cﬁ Osborne/McGraw-Hill e \,\‘

YOUR COMMODORE 64:"
A Guide 1o the
Commodore 64™ Computer

YOUR COMMODORE 64:"
A Guide 1o the
Commodore 64" Computer

John Heilborn
Ran Talbott

Osborne/ McGraw-Hill
Berkeley, California

Disclaimer of Warranties and Limitation of Liabilities

The authors have taken due care in preparing this book and the programs
in it, including research, development, and testing to ascertain their effec-
tiveness. The authors and the publisher make no expressed or implied
warranty of any kind with regard to these programs or the supplementary
documentation in this book. In no event shall the authors or the pub-
lisher be liable for incidental or consequential damages in connection
with or arising out of the furnishing, performance, or use of any of these
programs.

C-64 is a trademark of Commodore Business Machines, Inc. Your Com-
modore 64™ User Guide is not sponsored or approved by or connected
with Commodore Business Machines, Inc. Commodore Business
Machines, Inc., makes no warranty, expressed or implied, of any kind
with regard to the information contained herein, its accuracy, or
completeness.

Datassette is a trademark of Commodore Business Machines, Inc.

C= is a registered trademark of Commodore Business Machines, Inc.

Published by

Osborne/ McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the
U.S.A., please write to Osborne/ McGraw-Hill at the above address.

YOUR COMMODORE 64™

Copyright © 1983 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored in a data base
or retrieval system, without the prior written permission of the publisher, with the excep-
tion that the program listings may be entered, stored, and executed in a computer system,
but they may not be reproduced for publication.

4567890 DODO 8987654
ISBN 0-88134-114-2
Cover illustration by Terry Hoff
Cover design by Yashi Okita
Text design by KLT van Genderen
Unless otherwise mentioned, all photos by Richard Cash

Dedication

The authors would like to dedicate this book to Heinz Max and
Ingeborg Heilborn and to Billand Jo Talbott, without whom we would
not have been possible.

ACKNOWLEDGMENTS

No book is ever the work of just the authors and, of course, this book
is no exception. We would like to express our thanks to the following
people without whose help this work would never have become a reality:

Michael Tomczyk, whose enthusiasm and insight during a brief meet-
ing in Santa Clara got the whole thing started.

Bill Hindorff, whose technical assistance helped clarify many of the
lesser known aspects of the C-64.

Larry Ercolino, who provided a first-hand encounter in telecommuni-
cations and a seemingly never-ending supply of support and information.

There were many others who also provided help when we needed it
the most, and often at times that were quite inconvenient. Some of these
are Pat McAllister, Jeff Hand, Andy Finkel, Neil Harris, Steve Murri,
Steven Moser, and John Stockman.

Finally, we wish to express our thanks to Denise Penrose whose
editorial guidance was invaluable in helping us complete this book.

JH
RT

Contents

I QMTMOUO®PP>»PONOCOCADLWON

Introduction Xi

Introducing the Commodore 64 Computer
Operating the C-64 39

Programming the C-64 Computer 57
Advanced BASIC Programming 117
Game Controllers 155

Graphics 169

Sound 277

Peripheral Devices 305

System Architecture 349

Memory Usage 351

C-64 1/ 0O Pinouts 367

Conversion Tables Trigonometric Functions
Sound and Display Characters and Codes
Error Messages 389

BASIC Statements 395

BASIC Functions 425

Index 439

373
381

Ix

Infroduction

The Commodore 64 is one of a new breed of computers. Despite its
low price and small size, it has more features than larger and more expensive
computers did even a few years ago.

If you want to solve math problems, the C-64 can run them for you. If
you need to type letters or mailing lists, the C-64 will do the job quickly and
easily.

But in addition to these functions, common to most computers, the
C-64 offers color text and graphics.

Furthermore, the C-64 can produce tones within a range of nine
octaves. These can be combined to imitate anything from the patter of rain
to a cannonade.

Chapter 1 explains how to unpack and set up the C-64 and its accesso-
ries. It contains a description of all the controls on the C-64, from connec-
tors to keyboard functions.

Chapter 2 guides you through the C-64 screen editor and explains the
two operating modes of the C-64: immediate mode and programmed mode.
This is followed by an introduction to the Datassette, the 1541 disk drive,
and the 1525 printer.

Chapter 3 introduces you to programming. All the BASIC instructions
are covered as well as the concepts of loops, branching, Boolean operators,
floating point versus integer numbers, and scientific notation. The chapter
also describes variable types and the construction of arrays.

xi

xil Your Commodore 64

Advanced BASIC programming is the subject of Chapter 4. It will
teach you practical applications of concepts covered in Chapter 3. You will
learn how to write screen display programs, include cursor movement and
string variables as commands in your programs, and develop easy-to-use
I/O intensive programs requiring considerable data entry. Chapter 4 also
discusses the C-64’s real time clock and random number generator.

Chapter 5 is a tutorial on game controllers. It will show you how to use
the keyboard as a game controller and how to write programs that access a
joystick or paddle controller.

Chapter 6 covers graphics. It explains how the video display works,
how colors are produced, and how to put characters on the screen. You will
learn how to animate pictures and produce high-resolution graphics using
BASIC.

Chapter 7 discusses sound generation on the C-64 including the C-64
sound registers, the components of sound, and how to use them. You will
learn how to program music into the C-64 and how to save it for playback
later on.

Chapter 8 explains the operation of the major C-64 peripherals: the
Datassette, 1541 disk drive, and 1525 printer. It contains a complete discus-
sion of data file creation, program storage, and high-level disk operations. It
also discusses all the printer commands including double width characters,
reverse printing, and high-resolution graphics.

The appendixes contain tables on all the details discussed in the text,
from the system architecture and block diagrams to the memory maps. You
will also find diagrams showing pinouts for all of the connectors as well as
color, screen, and sound value tables.

CHAPTER

INfroducing the
Commodore 64 Computer

When you first unpack the C-64, you will find the equipment shown
in Figure 1-1:

+ The C-64 computer

+ Power supply (large plastic box)
+ TV switch box

- Video cable

While your system may include additional components, all systems
include this basic equipment. This chapter identifies each component and
connector provided by Commodore and introduces the function of each.

Place the C-64 on a flat surface such as atable. Make sure that you have
room to put a television near the C-64, ideally directly behind it.

REAR AND SIDE PANEL

All of the switches, connectors, and interfaces are located at the side
and back of the C-64 computer. These components are labeled in Figure 1-2.
It is important that you learn the function and location of each component
as you hook up the computer to avoid damaging it by using connections
incorrectly. 1

2 ‘our Commodore 64

FIGURE 1-4. Equipment packed with the Commodore 64

FIGURE 1-2. Rear/side view of the Commodore 64

Chapter 1: Introducing the Commodore 64 Computer 3

Power Switch

Make sure the C-64 is OFF at this point. The power switch is located on
the right side of the computer. It is a two-position “rocker” switch.

When you turn the power switch ON, the C-64 will display a dark screen
for a short time. During this period it is initializing itself; that is, it is check-
ing out its internal systems and memory.

When you turn the power OFF, all programs and data in memory that
were not stored onto either diskette or tape will be lost.

Power Connector

The power supply has two cables attached to it. One plugs into any
standard 110 volt AC outlet. The other plugs directly into the power
connector next to the ON/OFF switch on the side of the C-64.

Game Ports

These connectors are used for the various game controllers available
for the C-64, as well as for the light pen and some special application devices.
ATARIjoysticks and paddles will work with this port, as well as those made
by Commodore.

Parallel User Port

The parallel user port is a connector that allows you to hook up devices
(such as the VIC modem) to the C-64.

More advanced users may use this connector for custom applications as
well, since the signals coming from it can be programmed directly by the
C-64.

Cassette Interface

The cassette interface is used to connect the Datassette, which is a
special digital tape recorder. You can use it to store and reload programs
and data into the C-64. The Datassette is described later in this chapter.

4 our Commodore 64

Serial Port

The serial port is used to connect the computer to the model 1525
printer, the 1541 disk drive, and other devices using a serial input/ output config-
uration. Instructions for connecting the printer and disk drive to the C-64
are provided later in this chapter.

Video Ports

The C-64 produces the sound and pictures displayed on your televi-
sion by combining them into a signal called composite video. This signal is
sent out through the video port.

A video monitor (a television without a tuner) is able to convert the
composite video directly into pictures and sound. Connect a monitor to the
monitor video port. A television, however, must be tuned to a particular
channel. That signal is produced and combined with the composite video by
the built-in RF (radio frequency) modulator. Connect your TV to the TV
video port.

When you use the C-64 you can select either channel 3 or channel 4 by
flipping the channel switch on the back of the computer.

Expansion Interface

The expansion interface gives you access to the computer’s memory
lines.

Video Display

When you first power up the C-64 it displays 25 rows with 40
characters per row. The computer generates these characters by lighting the
appropriate pattern of dots within an 8 X 8 matrix. This is illustrated in
Figure 1-3. The C-64’s character set is quite extensive, containing 256
letters, numbers, and symbols. It is also possible to program custom charac-
ters for special applications. This will be discussed in Chapter 6.

Chapter 1 Intfroducing the Commaodore ¢4 Computer 5

a. 8 X 8 dot matrix b. Sample letter A ¢. Sample Graphic

FIGURE 1-3. The 8 X 8 dot matrix

POWER UP

Connect the TV switch box to the back of the television by attaching
one end of the cable with the phono jacks (Figure 1-4) to the switch box.

FIGURE 1-4. Television switch box and connections

6 our Commodore 64

Connect the larger plug of the video cable to the round five-pin video
port on the back of the C-64 (see Figure 1-2).

Finally, plug the power supply cord into the C-64 power connector.
Do not turn on the C-64 yet!

To start using your C-64, follow these steps:

1. Plug the AC power cord into a wall outlet.

2. Switch the power ON. The power switch is located on the right side
near the AC plug.

3. Wait for the READY display. This can take several seconds,
during which the C-64 is going through a self-checking and initializa-
tion process.

The following display should now appear:

#¢4% COMMODORE €4 BASIC W2 ####%
64K RAM SYSTEM 38311 BASIC BYTES FREE

_

If you not not get this display, turn the power OFF, wait about ten
seconds, and turn the power ON again. If you still don’t get this display,
check the connections. If that does not help, contact your Commodore
dealer.

Chapter 1: Infroducing the Commodore ¢4 Computer 7

THE KEYBOARD

In almost every application the keyboard is used to communicate with
the C-64. The keys are arranged much like those on a standard typewriter.
Unlike typewriter keys, however, the C-64’s keys can be used to access as
many as three or four different symbols, characters, or functions.

The keys on the C-64 may be classified by function as follows:

- Alphabetic keys

- Numeric keys

+ Special symbol keys
+ Graphic keys

+ Function keys

+ Cursor control keys

Alphabetic Keys

The alphabetic keys include the 26 letters of the alphabet in both upper
and lower case. When the C-64 is powered up, letters are displayed in upper-
case. To display lower-case letters, press the COMMODORE and SHIFT keys
simultaneously. If you are typing lower-case letters and wish to insert an
occasional upper-case letter, use the SHIFT key as you would on a typewriter.
Press SHIFT-COMMODORE again to return to upper-case mode.

v EH

i GG (Gt
D

8 ‘our Commodore 44

Numeric Keys

The numeric keys are used to enter the digits 0 through 9.

[ﬁﬁﬂﬁ.@.‘?ﬂ.ﬁ.@ %;1.3?@

0 Y QE' [acf q —
" ’ / 'V V 2

Special Symbol Keys

The special symbol keys include the following standard punctuation
marks: ! > “ ., ;: 7. Theyalsoinclude the following mathematical symbols:
4+ =/ * 1 = (notethataslashis used for division, an asterisk for multiplica-
tion, and an up arrow for exponentiation). Other special symbols available
onthe C-64 include #$ & @ B ET < >[] .

U-rs ‘el
T
S rﬂu"‘ i

Graphic Keys

The C-64 also has 62 graphic symbols that may be accessed through the
SHIFT or COMMODORE function keys. Using these graphic symbols, you can
create fairly sophisticated display drawings.

The graphic symbols and their names are listed in Table 1-1. Similar
symbols have been grouped to make graphic options immediately obvious.
Note that the square enclosing each of the graphic symbols shown in Table
1-1 and Figure 1-3 is not actually part of the symbol, but has been added to
show the symbol’s location within its 8 X 8 grid.

Chapter 1. Introducing the Commaodore 64 Computer

TABLE 1-1. Graphic Character Keys

Line Thin Quarter Block
Horizontal Bar Solid T
] T) (™) Top Left, T
Top @ P VJ{€J Top Right E) P
= =) Bottom Left,
3/4 Top Bottom a Bottom Right R Bottom
2/3 Top @ Left Diagonal Left
Near Middle @ Right Right

Quarter Block
Middle Open (Angle)

Thick Top Left,
Bar XJ(ZJ Top Right Symbol

2/3 Bottom
X
@ Top Bottom Left, @ X
3/4 Bottom S) LAJ Bottom Right
Bottom Cross
S Bottom Di 1
Corner lagona
Left Ton Left m Acute
Line {%] Tzz R?g};t <) Di 1
) . lagona
Vertical @ Right 5 L Grave
O ottom Left,
Left ' @J Bottom Right
Grid
3/4 Left Half
Block Rounded Full
Corner
2/3 Left @ Left
Top Left, | Half Left
Top Right

Near Middle Bottom
Bottom Left, Half
Bottom Right Bottom

Middle

2/3 right Triangle
Solid Suit

Circle
3/4 right @ Top Left @ Spade, Heart
Right @ Top Right @@ gl‘zg‘"“d’ Solid

Outline

= & 09 e

10 our Commodore 64

0 im \O 10 \
AN ” vﬂvllvll 'E\'m

Function Keys

Any key that “does something,” rather than “prints something” is a
function key. For instance, CTRL-RED (pressing the CTRL and RED keys
simultaneously) doesn’t print anything, but instead causes all subsequent
characters to be displayed in red on the screen.

RUN/STOP RESTORE
SHIFT/LOCK COLOR CONTROL KEYS RETURN

SHIFT SHIFT

SHIFT

The SHIFT key is used in conjunction with any other key on the
keyboard to access that key’s “shifted” function or character. Most keys
have both a shifted and unshifted character or function. For example,
shifted lower-case letters become upper-case letters, and a shifted CRSR
UP/DOWN causes the cursor to move up.

There are two identical SHIFT keys on the C-64 keyboard. One is at the
lower left corner of the keyboard, while the other is at the lower right.

SHIFT LOCK

You may occasionally need a continuous string of shifted characters.
To make this operation easier, the C-64 has a SHIFT LOCK key that is similar

Chapter 1 Introducing the Commodore 64 Computer 14

tothe SHIFT LOCK ona typewriter. Pressing the SHIFT LOCK key until it clicks
will lock the keyboard into shifted mode. Pressing it until it clicks again will
unlock the shifted mode.

Unless the C-64 is running a program, RUN/STOP does nothing.
Pressing SHIFT and RUN/STOP loads and executes a program from the C-64
Datassette.

RETURN

The RETURN key is much like the carriage return key on a typewriter. It
causes the cursor (the flashing square that indicates where the next
character will appear) to return to the left-hand margin of the next line.

The RETURN Kkey is also used to enter instructions in BASIC. After
keying in a line of your program, you press RETURN to enter that line into
memory.

A RETURN executed while the cursor is on the bottom line of the screen
will cause the entire screen to scroll up, moving the cursor to the beginning
of the new blank line generated by the scroll.

18 PRIMT "HOW IS THE"
28 PRIWT "TIME FOR"
2B PRIMT "ALL GOOD"
4@ PRINT "PEOPLE"

58 READ ¥

38 A=B+C+D

1688 IF A=1 THEW 1@
118 IF A=2@ THEHW 5@
126 PRIMT "START"

n

42 \our Commodore 64

28 PRIWMT "TIME FORY
28 PRIMT "ALL GoOD"
46 PRIMT "FEOFPLE"
a3 RERD

98 A=EB+C+D

1898 IF A=1 THEHW 1@
118 IF A=20 THEH 56
128 FRIMT “"STHRT!

REVERSE ON/OFF

The RVS ON and RVS OFF keys allow you to exchange the light and dark
parts of the characters on the screen. The default mode for this function is
RVS OFF. The RVS ON is like the negative of a photograph. To reverse the
characters, press CTRL and RVS ON at the same time. All subsequent
characters entered will be displayed in reverse. To switch back again, press
CTRL and RVS OFF.

HORMAL. PRINT sl

cTRL avs

RUN/STOP

In the unshifted mode, the RUN/STOP key will stop any program that is
being executed, returning control of the computer to the keyboard. It will
alsodisplay the number of the program line that was being executed before
the stop instruction was received.

Chapter 1 Introducing the Commodore 64 Computer 13

To demonstrate this, enter the following short program:

18 » = B8

28 PRINT ¥
3@ ¥ =K+ 1
49 GOTO 24
99 END

Now type RUN and press RETURN. You should see a string of numbers
scrolling down the left side of your screen. After pressing RUN/STOP your
screen should look like the following:

WOoNBH D W&

EREAK IH 283
[|

Unless the C-64 is running a program, RUN/STOP does nothing. Press-
ing SHIFT and RUN/STOP loads and executes a program from the C-64
Datassette.

RESTORE

If pressing the RUN/STOP key alone does not stop a program, then press
RUN/STOP and RESTORE simultaneously. If this does not work, turn the
power off and then on.

414 our Commodore 64

COLOR CONTROL KEYS

Along the top of the keyboard, just under the number keys (1-8), are
located the eight color control keys: black, white, red, cyan (light blue),
purple, green, blue, and yellow. These keys change the color of the charac-
ters being typed on the display. To use these keys you must press CTRL and
the color you wish to use. For example, when you first power up the C-64,
your screen comes up with a cyan border, blue inner field, and light blue
letters. By pressing CTRL and PUR together, you will begin typing purple
letters. By pressing the COMMODORE key and color keys together you can
get eight more colors.

Cursor Control Keys

The remaining keys move the cursor. They are described individually
below.

INSERT/DELETE
CLEAR;HOME

“v’ |+ =V £ e\ eay
o

DR

VAl daa

B
9& "V"\P\

'qm'ﬂ

\J
=V

CURSOR UP/DOWN
CURSOR LEFT/RIGHT

CLEAR/HOME

In the unshifted mode, pressing the CLRHOME key will make the
cursor jump to the top left-hand corner of the screen (the ~home position).
‘T'odemonstrate this, type LIST and press RETURN. You should see a listing
of the program you entered in the last section. If you turned the computer

find the cursor beneath the listing, after the word READY.

Chapter 1 Infroducing the Commodore ¢4 Computer 48

LIST

189 % =8

28 PRIMT =«
30 X =X+ 1
48 GOTO 26
29 END

n

N

Press the C1.R/HOME key. The cursor should jump to the top left-hand
corner of the screen.

_

mIsT
16 ¥ = 8
28 PRIMT &

309 ¥ =1+ 1
4@ GOTO 28
5% EWD

N

In the shifted mode, the CLR/HOME key will not only return the cursor
to the home position, but will also erase anything that was on the screen
(clear the screen). Type LIST again. Now press SHIFT and press CLR/ HOME
simultaneously.

_

46 our Commodore &4

CURSOR UP/DOWN

Unshifted, the CRSR UP; DOWN key causes the cursor to move down the
screen a single line. Holding down the CRSR UP;DOWN Kkey causes the
cursor to move down until it reaches the bottom of the screen. If the cursor
is on the bottom line of the screen and the unshifted CRSR UP;DOWN 1is
pressed, the entire screen will be scrolled up and the cursor will be
positioned at the bottom line.

LIST your program again. Now press the CRSR UP/DOWN key several
times, or hold it down. When the cursor reaches the bottom of the screen, all
the lines on the screen will move up from one to four lines. This is because
the logical length of the lines is 80 characters, but the display is only 40
characters wide. The logical length of a line is the number of characters the
C-64 can handle internally on each numbered line. Therefore, depending on
how much of a line is left when the cursor reaches the bottom of the screen
(regardless of whatis actually displayed) the screen will scroll up one logical
line, producing an effective scroll of one to four partial lines.

Chapter 1 Infroducing the Commodore 64 Computer 47

LIST

1B X =8
28 PRIMT X

R RE
43 GOTO 20
39 END

28 H =+ 1
4@ GOTO 26
53 EHMI

n

]

In the shifted mode, the CRSR UP/ DOWN key moves the cursor up one
line at a time. When the cursor reaches the top of the screen, it stays there.
The screen will not autornatically scroll down (move all the lines down one
or more positions).

18 our Commodore ¢4

CURSOR LEFT/RIGHT

In the unshifted mode, the CRSR LEFT/RIGHT key will move the cursor
right one character position. Press the CRSR LEFT/RIGHT key and hold it
down. Notice what happens when the cursor reaches the end of a line. It
jumps to the leftmost position of the next line down.

J

18 PRINT "THE QUICK BROWHN FO&M
JUMPED OWER THE DOG"

186 PRINT "THE GUICEK EBROWH FOX

RJUMPED OVER THE DOG"

L

_

N

Chapter 1. Introducing the Commaodore 64 Computer 19

Pressing the SHIFT and CRSR keys together will move the cursor left one
character position. When the cursor reaches the left-hand border, it jumps
to the rightmost column of the next line up. This is called wraparound. It
allows you to continue entering lines that are more than 40 characters long
without your having to press RETURN. This is similar to having an automatic
carriage return.

If the cursor is at the right-hand edge of the bottom line and CRSR
RIGHT is pressed, the screen will scroll up a line. The wraparound feature
advances the cursor to the beginning of the next line, effectively producing a
CRSR DOWN.

The CRSR UP/DOWN and CRSR LEFT/RIGHT keys are used to move the
cursor over text without changing the text. To alter the text, move the
cursor to the character you wish to correct. Typing another character will
replace the existing one, allowing you to edit texteasily on the screen.

INSERT/DELETE

The INST/DEL key is used to insert or delete characters on the screen. In
the unshifted mode, the INST/DEL key deletes the character to the left of the
cursor. It also moves the rest of the characters in the line left one space and
adjusts any other characters in the 80-column logical line of which it is a
part.

19 PRINT "BIG BROONM"

18 PRINT "BIG BROMWM"

If you press SHIFT and INST/DEL together, the computer will insert a
space on the screen. All characters to the right of the cursor will be moved
one position to the right.

10 A=B+C+D-(4&F)

18 A=B+C+D-(48 /F)

PROGRAMMABLE FUNCTION KEYS

In addition to the keys we have just covered, the C-64 has four program-
mable, dual-function keys. They are labeled f1/f2, £3/f4, f5/f6, and £7/8. The
functions of these keys are specified by the user.

20 our Commodore ¢4

Programming the Function Keys

Most of the function keys can be put into PRINT statements in the
program mode. For instance, instead of pressing CTRL and RED in the
immediate mode to print in red, you could put the control functions in a
PRINT statement such as

18 PRINT "C(CTRL)(CYRNIHAPPY YALENTINES DRY(CTRL)(RET) (HEART)"

When you RUN this line, it will print the words HAPPY VALEN-
TINE’S DAY in light blue (cyan), followed by a red heart.

With the exception of SHIFT, SHIFT/LOCK, RETURN, RUN/STOP, and
RESTORE, any of the function keys can be programmed into PRINT
statements.

When the function keys are programmed into PRINT statements they
appear on the screen as reverse characters. Table 1-2 shows these symbols.

TABLE 1-2. Special Function Keys

b+ CLEARSCREEN Al Cvan -
=] HOME M PURPLE - =
[3 cursorup Ed GREEN -
[#] CURSOR DOWN = BLUE B o
BE CURSORIEFT Em YELLOW IR s
Bl CURSOR RIGHT I=1 REVERSEON =
B BLACK ER REVERSE OFF Hml
|=d WHITE Bl DELFIE I
EA

RED

Chapter 1: Infroducing the Commodore 64 Computer 21

THE COMMODORE DATASSETTE

You will soon find that entering all of your programs by hand is
tedious. A data recorder will solve this problem. There are two units that will
work with your C-64; both are basically the same. One is the original
PET/CBM digital cassette drive, and the otheris the VIC Datassette (Figure
1-5). One advantage the Datassette has over the older unit is a tape counter.
This makes it easier to locate programs on your tapes. The operation and
installation of these two units is the same. To use them, follow these
instructions.

Look at the cassette interface on the back of the C-64 (Figure 1-2). The
connector has an offset slot between two of the contacts, as shown in Figure
1-6.

The Datassette has a plug with a divider that fits over the connector and

FIGURE 1-5. Commodore Datassette

22 \our Commodore &4

-l 25

FIGURE 4-6. Datassette connector

into the slot. This makes it difficult to connect it incorrectly, but it can be
done, so be careful. In general, you may find a connector difficult to remove
once it is on, but it is rare to have trouble installing one if it is positioned
correctly. If the divider slides over the slot, you can be sure a proper connec-
tion has been made.

To connect the Datassette to the C-64, follow these steps:

1. Turn the power OFF.

2. Hold the plug so the divider will mate with the connector slot.

3. Gently pushthe plug onto the interface. Do not force the connection.
4. Make sure the connection fits securely.

S. Turn power ON.

Testing the Datassette

Before you go any further, you should check the mechanical operation
of the Datassette. Here is a simple test you can use to make sure that all of
the control functions are operating properly.

1. Turn the C-64 ON. Make sure that none of the cassette keys are de-
pressed and that the cassette drive motor is not running.

Chapter 1: Introducing the Commodore 64 Computer 23

2. Open the cassette door on the top of the unit by pressing the
STOP/EJECT key on the Datassette. While looking inside the unit,
press the PLAY key on the Datassette. You should see the tape heads
(Figure 1-7) move out toward the spindles. At the same time, the
pinch roller should move out, touch the capstan roller, and begin
rotating counterclockwise.

3. Again press the STOP/EJECT key on the Datassette. The tape heads
should pop back out of view and the spindles should stop rotating.

4. Pressthe F.FWD (Fast Forward) key. The tape heads should remain
hidden and the take-up spindle (on the right) should begin spinning
counterclockwise very fast.

5. Pressing STOP/EJECT once should stop the take-up spindle.

6. Pressthe REW (Rewind) key. The supply spindle (on the left) should
begin spinning clockwise very fast.

7. Press the STOP/EJECT key once. The supply spindle should stop
spinning.
8. Very gently press the REC (Record) key. The key should be locked.

9. Getanunused tape. Look at the back of the cassette. It should have
two small tabs blocking the write-protect holes (Figure 1-8).

Pressing the PLAY and RECORD keys simultaneously should start the
take-up spindle rotating; the head assembly should move out and
contact the tape, which should start moving.

Record/Play Head Head Gap Area
Capstan

Erase Head Pinch Roller

O]

T e Lo
T

FIGURE 1-7. Datassette drive tape head

24 \our Commodore 64

° \o. . .0//70

f —

o mn e h\

C W" ()
L] (1

Write-protect notches

FIGURE 1-8. Write-protect notches

If you can perform all these steps, your cassette recorder is ready to
begin operation. If some or all of the above tests fail, check the following:

+ Make sure the power is ON.

- Press only one key at one time (except when checking the record
function).

- Press the keys down until they click into place.

If you are still unsuccessful, contact your Commodore dealer.

Cleaning and Demagnetizing
Tape Heads

The head assembly of the Datassette can be seen by opening the drive
door with the power OFF and depressing the PLAY key. Doing this will allow
you access to the heads for maintenance. Refer to Figure 1-7 for the
locations of the components mentioned in this section.

The tape heads are the devices that make contact with the tape and
either read or write data. Since the tape is actually in contact with the heads,
some of the oxide coating on the tape will be transferred to the heads during
normal operation. To assure proper operation of the Datassette it is neces-
sary to clean this oxide film from the heads periodically using a cotton swab
soaked in denatured alcohol. Clean both heads, the capstan, and the pinch

Chapter 1. Introducing the Commodore 44 Computer 25

roller. Allow the area to dry completely before closing the cover.

The process of reading and writing onto a magnetic surface such as a
cassette tape results in the build-up of residual magnetism on the heads of
the cassette recorder. Because of this build-up, itis a good idea to demagne-
tize the heads each time you clean them. Skipping this step in your regular
maintenance may eventually result in sufficient loss of fidelity to cause both
read and write errors in your programs.

To demagnetize the heads, you will need a tape head demagnetizer such
as the one in Figure 1-9. This is an inexpensive unit that can be purchased at
most audio equipment stores.

The Datassette should be OFF when you are demagnetizing the tape
heads. Open the cassette drive door and press the PLAY key. Make sure the
demagnetizer is at least two feet away from the Datassette before plugging it
in. Plugin the demagnetizer and slowly move it toward the Datassette until it
touches one of the heads. Gently move it around on one head surface and
then the other. Then touch all the metal surfaces near the heads and slowly
move back away from the Datassette. When you are at least two feet
away, unplug the demagnetizer.

FIGURE 1-9. A typical tape head demagnetizer

PHOTO BY JOE MAURO

26 our Commodore 64

Care of Cassette Tapes

When you use a new tape, balance the tension on the tape by fast
forwarding it to the end and then rewinding it to the beginning. This will
help prevent load errors.

Buy short tapes: 15 to 30 minutes at most. This will not only reduce
your search time when running programs from the middle of your tapes, but
will ensure that you are using thicker and stronger tapes that are less likely to
stretch or break with use. Stay away from bargain brands; they tend to cause
load errors more often than high-quality, low-noise tapes.

Store your cassettes in a cool, dry place, away from any magnetism.

NOTE: One of the most hazardous places to store tapes is on or near
your television, which produces a magnetic field strong enough to alter the
data they contain. Never touch the oxide coating on the tape itself; the
surface is easily scratched and can be damaged by the oils on your hands.

Cassette Tape Write-Protect

You can avoid recording (writing) over programs you want to save by
write-protecting them. Look at Figure 1-8; each cassette tape has two
write-protect tabs, one tab for each side of the tape. Breaking out a tab locks
out the REC (Record) key on the Datassette. Should you decide, after
breaking out a write-protect tab, that you do want to record a program on
that side of a tape, simply put a piece of tape over the write-protect opening.

DISK DRIVES

The C-64 can use the model 1541 disk drive (Figure 1-10) which has
been designed to interface directly with the C-64 through its serial port.
Table 1-3 shows the specifications for the 1541 disk drive.

The 1541 disk drive can store 174,848 bytes of data per diskette. It
does this by putting more blocks of data on the outer (longer) tracks of the
diskette than do other disk drives.

Chapter 1: Infroducing the Commodore 64 Computer 27

FIGURE 1-10. 1541 disk drive

Connecting Disk Drives

To connect a disk drive to the C-64 computer, follow these steps:

L.
2.

Unplug the computer’s power cord from the electrical outlet.

Connect the interface cable supplied with the disk drive to the serial
port on the back of the C-64.

Plug the disk drive’s power cord into an AC outlet.
Plug the C-64’s power cord into an AC outlet.

. Check all your connections. If they look good, then proceed to the

power-on test.

Power-On Test

To perform a power-on test, follow these steps:

1.

Turn the C-64’s power ON. Wait until it has completed its initial-
ization.

. Open the disk drive door and make sure the drive is empty.
. Turn the disk drive’s power ON.

28 \our Commodore ¢4

TABLE 1-3. 1541 Disk Drive Specifications

Storage
Total disk capacity

Sectors per track
Bytes per sector
Number of tracks
Number of sectors
Disk Memory
2114 (4)
Mechanical
specifications:
Dimensions
Height
Width
Depth
Electronic
specifications:
Power requirements

Number of program names

174,848 bytes per diskette
144 per diskette

17-21

256

35

683 (664 blocks free)

2K RAM

97 mm
200 mm
374 mm

Voltage 100, 120, 220, or 240 VAC
Frequency 50 or 60 Hz
Power 25 Watts
Media:
Diskettes Standard mini 5-1/4", single-sided,
single-density
Indicator Lights

The 1541 disk drive has two indicator lights on its front panel. The
green one will glow when power is applied to the unit. The red one is the disk
activity indicator. It will glow when the drive is running and flash if there is

an error condition.

Loading and Unloading Disketftes

Figure 1-11 illustrates the various parts of a floppy diskette. The
magnetic surface itself is a disk made of a thin, flexible plastic similar to the
material used in cassette tapes. This fragile disk is enclosed in a protective
jacket. The jacket is then placed in an envelope that protects the read/ write

slot.

ADAPTED FROM COMMODORE BUSINESS MACHINES

Chapter 1: Infroducing the Commaodore 64 Computer 29

Read/ write slot
Protective jacket ~ /
Hard/soft-sectored hole \

Insert into drive

Write-protect notch;
when covered, diskette

contents cannot be altered
1$S1 —/

—
2I0powWWo))

FIGURE 1-11. Floppy diskette

As mentioned earlier, the 1541 disk drive puts more data onto a single
diskette than almost any other disk drive. The way it does this is by putting
more blocks of data (sectors) into the data tracks that are near the outside of
the diskette. Some disk drives put the same number of sectors on each track.
Of those that do this, there are some that use hard-sectored diskettes. These
diskettes have a series of evenly spaced holes near their center. The disk drive
uses these holes to position the sectors. Since the 1541 does not have regularly
spaced sectors, it does not use these holes. The 1541 uses only soft-sectored
diskettes (those with only one hole in them).

To determine what kind of diskette you have, follow this procedure (see
Figure 1-12):

1. Take the diskette out of its envelope (not the jacket), and hold it by
its edges.

2. Gently insert two fingers into the center hole.

3. Rotate the diskette with the two fingers in the center hole until a
small hole in the diskette aligns with the outer small hole in the
jacket.

4. Continue rotating the diskette inside the jacket. If you find only one
hole, the diskette is soft-sectored. If you find more than one hole it is
hard-sectored and cannot be used with the 1541 disk drive.

30 ‘\our Commodore 64

—_—

a. Test 1 b. Test 2 c. Test 3

FIGURE 1-12. Test for soft-sectored diskette

Loading the Drive

Perform the following steps to load the 1541 disk drive:

1. Make sure the disk drive is OFF (the red activity light is not lit).

2. Hold the diskette by its jacket. Do not touch the exposed sections of
the diskette! The diskette’s label should be facing up, with the
write-protect notch (Figure 1-11) on your left.

3. Carefullyslide the diskette into the front slot until you heara click. If
it doesn’t slide in smoothly, pull it out and try again. Forcing it can
damage both the diskette and the drive.

4. Withtwo fingers, firmly press down on the latch until it locks down.

Unloading the Drive
To unload the 1541 disk drive, follow these steps:

1. Make sure the disk drive is OFF (the red activity light is not lit).

2. Usingtwo fingers, give the latch a quick press downward and release
it. It should pop up, and the diskette should pop slightly forward out
of the drive slot.

3. Hold the diskette gently with your thumb and forefinger and with-
draw it from the drive. Do not bend or force the diskette!

4. Put the diskette back into its envelope.

PHOTOS BY HARVEY SCHWARTZ

Chapter 1 Infroducing the Commodore 64 Computer 34

FLOPPY DISKS

If handled properly, floppy diskettes are a convenient method of stor-
ing data. They are, however, quite fragile, and it is just as easy to write over
important data as it is to write it in the first place.

Care of Diskettes

Diskettes must be handled with care. All of your information will be
stored on them, and once a diskette is damaged, it is virtually impossible to
retrieve this information. Here are some hints which will help you protect
your diskettes.

I. Whenever the diskette is out of the disk drive, place it in its protec-
tive envelope.

2. Never remove a diskette from its protective jacket!

3. When you label your diskettes, use only a felt-tip pen. Pencils or
ball-point pens may damage the diskette.

4. Donottouch or try to clean the diskette surface. This willdamage it.

5. Do not smoke while using diskettes. Tobacco ash or smoke residue
will damage the diskette surface.

6. Keep diskettes away from all magnetic fields! Even placing them on
top of your television set or disk drive can cause some distortion of
the data stored on the diskette.

7. Do not expose your diskettes to heat or sunlight.

Diskefte Write-Protection

You can prevent the information on your diskettes from being over-
written by write-protecting them. To do this, simply cover the write-protect
notch (Figure 1-11) with the adhesive labels that came with your diskettes,
or with a piece of opaque tape.

If you remove the write-protect notch cover, you will be able to write to
the diskette again.

32 ‘our Commodore &4

THE 1525 GRAPHIC PRINTER

While you can use almost any printer with the C-64 through the parallel
port or by installingan IEEE 488 interface, the 1525 Graphic Printer operates
directly with the C-64 (Figure 1-13). The 1525 can print any standard C-64
character or symbol, both normal and reversed, and it can be programmed
to print dot graphics.

The 1525 prints characters using a 7 X 5 dot matrix and a 7 X 6 dot
matrix for special symbols. Table 1-4 shows the specifications for the 1525
Graphic Printer.

Connecting the Printer

Follow the steps outlined below to connect the 1525 Graphic Printer to
the C-64:
1. Unplug the computer’s power cord from the electrical outlet.

2. Look at the back of the C-64. There are two round, similar con-
nectors in the center of the back. The one with five pins is the video

FIGURE 1-13. Model 1525 graphic printer

Chapter 1' Infroducing the Commodore &4 Computer 33

TABLE 1-4. 1525 Printer Specifications

1. General Specifications

A. Printhead............. 5X7 dot matrix impact dot matrix print (unihammer method)
B. Character set oot Upper and lower case characters,
numerals, symbols, and C-64 graphics characters
C. Graphicmode........ .. 7 dots per column
E. Character codesuuiuiiiiiiiiii i C-64 8-bit code
G. Printspeedo e 30 characters per sec
H. Maximum line width 80 columns
I. Character SPacingvuiuineeiinneeennenenneenneennns 12 characters per inch
J. Linefeed spacing 6dots........cooiiiiin, Character mode
9dots. ... Graphic mode
7.5 linefeeds/sec................ Graphic mode
M. Paperwidth i 4.5 to 8.5 inches acceptable
N. Copies vt e (Maximum) Original plus 2 copies
O. Inked ribbon i Built-in cassette type
P. Physical specifications...................oi i 234.DX420 WX136 H
Q. Weight ... e Approximately 4.5 kg

2. Electrical Specifications
AL POWET . oottt e s 120V AC
15 watts max

port. The other connector has six pins. It is the serial port. Plug the
printer cable (Figure 1-14) into the serial port.

. The other end of the cable plugs into the six-pin plug on the back of

the 1525 printer.

. Turnthe C-64 ON and wait for it to initialize (the READY display will

appear on the screen).

Turn onthe 1525 Graphic Printer. The red power light on the top of
the printer should glow and the print head should travel to the center
of the carriage and return to the left.

Move the switch on the back of the printer marked T-5-4 to the “T”
position (Figure 1-15). The printer should begin printing the entire
C-64 character set.

The printer should continue printing this until you either turn the
power OFF or switch the T-5-4 switch to “4” or “5.”

REPRINTED BY PERMISSION COMMODORE BUSINESS MACHINES

34 \our Commodore ¢4

c

FIGURE 1-15. T-5-4 switch

Chapter *: Infroducing the Commaodore 64 Computer 35

7. Move the T-5-4 switch to the “4” position. The printer should stop
printing the test printout.

If the printer does not operate as described above, recheck all your
connections and repeat the procedure described above. If you are still
unsuccessful, consult your Commodore dealer.

Installing the Ribbon

Perform the following steps to install the printer ribbon:

1. Lift off the clear plastic sound cover (Figure 1-16).

2. The small tab on each ribbon cassette should face forward. Making
sure that the ribbon is not twisted (as shown in Figure 1-17), rock
each ribbon cassette to the outside of the machine and press it down
into position.

3. Rotate the ribbon cam out of the way and feed the ribbon between
the cam and its backing plate (Figure 1-18).

4. Replace the front cover and the clear sound cover.

To remove a ribbon, simply reverse the above procedure.

Paper Insertion

The 1525 Graphic Printer uses a continuous form that can be from 4.5
to 8% inches wide. It is sprocketed on both sides and can have as many as
three parts (one original and two copies) as long as the total thickness does
not exceed 0.2 mm.

The following steps show how to insert paper into the 1525 Graphic
Printer:

1. Turn the printer OFF and unplug its power cord.

2. Lift off the clear plastic sound cover.

3. Open the paper guides (Figure 1-19).

4. Insert the paper from the rear of the printer through the paper
chute.

5. Continue feeding the paper in by hand until it emerges at the front
of the printer.

36 \our Commodore 64

FIGURE 1-16. Removing the front cover of the 1525 printer

FIGURE 1-17. Ribbon cassettes

FIGURE 1-18. Ribbon cam assembly

Chapter 1: Infroducing the Commodore 64 Computer 37

10.

Lift the paper-bail and feed the paper underneath it, adjusting the
bail glides so they will be evenly spaced across the width of the

paper.

. Pullthe paper through from the front and align the paper guides so

the sprocket holes on the paper mate with the sprockets on the
guides.

NOTE: The paper should not be too tightly stretched or the
sprocket holes may tear; however, if the paper is too loose, it will
wrinkle and bind inside the paper feed mechanism.

. Close the paper guides and replace the clear plastic sound cover.
. Advance the paper using the thumbwheel, making sure the paper

moves smoothly through the feed mechanism.
Plug in the printer and turn it ON.

Print Head

You may adjust the force of the print head to compensate for paper
thickness and ribbon wear as follows:

1. Turn the printer OFF and unplug its power cord.

== Y IC- 18215 == p—
GRAPIK PRINTER

FIGURE 1-19. Loading paper into the 1525 printer

38 \our Commodore 64

FIGURE 1-20. Print head pressure adjustment

2. Remove the clear sound cover and the brown front cover from the
printer. (To remove the front cover, it will be necessary to press in
and up on the two thumb rests molded into the front of the cover.)

3. Looking down at the top of the print head you will see the pressure
adjustment lever (Figure 1-20).

4. The lever should be in one of the three position holes. To adjust the
force of the print head, lift the adjustment lever and put it into one of
the other holes. Do not leave the adjustment lever between any of the
holes; it must be resting in one of them to maintain its adjustment.

CHAPTER

Operafing the
C-64

This chapter will introduce you to the basic operation of the C-64
and some of its peripheral devices: the Datassette, the 1541 disk drive, and
the 1525 printer. It is especially important for you to become comfortable
with the C-64’s keyboard and display and to become familiar with the
computer’s two modes of operation: immediate and program modes.

IMMEDIATE MODE

When you turn on the C-64 it is operating in immediate mode. The
flashing cursor signifies that the computer is waiting for instructions and
also shows where the next character you type on the keyboard will appear on
the screen.

In immediate mode, you can use the C-64 as you would a calculator.
Youenter statements—instructions to display information, perform a calcu-
lation, or carry out some other function. When you enter a statement and
press the RETURN key, the C-64 processes, or executes, the statement. First,
though, the C-64 checks your entry for syntax—the correct combination of

39

40 ‘\our Commodore 44

characters in a statement. If the syntax is correct, the statement executes. If
it isn’t correct, the following message appears:

?SYNTAX ERROR
READY.
]

If you get a syntax error message, check your statement for
typographical errors.

Immediate mode does what its name implies: any statements you enter
will execute immediately after you press RETURN.

The PRINT statement is the most frequently used immediate mode
statement. PRINT instructs the C-64 to display whatever follows it. For
example, PRINT will display the results of calculations such as

FRIMT 268+13%+18384
which, in this case, would be 1559.

PRINT will also display characters or entire strings of characters. A
string is a sequence of characters that can include letters, numbers, spaces,
and symbols. To display a string such as

AMD MILES T0O GO BEFORE I SLEEP

on the C-64’s screen, you would type the following immediate mode state-
ment and press RETURN:

FRIYT"AMD MILES T 50 BEFORE I SLEEP™

The string has quotation marks around it; anything enclosed in quotation
marks in a PRINT statement will display literally as a string of characters.
For example, a PRINT statement such as

FRIMT"368+1535+1080"

will not calculate anything. The computer will display a string of characters,
which in this case is three numbers connected by plus signs. Conversely, the
statement

FRIMT AMD MILES TO G0 BEFORE I SLEEFP

Chapter 2 Operating the C-64 44

will not display anything except a syntax error message. The syntax of a
PRINT statement always expects numeric or string information to follow.
The word AND does not represent a number and is not in quotes; therefore,
the C-64 rejects the statement.

You can abbreviate PRINT by using a question mark. The following
statements produce the same result:

FRIMT"GODFREY CAMBRIDGE"

or

?"GODFREY CAMERIDGE"

Screen Editing

One of the most powerful features of the C-64 is its screen editor. The
key to using the C-64’s editing capabilities is the cursor. You can move the
cursor in four directions: up, down, left, and right. You can also insert or
delete characters anywhere on the screen, or even clear the entire screen
using a single keystroke.

EDITING TEXT ON THE CURRENT DISPLAY LINE

Occasionally, you may notice a mistake on a line you are currently
entering. You can correct mistakes on a line you are entering by backspacing
to the error and correcting it. For example,

OUF BUDGEY

was intended to display as OUR BUDGET. You can change the Ytoa T
easily enough. Type in the line above and use the SHIFT and CURSOR
LEFT/RIGHT keys to position the cursor over-the Y.

OUR BUDGEN
OUR BULDGET

To change the Y toa T, simply type T. This replaces the old letter and
moves the cursor one position to the right.
BACKSPACING WITH THE DELETE KEY

If you just entered a character that you would like to retype, press the
INST/ DEL key to remove the incorrect character, and then continue typing.

42 \our Commodore 64

When you used the CRSR LEFT/ RIGHT key, the cursor simply moved over
the characters on the screen without changing them. Try the following
example using the INST/ DEL key:

OUF BUDGER
OUR BUDGETE

SHIFTING AND DELETING TEXT WITH THE DELETE KEY

In the following example, the word BUDGET has been entered with
two U’s. It will be necessary to delete one of the U’s and move the text to the
left to close up the extra space left by the U.

To do this, use the CRSR LEFT/RIGHT key to position the cursor over
the D and press the INST/ DEL key once. This key erases the letter to the left
of the cursor, deleting the U and shifting the text to fill the space.

OUR BUMDGET
OUR BAMDGET

SHIFTING TEXT TO INSERT CHARACTERS

In the example below, we need to change OUR BUDGET to OUR
FAMILY BUDGET. Todo this, use the CRSR LEFT/RIGHT key to position
the cursor over the space between OUR and BUDGET.

FAMILY hassix letters and you will also need a space at the end of the
word. Hold down the SHIFT key and press INST/DEL seven times. This will
produce seven spaces between the two words. You may now type FAMILY
between OUR and BUDGET.

Remember, when you are inserting characters, the character directly
under the cursor is the one that will be shifted to the right. You must also
remember to enter enough spaces for each word you add, plus a space
between each word.

OURMBUDGET
OURR BUDGET
OUR FAMIL'YEEUDGET

Chapter 2: Operating the C-64 43

EDITING TEXT BETWEEN QUOTATION MARKS

If you are editing text enclosed in quotation marks you will need to take
certain precautions because anything entered within a string will be incorpo-
rated into it (with the exception of quotation marks, RETURN, and RUN/
STOP). This “quote mode” enables you to enter special characters, but it can
be frustrating when you merely want to fix an error in a statement. For
example, the following line should say PRINT “HOT DOGS FOR SALE”.
Enter the line exactly as shown; do not type end quotes or press RETURN.,
Try to make the necessary change to “HOYT”.

PRINT "HOYT DOGS FOR SALE

When you tried to backspace to correct “HOYT?”, the computer printed
a reverse vertical bar. To backspace when editing text in quotation marks,
you will need to exit the quote mode. One way to do this is to type another
set of quotes. While you must enter quote mode to enter a string, you must
exit quote mode to edit the string.

Another method of escaping from the quote mode is to hold SHIFT
down and press RETURN. This will move the cursor down one line, allowing
you to move the cursor up and make any changes you like.

While this may seem like an unwelcome “feature,” you can write
programs using cursor keys. For instance, the immediate mode statement

HELLO DOWM THERE
FRIMT "THELLO DOWN THERE"

displays the text above the PRINT statement instead of below it, as would
normally be the case.

Arithmetic Calculations

The C-64 can perform the four standard mathematical operations:
addition, subtraction, multiplication, and division. The symbols for
addition and subtraction are the familiar plus sign and minus sign, but an

44 U Commodore ¢4

asterisk is used for multiplication and a slash for division. Therefore, to
multiply 4 by 4 you would enter

PRINT <4#%4

or
7444

To divide 8 by 2 you would enter
FRIMT &/2

or

PROGRAM MODE

In both immediate mode and program mode, you enter statements and
the computer responds to them. However, immediate mode statements are
very limited. If you were to press the CLEAR SCREEN key, your statement
would be gone.

The immediate mode examples you entered earlier in this chapter were
simple, one-line programs, and they do not do much. Once you become
familiar with your computer you will want to write longer programs. BASIC
programs can be hundreds of statements long; program mode statements
should not be as expendable as immediate mode statements. Therefore, the
C-64 stores program mode statements in main memory. Program mode
statements are more powerful than immediate mode statements because
they execute “under their own power.” In immediate mode the computer
executes one statement and then waits for you to key in another statement.
In program mode, statements execute automatically in an order that you
specify.

Program Entry

Programs may be entered using the keyboard or loaded into memory
through the Datassette or disk drive. Each statement entered through the
keyboard has a corresponding line number. When you press RETURN at the
end of each statement, that line is stored in the C-64’s memory.

Chapter 2. Operating the C-¢4 48

You can use any line numbers between 0 and 63999. When you enter
lines in your programs, they will execute in the order they are numbered, not
the order in which they are entered. For instance, if you entered the lines

166 PRINT "CRAMDEM!"
38 PRINT "RALPH"
73 PRIMT "THE WIMMER I5"

they would execute in the following order:

THE MWIHMMER IE
RALPH
CRAMDEM!

It doesn’t matter that there are gaps between the numbers used; C-64 BASIC
keeps the line numbers in order as you enter them. You should leave some
numbers unused between your program lines so you can add statements
later. All of this will be covered in greater detail in Chapter 3.

Running a Program

The RUN statement causes the computer to execute any program that
is in memory. Enter the following program:

16 PRINT X
28 H=i+]
38 GOTO 1B

The GOTO at line 30 tells the computer to return to line 10 and execute
the instruction there.

Typing RUN begins execution at the lowest line number in your
program.

UM

R
8
1
2
3
4
S

46 \ou Commodore 64

RUN followed by a line number starts execution of your program
beginning with the specified line number.

FUM

e e e = NSNS UWU R QR

(AR I S VR A n]

USING THE DATASSETTE

The Datassette saves you the time and tedium of keying in programs
over and over again. The Datassette will store BASIC programs and retrieve
them when you need them.

Chapter 2: Operating the C-64 47

The operations the Datassette will perform go well beyond the scope of
this chapter. Chapter 8 explores the full potential of the Datassette for
storing and retrieving data.

Saving a Program

Make sure the short program you entered in the last section is still in
memory by typing LIST. If it isn’t, reenter it. To save it on a cassette, type

SAVE"RALPH"
The C-64 will respond with
PRESS RECORD & PLAY ON TAPE

Press PLAY and RECORD simultaneously. If you press just the PLAY key,
the C-64 will send data to the Datassette but nothing will be stored on tape.
After you press PLAY and RECORD, the C-64 will respond with

Ok
SAYIMG RALPH

While the C-64 is saving the program on the Datassette, the cursor
disappears. When it is finished, the Datassette will stop, the C-64 will display
the READY message, and the flashing cursor will return.

Verification

After you save a program on the Datassette, it is a good idea to verify
that it was properly recorded. Occasionally, poor quality tapes or slight
mechanical fluctuations may cause a program to be incorrectly recorded. To
protect yourself from losing programs, always verify them immediately after
you store them.

To verify a program, follow these steps.

1. Rewind the tape and press the STOP/EJECT Key.

2. Type VERIFY, followed by the program’s name, and press
RETURN.

48 \our Commodore ¢4

A typical verify dialog with the C-64 may look like the following:

VERIFY "RALFH"

PRESS FLAY ON TAPE
OK

SEARCHING FOR RHLPH
FOUND RALPH

YERIFYING
oK
READY.

If the program was not saved properly, you will get an error message. If
this happens, you should SAVE it again and reverify it.

Loading a Program

To load a program from the Datassette, simply type LOAD program
name. The C-64 will respond by displaying

PRESS PLAY UM THPE
After you press the PLAY key, the C-64 will display OK and then
SERRCHIMNG FOR

When you load a program from the Datassette, you do not need to
enter a program name. If you simply type LOAD, the computer will load the
first program it reaches on the tape. Using a program name causes the
computer to look for the file named, skipping any others it finds.

After a program is loaded from tape, you can leave the PLAY key
depressed if you will be loading more information from the tape at a later
time. However, if you do not intend to load another program from tape
soon, it is a good idea to press STOP to release the PLAY key so you will not
accidently try to SAVE a program while the Datassette is in the play mode.
The C-64 can detect when a Datassette key has been pressed, but it cannot
distinguish which key was pressed. Therefore, if PLAY and RECORD are
pressed (to SAVE a program) and you attempt to LOAD, the Datassette
will erase the program instead of reading it.

Chapter 2. Operating the C-64 49

You may occasionally have trouble loading a program from tape.
Instead of displaying

RERADY.

the C-64 may display the following message:

7LOAD
ERROR
READY.
]

If this happens, rewind the tape and try loading it again. Try this several
times if necessary. If this does not work, there may have been an undetected
problem when the program was saved. Always VERIFY programs after you
SAVE them, and if they are important or have taken considerable time to
enter, make one or more backup copies.

One way to reduce errors during the SAVE procedure is to fast-forward
a new tape to the end, and then rewind it to the beginning before storing
anything on it. This winding and rewinding process will tend to make the
tape move through the tape mechanism more smoothly. This is because
when tapes are manufactured they are wound onto their spools at high
speed. This process often puts some tension on the tape, and the first time it
is unwound it may jump a bit as it moves through the mechanism. It may
also pull and stick slightly in the cassette. Although these effects are not
usually noticeable in audio applications, they can cause data errors on
computer tapes.

Before entering a LOAD instruction, be sure to rewind the tape to a
point before your program begins; otherwise the C-64 will never find it. A
good practice is to note the number of the tape counter at the beginning of
your program and write it down on the tape label beside the name of the
program. This will also save time when you LOAD programs, since the
computer will not need to go through as much tape before reaching the
program you want.

LOAD and RUN

Pressing SHIFT and RUN/STOP together will automatically LOAD and
RUN the next program on the Datassette. This works only when the
computer is in the immediate mode (not executing an instruction from
within a program).

850 ‘our Commodore 64

OPERATING THE 1541 DISK DRIVE

If you have been using a cassette drive, you will appreciate how much
time can be saved over entering programs by hand each time you wish to run
them. The 1541 disk drive can save you even more time because of its much
greater flexibility and faster data access time. This section will cover the
basic operation of the disk drive, listing the diskette directory, and loading
and running programs from a diskette. The disk operations and statements
will be covered in detail in Chapter 7.

Loading a Program

To load a program from a diskette in the 1541 disk drive, type LOAD
“file name”,8.

The “8”above s the device number of the disk drive. This device number
is set at the factory. The C-64 will display SEARCHING FOR “file name”.
The disk drive will activate, and the red light on the front of the drive will
come on. If the program is on the diskette, the C-64 will also display

LOADIMG
READY.

If not, you will see

?FILE NOT FOUMD
ERROR

READY.

If you are not sure of the exact name of a particular file, or don’t know
what is on your diskette, type

LOAD"$",8
and the disk directory will be loaded into memory. To display the directory,
type

LIST

and the directory will appear on the screen.

@ 5 Gt 5 I O 2 O, (s

S "UNIVERSAL WEDGE" FRG
8 "UWIT TO UNIT" PRG
3 "CHANGE 1341" PRG

Chapter 2 Operating the C-64 54

11 "COPY 1548~1541" FPRG
27 "PRINTER DEMO" PRG
12 "SEQUENTIAL" PRG
11 "PERFORMANCE TEST" PRG
] "CHECK DISK" FRG
1?7 "LOGIC DIAGMOSTIC" PRG
|

To recall any program from diskette, it is absolutely necessary to enter
the file name exactly as it is found on the directory. Therefore, it is generally
helpful to list the disk directory before loading any programs.

Look at the directory in the previous display. The top row (in reverse
letters) shows the name of the diskette and its ID number. The disk drive
always stores this number, and each time a diskette is accessed it compares
the ID number with the number it has stored from the last disk operation. If
the numbers are the same, the disk drive assumes that the same diskette is
being accessed and simply performs its operation (SAVE or LOAD). If the
number on the diskette does not match the one in the disk drive’s memory,
the disk drive will create a map of all the files on the diskette and update its
ID memory. This process is called initialization.

As long as no two diskettes have the same IDD number, the disk drive
will always initialize itself automatically when you change diskettes. If you
have two diskettes that have the same ID number, you should manually
initialize the disk drive by using the following command:

OPEM 1.8,13."18"

Remember, you need to initialize only when you change diskettes, and
then only if the ID and name of the current diskette are the same as that of
the new diskette.

Note that once a program has been loaded into memory, whether from
tape, from diskette, or by hand, the computer will treat it in the same manner
so the procedures for running, listing, and making changes to the program
remain the same.

Formatting a Diskette

Before you can record any data on a new diskette, you must first
prepare it using a process called formatting. The computer stores and
retrieves data from the diskette by accessing special locations, called sectors,

52 \our Commodore &4

Sectors

256 bytes of data stored on one sector

FIGURE 2-1. A diskette’s recorded surface

on the diskette. These locations are laid out on the diskette before any data
can be stored on it. Each sector is a small part of the tracks on the diskette.
Tracks are similar to the grooves in a phonograph record, but are arranged
in concentric circles rather than as a spiral. Figure 2-1 shows what the tracks
on adiskette might look like if you could see them. Each track is divided into
smaller pieces, called sectors, each of which may contain up to 256 bytes of
data. When you buy a new diskette, it is not divided into these sectors and
will not accept anything you try to record on it. Diskettes are not formatted
when you buy them because each disk drive manufacturer uses a slightly
different format on its diskettes. The C-64 diskette must be formatted on a
C-64 disk drive.

Chapter 2. Operatfing the C-¢4 53

Here are two methods of formatting a diskette.

Method 1:

OPEN 1,8,15

PRINT#I1,“Ndrive no.:disk name,lD no.”
Example:

OPEM 1,8.153
PRIMT#1, "M:HEW DISK, 61"

The drive number may be omitted when there is only one disk drive
connected to the C-64.

Method 2:
OPEN 1,8,15,“Ndrive no.:disk name,01”
Example:

OPEM 1,8,15,"M'HEW DISK.,@1"

Again, the drive number may be omitted in one-drive systems.

If you have a diskette that has been used before and you wish to
completely erase it and then prepare it for use as a new diskette, you may
simply type OPEN1,8,5,“Ndrive no.:disk name”.

Example:
OPEN 1.8,153,"H'NEW DISK"

As before, the drive number is not necessary in one-drive systems, and
in this case the ID number is intentionally left out. The new disk name is put
onto the diskette, and the old ID number is used. All the programs and data
stored on the diskette will be erased. Do not confuse this operation with
initialization, which sets up the disk and drive for use together. Formatting
will erase everything from your diskette.

Saving a Program

Savinga program onto a diskette is nearly the same as saving a program
onto tape using the Datassette. The major difference is in the wording
(syntax) of the command. To save a program on diskette, type the command
SAVE® <program name >"8.

84 \our Commodore ¢4

If you only have one disk drive you may delete the drive number. For
example, to save the “RALPH” program from earlier in this chapter, enter it
and type

SAVE "RALPH".8

The disk drive should activate, the red light on its front should light, the
video screen should show

SAVING RALPH

and the cursor should disappear. When the program has been saved, the
screen will show the READY message and the cursor will return.

After you save any program it is a good idea to verify it, as with
programs stored on tape. To verify RALPH, which you stored on diskette,

type
VERIFY"RALFH".8

The screen will display

SERRCHIMG FOR RALFH
VERIFYIMG

Ok

RERDY.

if the program was successfully saved. If not, you will get the ?VERIFY error
message. If this occurs, try saving and verifying again.

Occasionally, there will be flaws on a diskette’s surface. If you try to
save a program and cannot get it to save properly, there may be a slight
defect in the track and sector being accessed. Try another diskette in this
case.

OPERATING THE 1525 GRAPHIC PRINTER

You may use the C-64 graphic printer to print the data from your
programs and to list the programs themselves. The printer may be addressed
in either immediate or program mode.

Chapter 2: Operating the C-64 59

The OPEN Statement

Before you can send data to the printer, you must open a channel to it.
This is done using the following OPEN statement OPEN number between 1
and 255,4.

The first number (between 1 and 255) is the number you will use to
address the printer. The second number is the printer’s device number. It is
always 4.

Here is an example of a printer OPEN statement.

OFPEM 1.4

You would now send all the data to be printed by the printer to channel
1 by typing

PRINT#1, "HOW MOW BROWN COW"

The printer should print HOW NOW BROWN COW and return,
advancing the paper one row.

In a program, you could alternately print to the printer and the video
screen by simply typing PRINT when you want output to the screen, and
PRINT#1 when you want the output printed on the printer. PRINT always
outputs to the primary device (the screen, for example, or another device
selected by a CMD instruction). PRINT# outputs to a file specially
OPENed to that device number.

The CMD Statement

If you had a program that displayed all its data on the screen and you
wanted it to print everything on the printer instead, you could accomplish
this by adding two lines to the beginning of the program.

OPEM 1.4
CHMD 1

The OPEN statement opens a channel to the printer, and the CMD
statement sends all output to the printer. By doing this, every PRINT
statement is automatically sent to the printer.

The CMD statement also allows you to produce a printed listing of a
diskette’s directory. To do this, type

LOAD"$".8

856 \our Commodore 64

This will load the directory into memory. Now type

OPEN 1,4
CMD 1
LIST

This will generate a complete directory listing on the printer. This will
alsoallow you to produce a printed copy of your disk directory, should you
want to put it in the envelope with the diskette.

To exit from the CMD mode, enter PRINT# device no.

The CLOSE Statement

After you have finished using the printer, you must close the channel to
it. To do this, type CLOSE channel no. If you OPENed channel 1 (as we

did above), type
CLOSE 1

After using a CMD statement, you will need to precede the CLOSE
statement with a PRINT# statement.
Here is an example.

OFEM 1.4
LMD 1

PRINT#1 @ CLOSE 1

This will ensure that all files are properly closed. Failing to do this may
cause file errors.

CHAPTER

Programming the
C-64 Computer

This chapter will teach you how to program your C-64 using BASIC,
its built-in language. If you are already familiar with BASIC, Appendixes G
and H will serve as comprehensive reference to each statement in the
language. If you are a beginner, start with this chapter. It will give you the
background necessary to continue through the rest of the book.

ELEMENTS OF A PROGRAMMING LANGUAGE

Program statements must be written following a well-defined set of
rules. These rules, taken together, are referred to as syntax. There are many
different sets of rules that define how program statements are written. Each
set of rules applies to a different programming language. All of the syntax
rules described in this book apply only to C-64 BASIC.

Programming languages are as varied as spoken languages. In addition
to BASIC, other common programming languages are Pascal, FORTRAN,
COBOL, APL, PL/M, PL-1, and FORTH. Uncommon programming
languages number in the hundreds.

Unfortunately, programming languages, like spoken languages, have
dialects. A BASIC program written for your C-64 may not run on another
computer, even if the other computer is also programmable in BASIC.
These variations in the language syntax are due to the computer’s limita-

57

58 \our Commodore ¢4

tions or special features. However, having learned how to program your
C-64 in BASIC, you will have little trouble learning any other computer’s
BASIC dialect.

Some programming language syntax rules are obvious. The addition
and subtraction examples in Chapter 2 use obvious syntax. Youdo not have
to be a programmer to understand these simple calculation statements.
However, most syntax rules seem arbitrary, and sometimes they are. For
example, why use “*” to represent multiplication? One would normally use
“X”for multiplication; but the computer would have no way of differentiat-
ing between the use of the “X” sign to represent multiplication or to
represent the letter “x.” Therefore nearly all computer languages use the
asterisk (*) to represent multiplication. Division is universally represented
by a slash (/). Since the standard division sign (=) is not present on
computer or typewriter keyboards, some other character had to be selected.
The slash was probably chosen because it made the program expression
look like a fraction.

BASIC statement syntax deals separately with line numbers, data, and
instructions to the computer. We will describe each in turn.

Line Numbers

As we have already stated, in programmed mode every line of a BASIC
program must have a unique line number. The first line of the program must
have the smallest line number, while the last line must have the largest. In
between, line numbers must be in ascending order. The C-64 computer
forces this upon you: no matter where you enter a line on the display, the
C-64 will move it to its proper sequential position. Consider an existing
program with the following line numbers:

120
130
140
150
160
170
180
190

If you enter a new statement with line number 165, the new statement
will initially appear below the existing line 190, but the computer will

Chapter 3 Programming the C-64 Computer 59

automatically insert this statement between lines 160 and 170. This may be
illustrated as follows:

Line numbers displayed Lines stored and
when you entered line 165 redisplayed thus

120 120

130 130

140 140

150 150

160 160

170 165

180 170

190 180

190

165

If the line number for a new statement duplicates an existing line
number, the old statement will be replaced.

C-64 BASIC allows line numbers to range between 1 and 63999. The
C-64 computer interprets digits appearing at the beginning of any line as the
line number. If the line numberis larger than 63999, a syntax error message
appears, since you have violated one of the syntax rules for C-64 BASIC.

All BASIC dialects require line numbers to be assigned in ascending
order, as described above. However, the largest line number allowed varies
from one dialect of BASIC to the next.

You use line numbers as addresses, identifying locations within a
program. This is an important concept, since every program will contain the
following two types of statements:

1. Statements that create or modify data.

2. Statements that control the sequence in which operations are

performed.

The idea that operations specified by a program must be performed in
some well-defined sequence is a simple enough concept. Program execution
normally begins with the first statement in the program and continues
sequentially. This may be illustrated as follows:

Start—10
<20

30

40

50
60

70
80>

etc.

60 our Commodore ¢4

Most programs, however, contain some nonsequential execution se-
quences. That is when line numbers become important, because they are
used to identify a change in execution sequence. This may be illustrated as

follows:
Start———10
20
30
40 GOTO 70

50
60
70

80
90

Data

The statement or statements following a line number specify operations
the computer is to perform, as well as data that must be used while perform-
ing these operations. We will now describe the types of data you may
encounter in a C-64 BASIC program.

There are two kinds of numbers that can be stored in C-64 computers:
floating point numbers (also called real numbers) and integers.

FLOATING POINT NUMBERS

Floating point is the standard number representation used by C-64
computers. All arithmetic is done using floating point numbers. The name
refers to the decimal point’s ability to float, allowing fractions with different
numbers of digits. A floating point number can be a whole number, or a
fractional number preceded by a decimal point. The number can be negative
(—) or positive (+). If the number has no sign it is assumed to be positive.
Here are some examples of floating point numbers that are equivalent to
integers.

5

—15
65000
161

0

Here are examples of floating point numbers that include a decimal
point.

Chapter 3 Programming the C-64 Computer 64

0.5
0.0165432
—0.0000009
1.6

24.0055
—64.2
3.1416

Note that if you put commas in a number, you will get a syntax error
message. For example, use 65000, not 65,000.

ROUNDOFF

Numbers always have at least eight digits of precision; they can have up
to nine, depending on the number. C-64 BASIC rounds off additional
significant digits. Usually it rounds up when the next digit is more than 5 and
rounds down when the next digit is 4 or less, but there are some roundoff
quirks.

Here are some examples.

?7.3555555556

. 555555595

| S

7. 5555555557 Appears to round down on 6
L O55555386 or less, up on 7 or more

5 Appears to round down on 5 or
less, up on 6 or more

SCIENTIFIC NOTATION

Large floating point numbers are represented using scientific notation.
When numbers with ten or more digits are entered, C-64 BASIC automati-
cally converts these numbers to scientific notation.

READY.
111111
11

1114
111111118

E+@5

62 \our Commodore 64

A number in scientific notation has the following form:
numberE+ee

where

number is an integer, fraction, or combination, as illustrated above. The
“number” portion contains the number’s significant digits; it is
called the “coefficient.” If no decimal point appears, it is assumed
to be to the right of the coefficient.

E is always the letter E. It substitutes for the word “exponent.”
+ is an optional plus sign or minus sign.

ee is a one-digit or two-digit exponent. The exponent specifies the
magnitude of the number: the number of places to the right
(positive exponent) or to the left (negative exponent) that the
decimal point must be moved to give the true decimal point
location.

Here are some examples.

Scientific Notation Standard Notation
2E1 20
10.5E+4 105000
66E+2 6600
66E—2 0.66
—66E—2 —0.66
1E—10 0.0000000001
94E20 9400000000000000000000

Scientific notation is a convenient way of expressing very large or very
small numbers. C-64 BASIC prints numbers ranging between 0.01 and
999,999,999 using standard notation, but numbers outside of this range are
printed using scientific notation. Here are some examples.

7.009
JE-83

READY.
?.81
.81

READY.
7399995998, 9
99393393233

READY.
999399393, 6
1E+89

Chapter 3: Programming the C-64 Computer 63

Even using scientific notation there is a limit to the size of a number that
C-64 BASIC can handle. The limits are

Largest floating point number: +1.70141183E+38
Smallest floating point number: +2.93873588 E—39

Any number of a larger magnitude will give an overflow error. The
following are examples of overflow errors:

?1.70141183E+38
1.70141183E+38

READY. No Overflow error

?-1.70141183E+38
~1.76141183E+38

READY.
71.78141154E+38

S0VERFLOW ERROR Overflow error
READY.
7-1.7@141184E+33

POVERFLOW ERROR

A number that is smaller than the smallest magnitude will yield a zero
result. This may be illustrated as follows:

An integer is a number that has no fraction or decimal point. The
number can be negative (—) or positive (+). Anunsigned number is assumed

64 U Commodore 64

to be positive. Because of the way in which they are stored in the computer,
integer numbers must have values in the range —32768 to +32767.

0

1

44
32699
—15

Any integer can also be represented as a floating point number, since
integers are a subset of floating point numbers. C-64 BASIC automatically
converts integer numbers to floating point before using them in arithmetic.

STRINGS

The word string is used to describe data that consists of characters. This
can be anything that is not interpreted as a number.

We have already used strings as messages to be displayed on the C-64’s
screen. A string consists of one or more characters enclosed in double
quotation marks.

“HI!”

“SYNERGY”

“12345”

“$10.44 IS THE AMOUNT”

“22 UNION SQUARE, SAN FRANCISCO, CA”

Within a string you can include any alphabetic or numeric characters,
special symbols or graphic characters, cursor control characters (CLR/
HOME, CRSR UP/DOWN, CRSR LEFT/RIGHT), and the RVS ON/ OFF key. The
only keys that cannot be used within a string are RUN/STOP, RETURN, and
INST/DEL.

All characters within the string are displayed as they appear. The cursor
control, color control, and RVS ON/OFF keys, however, normally do not
print anything themselves. To show that they are present in a string, certain
reverse field symbols are used, as shown in Table 3-1.

Strings are entered as part of a statement. A statement must fit within
an 88-character line, so the longest string you can enter at the keyboard will
have less than 88 characters, since there must be room for the line number.

Strings of up to 255 characters can be stored in memory. Long strings
are generated by concatenation, the joining together of shorter strings. This
will be explained later in this chapter.

Chapter 3. Programming the C-64 Computer 68

TABLE 3-1. Special String Symbols

Function Key String Symbol
RVS
Reverse On CTRL | on =3 (Reverse R)
RVS .
Reverse Off CTRL | opp Hl (Reverse Shifted R)
CLR
Home Cursor HOME (Reverse S)
. CLR . .
Clear Screen Shifted HOME k.2 (Reverse Shifted S)
"+
Cursor Down CRSR] (Reverse Q)
L
. 8 .
Cursor Up Shifted CSR [3 (Reverse Shifted Q)
. <
Cursor Right CRDSR Il (Reverse])
. < .
Cursor Left Shifted CRDSR M| (Reverse Shifted])

VARIABLES

The concept of a variable is easy to understand. Consider the following
statements:

186 A=B+C

208 7R

These two statements cause the sum of two numbers to be displayed.
The two numbers are whatever Band C represent at the time the statements
are executed. In the following example

50 B=4.65

93 C=a3,72

168 A=B+C

288 7A
B is assigned the value 4.65, while C is assigned the value 3.27. Therefore, A
equals 8.37.

66 our Commodore 64

VARIABLE NAMES

Variable names can be used to represent string data or numeric data. If
you have studied elementary algebra, you will have no trouble under-
standing the concept of variables and variable names. If you have never
studied algebra, then think of a variable name as a name that is assigned to a
mailbox. Anything that is placed in the mailbox becomes the value asso-
ciated with the mailbox name.

A variable name can have one, two, or three characters. The following
character options are allowed:

t— Third character must be $ for a string variable or
% for an integer variable. A floating point
variable name can only have two characters.

Second character can be any unshifted letter
(A to Z) or any numeric digit (1, 2, 3,4,5,6,7,8,9,0)
for any type of variable.

First character must be an unshifted letter
(A to Z) for any type of variable.

Thus the last character of the variable name tells C-64 BASIC which
type of data the variable represents.

Note that unshifted letters are used for the first and second label
characters. Depending on the model of C-64 computer, unshifted letters
may be upper-case or lower-case. Either way, they are the letters displayed
when the SHIFT key is not being depressed.

Floating point variables are the ones most frequently used in C-64
BASIC. Here are some examples of floating point variable names,

integer variable names,

A%
B%
C%
Al%
MN%
X4%

Chapter 3 Programming the C-64 Computer 67

and string variable names.

AS

M$

MNS$

M1$

ZX$

F6$

Variable names can have more than two alphanumeric characters, but
only the first two characters count. Therefore BANANA and BANDAGE
are interpreted as the same name, since both begin with BA. C-64 BASIC
allows variable names to have up to 86 characters, but such large names are
impractical. Four to eight characters is a more realistic limit; long names
may actually make it harder to read your program. The names below
illustrate the way C-64 BASIC “sees” long variable names.

MAGICS interpreted as MAS$
N123456789 interpreted as N1

MMMS$ interpreted as MM$
ABCDEF% interpreted as AB%

CALENDAR interpreted as CA

If you use variable names with more than two characters, keep the
following points in mind:

1. Only the first two characters plus the identifier symbol (§ or %) are
significant. Do not use extended names like LOOP1 and LOOP2;
these are interpreted as the same variable: LO.

2. C-64 BASIC has a number of reserved words which have special
meaning within a BASIC statement. Reserved words include
BASIC statements, such as PRINT, and others which we will
discuss later. No variable name can contain a reserved word
embedded anywhere in the name. For example, you cannot use
PRINTER as a variable name, because BASIC would see it as
“PRINT ER.”This problem usually shows up as a syntax errorina
line that looks correct. Table 3-4 is a complete list of reserved
words.

3. Additional characters use up memory space that you might need in
longer programs. On the other hand, longer variable names make
programs easier to read. PARTNO, for example, is more
meaningful than PA as a variable name describing part numbers in
an inventory program.

68 ‘our Commodore &4

Operators

The BASIC statement
100 710.2+4.7
tells the C-64 to add 10.2 and 4.7, and then display the sum. The statement

250 C=A+H

tells the C-64 to add the two floating point numbers represented by the
variable names A and B, and to assign the sum to the floating point number
represented by the variable name C.

The plus sign specifies addition. The plus sign is referred to as an
operator. Itis an arithmetic operator, since addition is an arithmetic opera-
tion. There are two other types of operators: relational operators and
Boolean operators. These take a little more explanation, since they reflect
conditions and decisions, rather than arithmetic.

Table 3-2 summarizes the BASIC operators. We will examine each
group of operators in turn, beginning with arithmetic operators.

TABLE 3-2. Operators

Precedence Operator Meaning
High
9) Parentheses denote order of evaluation
8 t Exponentiation
9 n .
€5 7 — Unary minus
E = 6 * Multiplication
8 6 / Division
<O 5 + Addition
5 — Subtraction
4 = Equal
E £ 4 <> Not equal
S = 4 < Less than
= g 4 > Greater than
M 4 <=or=< Less than or equal
4 >=or=> Greater than or equal
c & 3 NOT Logical complement
8 2 AND Logical AND
g g 1 OR Logical OR
2o Low

Chapter 3 Programming the C-64 Computer 69

ARITHMETIC OPERATORS

An arithmetic operator specifies addition, subtraction, multiplication,
division, or exponentiation. Arithmetic operations are performed using
floating point numbers. Integers are automatically converted to floating
point numbers before an arithmetic operation is performed, and the result is
automatically converted back to an integer if an integer variable represents
the result.

The data operated on by any operator is referred to as an operand.
Arithmetic operators each require two coperands, which may be numbers,
numeric variables, or a combination of both.

Addition (+). The plus sign specifies that the data (or operand) on the
left of the plus sign is to be added to the data (or operand) on the right. For
numeric quantities this is straightforward addition.

The plus sign is also used to “add” strings. In this case, however, the
plus sign does not add the values of the strings. Instead, the strings are joined
together, or concatenated, to form one longer string. The difference between
numeric addition and string concatenation can be visualized as follows:

Addition of numbers: numl+num2 = num3
Addition of strings: stringl+string2 = stringlstring2

Using concatenation, strings containing up to 255 characters can be
developed.

“FOR™“WARD” results in “FORWARD”
“HI™t+ “ >+“THERE” results in “HI THERE”
AS$+BS§ results in concatenation of

the two strings represented
by string variable labels
AS$ and B$

“1”+ CHS$+ES results in the character “1,”
followed by concatenation of
the two strings represented
by string variable labels
CHS and ES$

If ASissetequalto “FOR”and BSissetequalto “WARD,” then A$+
B$ would generate the same results as “FOR” + “WARD.”

Should you try to build a string longer than 255 characters,a STRING
TOO LONG error is flagged.

70 our Commodore é4

Subtraction (—). The minus sign specifies that the operand on the right
of the minus sign is to be subtracted from the operand on the left of the
minus sign. For example,

4—1 results in 3
100—64 results in 36
A—B results in the variable

represented by label B
being subtracted from the
variable represented by
label A

55—142 resultsin —87

The unary minus operator identifies a negative number. For example,

-5

—9E4

—B

4—-2 Note that 4 — 2 is the same as 4+2

Multiplication (*). An asterisk specifies that the operand on the right of
the asterisk is to be multiplied by the operand on the left of the asterisk. For
example,

100 * 2 results in 200
50 * 0 results in 0
A * X1 results in multiplication of

two floating point numbers
represented by floating point
variables labeled A and X1

R% * 14 results in an integer
represented by integer variable
label R% being multiplied by 14

In the examples above, if variable A is assigned the value 4.2 and
variable X1 is assigned the value 9.63, then the answer would be 40.446. A
and X1 could hold integer values 100 and 2 to duplicate the first example;
however, the two numbers would be held in the floating point format as
100.0 and 2.0, since A and X! are floating point variables. In order to
multiply 100 by 2, representing these numbers as integers, the example
would have to be A% * X1%.

Division (/). The slash specifies that the operand on the left of the slash
is to be divided by the data (or operand) on the right of the slash.

Chapter 3 Programming the C-64 Computer 74

10/2 results in §
6400/4 results in 1600
A/B results in the floating point

number assigned to variable
A being divided by

the floating point number
assigned to variable B

4E2/XR results in 400 being divided
by the floating point number
represented by label XR

The third example, A/B, can duplicate the first or second examples,
eventhough A and B represent floating point numbers. The integer numbers
would be held in floating point form, however. A%/ B% could exactly
duplicate either of the first two examples.

Exponentiation (1). The up arrow specifies that the operand on the left
of the arrow is raised to the power specified by the operand on the right of
the arrow. If the data (or operand) on the right is 2, the number on the left is
squared; if the data (or operand) on the right is 3, the number on the left is
cubed; and so on. The exponent can be any number, variable, or expression,
as long as the exponentiation yields a number in the allowed floating point
range. For example,

212 results in 4

1212 results in 144

113 results in 1

AtS results in the floating

point number assigned
to variable A being
raised to the 5th power

2164 results in 84.4485064

NM1t —10 results in the floating
point number assigned
to variable NM being
raised to the negative
10th power

14t F results in 14 being raised
to the power specified
by floating point variable F

ORDER OF EVALUATION

An expression may have multiple arithmetic operations, as in the
following statement.

72 our Commodore 64

A+C *10/212

When this occurs, there is a fixed sequence in which operations are
processed. First comes exponentiation (1), followed by sign evaluation,
followed by multiplication and division (* /), then by addition and sub-
traction (+ —). Operations of equal precedence are evaluated from left to
right. This order of operation can be overridden by the use of parentheses.
Any operation within parentheses is performed first. For example,

4+1 * 2 results in 6
4+1) * 2 results in 10
100 * 4/2—1 results in 199

100 * (4/2—1) results in 100
100 * (4/(2—1)) results in 400

When parentheses are present, C-64 BASIC evaluates the innermost set
first, then the next innermost, and so on. Parentheses can be nested to any

level, and may be used freely to clarify the order of operations being
performed in an expression.

RELATIONAL OPERATORS

Relational operators represent the following conditions: greater than

(>), less than (<), equal (=), not equal (< >), greater than or equal
(> =), and less than or equal (< =).

1=5-4 results in true (—1)
14 > 66 results in false (0)
I5>=15 results in true (—1)
A<™>B the result will depend

on the values assigned
to floating point variables
Aand B

C-64 BASIC arbitrarily assigns a value of 0 to a “false” condition and a
value of —1 to a “true” condition. These 0 and —1 values can be used in
equations. For example, in the expression (1 = 1) * 4, the equation(l = 1)
is true. True equates to —1, therefore the expression is the same as (—1) * 4,
which results in —4. You can include any relational operators within a C-64
BASIC expression. Here are some more examples.

25+(14 > 66) is the same as 25+0
(A+H(1=5—4) * (I15>=19) is the same as (A—1) * (—1)

Chapter 3 Programming the C-64 Computer 73

Relational operators can be used to compare strings. For comparison
purposes, the letters of the alphabet have the order A < B, B< C, C< D,
and so on. Strings are compared one character at a time, starting with the
leftmost character.

“A”< “B” results in true (—1)
“Xr = “XX” results in false (0)
C$ = AS$+BS$ result will depend

on the string values assigned
to the three string variables
CS$, BS, and AS

When operating on strings, C-64 BASIC generates a value of —1 fora
“true” result, and a value of 0 for a “false” result.

(“JONES” >“DOE”) +37 is the same as —1+37
“AAA” < “AA”) % (Z9—(“OTTER” > “AB")) is the same as 0 * (Z9—(—1))

BOOLEAN OPERATORS

Boolean operators give programs the ability to make logical decisions.
There are three Boolean operators in C-64 BASIC: AND, OR, and NOT.

A simple supermarket shopping analogy can serve toillustrate Boolean
logic. Suppose you are shopping for breakfast cereals with two children.

The AND Boolean operator says that a cereal is selected only if child A
and child B select the cereal.

The OR Boolean operator says that a cereal will be selected if either
child A or child B selects the cereal.

The NOT operator generates a logical opposite. If child B insists on
disagreeing with child A, then child B’s decision is always not child A’s
decision.

Table 3-3 summarizes the way in which Boolean operators handle
numbers. This table is referred to as a truth table.

Boolean operators primarily control program logic. Here are some
examples.

IF A = 100 AND B =100 GOTO 10
If both A and B are equal to 100, branch to line 10
IFX<YANDB>=44THENF=0
If X is less than Y and B is greater than or equal to 44,
then set F equal to 0
IF A = 100 OR B = 100 GOTO 20
If either A or B has a value of 100, branch to line 20

74 our Commodore ¢4

IFX<YORB>=4THENF=0
F is set to 0 if X is less than Y or B is greater than 43

IFA=1ANDB=20OR C=3GOTO 30
Take the branch if both A = | and B = 2; also take
the branch if C =3

A single operand can be tested for true or false. An operand appearing
alone has an implied “< >0” following it. Any nonzero value is considered
true; a zero value is considered false.

IFATHENB=2
IFA<>O0THENB=2
The above two statements are equivalent

IF NOT B GOTO 100
Branch if B is false, i.e., equal to zero. This is
probably better written as

IF B= 0 GOTO 100

All Boolean operations use integer operands. If you perform Boolean
operations using floating point numbers, the numbers are automatically
converted to integers. Therefore, the floating point numbers must fall within
the allowed range of integer numbers.

If you are a novice programmer, you are unlikely to use Boolean
operators in the manner that we are about to describe. If you do not

understand the discussion, skip to the next section.

TABLE 3-3. Boolean Truth Table

The AND operation results in a 1 only if both numbers are 1
1AND =1
0ANDI1=0
1 ANDO=0
0ANDO=0
The OR operation results in a 1 if either number is |
IORI1=1
OORI1=1
1ORO0O=1
OOR0=0
The NOT operation logically complements each number
NOT1=0
NOTO0=1

Chapter 3 Programming the C-64 Computer 79

Boolean operators operate on integer operands one binary digit at a
time. C-64 BASIC stores all numbers in binary format, using two’s comple-
ment notation to represent negative numbers. Therefore we can illustrate an
AND operation as follows:

43 AND 137=9

L I——>8916 — 10001001

2B,,— 00101011
09, — 00001001 ——

Here is an OR operation.

43 0R 137="171

89,,— 10001001
2B, — 00101011

AB,,—10101011

Here are two NOT operations.

NOT 43 = 212
2B, — 00101011
| |
Dd,, — 11010100 —
NOT 137 = 118
89,, — 10001001

76,6 — 01110110 ——

If operands are not integers, they are converted to integer form; the
Boolean operation is performed, and the result is returned as a 0 or 1.

If a Boolean operator has relational operands, then the relational
operand is evaluated to — 1 or 0 before the Boolean operation is performed.
Thus the operation

A=10RC<2
is equivalent to
—1 —1

or OR or
0 0

76 our Commodore 44

Consider this more complex operation.
IF A= BAND C< D GOTO 40

First the relational expressions are evaluated. Assume that the first expres-
sion is true and the second one is false. The statement then becomes

IF—1 AND 0 GOTO 40
Performing the AND yields a 0 result.
IF0 GOTO 40

Recall that a single term has an implied “< >0"following it. The expression
therefore becomes

IFO0<>0GOTO 40

Thus, the branch is not taken.
In contrast, a Boolean operation performed on two variables may yield

any integer number.
IF A% AND B% GOTO 40

Assume that A, = 255 and B9% = 240. The Boolean operation 255 AND
240 yields 240. The statement, therefore, becomes

IF 240 GOTO 40
or, with the “< >0",
IF240<> 0 GOTO 40

Therefore, the branch will be taken.
Now compare the following assignment statements:

A= A AND 10
A=A<10

In the first example, the current value of A is logically ANDed with 10, and
the result becomes the new value of A. A must be in the integer range
—32768 to +32767. In the second example, the relational expression
A < 10 1is evaluated to—1 or 0, so A must end up with a value of —1 or 0.

Chapter 3 Programming the C-64 Computer 27

Arrays

Arrays are used in many types of computer programs. If you are not
already familiar with arrays, you will need to learn about them. The infor-
mation that follows will be very important to your programming efforts.

Conceptually, arrays are very simple. When you have two or more
related data items, instead of giving each data item a separate variable name,
you give the collection of related data items a single variable name. Then you
select individual items using a position number, which in computer jargon is
referred to as a subscript, or index.

A grocery list, for example, may have six items from the meat and
poultry department, four fruit and vegetable items, and three dairy prod-
ucts. These three groups of items could each be represented by a single
variable name as follows:

MP$(0) = “CHOPPED SIRLOIN” FV$(0) = “ORANGES”
MP$(1) = “CHUCK STEAK” FV$(1) = “APPLES”
MP$(2) = “NEW YORK STEAK” FV$(2) = “BEANS”
MP$(3) = “CHICKEN” FV$(3) = “CARROTS”
MP$(4) = “SALAMI”
MPS$(5) = “SAUSAGES” DP$(0) = “MILK”
DP$(1) = “CREAM”
DP$(2) = “COTTAGE CHEESE”

MPS is a single variable name that identifies all meat and poultry products.
FV$ identifies fruits and vegetables, while DP$ identifies dairy products.

A subscript follows each variable name. Thus a specific data item is
identified by a variable name and an index.

Notice that the first index value in the examples above is 0, not 1.
Subscripts in BASIC start from 0 because this simplifies the programming
of many scientific and mathematical problems. Many people are un-
comfortable with this practice, however. If youdon’t feel at home with using
element 0 of an array, simply ignore it and start with a subscript of 1. You
will waste a little memory space, but you are less likely to make program-
ming mistakes if you are not trying to “adapt” yourself to the machine.

We could take the array concept one step further, specifying a single
variable name for the entire grocery list, using two indexes. The first index
(or subscript) specifies the product type, and the second index specifies the
item within the product type. This is one way in which a single grocery list
variable array with two subscripts could replace the three arrays with single
subscripts illustrated above.

78 our Commodore 44

GL$(0,0) = MP$(0) GLS$(1,0)= FV$(0) GL$(2,0)= DP$(0)
GLS$(0,1) = MP$(1) GLS$(1,1)= FV$(1) GLS$(2,1)= DP$(1)
GL$(0,2) = MP$(2) GLS$(1,2) = FV$(2) GLS$(2,2) = DPS$(2)
GLS$(0,3) = MP$(3) GL$(1,3) = FV$(3)

GLS$(0,4) = MPS$(4)

GLS$(0,5) = MPS(5)

Arrays can represent integer variables, floating point variables, or
string variables. However, a single array variable can only represent one
data type. In other words, a single variable cannot mix integer and floating
point numbers. One or the other can be present, but not both.

Arrays are a useful shorthand means of describing a large number of
related variables. Consider, for example, a table containing ten rows of
numbers, with twenty numbers in each row. There are 200 numbers in the
table. How would you like it if you had to assign a unique name to each of
the 200 numbers? It would be far simpler to give the entire table one name
and identify individual numbers within the table by their table location.
That is precisely what an array does.

Arrays can have one or more dimensions. An array with a single
dimension is equivalent to a table with just one row of numbers. The
dimension identifies a number within the single row. An array with two
dimensions yields an ordinary table with rows and columns: one dimension
identifies the row, the other dimension identifies the column. An array with
three dimensions yields a “cube” of numbers, or perhaps a stack of tables.
Four or more dimensions yield an array that is hard to visualize, but
mathematically no more complex than a smaller-dimensioned array.

Let us examine arrays in detail.

A single-dimension array element has the following form:

name(i)
where

name is the variable name for the array. Any type
of variable name may be used

i isthe array index to that element. i must
start at 0.

A single-dimension array called A, having five elements, can be visual-
ized as follows:

Chapter 3: Programming the C-64 Computer 79

A0)
A(l)
AQ2)
A(3)
A(4)

The number of elements in the array is equal to the highest index
number plus 1. This takes array element 0 into account.
A two-dimension array element has the following form:

name(i, j)
where
name is the variable name of the array
1 is the column index
j 1is the row index.

A two-dimension string array called A$, having two column elements
and three row elements, might be visualized as follows:

AS$(0,0) A3(0,1)
AS$(1,0) AS(1,1)
A$(2,0) AS(2,1)

The size of the array is the product of the highest row dimension plus I,
multiplied by the highest column dimension plus 1. For the array above, it is
3 X 2 = 6 elements. .

Additional dimensions can be added to the array.

name (i,j,k,...)

Arrays of as many as 11 elements (index 0 to 10 for a single-dimension
array) may be used routinely in C-64 BASIC. Arrays containing more than
11 elements need to be specified in a dimension statement. Dimension
statements are described later in this chapter. If you do not enter the
subscript for an array in your program, it will be treated as a separate
variable by C-64 BASIC. This can lead to hard-to-find bugs in your pro-
gram. You should not exploit this distinction in your programs: other
languages and other dialects of BASIC do not work in the same way. This

80 ‘our Commodore ¢4

technique could cause confusion for other programmers trying to read your
code. Even you might later decide you had mistakenly left out the subscript,
and try to fix the “error.”

BASIC Commands

In Chapter 2 we described a number of commands that can be entered
at the keyboard in order to control C-64 computer operations. RUN is one
such command. Commands can all be executed as BASIC statements.

You are unlikely to execute commands out of BASIC statements when
you first start writing programs. However, when you start writing very large
programs you may run out of memory space. Then you must break a
program into a number of smaller modules and execute them one at a time.

Reserved Words

All of the character combinations that define a BASIC statement’s
operations, and all functions, are called reserved words. Table 3-4 lists the
C-64 BASIC reserved words. You will encounter many of these reserved
words in this chapter, but others are not described until later chapters.

When executing BASIC programs, the C-64 computer scans every
BASIC statement, seeking out any character combinations that make up
reserved words. The only exception is text strings enclosed in quotes. This
can cause troubleif a reserved word is embedded anywhere within a variable
name. The C-64 computer cannot identify a variable name by its location in
a BASIC statement. Therefore, you should be very careful to keep reserved
words out of your variable names. This is particularly important with the
short reserved words that can easily slip into a variable name.

Chapter 3' Programming the C-64 Computer 84

TABLE 3-4. Reserved Words

Abbreviations Abbreviations| Abbreviations,
o5 [o5 w5 |85 ok
Word -§ E :‘% E Word 5 § E 2 Word 5 §

RN EE 25, £ 5
HOA<O P 50 A€o B s

ABS Al aB NEXT N~™ nE TIMES

RAND NOT TO Ue us

RSC Re as ON USR Yva vA

ATN Al aT OPEN 01 | oP VAL Y= | vE

CHR$ cl cH OR VERIFY We WA

CLOSE cLr | co | PEEK P~ | pE | WRIT

CLR cL cL POKE PIr PO

CMD (2N cM POS

CONT cr cn PRINT ? ?

cos PRINT# P~ PR

DARTAR D# dR RERD R™ | rE

DEF - dE REM

DIM D~ dI RESTORE RE® | reS

END E/ eN RETURN REI reT

EXP Ed ex RIGHTS R~ rl

FN RND R/ rM

FOR Fr f0 RUN R~ rU

FRE F~ fR SAVE S4 A

GET G~ 9E SGN Sl sG

GET# SIN S~ sl

GOSUB GO0e 305 | SPC gl sP

GOTO Gr a0 SAR Se <0

IF ST

INPUT STATUS

INPUT# 1/ iN STEP ST~ | stE

INT STOP Sl sT

LEFTS LE- | leF | STR$ ST- | stR

LEN SY8 S sY

LET L~ 1E TRB T4 tA

LIST L~ 11 TAN

|.ORD Lr 10 THEN TI tH

LOG Tl

MID$ M~ ml TIME

NEW Tis

tThe C-64’s alternate character set is activated by pressing the suiFT and
COMMODORE keys simultaneously.

82 ‘our Commodore 64

BASIC Word Abbreviations

You learned early in this book that the BASIC statement PRINT could
always be entered from the keyboard by the abbreviation “ ? . This is
expanded by the C-64 BASIC interpreter to the full word PRINT.,

Most BASIC commands, statements, and functions can be abbreviated
using the first two characters of the keyword, with the second character
entered in shifted mode. With the C-64’s normal character set (that is,
upper-case or graphic characters), the second character appears as a graphic
character. For example, the abbreviation for LIST appears as

L~
11

C-64 BASIC makes no distinction between the two abbreviations. Either
one is expanded to the word LIST.

If a two-letter abbreviation is ambiguous (does ST mean STEP or
STOP?), the two-letter abbreviation is assigned to the most frequently used
keyword, and the other word (or words) are either not abbreviated or are
abbreviated using the first three characters, with the third entered in shifted
mode. For STEP and STOP, for example, STOP is abbreviated as

T
S|
STEP is abbreviated as
stk
8T~

Toabbreviate STEP, type an unshifted (upper-case) S, an unshifted T, and a
shifted E.

The following sample input lines use two- and three-letter abbrevia-
tions wherever possible. All abbreviated words are expanded to the full
spelling when you list the programs.

Press SHIFT C= for lower case.

16 1E a=18

20 b=3 aN 14+eX(2)

30 dI c(5y

48 f0 i=0 to 5

50 rE cliy

€0 nkE

70 dA 1.6.,2,4,18.5,16

Chapter 3: Programming the C-64 Computer

83

=15]
=1
11
10
20
30
46
50

7a
89
s

res
eM

LIST the program.
let a=10@

bma and 1d4+exp(2)
dim(5>

for i=0 to 5

read c(iJ

next

data 1.6.2,4,18.5,16
restore

end

BASIC statements are
not abbreviated.

Press SHIFT C= for upper case.

After pressing SHIFT and the keys simultaneously, you will see the abbrevia-
tions displayed with graphics in the place of the shifted characters. The
expanded listing will display upper-case letters.

Refer to Table 3-4. The expansions from abbreviations for the two
functions SPC and TAB include the left parenthesis. This means that if you
use the abbreviation for either of these, you must not type in the left
parenthesis. For example,

18 ?sP(3>

expands to

18 Print sPc((5>

———~

Syntax error results from two

left parentheses

The correct sequence to key in is

18 ?sP3)

This parenthesis rule applies only to the SPC and TAB functions and is
a format inconsistency you will have to watch for when abbreviating these
function names. For all other functions, you key in both parentheses. For
example,

10 ?rN(1)

84 o Commodore 4

BASIC Statements

The operation performed by a statement is specified using reserved
words (see Table 3-4).

Statements are not described in detail in this chapter. Refer to Appen-
dixes G and H for complete descriptions of all statements recognized by
C-64 BASIC. This chapter introduces you to programming concepts,
stressing the way statements are used.

Remarks

It is appropriate that any discussion of BASIC statements begin by
describing the only BASIC statement which the computer will ignore: the
remark. If the first three characters of a BASIC statement are REM, the
computer ignores the statement entirely. So why include such a statement?
The answer is that remarks make your program easier to read.

If you write a short program with five or ten statements, you will
probably have little trouble remembering what the program does—unless
you leave it around for six months and then try to use it again. If you write a
longer program with 100 or 200 statements, you are quite likely to forget
something very important the very next time you use the program. After you
have written dozens of programs, you cannot possibly remember each one in
detail. The solution to this problem is to document your program by
including remarks that describe what the various parts of the program do.

Good programmers use plenty of remarksin all of their programs. Inall
of this chapter’s program examples we will include remarks that describe
what is going on, simply to get you into the habit of doing the same thing
yourself.

Remark statements have line numbers like any other statement. A
remark statement’s line number can be used like any other statement’s line
number.

Assignment Statements

Assignment statements let you assign values to variables. You will
encounter assignment statements frequently in every type of BASIC pro-
gram. Here are some examples of assignment statements.

Chapter 3 Programming the C-¢4 Computer 88

90 REM INITIALIZE VYARIABLE *
168 LET X=3.24

In statement 100, floating point variable X is
assigned the value 3.24
158 %=3.24

Equivalent to statement 100 above; the LET is optional
in all assignment statements

215 AE="ALS0 RAH"

The string variable AS is assigned the two
text words ALSO RAN

Notice that the first assignment statement (line 100) begins with the
word “LET?, but the other two don’t. Originally, all assignment statements
had to start with LET. The idea was that the computer could identify the
type of statement by looking at the first word. Today, all but a few dialects of
BASIC have dropped this requirement. Although LET is not required by
C-64 BASIC, itissstill a reserved word and cannot appear ina variable name.

Here are three statements that assign values to array variable DPS$(1),
which we encountered earlier when describing arrays.

200 REM DP$(I> IS THE DRIRY PRODUCTS SHOPPIMG LIST

YARIABLE
210 DP$(@o="MILK"
220 DP$(1)="CREAM"
230 DP$(2)="COTTAGE CHEESE"

Remember, you can put more than one statement on a single line. The
three DPS$ assignments could be placed on a single line as follows:

200 REM DP$(I> IS THE DAIRY PRODUCTS SHOPPING LIST
“YARIABLE

210 DP$<@i="MILK" :DP$(1)="CREAM" DP#(2>="COTTAGE CHEESE"

A colon must separate adjacent statements appearing on the same line.
Assignment statements can include any of the arithmetic or relational
operators described earlier in this chapter.

98 REM THIS IS A DUMB WAY TO ASSIGM A WALUE TO ¥
198 Y=3.24+7.96/8.5

86 \our Commodore ¢4

This statement assigns the value 4.17647059 to floating point variable
V. It is equivalent to these three statements

50 REM X AMD Y HEED TO BE IMITIALIZED SEPARATELY FOR

LATER USE
108 X=7.96
110 ¥=8.5
120 Y=3.24+4/Y

which could be written on one line as follows:
180 4=7.96 V=85 V=3, 2444/Y

Here are assignment statements that perform the Boolean operations
described earlier in this chapter.

90 REM THESE EXAMPLES WERE DEZCRIBED EARLIER IH

THE CHAFTER
1866 R¥%=43 AWMD 137
288 BX=43 DR 137

The following example shows how a string variable could have its value
assigned using string concatenation:

16@ Y#="COTTAGE"

208 W$="CHEESE"

300 DP$(2)=Y§+" "+U$

408 REM DP#(2> I3 RSSIGHED THE STRING YALUE

"COTTAGE CHEESE"

DATA AND READ STATEMENTS

When a number of variables need data assignments, the DATA and
READ statements should be used rather than the LET statement. Consider
the following example:

5 REM INITIALIZE ALL PROGRAM WARIABLES

18 DATA 1@.26.-4.1€E6
26 READ R.E.C.D

The statement on line 10 lists four numeric data values. These four values are
assigned to four variables on line 20. After the statements on lines 10 and 20
have been executed, A= 10, B= 20, C=4,and D= 16 X 106,

If you have one or more DATA statements in your program, you can
visualize them as building a “column” of numbers. For example, a DATA
statement that contains a list of ten numbers would build a ten-entry

Chapter 3: Programming the C-64 Computer 87

column. Two DATA statements, each with a list of five data items, would
build exactly the same column. This may be illustrated as follows:

10 DATA 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

First column entry—

1 i

r— e~
50 > 10 DATA 10, 20, 30, 40, 50
60 20 DATA 60, 70, 80, 90, 100
2¢ 80 2
90

100 J<—Last column entry

The first READ statement executed in a program starts at the first
columnentry, assigning each value to corresponding variables named in the
READ statement. The second and subsequent READ statements take
values from the column, starting at the point where the previous READ
statement left off. This may be illustrated as follows:

10 DATA 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

490 READ A, E. F. G
500 READ B

10
{20)
e
' A=10 40
220 READ A, B, C B = 2 { o
' C=130 60
0 |
: 80
. C = 40 90)
340 READ 99_/ D= 50 100
' A=60
' E=170
F=80
G=90

88 ‘our Commodore 64

RESTORE STATEMENT

You can at any time send the pointer back to the beginning of the
numeric column by executinga RESTORE statement. Here is an example
of the use of RESTORE.

10 DATA 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

\——\~

220 READ A, B, C QZ ;g 0
. \’(/C - 30\ 20
30
C =40 40
. [\D= 50 r 50
340 READ C, D 60 >
350 RESTORE 70
80
90
A= 10 100)
E=20
| < TF=10
490 READ A, E, F, G G=40

500 READ B /
~___ .B=50

Dimension Statement

C-64 BASIC normally assumes that a variable has a single dimension,
with index values of 0 through 10. This generates an 11-element array. If you
want a single dimension with more or fewer than 11 elements, then you must
include the array variable in a dimension (DIM) statement. You also must
include the array in a dimension statement if it has two or more dimensions,
no matter what number of elements the array has. The following example
provides dimensions for one-dimension array variables MP$, FV$, and
DPS$. We used these variables in our earlier discussion of arrays.

DIM MP£CS).FY$(3), DP$C2)

Chapter 3: Programming the C-64 Computer 89

The two-dimension grocery list variable, GLS$, would be dimensioned
as follows:

DIM GL£C3,5)

A DIM statement can provide dimensions for any number of variables,
providing the statement fits within an 80-character line.

The number or numbers following a variable name ina DIM statement
is equal to the largest index value that can occur in that particular index
position. But remember, indexes begin at 0. Therefore, MP$(5) dimensions
the variable MPS$ to have six values, not five, since indexes 0, 1,2, 3,4,and 5
will be allowed. GLS$ (3,5), likewise, specifies a two-dimension variable with
24 entries, since the first dimension can have values 0, 1, 2, and 3, while the
second dimension can have values 0 through 5.

Once you have declared an array variable in a DIM statement, you
must subsequently reference the variable with the specified number of
subscripts; each subscript must have a value between 0 and the number
specified in the DIM statement. If any of these syntax rules are broken, you
will get a syntax error.

Branch Statements

Statements within a BASIC program normally execute in ascending
line number order. This execution sequence was explained earlier in this
chapter when we described line numbers. Branch statements change this
execution sequence.

GOTO STATEMENT

GOTO is the simplest branch statement. It allows you to specify the
statement that will be executed next. Consider the following example:

20 A=4,37
38 GOTO 184
40

5@

68

70

868

98

1eg

118

90 ‘our Commodore ¢4

The statement on line 20 is an assignment statement; it assigns a value
to floating point variable A. The next statement isa GOTO; it specifies that
program execution must branch to line 100. Therefore, the instruction
execution sequence surrounding this part of the program will be line 20, then
line 30, then line 100.

Of course, some other statement should branch back to line 40. Other-
wise the statement on line 40 would never be executed by program logic, as
illustrated above.

You can branch to any line number, even if the line has nothing but a
remark on it. However, the computer ignores the remark, so the effect is the
same as branching to the next line. For example, consider the following
branch:

REM THERE IS A REMAREK. RHD
SG)NDTHIHG ELSE OM THIS LIME

The program branches from line 30 to line 70. There is nothing but a
remark on line 70, so the computer moves on to line 80, executing the
statement on this line. Even though you can branch to a remark, you might
as well branch to the next line. This may be illustrated as follows:

20yR=4. 37

@’ 6070 88

40

5@

(Y%

73 REM THERE IS5 A REMARK, AMD

&0 MOTHING ELSE OM THIS LIME
98

COMPUTED GOTO STATEMENT

There is also a computed GOTO statement that lets program logic
branch to one of two or more different line numbers, depending on the
current value of a variable. Consider the following illustration:

Chapter 3: Programming the C-64 Computer 91

1@)

(29

39)H2=BZ—2

42" ON F¥ GOTOD 16,79, 1354

The statement on line 40 is a computed GOTO. When this statement
executes, the program will branch to statement 10 if variable A% = 1, to
statement 70 if variable A% = 2, or to statement 150 if A% = 3. If A% has
any value other than 1, 2, or 3, the program will not branch. Notice that
variable A% is assigned a value in statement 30. The value assigned to A%
depends on the current value of variable B%. The illustration does not show
how variable B9% is computed, but as long as B% has a value of 3,4, or 5, the
statement on line 40 will cause a branch.

To test the computed GOTO statement, key in the following program:

18 BA=4

28 PRINT BX

30 A%=BY-2

4@ 0N AXGOTO 14,78, 156
7@ PRINT BX

8@ Bx=5

90 GOTO 30

15@ PRINT BX

160 EX=3

178 GOTO 28

Now execute this program by typing RUN on any blank line. Do not
type RUN ona line that is already displaying something. If you do, you will
get a syntax error and the program will not be executed.

Can you account for the sequence in which digits are displayed? Try

rewriting the program so that each number is displayed once, in the
sequence 345345345...

92 ‘our Commodore ¢4

Control Statements

In every program, the sequence of the statements executed is every bit
as important as the statements themselves. C-64 BASIC has several state-
ments that control the way a program executes, hence the name “control
statements.”

Control statements redirect the execution sequence of a program.
Some control statements choose one of many paths program logic can take;
others execute several statements a specified number of times.

FOR-NEXT Statement

GOTO and computed GOTO statements let you create any type of
statement execution sequence that your program logic requires. But sup-
pose you want to reexecute an instruction (or a group of instructions) many
times. For example, suppose array variable A(I) has 100 elements and each
element needs to be assigned a value ranging from 0 to 99. Writinga hundred
assignment statements would be tedious. It is far simpler to reexecute one
statement 100 times. This can be done using the FOR and NEXT
statements.

18 DIM ACS92

20 FOR I=@ TO 99 STEP 1

30 ACI)=]
46 MNEXT 1

Statements between FOR and NEXT execute repeatedly. In thiscase a
single assignment statement appears between FOR and NEXT, so this single
statement is reexecuted repeatedly.

To demonstrate how FOR-NEXT loops work, we will display the A(I)
values created within the loop. Key in the following program:

1@ DIM R(99)

20 FOR I=0 TO 99 STEP 1

30 ACIsw]

35 PRINT AC(I)

48 HEXT 1

30 REM IF YOU HAVE A GOTD STATEMEWNT THAT BRAWCHES TO
ITSELF, THE

70 REM COMPUTER EXECUTES AN ENDLESS LOOP: IN EFFECT,
IT WRITS

9@ GOTO 98

Now key in RUN. One hundred numbers display, startingat 0 and ending at

Chapter 3: Programming the C-64 Computer 93

99. Press the STOP key to terminate program execution.

Statements between FOR and NEXT reexecute the number of times
specified by the index value directly after FOR. In the illustration above this
index variable is I. I increases in value from 0 to 99 in increments of 1. The
first time the assignment statement is executed, I will equal 0 and the
assignment statement on line 30 will be executed as follows:

30 A(BI=R
lincreases by the szep, or increment, size, which is specified online 20 as 1.1

therefore equals | the second time the assignment statement on line 30 is
executed. The assignment statement has effectively become

39 ACly=1

I continues to increment by the specified step value until the maximum value
of 99 is reached or exceeded.

The step value does not have to be 1; it can have any value. Change the
step value to 5 on line 20 and reexecute the program. Now the assignment
statement is executed only 20 times, since incrementing [by 5 nineteen times
will take it to 95 (the 20th increment will take it to 100, which is more than
the maximum value of 99).

The step size does not have to be positive. But if the step size is negative,
the initial value of I must be larger than the final value of 1. For example, if
the step sizeis —1 and we want to initialize 100 elements of A(I) with values
ranging from 0 to 99, then we would have to rewrite the statement on line 20
as follows:

18 DIM R(39)

208 FOR I=@ TO 99 STEF -1
3@ A(I)=I

35 PRINT ACIy,

40 NEXT 1

88 GO0TO 88

Execute this program to test the negative step.

In this example the initial and final values for I, and the step size, are
treated as integers. You must, however, represent these three values using
floating point variables or expressions. Expressions will be evaluated to a
floating point result. The floating point result will be converted to an integer
using the round-off rules described earlier in this chapter.

Because round-off rules can cause problems, you are strongly urged to
use beginning values, ending values, and step sizes as integers. Do not use

94 our Commodore 64

expressions, since this unnecessarily complicates the program. If you must
calculate one of these values, it is simpler and faster to do so in a separate
statement.

If the step size is 1 (which is frequently the case), you do not have to
include a step size definition. In the absence of any definition, C-64 BASIC
assumes a step size of 1. Therefore, the statement on line 20 could be
rewritten as follows:

1@ DIM A(99)

15 REM USE A STEP SIZE OF 1
208 FOR I=@ TO 39

30 A(I)=]

335 PRINT ACIJ.

40 NEXT 1

8@ GOTO 8@

Also, you do not need to specify the index variable in the NEXT
statement. But if you do, it will make your program easier to read.

NESTED LOOPS

The FOR-NEXT structure is referred to as a program loop, since
statement execution loops from FOR to NEXT and back to FOR. This loop
structure is very common;almost every BASIC program that you write will
include one or more such loops. Loops are so common that they are
frequently nested. The statement sequence occurring between FOR and
NEXT can be of any length; it can run to tens or even hundreds of state-
ments. And within these tens or hundreds of statements, additional loops
may occur. The following illustration shows a single level of nesting:

18 DIM A(99)

28 FOR I=@ TO 339

38 A(l)=]

4@ REM DISPLAY ALL VALUES OF ACI) ASSIGNED THUS FAR
50 FOR Jw@ TO 1

60 PRINT A(J?

78 NEXT J

88 NEXT I

5@ GOTO 9@

Complex loop structures appear frequently, even in relatively short
programs. Here isan example showing the FOR and NEXT statements, but
none of the intermediate statements.

Chapter 3: Programming the C-64 Computer

95

50 FOR I=1 TO 18
€0 FOR ¥=23 TO 347 STEP 3

198 FOR A=9 TO © STEP -1

148 MEXT A
200 FOR B=25 TO 109 STEP 5

280 MEXT B
308 HEXT %

Se@ FOR Y=1 TO 28 STEP 2
€08 FOR P=19 TO 20

£50 NEXT F
708 MEXT ¥

1PB@ FOR Z=1 TO 16

1899 HEXT Z
1208 NEXT 1

The outermost loop uses index [; it contains three nested loops that use
indexes X, Y,and Z. The first loop contains two additional loops which use
indexes A and B. The second loop contains one nested loop using index P.
The third loop contains no nested loops. Each nested loop must have a dif-
ferent index variable name. Statement execution sequences may be illus-

trated as follows:

5@.FOR I=1 TO 10

‘9 X=23 TO 347 STEP 3

1‘00 F
(e
140

|

(290 FOR/ B=:
Lo
260 T B
3007 NEXT X
SOO\FOR ¥=1|TO 2@

9 TO @ STEP -1

T0 10@ STEP 5

CG%G)F Pa1p TO 20
650”NEXT P

|
760"NEXT

96 ‘our Commodore 64

Loop structures are easy to visualize and use. There is only one com-
mon error to watch out for: do not terminate an outer loop before you
terminate an inner loop. For example, the following loop structure is illegal:

5@~RQR I=1 TO 18

50 2 X=23 T0 347 STEP 3
1007NEXT 1

208NEXT X

If you do not include the index variable in the NEXT statement,
program logic will automatically terminate loops correctly, since there is
only one possible correct loop termination each time a NEXT statement is
encountered.

Every program must have the same number of FOR and NEXT state-
ments, since every loop must begin with a FOR statement and end with a
NEXT statement. For example, suppose there are two FOR statements, but
only one NEXT statement. The second FOR statement constitutes an inner
loop that will execute correctly. But the outer loop has no NEXT statement
to terminate it, so the program will execute incorrectly. Too many NEXT
statements will also cause a syntax error.

Subroutine Statements

Once you start writing programs that are more than a few statements
long, you will quickly find short routines that are used repeatedly. For
example, suppose you have an array variable (such as A(I)) that is reinitial-
ized frequently at different points in your program. Would you simply
repeat the three instructions that constitute the FOR-NEXT loop described
earlier? Since there are only three instructions, you may as well do so.

Suppose you have to initialize the array and then execute ten or eleven
instructions that process array data in some fashion. If you had to use this
loop many times within one program, rewriting ten to fifteen statements
each time you wished to use the loop would take time, but more importantly,
it would waste a good deal of computer memory. This may be illustrated as
follows:

Chapter 3: Programming the C-64 Computer 97

Start of program — I
(]

9

[)
:
I Repeated routine
"
1
(]
I
etc

To solve this problem, you could separate out the repeated statements

and branch to them. This group of statements is referred to as a subroutine.

But a problem arises. Branching from your program to the subroutine
is simple enough, since the subroutine starts at a given line number. How-
ever, where do you branch back to at the end of the subroutine? You could
execute a GOTO statement whenever you wish to branch to a subroutine.

Arbitrarily selected
line numbers

——

Start of program——— 10
Subroutine
~ — —» 2000 —p—~—start
100 GOTO 2000 -~~~ e
-1 ay
110 ’/
/
7y

190 GOTO 2000 7

1 200 , / 2150 T_<—end

~

/ / \

/ / —_

,/ // // N

. / / o /Y

_1 250 GOTO 2000 ,/ \/\’)«\}

260 / N

// \\ // \

/ =)
// Return 7

480 GOTO 2000
500

etc.

98 \our Commodore 44

This statement branches in the same way as a GOTO, but GOSUB
remembers the line number to which it should return. This is illustrated in
the following section.

GOSUB STATEMENT
Subroutine
2000 «— start
110 GOSUB 2000 4
110 N /
$ Remember e
] 110
' 2150 RETURN =—end
\ \
\ }
\\ Il
\
\\ /I
\\ /
o ///
Y Go to L
S~ remembered ~

The RETURN statement causes a branch back to the line number that
the GOSUB statement remembered. The three-statement loop that
initializes array A(I), if converted into a subroutine, would appear as
follows:

10 REM MAIN PROGRAM

20 REM YOU CRAN DIMENSION A SUBROUTINE-S WARIABLE IM

30 REM THE MAIN PROCRAM. IT IS A GOOD IDEA TO DIMENSION
%@ REM ALL YARIABLES AT THE START OF THE MAIM PROGRAM.
60 DIM RA(99)

78 (GOSUB 20ee

80 REM DISPLAY SOMETHING TO PROVE THE RETURM OCCURRED
S@ PRINT "RETURMED"

100 GOTO 100

2080 REM SUBROUTINE

2010 FOR I=R TO 99

2028 ACI)m]

2830 PRINT ACI,

2048 NEXT I

20358 RETURN

Chapter 3. Programming the C-64 Computer 99

NESTED SUBROUTINES

Subroutines can be nested. That is to say, a subroutine can itself branch
to, or call, another subroutine, which in turn can call a third subroutine, and
so on. You do not have to do anything special in order to use nested
subroutines. Simply branch to the subroutine using a GOSUB statement;
each subroutine ends with a RETURN statement. C-64 BASIC will
remember the correct line number for each nested return. The following
program illustrates nested subroutines:

10 REM MAIN PROGRAM

2@ REM YOU CAHM DIMEMSIOM A SUBROUTIME’S VARIARBLE IM
30 REM THE MAIM PROGRAM. IT IS A GOOD IDEA TO DIMENSION
5@ REM ALL YARIABLES AT THE START OF THE MAIW PROGRAM.
6@ DIM A(99)

78 GOSUE 2080

80 REM DISPLAY SOMETHING TO PROVE THE RETURM OCCURRED
90 PRIMT"RETURMED"

106 GOTO 180

2000 REM FIRST LEYEL SUBROUTIHE

2010 FOR I=@ TO 33

2020 A(Is=1

2830 GOsSUE 3dee

2040 MEAT I

2850 RETURM

3028 REM NESTED SUBROUTIME

30108 PRIMT HC(IZ

30206 RETURHM

This program moves the ?A(I) statement out of the subroutine and puts
it into a nested subroutine. Nothing else changes.

COMPUTED GOSUB STATEMENT

Since GOTO and GOSUB statement logic is very similar, it will not
come as any surprise that there isa computed GOSUB statement akin to the
computed GOTO statement. The computed GOSUB statement allows you
to branch to one of two or more subroutines, depending on the value of an
index. Consider the following statement:

i

%
aB M A GOSUE 1008.504, 5800, 2360
118

When the statement on line 100 is executed, if A = | the subroutine
beginningat line 1000 is called. If A = 2 the subroutine beginningat line 500

100 \our Commodore &4

is called. If A = 3 the subroutine beginning at line 5000 is called. If A = 4
the subroutine beginning at line 2300 is called. If A hasany value other than
1,2, 3, or 4, the program will merely continue executing at line 110. The
computed GOSUB statement remembers the next line number (in this case,
110). It does not matter which of the subroutines is called; the called
subroutine’s RETURN statement will branch back to the stored line
number (in this case, 110).

You can nest computed GOSUB statements, just as you can nest
standard GOSUB statements.

IF-THEN Statement

The arithmeticand relational operators described earlier in this chapter
are frequently used in IF-THEN statements. This gives a BASIC program
decision-making capabilities. Following IF you enter any expression. If the
expression is true, the statement(s) following THEN are executed. However,
if the expression is false the statement(s) following THEN are not executed.
Here are three simple examples of IF-THEN statements.

18 T QeDaE TLIEL! ETEIT M3
i AT N=U7« 1Nain ™4 Uit L

48 IF CCE{"M" THEM IM=8

30 IF Q<14 AWD MM GOTO 86

The statement on line 10 causes a PRINT statement to be executed if
the value of floating point variable A is five more than the value of floating
point variable B. The PRINT statement will not be executed otherwise. The
statement on line 40 sets floating point variable IN to 0 if string variable CC$
is any letter of the alphabet in the range A though L. The statement on line
50 causes program execution to branch to line 66 if floating point variable Q
is less than 14 and floating point variable M is not equal to floating point
variable M1. Otherwise, program execution will continue with the state-
ment on the next line (GOTO can substitute for THEN).

If you do not understand the evaluation of expressions following IF,
then refer to the discussion of these expressions at the beginning of this
chapter.

Input/Output Statements

There are a variety of BASIC statements that control the transfer of
data to and from the computer. Collectively, these are referred to as
input/output statements. The simplest input/output statements control

Chapter 3 Programming the C-64 Computer 4104

data input from the keyboard and data output to the display. There are also
more complex input/output statements that control data transfer between
the computer and peripheral devices such as cassette units, diskette units,
and printers. These more complex input/output statements are described in
Chapter 8.

Since we have already encountered the PRINT statement, we will
discuss this statement first.

PRINT STATEMENT

You can use the word PRINT or a question mark to create a PRINT
statement.

Why use PRINT instead of DISPLAY or some abbreviation of the
word display? The answer is that in the early sixties, when the BASIC
programming language was being created, displays were very expensive and
generally unavailable on medium- or low-cost computers. The standard
computer terminal had a keyboard and a printer. Information was printed
where today it is displayed; hence the use of the word “print” to describe a
statement that causes a display.

The PRINT statement will display any data. Text must be enclosed in
quotes. For example, the following statement will display the single word
“TEXT™

18 PRINT "TEXT"
or

1@ ?"TEXT"

To display a number, you place the number, or a variable name, after
PRINT. This may be illustrated as follows:

10 A%=10

28 ?3.A%

The statement at line 20 displays the number 5 and then the number 10 on
the same line.

You can display a mixture of text and numbers by listing the informa-
tion to be displayed after PRINT. Use commas to separate individual items.
The following PRINT statement displays the words “ONE”, “TWO”,
“THREE”, “FOUR”, and “FIVE”, followed by the numeral for each
number:

18 ?"0ONE".,1,"TWO", 2, "THREE", 2, "FOUR", 4, "FIVE", 3

102 our Commodore 64

If you separate variables with commas, as above, then the C-64
computer automatically assigns 11 character spaces for each variable
displayed. Try executing the statement illustrated above in immediate mode
to prove this to yourself. If you want the display to remove the empty spaces,
separate the variables with semicolons, as follows:

18 PRINT "OME",1,"TWO";2,"THREE",3;"FOUR";4,"FIVE",5

Enter this statement in immediate mode and display it to see how the
semicolon works.

A PRINT statement automatically advances to the next line of the
display unless you suppress it. You can suppress this feature by putting a
comma or a semicolon after the last variable. A comma after the last
variable will continue the display at the next 1 1-character space boundary.
To illustrate this, enter and run the following program:

1B PRINT "OME",1,;"TWO",2
28 PRIMT "THREE",3

Now add a semicclon to the end of the statement on line 10 and again
execute the program by typing RUN. The two lines of display will now occur

on a single line.

We have been illustrating the numerals by inserting them directly into
the PRINT statement. You can, if you wish, display the contents of variables
instead. Try entering and running the following program, which uses vari-
able A%(1) to create digits:

18 FOR I=1 TO 3

20 AX(I =]

38 MEXT

4@ PRIMT "ONE";AXCLY; "TWO"iAXCZ), "THREE" i AZ(3)
"FOUR" i H%C4)

S8 GOTO S8

You can put the displayed words into a string array and move the PRINT
statement into the FOR-NEXT loop by changing the program as follows:

1@ DATA "OMWE","TWO","THREE","FOUR","FIVE"
20 FOR I=1 TO S

30 AZ(I=I

4@ READ N#(I)

50 PRINT .MECI,RUCIY)

6@ NEXT

78 60TO 7@

Chapter 3: Programming the C-64 Computer 103

The program shown above is not well written. A%(1) can be eliminated,
and N$ need not be anarray variable. Can you rewrite the program using N$
and removing A%(1) entirely?

QUOTES IN STRINGS

Although most BASIC programs will not need to print quotation
marks, there are some that do, such as “electronic typewriters” or other
programs that deal with words rather than numbers.

Since quotation marks indicate the beginning and end of strings, you
cannot put them in the middle of a string. You can, however, puta quotation
mark into a string ora PRINT statement using the BASIC function CHRS.
CHRS acts like an array of all the possible characters. You supply a
subscript, and CHRS returns the character corresponding to that number.
The values of the subscripts and the characters they produce are listed in
Appendix E. The value for a quotation mark is 34. Using CHRS, you can
print a quotation mark with a statement such as

168 PRINTCHR$(34,,"THIS IS DISPLAYED IM QUOTES".CHR$:34)

If you PRINT a string containing control characters, such as CRSR UP
or HOME, you must take an additional step. In Chapter 2 we described the
quote mode. In quote mode, cursor movement keys are translated into
special characters so they can be stored in strings. This allows your program
to perform these functions while it is running.

“Quote mode” also applies to output. To allow you to LIST programs
containing these control characters, the portion of BASIC that puts
information on the display “watches” for quotes. When it finds a quotation
mark, it goes into quote mode and displays control characters in the
reversed form you see when typing them into a program. This can do
unpleasant things to a carefully planned display.

You can escape from quote mode while printing just as you do when
typing in a program: with a second quotation mark or a RETURN. Since
programs that print quotation marks usually print them in pairs, you will
seldom see a problem. If your program must print only one, you can use
CHRS to delete the first one, and then print another to leave quote mode.

186 PRINTCHR$(34;CHR#(20),;CHR&: 347, " @RYS QUOTED STRINGE",

CHR%(34)
CHRS$(20) deletes the first quotation mark. Only the second one will appear
on the screen.

404 our Commodore 64

PRINT FORMATTING FUNCTIONS

We use the word formatting to describe the process of arranging
information on a display (or a printout) to make it easier to understand or
more pleasing to the eye. Given the PRINT statement and nothing else,
formatting could become a complex and painful chore. For example, sup-
pose you want to display a heading in the middle of the top line of the
display. Does that mean displaying space codes until you reach the first
heading character position? Not only would that be time-consuming and
likely to cause errors, but it would also waste a lot of memory, since each
space code must be converted into a computer instruction. Fortunately,
C-64 BASIC provides three PRINT formatting aids: the SPC, TAB, and
POS functions.

SPC FUNCTION

SPCis a space-over function. You include SPC as one of the termsina
PRINT statement. After the letters SPC you include, in parentheses, the
number of character positions that you wish to space over. For example,
you could display a heading beginning at the leftmost character position of
the display as follows:

10 PRIMT"HERDING"

To center the heading on the screen you would first space over sixteen
character positions, as follows:

1@ PRIMT ESPCC16), "HERDING"

Notice the semicolon after the SPC function. A comma after SPC will
start displaying text at the next ll-character boundary following the
number of spaces specified by SPC.

When you include the SPC functionina PRINT statement you simply
cause the next printed or displayed character to be moved over by the
number of positions specified after SPC; no other PRINT statement syntax
is changed.

TAB FUNCTION

TAB is a tabbing function similar to typewriter tabbing.
Suppose you want to print or display information in columns. You

Chapter 3 Programming the C-64 Computer 408

must first calculate the character position of the line where each column is to
begin. This may be illustrated as follows:

Column Number
)

0 13

JONES, P. J. 431-25-6277
BURKE, P. L. 447-71-7614
ROBINSON, L.W. 231-80-8421
etc. etc.

In the illustration above, columns begin at character positions 0 and 13.
Now, instead of computing space codes as you go from line to line, following
each column entry you simply insert a TAB function in the PRINT
statement.

Consider one line of the display illustrated above. Counting character
positions, you could display the line without tab stops, as follows:

18 PRINT "JOMES.P.J. 431-25-6277"

Instead of inserting space codes, you could use the space function and
shorten the statement, as follows:

180 PRINT "JOMES,P.J.";SPC(3),"431-25-£277"

But tabbing is easier because you tab to a known column number instead of
counting spaces.

Note that the entries in the third and fourth columns are numbers that
were entered as text. Try rewriting the PRINT statement to display these as
numbers. The numbers no longer align as they did when they were displayed
as characters (in Chapter 5 we discuss the quirks associated with display
formatting). In this case, numbers leave a space for a negative sign, and they
donotdisplay zeros occurring after the decimal point. That is why there are
differences.

POS FUNCTION

POS returns the current cursor position. The position is returned as a
number, equal to the column number where the cursor is blinking. Write the
POS function as POS(0).

The following statement demonstrates the capability of POS:

10 PRINT"CURSOR POSITION I8",POSC@)

106 our Commodore ¢4

Execute this statement in immediate mode. The display will appear as
follows:

?"CURSOR POSITIOW IS",PD5(@)
CURSOR POSITION IS 18

The cursor was at character position 18 after displaying CURSOR
POSITION IS. If you add some spaces after IS and before the closing
quotes, you will change the number 18 to a larger number.

INPUT STATEMENT

When an INPUT statement is executed, the computer waits for input
from the keyboard; until the computer receives this input, nothing else will
happen.

An INPUT statement begins with the word INPUT, which is followed
by a list of variable names. Entered data is assigned to the named variables.
The variable name type determines the form in which data must be entered.
A string variable name (ending with a $) can be satisfied only by text input;
any number of text characters can be entered for a string variable. To
demonstrate string input, key in the following short program and run it:

18 INPUT A$
20 PRIMT A%
38 GOTO 18

Upon executing an INPUT statement, the computer displays a ques-
tion mark, then waits for your entry. The program illustrated above displays
any text which you enter as you enter it. The text is also displayed a second
time because of the PRINT statement on the next line. The first display
occurs when the INPUT statement on line 10 is executed. The second
display is in response to the PRINT statement on line 20.

You input integer or floating point numeric data by listing the appro-
priate variable names following INPUT. Separate individual entries with
commas. The comma is not used for punctuation in an INPUT statement.
The following example inputs a text word, an integer number, and a floating
point number, then displays these three entries. Enter and run the program.

18 IMPUT A%.A,A%
20 PRINT R#$.A.A%
38 60TOD 1@

Chapter 3 Programming the C-64 Computer 107

You must enter some text followed by a comma, then an integer
number followed by a comma, then a floating point number followed by
RETURN. Any departure from this input sequence will cause an error;
following an error the computer displays two question marks. You will have
to reenter the data in the correct format. If the computer then displays a
question mark with the message REDO FROM START, enter the data
again.

Now rewrite the PRINT statement so that A$, A, and A% are in an
order that differs from the INPUT statement. Rerun the program.

As we discussed earlier, any integer can be represented using a floating
point number. Therefore, you can input an integer value for a floating point
variable. You cannot input a floating point value for an integer variable,
however. You cannot enter text for an integer or a floating point number,
but you can enter a number for a text variable; the number will be inter-
preted as characters rather than a numeric value. Try these variations to
satisfy yourself that you understand the data entry options.

The INPUT statement is very fussy; its syntax is too demanding for any
normal human operator. Imagine the office worker who knows nothing
about programming. On encountering the types of error messages that can
occur if one comma is out of place, one may well give up in despair. You are
therefore likely to spend a lot of time writing “idiot-proof” data entry
programs; these are programs that are designed to watch out for every
conceivable type of mistake an operator can make when entering data. An
idiot-proof program will cope with errors in a way that the operator can
understand. Chapter 4 describes data entry programming in detail.

One simple trick worth noting is the INPUT statement’s ability to
display data. You can precede each item of data entry with a short message
telling the operator what to do. The message appears in the INPUT state-
ment as text between quotes. A semicolon must occur after the text to be
displayed and before the first input variable name. Here is an example.

18 INPUT "EMTER THE MUMBER 1",H
20 IF M<{>1 THEMW GOTO S@

38 PRIMT "OK"

48 GOTO 40

50 PRINT "MO, DuUMMY,"

68 GOTO 1@

This program prints a message, then waits for a single data entry.
The prompting feature of INPUT does have a pitfall, however: if the

108 ‘o Commodore 44

prompt string is too long, BASIC tries to read the prompt along with the
input typed at the keyboard. This will happen only if the prompt extends
beyond the end of a row on the screen. To avoid this problem, always make
sure your prompts are less than 40 characters long. The problem can also
arise if the INPUT statement follows a PRINT statement that ends with a
semicolon. Since the prompt starts in the middle of the line, it must be short
enough to ensure that it does not “overflow” to the next row of the display.
If you inadvertently make a prompt too long, you may find yourself
trapped. BASIC will keep telling you to “REDO” your response, then
display the prompt again. To escape from this trap, use the DEL key to delete
the prompt, then type your response. The only other way is to press the
RUN/STOP and RESTORE keys simultaneously. This aborts the program.

“PRESETTING” THE RESPONSE TO INPUT

After printing your prompt, INPUT prints a question mark and a
space. Anything to the right of that space on the screen is treated as if it were
typed from the keyboard. By adding backspaces to your prompt, you can
“preset” the response so that the user need only press RETURN. To use this
feature, add two spaces to your prompt string, followed by the response.
Then use CRSR LEFT to move the cursor back to the first of the added spaces.
When INPUT prints its question mark and space, they will replace your two
spaces, positioning the cursor on the response. If the user simply presses
RETURN, INPUT will read the response you have set up on the screen.

You can also preset responses by assigning a value in advance to the
variable you will INPUT. If the user responds with justa RETURN, the value
already in the variable is not changed. Note, however, that if you INPUT
multiple variables, this is an all-or-nothing proposition: if the value for the
first variable is typed in, values for all variables must be given.

GET STATEMENT

The GET statement inputs a single character. No carriage return is
needed. The single character input can be any character the C-64 recognizes,
or it can be a numeric value between 0 and 9. The entry will be interpreted as
a character if a string variable name follows GET. Type in the following
program and run it:

18 GET As

28 PRIMT A$
38 GOTO 1@

Chapter & Progromming the C ¢4 Computer 4109

When you run this program, everything will race off the top of the
display. Each time you press a key, the character typed will also race off the
top of the screen. This is because GET does not wait for a character entry,
but assumes the entry is there. You can make GET wait for a specific
character by testing for the character as follows:

18 GET As

20 IF ASCY"X" THEM GOTO 18

30 PRINT A

48 GOTO 18
This program waits for the letter X to be entered. Nothing else will do.

GET can also be programmed to wait for any keyboard entry. This
program logic makes use of the fact that the GET statement string variable is
assigned a null character code until a characteris input at the keyboard. The
null code, 00, cannot be entered from the keyboard, but can be specified
within a program using two adjacent quotation marks (“). Here is the
necessary program logic.

18 GET A%

20 IF A$="" THEN GOTO 1@

30 PRINT F$

48 GOTO 1@

If the GET statement specifies an integer or floating point variable, the
input is interpreted as a numeric digit. The integer or floating point variable
appearing in a GET statement is assigned a value of 0 until data input is
received. But since you can enter 0 at the keyboard, program logic has no
way of knowing whether the 0 represents a valid entry or the absence of any
entry. This can present problems to programming logic that checks for an
entry, as shown above. GET statements therefore usually receive string
characters.

Programs use the GET statement most frequently when generating
dialog with an operator. For example, a program may wait for an operator
to indicate that he or she is there by entering a specific character (for
example, “Y” for “yes”). Here is the appropriate program logic.

16 PRINT "OPERATOR! ARE YOI THERE? TYFE ¥ FOR "YES"

28 GET A$

30 IF A$OO"Y" THEN GOTO 28

43 PRIMT "OK, LETS GET OM WITH IT"

Notice that this sequence never displays the character entered at the
keyboard. Try rewriting the program so that any character entered in the
GET statement is displayed.

410 ‘our Commaodore &4

PEEK and POKE Statements

PEEK and POKE are two C-64 BASIC statements that you will
encounter in later chapters. The C-64 computer has 65,536 individual
memory locations, each of which can store a number ranging between 0 and
255. (This strange upper bound is in fact 25—1.) All programs and data are
converted into sequences of numbers which are stored in this fashion.

The PEEK statement lets you read the number stored in any C-64
computer memory location. Consider the following PEEK statement:

18 A%=PEEK (208>

This statement assigns the contents of memory location 200 to variable A%.
The PEEK argument may be a number, as shown, an integer variable name,
or an integer expression, but it must evaluate to the address of a memory
location.

The POKE statement writes data into a memory location. For exam-
ple, the statement

23 POKE £00@.A8%

stores the contents of variable A% in memory location 8000. Each POKE
argument may be a number, a variable, or an expression with a value
between 0 and 255. A floating point value is automatically converted to an
integer.

Youcan PEEK into read/ write memory or read-only memory, but you
can POKE only into read/write memory. Read-only memory, as its name
implies, can have its contents read, but cannot be written into.

END and STOP Statements

The END and STOP statements halt program execution. You can
continue execution by typing CONT. You do not have to include END or
STOP statements in your program, but these statements do make programs
easier to use.

In many of the programming examples given in this chapter we have
used a GOTO statement that branches to itself in order to stop program
execution. For example, the statement

S8 GOTO 5@

Chapter 3: Programming the C-¢4 Computer 444

will execute endlessly since the GOTO statement selects itself for the execu-
tion. We could replace this statement with a STOP statement. When a
STOP statement is executed, the following message will appear:

BRERAK TH HXKK

Then execution stops. XX XX is the line number of the STOP statement. If
you have more than one STOP statement in your program, use the line
number to identify which one was executed.

FUNCTIONS

Another element of C-64 BASIC is the function, which in some ways
looks like a variable, but in other ways acts more like a BASIC statement.

Perhaps the simplest way of illustrating a function is to look at an
example in an assignment statement.

18 A=SHRCB)

The variable A has been set equal to the square root of the variable B. SQR
specifies the square root function. Here is a string function.

20 C#$=LEFTS$(D$,2)

In this example the string variable C$ is set equal to the first two characters
of string variable D$.

Functions can substitute for variables or constants anywhere in a
BASIC statement, except to the left of an equal sign. In other words, you can
say that A = SQR(B), but you cannot say that SQR(A) = B.

We have already used four functions. SPC, TAB, and POS are system
functions used with the PRINT statement to format displays. PEEK isalsoa
function.

The discussion that follows shows you how to use functions. A brief
incomplete summary of the C-64 BASIC functions is presented here, but
complete descriptions of all functions are given in Appendixes G and H.

You specify a function using an abbreviation (such as SQR for square
root), followed by arguments enclosed in parentheses. In the case of
A = SQR(B), SQR requires a single argument, which in this case is the
variable B. For C$ = LEFT$(D$,2), LEFTS specifies the function; the two

112 our Commodore 64

arguments D$ and 2 are enclosed in parentheses. Generally stated, any
function will have one of the following two formats:

Single argument for a function
that has just one argument

function (argl)

function (argl, arg2)

Two arguments for a function
that needs two arguments

Letters that specify the function

A few functions need three arguments. Each function argument can be a
constant, a variable, or an expression.

A function appearing in a BASIC statement is evaluated before any
operators. Every function in a BASIC statement is reduced to a single
numeric or string value before any other part of the BASIC statement is
evaluated. For example, in the following statement the SQR and SIN
functions are evaluated first:

18 B=24.7W(SAR(CI+5:~SIM(B,. 24D

Suppose SQR(C) = 6.72 and SIN(0.2 + D) = 0.625. The statement
on line 10 will first be reduced to

10 B=24,7H(E.72452-0.623

This simpler statement is then evaluated.

Arithmetic Functions

Here is a list of the arithmetic functions that can be used with C-64
BASIC.

INT Converts a floating point argument to its integer
equivalent by truncation.

SGN Returns the sign of an argument: +1 for a positive
argument, — | for a negative argument, 0 for 0
argument.

ABS Returns the absolute value of an argument. A
positive argument does not change; a negative
argument is converted to its positive equivalent.

SQR Computes the square root of the argument.

Chapter 3: Programming the C-64 Computer 113

EXP Raises the natural logarithm base e to the power of
the argument (e2g).

LOG Returns the natural logarithm of the argument.

RND Generates a random number. There are some rules
regarding use of RND; they are described in

Chapter 5.

SIN Returns the trigonometric sine of the argument,
which is treated as a radian quantity.

CcoS Returns the trigonometric cosine of the argument,

which is treated as a radian quantity.

TAN Returns the trigonometric tangent of the argument,
which is treated as a radian quantity.

ATN Returns the trigonometric arctangent of the
argument, which is treated as a radian quantity.

The following example uses an arithmetic function:

18 FA=2.743

20 B=IWTC(AI+7

38 FPRINT B

48 STOF
When you execute this program, the result displayed is 9, since the integer
value of A is 2. As anexercise, change the statement online 10toan INPUT
statement. Change line 40 to GOTO 10. Now you can enter a variety of
values for A and watch the integer function at work. Use this program to
experiment with various functions.

Here is a more complex example using arithmetic functions.

i@ INPUT A.B

20 IF LOGCAL{P THEN A=1/A
30 PRINT SQRCAIKEXP(B)

406 GOTO 1@

If you understand logarithms, then as an exercise change the statement on
line 20, replacing the LOG function with arithmetic functions that perform
the same operation.

The argument of a function can be an expression; the expression itself
may contain functions. For example, change line 30 to the following state-
ment and rerun the program:

30 PRINT SQRCAKEAP(BI+3)

Now experiment with arithmetic functions by creating PRINT statements
that make complex use of arithmetic functions.

114 our Commodore 64

String Functions

String functions allow you to manipulate string data in a variety of
ways. You may never need to use some of the arithmetic functions, but you
must make the effort to learn every string function.

Here is a list of the string functions that can be used with C-64 BASIC.

STRS Converts a number to its equivalent string of text
characters.

VAL Converts a string of text characters to their
equivalent number (if such a conversion is
possible).

CHRS$ Converts an 8-bit binary code to its equivalent
ASCII character.

ASC Converts an ASCII character to its 8-bit binary
equivalent.

LEN Returns the number of characters contained in a
text string.

LEFTS Extracts the left part of a text string. Function
arguments identify the string and its left part.

RIGHTS Extracts the right part of a text string. Function
arguments identify the string and its right part.

MIDS$ Extracts the middle section of a text string.
Function arguments identify the string and the
required mid part.

String functions let you determine the length of a string, extract por-
tions of a string, and convert between numeric, ASCII, and string charac-
ters. These functions take one, two, or three arguments. Here are some
examples.

STREC145
LENC"ABC")
LENCAZ+BS
LEFT£(5T%.,1)

System Functions

Inthe interest of completeness, C-64 BASIC system functions are listed
below. They perform operations that you are unlikely to need until you are
anexperienced programmer. The only system function you are likely to use
fairly soon is the time-of-day function. If you print many variations of a

Chapter 3: Prograrmming the C-64 Computer 4 15

report (or any other material) in a single day, you may wish to print the time
of day at the top of the report. That way you can tell the sequence in which
these reports were generated.

PEEK Fetches the contents of a memory byte.

TI$,TI Fetches system time, as maintained by a program
clock.

FRE Returns available free space—the number of unused
read/write memory bytes.

SYS Transfers to subsystem.
USR Transfers to user assembly language program.

User-Defined Functions

In addition to the many functions that are a standard part of C-64
BASIC, you can define your own arithmetic functions, providing they are
not very complicated. User-defined string functions are not allowed. Here is
an example of a short program that uses a DEF FN (define function)
statement.

10 DEFMP(X)=100Mx
20 INPUT A
38 PRINT A.FMPCAD
4@ GOTO 20

Following the DEF FN entry you can have any valid floating point
variable name. In this case P was entered, therefore the function name
becomes FNP. If the variable name were AB, the function name would be
FNAB.

Inthe DEF FN statement, a single variable, enclosed in brackets, must
follow FN. This is the only variable name that can appear to the right of the
equal sign. This variable name is used within the DEF FN statement only;
you can use it in the body of the program without affecting the function.

CHAPTER

Advanced BASIC
Programming

Although the previous chapter covered most of the inner workings of
C-64 BASIC, you will find that there is much more to be learned about
programming. Whereas Chapter 3 covered the language itself, this chapter
and those that follow will provide programming techniques and hints that
will help you get the most out of your C-64.

Because this chapter concerns itself with more advanced programming,
program examples and explanations will be longer. You will probably want
to enter and run each example in order to better understand the concepts
being discussed.

Many of the program examples covered in this chapter are designed for
use in programs you write yourself. Some are written as subroutines, and
others can be turned into subroutines with minor changes.

PROGRAMMING WITH STRINGS

A string can do much more than simply contain data that cannot be
expressed in numeric form. String operations and functions give you the
ability to change and manipulate data.

117

118 o Commoaoore 44

Concatenating Strings

Strings can contain alphabetic or numeric characters or combinations
of these. When handling strings, it may be useful to link shorter strings
end-to-end in a chain-like fashion to create one large string. This linking
process, as you may recall, is called concatenation.

String 3

, A

N
String 4 I String 1 E String 2 [String 3 J

Suppose, for example, you want to create one large string, Z$, contain-
ing the alphabet A through Z. To do this, you can link the last character of
AS, shown below, to the first character of J$, and the last character of J$ to
the first character of S$.

Gl ol [] Lx s [olvlolr] STV IwIxv 2]

zs[a[s]c]pofe[rlc[u[i]s[k[tu[x]ofrfe[r][sT]u]v]|w][x]v]Z]

When a plus sign appears between two numeric expressions, it adds the
values of the expressions. However, the plus sign will concatenate strings
when string variables appear on either side of it.

The same is not true of the minus sign. Strings cannot be separated or
“de-concatenated” in the same way they are concatenated; they cannot be
“subtracted” the way they are “added.”

For instance, to create string X$, containing the contents of J$ and S$
from our original strings A$, J$, S$, and Z$, it would be incorrect to type

Chapte 1 Aavanced BASIC Progromming 119

Xe=2¢-FA%

Try it yourself. Enter the values of A$,J$,S$,and X$=Z$—AS into the
C-64 as shown. The computer will respond with the message 7TYPE MIS-
MATCH ERROR IN LINE 50.

18 AR$="ABCDEFGHI"

28 J#="JKLMHOPOR"

30 SE="STUVMWXYZ"

40 Z=A$+J$+5%

50 X$=2%-A% ~————— Incorrect attempt to get J through Z string
€8 PRIMT A%

Incorrect

RUH

?TYPE MISMATCH
ERROR IN 58
The correct way to extract part of a larger string is to use string
functions. With the LEFTS$, MID$,and RIGHTS functions, it is possible to
extract any portion of a string. In our example, the letters J through Z can be
extracted as follows:

50 A$=RIGHTE®.(Z%.17)
X$=
RIGHTS((A[B[C[DJE[F]G[u[t[u[k[u[m][n]o]P[Q]R[sTIU]V]W][X]Y]Zz]
xs=[s[kJum]xTolpTor]sT T vIWIX]Y] 7]

The 17 points to the 17th character from the right (RIGHTS) as the first
character of the string and includes the rest of the characters to its right. The
string may also be built by concatenating J$ and S$.

50 XE=JE+5E '
xs=[s k[M[~JoTr o R] +[sTT]ulv]w][x]v]z
- CIR[e P e] [T PRI 2]

Numeric Strings

A numeric string is a string whose contents can be evaluated as a
number. Numeric strings can be created in two different ways, each yielding
slightly different results.

120

your Cormimooor

When numeric variables are assigned to numeric strings using the STRS
function, the sign value preceding the number (blank if positive, — if
negative) is transferred along with the number. This is shown in the follow-
ing short program:

18
20
30
40
Sa
&0
7’8

RUM §
AB= 1234
Te= 1224

AB=12345

PI= -1#3.14139265
T#=5TRE$(HB)
HE=STREC(PI)

PRIMT "AB=";AB
PRINT "T$=",T%
PRINT "H$=";N$

Space left for sign value

=
d
]

HE=-3. 14153265

However, if a number is entered enclosed in quotation marks, or if the
number is entered as a string with an INPUT or READ statement, then the
numeric string is treated like any other alphabetic or graphic string. No
blank fora positive sign value is inserted before the number. This is demon-
strated in the following program:

18
bl
30
40
1%
(Y4
79

RUM
AB= 12
T4=
Ré=

Concatenate the two numeric strings T$ and Q$ to make a new num
string W$ so that the string W$ contains the ien digits 1,2,3,4,5,6,7,8

AB=123475
T#="12343"
READ R#

DATA 12345
PRIMT "AB=",AB
FRIMNT "T#=",T#
PRIHT "R$=" R$

<+—— Space inserted
No space inserted
No space inserted

345
12345
5

1234

eric
A & £ ™ n N
7,8.,9,0.

3P

Here is one possibility:

18 T=12345
20 U=67890
38 T#=STR$(T)

Chapter 4: Advanced BASIC Programming 121

48 QE=STRE(QU)
50 Ws=T$+u$ ~—————Create new string W§$
60 PRINT “lWg=

RUM
W= 12345 £7VE90

Why are there blanks before the 1 and 6? The T$ and QS string were
originally positive numeric variables T and Q. When T and Q were con-
verted from numbers into strings, the blank sign positions were transferred
along with the numbers.

T[p 1 2345 Qb 6789 of

Ts[p 1 2 3 4 5] Qs[p 6 789 0f

Therefore, when T$ and Q$ are concatenated, the new string W$ contains a
first-digit blank, and an embedded blank before the first digit of QS.

T8 + Qs = W§

LR ETE] B hTo] hlelela 3 Te e s o]0]

To get rid of the blanks, go back to the separate strings T$ and QS$.
Look again at the contents of T$ and Q$ above. The only values we want in
WS are the numbers to the right of the sign value in both T$ and Q$. With
the LEFTS, MIDS$, and RIGHTS commands, you can select any character
or group of characters from within a given string. We want all the characters
to the right of the first character, which is the sign value (either blank or—).
T$ = MID$(TS$,2) does the trick.

Before: After:
ts[pft]2fsfafs] ws[i]2]3]a]s]

Since the first digit needed is in the second position of the string, the
C-64 is instructed to use only the values starting in the second position. We
can concatenate T$ and Q$ and drop the leading blanks all in one statement.

422 our Commodore ¢4

W$ = MIDS$(TS$,2)+ MIDS$(QS,2)

N N mpm— ——

Accept TS, starting Accept QS, starting
with second character with second character

Concatenate
TS$ and QS

Our example program, amended to eliminate the sign digits, appears as
follows:

18 T=12345

28 (=E7350

30 T$=STR$(T)

s =[p]r]2]3]4]5]
42 O$=STRS(D)
os =[n]e[7[+]7]0]
56 WS=MIDECTS, 2)+MIDEQS, 27
ws =Ts [1[2]3]a]s]+Qs|e[7]8]9]0]
ws = [e [[+ o]0]

€0 PRINT "W&=";U$

RIUM
WE=1234567850

INPUT AND OUTPUT PROGRAMMING

It is usually easy for beginning programmers to become acquainted
with how BASIC calculates numbers. When writing programs that receive
input from the keyboard and display data on the screen, however, the
programming becomes trickier.

Chaopter 4 Advanced BASIC Programming 123

Nearly every program requires some kind of input from the keyboard.
If you are the person operating the computer, you can probably put together
some INPUT statements that get the required data and process it in your
program. But if someone else is operating the computer, sooner or later the
wrong key will be pressed or an incorrect entry will be made. Every comput-
er operator will make mistakes at some time. You should write programs
that allow for conceivable human errors.

The same is true for output programming. If you display the results of a
program with a set of PRINT statements, those results have to be readable
to the person looking at the display. This does not happen by hacking away
at program statements until the output looks a little better; you must give it
some thought while you are writing the program.

Assume that you want to write a program that inputs names and
addresses. You could write a program to do this quickly and easily enough.

18 REM HAME/ADDRESS PROGRAM

20 DIM NM£(28),AD$(28),CS¢(28), ZC¥(28)
21 REM ARRAYS ARE:

22 REM NM#() FOR NAME

23 REM RD$(> FOR RDDRESS

24 REM CSs$(> FOR CITY AMD STATE
26 REM 2C#<) FOR ZIP/POSTAL CODE
30 FOR I=1 TO 20

40 INPUT "NAME:",MM$(I)

5@ INPUT "ADDRESS:",ADECI

60 INPUT "CITY, STATE:",CS$CI)

78 INPUT "ZIP/POSTAL CODE:";ZC#CI1)
80 NEXT I

9@ END

Here is an example of how the program would appear on the display.

RUN

HAME : ¥ MAM THANG

ADDRESS:? 2800 COMSTITUTIOM DR.
CITY, STATE:? CASTRO VALLEY., CA.
7EXTRA IGMORED

ZIP/POSTAL CODE:? 91912

NAME:? PETER BILT

ADDRESS:? 208 KNOW PL.

CITY, STATE:? AMARILLOD, TEXAS
P?EXTRA IGNORED

ZIP/POSTAL CODE:? 65432

4124 our Commodore 64

In this program, the C-64’s screen is unformatted. The screen width is 40
characters; most names and addresses entered would wrap around to the line
below the original entry because the entry message, or prompt, takes up sev-
eral spaces on the input line.

While running this program, the person entering names and addresses
might discover a mistake in a name after pressing RETURN. But the operator
can’t go back to fix the name when the program is asking for address input.

Other problems with this program are obvious if you enter and run it.
The display is not very easy to read. One entry for a name and address
follows another, all the way down the screen. This kind of clutter will
increase the possibility of incorrect entries.

The INPUT statement on line 60 will cause the program to fail if the
operator puts a comma between the city and state when entering them. The
city and state have to be entered without a comma between them. Try
entering a city and state separated by a comma (for example, OAKLAND,
CALIFORNIA). This is what you get.

ADDRESS:? OAKLAND, CALIFORMIA

Ci 1
7EXTRA IGNORED

Recall from Chapter 3 that the INPUT statement allows you to enter
more than one item of data on a single line, as long as each one is separated
by a comma. Therefore, when OAKLAND, CALIFORNIA was entered,
C-64 BASIC interpreted it as two separate strings when only one string was
expected—hence the ’EXTRA IGNORED message. Inaddition to the error
message, the program stored only OAKLAND and discarded CALIFOR-
NIA, which was considered “extra” input.

Screen Layout

Starting the display at row 0, column 0 (the upper left corner), the
rightmost column is 39, and the lowest row is 24. The screen layout in this
grid form s a set of coordinates. A coordinate is the point at which a particular
column and row intersect on the display.

Chaopter 4 Advanced BASIC Programming 125

Row

Column

123456789101112131415161718192021222324252627282930313233343536373839

] [

| [

T

© W LA W —

A coordinate on the C-64 screen is expressed as (row,column). That is,
the coordinate of the 12th row and 20th column will be expressed as (11,19).
The first column of the fourth row is (3,0), and so on. (Remember that the
row and column numbers start at 0, not 1.)

The coordinates (11,19) would appear at this point on the screen.

Row

Column

1234567891011121314151617181920212223242526272829303132333435363738 39

[

1]

[T

426 ‘our Commodore 64

Creating a Formatted Display

Keep in mind the maximum possible length of each entry. For instance,
a name with a job title, such as “MAJOR SEIDELL—DIRECTOR OF
STRATEGIC OPERATIONS”, will wrap around to the next display line.
Allow space for such entries when you format a display. Centering prompts
on the display will also make it appear more orderly.

Formatted displays should be used in programs that require a good
deal of data entry. Three distinguishing features of proper data entry tech-
niques are a readable, uncluttered display, clear directions to the operator,
and the ability of the operator to correct mistakes.

Programming Cursor Movement

If you encountered the C-64’s quote mode while entering program state-
ments, you will already know how to program cursor movement.

If you edit a program statement containing a string constant, C-64
BASIC will interpret a control key as an actual character within the string
you are trying to edit. For example, when you press the CRSR UP/DOWN key
between the quotes in a string, it will appear as an inverse-video Q on the
screen. Instead of moving the cursor up or down one line as you intended,
C-64 BASIC inserted the CRSR UP/ DOWN key into the string. If you print the
string containing the cursor control character, the cursor will move down.

The statement

1818 R$=" NOOOOORDDOOOODD0N "

sets up a string of 22 CRSR DOWN characters which, when printed by a
PRINT statement, will move the cursor down 22 rows. Likewise, a string
containing 21 CRSR/RIGHT characters will move the cursor to the right 21
spaces.

1020 Ce="nDRDBEBDREDNRDINI"

These strings containing the cursor control characters will allow you to
display a character anywhere on the display screen.

Chapter 4 Advanced BASIC Programming 427

A CURSOR MOVEMENT SUBROUTINE

With three strings containing the cursor control characters to move to
the home position, down, and to the right, it is possible to move to any
coordinate position on the C-64 display. How?

The coordinates of the upper left corner of the screen are (0,0). You can
move the cursor anywhere by printing a string containing the CLR/HOME
key, followed by strings that move the cursor down and to the right.

Here is an example.

19 REM PROGRAMMED CURSOR MOYEMEMT

20 PRIWT "":REM CLERR THE SCREEH

38 R¥=28:'1%=4:GOSUB 1bo@

4@ PRIMT "IGHWORAMCE IS BLISS"

S8 GOTo Se

1808 REM CUREOR POSITIOMING SUBROUTIME
1810 R$=" NDOUaIala eIl (eI

1028 C&="nnDBDBEbERERDEEDEDBENS]"

1838 PRIWT "&", :REM MOVE CURSOR TO (8.8
1648 PRINT LEFT$(R&.RX),LEFT$(CS, Cho;
1050 RETURM

Line 20 clears the screen, removing any old text from the display. (This
has nothing to do with cursor positioning; it is just “housekeeping” to make
a cleaner display.) The integer variables R% and C% on line 30 stand for
“row” and “column.” The three statements combined on line 30 set the row
(20) and the column (4), followed by a GOSUB that moves the cursor to the
coordinates (20,4).

You may not understand why the cursor must go to (0,0) first. In order
for the program to move the cursor to the correct coordinates, it has to know
how many rows and columns the cursor is from the coordinates you
selected. The easiest and most efficient way to do this is to move to (0,0) first,
because the program will always know exactly how many times the cursor
must move in order to reach the coordinates (in this case, 20 rows down and
4 columns right).

Let’s take the cursor movement subroutine apart line by line, starting
with lines 1010 and 1020. These two lines are assignment statements that set
up (initialize) the cursor movement strings. R$ contains 22 CRSR DOWN
control characters; C$ contains 21 CRSR RIGHT characters.

Line 1030 prints the CLR/HOME character, thus positioning the cursor
at (0,0). Line 1040 does the real work: it uses the LEFT$ string function to
print the first 20 characters in RS, then the first 10 characters in C$.

128 \our Commodore 44

This cursor movement subroutine will be an integral part of creating
and using formatted displays.

The CHR$ Function: Programming
Characters in ASCII

If you cannot press a key toinclude a character within a text string, you
can still select the character by using its ASCII value.

The CHRS function translates an ASCII code number into its charac-
ter equivalent. This is the format of the CHRS function.

PRINT CHRS$(xxx)

ASCII number from 0 to 255 of
desired character or control

To obtain the ASCII code for a character, refer to Appendix B. Scan
the columns until you find the desired character or cursor control, then note
the corresponding ASCII code number. Insert this number between the two
parentheses of the CHRS function. For example, to create the symbol §
from its ASCII code, look up ASCII code for § in Appendix B. You will
notice that $ has two ASClII values: 36 and 100. Which value should you use?
Either number works. But for good programming technique, once you select
one number over the other, use that number consistently throughout the
program. Insert 36 into the CHRS function as follows:

PRINT CHR#$(36)

Try displaying this character (§) in immediate mode:

FRINT CHR$(3€>

$
Now try displaying ASCII code 100.

PRIMT CHR${10@>

%
The result is the same. Experiment in immediate mode using any ASCII
code from 0 to 255.

You can use the CHRS function in a PRINT statement as follows:

10 PRINT CHR#(36:,CHR$(42) ;CHRE(166

RUN
$hE

Chapter 4: Advanced BASIC Programming 4129

The CHRS function lets you include otherwise unavailable characters such
as RETURN, INST/DEL, and the quote character (*) in a PRINT statement’s
parameters.

You can also use the CHRS function to check for special characters
such as RETURN and INST/DEL. Suppose a program must check character
input at the keyboard, looking for a RETURN key. You could check for a
RETURN (which has an ASCII code of 13) as follows:

1@ GET X$:IF X$(OCHR$(13) THEM 1@

This test would be impossible if you tried to put RETURN between quotation
marks.

28 IF mo"" THEM 10

Impossible

This does not work, because pressing the RETURN key following the first set
of quotation marks automatically moves the cursor to the next line.

28 IF XE)" «—— Press RETURN key

If you attempt to program the INST/DEL or the RETURN key, you will
encounter some surprising results.

The INSERT key is programmable. Inside the quotation marks of a
PRINT statement, it displays as .

If you try to program the DELETE key in a PRINT statement you will
merely erase the previous character, unless the DELETE key occurs within a
sequence of inserted characters.

The DELETE key may be entered following an INSERT, but doing so is
not very useful. The only common use of this feature is in concealing
program lines during a listing (hiding answers for a test, for instance).
Hidden data can be easily rediscovered in several ways, however, so using
DELETE characters within program lines is not advisable.

The RETURN character in a PRINT statement will immediately move
the cursor out of the statement and to the next line.

71 30 \our Commodore ¢4

Data Enfry (Input)

Data entry should be programmed in functional units. A mailing list
program, for example, requires names and addresses to be entered as data.
You should treat each entire name and address as a single functional unit
rather than separate data items. In other words, your program should ask
for the name and address, allowing the operator to enter all of this informa-
tion and then change any part of it. When the operator is satisfied that the
name and address are correct, the program should process the entire name
and address. The program should then ask for the next name and address.

It is bad programming practice to break data input into its smallest
parts. In a mailing list program, for example, it would be bad programming
practice to ask for just the name, process this data as soon as it is entered,
and then ask for each line of the address, treating each piece of the name and
address as a separate functional unit. This approach makes programs diffi-
cult to change and also renders them less readable.

The goal of any data entry program should be to make it easy for an
operator to spot errors and to give the operator as many chances as possible
to fix them.

PROMPTING MESSAGES

Any program that requires data entry should prompt the operator by
asking questions. Questions are usually displayed on a single line and
require a simple response such as “yes” or “no.” For example, a prompt
message such as ANY CHANGES (Y OR N)? would clearly indicate the
question and the available choices.

An operator responds to this message by pressing the Y or N key. Good
programming practice dictates that entries other than Y or N not be
accepted. If the operator replies Y tothe ANY CHANGES prompt, another
prompt will display, suchas WHAT ENTRY LINE TO CHANGE (1-6)?. In
this case, one of six entry lines could be changed; all the operator needs todo
is enter the number corresponding to the line that was entered in error. Of
course, with this approach cach entry line on the display should have an
identifying number.

This type of data entry should be written in subroutines, so the main
program is not clogged up with prompting messages. Also, because a limited
number of choices isallowed. a subroutine could contain the logic necessary
to check the entry against permitted responses.

Chapter 4 Advanced BASIC Programming 134

This has two implications.

1. The subroutine must receive parameters from the calling program.
For example, if a message asks the operator to enter a number, the
calling program should pass the minimum and maximum allowed
numbers to the subroutine as parameters.

2. The subroutine must return the operator’s response to the calling
program. This variable may be a character (for example, Y or N), a
word (such as yes or no), or a number.

A subroutine that prompts fora reply of Y for “yes” or N for “no” usesa
PRINT statement to ask the question, followed by a GET to receive a
one-character response. Since you may have many questions in a program
which require a response of “yes” or “no,” the subroutine should also allow
for a prompt to be passed to the subroutine from the main program in a
string variable. Here are the necessary statements.

3082 REM ASK A QUESTION AND RETURM A RESPONSE OF ¥ OR
M IM 'YM$

301@ FRINT "2

30828 PRINT "DO 'YOU WANT TO MAKE AWNY CHAMGES? ";

3030 GET YH$: IF YNS$C(>"N" AND YH$(>"Y" THEN 3830

3048 PRINT YNS$

3050 RETURN

The string variable QUS$ must be set in the program that calls the
subroutine. The subroutine is generalized; that is, it displays any prompt
sent to it by the main program. The response is returned to the main
program in the string variable YNS.

Now consider dialog that allows an operator to enter a number.
Assume that the main program passes to the subroutine the lowest allowable
numeric entry in LO9% and the highest in HI%. Once the operator enters a
number within range, the subroutine will return the entered number in
NM%. Here is the subroutine that gets the keyboard entry, checks it against
LO% and HI1Y9% values, and then passes it back to the main program in
NM%.

3508 REM ASK FOR A NUMERIC SELECTION
351@ REM RETURM THE NUMBER IN MMZ

3520 REM NMZ MUST BE (= HIX AND >= LOZ
3338 PRINT QUS,

432 ‘our Commodore ¢4

3548 GET C$:IF Cs$=" " THEN 3540
3350 NMZ=VAL(CS)

3560 IF MMX{LOX% OR NMXZHIX THEN 3540
3570 PRINT C$.

3580 RETURN

Write a short program that sets values for H1% and LO%, and then
goes to subroutine 3500. Add the previous subroutine and run it.

Can you change the subroutine so that it accepts two-digit input? Try to
write this modified program for yourself. If you cannot do it, wait until the
next section, where you will find the necessary subroutine in the program
that controls the input of a date.

ENTERING A VALID DATE

Most programs at some point need relatively simple data input-—more
than a simple yes or no, but less than a full screen display. Consider a date.

You must be careful with such apparently simple data entry. In all
likelihood, the date will be just one item in a data entry sequence. By
carefully designing data entry for each small item, you can avoid having to
restart a long data entry sequence whenever the operator messes up a single
entry.

The date is to be entered as follows:

MM~DD—LY_

t-—Year
Separator
Day of the month

Separator
Month

The dashes separating the month, day, and year could be slashes or any
other appropriate character. In Europe, the day of the month precedes the
month.

You should program data entry so that it is pleasing to the operator’s
eye. The operator should be able to see immediately where data is to be
entered, what type of data is required, and how far the data entry process
has proceeded. A good way of showing where data is to be entered is to
display the entry line in inverse video. For example, the program that asks
for a date might create the following display:

Chapter 4 Advanced BASIC Progromming 433

Cursor flashing at entry
character position

:
-~
L1 1

Data must be entered into these
character positions

You can create such a display with the following statement:

10 PRINT” <CLR> <CRSR! > <CRSRI >";TAB(20);” <RVS ON>bb
<RVS OFF> — <RVS ON> pp <RVS OFF> — <RVS ON>
bb <RVS OFF>";CHR$(13);” <CRSRt >";TAB(20);

b represents a space code

The PRINT statement above includes cursor controls that position the date
entry to begin at column 6 in row 3. The PRINT statement also clears the
screen so that no residual display surrounds the request for a date. After
displaying the data entry line, the PRINT statement moves the cursor back
to the first position of the entry line by using the RETURN and CRSR UP
characters, followed by a TAB to position 6 on the current display line.

Try using an INPUT statement to receive entry of the month. This can
be done as follows:

20 IMPUT M$.

Enter statements in lines 10 and 20, as illustrated above, and execute
them. The INPUT statement will not work. Aside from the fact that a
question mark displaces the first entry line character, the INPUT statement
picks up the rest of the line following the question mark. Unless you
overwrite the entire date entry display—which requires entering a very large
number—you will get an error message each time you press the RETURN
key, because C-64 BASIC is accepting everything on the line as if it were a
keyboard entry.

This is an occasion to use the GET statement.

10 PRINT "8 B-5 B0 W', CHRS$(135,"7)";
20 CET C$:IF Cs$=" "THEN 20

30 PRINT C8$, 'MM$=C$

40 GET C$:IF Cs$=" "THEN 40

50 PRINT C#,: MM$=MMS+CS

€8 STOP

These statements accept two-digit input. The input displays in the first part

434 our Commodore é4

of the date. The two-digit input needs no RETURN or other terminating
character. The program automatically terminates the data entry after two
characters are entered.

Two-digit entries are needed for the month, the day, and the year.
Rather than repeating statements in lines 20 through 50, you could put these
statements into a subroutine and branch to it three times, as follows:

1@ PRINT "IDNS B-4d B-0 B, CHR$(135,"7";
28 COSUB 1000:MM$=TCS$ PRINTTAB(3)

30 GOSUB 12080:DD$=TCS:PRINTTRB(E)

49 GOSUB 128@:YY$=TCS

3@ 8TOP

1082 REM TWO CHRRACTER INPUT SUBROUTIME
1010 CET C$:IF Cs="" THEN 1010

1820 PRINT C$.

1838 CET CCs$'IF CCs$="" THEN 1830

1840 PRINT CCS$

1058 TCS$=CS$+CCS

1868 RETURN

The variables MM$, DDS$, and YY$ hold the month, day, and year entries,
respectively. Each entryis held as a two-character string. You should empty
the input buffer before accepting the first input; otherwise, any prior charac-
ters in the input buffer will be read by the first GET statement in the
two-character input subroutine. You need to empty the buffer only once
before the first GET statement.

There are two ways to help the operator recover from errors while
entering a date.

- The program can automatically test for valid month, day, and year
entries.

- The operator can restart the data entry by pressing a specific key.

The program can check that the month lies between 01 and 12. The
program will not bother with leap years, but will check for the maximum
number of days in the specified month. Any year from 00 through 99 is
allowed. Any invalid entry restarts the entire date entry sequence. Also, if
the operator presses the RETURN key, the entire date entry sequence restarts.

The final date entry program now appears in Figure 4-1.

Notice that the date is built up in the 8-character string DTS as month,

day, and year are entered.

Chapter 4: Advanced BASIC Programming

135

5 RE
iB P
58 G
€0 1
78 D
80 R
99 M
95 1
100
118
120
130
1408
158
160
i7@
158
200
2108
220
238
240
270
1080
1810
1011
1815
1016
1020
1030
1833
1836
1840
1859
18608

M ROUTIME TO ACCEFT AWD YERIFY A DATE
RINT "Igd B3 B3 B, CHR$C135, ",
OSUB 16@8:'REM GET MOMTH
F C$=CHR$(13) OR CC¥=CHR%(13) THEW 108
T$=TC$: PRIMT TAB(3)
EM CHECK FOR VALID MOMTH
Z=YAL(TCS)
F Mz<{1 OR MX>12 THEN 18
IF M4<1 OR MX>12 THEN 18
REM GET MWUUMBER OF DAYS IW MOMTH
Dr=31
IF MA=2 THEW Dxr=28
IF MZm4 OR MX=6 OR MX=9 DR M#=11 THEM Dx=30
GOSUB 108@: REM GET DRY
IF C$aCHR$C(13) OR CC$=CHR$(13) THEM 16
DT$=DT$+"~"+TCS# : PRINT THAB(6>
REM CHECK FOR VALID DRY
IF YAL(TCS$3<1 OR YAL(TC$ >DX THEM 1@
BOSUB 10@@: REM GET YEAR
DT$=DT$+"~"+TCS$
IF C$=CHR$(13> OR CC#=CHR$(13) THEN 1@
REM CHECK FOR VALID YEAR
STOP
REM TWO CHARACTER INPUT SUBROUTIME
CET C$: IF Cs="" THEN 1610
IF VYAL(B$,5180 THEN FRIMT"T"
IF C$=CHR$(13) THENM 1858
IF C#<"@" OR C$>"3" THEN 1410
FRINT C#,
GET CC$:IF CCs="" THEW 1030
IF CC$=CHR$(13) THEN 10508
IF CC${"@" OR CC#>"3" THEM 1038
PRINT CC$,
TC$=C$+CC$
RETURM

FIGURE 4-1. Simple program to enter and verify a date

4136 our Commodore 64

Three questions are asked of data as it is entered.

+ Is the character a RETURN?
- If the character is not a RETURN, is it a valid digit?

- Is the two-character combination a valid month for the first entry, a
valid day for the second entry, or a valid year for the third entry?

The RETURN has been selected as an abort (restart) character. By
replacing CHR$(13) in lines 60, 160, 230, and 1035, you can select any other
abort character. When the operator presses the selected abort key, the entire
date entry sequence restarts. You must check for the abort character in the
two-character input subroutine (at line 1035), since you want to abort after
the first or second digit has been entered.

The main program also checks for an abort character in order to branch
back to the statement in line 10 and restart the entire date entry sequence.
You could branch out of the two-character input subroutine and to the
statement in line 10 in the calling program, thereby eliminating the abort
character test in the calling program, but this is a bad practice. Every
subroutine should be treated as a module, with specified entry point(s) and
standard subroutine return points.

Using GOTO to branch between the subroutine and the calling pro-
gram is likely to be a source of programming errors. If you branch out of the
subroutine and back to the calling program without going through the
RETURN, you are making yourself vulnerable to all kinds of subtle errors
that you will not understand until you are an experienced programmer.

Program logic that tests for nondigit characters can reside entirely in
the two-character input subroutine. This program ignores nondigit charac-
teis. Statements in lines 1016 and 1036 test for nondigit characters by
comparing the ASCII value of the input character and the ASCII values for
the allowed numeric digits.

Logic to check for valid month, day, and year must exist within the
calling program since each of these 2-character values has different allowed
limits.

The statement in line 100 tests for a valid month. Statements in lines
120, 130, and 140 compute the maximum allowed day for the month
entered. The statement in line 200 checks for a valid day. The check for a
valid year in line 260 is very simple.

A numeric equivalent of the month is generated in line 90, but not for

Crapter 4 Achanced BASIC Programming . 137

the day or the year. This is because the day and year are not used very often,
but the month is used in lines 90 through 140. You will save both memory
and execution time by using a numeric representation of the month.

It does take more time to write a good data entry program that checks
for valid data input, allowing the operator to restart at any time. Is the extra
time worthwhile? By all means, yes. You will write a program once, while an
operator may have to run the program hundreds or thousands of times.
Thus, by spending extra programming time once, you may save operators
hundreds or thousands of delays.

Formatied Data Input

The best way of handling multi-item data entry is to display a form and
then fill it in as data is entered. Consider the formatted name-and-address
display earlier in this chapter.

ENTER NAME AND ADDRESS
il NAME: N

W STREET:
CITY:
% STATE:
| ZIP:
M PHONE:

Eachentry line has a corresponding number. The form displays the number

in inverse video. The operator enters data starting with item 1 and ending

with item 6. The operator can then change any specific data entry line.
The following statements clear the screen and display the initial form:

18 REM MAME AMD ADDRESS DATA EMTRY
28 REM DISPLAY THE DATA EMTRY

3@ PRINT "IIMEHTER MAME AWD ADDRESS"
48 PRIMT "#818 MAME:"

5@ PRIMT "@2® STREET:"

€0 PRIMT "4CHM CITY:"

7@ PRINT "3d® STHTE:"

80 PRIMT "W ZIip:"

98 PRIMT "@c® PHOME: "

The program listed in Figure 4-2 is a more complete version of the name-
and-address program. It uses the display format shown above. Key in the
program if you wish. It will help you gain a better understanding of the
program’s structure and how it works as it is explained line by line.

In order to format the display itself, lines 10 through 90 print each entry

438 ‘our Commodore 64

180 REM NAME AND ADDRESS DATA EWTRY

20 REM DISPLAY THE DATA ENTRY

30 PRINT "TDDMEMTER NAME RMD RDDRESS"
40 PRINT "@1® NAME:"

58 PRINT "&2® STREET:"

€D PRIMT "@3® CITY:"

78 PRINT "@d4B® STRTE:"

80 PRINT "d58B 2IP:"

98 PRIWMT "m6E PHONE:"

188 EDITINGX=8

200 REM GET 30 CHARACTER NAME

218 R¥=3:CX=9:LN¥X=38:G0SUB 8060

220 MA%=CC$

230 IF EDITINGX THEM S50@

250 REM GET 38 CHARACTER STREET

260 Rx=4:Cx=9 | MN{=30@'G0OSUB 8080

270 SRE=CC$

280 IF EDITIMGX THEMW 500

308 REM GET 38 CHRRACTER CITY

310 R%=5:CH=5'LNA=20:G0SJB 8084

320 Cl$=CC#¥

338 IF EDITINGY THEM 508

358 REM GET 12 CHARACTER STATE

368 RZ=€:CH=9:LMi=12:G0OSUE 8006

370 IF EDITINGX THEM 580

4A@ REM GET S5 CHARARCTER ZIP CODE

410 R¥=7 Ci=9:LHX=35 GOSUER 3008

428 Z1s=CC$

438 IF EDITIHGX THEMW SP@

458 REM GET 14 CHARACTER PHOME HUMBER
460 RZ=8:CH=3:[NX=14:G0SUB B800H

478 PH$=CC$

588 REM ASK IF AMY CHANMGES ARE TO BE MADE
5%8 EDITINGX=-1

520 RE=10:Ca=0:GOSLB 56680

530 QU$="AHY CHANMGES? NI"

548 GOSUB 30@e@:REM GET "Y' OR "HW"

55@ IF Cs="H" THEM PRINT "1I";:EMI

56@ REM ASK WHICH LIMES HMEED CHAMHGIMG.
578 QUE="WHICH LINE <1-€57 W'

580 RA=12:LOXK=1:HIX=E

590 GOSUB 3508

€00 OM MMK GOTO 284,250,360, 358, 466, 458
619 GOTO Sz6

3800 REM RSK A RUESTIOW AMD RETURM A RESPOMZE OF ¥ OR M IM C#$
3020 PRIMT QUS;

3038 GOSUB S@ee:REM GET A CHARACTER

FIGURE 4-2, Name and address entry program

Crapter 4 Advanced BASIC Programming 439

3840
3050
je]a %)
3588
3518
3520
3530

3540
355e
3560
3576
3580
35308
3604
5600
5810
5020
5830
3040
38508
bl (1%
3076
8000
8020
80449
860
8879
8106
811@
81ze
8130
8144
8150
BléD
8170
8175
8186
8190
8z00
2216
30009
9016
9020
2030
5844
2058
9500

IF C®LH"Y" AMD CHL"H" THEM 2836

PRIMT C#;

RETURH

REM ASK FOR A WUMBERIC SELECTION

REM RETURM SELECTION IW MM

REM NMZ MUST BE LESS THAM HIX AMD MORE THARW LOW
REM CALLING PROGRAM MUST SET HIX.LOX AMD QU$.
THE QUESTIOH ASKED

GOSUB 58609 :KEM FPOSITION THE CURSOR

FRIMT CGU%;

GOSUB 5@8B: REM GET A CHARACTER

HME=YAL (CE

IF MMXCLOX OR NMZZHIX THEMW 3568

PRINT C#;

RETURN

REM DISPLAY FLASHIMG CURS0R AND GET CHARACTER
FOR I=R TO €8

IF I=0 THEM PRINT "& =",

IF I=320 THEW PRINWT " W',

GET C#&: IF C#3"" THEN I=5@

NEXT I

IF C&="" THEM SR08

RETURMN

REM INPUT SUBROUTIME

Skg=" "IREM 38 SPRCEZ
GOSUB 5S@@0: REM FOSITIOHW THE CURSOR

PRIMT "®",LEFTS$(SP$, LHL), "W

GOSUB SB@3: REM FOSITIOM THE CURSOR

C[:s:ll 1

GET C3%:IF C%$="" THEM 8118

IF C#=CHR$(13) THEM 8280

IF Cs=CHR#(202 THEH B1€8H

IF LENCCCE3<CLMY THEM CCE=CCE+CEPRINT CF;
GOTO 8118

IF CC#="" THEN B118

PRIMT "lid =" ;

REM DELETE CHARACTER FROM STRIMNG CC#
CCe=LEFTS(CCE, LEMICCEI -1

GOTD &11@

IF LMXZLEWCCCEs THEM FPRINMT LEFTHCSFE, LME-LEMCCCE L
RETURH

REM CURZOR POSITIOWG SUBROUTIHE

R 1 o DT T TOCT T T T T T AN T T DT T T T T T T
Ct="IRBBBBRBRBEERERRRREERERERRDEER!"

PRINT "&", :REM MOVE CURSOR TO <@.8>

PRIMT LEFT$(RE.RLILEFT#ICE,CHY,

RETURN

GOSUER SB@B:PRINT C$; GOTO 3306

FIGURE 4-2. Name and address entry program (continued)

440 ‘our Commodore 44

line. The RVS ON control character precedes each PRINT statement line
number, and the RVS OFF character follows it. These characters do not
display anything by themselves, and they do not take up space on the
display. They do change the display mode; that is, any characters following
the RVS ON will display in inverse video. Likewise, any characters following
the RVS OFF will display in normal video.

THE DATA ENTRY SEQUENCE

Once the entry lines are displayed, the entries start at the NAME line.
The program displays a black bar, showing where the entry should start, as
well as how long the entry will be.

The operator can back up on the entry line by pressing the INST/DEL
key to correct any typing errors. When the entry is complete, the operator
presses RETURN and the program goes to the next entry line.

This data entry sequence translates into the following BASIC statements:

208 FEM GET 38 CHARACTER HAME
218 Ru=72:Cx=5%| M¥=30:G0SUE 2969
226 HAF=CC%

228 IF EDITIMGY THEW S@ig

258 REM GET 30 CHRARACTER STREET
260 RA=4:CX=9LNK=3@:G0SUE s06e
278 SRE=CCE

288 IF EDITIMGX THEH 588

288 REM GET 30 CHRARACTER CITY
318 R¥=5:CH=3LH4=30:G0SUR 2000
328 Clg=CC#

330 IF EDITIMGY THEHM S@8

358 REM GET 12 CHRARACTER STATE
368 RA=6:CK=3:LH%=12:GOSUE 290@
378 IF EDITINGX THEM SH8

460 REM GET 5 CHARACTER ZIF CODE
410 R¥=7: CH=59 LHZ=5:G0SUR Sa8a
428 Z1%=CCE

438 IF EDITIMGX THEW 569

450 REM GET 14 CHARACTER FHMOME MLUMEER
460 RX=8:Cx=5LHM4=14:G05UE 3800
478 PH#=CC#$

There is some uniformity to these statements, which are in six separate
groups. The groups start at lines 200, 250, 300, 350, 400, and 450, each cor-
responding to an entry the operator is to make. Each group begins with a
REM statement.

Chapter 4- Advanced BASIC Programmng 141

Lines 200 through 230 have the same structure as any of the other five
statement groups.

208 FEM GET 20 CHARACTER HAME
218 R¥E=3:CH=9'LHX=30 'GOsSE S000
220 HA$=CLC#

238 IF EDITIMGH THEM S6@

Line 210 assigns values to variables and peforms a GOSUB to line 8000.
Line 8000 is a data entry subroutine; it uses variables R9% and C% to specify
where on the screen the data entry will occur. LN% contains the maximum
length of the entry. Line 220 assigns the entered data to NAS, the string
variable to hold the name.

Line 230 is a logical test which you can ignore for now; it will be
explained shortly.

Now check the group startingat line 250. Although the values assigned to
R%, C%, and LN9% may differ and line 270 is not exactly the same, the
structure of lines 250-280 is identical to that of lines 200-270. This is the case
for all of the other statement groups.

EDITING DATA ENTRY LINES

Once all six lines are entered, the program displays ANY CHANGES?
and waits for a response of Y or N. If the response is N, the program will
clear the screen and end. If the response is Y, the program will ask which
entry line needs to be changed. At this point, the operator can change any
entry lines at random until all lines are correct.

The following lines of the data entry program in Figure 4-2 perform
these steps:

Seb REM ASK IF AMY CHAMGES ARE TO BE MADE
516 EDITINGA=-1

S52@ R%X=18:C%x=8:0G0SUE 3989

538 QUE="AMY CHAMGES? NI"

S48 GOSUB 3@85:REM GET "¥" OR "N"

556 IF C&="HW" THEN PRIMT "01"; :END

5608 REM ASK WHICH LIMES MEED CHAMGIMG
570 QUS="WHICH LIME <1-g27: NHI"

580 R¥12:L0x=1:HIx=6

590 GOSUB 35098

688 ON NMX GOTO 288,250.368,350, 408,450
€1@ GOTO 526

Line 510 is of special interest because it “switches on” the editing

142 . Conmodore 44

process. Back at line 100, the integer variable EDITINGY, was set to 0. At
the end of each statement group, the logical test of EDITINGY% would cause
program logic to fall through to the next group. Now that EDITINGY% is
nonzero (equal to—1), program logic can randomly access each statement
group, thus allowing each entry line to be changed in a random fashion.

Lines 520 through 540 call the “yes-or-no” subroutine; if the operator
enters N in response to ANY CHANGES?, the program ends. If the opera-
tor enters Y, program logic continues.

Lines 570 and 580 set variables for the numeric entry subroutine, and
line 590 calls it. The subroutine returns the number of the entry line to
change (1, 2, 3,4, 5, or 6) in the integer variable NM%, and program logic
proceeds to line 600.

The ON -GOTO statement on line 600 uses the number entered in NM%
to change one of the six name-and-address lines by branching back to any of
the six statement groups. EDITINGY plays a critical part here, because the
logical test at the end of each statement group will now cause a branch
directly to line 500, which is the start of the ANY CHANGES? routine. If
EDITINGY% was zero, this would not happen. Program logic would plod
along to the next entry line unconditionally. Try changing line 510 to
EDITING% = 0, and note the difference in operation.

DATA ENTRY SUBROUTINES

There are six subroutines in this program. Each subroutine has a
specific function. One of the subroutines is not used by the main program,
but is called by the other subroutines.

First look at the subroutine starting at line 3000 and ending at line 3060.
This asks a question that requires a Y or N response. The subroutine
displays the question which was passed to it in string variable QUS. It calls
the subroutine at line 5000, which in turn gets a character from the key-
board. If the character is Y or N, the subroutine ends and returns the
response in CS$.

080 REM ASK A RUESTION AMD RETURM A RESFOMSE OF Y OR
H IM C$

3920 PRIMT QU

3830 GOSUER 5080:REM GET A CHARACTER

3840 IF CEOMY" AMD C$C"H" THEM 2838

3859 PRINT C#;

3868 RETURHM

Chapter 4. Advanced BASIC Programming 143

But why use a subroutine to get a character when a GET statement
would suffice?

A GET statement checks the keyboard for a keypress, but it gives no
clear sign to the operator that a character should be entered. The subroutine
at line 5000 flashes the cursor while waiting for a keypress, thus making it
more obvious that the C-64 is waiting for some kind of entry. Besides, the
get-character subroutine is used by another subroutine in this program. It
makes sense to relegate this low-level function to another subroutine.

The subroutine starting at line 3500 and ending at line 3600 asks for a
single-digit numeric entry. In the name-and-address program, the only
numeric entry is the number of the line to change, which ranges from I to 6.

3580 REM ASK FOR A NUMERIC SELECTICOM

3510 REM RETURM SELECTIOM IM MMA

3520 REM NMX MUST BE LESS THAM HIX AMD MORE THAW LO%

538 REM CALLING PROGRAM MUST SET HIX.LOX AMD QU$,
THE QUESTIOW ASKED

3546 GOSUER 2@96:REM POSITIOM THE CURSOR
3338 PRINT QUS,

3568 GOSUB 5@P@: REM GET A CHARACTER
3578 MMX=VALC%> :

3588 IF MMA<LOX OR MMAZHIX THEM 33560
3538 PRINT C#;

3608 RETURM

Q

C
(£

This subroutine must have several variables set by the main program
before it is called. First, the maximum and minimum allowable values of the
entry should be in integer variables HI% and LO%. Second, the subroutine
displays a question to the operator contained in QUS, which also has to be
set before calling the subroutine.

This subroutine positions the cursor to a given screen position, and
the coordinates of that position need to be passed to the subroutine in the
variables R% and C%. Line 3540 calls the subroutine at line 9000, which
positions the cursor. Line 3550 displays the prompt, and line 3560 calls the
“get keyboard entry” subroutine.

The subroutine at line 5000 needs no parameters. It simulates a flashing
cursor while waiting for a keyboard entry. A FOR-NEXT statement on line
5010 starts a timing loop that displays an inverse-video space for the first 30
times through the loop. Once the index variable I reaches 30, the statement
online 5030 erases the cursor. During this time, the subroutine is constantly
checking the keyboard for anentry. If a key is pressed, the statement on line

144 . Commodore o4

5040 terminates the loop by setting 1 to 60, and the subroutine ends, passing
back the entered character in CS$.

582D REM DISPLAY FLASHIMG CUURSOR AMD GET CHARACTER
5818 FOR I=86 TD &0

S8z IF I=@ THEWM FRIMT "3@ W

5830 IF I=38 THEW PRINT " N";

5048 GET C%: IF C$"" THEW I=6B

5850 WEXT I

Ses8 IF Cg="" THEW 3088

5078 RETURHM

The subroutine starting at line 8000 and ending at line 8210 is designed
to position the cursor and accept a string entry of a specified length. This
subroutine therefore needs to know the screen coordinates (row and
column) of the entry and the length of the entry before it can begin.

LN9% contains the length of the entry in characters. R% and C% contain
the row and column of the entry. A variable SP$ is assigned 30 spaces and is
used at two points in the subroutine.

Next the cursor-positioning subroutine is calied by the GOSUB state-
ment on line 8040. Line 8060 prints the RVS ON character, followed by a
block of inverse-video spaces that show the iength of the entry to the opera-
tor, and then the RVS OFF character.

Buoy
8820
2040
2868
8878
8108
g114
8129
8138
8148
8156
2168
8170
8175
8186
8158
8280
8218

FEM IMPUT SUBROLUTIHE

SPE=" TUREM IR SFACED
GOSUB 2808 REM POSITIOM THE CURSOR

PRIMT "&" LEFT&{SFE,LHny, "

GOELUE 9860 ReM POSITION THE CURSOR

CC$= Hu

GET C#:IF CH="" THEMW 2118

IF C#=CHR£.130 THEM 22536

IF C#=CHRE(2A) THEH 210

IF LEMHACCEDCLHY THEM CCE=CCE+CE FRINT C#;

GOTD 8iia

IF CC$="" THEHW 28118

PRIMT "N2 w-|";

REM DELETE CHARACTER FROM STRIMG CCF
CCe=LEFTSCCE, LEMCTOEI~1 0

GOTOo el1e

IF LMHKZLEMCCCEY THEM PRIMT LEFTH0afF®, LHK~LENCCCE D
RETURHM

Statements on lines 8100 through 8150 accept a character from the
keyboard. If the character entered is RETURN—that is, equal to CHRS$(13)—the
entry is complete. A branch t¢ linie 8200 occurs. Any part of the black bar on

Chaopter 3 Programming the C-64 Computer 4 45

the entry line disappears, and the subroutine returns with the full entry
contained in CC$. The subroutine also checks for the INST/DEL key; if this
key was pressed, the subroutine branches to line 8170.

If the character entered is neither RETURN nor INST;DEL, then the
character entered in C$ is concatenated to CC$, which contains all of the
characters entered so far. Notice the logical test on this line.

€148 IF LENCCC# <{LNZ THEM CC#=CC$+CE PRINT C#)

If the length of CCS$ is not yet equal to the maximum number of
characters allowed for the entry (in LN%), then C$ is tacked onto the end of
CCS, the character entered is displayed on the screen, and a branch back to
the GET statement occurs. If the maximum entry length was reached, the
character in C$ is simply ignored.

What do the statements on lines 8160 through 8190 do? A branch to
these statements occurs if the operator presses the INST/DEL key.

If the operator presses INST/DEL but the entry string CCS$ is empty, then
no characters need to be deleted. The IF-THEN statement on line 8160
checks for this condition and branches back to line 8110 if no characters
need to be deleted. Otherwise, program logic continues with line 8170.

Line 8170 prints the CRSR LEFT and RVS ON characters to position the
cursor on the last character entered, a space (in inverse video) that wipes out
that character, thena RVS OFFand a CRSR LEFT. What all this does is move
left, delete the last character entered, and move left once again to the space.

Line 8180 deletes the last character of CC$ by measuring the length of
CCS$ using the LEN function, subtracting 1, and reassigning CCS$ all of its
original characters except the last.

Once the character is deleted from the screen and from CCS$, the
subroutine branches back to the GET statement on line 8110.

Youshould study the name-and-address program carefully and under-
stand the data entry aids that have been included. They are as follows:

- Reversing the field on the current entry line clearly indicates what
data is expected and how many characters are available.

- Anoperatordoes not have to fillin all the characters on an entry line.
When the operator presses the RETURN key, the balance of the entry
is filled out with blanks.

- Atanytimethe operator can backspace and correct errors onan entry
line by pressing the INST/DEL key.

146 o Commodore ¢4

- When questions are asked, the program only recognizes meaningful
responses: Y or N for “yes”and “no,” or a number between 1 and 6 to
select an entry line. A data entry subroutine should ignore meaning-
less entries. For example, to recognize Y for “yes” but any other
character besides N for “no” could be disastrous, since accidentally
tapping a key could prematurely take the operator out of the current
data entry. Recognizing N for “no” but any other character for “yes”
would cause the operator to reenter data unnecessarily into some field
if the wrong key was accidentally pressed.

Here are some data entry precautions that could be added:

- Check the ZIP code for any nondigit entry. However, postal codes
outside the U.S.A. (Canada, for example) do allow alphanumeric
entries.

+ Many cautious programmers will ask the question: ARE YOU
SURE? when an operator responds with “no” to the question ANY
CHANGES?. This gives the operator who accidentally touched the
wrong key a second chance.

* You might add a key that aborts the current data entry and restores
the prior value. For example, if the operator presses the wrong
number to select a field that must be changed, the example program
forces the operator to reenter the line.

Try modifying the name-and-address entry program to include the
additional safety features described above.

THE REAL-TIME CLOCK

Another C-64 computer feature is the real-time clock. This clock keeps
real time in a 24-hour cycle by hours, minutes, and seconds. The reserved
string variable TIMES, or TIS, keeps track of the time.

Setting the Clock

To set the clock, use the following format:

Chapter 4 Advanced BASIC Programming 147

TIMES$ = “hhmmss”

where:
hh is the hour between 0 and 23
mm is the minutes between 0 and 59
ss is the seconds between 0 and 59

For hh, enter the hour of the day from 00 (12 A.M.)to 23 (11 P.M.). The C-64
computer is ona 24-hour cycle so that you can distinguish between A.M. and
P.M. The hours from 00 to 11 designate A.M., and the hours from 12 to 23
designate P.M., returning to 00 at midnight. At midnight, when one 24-hour
cycle ends and another begins, hh, mm, and ss are all set to zero.

When initializing TIMES to the actual time, type in a time a few seconds
in the future. When that actual time is reached, press the RETURN key to set
the clock.

TIMES="126150"

Accessing the Clock

To retrieve the time, type the following in immediate mode:

?TIMES
The computer will display the time in hhmmss format.

?TIMES®
120200

The C-64 computer clock keeps time until it is turned off. The clock
must be reset when the computer is turned on again.

Real-Time Clock Operation

The C-64 computer actually keeps track of time injiffies. A jiffyis 1/60
of a second. TIME, or T1, is a reserved numeric variable that automatically
increments every 1/60 of a second. TIME is set to zero on start-up and is set
back to zero after 51,839,999 jiffies. TIMES$ isa string variable that is gener-
ated from TIME. When TIMES is called, the computer displays time in
hours, minutes, and seconds (hhmmss); that is, it converts jiffy time to real
time.

Notice that TIMES$ and T1$ are not the string representations of TIME

148

Your Commodore 44

and TI; they are numbers representing real time, calculated from jiffy time
(TIME, T1). The conversion is done as follows: each second is divided into
60 jiffies. One minute is composed of 60 seconds. One hour is made up of 60
minutes. Thus, one second is 60 jiffies, one minute is 3600 jiffies, and one
hour is 216,000 jiffies, as illustrated.

Jiffy =1

= 60 X Jiffy

= 60 Jiffies
Minute = 60 X Second

= 60 X (60 Jiffies)
= 3600 Jiffies

Hour

60 X Minute

(Il

= 216,000 Jiffies

+— Second/ 60 = Jiffy

~— Minute/60 = Second/60 = Jiffy

60 X (3600 Jiffies) t+=— Hour/60 = Minute/60 = Second/60 = Jiffy

The following program converts jiffy time () into real time, shown as
hours (H), minutes (M), and seconds (S). A complete program follows the
statement descriptions.

10

J=TI

28 H=INT(J-/216880’

30

40

58

IF HOOB THEM J=J-H#216008

M=IMT(JA 3608

IF M<>@ THEN J=J-M#3608

S=INTC(J 60

Calculate hours. Integer function
takes only whole number.

If any hours, subtract number of
jiffies in one hour by H to leave
remaining jiffies.

Calculate minutes.
Integer function takes only whole
number.

If any minutes, subtract number of
jiffies in minutes by 7 to leave
remaining jiffies.

Calculate seconds. Integer function
takes only whole number.

Chapter 4: Advanced BASIC Programming 149

S PRIMT"TREAL TIME" :PRINT:FRIMT
18 J=TI

15 T#=TIME#

20 H=INT(J/260808)

30 IF HC>B THEN J=J-H¥21€609

48 M=INT(J/3608)

S IF MC>8 THEN J=J-M-3€00

60 S=INT(J/68)

70 H$=RIGHT#(ETR$H),2>

80 ME=RIGHTS$(STR$(M),2)

90 SHE=RICHTH#(ZTRECS:.2)

180 PRIMT"H:M:5: ", HE;":"iMg;":":":" ;5%
185 PRIMT"TIME®: ",;T#$

110 PRIMT " aag", :GOTO 1@

In this program, statements 70 through 90 convert the numeric answers
into proper form for tidy printing. Statement 100 prints both the real time
calculated from the program, and TIMES, the real time calculated automat-
ically by the computer. Notice that the result is the same in both cases.

To get an idea of jiffy speed and the conversion from the jiffy clock to
the standard clock, type in the following program, which displays the
running time of both TIMES and TIME (TI).

S REM ##RUNMMIMG CLOCKS#%

18 PRINT"TREAL TIME: " :PRIMT:PRIMT"JIFFY TIME:"
28 FOR I=1 TO 23359355

30 PRIMT"&@",TRB(13,,TIMES

40 FOR J=1 TOD €8 STEP 2

S8 CPRIMT" @ad" ; TREC 12,71

68 THEAT

78 MEAT

The FOR-NEXT loop for TIME in line 40 increments by STEP 2
(every two jiffies) for the following reasons:

- Displaying 60 jiffies a second is too fast to read, and

- Displaying a jiffy takes longer than incrementing the jiffy. This delays
the loop, so the TIMES display is slower than it should be. By
incrementing and printing every other jiffy, you can minimize this
delay problem. Run this program and you will see that jiffies incre-
ment to 60 within each second. Run this program without STEP 2 in
line 40 and see the time delay when printing TIMES.

Real time: 006604
Jiffy time: 25500

150 ‘our Commodore 64

Keeping time in jiffies is useful for timing program speed. This lets you
test the efficiency of a program. Consider the following short program:

18 PRIMT"#$KEYBORRD TEST##" FRIMT
20 FOR I=32 TO 127

30 PRIMT CHR&CI,

48 NEAXT I

S0 FOR J=161 TO 235

€08 PRIMT CHRECT:,

78 MEAT J

88 PRIMT:PRIMT:FRIMT"#%END TEST##"

You can compute execution time for this program as follows:

1. TI (or TIME) is assigned to a variable at the start of the time test.

2. TI(or TIME)is checked at the end of the time test. Subtract the first
value of Tl from the new T1 value. This will give you the amount of
jiffy time it took to process the program in question.

The following listing adds these steps:

18 PRINT"#$KEYBOARD TEST##" FRIMT
15 A=TI

20 FOR I=32 TO 127

36 PRINT CHR&C(I,

48 MEXT

50 FOR J=161 TO 235

60 PRINT CHR$C(J);

780 MEXT

€0 PRIMT:PRIMT :FRIMT"#%EMD TEST##"
188 PRIMT :PRIMT"TI = ";TI~H

As the program continues, T1 increments 60 times every second. Line
100 subtracts the first value of TI (A) from T1’s latest value. It took 41 jiffies
to display the keyboard characters. Divide jiffy time (41 jiffies) by 60 (the
number of jiffies in a second).

41/60 = 0.6833

Thus, it took 0.6833 seconds to run the program.

RANDOM NUMBERS

Random numbers may be used in games you program on your C-64;
they have more practical uses in statistics and other areas as well. The C-64

Chapter 4 Advanced BASIC Programming 454

will generate random numbers with the RND function.

RND provides a real number between 0 and 1. This number is actually
pseudo-random; that is, it is not truly random. However, that is a point
raised by statisticians. The number is a close approximation of randomness.

To determine the degree of randomness the RND function will have,
you provide a starting number, or seed. If you use zero as the seed, that is,
RND(0), the values it generates are based on three separate internal clocks.
The odds against all three clocks having the same values twice in a row are
very high; therefore, any number generated can be considered random.

The sequence of most random numbers generated will always be the
same. The only exceptions are RND(0) and RND(TI). Numbers that are
very nearly random may be obtained using a random seed of 0. A predicta-
ble pattern of numbers may be obtained by using a negative number as a
seed.

It may not seem very useful to have a random number with such a small
range of values. To obtain larger numbers, multiply the random number by
the maximum value you want. For instance, to get a random number
between 0 and 100, multiply the random number by 100. Type in the
following program:

1 REM RANDOM

3 X=100:REM MULTIPLIER TO SET MAXKIMUM RAHGE

16 R1=RND(B,:REM GET RAMDOM HUMBEFR

20 RZ=r%R1:'REM MULTIPLY TO DESIRED RAMGE OF HMUMEBERS
58 PRIMT" RAW #",R1

53 PRINT"RAMGED #",R2

Type RUN and press the RETURN key. The computer will choose a
“raw” or random number, multiply it by 100, and display it.

RAW # .672457317
RANGED # 67.2457317

Set X to a positive number less than 100, then type RUN to see a
different ranged number. Try setting X to any negative real number and
running the program again. This gives you a negative random number with
zero as the greatest possible value.

If you need the result to be rounded to the nearest whole or decimal
number, add the following lines to the program you just entered:

4152 \our Commodore ¢4

2 Y=3:REM DECIMAL DIGITE WAMTED IM MUMEEE

20 R3=IMT(<#%R1+.5) :REM ROUMD TO MEAREST MWHOLE HUMEER

40 R4=INTC(X¥R1%1D17.50/161% REM ROUND TO Y DECIMAL
FLACES

58 PRIMT" RAW #":R1

S5 PRIMT"RAMGED #",REZ

£0 PRIMT"ROUMDED ",R2

&3 FRIMT"ROUMDED DECIMAL", R4

The variable Y controls the number of decimal digits of precision in the

rounded decimal number. Your results will be similar to the following:
RAW # 672457317

RANGED # 67.2457317
ROUNDED &7

ROUMDED DECIMAL 67.246

Generating Random Dice Throws

Random numbers are generated in the range 0 through not quite 1 (the
limit of 1, in calculus terms). You will have to convert the random number to
whatever range you require. Suppose numbers must range from 1 to 6 (asin
one die number of a dice game). You will need to multiply the random
number by 6.

6 * RND(1)
This returns a real number in a range just greater than 0 but less than 6. Add
1 to get a number between 1 and 6.

6 x RND(1)+ 1

Then convert the number to an integer. This discards any fractional part of a
number, returning the number in the range 1 to 6 but in integer form.

INT(6 * RND(0) + 1)

or:

A% = 6 * RND(0)+ |

The general cases for converting the RND fraction to whole number
ranges are shown below.

INT (RND(0) * N) Range 0 to N
INT (RND(@0) * N+ 1) Range 1 to N
INT (RND (0) * N+ M) Range M to N

Now experiment with a variety of different random number ranges by
modifying the statements illustrated above.

Chapter 4 Advanced BASIC Programming 153

The program below shows —TI being used to generate a random seed.
This program calculates numbers in the range M to N. In this program, the
values of M and N are setinline 10 fora given program run. Note that these
values can be negative. In the following example, the display is an unending
sequence of random numbers between —50 and +50. (Press the STOP key to
end the program.) A different sequence of numbers will be printed each time
the program runs, since —TI provides a random seed. Note that the X value
returned from RND(—TI) is displayed instead of the TI value.

10 M=560:H=350

28 A=RNDC~TI):PRIMT %

3@ FOR I=1 TO 8

48 CxU=(H-M+1%¥RNDC1 3 +M

58 PRINT CH

€0 GOTO 38:REM PRIMTS HEW RAHDOM HUMBERS

~§

t
= B oW

an]

LS I

o

i

To illustrate different number ranges, change the values of M and N in
line 10 of the above program. For example, make M = | and N = 6; this
will generate an unending sequence of random numbers between 1 and 6.

Random Selection of Playing Cards

A quick scan of the display above shows that numbers repeat within the
first 100 generated. That is, 101 numbers will not include every number in
the range —50 to +50 with no duplications. This is fine in, say, a dice game,
but for other applications you may need to produce random numbers in a
certain range where every number occurs and there are no duplications.
Dealing from a deck of cards is one such application. Once a card has been
selected, it cannot be selected again during the same deal.

The program below shows one way to program shuffling a deck of

4184 our Commodore ¢4

cards on the C-64. This program fills a 52-element table D% with the num-
bers 1 through 52 in a random sequence. (Element D% (0) is not used.) The
cards can be pegged to the random numbers in any way, such as

A=1,2=2,3=3,..,Q=12,K=13
Spades =0, Hearts = 13, Diamonds = 26, Clubs = 42

With this scheme, the Ace of Spades =1+ 0= 1, the Queen of
Spades = 12 + 0 = 12, the Three of Hearts = 3 + 13 = 16, and so on.

In the shuffle program, a 52-element flag table FL keeps track of
whether a card has been chosen. PRINT statements are inserted to display
the seed value, followed by the numbers, in a continuous-line format. Note
that exactly 52 numbers are displayed and that no number is repeated. Each
program run will produce a new random sequence.

1@ DIM A(S3)

=
30 FOR R=@ TO 51
4@ RC(R)Y=R
S0 NEXT R
60 BwINT(RNDC@)HED>
7@ PRINT R(B),
8@ FOR R*B TO E
90 ACRI=A(RH1)

108 NEXT R
110 E=E-~1
120 IF E>@ THEN 6@
RUN
43 25 39 10 4 18
13 3 37 15 35 45
5 38 %] 33 34 48
1 2?7 22 48 23 16
46 7 32 26 30
8 21 47 9 2 28
36 6 S1 29 44 19
11 1?7 24 12 b1%] 208

You will find several uses for random numbers in the programs you
write, especially if you write game programs. In the next two chapters you
will see how to fully utilize your C-64’s capabilities as a game machine.

CHAPTER

Game Controllers

The programs we have described so far have communicated with you
in a “stop and go” fashion; that is, they stopped and waited for you to type
something at the keyboard, then acted on it. This is fine for balancing a
checkbook or typing letters, but many C-64 applications require a different
style of communication. A program that simulated airplane flying wouldn’t
be realistic if the plane stopped in midair while the “pilot” typed instruc-
tions. To make this type of program more realistic (and less tedious to use),
the C-64 takes its directions from a different source. Instead of receiving
instructions through the keyboard, the C-64 can use game controllers, the
joystick and paddle controllers similar to those used in arcade games.

In this chapter we’ll show you how to write programs that use these
game controllers. We’ll also describe how to use the keyboard “on the run,”
eliminating the stop and wait steps. If you don’t have a joystick, our
keyboard example illustrates how to simulate one.

155

156 our Commodore 64

THE JOYSTICK CONTROLLER

The joystick, like old-fashioned airplane control sticks, controls both
up-and-down and side-to-side motion. It does so with four switches: Up,
Down, Left, and Right. Inside the joystick are “fingers” that push these
switches as the stick is moved.

If the stick is moved up, down, or to one side, only one switch is closed.

0o Jof aorel

{

Chapter 5: Game Controllers

157

~

4 o .Y

158 ‘our Commodore ¢4

There is also a Fire button, which has its own switch. Using the method
described in the following sections, your program can tell whether these
switches are open or closed and thus determine which way the joystick is
pointing. By moving the joystick, you can direct elements on the screen.

The CIA Chips

The joystick is connected to the C-64 through integrated circuits called
Complex Interface Adapters (Cl1As). Certain pins of the CIA chips connect
to the “outside world.” These pins receive a signal sent to them (input) or
send a signal out to another device (output). Circuitry in the CIA chip
enables the C-64 to set or examine the signals on these pins using memory
locations. The signals can be read and controlled through PEEKs and
POKEs in BASIC.

Testing the Joystick Switches

The CIA’s input/output pins are divided into two groups of eight. Each
group can be set or examined through a single memory location, with one bit
in that location representing each pin. The switches for control port 1 are
connected to one group of pins, and the switches for control port 2 are in
another group.

Control Port 1
Memory

Location Bits

se0 | [[[e[s]al2]1]

[[

Up
Down
Left
Right
Fire

Memory Control Port 2

Location Bits

son [Tl L0

Up
Down
Left
Right
Fire

Chapter 5: Game Confrollers 1859

Since the four directory switches and the Fire button are in the same
memory location, the numbers in the boxes are used with the AND operator
to isolate the bit for a particular switch from the others PEEKed from the
same memory location. This use of AND was discussed in the “Boolean
Operators”section of Chapter 3. In the result of the AND operation, all bits
except the one we want to look at will be forced to a 0 value. (This is called
masking. Just as you use masking tape to cover up woodwork while painting
the walls, computer programs use bit masks to cover up the bits they don’t
want to test.) For example, the following statement determines if the Fire
button of control port 1 is being pushed:

18 FB = (PEEK<356328) AMD 16) = @

“AND 16~ eliminates the other switch values by “covering up”all bits except
16. The program then compares the result to 0. The joystick switches supply
a 0 signal to their VIA pins when the switch is closed and a 1 when open.
When the switch is closed, the button is being pushed.

Let’s look at the AND operation in binary.

PEEK location 56320 BRaARa11E
AND bit number 16 pPBB 188
PBBBRRIRG

The result of the AND is 0, since | AND 0 is always 0. The switch is closed,
the signal is 0, and the button is pushed.

Try entering and running the following program to see how moving the
joystick affects location 56320:

18 PRINT PEEK(56328

208 FOR I=1 TO 238 @ MWEXT I ' REM WAIT ABOUT HALF A
SECOMD

368 GOTO 1@

The program checks and displays the value in memory location 56320
every half second. As you move the joystick, notice the changes in the values
displayed on the screen. When a switch in the joystick is closed, its mask
value (16, 8, 4, 2, or 1) is subtracted from the displayed number. To look at
the other joystick, replace 56320 in line 10 with 56321.

460 ‘our Commodore 44

A Complete Joystick Scanner

We will now look at the programming necessary to convert the joy-
stick’s bit locations to physical movement. If you write one program that
uses a joystick, you will probably write others, so we’ll provide a standard
subroutine that can be typed into any program. This subroutine sets three
variables for the main program.

XI The X Increment. Controls movement to the right or left.
YI The Y Increment. Controls movement up or down.
FB Tells whether the Fire Button was pressed.

Xl is set to —1 for left, +1 for right, and 0 for neither. YI is set to —1 for
down, +1for up, and O for neither. If the Fire button is pressed, FB will be a
1; otherwise, it will be a 0.

63000 XTA = PEEK(36320) AMD 31

63620 X1 = SGHC(XTA AND 40 ~ SGNCKTAL AMD B
630308 YI = SGN(ATA AND 23 - SGMCXTX AMD 1)
63048 FB = 1 - SGM(XTX AND 16)

This program uses some tricks to make it run faster. Let’s examine its
operation line by line.

63000 Reads the joystick in control port 1 and uses the technique
described above to preserve the keyboard scanner.

63020 These two lines derive the X and Y increments from

63030 the switch values. To reduce the amount of time needed to
calculate them, the SGN function is used. This returns a 1 if
the switch is off and a 0 if it is on. This is faster than
comparing the result of the AND to zero.

63040 Gets the value of the Fire button.
63050 Returns to the main program.

USING THE JOYSTICK SCANNER

The following simple program illustrates the capabilities of the joystick
scanner. It moves an object around on the screen in response to the move-
ment of the stick.

Chapter 5 Game Controllers 4164

TABLE 5-1. Paddle Controller Memory Locations

Location Contents
54297 Left Paddle Position
54298 Right Paddle Position
56320 Paddles A&B Fire Buttons
56321 Paddles C&D Fire Buttons

108 PRINT "IW",

200 GOSUB £3000

300 IF XI=@ AND YI=@ THEN 200

400 PRINT CHR$(28), @ REM DELETE CHAR OM SCREEM
500 IF XI=~1 THEW PRINT "EW&";

600 IF XI= 1 THEN PRINT "DN";

700 IF YI=-~1 THEN PRINT ")X&";

800 IF YI= 1 THEWM PRINMT "7M#";

560 GOTO 20@

THE PADDLE CONTROLLERS

The paddle controllers derive their name from their use in the early
ping-pong style video games. Each controller consists of a variable resistor
called a potentiometer or pot. The potentiometer is controlled by a knob
and by a switch similar to the Fire button on the joystick. Like the joystick,
the paddle interface is compatible with controllers like those made by Atari.

The value of the “pot”is read by the SID chip in the C-64 and converted
toa number between 0 and 255. The switches, on the other hand, are read by
the CIAs, using two of the joystick pins. (Table 5-1 lists the location and
contents of paddle control memory.)

Before you can read the values of the four pots, you will need to disable
the keyboard scanner. This can be done by using a simple two-byte machine
language routine. Then, when you need to read the paddles, just SYS to your
routine and read the paddles. NOTE: You must perform the SYS and read
the paddles in the same BASIC line or else the keyboard scanner will be
re-enabled.

The following routine will read the four paddle values and assign them
to variables A, B, C & D:

16 PRINT "<CLERR/HOME>"

20 POKE 80600, 128 : POKE 2801, 56

3@ SYS 80BB @ POKE 56320, 64 @ A=PEEK(54297) @ B=PEEK (54298
48 SYS 5000 @ POKE 56320, 128 '@ C=PEEK(54297) '@ D=PEEK(54298)

1462 our Commodore 64

The Fire buttons on the paddle controllers can be read from locations
56320 and 56321. By adding to the following routine, the variables FA, FB,
FC, and FD will indicate whether the Fire buttons are being pressed. A zero
indicates that the button is being pressed.

70 FA = SGH(PEEK(36328) AND 4)

80 FB = SCM(PEEK(356328> AND B8J

98 FC = SGM(PEEK(S6321. AND 4.
1866 FD = SGHCPEEKCS6321) AND 8J

KEYBOARD COMMUNICATION USING
THE GET STATEMENT

In Chapter 3 we introduced the GET and INPUT statements. Many of
the examples so far have used the INPUT statement. Those programs are
the “stop and go” kind; if they need information from the keyboard, they
have to wait for it. If you want to write an “action” program that receives
instructions from the keyboard, you can use the GET statement.

Like INPUT, the GET statement reads information from the keyboard.
But that’s where the similarity ends. The main differences are as follows:

1. INPUT reads one or more complete numbers or strings. GET reads
only a single keystroke.

2. Using INPUT. the program waits for you to press RETURN. If
nothing is typed, your program will wait indefinitely. GET, on the
other hand, never waits; if no key was pressed the program tells you
so, but keeps on running.

3. When you are typing in response to an INPUT statement, the “?”
prompts you for input, and the characters you type appear on the
screen. GET has no prompt and doesn’t echo what you type.

In other words, with a GET statement a program can determine
whether a key has been pressed, but won’t wait if no key is pressed. If the

P

person using the program types nothing, the program can determine this
and make decisions based on it.

Chapter 5 Game Controllers 4163

GET Statement Syntax
The syntax of GET, shown in the following line, is quite simple:

GET variable name

"

No options are available. You must have exactly one variaable in the “list.
Unlike INPUT, no prompt string is allowed. You can, however, easily display
a prompt string: use a PRINT statement terminated with a semicolon to stop
the C-64 from printing a RETURN.

18 PRINT "THIS I5 R PROMPT:";
20 GET A$

The variable used with GET can be any type (integer, floating point, or
string), but a string variable works best. There are two reasons for this.

1. If a numeric variable is used, BASIC attempts to interpret any key
pressed as a number. If you type something other than a number, a
syntax error occurs and the program stops.

2. If no key has been pressed, the numeric variable is assigned a value
of 0. The program has no way of determining whether no key was
pressed or a “0” was typed.

With a string variable, you can GET almost any key, including the
cursor control keys and RETURN. (The STOP and RESTORE keys can’t be
read, and the various shifts and the CTRL key operate as usual.) If no key is
pressed, GET assigns an empty string to the variable and your program
detects this. If you want to wait until something is typed in, use a line like the
following:

16 GET A% @ IF A% = "" THEM 1@

Notice that there is no space between the quotes, resulting in an empty
string. If the variable you GET is equal to this empty string, then no key was
pressed.

Echoing Keysirokes

As mentioned earlier, characters entered with GET do not appear on
the screen. Sometimes, however, you need to see what you type. This can be
accomplished by adding a PRINT statement to the program.

164 our Commodore 64

18 GET A$ @ IF A% = "" THEMW 18
28 PRINT A%,
38 GOTO 1@

The simple program above will echo to the screen exactly what is typed
at the keyboard. Pressing the STOP key will stop the program.

The Keyboard as Joystick

This section is presented in a “case study” form. Rather than start with
the program listing, we will first show you some of the steps taken in
designing it. Following these steps will help you to understand both the
program listings and the programming process itself.

Our make-believe joystick will act just like the ones made by Commo-
dore. You can make it point in various directions (left, right, up, down, and
diagonally) by pressing different keys. It will also have a Fire button,
although it can’t be pushed while a direction key is being held down.

CHOOSING THE KEYS

We will first select the keys that will make up the joystick. Nine keys are
needed: eight for the various pointing directions and one for the Fire button.
The keys should be arranged so that they are easy to use. The arrangement
below uses the keys that are naturally under the right hand when touch-
typing. Their circular pattern is easy to learn and remember.

Chapter & Game Controlers 168

DESIGNING THE INTERFACE
TO THE MAIN PROGRAM

Now let’s take a look at the programming necessary to interpret the
keys and simulate the joystick. The subroutine should be compatible with
the one described for the actual joystick so that you can write programs that
work with either. This subroutine will set the same three variables for the
main program.

X1 The X Increment. Controls movement to the right or left.
YI The Y Increment. Controls movement up or down.
FB Tells whether the Fire Button was pressed.

X1 is set to —1 for left, +1 for right, and 0 for neither. YI is set to —1 for
down, +1 for up, and 0 for neither. If the K key is pressed, FB will be a 1;
otherwise, it will be a 0.

LOADING THE TABLES

The program will interpret the keys by looking them up in a table. It
uses other tables for the XI and YI values. These tables will be stored as
arrays in the program. The first array (KTS$) contains the values of the keys
that make up our joystick. The other two arrays contain the values of XIand
YI that correspond to those keys. For example, KT$(5) contains the letter
“U”, which means “up and left,” so XT(5) contains —1, and YT(5) contains
1. To save time when scanning the keyboard, we’ll build these tables in a
separate subroutine that is executed only once at the beginning of the
program.

€2988 REM KEY TABLE YALUES

£2186 DATA I.0.,L,".",",",M,T,U

£2208 REM ¥ IMCREMEMT WHLUES

623@8 DHTH 5)11111)81"1)"1;‘1

£248@ REM Y IMCREMEMT YALUES

62595 DHTH 111181‘11"1;'1.-@11

E2680 FOR I=@ TO 7 READ KT$0I): MEAT
€2788 FOR I=@ TO 7 READ ATCI): MERT
£288@8 FOR I=B TO 7' REHAD YTCIo: MEXT
€£2850 REM MAKE ALL KEYS REPEAT

€2380 FOKE &58, 128

Your program must call this subroutine before attempting to use the
“joystick” in order to translate the keys correctly.

166 our Commodore 64

When using this routine, be careful where you place the DATA state-
ments. Remember that the READ statement starts with the first DATA
statement in the program. If you put additional DATA statements in this
program, you may find it helpful to separate the ones above from the
subroutine and group them with your own to keep them in the right order.

THE KEYBOARD INTERPRETER SUBROUTINE

The subroutine to read the keyboard and translate the key has high
statement numbers to force it to the end of the program.

63000 XI=0: YI=0: FB=@: LI=@

520816 GET KE%

£3020 IF KE$ = "" THEM RETURH

63830 IF KE$ = KT$(LI) THEM YI = YT(LI): ®WI = RKT(LI):
FRETURM

€38040 LI = LI+1: IF LI < 8 THEM &£3836

63858 IF KE# = "K" THEM FE = 1

63868 RETURM

This subroutine has a few tricky parts, so we will go over it line by line.

63000 X1, YI, and FB are set to zero first. Since there are three
places where we RETURN, the old values must be erased
before we start.

63010 Checks to see if any key is pressed.
63020 If not, RETURNS, leaving all variables set to zero.

63030 These lines form a loop to scan the key table for

63040 the key that was pressed. A FOR-NEXT loop is not used,
since we want to RETURN immediately if the key is found.
(Remember that you must always terminate a FOR loop
with a NEXT, and we want to stop this loop as soon as
possible.)

63050 Checks for the Fire button.
63060 RETURNS to main program.

USING THE KEYBOARD JOYSTICK

Your program should be entered ahead of statement 62000. You can
SAVE a copy of these routines by themselves to use as a base on which to
build programs.

Chapter 5: Game Controllers 467

To see what can be done with the “keyboard joystick” routines, try
using them with the demonstration program below.

18 GOSUB 62006

20 A$c@r=" LEFT"' A$(1,=" "OA$CZ2)="RIGHT"

38 B$(@="DOWM ":@ BE(1)=" oo BEC2i="UP "

40 C$(@I="FIRE":@ C$(1,="@FIREW"

58 POKE 636, 123

166 PRINT "1"

110 PRIMT "®8",ASCAI+13;"/";BE(YI+10,5PCCS),C4CFBY

128 GOSUB 630860

138 GOTO 11@

€2000 REM KEY TABLE YALUES

621086 DATH I.0.L.".",",".M,J.U

62200 REM X INCREMEWT WARLUES

62300 DATA ©.,1.1.,1,8,-1,-1,~-1

62408 REM Y INCREMENT VALUES

£2500 DATA 1,1.,@8.-1,-1,-1,8,1

62608 FOR I=0 TO 7: RERD KT#(Iy: MERT

62708 FOR I=@ TO 7: READ XT(I): HNEKT

62804 FOR I=B TO 7: RERD YT(Iy: WEART

63080 K1=@: YI=@: FB=@: LI=H

£3010 GET KES$

£3028 IF KE$ = "" THEWM RETURHM

63030 IF KE$# = KT$(LI» THEN YI = YTCLI): KI = WT(LIJ:
RETIJRN

63048 LI = LI+1: IF LI < 8 THEM £3030

63058 IF KE$ = "K" THEM FB = 1

63060 RETURM

CHAPTER

Grapnics

In this book, “graphics” means the display of pictures, rather than text,
data, or programs, on the screen. The “picture” could be a face, an architectu-
ral drawing, a geometric shape, or simply an arrangement of text characters.

The C-64 has extensive graphics capabilities. Some of these, such as the
built-in graphics characters and the C-64’ ability to display text and pictures
in color, have been mentioned in the preceding chapters. In this chapter we will
cover these features in more detail and describe the C-64’s other graphics
features, including its ability to use characters you design. As these features are
introduced, we will show you programming techniques for using them to
produce colorful and animated displays.

The Video Interface Chip

The 6566 Video Interface Chip (VIC-II chip) is a complex integrated
circuit that generates the picture and sound that the C-64 produces on your
television. (It’s called the “VIC-II" because it’s an improved version of the
original VIC chip that was used in Commodore’s VIC 20.)

The VIC-II chip acts as a video interface: it translates computer signals
into television signals that produce a picture on the screen.

169

170 ‘our Commodore 44

Your program communicates with the VIC-II chip using PEEK and
POKE. Much of the art of C-64 graphics involves knowing what to POKE
and where to PEEK. That is the focus of this chapter.

The C-64 Screen

Let’s look again at the screen, our canvas for graphics artistry. Figure 6-1
presents a blank screen. Notice that it is divided into two areas, the border and
the background. The border frames the background; since television screens
do not have straight edges, the border fills the gap between the display and the
edge of the television screen. The background is the working area of the
screen. Both the text and graphics created by your programs are displayed
here. The background consists of 25 rows of 40 characters each, as shown in
Figure 6-2. Notice that the rows are numbered from 0 to 24, and the columns
from 0 to 39. The formulas for manipulating screen data that we will present

—

\Border

K N Background

FIGURE 6-1. The C-64 screen

Chapter 6 Graphics 171

0 1 223 4 56 78 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 2| 32 33 34 35 36 17 38 39

FIGURE 6-2. The screen divided into rows and columns

throughout this chapter are much simpler if you think of the screen as starting
at row 0, column 0, rather than row 1, column 1. All the discussions and
examples in this chapter will use this numbering convention.

Border, Background, and Character Colors

The colors of the border, background, and the individual characters can
be set independently. When the C-64 is powered on (or reset with the
RUN/STOP and RESTORE keys), the background is dark blue and the charac-
ters and border light blue. You can change these colors at any time.

The background and border colors are stored in the VIC-II chip. They
can be changed simply by POKEing a number into a memory location. The
border color is controlled by location 53280, while the background color is
keptinlocation 53281. A table of the POKE values for all their possible values
is provided in Appendix B.

The color of each character on the screen can be set individually. Each
character has its own location in an area called color memory. Later in this
chapter we will explain how to access this color memory directly, but you can
make the C-64 take care of it for you. On the front of the numeric keys 1
through 8 are printed abbreviations for eight of the character colors.

472 \our Cormmodore 44

Key Abbreviation Color
1 BLK Black
2 WHT White
3 RED Red
4 CYN Cyan
5 PUR Purple
6 GRN Green
7 BLU Blue
8 YEL Yellow

To change the color of the characters, press and hold the CTRI key, then press
the key for the color you desire. All characters generated at the keyboard or
by a program willappear in the color selected. Only characters displayed after
you set the new color will be affected; those already on the screen will not be
changed.

There are eight other colors that you can choose from, but they are not
marked on the keys for you. These colors are set using the Commodore key
with the number keys.

Key Color

Orange
Brown

Light Red
Dark Gray
Medium Gray
Light Green
Light Blue
Light Gray

00 N BAWN -

To change to one of these colors, press and hold the Commodore key, then
press the key for the color you desire. Just as with the “CTRL” colors, only new
characters will appear in the new color.

Players and Playfields

Many graphics programs, especially games and simulations, move one
or more objects against a fixed background. To avoid confusion with other
terms, we will refer to the objects as players, and the background as the
playfield. The C-64 offers a variety of ways to build both players and
playfields.

Not all players will move, and the playfield may change. In fact, in some

Chapter ¢ Graphics 173

applications the players will stay in one place and the background will move,
just as in the old movies where the stagecoach sat still while the painted
scenery rolled by behind it.

GRAPHICS WITH THE EXTENDED CHARACTER SET

Simple players can be made using the C-64's built-in graphics characters.
These are the shapes and symbols printed on the front of the keys. For
example, the following short program will display a drawing of a car on the
screen:

168 PRIMT "'

288 PRIMT " /"« "
308 FPREIMT "~ -,
400 PRIMT "L 1"
588 PRINT " O o "

One of the advantages of creating displays with PRINT statements is
that you can doodle on the screen in immediate mode until you're satisfied
with your player, then build the PRINT statements around it. This is how we
built the car in the program above. Let’s look at the process step by step, using
a simpler example:

Step 1: Clear the screen. Use the SHIFT and CLR/HOME keys (Figure
6-3a).

Step 2: Draw the top half of the diamond. Type SHIFT-N, then SHIFT-M
(Figure 6-3b). Don’t press RETURN; if you do, the C-64 will try
to execute what you just typed and printa READY message on
your picture. (If you type any nongraphics characters, you may
also get a 2SYNTAX ERROR message.) To avoid this, type
SHIFT-RETURN. The cursor will still move down to the begin-
ning of the next line, but the C-64 will not try to execute
your picture.

Step 3: Draw the bottom half of the diamond. Use SHIFT-RETURN to
get to the next line. Type SHIFT-M and SHIFT-N to complete the
diamond (Figure 6-3c).

Step 4: Home the cursor. Press the CLR/HOME key without pressing the
SHIFT key (Figure 6-3d).

474 \our Commodore 64

(-)

. J

CEERCE—

. J

Chapter ¢ Craphics 175

Step 5: Insert four spaces with the INST/DEL key. This leaves room for a
line number, a “?” for PRINT, and a double quote to start a
string (Figure 6-3e¢).

Step 6: Type in the PRINT statement. Enter the line number (10), a
question mark, and the double quote (Figure 6-3f).

Step 7: Press RETURN. Don’t use SHIFT this time. BASIC stores the
first line of the diamond as a program line. Repeat steps 5
through 7 for the second line of the drawing, using a line
number of 20 this time.

You now have a program that can be RUN to display the diamond
drawing. This method can be used to reproduce almost anything you can
sketch on the screen, from a simple square to a complex picture. The only
restriction is that you can’t completely fill the screen, since you will need room
to insert the PRINT statements.

Now experiment a bit with some of your own designs. For the moment,
stay away from reversed characters. They require some special handling that
we’ll cover in the next section.

Using Reversed Characters

You may have already noticed that reversed characters have a special use
in PRINT statements: they represent keys that do not generate “normal”
characters, such as HOME, the cursor controls, and the color keys. If you
enter a reversed character directly into a PRINT statement, one of the
following will happen:

- The character will be interpreted as a “special key” to move the cursor,
change the color, and so on.

- The character will not match any of the special keys; it will be stored as
a nonreversed character when you press RETURN. This will happen
even if the character appears between quotes in the program.

To PRINT a single reversed character within a string, enter a RVS ON
(CTRL-9) before the reversed character. The character itself must appear in the
PRINT statement as a “normal” (nonreversed) character. If you are building
PRINT statements from a screen sketch, you can insert the RVS ON using the
INST key. Remember that pressing the INST key puts you in quote mode for

476 our Commodore &4

one character, so the RVS ON will be stored as part of the PRINT statement
instead of being executed.

The “reverse on” is reset automatically at the end of the PRINT line.
(Remember that a PRINT line can span more than one line on the screen. A
RETURN indicates the end of a PRINT line. If a PRINT statement ends with a
semicolon, BASIC does not add a carriage return, and characters will still be
displayed in reverse.) If normal characters follow the reversed ones on the
PRINT line, insert a RVS OFF (CTRL-0) before the first nonreversed character.

To illustrate the problem and solution, we will modify the Diamond
program to produce a solid block instead of an outline. Follow the steps
displayed in Figure 6-3, but use different characters to make up the player.

- In step 2, after clearing the screen, type RVS ON (CTRL-9), SHIFT-£,
and Gz -*,

- In step 3, type G=-* and SHIFT-£.

When you list the program, you will notice that the first SHIFT-¢ has
changed to normal, but the (= -* has not.

1@ PRIMT "Fn"
28 PRIMT "W

Now run the program, and observe the effect of the reversed Cz-*. The
second line has turned cyan.

To change the program so it displays what we originally wanted, follow
these steps: List the program to display it on the screen. Position the cursor
over the SHIFT-£ in line 10 and press SHIFT-INST. This inserts a space, and
temporarily puts the C-64 in quote mode. Type CTRL-9 (RVS ON). Since it isin
quote mode, the C-64 will insert the RVS ON in the PRINT statement (dis-
played as a reversed “R”), instead of switching to reversed characters. When
the PRINT statement is executed, the reversed R will be recognized and the
C-64 will start displaying reversed characters. Change the reversed C-* to a
normal one, so it won’t turn the screen cyan again. Move the cursor over and
type a C=-* over the old one.

The program should now look like this:

10 PRINT "W
28 PRIMT "W

Chapter ¢ Graphics 177

Run the program again, and you will see that the diamond is now
correctly displayed.

Adding Color to Your Display

Like reversed characters, color displays require special care. The prob-
lem here is somewhat different: the C-64 simply forgets the color of a
character once it’s off the screen. This happens because the color is not
actually part of the character. As mentioned earlier, there is an area in
memory set aside to hold the colors of the characters on the screen. When you
list your program, the C-64 sets the color for each character to the active
character color. When first powered on, it uses blue for the character color. In
Chapter 2, you learned how to change the color from the keyboard, using the
CTRL key. As we are about to see, your program can also change it. Once a
character is gone from the screen, the color memory is reused to show the
color of the character that takes its place. Only the character itself is stored as
part of the program.

As with reversed characters, this problem is solved by inserting control
characters into the program to set the color. For example, to make the
diamond red instead of blue, insert a CTRL-3 into line 10 following the “reverse
on” (reversed R) so that the line looks like the following:

18 PRIMT "ga"
28 PRIMT "

Now run the program. Notice that the entire diamond is red, not just the
first line. Color controls, unlike the reverse on control, are not reset when you
start a new line. They remain in effect until a new color is set, or until you reset
the C-64 with the RUN/STOP and RESTORE keys.

CREATING DISPLAYS WITH POKE

Sometimes it is not practical to use PRINT to build a graphics display.
For example, if several players are moving about on the screen, you may need
to detect when they collide with each other or with an object on the playfield.
Or you might want to have a cursor on the screen when reading characters
with GET. For applications like these, you will want to access the display
directly. The C-64 allows you to do this using PEEK and POKE.

178 ‘our Commodore 64

Screen Memory

The characters displayed on the screen are stored in the C-64’s memory.
The VIC-II chip reads the image of a character from memory as it is being
displayed on the screen. The characters are stored in an area called screen
memory, and the colors of the characters are stored in color memory. Because
these areas are part of the C-64’s memory, you can use PEEK and POKE to
examine and change the contents of the display.

FINDING SCREEN MEMORY

In most computers, the location of screen memory is part of the hard-
ware design and cannot be changed. In the C-64, although the number of rows
and columns in screen memory is fixed, its starting point is not. The VIC-II
chip uses one of its internal registers to keep track of the start of screen
memory and this pointer can be changed. Some of the programs we will show
you later in this chapter will make use of this capacity. Programs that PEEK
and POKE directly into screen memory must be aware of where the screen is.
This is easily done. There is a different memory location used by BASIC that
tells the C-64 where the screen begins. If you PEEK this memory (location
648), and multiply it by 256, you will get the starting address of screen
memory.

18 SE=2564FEEK (6480

Our sample programs will keep location 648 up-to-date when they move
screen memory. If you follow this convention in your programs, you can write
programs that work no matter where screen memory is located.

SCREEN MEMORY LAYOUT

The characters you see on the screen are stored in memory as anarray of
25 rows and 40 columns. This array is not a BASIC variable. It is simply a
1000-byte area in the C-64’s memory that you can access with PEEK and
POKE, but you will find it helpful to visualize this area as an array. Each
element of this array holds one character from the screen. Element (0,0)
contains the character in the upper left corner of the display, and element
(24,39) holds the character in the lower right corner.

Once you have found where screen memory starts, using the formula

Chapter 6 Graphics 479

from the preceding section, you can readily calculate where to POKE for a
particular character. The formula is

POKE location = start of screen + column + 40 * row

In order to use this formula, you must number screen columns from 0 to 39,
and rows from 0 to 24. As an example of this formula, type in the following
program:

160 SB=2S6MPEEK (64B)

11@ REM FILL SCREEM MEMORY WITH "@"

120 FOR I=@ TO 935

138 POKE 5B+1.8

148 HEXT I

158 REM WAIT FOR A KEY TO BE PRESSED

168 GET %%

178 IF %#$="" THEN 16D

188 REM CHAWGE BACKGROUWD TO BLACK

198 POKE 53281.8

Before running the program, clear the screen and list the program,
leaving the listing on the screen. Now run the program and observe the
results; all the characters on the screen, except spaces, were changed to @’s.
In fact, the program changed every character to an @, but those that appear
on the screen as spaces are invisible. When BASIC clears the screen, it
changes the character color of all characters on the screen to match the
background. Then, as each character is printed, the C-64 sets its location in
color memory. Since some of the @’s are displayed as blue characters on a
blue background, they will be impossible to see. To make them visible, press
the space bar. The program will change the background color to black, and
the blue @’s will appear. (This program does not work exactly the same way
on all C-64’s; Commodore made a change to the screen-clearing portion of
BASIC after some computers had already been shipped. On your computer,
the “invisible” @-signs may appear in white.)

You must be aware of this problem of disappearing characters when
using POKE in a display. Your program must ensure that the color of the
location you are POKEing is correctly set. The next section describes how to
do this.

Color Memory

Earlier in this chapter we mentioned that the colors of the characters on
the screen are kept in a special area called color memory. As our most recent

180 ‘our Commodore ¢4

example shows, an understanding of how to use color memory is essential
when using POKE in displays. So, before proceeding further with POKEing
screen memory, let’s take a look at color memory.

FINDING COLOR MEMORY

Unlike screen memory, color memory never moves; it is always in
locations 55296 through 56295. As with screen memory, there is one location
in color memory for each character on the screen. The order of character
colorsis the same as that of the characters themselves, so the formula used to
find a character’s location in color memory is like the one used to locate the
character in screen memory.

Color memory location = 55296 + column + 40 * row

CONTENTS OF COLOR MEMORY

The color of each character is stored in color memory as a number from
0 to 15. The colors produced by these numbers are as follows:

0 Black 8 Orange

1 White 9 Brown

2 Red 10 Light Red

3 Cyan 11 Dark Gray

4 Purple 12 Medium Gray
5 Green 13 Light Green

6 Blue 14 Light Blue

7 Yellow 15 Light Gray

Unlike other areas of C-64 memory, color memory uses only four bits per
location. Only four bits are needed to hold the color number (0 to 15). Since
the upper four bits are not used, Commodore did not include a memory chip
to hold them. If you POKE a number larger than 15 into a color memory
location, the part of it held in those “missing” bits will be lost.

10101010 A binary value of 204, when the upper 4 bits are dropped
1010 is stored as a 12.

11111111 255
1111 becomes a 15.

00000111 A value of 7, however,
0111 is not changed.

Chopter & Graphics 181

Since there is no memory chip to supply the upper four bits when reading
color memory locations, they will take on unpredictable values. Remember
that a bit must be either a 1 ora0; even if there is no signal present on a chip’s
input pin, the chip must assign it some value. With no signal coming into the
pins for the upper four bits, the chip arbitrarily gives them eithera 1 ora 0
value. When PEEKing color memory, always discard the nonexistent bits.
This can be done by using AND to mask them, as described in Chapter 5.

18 BY=PEEK(S554003 AMD 13

Screen Display Codes

Once you understand where to POKE to change the display, you will
need to know what value to put there. Commodore computers, including the
C-64, do not use the same character code in screen memory that they use in
programs. Most computers store characters in a standard code called ASCII
(American Standard Code for Information Interchange). Commodore com-
puters use an “extended” ASCII for all purposes other than representing
characters in screen memory. The “extensions” are graphics characters and
certain control codes not used by other manufacturers. Many of the control
codes do not have a displayable character associated with them. In order to
make as many graphic codes as possible available on the screen, Commodore
devised a different code for screen memory. This code eliminates some ASCII
characters, and changes the values of others.

Appendix E contains a table showing the screen display codes. If your
program is POKEing characters that are set at the time you write it, you can
simply look them up in the table. If you do not know in advance what
characters you will be POKEing, your program must convert them from
ASCII to screen display code. This might be necessary if, for example, your
program uses GET to read instructions from the keyboard, and you want to
echo the characters in a particular place on the display.

The conversion to screen code can be done with little effort, because the
ASCII codes that were changed were moved in blocks of 32 characters. The
changes are shown in Table 6-1.

Here is a simple subroutine that takes a key value, KV$, and converts it
toascreen code, SC. If the key cannot be translated (a cursor control key, for
example), it returns a value of —1. The main program can thus tell the
difference between a displayable and a nondisplayable keystroke.

182 \our Commodore 64

TABLE 6-1. ASCII to Screen Code Conversion

ASCII Code Screen Code

0-31 None
32-63 Same
64-95 0-31
96-127 64-95

128-159 None

160-191 96-127

192-254 64-126
255 94

E0PAA SC=ASCCKVE)

60018 IF 5C{32 THEM SC=-1 RETURH
EB0zB IF SC7<64 THEM RETURM

&0038 IF 3CI596 THEN SC=SC-E64:RETURN
60840 IF SC{12B8 THEM SC=SC~32:RETURM
60050 IF SCC160 THEM SC=128:RETURM
EvBEB TF SCC132 THEW SC=8C-64:RETURM
€0072 IF SC{2335 THEW SC=SC~123 RETURHM
£0PEB SC=126:RETURM

The Moving Dot Revisited

In Chapter 5 we presented a program that moved a dot around the screen
as an example of using the joystick. Here, for comparison, is how that
program could be written using POKE instead of PRINT. As before, this
program is not complete; you must add the appropriate subroutine to use
either the keyboard or the joystick for control.

16@ REM CLERR SCREEN

118 PRINT"a"

12@ REM SET COLOR MEMORY
138 FOR I=S5352%6 T0O 56295
146 POKE I.14

158 HEXT I

168 XP=0:YP=0

176 SBE=PEEK(548)%256

186 REM MAIM LOOF

198 GOSUE 63008

208 IF (AI=a)ANDIYTI=@3AMDFE=A3THEN 198

Chapter & Crophics 183

218 REM ERASE OLD DOT

228 POKE SB+XP+40#%YF, 32

230 REM CALCULATE HMEW X POSTION
240 ¥KP=xP+X1

258 IF XP>3% THEM xP=@

260 IF XFB THEMW KF=33

278 REM CALCULATE MEW % POSTIOM
280 YP=YP+Yl

298 IF YF>24 THEM YP=B

308 IF YP{B THEM YP=24

318 REM POKE MEW DOT

320 POKE SB+<F+48€YFP, 81

338 50TO 158

ANIMATING YOUR PLAYERS

There are two facets to player animation. The first we have already
discussed: moving a player around on the screen. The second involves chang-
ing the player itself, so that it appears to be doing something. To animate a
player, one or more of the characters that make it up are changed, giving the
illusion that it is moving. For example, this program produces a windshield,
with wipers that sweep back and forth.

18 DLY=150

20 REM BUILD WINDSHIELD

30 PRINT"0 ——."

40 PRINT" | K

50 PRINT" ‘e

60 REM SWEEP WIPERS TO RIGHT
70 FOR I=1 TO 4

80 ON 1 GOSUB 180,248,300, 360
99 FOR Jml TO DLY : MEXT

182 HEXT

118 REM SUEEP WIPERS TD LEFT
120 FOR 1=3 TO 2 STEP ~1

130 OW 1 GOSUB 189,240,300, 360
149 FOR J=1 TO DLY @ MEXT

150 NEXT

16 0O0TO 70

1709 REM SHOW WIPERS AT 1@ 07CLOCK
180 POKE 1DES,77

198 POKE 1@6€,32

200 POKE 106777

210 POKE 1868, 32

220 RETLRH

230 REM SHOW WIPERS AT 12 07CLOCK

4184 o Commodore #4

24@ POKE 18635,32

238 POKE 1066, 1081

268 POKE 1@867,32

270 POKE 1068, 141

280 RETURM

290 REM SHOW WIPERS AT
300 POKE 1065,32

318 POKE 1@66.,78

320 POKE 1067,32

330 POKE 1P6R.78

3480 RETIRN

358 REM SHOW WIFERS AT 2 07CLOCE
368 POKE 1866, 100

370 POKE 1968, 198

388 RETURH

07CLOCK

LN

The program has several major parts. We will look at each in detail.
Lines 30 through 50 clear the screen and display the windshield using PRINT
statements.

Lines 70 through 100 sweep the wipers from left to right. They are then
swept back to the left by lines 120-150. These loops change the display by
calling, in turn, subroutines that put the wipers in particular positions by
POKEing characters to the screen. Each subroutine erases the wipers from
the screen and puts them in a new position.

Two of the most important lines in the program are lines 90 and 140.
These FOR-NEXT loops slow down the program. Without such delay loops,
the display would change too quickly, reducing the movement to a blur.
Choosing the lengths of the delay loops is crucial to animation. This is
especially true of programs that produce complex movements. When devel-
oping such programs, you can expect to spend much of your time fine-tuning
the delays to create a display that moves smoothly at the speed you want. Try
experimenting with our example program: the length of the delay loops is
controlled by the variable DLY and the value of this variable is set in line 10. A
lower value shortens the delay loops, making the display change more
quickly. Increasing the value lengthens the delay loops, slowing the move-
ment of the wipers.

It is difficult to do complex animation with the built-in character set
unless you are working with a very large player. In most cases you must move
part of your player an entire character space to move it at all. This makes the
motion somewhat jerky unless the player takes up a large portion of the
screen. To produce more subtle movements with small players, you must

Chapter 6 Graphics 185

design your own characters. Techniques for making and using your own
characters will be discussed later in this chapter.

Combining PRINTed and POKEd Graphics

As we have seen, both the PRINT and the POKE methods have
strengths and weaknesses in building graphic displays. For those programs
that have players moving against a fixed background, a combination of
PRINT and POKE often works best. Using PRINT statements to display
graphics on the screen in combination with POKEs that jump to any location
on the screen can make the development of a program much easier.

Racetrack Game

Figure 6-4 is a listing of a simple game called Racetrack, an adaptation
of a common pencil-and-paper game. This program demonstrates some of
the techniques we have discussed so far in this chapter.

188 GDSUE 48067

208 CR=135

388 CC=2

336 POKE 53279,2%4

480 POKE SB+CC+CR#406.8

1608 1F “5<»@ AMD TIZKT THEM CC=CC+EGMCAS) : &T=TI+6B/ABS (XS
1198 IF YS5<»8 AMD TIZYT THEM CR=CR+8GH(YS) YT=TI+E@/HESC(YS)
1206 IF CC<@ OR CC>3% THEW 4806
1380 IF CrR<@ OF CR>24 THEM 4686
1498 POKE BA. 32

15088 BA=SE+CC+CRM4@

1608 TG=PEEK (BA)

1788 IF TG<>8 AMD TG<>32 THEW SS00
1808 POKE BR.B

1388 IF TT>TI THEM 100@

2088 TT=TI+34

2188 POKE Yz,125

2208 GOSUB 63em8

2308 POKE Yz2.8

2400 #S=XS+41 ¢ WE=YE4+YI

2508 GOTO 16606

4088 IF CC<@ THEMW CC=6

FIGURE 6-4. Racetrack program

186 ‘our Commodore 44

4108 IF CC>35% THEW CC=39

4208 IF CR{D THEM CR=8

4300 IF CR>24 THEW CR=24

44@@ EA=SEBE+CC+CR#48

Shee FOKE BR.O

5188 FOR I=1 TO 358 @ HEAXT I

5208 FOKE BAR, 32

5ol FOR I=1 TO 358 @ HMEAT I

§400 GET A$: IF AECH"" THEM 109

53p6 GOTO 5084

48809 PRIHT”H”J

40108 SB=236#PEEK .648)

482813 FDR I*”‘Qdﬁ TO 56253 POKE 1,14 HEAT
40300 XE=@ @ Y5=0 @ KT=@8 @ YT=@

40400 PEM JD”UTIEV WHRIHELES

40508 JE=36321
48600 UMZ=1 ¢ DME=
48700 REM SET UP 3
48880 Y2=54283
48908 FOKE Y2+1.80
4186 POKE 54235.8
411688 POKE 54295.15

2 ' LMK=4 @ REMZ=8
OUND

g

41280 PRIMT" @5 s S
41308 FPRIMT" & b7 #
414008 FRIMT"# ﬁ@@%%@ﬂ%%

41508 PRIMT" A

415688 PRIMT" #

41700 PRINT"]

41208 PRIMT" i] #
41308 PRINT" B B B
42808 PRIMT" % S g s
42108 PRIMT" & s)
422889 PRIMT" A s %
42308 PRIMT" %

42408 PRIMT" #

2588 PRIMT" #

42688 FRIMT" %

42708 PRIMT" %
42888 FRIMT" %
42368 PRINT" %

43808 PRIMT"]

42188 FRIMT" b

43268 RETURH

63008 S5A=FEEK(JE

£3810 VI=;GHfSSH HHD LMZ3-836HC55% AMD RMAEY
£3028 YI=5GMHCE5% AND UMK ~-S06HGC 55K AMD DMZS
E3828 PETUPH

FIGURE 6-4. Racetrack program (continued)

Chapter 6. Graphics 187

The pencil-and-paper version of Racetrack is played on a sheet of graph
paper with the course drawn on it. Here is a typical course:

The C-64 version of the game uses one character location on the screen
for each square on the graph paper.

:

a8

E Sk
A

R
F2

u

2

3

7

%
%
%
#

""" . s i

NN RSN

488 o Commoaore ¢4

The rules of the game are quite simple.

1. The car moves in both the horizontal and vertical dimensions at a
speed of a certain number of squares per second. It can move in both
dimensions at once. For example, to travel diagonally it can move at a
rate of one square up and one square right per second.

2. On each turn (about twice a second), the player can speed up or slow
down by a rate of one square per second in each dimension. For
example, if a player is moving at a rate of 3 squares up and 1 right, he
can change his speed to 4 up, 1 right; 2 up, 1 right; 2 up, 2 right; 2 up, 0
right, and so on.

3. If the car goes off the track, it crashes and the game is over.

The Racetrack program listed in Figure 6-4 is a somewhat crude version
of the game, but it does provide some practical examples of techniques you
can use in writing graphics and animation programs. It uses PRINT to
display a playfield that was originally developed as a screen sketch. It also
contains some examples of using POKE to move the player and PEEK to
detect collisions. We'll start our examination of the program by introducing
the main variables.

Variable
Name

CcC
CR
TT

XS

XT

YS
YT

Description
Car Column —-the column number on the screen where the car is to be displayed.
Car Row —the screen row where the car is located.

Test Time —the value that TI will have when it is time to test the joystick for the
next turn.

X Speed-—the car’s speed in the X dimension: negative is toward the left,
positive toward the right.

X Time - the value of TI when it is time to move in the X dimension,
Y Speed --the car’s speed in the Y dimension: negative is up, positive is down.

Y Time —the value of T1 when it is time to move in the Y dimension.

Lines 1000 through 2500 make up the main processing loop of the
program. The program runs continuously through the code, looking for
something to do. On each pass it checks the current time to see if it should
move the car (lines 1000 and 1100) or look at the joystick (line 1600). If any of
these things needs to be done, the timer value for the next occasion is also set.

Chopter 6 Graphics 189

In lines 1200 and 1300 the program checks to ensure that the car has not
gone off the screen. Lines 1500 and 1600 make sure that the car is not about to
collide with a wall. If either of these is true, the program goes to the “crash”
routine at line 4000.

Lines 2100 and 2300 sound a “tock™ each time the program tests the
joystick. (The C-64’s sound capabilities are discussed in Chapter 7.)

The “crash” routine (lines 4000 through 5500) brings the car back onto
the screen if it has gone off (lines 4000-4400) and makes it flash at a rate of
about once per second (lines 5000-5300). As soon as the user presses any key,
line 5400 starts the game over.

Racetrack is both an example of graphics techniques and a basis for your
own experiments. You might want to try putting a readout of the number of
turns or seconds used in the infield, modifying the course, or making sure that
the car has really gone all the way around the course, instead of doubling back
to the finish line.

MEMORY “SEGMENTS”

The graphics features we have examined so far have used the screen
memory area in locations 1024-2023. However, the more advanced features
that we will be discussing access other memory locations as well.

One of the characteristics of the VIC-II chip is that it can only access 16K
(16,384) bytes of memory. Since the C-64 has 64K of memory, it would seem
that most of it can’t be used by the VIC-II.

To circumvent this problem, the engineers at Commodore divided the
C-64’s 64K of memory into four “segments,” each 16K bytes long. They also
designed the C-64 so that your program can select which of these four
segments the VIC-1I will use.

Because most of the first segment (the one selected by the C-64 when it is
powered on) is used by BASIC, our program examples will be switching the
VIC-II to other segments. The methods for choosing the right segment and
switchingto it are a bit complex, so we havc reserved the explanation of them
for the section on “Advanced VIC-1I Chip Topics” at the end of this chapter.

However, there are two important points about memory segments you
need to understand before continuing with the rest of this chapter. The first is
that all the memory areas used by the VIC-II (screen memory and the new
ones we’ll be telling you about) must be in the same 16K segment.

490 ‘our Commodore ¢4

The second item to remember is that pressing RUN/STOP-RESTORE does
not completely reset memory. Location 648, as we mentioned earlier, controls
the screen location and RUN/STOP-RESTORE does not restore it to its “power
on” value. If something goes wrong while you are running one of our sample
programs that moves screen memory (hitting the STOP key, typing error
entering the program), it is possible for BASIC to get confused about where
screen memory is. If this happens, the screen editor won’t work, and the
computer won’t be properly reset by pressing RUN/STOP-RESTORE.

This sort of confusion will a/most never happen, but any program that
does a lot of POKEing into memory can cause it by changing the wrong
location in memory. Before RUNning any of our sample programs, or any
program that does many POKE:s, be sure you SAVE a copy of it: the typing
fingers you save may be your own!

CUSTOM CHARACTER SETS

The C-64 can easily change the shapes of the characters that appear on
the screen. Most personal computers require hardware changes to use a
different set of characters, but the C-64 allows you to create your own
characters, then switch over to your character set with a simple POKE. In this
section we will show how the character set is defined, and how to design your
own characters and make them appear on the screen.

How Characters are Displayed

First, let’s take a brief look at how television works. If you look closely at
your television screen, you’ll notice that the picture is made up of individual
dots arranged in rows. There are about 500 dots on each row and about 500
rows on the screen. Inside the picture tube, a beam of electrons sweeps back
and forth, one row at a time, lighting up each dot as it passes. The incoming
TV signal determines the brightness and color of each dot. Although the
process of generating and receiving a TV signal involves much more, all you
need to know is that the television picture is made up of rows of dots. The
VIC-II chip generates the TV signals.

Chapter & Craphics 4194

Character Memory

This leads us to the question of how the VIC-1I chip knows which dots to
turn on. You will recall that the characters displayed on the screen are stored
in the screen memory area. As it “paints” the screen, the VIC-II chip steps
through screen memory, picking up the characters one at a time. To determine
which dots to turn on for a particular character, it looks at a table in memory
that contains the character shapes. This table was worked out by Commodore
and stored in a special memory chip in the C-64. This chip, called a ROM
(Read-Only Memory), retains the information that was stored in it at the
factory, even when power is turned off. The area occupied by this table is
called character memory. With a POKE, your program can tell the VIC-II
chip to use a different area for character memory — one that you can fill with
your own table. Finally, the VIC-II chip must know what color to make the
character. This information comes from color memory. We’ve already exam-
ined the screen and color memory areas, so we’ll look at character memory,
then discuss how to use these areas to create displays.

FORMAT OF CHARACTER MEMORY

Each character on the screen is made up of a matrix that is eight dots
wide and eight high. A magnified view of the letter A, for example, would
look like this

The 8X8 format was chosen because each row of the character conve-
niently fits into one byte of memory, and the eight rows make a nice round
number in the computer’s binary number system. This format also greatly
simplifies custom character design. You can lay out your character on an

192 \our Commodore 64

ordinary sheet of graph paper, and convert each row to its value and location
In character memory.

The eight bytes that make up the rows of a character are stored next to
each other in character memory, with the top row first. Each dot on a row
corresponds to one bit, with the bit for the leftmost dot having the highest
binary value, 128. A bit value of 1 means the dot is “on” (displayed in the
character color). A value of 0 means the dot is “off” (displayed in the screen
color). This i1s what the letter A looks like in character memory

Displayed Dots Binary Decimal
| |
00011000 24
00111100 60
T [01100110 102
—] — 01111110 126
— - 01100110 102
_ 01100110 102
| 01100110 102
00000000 0
Fo LT

Here, for comparison, is the checkerboard character:

Displayed Dots Binary Decimal
11001100 204
00110011 51
11001100 204
00110011 51
11001100 204
00110011 51
11001100 204

00110011 51

Chapter & Graphics

193

Notice that the checkerboard character’s dots extend to the edge of the
matrix, while the A has space at the sides and bottom. This built-in space is
the only space between adjacent characters on the screen. The 8 X 8 matrices
of characters displayed on the screen actually touch those of adjoining
characters, making the screen a continuous field of dots. Here is a magnified

view of a small section of the screen.

This contact between characters is what enabled us to build players made
up of multiple characters. This also means that you must include spaces in
some of your character definitions. If, for example, you wanted to display the
Greek “lambda” character in a scientific formula, you might define it like this:

Displayed Dots

Binary

00000000
01100000
01100000
00110000
00011000
01101100
11000110
00000000

Decimal

96
96
48
24
108
198

494 o Commodore ¢4

Like Commodore, we left white space at the right and the bottom of the
lambda. This makes it line up with the other characters when displayed.

THE MISSING DOTS

Some quick arithmetic will tell you that if there are eight dots in each row
of a character, and 40 characters on each line of the screen, this accounts for
only 320 dots. We stated earlier that there are about 500 dots on each row of
the TV screen. What happened to the others? Some of them are lost because
the electron beam in the picture tube actually sweeps a little beyond the edges
of the screen. Some of them are taken up by the border of the display. So even
though there are over 500 dots on each line of the TV screen, only 320 are
available to you.

FINDING A CHARACTER'S DEFINITION IN CHARACTER MEMORY

Character definition shapes are stored in character memory by screen
code. The screen code is, in effect, a subscript for the character memory array.
Like screen and color memory, the character memory “array”is not a BASIC
variable, but simply a way to visualize the character memory area.

As mentioned earlier, the eight bytes that define a character are stored in
adjacent locations in color memory, with the top row first and the bottom row
last. Here is how the first few bytes of Commodore’s built-in character
memory, which starts at location 53248, are used.

Location Contents

53248 Top row of “@~
53249 Second row of “@”
53250 Third row of “@”
53251 Fourth row of “@”
53252 Fifth row of “@”
53253 Sixth row of “@”
53254 Seventh row of “@”
53255 Bottom row of “@”
53256 Top row of A

53257 Second row of A

53263 Bottom row of A

Chapter 6 Graphics 195

53264 Top row of B
53265 Second row of B

This layout of character memory uses the following formula to find the
definition of a particular row for a given character:

Location = start of character memory + row + 8 * screen code

EXPLORING CHARACTER MEMORY

Examining the contents of character memory requires a bit of “trickery.”
Having the character ROM memory available all the time would take up
valuable memory space. Since most programs don’t look at it anyway, Com-
modore designed the C-64 so that character memory is usually hidden. This
leaves an extra 4096 bytes available for programs and data, but it also means
that a little extra programming is necessary for those programs that do need
to see the character definitions.

The following program lets you choose a character and magnify it on the
screen. The program also displays other information—such as where the
character resides in character memory, and the decimal values of the rows —
that will help you become more familiar with how characters are designed.

180 POKE 92,128 @ POKE 36,128 | CLR

11@ REM COPY CHARACTER MEMORY ROM TO RAM

120 POKE SE£334,PEEK(36334) AND 254

136 POKE 1.PEEK(1> AMD 251

148 FOR I=B TO 2047 POKE 32768+1,PEEK(53248+1) @ NEKT
158 POKE 1,PEEK(1) OR 4

160 POKE S56334,PEEK(36334) OR 1

170 PIx$(@y=" ":PIA$(1)="4 A"

188 PRINT"'CHARACTER MAGHIFIER"

180 REM GEY A CHARACTER

208 PRIMT "SELECT A CHRRACTER",

210 BET KV&:IF kKW$="" THEM 210

220 GOSUB 4589

230 REM IGHORE UNPRINTABLE CHARACTERS

248 1IF SCe=128 THEW 218

258 REM FIMD CHARACTER’S DEFIMITION IM CHARACTER MEMORY
260 CB=327658+8%5C

278 PRINT "XHRRACTER: ",KY%

280 PRIMT "ASCII WALLE: ",ASC RYE:

238 PRINT "SCREEM WALUE: ",5C

196 ‘oL Commodore 44

388 PRINT "CHRRACTER STARTS AT: ".CB
318 PRINT

320 REM PRIMT MAGHIFIED “IEW

338 PRIMT "Nid "

340 FOR I=CB TO CB+7

330 ROW=FEEK(I)

360 FR¥=RIGHTS$((" "+3TRECROMN Y, EY
378 DNZ#="H3 W'

380 REM TRANSLATE A ROW OF BITS TO A STRIMG
398 FOR J=7 TO @ STEP -1

480 BIT=5GH(ROW AND 211>

418 0S$=0S$+PIXS(BIT)

428 NEXT J

430 NS#=05%+"Hg ="

448 PRINT OS$+FR$

458 MEXT I

460 PRINT "hid "

478 PRINT PRINT:PRIMWT:GOTOD 264

480 RPEM TRAWSLATE KEYSTROKE TO SCREEM CODE
438 SC=ASC(KVE)

588 IF BC « 32 THEW 5C=128: RETIJRHM

518 IF SC < 64 THEM RETURM

N

520 IF SC < 96 THEM SC=SC-64: RETIJRM
538 IF SC < 128 THEM SC=S8C-32 @ RETURHM
548 IF SC < 160 THEMW SC=128: RETURHM

558 IF 8C 4 192 THEM SC=3C-64 @ RETURM
560 IF 5C < 235 THEM SC=5C-128: RETURM
578 SC=54: RETURM

-,
™

The tricky part is in lines 120-160 of the program. They make the
contents of the character ROM chip visible and copy them into locations
20480 through 24575. The way that this part of the program works is
discussed in the section on “Advanced VIC-II Chip Topics” later in this
chapter. For now, you should simply enter and use them as they are.

This program will also be helpful in providing practical examples for the
next section, so you should save a copy of it.

Designing Characters

A good way to start designing characters is with a sheet of graph paper (4
or 5 lines per inch works best). Draw a square enclosing an area with eight

Crapter & Grephics 197

boxes on each side, to match the C-64’s 8 X 8 character matrix. Then number
the columns, so that it looks like this:

You now have an area that corresponds to one character on the screen,
with each box representing one dot.

Now fill in the boxes for the dots that should be “on” (set to the character
color). Here is an example of a simple character.

498 our Commodore 64

When you are satisfied with the dot pattern, calculate the values of the
rows in screen memory. For each row, add the numbers at the top of those
columns whose dots are “on.” Here are the values for our stick man:

1
6 Bi Decimal
3|4 618l al2l1 inary ecima
00111100 60
00111100 60
) 00011000 24
B 11111111 255
7] B 00111100 60
00111100 60
01100110 102
| | 11001011 195
i L

Your new character is now ready for a screen test.

USING YOUR CHARACTERS ON THE C-64

To use your custom characters on the C-64, there are three steps you
must take:

1. Your program must set aside an area in memory to hold your charac-
ter memory.

2. Your character patterns must be loaded into character memory.

3. Your program must tell the VIC-II chip to start using your character
memory instead of Commodore’s.

In order to simplify your initial experiments, you can start by makinga
copy of Commodore’s characters, replacing them one by one with your own.
To get started, enter and run the following program:

138 REM RESERVE MEMORY
119 POKE 52,128 @ POKE 56,128 ' CLRE
128 REM POIMT WIC-1I AT MEL SCREEM

Chapter & Graphics 199

139 POKE SE576. (PEEK(363762 AWD 2325 OR 1

14@ POKE 53272,32

158 REM POINT BRSIC AT MEW SCREEM

160 POKE £48,135

170 PRINT "TJ@GRBCDEFGHIJKLMNOPERSTUVLAXYZLE] Ml ")
180 PRINT CHR#(34.;CHR$(34;CHRF (20,

130 PRINT "#$X&7()%+,~-.";

200 PRINT "/B123436783:;{=37"

210 REM COPY CHRRACTER MEMORY ROM TO RAM

220 POKE 56334, FEEK(56334) AMD 254

2368 POKE 1,PEEK(1) AMD 251

240 FOR I=8 TO 2047:POKE 32768+I,PEEK(53248+1) @ HEXT
250 POKE 1,PEEK(1)> OR 4

268 POKE S6334,PEEK(56334) OR 1

We will now examine this program line by line. Line 110 changes two of
BASIC’s internal pointers to make it appear that less program memory is
available. (The method for choosing this POKE value will be explained later.)
It also includes a CLR statement, which forces BASIC to erase any variables
that have been defined and to adjust its other internal pointers to the reduced
memory size. The POKEs and CLR must be done before any variables are
defined in the program, or the values assigned to those variables will be lost. It
is best to make this statement the first one in any program that defines its own
characters.

Lines 130 and 140 tell the VIC-II chip that screen memory starts at
location 34816, and character memory at location 32768 (the section
“Advanced VIC-II Chip Topics”at the end of this chapter describes how these
values are calculated). When these statements are executed, the characters on
the screen will change to gibberish because we have not yet filled in our
character definitions. Line 160 updates location 648, so BASIC can find our
new screen memory.

Lines 170 through 200 set up an area in screen memory where we can see
the results of changing character memory by PRINTing the characters that
will use our custom character set.

Lines 220 through 260 load our new character memory with the upper-
case and graphics characters from the Commodore set. This will take several
seconds. When the program starts copying the reversed characters, you can
see the characters in the top lines change as their definitions are filled in.

We chose to copy both the nonreversed and reversed characters because
the C-64 generates its cursor by turning bit 7 (the “reverse” bit) in the
character off and on. If we had copied just the nonreversed characters, the

200 ‘our Commodore 64

character under the cursor would be changing from the normal nonreversed
character to gibberish, because the reversed portion of character memory
would not be filled in.

In the examples that follow, we will be making our changes in the
reversed characters, leaving the normal characters intact. This will make
program listings and immediate mode statements readable on the screen.

As our first experiment, we’ll replace the @ sign with our stick man
character. To change the character memory for @, enter the following POKE
statements. You should type the POKE statement once and keep reusing it
with screen editing to avoid rolling the sample characters off the top of the
screen.,

POKE 33732, 69
POKE 337593, 6B
FOKE 33794, 24
POKE 33795, 255
FOKE 33736, &b
FOKE 33757, &B
POKE 33758, 182
FOKE 33799,155

As each POKE is entered, one row of the @ character is changed, until
the @ sign is replaced with our stick man. Now, type CTRL-RVS ON, then @;
the C-64 will display a stick man. Press the CRSR LEFT key until the cursor is
over the stick man. Instead of changing back and forth between reversed and
nonreversed @ signs, the character changes from @ to our stick man and
back.

Now you’re ready to experiment with characters of your own design.
Simplv £ollow the steps we outlined above: POKE the values you calculated
on the worksheet into character memory, and use CTRL-RVS ON to make the
C-64 display your character from the reversed portion of character memory.
We recommend that you experiment with several characters before putting
them to work in programs.

Design Aids for Custom Characters

If you expect to make extensive use of custom characters, you will find it
helpful to have a character editor utility to help you. Such a program should
display the character in both normal and magnified views, allow you to
change individual dots, and calculate the POKE values and locations for you.

Chapter 6 Graphics 201

You can write your own utility or you can purchase one.

If you wish to write your own utility, several parts of the program can be
taken from the examples in Chapters 5 and 6 of this book. The Character
Magnifier program in this chapter can be used to display the character, and
the Moving Dot program can be used as a base for the subroutine to change
the dots. (Hint: use a delay loop to flash the magnified dot off and on, and use
the Fire button on the joystick to change the dots.)

If you plan to use custom characters only occasionally, using the work-
sheet to lay out your characters and calculating the POKE values by hand
should be sufficient.

Writing Programs that Make Use of Custom Characters

Once you have your characters defined, you will want to put them to
work for you in programs. Programs that use custom characters are not much
different from those that use the standard character set. You still have the
option of using either PRINT or POKE (or both) to build your displays.
There are two differences, however: the reduced memory available, and the
absence of the standard character set.

HOW TO HANDLE MEMORY LOSS

Custom characters use up memory in two ways. Some memory must be
set aside as character memory. In our examples we use an area of 8192 bytes
for the sake of simplicity, but you can reduce that considerably. The section
“Changing the Location of Screen and Character Memory,” near the end of
this chapter, explains how to do this. This memory reduction will not be a
problem for most programs.

Memory is also needed to hold the program and DATA statements to
load your custom characters. This loss will not be large if you use only a few
characters, but can be significant if you are defining many. A DATA state-
ment to hold a custom character definition will use from 25 to 40 bytes,
depending on the number of digits in its values. Remember that spaces in a
DATA statement are stored with the program, so you can reduce the amount
of memory used by eliminating them. While we generally recommend that
you use spaces in your programs to improve readability, the commas that
separate the values in DATA statements can do that job adequately.

202 ‘our Commodore 44

You can make more memory available to your main program by splitting
it into two programs: one to build the characters and one to do the main
work. If you run the character builder first, the program can be replaced by
the main program when it is finished. You can even do this automatically, by
placing a LOAD statement in the character builder. If you are loading the
program from tape, save the character builder first, then the main program
(the order does not matter on a disk drive). Make the last two statements of
the character builder a CLR and a LOAD.

188 REM LOAD CUSTOM CHARACTERS
116 DATH 5.,12,17.,32

3408 REM PROTECT MEMORY

358 POKE 52,128 @ POKE 56,128
3608 REM FORGET WARIABLES

378 CLK

3880 REM GET TO WORK

398 LORD "MAIM"

The C-64 will load and run the program called MAIN. The CLR is
needed to erase any variables defined in the character builder. BASIC stores
variables in memory immediately after the program text. Because your main
program will probably be larger than the character builder, part of it will be
stored in the area occupied by the character builder’s variables. If the C1.R
were not there, and you had a variable in the main program with the same
name as one in the character builder, BASIC might store values assigned to
that variable in the program’s area. The result of damaging a program this
way is unpredictable, but you can avoid it easily: always include the CLR
statement before the LOAD, telling BASIC to “forget” the old variables.

ACCESSING THE BUILT-IN CHARACTER SET

Your program may also need to work around the loss of the standard
character set. If your program displays messages, you have two choices: if you
are not redefining all 256 characters, simply leave the alphabetic characters
intact. If you do need 256 characters, you can switch back and forth between
your custom characters and the built-in character set. The section on
“Advanced VIC-II Chip Topics,” later in this chapter, explains the techniques
for switching.

Messages from BASIC itself may still be a problem. If you redefine the
alphabetic characters to build players, a simple READY message may look

Chapter 6 Graphics 203

like Egyptian hieroglyphics. This should not cause any serious difficulty
except when you are debugging your program. If you interrupt it with the
STOP key, or if BASIC finds an error, the messages produced may be some-
what difficult to read. You can return to the normal character set by entering
the statements later in this chapter to switch back and forth between charac-
ter sets from the keyboard. You should also note that RUN/STOP-RESTORE will
bring back the normal character set, but leave your custom character memory
intact and still protected from BASIC. Unfortunately, it will also clear the
screen and erase the error message, so it’s not very useful while debugging
programs.

Animating Players

A player built from custom characters can be made to move by modify-
ing its patterns in character memory, but this technique will usually be too
slow if done in BASIC. (Machine language programs can run fast enough to
handle it.) A simpler and faster approach is to define more than one version of
the player in character memory. Your program can then make it move by
changing the version displayed with a POKE to screen memory.

As an example of this method of animation, we have taken our stick man
and put a little meat on his bones by building him with nine characters instead
of one.

204 oo Cummod@ e 44

To liven him up a bit, we’ll make him wave one arm by defining two more
versions of the character that contains it.

N

To observe him in action, enter the following program:

160
119
128
138
148
158
168
170
188
158
45 4]
218
228
230
240
~ep
260
265
270
288
2908
00
310
328
334
340
350
368
376
380
3509
480
410

REM RESERVE MEMORY

POKE 32,128 @ POKE 36,128 @ CLR

REM POIMT WYIC-IT AT HMEW SCREEM AMD CHARACTER MEMORY
FOKE SE576, (PEEK(SES?7E) AMD 2523 OR 1

FOKE 53272,32

REM POIMT BRSIC AT MEW SCREEM

POKE £48,136

REM COPY CHHPHETEP MEMORY ROM TO RAM

POKE 5&334,PEEK (36324 AMD 254

POKE 1,PEEK (12 AMD 251

FOR I=0 TO 2847 FPOKE 32768+1,PEEK(33248+I1) @ HEAWT
FOKE 1,PEEKC1) OR 4

POKE 36334,PEEK(36334) OR 1

REM CLEAR SCREEM AMD SET LUIF DISPLAY AREA

DLY=230 : SB=34816

PRIMT "IY8BRB"

PRIMT "@CDE"

PRIMT "@FGH"

REM LOAD BASIC PLAYER

FOR I=337532 TD 33863 @ READ #X @ POKE I.X @ HEXT I
DATA @.0.0.0,0.0.0,0

DATA 2B.62.62,62,62,28,62,255

DATA 386,966,396, 96,36, 36, 96, 96

DATH 3.6.6.6.6.6,8.0

DATA 255,235,253,253,255, 255, 126, 192

DATA 1%2.0.0.9.0.0.08.0

DATH B.8.0.08,8.8,0.0

DATA 18Z,182,102,102,231.0.0.0

DATH ©.0.0.0.8.0.0,0

REM LORD "EXTRA ARMS-

FOR I=33864 TO 33879 @ READ ¥ @ POKEI.X @ MEXT I
DATA 8.0.3.6.12.,24.48,224

DATA 0.0.8.8,8.08,2535,235

Chapter & Grophics 209

428
434
440
450
4£0
470
480
450
560

POKE SB+2,130

FOR 1=1 TO DLY @ HEKT I
POKE SB+2,137

FOR I=1 TO DLY @ HEXT I
FOKE SB+2.138

FOR I=1 TO DLY & MEXT I
FOKE SB+2.,137

FOR I=1 TO DLY @ HEAT I
GOTO 428

When you run this program, the new stick man will be placed in the
upper left corner of the screen, and his arm will begin to wave.
Note: There is a long delay preceding the action in this program.

MORE COMPLEX ANIMATION

While the C-64 is capable of much more complex animation than our
stick man example shows, the techniques are the same. Your program can, for
example, have several players in motion at once, or have one player making
different motions simultaneously. Either of these can be done by predefining
the movements with several custom characters.

Let’s look at an example of two players in motion at once. We’ll create
another stick man who will wave to the first one. Change the stick man
program so that it looks like this:

14 REM RESERVE MEMORY

188
118
126
138
146
158
1668
178
188
158
pdale)
218
22
238
240
250
268
2ve
288
299
304

CLE:POKESZ. 122 POKESS, 128 CLE
GOSUE 189828

FEM LEFT MAH WAYES

FOR J=1 TO 2 @ GOSUE 228 @ MEST J
REM BOTH MEM LIAYE

FOR J=1 TO 5 @ GOSUB 328 @ HME=T .J
REM RIGHT MAM WAYES

FOR J=1 TO 2 @ GOSUB 588 : HEAT J
FEM BOTH MEM REST

FOrR J=1 TO 1866 @ HEAT J

GOTO 1326

REM LAYE LEFT MAM‘S ARM OHLY
FPOKE SB+2.13

FOR I=1 TO OLY @ HEAT I

FOKE SB+2.,127

FOR I=1 TO OLY @ HEAT I

POKE SBE+2, 138

FOR I=1 T0O DLY @ HEAT I

FOKE SE+2,127

FOR I=1 T0O DLY @ HWEXT I

RETLIRM

206 our Commodore 64

218 REM WAYE BOTH MEM‘S ARMS

28 FOKE SR+2,138

238 FOR I=1 TO DLYA2 : HEAT I

248 POKE SB+8. 137

2858 FOR I=1 TO DLY/2 @ HMEAT I

368 POKE SB+2,137

78 FOR I=1 TO DLYA2 @ HMEXT I

328 FOKE SB+2.138

396 FOR I=1 TO DLYA2 @ MWEKT I

468 POKE SEBE+2, 132

418 FOR I=1 TO DLYA2 @ HMEAT 1

428 POKE =B+8, 137

438 FOR I=1 TO DLYA2 @ HEXT I

4408 POKE SB+2,1737

45@ FOR Is=1 TO DLYAZ2 @ MEXT I

458 POKE SEBE+2.1328

478 FOR I=1 TO DLYA/2 @ MEXT I

4868 RETLIRH

423 REM WAYE RIGHT MAM‘S ARM OHLY

S@A8 FOKE SB+2.127

518 FOR I=1 TO DLY @ MEXKT I

520 POKE SB+=2.138

530 FOR I=1 TO DLY @ HMEST I

548 POKE SB+8,137

580 FOR I=1 T0O DLY @ HMEXT I

568 POKE SE+8.1720

=576 FOR I=1 TO DLY @ HEAT I

586 RETURM

“20 REM IMITIALIZATIONM

a8 REM SET DELAY LOOF LEMGTH

&18 DLY=108

18828 FEM POIMT WIC~II AT HMEW SCREEM AMD CHARACTER MEMORY
188368 POKE SESTE, (PEEK(SES7E) AMD 232> 0R 1
166848 POKE 53272,32

190568 REM POIMT BASIC AT HMEW SCEEEM

18860 POKE 642,136

18679 FEM COPY CHARACTER MEMORY REOM TO RAM
18080 POKE 563324, PEEK(S&3249 AMD 254

18698 POKE 1,PEEK<1) AMD 251

18108 FOR I=0 TO 2047 POKE 327e8+1,FEEK (33242415 @ MEKT
18118 POKE 1.PEEKC1» OR 4

18120 POKE S5E334,PEEK (5633240 OF 1

1913238 REM CLEAR SCREEH AMD SET IUP DISPLAY AREAR
18140 DLY=2%@ @ SB=34816

18156 PRINT "QzAEE qEAT"

181660 FRIMT "#CDEM 2SIE"

18178 PRIMT " & GHW &FGH"

14180 FEM LOAD BRASIC PLAYER

18153 FOR I=23792 TO 22863 @ READ ¥ @ POKE I.¥ @ MEAT I
18191 REM

Chapter ¢ Graphics

207

10288 DATA A4.4.R.6.0.8.4.1

18216 TATA 28.62.62,62,62,28,62,253

1B220 DATA 96,96, 96, 36,96, 96, 96, 224

18238 DATA 3.6.6.6,6,6.8.0

19248 DATA 255, 255,255,255, 255, 255, 126, 182
182538 DATA 1%2.0.0.0.0.8.9.,8

18260 DATH 9.9.4.0.8,0.6.8

1A278 DATA 182,182, 1/A2,182,231.0.4.46

16288 DATA 8.8.4.8.08.0.68.0

192598 REM LOAD “EXTRA ARMS-

12308 FOR I=323264 TO 238753 @ READ « FOKE I.% HEXT I
18218 DATA ©.8.3.6.12,24,48,224

18320 DATA @.60,8.8.8,a,8, 235

102738 RETIURH

When you run the program, the stick man on the left side of the screen
starts waving. After a moment, the one at the right starts to wave back. Then
the man on the left stops waving, followed by the one on the right, and the
cycle repeats.

The three subroutines that make the men wave (lines 210, 310, and 490)
are the key to the motion. The first one, starting at line 210, makes only the
figure on the left wave.

The second subroutine, which begins with line 310, causes both of the
men to wave. Notice that the man on the left moves, then the program pauses
for about half the time it did when moving just one arm before moving the
man on the right. After the right-hand man’s arm moves, the program again
delays only half as long as before. This keeps the men moving at about the
same speed, even though both are waving together. The man on the right also
waves in the opposite direction from the man on the left, so they don’t appear
to be moving in “lock-step” with each other. These small differences make the
display more interesting.

The last subroutine, starting at line 490, moves only the right-hand stick
man, so the one on the left stops waving.

BIT-MAPPED GRAPHICS

With bit-mapped graphics, your program manipulates individual dots
onthe screen instead of whole characters. Bit-mapping gets its name from the
fact that there is an area in memory set aside to represent the contents of the
screen on a dot-by-dot basis. Just as cities, parks, and airports are represented
by symbols on a geographic map, dots on the screen are represented by bits in

208 \our Commodore ¢4

memory. Bit-mapping can be used to draw finer lines on the screen or to
smooth the motion of a player, since it can move in increments of one dot
instead of a whole character space.

Using bit-mapped graphics on the C-64 is much like using custom
characters. The VIC-II chip handles them in almost exactly the same way: in
each case, it looks up the contents of an 8X 8 dot “cell” in a table, and displays
the dots one row at a time. The difference lies in how the VIC-I1 decides where
to look in the table; in a character display, it uses the value in screen memory
(the “screen code” for the character) to find the entry in character memory.
When displaying a bit-mapped screen, the VIC-II steps through the table
sequentially. It’s as though you had a table of 1000 custom characters, and the
screen contained screen codes numbered 0 through 999.

You can still use many of the concepts and tools that you used for custom
character displays. The main difference is one of programming technique.
Using custom characters, you set up the character memory and change the
display by altering screen memory. In bit-mapped displays, “screen memory”
stays constant, but “character memory” changes.

To understand bit-mapped graphics, let’s review our discussion of char-
acter memory, but with a different perspective. From the point of view of text
display, we think of screen memory as containing characters to be displayed,
with character memory holding the dot patterns that represent the characters.
In bit-mapped (high-resolution) terms, character memory becomes a dot-by-
dot representation of the display, and screen memory is replaced by a counter
to remind the VIC-II chip of where it is on the screen. In both cases, the
VIC-II chip is doing exactly the same thing: looking up dot patterns in
character memory and displaying them on the screen. Only the method for
finding the dot pattern in the table process is different. Recall how we built
one player from several custom characters in the last section. You can think of
bit-mapped graphics as using the entire screen as a single “super player.”

High-resolution graphics have two drawbacks. First, they use a large
amount of memory: to completely map the screen in high-resolution mode
takes 8000 bytes of character memory. Second, bit-mapping is an all or
nothing proposition: you can’t have bit-mapped graphics and a character
display on the screen at the same time. It is possible, however, to experiment
with high resolution without losing the character display. Since the bit-
mapped display is so similar to a custom character display, we can create a
mini-bit-mapped display using only a small portion of the screen. The

Chapter 6 Graphics 209

techniques we used for defining a custom character set can also be used to set
up a 64X64 dot area for bit-mapping experimentation.

The steps in preparing this bit-mapped work area are similar to those for
establishing a custom character set. The Setup program listed below may
seem familiar, because it was written by making some editing changes to the
program we used to set up our custom character work area.

168
119
126
128
148
150
160
176
120
156
200
218
220
238
240
258
268
£78
289
2908
3@
310
320
358
H48

REM HIGH RESOLUTION "SETUP" PROGRAM

REM PROTECT CHARACTER MEMORY

POKE 52,128 @ POKE 36,128 @ CLR

REM POIWT WIC~-II AT HEW SCREEM AMD CHARACTER MEMORY
FOKE 36576, (PEEK(SE576 AMD 252 OF 1

POKE 33272,32

REM POINT TO HEW SCREEM

POKE 648,136 @ 5B=34816

REM COPY CHARRMCTER MEMORY ROM TO RAM

POKE S6234,PEEK(S563342 AMD 254

POKE 1,PEEK(1) AMD 251

FOR I=@ TO 1823:POKE 32768+1,PEEKIS2248+410 + HEKT
POKE 1.PEEK{1) OR 4

FOKE SE334,PEEK(56334) OR 1

REM CLERR "BIT-MAP" AREA IM CHARACTER MEMORY
FOR I=3375%2 TO 34383 @ POKE 1.0 @ HEXT I

REM CLEAR SCREEM AWD SET UF WORK AREA

PRIMT "TI3EHPX (@8"

PRIMT "@RIQY!»19"

PRIMT "@BJRZ";CHRFC(34);CHRSC340 CHR$28),; "2 "
PRIMT "@CKS[#+3;"

PRINT "®DLTES, 44"

PRINT " HEMIIA~5="

PRINT " dFHY 14, 65"

PRIWT " @50k 272"

Now the upper left corner of the screen has become a bit-mapped work
area in which you can experiment.

Changing the Dots in the Bit-Mapped Work Area

After running the Setup program, the portion of character memory that
defines the work area looks like this:

210 \our Commodore ¢4

Memory Memory Memory
Location Column Location Column Location Column
Row S — MO~ xS ZdoT2 . .. ERRABTLES
0 34816 34880 35264
1 34817 34881 35265
2 34818 34882 ... 35266
3 34819 34883 35267
4 34820 34884 35268
/_/
60 34876 35240 35324
61 34877 35241 35225
62 34878 35242 T 3526
63 34879 35243 35227 |

To change a dot on the screen, your program must find the right location
to POKE, and the value to put there. The 64 bits of the X dimension are
broken up into eight bytes of eight bits each. To find the correct column of
bytes, use the following formula:

458 COL=IMT(A~82

Since each column of bytes in our pseudo-display is 64 rows high, the
column number must be multiplied by 64. The calculation to find the right
location to POKE is

460 PL=33732+Y+64%C0OL

The bit within that byte is the remainder of the division by 8 we did to
find the column. To calculate the right bit, use

458 PL=33752+Y+64%C0L

478 BIT=7-(A~-COL#5)

We subtracted the remainder from 7 because our bit-mapped columns
are numbered from left to right, but the bits in a byte are numbered from right

to left.

Just knowing the number of the bit is not enough. Because it will be using
POKE to change the display, your program must calculate the number that
corresponds to that bit. Remember that each bit in the byte represents a

power of 2.

Bit Number [7]6]s]a]3]2]1]0]

Value for POKE 128 64 32 16 8 4 2 1

Chapter & Graphics 211

Since this is the case, you can easily convert from the bit number to the
POKE value using the exponentiation operator.

488 PY=21BIT

Your program cannot simply POKE blindly into the byte it has found
because there are seven other bits there that you don’t want to disturb. To
change just one bit, you must PEEK the byte to be changed, modify only the
correct bit, and then POKE it back. To change only a single bit, you can use
the AND and OR operators. For example, to set a bit to 0 (making its dot the
background color), you can use a variation of the masking technique that was
used to isolate the bits for joystick switches.

588 POKE PL,PEEKCPLI AND MOT FY

Notice the use of the NOT operator. When we were isolating the joystick
switches, we used the value of the bit directly. That produced a mask in which
the bit we wanted was a 1, and all the others were 0s. This time we are usinga
mask in which the bit we are interested in is a 0 and all the others are Is. The
AND will force that bit to 0 and leave the others undisturbed. Suppose we
want to turn off bit 3 in location 34882, which currently contains a value of 43.
We could use a BASIC statement like this:

18 POKE 34882, PEEK(34882) AMD MOT 213

00001000
11110111
AND

00101011

00100011

When we POKE the result back into location 34882, only bit 3 has
changed. The other bits kept their old values.
To change the dot back to the background color, use the OR operator.

18 POKE 34882, FEEK(34882) O 213

00001000
OR
00100011

00101011

212 oL Commodore 64

As before, only the value of bit 3 is changed.

This is a lot of work just to change one bit. However, since there are only
eight bits in a byte, there are only eight possible values for the AND mask and
eight for the OR mask. Since there are only eight of each type of mask, it is
practical (and much faster) to calculate them in advance and store them in
tables. The program fragment that follows can be used as a subroutine in
programs that produce bit-mapped displays. It creates two arrays of masks,
called M19% (Make 1) and M0% (Make 0).

1@ FOR I=A TO 7

118 MIX(Ti=211

128 MBKCL=HOT MI1XKCT

130 HEAT I

Notice that our array indexes, like our bit numbers, start with 0 because
we calculate the bit number using the remainder of a division, which can be 0.
The arrays are specified as integer variables because BASIC does Boolean
operations with integers.

Using these precalculated masks not only makes programs faster, but
also makes them easier to read. Compare our earlier examples for setting and
resetting bits with statements that perform the same operations using the
table.

18 POKE 34882,PEEK (34882) AMD MBXC3)
28 POKE 34852, FEEK (348825 OR M1¥C30

Even with techniques like precalculating masks, BASIC is usually too
slow for animation of bit-mapped displays; there are just too many bits to
change in order to move a player around the screen. This kind of high-speed
“bit-juggling” is best done in machine language. BASIC is, however, quite
useful for displays that don’t move, such as drawings and graphs. For
example, the following program below will draw a triangle on the screen:

188 REM HIGH RESOLUTION "SETUR" PROGRAM
118 REM PROTECT CHARACTER MEMORY

128 POKE 52,1258 POKE 56,128 @ CLR

138 REM POIMT WIC-II AT MWEW SCREEM AMD CHARACTER MEMORY
143 POKE 356578, (PEEK (36376 AMD 252) DR 1
158 POKE 53272,32

1668 REM FOIMT TO HMEW SCREEM

178 POKE &48,136 @ SEB=348168

180 REM COPY CHARACTER MEMORY ROM TO RAM
196 FOKE 36334,PEEKC3A324) AMD 254

288 POKE 1,PEEKCLY AMD 251

Chapter 6: Graphics 213

210
221
238
240
258
268
279
280
298
el
318
20
cie]n]
348
359
268
378
380
299
484
410
420
4208
440
458
460
470
4208
4303
b1 %] %
518
bated
538
548
pota1%
=%
570
588

FOR I=@ TO 182%:FOKE 22768+ 1, FEEK. 53248+ © MEXT
FOKE 1,FEEKC1Y OF 4

POKE SE334,PEEK(S£3343 OF 1

FEM CLEAR "BIT~MAF" AREA I CHARACTER MEMORY
FOR I=3%37%2 TO 34383 @ POKE 1.8 @ MERT I
REM CLEAR SCREEM AMD SET UF WOREK ARER
FRINT "Il@eHP= (pe"

PRIMNT "S@AIGY! 19"

PRIMNT "GBIRZ";CHRE: 34 CHRE 24 CHREC 2B ; "z "
PRINT "SCESL#+3,"

FRIMT "dDLTE%, 44"

PRINT "sEMIIR~S5="

FRINT "@FHY 14,65

PRIMT "aG0W« 77"

REM BUILD MASK ARRAY

FOR I=0 TO 7:MI%CIs=z2t] @ MEXT 1

REM DRAW BOTTOM OF TRIAMGLE

YW=Ed

FOR w=@ TO €2

GOSUE 548

MEAT

FEM DRAW LEFT SIDE OF TRIAMGLE

FOR X=@@ TO 2@

Y = E3~K¥2

GOSUE S48

MERT

REM DRAW RIGHT SIDE OF TRIAMGLE

FOR #=31 TO &2

YW o= E3-(EZ- K2

GOSUER 5468

HE®T

EMI

REM BIT SETTIMG SUERDUTIME

COL=IMTC X 82

PL=3A72+ Y +E4#000

BITe?~(=~COL %33

FOKE PL,FPEEKCPLY OF MIXCBIT)

RETLRH

When you run the program you will see that the triangle is drawn much
too slowly to be useful in a fast-action game. It would be practical, however,
for use in an educational program that displayed geometric shapes.

Using the Entire Screen

The techniques we discussed in the last section work just as well for a full
bit-mapped screen. However, we need to change the formulas for finding the

214 \our Commodore ¢4

right byte to POKE. A subroutine to do the calculation might look like this:
108 PL = BM+(4BEKIMTCYABs24+(Y AMD 7I+IMT A/

We also need to tell the VIC-II to switch to bit-mapped mode. This is
controlled by bit 5 in location 53265. When this bit is set to “1,” the VIC-II
changes to a bit-mapped display. The other bits in this location should be
preserved, so use the same masking technique we used for the character
memory bytes:

188 POKE 53265, PEEK(532€3) OR 32

There is one more thing you need to know to use bit-mapped graphics:
the colors of the dots are specified differently from character displays. You
may have wondered what happened to screen memory in bit-mapped mode.
Remember that the location in “character memory” doesn’t come from screen
memory for bit-mapped displays. This leaves screen memory available for
other purposes, and it is used to store the color codes. Just as for character
displays, a “0” dot in a high-resolution display appears on the screen in the
“background” color, and a “1” dot is the “character” color. But screen
memory is 8 bits wide, not 4, so there is room for 2 color codes. In bit-mapped
mode, each 8X 8 dot “cell” has its own “background”and “character” colors.
The “background” color is stored in bits 0-3, and the “character” color is in
bits 4-7.

Bitnumber|7|6 5|4| |3|2 1|0|

“Background” color
Used when a dot is “0” (off).

“Character” color
Used when a dot is “1” (on).

This gives you more freedom in mixing colors on the screen. To calculate
the value to POKE for a given location on the screen, use the formula:

188 POKE 36867, (PEEKI 36867 AMD 1272 OR (CSBABY AMD 128)

Now let’s examine how these techniques work in a real program. We’ve
modified our triangle-drawing program to use a bit-mapped screen. If you
compare it to the version that used custom characters, you’ll see that it hasn’t
changed much.

Chapter 6: Graphics 215

168
118
128
128
148
158
160
170
138
128
266
218
2218
228
248
2508
260
278
2380
298
568
318
328
H38
240
350
368
370
230
=38
408
418
426
430
44
458
468

478
420
456
508
510
528
539
540

5568

REM BIT MAPPED DISFLAY DEMOMSTRATION PROGRAM
REM PROTECT BIT MAFP MEMORY

POKE 52.64 @ POKE 56.64 @ CLF

REM POIMT “IC-~II AT HEW SCREEM AMD BIT MAF MEMORY
FOKE S657€. (PEEK(SES7E) AMD 2320 OR 2

FOKE 53277:.8

REM ZET WIC-II TO BIT-MAFFED MODE

POKE S53265.,PEEK (5326850 OF 32

REM SET POIMTER TO BIT MAF AREA

EM=24576 @ ZB=16384

REM CLEAR "BIT-MAF" AREA

FOR I=BM TO BM+7953 : POKE I.8 @ HEAT I
REM FILL "SCREEM" MEMORY WITH COLOR CODES
FOR I=5B TO SB+939 @ POKE I1.230 @ MEXKT I
FEM BUILD MASK RRRAY

FORI=ATO?7 iM1XCI)=21(7-12 @ HEXT I

REM DRAW BOTTOM OF TRIAMGLE

Y=63

FOR ®=B TO &3

GOSUR 536

MHEAT

FEM DRAW LEFT SIDE 0OF TRIAMGLE

FOR #=8 TO 28

Y o= IR

GOSUB 538

MHEAT

REM DRAL RIGHT SIDE OF TRIANGLE

FOR #=31 TO &2

Y o= B3-(BE-AI%E

GOSUB 528

MHEXT

REM WAIT FOR A KEY TO BE PRESSED

GET A% @ IF A$="" THEM 428

REM ALL DOME. RESTORE SYSTEM TO HORMAL

REM GIVE BIT MAF MEMORY BACK TO BASIC

POKE 52,128 @ FOKE 56,128 @ CLR

REM POIMT WIC~II AT ORIGIMAL ZCREEM AMD
CHARACTER MEMORY

POKE S6376. (PEEK(SES7E) AMD 2523 OR 3
FEM RETURM TO CHARACTER MODE
FOKE 33265, PEEK (33265 AMD 223
POKE S3272.21

END

REM BIT SETTIMG SUBROUTIME

FL = BM+<4@%cY AMD 24230+0Y AMD 7o+0 AMND S@40
FOKE PL.PEEK(PLY OR M1XCA AWD 7

RETURM

LAl

One important difference is that the program goes into a loop when it’s
finished. When you press any key, it will return to the “normal” VIC-II

216 our Commodore 64

segment. When using bit-mapped graphics, you must do this in your pro-
gram: you can’t type in the POKEs to do it from the keyboard, because the
keyboard and display only work in character display mode.

This program is also too slow for lively animation. However, in the next
section we will look at a technique for smooth player movement that can be
used in BASIC.

SPRITE GRAPHICS

Using custom characters to animate displays has a drawback in some
cases: while the parts of a player can be moved as little as a single dot, the
player as a whole can only move a full character space at a time. You could get
around this by defining different versions of the player at different offsets in
the X and Y directions, but this would use up your 256 possible custom
characters very quickly. There is, however, an easier way to get fine-tuned
player movement, by using “sprites.”

A “sprite” is a special form of player, very similar to the ones we built
using custom characters. But it differs in one very important way: sprites are
completely independent of the rest of the screen display. Sprites can overlap
any character display already on the screen and move about without affecting
1t.

To understand how sprites work, start by imagining a background
displayed on a transparent sheet of glass:

| [DS o) | <) SN 2 U G N By N
——Nens . . AN AN\ AN
AA b an A ca N aan el N

A _lbe AL A A e N s
ALY VA VRN (Y NNV OBV, O W v/ i e WV W IN

Chapter 6 Grophics 247

Although we could also put players made up of built-in or custom
characters on this display, we’ll keep things simple for now by assuming that

it’s all background. Now, on a second sheet of glass, we’ll draw our sprite, an
automobile:

Because the glass is transparent, we can put the car in front of the
background:

o __ 0. c/bn R W
—_— e N 2 —
AA b A L. e e N A s _

N b L A AN NN A an|n
v be ol — v e MW e

218 o Commodore ¢4

or behind it:

[T P P Y o S —
—_ e A %
Al ant sl e e

VA = R, RN 4N s EEP AN AL

vl ol v L oS M WY

We can also move the glass with the sprite on it, while leaving the
background fixed:

[T NS DY 2 SN2 WG Sy
el luw At A AU
AA U A I e e N

N e L T A AN
vl ol — o L e oS WA W

One important difference between sprites and the other types of players
we have used so far is that your program does not have to move the sprite
around in memory to make it move on the screen. It simply tells the VIC-1I
where the sprite belongs on the screen by POK Eing its position into certain
memory locations. This makes sprites much easier to move.

Chapter & Graphics 219

To make the display a bit livelier, we can add more sheets of glass, each
with its own sprite. For example, we could add some trees to the scene:

| [TV AP Y < SN s UGN WG YN ¥ A)

PV SN R e W

[e 4 T _— Al -
oot — =B Aot yai L
A A VA, &N /\\._A/\/\... — N A A}
vl Qo - - Ll owu/or wd W e e e

We can arrange these sheets so that the car passes in front of one tree, but
behind the other:

fin oo L. srbh o n A Lagpe

N~ I AT A== (IS g
"{-/.‘-_-n o Mt —Ao—c le a1

A.A.JL—ILL/\./ TN A A N N AN 4
ORIV R (A R O D LY, I T WS NN ZNN

Through all this action, the background display remains unchanged,
requiring no special action by the programmer to keep track of what should

220 our Commodore &4

be displayed at a particular location on the screen. The VIC-II chip takes care
of that for you.

As many as eight sprites can appear on the screen at any given moment,
although you can have many more defined in memory and “waiting in the
wings.” You may find it helpful to think of the screen as a “frame” that can
hold up to eight sheets of “sprite glass” at once, with other sheets nearby,
ready to be switched with the ones already in place.

Z P

Now let’s take a closer look at how sprites work, and how you can paint
your own sprite glass, and get it into the “frame.”

HOW SPRITES ARE DISPLAYED

Sprites are displayed on the screen in a fashion very similar to ordinary
characters. As we discussed earlier, each character is defined by a table in
memory, with the bits in each memory location telling the VIC-11 chip which
dotsto turn on and which to turn off. Here, once again, is the table that defines
the letter “A”.

Displayed Dots Binary Decimal
|

00011000 24

a 00111100 60
[01100110 102

] B o1111110 126
] — 01100110 102
— 01100110 102

— | 01100110 102
| 00000000 0

L IR

Chapfter & Graphics 221

The table for a sprite is very similar. The big difference is that a sprite is
bigger: sprites are 24 dots wide, and 21 dots high. This requires a bigger table:
a sprite table is 3 bytes wide and 21 bytes tall. Let’s take the stick man we
designed earlier in this chapter, and turn him into a sprite.

Notice the empty bytes surrounding the stick man. These must be there.
The size of a sprite is fixed, just like a character, and the empty space is filled
with zeros. This makes a sprite player similar to a player made up of several
custom characters. You may find it helpful to think of a sprite as an oversized
character.

Sprite Memory

Sprite definitions are stored in memory just like character definitions:
the top row first (in the lowest memory locations), followed by the second row,
and so on to the 21st row. The three bytes that hold the 24 dots of each row are

222 \our Commodore 64

next to each other in memory. If the definition for our stick man sprite were
stored starting at location 32768, it would look like this:

32768 0

32769 28 top row
32770 96

32771 0

32772 62 second row
32773 96

32774 0

32775 62 third row
32776 96

32825 0

32826 102 20th row
32827 96

32828 0

32829 102 21st row
32830 96

This arrangement in memory does differ from that of a similar player
made up of custom characters. However, the values in the table bytes are the
same, s0 a custom character player can be converted to a sprite with just a
little work. The design tools and techniques are also quite similar. We'll
examine those a little later in this chapter.

One big difference between sprite memory and the other areas we’ve
looked at is that there is no specific block of memory reserved for sprites. The
characters displayed on the screen and the character definition tables are
grouped together in their own areas of computer memory. While you can
change the starting location of the screen or character memory areas, they
can’t be split up. You can’t, for example, put the definitions of the first 128
characters in locations 32768-33791, and the second 128 in locations
34816-35839.

This sort of restriction does not apply to sprites. The VIC-II chip has a
separate pointer for each sprite to the memory locations that contain its

Chapter 6 Graphics 223

definition. So, while all the bytes for each sprite’s definition have to be
together, the various sprites can be scattered all over the VIC-1I’s 16K segment
of memory.

The ability to store sprite definitions throughout the segment is the secret
to keeping sprites available. These sprites can be used not only to expand your
“cast of characters,” but to animate them, too. We’ll examine the techniques
for using them a little later.

DESIGNING SPRITES

Since a sprite is so much like a custom character player, you might expect
the design processes to be very similar, and indeed they are. Let’s begin witha
design form, just as we did for custom characters. Start with the long edge of
your graph paper running horizontally, and draw a box 24 squares wide and
21 tall, so that it looks like this:

224 our Commodore 6/

Notice that the box is toward the left edge of the paper, leaving room for
calculations on the right. Now divide the box into three columns of 8 squares,
and number them like this:

As in the custom character design form, each box corresponds to a dot
on the screen. The three columns correspond to bytes in sprite memory.

Chapter & Graphics 225

In practice, the sprite design form works just like the custom character
form. Here is our stick man again, designed as a sprite:

1 1 1

216(3]1 216(3(1 21631

8la| 2|6 8421 |8|4|2]6|8]412]1|8|4|2]6|814]2]1
0 28 96
0 62 96
0 62 96
0 62 96
0 62 96
0 28 96
0 62 96
I 255 224
3 255 0
6 255 0
6 255 0
6 255 0
6 255 0
6 255 0
0 126 0
0 102 0
0 102 0
0 102 0
0 102 0
0 102 0
0 231 0

We left the binary values out in this example. As you get more practice in
converting the dots to numbers, you will probably want to do the same. We
also put in all the zeros for the “empty” bytes. This is a good habit to develop,
since it is easy to forget them otherwise.

If you have written or purchased programs to help design players made
of custom characters, they can also be used for sprites. Just remember that the
bytes are stored in a different order in sprite memory.

Now let’s take a look at the programming techniques for using sprites.

226 oL Commodore 44

PUTTING YOUR SPRITE TO WORK

Once you have designed a sprite, there are several programming steps
neccessary to make it work:

Reserve memory for your sprite definition.
Load the sprite defintion into memory.

Tell the VIC-II where the sprite definition is.
Tell the VIC-II to start displaying your sprite.
Move the sprite onto the screen.

AR S e

This may sound like a lot of work, but each of these steps is actually quite
simple. In the sections that follow, we’ll examine each one in turn.

Loading Your Sprite Definition Into Memory

Just as with custom characters, the first steps in a program using sprites
are to reserve the memory needed for the definitions, then load them into that
memory. This program loads our “stick man” sprite into memory.

188 REM RESERVE MEMORY

118 CLRE:POKE 52,128 FOKE 56, 128 CLR

128 REM MOVE SCREEN TO HIGH MEMORY

138 POKE 843,132

148 POKE 56576, (PEEK(S6STYE)AMD 2523 OR 1

158 PRIMT "1

168 REM LOAD SPRITE

178 FOR I=32832 TO 32894 @ READ % @ POKE I.X @ HEKT
188 REM SPRITE DATH. 2 ROWS PER STATEMEMT

138 DATH B, 28,36, B,62,36
288 DATA @, 62,396, 8,52, 96
218 DATH B,62, 36, B,28,96

228 DATH B.682,96, 8,255,996
230 DATA 3,235,192, 6,235,080

248 DHTAH £,255,8, G.255,8
258 DATH &.255,8. 6,255,8
268 DATA 4, 126.0, B.,182,4

278 DRTA B.182.8, 4,182,686

283 DATA B8.182,48, a,182.0

298 DATA @,231.8

This program is very similar to the one we used to set up the custom
character player. As before, the very first line of the program resets the limits
of memory, and does a “CLR” to reset BASIC’s internal memory pointers.

Chapter 6 Graphics 227

The program then POKEs the locations in the CIA (complex interface
adapter) chip that control the VIC-II’s “segment” of memory, and BASIC’s
pointer to screen memory. Finally, the program uses a READ loop to load the
sprite definition into memory.

Telling the VIC-1l Chip Where to Find Your Sprite

Now that the sprite definition is in memory, the VIC-II chip must be told
where to find it. As with screen and character memory, there are “pointers” to
tell the VIC-II where in its 16K segment the sprite definitions reside. Sprite
memory pointers are also incomplete: some of the bits come from memory,
and some are calculated by the VIC-II chip. Instead of supplying only three or
four bits of the location, sprite definition pointers supply eight of them:

[13[i2fti]of o8] 7]6] [s][a]3][2]1]0]

Calculated by VIC-II

From sprite memory pointer

The formula for calculating the POKE value has to change, too. The
following BASIC statement will do this:

1p8 PY=SDA/E4 AMD 255

The result of the calculation, “PV”, will be assigned the numeric value of
the 8 bits to be supplied to the VIC-II. We divide “SDA” (the Sprite Definition
Address) by 64 because 6 bits of the location number are calculated by the
VIC-II, and 64 is 2 to the 6th power. The division eliminates those calculated
bits. The AND operation is used to eliminate bits from the left. Remember
that there are 16 bits in the number that identifies a memory location (0-
65535), but only 14 bits in a number that identifies a location in the VIC-II’s
16K segment. Since a byte can only hold 8 bits, we have to get rid of the
others. The AND makes sure that only values 0 through 255 will be POKEd.
The two bits that select the right 16K segment are the ones we POKEd into the
CIA chip, so we don’t have to worry about them being lost.

Let’s take a look at this formula in action. We started the definition for
our stick man sprite at location 32832. Watch what happens to the bits as the
calculation progresses.

228 ‘our Commodore 4

1000000001000000 32832
/64
0000001000000001 513
AND
000000001 1111111 255
0000000000000001 1

The correct value to POKE is 1. What would have happened if we had
decided to start our sprite definition at location 32833? The binary value of
32833 is 1000000001000001. The last bit would be lost in our calculation, so
the VIC-1I would think that the definition started at location 32832. This
would give us a strange-looking player, because the last eight dots on each row
would be shifted onto the next row. The fact that the VIC-II calculates the last
6 bits of the address limits the locations where a sprite definition can begin in

memory.

64
128
192
256
320

16192
16256
16320

Now that we know what value to POKE, we need to know where it goes.
As we’ve mentioned before, computers are binary creatures, like numbers
that are powers of 2. So even though there are only 1000 visible locations in
screen memory, the VIC-II perceives screen memory as being an area of 1024

Chapter & Graphics 229

bytes. The sprite definition pointers are stored in some of the wasted 24 bytes,
so the map of screen memory really looks like this:

Offset

w N = O

997
998
999
1000
1001

1014
1015
1016
1017
1018
1019
1020
1021
1022
1023

Contents

Row 0, column 0
Row 0, column 1
Row 0, column 2
Row 0, column 3

Row 24, column 37
Row 24, column 38
Row 24, column 39
Not used
Not used

Not used

Not used

Sprite pointer 0
Sprite pointer |
Sprite pointer 2
Sprite pointer 3
Sprite pointer 4
Sprite pointer 5
Sprite pointer 6
Sprite pointer 7

In our examples, we are using the segment that starts at location 32768,
with screen memory starting at location 33792, so the sprite pointers start at
location 34808. To make our stick man sprite 0, the correct POKE location is

188 FOKE 34808, 1

34808. The statement to tell the VIC-II chip about our sprite definition is

230 ‘our Commodore 64

Type in and execute this statement now. Nothing will change on the
screen yet, because we still have a few more steps to go before our sprite can
make its entrance.

Enabling and Disabling Sprites

Every location on the character display must contain something. Even if
you want nothing to appear, you must display a blank. This is not the case
with sprites. They must be enabled (turned on) and disabled (turned off) by
your program. Although this requires an extra program step, it does have
some advantages. For example, it means you don’t have to define a blank
sprite if you don’t plan to use all eight at the same time. More important,
though, is that you can build up your sprite without having it appear on the
screen before it’s finished.

Sprites are enabled and disabled by bits in location 53269, which is part
of the VIC-II chip:

Bit number | 7 | 6 | 5 | 4 l 3| 2 rl m Sprite affected

A “ A t T—SpriteO
Sprite 1
- Sprite 2

Sprite 3
Sprite 4
Sprite 5
Sprite 6
Sprite 7

If the bit that controls a sprite is “on” (has a value of 1), the sprite is enabled,
and appears on the screen. If the bit is off, the sprite is disabled. To turn the bit
for a particular sprite off or on without disturbing the others, use AND and
OR for bit-masking, as described earlier. For example, to enable sprite 1, you
could use the statement:

180 POKE S53263,FPEEK(S326% OR 2

Remember that you must PEEK the value that is already in the byte, so you

Chapter & Graphics 231

will have the values of the other bits to POKE back into it. To disable a sprite,
use AND to turn its bit off. The statement

180 POKE 53263, PEEK(33269) AMD 254

will disable sprite 0, making it disappear from the screen. The statement
above also PEEKs first to preserve the values of the other bits. Here are the
masks to use for enabling and disabling sprites:

Sprite To enable, To disable,
Number OR with AND with
0 1 254
1 2 253
2 4 251
3 8 247
4 16 239
5 32 223
6 64 191
7 128 127

Now enable our example sprite by entering the statement
FOKE 53269, FEEK(S3269) OR 1

Once again, nothing happens to the screen. Our sprite is actually being
displayed, but it is behind the border, and now we have to tell the VIC-II to
move it onto the screen.

Moving Your Sprite

From our discussions so far, you’ve probably guessed that sprite posi -
tions are expressed in dots, and that dots, like character rows and columns,
are numbered from the upper left to the lower right corner. But there is one
thing about sprite positioning that may surprise you: the numbering does not
start in the visible area of the screen. The lowest numbered dot is actually in
the border area!

While this may seem strange at first, there is a very good reason for it.
Most of the time, you will not want your sprite to suddenly appear on the
screen. Like an actor in a play, your sprite will usually make an entrance,
moving onto the screen from behind the border. You can’t do this unless you

232 our Commodore 64

have some way to position the sprite in the border area, so the numbering of
the dots actually starts off screen. The numbering looks like this:

23,24 X-position 343

2 SO = n oD e
o

250

To avoid confusion with screen character positions, we will refer to the dot
counts as the “X-position” for left-to-right and “Y-position” for top-to-
bottom, rather than as “row” and “column.”

Your program controls the X- and Y-positions of sprites by POKEing
locati~rr: in the VIC-II chip. Each sprite has its own pair of locations.

Sprite X-position Y-position
Number location location
0 53248 53249
1 53250 53251
2 53252 53253
3 53254 53255
4 53256 53257
5 53258 53259
6 53260 53261
7 53262 53263

Chapter 6. Graphics 233

To get the sample sprite (sprite 0) onto the screen, enter these statements:

FOKE S53248,166

FOKE 53245, 106

Try a few more POKEs into these locations, and watch what happens to the
position of the sprite. In particular, try POKEing a value of 255 into location
53248, the sprite’s X-position.

As you experimented with moving the sprite, you may have noticed that
you couldn’t get it near the right-hand edge of the screen. Look back at the
drawing showing the X- and Y-positioning values, and you’ll see why. An
X-position value of 255 (the largest number you can POKE into a byte) will
only move a sprite about three-fourths of the way across the screen. To move
the rest of the way, we need a 9-bit number, which can contain values from 0
through SI11.

Since a byte can only hold eight bits, the VIC-II must get the ninth bit
from some other location. Eight extra bits are needed (1 for each sprite), so
Commodore grouped them together in one location in the VIC-II. These bits
are in the same order as the enable bits, allowing us to use the same bit masks
used to enable or disable the sprite. To see how this is done, let’s look at a
complete subroutine that will position a sprite on the screen. This subroutine
is given three variables.

SN The “Sprite Number” (0 through 7)
XP The X-position of the sprite
YP The Y-position of the sprite

Such a subroutine might look like this:

16888 <L = 53248 + 2 # 3H
16018 YL = XL + 1

lebzB IF “F » 255 THEM 18856

186838 B3 = PEEK(33264) AMD MOT (21SM>

lea4b GOTO 1eB6a

18050 B9 = FEEK(S53264) OR (21SMJ

16860 XV = AF AMD 235

18678 FOKE XL.AY @ POKE YL.YP : POKE 332€4.B%

This subroutine probably seems a bit obscure. Let’s go over it line by line:

10000 Calculates the memory location to POKE for the
X-position.

234 o Commodore &4

10010 Calculates the memory location to POKE for the
Y-position.

10020 Different masking operations must be done, depending on
the value of the 9th bit in the X-position. If XP is less than
256, the 9th bit is a “0.”

10030 “B9” is set to the new value for the “bit 9” location in the
VIC-I1. The exponentiation gives us a mask in which only
the bit for the chosen sprite is a 1. The PEEK gets the
current value, and the OR turns on the bit.

10040 The GOTO skips over the processing for an X-position that
is less than 256.

10050 If the ninth bit is a “0,” we must force off the sprite’s bit in
the “bit 9" location. By usinga NOT, we generate a mask in
which the sprite’s bitisa 0, and all others are 1’s. The AND
forces the bit off.

10060 The AND with 255 makes sure that we don’t try to POKE
too big a number into the X-position location.

10070 This line POKEs the position information into the VIC-II
chip’s locations.

This last line of this subroutine is very important. It is usually not a good
programming practice to combine statements on one line, because it makes
programs harder to read. One exception we have already mentioned is a short
FOR-NEXT loop, such as the delay loops used for animation, where putting
everything on one line makes the program easier to follow. In the subroutine
above, we combined the POKEs into one line for a different reason: it takes
time to do the calculations for the POKE values. If we calculated and POK Ed
each value separately, it could make the motion of the sprite a little choppy.
This is especially true when the X-position goes from 255 to 256. If we
POKEd the X-position location, then calculated the bit 9 location value, the
sprite would jump off the screen while we were doing the calculation, then
jump back on when we POKEd the bit 9 value. Depending on the order in
which the calculations and POKEs are done, this might cause a noticeable
flicker. While you don’t have to follow the order of calculations we used, you
will find that you get the most pleasing results by doing the calculations first,
then the POKEs.

Chapter 6. Graphics 235

Animating Sprites

Like custom character players, sprites can be animated by defining
different versions and changing the version displayed “on the fly.” There is
one difference, though; while you can redefine part of a custom character
player, you must define a completely new sprite for each position in the
animation sequence. In the section on custom character players, we animated
our stick man by making him wave. Here’s a program that does the same thing
with our sprite stick man.

508 REM RESERVE MEMORY

1886 CLR:POKE S52,128:'POKE 56, 128:CLR

1816 REM MOVE SCREEM TO HIGH MEMORY

16828 POKE 648,132

1836 POKE SES76. (PEEKC3ESTEIAMD 2520 OR 1
1848 FRIMT O

1188 REM LOAD SPRITE 1

1266 FOR 1=32832 TO 32894 © READ X @ POKE I.X @ MEXT
1308 REM SPRITE DATA, 2 ROWS PER STATEMEMT
1408 DATA B, 28,96, @.62,96

1481 DATA B, 62,36, A,62,96

1482 TATA B.62.96, @,28,56

14@3 DATA 8,62, 36, B,235.36
1484 DATA 3,255,192, 6.233.8
14@5 DATA ﬁJASJJB« £,255,8
1406 DATH 6,255,808, 6,2535.8
1407 DATA B 126.4, 8,162.9
1498 DATA B.102.8, @,182.,9
1463 DATA B, 162,48, @,182.0

1418 DATA @,231.8

2188 REM LOAD SPRITE 2

2200 FOR I=32896 TO 32558 @ RERD X @ POKE I.4X @ MEKT
2208 REM SPREITE DATA. 2 ROWS PER STRTEMEMT

24860 DATA B.28.0, B.62.,@

2401 DATA B.82,3, B.52,6

24082 DATA 8,62,12, 128,24

2483 DATA B.62.48, @,235, 224

2484 DLATA 3,285,192, §€,255.0

2455 DHTH Elé_l*.lJuJ 6;253)5

2406 DATA £.,255.8. £,255,0

24687 DATA B 12u,B; @.182.82

24898 DATA 8,1682.8, A,192.8

2409 DATA @, 182,08, @.,182,8

2418 DATA B@.231.8

3188 REM LOAD SPRITE 3

3200 FOR I=329c@ T0O 33822 : READ % @ POKE I.¥ @ HEAT
2368 REM SPRITE DATH, 2 PDHM FEFR STATEMEMT

34600 DATA B,28.8, B-S;.ﬂ

=

&

236 our Commodore ¢4

3491 DATR B.62,8, A,62,8
3482 DATH B.62,8, B,28,08
3403 DATA 8,852,255, B.2553,255
34B4 DATA 3,255,192, €,255.8
34035 DRTH €,255,0. 6,255,
3486 DHTH €,23535.9, 5,255,8
3487 DATH B@.126,0, B,182.4
3488 DATH @,182.0, @,102.8
3485 DATH B.1@2.48, @d.182.,8

2418 DATAR B,231.0

4138 REM EHMABLE THE SPRITE

4118 POKE 34888,1

4128 FOKE 532659, PEEK (53265 OR 1
4268 REM PUT IT OM THE =CREEM
4210 POKE 53248, 104

4228 POKE 53249, 100

4308 REM START MAKIWG IT MOVE
4318 FOKE 24888,2
4328 FOR I = 1 TO
4338 FOKE 3486%,3

8}

5@ 0 MERT

4348 FOR I = 1 TO 25@ @ HEAT
4350 POKE 3483082,2
4368 FOR I = 1 TO 258 @ HEXKT
4370 FOKE 34808.1
4388 FOR I = 1 TO 238 @ HEAT

4336 GOTO 4386

Lines 4300 through 4380 are the key to the animation: we POKE
location 34808, which is the sprite definition pointer for sprite 0. No matter
how much of the sprite changes, only one POKE is necessary. If the player’s
movements must be complex, as with a figure that walks and waves at the
same time, it is much easier to animate a sprite than a custom character
player. There is a price for this, though; the sprite method will usually require
more memory. In most cases, this will not be a problem, but it is something
you must keep in mind when designing programs.

Now let’s liven up the display a bit more. Add these lines to the program:

4222 x“P=198 YP=100 SH=108
4224 Al=3:Y1=3

4388 REM START MAKIMG IT MOVE
4318 POKE 34808, 2

4328 GOSUB 4404

4338 POKE 348088.3

4348 GOSUB 44004

4338 POKE 34868,2

4360 GOSUB 4468

4370 POKE 34808, 1

4388 GUSUB 44b@

Chapter ¢ Graphics

237

4330
4468
4416
4424
44308
4444
4458
4460
447@
448@
16900
18016
10826
10838
10048
10850
18860
10878

GOTO 4386

FOR I=1 TO 5

AP=HP+£1

YP='YP+Y]

GOSUE 18p06

IF AP<21 OR XP>320 THEW AI=-#1

IF YP{51 OR %P 228 THEM YI=-YI
FOR J=1 TO 25:HEXT
MEXT I
RETURM

AL = 53248 2 # 5M

YL = XL + 1

IF AP > 255 THEM 18838

ES = PEEK (53264 AMD HOT (215M)
GOTO 18pea

B3 = PEEK (33264, OR C21SH)

Y o= /F AMD 255

FOKE #L.%% @ POKE YL.YP @ FOKE

When you RUN the program, the stick man will start to wave again, but
this time he drifts around the screen at the same time. When he hits the

border, he bounces off it, and heads off in a different direction.

We’ll be using modified versions of this program to illustrate other sprite
concepts. SAVE a copy of it to reduce wear and tear on your typing fingers.

Coloring Sprites

Just as each location in screen memory has a corresponding location in
color memory, each sprite has a location that contains its color. Sprite colors
are stored in the VIC-II chip, not in memory. The memory locations that
control sprite colors are

Location Sprite number

53287 0
53288
53289
53290
53291
53292
53293
53294

NN B LN —

These locations take the same POKE values that color memory locations do.

238

Your Commodore 64

To see sprite colors in action, change the sprite demonstration program

so it looks like this:

168
118
126
1328
143
158
166
178
126
158
p45 1%

REM F

REM MOVE SCREEM T

FOKE 648,132

POKE SeS7E, (PEEKC
PRIMT""

REM LOAD SPRITE 1

FEM

DATH
DATA

218 DATA
228 DATH
2368 DATA
248 DATHA
Z58 DATH

268 DATH
278 DATA
288 DATA

230 DATH 9,231.8

388 REM LOAD SPRITE 2
318 FOR 1=32896 TO 32

320 REM SPRITE DATA.
338 DATA A.28,0,

348 DATA B.62.3,

358 DATR 8.,62.12,

3608 DATA B,62,48.

278 DATA 3,255,192,
288 DATA 6,2355,@.

328 DATF £.,255.8.

408 DATA B.126,8,

4168 DATA &, 1682,8,

420 DATA B, 1602.@,

438 DATA B.,231.8

440 REM LORD
458 FOR I=32%268 TO 3
458 REM SPRITE DATH,
478 DATAH @.28.8,

4380 DATA B.62.0.

458 DATA B.62.8.

SB8 DATA B,582.253,
518 DATH 3,235,192,
528 DATA &,255.8,
538 DATA €,255.8,
540 DATR @A, 126,08,
558 DATA B.182, 0.
568 DATA B, 182,8.

SPRITE DATH,
8,268,596,

B, 62,96,
B.52,96,
B.,62,965,
3,255,182,
61 Z.J..IJ UJ

6,255,8.

B,126.8,
Qh, 182,48,
B,182,4.,

SERVE MEMORY
CLR:POKE 52,128:POKE 356,

FOR 1=32832 TO 32854

SPRITE 3
2

128 CLR
0 HIGH MEMORY

S6S7EVAMD 232 OR 1

FEAD FOKE I.x
2 RDWE PER STATEMEMT
@.62,96

8,682,396

@,25,3€6

B 2 |.J|':;F‘

£,235,8

£,255.08

6.255,0

B,18z.8

B,162.,8

B,182.8

READ POKE I.X

WS PER STATEMEMT

- RH&U

VAT H
N
B

READ FOEE T.4
PEF STATEMEMT

z2
ROWS
,62.8
62,8
28,8
ZSJJJ
25JJ@
,255.8
255, 8
182,08
,182.4
,IBZJ@

G)@CO"":U\G\@@'D@I\IEJ

¢ MEXT

HEAT

HEAT

Chapter 6 Graphics 239

B DATA @A,231.68

580 REM EMABLE THE SFRITE
593 POKE 24288,1

608 POKE 53263, PEEK (532
618 REM FUT IT OM THE 5
628 SH=8

538 “P=18@ @ KI=1

£48 YF=108 @ YI=1

E58 GO0sSUE 10864

668 REM STHRT MAKIHG IT MOVE
578 POKE 34808, 2

&80 GOSUE 7ea

A38 POKE 34808,3

VAR GOSUB 760

718 POKE 24B888,2

Y28 GOSUE 7Ea

730 FOKE 24888,1

748 GOSUER 7e@

758 GOTO &68

7EB FOR I =1 T0 3

vre AP “P+A1

7eg WF YP+Y1

758 GOSUE 180608

28 IF AP<21 OR XP 2 328 THEM X1
819 IF YP<51 OR WP 2 228 THEM YI
2280 REM FOR J = 1 TO 25 © HEAT
838 MEAT I

248 RETURM

850 REM MAKE HIM "BLUSH"

860 POKE 53287, 14

gvp FOR J = 1 TO 256 @ MEAXT

880 POKE 53287.1

898 RETURM

10008 XL = 33248 + 2 #
16018 YL = XL + 1
1928 IF XP > 2535 THEHM 188358

10P26 BS = PEEK{33264) AWD HOT (21SH)

16048 GOTO 160cA

10950 B3 = PEEK(33264) OR (21EH)

18868 XY = 4P AMD 255

10678 POKE ¥L.¥xY © POKE YL.YFP @ POKE 53264,E%
18988 RETURH

Now RUN the program, and watch the results. Each time the man bumps
into the wall, he turns red for a moment before continuing.

69y OR 1
CREEM

iU

~x1 + GOSUE B/
-YI GO3SUR B

o

M

Sprite Interaction

When sprites move around on the screen, they sometimes overlap each
other or objects in the background display. The sprite world is like the real

240 - Commodore ¢4

world in that two objects can’t occupy the same space at the same time. Only
one object can be displayed in a particular dot position at any one moment.
The VIC-11 has a set of rules to determine which object gets priority when two
or more compete for a particular dot. It also has a way to tell your program
when two objects collide. In this section, we’ll look at those rules and how you
can use them in your programs.

Display Priorities

In the introduction to sprites, we described them as figures on sheets of
glass. Each sheet can hold only one sprite, so when two sprites try to occupy
the same position, one must pass “behind” the other. The rule for determining
which one gets priority (passes “in front™) is very simple: sprite 0 is always in
front of sprite 1, which is in front of sprite 2, and so on. Sprite 7, of course, will
pass behind any other sprite. To see this in action, type in and RUN the
following program:

188 REM RESERVE MEMORY

118 CLRE:POKE 52,128:FOKE 56,128 CLE

1268 REM MOWE SCREEM TO HIGH MEMORY

138 POKE 548,132

148 POKE 56576, (PEEK(SES7EIAMD 2525 OR 1

138 PRIMT"D"

168 REM LOAD SPRITE 8 (DIAMOMD

176 FOR I=32832 TO 32894 @ READ X @ POKE I.# @ HEXT
128 REM SFRITE DATA. 2 ROWS PER STATEMEWT

138 DATA 6.08.4, h.8.8

£B8 DATH B.0.0.

218 DATA B.24.8,
228 DATA B.126.8,
238 DATA 1,235,128,
248 DATA 7,235,224,
238 DATA 3,253,132,
268 DATA 8,235, 4.
278 DATA 8.68.8.,
280 DATAH ©.08.8.

298 DATH B.B.8

308 REM LOAD SPRITE 1 C(SGLARED

318 FOR I=3285%& TU 32358 @ POKE I.235 @ HEXT
328 FEM EMAELE THE SFRITES

338 POKE 34B883,1

348 POKE 348@2,2

3% POKE 53269,PEEK(S3269) OR 2

368 RFM PUT THEM OM THE SCREEM

370 A(Br=56 @ X1cB)=32

=

£ R

i

“ v v v v o
A

MR W
Q

V=N =&

TN EX
SRR
®s = v v -

- appaEuaae -
Q- e~

- -

Chapter ¢ Graphics 241

280 K01)=58 & KI(l)=-3

390 YP=150

488 FOR EM=0 TO 1 @ WP=X(5H) : GOSUE 1@8@R : MEXT
418 REM START MAKIMG THEM MOVE

428 FOR SM = B8 TO 1

438 WOSH) = ACSMI+RICEH

448 AP=K 5

458 IF A05HIC21 OR KOSMID 75 THEM WICSHI = —HI(SH)
46@ GOSUER 10888

470 REM FOR J = 1 TO 25 @ HWEXT

4868 HEAT

438 GOTO 418

18880 «©L. = 53248 + 2 # =M

18818 YL = XL + 1

18020 IF AP > 235 THEM 188358

10838 B9 = PEEK (332641 AMD HOT «218H)

1884@ GOTO 18860

18056 B3 = PEEK(33264% OR (21EHJ

18BE8 “W = H#P AWD 2355

19B7@ FPOKE “L,¥VW @ POKE YL.YP @ POKE 53264, B9
168588 RETURM

When the program is executed, it creates two simple sprites and moves them
back and forth across the screen. The diamond shape is sprite 0 and always
passes in front of the square. Notice that the “transparent” part of the
diamond doesn’t blot out the square; only the “visible” part covers up any of
the dots that make up the square. Now interrupt the program and enter these
lines:

338 POKE 34868,2

348 FOKE 324803, 1
The POKE:s switched the sprites, so that the square became sprite 0 and the
diamond sprite 1. Now the diamond passes behind the square. Notice that it
makes no difference where the sprite is in memory; the only thing that counts
is which sprite definition pointer points to it.

The relationships between sprites are only half the story, though. Sprites
can also passin front of, or behind, the background display. To illustrate this,
add the following lines to the program:

355 REM PUT SQUARE BEWIMD ERCKGROUMWI
356 POKE 53273, PEEK (53275 OR 2

When you RUN the program, you'll see that the square (sprite 1) passes
behind the background, but the diamond (sprite 0) passes in front of both the
square and the background display. The secret to this is the POKE in line 356,

242 Your Commoaore &4

which clears a bit that tells the VIC-11 that sprite 1 has a higher priority than
the background. Like many of the other bits that control sprites, there are

eight of them, one per sprite, grouped together in one location, number
53275. The least significant bit controls sprite 0, and the most significant bit
controls sprite 7:

Bit number l 7 I 6 l 5 I 4J 3| 2] 1 Iﬁ I Sprite affected
A A A ‘———————SprheO
Sprite 1
Sprite 2
Sprite 3
Sprite 4
Sprite 5
Sprite 6
Sprite 7

If a sprite’s bit in this locationis a 0, it takes priority over the background, and
passes in front of it. If the bit is a 1, the sprite passes behind the background.
The bits are, of course, controlled with bit-masking operations. As always,
you must PEEK location 53275 first, to save the values of the other bits. To
put sprite 3 behind the background, you would use a statement like

188 POKE 33275,PEEK (332730 OR &
To put sprite 7 in front of the background, use
188 POKE 53275, PEEK(S3273) AMD 127
Splitting the sprite-to-sprite priorities from the sprite-to-background
priorities has a very interesting side effect. Change line 356 of the program to
86 POKE 53275.1

Now RUN the program, and watch what happens. The square (sprite 1)
isin front of the background, and the diamond (sprite 0) is behind it. But the
diamond passes in front of the square, because sprite 0 always has priority
over sprite 1. So, when the diamond and the square overlap, the background
is in front of the part of the square that is covered by the diamond! This makes
perfect sense as far as the VIC-1I's priority rules are concerned, but don’t

Chapter 6 Graphics 243

spend too much time trying to imagine how this works with our “sheets of
glass.”

Collisions

In the real world, when two cars collide, the results are noisy and messy.
Fortunately, things are not that bad in the sprite world. Instead, the VIC-II
simply sets some flags to let you know who hit whom.

Being able to detect collisions is very handy for game software. The
process of finding overlaps by calculation uses up a lot of computer time, and
would slow down the action. However, collision detection is also useful for
almost any program that uses sprites to simulate moving objects.

There are two different types of “collisions™: one occurs when two sprites
overlap, and the other is a result of a sprite passing in front of or behind an
object in the background display. Each type of collision is recorded in its own
location: location 53279 marks collisons between sprites and the background,
and location 53278 contains bits to identify sprites that collide with each
other. Like many of the other locations in the VIC-II, each location contains
one bit for each sprite, with the least significant bit corresponding to sprite 0,
and the most significant being used for sprite 7. This allows you to use the
same bit masks for examining these locations that are used to set bits in the
“controlling” locations.

Now let’s see how collision detection works in a program. The example
below uses the diamond and square sprites from our earlier example, but this
time they don’t pass each other: when they touch, they bounce, and reverse
direction. We’ve also added “walls” in the background that the sprites bounce
off when they touch.

188 REM RESERVE MEMORY

116 CLR:FOKE 52,128 POKE 56,125 CLR

126 REM MOVE SCREEM TO HIGH MEMORY

136 POKE &48,132

148 POKE SAE576. (PEEK(SEITEIAMD 25325 OR 1

158 PRIMT"I"

168 REM LOAD SPRITE B (DIAMOMD:

17V0 FOR I=32832 TO 328%4 ! READ # @ POKE I.A4 @ HEXT
120 REM SPRITE DATA. 2 ROWS PER STHTEMEMT

198 DATH @.8.0, B8.8.8
208 DATH B.6.8. h.H.8

218 DATA @.24,8, B,60,
228 DATA B.126.8, @.255,8
=238 DATA 1,235,128, 3,255,192

244 U Commodore ¢4

248 DATA 7,235,224, 7,253,224
2580 DATA &,255.1%2, 1,255,128
268 DATA B.255,8, @.126.8
278 DATH 8.608,8. 8.,24,8
288 DATH 4.4.8. a,8.8

238 DATA @.8.48
2@88 REM LOAD SPRITE 1 (SBUARE

316 FOR I=32896 TO 325338 @ POKE I1.235% @ MEXT
328 REM BUILD THE WALLS

338 FOR I =1 TO B @ FRIMT @ HEXT
348 FOR I = 1 TO 18 @ FRINT"®

350 REM EMABLE THE SPRITES

368 FPOKE 34808,1

AY8 POKE 34883,2

380 POKE 53269, FEEK (532690 OR 2
359 REM PUT THEM OM THE SCREEH
480 ¥X(Bi=Ec0 & KICBI=2

418 XK(13=35 @ YI(1i=~1

428 YP=158

434 FOR SH=0 TO 1 @ WXP=XiSH) @ GOSUB 10066 @ MEXT
442 REM STHRT MAKIMG THEM MOWE

458 FOR M = 8 TO 1

458 AOEM) = KOSMI+KICEMD

478 wKP=ECSH

488 GOSUE 18886

49@ REM CHECK FOR COLLISIOM WITH OTHER SFREITE

5@ IF PEEK(S3278) = 8 THEM GOTO A@e

5184 REM IMPACT! REVERSE COLRSE

28 KIc@y = -xIc@y @ HWICL) = ~KI01D

530 REM BACK UF THE SPRITE WE JUET MOVED

54@ A0SM) = HMOSH) o+ ATCEHD # 2

S50 wF=RCSHD

568 GOSUE 19888

570 REM CLERR THE SFRITE COLLISIOW FLAGE

588 DD = PEEKCE327E)

598 REM CHECK FOR COLLISION WITH BACKGROUMD

688 IF CPEEK(3327%) AMD 21E5H) = B THEM GOTO &32@
G168 REM HIT THE MWALL! REVERSE COURSE

G2 KICEMY = —-AI0EH)

38 REM BACK UP THE SPRITE WE JUST MOWED

B4l AOEMY = WOSM) 4+ KICEMD

E58 “P=¢{EH)

E668 GOSUE 18688

&78 REM CLERR THE BACKGROUMD COLLISION FLAG

£88 DD = FEEK{SI27E)

E9E HEXT

FEB GOTOD 448

10983 ¥l = 53248 + 2 # S

18@a1g YL = 5L +

18828 IF «“F > 2

®

HEXT

1
5% THEM 1eaZ@

Chaopter & Craphics 248

18838 BY = PEEK (532640 AMD WOT C2TSMI

1ardB GOTO 1BBEB

18836 B3 = PEEKCS3264) 0OR (ZTEM)

18BE@ ¥y = XP AMD 235

1A@78 POKE #L.%Y @ FOKE YLoWP @ POKE 53264, B3
1EBEE RETURM

Most of this program should be familiar by now, so we’ll concentrate on the
parts that use collision detection.

Line 500 PEEKSs location 53278, which contains the flags for sprite-to-
sprite collisions. In our example, we are using only two sprites, so any
nonzero value means that the two have collided. A more complex program,
involving many sprites, would use bit-masking to determine which two sprites
had collided. To detect a collision between sprites 3 and 5, you can use this
statement:

188 IF PEEKCSZZ7E) AMD 48 = 4@ THEM GOTO 286

Where did the 40 come from? The mask value for sprite 3 is 8, and sprite 5’s is
32. By adding 8 and 32, we get a mask that will force off all bits except those
for sprites 3 and 5. The comparison to 40 is important, too; it makes sure that
both bits are on. If sprite 3 had collided with sprite 2, the PEEK value would
be 12 (8 plus 4). If 12 and 40 are ANDed together, the result is 8. This value is
not zero, so a simple IF would see a true result. By comparing the result of the
AND to 40, we know whether both sprites, or just one of them, were involved
in the collision.

Your program should check the collision flags after every sprite move. If
it doesn’t, it may be difficult to determine exactly who hit whom. For
example, if sprites 2 and 3 are colliding in the upper-left corner of the screen,
and sprites 0 and 4 are colliding at the same time in the lower-right, a PEEK
into location 53278 will return a value of 15, because all four are involved in
collisions. In order to figure out which sprites are touching which, your
program must resort to the calculations that the collision detection mecha-
nism is designed to eliminate. Checking after each move avoids this extra
work.

Line 580 demonstrates another important characteristic of the collision
flags. The REM statement in line 570 says that we are clearing the flags, but
you would expect that to be done witha POKE, not a PEEK. The reason lies
in the electronic design of the VIC-II chip. Whenever a sprite is involved in a
collision, its collision flag bit is set. The bit stays set until the collision flag

246 our Commodore ¢/

location is examined with a PEEK (there are certain advantages to designing
chips this way, and the practice is quite common). If the flag is cleared by
PEEKing, why do we have to PEEK again to clear it? As soon as we cleared
the flags with the first PEEK, the VIC-1I discovered that the sprites were still
colliding, so it set them again (it checks every time it scans the display). To
clear the flags, we had to move the sprite, then PEEK again. If the flags
weren’t cleared, we would get a false indication. Even though the two sprites
were no longer touching, the VIC-II hadn’t communicated to the program,
and would remember the collision until it had. Try deleting line 580 from the
program, and watch what happens. The program thinks that the two sprites
are colliding all the time, so once they touch, they sit there and vibrate,
reversing every move.

Although we haven’t mentioned the sprite-to-background collision
flags, their electronic design is the same as the sprite-to-sprite flags. You’ll
need to use the same methods to clear them and to avoid false collisions.

FANCY COLORS

While the combination of standard graphics and custom characters will
meet the needs of most applications, there are some things that cannot be
easily displayed in blue and white (or green and white, or red and green). If
you need fine shading in a display, or want to make it more eye-catching, just
turning a dot on the screen on or off isn’t enough.

The C-64 offers two techniques for making your display more colorful.
The first, called “Extended Color Mode,” allows you to control the back-
ground color for each character on the screen. The second, “Multicolor
Mode,” gives you the ability to use more than two colors in a given character.
Multicolor mode can even be used for high-resolution displays and sprites. In
the sections that follow, we’ll show you how these techniques work, and how
to put them to use in your programs.

Extended Color Mode

On anormal character display, there are two ways to draw attentionto a
message: you can display it in a different color, or print it in reversed
characters. These are effective if the person using the computer is actively
involved in reading the display, but there are circumstances where you need a
real eyecatcher. One such case might be using the C-64 to control a lab

Chapter 4 Craphics 247

experiment. It might be necessary for the experimenter to adjust some
equipment across the lab from the computer, or the experiment might run for
a while, leaving time to wash out the test tubes.

If you were already using reversed characters for some other purpose,
such as to highlight instructions for the experiment, you wouldn’t want to use
them for an alarm message. You’d want something that really stood out, and
extended color mode does that nicely.

In extended color mode, both the background and character colors are
set for each individual character. The character color is kept in color memory,
just as in a normal display. To set the background color, the VIC-II takes two
bits from screen memory:

Bit number uil l 5| 4| 3 2h |0|
A ‘;- “Screen code”

Background color

The two bits that control the background color are used to select one of
four locations in the VIC-II chip.

Bit Location
Pair Selected
00 53281 (Background color 0)
01 53282 (Background color 1)
10 53283 (Background color 2)
11 53284 (Background color 3)

“Background color 0” is the color of the background for a normal text
display. These four locations, like color memory, hold a color code from 0
through 15. Bits 4 through 7 are ignored when you POKE them, and you must
AND the value with 15 when you PEEK.

There is a price to be paid for the flexibility of choosing background
colors. With bits 6 and 7 used for the background color, the remaining six bits
only allow 64 different characters. If you want to use reversed characters you
must “trick” the computer into displaying them. Finally, using the extra
colors requires a bit of extra programming. However, the result can be a
program that is much easier to use.

248 o Commodore £4

TURNING ON EXTENDED COLOR MODE

It will come as no surprise that extended color mode, like so many of the
graphics features we’ve discussed, is controlled by a bit in a location in the
VIC-II chip. When bit 6 of location 53265 is turned on, the display is changed
to extended color mode. Try executing this statement:

POKE 33285, PEEE(S3265) OF 64

The first thing you’ll see is that the cursor, instead of changing from dark blue
to light blue (normal space to reversed space), changes from dark blue to red.
Remember that the C-64 turns bit 7 off and on to flash the cursor. On a
standard display, this changes the character from normal to reversed. On an
extended color display, changing bit 7 changes the location from which the
coloris taken. When the C-64 is reset, the four background color locations are
initialized to dark blue, white, red, and cyan. A “reversed” space (screen code
160) becomes a red space in extended color mode, because bits 7 and 6 contain
the values 1 and 0 respectively, taking the background color from location
53283.

For a clear picture of the effects of extended color mode, type in and
RUN this program:

188 REM TEST EATD COLOR MODE COMWERTER
118 PRIMT"I"

128 REM FILL SCREEH

1380 EB=Z5E#PEEK (E48

148 FOR I=@ TO 253 @ POKE SB+I.I @ HEAT
158 REM FILL COLOR MEMORY

166 FOR I=8 TO 255 @ POKE S5236+1,1 @ MEXT
178 REM SET UP COLORS

188 POKE S53z82,4

158 FOKE 33283.5

288 POKE 53284,3

218 REM SWITCH EXTEMDED COLOR OH AMD OFF
228 POKE 53265, PEEKCS3265) OR £4

238 FOR I=1 T0O 888 @ HEAT

248 FOKE 353263, PEEK (332652 AMD 151

258 FOR I=1 TO 888 @ MEAXT

268 GOTO 228

The program fills the first 256 bytes of screen memory with all 255 possible
screen codes, then turns extended color mode on and off. With extended color
mode off, the screen contains all 128 uppercase and graphics characters,
followed by their reversed counterparts. When extended color mode is turned

Chapter ¢ Graphics 249

on, the screen becomes 4 groups of 64 characters each, with each group having
a different background color.

The 64 characters appearing on the screen are those with screen codes 0
through 63: the letters, numbers, and punctuation. These are the only charac-
ters you can use in messages that are displayed in extended color mode
(Appendix E contains a chart of the screen codes for all characters). The six
lower bits of a byte can only hold numbers in the range of 0 through 63. If you
POKE a larger number into screen memory, it will spill over into bits 6 and 7,
and change the background color.

CREATING EXTENDED COLOR DISPLAYS WITH POKE

Screen POKEing in extended color mode works just as it does with the
built-in or custom character set. The only difference is that you must add the
appropriate color value in bits 6 and 7. Earlier in this chapter, we showed you
a sample subroutine to convert CHRS$ codes to screen codes. Here is a
modified version of that subroutine that does the conversion, then adds the
appropriate color code bits. Like the earlier routine, it takes a character in
variable KV$, and returns the screen code in SC. For this subroutine, a new
variable is needed. This variable, BC, contains the background color (0
through 3) for the character.

12898 REM TEAMSLATE CHARACTER FOR EATEMDED COLORS
12818 SC=RASCEVE)

12826 REM BLAMK OUT ILLEGHL CHARACTERS

12828 IF (SC432) OR (SCP35) THEMW SC=32+E64#%BC @ RETURHM
12848 IF SC>EZ THEN SC=5C~54+E64#%BC © RETIURH

12850 SC=5C+E4%EBC @ RETURH

This subroutine is much shorter, because only two groups of 32 characters
need to be translated. The others are all changed to blanks.

USING PRINT WITH EXTENDED COLORS

At first glance, it might appear that you can’t easily PRINT characters
with different background colors. Since there are no BASIC commands to
handle extended color mode directly, adding the color control bits to charac-
ters could quickly turn simple messages into long unreadable strings of CHR$
calls. However, with a bit of the trickery mentioned earlier, you can use
PRINT to display extended color messages, and still be able to read your
program,

250 our Commodore ¢4

The key to controlling the background color is to control the values of
bits 6 and 7 in screen memory. Controlling bit 7 is easy: PRINTing the reverse
onand reverse off control characters will force bit 7to a one or a zero for the
following characters. The hard part is bit 6; if we directly PRINTed the 64
characters we can use in extended color mode, bit 6 would always be a 0. This
would only give us the use of the usual background color, plus background
color 2 (for reversed characters). This may be enough for some programs. If it
is, you won'’t need the trick we are about to describe. But if you want more
flexibility, read on.

The trick to using background colors 1 and 3 is somehow to force bit 6 to
avalue of 1 for the characters to be displayed in those colors. To do this, we’ll
use a “translation” technique similar to the one we described for converting
characters to screen codes. This translation will be necessary in many differ-
ent parts of the program (wherever we want to PRINT a message), so we’ve
written it as a subroutine:

12888 REM TRAMSLATE STRIMG FOR E<TEMDED COLORE

12816 REM SET REVERSE IF BC = 2 OR 3

12628 P5g="W" '@ IF BC »>= 2 THEHW PSg="7"

12838 FOR CP=1 TO LEM(MSES)

12648 FC=RSC(MIDF(ME$,.CP, 12

12838 REM COMVERTS 1 CHARACTER

128668 REM CHECK FOR COMTROL CHARACTERS

12878 IF (PC AMD 127> < 32 THEM PS5#=FPS§+CHRF(FC> @ RETURM
12636 REM BLAMK OUT ILLEGAL CHARACTERS

12830 IF PC > 33 THEMW PC = 32

12168 IF BC=B OR BC=2 THEN 12156 ' REM MO MORE WORK MNEEDED
12118 REM FORCE EBIT € DM FOR BC=1 OR 3

12128 IF PCZE3 THEM PC=PC+32

12138 IF PC<E4 THEM FC=PC+128

12146 REM ALL DOME. ADD BYTE TO OUTPUT STRING

12158 PES3$=PSE+CHRECPL)

12160 HEXT

12178 RETURHM

The subroutine takes a message string, MS$, and the background color,
BC, and uses them to build a print string, PS$. The message string is the text
of the message you want to print, in simple readable characters. The print
string is a string of characters that have been translated, so that the statement

488 PREINT FS#

Chapter 6 Graphics 251

will print your message on the right background color. As mentioned earlier,
this is somewhat tricky code, so let’s go over it in detail.

Bit 7 in screen memory is controlled by reverse on and reverse off
characters. Line 12020 starts the print string with a reverse off if the back-
ground coloris 0 or 1 (bit 7 off), or a reverse on for background colors 2 and 3
(bit 7 on).

Lines 12030 and 12160 form a FOR-NEXT loop that steps the index
variable CP through the message string, one character at a time. The lines
between them convert one character from the message string, and add it to
the print string.

Because BASIC’s Boolean and arithmetic operators only work on
numbers, line 12040 converts the character being translated to a number with
the ASC function.

Line 12070 checks the character to see if it is one of the “control
characters” (RETURN, color controls, etc.). Control characters all have values
in the ranges of 0 through 31, and 128 through 159. By ANDing the value of
the character with 127, we need only do one comparison to find all the control
characters. If we do find a control character, we bypass the rest of the
translation, and pass it through unchanged.

The characters we can display have ASCII values in the range of 32
through 95. We have screened out those less than 32 with the check for control
characters, so line 12090 changes all the ones above that range to spaces.

If the background color is 0 or 2, we’re ready: bit 7 will be taken care of
by the reverse code we set in line 12020, and bit 6 has been forced to zero.
Therefore, line 12100 skips over the rest of the translation for these colors.

Now comes the difficult part. For background colors | and 3, we need to
make sure that bit 6 is on in screen memory. To do that, we have to change the
ASCII code for the character to one that will give us the right value for bit 6.
To figure out how to do the translation, we consulted the ASCII and screen
code tables in Appendix E and came up with this table:

MSS code Screen code PSS code Operation
needed
32-63 96-127 160-191 + 128
64-95 64-95 96-127 + 32

The first column i1s the ASCII value of the character in the message string.
The second column is the screen code that we need to display that character
with bit 6 on. By comparing the screen and character code tables, we found

252 ‘our Commodore 44

the ASCII values we needed to get those screen codes and the BASIC
operation that would translate them. From that information we wrote lines
12120 and 12130.

Now we’re almost done. We have in the variable PC the ASCII value that
will give us the screen code value we need. Line 12150 finishes the loop by
converting PC back to a string value, and concatenating it to the print string.
When that’s done, we repeat the loop until MS§$ is completely translated, then
RETURN.

To see the subroutine in action, type in this program, along with the
subroutine, and RUN it.

188 REM TEST EATD FDLDP MUDE COHVERTER
118 POEKE 5,PEEECSEZE5Y OR £4

128 POKE 14

136 POKE
146 POKE 532
158 FOKE 5328
168 PRINT"™W"
179 MS$="EBLUE TEST MESSHRGE"

120 BC=#

138 GOsUB 34@

Z2P8 PRIMT PZ#

218 MSE="WHITE TEST MESSABE"

228 BC=1

238 GOSUE 240

248 PRIMT PS%

258 MS$="5REEM TEST MESSRGE"

266 BC=2

£78 GOsSUB 3248

288 PRINT PS%

299 MSE="YELLOW TEST MESSAGE"

388 BC=3

218 GDEUB 34@

320 PRINT PES$

338 EMD

348 REM TRAMELATE ETRIMG FOR EATEMDED COLORS

35@ REM SET REVERSE IF BC = 2 R 3

6@ PSE="W" : IF BC = 2 THEHW PE3="g"

378 FOR CP=1 TO LEMIMES)

288 PC=ASCIMIDEMSE,CP. 130

328 REM COMVERTE 1 CHARACTER

468 REM CHECK FOR CONTROL FHHPHFTEP’

41@ IF (FC AND 127 < 32 THEM PS SEYCHRECFCY @ RETIURM
420 REM BLAMK OUT ILLEGAL tHHFHFTEP'

438 IF PC 2 35 THEM PC = 32

44@ IF BC=8 0OF EC=2 THEHM 438 @ REM MO MORE WORK MEEDED
45p REM FORCE BIT € OM FOR BC=1 OR 3

173
g
.5
3

aon 'J'

c.‘
-
i
28
-

(IIEUQC‘\
-EsC-JI\.H—‘

4
i1
5
7

Chapter ¢ Graphics 253

468 IF PCXB3 THEM PC=PC+3Z

478 1F PC<{E4 THEN PLC=PLC+1Z8

488 REM ALL DOME. ADD BYTE TO OUTFUT STREIMG
498 PESS=PSE+CHEFPL

588 NEXT

518 RETURH

The program sets the background colors in lines 120-150, and displays a
message in each color. For each color, the process is the same: assign the
message to MS$, set the background color in BC, call the subroutine, and
PRINT PSS$. We could have put the PRINT statement in the subroutine, but
we left it out for extra flexibility. Since the main program does the PRINT, it
can use features such as tabbing, or ending the PRINT statement with a
semicolon to continue PRINTing on the same line. You can even mix
background colors on the same line by adding a semicolon at the end of line
240, and RUNning the program again.

FLASHING THE BACKGROUND TO GET ATTENTION

One way to really draw attention to an important message is to make
the background flash off and on. You can see how effective this is just by
looking at the cursor. No matter how full the screen is, your eye is imme-
diately drawn to the cursor by its flashing.

You can make complete messages stand out on the screen simply by
changing the value in one of the background color locations in the VIC-II
chip. To see this effect at work, add the following lines to the sample
program from the last section:

322 REM FLASH BACKGROUMD

323 POKE 53284, 14

324 FOR I=1 TO S@B @ HEXT

325 POKE 532847

326 FOR I=1 TOD S58@ @ HEAT

327 GOTO 323

When you RUN the program, it displays the messages as before, but the
background of the “vellow test message™ appears to be flashing off and on.
The key is lines 323-325. They change the value in background color 3 from 7
(yellow) to 14 (blue) and back. When the background is blue, it matches the
rest of the screen, and disappears. When the color is changed back to yellow,
the background flashes on. Even the most determined test tube washer
couldn’t miss that, especially if you accompanied it with some of the sound
effects you’ll learn about in Chapter 7. For the experimenter adjusting

254 /our Commodore 64

equipment, you could change the color from red, to yellow, to green, as the
computer’s measurements showed him getting closer to the right settings.

All our examples have used the built-in character set, but you can use
custom characters, too. However, the limitation of 64 possible characters
still applies, so you may run short if your program also copies some of the
built-in characters for messages.

Multicolor Mode

Multicolor mode is designed for those applications that need even more
color than an extended color display. In high-resolution or extended color
mode there are eight dots on each line of a character, but each dot is limited to
being either the character color or the background color. Multicolor mode
trades some of those dots for more colors. In a multicolor character, there are
only four dots per line, but each dot can be one of four colors, instead of just
two.

Since a multicolor character is the same size as a high-resolution charac-
ter, each dot is twice as wide. To get the extra colors of multicolor mode, you
must “paint with a broader brush.” There are still eight rows in the character,
so the height of the dot remains the same.

CHARACTER MEMORY DEFINITIONS OF MULTICOLOR CHARACTERS

The dot patterns of multicolor characters are stored in character
memory in the same order as a high-resolution character, but each row (byte)

Chapter & Graophics 258

of the pattern looks like this:

Screen Dot 0 1 2 3
N et

N
Character Memory Bits | 76 | 54 | 32 | 10—|

Each dot of a multicolor character is represented by two bits in character
memory, rather than one. There are four possible combinations of those two
bits (00, 01, 10, and 11), giving four possible colors. The colors selected by
those combinations are as follows:

Bit Color

Pair Selected

00 Background color 0
01 Background color 1
10 Background color 2
11 Character color

The pairs of bits select the color of the double-sized dot in the same way that
bits 6 and 7 select the background color in extended color mode. Notice,
however, that background color 3 is no longer available. Instead, when both
bits are on, the dot is displayed in the color stored in the color memory
location for that character.

ENABLING MULTICOLOR MODE

Like extended color mode, multicolor mode is enabled by a bit in a
location in the VIC-II chip. The controlling bit is bit 4 of location 53270, so
the statement

188 FOKE S3270.PEERS3270) OF 16
will enable multicolor mode, and
188 POKE S3270,PEEK(S3278 AWD 2332

will return to standard color mode.

MAKING A CHARACTER MULTICOLORED

Enabling multicolor mode does not automatically make the entire screen
multicolored. Multicolor mode can be turned on or off for each character.

256 our Commodore 44

Whether a character is standard color mode or multicolor mode is controlled
by bit 3 in color memory. If that bit is 0, the character is high-resolution. If it
has a value of 1, the character is in multicolor mode. This makes it possible to
mix multicolor characters with standard or with standard color custom
characters. Because that bit has been taken from color memory, only three
bits are left for the color code. On a multicolor display, only the first eight
colors (black, white, red, cyan, purple, green, blue, and yellow) can be used as
character colors.

USING CUSTOM CHARACTER DESIGN TOOLS

Multicolor characters are actually a variation of custom characters, so
you’ll find the tools for working with them similar. The programs and
techniques presented earlier in this chapter, and those you may have deve-
loped yourself, will be helpful in multicolor design. However, slight adjust-
ments will be necessary to some of them. For example, to ensure that
characters in the test pattern area are in multicolor mode, change the Setup
program so it looks like this:

188 REM RESERWE MEMORY

118 POKE 52,128 @ FOKE 36,128 @ CLE

128 REM POINWT WIC-II AT MEW SCREEM

1368 FOKE 38576, (PEEKCSESVSY AMD 232) OR 1

148 POKE 5327z, 352

133 REM POINT BASIC AT HEW SCREEH

168 POKE @43, 1736

178 PRIMT"JAEABCDEFGHI JELMHOPGRSTUYWAYZLE]D Tt "
180 PRIMT CHRF(340; CHREC34 CHREEC 28

198 PRINT “"#3X&7 o+, -.",

2B8 PRIMT "/ /0123436783 C=37"

218 REM COPY CHARACTER MEMORY ROM TO RAM

228 POKE 38334,FEEKCSE63340 AMD 254

238 POKE 1,PEEKCLY AMD 251

248 FOR I=0 TO 2847 FOKE 32768+1,FPEEK 33248+ @ MEXKT
258 POKE 1,PEEK{1Y OFR 4

268 POKE Se334,PEEKCEE334) OR 1

278 REM SET MULTICOLOR MODE

288 POKE S3270.PEEK(33278) DR 16

298 REM MAKE "WORK AREA" CHARACTERS MULTICOLOR
388 FOR I=S55236 TO 35353 @ POKE I.PEEKCI) OR 8 @ MEAT

Our character design form needs to be changed, also, to have four
double-wide dots per line.

Chapter & Graphics 257

The calculation of the POKE values is not affected by multicolor mode.
The columns should be added up just as they are for custom characters. The
change in the grouping of the dots is only there to make it easier to visualize
the character as it would appear on the screen.

You will probably find it helpful when designing multicolor characters
to design the character using two worksheets. Do the first in colored pen or
pencil, then translate the colors to their bit values and do the arithmetic on
the second. Figure 6-5 displays our old friend, the stick man, in color.

EXPERIMENTING WITH MULTICOLOR CHARACTERS

Before starting to design your own multicolor characters, you will find
it helpful to develop a feel for the effects of color. You should start by playing
with characters on the screen in multicolor mode.

Load and run the Setup program listed above. As you can see, some of
the characters, especially those made up of horizontal and vertical bars (E,
F, H, and so on), remain more or less recognizable. The rest are just jumbles
of color. As a rule, high-resolution characters must be modified if they are to
be used in multicolor mode. By changing the definition of the dots in
character memory, multicolor mode tends to turn high-resolution character
patterns into gibberish. There are exceptions.Some of the graphic charac-
ters, especially the “blocky” ones, will simply change colors in multicolor
mode.

258 our Commodore ¢4

: 0 21 8

* 0 4 8

i 0 42 12

a8 0 4 12

P] 0 42 12

RIS RRREEE int SSESRRE: H 0 8 12
T I3 15 255 252
@Egai 12255 192
i-ﬁ-i %I% 12255 192
~ s it STl 12 255 192
-------- SieaseaReeRnnn INAE 4 255 192

4 85 64

0 255 192

0 63 0

0 51 0

0 51 0

0 51 0

0 s1 0

0 51 0

0 51 0

0 81 64

0 0 0

0 0 0

0 0 0

- Black EE!E Cyan Light Orange

FIGURE 6-5. Stick man in color

You can simplify your experimentation by typing the following imme-
diate mode command:

POKE 648,53

Location 646 contains the value that BASIC puts in color memory for each
character it displays on the screen. By changing this value you can put
characters into the work area, and BASIC will leave them in multicolor
mode. This makes any messages displayed by BASIC multicolor too, but
you should have little difficulty recognizing them.

Chapter 6. Graphics 259

MIXING MULTICOLOR CHARACTERS WITH OTHER MODES

Because multicolor mode is turned on or off for each character on the
screen, you can put multicolor characters, custom characters, and normal
text on the same screen. For example, try putting the three generations of
stick man characters together on a single display.

Multicolor characters give you a great deal of versatility for designing
players and playfields, but this is not the end of the multicolor story. As we
will see, bit-mapped displays, and even sprites, can be made multicolored.

Multicolored Bit-Mapped Displays

In the section on multicolored character displays, we saw that the
formats of screen, character, and color memory were not changed by multico-
lor mode. Only the way the VIC-II “interpreted” the contents of those
memory locations changed.

The same rule applies to multicolored bit map displays: the locations
and uses of screen memory and the “bit map”inthe “character memory” area
are unchanged. The big difference is that the bits in the bit map are used in
pairs in multicolor mode.

PUTTING THE DISPLAY IN MULTICOLOR BIT-MAPPED MODE

Setting both the multicolor and bit-map mode bits in the VIC-II chip will
give you a multicolored, bit-mapped display. Since these bits are in two
separate locations, two POKEs are required.

2655 OR 32
"

188 POKE 53265, FEEF (53265
53270, PEEKCS327B) OR 16

118 POKE

After executing these two statements, the display will be in multicolor bit-
mapped mode. Now let’s take a look at what can be done with it.

PROGRAMMING MULTICOLOR BIT-MAPPED DISPLAYS

In our look at bit-mapped displays, we designed a subroutine that would
set a bit on the screen based on its “X-Y position™ how many dots it was from
the top and left edges of the screen. That approach slows down the programs

260 . Commoaore 44

that use it, because it takes time to do the GOSUB and RETURN, but it
makes the main program a lot simpler to write and to read.

Using a subroutine for multicolor bit-mapped displays makes sense, too.
The calculations are just as complex as for high-resolution bit-mapping and
would clutter up the main program. Even though there is a small price to be
paid in speed, the benefits in simpler programming are worth it.

Our multicolor subroutine will be very similar to the high-resolution
one. It also uses the variables X and Y to point to the dot on the screen. This
time, though, the value of X must be between 0 and 159 because the multi-
colored screen is only 160 dots wide. We also need a new variable, “DC,” to
hold the dot color that will be set. Like the “BC” variable that we used for the
background color in extended color mode, DC will be a value from 0 to 3,
identifying the source of the color code, not the color code itself.

The bit masks for multicolor mode have different values, because we are
changing 2 bits at a time. The masks to set a dot to the background color
(make both bits 0) are

Dot 0 1 2 3
Bit Pair 76 54 32 10
Mask 63 207 243 252

Remember that we are numbering the dots from left to right across the screen,
while the bits are numbered from right to left. Since the bits are being set to
zero, these masks are used with the AND operator:

188 REM ZET DOTS TO BRCKGROUWD COLOR

118 POKE 27458, PEEK (27438 AMD £3 @ KEM DOT @8
120 POKE Z27451,FEEKCZ7451) AWD 287 © REM DOT
138 POKE 27432, FPEEK (27452 AMD 243 ¢ REM DOT
148 POKE 27453, PEEK (2745333 AMD 252 © REM DOT

O —

To set the dots we need 16 different masks (four possible colors for each
of the four dots controlled by a byte). These masks are

Dot 0 1 2 3
Background 0 0 0 0
Screen bits 4-7 64 16 4 1
Screen bits 0-3 128 32 8 2
Color memory 192 48 12 3

Chapter 4 Graphics 261

The following masks are used to set bits to I, so they work with OR.

188 REM SET DOTS TO OTHER COLORE

185 REM DOT @ FROM SCREREEM MEMORY BITS 4~7
118 POKE 27450, FEEK (274582 AWD &% R &4
115 REM DOT 1 FROM SCREEM MEMORY BITS @-3
128 POKE 27451,PEEKC27431) AND z@7 OR 32
125 REM DOT 2 FROM COLOR MEMOR'Y

138 POKE 27452,FEEK (274522 AMD 242 OR 12

THE DOT-SETTING SUBROUTINE

The listing below actually includes two subroutines. The first one, lines
15000-15030, sets the values in the bit-map area. This subroutine is almost
identical to the one we used for the high-resolution bit-map. The differences
are in calculating the location in the bit-map area (there are four dots per byte
instead of eight), and the masking of bits (changing two bits at a time, instead

of one).

The second subroutine, lines 16000-16080, sets up the masks. It must be
called witha GOSUB 16000 near the beginning of your program. As we have
suggested before, this subroutine was put near the end of the program to
make the main body easier to read. Line 16040 is a formula that calculates the
values of the OR masks. We could have READ them in from DATA state-
ments, but the formula saves memory space and typing.

15888
15818
15828
158836
1EBBA
16018
1E@20
15828
16848
16858
1E068
16878
166828

REM MULTICOLOR BIT SETTIHG SUBROUTIME

PL = BM+C40% (Y AMD 2480 0+0% AND 7a+2#0% AND 252
FORE PLLFEEKCPLY AMD M@KCX AMD 33 OR CHMECA AMD 3,000
RETURH

REM MULTICOLOR BIT MASK BUILDER

DIM CMAC3. 30

FOR I=B TO 3

FOR J=B TO 3

CHMACTLIY = 2T 2%(3-100%]
HEAT J

MBXCIy = 235 AND HOT CHMXCOT. 33
MEXT 1

FETURM

As an example of how this subroutine works, here’s the “triangle pro-
gram” from the section on bit-mapped displays, modified for a multicolor

display:

18@ REM BIT MAPPED DISPLAY DEMOMSTRATION FROGRAN
116 REM FROTECT EIT MAP MEMORY
126 FOKE 52,64 @ POKE 56,64 @ CLR

262 our Commodore ¢4

138 REM POIMT WIC-II AT MEW SCREEM FAMD BIT FAF MEMORY
148 FOKE SES7E, (PEEK (DES7ED HHD 2320 0OR 2

158 POKE 532v2.8

168 REM SET MIC-IT TO MULTICOLOR BIT-MAFFED MODE

178 FOKE 53265, PEEK (33265 R 22

188 POKE SBS?H.FEEL(SJA.UA O 18

138 FEM SET PATHTER T BIT MAF AREA

288 BM=Z457VE @ S5B=16384

218 REM CLEAR "BIT-MAF" HREA

228 FOR I=EM TO BM+7255 @ POKE I.8 @ HEAT I

REPE P BIPRIPIT
o~ T U A

REM FILL "SCREEM" MEMORY WITH COLOR CODES
FOR I=ZE TO SB+3%% @ POKE 1,236 @ HEST I
REM BUILD MALSE ARRAY

GOsSUE 158668

B
(5]
5]
o
278 DC o= 1
2mE REM DREW BOTTOM OF TRIAMGLE
2':'3 Y=g
289 FOR #=8 T &3
318 GOsSUE 15606
FEB HEST
338 FEM DEMM LEFT SIDE OF TRIAMGLE
248 FOR X=8 TO 326
258 N = -z
I35@ GOsSUE 156866
AV HEST
?Om FEM DPHM RIGHT SIDE OF TRIAHGLE
Gl FOR w=351 Tu
"'“:'":d 'T. £ r'..‘)"" ..J.._ r.)#._
419 GOSIUE 15668
428 HMEAT
423 REM WHIT FOR A KEEY TO BE FREESSED
448 GET A% @ IF HE="" THEH <448
450 REM ALL DOME. RESTORE “YSTEM TO HORMAL
456 FEM GIVE BIT MAF MEMORY BACKE TO BRZIC
A47E POKE 52,128 ¢ POEE 56,123 © CLE
480 REM POIMT WIC-II AT ORIGIMAL SCREEM AMD CHARACTER
MEMORY
438 POKE SE576, (PEEK (SES7EY AMD 2522 O 3
@8 FEM RETURM TO rHHPHCTEP MODE
518 FOKE S3265, FEEKCS3265) AMD 2273
Hed POKE 53278, PEEKCS32702 AMD 239
538 POKE 53272, 21
548 EMD
15686 FEM MULTICOLOR BIT SETTIMG SUBROUTIHE
158918 PL = BM+C4@%0Y AMD 2480 04+0% AMD Pi+2%04 HMI 25.3
15020 FOKE FLOFEEECFL) AMD MBXCH ARD 20 OF CHMMECE AMD

Iz

15838 RETLRH
16898 REM MULTICOLOR BEIT MAZE BUILDER
16818 DIM CHECZ. 30

J

Chrecoter ¢ Graphics 263

16628 FOR I=@ T0O 3
16328 FOR J=8 TO 2
16848 CHMEOTL T = 21028 03-10 %]

16@5368 HEAT J

16868 MAXC Iy = 235 AWMD MOT CHMYECI, 30

168738 HEAT 1

16388 RETUKH

Compare this program to the high-resolution version. The only change
we made to the main body of the program was to assign a value to “DC,” the
dot color variable! This is a good example of the value of designing and using
standard subroutines. Of course, not all programs can be so easily converted
from high-resolution to multicolor graphics. We cheated a bit by choosingan
example that didn’t use all 320 dots of the high-resolution display. Still, the
use of standardized subroutines can make new programs easier to write, and
existing programs easier to read, maintain, and adapt.

Multicolor Sprites

Multicolor sprites are very similar to multicolor characters, just as
standard sprites resemble custom characters. Like multicolor characters and
bit maps, the definitions of multicolor sprites are made up of pairs of bits,
each calling for one of four colors. The difference between the other multi-
color modes and multicolor sprites is where the color codes come from.

Bit Pair Color Displayed
00 Transparent
01 Location 53285 (in VIC-II Chip)
10 Sprite’s color location in VIC-1I Chip
11 Location 53286 (in VIC-11 Chip)

Locations 53285 and 53286 are used only to hold color codes for
multicolor sprites. Like the other color locations, they have only four bits,
and must be “masked” when your program PEEKs them.

MAKING A SPRITE MULTICOLOR

Location 53276 identifies which sprites are multicolored. Like most
sprite controlling locations, each sprite has a control bit in this byte. When a
sprite’s bit is a 1, it is displayed in multicolor mode.

Because the sprite’s bit in location 53276 determines whether it is multi-
color, all four bits of its color location are available, so all 16 color codes can
be stored there.

264 o Commodore 44

EXPANDED SPRITES

Now that you’ve spent many hours designing and building your sprite,
it’s time to learn how to blow it up.

In the case of sprites, “blow up”refers to its photographic, not explosive,
meaning (you can, of course, use the animation techniques we described
earlier to simulate an explosion).

If you need a larger than normal sprite, you could combine sprites just as
you would custom characters. However, there is an easier method. The VIC-II
can double the height, width, or both of a sprite with a simple POKE.

Sprite expansion is controlled by locations 53277 and 53271. As with
other locations, each sprite is controlled by a bit in these locations. When a
sprite’s bit in location 53277 is a 1, its width is doubled. Setting its bit in
location 53271 to 1 doubles its height.

Doubling the height or width of a sprite is not exactly the same as putting
two sprites side by side. Each bit in the sprite definition represents two dots
when the sprite is expanded, so there is some loss of resolution. However,
expanded sprites are easier to program than multiple combined sprites.

Multicolor sprites can also be expanded. Each bit pair controls an area
four dots wide when the width is expanded, or two dots high when the height
is doubled.

ADVANCED VIC-Il CHIP TOPICS

In this section we will cover some aspects of the VIC-II chip that you will
find helpful as you develop more sophisticated programs. If you find some of
the information too difficult, just skip over it for now. As you become more
familiar with the C-64, this section will become easier to understand.

The VIC-lI Chip’s Window into Memory

The VIC-II chip and the rest of the computer “see” memory quite
differently. The 6502 microprocessor in the C-64 computer can access 65,536
bytes of memory. The VIC-II chip, on the other hand, can access only 16,384
bytes. There is another difference between the two. Most of the computer is
based on “normal” bytes of eight bits, but the VIC-II chip uses 12 for screen
memory: eight for the character and four for the color. This was done to make
the VIC-1I chip faster, allowing it to get all the information it needs about a
screen character at one time.

Chapter # Graphics 208

To enable the two different chips to communicate through the same
memory, the C-64 was designed so the VIC-II chip had a “window™ through
which it could access only a part of computer memory. This window allows
the VIC-II chip to read one of four different “segments” of the C-64’s memory,
each 16,384 bytes long. The section of memory that the VIC-II uses is selected
by two output pins of CIA chip #2. The settings of those pins are controlled by
bits 0 and 1 of location 56576. The section of memory selected by the values of
these bits are:

Bit Pair Locations Used
11 0-16383
10 16384-32767
01 32768-49151
00 49152-65535

The other pins associated with location 56576 are used for different
purposes, so the values of the other bits must be preserved. To select a section
of memory, use one of the statements from the following list:

95 REM SELECT @-16383

188 POKE SE57E, PEEKCSESYE: AWD 252 OR 3
165 REM JELELT 16358432767

118 POKE 3576, PEEKC3E3VE) AMD 25z OR 2
115 REM ELEFT 327VEE-49151

128 PUFE SES7E, PEEKCSE5YE AMD 258 OR 1
125 REWM SELECT 42152-e5535

128 POKE S&576E, PEEK(SE37EY AHD 252

THE CHARACTER ROM

If the character ROM chip is at memory location 53248, and the VIC-II
can only access 16K of memory at once, how can the VIC-II read the
character tables when it is using, for example, locations 0-16383? Through a
trick of electronic engineering, Commodore designed the C-64 so that the
VIC-II sees the character ROM at locations 4096-8191 and 36864-40959. In
fact, the VIC-II doesn’t see the character ROM at location 53248! Instead, it
sees an area of RAM that is normally invisible to the rest of the computer.

In the two areas where the VIC-II sees the character ROM, it cannot
access the RAM. That RAM is available only to the 6502 chip.

When selecting the area of memory you use for storing the screen, the bit
map, custom character tables, or sprites, you must keep the fact in mind that
the character ROM is only available in certain sections.

266 our Commodore ¢4

WRITING TO THE ROMS

The character table is not the only ROM in the C-64: the built-in software
(BASIC and input/output routines for the cassette, screen, etc.) is also stored
in ROM chips. These chips occupy locations 40960-49151 and 57344-65535.
Plug-in software cartridges, when they are used, occupy locations 32768-
40959. The 6502 chip can’t read the RAM at these locations, but the VIC-I1
can.

With certain restri:tions, you can use these areas for graphics purposes.
When the 6502 reads these locations, it sees the ROM chips, but a write goes
to the RAM. As long as you don’t need to read back the value stored there,
you can use the “hidden” RAM for screens, sprites, or bit maps. A good
example would be a bit-mapped background that is set up at the beginning of
the program and never changes while the program is running. The bit map
could be stored in locations 57344-65343, and the screen and sprites in
locations 49152-53247.

To use this technique, you would have to change the bit-setting subroutine
used in our examples, because it relies on being able to PEEK the value
already in the bit map. Your program would need to calculate the values of all
the bits in particular location, then POKE them all at once.

CHANGING THE LOCATION OF SCREEN AND CHARACTER MEMORY

Screen and character memory can be placed anywhere in the VIC-11
chip’s window. The starting locations are kept in the chip and may be changed
with POKE. They are combined into a single location, 53272. Each half of
this byte contains a number from 0 to 15, which is the offset in Kbytes (1K =
1024) into the window. The formula to calculate the value to POKE is

(character memory location / 1024) +
16 * (screen memory location / 1024)

Although the character memory location is expressed in units of 1024
bytes, the last bit is ignored. Character memory must begin at offset 0, 2048,
4096, 6144, 8192, 10240, 12288, or 14336 into the window. When you PEEK
location 53272, bit 0 will take on unpredictable values. If your program needs
to examine the contents of this location, it should mask off the bit by ANDing
the value with 254 first.

Chaopter 6 Crophics 267

COLOR MEMORY

The color memory chip has two sets of electronic connections: one that
allows the VIC-II chip to read it as the top part of its 12-bit byte, and one that
allows the rest of the computer to access it as the lower part of an 8-bit byte.
The connections for location numbers also differ. While the rest of the
computer perceives color memory only at locations 55296 through 56319, to
the VIC-II chip it appears to be everywhere in its window. Byte 0 in the color
memory chip, which your program sees as location 55296, is read by the
VIC-II chip at locations 0, 1024, 2048, 3072, 4096, and so on up to location
15360 in its window. Byte 1 appears at locations 1, 1025, 2049, etc. Thus, no
matter where you move screen memory, the same color memory chip is used.

PRESERVING YOUR MEMORY

In our examples we have shown the POKE statements that keep BASIC
from using the memory set aside for custom characters, bit maps, sprites, and
so forth. If you write programs that use different areas in memory for custom
characters, you will need to understand the rules behind the statements.

Locations 55 and 56 form a pointer to the end of BASIC memory. This is
a 16-bit number that is the location of the byte after the last one available for
BASIC’s use. Locations 51 and 52 are a similar pointer for BASIC’s string
storage area.

Locations 51 and 55 will normally contain zero aftera CLR ora RUN
command, and need not be changed. To calculate the POKE value for
locations 52 and 56, divide the starting location for your character memory
area by 256.

It is essential that the POKEs to limit BASIC’s memory be done before
any variables are defined in your program, and that they be followed by a
CLR. Otherwise, BASIC may not recognize the limits you have attempted to
set.

Other software packages may also steal memory from BASIC. It is
probable that most of these other packages, from Commodore as well as
other manufacturers, will use the 4K of memory from 49152 through 53247,
but there will almost certainly be some that do not. If you intend to use
custom characters with one of these programs, check its documentation for
possible conflicts. In some cases, it may be necessary simply to experiment.

268 o Comrnodore A4

Some programs do not honor the BASIC memory limits. These
programs use the value in location 644, which is not checked by BASIC, to
determine the last byte of memory in the C-64. This location can be POKEd
with the same value used for locations 52 and 56, but some caution is
required, because you cannot predict how future cartridges will use this
location. If a program that steals memory works without a particular
cartridge, but fails when that cartridge is installed, this may be the cause of the
problem. If a POKE to location 644 is required, it must be done at the same
time as the POKEs to locations 52 and 56, before the CLR.

Saving and Loading Graphics Data

Using DATA statements to store your custom character sets, sprites, and
bit maps results in several disadvantages. DATA statements use valuable
program space, and BASIC takes a long time to READ and POKE the
information into memory. If you are using a Datassette to store your
program, it can take two minutes or more to LOAD and run a program that
uses a bit-mapped display or custom character set.

A much faster technique is available. Your program can use the same
SAVE and LOAD subroutines that are used by BASIC’s SAVE and LOAD
commands.

Earlier in this chapter, we showed you an example of a program that built
the custom character set, then used a LOAD command to bring the main
program into memory. This method solves the problem of program space,
but not time. It also introduces new problems. You must split your program
into 2 parts, and “forget” the variables in the loader program with a CLR
before issuing the LOAD.

BASIC programs cannot use the built-in LOAD and SAVE subroutines
directly, but machine language programs can. To speed up and shrink those
programs that use custom characters and bit-mapped backgrounds, we have
written two machine language programs that can be called from BASIC
programs to save and retrieve large blocks of data on disk or cassette.

To use these programs, you would build your custom character set,
sprites, or bit map, and use the SAVE program to store them on disk. The
program that used the data would include the LOAD program as a
subroutine.

THE “SAVE” PROGRAM

Before starting to work on your custom character set or display, you
should type in and SAVE the SAVE program on tape or disk.

168 REM SAVER PROGRAM

118

5=49152

126 DATH 166, 16,177,293, 170,200,177.25
133 DATA 160, B, 32,186,255, 165, 16,16
140 DATA 253,164,254, 32,189,255,166, 1

156 DATH 177,253, 133,251,260, 177,253,133

160 DATH 252,168, 20,177,2353.,178.,208, 177

178 DATA 253,168, 165,251, 32,216,255,178

138 DATH 2,183, 8,133,251, 96

128 FOR I=PS5 TO P5+353 @ READ 4 @ POKE I.X @ HEXT
288 DCE=5006060 @ DA=2AABE @ SIZE=236 @ IV=3E

218 FI4="L0OAD/SAVE TEST "

228 REM STORE FILE HAME

2368 EEETI=1 TO 16 © POKE DCB+I-1,ASCCMIDECFIF, I, 100

Z48 POKE DCE+16,DY © REM LOAD DEWICE
5@ POKE DCE+17.1 © REM IDLE FILE HUMBER

268 POKE DCE+18, DA-2SE#IMTCDAA256) @ REM LOW ADDRESS
270 POKE DCE+13,DASZ5E © REM HIGH ADDRESS

2860 DE=DA+3I1ZE-1 @ REM LAST LOCATIOM TO SAVE

298 POKE DCE+26,DE-256#IMT(DEA256) @ REM LOW ADDRESS
3@p POKE DCB+21,DE-236 @ REM HIGH ADDRESS

318 REM SET UP THE POIMTER

328 POKE 257%, DCB~2SE#IMTC(DCEA 2560

338 POKE 2354,DCB/236

348 REM TREY THE SAVE

338 5Y5 PE

368 IF PEEK (231> <28 THEW 354

370 PRINT "IT WORKED!"

388 EMD

39@ PRIMT"ERROR: ", PEEK (251

488 EMD

The SAVE program must be customized before you can use it. There are
five variables whose values will depend on the data you are saving. The first
four are assigned in line 200:

DCB

DA

is the location of a 22-byte area where values are stored for the
machine language subroutine. The example program uses
locations 50000-50021. There is no need to change this value,
unless you are using this area of memory for other purposes.

is the location of the first byte of data to be saved. This value
will probably not match the one you need.

270 ‘our Commodore ¢4

SIZE is the number of bytes to be saved.

DV is the device number of the disk or tape drive on which the data
will be written. If the data is to be saved to tape, use a value of 1.
If you are using a disk drive, use the same number you use with
BASIC LOAD and SAVE commands.

The last variable to be changed is F1$. This variable is assigned on line
210 and is the name of the file that will be created by the save. In order to keep
the machine language program simple and short, there is a restriction on the
file name: it must be exactly 16 characters long. If the name you want to use is
shorter, you must add spaces to fill it out to 16 characters. If the name is
longer, any characters beyond the 16th are ignored (if you don’t want to count
characters, just add some extra spaces to make sure that the name is long
enough).

The machine language subroutine is stored in locations 49152 through
49205. If you are storing graphics data there, you must move the subroutine.
The subroutine is designed so it can be moved anywhere, but the area where it
is stored must be protected from BASIC. If you do need to move the program,
change the value of the variable PS in line 110 to the memory location where
the program is to start.

When the data you want saved is ready, LOAD the SAVE program.
Insert the tape or diskette on which the data is to be saved, and RUN the
program,.

If the built-in SAVE routine indicates an error, the machine language
subroutine will store the error code in location 251. Chapter 8 describes these
codes (they are the same as those returned in the ST variable). There is one
condition that the SAVE program doesn’t catch: if you try to replace an
existing file on the disk drive, the program will display a message saying that
the save worked, but the red light on the disk drive will flash. The original file
must be erased, and the program RUN again (see Chapter 8 for a description
of how to erase files).

THE “LOAD” PROGRAM

The BASIC portion of the LOAD program is very similar to the SAVE
program.

18 REM LOADER DEMD PROGRAM
116 PE=45152

128 DATH 16@, 16,177, 253,170,

128 DATA 1ed. B, 32,186,255, 165, 16,166

Chapter & Craphics 2741

148 DATAH 253,164,254, 32,18%,255, 1668, 18
158 DATA 177,252, 178,280, 177,253, 168, 169
1668 DATH B, 32,213,235,144, 7,133,251
178 DATA 165, @, 133,252, 26,134,253, 133

186 DATR 252, 5o

138 FOR I=P5 TO P5+4% @ READ ¥ © FOKE I.# @ HEXT

288 DUB=S@mse © DA=20880 @ DW=

218 FI#="LOADSSAVE TEST

22| REM STORE FILE HAME

€38 FOR I=1 TO 1& @ POKE DCE+I-1.ASCCMIDECFIS, 1,100
HE®T

24@ POKE DCE+16&,DV @ REM LOAD DEVICE

258 POKE DCE+17.3 @ REM IDLE FILE MUMBER

268 FOKE DCE+18, DR-258#IMTCDARA25E6) @ REM LOW EYTE

273 FOKE DCB+13,DAS236 @ REM HIGH BYTE

288 REM BET UP THE POIHTER

298 POKE 253, DCE-256#IMT(DCBAZE60

388 POKE 254, LCES256

318 REM TRY THE LORD

3zB 5Y5 PS5

338 IF FEEK(252) = @ THEHM 3£0

248 PRIMT "IT WORKED!"

358 EMD

2668 PRIMT"ERROR: ";PEEK.Z251)

378 EMD

However, it is used differently. The LOAD program is intended to be
used as a part of the program that uses the data that is loaded. It can be used
as a subroutine, by replacing the END statements with RETURNSs, and
calling it with a GOSUB.

Like the SAVE program, the LOAD program must be adapted to your
use. The DA, DCB, PS, and FIS$ variables must be set according to the
directions given above. The SIZE variable is not used, because the size is
stored with the data when it is saved. Since the LOAD program will be
combined with your own, you must make sure that the DATA statements that
contain the machine language are properly placed. Remember that the first
READ statement gets its information from the first DATA statement. If your
program contains READs that are executed before the LOAD program’s,
their DATA statements must precede the ones containing the machine
language subroutine.

If you are using more than one graphics feature in the same program,
such as a combination of sprites and custom characters, you will find it
convenient to assign the values of DA and FI$ in the main program and call
the LOAD subroutine to bring in each block of data. If you call the subroutine

272 o Commodore 44

more than once, you should skip over the READ statement after the first
time, by using a GOSUB to line 200, instead of 100.

THE MACHINE LANGUAGE SUBROUTINES

Listings of the machine language subroutines used by the LOAD and
SAVE programs are provided in Figures 6-6 and 6-7. If you are not a machine
language programmer, or do not wish to change them, you needn’t bother
with them. You can use the programs without having to understand the
machine code.

SORCIM &50x Assembler ver 3.2 05/20/83 13:10 Page 1
absolute saver subroutine for C-44 BASIC A:C44SAVE .ASM

This subroutine is designed to allow the BASIC programmer
to save screen images, sprite defintiions, etc to disk or
tape.

; When called, it expects a pointer at location $FD to a
structure of the following form:

}
H Qffset Contents

H (o] Filename: 16 characters, blank filled.

H 18 Device address

H 17 Logical file number (must not be in use)
H 18 Starting address (in lo-hi format)

H 20 Ending address (in lo-hi format)

H

On return, location $FB contains the return code from SAVE

H
FFD8 SAVE equ $FFD8

= FFBA SETLFS equ $FFBA

= FFBD SETNAM equ $FFBD

= QOFD DCB equ $FD s pointer to ctl block

= OOFB START equ $FB ; start of save pointer and

return code

3 set up device address

0000 AC10 ldy #14

0002 BIFD lda (deb),y 3 device address

0004 AA tax y stash in x

0005 cC8 iny

0004 BILFD lda (deb),y ¢+ logical file number

0608 A000 ldy #0 :+ secondary address of O (ignore header)
000A 20BAFF Jjsr setlfs

;3 set up file name

500D A%910 lda w16 31 set name langth
O00F A&FD 1dx dcb 3 set name

0011 A4FE ldy dcb+l i location
0013 20BDFF Jsr SETNAM

FIGURE 6-6. SAVE subroutine

Chapter ¢ Graphics 273

s put starting address into START
0016 A012 ldy #18 t point to low brte
0018 BIFD lda (deb), v
001A B8SFB sta start ;3 store it
00iC C8 iny 3 point to high byte
001D BIFD lda (deb),y
001F 8SFC sta start+l ; store it
3 set up ending memory address
0021 AO14 l1dy #20 3 point to low byte
0023 BIFD lda (deb),y
0025 AA tax ; store it in x
0026 C8 iny 3 point to high byte
0027 BIFD lda (dcb),y
0029 A8 tay ;3 store it in vy
002A A%FD lda #dcb y point to starting location
002C 20D&FF jsr SAVE
SORCIM &50x Assembler ver 3.2 05/20/83 13:10 Page 2
absclute saver subroutine for C-6é4 BASIC A:C64SAVE .ASM
; see if there’s an error
002F BO0O0O2 *0033 bcs error 3 ves
0031 A900 lda #0 3 no, set code to O
; done SAVEing. save error code for caller
0033 8SFB error: sta start
0035 &0 rts 3 and go back
0036 end
na ERRORSs, 4 Labels, 9D7Bh bytes not used. Program LWA = 0036h.

FIGURE 6-6. SAVE subroutine (continued)

SORCIM &50x Assembler ver 3.2 05/20/83 13:10 Page 1

absclute loader subroutine for C-é4 BASIC A1 C44L0OAD .ASM

This subroutine is designed to allow the BASIC programmer
to load screen images, sprite defintiions, etc from disk
or tape.

When called, it expects a pointer at location $FD to a
structure of the following form:

QOffset Contents
o Filename: 16 characters, blank filled.
18 Device address

| FIGURE 6-7. LOAD subroutine

274

Your Commodore ¢4

0000
0002
0004
0003
0006
0008
000A

000D
O0OF
0011
0013

0016
0018
001A
001B
001C
001E
001F
0021

0024

0026
0028
002A
oozc

absolute loader subroutine for C-464 BASIC

On re

17 Logical file number (must not be in use)
18 Starting address (in lo-hi format)
turn, location $FB contains either the last byte

loaded, or the return code from LOAD
= FFDS LoAD eau $FFD5
= FFBA SETLFS equ $FFBA
= FFBD SETNAM equ $FFBD
= QOFD DCB equ $FD ; pointer to ctl block
= OOFB ENDLD equ *FB t} return code/ending address
;3 set up device address
A010 ldy #16
B1FD lda (deb),y ; device address
AA tax s stash in x
c8 iny
BiFD lda (deb),y 3 logical file number
AO0O ldy #0 ; secondary address of O (ignore header)
20BAFF Jjsr setlfs
1 set up file name
A910 lda #16 ;3 set name length
ASFD ldx dcb ;s set name
A4FE ldy dcb+1 H location
20BDFF Jjsr SETNAM
s set up memory address
AO12 ldy #18 ; point to low byte
BIFD lda (dcb), y
AA tax ; store it in x
ce iny ;3 point to high byte
B1iFD lda (deb), y
A8 tay ;3 store it in vy
AP00 lda #0 3 indicate LOAD
20D5FF Jsr LOAD
)y see if all went well
9007 *002D bece ok ;5 ves
t} error LOADing. save error code for caller
85FB sta endld
A900 lda #0 ; set high byte to O
85FC sta endld+l to show it’s an error code.
60 rts 3 and 9o back

002D 84FB
002F 84FC
0031 60
0032

no ERRORs,

SORCIM 450x Assembler ver 3.2 0%/20/83 13:10 Page 2

A3 C64L0OAD .ASM

3 all is ok, so give back memory address
ok: stx endld 3 low byte

sty endld+l ; high byte

rts 3 back to caller

end

é Labels, 9D7Bh bytes not used. Program LWA = 0032h.

FIGURE 6-7. LOAD subroutine (continued)

Chapter & Grephics 275

TV Set Limitations

Televisions are designed for moving images of people, places, and things,
not for computer displays. Although the C-64 supplies the same electronic
signals as your local TV station, the contents of the screen are different, and
this can cause problems when you are designing displays.

Your TV picture is not nearly as sharp as it appears. Your favorite star
may look great from across the room, but from inches away, he or she is justa
mass of dots. You've probably seen this same effect, looking at a newspaper
photograph through a magnifying glass. Your eyes (and imagination)
unconciously fill in and smooth out the picture. Another factoristhatthe TV
picture changes 30 times per second; before you’ve had a chance to notice the
flaws in the picture, they’re gone.

When using your TV with the computer, you will almost certainly be
much closer than normal “watching” distance. This will emphasize the
picture’s lack of solidity. Computer displays usually don’t change as fast as
the 8 o’clock movie, so there’s more time to notice how ragged the edges are.

However, there’s another factor that is much more important; television
picture dots don’t usually stand alone. It’s very rare for a television picture to
contain a line only one dot wide. A dot on the screen is almost always part of a
larger object. You'll also notice that there aren’t many abrupt contrasts of
color. The TV set cannot handle this well.

Computer displays are very different. It’s quite common to draw very
narrow lines, with pure, contrasting colors side by side. Unfortunately, the
TV set cannot handle this well.

The electronics needed to be able to precisely display two dots of any
color side by side without distortion is very complex and expensive. Color
terminals that can do this typically cost $8000 to $10,000 or more. On the
other hand, equipment to do an adequate job for ordinary television watching
can be built for a small fraction of that cost. In designing your displays, you
must keep in mind the things that TV sets can’t do well.

AVOIDING THE TV SET'S WEAKNESSES

There are two things you can do to ensure that your computer displays
are pleasing: choose your colors carefully, and avoid vertical lines that are
only one dot wide.

Color choices are necessary because the way the TV signal is encoded
makes it harder to switch between some colors than between others.

276 o Cormmodore 44

Remember that the electron beam in the TV is sweeping from left to right. If
you use “difficult” colors, the fringe will appear to the right of the color
change. This also means that you don’t have to worry about dots thatare on
different rows, because the TV starts out fresh at the beginning of each row.

VERTICAL LINE WIDTHS

The problem of narrow vertical lines is really a symptom of color
changes. If the colors are incompatible, it is possible that it will take more
than one dot to make the change. For example, it takes almost three dots to
change from dark blue to dark red. A single red dot on a blue background is
almost invisible, and it doesn’t look red at all.

As arule of thumb, when it is easy to switch from one color to a second
color and from the second color to the first, it may be possible to draw lines
one dot wide in those colors. Unfortunately, this is not a hard-and-fast rule.
TV sets vary greatly, and what works on one may not work on another. Even
changing the settings of the TV controls can affect the appearance of the
display. Unless you can be certain that your program will always run on the
same type of equipment, you should avoid using isolated dots, and lines only
one dot wide.

CHAPTER

Souna

This chapter will show you how to produce sound with the C-64. You
will learn how to create convincing sound effects to enhance your programs.

You will also learn how to control the sound registers, mix tones, and use
sound-shaping techniques to produce variations such as tremolo and vibrato.

In addition to showing you how to produce sounds, this chapter also
covers saving and playing back your sounds from either the disk drive or the
Datassette.

THE SOUND REGISTERS

The SID Chip

Like the video display, the sounds that the C-64 makes are created by a
special integrated circuit. This chip is called the “Sound Interface Device,” or
“SID.” The SID contains three separate sound generators, or “voices,” that
are blended together to form the sound you hear through your TV speaker.

277

278 our Commodore ¢4

The SID has twenty-five memory locations, called sound registers, that
control sound output. These locations control the volume, the tone, and the
type of sounds produced. Table 7-1 shows the memory location and function
of each of the sound registers.

TABLE 7-1. Sound Register Memory Locations

Memory Location Sound Register Description

54272 - 54278 VOICE #1

54272 Lower half of tone frequency value
54273 Upper half of tone frequency value
54274 Lower half of pulse-width value
54275 Upper half of pulse-width value
54276 Waveform control register

54277 Attack and Decay control register
54278 Sustain and Release control register

54279 - 54285 VOICE #2

54279 Lower half of tone frequency value
54280 Upper half of tone frequency value
54281 Lower half of pulse-width value
54282 Upper half of pulse-width value
54283 Waveform control register

54284 Attack and Decay control register
54285 Sustain and Release control register

54286 - 54292 VOICE #3

54286 Lower half of tone frequency value
54287 Upper half of tone frequency value
54288 Lower half of pulse-width value
54289 Upper half of pulse-width value
54290 Waveform control register
54291 Attack and Decay control register
54292 Sustain and Release control register
54293 - 54296 SOUND FILTERING FUNCTIONS
54293 Lower half of cutoff filter value
54294 Upper half of cutoff filter value
54295 Resonance and sound filtering values

54296 Mode and volume controls

Chapter 7 Sound 279

Memory location 54296 controls the volume of the sounds produced by
the C-64. Sixteen different volume levels can be selected. These range from 0
(off) to 15 (loudest). To control the volume, enter any value between 1 and 15.
By itself, however, the volume control register produces no sound. You must
also set the voice control registers.

Voice Control Registers

Lookingat Table 7-1, you’ll notice that each of the 3 “voices” has a set of 7
memory locations associated with it. These locations control the type of sound
produced by that voice. All 3 sets of voice control registers work the same way,
so even though most of our examples use voice #1, you can use the same values
POKEing notes into voices 2 and 3.

SETTING UP THE VOICE CONTROL REGISTERS

When the C-64 is turned on, the voice control registers will take on
random values. If the registers are not POKEd with the right values, the SID
will make unpredictable sounds or no sound at all. To set up the SID chip
properly, enter these POKE statements:

POKE 54274.8

FOKE 54275.8

FOKE 354278.65

FOKE 34277.4

FOKE 54278, 248
As you read this chapter, you will learn the uses of the various registers and
how to determine your own POKE values. The first two we’ll examine control
the frequency of the sound.

POKEING A TONE

Table 7-2 shows the frequencies the SID can produce, the approximate
musical notes achieved, and the values you must POKE into the tone registers
to generate the frequencies.

The lowest audible note the SID can produce is a low C (approximately
16 Hz, or 16 cycles per second). Enter the values for this note into the low tone
registers

FPOKE 54272, 12 POKE S54273.1
and turn on the maximum volume.
POKE 54296, 15

280 ‘our Commodore ¢4

To turn off the sound, you can use any of the following methods:

- POKE 0 into the tone registers
- POKE 0 into the volume register
* Simultaneously press RUN/STOP and RESTORE.

The first method puts a nonexistent tone value into the tone registers.

The second method turns the volume register to the minimum position,
which is off.

The third method resets the system and therefore resets all system
variables, such as the tone registers, screen and border colors, and so on.
It is better to use one of the first two methods, since the third method may
do more than you had in mind.

TABLE 7-2. POKE Values, Frequencies and Musical Equivalents

Upper Tone Lower Tone Frequency Musical
POKE Value POKE Value Produced Note
OCTAVE ONE
1 12 16 Hz C
1 28 17 Hz C#
1 45 18 Hz D
1 62 19 Hz D#
1 81 21 Hz E
1 101 22 Hz F
| 123 23 Hz F#
1 145 24 Hz G
1 169 25 Hz G#
1 195 27 Hz A
1 221 29 Hz A#
1 250 31 Hz B
OCTAVE TWO

2 24 32 Hz C
2 56 34 Hz C#
2 90 37 Hz D
2 125 39 Hz D#
2 163 4] Hz E
2 203 44 Hz F
2 246 46 Hz F#
3 35 49 Hz G
3 83 52 Hz G#

Chapter 7 Sound 284

TABLE 7-2. POKE Values, Frequencies, and Musical Equivalents (continued)

| Upper Tone Lower Tone Frequency Musicap
| POKE Value POKE Value Produced Note
3 134 55 Hz A
3 187 58 Hz A#
3 244 62 Hz B
OCTAVE THREE
4 48 65 Hz C
4 112 69 Hz C#
4 180 73 Hz D
4 251 76 Hz D#
5 71 82 Hz E
5 151 87 Hz F
5 237 92 Hz F#
6 71 98 Hz G
6 167 104 Hz G#
7 12 110 Hz A
7 119 117 Hz A#
7 233 123 Hz B
OCTAVE FOUR
8 97 131 Hz C
8 225 139 Hz C#
9 104 147 Hz D
9 247 156 Hz D#
10 143 165 Hz E
11 47 175 Hz F
11 218 185 Hz F#
12 142 196 Hz G
13 77 208 Hz G#
14 24 220 Hz A
14 238 233 Hz A#
15 210 247 Hz B
OCTAVE FIVE
16 195 262 Hz C
17 194 277 Hz C#
18 208 294 Hz D
19 238 311 Hz D#
21 30 330 Hz E
22 95 349 Hz F
23 180 370 Hz F#
25 29 392 Hz G
26 155 415 Hz G#
28 48 440 Hz A

282 our Commodore ¢4

TABLE 7-2. POKE Values, Frequencies, and Musical Equivalents (continued)

Upper Tone Lower Tone Frequency Musicap
POKE Value POKE Value Produced Note
29 221 466 Hz A#
31 164 494 Hz B
OCTAVE SIX
33 134 523 Hz C
35 132 554 Hz C#
37 161 587 Hz D
39 221 622 Hz D#
42 60 659 Hz E
44 191 698 Hz F
47 104 740 Hz F#
50 58 784 Hz G
S3 S5 831 Hz G#
56 97 880 Hz A
59 187 932 Hz A#
63 72 988 Hz B
OCTAVE SEVEN
67 12 1046 Hz C
71 8 1109 Hz C#
75 66 1175 Hz D
79 187 1244 Hz D#
84 121 1319 Hz E
89 127 1397 Hz F
94 209 1480 Hz F#
100 117 1568 Hz G
106 110 1661 Hz G#
112 194 1760 Hz A
119 118 1865 Hz A#
126 145 1976 Hz B
OCTAVE EIGHT
134 24 2093 Hz C
142 17 2217 Hz C#
150 132 2349 Hz D
159 119 2489 Hz D#
168 242 2637 Hz E
178 254 2794 Hz F
189 163 2960 Hz F#
200 234 3136 Hz G
212 220 3322 Hz G#
225 132 3520 Hz A
238 237 3729 Hz A#
253 34 3951 Hz B

Chapter 7 Sound 283

THE COMPONENTS OF SOUND

Pure Tones

With the control register values we have been using, the SID produces
continuous frequencies ranging from about 1 Hz to 3995.669 Hz. A cycle, in
tonal frequencies, refers to a sound that starts at its minimum volume, rises to
its maximum volume, and falls again to its minimum volume.

Maximum volume

Sound wave

Volume

I cycle

Time

Minimum volume

The actual tone of a sound is a direct function of its frequency (how
quickly it rises and falls). If you double the frequency, you will have a tone
exactly one octave higher than before. Try this program.

10 REM: CLEAR SOUND REGISTERE

20 FOR R=054272 TO 54296: POKE R,0: NEXT
30 REM SET UP REGISTER #1

40 POKE 54274, 0: POKE 354275, 8

G50 POKE 54278, 240: POKE 54296, 15: T=1
60 POKE 54277, 0: POKE 54276, &5

70 REM: READ FUNCTION KEYS

20 GET As%: IF As="" THEN 120

100 IF A$=CHR% (133) THEN 140

110 IF A$=CHR%(134) THEN 170

120 IF A$=CHR%(133) THEN 180

130 IF A$=CHR$(136) THEN 200

140 GOTO %90

150 REM: POKE TONES INTO SOUND REG. #1
160 POKE 54272,48:POKE 54273, 4:60T0 90
170 POKE 54272,97:POKE 54273, 8:607T0 <90
180 POKE 54272, 195:POKE 54273,16:G0T0 90
190 REM: TOGGLE VOLUME CONTROL

200 IF T=1 THEN POKE $54296,0:T=-13;G0T0 20
210 POKE 54296, 153 T=1: GOTQ 90

284 o Commodore 44

Line 20 POKE:s zero into all the tone registers which clears them. This
prevents them from generating random sounds before we enter the sound we
want into them. You may have noticed that every time we want to POKE a
tone value into a sound register, we must use two values. This is because the
C-64 has a range of 65,535 different tones but a single memory location can
only hold 256 different numbers (255 if you delete 0 which produces no sound).
So to produce the full range of 65,535 different sounds, the C-64 uses two
memory locations for each tone value. The numbers in those two locations
combine to make a number that is between 0 and 65,535.

The number produced by these two memory locations is represented as a
16-bit binary number, but you don’t have to understand binary numbers to use
the sound registers; just use Table 7-2 to find the note you want and POKE the
indicated values into the sound registers.

Lines 40—60 set up the sound register for continuous tones just as we did
earlier.

Lines 90— 130 read the function keys and branch to the routines that play the
note “C” in one of three different octaves (in lines 160—180).

If you press F7 then you will branch to line 200 which turns the sound
ON or OFF. The program then branches back to line 90 and waits for you to
press another key.

SWEEPING THE SCALES

You can change the value in a tone register while it is on. This will switch
immediately from one note to another. This is especially useful for sliding from
one note to the next. Try the following example.

10 FOR R=54272 TO 54296: POKE R,0: NEXT
20 POKE 354272, 03 POKE 354273, O

30 POKE 354274, 0: POKE 54275, 8

40 POKE 54278, 2401 POKE 54296, 15

350 POKE 54277, 0: POKE 54274, 65

60 FOR F=0 TO 45535 STEP 256

70 H=INT(F/254)1 L=INT(F~-(25&%H))

80 POKE 354272, L: POKE 354273, H

0 NEXT

100 FOR R=34272 TO 54296:POKE R,0: NEXT

This program sweeps the entire range of tones in the C-64 in increments of
256. You can make the steps smaller or larger by changing the STEP number
in line 50.

Chapter 7: Sound 285

Line 60 contains the routine for converting decimal numbers between
65535 and 0 into the correct POKE values for the tone registers. You can use
this routine to create any tone you want.

MULTIPLE TONES

By sounding two or more tones at once, you can add depth to many of
your sound effects. Adding these lines to the sample program will play two
tones at once.

25 POKE 354281, 0O: POKE 54282, 8
35 POKE 354285, 240

45 POKE 54284, O: POKE 54283, 435
75 POKE 54279, L: POKE 54280, H

You can also harmonize. Type NEW and enter the following program:

10 REM —--- CLEAR SOUND REGISTERS ~--—
20 FOR R=54272 TO 54296: POKE R, 0: NEXT
30 . REM --- SET - UP TONE REGISTERS —--

40 POKE 54274, O: POKE 54275, 8

50 POKE 54281, 0: POKE 54282, 8

60 POKE 54288, O: POKE 54289, 8

70 POKE 54278, 240: POKE 54294, 15

80 POKE 54285, 240 1POKE 54292, 240

90 POKE S4276, &5: POKE 54283, &5: POKE 54290, &5
100 REM ——— TURN ON TONES ---

110 POKE 54273, 1b: POKE 54272, 195

120 FOR G=0 TO 500: NEXT

130 POKE 54280, 21: POKE 54279, 30

140 FOR G=0 TO 500: NEXT

150 POKE 54287, 25: POKE 54286, 29

160 FOR G=0 TO S00: NEXT

170 FOR G=0 TO 15001 NEXT

180 REM —-— TURN OFF TONE REGISTERS ——-—
190 FOR R=54272 TO S42961 POKE R,01 NEXT

With careful planning, you can make listeners think they are hearing
more than three sound registers. Try adding these lines.

162 FPOKE S4273, 33: POKE 54272, 134
165 FOR G=0 TO 500 : NEXT

PULSED TONES

Another method of modifying the sound registers involves quickly turn-
ing them on and off. This method, called pulsing, can create the effect of a
buzzer.

To get a better idea of how pulsing works, look at Figure 7-1 in relation to

286 o Commodore 44

the following program:

10 FOR R=54272 TO S54296: POKE R, OsNEXT
20 POKE 54274, O: POKE 54275, 8

30 POKE 54278, 240: POKE 54296, 15

40 POKE 54277, O: POKE 54276, 65

50 FOR T=0 TO 15 STEP .3

60 POKE 54272, 0O: POKE 54273, O

70 FOR F=0 TO 400: NEXT

80 POKE 54272, 67: POKE 54273, 12

20 NEXT

100 POKE 54296, ©

Lines 10 through 50 set up the sound registers, but there is no sound
output until the tone register is turned on. Line 60 starts the loop that
determines the number of pulses produced (we’ve chosen 50). Line 70 starts the
sound at 0 (off), as shown in Figure 7-1. Line 80 is the delay loop that
determines the off-time for the pulse. Line 90 turns the sound on. Line 100

POKE 36876, 200
(pulse on)

POKE 36876, 200
(pulse on)

—— POKE 36878. 15

Volume
POKE 36876, 0

POKE 36876, 0
(pulse off)

(sound off)

Time

FIGURE 7-1. Pulsed waveforms

Chapter 7 Sound 287

completes the loop, sending the program back to line 60. In line 70, the sound
is immediately turned off again. After repeating 50 times, the loop ends at line
110 by turning the sound register off.

By increasing the length of the delays between pulses, you can tailor this
program to create the sound of a bouncing ping-pong ball. Change line 80 as
follows:

70 FOR F=0 TO 400: NEXT

Volume Adjustments

Up to this point we’ve been using the volume control as an on/ off switch.
However, it can also be used to change the nature of the sounds being
produced. You can produce a number of effects simply by varying the volume
of a tone.

FADING TONES

By slowly reducing the volume of the sound, we can make it sound like
the ball is bouncing away. First, change line 50 to read as follows:

50 FOR T=0 TO 15 STEP.3

This still produces 50 steps through the loop, but in this application, T must
never exceed 15 (the highest allowable number in the volume register).

Next, POKE the loop value into the volume register by adding the
following line:

55 POKE 54296, 13-T

This causes the volume to decrease with each pass through the loop.

You can also use the loop variable to decrease the length of the delays
between pulses as the volume decreases. This produces a sound resembling a
dropping ball. Try changing line 70 to

70 FOR F=0 TO 400-Tx24: NEXT

The number 26 was chosen because 400 divided by 15 is approximately 26.
This divides the steps of the delay into 50 even increments. Subtracting the
loop value from 400 reduces the delay in the increments each time through the
loop.

Try changing the tones used in the first ping-pong program to produce

288 our Commodore 44

the sound of a clock ticking. This can be accomplished by using two different
tone values on alternate loops.

ATTACK/SUSTAIN/DECAY

When you play a note on a piano, the sound begins loudly and slowly
fades until it finally fades away completely. The start of the sound is called the
attack. The portion of the sound in which the volume is maintained is called
sustain, and the last part of the sound, in which it fades, is called decay.

Sustain

Volume
el
[[‘70‘,

Time

All of the sounds we’ve produced so far have had a very fast attackand a
very fast decay. When these parameters are changed, the sounds become quite
different. Here is the original bouncing ball program again.

10 FOR R=54272 TO 54296: POKE R,0:NEXT
20 POKE 54274, 0: FOKE 54275, 8

30 POKE 54278, 240: POKE 54296, 15

40 POKE 54277, O: POKE 54276, 65

50 FOR T=0 TO 15 STEP .3

60 POKE 54272, 0: POKE 54273, O

70 FOR F=0 TO 400: NEXT

80 POKE 54272, 67: POKE 54273, 12

90 NEXT

100 POKE 54296, O

One way to produce a decay in the sound being produced is by adding a
loop that causes the volume to sweep down each time the tone is produced.

85 FOR V=Q TO 135: POKE 54294, 15-V:NEXT

Chapter 7: Sound 289

If we also add some lines to provide attack, the program looks like this.

S5 INPUT "ATTACK"; A

7 INPUT "DECAY"; D

10 FOR R=54272 TO 54296: POKE R,Q:NEXT

20 POKE 354274, 0O: POKE 354275, 8

30 POKE 54278, 240: POKE 542946, 15

40 POKE 54277, O3 POKE 54276, 65

50 FOR T=0 TO 15 STEP .3

60 POKE 54272, O: POKE 54273, 0

70 FOR F=0 TO 400: NEXT

80 POKE 54272, &7: POKE 54273, 12

85 FOR V=0 TO 15 STEP A: POKE 54296, V:NEXT
87 FOR V=0 TQ 15 STEP D: POKE 54296, 135-ViNEXT
0 NEXT

100 POKE 5429&, O

Listen to the differences introduced by different attack/decay ratios. You
can enter any positive number, including fractions, in the input statement. If
you enter 0 for either the attack or decay, however, the note will never end.

Sustain can be added by including a delay between the attack and the
decay as follows:

2 INPUT "SUSTAIN"; S
86 FOR 8S=1 TO S: NEXT

DECAYS USING THE BUILT-IN FUNCTIONS

The only real disadvantage of producing attacks and decays this way is
that any of the effects that you produce will affect all of the tone registers.
Depending on the sounds you want to produce, this may cause problems.

The C-64 has another way to change the attack, decay and sustain of a
tone. The key to these features is in the sound registers we looked at in Table
7-1.

Figure 7-2 shows the attack and decay control registers for sound
register #1. They are located in memory location 54277.

By POKEing values between 0 and 15 into the lower four bits of this
memory location (the decay register), we can create decays of different
lengths.

290 ‘our Commodore &4

Bit Values 128 64 32 16 8 4 2 1

(TT T [LLI

N————— renpr”’ N——
Attack Control Decay Control

FIGURE 7-2. Memory location 54277: attack/decay control

S INPUT "DECAY"; D

10 FOR R=54272 TO 54296: POKE R, O:NEXT

20 POKE 54274, 0O: POKE 54275, 8

30 POKE 54278, O: POKE 54296, 15

40 POKE 54277, D

50 FOR T=1 TO 1

60 POKE 54272, 67: POKE 54273, 12: POKE 54276, 65

70 FOR F=0TO 1000 :NEXT:POKES4273,0: POKES4272,0:
POKE 54274, &4

80 NEXT

90 POKE 54296, O

Notice what happens as you use different decay values. The smaller
values (shorter decays) drop to a very low sound level much sooner than the
length of the note (which is determined by the loop in line 85). On the other
hand, the longer delays drop so slowly that they are still fairly loud when the
note stops. You’ll need to be aware of the amount of decay you are introduc-
ing whenever you use this function and make the note last as long as your
decay requires.

ATTACKS USING THE BUILT-IN FUNCTIONS

Producing attacks using the built-in attack function is nearly identical
to producing decays. The only real difference is that we need to place the
attack values into the upper portion of memory location 54277. The simplest
way to do this is to multiply the attack value by 16 and POKE that value into
memory location 54277. Try changing lines 5 and 40 as follows:

5 INPUT "ATTACK"; A
30 POKE 54277, A%16

Chapter 7: Sound 291

SUSTAIN

When you run this program you will find another interesting feature of
the built-in sound functions. The shorter attack functions cause the sound
volume to rise abruptly and then fall just as abruptly, maintaining a very low
volume level until the end of the note. This is because the sound register
turns the volume down at the end of the attack function. To make it continue
after the attack, you will need to include a sustain value as well. This will
keep the tone at its peak value until the sound times out. This can be
accomplished by POKEing a large value into the upper half of the Sustain/
Release register (memory location 54278 if you are using sound register #1)
in line 30.

30 POKE 54278, 240: POKE 54294, 15

Another thing to look at is the longer attack functions. If the time-out
value in your delay loop is too short, the sound may turn off before it reaches
maximum volume. To compensate for this, you may need to increase the
length of the time-out delay if you are using very long attack values.

Sustain can also be accomplished by using standard delay loops. Here
is a routine that produces attacks, decays and sustains using only delay
loops.

10 INPUT "ATTACK"; A
20 INPUT "DECAY"; D

30 INPUT “"SUSTAIN"; S

40 FOR R=54272 TO 54296: POKE R,O0:NEXT

50 POKE 54274, 01 POKE 54275, 8

60 POKE 54278, 240: POKE 54296, 15

70 POKE 54277, O1 POKE 54276, 65

B8O POKE 54272, 01 POKE 54273, O

100 POKE 54272, &7: POKE 54273, 12

110 FOR V=0 TO 15 STEP A: POKE 54296, ViNEXT
120 FOR L=0 TO S

125 NEXT

130 FOR V=0 TO 15 STEP D: POKE 54296, 15-V:iNEXT
140 POKE 54294, O

VIBRATO/TREMOLO

Vibrato and tremolo take place during the sustain portion of the tone.
Vibrato is a passage in which the volume is raised and lowered quickly to
produce a wavering effect. Enter the following lines to produce vibrato:

292 our Commodore 64

121 FOR V=0 TO S

122 FOR W=0 TO 7:POKE 54296, 15-W: NEXT
123 FOR W=8 TO 15:POKE 54294, W: NEXT
125 NEXT

Tremolo is a fast vibrato. If you change lines 122 and 123 to

122 FOR W=15 TO 8 STEP ~J: POKE 54296, W: NEXT
123 FOR W=8 TO 15 STEF J: POKE 54296, W: NEXT

and add an input line to enter the vibrato rate

1 INPUT "WIB. RATE"; J

you will be able to vary these parameters at the start of each tone. Entering
larger numbers will increase the speed of the vibrato, and smaller numbers
will slow it down. Do not enter numbers larger than 15; they will have no
effect. Entering a 0 will result in an endless loop.

Mixing Tones

Earlier in this chapter we put three harmonizing tones together to
create a chord. It is also possible to combine tones to create entirely new
sounds. Let’s take a look at some of these.

BEAT FREQUENCY

A beat frequency is a sound that is produced when two tones that are
very close together are played at the same time. Try the following simple
experiment:

10 FOR R=54272 TO 54296: POKE R,0: NEXT
20 POKE 54275, 8: POKE 54296, 15

25 POKE 54282, 8

30 POKE 54278, 240: POKE 54276, 65

35 POKE 54285, 240: POKE 54283, 65

40 INPUT “ STARTING FREQUENCY"; F

50 FF=F/.0&6097

60 H=INT(FF/256) 1 L=INT ((FF/256~H) $256)

70 POKE 54272, L: POKE 54273, H

80 FOR G=F-100 TO F+100

85 FO=G/.06097

87 HO=INT(FO/256) : LO=INT ((FO/25&-H0) $256)
88 POKE 54279, LO: POKE 54280, HO: NEXT
90 FOR R=54272 TO 54296: POKE R,0: NEXT

Chapter 7 Sound 293

This will allow you to hear the effects of different notes (frequencies) on each
other. Listen for the “beat” that occurs at certain frequencies. This is caused
by the interaction of the two tones.

Selecting Waveforms

Up to this point, we’ve been making sounds using only one waveform—
square waves. In addition to these, the C-64 can produce three other kinds of
sounds. These sounds are produced by the different kinds of waveforms
produced. They are: triangle, sawtooth and white noise.

Lookingat the shapes of the waveforms, it is easy to see how they affect
the sound. For example, the square waves we have been using up to this
point rise sharply, stay at that high level for exactly half of their period and
then fall sharply, staying low for the other half.

Maximum

Volume
Sound Wave

—-

[Cycle

Volume

Time —»

Minimum Volume

These kinds of square waves are called symmetrical square waves
because they are at their high level for exactly as long as they are at their low
level. We can modify this symmetry by changing the pulse-width registers.
Forsound register #1, these are memory locations 54274 and 54275. Here is
aroutine that sounds a single tone while sweeping the pulse width from one
end of its range to the other in increments of 16.

10 FOR R=54272 TO 54296: POKE R,0: NEXT
20 POKE 54272, 15: POKE 54273, 10

30 POKE 54296, 15: POKE 54278, 240

40 POKE 54274, 65

S0 FOR R=0 TO 4095 STEP 16

60 H=INT (R/256) 1 L=R-256%H

70 POKE 54274, L: POKE %4275, H: NEXT
80 FOR G=F-100 TO F+100

90 FOR R=54272 TO S4296: POKE R,01 NEXT

294 o Commodore ¢4

When you run this program, the sound begins as a buzzy, tinny sound.
As the pulse width becomes more symmetrical, the sound becomes fuller.
Finally, at the upper end of the pulse-width sweep, the sound becomes buzzy

again.

} I Cycle 1 Cycle - 1 Cycle 1 Cycle , 1 Cycle , 1 Cycle | 1 Cycle |
T T ¥ T 1
g .
=
2
1% 10% 30% 50% 70% 90% 99%

Pulse width ratio (per 100%) sweep up

The triangle, sawtooth and noise registers are not affected by the pulse
width. To turn on the triangle waveform, change line 40 to POKE the
waveform control register (54276) with 17 instead of 65.

40 POKE 54276, 17
For a sawtooth, POKE 54276 with 33 instead of 17.

40 POKE $54276, 33
To turn on the noise register, use 129 instead of 33.
40 POKE 54274, 129

USING THE NOISE REGISTER

The noise register operates exactly like the tone registers. Here’s a
bouncing ball program, this time using the noise register.

10 FOR R=54272 TO 54294: POKE R,0:NEXT
20 POKE 54274, O: POKE 54275, 8

30 POKE 54278, 240: POKE 54277, O

40 POKE 54296, 15

50 POKE 54272, &7: POKE 54273, 12

60 FOR T=0 TO 1S

70 POKE 54276, 128

80 FOR F=0 TO 400: NEXT

Chaoter 7 Sound 295

20 POKE $54276, 129
100 NEXT
110 FOR R=54272 TO 54296: POKE R,O:NEXT

Now let’s add some decay to the sound.

30 POKE 54278, 0O: POKE 54277, 9
25 FOR N=0T0OS500: NEXT

By also modifying the repeat rate, we can create a sound similar to a
train as follows:

80 FOR F=0 TO 400-26%T: NEXT

By mixing sound we can also add a train whistle. Add the following
lines to your program:

11 POKE 54285, 0: POKE 54284, 13

12 POKE 54280, 16: POKE 354279, 195

110 FOR T=0 TO 150

120 POKE 54276, 128

125 IF T=30 OR T=35 OR T=70 OR T=735 THEN 180
130 POKE 54276, 129

140 POKE 54296, 15-T/10

150 FOR N=0TOS00-Tx3: NEXT

160 NEXT

170 GOTO 200

180 POKE 354283, 32: POKE 54283, 33

190 6GOTO 130

200 FOR R=54272 TO 54296: POKE R,0:NEXT

PROGRAMMING MUSIC ON
THE C-64

By POKEing values and delays into the sound registers we can write
song programs.

S5 REM ———— SET UP REGISTERS ———-
10 FOR R=54272 TO 54296: POKE R,0:NEXT

20 POKE 54278, 240: POKE 54277, O

30 POKE 54296, 15

33 REM —---- START PLAYING MUSIC -----
40 POKE 54272, 134: POKE 54273, 33
S50 POKE 54276, 17

60 FOR R=0 TO 200: NEXT

70 POKE 54274, 16

80 FOR R=0 TO 100: NEXT

90 POKE 34276, 17

296 our Commodore ¢4

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
2350
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
)
460
470
480
490
500
310
520
530
540
530
560
570
580
590
600

FOR R=0 TO 200: NEXT
POKE 54276, 16

FOR R=0 TO 100: NEXT

POKE 54272, 161: POKE 54273, 37
POKE 54276, 17

FOR R=0 TO 200: NEXT

POKE 54276, 16

FOR R=0 TO 100: NEXT

POKE 54272, 60: FOKE 54273, 42
POKE 54276, 17

FOR R=0 TO 200: NEXT

POKE 54276, 16

FOR R=0 TO 100: NEXT

POKE 54272, 134: POKE 54273, 33
FOKE 54276, 17

FOR R=0 TO 200: NEXT

POKE 54276, 16

FOR R=0 TO 1001 NEXT

POKE 54272, 60: POKE 54273, 42
POKE 54274, 17

FOR R=0 TO 200: NEXT

POKE 54276, 16

FOR R=0 TO 100: NEXT

POKE 54272, 1611 POKE 54273, 37
POKE 54276, 17

FOR R=0 TO 6003 NEXT

POKE 54276, 16

FOR R=0 TO 100: NEXT

POKE 54272, 134: POKE 54273, 33
POKE 54276, 17

FOR R=0 TO 200: NEXT

POKE 54276, 16

FOR R=0 TO 1001 NEXT

POKE 54276, 17

FOR R=0 TO 200: NEXT

POKE 54274, 16

FOR R=0 TO 100: NEXT

POKE 54272, 1611 POKE 54273, 37
POKE %4276, 17

FOR R=0 TO 200: NEXT

POKE 54276, 16

FOR R=0 TO 1001 NEXT

POKE 54272, 601 POKE 54273, 42
POKE 54276, 17

FOR R=0 TO 200: NEXT

POKE 542764, 16

FOR R=0 TO 100: NEXT

POKE 54272, 134: POKE 54273, 33
POKE 54276, 17

FOR R=0 TO 600: NEXT

POKE 54276, 16

Chapter 7 Sound

297

610

FOR R=0 TO 1001 NEXT

620 POKE 54272, 164: POKE 34273, 31

&30
640
630
660
&70
680
&20
700
710

POKE 54276, 17
FOR R=0 TO 60031 NEXT

POKE 54276, 16

FOR R=0 TO 100: NEXT

POKE 54272, 134: POKE 54273, 33
POKE 54276, 17

FOR R=0 TOD 200: NEXT

FPOKE 54276, 16

FOR R=0 TO 100: NEXT

720 FOKE 54274, 17

730
740
750
760
770
780
790

FOR R=0 TO 200: NEXT

POKE 54276, 16

FOR R=0 TO 100: NEXT

POKE 54272, 161: POKE 54273, 37
POKE 54276, 17

FOR R=0 TOQ 200: NEXT

POKE 54276, 14

800 FOR R=0 TO 100: NEXT

810
820
830

POKE 54272, &0: POKE 54273, 42
POKE 54276, 17
FOR R=0 TO 200: NEXT

840 POKE 54276, 16&

830
860
870

FOR R=0 TO 100: NEXT
POKE 54272, 191: POKE 54273, 44
POKE 54276, 17

880 FOR R=0 TO 200: NEXT

890

POKE 542764, 16

900 FOR R=0 TO 100: NEXT

210

POKE 54272, 60: POKE 54273, 42

920 POKE 54276, 17

930

FOR R=0 TO 200: NEXT

940 POKE 54276, 16

250

FOR R=0 TO 100: NEXT

960 POKE 54272, 1611 POKE 54273, 37

?70

POKE 54276, 17

980 FOR R=0 TO 200: NEXT

290

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1120

POKE 542764, 16

FOR R=0 TO 100: NEXT

POKE 54272, 1341 POKE 54273, 33
POKE 54276, 17

FOR R=0 TO 200: NEXT

POKE 54276, 1&

FOR R=0 TO 100: NEXT

POKE 54272, 1h4: POKE 54273, 31
POKE S427&, 17

FOR R=0 TO 2001 NEXT

POKE 54276, 16

FOR R=0 TO 1001 NEXT

POKE 54272, 29: POKE 54273, 25

298

Your Commodore ¢4

1130 POKE 54276, 17

1140 FOR R=0 TO 2001 NEXT

1150 POKE 54276, 16

1160 FOR R=0 TO 1001 NEXT

1170 POKE 54272, 48: POKE 54273, 28
1180 POKE 542764, 17

1190 FOR R=0 TO 200: NEXT

1200 POKE 54276, 16

1210 FOR R=0 TO 100: NEXT

1220 POKE 54272,. 164: POKE 54273, 31
1230 POKE 54276, 17

1240 FOR R=0 TO 2001 NEXT

1250 POKE 54276, 16

1260 FOR R=0 TO 100: NEXT

1270 POKE 54272, 134: POKE 54273, 33
1280 POKE 54276, 17

1290 FOR R=0 TO 6001 NEXT

1300 POKE 54274, 16

1310 FOR R=0 TO 1001 NEXT

1320 POKE 54276, 17

1330 FOR R=0 TO 600: NEXT

1340 POKE 54276, 16

1350 FOR R=54272 TO $4296: POKE R,O:NEXT

This isn’t a very long song, but the program is quite long. If you
attempted to put all of the notes of a song into a program this way, you
would probably run out of memory.

Another way to enter music into a song program is by using DATA
statements. A program of this type requires three short sections: a routine
that reads the notes, one that plays them, and one that contains the notes as
data. Try this version of the song.

10
20
30
40
50
60
70

80
90

FOR R=54272 TO S54296: POKE R,0: NEXT
POKE 54278, 240: POKE 54296, 15

DATA 134,33,200,134,33,200, 161, 37,200, 60, 42, 200, 134, 33,
200, 60, 42,200, 161,37

DATA 600, 134,33,200, 134, 33,200, 161, 37,200, &0, 42, 200,
134,33, 600, 164,31, 6400

DATA 134,33,200, 134,33, 200, 161,37, 200, 60, 42,200, 191, 44,
200, 60, 42,200, 161,37

DATA 200, 134,33,200, 164, 31, 200, 29, 25, 200, 48, 28, 200,
164,31, 200, 134, 33, 600, 134

DATA 33, 600,999,999, 999

READ A,B,C

IF A=999 THEN 160

100 POKE 54272, A1 POKE 54273, B
110 POKE 354276, 17

120 FOR R=0 TO C: NEXT

130 POKE 354276, 16

Chapter 7 Sound 299

140 FOR R=0 TO100: NEXT
150 GOTO 80
160 FOR R=54272 TO 542963 POKE R,0: NEXT

By changing the values in the DATA statement, you can play almost
any song you like. Enter 999 to signal the end of the song, as shown above.

Programming Rhythm

Programming rhythm on the C-64 is much like programming the train
sound we made earlier. Let’s start with a simple drum sound.

10 FOR R=54272 TO 54296: POKE R, 01 NEXT
20 POKE 54277, &6: POKE 54296, 15

30 POKE 54272, 1%5: POKE 54273, 2

40 DATA 375,150, 165,999

50 READ A

60 IF A=999 THEN 100

70 POKE 542764, 129

80 FOR R= O TO A: NEXT

90 POKE 54276, 128: GOTO 50

100 RESTORE: GOTO 50

By using another tone in the same register we can add a bass drum:

10 FOR R=5S4272 TO S4296: POKE R,01 NEXT
20 POKE 54277, &: POKE 54294, 15

30 POKE 54272, 15: POKE 54273, 2

40 DATA 33,375, 129,150,129, 165, 999,999
50 READ A,B

60 IF A=999 THEN 100

70 POKE S4276, A

80 FOR R=0 TO B: NEXT

90 POKE 54276, O: GOTO S0

100 RESTORE: GOTO S0

Changing the loop variable will vary the speed of the rhythm.
80 FOR R=0 TO B/2: NEXT

By adding some additional READ and DATA statements to the
rhythm program we can include a melody. Here’s the complete listing.

18 FOR R=54272 TO 54236 POKR R, @' HEAT R

28 POKE 54277, 4@: FOKE 5429€. 15

38 POKE 54272, 15: POKE 34273, 3

33 POKE 54285, 248: POKE 54283, 17

4@ DATA 16,185,17,3735, 18,288,123, 158, 18,208,129,
1358, 15,238,17,375

300 ‘o Commodore ¢4

50 DATA 19,238,129, 150,

375, 18,208, 129, 150

60 DATA 18,208,129,150, 16,195,17,375,
150, 16,195, 129, 150

70 DATA 16,195,17,375, 18, 208, 129, 150,
150, 19,238,17, 375

80 DATA 25,29,129,150, 25,29, 129, 150,
375, 19,238,129, 150

90 DATA 19,238,129, 150, 16,195, 17,375,
150, 14,195, 129, 150

100 DATA 999,999,999,999
160 READ H,L,R,N
170 IF H=999 THEN 230

19,238, 129, 150,

180 POKE 54279,L: POKE 54280, H

190 POKE 54276, R

200 FOR M=0 TO N: NEXT
210 FPOKE 542746, O

220 60TO 160

J0 RESTORE: GOTO 160

18,208,17,
16,195,129,
18,208, 129,

18,208,17,

16,195,129,

The most important thing to keep in mind when working with this kind
of program is that doing more things within your loops (such as adding more
READ statements) adds time to the loop. Test statements, such as the one
online 170, also take some time. Be sure to account for every line. If you are
unsure of your timing, run the program and listen for timing problems. By
adding to or subtracting from the timing loops, you can usually compensate

for timing errors.

The C-64 Electronic Organ

Here’s a program that “GETs” notes from the keyboard and plays
them. We’ve used the note values from Table 7-2 and POKEd them into the
upper and lower tone registers of sound register #1.

10 FOR R=54272 TO S4296: POKE R,0: NEXT

20 PDKE 54278, 240

30 GET A%: IF As="" THEN 30
40 IF A%="Q" THEN U=8:L=97
SO0 IF A$="2" THEN U=B:L=225
&0 IF A%="W" THEN U=9:L =104
70 IF A$="3" THEN U=9:L=247
80 IF A%$="E" THEN U=10:L=14
90 IF As$="R" THEN U=ii:L=47
100 IF A$="3" THEN U=1i:l.=2

-
~

18

110 IF A$="T" THEN U=12:L=142

120 IF AS="&" THEN U=13:L=7

7

Chapter 7 Souna - 301

130
140
150
1460
170
180
190
200
210

IF A$="Y" THEN U=14:1L=24
IF A$="7" THEN U=14:| =238

IF As="U" THEN U=15:1=210

IF A$="1" THEN U=16:1L=195
POKE $4272,L:FPOKE $4273,U
POKE S54294,15: POKE 54276, 17
FOR G=0 TO 500: NEXT

POKE 54296,0: POKE 54276, 16
GOTO 30

This program was written for only one octave. By increasing the
number of keys read, you can add more octaves. To make the keys play
longer, you can increase the length of the delay loop at line 190 making the
fractional STEP smaller.

C Ct DDHE F F#t G G# A A# B

Tdd Tl

Saving Music

An alternative to writing DATA statements by hand is to use the elec-
tronic organ to store your musical values. Let’s look at how these can be

saved.

CREATING MUSIC ARRAYS

Adding the following lines to your program will allow you to store the
notes you play into an array. For the purposes of this program, we’ll use an
array with 100 notes in it. You can create arrays with more notes in them if

302 ‘our Commodore &4

you like, but remember, each note is two bytes, and you won't be able to
dimension an array that is larger than your available memory space.

3 DIM UC100), L(100Q)

31

IF As=" {F3} " THEN U(X)=Us L(X)=L: X=X+1: GOTO 30
IF AS$<>" (F1} " THEN 40

33 FOR Z=0 TO X
34 POKE 54272, L(Z): POKE 54273, U(Z)

POKE 54296, 15: POKE 54276, 17

36 FOR G=0 TO S500: NEXT

POKE 54294,0: POKE 54274, 16: NEXT

39 GOTO 30

Each time you press one of the keys on the keyboard. it will be played.
Pressing F1 will play back all of the notes stored in memory. Toadd a note to
the song, press F3 after pressing the note you want.

STORING MUSIC ON THE
DATASSETTE OR DISK

When you turn the C-64 off, any music you have stored into an array
will be lost. If you want to save your songs and play them back later, you will
need to store them on either the disk drive or the Datassette.

Adding the following lines to your program will allow you to store the
music data in your array into a data file on either the Datassette or disk

drive:

45 IF As=" {FS5}] "THEN 300

300
310

320
330
340
350
360
370
380
390

INPUT "FILE NAME"; F$
INPUT "STORE ON {REVERSE ON}D {REVERSE OFF} ISK OR
{REVERSE ON} C{REVERSE OFF} ASSETTE"; 5%

IF S$="D" THEN 350

IF S$="C" THEN 3&0

PRINT" {CURSOR UP}";:60TO 310
OPEN1,8,4,F$+",W": GOTO 370

OFEN1,1,1,F$

FOR Z=0 TO X

PRINT#1, U(Z): PRINT#1,L(Z): NEXT

CLOSE 1: GOTO 30

1000 OPEN1S,8,15: INFUT#15,A,B%,C,D: PRINTB$:CLOSE1S: END

Now, when you press the Fs function key, the program will ask you fora
file name and whether you want to save the song on disk or Datassette. It
will then store the contents of the song array in the file you’ve specified.

Chapter 7 Sound 303

READING MUSIC FROM THE
DATASSETTE OR DISK

Toread a song from a music file, you will need to read the information
back into an array that can be read by your electronic organ program. The
following routine accomplishes this.

55 IF A$=" {F7} "THEN 400

400 INPUT "FILE NAME"; F$

410 INPUT "LOAD FROM {REVERSE ON}D{REVERSE OFF} ISK OR
{REVERSE ON}C{REVERSE OFF}ASSETTE"; 5%

420 IF S$="D" THEN 450

430 IF S$="C" THEN 440

440 PRINT" {CURSOR UP}";:GOTO 410

450 OPEN1,8,4,F$+",R": GOTD 470

460 OFEN1,1,0,F$: J=0

470 INPUT#H#1, U(J): INPUTH1,L(J):BB=6TiJ=J+1

480 IF BB=0 THEN 470

490 X=J:CLOSE 1: GOTO 30

1000 OPEN1S,8,15: INPUT#15,A,B$,C,D: PRINTB$:CLOSE15: END

Once you have added these lines to the program, you can use the F7 function
key to load songs that you have stored. When you press the F7 function key,
the program will ask you for a file name, and whether you want to load from
disk or Datassette. It will then load the song array from the file you've
specified.

COMBINING SOUND WITH
ANIMATION

Most video games use sound very effectively. The sounds can be used to
create a mood or to give the player more information about the action that is
taking place on the screen.

Timing
When playing a video game, the player is more dependent on the timing

of the sound than on the visual portion of the game. Try this bouncing ball
program with no sound.

304 - Comogore s

5 PRINT"{CLEAR HOME}"

10 As="

20 FOR R=0 TO 2: PRINT A%;: NEXT
30 FOR T=1104 TO 1143

40 FOR Y=0 TO 10: NEXT

50 POKE T-1,32: POKE T,81: NEXT
60 FOR T=1143 TO 1104 STEP -1

70 FOR Y=0 TO 10: NEXT

80 POKE T+1,32: POKE T, B81: NEXT
90 GOTO 30

Now we will add sound with the following lines:

15 FOR I=304272 TO 54296: POKE I,0: NEXT
16 POKE 54272, 121 POKE 54273,36

17 POKE 354296, 15: POKE 54278, 240

55 POKE 94276, 17: POKE 54276, O

85 POKE 54276, 17: POKE 54276, 0

The addition of sound helps create the effect of a bouncing ball.

To synchronize the sound with a visual event on the screen, you will
have to be aware of the position of the objects on the screen. In the example
above, the timing was straightforward because the sound was created at the
end of each loop. To make simple sounds synchronize with movements, the
sounds should generally take place when one object collides with another.
The tollowing program determines object movement and sound based on
the numeric position on the screen:

10 FOR I=54272 TO S54296: POKE I,0: NEXT

0 POKE 54272, 121 POKE 54273,36

23 POKE 54279, 12: POKE 54280, 100

30 POKE 54296, 15: POKE 54278, 240

33 POKE 342835, 240

30 A%="

50 PRINT" {CLEAR HOME}";:FOR R=0 TO 5: PRINTA%;: NEXT

60 B1=1104: EBE2=1144; Ri=1: R2=.7

70 POKE Bi,81: POKE Bl-1,32: POKE Bl+1,32

80 POKE B2,81: POKE B2-1,32: POKE B2+1,32

?0 B1=B1+R1: B2=B2+R2

100 IF B1=1104 OR B1=1143 THEN R1=R1¥-1:POKE 54276,17:
POKE 354276&,0

110 IF B2<1144.5 OR B2>1182.5 THEN R2Z2=R2x-1:POKE 54283,
17: POKE 54283,0

i20 6GOTO 70

Because different tone values are used, it is immediately apparent which
object has just hit the wall.

CHAPTER

Peripheral Devices

The C-64 can be connected to many peripheral devices, including the
1525 Printer, the VIC Datassette, and the 1541 Disk Drive. These devices
expand the capabilities of the C-64 by giving it the ability to produce
permanent copies of its output on either paper or magnetic media such as
cassette tape or floppy diskettes. Storing information on magnetic media can
also increase the amount of memory space available.

With the addition of a modem, the C-64 can communicate by telephone
with any other computer that has a similar device. The modem also allows
access to computer networks, which provide services such as stock market
updates, computer shopping, and electronic mail.

Storing Data

The most common media for storing data on microcomputers are
floppy diskettes and magnetic tape. Diskettes have the advantage of being
random-access devices. That is, they can directly store or retrieve data at any
location on their surface. Tapes store data sequentially (one file after
another) and must be manually rewound to access data that have already
been passed. What they lack in speed and flexibility, however, tape systems
make up in cost. They are much less expensive than disk systems.

305

306 o Commonoe 4

FILES

Computer data are stored in files. This allows you to locate information
you have placed in a certain category. To look up a word beginning with “C”
in the dictionary, you would turn to the section with the heading “C.”
Similarly, to find information on a cassette or diskette, you would instruct
the computer to locate a section (file) with a heading (file name) you
assigned.

C-64 data files can have names that are much longer than the single-
leiter headings in the dictionary: file names can be up to 16 characters long.
The length of the files is limited only by the space available on the diskette or
cassette tape. The number of file names on a 1541 diskette is limited to 144.

There are two kinds of files: program files and data files.

Program Files

Whenever you have a program in the computer memory that you wish
tosave in order to use itagain, you may SAVE it ontape or diskette. To read
it back into the computer, you LOAD itinto memory. Youshould give each
program a unique name so the computer can differentiate one from the
other. When you are using the Datassette to store programs, youdon’t have
to use file names, since the computer can simply be instructed to LOAD the
first program it encounters. This is not true of the disk drive. You must tell
the computer which file you want when you load or save on a disk.

Tousea program file, you load and run it, just as if you had entered the
program by hand. The advantage is that you do not need to enter the
program by hand. In general, the size of a program you store on disk or tape
will be limited to the amount of memory available in your computer. This is
because a program is normally saved in its entirety. You cannot easily save
part of a program and then save the rest of the program later.

One way to handle programs that will not fit into your computer’s
available memory space is to break them into shorter programs and simply
load each section of the program separately and run it. In this fashion, you
can execute programs that are much larger than the memory space in your
C-64.

If you decide to do this, make sure that the first program section that
you load is longer than any of the sections it calls. This is necessary because
the program variables will be stored at the end of your program’s first

Chapter 8: Peripheral Devices 307

section; if a longer routine is loaded into memory, either your variables or
part of the new program segment will be lost.

To load the next program segment from within a program, just end
your first segment with

LOAD “second program name”,8

This will load and run the next segment.

Data Files

Data files do not contain programs, so they cannot be loaded and run.
They contain data that must be loaded into memory by a program or entered
by you in immediate mode.

RECORDS AND FIELDS

The information in a data file can be broken up into records and fields.
This is determined by the program reading the data from the file. To better
understand this concept, consider a data file that contains a passenger’s
flight information for a trip from New York to San Francisco and back.

XYZ AIRLINES June 7, 1982

John Doe
1234 Home Place
Small Town, New Jersey

FLIGHT #303

LEAVES JFK Int’l 1:45 PM EST
ARRIVE SFO Int’l 4:28 PM PST

XYZ AIRLINES June 9, 1982

John Doe
1234 Home Place

Small Town, New Jersey
FLIGHT #215

LEAVES SFO Int’l 9:15 AM PST
ARRIVE JFK Int’l 4:45 PM EST

308 ‘our Commodore 44

The file contains information for the departure and arrival of the flights
John Doe is taking to and from San Francisco. For simplicity, we will say it
is a single file that contains two records: the trip to San Francisco and the
trip back to New York.

Each record contains several fields. The fields are the groups of charac-
ters that form either complete words or numbers. For instance, the word
“JUNE” contains four characters (or bytes) that are stored on the tape or
diskette as the individual characters J, U, N, and E. Logically, however, the
characters should be taken as the whole word: JUNE. Similarly, the
numbers 2, 1, and 5 should be taken as the number 215. To distinguish the
data within a record, it is important that the fields be separated.

Data Transfer

The first time you access a tape or diskette file, you may be misled into
thinking that the system is not operating correctly. It would seem logical
that the disk drive or Datassette would operate each time the program reads
or writes from it. This will occasionally be the case, but not always. This is
because the C-64 has a small section of memory allocated as a data buffer.
Each time information is read from the disk or Datassette, the buffer is
filled. Until those data are exhausted, the drive or Datassette will not be
accessed again. Similarly, when you write to the disk or Datassette, data are
first stored in a buffer. When the buffer is full, all the data it contains will be
stored at once.

Logical Files and Physical Units

Input/output programming describes any programming that controls
the transfer of data between the computer and a peripheral device such as
the Datassette, disk drive, or printer. These are all external physical units. In
order to transfer data to or from one of these physical units, it is necessary to
indicate which one you are accessing. This is because each unit has a specific
kind of interface and a particular way in which it must receive its input (the
computer’s output). Inaddition, if more than one device is connected to the
computer, you will need to indicate which device you are “talking to.”

The computer can also receive data from the Datassette and disk drive,
and the data it receives must be put somewhere. Look at the problem in

Chapter & Penphera! Devices 309

programming terms. If you want to input data from the keyboard, you
would use a BASIC statement such as

18 IMPUT H

This line stops program execution and waits for you to enter some data from
the keyboard and press RETURN. The data are assigned to the variable A.
Unless the C-64 is told otherwise, all input statements such as the one above
look for data coming from the keyboard.

If you want to output some data to the video screen, you might use the
following statement:

28 PRIMT A

The value of variable A will appear on the screen.

The INPUT statement tells the computerit is to receive some data, and
the PRINT statement instructs the computer to output some data. Although
data are usually sent from the keyboard and received by the video screen,
these are not the only devices available.

To “talk” or “listen” to another device, you will first need to open a
logical channel to that device. This is accomplished using the OPEN state-
ment. With this statement, you designate what channel you are using and
what device number you are addressing. Every physical unit (peripheral
device) has a unique device number. The channel you open is called the file
and the number you assign to it is its file number. The format for an OPEN
statement is as follows:

10 OPEN fn, dn, sa, filename

where:

fn The file number is the number you use to access the file. You may
choose any number between 0 and 255

dn The device number is the number of the peripheral device you are
addressing

sa The secondary address sets up certain parameters for the device being
used

filename The file name is used to specify the file during a read operation. If you

specify a file name when you write the file and when you read it on the
Datassette, all files will be skipped until the one you specified is found.

Table 8-1 shows the device numbers and secondary addresses that
correspond to the C-64’s logical devices.

310 our Commodore ¢4

TABLE 8-1. Device Numbers and Secondary Addresses

. Device Secondary .
Device Number Address Operation Performed
Keyboard 0 None
1 0 Open for read
Cassette 1 Open for write
Drive # 2 Open for write, but add End-
2 of-Table mark (EOT) on close
Video
Display 3 None
Line
Printer 4ors 7 Alternate character set
Models
1515 or 1525
0 Load a program file to the
Disk computer
Drives g+ 1 Save a program file from the
(all models) computer
2-14 Unassigned
15 Open command/ status channel
Other Device numbers and second-
. 5,6,7
devices 4 ary addresses are selected
connected 9 t;m h and assigned by the manufac-
to IEEE 488 g(])ug turer of the device connecting
Bus to the IEEE 488 Bus.
12 to 255
unavailable
at this
time

systems).

*Normally 8, but may be set to 9, 10, or 11 (see the section on multiple disk

Datassette Files

Now that you have had a chance to look at files in a general way, you
can apply them to reading from and writing to the Datassette. The VIC
Datassette is the default external storage device. That means that if you
don’t specify which device you are writing to, the information will go to the

Datassette.

Chapter 8: Peripheral Devices 311

Forexample, to save a program called FILENAME on the Datassette,
you would type

SAVE "FILEWAME"

and press RETURN. If you have pressed the PLAY and RECORD keys on the
Datassette, the Datassette will start operating. After your program has been
saved, the Datassette will stop, the cursor will start flashing again, and the
computer will display READY on the screen.

To load the program from the Datassette, type

LOAD "FILEMAME"

If the PLAY button has been depressed, the Datassette will operate and the
computer will display

SEARCHING FOR FILENAME

As it passes the various programs that precede the one being looked for, it
will display their names.
FOUND OTHERFILE

FOUND WRONGFILE
FOUND NEXTFILE

When the program requested is found, it will display

FOUMD FILEMAME
LOADIMG

WRITING DATA FILES

Writing program files into a Datassette file is a simple task. Putting
data into a Datassette file is almost as easy, but it does require a basic
understanding of how the information is put onto tape.

The most common method of storing data is by simply printing the data
one item at a time to the Datassette. This can be done by entering the
following statements.

First, you will need to open a file.

1@ OPEN 1.1.2,"DRTA FILE"

This will open a Datassette file with the number 1 and the name DATA
FILE. When the file is closed, it will write an end-of-file marker onto the
tape, which indicates to the C-64 that no more records exist in the file.

312 our Commodore é4

Now you can enter the data from the keyboard.
28 INPUT A%

If you were entering numeric data, you could use a numeric variable such
as A.

At some point you will want to end the data entry. Let’s say that if you
enter XXX the computer will branch out of the routine.

30 IF R$ = "XxK" THEN 60

If the input was not XXX, you’ll want to save it on tape

40 PRINT#1. A$

and go back for more input.
58 GOTO 268

If you are done entering data, close the file.
€0 CLOSE 1

To run this program, you should first wind a fresh tape all the way
forward and rewind it again until you can see where the nonmagnetic leader
and the actual magnetic tape meet. Make sure that this is in the center of the
cassette opening (see Figure §-1).

Here’s the complete program.

18 OPEMW 1.,1.2, "DATA FILE"

20 INPUT F#

30 IF A% = "XKKK" THEW 6@

40 PRIMT#1. A%

%@ G6OTO 26

60 CLOSE 1

Now close the lid and run the program. The program will pause (and
the cursor will disappear) for a few moments while the file is opened and the
name of the file is written onto the tape. The cursor will return and a
question mark will appear. Enter some characters and press RETURN.

After entering a few items, enter XX X. The cursor should disappear
again; this time the file is being closed and the data and end-of-file marker
are being written onto the tape.

Chapter & Peripheral Devices 313

Leader

Magnetic surface

FIGURE 8-1. Tape position

READING DATA FILES

Toread the data back from the tape you will need to open a Datassette
file for reading. Add the following lines to the end of your Write Data
program:

70 PRINT "REWIMD THPE"

8@ PRIMT "WHEM THE TAFE I5"

90 PRINT "REWOUND, PRESZ STOP"
108 PRINT "OW THE DATASSETTE"
110 PRINT "THEN HIT <RETURNZ"
128 INPUT C

138 OPEN 1.,1,@, "DATA FILE"

Lines 70 through 110 tell the operator to rewind the tape and to signal
the C-64 when the rewinding is completed by pressing RETURN. Line 120
makes the computer wait until the tape has been rewound, and line 130
opens the data file for reading.

PHOTO BY HARVEY SCHWARTZ

314 ‘our Commoaore a4

Now you can begin reading data from the Datassette.

148 INPUT#1., RA$

This inputs the first record you entered and assigns it to the string variable
AS. The statement

150 FPRINT A%
takes the data that you just put into A$ and displays them on the screen.

Status Register

There is a special variable name (similar to TI and TI$) that indicates
the status of the external devices connected to the C-64. This is the variable
ST. Table 8-2 interprets the values of ST.

To determine whether you have reached the end of a file, you can check
the value of ST from inside your program. If the value of ST is 64 you have
run out of data. Add the following line:

168 IF ST <> £4 THEHW 15@

Your program will branch back to read another record from the file.
If ST equals 64, all the data have been read and displayed. Close the file.

178 CLOSE 1

Then follow the instructions on the screen. The computer will display all of
the items you entered in the previous section.

Using GET# to Read Files

It is also possible to use the GET command, just as you would from
the keyboard. The GET# instruction reads one byte at a time from the
Datassette. Change line 140 to

140 GET#1. A
and, in immediate mode, type
GOTO 78

This time all the data are printed in a vertical column. Why?
Look at line 140. The GET# function inputs only one character at a
time. That character is then assigned to variable A$ and printed. The

TABLE 8-2. Status Byte Returned by External Devices via Variable ST

Status
Device
Operation 00000001 00000010 | 00000100 [00001000 [00010000 00100000 01000000 10000000
Read as | Read as 2 Read as 4 Read as 8 Read as 16 Read as 32 Read as 64 |Read as 128
i . Unrecov-
g:::el‘:':om 8[‘)(‘”““'(""l 8?:'”“0" SB?(?;; lI;loonc%(erable Checksum End of file
drive Data block | Data block read error. One e(rjlcoumer- End of tape
read had read had error grtm(l):f ¢ encountered
. fewer bytes | more bytes A a: OHs
Verify than ex- than ex- nyf rea 1r;; None
cassette pected pected vervy correctly
drive mismatch
Disk .. L . .
drives Receiving | Transmitting| None None None None End of file Disk drive
(all device not | device not not present
models) available available

saomne 1oisydied g eidoyD)

SIE

316 our Commociore o4

computer then does a carriage return, and the next character is input with
the next GETH#.

At the end of each string, the computer automatically adds a carriage
return, which acts as a delimiter separating one string from the next. This is
usually desirable, since it causes the computer to separate the variables. In
some applications, however, you may want to eliminate the trailing carriage
returns. For example, you may want to conserve space in a tightly-packed
file in which all the variables or strings are of the same length. In such a case,
you could leave out the carriage returns and separate the variables yourself.

Remember, however, if you create a file that has no delimiters (carriage
returns) you must separate the data yourself in your program. To suppress
the carriage returns you could change line 40 to read

40 PRINT#1, A%,

Note: Generally the best programs are the ones that are the simplest.
Therefore, before you use this method be sure that you need to. Also be
aware that a file with no delimiters cannot be read by an INPUT# statement
unless it contains less than 80 characters because the INPUT buffer holds
only 80 characters.

Disk Files

The disk drive can store data and programs just as the Datassette does.
The major differences between the disk drive and the Datassette are speed
and accessibility.

The disk drive can access data much faster than the Datassette, and can
access them randomly. That is, the drive can access any location on the
disk’s surface to read or write data, while the Datassette must read and write
all data sequentially.

HOW DATA ARE STORED ON DISKETTE

The data are stored on the diskette in concentric rings called tracks. The
1541 Disk Drive has a total of 35 tracks. Each track may be addressed
directly and therefore may be quickly accessed. In general, the disk drive will
not record data onto an entire track. This would make the files needlessly
long. To avoid this, each track is divided up into sectors, each of which
contains 256 bytes.

Chapter 8 Peripheral Devices 317

Look at Figure 8-2. You will see that the tracks on the diskette are not
all the same length. The ones nearest the outer edge of the diskette are longer
than the ones near the center. To make the most of the space available on the
diskette, the 1541 Disk Drive puts more sectors into each of the outer tracks.
The number of sectors per track varies from 17 on the inner tracks to 21 in
the outer tracks. This means that one 1541 diskette can hold 176,640 bytes.

W)
= ///////

L———Tracks 1-17 (21 sectors/track)

Center Hole

Tracks 18-24 (19 sectors/track)

——Tracks 25-30 (18 sectors/track)

L—— =~ Tracks 31-35 (17 sectors/track)

FIGURE 8-2. 1541 Diskette sectoring pattern (by tracks)

318 our Commedore ¢4

DISKETTE SECTORING

If you manually rotate the diskette inside its jacket, you will find one or
more small holes in the diskette which come into alignment with the small
hole in the jacket. If there is only one hole, the diskette is soft-sectored. If
there are several holes, the diskette is hard-sectored. The holes in the
hard-sectored diskette are used on some disk systems to position the sectors
on the diskette. Since the 1541 Disk Drive provides its own special sectoring,
you should only use soft-sectored diskettes.

DISKETTE DIRECTORY

Track 18 on the 1541 diskettes is used for the directory. The directory
contains the names, starting sector addresses, and file types of all the files on
the diskette.

To list a diskette’s directory, load it into memory by entering

LORD “"#".8

The name of the directory file is $ (dollar sign), and we are loading it
from device number 8 (the disk drive). To list the diskette directory, simply

type
LIST

and the directory will be displayed on the screen.

THE BLOCK AVAILABILITY MAP (BAM)

The BAM resides on track 18 of the diskette. It contains information
pertaining to memory space allocation on the diskette.

INITIALIZATION

Each time the disk drive is accessed, it compares the identifier number
on the diskette with the ID number stored in disk memory. If the 1D
numbers match, the disk drive proceeds with the instruction it was given. If
there is a mismatch, the disk drive automatically initializes the diskette.

When the diskette is initialized, the contents of the BAM are copied
into disk memory. This tells the disk drive which sectors are available to be
written to. If the ID numbers of two diskettes are the same, the disk drive
will not initialize automatically. It will not update the BAM with the
allocation information and may write over sections of other programs or

Chapter 8 Peripheral Devices 319

data. To avoid this, format your diskettes with different ID numbers when-
ever possible.
To manually initialize a diskette, use the following statements:

OPEM 1,8.135
PRIMT#1, "IMITIALIZE"

A shorter version of this command is

OPEN 1.8.,15, "I"

FORMATTING A DISKETTE

Before you can use a new diskette, you must format it. Formatting
writes a disk name, an ID number, and all of the track and sector informa-
tion onto the diskette so that data may be written onto it by the C-64.

To format a diskette that has never been used before, use the following
commands:

OPEN 1,8,15
PRIMT#1, "MEW: DISKNAME, ID"

The disk name can be any 16-character string you choose. The ID can be any
number you choose. The Disk Operating System (DOS) uses the ID number
to determine which diskette is in your drive. Remember to use a different
number for each of your diskettes; that way the disk drive will always be able
to determine whether it should initialize or not. If the IDs of your diskettes
are all different, the initialization will be automatic; otherwise, you will need
to do it manually each time you change diskettes.

A good way to ensure that all of your diskettes have different IDs is to
format an entire box of diskettes at once, numbering them sequentially.
When you need to use them, you can perform a short version of the
FORMAT instruction which erases all data on the diskette and renames it,
leaving the ID number the same. That way, no two diskettes in the box will
have the same ID number. To do this, use the following FORMAT
instruction.

Note: This will not work on new (previously unformatted) diskettes.

OPEM 1.8,15
PRINT#1, "M:DISKHRME"

320 ‘our Commodore ¢4

Notice that in the above examples the letter “N” is used instead of the word
NEW. N is an acceptable abbreviation for the NEW (disk) command.

Renaming Files

If you have a file with a name that you feel is inappropriate, you may
change its name using the RENAME instruction. To rename a file, use the
following format:

OPEN 1.,8,15
PRINT#1, "REWMAME: NEW FILEMAME = 0OLD FILEWAME"

You may use the abbreviation R in place of the word RENAME. Thus,
if you wanted to change a file named DOG.1 to CAT.1, you would enter

OPEM 1.,8,15
PRIMT#1, "R: CAT.1 = DOG.1"

Erasing Files

To erase a file from your diskette, use the SCRATCH command. Its
format is shown here.

OPEM 1,8,153
PRIMT#1, "SCRATCH: FILEMAME"

The abbreviation S may be used in place of the instruction SCRATCH.
Therefore, you can also use

PRINT#1, "5: FILEMAME"

to erase programs or data.

The VALIDATE Command

The VALIDATE command may be used to “clean up”a diskette. After
a time there may be some files on your diskette that were not properly
closed, or various files that were used as temporary storage and are not even
part of another file. To perform this housekeeping, use the VALIDATE
command. It deletes any unclosed files and frees any blocks that were
previously allocated but not associated with any specific file.

Chapter 8: Peripheral Devices 321

Copying Files

You can make a copy of any file on your diskettes by using the COPY
command. The same command with slightly different syntax will concaten-
ate diskette files as well.

To make a copy of a program on the same diskette, use the following
command sequence:

OPEM 15.8,15

PRIMT#15, "COPY: WEW FILEMAME = OLD FILENAME"

You may use the abbreviation C in place of the word COPY, as in the
following example:

PRINT#15, "C.DOG.2 = DOG.1"

Disk File Concatenation

Two or more files may be joined together, or concatenated, to forma
single file. To create a new file named NEWFILE, for instance, out of the
data files OLDFILE.O0, OLDFILE.1, and OLDFILE.2 on diskette, use the
following command:

PRINT#1, "C‘ WEW FILE = OLD FILE 1, OLD FILE 2"

Note: The maximum length of a disk command string is 40 characters,
so keep your file names short.

Multiple-Disk Systems

If you have a system with more than one disk drive, you may copy files
from one diskette to another. Before you do, however, you will first need to
differentiate between disk drives.

When the 1541 Disk Drives are first powered up, they all have a device
number of 8. If you connect more than one disk drive to your system, each
drive will need a different device number. The device number may be either
8,9, 10, or 11. To change the device number of a disk drive, follow these
instructions.

322 our Commodore 64

1. Turn off all drives except the one you are changing.

2. Open a command file, such as
OPEN 15.,8.,15

3. Enter the following command sequence. Note: Don’t worry if you
don’t understand this sequence; this kind of instruction is covered in
more detail in the section on advanced disk commands.

PRINT#15.,"M=-W"CHRE(119)CHR$(BICHRE(2ICHRE(I+32)CHRE(I+64

This instruction will change the disk to device number 9. To
change the disk drive to another device number, add that number,
instead of 9, to 32 and 64 at the end of the command.

4. Turn on the next drive and repeat the command sequence above,
using a different device number for each drive added.

Note: Do not turn off any drive that has been changed. This will erase
the new device number.

Disk Data Files

Just as there is a difference in the way that data files and program files
are handled by the Datassette, there is a difference in the way that data files
and program files are handled by the disk drive.

There are three different kinds of information that can be stored on the
disk drive. The first, program files, has already been covered. The second
type is sequential data files, and the third, random access files.

SEQUENTIAL FILES

Like sequential data files on the Datassette, sequential data files on the
1541 Disk Drive must be opened before they can be accessed. To open a
sequential data file to the disk, use the following format:

OPEN Ifn, dn, sa, “drn:file name, SEQ,W”

where:

Ifn is the logical file number

dn is the device number for the disk drive

Chapter 8: Peripheral Devices 323

sa is the secondary address. You can use any number between 2 and 14.
Both 0 and 1 are reserved by the C-64 for LOAD and SAVE
operations and 15 is used to open the command channel

drn is the drive number. This may be omitted if you have a one-drive
system

file name is the name of the file you are accessing
SEQ indicates that this will be a sequential data file

W indicates the write mode. You may also read. The READ command
may be abbreviated as R.

Here’s an example of writing to a file named AIRLINE.
OPEM 2.8.4."@ ' AIRLIME, SEGL W"

Whenever you open a file on the disk drive, the red activity light on the
front of the drive will light until the file is closed. If you try to open in write
mode a sequential file that already exists, the red activity light will flash,
indicating an error condition.

If you want to write over a file that already exists, you can modify the
above OPEN command as follows:

OPEN 1.8,10,"@0 'AIRLINE, SEQ,W"

The @ tells the disk drive that you want to overwrite the data in the specified
file.

If the file does not exist, the normal OPEN procedure will be carried
out by the disk drive.

USING STRING VARIABLES AS FILE NAMES

You can use a string in place of a file name if you want to generate file
names from within a program.

Here’s an example of a program that asks you for the name of the file
before it is opened. This allows you to use the same program to open
different files. You might do this in a word processing program that has
different names for each text file.

1@ INPUT "FILE NRME", FH$

20 OPEN 2.8.4, "@:"+FH$+ ", U"

Line 10 requests a file name. In line 20, the file name is concatenated to
the OPEN file string. This is important, because the OPEN command must
be a single string. Using the Plus (+) operator accomplishes this.

324 o Commodore ¢4

CLOSING DISK FILES

As a program writes data to a disk file, the data are first written to a
buffer. When the buffer is full, the data are written onto the diskette. If you
are done writing data to the diskette and the buffer is not yet filled, the data
will not be written onto the diskette unless you close the file. Closing a file
writes the data in the buffer onto the diskette whether or not the buffer is
full. It is therefore very important that you close all files when you are done
writing data to them.

Note: You may keep only ten files open with the C-64, and only five of
them to the disk drive. Therefore, it is advisable to close channels after
reading them as well as after writing to them, even though leaving a channel
that you have read will not cause the same kind of catastrophic failures as
failing to close a file that has been written to.

The PRINT# Command

The PRINT# command is used to transfer data to the disk drive or any
other peripheral device. The C-64 automatically sends a carriage return at
the end of each file record to terminate it properly. In some cases, such as
printing to the 1525 printer, you may want to send a carriage return and a
line feed to terminate the records in a file.

Use logical file numbers 1 through 127 to send a carriage return only,
and logical file numbers 128 through 255 to send a carriage return-line feed
after each record.

Reading a Data File

The INPUT# and GET# statements work in basically the same way on
disk files as they do on Datassette files. The INPUT# statement can read
strings no longer than 80 characters. To read longer strings, it will be
necessary to use GET# and read the strings one byte at a time.

Random Access Files

Youcancreate random access files by directly addressing diskette data
blocks and memory buffers. Each data block occupies a single sector of the
diskette. There are eight buffers available on the C-64, but four of them are
used for the Block Availability Map, variable space, command channel 1/ O,

and the disk controller. This leaves you with only four buffers for random
access files. Be sure not to open more than four buffers at a time. Opening
more than four will result in a system error.

Information is written to diskette random access files using the
PRINT# command. The files are specified through parameters in the OPEN
statement. The format for opening a random access file is as follows:

OPEN Ifn, dn, sa, “# buf”
where:

ifn is the logical file number. For performing data transfers, use logical file
numbers between 2 and 4. To perform any utility command, use logical
file 15. In general, it is a good idea to open the command channel (15) and
a data channel for each operation

dn is the device number
sa is the secondary address (it must have a value between 2 and 14)

buf is the buffer number allocated to the specified secondary address. You do
not need to use this specification. If you leave it out, DOS will automati-
cally select a buffer.

DISK UTILITY INSTRUCTIONS

The C-64’s disk utility instructions are described in this section. Table
8-3 provides a summary of these commands.

BLOCK-READ

The BLOCK-READ command reads any sector (block) into one of the
memory buffers. To read a block, you would first need to open the com-
mand channel (15) as follows:

1@ OPEM 15.8.,15
Now a direct access channel must be opened.
2@ OPEM 2.8.4.,"4"
You can select which block you want to read (by track and sector).

38 INPUT "TRACK", A
48 INPUT "SECTOR", B

326 ‘our Commodore &4

TABLE 8-3. Disk Utility Instruction Set

Command Abbreviation Format
BLOCK-READ B-R PRINTH#1S, “B-R:”ch;dr;t;s-
BLOCK-ALLOCATE B-A PRINT#IS, “B-A:"dr;t;s
BLOCK-WRITE B-W PRINT#I1S, “B-W:”ch;dr;t;s
BLOCK-EXECUTE B-E PRINT#15, “B-E:”ch:dr;t;s
BUFFER-POINTER B-P PRINT#I1S, “B-P:"ch;byte
BLOCK-FREE B-F PRINTH#I1S, “B-F:"dr;t;s
MEMORY-WRITE* M-wW PRINT#1S, “M-W:"CHR$(adr)CHRS
(adrh)
CHRS$(#bytes)CHR$(data)CHRS
(data)...

MEMORY-READ* M-R PRINT#15, “M-R”CHR$(adr1)CHRS
(adrh)

MEMORY-EXECUTE* M-E PRINT#1S, “M-E”CHRS$(adrl)CHRS
(adrh)

Ul UA Replacement for BLOCK-READ

u2 UB Replacement for BLOCK-WRITE

u3 ucC Disk Processor JMP $0500

U4 UD Disk Processor JMP $0503

us UE Disk Processor JMP $0506

ué6 UF Disk Processor JMP $0509

U7 UG Disk Processor JMP $050C

Us UH Disk Processor JIMP $050F

U9 Ul Disk Processor JMP $FFFA

U: ulJ Disk Processor JMP power-up vector

*You must use the abbreviation for these instructions.

The following statement reads a block of data into the buffer:
5@ FRIMT#135, "B~-R:"4,8,A.B
Let’s look at the components of this instruction.

PRINT#15 to perform any of the commands in this section, you must use
the command channel (15)

Chapter 8 Peripheral Devices 327

“B-R:” s the abbreviation for “BLOCK-READ:”. The colon within the
quotation marks positions the data that follow the instruction

is the secondary address from line 20 above

0 is the drive number. This is mandatory when you are using the
direct access instructions

A is the track number that was input in line 30. Although you may
use variables to designate track and sector in these instructions, a
constant can be used as well

B s the sector number.

All of the data—secondary address, drive number, track number, and
sector number—in this instruction must be separated by semicolons, as
shown in the example.

Now that the data in your selected block has been transferred to the
buffer. vou will need to use a GET# or an INPUT# statement to extract it
from the buffer.

The INPUTH# statement retrieves all bytes up to and including the first
carriage return it finds. Since you may not know the exact data in a sector
before you read it, you may overrun the length of the INPUT#, which can
hold only 80 bytes.

Because of this limitation of the INPUT# statement, it is preferable to
use the GET# statement when you are unsure of the data you will read. It will
read the data one byte at a time.

€0 GET#Z. A%

There are 256 bytes of data in each block, but not every block is full. To
read all the data in a block and stop at the end of the file, test the status
variable (ST) to see if it is zero.

70 IF ST=0 THEMN PRIMT A%, :GOTO 6@

Note: Although there is a trailing semicolon in the PRINT statement,
the display will jump to the next line whenever it reaches a carriage return in
the data, separating the data just as they were entered.

If ST= 0, there are still more data, and you can go back and get another
byte. Otherwise, close all channels when you are done with them.

80 CLOSEZ: CLOZELS

328 our Commodore ¢4

Here is the whole BLOCK-READ program.

186 OPEM 15.,8.15

20 OPEN 2.8.4, "#"

30 INPUT "TRACK", H

48 IWPUT "SECTOR", E

58 PRIMT#15, "B-R:"4,8,H,E

60 GET#2., A%

78 IF ST=0 THEM PRIMT A$,: GOTO £@
88 CLOSE 2: CLOSE 13

BLOCK-ALLOCATE

The BAM keeps arecord of all blocks that have been allocated (contain
data). In the higher-level instructions (SAVE and so forth) the DOS (Disk
Operating System) uses this information to determine where data can be
written on the diskette.

When you are using the direct-access functions, however, the DOS does
not use the BAM and you can write anything into any block on the diskette,
whether or not it already contains data. You can write data anywhere, even
over the directory and BAM, but you should avoid this. You can lose
normal access to everything on your diskette if you write to it indiscrimi-
nately. It is therefore advisable to performa BLOCK-ALLOCATE instruc-
tion before attempting to write a block.

The BLOCK-ALLOCATE instruction checks a sector to determine if it
already contains data. If it is available (as indicated in the BAM), it marks
the sector as allocated. If it is already allocated, it leaves the BAM
unchanged and indicates the next available sector in the error channel.

Here is a routine to perform a BLOCK-ALLOCATE.

16 OPEM 15.8,15

20 IMPUT "TRACK", H

38 IWPUT "SECTOR", B

40 PRINT#15, "B-A:"@,A,B

The components of the BLOCK-ALLOCATE instruction are as follows:

PRINT#15, activates the command channel
“B-A:” is the BLOCK-ALLOCATE instruction
0 s the drive number
A s the track number
B s the sector number.

Chopter & Perpneral Devices 329

68 INPUT#15.E.EM$.T,5
78 PRINT E.EM$

8@ PRINT T.5

90 CLOSE 15

93 END

After every disk operation the disk status can be read through the error
channel. This is accessed by reading the values of four variables available to
the command channel (15). In the case of a BLOCK-ALLOCATE instruc-
tion, the error channel will tell you if the track and sector you chose are
available. If they are not available, it will give you the number of the next
available track and sector.

Line 60 checks the error channel, putting the information contained in
it into variables E (error code), EMS$ (error message), T (track), and S
(sector). Lines 70 and 80 print the data and lines 90 and 99 close the channel
and end the program.

If you were using this as a subroutine within a program, you could use
the data obtained from the error channel to allocate another block if the one
you wanted was already occupied, since the next available track and sector
will have been placed into the error channel. If the sector is free, the message
“OK” will be displayed.

BLOCK-WRITE

Whenever you use BLOCK-WRITE, you should perform a BLOCK-
ALLOCATE first to determine if the sector you want to write to is available.
If it isn’t, you will know the next available sector.

The following BLOCK-WRITE program uses BLOCK-ALLOCATE
to check the selected sector:

19 OPEN 15.8,13

28 IMPUT "TRACK", A

38 IMPUT "SECTOR", B

48 PRINT#15, "B-A:"@,A,B

58 IMFUT#1S5.E.EM$.T.8

Now you must look at EM$ to determine whether the sector you selected is
available.

6@ IF EM§ = "OK" THEN 186

Ifitisn’t, then use the values obtained through the error channel as your new
track and sector.

330 o Cormrccon o
Cur Lo Saore ¢4

70 A=T
80 Bs=S

Note: If there are no more available sectors on the diskette, the error
channel will return track 0 and sector 0. These do not designate a real sector
and will cause anerrorif you try to write to that location. To make sure you
don’t have this problem, recheck the error channel. If there are zeros in
variables T and S, then you need to check for sectors with lower numbers.

50 IF A=@ AND B=@ THEW PRIMT "DISK FULL":GOTO 168
If you don’t get this error, continue with your BLOCK-WRITE.
198 PRINT "TRRACK",A,"","SECTOR",HB
105 OPEN 2.8.4.,"#"
11@ INPUT R$
If you input an X, the program will terminate data input.
120 IF A$="A" THEM 1358
If not, then put the data into your file
138 PRINTS#Z, A$
and go back for more.
140 GOTO 110
Use the following statement to put the data into your selected sector:

15@ PRIMT#153, "B-W:"4,8,H,B

Note: The format of the BLOCK-WRITE instruction is the same as
that of the BLOCK-READ instruction.
Once more, you must close your files and end the program.

160 CLOSE 2: CLOSE 13

BUFFER-POINTER

As you have seen, the data buffer stores information that is read in
from the diskette. The buffer pointer keeps track of which byte is being read
and advances by one each time a byte is read.

Chapter & Peripneral Devices 334

Suppose you wanted to read the data in a specific 240-byte file as
separate records. The first record resides in bytes | through 120 and the
otheris stored in bytes 121 through 240. Reading the files in order would be
easy because the BUFFER-POINTER would already be at the point where
the second file starts after reading the first file. But what if you only wanted
to read the second file?

One way to read the second file would be to perform 120 GET#
instructions, using a short loop, until you got to byte 121.

This can be accomplished more easily, however. The BUFFER-
POINTER instruction will allow you to point at any byte in the buffer. Its
format is

PRINT#1S, “B-P:" sa;byte
where:
PRINTH#1S5, activates the command channel
“B-P:” is the BUFFER-POINTER command
sa; is the secondary address

byte is the byte you want to access.

For example, if you wanted to GET the 120th byte of a block, you
would use

FRINT#13, "B~P:"4,153

BLOCK-FREE

The BLOCK-FREE instruction will deallocate any block on the
diskette. This instruction tells the BAM to mark the block specified as
available, thus allowing data to be written to the block.

To perform a BLOCK-FREE, use the following format:

OPEN 15,815
PRINT#I1S, “B-F:” dr;trk;sec
where:
PRINT#I1S, activates the command channel
“B-F:" is the BLOCK-FREE command
dr is the drive number
trk is the track number

sec is the sector number.

332 Your Commodore ¢4

Here is a routine vou can use to free any block on the diskette.

i@ OPEN 15,8,15

28 IMPUT "TRACK", A

30 INPUT "SECTOR", B

4@ PRIMT#15, "B-F "@,A;B
5@ CLOSE 15

99 END

DISKETTE MEMORY MANIPULATION

The 1541 controller interprets external commands and causes the disk
drive mechanism to carry them out. The controller contains a 6502 micro-
processor, similar to the one inside the C-64. It has 2K of RAM and the Disk
Operating System (DOS), which is contained on two ROM chips.

Some of this memory is used for the buffers discussed in the last few
sections; some is used for housekeeping purposes such as maintaining the
BAM data and special file information; and some is available for you to use
for special applications.

The RAM that is available for you to write routines on is the same
R AM that is used by DOS for the buffers. If you decide to write a special
machine language program into those areas you will have to keep track of
which areas you are using and which areas you will reserve for buffers.
There are five pages of memory, each of which contains 256 bytes.

Buffer Memory Location
(Hexadecimal)
#1 300—3FF
#2 400 4FF
#3 500-—5SFF
#4 600—6FF
#5 700—7FF

It is not advisable to use buffer #5, because this buffer is often used by
DOS for various housekeeping activities. Although it is not always in use,
data placed there may alter DOS procedures or may be written over by
DOS.

The memory space in buffers 1 through 4 is used only by the buffers. If
you haven’t requested a buffer, and you know that one has not been opened

_ghg_pfgf _Eer\phe(o\ Ucvicos“ 333

by the system, you may use that memory freely. One method is to specify
which buffers you want when you open a disk channcl and write your
routines in one or two of the buffers that are not in use.

The information that follows is not intended for beginning pro-
grammers. The use of the MEMORY-READ, MEMORY-WRITE, and
MEMORY-EXECUTE commands requires a thorough understanding of
machine language programming and the Disk Operating System.

MEMORY-WRITE

To store data into the disk drive memory, you will need to use the
MEMORY-WRITE command. Like POKE in BASIC, this instruction
puts whatever data you specify into any memory location you want. Take
the example of a POKE statement.

POKE 768. 255

There is only one byte transferred with each POKE statement. The
MEMORY-WRITE command allows you to transfer up to 34 bytes with 4
single statement. To perform the same operation using MEMORY-WRITE
you would need to convert the decimal memory location into a hexadecimal
number; 300 is the hexadecimal equivalent of decimal 768. Since you can
transfer only one byte at a time with a POKE command, BASIC always
knows how many bytes to expect. With the MEMORY-WRITE command,
you will need to indicate how many bytes are going to be transferred. In this
case, only one byte is going to be transferred, so the command will be quite
short.

There are some special constraints that must be used with these instruc-
tions since they are actually just extensions of machine code.

1. The memory address must be entered as two bytes, low byte first,
then high byte.

2. All of the data must be transferred as character strings (CHRS).

3. The 6502 understands only binary data. The instruction allows you
to enter numbers in hexadecimal; but BASIC doesn’t use that
notation. For instance,

65536 decimal = FFFF hexadecimal
This is two hexadecimal bytes (FF and FF). To represent them
in this mode, take the two bytes and convert each to its decimal

334 o Commodore ¢4

equivalent, 255. The number 65536 would then be stored into the
1541’s memory as CHR$(255)CHR$(255). Any number that can be
expressed in only one byte (0 to 255) must be entered that way.

4. You must indicate how many bytes are being transferred. This
should also be expressed as hexadecimal numbers converted to
decimal notation, as above.

5. The MEMORY-WRITE instruction must be abbreviated “M-W?”.
No colon or other punctuation is allowed.

The code, then, to store 255 into memory location 768 ($0300) is as
follows:

OPEM 15,8,15
PRINT#15, "M-~W"CHR# (@B ICHR$ (A3 ICHRE (1) CHR$ (235
CLOSE 15

MEMORY-READ

It is possible to read any memory location in the 1541 using the
MEMORY-READ instruction. This instruction allows you to read one byte
ata time from the disk drive memory, similar to the way PEEK allows you to
read one byte at a time from the C-64’s memory.

The BASIC instruction to read memory location 768 would be

PRINT FEEK(7?EB)

The same instruction using the MEMORY-READ instruction would look
like this.

40 OPEMN 13.,8,15

58 PRINT#15, "M-R"CHR& BB)CHRE (A3
60 GET#15, A%

78 PRINT A$

80 CLOSE 15

This is what happened: first, we opened the command (error) channel
and then requested the MEMORY-READ instruction. On the same line
(with no additional punctuation) the byte to be read was specified (low byte
first, then high byte). This is memory location 300 --the same as 768 decimal.

Chapter & Peripheral Devices 335

Note: The instruction “M-R” is the only valid way to invoke this
instruction. Spelling out the instruction will cause an error.

After the data in that location are read, they can be transferred to the
computer through the error channel (#15). To read them from the error
channel we used the instruction GET# 15, AS$. The values were then avail-
able as variable A$, which we printed to the screen. Finally, we closed the
command (error) channel.

Since the data read from the 1541 memory are transmitted through the
error channel, you should not try to read an error condition from the error
channel again until you have closed it and reopened it. If you do not do this,
you will get the data which were transmitted instead of the error message.

MEMORY-EXECUTE

The MEMORY-EXECUTE instruction is used to run a machine lan-
guage program that has been entered into the 1541°s memory. The program
must end with an RTS instruction so that the processor will return control to
the C-64; otherwise the 1541’ internal memory will probably go into an
endless loop—if not worse.

The format of the MEMORY-EXECUTE (M-E) instruction is essen-
tially the same as that of the MEMORY-READ instruction.

48 OPEM 15.8,15

50 PRINT#15, "M=-E"CHR$(OQ)CHR$A3Z)

€0 CLOSE 15
This sequence will send the DOS into a routine that begins at the 1541’s
memory location 300 (768 decimal).

USER COMMANDS

The 1541 makes use of a number of commands called user commands
(do not mistake these for USR routines, which are a part of BASIC). These
commands perform a number of convenient functions that are similar to the
other commands in this section.

U1

The Ul command is similar to BLOCK-READ. In fact, its format is
identical. Look at the BLOCK-READ command. B-R is simply replaced

with Ul. The B-R command reads only the data in a particular block
(sector). The Ul command reads all the information in the block, including
the two bytes that precede the 254 data bytes. These bytes contain the link to
the next block. The link is the track and sector to go to next.

v2

The U2 command is similar to BLOCK-WRITE. The format of the U2
command is identical to that of B-W. The difference between these two
commands is that invoking B-W terminates the file. That is, the track and
sector link (the two bytes that precede the 254 bytes of data in the block) are
set to indicate that this block is the end of a file. The next track and sector
are not pointed to.

Obviously, this can cause some problems. If, for instance, you wanted
to write some data into the middle of some existing data, using the B-W
instruction would end the file in the middle. U2, however, would not. It
allows you to write in the next track and sector or to leave it the same.

U3-u9

The next few user commands are simila: to the MEMORY-EXECUTE
command. They jump to a specific location in memory and begin executing
at that location. The locations they jump to are listed in Table 8-3.

The syntax for the U3 command, for example, is

OPEM 15.8,15
PRINT#15, "U3:"
CLOZE 15

The command U: (or UJ) will jump the DOS to its power-up routine.
The locations that the user commands jump to are only three bytes long.
This is because they are intended to contain a JMP machine code instruc-
tion to go to a program that you define.

Chaoter & Peripheral Devices 337

THE MODEM

The modem allows your C-64 computer to communicate with other
computers over telephone lines. This will allow your C-64 to talk to other
C-64’s directly and to access the various computer networks. These allow
you to use your C-64 as a terminal to a large mainframe computer some-
where in the network. The networks give you access to informtion such as
stock market reports, articles from a variety of publications, airline sche-
dules, and messages from other computer users.

Installing the Modem

To install the modem, perform the following steps:

U S A

Turn off the power to your C-64.

Plug the modem into the C-64’s user port (see Figure 1-2).
Turn the C-64 back on.

Load a program to operate the modem.

Dial the appropriate phone number to reach either the network you
wish to access or the other computer you are calling.

If you are accessing one of the networks, you will need to code
in, on the C-64, your 1D and access code numbers.

If you areaccessing another computer, you will need to set your
modem to “O” (originate), and the computer you are calling must be
set to “A” (answer).

. When you hear a high-pitched tone, unplug the telephone receiver

and plug the cord into the modem.

Note: If you have a Trimline telephone, you will need a special
adapter for the modem; it will not work with this kind of telephone
because the telephone electronics are in the handset, which you
unplug when you disconnect the cable.

. Put the handset aside. Do not hang it up; this will disconnect the

modem.

338 . Commodore ¢4

Terminology
The following is a list of common terms used in telecommunications:

Modem The peripheral device used to convert the signals output by
your computer into information that can be transmitted over the
telephone lines. (“Modem™ stands for “modulate/demodulate.”)

Handshaking The process of sending data and waiting for an acknowl-
edgement from the receiving computer.

Full/half duplex These are two modes of handshaking. In full duplex
mode, a computer sends some data and the receiving computer
repeats the data back to the originating computer. If the data
returned are the same as those sent, the originating computer
sends the next byte. If they are incorrect, the data are sent again.
In half duplex mode, the originating computer sends data and the
receiving computer simply acknowledges that the data have been
received.

Baud rate This indicates the maximum speed at which data are trans-
mitted and received. The VIC Modem sends and receives data at
300 baud. Another way of describing baud rate is in BPS, or bits
per second. A system running at 300 baud will send/receive 300
bits of data per second.

Answer/originate When you connect to one of the networks, you will
be calling the system. Since you are originating the call, your
modem should be set to “originate.” This sets up the “introduc-
tory” protocol in the electronics. If you are communicating
directly with another computer, one computer must be in origi-
nate mode and the other in answer mode. Once communications
have been established, it makes no difference which is which.

Parity In order to verify that the data transmitted are correct, some
computers will send an extra bit called the parity bit along with
the data. If the total of all the “ON” (or 1) bits, including the parity
bit, is aneven number, the transmission is odd parity. If the parity
bit is missing, the transmission has no parity. To communicate
properly, both computers must be set to the same parity.

Word length This is the number of bits in each byte. Most computers
use a word length of seven or eight bits.

Chapter 8. Peripheral Devices 339

Start/stop bits Some computers require that a certain number of null

bits be transmitted after each byte. These null bits are called stop
bits. If the system uses these, the most common number is one
stop bit and one start bit. If this is the case, the total number of
bits per byte increases to ten. This will slow the effective transmis-
sion rate slightly, but will not impair the operation of the C-64 or
the modem.

Line feed Attheend of aline of data, the computer will typically send a

carriage return. Some systems also require a line feed after each
line or data file.

ASCII Thisisthestandard coding used to communicate the numbers 1

through 9 and upper- and lower-case letters. There are also a
number of standard symbols and special characters used in the
ASCII (American Standard Code for Information Interchange)
system. The C-64 uses an extension of the ASCII character set for
its extended character set, but should use this extended set only
when communicating with other Commodore computers.

THE 1525 PRINTER

The 1525 Printer has a built-in character set that closely resembles the
character set of the C-64. It includes upper- and lower-case letters, numbers,
and graphic symbols. You can use the 1525 printer to print fully program-
mable custom graphics of almost any size.

OPEN Statement

In order to access the 1525 printer you must open a file toit. The OPEN
statement for the printer has the following format:

OPEN fn, dn, sa

where:
fn

dn

sa

The file number is the number you choose to access the file. You may choose
any number between 0 and 255

The device number for the printer may be either 4 or 5. This number may be
selected using a switch at the rear of the printer

In most cases, you will not use a secondary address when you access the print-
er. The one exception to this is covered in the section on the 1515 printer’s
character sets.

340 . Commodoe 4

Once you have opened a file to the printer, all you need to do to print to
the printer is put your data in a PRINT# statement, such as

PRINT#L, “YOUR DATA GOES HERE”

The printer will print

YOUR DATA GOES HERE

CLOSE Statement

After you have finished accessing a file, whether it is to the printer or
any other device, you should always close the file. To close a file you would
use the following format:

CLOSE file number
If you opened a file with a file number of 1, such as
OPEM 1.4

then you would close with

CLOSE 1

CMD Statement

Everything the C-64 outputs will normally be sent to the video display.
The video display is known as the primary outpur device. 1t is possible,
however, to change this to some other device, such as the printer, so you can
print listings instead of merely looking at them on the screen.

This is done with the CM D instruction. The format of a CMD instruc-
tion is

CMD device number

Let’s instruct the C-64 to use the printer as the primary output device.
First we’ll need to OPEN a file to the printer.

OFEM 1.4

Then we can use the CMD instruction as follows:
CMD 1

Chapter 8 Pernipheral Devices 341

Now everything that the C-64 would normally display on the screen will
be printed on the printer, including the READY message, the display, and
error messages. Your entries will still be displayed on the screen. To see this,
try performing some PRINT statements.

EXITING THE CMD MODE
There are three ways to exit the CMD mode.

1. Press RUN/STOP and RESTORE at the same time. This will reset the
entire system and restore the computer to its default condition.

2. Redirect the CMD instruction to another device, such as the video
screen, device #3.

CMD 3

3. Enter a PRINT# instruction to the primary device. For example, if
you had made the primary device #1 with CMD 1, you would exit
this mode with

PRINT#1

Of the three methods, the last—using a PRINT# instruction—is pre-
ferred because it will exit the CMD mode and also empty the printer buffer.
Characters may have been left there from an incomplete PRINT statement
(one that was terminated with a semicolon).

THE 1525 Printer’'s Character Sets

Type your name at the C-64’s keyboard. Press RETURN and type some
hearts (SHIFTS) on the next line. Now press the Commodore symbol key and
SHIFT at the same time. The letters of your name will become lower-case
letters and the hearts will become upper-case S’s.

Both the C-64 and the 1525 have two separate character sets available,
and you can select either set at any time. There are two ways to select the

different character sets.
1. Specify a secondary address of 7 when you OPEN the printer file.

OPEN 1.4.7

This will select the alternate character set.

342 ‘our Commodore #4

To access the default character set (the one that is displayed
when you first turn the C-64 on), OPEN your printer file with

OPEMW 1.4

leaving out the secondary address.

2. Print the command CHRS$(14) for the alternate character set or
CHR$(142) for the standard character set, as in the following
example:

18 OPEN 1.4
28 PRIMT#1,CHR%$(17),"LOLWER CARSE"

38 PRINT#!1,CHR$(143); "UFPPER CHSE"
40 CLOSE 1

Print Formatting

The formatting instructions TAB and SPC and the comma and semi-
colon help you to position data on the video screen. Although the printer
also uses these instructions, it does not treat them exactly as the video
display does.

THE COMMA

The comma starts data in two specific locations on the video screen:
column 0 and column 11. Try this example.

186 FOR T=@ TO 3@

28 PRIMT T,

38 NEXT

Notice that two even columns are displayed, even though the numbers
in them are of different lengths. On the printer, a comma will put 11 spaces
between your entries, but they will not necessarily wind up in even columns.
Try the same program on the printer.

5 OPEN 1.4

18 FOR T=8 TO 3@
28 PRINT#1, T,
38 MEXT

48 CLOSE 1

THE SEMICOLON

The semicolon operates in the same way on the printer as it does on the
video display. It is used to separate variables without putting spaces

Chapter 8: Peripheral Devices 343

between them. Remember, however, that numeric variables will still be
preceded by a space even with the semicolon. To see this, try the following
program:

18 OFEM 1.4

28 A=21 @ B=3@0 '@ AB=57
3@ PRINT#1.A,B;HB

TAB and SPC

The TAB and SPC instructions are so similar that they are often
confused. The TAB function designates an absolute position, and the SPC
function indicates a relative position. The following TAB statement will
print an asterisk in column 10 of the screen:

PRINT TRB(1@>,"&"

Now try the following statement. It will print one asterisk in column 10
and another in column 11.

PRINT TRBC1@5,;"%",TAB(1@),"%"

The SPC instruction begins at the current cursor position and counts
the indicated number of spaces over from that point. Try the following SPC
statement:

PRINT SPCC103;"#";SPCC10); "4

Although this line looks almost identical to the TAB statement above, it
prints one asterisk in column 10 and another in column 21. This happens
because the SPC function starts counting at the space immediately after the
first asterisk (column 11) and puts the next asterisk ten spaces away.

Using POS to Tab the Printer

When used in PRINT# statements, TAB and SPC both act like SPC.
Note, however, that TAB and SPC cannot appear directly after PRINT#
(for example, PRINT#1, TAB(20)).

To take a look at these two functions, first open the printer file with

OFEMW 1.4

Now type in the following line:

PRINT#1,""SPCC1O2,"4";SPCC1@),;"4"

344 . Commodore ¢4

This will print one asterisk in column 10 and another in column 21 on the
printer.

If you replace the SPC instruction with TAB, you will get exactly the
same results. Try the following example:

PRIMT#1,"", TRBL1@); "#" ; TAB(1B, "%"

To produce the TAB function on the printer, you will need to use the
POS instruction. POS is sent to the printer as CHR$(16). Try the following
example:

PRINT#1,CHR$C(16), "10%" ,CHREC 165 " 10"

CHRS$(16) is the POS instruction. When the printer encounters this
command, it uses the two characters immediately following the command
to determine where on the line to begin printing.

You can also use the character codes of the numbers to indicate the
position.

FRINT#1, CHR$:15), CHR$(43), CHRF(43Z), "#"
Note: CHR$(49) is 1 and CHR$(48) is 0.

Printer Graphics

The printer has several different modes, which are described in Table
8-4. The characters it receives will be treated differently in each mode.

By using the various modes, you can print anything from standard text
to full dot graphics.

DOUBLE/SINGLE-WIDTH CHARACTERS

To print double-width characters on the 1525 printer, use the command
CHRS$(14) before the string you want printed.

PRIMT#1,CHR£(142,"THIS SHOULD PRINT WIDE"
To return to normal width, use the command CHR$(15).
PRIMT#1.CHR$(145, "WIDE" ;CHE#(157, "MARROW"

REVERSE CHARACTERS

Reverse field characters can be printed using the command CHR$(18).
Try it with this example.

PRIMT#1,CHR&(15), "REVERSE CHRARACTERS"

Chapter 8: Peripheral Devices 345

TABLE 8-4. Printer Modes

Mode Printer Command

PRINT DOUBLE-WIDTH CHARACTERS CHRS$(14)
PRINT SINGLE-WIDTH CHARACTERS CHRS$(15)
PRINT REVERSE CHARACTERS CHR$(18)
PRINT NON-REVERSE CHARACTERS CHR$(146)
GRAPHICS MODE CHR$(8)
ALTERNATE CHARACTER SET CHRS$(17)
STANDARD CHARACTER SET CHRS$(145)
REPEAT GRAPHICS MODE CHR$(26)

Notice that the command CHR$(18) is the same as the CHRS function,

which prints reverse characters on the video screen. On the screen, typing

‘ CTRL RVS ON switches to reverse characters. This also works on the printer
if you put the instruction in a PRINT# statement like the following:

FRINT#1, "<CTRLZ<EVS OW>")"REVERSE CHRARACTERS"

Youcanuse either CHRS$(146) or CTRL RVS OFF to leave reverse mode.

GRAPHICS

The command CHRS$(8) causes the printer to enter the graphics mode.
Graphics are created by printing patterns of dots. For instance, a
smiling face could be made up of dots in the following pattern:

346 our Commodore ¢4

This patternis converted into a set of numbers to be sent to the printer.
This is done as follows: the rows (horizontal dots) are each given a numeric
value. The top row is 1, the next row down is 2, and so forth, with each
successive row being double the value of the one above it. The value of the
seventh row is 64. Add up the numbers in the places that you want to print
dots. To this number you then add 128, and that is the number that you put
into the printer.

Let’s examine the smiling face and determine what the value of each
row should be to print it on the printer.

4+ 8+ 16=28 ~—
2+ 8+32=42+——
I+ 4+ 16+ 64 =85

14 16+ 64 = 81
1+ 16+ 64 = 81
1+ 4+ 16+ 64=85
2+ 8+32=42
4+8+16=28

Look at column A. The dark squares represent locations in which the
printer should print dots. Adding up the values of the locations in column A
we get: 4 + 8 + 16 = 28. Column Bis 2 + 8 + 32 = 42,

If you continue through all eight columns you will get the values 28, 42,
85, 81, 81, 85, 42, and 28.

Chapter 8: Peripheral Devices 347

To print these as a graphic shape, put the values into CHR$ statements,
such as the following:

18 DATA 28.42,85,81,81.,85,42.286
26 OFEN 1.4

38 PRINT#1., CHR$(B),

48 FOR R=1 TO B

58 READ A

£0 PRINT#1,CHR$(A+1282,

70 NEXT

80 PRINT#1

98 PRINT#1

This will print a smiling face on the printer. You can print more smiling
faces by repeating this pattern.

You can also use the function keys to produce the special characters.
Here’s a short program that prints whatever text you enter into it, plus a
smiling face.

The smiling face will be printed (on the printer only—an asterisk will be
printed on the screen) each time you hit the Fi key.

186 OPEN 1.4

208 GET R$: IF A#="" THEWM 20
30 IF A% = "<F1>" THEHW 78
48 PRINT#1., A#

S50 PRINT A%,

€8 GOTO 2@

78 DATA 28.,42,85,81,81,85.42,28
8@ PRIMT#1,CHR$(8),

56 FOR R=1 TO 8

188 READ A

118 PRINT#1, CHRE(A+12B8);
120 MEXT :PRINT "#'",

130 PRIMT#1, CHR$(13)

148 RESTORE: GOTD 2@

GRAPHICS REPEAT FUNCTION

The graphics repeat function allows you to print any pattern of seven
vertical dots as many times as you like (up to 255 times per command).
Here’s an example of a repeat function.

OPEN 1.4
PRINT#1, CHR$(Z6)CHR$(10)CHR$(255)

348

Your Commodore 64

This will print a solid horizontal bar seven dots high by ten dots long.
CHRS$(26) is the repeat function, CHRS$(10) is the number of times to
repeat, and CHR$(255) produces the dot pattern containing seven vertical

dots.

This function can easily be incorporated into the smiling face routine
above and used to expand the face.

10
20
30
40
50
60
78
80
908

DATA 28.42.85.81,81,835.42,28

OPEN 1.4

INPUT "WIDTH",W

PRIMT#1,CHR$(8),

FOR R=1 TO 8

READ A

PRINT#1,CHR$(26> CHR$(W> CHRS(A+128;
NEXT

PRIMT#1

Put different values into the width variable when the program requests
it and notice how the picture changes. Of course, this becomes impractical
at some point, since it can become so wide that it is no longer recognizable.

APPENDIX

System Architecture

Figure A-1 is a block diagram of the C-64’s design architecture. It
illustrates the relationships between several of the system elements described
in Chapter 1. The arrows show the flow of data between these elements.

Vi Audi
ldgo 64K RAM Audfo
Interface Interface
Game . ROM
Controller 6567 Cartridges
-t VIC 11 Bt
Chip
€526 ™ T6K ROMs:
Keyboard - (,:I A i o310 BASIC and
K ‘ Micro- =% Operating
(X2) processor System
10 -
Lol 6581
Cassette | SID Chip
Interface [
Light 4|—> L Character
Pen Parallel ROM
Serial I O
Ports

FIGURE A-1. System block diagram
349

APPENDIX

Memory Usage

The main function of any memory map is to help you utilize the many
built-in functions of your computer. The following memory guide does not
catalog every memory location in the C-64 map. Instead, it indicates those
locations that are the most useable and includes a detailed explanation of what
each location does and how it works.

INTERPRETING POINTERS

Many of the memory locations included in this guide are paired. Instead
of performing the indicated function, these locations point to the location of
the function listed. This allows you to move certain functions around in
memory. For example, location 648 (which contains a 1-byte address) points
to the beginning of the screen memory. By changing this number, you can use
different parts of memory for the screen. By doing this you can set up different
screens and switch between them by changing the number in this location.

In addition, some of these locations keep track of functions within the
computer such as location 144, which monitors the status of the current I/ O
device logged onto the system. By reading the value in this location, you can
determine an OK condition or, if necessary, an error condition.

351

352 ‘our Commodore 64

Those locations that are organized as address pairs contain two numbers
which represent a single hexadecimal number. To convert these two numbers
into a decimal value (for PEEKing or POKEing) use the following formula:

value = lower memory location + (upper memory location X 256)

Here is a short BASIC routine that will perfom this function for you.

10 INPUT "VALUE IN LOWER MEMORY LOCATION"; L
20 INPUT "VALUE IN HIGHER MEMORY LOCATION":; H
30 PRINT "DECIMAL VALUE ="; L+256%H

Memory
Location

43 & 44

45 & 46

47 & 48

49 & 50

51 & 52

55 & 56

144

160 — 162

10 A=PEEK(160)
20 B=PEEK(161)

Function

These locations contain the address of the first
byte of your BASIC program.

These locations contain the address of the first
byte of the variables in your BASIC program.

These locations contain the address of the begin-
ning of the BASIC arrays.

The number stored in these locations is one byte
higher than the end of BASIC arrays.

The number in these locations point indicate the
lowest memory location used for storing the
strings in your BASIC program.

These two locations indicate the highest memory
location used by BASIC.

The I/ O status byte. This location stores a number
which indicates the condition I/ O device in opera-
tion. A zero in this location indicates a OK condi-
tion. Table 8-2 (in Chapter eight) gives the error
codes for any other number in this location.

The jiffy clock. The number in these three loca-
tions is a straight binary number. To interpret its
value, use the following routine:

Appendix B: Memory Usage 353

30 C=PEEK(162)

40 D=C+((256)%B)+(45536%A)

S0 PRINT D

192

197

198

631 — 641

641 — 642

643 — 644

648

649

650
651

This is the cassette motor interlock. Ordinarily it is
used to turn the Datassette on and off during read
and write operations. It can also be usedasan /O
line to control other low current devices. See Fig-
ure C-6 for the location of the CASSETTE
MOTOR line of the cassette port.

The value of the current key being pressed can be
read in this location.

This location can be read to determine how many
characters are currently in the keyboard buffer
(there are a maximum of ten). Any keystrokes
after the tenth entry will be lost.

The keyboard buffer.

These locations point to the lowest memory loca-
tion of the operating system.

These locations point to the highest memory loca-
tion of the operating system.

This location controls the location of screen mem-
ory. The actual location of the screen can be found
by multiplying the number stored here by 256.

This location controls the size of the keyboard
buffer. By changing this value (which is initialized
to ten whenever the system is reset) you can con-
trol the number of keystrokes that will be stored
while the computer is operating.

Repeat key ON/OFF. ON = 128, OFF = 0

Repeat rate. This location controls the speed of the
repeat finction.

354 o Commodore 64

652

567

770 — 771
788 — 789
1024 — 2023
2040 — 2047
2048 — 40959

32768 — 40959

40960 — 49151
49152 — 53247

53248 — 542711

53248
53249
53250
53251
53252
53253
53254
53255
53256

Repeat delay. This location determines how longa
key must be depressed before it will begin re-
peating.

Enable/ Disable SHIFT function. This location
controls the keyboard access to the alternate char-
acter set obtained through (COMMODORE/
SHIFT).

Warm start vector. A SYS to this location has the
same effect as hitting RUN/STOP-RESTORE.

Hardware IRQ (Interrupt Request) vector.
Location of Screen Memory at power up.

These locations control the locations of the sprites
in memory.

Free RAM space.

These memory locations can be used by an ex-
ternal cartridge. If they are used, the RAM will be
overlaid.

BASIC interpreter.

4K Buffer RAM. This RAM is available for your
use. If you place data in this area it will not affect
the normal BASIC RAM down at 2048 — 40959.

VIC II Chip Control Registers

Sprite #0: X position
Sprite #0: Y position
Sprite #1: X position
Sprite #1: Y position
Sprite #2: X position
Sprite #2: Y position
Sprite #3: X position
Sprite #3: Y position
Sprite #4: X position

Appendix B: Memory Usage 355

53257
53258
53259
53260
53261
53262
53263
53264

53265

53266
53267
53268
53269

53270

53271

Sprite #4: X position

Sprite #5: X position

Sprite #5: Y position

Sprite #6: X position

Sprite #6: X position

Sprite #7: X position

Sprite #7: Y position

Sprites 0—7 MSB of X position

VIC II Chip Control Register
Bits 0-2: Smooth Scroll (Y direction)
Bit 3: 24/25 Row Select (24=0)
Bit 4: Screen Blanking (Blank=0)
Bit 5: Enable Bit Map Mode (I=ON)
Bit 6: Extended Color Text (1I=ON)
Bit 7. Raster Value Register (MSB)

Raster Value Register (Bits 0-7)
Light Pen (X Value)
Light Pen (Y Value)

Sprite Display Control Register
Bit 0: Sprite #0 (1=ON)
Bit 1: Sprite #1 (1=ON)
Bit 2: Sprite #2 (1=ON)
Bit 3: Sprite #3 (I=ON)
Bit 4: Sprite #4 (I=ON)
Bit 5: Sprite #5 (1I=ON)
Bit 6: Sprite #6 (1=ON)
Bit 7: Sprite #7 (I=ON)
VIC II Control Register #2
Bits 0-2: Smooth Scroll (X direction)
Bit 3: 38/40 Column Select (1=40)
Bit 4: Multicolor Mode (1=ON)
Bits 5-7: Not Used

Sprite Expansion Register (Y direction)
Bit 0: Sprite #0 (1=2X)

356 our Commodore ¢4

Bit 1: Sprite #1 (1=2X)
Bit 2: Sprite #2 (1=2X)
Bit 3: Sprite #3 (1=2X)
Bit 4: Sprite #4 (1=2X)
Bit 5: Sprite #5 (1=2X)
Bit 6: Sprite #6 (1=2X)
Bit 7: Sprite #7 (1=2X)
53272 VIC II Address Control Register
Bit 0: Not Used
Bits 1-3: Character Set Location
Bits 4-7: Screen Location

53273 VIC II Interrupt Control Register
Bit 0: Raster Compare
Bit 1: Sprite-Background Collision
Bit 2: Sprite-Sprite Collision
Bit 3: Light Pen Interrupt
Bits 4-6: Not Used

53274 VIC II Interrupt Enable Register
Bit 0: Raster Compare (1=ON)
Bit 1: Sprite-Background Collision (1=ON)
Bit 2: Sprite-Sprite Collision (1=ON)
Bit 3: Light Pen Interrupt (I=ON)
Bits 4-6: Not Used (I=ON)

53275 Sprite-Background Priority Register
Bit 0: Sprite #0 (I=SPRITE)
Bit 1: Sprite #1 (I=SPRITE)
Bit 2: Sprite #2 (I=SPRITE)
Bit 3: Sprite #3 (I=SPRITE)
Bit 4: Sprite #4 (I=SPRITE)
Bit 5: Sprite #5 (I=SPRITE)
Bit 6: Sprite #6 (I=SPRITE)
Bit 7: Sprite #7 (1=SPRITE)

53276 Sprite Multicolor Control Register
Bit 0: Sprite #0 (1=Multicolor)
Bit 1: Sprite #1 (1I=Multicolor)
Bit 2: Sprite #2 (1=Multicolor)

Appendix B Memory Usage

357

53277

53278

53279

53280

Bit 3: Sprite #3 (1=Multicolor)
Bit 4: Sprite #4 (1=Multicolor)
Bit 5: Sprite #5 (1=Multicolor)
Bit 6: Sprite #6 (1=Multicolor)
Bit 7: Sprite #7 (1=Multicolor)

Sprite Expansion Register (X direction)

Bit 0:
Bit 1:
Bit 2:
Bit 3:
Bit 4:
Bit §:
Bit 6:
Bit 7:

Sprite #0 (1=2X)
Sprite #1 (1=2X)
Sprite #2 (1=2X)
Sprite #3 (1=2X)
Sprite #4 (1=2X)
Sprite #5 (1=2X)
Sprite #6 (1=2X)
Sprite #7 (1=2X)

Sprite-Sprite Collision Register

Bit 0:
Bit 1:
Bit 2:
Bit 3:
Bit 4:
Bit 5:
Bit 6:
Bit 7:

Sprite #0 (I=Collision Detect)
Sprite #1 (1I=Collision Detect)
Sprite #2 (1I=Collision Detect)
Sprite #3 (I=Collision Detect)
Sprite #4 (I=Collision Detect)
Sprite #5 (1=Collision Detect)
Sprite #6 (1=Collision Detect)
Sprite #7 (1=Collision Detect)

Sprite-Background Collision Register

Bit 0:
Bit 1:
Bit 2:
Bit 3:
Bit 4:
Bit 5:
Bit 6:
Bit 7:

Sprite #0 (I=Collision Detect)
Sprite #1 (1=Collision Detect)
Sprite #2 (I=Collision Detect)
Sprite #3 (I=Collision Detect)
Sprite #4 (1=Collision Detect)
Sprite #5 (I=Collision Detect)
Sprite #6 (1=Collision Detect)
Sprite #7 (I=Collision Detect)

Screen Border Color
0 = BLACK
1 = WHITE
2=RED

358 \our Commodore ¢4

3= CYAN

4= PURPLE

5= GREEN

6 = BLUE
7=YELLOW

8 = ORANGE

9= BROWN

10= LIGHT RED

11 = DARK GREY
12= MEDIUM GREY
13 = LIGHT GREEN
14 = LIGHT BLUE
15= LIGHT GREY

53281 Background Color #1

0= BLACK

1 = WHITE
2=RED

3= CYAN

4= PURPLE

5= GREEN

6 = BLUE

7= YELLOW

8 = ORANGE

9 = BROWN
10= LIGHT RED
11 = DARK GREY
12= MEDIUM GREY
13= LIGHT GREEN
14 = LIGHT BLUE
15= LIGHT GREY

53282 Background Color #2
0= BLACK
1 = WHITE
2=RED
3= CYAN
4= PURPLE
5= GREEN

Appendix B: Memory Usage 359

6 = BLUE
7=YELLOW

8 = ORANGE

9 = BROWN
10 = LIGHT RED

11 = DARK GREY
12= MEDIUM GREY
13 = LIGHT GREEN
14 = LIGHT BLUE
15= LIGHT GREY

53283 Background Color #2
0= BLACK
1 = WHITE
2=RED
3= CYAN
4 = PURPLE
5= GREEN
6 = BLUE
7= YELLOW
8 = ORANGE
9= BROWN
10= LIGHT RED
11 = DARK GREY
12= MEDIUM GREY
13= LIGHT GREEN
14 = LIGHT BLUE
15= LIGHT GREY

53284 Background Color #3
0= BLACK
1 = WHITE
2=RED
3= CYAN
4= PURPLE
5= GREEN
6 = BLUE
7=YELLOW
8 = ORANGE

360 ‘our Commodore ¢4

9= BROWN

10 = LIGHT RED

11 = DARK GREY
12= MEDIUM GREY
13= LIGHT GREEN
14= LIGHT BLUE
15= LIGHT GREY

53285 Sprite Multicolor Register #0
53286 Sprite Multicolor Register #1

53287—53294 Sprite Color Registers 0-7

0= BLACK

1= WHITE

2= RED

3= CYAN

4= PURPLE

5= GREEN

6 = BLUE
7=YELLOW

8 = ORANGE

9= BROWN
10= LIGHT RED
11 = DARK GREY
12= MEDIUM GREY
13= LIGHT GREEN
14= LIGHT BLUE
15= LIGHT GREY

54272 — 55295 SID Chip Control Registers
54272 — 54278 Sound Register #1

54272 Frequency Control (Low Byte)
54273 Frequency Control (High Byte)
54274 Pulse Width Value (Low Byte)
54275 Pulse Width Value (High Byte)
54276 Sound Control Register

Bit (): Sound ON/OFF (1=0N)

Appendix B Memory Usage

361

54277

54278

54279 — 54285
54279
54280
54281
54282
54283

54284

54285

54286 — 54292
54286

Bit 1: Sync Bit (I=0ON)

Bit 2: Ring Modulation (1=0ON)

Bit 3: Test Bit (Normally not used)

Bit 4: Triangle Wave (1=ON)

Bit 5: Sawtooth Waveform (1=ON)

Bit 6: Square Wave (1=ON)

Bit 7: White Noise (1=0ON)
Attack/Decay Control Register

Bits 0-3: Decay Value
Bits 4-7: Attack Value

Sustain/ Release Control Register
Bits 0-3: Release Value

Sound Register #2

Frequency Control (Low Byte)
Frequency Control (High Byte)
Pulse Width Value (Low Byte)

Pulse Width Value (High Byte)

Sound Control Register
Bit 0: Sound ON/OFF (1=0ON)
Bit 1: Sync Bit (1=0ON)
Bit 2: Ring Modulation (1=ON)
Bit 3: Test Bit (Normally not used)
Bit 4: Triangle Wave (1=ON)
Bit 5: Sawtooth Waveform (1=ON)
Bit 6: Square Wave (1=0ON)
Bit 7: White Noise (1=0N)

Attack/Decay Control Register
Bits 0-3: Decay Value
Bits 4-7: Attack Value

Sustain/ Release Control Register
Bits 0-3: Release Value
Bits 4-7: Sustain Value

Sound Register #3
Frequency Control (Low Byte)

362 ‘our Commodore 64

54287 Frequency Control (High Byte)
54288 Pulse Width Value (Low Byte)

54289 Pulse Width Value (High Byte)
54290 Sound Control Register

Bit 0: Sound ON/OFF (1=0N)
Bit 1: Sync Bit (1=0ON)
Bit 2: Ring Modulation (I=ON)
Bit 3: Test Bit (Normally not used)
Bit 4: Triangle Wave (I=ON)
Bit 5: Sawtooth Waveform (1=ON)
Bit 6: Square Wave (1=0ON)
Bit 7: White Noise (1=ON)

54291 Attack/Decay Control Register

Bits 0-3: Decay Value
Bits 4-7: Attack Value

54292 Sustain/Release Control Register
Bits 0-3: Release Value
Bits 4-7: Sustain Value

54293 — 54296 Sound Filter Functions

54293 Filter Cutoff Value (Low Byte)
54294 Filter Cutoff Value (High Byte)
54295 Filter/ Resonance Control Register

Bit 0: Sound Register #1 Filter (1=ON)
Bit 1: Sound Register #2 Filter (1=ON)
Bit 2: Sound Register #3 Filter (1=ON)
Bit 3: External Filter (I=ON)

Bits 4-7: Resonance Value

Bits 4-7: Sustain Value

54296 Mode/ Volume Control
Bits 0-3: Volume Control Register
Bit 4: Low Pass Filter
Bit 5: Band Pass Filter
Bit 6: High Pass Filter
Bit 7: Sound Register #3 ON/OFF (1=OFF)

54297
54298
54299
54300
56320 — 56335
56320

56321

56322
56323
56324 — 56327
56324
56325
56326
56327
56328 — 56331
56328

56329
56330
56331

56332

Appendix B: Memory Uscge

363

Paddle Controller X-value

Paddle Controller Y-value

Oscillator #3 Random Number Generator
Envelope Register

CIA (Complex Interface Adapter) #1

Port A
Bits 0-7: Keyboard Column Key Values
Bits 0-3: (alt) Direction (Joystick A)
Bits 2&3: (alt) Paddle Fire Buttons
Bit 4: (alt) Fire Button (Joystick A)
Bits 6&7: (alt) Port A Paddle Values

Port B
Bits 0-7: Keyboard Row Key Values
Bits 0-3: (alt) Direction (Joystick B)
Bits 2&3: (alt) Paddle Fire Buttons
Bit 4: (alt) Fire Button (Joystick B)
Bits 6&7: (alt) Port B Paddle Values

Port A Input/Output Direction Register
Port B Input/Output Direction Register
Timers

Timer A (Low Byte)

Timer A (High Byte)

Timer B (Low Byte)

Timer B (High Byte)
Real Time Clock

0.1 Seconds

Seconds

Minutes

Bits 0-6: Hours
Bit 7. AM/PM Indicator

Serial I/O Buffer (Synchronous)

364 o Commodore 64

56333 Interrupt Control Register
Bit 0;: Timer A
Bit 1: Timer B
Bit 2: Clock Alarm
Bit 3: Serial Port
Bit 4: Cassette Read/Serial Bus SRQ Input
Bit 7: Interrupt Detect Bit

56334 Control Register A
Bit 0: Start/Stop Timer (1=Start)
Bit 1: Timer Output (I=0ON)
Bit 2: Timer Mode (1=Toggle 0=Pulse)
Bit 3: Timer Run Mode (1=0One Shot 0=Cont)
Bit 4: Preset Timer (1=Preset)
Bit 5: Timer Clock Source (1=Int 0=System)
Bit 6: Serial Port 1/ O Mode (1=Output)
Bit 7: Real Time Clock Freq (0=60H7z)

56335 Control Register B
Bit 0: Start/Stop Timer (1=Start)
Bit I;: Timer Output (1=0ON)
Bit 2: Timer Mode (1=Toggle 0=Pulse)
Bit 3: Timer Run Mode (1=One Shot 0=Cont)
Bit 4: Preset Timer (I1=Preset)
Bits 5&6: Timer B Mode Select
0 = Clock Source: System
1 = Clock On Positive Pulses
2 = Carry From Timer A
3 = Carry From Timer A Positive Pulses
Bit 7: Set Alarm (1=Set)

2 = Carry From Timer A
3= Carry From Timer A Postive Pulses
Bit 7: Set Alarm (1=Set)

56576 — 56831 CIA (Complex Interface Adapter) #2

56576 Data Port A
Bits 0&1: VIC II Chip Bank Select
0 = Bank 3 (49152-65535)
| = Bank 2 (32768-49151)

Appendix B: Memory Usage

365

2 = Bank 1 (16384-32767)

3 = Bank 0 (00000-16383)
Bit 2: RS-232 User Data Output
Bit 3: ATN Output Signal
Bit 4: Serial Bus Output Clock Pulse
Bit 5: Serial Bus Output
Bit 6: Serial Bus Input Clock Pulse
Bit 7: Serial Bus Input

56577 Data Port B (RS-232 User Port)
Bit 0: Data Received
Bit 1: Request to Send
Bit 2: Data Terminal Ready
Bit 3: Ring Indicator
Bit 4: Carrier Detect
Bit 6: Clear to Send
Bit 7: Data Set Ready

56378 Port A Input/Output Direction Register
56379 Port B Input/Output Direction Register
56380 — 56383 Timers
56380 Timer A (Low Byte)
56381 Timer A (High Byte)
56382 Timer B (Low Byte)
56383 Timer B (High Byte)
56384 — 56387 Real Time Clock
56384 0.1 Seconds
56385 Seconds
56386 Minutes
56387 Bits 0-6: Hours
Bit 7. AM/PM Indicator
56388 Serial 1/0 Buffer (Synchronous)
56389 Interrupt Control Register

Bit 0: Timer A
Bit I: Timer B

366 our Cormmodore ¢4

Bit 2: Clock Alarm

Bit 3: Serial Port

Bit 4: Cassette Read/Serial Bus SRQ Input
Bit 7: Interrupt Detect Bit

56390 Control Register A
Bit 0: Start/Stop Timer (1=Start)
Bit 1: Timer Output (1=ON)
Bit 2: Timer Mode (1=Toggle 0=Pulse)
Bit 3: Timer Run Mode (1=0One Shot 0=Cont)
Bit 4: Preset Timer (1=Preset)
Bit 5: Timer Clock Source (1=Int 0=System)
Bit 6: Serial Port ;O Mode (1=Output)
Bit 7: Real Time Clock Freq (0=60Hz)

56391 Control Register A
Bit 0: Start/Stop Timer (1=Start)
Bit 1: Timer Output (1=ON)
Bit 2: Timer Mode (1=Toggle 0=Pulse)
Bit 3: Timer Run Mode (1=One Shot 0=Cont)
Bit 4: Preset Timer (1=Preset)
Bits 5&6: Timer B Mode Select
0 = Clock Source: System
1 = Clock On Positive Pulses
2 = Carry From Timer A
3 = Carry From Timer A Positive Pulses
Bit 7: Set Alarm (1=Set)

APPENDIX

- C-64 /O Pinouts

This section contains the pinouts of all the I/ O connectors on the C-64.
Using this information you can design your own interfaces for devices that do

not hook up directly to the C-64.

Control Port 1

Pin No.

Type

N 00~ ON W R WN—

JOYO

JOYI

JOY2

JOY3

POTY

Fire Button

+5 V (50 mA max)
GND

POT X

FIGURE C-1. Game port pinout

367

368 . Commodore 4

1 2 3 4 56 7 8 91011121314 1516 17 18 19 20 21 22
ABCDEFHIJ KLMNPRSTUVWXYZ
Pin No. Type Pin No. Type
1 GND 12 BA
2 +5v 13 DMA
3 +5Sv 14 D7
4 TRQ 15 D6
5 R/W 16 D5
6 DOT CLOCK 17 D4
7 1/0 1 18 D3
8 GAME 19 D2
9 EX ROM 20 Dl
10 10 2 21 DO
11 ROM L 22 GND
Pin No. Type Pin No. Type
A GND N A9
B ROM H P A8
C RESET R A7
D NM1 S A6
E S 02 T AS
F A 1S 8] A4
H A l4 \% A3
J A 13 w A2
K A 12 X Al
L A 1l Y A0
M A 10 V4 GND

FIGURE C-2. Expansion port pinout

Appendix C: C-64 /O Pinouts 369

Pin No. Type
1 LUMINANCE
2 GND
3 AUDIO OUT
4 VIDEO OUT
5 AUDIO IN

FIGURE C-3. Audio/video port pinout

Pin No. Type

SERIAL SRQ IN

GND

SERIAL ATN IN/OUT
SERIAL CLK IN/OUT
SERIAL DATA IN/OUT
RESET

AN B W N —

FIGURE C-4. Serial [/ O port pinout

370 o Commadore #4

Pin No.

SO a LA W —

—
—

w > o

ZZ-R=TITTmTN

CONTROL 1

SP 1

CONTROL 2

SP 2

PC 2

SERIAL ATN IN
+9 V (100 mA max)
+9 V (100 mA max)
GND

GND

FLAG 2

PB0O

PBI

PB2

PB3

PB4

PB5

PB6

PB7

PA2

GND

FIGURE C-5. User port pinout

Appendix C C-641/0 Pinouts 374

A B C D E F

Pin No. Type

A and 1 GND

B and 2 +5V

Cand 3 CASSETTE MOTOR
D and 4 CASSETTE READ

E and 5 CASSETTE WRITE
F and 6 CASSETTE

FIGURE C-6. Cassette interface pinout

- APPENDIX

- Conversion Tables
Irigonometric Functions

The tables in this section are intended as an aid to mathematical
programming.

Hexadecimal-Decimal Integer Conversion

Table D-1 provides for direct conversions between hexadecimal inte-
gers in the range 0-FFF and decimal integers in the range 0-4095. For
conversion of larger integers, the table values may be added to the figures in
Table D-2.

Hexadecimal fractions may be converted to decimal fractions as
follows:

1. Expressthe hexadecimal fraction as aninteger times 16", where n is
the number of significant hexadecimal places to the right of the
hexadecimal point.

0. CA9BF3 = CA9 BF3 X 167¢

2. Find the decimal equivalent of the hexadecimal integer
CA9 BF}M = 13278 195|o

3. Multiply the decimal equivalent by 16"

13 278 195
X 596 046 448 X 10"
0.791 442 096

10

373

374

Your Commodore ¢4

TABLE D-1. Hexadecimal-Decimal Integer Conversion

0o 2 3 4 5 & 7 8 9 A B cC D E F
00 | 0000 ©0UO1 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
ol | ool6 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
02 | 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
03 | 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063
04 | 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
05 | 080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
06 | 00% 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
07 | 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127
08 | 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
09 | 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
0A [0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
08 [0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 019 019
0C | 0192 0193 0194 0195 0196 0197 0198 0199 0200 020) 0202 0203 0204 0205 0206 0207
00 | 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0226 0221 0222 0223
OF | 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OF | 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255
10 | 0256 0257 0258 0259 0260 0261 0262 ©263 0264 0265 0266 0267 0268 0269 0270 0271
11| 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
12 | 0283 0289 0290 0291 0292 0293 0294 0295 029 0297 0298 0299 0300 0301 0302 0303
13 | 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319
14 | 0320 0321 0322 0323 0324 0325 032 0327 0328 0329 0330 0331 0332 0333 0334 0335
15 | 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
16 | 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
17 | 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383
18 | 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0395
19 | 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
1A | 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
1B | 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447
IC | 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
1D | 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
1E | 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
IF [0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511
20 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
21 [0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
22 | 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
23 | 0560 0561 0562 0563 0564 0565 0566 0567 ~ 0568 0569 0570 0571 0572 0573 0574 0575
24 | 0576 0577 0578 0579 ~ 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
25 | 0592 0593 0594 0595 0596 0597 0598 0599 0400 0601 0602 0603 ~ 0604 0605 0606 0607
2% | 0608 0609 0610 0611 0612 0613 0614 0615 0816 0617 0818 0619 0620 0621 0622 0623
27 | 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 Q636 0637 0638 0639
28 | 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
29 | 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
24 | 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
28 | 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703
2¢ | 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
20 | 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
26 | 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 075
2F | 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

Nppendix D Conversion Tables Trigonometric Functions

375

TABLE D-41. Hexadecimal-Decimal Integer Conversion (continued)

0 1 2 3 4 5 6 7 8 9 A 8 C D £ F
30 | 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
31 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
32 | 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
33 | o816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
34 | 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841° 0842 0843 0844 0845 0846 0847
35 | 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
36 | 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
37 | 0880 088! 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895
38 | 089 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
39 |1 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3A | 0928 0929 0930 093! 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3B | 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959
3C | 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 (0973 0974 0975
3C | 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3B | 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3F 1008 1009 1010 101 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
4C 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
41 |1 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
42 | 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
43 | 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
44 | 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
45 [1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 115 Mg 1117 11g 19
46 | 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
47 | 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
48 | 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
49 11168 1169 1170 171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
44 11184 1185 118 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
48 | 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
4C | 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4C |1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E 11248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4F | 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
50 [1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
51 [129 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 131}
52 [1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
53 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
54 |1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
55 |1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
56 |1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
57 |1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
58 |1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
59 |1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
54 |1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
58 |1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
5C |1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5D |1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5E |1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
S5F 11520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

376

Your Commodore 64

TABLE D-1. Hexadecimal-Decimal Integer Conversion (continued)

0 ! 2 3 4 5 6 7 8 9 A B C D £ f

60 |1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
61 |1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
62 11568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
63 |1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
64 11600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
65 11616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
66 11632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
67 | 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1562 1663
68 [1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
69 [1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6A 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
68 11712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
6C 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6D | 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6E 11760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6F 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
70 [1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807

71 1808 1809 1810 1811 1812 1813 1814 18i5 1816 1817 1818 1819 1820 1821 1822 1823

72 | 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
73 | 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

74 | 185 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 187!

75 | 1872 1373 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

76 | 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
77 | 1904 1905 1906 1907 1908 1909 1910 19N 1912 1913 1914 1915 1916 1917 1918 1919
78 | 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
79 | 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951

7A 11952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
78 | 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
7C | 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
7D | 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7E | 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 203

7F | 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
80 | 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
81 | 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
82 | 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 209! 2092 2093 2094 2095
83 | 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

84 | 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
85 | 2128 2129 2130 2131 2132 2133 2134 22135 2136 2137 2138 2139 2140 2141 2142 2143
86 | 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
87 | 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
88 | 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191

89 | 2192 2193 2194 2195 2196 2197 2198 2199 2200 2200 2202 2203 2204 2205 2206 2207
8A | 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8R | 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
8C | 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8D | 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271

8E | 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8F | 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

Appendix D Conversion Tables Trigonometric Functions

377

TABLE D-1. Hexadecimal-Decimal Integer Conversion (continued)

0 1 23 4 58 7 8 9 A B c o F

90 | 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
91 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
92 | 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 235)
93 | 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
94 | 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
95 |2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
96 | 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
97 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 243
98 | 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
99 | 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9n | 2464 2465 2466 2467 2468 2469 2470 247\ 2472 2473 2474 2475 2476 2477 2478 2479
98 | 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
9C | 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
90 | 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9t | 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9F | 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
A0 | 2550 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
Al | 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A2 | 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A3 | 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
A4 | 2624 2025 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
AS 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 265! 2652 2653 2654 2655
A6 | 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A7 | 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
A8 | 2688 2589 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A9 | 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2705 2716 27\7 2718 2719
Aa | 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
AB | 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 275
AC | 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
AD | 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AE | 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AF | 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
Bo | 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
81 | 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B2 | 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B3 | 2804 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
B4 | 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
Bs [289 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B6 | 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
87 | 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
B8 | 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B9 | 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BA 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 298¢ 2987 2988 2989 2990 299
BB | 2992 2993 2994 2995 299 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
BC [3008 3009 3010 3011 3012 3043 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BD [3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 303 3037 3038 3039
BE | 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BF | 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 307!

378

Your Commaodore &4

TABLE D-1. Hexadecimal-Decimal Integer Conversion (continued)

0 1 2 3 4 5 6 7 8 9 A B C [} 3 F
CO | 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 308 3087
C1 | 3088 3089 3090 309! 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C2 | 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C3 | 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
C4 | 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C5 | 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C6 | 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C7 | 3184 3185 318 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
C8 | 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
Co | 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 2231
CA [3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CB | 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
CC | 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CD | 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CE | 3296 3297 3298 3299 3300 3300 3302 3303 3304 3305 3306 3307 3308 3309 3310 331t
CF | 3312 3313 3314 3315 3316 3317 3318 3319 3320 332} 3322 3323 3324 3325 3326 3327
DO | 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
D1 | 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D2 | 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 33723373 3374 3375
D3 | 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
D4 | 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D5 | 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D6 | 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D7 | 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
D8 | 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
D9 | 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DA | 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DB [3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
DC | 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DD | 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DE | 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DF | 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
EQ | 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
E1] 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E2 | 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E3 | 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
E4 | 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E5 | 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E6 | 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 391 3692 3693 3694 3695
E7 | 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
E8 | 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E9 | 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EA | 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EB | 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
EC | 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EC | 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EE | 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EF | 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

Appendix D Conversion Tables Trigonometric Functions 379

TABLE D-1. Hexadecimal-Decimal Integer Conversion (continued)

0 | 2 3 4 5 6 7 8 9 A B C o} £ F

FO | 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
F1 | 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F2 | 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F3 | 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 389¢ 3899 3900 3901 3902 3903

F4 | 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F5 | 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F& | 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F7 | 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

F8 | 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F9 | 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FA | 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FB | 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

FC | 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FD | 4048 4049 4050 405) 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FE | 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FF | 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

TABLE D-2. Conversion Values

Hexodecimal Decimal Hexadecimal Decimal Hexodecimal Decimal Hexodecima! Decimal
w000 4 096 11 000 69 632 30 000 196 408 400 000 4 194 304
02 00G 8192 12 000 73728 40 000 262 144 500 000 5242 880
03 000 12 288 13 000 77 824 50 000 327 680 600 000 6 291 456
04 000 16 384 14 000 81 920 60 000 393 216 700 000 7 340 032
05 000 20 480 15 000 86 016 70 000 458 752 800 000 8 388 608
06 000 24 576 16 000 20 112 80 000 524 288 900 000 9437 184
07 000 28 672 17 000 94 208 90 000 589 824 A00 000 10 485 760
08 000 32 768 18 000 98 304 A0 000 655 360 BOO 000 11 534 33
09 000 36 864 19 000 102 400 80 000 720 896 C00 000 12 582 912
0A C00 40 960 1A 000 106 496 €0 000 786 432 D00 000 13 631 488
08 000 45 056 18 000 110 592 D0 000 851 9468 E00 000 14 680 064
0C 000 49152 1C 000 114 688 £0 000 917 504 F0O0 000 15 728 640
0D 000 53 248 1D 000 118 784 FO 000 983 040 1 000 000 16777 216
0E 000 57 344 1E 000 122 880 100 000 1 048 576 2 000 000 33554 432
OF 000 61 440 IF 000 126 976 200 000 2 097 152
10 000 65536 20 000 131 072 300 000 3145728

Decimal fractions may be converted to hexadecimal fractions by
successively multiplying the decimal fraction by 16, . After each multiplica-
tion, the integer portion is removed to form a hexadecimal fraction by
building to the right of the hexadecimal point. However, since decimal
arithmetic is used in this conversion, the integer portion of each product
must be converted to hexadecimal numbers.

Example:

Convert 0.895, to its hexadecimal equivalent

380 o Commodore ¢4

Functions that are not intrinsic to C-64 BASIC may be calculated as in
Table D-3.

TABLE D-3. Deriving Mathematical Functions

Inverse sine
Inverse cosine

Inverse secant
Inverse cosecant

Inverse cotangent
Hyperbolic sine
Hyperbolic cosine
Hyperbolic tangent

Hyperbolic secant
Hyperbolic cosecant
Hyperbolic cotangent

Inverse hyperbolic sine
Inverse hyperbolic cosine
Inverse hyperbolic tangent
Inverse hyperbolic secant

Inverse hyperbolic cosecant

Inverse hyperbolic cotangent

Function VIC BASIC Equivalent
Secant SEC(X) = 1/COS(X)
Cosecant CSC(X) = 1/SIN(X)
Cotangent COT(X) = I/ TAN(X)

ARCSIN(X) = ATN(X/SQR(— X*X + 1))
ARCCOS(X) = —ATN(X/SQR
(=X*X + 1))+ 72
ARCSEC(X) = ATN(X/SQR(X*X — 1))
ARCCSC(X) = ATN(X/SQR(X*X — 1))
+ (SGN(X) — 1)* 7/2
ARCOT(X) = ATN(X) + 7/2
SINE(X) = (EXP(X) — EXP(— X))/2
COSH(X) = (EXP(X) + EXP(— X))/2
TANH(X) = EXP(— X)/EXP(X) + EXP
(—X))*2 + 1
SECH(X) = 2/(EXP(X) + EXP(— X)
CSCH(X) = 2/(EXP(X) — EXP(— X))
COTH(X) = EXP(— X)/(EXP(X)
— EXP(— X)*2 4 1
ARCSINH(X) = LOG(X + SQR(X*X + 1)
ARCCOSH(X) = LOG(X + SQR(X*X — 1)
ARCTANH(X) = LOG((1 + X)/(1 — X))/2
ARCSECH(X) = LOG((SQR
(= X+X+)+ 1/X)
ARCCSCH(X) = LOG((SGN(X)*SQR
(X*X + 1)/X
ARCCOTH(X) = LOG((X + 1)/(X — 1))/2

APPENDIX

sound and Display
Characters and Codes

Two of the more powerful functions of the C-64 are its display and sound
generation capabilities. The tables in this appendix cover all of the C-64
character codes, screen POKE values, sound register equivalents, and color
values.

Table E-1 covers all of the characters and functions that are displayed
using the CHRS$ instruction. In many instances, the use of the CHRS function
is optional; however, some functions, such as RETURN and RUN/STOP,
are not programmable with the PRINT function. To program using these
functions you will need to use the CHRS function and the codes in this table.

The codes used in the CHRS instruction are not the same as those used
in the POKE-to-screen commands. The codes shown in Table E-2 are listed
in the same order as the characters in memory. Notice that all of the control
characters are omitted from this list. This is because there is no display code
for them; control codes use the codes of standard reverse characters (for
example, reverse-heart for CLR/HOME).

The C-64 can use certain keyword abbreviations. These can save time
when entering lines of code. In most cases, they consist of the first letter of the
command and the shifted second letter of the command. In some cases you
need to enter the first two letters of the command and the shifted third letter.
See Table E-3 for each command and note that the display does not contain
the second (or third) character, but a graphic character instead.

381

382 our Commodore ¢4

TABLE E-4. C-64 Character Codes

WHT

DISABLE
SHIFT &
ENABLE
SHIFT (&

RETURN

SWITCH
TO
LOWER-
CASE

CRls R

RVS
ON

Prints CHRS

0

1

w

9

Prints

CLR
HOME

INST
DEL

CHRS$

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

Prints

AL 0 A L L 8

CHRS$
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52
53

54

55

56

57

Prints

A

Trig

|

i

o~
E

(

m

Q)

LT

Irx

CHRS$
58

59

60

61

62

68

69

70

71

72

73

74

75

76

77

Appendix E: Sound and Display Characters and Codes

383

TABLE E-1. C-64 Character Codes (continued)

Prints

CEHNASTOZ

I

bl [l

o

¥t

CHRS
78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

Prints

=T =

.

~ 4L NGO

CHRS
98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

Prints

00X

t+

IR
1° ¢

FEl=

ORANGE

fl

f3

f5

CHRS
118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

Prints CHRS

f4
f6
{8

SHIFT
RETURN

SWITCH
TO
UPPER-
CASE

BLK
t
CRSR

RVS
OFF

CLR
HOME

INST
DEL

BROWN
LT RED
DK GREY
MED GREY
LT GREEN

LT BLUE

138

139

140

142

143

144
145

146

147

148

149

150

151

152

153

154

384 our Commodore 44

TABLE E-1. C-64 Character Codes (continued)

Prints

LT GREY
PUR
CRSR

YEL

CYN
SPACE

BN

I 8
) |

i

ol e "YaafB, |

CHRS

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Prints

i {1l Ll N (i =

CHRS$

175

176

177

178

179

180

181

183

184

185

186

187

188

189

190

191

192

193

194

Prints

i T N |

CHRS
195

196

197

198

199

200

204

205

206

207

208

209

210

211

212

213

214

Prints

W0

i e =

-

CHRS$
215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

Appendix E: Sound and Display Characters and Codes 389

TABLE E-1. C-64 Character Codes (continued)

EE 235 E 241 El 246 E 251
G 236 E 242 D 247 ‘1 252
E 237 B; 243 E 248 E] 253
E 238 L 244 E 249 [’ 254
E 239 I: 245 EI 250 E 255
E 240
TABLE E-2. Screen Codes

E 0 T __-i 10 E @ 20
E @ I E E B 1 ’|__| 21
‘E E\ 2 L rr 12 S ‘I__FI] 2
| =] s E E 13 “;[g »
\E} E 4 ﬂ"*_-[F 14 H | 24
E E 5 || s E ’g 25
Fl¥ <« [Fel ¢« | &= >
Glla c |@le v D)
E E 8 || = 28
|—I— rf 9 =] E 29

386 our Commodore ¢4

Codes (continued)

TABLE E-2. Screen

Set 1 Set2 POKE

000000000000000000000
888888888888888888888

Eﬁﬂmzﬂgﬂﬂﬂﬂﬂﬂumpjjjj

== I dANDO % S0

M CRoAL
U B VAR TR
: B R TN SN T

Appendix £ Sound and Display Characters and Codes

387

TABLE E-2. Screen Codes (continued)

Setl Set2 POKE | Setl Set2 POKE | Setl Set2 POKE
*= -1 -] -
BE 91 e 104 I: "7
s 92 E 105 EI 118
I 93 :l s | [19
aT E 94 F 107 : 120
E v | w " e
9 E 109 EI E 122
.: 97 E 10 E 123
; 98 D 1 B 124
99 12 E 125
100 13 E 126
I:_ 101 7 114 E 127
102 H: 15

NOTE: Numbers 128 through 255 of the screen codes are reverse video

of numbers 0 through 127.

388 ‘\our Commooore ¢4

TABLE E-3. Keyword Abbreviations

Characters Characters

That Appear That Appear
Command Abbreviation On Screen | Command Abbreviation On Screen
AND A SHIFT N R/ PRINTH# F o SHIFT R P
NOT M SHIFT O MI™ READ R SHIFT E [
CLOSE CL. BHIFT O cLr RESTORE RE SHIFT & RFE®
CLR L SHIFT L Cl. RETURN RE SHIFT T REI
CMD L SHIFT M (BN RUN R SHIFT Il R,
CONT C SHIFT O cr SAVE & SHIFT R Gl
DATA D SHIFT A ns STEP ST SHIFT E ST
DEF I SHIFT E n- STOP & SHIFT T 21
DIM I SHIFT I T SYS & SHIFT ¥ =
END E SHIFT H E/ THEN T SHIFT H T
FOR F SHIFT O Fr VERIFY ¥ SHIFT E i
GET rf SHIFT E ™ WAIT W SHIFT R Lit
GOSUB G0 SHIFT @ Ghe ABS A SHIFT R Al
GOTO G SHIFT 0 ar ASC R SHIFT & Re
INPUT# T SHIFT M T/ ATN A SHIFT T Al
LET L SHIFT E .= CHRS £ SHIFT H Cl
LIST L. SHIFT I = EXP E SHIFT ¥ F&
LOAD 1 SHIFT 0 (M FRE F SHIFT R F e
NEXT M SHIFT E M= LEFTS LE SHIFT F LLE~
OPEN 0 SHIFT P (Rl MID$ M SHIFT I M-
POKE P SHIFT 0 P PEEK P SHIFT E P
PRINT ? ? RIGHTS$ R SHIFT I R-,
RND R SHIFT M R/ STRS ST SHIFT R T
SGN S SHIFT G a1 TAB(T SHIFT R T
SIN S GHIFT I S USR) SHIFT § e
SPC(& SHIFT P &7 VAL W SHIFT A ve
SQR S SHIFT @ =

APPENDIX

crror Messages

C-64 error messages may be displayed in response to almost anything
you key in at the keyboard. They may also appear when your program is
running. This Appendix lists and explains error messages issued by the C-64
BASIC interpreter and by the operating system.

Whenever the C-64 BASIC interpreter detects an error, it displays a
diagnostic message, headed by a question mark, in the general form

Imessage ERROR IN LINE number

where message is the type of error (listed alphabetically below) and number
is the line number in the program where the error occurred (not present in
immediate mode). Following any error message, C-64 BASIC returns to
immediate mode and displays the READY prompt.

Here is an alphabetical list of error messages accompanied by a two-
part description that explains the cause of the error and possible ways of
correcting it.

BAD SUBSCRIPT

An attempt was made to reference an array element that is outside the
dimensions of the array. This can result from specifying the wrong
number of dimensions (different from the DIM statement), using a
subscript larger than specified in the DIM statement, or using a sub-
script larger than 10 for a nondimensioned array.

Correct the array element number to remain within the original
dimensions or change the array size to allow more elements.

389

390 ‘our Commoaore 4

CAN’T CONTINUE

A CONT command was issued, but program execution cannot be
resumed because the program has been altered, added to, or cleared in
immediate mode, or because execution was stopped by an error. Pro-
gram execution cannot be continued past an error message.

Correct the error. The most prudent course is to type RUN and
start over. However, you can attempt to reenter the program at the
point of interruption by a directed GOTO.

DEVICE NOT PRESENT
No device on the bus was present to handshake an attention sequence.
The status variable (ST) will have a value of 2, indicating a timeout. This
message may occur for any I/ O command.
If the device identification is in error, correct the OPEN (or other)
statement. If the statement is correct, especially if it has worked before,
check the addressed device for malfunction, misconnection, or power

off.

DIVISION BY ZERO
An attempt was made to perform a division operation with a divisor of
zero. Dividing by zero is not allowed.
Check the values of variables (or constants) in the indicated line
number. Change the program so that the divisor can never be evaluated
to zero, or add a check for zero before performing the division.

FILE ALREADY EXISTS
The name of the source file being copied with the COPY statement
already exists on the destination diskette.

FILE NOT FOUND
The filename given in the LOAD or OPEN statement was not found on
the specified device.
Check that you have the correct tape or diskette in the device.
Check the filenames on the tape or diskette for a possible spelling error
in the program statement.

FILE NOT OPEN
An attempt was made to access a file that was not opened via the OPEN
statement.
Open the file.

Aopendix F Eror Messages 394

FILE OPEN
An attempt was made to open a file that had already been opened via a
previous OPEN statement.
Check the logical file number (first parameter in the OPEN state-
ment) to be sure that a different number is used for each file. Insert a
CLOSE statement if you want to reopen the same file for a different I/ O
operation.

FORMULA TOO COMPLEX
This is not a program error but indicates that a string expression in the
program is too intricate for C-64 BASIC to handle.
Break the indicated expression into two or more parts and rerun the
program. (This will also tend to improve program readability.)

ILLEGAL DIRECT
A command was given in immediate mode that is valid only in program
mode. The following are invalid in immediate mode: DATA, DEF FN,
GET, GET#, INPUT, and INPUTH#.
Enter the desired operation as a (short) program and run it.

ILLEGAL QUANTITY
A function has passed one or more parameters that are out of range.
This often occurs in POKE statements that use input variables greater
than 255 or less than 0.
This message also occurs if the USR function is referenced before
storing the subroutine address at memory locations | and 2.

LOAD
Anunacceptable number of tape errors (more than 31) were accumulated
on a tape load. They were not cleared on reading the redundant block.
This message is issued in connection with the LOAD command.

NEXT WITHOUT FOR
A NEXT statement is encountered that is not tied to a preceding FOR
statement. Either there is no FOR statement or the variable in the
NEXT statement is not in a corresponding FOR statement.
The FOR part of a FOR-NEXT loop must be inserted or the
offending NEXT statement deleted. Be sure that the index variables are
the same at both ends of the loop.

392 our Commodore ¢4

NOT INPUT FILE
An attempt was made to read from a tape file that has been opened for
output only.
Check the READ# and OPEN statement parameters for correct-
ness. Reading requires a zero as the third parameter of the OPEN
statement. (This is the default option.)

NOT OUTPUT FILE
An attempt was made to write to a tape file that has been opened for
input only.
Check the PRINT# and OPEN statement parameters for correct-
ness. Writingto a file requiresa | (ora 2 if you want an EOT at the end
of the file) as the third parameter in the OPEN statement.

OUT OF DATA
A READ statement is executed but all of the DATA statements in the
program have already been read. For each variable in a READ state-
ment, there must be a corresponding DATA element.

Add more DATA elements or restrict the number of READs to the
current number of DATA elements. Insert a RESTORE statement to
reread the existing data. Or add a flag at the end of the last DATA
statement (any value not used as a DATA element may be used for the
flag value) and stop READing when the flag has been read.

OUT OF MEMORY
The user program area of memory has been filled and a request is given
w0 add a line to the program. This message may also be caused by
multiple FOR-NEXT or GOSUB nestings that fill up the stack; this is
the case if 7FRE(0) shows a considerable program area storage left.
Simplify the program. Pay particular attention to reducing array
sizes. It may be necessary to restructure the program into overlays.

OVERFLOW
A calculation has resulted in a number outside the allowable range,
meaning that the number is too big. The largest number allowed is
1.70141183E+38.
Check your calculations. It may be possible to eliminate this error
just by changing the order in which the calculations are programmed.

Appendix F Error Messages 393

REDIM’D ARRAY
An array name appears in more than one DIM statement. This error
also occurs if an array name is used (given a default size of 11) and later
appears in a DIM statement.

Place DIM statements near the beginning of the program. Check
to see that each DIM statement is executed only once. DIM must not
appear inside a FOR-NEXT loop or in a subroutine where either may
be executed more than once.

REDO FROM START
This is a diagnostic message during an INPUT statement operation and
is not a fatal error. It indicates that the wrong type of data (string for
numeric or vice versa) was entered in response to an INPUT request.
Reenter the correct type of data. INPUT will continue prompting
until an acceptable response is entered.

RETURN WITHOUT GOSUB
A RETURN statement was encountered without a previous matching
GOSUB statement being executed.

Insert a GOSUB statement or delete the RETURN statement. The
error may be caused by dropping into the subroutine code inadver-
tently. In this case, correct the program flow. An END or STOP
statement placed just ahead of the subroutine serves as a debugging aid.

STRING TOO LONG
An attempt was made by use of the concatenation operator (+) to create
a string longer than 255 characters.
Break the string into two or more shorter strings as part of the
program operation. Use the LEN function to check string lengths before
concatenating them.

SYNTAX

There is a syntax error in the line just entered (immediate mode) or
scanned for execution (program mode). This is the most common error
message. It is caused by such things as misspellings, incorrect punctua-
tion, unmatched parentheses, and extraneous characters.

Examine the line carefully and make corrections. Note that syntax
errors in a program are diagnosed at run time, not at the time the lines
are entered from the keyboard. You can eliminate many syntax error

394 oL Commodore ¢4

messages by carefully scrutinizing newly entered program lines before
running the program.

TYPE MISMATCH
An attempt was made to enter a string into a numeric variable or vice
versa, or an incorrect type was given as a function parameter.
Change the offending item to the correct type.

UNDEF’D FUNCTION
Reference was made to a user-defined function that has not previously
been defined by appearingina DEF FN statement. The definition must
precede the function reference.
Define the function. Place DEF FN statements near the beginning
of the program.

UNDEF’D STATEMENT
An attempt was made to branch to a nonexistent line number.
Insert a statement with the necessary line number or branch to
another line number.

VERIFY ERROR
The program in memory and the specified file do not compare. This
message is issued in connection with the VERIFY command.

APPENDIX

| BAS\C Statements

This appendix explains the syntax of all the C-64 BASIC statements.
They are presented in alphabetical order and include both internal functions
and I/O commands.

CLOSE
The CLOSE statement closes a logical file.

Format:

CLOSE If

The CLOSE statement closes logical file /f. Every file should be closed
after all file accesses have been completed. An open logical file may be closed
only once. The particular operations performed in response to a CLOSE
statement depend on the open file’s physical device and the type of access
that occurred.

Example:
CLOSE 1 Close logical file |
CLOSE 14 Close logical file 14

395

396 our Commodore 44

CLR

The CLR statement sets all numeric variables to zero and assigns null
values to all string variables. All array space in memory is released. This is
equivalent to turning the computer off, then turning it back on and
reloading the program into memory. CLR closes all logical files that are
currently open within the executing program.

Format:

CLR

A program will continue to run following execution of a CLR
statement if the statement’s execution does not adversely affect pr

logic.

Example:

16@ CLR

CMD

The CMD statement sends all output that would have gone to the
display to another specified unit. QOutput goes to that unit, instead of the
display, until a PRINTH# statement specifying the same logical file number
that was opened is executed. At least one PRINT# statement must follow a
CMD statement.

Format:

CMD If

The CMD statement assigns a line printer output channel to logical file
If. After execution of a CMD statement, PRINT and LIST both print data
instead of displaying it.

Example:
The following sequence uses CMD to print program listings:

OPEN 5.4 Open logical file 5 selecting the printer

CMD 5 Direct subsequent output to the printer

LIST Print the program listing

PRINT#S Print a carriage return and deselect the printer

CLOSE 5 Close logical file 5

CONT

The CONT statement, typed at the keyboard in immediate mode,
resumes program execution after a BREAK.

Format:
CONT

A break is caused by execution of a STOP statement or an END
statement that has additional statements following it. Depressing the STOP
key while a program is running also causes a break. Program execution
continues at the exact point where the break occurred.

Pressing the RETURN key in response to an INPUT statement will also
cause a break. Typing CONT after this break reexecutes the INPUT
statement.

Example:
CONT

DATA

The DATA statement declares constants that are assigned to variables
by READ statements.

Format:
DATA constant[,constant,constant,...,constant]

DATA statements may be placed anywhere in a program. The DATA
statement specifies either numeric or string constants. String constants are
usually enclosed in double quotation marks; the quotes are not necessary
unless the string contains graphic characters, blanks (spaces), commas, or
colons. Blanks, commas, colons, and graphic characters are ignored unless
the string is enclosed in quotes. A double quotation mark cannot be repre-
sented in a DATA string; it must be specified using a CHR$(34) function.
The DATA statement is valid in program mode only.

Example:
10 DATA MAME,“C.D." Defines two string variables
50 DATA 1E6,~1@,XYZ Defines two numeric variables and one string variable

Refer to the READ statement for a description of how DATA state-
ment constants are used within a program.

398 our Commodore 4

DEFFN

The DEF function (DEF FN) allows special purpose functions to be
defined and used within BASIC programs.

Format:
DEF FNnvar(arg)=expression

Floating point variable nvar identifies the function, which is sub-
sequently referenced using the name FNnvar(data). (If nvar has more than
five letters, a syntax error is reported. A syntax error is also reported if nvar
is a string or integer variable.)

The function is specified by expression, which can he any arithmetic

expression containing any combination of numeric constants, variables, or

operators. The dummy variable name arg can (and usually does) appear in
expression.
arg is the only variable in expression that can be specified when

FNnvar(data) is referenced. Any other variables in expression must be
defined before FNnvar(data) is referenced for the first time. FNnvar(data)
evaluates expression using data as the value for arg.

The entire DEF FN statement must appear on a single 80-character
line; however, a previously defined function can be included in expression,
so user-defined functions of any complexity can be developed.

The function name var can be reused and therefore redefined by
another DEF FN statement appearing later in the same program.

The DEF FN definition statement is illegal in immediate mode. How-
ever, a user-defined function that has been defined by a DEF FN statement
in the current stored program can be referenced in an immediate mode
statement.

Example:

18 DEF FNC(R)=a¥R12 Defines a function that calculares the circumference of
a circle. It takes a single argument R, the radius of
the circle, and returns a single numeric value, the
circumference of the circle

PFNCCL)D Prints 3.141159265 (the value of)

35 IF FNC(X)>60@ GOTO 158 Uses the value calculated by the user-defined function
FNC as a branch condition. The current contents of
variable X are used when calculating the user-
defined function

Appendix & BASIC Statements 399

DIM

The Dimension statement DIM allocates space in memory for array
variables.

Format:
DIM var(sub)[,var(sub),...,var(sub)]

The DIM statement identifies arrays with one or more dimensions as
follows:

var(sub;) Single-dimensional array
var(sub;, sub;) Two-dimensional array
var(sub; sub, sub,) Multiple-dimensional array

Arrays with more than 11 elements must be dimensioned in a DIM
statement. Arrays with 11 elements or less (subscripts 0 through 10 for a
one-dimensional array) may be used without being dimensioned by a DIM
statement; for such arrays, 11 array spaces are automatically allocated in
memory when the first array element is encountered in the program. An
array with more than 11 elements must occur ina DIM statement before any
other statement references an element of the array.

If an array is dimensioned more than once, or if an array having more
than 11 elements is not dimensioned, an error occurs and the program is
aborted. A CLR statement allows a DIM statement to be reexecuted.

Example:

10 DIM AC3O Dimension a single-dimensional array
of 3 elements
45 DIM X$(44,2) Dimension a two-dimensional array of
88 elements
1000 DIM MUCX,3%B),N(12) Dimension a two-dimensional array of
X times 3% B elements and a
single-dimensional array of 12
elements. X and B must have been
assigned values before the DIM
statement is executed

The END statement terminates program execution and returns the
computer to immediate mode.

Format:
END

400 o Commodore ¢4

The END statement can provide a program with one or more
termination points at locations other than the physical end of the program.
END statements can be used to terminate individual programs when more
than one program is in memory at the same time. An END statement at the
physical end of the program is optional. The END statement is used in
program mode only.

Example:
20001 END

FOR-NEXT STEP

All statements between the FOR statement and the NEXT statement
are reexecuted the same number of times.

Format:

FOR nvar = start TO end STEP increment
[statements in loop]
NEXT([nvar]

where

nvar istheindex of the loop. It holds the current loop count. nvar is often used
by the statements within the loop.

start is anumeric constant, variable, or expression that specifies the beginning
value of the index.

end is a numeric constant, variable, or expression that specifies the ending
value of the index. The loop is completed when the index value is equal
to the end value, or when the index value is incremented or decre-
mented past the end value.

increment if present, is a numeric constant, variable, or expression that specifies the
amount by which the index variable is to be incremented with each
pass. The step may be incremental (positive) or decremental (negative).
If STEP is omitted, the increment defaults to 1.
nvar may optionally be included in the NEXT statement. A single
NEXT statement is permissible for nested loops that end at the same point.
The NEXT statement then takes the form

NEXT nvar nvar,...

The FOR-NEXT loop will always be executed at least once, even if the
beginning nvar value is beyond the end nvar value. If the NEXT statement is
omitted and no subsequent NEXT statements are found, the loop is
executed once.

“ppenaix G BASIC Statements 404

The start, end, and increment values are read only once, on the first
execution of the FOR statement. You cannot change these values inside the
loop. You can change the value of nvar within the loop. This may be used to
terminate a FOR-NEXT loop before the end value is reached: Set nvar to
the end value and on the next pass the loop will terminate itself. Do not jump
out of the FOR-NEXT loop with a GOTO. Do not start the loop outside a
subroutine and terminate it inside the subroutine.

FOR-NEXT loops may be nested. Each nested loop must have a
different nvar variable name. Each nested loop must be wholly contained
within the next outer loop; at most, the loops can end at the same point.

GET

The GET statement receives single characters as input from the
keyboard.

Format:
GET var

The GET statement can be executed in program mode only. When a
GET statement is executed, var is assigned a 0 value if numeric, or a null
value if a string. Any previous value of the variable is lost. Then GET fetches
the next character from the keyboard buffer and assigns it to var. If the
keyboard buffer is empty, var retains its 0 or null value.

GET is used to handle one-character responses from the keyboard.
GET accepts the RETURN key as input and passes the value (CHR$(13)) to
var.

If var is a numeric variable and no key has been pressed, 0 is returned.
However, a 0 is also returned when 0 is entered at the keyboard.

If var is a numeric variable and the character returned is not a digit
(0-9), a?SYNTAX ERROR message is generated and the program aborts.

The GET statement may have more than one variable in its parameter
list, but it is hard to use if it has multiple parameters.

GET var,var,...,var
Example:

10 GET C$

18 GET D

19 GET R,B.C

402 - Cormmoaoe 44

GET#

The GET External statement (GET#) receives single characters as input
from an external storage device identified via a logical file number.

Format:

GETHIf var

The GET# statement can only be used in program mode. GET# fetches
a single character from an external device and assigns this character to
variable var. The external device is identified by logical file number /f. This
logical tile must have been previously opened by an OPEN statement.

GET#and GET statements handle variables and data input identically.
For details see the GET statement description.

Example:
1@ GET#4,C$:IF C$="" GOTO 180 Get a keyboard character. Reexecute
if no character is present
GOSuUB

The GOSUB statement branches program execution to a specified line
and allows a return to the statement following GOSUB. The specified line is
a subroutine entry point.

Format:
GOSUB In

The GOSUB statement calls a subroutine. The subroutine’s entry point
must occur on line /n. A subroutine’s entry point is the beginning of the
subroutine in a programming sense; that is to say, it is the line containing the
statement (or statements) that are executed first. The entry point need not
necessarily be the subroutine line with the smallest line number.

Upon completing execution the subroutine branches back to the line
following the GOSUB statement. The subroutine uses a RETURN
statement in order to branch back in this fashion.

A GOSUB statement may occur anywhere in a program; in consequence
a subroutine may be called from anywhere in the program.

Example:

108 GOSUB 2000 Branch to subroutine at line 2000
110 R=B%C

Appendix G BASIC Statements 403

Subroutine branches back here

20800 Subroutine entry point
2090 RETURN Branch back to line 110
GOTO

The GOTO statement branches unconditionally to a specified line.

Format:

GOTO In
Example:

16 GOTO 108

Executed in immediate mode, GOTO branches to the specified line in
the stored program without clearing the current variable values. GOTO

cannot reference immediate mode statements, since they do not have line
numbers.

IF-THEN

The IF-THEN statement provides conditional execution of statements
based on a relational expression.

Format:
IF condition THEN statement|:statement...] Conditionally execute statement(s)

IF condition THEN line Conditionally branch
GOTO

If the specified condition is true, then the statement or statements
following the THEN are executed. If the specified condition is false, control
passes to the statement(s) on the next line and the statement or statements
following the THEN are not executed. For a conditional branch, the branch
line number is placed after the word THEN or after the word GOTO. The
compound form THEN GOTO is also acceptable.

IF A= 1THEN 50

IFA=1GOTO 50 Equivalent
IFA=1THEN GOTO 50

404 ' our Commodore ¢4

If an unconditional branch is one of many statements following THEN,
the branch must be the last statement on the line, and it must have “GOTO
line” format. If the unconditional branch is not the last statement on the line,
then statements following the unconditional branch can never be executed.

The following statements cannot appear in an immediate mode IF-
THEN statement: DATA, GET, GET#, INPUT, INPUT#, REM, RETURN,
END, STOP, WAIT.

If a line number is specified, or any statement containing a line number,
there must be a corresponding statement with that line number in the
current stored program.

The CONT and DATA statements cannot appear in a program mode
must be completely contained on the IF-THEN line. Additional IF-THEN
statements may appear following the THEN as long as they are completely
contained on the original IF-THEN line. However, Boolean connectors are
preferred to nested IF-THEN statements. For example, the two statements
below are equivalent, but the second is preferred.

180 IF A$="x" THEN IF B=2 THEN IF C>D THEN 5@
18 IF A$="X" AND B=2 AND C>D THEN 58

Example:

489 IF X>Y THEW A=l
508 IF M+1 THEN AG=4.5 GOSUB 10080

INITIALIZE

You can use PRINT# to initialize a diskette before performing any
operation on it.

Format:

PRINTHfile,“[INITIALIZE]dr]”

The diskette in drive dr is initialized. If the dr parameter is not present,
the diskette in drive 0 will be initialized. You do not need to initialize a
diskette after preparing it; the preparation process also initializes the
diskette.

Example:
OPEN 1.8.15 Open the diskette command channel

Appendix G BASIC Statements 409

PRINT#L,"I" Initialize diskettes in drive 0

INPUT
The INPUT statement receives data input from the keyboard.

Format:

(blank)
INPUT { “message”; var[,var,...,var]

INPUT can be used in program mode only. When the INPUT statement
is executed, C-64 BASIC displays a question mark on the screen requesting
data input. The user must enter data items that agree exactly in number and
type with the variables in the INPUT statement parameter list. If the INPUT
statement has more than one variable in its parameter list, then keyboard
entries must be separated by commas. The last entry must be terminated with a
carriage return.

71234 <CR> Single data item response
71234,567.89, NOW<CR> Multiple data item response

If “message” is present, it is displayed before the question mark. “mes-
sage” can have as many as 80 characters.

If more than one but less than the required number of data items are
input, C-64 BASIC requests additional input with double question marks (??)
until the required number of data items have been input. If too many data
items are input, the message 7JEXTRA IGNORED is displayed. The extra
input is ignored, but the program continues execution.

Example:
Statement Operator Response Result
18 INPUT A, B.CS$? 123,4356,NOW A=123,B=456,C$=“NOW”
10 INPUT A.B.CS$? 123 A=123
7?7 456 B=456
?? NOW C$=“NOW”
10 INPUT R,B.C$? NOM
7?REDO FROM START
? 128 A=123
?? 436 B=456
7?7 7689 C=-789"

10 INPUT "A= " A A= 2 123 A=123

406 v Commodore 44

Note that you must input numeric data for a numeric variable, but you
can input numeric or string data for a string variable.

INPUT#

The INPUT External statement (INPUT#) inputs one or more data
items from an external device identified via a logical file number.

Format:
INPUTHIf var|,var,...,var]

The INPUTH# statement inputs data from the selected external device
and assigns data items to variable(s) var. Data items must agree in number
and kind with the INPUTH# statement parameter list.

If an end-of-record is detected before all variables in the INPUTH#
statement parameter list have received data, then an OUT OF DATA error
status is generated, but the program continues to execute.

INPUT# and INPUT statements execute identically, except that
INPUTH# receives its input from a logical file. Also, INPUT# does not
display error messages; instead, it reports error statuses that the program
must interrogate and respond to.

Input data strings may not be longer than 80 characters (79 characters
plus a carriage return) because the input buffer has a maximum capacity of
80 characters. Commas and carriage returns are treated as item separators
by the computer when processing the INPUT# statement; they are recog-
nized, but are not passed on to the program as data. INPUT# is valid in
program mode only.

Example:

1000 INPUT#10.R Input the next data item from logical file 10. A nhumeric
data item is expected; it is assigned to variable A

946 INPUTH#12,R$ Input the next data item from logical file 12. A string
data item is expected; it is assigned to variable A$'

900 INPUT#3,B.C$ Input the next two data items from logical file 5.
The first data item is numeric; it is assigned to numeric
variable B. The second data item is a string;
it is assigned to string variable C$

LET=

The Assignment statement LET=, or simply =, assigns a value to a
specified variable.

Appendix G BASIC Statements 407

Format:

blank
{(LE‘ZFI)} var =data

Variable var is assigned the value computed by resolving data. The
word LET is optional; it is usually omitted.

Example:

10 A=2
450 CH=""

300 M(1,3)=8ON(K)
310 XX$(I,J,K,L)="STRINGALONG"

LIST

LIST displays one or more lines of a program. Program lines displayed
by the LIST statement may be edited.

Format:
(blank)
line
LIST line — line,
I —line
line—

The entire program is displayed in response to LIST. Use line-limiting
parameters for long programs to display a section of the program that is
short enough to fit on the screen.

Example:
LIST List entire program
LIST 5@ List line 50

LIST 60-100 List all lines in the program from lines 60 to 100, inclusive

LIST ~140 List all lines in the program from the beginning of the program
through line 140

LIST 20600~ List all lines in the program from line 20000 to the end
of the program

408 ‘ou Commoaore &4

Listed lines are reformatted as follows:

1. ?’s entered as a shorthand for PRINT are expanded to the word
PRINT. Example:

?7A becomes PRINT A
2. Blanks preceding the line number are eliminated. Example:

50 A=1 50 A=1
becomes
100 A=A+1 100 A=A+1

3. A space is inserted between the line number and the rest of the
statement if none was entered. Example:
55A=B—2 becomes 55 A=B—2

LIST is always used in immediate mode. A LIST statement in a
program will list the program but then exit to immediate mode. Attempting
to continue program execution via CONT simply repeats the LIST
indefinitely.

Printing a Program Listing

To print a program listing instead of displaying it, OPEN a printer
logical file and execute a CMD statement before executing the LIST
statement. Here is the necessary immediate mode sequence:

OPEN 4.4 Open the printer specifying logical file 4
CMD 4 Deflect display output to the printer
LIST Print the program listing
PRINT#4 Deflect output back to the display
CLOSE 4

LOAD

The LOAD statement loads a program from an external device into
memory.

Cassette Program Format

LOAD [“file name”][,dev]

The LOAD statement loads into memory the program file specified by
file name from the cassette unit selected by device number dev. If no device is
specified, device 1 is assumed by default; cassette unit 1 is then selected. If no
file name is given, the next file detected on the selected cassette unit is loaded
into memory.

Appendix G: BASIC Stafements 409

Example:

LORD Load into memory the next program found on cassette
unit #1. If you start a LOA D when the cassette is in
the middle of a program, the cassette will read past the
remainder of thecurrent program, then load the next
program

LOAD "",2 Load into memory the next program found on cassette
unit #2

LOARD "EGOR" Search for the program named EGOR on tape cassette #1
and load it into memory

N$="WHEEILS" Search for the program named WHEE!LS on cassette

LORD N$ unit #1 and load it into memory

LORD "X" Search for a program named X on cassette unit #1 and

load it into memory

Diskefte Drive Program Format
LOAD “dr:file name”,dev

The LOAD statement loads into computer memory the program file
with the file name on the diskette in drive dev. The device number for the
diskette drive unit is 8 in the C-64. If dev is not present, the default valueis 1,
which selects the primary tape cassette unit.

A single asterisk can be included instead of the file name, in which case
the first program found on the selected diskette drive is loaded into memory.

Example:
LOAD"@:%",8 Load the first program found on disk drive 0

LORD"@:FIREBALL",8 Search for the program named FIREBALL on disk
drive 0 and load it into memory

T$¢="0Q :METEOR" Search for the program named METEOR on disk

LORD T$.8 drive 0 and load it into memory

Whena LOAD is executed in immediate mode, C-64 BASIC automati-
cally executes CLR before the program is loaded. Once a program has been
loaded into memory, it can be listed, updated, or executed.

The LOAD statement can also be used in program mode to build
program overlays. A LOAD statement executed from within a program
causes that program’s execution to stop and another program to be loaded.
In this case the C-64 computer does not perform a CLR; therefore, the old
program can pass on all of its variable values to the new program.

410 ‘our Commodore 64

When a LOAD statement accessing a cassette unit is executed in
program mode, LOAD message displays are suppressed unless the tape
PLAY key is up (off). If the PLAY key is off, the PRESS PLAY ON TAPE #1
message is displayed so that the load can proceed. All LOAD messages are
suppressed when loading programs from a diskette in program mode.

NEW

The NEW statement clears the current program from memory.

Format:
NEW

When a NEW statement is executed, all variables are initialized to zero
or null values and array variable space in memory is released. The pointers
that keep track of program statements are reinitialized, which has the effect
of deleting any program in memory; in fact the program is not physically
deleted. NEW operations are automatically performed when a LOAD
statement is executed.

If there is a program in memory, you should execute a NEW statement
in immediate mode before entering a new program at the keyboard. Other-
wise, the new program will overlay the old one, replacing lines if their
numbers are duplicated, but leaving other lines. The result is a scrambled
mixture of two unrelated programs.

Example:

NEW

NEW is always executed in immediate mode. If a NEW statement is
executed from within a program, the program will “self-destruct,” or clear
itself out.

NEW (DOS Command)

Use PRINT# to prepare and format a new diskette or to erase and
reformat an old diskette.
Format:

PRINTH#If,“N[EW]dr:disk name,vv”

The diskette indrive dr is prepared. When a diskette is prepared, sectors
are laid out on the diskette surface. The diskette directory and Block

Appendix G BASIC Statements 444

Availability Map (BAM) are initialized. The diskette is assigned the name
disk name and the number vv.

The diskette name and number are displayed in the reverse field at the
top of a directory display.

Example:

OPEN 1,8,13 Open the diskette command channel

PRINT#1, "NO:NEWDATA, 82" A diskette has been prepared for use in
drive 0. The diskette is given the
name NEWDATA and the number 02

ON-GOSUB

The ON-GOSUB statement provides conditional subroutine calls to
one of several subroutines in a program, depending on the current value of a
variable.

Format:

ON byte GOSUB line][,lirze2 linen]

ON-GOSUB has the same format as ON-GOTO. Refer to the ON-
GOTO statement description for branching rules. byte is evaluated and
truncated to an integer number, if necessary.

For byte=I, the subroutine beginning at /ine, is called. That subroutine
completes execution with a RETURN statement that causes program exe-
cution to continue at the statement immediately following ON-GOSUB. If
byte=2, the subroutine beginning with line, is called, and so on.

ON-GOSUB is normally executed in program mode. It may be exe-
cuted in immediate mode as long as there are corresponding line numbers to
branch to in the current stored program.

Example:
18 ON R GOSUB 100,208,398

ON-GOTO

The ON-GOTO statement causes a conditional branch to one of several
points in a program, depending on the current value of a variable.

Format:
ON byte GOTO linel[,linez,...,linen]

412 our Commodore é4

byte is evaluated and truncated to an integer number, if necessary.

If byte =1,a branch to line number line occurs. I[f byte =2, a branch to
line number line2 occurs, and so on.

If byte =0, no branchis taken. If byteisin the allowed range but there is
no corresponding line number in the program, then no branch is taken. Ifa
branch is not taken, program control proceeds to the statement following
the ON-GOTO; this statement may be on the same line as the ON-GOTO
(separated by a colon) or on the next line.

If index has a nonzero value outside of the allowed range, the program
aborts with an error message. As many line numbers may be specified as will
fit on the 80-character line.

ON-GOTO is normally executed in program mode. [t may be executed
in immediate mode as long as there are corresponding line numbers in the
current stored program that may be branched to.

Example:
40 R=B<10 Branch to statement 100 if A is true
58 ON R+2 GOTO 190,209 (—1) or branch to statement 200 if A
is false (0)
58 K=K+1 Branch to statement 500 if X=1,
€6 ON ¥ GOTO 500,600,790 statement 600 if X=2, or to
statement 700 if X=3. No branch is
taken if X>3
OPEN

The OPEN statement opens a logical file and readies the assigned
physical device.

Cassette Data File Format
OPEN [f [dev][,sall,"file name”]

The file named file name on the tape cassette unit identified by dev is
opened for the type of access specified by the secondary address sa; the
access is assigned the logical file number /f.

If no file name is specified, the next file encountered on the selected tape
cassette is opened. If no device is specified, device number 1 is selected by
default; this device number selects cassette unit 1. If no secondary address is
specified, a default value of 0 is assumed and the file is opened for a read
access only. A secondary address of 1 opens the file for a write access, while a

Appendix G BASIC Statements 413

secondary address of 2 opens the file for a write access with an end-of-tape
mark written when the file is subsequently closed.

Example:

OPEN 1 Open logical file I at cassette drive #1
(default) for a read access (default)
from the first file encountered on the
tape (no file name specified)

OPEN 1.1 Same as above

OPEN 1.1.8 Same as above

OPEN 1,1,@,"DRT" Same as above but access the file named
DAT

OPEN 3.1,2 Open logical file 3 for cassette #1 for a

write with EOT (End Of Tape)
access. The new file is unnamed and
will be written at the current physical
tape location

OPEN 3,1,2, "PENTRGRAM" Same as above but access the file named
PENTAGRAM

Disk Data File Format
OPEN [f.dev,sa, “dr:file name,type[. access]”

The file named file name on the diskette in drive dr is opened and
assigned logical file number /f. type identifies the file as sequential (SEQ),
program (PRG), or random (USR). If the file is sequential, access must be
WRITE to specify a write access or READ to specify a read access. Access is
not present for a program or random access file.

An existing sequential file can be opened for a write access if dr is
preceded by an @ sign. The existing sequential file contents are replaced
entirely by new written data.

The device number dev must be present; it is 8 for all standard disk
units. If dev is absent, a default value of 1 is assumed and the primary tape
cassette unit is selected.

For a data file the secondary address sa can have any value between 2
and 14, but every open data file should have its own unique secondary
address. A secondary address of 15 selects the disk unit command channel.
Secondary addresses of 0 and 1 are used to access program files. Secondary
address O is used to load a program file; secondary address 1 isused tosavea
program file.

414 our Commodore 64

Example:

OPEN 1.8,2."8:DAT,SER, READ" Open logical file | on a diskette in drive

0. Read from sequential file DAT
OPEN 5,8,3,"1:NEWFILE,SER.WRITE" Open logical file 5 on a diskette in drive

1. Write to sequential file NEWFILE
OPEN 4,8,4,"®21 :NEWFILE,SEQ,WRITE" Open logical file 4 on diskette drive 1.

Write to sequential file NEWFILE
replacing prior contents

POKE

The POKE statement stores a byte of data in a specified memory
location.

Format:
POKE memadr.byte

A value between 0 and 255, provided by byte, is loaded into the memory
location with the address memadr.

Example:
18 POKE 1.R POKE value of variable A into memory
at address 1
POKE 32768,RSC("A")-E4 POKE 1 (the value of ASC (“A")—64)
into memory at address 32768
PRINT

The PRINT statement displays data; it is also used to print to the line
printer,

Format:

PRINT))
9 data . ¢ data... {.}data

PRINT Field Formats

Numeric fields are displayed using standard numeric representation for
numbers greater than 0.01 and less than or equal to 999999999. Scientific
notation is used for numbers outside of this range. Numbers are preceded by
a sign character and are followed by a blank character.

Appendix G: BASIC Statements 415

sign blank
number

r——

SNNN,..NN p

N

Numeric field

display
The sign is blank for a positive number and a minus sign (—) for a negative
number.
Strings are displayed without additions or modifications.

PRINT Formats

First data item. The first data item is displayed at the current cursor
position. The PRINT format character (comma or semicolon) following the
first data item specifies the location of the second data item’s display. The
location of each subsequent data item’s display is determined by the punctuation
following the preceding data item. Data items may be in the same PRINT
statement or in a separate PRINT statement.

New line. When no comma or semicolon follows the last data item in a
PRINT statement, a carriage return occurs after the last data item is
displayed.

Tabbing. A comma following a data item causes the next data item to
be displayed at the next default tab column. Default tabs are at columns 1,
11,and 21. If a comma precedes the first data item, a tab will precede the first
item display.

Continuous. A semicolon following a data item causes the next display
to begin immediately in the next available column position. Numeric data
always has one trailing blank character. For string data, items are displayed
continuously with no forced intervening spaces.

Example:
49 PRINT A
40 PRINT A,B.C
49 PRINT R;B,C
49 PRINT, A,;B;C
43 PRINT "NUMBERS",R,B;C

40 PRINT "NUM";"BER",
41 PRINT "S",A,BiC

416 v Commodore “4

PRINT#

The PRINT External statement (PRINT#) outputs one or more data
items from the computer to an external device (cassette tape unit, disk unit,
or printer) identified by a logical file number.

Formaz:
PRINT#If data,CHRS$(13).data;CHRS$(13),....,CHRS (13);,data

Dataitems listed in the PRINT# statement parameter list are written to
the external device identified by logical unit number /f.
Very specific punctuation rules must be observed when writing data to

external devices. A brief summary of punctuation rules is given below.

PRINT# Output to Cassette Files

Every numeric or string variable written to a cassette file must be
followed by a carriage return character. This carriage return character is
automatically output by a PRINT# statement that has a single data item in
its parameter list. Buta PRINT# statement with more than one data item in
its parameter list must include characters that force carriage returns. For
example, use CHRS$(13) to force a carriage return, or a string variable that
has been equated to CHRS$(13) such as c§=CHRS(13).

PRINT# Output to Diskette Files

The cassette output rules described above apply also to diskette files
with one exception: Groups of string variables can be separated by comma
characters (CHR$(44)). The comma character separators, like the carriage
return separators, must be inserted using CHRS. String variables written to
diskette files with comma character separators must subsequently be read
back by a single INPUT# statement. The INPUT# statement reads all text
from one carriage return character to the next.

PRINT# Output to the Line Printer

When the PRINT# statement outputs data to a line printer CHRS must
equal CHRS$(29). No punctuation characters should separate CHRS from
data items, as illustrated in the PRINT# format definition.

Caution: The form ?# cannot be used as an abbreviation for PRINTH#.

Appendix G BASIC Staternents 417

READ

The READ statement assigns values from a DATA statement to vari-
ables named in the READ parameter list.
Format:

READ var[,var,...,var]

READ is used to assign values to variables. READ can take the place of
multiple assignment statements (see LET=).

READ statements with variable lists require corresponding DATA
statements with lists of constant values. The data constants and correspond-
ing variables have to agree in type. A string variable can accept any type of
constant; a numeric variable can accept only numeric constants.

The number of READ and DATA statements can differ, but there must
be an available DATA constant for every READ statement variable. There
can be more data items than READ statement variables, but if there are too
few data items the program aborts withan?0UT OF DATA error message.

READ is generally executed in program mode. It can be executed in
immediate mode as long as there are corresponding DATA constants in the
current stored program to read from.

Example:

18 DATR 1.,2.3 On completion, A=1, B=2, C=3
20 RERAD R,B.C

158 RERD C$,D.F$ On completion, C8=“STR”, D =14.5, F$=“TM"”
168 DATR STR
178 DATA 14.5,"TH"

The Remark statement (REM) allows comments to be placed in the
program for program documentation purposes.
Format:

REM comment
where

comment is any sequence of characters that will fit on the
current 80-column line.

REM statements are reproduced in program listings, but they are
otherwise ignored. A REM statement may be placed on a line of its own, or

448 o Commocore ¢4

it may be placed as the last statement on a multiple-statement line.

A REM statement cannot be placed ahead of any other statements ona
multiple-statement line, since all text following the REM is treated as a
comment. REM statements may be placed in the path of program execu-
tion, and they may be branched to.

Example:

10 REM %K% % % % % ¥k
20 REM *#¥PROGRAM EXCAL IBUR%¥¥
30 GOTO 55 REM BRANCH IF OUT OF DATA

RESTORE

The RESTORE statement resets the DATA statement pointer to the
beginning of data.
Format:

RESTORE

RESTORE may be given in immediate or program mode.

Example:

10 DATA 1,2,H44

20 RERD R.B,B$ A=1, B=2, B$="“N44"
30 RESTORE

40 RERD X.Y.Z% X=1, Y=2, Z$="N44"

RETURN

The RETURN statement branches program control to the statement in
the program following the most recent GOSUB call. Each subroutine must
terminate with a RETURN statement.

Format:
RETURN

Example:
190 RETLRN
Note that the RETURN statement returns program control from a

subroutine, whereas the RETURN key moves the cursor to the beginning of
the next display line. The two are not related in any way.

Appendix G BASC Staterments 449

RUN

RUN begins execution of the program currently stored in memory.
RUN closes any open files and initializes all variables to 0 or null values.

Format:
RUN([/ine]

When RUN is executed in immediate mode, the computer performs a
CLR of all program variables and resets the data pointer in memory to the
beginning of data (see RESTORE) before executing the program.

If RUN specifies a line number, the computer still performs the CLR
and RESTORESs the data, but execution begins at the specified line number.
RUN specifying a line number should not be used following a program
break —use CONT or GOTO for that purpose.

RUN may also be used in program mode. It restarts program execution
from the beginning of the program with all variables cleared and data
pointers reinitialized.

Example:

RUN Initialize and begin execution of the current program

RUN 1808 Initialize and begin execution of the program starting at line 1000
SAVE

The SAVE statement writes a copy of the current program from
memory to an external device.

Cassette Unit Format

SAVE [“file name”][,dev],sa]

The SAVE statement writes the program that is currently in memory to
the tape cassette drive specified by dev. If the dev parameter is not present,
the assumed value is 1 and the primary cassette drive is selected. The file
name, if specified, is written at the beginning of the program. If a nonzero
secondary address (sa) is specified, an end-of-file mark is written on the
cassette after the saved program.

Although no SAVE statement parameters are required when writing to
a cassette drive, it is a good idea to name all programs. A named program
can be read off cassette tape either by its name or by its location on the

420 o Commodore ¢4

cassette tape. A program with no name can be read off cassette tape by its
location only.

The SAVE statement is most frequently used in immediate mode,
although it can be executed from within a program.

Example:
SRVE Write the current program onto the cassette in drive I,
leaving it unnamed
SAYE "RED" Write the current program onto the cassette in drive 1,
assigning the file name of RED
A$="RED" Same as above
SAVE A%

SAYE "BLACKJARCK".2,1 Write the current program onto the cassette in drive 2,
naming the program BLACKJACK. Write an
end-of-file mark after the program

Diskette Drive Format

SAVE “dr.file name”, dev

The SAVE statement writes a copy of the current program from
memory to the diskette in the drive specified by dr. The programis given the
name file name. dev must be present; normally, it has the value 8. If dev is
absent, a default value of 1 is assumed and the cassette is selected.

The file name assigned to the program must be new. If a file with the
same name already exists on the diskette, a syntax error is reported. How-
ever, a program file can be replaced; if an @ sign precedes dr in the SAVE
statement text string, the program replaces the contents of a current file
named file name.

The diskette SAVE statement is also used primarily in immediate mode
although it can be executed out of a program.

STOP
The STOP statement causes the program to stop execution and return
control to C-64 BASIC. A break message is displayed on the screen.

Format:
STOP

Appendix C BASIC Statements 4241

Example:
655 STOP Will cause the message BREAK IN 655
to be displayed
VALIDATE
Format:

PRINT#/f,“V[ALIDATE][dr]"

The diskette in drive dr is validated. If the dr parameter is absent, the
diskette in the most recently selected drive is validated.

When a diskette is validated, a new Block Availability Map is created
for all valid data files on the diskette. Any files that were improperly closed
or were not closed become invalid files; they are deleted from the diskette
and their diskette space is released.

Do not validate a diskette that contains random access files; validation
will erase the random access file. If a read error occurs during validation, the
validation operation is aborted and the diskette is left in its initial state. A
diskette must be initialized after it is validated.

Example:
OPEN 1.,8,15 Open the diskette command channel
PRINT#1,"I0" Initialize the diskette in drive 0
PRINT#1,"v0D" Validate the diskette in drive 0
VERIFY

The VERIFY statement compares the current program in memory with
the contents of a program file.

Cassette Unit Format
VERIFY [“file name™[dev]

The program currently in memory is compared with the program
named file name on the cassette in the unit specified by dev. If dev is not
present, a default of 1 is assumed and cassette unit 1 is selected. If file name is
not present, the next fiie on the cassette in the selected unit is verified.

You should always verify a program immediately after saving it. The
VERIFY statement is almost always executed in immediate mode.

422 - Commodore é4

Example:
YERIFY Verif, the next program found on the
tape
YERIFY “"CLIP" Search for the program named CLIP on
cassette unit #1 and verify it
RE="CLIP" Same as above
YERIFY R$

Diskette Drive Format

VERIFY “dr.file name” dev

The program currently stored in memory is compared with the pro-
gram file named file name on the diskette in drive dr. The dev parameter
must be present and unless otherwise specified it must have the value 8. If the
dev parameter is absent, a default value of 1 is assumed and the primary
cassette drive is selected.

In order to verify the program most recently saved, use the following
version of the VERIFY statement:

YERIFY "#¥",8

You should always verify programs as soon as you have saved them. The
VERIFY statement is nearly always executed in immediate mode.

Example:
VERIFY "#",8 Verify the program just saved
YERIFY"@:SHELL",8 Search for the program named SHELL
on disk drive 0 and verify it

C$="9:SHELL" Same as above
YERIFY C$

WAIT

The WAIT statement halts program execution until a specified memory
location acquires a specified value.

Format:

WAIT memadr, mask[,xor]
where

mask is a one-byte mask value

xor is a one-byte mask value

Appendix G: BASIC Statements 423

The WAIT statement executes as follows:
1. The contents of the addressed memory location are fetched.

2. The value obtained in step 1 is Exclusive-ORed with xor, if present.
If xor is not specified, it defaults to 0. When xor is 0, this step has no
effect.

3. The value obtained in step 2 is ANDed with the specified mask
value.

4. If the result is 0, WAIT returns to step 1, remaining in a loop that
halts program execution at the WAIT.

5. Iftheresultis not 0, program execution continues with the statement
following the WAIT statement.

The STOP key will not interrupt WAIT statement execution.

APPENDIX

RASIC Functions

The C-64 can define a great number of functional operations directly
from BASIC. These functions include mathematical derivations, screen for-
matting instructions, and string manipulators. They are listed in alphabetical
order.

ABS

ABS returns the absolute value of a number.

Format:
ABS(data n)

Example:
A=ABS(18, Results in A=10
A=ABS{~-18) Results in A=10

PRINT ABS(%),ABS(Y),ABS(2)

ASC
ASC returns the ASCII code number for a specified character.

Format:
ASC(data$)

425

426 our Commodore &4

If the string is longer than one character, ASC returns the ASClI code
for the first character in the string. The returned argument is a number and
may be used in arithmetic operations. ASCII codes are listed in Appendix
A.

Example:

PRSCC'R") Prints 65

¥=ASC("S")

™ Prints the ASCII value of “S,” which is 83
ATN

ATN returns the arctangent of the argument.

Format:
ATN(data n)
ATN returns the value in radians in the range = 17.

Example:

R=ATN{AG)
?1BRn¥ATNCR)

CHR$
CHRS returns the string representation of the specified ASCII code.

Format:
CHRS$(byte)

CHRS can be used to specify characters that cannot be represented in
strings. These include a carriage return and the double quotation mark.

Example:
IF C$=CHR${13) GOTO 10 Branch if C$ is a carriage return (CHR$(13))

?CHR$¢34) "HOHOHO" : CHR$(34) Print the eight characters “HOHOHO” (where
CHRS(34) represents a double quotation mark)

Appendix H: BASIC Functions 427

Ccos
COS returns the cosine of the argument.

Format:
COS(data n)

EXP
EXP returns the value €. The value of e used is 2.71828183.

Format:
EXP(arg n)
arg n must have a value in the range +88.029691. A number larger than

+88.029691 will result in an overflow error message. A number smaller than
—88.029691 will yield a zero result.

Example:
PEXP(B) Prints 1
2EXPCL) Prints 2.71828183
EV=EXP(2) Results in EV=7.3890561
EB=EXP(34, 24> Results in EB=6.59105247E+21
PEXP(88,0296319) Largest allowable number, yields 1.70141183E+38

PEXP(~-88,0236313) Smallest allowable number, yields 5.87747176E—39
?PEXP(88,0829692) Out of range, overflow error message

PEXF{~88,023632) Out of range, returns 0

FRE
FRE is a system function that collects all unused bytes of memory into
one block (called “garbage collection™) and returns the number of free bytes.

Format:
FRE(arg)

arg is a dummy argument. It may be string or numeric.

428 o Commocoed

FRE can be used anywhere a function may appear, but it is normally
used in an immediate mode PRINT statement.

Example:

FRZCLD Institute garbage collection and print the
number of free bytes

INT

INT returns the integer portion of a number, rounding to the next lower
signed number.

Format:
INT(arg n)

For positive numbers, INT is equivalent to dropping the fractional
portion of the number without rounding. For negative numbers, INT is
equivalent to dropping the fractional portion of the number and adding 1.
Note that INT does not convert a floating point number (5 bytes) to integer
type (2 bytes).

Example:

A=INT(1.5) Results in A=1
A=INT{~1.5) Results in A=—2

“=INT{-8.1> Results in X=—1

A caution here: since floating point numbers are only close approxima-
tions of real numbers, an argument may not yield the exact INT function
value you might expect. For instance, consider the number 3.89999999. The
function INT(3.89999999) would yield a 3 answer, not 4 as would be expected.

?INT(3.839993933)

3

LEFT$

LEFTS returns the leftmost characters of a string.

Appendix H BASIC Functions 429

Format:
LEFTS$(arg$,byte)

byte specifies the number of leftmost characters to be extracted from
the arg$ character string.

Example:

?LEFTE("ARG", 2) Prints AR

A$=LEFT$(B%, 19) Prints leftmost ten characters of the string B$
LEN

LEN returns the length of the string argument.

Format:
LEN(arg$%)

LEN returns a number that is the count of characters in the specified
string.

Example:

PLENC"RBCDEF") Displays 6

N=LEN{C$+D$) Displays the sum of characters in strings C$ and D$
LOG

LOG returns the natural logarithm, or log, to the base e. The value of e
used is 2.71828183.

Format:
LOG(arg n)

An ILLEGAL QUANTITY ERROR message is returned if the argu-
ment is zero or negative.

Example:
2L0G¢1) Prints 0
A=L0G(18)> Results in A=2.30258509
A=LOGC1E6) Results in A=13.8155106

A=LOG(X)/L0G(1) Calculates log to the base 10

430 o Commodore 44

MID$

MIDS returns any specified portion of a string.

Format:
MIDS$(data$,byte [,byte,))

Some number of characters from the middle of the string identified by
data$ are returned. The two numeric parameters byte and byte, determine
the portion of the string which is returned. String characters are numbered
from the left, with the leftmost character having position 1. The value of
byte, determines the first character to be extracted from the string. Begin-
ning with this character, byte, determines the number of characters to be
extracted. If byre, isabsent thenall characters up to the end of the string are
extracted.

AnILLEGAL QUANTITY ERROR message is printed if a parameter
is out of range.

Example:
?MID$C("ABCDE",2.1) Prints B

?PMID$¢"ABCDE", 3.2 Prints CD

?MID$("ABCDE", 3> Prints CDE

PEEK

PEEK returns the contents of the specified memory location. PEEK is
the counterpart of the POKE statement.

Format:
PEEK(mem adr)

Example:

7PEEK{1) Prints contents of memory location 1

R=PEEK (20000)

Appendix H BASIC Functions 434

POS

POS returns the column position of the cursor.

Format:
POS(data)

data is a dummy function; it is not used and therefore can have any
value.

POS returns the current cursor position. If no cursor is displayed, the
current character position within a program line or string variable is
returned. Character positions begin at 0 for the leftmost character.

Recall that program logic processes 80-character lines even though the
C-64 computer has a 40-character display. If program logic in such a computer
is processing a character in the second half of the line, the POS function will
return a value between the beginning and end of the line (in other words, 41 to
80).

By concatenation, string variables with up to 255 characters may be
generated. If program logic is processing a long string, then the POS
function will return the character position currently being processed. Under
these circumstances the POS function will return a value ranging between 0
and 255.

Example:
PSS At the beginning of a line, returns 0

?"ABCABC"; POSCL) With a previous POS value of 0, displays a POS value of 6

RIGHT$

RIGHTS returns the rightmost characters in a string.

Format:
RIGHTS(arg$,byte)

byte identifies the number of rightmost characters that are extracted
from the string specified by arg$.

Example:

RIGHT$(RARG., 2> Displays RG

432 o Commodore 44

MM$=RIGHTS$(X$+"#",3) MMS is assigned the last four characters of X§,
plus the character #

RND
RND generates random number sequences ranging between 0 and 1.

Format:

RND(arg n) Return random number
RND(—argn) Store new seed number

Example:
A=RND¢~1) Store a new seed based on the value —1
A=RND{1> Fetch the next random number in sequence

An argument of zero is treated as a special case; it does not store a new
seed, nor does it return a random number. RND(0) uses the current system
time value TI to introduce an additional random element into play.

A pseudo-random seed is stored by the following function:

RND¢-TID Store pseudo-random seed

RND(0) can be used to store a new seed that is more truly random by
using the following function:

RND(-RND<@)) Store random seed

For a complete discussion of the RND function see Chapter 5.

SGN

SGN determines whether a number is positive, negative, or zero.
Format:

SGN(arg n)

The SGN function returns + 1 if the number is positive or nonzero, 0 if
the number is zero, or —1 if the number is negative.

Example:
7SGN(-6> Displays —1
86N Displays 0

?S06MC44) Displays 1

Appendix H BASIC Functions 433

IF ADC THEN SA=SGN(X)
IF SGN{M)>=@ THEN PRINT "POSITIVE NUMBER"
SIN

SIN returns the sine of the argument.

Format:
SIN(arg n)

Example:
R=SINCAG)
?8IN(45%n/180) Displays the sine of 45 degrees

SPC

SPC moves the cursor right a specified number of positions.

Format:

SPC(byte)

The SPC function is used in PRINT statements to move the cursor
some number of character positions to the right. Text which the cursor
passes over is not modified.

The SPC function moves the cursor right from whatever column the
cursor happens to be in when the SPC function is encountered. This is in
contrast to a TAB function, which moves the cursor to some fixed column
measured from the leftmost column of the display. (See TAB for examples.)

SQR

SQR returns the square root of a positive number. A negative number
returns an error message.

Format:
SQR(arg n)

Example:
A=SAR4) Results in A=2
R=S0R(4.84) Results in A=2.2

28QR(144E30) Displays 1.2E+16

434 o Commodore 64

ST

ST returns the current value of the I/O status. This status is set to
certain values depending on the results of the last input/output operation.

Format:

ST

ST values are shown in Table H-1.

Status should be checked after execution of any statement that accesses
an external device.
Example:

18 IF ST(>0 GOTO 5008

50 IF ST=4 THEN ?"SHORT BLOCK"

Branch on any error

STRS

STRS returns the string equivalent of a numeric argument.

Format:

STRS$(arg n)

STRS returns the character string equivalent of the number generated
by resolving arg n.

TABLE H-1. ST Values for I/ O Devices

ST Bit ST Numeric Cassette Cassette Tape
Position Value Tape Read Verify and Load
0 |
1 2
2 4 Short block Short block
3 8 Long block Long block
4 16 Unrecoverable Any mismatch
read error
5 32 Checksum error Checksum error
6 64 End of file
7 128 End of tape End of tape

Appendix H: BASIC Functions 435

Example:
R$=STR$(14.6> Displays 14.6
7R$
2STR$C1E2) Displays 100
7STR$(1E10) Displays 1E+10
SYS

SYS is a system function that transfers program control to an inde-
pendent subsystem.

Format:
SYS(mem adr)

mem adr is the starting address at which execution of the subsystem is
to begin. The value must be in the range 0 <<address <<65535.

TAB

TAB moves the cursor right to the specified column position.
Format:

TAB(arg n)

TAB moves the cursor to the nt1 position, where n is the number
obtained by resolving arg n.

Example:
?"QUARK" ; SPCC1@), "W" These two examples show the difference between SPC
QUARK W and TAB. SPC skips ten positions from the last

i ips to the 10+ 1th
2UQUARK" ; TRBC1@); "W cursor locatl(})jn, whereas TAB skips to the 10
QUARK W position on the row

TAN

TAN returns the tangent of the argument.

Format:
TAN(arg n)

436 ‘o Commocaore 4

Example:
?TANC3. 2) Displays 0.0584738547
¥Y(1)=TAN(180%n/180)

T, TIS

TI and TIS$ represent two system time variables.

Format:

TI ~ Number of jiffies since current startup

1€ Time of dav ctring
I$ Time of day string

T1$="081000"

USR

USR is a system function that passes a parameter to a user-written
assembly language subroutine whose address is contained in memory loca-
tions 1 and 2. USR also fetches a return parameter from the subroutine.

Format:
USR(arg)

VAL

VAL returns the numeric equivalent of the string argument.

Format:
VAL(data$)

The number returned by VAL may be used in arithmetic computations.
VAL converts the string argument by first discarding any leading
blanks. If the first nonblank character is not a numeric digit (0-9), the
argument is returned as a value of 0. If the first nonblank is a digit, VAL
begins converting the string into real number format. If it subsequently
encounters a nondigit character, it stops processing so that the argument

Aopendix H BAS C Functions 437

returned is the numerical equivalent of the string up to the first nondigit
character.

Example:
A=YALC"123")
NN=YRL(B$>

iINndex

A

Abbreviations, 80-81
keyword, 388
ABS, 425
AND, 73-74
Animation, 183
delay loops, 207
players, 183-85
sound combined with, 303
sprites, 235-37
using custom characters for, 203-07
Arithmetic calculations, 43
Arrays, 77-80
ASC, 425-26
Assignment statement, 84-86
ATN, 426

BASIC

abbreviations, 82-83

assignment statements, 84-89

branch statements, 89

commands, 80

data and read statements, 86

DIM (dimension statement), 88

functions, 425-37

reserved words, 80-81

restore, 88

statements, 84, 395-423
Bit-mapped graphics. See Graphics
BLOCK-ALLOCATE. See Disk drive
BLOCK-FREE. See Disk drive
BLOCK-READ. See Disk drive

BLOCK-WRITE. See Disk drive
BUFFER-POINTER. See Disk drive

C

Cassette tapes, 26. See also Datassette
selection and care, 26
write-protection, 26

Character codes, table of, 381-85

Character memory
changing location of, 266
contents, 190
definition, 181
locating characters in, 265

CHRS, 128-29. See also ASCII, ASC, and

character codes

CIA chips, 158

CLEAR/HOME, 14-16

Clock, real-time. See also Jiffy Clock
Jiffies defined. See Clock
operation, 147-50
reading the time, 147
setting the time, 146-47
TIME and TIMES variables, 147-50

CLOSE, 395

CLR/HOME key, 14-16
location on keyboard, 14

CLR, 396

CMD, 396

Color
control keys, 14
extended color, 248-53
multicolor, 254-55, 257-61

sprites, 263

439

440 ‘\our Commodore 64

Color memory. See Color
Computed GOSUB, 99-100
Computed GOTO, 90-91
CONT, 397
Control statements, 92
Controls and connectors, 1-6
Cassette interface, 3
Expansion interface, 4
Parallel port, 3
Serial port, 4
Conversion tables. See Trigonometric
conversion tables
COS, 427
CRSR keys. See Cursor control keys
Cursor Up/Down, 16-19
control keys, 16
movement, 17-19, 126-28
Custom characters, 190
character memory, 191-96
combining with built-in characters, 202
designing, 196-98, 200-01, 256-57
finding the character definitions, 194
how to display, 190
using custom characters, 198-200, 201-02

D

DATA
entering a valid date (example), 132-37
entry (input), 130
editing, 141
sequence, 140
subroutines, 142-46
formatted data input, 137-40
prompting, 130-32
storing, 305
trancior, 308
Datassette 21-26, 46-49. See also Cassette
cleaning and demagnetizing heads,
24-25
connecting to computer, 22
files, 310-16
reading data, 313-14
writing data, 311-13
loading programs from, 48-49
load and run, 49
saving programs on, 47
testing, 22-23
using the, 46
verifying programs on, 47
Decay. See Sound

DEF FN, 398
Device numbers and secondary address
(table), 310
DIM, 399
Disk drives, 26-30
Disk files, 316-20
BAM (Block Availability Map), 318
BLOCK-ALLOCATE, 328-29
BLOCK-FREE, 331-32
BLOCK-READ, 325-28
BLOCK-WRITE, 329-30
BUFFER-POINTER, 330-31
CLOSE disk files, 324
concatenating files on, 321
connecting to computer, 27
multiple-disk systems, 321
copying files on, 321
disk, data files, 322
sequential, 322-23
directory (diskette), 318
displayed on screen, 50
erasing files, 320
file names
string variables as, 323
formatting a diskette 51-53, 319-20. See
also Disk NEW instruction
how data is stored on, 316
indicator lights, 28
initialization, 318-19
loading and unloading diskettes, 28-30
loading a program, 50
MEMORY-EXECUTE, 335
MEMORY-READ, 334-35
MEMORY-WRITE, 333-34
multiple disk systems, 321
power-on test, 27
random access, 324-25
reading data from, 324
renaming files on, 320
saving a program, 53
sectoring pattern, 317-18

specifications (1541 specification table), 28

user (Un) commands as an alternative
to:
U1, 335-36
U2, 336
U3-U9, 336
utility instructions (table), 326
VALIDATE, 320
writing data on. See Data
Diskettes. See Floppy disks

441

Index

E

Editing
between quotation marks, 43
screen, 41

END and STOP statements, 110-11

Error messages, 389-94

EXP, 427

Extended color mode, 248

F

Fields. See Data, files
Files, 306-25
data files, 307-08
data transfer, 308
Datassette files. See Datassette
deleting from diskette, 320
fields, defined, 307
GETH#, 402
INPUTH4, 406
logical files and physical units, 308
PRINTH#, 324-25
program files, 306
random access files, 324-25
records, defined, 307
renaming disk files, 320
sequential files, 322-23
Floppy disks 31. See also Disk drive
care of, 31
sectors, 318
tracks, 318
write-protection, 31
FOR-NEXT, 92-96, 400-01
nested loops, 94
FRE, 427-28
Function keys (F1, F2, ... F8), 19-20
Functions
arithmetic, 112
defined, 111
string, 114
system, 114-15
trigonometric (deriving functions). See
Trigonometric tables
user-defined, 115

G

Game controllers, 155
paddle controllers. See Game controllers
joysticks, 156-61
ports, 3

GET statement, 108-09, 401
“echoing” input keystrokes. See GET
simulating a joystick (example). See
Game controllers
GET#, 402
used to read files, 314-16
GOSURB, 402-03. See also Computed
GOSUB
GOTO, 403. See also Computed GOTO
Graphics
bit-mapped, 207-17
combining PRINTed and POKEd
graphics, 185-89
creating displays with POKE, 177-83
memory segments, 189-90
saving and loading graphics data,
268-72
sprite, 217-46

H

Hexadecimal/decimal conversion tables,
373-79

IF-THEN, 100
Immediate mode, 39
INITIALIZE, 404-05
INPUT statement, 106-108
INPUTH#, 406
Input/output
pinouts, 367-71
statements, 100-09
INST/DEL (insert/delete) key, 19
editing text with, 41-42
INT, 428

J

Jiffy. See Clock
Joystick. See Game controllers, CIA chip
description, 155
Jjoystick scanner, 160
keyboard simulation, 164-67
reading the position of the stick, 158

K

Kernel (built-in machine-language
routines). See Memory guide

442 o Commodore 64

Keyboard
alphabetic keys, 7
cursor control keys, 14
function keys, 10
graphic keys, 8
graphic character table, 9
numeric keys, 8
special symbol keys, 8
Keyword abbreviations. See
Abbreviations

L

LEFTS$

LEN, 429

LET, 406

Line numbers, 58-60
LIST, 407-08

LOAD, 408-10

LOG, 429

Loops, nested. See GOTO

M

Machine language subroutines, 272-75
Memory

and the VIC II chip. See VIC 11

character memory. See Characters

color, 267

guide, 351-66

organization of. See Memory guide

preserving your memory, 267
MEMORY-EXECUTE. See Disk drive
MEMORY-READ. See Disk drive
MEMORY-WRITE. See Disk drive
MID$, 430
Modem

installation, 337

terminology (definition of terms),

338-39

N

Nested loops. See GOTO
NEW, 410
NEXT. See FOR/NEXT
Numbers
_ floating point, 60
integers. See INT
roundoff, 60
scientific notation, 61

o

ON-GOSUB 411. See also Computed
GOSUB
ON-GOTO 411-12. See also Computed
GOTO
OPEN, 412,13
Operators, 68-71
arithmetic, 69
Boolean, 73
truth table, 74
defined, 68
order of evaluation, 71
relational, 72
table of, 68
OR, 73-74
OVERFLOW ERROR. See Error codes

P

Paddle controllers, 161-62
PEEK, 110
Players
created with graphics characters,
173-75
definition, 172
using the reverse function, 175-76
POKE, 110
POS, 105
PRINT statement, 101-03
print formatting, 104
“quote” mode, 103
SPC, 104
TAB, 104-05
using CHRS$ to “print” special
characters. See CHR$
PRINT#, 324
Printer
adjusting print head, 37-38
character sets, 341-42
CLOSE statement for, 56, 340
CMD, 55-56, 340-41
connecting to computer, 32-35
comma with, 342
double/single-width characters, 344
graphics, 344-48
modes (table), 345
OPEN statement for, 55, 339-40
operating the, 54-56
paper loading, 35-37
POS with, 343-44
PRINT formatting, 342-44

INndex

443

Printer (continued)
reversed characters, 344-45
ribbon installation, 35
SPC with, 343
T-5-4 switch, 37
TAB with, 343
Programming
data, 60
elements of, 57
input and output, 122-46
line numbers, 58
program entry, 44
program mode, 44
running a program, 45
with strings, 117-21
concatenating. See Strings
numeric. See Strings

Q
Quote mode. See PRINT

Random access files. See Disk data files
Random numbers
defined, 150
random dice throws generation
(example), 152-53
random selection of playing cards
(example), 153-54
ranging the numbers, 151
RND, 151
“seed number,” 151
READ, 417
REM, 84
Reserved words
defined, 80
list of, 81
RESTORE, 418
RESTORE key. See Keyboard
RUN/STOP/RESTORE. See Keyboard
RETURN, 418
RETURN key, 11
RIGHTS, 431-32
RND, 432
RUN, 419
RUN/STOP key, 12-13
reset system, 13
starting a program with, 13
load and run, 49
stopping a program with, 12

RVS OFF, 12
key, 10,12
functions, 12

RVS ON, 11

S

SAVE, 419-20
Screen

ASCII to screen code conversion table,

182
background, 170
border, 170
controlling colors, 171-72
display codes, 181, 385-87
editing, 41
formatted display, 126
layout, 124
memory, 178
organization of, 179
color memory, 179-81
Screen codes, 385-87
SGN, 432-33
SHIFT, 10
SHIFT/LOCK, 10-11
SID Chip, 277-78
Sound, 277-304
animation combined with, 303-04
attack, 288, 91
“beat” frequency, 292-93
components of, 283-84
control registers 278-79
table of, 278
voice control, 279
setting up, 279
decay, 289-90
electronic organ, 300-01
fading out, 287-88
frequency tables, 280-82
mixing tones, 292
multiple tones, 285
musie, 295-303
arrays, 301-02
saving, 301-03
noise, 294-95
POKE value table, 280-82
pulsed tones, 285-87
rhythm, 299
scales, sweeping, 284-85
sustain, 288-91
tremolo, 291-92
vibrato, 291-92

444 - Commodore ¢4

volume control, 287
waveforms, 293-95
Special function keys (table of), 20
SPC, 104
Sprites, 217
collisions, 243-46
coloring, 237-39, 246-56
designing sprites, 223-26
enabling and disabling, 230-31
expanded, 264
how they are displayed, 220
memory, 221-23
loading in, 226
moving, 231-35
multicolor. See Color
priorities, 240-43
SQR, 433
ST (status register), 314
table, 314
STOP, 420-21
Storage. See Data, SAVE, LOAD
STRS, 434
Strings, 64
concatenation, 118
numeric, 119
Subroutines. See GOSUB
defined, 96
“nested”. See GOSUB

SYS, 435
System architecture, 349

T

TAB, 104-05

TAN, 435-36

TI. See TIME and Clock

TI$. See TIME$ and Clock
Trigonometric conversion tables, 380

U

USR, 436

\'J

VAL, 436
VALIDATE, 422
Variables, 65

names and rules for, 66

VERIFY, 422
VIC II chip

advanced topics, 264-67

control registers

introduction to, 169

locating sprites in memory, 227-30
memory as viewed by, 264-65

Video interface chip. See VIC II chip
Video display. 4

Other Osborne/McGraw-Hill Publications

An Introduction to Microcomputers: Volume 0 — The Beginner’s Book, 3rd Edition
An Introduction to Microcomputers: Volume 1— Basic Concepts, 2nd Edition
Osborne 4 & 8-Bit Microprocessor Handbook

Osborne 16-Bit Microprocessor Handbook

8089 1/O Processor Handbook

CRT Controller Handbook

68000 Microprocessor Handbook

8080A/8085 Assembly Language Programming

6800 Assembly Language Programming

Z80® Assembly Language Programming

6502 Assembly Language Programming

Z8000® Assembly Language Programming

6809 Assembly Language Programming

Running Wild —The Next Industrial Revolution

The 8086 Book

PET®/ CBM™ and the IEEE 488 Bus (GP1B)

PET® Personal Computer Guide

CBM™ Professional Computer Guide

Business System Buyer’s Guide

Osborne CP/M® User Guide, 2nd Edition

Apple 11® User’s Guide

Microprocessors for Measurement and Control

Some Common BASIC Programs

Some Common BASIC Programs— Atari® Edition

Some Common BASIC Programs —TRS-80™ Level II Edition
Some Common BASIC Programs — Apple 11® Edition
Some Common BASIC Programs — IBM® Personal Computer Edition
Some Common Pascal Programs

Practical BASIC Programs

Practical BASIC Programs —TRS-80™ Level II Edition
Practical BASIC Programs — Apple 11® Edition

Practical BASIC Programs —IBM®@ Personal Computer Edition
Practical Pascal Programs

CBASIC

CBASIC™ User Guide

Science and Engineering Programs— Apple 11® Edition
Interfacing to S-100/IEEE 696 Microcomputers

A User Guide to the UNIX™ System

PET® Fun and Games

Trade Secrets: How to Protect Your Ideas and Assets
Assembly Language Programming for the Apple 11®
VisiCalc®: Home and Office Companion

Discover FORTH

6502 Assembly Language Subroutines

Your ATARI™ Computer

The HP-IL. System

Wordstar® Made Easy, 2nd Edition

Armchair BASIC

Data Base Management Systems

The HHC™ User Guide

VIC 20™ User Guide

Z80® Assembly Language Subroutines

8080/8085 Assembly Language Subroutines

The VisiCalc® Program Made Easy

Your IBM® PC: A Guide to the IBM® Personal Computers

Your Commodore 64"

Here is an easy-to-understand, fully illustrated teaching guide
packed with all the information you need to master
your Commodore 64™ computer.

For the beginner, Your Commodore 64™ features:

m Step-by-step operating instructions to get the C-64 and its
peripherals up and running

= A complete introduction to programming in BASIC — plus
information on how to tap the special graphics and sound
capabilities of the C-64

If you're a more advanced user, you'll find that this book will

serve as an invaluable reference tool by providing:

w Detailed coverage of BASIC statements and functions

= An extensive memory guide indicating the most usable
memory locations together with explanations of what each
one does and how it works

= A special section devoted to advanced color graphics and
Sprite graphics

No matter what your leve! of experience or whether you use your
C-64 for entertainment, education, or home management, Your
Commodore 64™ is, without a doubt, one of the most valuable
resource guides that you can buy.

Commodore 64" is a trademark of Commodore Business Machines, Inc.

/K
N
ISBNO-88134-114-2 l_ln '

>
-

.J_).L

o B s
.1,

[

