 77 824 50 000 327 680 600 000 6291 456 
04 OCC 16 384 14000 81 920 60000 393 216 700000 7 340 032 
05 0(10 7n 480 15000 86 016 70 000 458752 800 000 8 388 608 
06 Due} 24 5'6 16000 90 112 80000 524 288 900000 9 437 184 
07 000 28 672 17000 94 208 90 000 589 824 AOO 000 10485760 
08000 32 768 18000 98304 AD 000 655 360 BOO 000 II 534 336 
09 GOO 36864 19000 102400 BO 000 720 896 COO 000 12582912 

OA OCiJ 40 960 IA 000 106496 CO 000 786 432 DOO 000 13631 488 
DB OC] 4) 056 IB 000 110592 DO 000 851 968 EOO 000 14680 064 
DC DC':' 49 152 IC 000 114688 [0 000 917 504 FOO 000 15728640 
OD OUO 53 248 I D 000 118 784 fO 000 983040 I 000 000 16777 216 
O[ 000 57 344 IE 000 122 880 100000 I 048576 2000000 33554432 
OF 000 61 440 IF 000 126 976 200000 2097 152 
10 000 65536 20000 131 072 300000 3 145728 

Decimal fractions may be converted to hexadecimal fractions by 
successively multiplying the decimal fraction by 16 . After each multiplica-

10 

tion, the integer portion is removed to form a hexadecimal fraction by 
building to the right of the hexadecimal point. However, since decimal 
arithmetic is used in this conversion, the integer portion of each product 
must be converted to hexadecimal numbers. 

Example: 

Convert 0.895 10 to its hexadecimal equivalent 



380 Your Corn modoC" 

0.895 
16 

.------14.320 
16 

F5.1~~ 

! 1.9~~ 
O.E5IEI6 • 14.720 

Functions that are not intrinsic to C-64 BASIC may be calculated as in 
Table D-3. 

iABLE 0·3. Deriving Mathematicai Functions 

Function 

Secant 

Cosecant 

Cotangent 

I nverse sine 

Inverse cosine 

Inverse secant 

Inverse cosecant 

Inversc cotangent 

Hyperbolic sine 

Hyperbolic cosine 

Hyperbolic tangent 

Hyperbolic secant 

Hyperbolic cosecant 

Hyperbolic cotangent 

Inverse hyperbolic sine 

Inverse hyperbolic cosine 

Inverse hyperbolic tangent 

Inverse hyperbolic secant 

Inverse hyperbolic cosecant 

Inverse hyperbolic cotangent 

VIC BASIC Equivalent 

SEC(X) = I j COS(X) 

CSC(X) = I I SIN(X) 

COT(X) = II T AN(X) 

ARCSIN(X) = ATN(X/SQR( - X*X + I» 

ARCCOS(X) = -ATN(X SQR 
(-X*X + I» + rr/2 

ARCSEC(X) = AT1':(X/ SQR(X*X - I)) 

ARCCSC(X) = ATN(X/ SQR(X*X - I» 
+(SGN(X)-I)*rrj2 

ARCOT(X) = ATN(X) + rr j 2 
SINE(X) = (EXP(X) - EXP(- X»/2 

COSH(X) = (EXP(X) + EXP( - X))/2 

TANH(X) = EXP( - X)/EXP(X) + EXP 
(-X))*2 + 1 

SECH(X) = 2/(EXP(X) + EXP( - X) 

CSCH(X) = 2/(EXP(X) - EXP( - X)) 

COTH(X) = EXP(- X) (EXP(X) 
- EXP( - X)*2 + I 

ARCSINH(X) = LOG(X + SQR(X*X + I) 

ARCCOSH(X) = LOG(X + SQR(X*X - I) 

ARCTANH(X) = 10G«(I + X)/(1 - X»/2 

ARCSECH(X) = IOG«SQR 
(- X*X + I) + I X) 

ARCCSCH(X) = LOG«SGN(X)*SQR 
(X*X + I) X 

ARCCOTH(X) = LOG«X + I)/(X - 1))/2 



APPENDIX 
-----c----==---c:--

Sound and Display 
Characters and Codes 

Two of the more powerful functions of the C-64 are its display and sound 
generation capabilities. The tables in this appendix cover all of the C-64 
character codes, screen POKE values, sound register equivalents, and color 
values. 

Table E-l covers all of the characters and functions that are displayed 
using the CHR$ instruction. In many instances, the use of the CHR$ function 
is optional; however, some functions, such as RETURN and RUN/STOP, 
are not programmable with the PRINT function. To program using these 
functions you will need to use the CHR$ function and the codes in this table. 

The codes used in the CHR$ instruction are not the same as those used 
in the POKE-to-screen commands. The codes shown in Table E-2 are listed 
in the same order as the characters in memory. Notice that all of the control 
cha£acters are omitted from this list. This is because there is no display code 
for them; control codes use the codes of standard reverse characters (for 
example, reverse-heart for CLR! HOME). 

The C-64 can use certain keyword abbreviations. These can save time 
when entering lines of code. In most cases, they consist of the first letter of the 
command and the shifted second letter of the command. In some cases you 
need to enter the first two letters of the command and the shifted third letter. 
See Table E-3 for each command and note that the display does not contain 
the second (or third) character, but a graphic character instead. 

381 



382 YOi If Commodore ~.i 

TABLE E·1. C-64 Character Codes 

Prints CHRS Prints CHRS Prints CHRS Prints CHRS 

0 CLR 19 ~ 38 I~ 58 
HOME 

I ~ 39 IT] 59 
INST 
DEL 20 rn KJ 2 40 60 

3 21 [2J 41 EJ 61 

4 22 ~ 42 ~ 62 

WHT 5 23 L±J 43 r7J 63 

6 24 GJ 44 I-':::=-I 64 
I~I 

7 25 EJ 45 IAl I __ ! 65 

DISABLE 

GJ iBI SHIFT (J: 8 26 46 66 

ENABLE [Z] 10 SHIFT (J: 9 27 47 67 

10 RED 28 B 48 ~ 68 

II CRSR - 29 rn 49 IEl 69 

12 GRN 30 [2J 50 [EJ 70 

RETURN 13 BLU 31 ~ 51 IBl I .~ 71 

SWITCH LJ 32 ~ 52 A 72 
TO 14 IT] ~ III LOWER- 33 53 73 

CASE 

~ 34 ~ 54 I~ 74 
15 

[II] 35 [7] 55 Rl 75 
16 

~ 36 [SJ 56 [b] 76 
CRSR 

j 17 

~ rSil H 37 57 77 
RVS 18 
ON 



Apperdx E Sourld and Display Characters and Codes 383 

TABLE E·1. C-64 Character Codes (continued) 

Prints CHRS Prints CHRS Prints CHRS Prints CHRS 

B 78 IT] 98 [8J 118 f4 138 

[Q] 79 6 99 [QJ 119 f6 139 

IPl 80 EJ 100 ~ 120 f8 140 

lQ] 81 U 101 OJ 121 SHIFT 141 RETURN 

[8J 82 g 102 ~ 122 
SWITCH 

[SJ 83 IIJ 103 EI:j 123 TO 142 UPPER-

IT] 84 OJ 104 IJ 124 CASE 

IQ 85 EJ 105 rn 125 143 

~ ~ 106 m1 126 
BLK 144 

86 
t 

10] 0 ~ CRSR 145 
87 107 127 

IE] D 108 
RVS 146 88 128 OFF 

I~ 89 Q 109 ORANGE 129 CLR 147 

12l 0 HOME 
90 110 130 

[g D INST 148 91 III 131 DEL 

I~ 92 D 112 132 BROWN 149 

I-:n 93 [jt] 113 fI 133 LTRED 150 

rn 94 ~ 114 f3 134 DK GREY 151 

I~ 95 ~ 115 f5 135 MED GREY 152 

B 96 D 116 f7 136 LT GREEN 153 I- 97 Q 117 f2 137 LT BLUE 154 



384 Your Commodore :':4 

TABLE E·1. C-64 Character Codes (continued) 

Prints CHRS Prints CHRS Prints CHRS Prints CHRS 

LTGREY 155 ~ 175 EJ 195 [Q] 215 

PUR 156 Cd 176 EJ 196 ~ 216 

CRSR 157 ~ 177 U 197 [] 217 -
YEL 158 b:j 178 g 198 ~ 218 

CYN 159 BJ 179 [[] 199 EE 219 
SPACE 

D D 180 OJ 200 mJ 220 
160 

IJ IJ 181 ~ 201 OJ 221 
161 

- ~ 182 ~ 202 mJ 222 
162 

D D 183 0 203 ~ 223 
163 

D ~ 184 0 204 D 224 
164 

D ~ 185 LSJ 205 IJ 225 
165 

• D 186 [2J 206 - 226 
166 

D ~ 187 D 207 D 227 
167 

~ ~ 188 D 208 D 228 
168 

E!J ~ D ~ 
189 209 229 

169 

~ bd • [] 
190 210 230 

170 

~ ~ D rn 191 211 231 
171 

~ E3 192 D 212 ~ 232 
172 

[g ~ 193 Q 213 ~ 233 
173 

CD [ZJ 0 EiJ 
194 214 234 

174 



Appendix E Sound arid IJISpiOy Charocters and Codes 385 

TABLE E·1. C-64 Character Codes (continued) 

Prints CHRS Prints CHRS Prints CHR$ Prints CHR$ 

rn 235 Eg 241 [J 246 ~ 251 

~ 236 ED 242 D 247 ~ 252 

[9 237 BJ 243 ~ 248 E!J 253 

ElJ 238 D 244 ~ 249 ~ 254 

~ 239 U 245 D 250 mJ 255 

Cd 240 

TABLE E·2. Screen Codes 

Set 1 Set 2 POKE Set 1 Set 2 POKE Set 1 Set 2 POKE 

~ 0 gJUJ 10 rn~ 20 

B~ 1 [BJ[KJ II gg 21 

[J2J~ 2 [bJQJ 12 ~M 22 

[Q[QJ 3 Hrn I3 [0]~ 23 

~[gJ 4 H[5] 14 [8J~ 24 

[EJ~ 5 [QJ[Q] 15 ~[gJ 25 

EJEEJ 6 [E][E] 16 ~~ 26 

~[9J 7 ~BJ 17 [bJ 27 

H[6J 8 BLEJ 18 ~ 28 

rnW 9 ~§] 19 [JJ 29 



386 Your Commodore 64 

TABLE 1-2. Screen Codes (continued) 

Set 1 Set 2 POKE Set 1 Set 2 POKE Set 1 Set 2 POKE 

rn 30 ~ 50 g [EJ 70 

[B 31 ~ 51 []~ 71 

D 32 ~ 52 UJA 72 

[l] 33 ~ 53 E;:J1Il 73 

~ 34 [QJ 54 egG:[] 74 

~ 35 [7] 55 0~ 75 

~ 36 B 56 O[bJ 76 

~ 37 ~ 57 rsJH 77 

~ 38 [J 58 lZJR 78 

~ 39 CJ 59 Dr-Ol 79 

[g 40 ~ 60 DB 80 

[LJ 41 EJ 61 ~[QJ 81 

~ 42 ~ 62 bdB 82 

[±J 43 [2] 63 ~[S] 83 

W 44 B 64 DITJ 84 

EJ 45 ~1E1J 65 Q[g 85 

W 46 []]~ 66 ~~ 86 

[Z] 47 a I-q 67 [Q]IHJ 87 

B 48 D~ 68 ~IH 88 

~ 49 u~ 69 []I~ 89 



Appendix E. Sound and Display Characters and Codes 387 

TABU 1-2. Screen Codes (continued) 

Setl Set 2 POKE Set 1 Set 2 POKE Set 1 Set 2 POKE 

~[ZJ 90 D 103 D 116 

EB 91 ~ 104 IJ 117 

IJ 92 ~~ 105 [J 118 

IT] 93 0 106 D 119 

mJ~ 94 [E 107 ~ 120 

~~ 95 ~ 108 ~ 121 

D 96 [9 109 D0 122 

IJ 97 ELJ 110 ~ 123 

~ 98 ~ III ~ 124 

D 99 Cd 112 0 125 

D 100 t=J 113 ~ 126 

D 101 rn 114 ~ 127 

II 102 E[J 115 

NOTE: Numbers 128 through 255 of the screen codes are reverse video 
of numbers 0 through 127. 



388 Your Cornrrodore 64 

TABLE E-3. Keyword Abbreviations 

Characters Characters 
That Appear That Appear 

Command Abbreviation On Screen Command Abbreviation On Screen 

AND A SHIFT N A/ PRINTit P SHIFT R p-
NOT N SHIFT 0 Nr READ R SHIFT F. R-
CLOSE CL. SHIFT 0 Clr RESTORE RE SHIFT S RF.:. 
CLR c: SHIFT L. CI_ RETUR:\, RF SHIFT T REI 
CMD C SHIFT M C', RUN R SHIFT U R t 
CONT C SHIFT 0 cr SAVE c' ~, SHIFT A S+ 
DATA D SHIFT A D+ STEP ST SHIFT E 8T-
DEF D SHIFT E n- STOP S SHIFT T SI 
DIM D SH!FT T D"·, SYS ~ SHIFT '.,1 ~I • Q '.- ! I 

END E SHIFT ~~ E/ THE:\, T SHIFT H TI 
FOR F SHIFT 0 Fr VERIFY 'V SHIFT E I,}-

GET (1 SHIFT F 0- WAIT ~j SHIFT A [oj+. 

GOSUB GO SHIFT S GO. ABS A SHIFT B AI 
GOTO G SHIFT 0 or ASC FI SHIFT S A. 
INPUT# 1. SHIFT t-l y/ ATN A SHIFT T Ar 
LET L SHIFT E 1.- CHR$ C SHIFT H CI 
LIST L SHIFT I 1- -', EXP E SHIFT X F.+ 
LOAD I. SHIFT 0 II FRE F SHIFT R F_ 
;\I EXT ~,~ SHIFT F t-l- LEFT$ LE SHIFT F lE-
OPEN 0 SHIFT P 01 MID$ M SHIFT I M~, 

POKE P SHIFT 0 pr PEEK p SHIFT E p-
PRI;\IT 7 ? RIGHT$ R SHIFT I R ... 
R!\D R SHIFT ~l R/ STR$ ST SHIFT R ST_ 
SG\I S SHIFT 0 SI TAB( T SHIFT A Tot 
S I]\' c-

.~.' SHIFT I S ... , USR U SHIFT S u. 
SPC( S SHIFT P 51 VAL \,1 SHIFT A Vt 
SQR S ~:H I FT G'! s. 



APPENDIX 
-----

Error Messages 
----

C-64 error messages may be displayed in response to almost anything 
you key in at the keyboard. They may also appear when your program is 
running. This Appendix lists and explains error messages issued by the C-64 
BASIC interpreter and by the operating system. 

Whenever the C-64 BASIC interpreter detects an error, it displays a 
diagnostic message, headed by a question mark, in the general form 

"message ERROR IN LINE number 

where message is the type of error (listed alphabetically below) and number 
is the line number in the program where the error occurred (not present in 
immediate mode). Following any error message, C-64 BASIC returns to 
immediate mode and displays the READY prompt. 

Here is an alphabetical list of error messages accompanied by a two­
part description that explains the cause of the error and possible ways of 
correcting it. 

BAD SUBSCRIPT 
An attempt was made to reference an array element that is outside the 
dimensions of the array. This can result from specifying the wrong 
number of dimensions (different from the DIM statement), using a 
subscript larger than specified in the DIM statement, or using a sub­
script larger than 10 for a nondimensioned array. 

Correct the array element number to remain within the original 
dimensions or change the array size to allow more elements. 

389 



390 Your Commodoce r.4 
~.----=--~:-======-================ 

CAN'T CONTINUE 
A CONT command was issued, but program execution cannot be 
resumed because the program has been altered, added to, or cleared in 
immediate mode, or because execution was stopped by an error. Pro­
gram execution cannot be continued past an error message. 

Correct the error. The most prudent course is to type RUN and 
start over. However, you can attempt to reenter the program at the 
point of interruption by a directed GOTO. 

DEVICE NOT PRESENT 
No device on the bus was present to handshake an attention seq uence. 
The status variable (S'l) \\'111 have a value of 2~ indicating a timeout. This 
message may occur for any I/O command. 

If the device identification is in error, correct the OPEN (or other) 
statement. If the statement is correct, especially if it has worked before, 
check the addressed device for malfunction, misconnection, or power 
off. 

DIVISION BY ZERO 
An attempt was made to perform a division operation with a divisor of 
zero. Dividing by zero is not allowed. 

Check the values of variables (or constants) in the indicated line 
number. Change the program so that the divisor can never be evaluated 
to zero, or add a check for zero before performing the division. 

FILE ALREADY EXISTS 
The name of the source file being copied with the COPY statement 
already exists on the destination diskette. 

FILE NOT FOUND 
The filename given in the LOAD or OPEN statement was not found on 
the specified device. 

Check that you have the correct tape or diskette in the device. 
Check the filenames on the tape or diskette for a possible spelling error 
in the program statement. 

FILE NOT OPEN 
An attempt was made to access a file that was not opened via the OPEN 
statement. 

Open the file. 



iooeno \ ~ :rTOr Mess(JcJC)S 391 
================~====~. 

FILE OPEN 
An attempt was made to open a file that had already been opened via a 
previous OPEN statement. 

Check the logical file number (first parameter in the OPEN state­
ment) to be sure that a different number is used for each file. Insert a 
CLOSE statement if you want to reopen the same file for a different I/O 
operation. 

FORMULA TOO COMPLEX 
This is not a program error but indicates that a string expression in the 
program is too intricate for C-64 BASIC to handle. 

Break the indicated expression into two or more parts and rerun the 
program. (This will also tend to improve program readability.) 

ILLEGAL DIRECT 
A command was given in immediate mode that is valid only in program 
mode. The following are invalid in immediate mode: DATA, DEF F:\T, 
GET, GET#, INPUT, and INPUT#. 

Enter the desired operation as a (short) program and run it. 

ILLEGAL QUANTITY 
A function has passed one or more parameters that are out of range. 
This often occurs in POKE statements that use input variables greater 
than 255 or less than O. 

This message also occurs if the US R function is referenced before 
storing the subroutine address at memory locations I and 2. 

LOAD 
An unacceptable number of tape errors (more than 31) were accumulated 
on a tape load. They were not cleared on reading the redundant block. 
This message is issued in connection with the LOAD command. 

NEXT WITHOUT FOR 
A NEXT statement is encountered that is not tied to a preceding FOR 
statement. Either there is no FOR statement or the variable in the 
NEXT statement is not in a corresponding FOR statement. 

The FOR part of a FOR-NEXT loop must be inserted or the 
offending NEXT statement deleted. Be sure that the index variables are 
the same at both ends of the loop. 



NOT INPUT FILE 
An attempt was made to read from a tape file that has been opened for 
output only. 

Check the READ# and OPEN statement parameters for correct­
ness. Reading requires a zero as the third parameter of the OPEN 
statement. (This is the default option.) 

NOT OUTPUT FILE 
An attempt was made to write to a tape file that has been opened for 
input only. 

Check the PR rNT# and OPEN statement parameters for correct­
ness. Writing to a file requires a 1 (or a 2 if you want an EOT at the end 
of the file) as the third parameter in the OPEN statement. 

OUT OF DATA 
A READ statement is executed but all of the DATA statements in the 
program have already been read. For each variable in a READ state­
ment, there must be a corresponding DATA element. 

Add more DATA elements or restrict the number of READs to the 
current number of DATA elements. Insert a RESTORE statement to 
reread the existing data. Or add a flag at the end of the last DATA 
statement (any value not used as a DATA element may be used for the 
flag value) and stop READing when the flag has been read. 

OUT OF MEMORY 
The user program area of memory has been filled and a request is given 
~o add a line to the program. This message may also be caused by 
multiple FOR-NEXT or GOSUB nestings that fill up the stack; this is 
the case if ?FRE(O) shows a considerable program area storage left. 

Simplify the program. Pay particular attention to reducing array 
sizes. It may be necessary to restructure the program into overlays. 

OVERFLOW 
A calculation has resulted in a number outside the allowable range, 
meaning that the number is too big. The largest number allowed is 
1.70141183E+38. 

Check your calculations. It may be possible to eliminate this error 
just by changing the order in which the calculations are programmed. 



'\ppeWliX I '~rror N'esic~C]es 393 

REDIM'D ARRAY 
An array name appears in more than one DIM statement. This error 
also occurs if an array name is used (given a default size of 11) and later 
appears in a DIM statement. 

Place DIM statements near the beginning of the program. Check 
to see that each DIM statement is executed only once. DIM must not 
appear inside a FOR-NEXT loop or in a subroutine where either may 
be executed more than once. 

REDO FROM START 
This is a diagnostic message during an INPUT statement operation and 
is not a fatal error. It indicates that the wrong type of data (string for 
numeric or vice versa) was entered in response to an INPUT request. 

Reenter the correct type of data. INPUT will continue prompting 
until an acceptable response is entered. 

RETURN WITHOUT GOSUB 
A RETU RN statement was encountered without a previous matching 
GOSUB statement being executed. 

Insert a GOS UB statement or delete the RETURN statement. The 
error may be caused by dropping into the subroutine code inadver­
tently. In this case, correct the program flow. An END or STOP 
statement placedjust ahead of the subroutine serves as a debugging aid. 

STRING TOO LONG 
An attempt was made by use of the concatenation operator(+) to create 
a string longer than 255 characters. 

Break the string into two or more shorter strings as part of the 
program operation. Use the LEN function to check string lengths before 
concatenating them. 

SYNTAX 
There is a syntax error in the line just entered (immediate mode) or 
scanned for execution (program mode). This is the most common error 
message. It is caused by such things as misspellings, incorrect punctua­
tion, unmatched parentheses, and extraneous characters. 

Examine the line carefully and make corrections. Note that syntax 
errors in a program are diagnosed at run time, not at the time the lines 
are entered from the keyboard. You can eliminate many syntax error 



messages by carefully scrutinizing newly entered program lines before 
running the program. 

TYPE MISMATCH 
An attempt was made to enter a string into a numeric variable or vice 
versa, or an incorrect type was given as a function parameter. 

Change the offending item to the correct type. 

UNDEF'D FUNCTION 
Reference was made to a user-defined function that has not previously 
been defined by appearing in a DEF FN statement. The definition must 
precede the function reference. 

Define the function. Place DEF FN statements near the beginning 
of the program. 

UNDEF'D STATEME~T 
An attempt was made to branch to a nonexistent line number. 

Insert a statement with the necessary line number or branch to 
another line number. 

VERIFY ERROR 
The program in memory and the specified file do not compare. This 
message is issued in connection with the VERIFY command. 



APPENDIX 

BASIC Statements 

This appendix explains the syntax of all the C-64 BASIC statements. 
They are presented in alphabetical order and include both internal functions 
and I! 0 commands. 

CLOSE 

The CLOSE statement closes a logical file. 

Format: 

CLOSF If 

The CLOSE statement closes logical file if. Every file should be closed 
after all file accesses have been completed. An open logical file may be closed 
only once. The particular operations performed in response to a CLOSE 
statement depend on the open file's physical device and the type of access 
that occurred. 

Example: 

CLOSE Close logical/ile I 

CLOSE 14 Close logical file 14 

395 



--~~-------- ~~~ --======-==-

CLR 

The CL R statement sets all numeric variables to zero and assigns null 
values to all string variables. All array space in memory is released. This is 
equivalent to turning the computer off, then turning it back on and 
reloading the program into memory. CLR closes all logical files that are 
currently open within the executing program. 

Format: 

CLR 

A program will continue to run following execution of a CLR 
statement if the statement's execution does not adverseiy affect prograrn 
logic. 

Example: 

1913 CLR 

CMD 

The CM 0 statement sends all output that would have gone to the 
display to another specified unit. Output goes to that unit, instead of the 
display, until a PRINT# statement specifying the same logical file number 
that was opened is executed. At least one PRINT# statement must follow a 
CMD statement. 

Format: 

CMDI{ 

The CM 0 statement assigns a line printer output channel to logical file 
(f. After execution of a CMD statement, PRINT and LIST both print data 
instead of displaying it. 

Example: 

The following sequence uses CMD to print program listings: 

OPEN 5,4 

CMD 5 

LIST 

PRINTl5 

CLOSE :5 

Open logical file 5 selecting the primer 

Direct subsequent output to the printer 

Print the program listing 

Prinl a carriage relZll"l1 and deseleC! lhe primer 

Close logical{ile 5 



CONY 

The CONT statement, typed at the keyboard In immediate mode, 
resumes program execution after a BREAK. 

Format: 

CONT 

A break is caused by execution of a STOP statement or an END 
statement that has additional statements following it. Depressing the STOP 

key while a program is running also causes a break. Program execution 
continues at the exact point where the break occurred. 

Pressing the RETURN key in response to an INPUT statement will also 
cause a break. Typing CONT after this break reexecutes the INPUT 
statement. 

Example: 

CONT 

DATA 

The DATA statement declares constants that are assigned to varia bles 
by READ statements. 

Format: 

DATA constant[ ,constant ,collstant, ... ,constant] 

DATA statements may be placed anywhere in a program. The DATA 
statement specifies either numeric or string constants. String constants are 
usually enclosed in double quotation marks; the quotes are not necessary 
unless the string contains graphic characters, blanks (spaces), commas, or 
colons. Blanks, commas, colons, and graphic characters are ignored unless 
the string is enclosed in quotes. A double quotation mark cannot be repre­
sented in a DATA string; it must be specified using a CHR$(34) function. 
The DATA statement is valid in program mode only. 

Example: 

Hl DATA ~lAME, "C. D. " Defines t\\·o string \'ariables 

50 DATA lE6,-10,XYZ Defines 111'0 numeric variables and olle Siring \'ariable 

Refer to the READ statement for a description of how DATA state­
ment constants are used within a program. 



DEF FN 

The OEF function (DEF FN) allows special purpose functions to be 
defined and used within BASIC programs. 

Format: 

DEF FNnvar(arg)=expression 

Floating point variable nvar identifies the function, which is sub­
sequently referenced using the name FNnvar(data). (If nvar has more than 
five letters, a syntax error is reported. A syntax error is also reported ifllmr 
is a string or integer variable.) 

The function is specified by expression., which can he any arithmetic 
expression containing any combination of numeric constants. variables. or 

operators. The dummy variable name arg can (and usually does) appear in 
expression. 

arg is the only variable in expression that can be specified when 
FNnvar(data) is referenced. Any other variables in expression must be 
defined before FNnvar(data) is referenced for the first time. FNnvar(dulu) 
evaluates expression using data as the value for argo 

The entire OEF FN statement must appear on a single 80-character 
line; however, a previously defined function can be included in expressiun, 
so user-defined functions of any complexity can be developed. 

The function name var can be reused and therefore redefined by 
another DEF FN statement appearing later in the same program. 

The OEF FN definition statement is illegal in immediate mode. How­
ever, a user-defined function that has been defined by a DEF FN statement 
in the current stored program can be referenced in an immediate mode 
statement. 

Example: 

10 DEF FNC(R) •• 'Rf2 

?FNC( 1> 

55 IF FNC(X»60 GOT0150 

Defines ajunction thaI calculatel the circulII/erence uf 
a circle. II lakes a single argumelll R. the radius (II 
Ihe circle. and returns a single nllfllcric I'alue. the 
circum/i'rence oj the circle 

Prillls 3.141159265 (Ihe value of 7T) 

U~es Ihe \'Glue calculated hI' the user-definedfullctioll 
FNC as a hranch condition. The current comell!.1 of 
variable X are used when calculating Ihe user­
defined junction 



DIM 

The Dimension statement DIM allocates space in memory for array 
variables. 

Format: 

DIM var(sub)[,var(sub), ...• var(sub)] 

The DIM statement identifies arrays with one or more dimensions as 
follows: 

var(sub;) Single-dimensional array 

var(subi.subj) Two-dimensional array 
var(sub;suhjsubk ) Multiple-dimensional array 

Arrays with more than II elements must be dimensioned in a DIM 
statement. Arrays with II elements or less (subscripts 0 through 10 for a 
one-dimensional array) may be used without being dimensioned by a DIM 
statement; for such arrays, II array spaces are automatically allocated in 
memory when the first array element is encountered in the program. An 
array with more than II elements must occur in a DIM statement before any 
other statement references an element of the array. 

If an array is dimensioned more than once, or if an array having more 
than 11 elements is not dimensioned, an error occurs and the program is 
aborted. A CLR statement allows a DIM statement to be reexecuted. 

Example: 

10 DIM A(3) 

4~ DIM >($(44,2) 

1000 DIM MU(X,3~B),N(12) 

END 

Dimension a sinKle-dimensional array 
0/3 elements 

Dimension a two-dimensional array oj' 
88 elements 

Dimension a two-dimensional arrar 0/ 
X limes 3*B elements and a 

sillKle-dimensional array 0/12 
elements. X and B must have been 
assigned values before the DIM 
statement is e xecllted 

The END statement terminates program execution and returns the 
computer to immediate mode. 

Format: 

END 



400 YOI~r 

The EN 0 statement can provide a program with one or more 
termination points at locations other than the physical end of the program. 
Ei'.'O statements can be used to terminate individual programs when more 
than one program is in memory at the same time. An END statement at the 
physical end of the program is optional. The END statement is used in 
program mode only. 

Example: 

2013131 END 

FOR·NEXT STEP 

All statements between the FOR statement and the NEXT statement 
are reexecuted the same number of times. 

Furmat: 

FOR nvar = start TO end STEP increment 

[statements in loop] 

NEXT[nvar] 

where 

nvar is the index of the loop. It holds the current loop count. nvar is often used 
by the statements within the loop. 

start is a numeric constant, variable, or expression that specifies the beginning 
value of the index. 

end is a numeric constant, variable, or expression that specifies the ending 
value of the index. The loop is completed when the index value is equal 
to the end value, or when the index value is incremented or decre­
mented past the end value. 

increment if present, is a numeric constant, variable, or expression that specifies the 
amount by which the index variable is to be incremented with each 
pass. The step may be incremental (positive) or decremental (negative). 
If STEP is omitted, the increment defaults to I. 

nvar may optionally be included in the NEXT statement. A single 
NEXT statement is permissible for nested loops that end at the same point. 
The NEXT statement then takes the form 

NEXT nvar.!,llvar2 ••• 

The FOR-NEXT loop will always be executed at least once, even if the 
beginning nvar value is beyond the end nvar value. If the NEXT statement is 
omitted and no subsequent NEXT statements are found, the loop is 
executed once. 



- ~-===~==-= 

The start, end, and increment values are read only once, on the first 
execution of the FO R statement. You cannot change these values inside the 
loop. You can change the value of nvar within the loop. This may be used to 
terminate a FOR-NEXT loop before the end value is reached: Set nvar to 
the end value and on the next pass the loop will terminate itself. Do not jump 
out of the FOR-NEXT loop with a GOTO. Do not start the loop outside a 
subroutine and terminate it inside the subroutine. 

FOR-NEXT loops may be nested. Each nested loop must have a 
different nvar variable name. Each nested loop must be wholly contained 
within the next outer loop; at most, the loops can end at the same point. 

GET 

The GET statement receIves single characters as input from the 
keyboard. 

Format: 

GET var 

The GET statement can be executed in program mode only. When a 
GET statement is executed, var is assigned a 0 value if numeric, or a null 
value if a string. Any previous val ue of the variable is lost. Then GET fetches 
the next character from the keyboard buffer and assigns it to var. If the 
keyboard buffer is empty, var retains its 0 or null value. 

GET is used to handle one-character responses from the keyboard. 
GET accepts the RETURN key as input and passes the value (CHR$(l3)) to 
var. 

If var is a numeric variable and no key has been pressed, 0 is returned. 
However, a 0 is also returned when 0 is entered at the keyboard. 

If var is a numeric variable and the character returned is not a digit 
(0-9), a ?SYNTAX ERROR message is generated and the program aborts. 

The GET statement may have more than one variable in its parameter 
list, but it is hard to use if it has mUltiple parameters. 

GET var. var ..... var 

Example: 

HI (lET C$ 

10 GET D 

HI (lET A,B,C 



402 

GET# 

The GET External statement (G ET#) receives single characters as input 
from an external storage device identified via a logical file number. 

Formal: 

GETtlIl.l'ar 

The GET# statement can only be used in program mode. GET# fetches 
a single character from an external device and assigns this character to 
variable var. The external device is identified by logical file number If This 
logical file must have been previously opened by an OPEN statement. 

GET# and GET statements handle variables and data input identically. 
For details see the GET statement description. 

Example: 

10 GEn4, CS: IF C$="" OOTO Ul Get a kel'board character. Reexecute 
if no character is present 

GOSUB 

The GOSUB statement branches program execution to a specified line 
and allows a return to the statement following GOS UB. The specified line is 
a subroutine entry point. 

Format: 

GOSUB In 

The GOS U B statement calls a subroutine. The subroutine's entry point 
must occur on line In. A subroutine's entry point is the beginning of the 
subroutine in a programming sense; that is to say, it is the line containing the 
statement (or statements) that are executed first. The entry point need not 
necessarily be the subroutine line with the smallest line number. 

Upon completing execution the subroutine branches back to the line 
following the GOSUB statement. The subroutine uses a RETURN 
statement in order to branch back in this fashion. 

A GOS U B statement may occur anywhere in a program; in consequence 
a subroutine may be called from anywhere in the program. 

Example: 

100 OOSUB 2000 
110 A=!l*C 

Branch to subroutine at line 2000 



i\pperljl~ C; B.AS!C Stoterncrts 403 

Subroutine hranches back here 

2800 Subroutine entry point 

2090 RETURN Branch back to line 110 

GOTO 

The GOTO statement branches unconditionally to a specified line. 

Format: 

GOTO In 

Example: 

10 OOTO 100 

Executed in immediate mode, GOTO branches to the specified line in 
the stored program without clearing the current variable values. GOTO 
cannot reference immediate mode statements, since they do not have line 
numbers. 

IF·THEN 

The IF-THEN statement provides conditional execution of statements 
based on a relational expression. 

Format: 

IF condition THEN statement[:statemenl. .. ] ConditIOnally execute statement(s) 

IF condition {TH EN} line Conditionally branch 
GOTO 

If the specified condition is true, then the statement or statements 
following the TH EN are executed. If the specified condition is false, control 
passes to the statement(s) on the next line and the statement or statements 
following the THEN are not executed. For a conditional branch, the branch 
line number is placed after the word THEN or after the word GOTO. The 
compound form THEN GOTO is also acceptable. 

IF A = I TH EN 50 } 
IF A= I GOTO 50 
IF A = I THEN GOTO 50 

Equivalent 



404 Ve'..!' ,r OfY1[yC '(,8 C 4 

If an unconditional branch is one of many statements following THEN, 
the branch must be the last statement on the line, and it must have "GOTO 
line"format. If the unconditional branch is not the last statement on the line, 
then statements following the unconditional branch can never be executed, 

The following statements cannot appear in an immediate mode IF­
THEN statement: DATA, GET, GET#, INPUT, INPUT#, REM, RETURN, 
END, STOP, WAIT. 

If a line number is specified, or any statement containing a line number, 
there must be a corresponding statement with that line number in the 
current stored program. 

The CONT and DATA statements cannot appear in a program mode 
IF-THEN statement. If a FOR-NEXT loop foliows the THE~, the loop 
must be completely contained on the IF-THEN line. Additional IF-THE1\' 
statements may appear following the THEN as long as they are completely 
contained on the original IF-THEN line. However, Boolean connectors are 
preferred to nested IF-THEN statements. For example, the two statements 
below are equivalent, but the second is preferred. 

1f! IF AS="X" THEN IF ]382 THEN IF C)D THEN 50 
10 IF AS="X" AND !=2 ANti C)D THEN 50 

Example: 

400 IF )()Y THEt~ A-l 
500 IF M+l THEN AG=4.5 OOSUB 1000 

INITIALIZE 

You can use PRINT# to initialize a diskette before performing any 
operation on it. 

Format: 

PR INTI/file, "[IN I TlA LIZ El[ dr]" 

The diskette in drive dr is initialized. If the dr parameter is not present, 
the diskette in drive 0 will be initialized. You do not need to initialize a 
diskette after preparing it; the preparation process also initializes the 
diskette. 

Example: 

OPEN 1.8.15 Open the diskette command channel 



Appendix G BASIC Statements 405 

PRINT4H, "I" Initialize diskettes in drive 0 

INPUT 

The INPUT statement receives data input from the keyboard. 

Format: 

{ (blank) } 
INPUT "message"; var[,var, ... ,var] 

INPUT can be used in program mode only. When the INPUT statement 
is executed, C-64 BASIC displays a question mark on the screen requesting 
data input. The user must enter data items that agree exactly in number and 
type with the variables in the INPUT statement parameter list. If the INPUT 
statement has more than one variable in its parameter list, then keyboard 
entries must be separated by commas. The last entry must be terminated with a 
carriage return. 

?1234 <CR> Single data item response 

?1234,567.89,NOW<CR> Multiple data item response 

If "message" is present, it is displayed before the question mark. "mes­
sage" can have as many as 80 characters. 

If more than one but less than the required number of data items are 
input, C-64 BASIC requests additional input with double question marks (??) 
until the required number of data items have been input. If too many data 
items are input, the message ?EXTRA IGNORED is displayed. The extra 
input is ignored, but the program continues execution. 

Example: 

Statement 

10 INPUT A,B,C' 
lEI INPUT A, B, C' 

10 INPUT A,B,C' 

10 IN~UT "R- "iP! 

Operator Response 

? 123,4~6,NOW 

? 123 
17 4~6 
?? NOW 
7 NO~J 
7REDO FROM ST~RT 
? 123 
?7 456 
?? 78' 
R- ? 123 

Result 

A= 123,B=456,C$="N OW" 

A=123 
B=456 
C$="NOW" 

A=123 
B=456 
C="789" 

A=123 



Note that you must input numeric data for a numeric variable, but you 
can input numeric or string data for a string variable. 

INPUT# 

The INPUT External statement (INPUT#) inputs one or more data 
items from an external device identified via a logical file number. 

Format: 

I~PUT#lr var[. var ....• var] 

The INPUTtJ statement inputs data from the selected external device 
and assigns data items to variable(s) val'. Data items must agree in number 
and kind with the INPUT# statement parameter list. 

If an end-of-record is detected before all variables in the INPUT# 
statement parameter list have received data. then an OUT OF DATA error 
status is generated, but the program continues to execute. 

INPUT# and INPUT statements execute identically, except that 
INPUT# receives its input from a logical file. Also, INPUT# does not 
display error messages; instead, it reports error statuses that the program 
must interrogate and respond to. 

Input data strings may not be longer than 80 characters (79 characters 
plus a carriage return) because the input buffer has a maximum capacity of 
80 characters. Commas and carriage returns are treated as item separators 
by the computer when processing the INPUT# statement; they are recog­
nized. but are not passed on to the program as data. INPUT# is valid in 
program mode only. 

Example: 

ieee INPUTi10,A Input the next data itemfrom logicalfile 10. A numeric 
data item is expected; it is assigned to variable A 

946 INPUTi12,AS Input the next data item from logicalfile 12. A string 
data item is expected; it is assigned to variable A$' 

900 INPUTt5, B, CS Input the next two data items from logical file 5. 

LET= 

The first data item is numeric; it is assigned to numeric 
variable B. The second data item is a string; 
it is assigned to string variable C$ 

The Assignment statement LET=, or simply =, assigns a value to a 
specified variable. 



I\ppe'idix G BASIC Stctements 407 

Format,' 

{ (blank)} 
LET var =data 

Variable var is assigned the value computed by resolving data. The 
word LET is optional; it is usually omitted. 

Example: 

113 A-2 
4:58 C:f""'~" 

3e0 M (1 , 3) -SON 00 
310 XX:f( II J, K,U-"STRINGALONG" 

LIST 

LIST displays one or more lines ofa program. Program lines displayed 
by the LIST statement may be edited. 

Format: 

LIST 

( (blank) 
, line 
) line ,- line2 
( -line 

line-

The entire program is displayed in response to LIST. Use line-limiting 
parameters for long programs to display a section of the program that is 
short enough to fit on the screen. 

Example: 

LIST 

LIST :50 

LIST 60-100 

LIST -148 

LIST 20099-

List entire program 

List line 50 

List all lines in the program from lines 60 to 100, inclusive 

List all lines in the program from the beginning of the program 
through line 140 

List all lines in the program from line 20000 to the end 
of the program 



408 Your CommocjcY8 III 

Listed lines are reformatted as follows: 

I. '?'s entered as a shorthand for PRINT are expanded to the word 
PRINT. Example: 

?A becomes PRINT A 

2. Blanks preceding the line number are eliminated. Example: 

50 A=I 50 A=I 
becomes 

100 A=A+I 100 A=A+ I 

3. A space is inserted between the line number and the rest of the 
statement if none was entered. Example: 

55A=B-2 hecomes 55 A=B-2 

LIST is always used in immediate mode. A LIST statement in a 
program will list the program but then exit to immediate mode. Attempting 
to continue program execution via CONT simply repeats the LIST 
indefinitely. 

Printing a Program Usting 

To print a program listing instead of displaying it, OPEN a printer 
logical file and execute a CMD statement before executing the LIST 
statement. Here is the necessary immediate mode sequence: 

LOAD 

OPEN 4.4 
CMD 4 
LIST 
PRINTII4 
CLOSE 4 

Open the printer speci(ring logicalfile 4 
Deflect display output to the printer 
Print the program listing 
Deflect output back to the display 

The LOAD statement loads a program from an external device into 
memory. 

Cassette Program Format 

LOAD [':/111' nam£' "][.dev] 

The LOAD statement loads into memory the program file specified by 
file name from the cassette unit selected by device number dev. If no device is 
specified, device I is assumed by default; cassette unit 1 is then selected. If no 
file name is given, the next file detected on the selected cassette unit is loaded 
into memory. 



Example: 

LOAD 

LOAD "",2 

LOAD "EOOR" 

N.-"WHEE I LS" 
LORl) NS 

LOAD "X" 

Load into memory the next program found on cassette 
unit #1. lfyou start a LOAD when the cassette is in 
the middle ofa program, the cassette will read past the 
remainder of the current program. then load the next 
program 

Load into memory the next program found on cassette 
unit #2 

Search for the program named EGOR on tape cassette #1 
and load it into memory 

Searchfor the program named WHE£lLS on cassette 
unit #1 and load it into memory 

Search for a program named X on cassette unit #1 and 
load it into memory 

Diskette Drive Program Format 

LOAD "dr.file name",dev 

The LOAD statement loads into computer memory the program file 
with the file name on the diskette in drive dev. The device number for the 
diskette drive unit is 8 in the C-64. If dev is not present, the default value is I, 
which selects the primary tape cassette unit. 

A single asterisk can be included instead of the file name, in which case 
the first program found on the selected diskette drive is loaded into memory. 

Example: 

LOfllD"0:JIE" ,8 

LOAD"0:FIREBALL",B 

T$-"0:METEOR" 
LOAD TI,S 

Load the first program found on disk drive 0 

Sean'h(or the program named FJ REBA LL on disk 
drive 0 and load it into memory 

Search/or the program named METEOR on disk 
drive 0 and load it into memory 

When a LOAD is executed in immediate mode, C-64 BASIC automati­
cally executes CLR before the program is loaded. Once a program has been 
loaded into memory, it can be listed, updated, or executed. 

The LOAD statement can also be used in program mode to build 
program overlays. A LOAD statement executed from within a program 
causes that program's execution to stop and another program to be loaded. 
In thi~ case the C-64 computer does not perform a CLR; therefore, the old 
program can pass on all of its variable values to the new program. 



410 Your CommoC:Jre (;J 

When a LOAD statement accessing a cassette unit is executed in 
program mode, LOAD message displays are suppressed unless the tape 
PLA y key is up (off). If the PLA Y key is off, the PRES S PLA YON TAPE # I 
message is displayed so that the load can proceed. All LOAD messages are 
suppressed when loading programs from a diskette in program mode. 

NEW 

The NEW statement clears the current program from memory. 

Format: 

NEW 

When a NEW statement is executed, all variables are initialized to zero 
or null values and array variable space in memory is released. The pointers 
that keep track of program statements are reinitialized, which has the effect 
of deleting any program in memory; in fact the program is not physically 
deleted. NEW operations are automatically performed when a LOAD 
statement is executed. 

If there is a program in memory, you should execute a NEW statement 
in immediate mode before entering a new program at the keyboard. Other­
wise, the new program will overlay the old one, replacing lines if their 
numbers are duplicated, but leaving other lines. The result is a scrambled 
mixture of two unrelated programs. 

Example: 

NEW 

NEW is always executed in immediate mode. If a NEW statement is 
executed from within a program, the program will "self-destruct," or clear 
itself out. 

NEW (DOS Command) 

Use PRINT# to prepare and format a new diskette or to erase and 
reformat an old diskette. 

Format: 

PRINT#Il"N[EW]dr:disk name, VV" 

The diskette in drive dr is prepared. When a diskette is prepared, sectors 
are laid out on the diskette surface. The diskette directory and Block 



pperidtx C ~DS.C Stoter<lerlts 411 

Availability Map (BAM) are initialized. The diskette is assigned the name 
disk name and the number vv. 

The diskette name and number are displayed in the reverse field at the 
top of a directory display< 

Example: 

OPEN 1,8,15 

PRINTtH, "NO: NEWDATA, 132" 

ON·GOSUB 

Open the diskette command channel 

A diskelle has been prepared/or use in 
drive O. The diskette is given the 
name NEWDATA and the number 02 

The ON-GOSUB statement provides conditional subroutine calls to 
one of several subroutines in a program, depending on the current value of a 
variable. 

Format: 

ON byte GOSUB line l [,line2, ••• ,linen] 

ON-GOSUB has the same format as ON-GOTO. Refer to the ON­
GOTO statement description for branching rules. byte is evaluated and 
truncated to an integer number, if necessary. 

For byte=l, the subroutine beginning at line, is called. That subroutine 
completes execution with a RETURN statement that causes program exe­
cution to continue at the statement immediately following ON-GOSUB. If 
byte=2, the subroutine beginning with line2 is called, and so on. 

ON-GOSUB is normally executed in program mode. It may be exe­
cuted in immediate mode as long as there are corresponding line numbers to 
branch to in the current stored program. 

Example: 

10 ON A GOSUB 100,200,300 

ON·GOTO 

The ON-GOTO statement causes a conditional branch to one of several 
points in a program, depending on the current value of a variable. 

Format: 

ON byte GOTO line,[,line2 •••• ,linen ] 



412 Your Corwroclore 611 

byte is evaluated and truncated to an integer number, if necessary. 
If byte = 1, a branch to line number line l occurs. If byte = 2, a branch to 

line number Iine2 occurs, and so on. 
If byte = 0, no branch is taken. If byte is in the allowed range but there is 

no corresponding line number in the program, then no branch is taken. If a 
branch is not taken, program control proceeds to the statement following 
the ON-GOTO; this statement may be on the same line as the ON-GOTO 
(separated by a colon) or on the next line. 

If index has a nonzero value outside of the allowed range, the program 
aborts with an error message. As many line numbers may be specified as will 
fit on the 80-character line. 

ON-GOTO is normally executed in program mode. It may be executed 
in immediate mode as long as there are corresponding line numbers in the 
current stored program that may be branched to. 

Example: 

40 A=B(H) 
50 ON A+2 GO TO 100,200 

50 X=)<+l 
60 ON X GO TO 500,600,700 

OPEN 

Branch to statement 100 if A is true 
(-I) or branch to statement 200 if A 
isfalse (0) 

Branch to statement 500 if X=l, 
statement 600 if X=2, or to 
statement 700 if X=3, No branch is 
taken if X>3 

The OPEN statement opens a logical file and readies the assigned 
physical device. 

cassette Data File Format 

OPEN If[,dev][,sa][:jile name'1 

The file named file name on the tape cassette unit identified by dev is 
opened for the type of access specified by the secondary address sa; the 
access is assigned the logical file number If. 

If no file name is specified, the next file encountered on the selected tape 
cassette is opened. If no device is specified, device number 1 is selected by 
default; this device number selects cassette unit 1. If no secondary address is 
specified, a default value of ° is assumed and the file is opened for a read 
access only, A secondary address of 1 opens the file for a write access, while a 



Appendix G 8AS C StotemC:l ts 413 

secondary address of 2 opens the file for a write access with an end-of-tape 
mark written when the file is subsequently closed. 

Example: 

OPEN 1 

OPEN L 1 
OPEN 1, La 
OPEN 1, La, "D~T" 

OPEN 3,1,2 

OPEN 3,1,2, "PENTAGRAM" 

Disk Data File Format 

Open logical file I at casselle drive # 1 
(default)for a read access (default) 
from the first file encountered on the 
tape (no file name specified) 

Same as above 
Same as ahove 
Same as above but access (he file named 

DAT 
Open logical/ill' 3 for cassette #1 for a 

write with EDT (End Or Tape) 
access. The new/i"fe is unnamed and 
will he written at the current physical 
tape location 

Same as above but access the/ile named 
PENTAGRAM 

OPEN !(,dev,sa, "drjile name,typeLaccess]" 

The file named file name on the diskette in drive dr is opened and 
assigned logical file number If. type identifies the file as sequential (SEQ). 
program (PRG), or random (USR). If the file is sequential, access must be 
WRITE to specify a write access or READ to specify a read access. Access is 
not present for a program or random access file. 

An existing sequential file can be opened for a write access if dr is 
preceded by an @ sign. The existing sequential file contents are replaced 
entirely by new written data. 

The device number dev must be present; it is 8 for all standard disk 
units. If dev is absent, a default value of I is assumed and the primary tape 
cassette unit is selected. 

For a data file the secondary address sa can have any value between 2 
and 14, but every open data file should have its own unique secondary 
address. A secondary address of 15 selects the disk unit command channel. 
Secondary addresses of 0 and I are used to access program files. Secondary 
address 0 is used to load a program file: secondary address I is used to save a 
program file. 



414 Your Comr'~oc~)re 64 

Example: 

OPEN 1,8,2, "E): DAr, SEQ, READ" Open logicaljile 1 on a diskette in drive 

POKE 

0, Readfrom sequential file DA T 
OPEN 5,8,3," 1 : NEWFIlE, SEQ, WRITE" Open logicaljile 5 on a diskelle in drive 

], Write to sequential/ile NEWFlLE 
OPEN 4,8,4, "1)1 :NEWFILE,SEQ,WRITE" Open 10gicalfUe 4 on diskette drive], 

Write to sequentialjile NEWFILE 
replacing prior contents 

The POKE statement stores a byte of data III a specified memory 
location. 

Format: 

POKE memadr,byte 

A value between 0 and 255, provided by byte, is loaded into the memory 
location with the address memadr. 

Example: 

tEl POKE LA 

POKE 32768,ASC("A")-64 

PRINT 

POKE vallie o(variable A into memory 
at address] 

POKE I (the value 0/ ASC ("A '')-64) 
into memory at address 32768 

The PR I NT statement displays data; it is also used to print to the line 
printpr . 

Format: 

{ PRINT} {'} {'} ') data; data... ; data 

PRINT Field Formats 

Numeric fields are displayed using standard numeric representation for 
numbers greater than 0.01 and less than or equal to 999999999. Scientific 
notation is used for numbers outside ofthis range. Numbers are preceded by 
a sign character and are followed by a blank character. 



"',jpendlx <i';SIC Stctc'Tlents 415 

sign blank 

l~~l 
SNNN .... NN )'J 
~ 
:'\I umeric field 

display 

The sign is blank for a positive number and a minus sign (-) for a negative 
number. 

Strings are displayed without additions or modifications. 

PRINT Formats 

First data item. The first data item is displayed at the current cursor 
position. The PRINT format character (comma or semicolon) following the 
first data item specifies the location of the second data item's display. The 
location of each subsequent data item's display is determined by the punctuation 
following the preceding data item. Data items may be in the same PRINT 
statement or in a separate PRINT statement. 

New line. When no comma or semicolon follows the last data item in a 
PRINT statement, a carriage return occurs after the last data item is 
displayed. 

Tabbing. A comma following a data item causes the next data item to 
be displayed at the next default tab column. Default tabs are at columns 1, 
11, and 21. If a comma precedes the first data item, a tab will precede the first 
item display. 

Continuous. A semicolon following a data item causes the next display 
to begin immediately in the next available column position. Numeric data 
always has one trailing blank character. For string data, items are displayed 
continuously with no forced intervening spaces. 

Example: 

40 PRINT A 
413 PRINT A,B,C 

40 PRINT A;B;C 

40 PRINT, A;B;C 

40 PRINT "NUMBERS",A;:e;C 

40 PRmT "NUM"; "BER"; 
41 PRINT "S",A;B;C 



PRINT# 

The PRINT External statement (PRINT#) outputs one or more data 
items from the computer to an external device (cassette tape unit, disk unit, 
or printer) identified by a logical file number. 

Format: 

PRINT#If,data;CH RS(l3):data;C H RS(l3 ) .... ;CH RS (I3);data 

Data items listed in the PRINT# statement parameter list are written to 
the external device identified by logical unit number (f 

Very specific punctuation rules must be observed when writing data to 
external devices. /\ brief summary of punctuation rules is given belo\v, 

PRINT# Output to Cassette Flies 

Every numeric or string variable written to a cassette file must be 
followed by a carriage return character. This carriage return character is 
automatically output by a PRINT# statement that has a single data item in 
its parameter list. But a PRINT# statement with more than one data item in 
its parameter list must include characters that force carriage returns. For 
example, use CHR$(13) to force a carriage return, or a string variable that 
has been equated to CHR$(13) such as c$=CHR$(l3). 

PRINT# Output to Diskette Flies 

The cassette output rules descri bed above apply also to diskette files 
with one exception: Groups of string variables can be separated by comma 
characters (CHR$(44)). The comma character separators, like the carriage 
return separators, must be inserted using CHR$. String variables written to 
diskette files with comma character separators must subsequently be read 
back by a single INPUT# statement. The INPUT# statement reads all text 
from one carriage return character to the next. 

PRINT# Output to the Une Printer 

When the PR INT# statement outputs data to a line printer CH R$ must 
equal CH R$(29). No punctuation characters should separate CHR$ from 
data items, as illustrated in the PRINT# format definition. 

Caution: The form?# cannot be used as an abbreviation for PRINT#. 



---~~~~~---~====~-=~~==~-~----~------

READ 

The READ statement assigns values from a OAT A statement to vari­
ables named in the READ parameter list. 

Format: 

READ var[,var, ... ,var] 

READ is used to assign values to variables. READ can take the place of 
multiple assignment statements (see LET=). 

READ statements with variable lists require corresponding OAT A 
statements with lists of constant values. The data constants and correspond­
ing variables have to agree in type. A string variable can accept any type of 
constant; a numeric variable can accept only numeric constants. 

The number of READ and DATA statements can differ, but there must 
be an available DATA constant for every READ statement variable. There 
can be more data items than READ statement variables, but if there are too 
few data items the program aborts with an ?OUT OF DATA error message. 

READ is generally executed in program mode. It can be executed in 
immediate mode as long as there are corresponding DATA constants in the 
current stored program to read from. 

Example: 

113 DATA 1,2,3 On compte/ion, A=I, B =2, C=3 
20 READ A,B,G 

150 READ GS,D,F$ On completion, C$="STR", D =14.5, F$="TM" 
160 DATA STR 
170 DATA 14.5,"TM" 

REM 

The Remark statement (REM) allows comments to be placed in the 
program for program documentation purposes. 

Format: 

REM comment 

where 

comment is any sequence of characters that will fit on the 
current 80-column line. 

REM statements are reproduced in program listings, but they are 
otherwise ignored. A REM statement may be placed on a line of its own, or 



418 Your Cllvcoore (:4 

it may be placed as the last statement on a multiple-statement line. 
A REM statement cannot be placed ahead of any other statements on a 

multiple-statement line, since all text following the REM is treated as a 
comment. REM statements may be placed in the path of program execu­
tion, and they may be branched to. 

Example: • 

10 REM *** * * * * *** 20 REM ***PROGRAM EXCAlIBUR*** 
30 OOTO 55 REM BRANCH IF OUT OF DATA 

RESTORE 

The RESTORE statement resets the DATA statement pointer to the 
beginning of data. 

Format: 

RESTORE 

RESTORE may be given in immediate or program mode. 

Example: 

10 DATA 1, 2, ~l44 
20 READ A,B,B$ 
30 RESTORE 
40 READ X,Y,Z$ 

RETURN 

A=/, 8=2, 8$="N44" 

X=l. Y=2. Z$="N44" 

The RETURN statement branches program control to the statement in 
the program following the most recent GOSUB call. Each subroutine must 
terminate with a RETURN statement. 

Format: 

RETURl\: 

Example: 

100 RETURN 

Note that the RETURN statement returns program control from a 
subroutine, whereas the RETURN key moves the cursor to the beginning of 
the next display line. The two are not related in any way. 



L\oper State'n21ts 419 

RUN 

R UN begins execution of the program currently stored in memory. 
R UN closes any open files and initializes all variables to 0 or null values. 

Format: 

RUN[line] 

When RUN is executed in immediate mode, the computer performs a 
CLR of all program variables and resets the data pointer in memory to the 
beginning of data (see RESTORE) before executing the program. 

If RUN specifies a line number, the computer still performs the CLR 
and RESTOREs the data, but execution begins at the specified line number. 
RUN specifying a line number should not be used following a program 
break - use CONT or GOTO for that purpose. 

R UN may also be used in program mode. It restarts program execution 
from the beginning of the program with all variables cleared and data 
pointers reinitialized. 

Example: 

RUt~ Initialize and begin execution of the current program 

RUN HJ00 Initialize alld hegin execution of the program starting at line 1000 

SAVE 

The SAVE statement writes a copy of the current program from 
memory to an external device. 

Cossette Unit Format 

SAVE ['~file name"][.dev ][,.Ia] 

The SAVE statement writes the program that is currently in memory to 
the tape cassette drive specified by dev. If the dev parameter is not present, 
the assumed value is I and the primary cassette drive is selected. The file 
name, if specified, is written at the beginning of the program. If a nonzero 
secondary address (sa) is specified, an end-of-file mark is written on the 
cassette after the saved program. 

Although no SAVE statement parameters are required when writing to 
a cassette drive, it is a good idea to name all programs. A named program 
can be read off cassette tape either by its name or by its location on the 



cassette tape. A program with no name can be read off cassette tape by its 
location only. 

The SAVE statement is most frequently used in immediate mode, 
although it can be executed from within a program. 

Example: 

SA"IE Write the current program onto the cassette in drive 1, 
leaving it unnamed 

SAVE "RED" Write the current program onto the cassette in drive 1, 
assigning the file name of RED 

A:S="RED" Same as ahove 
SAVE AS 
SAVE "BLACKJACK", 2, 1 Write the current program onto the cassette in drive 2, 

Diskette Drive Format 

SAVE "dr,file name",dev 

naming the program BLA CKJA CK. Write an 
end-oj:ple mark ajier the program 

The SAVE statement writes a copy of the current program from 
memory to the diskette in the drive specified by dr. The program is given the 
nameJile name. dev must be present; normally, it has the value 8. If dev is 
a bsent, a default value of I is assumed and the cassette is selected. 

The file name assigned to the program must be new. If a file with the 
same name already exists on the diskette, a syntax error is reported. How­
ever, a program file can be replaced; if an @ sign precedes dr in the SAVE 
statement text string, the program replaces the contents of a current file 
named Jile name. 

The diskette SAVE statement is also used primarily in immediate mode 
although it can be executed out of a program. 

STOP 

The STOP statement causes the program to stop execution and return 
control to C-64 BASIC. A break message is displayed on the screen. 

Format: 

STOP 



Example: 

655 STOP 

VALIDATE 

Format: 

Lcperdix G BASIC Slo~e!lents 421 

Will cause the messaffl' BREAK IN 655 
to he displared 

PR INT#Ir"V[AUDATE][dr]" 

The diskette in drive dr is validated. If the dr parameter is absent, the 
diskette in the most recently selected drive is validated. 

When a diskette is validated, a new Block Availability Map is created 
for all valid data files on the diskette. Any files that were improperly closed 
or were not closed become invalid files; they are deleted from the diskette 
and their diskette space is released. 

Do not validate a diskette that contains random access files; validation 
will erase the random access file. If a read error occurs during validation, the 
validation operation is aborted and the diskette is left in its initial state. A 
diskette must be initialized after it is validated. 

Example: 

OPEN 1,9,15 Open Ihe diskette command cliannel 

PRINT#l J "10" Initialize thl! diskette in dril'l! () 

PRItH#l J "'VO" Validate the diskl!lIe in drive 0 

VERIFY 

The VERI FY statement compares the current program in memory with 
the contents of a program file. 

Cassette Unit Format 

VERIFY [':file name"][.dev] 

The program currently in memory is compared with the program 
namedJile name on the cassette in the unit specified by dev. If del' is not 
present, a default of 1 is assumed and cassette unit 1 is selected. IfJile name is 
not present, the next fiie on the cassette in the selected unit is verified. 

You should always verify a program immediately after saving it. The 
VERIFY statement is almost always executed in immediate mode. 



Example: 

VERIFY 

VERIF'Y "CLIP" 

A$::"CLIP" 
VERIFY A$ 

Diskette Drive Format 

VERIFY "dr.:file name",dev 

Verij/ the next program found on the 
tape 

Searchj()r the program named CLIP on 
cassette unit #1 and \'erill' it 

Same (j.\ above 

The program currently stored in memory is compared with the pro­
gram file named file name on the diskette in (irive dr. The dev parameter 
must be present and unless otherwise specified it must have the value 8. If the 
dev parameter is absent, a default value of I is assumed and the primary 
cassette drive is selected. 

In order to verify the program most recently saved, use the following 
version of the VERIFY statement: 

VERIFY "*",8 

You should always verify programs as soon as you have saved them. The 
VERIFY statement is nearly always executed in immediate mode. 

Example: 

WAIT 

VERIF"T' "!!!", 8 

VERIFY"0:SHELL".8 

C$="0:SHELL" 
VERIFY C$ 

Veril)' the program just saved 

Search for the program named SHE1.L 
on disk drive () and verif)' it 

Same as above 

The WAIT statement halts program execution until a specified memory 
location acquires a specified value. 

Format: 

WAIT memadr, mask[,xor] 

where 

mask is a one-byte mask value 

xor is a one-byte mask value 



Appendix R SIC Staten~el)ts 423 

The WAIT statement executes as follows: 

1. The contents of the addressed memory location are fetched. 

2. The value obtained in step 1 is Exclusive-ORed with xor, if present. 
If xor is not specified, it defaults to 0. When xor is 0, this step has no 
effect. 

3. The value obtained in step 2 is ANDed with the specified mask 
value. 

4. If the result is 0, WAIT returns to step 1, remaining in a loop that 
halts program execution at the WAIT. 

5. If the result is not 0, program execution continues with the statement 
following the WAIT statement. 

The STOP key will not interrupt WAIT statement execution. 





APPENDIX 

BASIC Functions 

The C-64 can define a great number of functional operations directly 
from BASIC. These functions include mathematical derivations, screen for­
matting instructions, and string manipulators. They are listed in alphabetical 
order. 

ASS 

ABS returns the absolute value of a number. 

Format: 

ABS(data n) 

Example: 

A=ABS( 10) Results in A= 10 

A=ABS(-10) Results in A= 10 

PRINT ABS(X)JABS(~)JABS(Z) 

ASe 
ASC returns the ASCII code number for a specified character. 

Format: 

ASC(data$) 

425 



426 YOLII Commooor8:'l4 

If the string is longer than one character, ASC returns the ASCII code 
for the first character in the string. The returned argument is a number and 
may be used in arithmetic operations. ASCII codes are listed in Appendix 
A. 

Example: 

ATN 

7ASC("A") 
X-ASC( "S") 
?X 

Prints 65 

Prints the ASCII value of "S," which is 83 

A TN returns the arctangent of the argument. 

Format: 

ATN(data n) 

A TN returns the value in radians in the range ± 17. 

Example: 

CHR$ 

A"ATN(AQ) 
?1S81T*ATN (A) 

CHR$ returns the string representation of the specified ASCII code. 

Format: 

CHR$(byte) 

CHR$ can be used to specify characters that cannot be represented in 
strings. These include a carriage return and the double quotation mark. 

Example: 

IF C$=CHR.(13) OOTO 10 Branch if C$ is a carriage return (CHR$(l3)) 

?CHR'(34); "HOHOHO" ; CHR:t(34) Print the eight characters "HOHOHO" (where 
CH R$(34) represents a double quotation mark) 



Apperdx H BASIC Functions 427 

cos 
COS returns the cosine of the argument. 

Format: 

COS(data n) 

EXP 

EX P returns the value earg • The value of e used is 2.71828183. 

Format: 

EXP(arg n) 

arg n must have a value in the range±88.029691. A number larger than 
+88.029691 will result in an overflow error message. A number smaller than 
-88.029691 will yield a zero result. 

Example: 

FRE 

?EXP(0) 

?EXP(l) 

EV-EXP(2j 

EB=EXP(S0.24) 

?EXP(88.0296919) 

?EXP(-88.0296919) 

?EXP(88.029692) 

?EXP(-88.029692) 

Prints I 

Prints 2.71828183 

Results in EV=7.3890561 

Results in EB=6.59105247F+21 

Largest allowable number, yields 1.70141183E+38 

Smallest allowable number, yields 5.87747176E- 39 

Out of range, overflow error message 

Out of range, returns 0 

FRE is a system function that collects all unused bytes of memory into 
one block (called "garbage collection") and returns the number offree bytes. 

Format: 

FRE(arg) 

arg is a dummy argument. It may be string or numeric. 



428 Your Commodore:i 

FRE can be used anywhere a function may appear, but it is normally 
used in an immediate mode PRINT statement. 

Example: 

?FR~(1) 

INT 

Institute garbage collection and print the 
number of free bytes 

INT returns the integer portion of a number, rounding to the next lower 
signed number. 

Format: 

INT(arg n) 

For positive numbers, INT is equivalent to dropping the fractional 
portion of the number without rounding. For negative numbers, INT is 
equivalent to dropping the fractional portion of the number and adding 1. 
Note that INT does not convert a floating point number (5 bytes) to integer 
type (2 bytes). 

Example: 

A .. It~T(1.5) Results in A= I 

A= I NT( -1. 5 ) Results in A=-2 

X=INTH3.1) Results in X=- I 

A caution here: since floating point numbers are only close approxima­
tions of real numbers, an argument may not yield the exact INT function 
value you might expect. For instance, consider the number 3.89999999. The 
function IN f( 3.89999999) would yield a 3 answer, not 4 as would be expected. 

LEFT$ 

?INT(3.89999999) 
? 
'J 

LEFT$ returns the leftmost characters of a string. 



Format: 

LEFT$(arg$,byte) 

byte specifies the number of leftmost characters to be extracted from 
the arg$ character string. 

Example: 

?LEFU("ARO" ,2) Prints AR 

Prints leftmost ten characters of the string B$ 

LEN 

LEN returns the length of the string argument. 

Format: 

LEN(arg$) 

LEN returns a number that is the count of characters in the specified 
string. 

Example: 

?LEN( "ABCDEF") Displays 6 

N=LEN<C:f+D:f) Displays the sum of characters in strings C$ and D$ 

LOG 

LOG returns the natural logarithm, or log, to the base e. The value of e 
used is 2.71828183. 

Format: 

LOG(arg n) 

An ILLEGAL QUANTITY ERROR message is returned if the argu­
ment is zero or negative. 

Example: 

?LOOO) 

A-LOGOED 

A-LOGOE6) 

AozLOO(X)/LOO(10) 

Prints 0 

Results in A=2.30258509 

Results in A= 13.8155106 

Calculates log to the base 10 



430 ·Ou r Corn'~.cclo'e 61, 

MID$ 

MID$ returns any specified portion of a string. 

Format: 

MID$(data$,byte\Lbyte2]) 

Some number of characters from the middle of the string identified by 
data$ are returned. The two numeric parameters byte\ and byte2 determine 
the portion of the string which is returned. String characters are numbered 
from the left, with the leftmost character having position I. The value of 
byte\ determines the first character to be extracted from the string. Begin­
ning with this character, byte2 determines the number of characters to be 
extracted. If byte2 is absent then all characters up to the end of the string are 
extracted. 

An ILLEGAL QUANTITY ERROR message is printed if a parameter 
is out of range. 

Example: 

?MID$( "ABCDE" ,2,1) Prints B 

?MID$("ABCDE",3,2) Prints CD 

?MID$("ABCDE",3) Prints CDE 

PEEK 

PEEK returns the contents of the specified memory location. PEEK is 
the counterpart of the POKE statement. 

Format: 

PEEK(mem adr) 

Example: 

?PEEK( 1) 

A-PEEK(2000e) 

Prints contents of memory Ibcation I 



H B~SIC Functions 431 

POS 

POS returns the column position of the cursor. 

Format: 

POS(data) 

data is a dummy function; it is not used and therefore can have any 
value. 

POS returns the current cursor position. If no cursor is displayed, the 
current character position within a program line or string variable is 
returned. Character positions begin at 0 for the leftmost character. 

Recall that program logic processes 80-character lines even though the 
C-64 computer has a 40-character display. If program logic in such a computer 
is processing a character in the second half of the line, the POS function will 
return a value between the beginning and end of the line (in other words, 41 to 
80). 

By concatenation, string variables with up to 255 characters may be 
generated. If program logic is processing a long string, then the POS 
function will return the character position currently being processed. Under 
these circumstances the POS function will return a value ranging between 0 
and 255. 

Example: 

?POS(l) 

?"ABCABC";POS(l) 

RIGHT$ 

At the beginning of a line, returns 0 

With a previous POS value of 0, displays a POS value of 6 

RIG HT$ returns the rightmost characters in a string. 

Format: 

RIG HT$(arg$,byte) 

byte identifies the number of rightmost characters that are extracted 
from the string specified by arg$. 

Example: 

RIGHT$(ARQ,2) Displays RG 



432 Your Commodore 64 

RND 

MM$=RIOHT$CX;$+"#" ,5) MM$ is assigned the last four characters of X$, 
plus the character # 

RND generates random number sequences ranging between 0 and 1. 

Format: 

RND(arg n) Return random number 
RND(-arg n) Store new seed number 

Example: 

I1=RND(-l) Store a new seed based on the value -I 

A=RND(l) Fetch the next random number in sequence 

An argument of zero is treated as a special case; it does not store a new 
seed, nor does it return a random number. RND(O) uses the current system 
time value TI to introduce an additional random element into play. 

A pseudo-random seed is stored by the following function: 

RND(-TI) Store pseudo-random seed 

RND(O) can be used to store a new seed that is more truly random by 
using the following function: 

RND(-RND(0» Store random seed 

For a complete discussion of the RND function see Chapter 5. 

SGN 

SGN determines whether a number is positive, negative, or zero. 

Format: 

SGN(arg n) 

The SGN function returns + 1 if the number is positive or nonzero, 0 if 
the number is zero, or -1 if the number is negative. 

Example: 

?SGN(-6) 

?SON(0) 

?SON(44) 

Displays -I 

Displays 0 

Displays 1 



!~ppenQ,x h i:3ASIC FU'lctlons 433 

IF A)C THEN SA-SGN(X) 

IF SON(M)}-e THEN PRINT "POSITIVI!: NUMBER" 

SIN 

SIN returns the sine of the argument. 

Format: 

SIN(arg n) 

Example: 

SPC 

A=SIN(AO) 

?SIN(45*1f/18~l) Displays the sine of 45 degrees 

SPC moves the cursor right a specified number of positions. 

Format: 

SPC(byte) 

The SPC function is used in PRINT statements to move the cursor 
some number of character positions to the right. Text which the cursor 
passes over is not modified. 

The SPC function moves the cursor right from whatever column the 
cursor happens to be in when the SPC function is encountered. This is in 
contrast to a TAB function, which moves the cursor to some fixed column 
measured from the leftmost column of the display. (See TAB for examples.) 

SQR 

SQR returns the square root of a positive number. A negative number 
returns an error message. 

Format: 

SQR(arg n) 

Example: 

A=SGlR(4) 

A=SQR(4.84) 

?SGlFi!< 144E30) 

Results in A=2 

Results in A=2.2 

Displays 1.2E+ 16 

« 



434 Vour ComTlodore 64 

ST 

ST returns the current value of the 110 status. This status is set to 
certain values depending on the results of the last input I output operation. 

Format: 

ST 

ST values are shown in Table H-l. 
Status should be checked after execution of any statement that accesses 

an external device. 

Example: 

L0 IF ST{)0 GOTO 500 Branch on any error 

50 IF ST=4 THEN ?"SHORT BLOCK" 

STR$ 

STR$ returns the string equivalent of a numeric argument. 

Format: 

STR$(arg n) 

STR$ returns the character string equivalent of the number generated 
by resolving arg n. 

TABLE H·i. ST Values for I/O Devices 

ST Bit ST Numeric Cassette Cassette Tape 
Position Value Tape Read Verify and Load 

0 1 
1 2 
2 4 Short block Short block 

3 8 Long block Long block 

4 16 Unrecoverable Any mismatch 
read error 

5 32 Checksum error Checksum error 

6 64 End of file 

7 128 End of tape End of tape 



Appendix H. BASIC Functions 435 

Example: 

Af=STRt:(14.6) Displays 14.6 

?AS 

?STRS(lE2) Displays 100 

?STR$ ( 1 E lED Displays I F+ 10 

SYS 

SYS is a system function that transfers program control to an inde­
pendent subsystem. 

Format: 

SYS(mem adr) 

mem adr is the starting address at which execution of the subsystem is 
to begin. The value must be in the range 0 <address <65535. 

TAB 

TAB moves the cursor right to the specified column position. 

Format: 

TAB(arg n) 

TAB moves the cursor to the n+ I position, where n is the number 
obtained by resolving arg n. 

Example: 

?"QUARK";SPC(10);"W" 
QUARK W 

?"QUARK";TAB(10);"W" 
QUARK W 

TAN 

These two examples show the difference between SPC 
and TAB. SPC skips ten positions from the last 
cursor location, whereas TAB skips to the 10+ I th 
position on the row 

T AN returns the tangent of the argument. 

Format: 

TAN(argn) 



Example: 

?TAN(3.2) 

XY(1)=TAN(180*~/18a) 

Displays 0.0584738547 

TI, TI$ 

TI and TI$ represent two system time variables. 

Format: 

TI Number of jiffies since current startup 
Tl$ Time of day string 

Example: 

USR 

?TI 

TIS·"081000" 

USR is a system function that passes a parameter to a user-written 
assembly language subroutine whose address is contained in memory loca­
tions I and 2. USR also fetches a return parameter from the subroutine. 

Format: 

USR(arg) 

VAL 

V AL returns the numeric equivalent of the string argument. 

Format: 

VAL(data$) 

The number returned by VAL may be used in arithmetic computations. 
V AL converts the string argument by first discarding any leading 

blanks. If the first nonblank character is not a numeric digit (0-9), the 
argument is returned as a value of O. If the first non blank is a digit, VAL 
begins converting the string into real number format. If it subsequently 
encounters a nondigit character, it stops processing so that the argument 



Appendix H BASIC Functions 437 

returned is the numerical equivalent of the string up to the first nondigit 
character. 

Example: 

A-VAL< "123") 





A 
Abbreviations, 80-81 

keyword, 388 
ABS, 425 
AND,73-74 
Animation, 183 

delay loops, 207 
players, 183-85 
sound combined with, 303 
sprites. 235-37 
using custom characters for, 203-07 

Arithmetic calculations, 43 
Arrays, 77-80 
ASC, 425-26 
Assignment statement. 84-86 
ATN,426 

B 
BASIC 

abbreviations, 82-83 
assignment statements, 84-89 
branch statements, 89 
commands, 80 
data and read statements, 86 
DIM (dimension statement), 88 
functions, 425-37 
reserved words, 80-81 
restore, 88 
statements, 84, 395-423 

Bit-mapped graphics. See Graphics 
BLOCK-ALLOCATE. See Disk drive 
BLOCK-FREE. See Disk drive 
BLOCK-READ. See Disk drive 

Index 

BLOCK-WRITE. See Disk drive 
BUFFER-POINTER. See Disk drive 

C 
Cassette tapes, 26. See also Datassette 

selection and care, 26 
write-protection, 26 

Character codes. table of. 381-85 
Character memory 

changing location of, 266 
contents, 190 
definition, 181 
locating characters in, 265 

CHR$. 128-29. See also ASCII, ASC, and 
character codes 

CIA chips, 158 
CLEAR/HOME, 14-16 
Clock, real-time. See also Jiffy Clock 

jiffies defined. See Clock 
operation, 147-50 
reading the time, 147 
setting the time, 146-47 
TIME and TIME$ variables, 147-50 

CLOSE,395 
CLR/HOME key, 14-16 

location on keyboard, 14 
CLR, 396 
CMD,396 
Color 

control keys, 14 
extended color, 248-53 
multi color, 254-55, 257-61 

sprites, 263 

439 



440 Your Commodore 64 

Color memory. See Color 
Computed GOSUB, 99-100 
Computed GOTO, 9(}-91 
CONT,397 
Control statements, 92 
Controls and connectors, 1-6 

Cassette interface, 3 
Expansion interface, 4 
Parallel port, 3 
Serial port, 4 

Conversion tables. See Trigonometric 
conversion tables 

COS, 427 
CRSR keys. See Cursor control keys 
Cursor Up/Down, 16-19 

control keys, 16 
movement, 17-19, 126-28 

Custom characters, 190 
character memory, 191-96 
combining with built-in characters, 202 
designing, 196-98, 20(}-O1, 256-57 
finding the character definitions, 194 
how to display, 190 
using custom characters, 198-200,201-02 

o 
DATA 

entering a valid date (example), 132-37 
entry (input), 130 

editing, 141 
sequence, 140 
subroutines, 142-46 

formatted data input, 137-40 
prompting, 13(}-32 
storing, 305 
tr""<"r, 308 

lJatassette 21-26,46-49. See also Cassette 
cleaning and demagnetizing heads, 

24-25 
connecting to computer, 22 
files, 31(}-16 

reading data, 313-14 
writing data, 311-13 

loading programs from, 48-49 
load and run, 49 

saving programs on, 47 
testing, 22-23 
using the, 46 
verifying programs on, 47 

Decay. See Sound 

DEF FN, 398 
Device numbers and secondary address 

(table), 310 
DIM,399 
Disk drives, 26-30 
Disk files, 316-20 

BAM (Block Availability Map), 318 
BLOCK-ALLOCATE, 328-29 
BLOCK-FREE,331-32 
BLOCK-READ,325-28 
BLOCK-WRITE,329-30 
BUFFER-POINTER, 33(}-31 
CLOSE disk files, 324 
concatenating files on, 321 
connecting to computer, 27 

multiple-disk systems, 321 
copying files on, 321 
disk, data files, 322 

sequential, 322-23 
directory (diskette), 318 

displayed on screen, 50 
erasing files, 320 
file names 

string variables as, 323 
formatting a diskette 51-53, 319-20. See 

also Disk NEW instruction 
how data is stored on, 316 
indicator lights, 28 
initialization, 318-19 
loading and unloading diskettes, 28-30 
loading a program, 50 
MEMORY-EXECUTE,335 
MEMORY-READ,334-35 
MEMORY-WRITE,333-34 
multiple disk systems, 321 
power-on test, 27 
random access, 324-25 
reading data from, 324 
renaming files on, 320 
saving a program, 53 
sectoring pattern, 317-18 
specifications (1541 specification table), 28 
user (Un) commands as an alternative 

to: 
Ul,335-36 
U2,336 
U3-U9,336 

utility instructions (table), 326 
VALIDATE, 320 

writing data on. See Data 
Diskettes. See Floppy disks 



E 
Editing 

between quotation marks. 43 
screen. 41 

END and STOP statements. 11G-11 
Error messages. 389-94 
EXP.427 
Extended color mode. 248 

F 
Fields. See Data. files 
Files. 306-25 

data files. 307-08 
data transfer. 308 
Datassette files. See Datassette 
deleting from diskette. 320 
fields. defined. 307 
GET#.402 
INPUT#.406 
logical files and physical units. 308 
PRINT#. 324-25 
program files. 306 
random access files. 324-25 
records. defined. 307 
renaming disk files. 320 
sequential files. 322-23 

Floppy disks 31. See also Disk drive 
care of. 31 
sectors. 318 
tracks. 318 
write-protection. 31 

FOR-NEXT. 92-96. 40G-01 
nested loops. 94 

FRE.427-28 
Function keys (Fl. F2 .... F8). 19-20 
Functions 

G 

arithmetic. 112 
defined. 111 
string. 114 
system. 114-15 
trigonometric (deriving functions). See 

Trigonometric tables 
user-defined. 115 

Game controllers. 155 
paddle controllers. See Game controllers 
joysticks. 156-61 
ports. 3 

r,de>; 441 

GET statement. 108-09. 401 
"echoing" input keystrokes. See GET 
simulating a joystick (example). See 

Game controllers 
GET#.402 

used to read files. 314-16 
GOSUB. 402-03. See also Computed 

GOSUB 
GOTO. 403. See also Computed GOTO 
Graphics 

H 

bit-mapped. 207-17 
combining PRINTed and POKEd 

graphics. 185-89 
creating displays with POKE. 177-83 
memory segments. 189-90 
saving and loading graphics data. 

268-72 
sprite. 217-46 

Hexadecimal/decimal conversion tables. 
373-79 

IF-THEN. 100 
Immediate mode. 39 
INITIALIZE. 404-05 
INPUT statement. 106-108 
INPUT#.406 
Input/output 

pinouts. 367-71 
statements, 1OG-09 

INST/DEL (insert/delete) key. 19 
editing text with. 41-42 

INT. 428 

J 
Jiffy. See Clock 
Joystick. See Game controllers. CIA chip 

description. 155 
joystick scanner. 160 
keyboard simulation. 164-67 
reading the position of the stick. 158 

K 
Kernel ( built-in machine-language 

routines). See Memory guide 



442 Your ComrnodcYp -,1 

Keyboard 
alphabetic keys, 7 
cursor control keys. 14 
function keys, 10 
graphic keys, 8 

graphic character table, 9 
numeric keys. 8 
special symbol keys, 8 

Keyword abbreviations. See 
Abbreviations 

L 
LEFT$ 
LEN,429 
LET,406 
Line numbers, 58-60 
LIST. 407-08 
LOAD, 408-10 
LOG. 429 
Loops, nested. Sf!' GOTO 

M 
Machine language subroutines, 272-75 
Memory 

and the VIC II chip. See VIC II 
character memory. See Characters 
color, 267 
guide, 35H6 
organization of. See Memory guide 
preserving your memory, 267 

MEMORY-EXECUTE. See Disk drive 
MEMORY-READ. See Disk drive 
MEMORY-WRITE. See Disk drive 
MID$,430 
Modem 

N 

installation. :3:37 
terminology (rlefinition of terms), 

338-39 

Nesterlloops. See GOTO 
NEW, 410 
NEXT. See FOR/NEXT 
Numbers 

floating point, 60 
integers. See INT 
roundoff,60 
scientific notation, 61 

o 
ON-GOSUB 411. See also Computed 

GOSUB 
ON-GOTO 411-12. See aim Computed 

GOTO 
OPEN,412,13 
Operators, 68-71 

arithmetic. 69 
Boolean, 73 

truth table, 74 
defined,68 
order of evaluation, 71 
relational. 72 
table of. 68 

OR,73-74 
OVERFLOW ERROR. See Error codes 

p 

Paddle controllers, 161-62 
PEEK, 110 
Players 

created with graphics characters, 
173-75 

definition, 172 
using the reverse function, 175-76 

POKE,nO 
POS,105 
PRINT statement, 101-0:3 

print formatting, 104 
"quote" mode, 103 
SPC, 104 
TAB, 104-05 
using CHR$ to "print" special 

characters. See CHR$ 
PRINT#.324 
Printer 

adjusting print head, 37-38 
character sets, 341-42 
CLOSE statement for. 56, 340 
CMD, 55-56, 34(H1 
connecting to computer, 32-35 
comma with, 342 
double/single-width characters, 344 
graphics, 344-48 
modes (table), 345 
OPEN statement for, 55, :3:39-40 
operating the, 54-56 
paper loading, 35-37 
POS with, 343-44 
PRINT formatting, 342-44 



Printer (continued) 
reversed characters, 344-45 
ribbon installation, 35 
SPC with, 343 
T-5-4 switch, 37 
TAB with, 343 

Programming 
data, 60 
elements of, 57 

Q 

input and output, 122-46 
line numbers, 58 
program entry, 44 
program mode, 44 
running a program, 45 
with strings, 117-21 

concatenating, See Strings 
numeric, See Strings 

Quote mode. See PRINT 

R 
Random access files. See Disk data files 
Random numbers 

defined, 150 
random dice throws generation 

(example), 152-53 
random selection of playing cards 

(example), 153-54 
ranging the numbers, 151 
RND,151 
"seed number," 151 

READ,417 
REM,84 
Reserved words 

defined,80 
list of, 81 

RESTORE, 418 
RESTORE key. See Keyboard 
RUN/STOP/RESTORE. See Keyboard 

RETURN,418 
RETURN key, 11 

RIGHT$, 431-32 
RND,432 
RUN,419 
RUN/STOP key, 12-13 

reset system, 13 
starting a program with, 13 

load and run, 49 
stopping a program with, 12 

RVS OFF, 12 
key, 10,12 
functions, 12 

RVS ON, 11 

S 
SAVE, 419-20 
Screen 

ASCII to screen code conversion table, 
182 

background, 170 
border, 170 
controlling colors, 171-72 
display codes, 181. 385-87 
editing, 41 
formatted display, 126 
layout, 124 
memory, 178 

organization of, 179 
color memory, 179-81 

Screen codes, 385-87 
SGN,432-33 
SHIFT,lO 
SHIFT/LOCK, 10-11 
SID Chip, 277-78 
Sound, 277-304 

animation combined with, 303-04 
attack, 288, 91 
"beat" frequency, 292-93 
components of, 283-84 
control registers 278-79 

table of, 278 
voice control, 279 
setting up, 279 

decay, 289-90 
electronic organ, 300-01 
fading out, 287-88 
frequency tables, 280-82 
mixing tones, 292 
multiple tones, 285 
music, 295-303 

arrays, 301-02 
saving, 301-03 

noise, 294-95 
POKE value table, 280-82 
pulsed tones, 285-87 
rhythm, 299 
scales, sweeping, 284-85 
sustain, 288-91 
tremolo, 291-92 
vibrato, 291-92 



444 VOl II Commodere ~.; 

volume control, 287 
waveforms, 293-95 

Special function keys (table of), 20 
SPC, 104 
Sprites, 217 

collisions, 243-46 
coloring, 237-39, 246-56 
designing sprites, 223-26 
enabling and disabling. 230-31 
expanded, 264 
how they are displayed. 220 
memory, 221-23 

loading in. 226 
moving. 231-35 
multicolor. See Color 
priorities, 240-43 

SQR, 433 
ST (status register). 314 

table. 314 
STOP. 420-21 
Storage. See Data, SAVE, LOAD 
STR$, 4:~4 
Strings, 64 

concatenation, 118 
numeric, 119 

Subroutines. See GOSUB 
defined,96 
"nested". See GOSUB 

SYS, 435 
System architecture. 349 

T 
TAB, 104-05 
TAN. 435-36 
TI. See TIME and Clock 
TI$. See TIME$ and Clock 
Trigonometric conversion tables. 380 

U 
USR, 4:36 

V 
VAL. 436 
VALIDATE, 422 
Variables, 65 

names and rules for. 66 
VERIFY. 422 
VIC II chip 

advanced topics. 264-67 
control registers 
introduction to, 169 
locating sprites in memory. 227-30 
memory as viewed by, 264-65 

Video interface chip. SrI' VIC II chip 
Video display, 4 



Other Osborne/McGraw-Hili Publications 

An Introduction to Microcomputers: Volume 0-The Beginner's Book, 3rd Edition 
An Introduction to Microcomputers: Volume 1- Basic Concepts, 2nd Edition 
Osborne 4 & 8-Bit Microprocessor Handbook 
Osborne 16-Bit Microprocessor Handbook 
80S9 I/O Processor Handbook 
CRT Controller Handbook 
68000 Microprocessor Handbook 
80S0A/SOS5 Assembly Language Programming 
6800 Assembly Language Programming 
ZSO® Assembly Language Programming 
6502 Assembly Language Programming 
ZSOOO® Assembly Language Programming 
6809 Assembly Language Programming 
Running Wild - The Next Industrial Revolution 
The 80S6 Book 
PET®/CBMT " and the IEEE 488 Bus (GPI B) 
PET® Personal Computer Guide 
CBMT" Professional Computer Guide 
Business System Buyer's Guide 
Osborne CP/M® User Guide, 2nd Edition 
Apple II® User's Guide 
Microprocessors for Measurement and Control 
Some Common BASIC Programs 
Some Common BASIC Programs-Atari® Edition 
Some Common BASIC Programs - TRS-80T" Level II Edition 
Some Common BASIC Programs-Apple ll® Edition 
Some Common BASIC Programs-IBM® Personal Computer Edition 
Some Common Pascal Programs 
Practical BASTC Programs 
Practical BASIC Programs - TRS-80™ Level II Edition 
Practical BASIC Programs-Apple II® Edition 
Practical BASIC Programs-IBM® Personal Computer Edition 
Practical Pascal Programs 
CBASIC 
CBASIC" User Guide 
Science and Engineering Programs-Apple II® Edition 
Interfacing to S-IOO/IEEE 696 Microcomputers 
A User Guide to the UNIX™ System 
PET® Fun and Games 
Trade Secrets: How to Protect Your Ideas and Assets 
Assembly Language Programming for the Apple II® 
VisiCalc®: Home and Office Companion 
Discover FORTH 
6502 Assembly Language Subroutines 
Your ATARr" Computer 
The HP-IL System 
Wordstar® Made Easy, 2nd Edition 
Armchair BASIC 
Data Base Management Systems 
The H HC" User Guide 
VIC 20™ User Guide 
Z80® Assembly Language Subroutines 
8080/S085 Assembly Language Subroutines 
The VisiCalc® Program Made Easy 
Your IBM® PC: A Guide to the IBM® Personal Computers 











Your Commodore 64™ 
A Guide to the 
Commodore 641>' Computer 

Here is an easy-to-understand, fully illustrated teaching guide 
packed with all the information you need to master 
your Commodore 64'" computer. 

For the beginner, Your Commodore 641M features: 
• Step-by-step operating instructions to get the C-64 and its 

peripherals up and running 
• A complete introduction to programming in BASIC - plus 

information on how to tap the special graphics and sound 
capabilities of the C-64 

If you're a more advanced user, you 'll find that this book will 
serve as an invaluable reference tool by providing: 
• Detailed coverage of BASIC statements and functions 
• An extensive memory guide indicating the most usable 

memory locations together with explanations of what each 
one does and how it works 

• A special section devoted to advanced color graphics and 
Sprite graphics 

No matter what your leve! of experience or whether you use your 
C -64 for entertainment, education, or home management, Your 
Commodore 641M is, without a doubt, one of the most valuable 
resource guides that you can buy_ 

Commodore 64 · is a trademark of Commodor€' Business Machines , Inc. 

ISBN 0-88134-114-2 

... -.t .. ":'- .. - ~:.,~ " 




