B |

EEIIIllllllllllllllllllllIlllllllllliil
‘llllll'llllIIIIIIIIIIIIIIIIIIIIIIIIIl
I]) U 5 O D O
EIDETREINEEEEEN ll!ll!!!lllllllllllll==
“lam o B 1T —qEEEEE

| ¥,

7
-
||

L]

" -==E¥ii

DT MEEE s

aE n
,-I..ﬂrn 1

e |

g | COLOUR| zm
| ISLAND

MASTER
MEMORY
MAP
FOR THE
COMMODORE 64

A GUIDE TO THE INNER
WORKING OF THE
COMMODORE 64's BRAIN CELLS

by
PAUL PAVELKO

and
TIM KELLY

Prentice Hall Intemational

<

Englewood Cliffs, NJ London New Delhi Rio de Janerio
Singapore Sydney Tckyo Toronto Wellington

ISBN 0-13-57435k-b

'@' ©Copyright 1983 by Educational Software, inc.

Commodore 64 is a trademark of Commodore Business Machines.
Professor von Chip and Prototype are trademarks of
Educational Software, inc.

All rights reserved. No part of this book
may be reproduced, in any way
or by any means, without permission in writing from the publisher.

10 9 87 6 5 4 3 21

Printed in Great Britain by A. Wheaton & Co. Ltd., Exeter

TABLE OF CONTENTS

PRELUDE 1
SOURCES 2
GLOSSARY ... 3
How to PEEK and POKE 6
BYTES and BITS 10
LOWER ADDRESSES 15
GRAPHICS ADDRESSES 63
SOUND ADDRESSES 82
COMPLEX INTERFACE ADAPTER (CIA) #1 95
COMPLEX INTERFACE ADAPTER (CIA) #2 101
APPENDICES 105
A. RECONFIGURING THE MEMORY MAP 106
B.ROMMEMORY MAP 111
C. THE KERNAL 113
D. BASIC ROM ROUTINE STARTING ADDRESSES 117
E. THE SERIAL BUS 126
F. THE COMPLEX INTERFACE ADAPTERS (CIA) 128
G. BEING AN ARTIST wiTH COMMODORE 64 GRAPHICS 130
H. GRAPHICS PROGRAMMING 133
VIDEO BANK SELECTION 133
PROGRAMMABALE CHARACTERS 134
A PROTO EXAMPLE 134
ASCII and CHR$ CODES 137
SCREEN DISPLAYCODES 139
I. HOW TO CREATE SPRITES 141
DESIGN THE SPRITE 141
STORING THE SPRITE IN MEMORY 142
SETTING THE SPRITE POINTERS 143
CHOOSING THE COLOR 144
MULTICOLOR SPRITES 145

SPRITE ALGORITHM OUTLINE 150

J. COMPOSINGMUSIC i 154

SOUND PROGRAMMING TECHNIQUES 154
OUTLINE FORSINGLE VOICE 156
VOICEFLOW CHART 158
SOUND EXAMPLES:
SCALES 159
PUMP ... 161
BOMB 163
BUSY SIGNAL 165
SIREN ... 166
DRIPPING 168
PLANE ... 170
MULTIPLE VOICE PROGRAMMING 171
OUTLINE FORMULTI-VOICE 173
ADVANCED SOUND
PROGRAMMING TECHNIQUES 176
MUSICNOTE VALUES 177

INDEX TO MEMORY LOCATIONS 180

PRELUDE
TO THE COMMODORE 64 MASTER MEMORY MAP

Welcome all, beginning or expert programmer, to ESI's
COMMODORE 64 MASTER MEMORY MAP! This book will be
your guide into the inner working of the Commodore 64’s *brain cells’.
This is truly a map, a guide to the special places inside the operating
system of the computer. These places will help you add new features to
the programs you write, making them really come alive!

Along the way, you have the humor of Professor Von Chip and the
friendly alien Prototype to help make the journey a productive one.

MEMaRY LIBRARY

The Master Memory Map is divided into sections to aid you. Each
section deals with a particular part of the memory. There are lots of
programming examples, too, because sometimes it's easier to under-
stand an example when you see it on the screen instead of just reading it.
Some of the programming examples add a useful utility to BASIC, like
the RENUMBER routine. Others serve as useful programming "tricks’.
In every case, you should study the listings and play with the code to see
what happens.

The appendices go into more detail, showing how to do something like
create sprites or produce a sound. They give longer programming
examples and show you some of the advanced things you can do with the
Commodore 64.

This book really isn’t a novel, so you can start reading anywhere. But
sometime you should read it from cover to cover; sooner or later you’ll
see new ways to use the computer. This moment of enlightenment - a
creative flash - is what makes working with a computer so much fun!

We’ve worked hard to make the Master Memory Map easy to read
and use. Look in the upper right hand page corner for a guide that will
show you which locations are covered on those pages. Just flip through
the book until you come to the locations you need. The appendix sections
are also marked in a similar way.

% Prototype, sometimes just called Proto, will help you find locations
and routines that the beginning or intermediate programmer will use
most often. Look for him in the margin as you flip through the book.

A COPY OF THE PROGRAMS

The programs in this book are used as illustrations for techniques and
ideas. You will gain a lot of knowledge if you type in the programs
yourself. But if you don’t want to tire your fingers, send $9.95 to:

Educational Software, inc.
4565 Cherryvale Ave.
Soquel, CA 95073

A BONUS!

If you discover a new, unpublished use for one of the memory
locations send it to Educational Software. In return, we’ll send you some
software, free.

SOURCES

A few of the program examples in the Master Memory Map come
from other sources. The source is identified in the text by using these
symbols.

C:: COMMODORE 64 PROGRAMMER'S REFERENCE
GUIDE, Commodore Business Machines, Inc., Computer Systems
Division, 487 Devon Park Drive, Wayne, PA 19087.

C!: COMPUTE! Magazines, Copyright 1982, Small System Service,
Inc., Reprinted by permission from COMPUTE! Magazine, P.O. Box
5406. Greensboro NC 25403, 12 Issue, Subscription $20.00.

GLOSSARY

ASCIL The American Standard Code for Information Interchange.
This is one standard for assigning numbers to the letters and
characters on the keyboard. Commodore computers do not follow
a true ASCII (pronounced ‘ASK KEY’) but have their own code
instead.

Accumulator: The results of logic and arithmetic operations are stored
here temporarily. It acts as a busy bus stop, nobody stays here long!

Address: The number of a given location. It’s just like a street address.

Attack: The rate a note or sound changes from ‘off’ to its highest
volume.

Attack —

Baud: This is the rate of transmittion of information conveyed over a
line . This rate is determined by the bits per second that are being
transfered. You encounter this term if you are using a modem or
some device that requires special interfacing (RS-232).

Bit: The smallest piece of information the computer can handle. There
are eight bits in a byte.

Buffer: A storage place. For example, the keyboard buffer stores your
keystrokes and allows you to type faster. The information in a
buffer eventually goes somewhere else to be acted upon.

Bus: A bus is a system of electrical lines shared by all devices that are
connected to it. This is a convenient way for these devices to share
addressing and data. It works just like a party line telephone.

Decay: A musical term meaning the rate of change from the highest
level to the sustaining level of sound.

<«— Decay

Default: The beginning value of a memory location especially when the
power is turned on or other operations are done.

Disable: Turn off. By disabling the RUN/STOP key, you can prevent
anyone from accidentally stopping your program.

Enable: To turn on; the opposite of disable.

Flag: A signal that something has happened. Flags can be used in your
own programs. For example:

If A$ = “ouch™ then B =1
B is the flag in that statement.
Floating Point: Arithmetic operations using decimal numbers.

Immediate Mode: Using the computer without running a program.
For example:

10 PRINT 3 + 2
is a program and must be run to get an answer.
PRINT 3 + 2
will answer 5" when you press RETURN.

Jump: To go from one location to another. In BASIC, the equivalent
terms are GOTO and GOSUB.

KERNAL: Thisis Commodore’s word for a series of machine language
subroutines that operate the computer. See the Appendix for more
information.

Nybble: Pronounced ‘nibble’. A nybble is half a byte. Really. The low
nybble is composed of bits 0 to 3. The high nybble has bits 4 - 7.

Operating System: Sometimes this is referred to as the OS. Part of this
is the KERNAL described above. Its job is to make the computer
run.

Page: A page is 256 bytes of memory. The computer often keeps track
of different blocks of memory in terms of pages since it is easier for
the computer to store.

Pointer: It does just what it says, it acts as a signpost, telling the
computer where to look for information.

RAM: Random Access Memory. This type of memory can be easily
changed. Your programs are stored in RAM, and when the
computer is turned off any information in RAM is lost.

ROM: Read Only Memory. This type of memory does not change when
the power to the computer is turned off. Examples of ROM
memory include BASIC and the KERNAL.

Register: Another name for memory location. Registers can be more
than one byte long.

Release: A musical term describing the rate of fall from the sustain level
to zero volume.

-— Release

Reserved Word: Letters that can’t be part of your program. Examples
of reserved words are the status word, ST, and the time words, T1
and TI$. To save yourself from trouble, don’t use any variables in
your programs that have the same starting letters of any BASIC
command or have BASIC words in them.

Sustain: Another musical term used with the sound capabilities of the
computer. This extends the sound, like the pedals of a piano.

Sustain —

Waveform: This term is a description of the type of sound produced.
The computer has four different waveforms; triangle, sawtooth,
pulse and noise. Each type produces a different kind of sound.

Vector: This is another kind of pointer. It refers to the starting address of
a routine. The computer needs to know where to look for things.

S

How to
PEEK and POKE

This part is for those who have yet to learn how to use a memory map.
Basically, a memory map is a list of valuable locations within the
computer (in this case a COMMODORE 64), that you can directly use
for various purposes. These locations are called bytes (memory loca-
tions) of memory at a specific place. With 64K of memory, there are
64*1024 memory locations that you can work with. Although some of
these bytes are used for the computer’s Operating System, most of them
are blank for you to use in your programs. This manual will tell you about
the ones that you can do something with.

For example, you can quickly look down this list to find that location
650 controls the repeating of certain keys, like the space bar. By
following the included hints, you can change the ‘“‘normal’” value in that
location, so that when you pressany key it will repeat as long as you hold
it down. Please note that any of the changes that you make are only
temporary and will go away when the computer is turned off.

Now to explain how to make changes from BASIC. Say you look
down the list and decide to change location 650 (all numbers are decimal
unless marked with a $ symbol, which denotes a HEX-adecimal
number, or in a column marked “hex’). 650 is called RPTFLG by
Commodore. Its function is to decide which keys on the keyboard to
repeat. So, if you would like all the keys to repeat as long as you hold the
key down, you simply look up the correct value to POKE into location
650.

In this example, the memory map says to use the number 255 to repeat
all keys. The BASIC instruction to put a number into memory is called
“POKE?”. After all this long-winded explanation, you can now see how
simple it is to make this change:

POKE 650,255

— HINT —

Always use the decimal numbers with a POKE statement. This means
that sometimes you will have to convert between binary, hexadecimal
and decimal. Also, any one memory location can only hold a number up
to 255. Why?...remember that the COMMODORE uses eight bits per
word (memory location), and eight bits in binary counts from O to 255
(internally, the machine uses binary). You may want to study the next
section of the manual, **Bytes and Bits™ to learn about binary. Because of
this limitation, sometimes you must POKE numbers into two locations
in a row.

For example, look at memory locations 643 & 644 which are called
MEMSIZ. These locations hold a number that corresponds to the top of
your available memory (called RAM - Random Access Memory). Since
the top of memory can be up to 40960, a number well above the limit of
256 for any one memory location, the computer will need two locations
to store the value. Yes, I know 256 for the first location plus 256 for the
second doesn’t seem to add up to a large enough number to hold 64K, but
the computer takes each number in the second location and multiplies it
by 256. Examples:

11 stored in the low byte
+1 stored in the high byte
267

The computer ““sees”” 256*1+11 which equals 267.

Another example:

121 in the low byte
+7 in the high byte
1913

Since 7*¥256 +121=1913.

Sometimes it is desirable to fool the COMMODORE 64 into thinking
that the top of memory is lower than it actually is, perhaps to keep it from
using the last thousand bytes of memory, thus reserving them for Sprites.
You do the same type of POKE here as in the first example, except that
you have to do it twice; once for the ““LOW’ part of the number and once
for the “HIGH" part.

I said the LOW part of the number is placed in the first memory
location and the HIGH partis next. Although it seems backwards, this is
really not hard to understand. The COMMODORE (and most other
micro-computers) store multiple part numbers this way. Occasionally
this rule is broken, so please don’t call me up if you find an exception.

Here’s what you do. We want to change the value of MEMSIZ to be
1K less than it currently is.

1) Find current value...

10 A = PEEK(643)+PEEK(644) * 256
LOW Part HIGH Part

This number will be 40960, which is the value of MEMSIZ, when
the 64 is turned on.

2) Subtract 1K from this value...
20 A= A—(1 *1024)
Remember that one K is actually 1024 bytes.

(You don’t have to use 1, you can can change the size by any
number.)

3) Break the new value up into LOW and HIGH parts...

30 B = INT(A/256). C= A—(B * 256)
B would = 156, C would = 0

What this does is make C the LOW part of the number and B the
HIGH part.

EX: 40960—1K = 39936

Line 30, when run, will give you 156 for the HIGH part and O for the
LOW part.

4) POKE these values into memory...

40 POKE 643,C: POKE 644,B (#’s in decimal'!)

EX: POKE 643,0:POKE 644,156

!! FINAL WORDS OF WISDOM !!

1) Feel free to POKE and PEEK all you want, trying out ideas or
testing the effects mentioned in the Master Memory Map. The
explanations are only the most basic part of how to do the various
effects possible on the COMMODORE. Watch for EDUCA-
TIONAL SOFTWARE'S series of TRICKY TUTORIALS"™
that will take you step by step through Sprites, Page Flipping,
Sound, Animation and other uses of the computer. These are the
techniques that the best programs use, and all of our Tutorials are
done in BASIC, although we do sometimes include a machine
language subroutine to offer you some advantage like speed.

2) Remember that two numbers are required to tell the computer the
value for some locations, and these are stored LOW part first,
HIGH part second. This is opposite of what you might think.

3) All of the memory locations are here, but many are for advanced
users only. Don’t feel bad if you have noidea what they are for. The
idea is to experiment and learn.

4) You can usually press Run/Stop and Restore if trouble occurs.
This will restore the original (default) values of many locations.

5) Some locations in the Master Memory Map are used to read from
only; that is, you can PEEK to see what is there, but you can’t
POKE your own number in. This is because part of memory is a
type called ““ROM” which means “READ ONLY MEMORY".
This type is permanent and can’t be changed by POKEing, but
Commodore has thoughtfully provided a way for you to put a copy
of the ROM into memory so you can change it if you wish.

Go back and re-read the last section at least a few hundred times.
There are only four lines in the program that both read the old value of
MEMSIZ and store a new value. These lines don’t have to be part of a
program. You could enter them directly.

BYTES and BITS

%“—1‘9—%*

To PEEK & POKE you need to understand what a byte is and how it
is structured. It isn’t too hard to understand - and you can use the Master
Memory Map without learning too much about them - but the more you
know about Bytes and Bits the more you'll learn about controlling your
Commodore.

A BYTE is really not complicated at all. A BYTE is simply a group of
eight BITS. When eight BITS are structured into a BYTE then each of
those BITS have special significance. You look puzzled! What, you say,
is a BIT?

A BIT is the smallest piece of information a computer can deal with. In
fact, the computer only deals with BITs at the most fundamental level. It
may be helpful to imagine the microprocessor as a bus station. This bus
station has only one single lane road attached to it. That means a bus can
only travel in one direction at a time as there is not enough room for two
busses to pass each other. Therefore, a bus may either be arriving at the
station or departing. The microprocessor, or bus station, can schedule its
bus with a signal light that says "I AM ACCEPTING ARRIVALS” or
“I AM SENDING DEPARTURES”.

In fact, in real computer hardware architecture, the wires that carry
information to and from a microprocessor are called the DATA
BUSSES. We don't need eight separate INPUT and eight separate
OUTPUT wires because, like the singie lane road connected to the bus
station, the wires are bi-directional, that is, information can either be
arriving (INPUT) or departing (OUTPUT). The microprocessor also
has a signal of its own that determines whether it will receive (INPUT) or
send (OUTPUT) information.

WHO’S RIDING THE BUS?

HeEdEEEE

~~ BYTE EXPRESS
NV E—— O -

Let’s take a closer look at that bus. It is known as the BYTE express,
has eight seats, and always carries eight passengers. Those passengers
are little messengers known as BITs, and, as a group, they are known as a
BYTE. These messengers, or BITs, are rather moody. They are either
turned ““ON” or they are turned “OFF”’. That is called BINARY as they
are BI-STATE signals, ON being a ‘1" state or OFF being a “0”’ state.
Their vocabulary is just as limited...the only thing they are willing to tell
you is their mood. Now how do we get any meaningful information out of
a group of eight little monsters standing in front of us, each screaming
“ON” or “OFF” at one time?

Well, when the bus arrives, we could have the whole BYTE stand in
front of us and count everyone who is turned ““ON”". That would give us
the capability of counting to eight. Seems pretty limited, doesn’t it?
Hmmm, the group really needs a leader. That leader will be the first BIT
on the left. We’ll call that BIT the Most Significant Bit, or the MSB. The
last BIT on the right will be the Least Significant Bit, or LSB. Terrific!
Now that we have a group leader and group follower, then all the BITs
should have a rank.

Handing out ranks is a serious matter and much thought should be
given to it. We can start with the LSB and assign that BIT the rank of
“17, since it is the Least Significant Bit. We can be easy on everyone if

11

we just double that rank for the next BIT in line. So, why not just keep
doubling the rank for the next BIT in line and so on until we get to the
MSB or Most Significant Bit. Now out BY TE looks something like this:

BYTE
MSB LSB

BIT 7 1 0

e [19] [o0] [2]] [+ [+] [2] [1]

E

MESSAGES WITH MEANING!

What have we gained? More than meets the eye! When the BYTE gets
off the BYTE express and each BIT starts telling us what their mood for
the day is, we can make a different and more meaningful interpretation
out of the ignorant little beasts. If everyone is turned ““OFF"” except the
fourth BIT from the right we can check the rank of that BIT and find it is
eight (8). Unknown to the BITs, they have brought us a message and the
message is “*8”.

Computers are very efficient and do not like to waste information,
therefore, computer related numbers usually start at BASE ZERO (0)
since zero is unique. We usually like to start counting with one (1) for the
convenience of our thinking process. That way, the number we arrive at
when we have counted the last item actually represents the number of
items we counted. Normally, we would count the BITs as one (1)
through eight (8). The computer thinks a little more efficiently than
mortals and sees BITs zero through seven as representing eight (8)
individual BITs.

VALUE 128 64 32 16 8 4 2 1
%
/// -8
7

BIT 7 6 5 4 3 2 i 0

It you SET or turn "ON™ only the fourth BIT (BIT #3) from the right
you will observe a value of eight (8) in the value box. That was the
message we received!

Aha, we now want the BITs to get on the bus and carry a message back
to the sender. We want them to tell the sender 9. Oops, a small

12

problem, there is no BIT with the rank of nine in the BY TE. What to do,
what to do? I guess the next best thing is to be very nice to the LSB, pat it
on the head, and turn it “ON”, then when the sender receives our
message from the return BYTE he will find BITs with the rank of “1” and
“8” turned “ON”. Adding those ranks together gives us a numerical
range of O to 255. That is a total of 256 cases if you count O as a case.

VALUE 128 64 32 16

/B
% % =“5
V% D %/ﬁ =162

6 5 4 3 2 1 0

BIT#

Well, that’s how you get the numbers to POKE into the locations in
the Memory Map. Let’s just take one more example. If Proto was a
Sprite, he would have a number from 0 to 7. Sound familiar? To let Proto
be Sprite number 0, turn on the zero BIT in location 53269.

POKE 53269,1

BIT# 7 6 5 4 3 2 1 0
"//
Y
VALUE 128 64 32 16 8 4 2 1
For Proto to be Sprite number 3, turn on BIT 3.
POKE 53269,8
VALUE 128 64 32 16 8 4 2 1
7
_
BIT# 7 6 5 4 3 2 1 0

MMM-B 1 3

To have 4 different Sprites on the screen, turn on the BIT for each Sprite.

VALUE 128 64 32 16 8)

4 2
2 1

BIT# 7 6 S 4 3

0

Turns on Sprites #5, 3, 2 and 1.

Confusing? Just read this a few thousand times and play, play, play
with the locations in the Master Memory Map. The more you play, the
more you learn!

LOWER ADDRESSES

LABEL
Hexadecimal Decimal Decription and
Location Location How to Use

If you're interested in programming only in BASIC, the first two
locations won't be of much interest. Later, when you want to try machine
language programming, take a good look here.

D6510

0000 0 This is the place on the computer’s
main processor {the 6510) or
“brain”’, that monitors or “looks at”

the information going in and out of itself. This location is not useful if you

program only in BASIC. If you are interested in writing machine

language programs this is what you need to know:

NAME BIT DIRECTION DESCRIPTION
LORAM 0 OUTPUT Control for RAM/ROM at
$A000—$BFFF (BASIC)
HIRAM 1 OUTPUT Control for RAM/ROM at
$E000—S$SEFFF
(KERNAL)
CHAREN/| 2 OUTPUT Control for I/O/ROM at
$D000—-$DFFF
3 OUTPUT Cassette write line
4 INPUT Cassette switch sense
5 OUTPUT Cassette motor control

If the bitis set to0, input is coming from the memory block. If the bit is set
to 1, the processor is sending information to the routine. Normally this
location is set to 47.

R6510

0001 1 This location is a little more useful to
the BASIC programmer. It is respon-
sible for dividing the memory into
pieces the computer can handle.

In addition to 64K bytes of RAM memory, the Commodore 64 has
20K bytes of ROM containing the Kernal, screen editor and BASIC
interpreter plus another 4K for the character generator ROM. Another
4K to 8K is available in expansion cartridges. This effectively allows the
microprocessor to look at 92K bytes of memory! However, only 64K is
accessible to the 6510°s address space at any one time.

Before we go too much further, here’s a practical use of this location.
Using this address and others you can create your own character sets for
graphics or animation. To do this you must move the character generator

ROM into RAM so you can change an “*A’" into a tiny Proto! See the
appendix for an example of creating your own characters.

If you are interested in what happens when each bit is turned on or off,
here’s a handy list of the locations and the different kinds of memory
configurations that can be made.

Bit#

0 LORAM SIGNAL (0 = switch BASIC ROM OUT)
HIRAM signal (0 = switch KERNAL ROM OUT)
CHAREN signal (0 = switch character ROM IN)
Cassette data output line
Cassette switch sense 1 = switch closed
Cassette motor control 1 = ON, 0 = OFF
Bits numbers 6 and 7 are not used.

N AW N =

MAP # BITS 2-1-0 | FUNCTION

Map - 0 111 38K BASIC

Map - 1 X01 60K RAM & 1/0

Map - 2 110 Z-80 CP/M Cartridge
Map - 3 100 64K free memory

Map - 4 111 Expansion count

Map -5 110 Assembler/wordprocessor
Map - 6 111 No BASIC

Map - 7 IXX MAX machine games

Note: X = not available for user

The “Max Machine” is a game machine that Commodore hasn’t
released in the U.S. yet. The game’s cartridges will also work on the 64,
If the Max Machine game cartridge is plugged in, map 7 is not available
to you.

Ifitisn’t fun figuring out the values for this location, remember that it is
affected by different cassette operations (see the appendix “*Recon-
figuring the Memory Map” for diagrams of the different map possibil-
ities). If you think you really have problems

POKE 1,255

and your ROMs will reset and the system will be its good old self again.
This is one place where pressing RUN/STOP and RESTORE won’t
work.

0002 2 This is used by the computer to tem-
porarily store information it needs.
Don’t use this address, it could upset

the machine.

ADRAY1

0003-0004 3-4 Jump vector: convert floating-point
real numbers to integer.

ADRAY?2

0005-0006 5-6 Jump vector: convert integer numbers

to floating-point numbers.

CHARAC
0007

ENDCHR
0008

TRMPOS
0009

VERCK
000A

COUNT
000B

DIMFLG

000C

VALTYP
000D

INTFLG
000E

GARBFL
000F

SUBFLG
0010

10

11

12

13

14

15

16

Search character. This location
stores the ASCII value for a quote
(34).

Flag: scan for quote at end of string.

Screen column from last TAB.

Flag: 0 = Load 1 = Verify
The value changes with the last disk
or tape operation.

Input buffer pointer number of sub-
scripts.

Flag: default array DIMension
This location holds the value of the
first letter of the most recent dim-
ensioned array.

This shows the type of data being
read. 255 ifitis stringdata and O if it is
numeric.

This shows data type for numbers.
128 for integer and O for floating
point.

Flag: DATA scan for LIST and gar-
bage collection. Normal value: 4.

Flag: Subscript reference and user
function call. This location doubles
as flag register for these two func-
tions.

18

INPFLG
0011

TANSGN
0012

0013

LINNUM
0014-0015

TEMPPT
0016

LASTPT

0017-0018

TEMPST
0019-0021

INDEX
0022-0025

RESHO
0026-002A

17

18

19

20-21

22

23-24

25-33

34-37

38-42

Flag: BASIC input types.

0 = INPUT, 64 = GET,

152 = READ

This shows O when power is turned
on. The value will change as the input
type changes.

Flag: TAN sign/comparison results.
This flag tests SIN/COS division
results to verify the tangent sign. The
normal value is 0. This value be-
comes 255 when TAN argument is
greater than 259.1.

Flag: input prompt.

Temporary storage of integer value.
BASIC stores integer variables used
in calculations here. The routines in
locations 3 - 4 and 5 - 6 use the
number stored here.

Pointer: temporary string stack.
Normally points to TEMPST (25).

Last temporary string stack.

Stack for temporary strings.

The addresses stored here point to
machine subroutines stored in the
BASIC ROM.

This holds the results of floating point
multiplication. These locations are
used by the system ROM multiply

19

routines whenever very large positive
or negative numbers are multiplied.

TXTTAB
002B-002C 43-44 Pointer: start of BASIC text.
Normal value: $0801(2049).

Now here’s a location everyone can use! These addresses point to the
place the computer looks for your programs. You can fool the computer
into thinking it has less room than it really has so you can “hide” a
program. This location combined with others gives you:

With an append routine you can load one program after another and
keep both programs in memory! Why would you want to do this? Here is
an example. If you include a joystick routine in every program you write,
then typing in the same lines time after time is something you can give up.
First, just save the joystick routine separately. Give it high line numbers
like 20000 or 30000. Then, whenever you need it, use the append routine
to add it to any program you want! The high line numbers should keep
your joystick routine above the rest of your program so you won’t need to
renumber them.

The programs for this location were printed using Midwest Micro
Associates printer interface program “Smart ASCII”. Each
Commodore cursor control character or color character is translated into
English and printed within parentheses.

(CLR) means the CLEAR/HOME key and will look like a reversed
heart when you enter the program. (DN) means cursor DOWN, (LF)
means cursor LEFT, and (HM) is cursor HOME (without clearing the
screen). Two color controls are used, (BLU) for blue and (WHT) for
white. Use the appropriate keys to produce these colors.

20

If you use a cassette to save programs,

1. Enter the following program:

1 A=FEEK (44

2 FRINTY (BLUY (CLLR) (DN (DNY (DND LOAD (DNG (12D
(DM (DNDY (DR (DN (DY (DR CDND (DY (LF Y (L
FroneFs (LFPORESZ, i FORESS , Y@y " (Hfy (WHT Y Y

T OFORI=4AZ1ITODLES: FDFEI 12 NEXT

4 FPOKELIZB, 5

S5 IFFEEK (45) <2THENFQEE4TS,PEEE (4%) 2ES.
FORE44 ,FPEEK (46) -1 END

b FOEEAZ,PEEE (45) -2: FOFES4 ,FEEE (360 1 END C!

2. Put the cassette with the first program you want to add into the
cassette drive.

3. Run the append program and follow the directions given on the screen.

When the word “READY” appears, type LIST and you will see the
second program listed AFTER line 6. To add another, put the new
program in the cassette and type RUN again. When you have added all
the programs you want, delete lines 1 through 6.

If you have a VIC-1541 disk drive, make the following changes and
additions to the program:

1 INFUT"ADD WHILCH FROGRAM";FE

2 A=FEEK (44) : QF=CHR$ (74)

I OFRINT" (BLU) (CLR) (DN) (DN) (DND LOAD" g Qs FFy
@ ", 8 (DN) (DN) (DN) (DMN)Y (DN) (DNDY (DN) (DN
(DN)(DN)(LFl(lF\kIF-(I - FOME4AZ 1 FOKESS,

CaAayt (HPD (WHTO Y

4 FORI=4Z1T0LH40:FOKET , 125 NEXT

S FOKELS8,10

4 IFFEEE (45) < 2THENFOEE4D FEEK (457 -2+255:
FOEE44 ,FEEK (445 —1: END

7 OPOEEAT,PEEF (45 -2 FPOHEAS4 ,FEEK (250 s END !

Type Run and follow the directions given on the screen. When you
finish, be sure to delete lines 1 to 7. If you have programs with the same

21

line numbers, you will have to renumber both programs. For a handy
renumbering program, see address 2040. You can see how the program
works by POKEing your screen to a light gray (POKE 53281,12) so all
the commands will show.

Briefly, this is what happens. First, adjustments are made in locations
43 to 46 to move this program safely out of the way of the program you
are about to add.

Then in line 3, two things happen. First the LOAD command is
printed, then the POKE commands that will be needed later to find our
hidden program. In line 4, you put carriage returns in the keyboard buffer
(locations 631-640) and tell location 198 how many you put there. Line
5 *hides” any program in memory from the computer so the program
isn’t lost when you add the new one. Then the program ends.

Ending the program causes the computer to act on anything in the
input buffer, which we have conveniently stuffed with carriage returns
(CHRS (13)). Since the program has already printed commands on the
screen, the carriage return enters these commands just as if you did it
yourself. That's a lot for only 7 lines of code!

Here’s a scrolling routine that uses some of the same concepts. This
routine will let you see one line of program at a time.

L5TCO0 REM*® +/—- LIST #=%

SIN0T SE=PEERE (44) *256+FEER (473) —1

HZCOR LM=FEEK (54+7) +FEER (SA+4) #2546

HZO0T PRINT" (CLR)Y (BLIHGAOTD S30GLO0":FRINT
"LIST " Ny

HTO04 FOREALATL ,192:FORESEE, 17
FORESES , 10 PORESIS, 17 FOK

HI00S FOEELIR8,6:END

6TO10 IF FEEK (197)=47 THEN 63100:REM TEST
FOR "' KEY

HTOZ0 IF FPEEK (127)=40 THEN &IZ200:REM TEST
FOR “+" KEEY

AT0Z0 BOTO AZ01L0

67100 IF FEEF (SA+3) <20 THEN SA=56+1:60T0

100

FORE=IT, 5
-

-
D

;o

— .06,

A+S:60TD 67002

A-1:1F F!:,E}-..(Sm:o AND FEEE (SA—-4)
<0 AND FEER (SA-2) < »0 THEN &Z002

HIZZ210 BOTD &3200 c

57
57110 35
6IZ200 5

22

Here’s how to use it.
1) Load the program you want to scroll.

2) Enter the following BASIC without using line numbers (this is
called the immediate mode).

CLR: POKE 43 PEEK(45)-2:POKE 44, PEEK (46).
This makes BASIC think it has less memory for the next step.
3) Load the scrolling program.
4) Enter the following in the direct mode.
POKE 43,1:POKE 44,8
5) Type ‘RUN’ and press return.
6) Press the minus (—) key to scroll down to the next line. Press the

plus (+) key to scroll up one line. You must scroll down at least one line
before you scroll up or the program will end.

VARTAB

002D-002E 45-46 Pointer: Start of BASIC variables.
ARYTAB

002F-0030 47-48 Pointer: Start of BASIC arrays.
STREND

0031-0032 49-50 Pointer: End of BASIC arrays(+1).

These locations are similar to location 43-46. These give the area
where arrays are stored after they are DIMentioned in your program.
Being able to find the starting addresses of your string arrays will be
needed if you’'re storing short machine language subroutines in them.

23

This sample program creates 3 different types of arrays then allows
you to see how the computer stores them. Press any key to look at each
location. Press RUN/STOP to end.

1 REM sexx% ARRAY SAMPLES % EE% %6065 %
1ig DIM IW{S,520, CHi5), RS

126

TEE REM #xx ARRAY FOINTER FRoOE¥EEE%% %%
14g DEF FNARRAY (X)) =FEEE (X)) +254&FEER (X +1)
15

1o BEM wxex STUFF THE ARFAYD $X Rk xe
17 FOR I = 1 TO S

188 R{Ty=1

CHilys CHR$EASHT)

FOR O o= 1 TO S I9W0l, J)=JrNEXT

FREM ¢x#% FIND ARRAYS IN MEMORY #¥x%
a5 = FNARRAY (470 1 FREM ARRAYS START*
AE = FNARFAY (49) 0 REM ARRAYS ERND#* %
FEM ®®xx FRINT ARRAY ELEMENTS #xxxx
FOR T= &5 TO AE

FRINT T,FEEE (T

A WATT 197,484,840 REM FRESS ANY EEY#®#
g NEXTT

5 CLF

FEM se®x® FRESS RUNSSTOF TO END #xxx
GOTO =220

FRETOP
0033-0034 51-52 Pointer: Bottom of string storage.

FRESPC
0035-0036 53-54 Utility string pointer.

These two locations point to the end of the Random Access Memory,
(RAM), used to hold strings like “Hello” or ““My name is Prototype™.

24

Often, programmers use these locations and the next two in a com-
bination that allows them to hide part of the memory from the
computer. Typically, you may want to reserve a large portion of your
memory for keeping things like longer machine code subroutines, binary
data files, or fonts (modified character sets) resident but not accessible
by BASIC interpreter routines.

The next two locations show how this is done.

MEMSIZ

0037-0038 55-56 Pointer: Highest address used by
BASIC. In other words, your
programs won’t be stored beyond
the value shown in these 2 bytes.
Normally this is set to 40960 but
you can change that if you want.

To set aside 4K of memory for machine programs, graphic
characters or sprites in the program mode, use this routine in the
‘immediate mode’.

POKE 51,0:POKE 52,144:POKE 55,0:POKE 56,144:CLR

This will save the area from 36864 to 40960. (9000-9FFF in
hexadecimal notation)

POKE 51,0:POKE 52,160:POKE 55,0:POKE 56,160:CLR

This will restore the machine to normal.

25

CURLIN

0039-003A 57-58 Current BASIC line number.
OLDLIN
003B-003C 59-60 Previous BASIC line number.

These address registers point within memory used by BASIC where
the program line numbers are stored. You can determine these line
numbers by

PRINT PEEK(57)+256*PEEK(58)

OLDTXT

003D-003E 61-62 This contains the address where
BASIC code is to resume after the
program has been STOPped. It is
used with the BASIC command,
CONT. This is normally set at the
beginning of BASIC (2048) when
there is no program resident.

DATLIN

003F-0040 63-64 Current DATA line number. These

locations store the line number of
either the first DATA statement in a
program or the current DATA state-
ment being read.

DIM THMWCZ)

g FOR T = L TG Z

ZEg READ TN (D)

desgh MEXT

S FPRIMT OPEER (H2) +2506*FEER (&4)
SEE DATA 1,2, 5

Running this program will show the number 600 as the current DATA
line. By using a routine like this while you’re de-bugging your program,
you’ll be able to see if all of your DATA statements are being read.

DATPTR
0041-0042 65-66 Pointer: This is the address of the
current DATA item. When no

26

DATA statements are encountered,
this location defaults to 2048.

Did you know that each type of DATA needs a different amount of
memory to store each part? Whole numbers take 2 bytes, characters take
3 bytes and floating point numbers take 4 bytes.

INPPTR

0043-0044 67-68 This address shows where the
INPUT statement temporarily stores
its data, which is the system INPUT

buffer starting from locations 512 to 600 (78 bytes). You can’t POKE

this location to change the size of the INPUT buffer. By the way, trying

to put more information in the buffer than it will hold will cause the first

78 characters to be lost.

VARNAM

0045-0046 69-70 Current BASIC variable name.
When a single letter variable has been
used, this location returns its ASCII
value.

VARPNT

0047-0048 71-72 Pointer: Current BASIC variable
data. This is just another location
which points to base address of the
BASIC variable table (normally
2084).

FORPNT

0049-004 A 73-74 Pointer: Index variable for FOR/
NEXT. loops.

004B-0060 75-96 Temporary pointer / data area.

The 16 locations from 97 to 112 are arguments for the floating-point
arithmetic routines stored in the KERNAL ROM. They can be used in
BASIC, but they provide the assembly language programmer with the
ability to perform any arithmetic operations on two numbers (accum #1
and #2) without writing those routines BASIC uses.

These locations are also very useful for machine language subroutines
that are called from BASIC. See locations 784-787.

27

If you are interested in mastering machine level programming, take a
look at Rodnay Zak’s books on 6502 programming. They are concise
and thorough.

FACEXP

0061 97 Floating-point accumulator #1: ex-
ponent.

FACHO

0062-0065 98-101 Floating accumulator #1: mantissa.

FACSGN

0066 102 Floating accumulator #1: sign.

SGNLG

0067 103 Pointer: Series evaluation constant.

BITS

0068 104 Floating accumulator #1: overflow
digit.

ARGEXP

0069 105 Floating-point accumulator #2: ex-
ponent.

ARGHO

006 A-006D 106-109 Floating accumulator #2: mantissa.

ARGSGN

006E 110 Floating accumulator #2: sign.

ARISGN

006F 111 Sign Comparison Result: Accum. #1
vs #2.

FACOV

0070 112 Floating accumulator 1. Low-order
(rounding).

FBUFPT

0071-0072 113-114 Pointer: cassetie buffer.

28

Locations from 1 15 to 138 are part of the computer’s operating system
that are deliberately put in RAM for the user to be able to change it. For
instance, you could add commands to BASIC.

CHRGET

0073-008 A 115-138 This machine language subroutine is
what the computer uses to get char-
acters or tokens from the
keyboard, cassette, disk or modem.

Here is what it looks like disassembled:

LOOFTE EA 7A T #7A
LUOAE D Ol [N L A T WA
LOOT7T7 ELH TR TN #£70

, QOTFY Al A0 BEA LDA FEALO
LJOOT Ty A HFTAL
LOOT7E BGOOOA BCG F008A
LOOBO 9 20 S HELO
, OBE FO EF ’
L Q0B4 23

L QOBE B9 20
LOOB7 AR SEC

, OORG E9 DO SR HFDO
LOOBA &0 RTS

The next two locations are checked by the CHRGET routine.

CHRGOT

0079 121 Entry to get same byte of text again.

TXTPTR

007A-007B 122-123 Pointer: current byte of BASIC
text.

RNDX

008B-008F 139-143 Floating RND function seed value.

STATUS

0900 144 Kernal 1/O status word (ST).

Normal = 0. ST is a reserved word

in BASIC. you can’t use it as a
variable (like”A” or'*B2"") in your program. The value of ST will
change if there is a problem loading a program from tape or disk.

29

M-

E 50D THTS A OE ARy TRFUETHR G
2 REM--GETH STAETEMERNT 70 FREVERNT &

2 REM--FRQGRAM FROM STOPF ING AFTER THE
A FEM---LAET DATUM HAS BEEM READ.

e REM--FROMOTHE TARFE (R DIHE FILE.

HE T BT = &4 THER 96

RS-

ga

Q@ FRIMNTVEND QF DATA "

ST ST Tape
Bit Numeric | Cassette o Verify
Position | Value Read Serial/RW or Load
write 1 Time out
0
read 2 Time out
1
2 4 Short block Short block
3 8 Long block Long block
4 16 Unrecoverable Any
read error mismatch
5 32 Checksum Checksum
error error
6 64 End of file *EOI line
7 128 End of tape Device not End of
present tape

*Evaluate or Input

STKEY

0091 145 Flag: STOP key and RVS key.
Normal: 255
POKE 145,127 will act as a RUN/
STOP key.

SVXT

0092 146 Timing constant for tape.

VERCK

0093 147 Flag: 0 = LOAD, 1= VERIFY

Stores the last tape or disk LOAD or
VERIFY operation.

30

C3PO

0094 148 Flag: Serial Bus, output character
buffers.

BSOUR

0095 149 Buffered char. for serial bus.

SYNO

0096 150 Cassette synchronization number.

0097 151 Temporary data area.

LDTND

0098 152 Number of open files and index to

file table. Only 10 files are allowed

open. If you try to open more than
10 files at any time your program will stop and show a *‘too many files
open” error. If you’'re opening close to ten files in a program, add lines
like these to prevent the problem.

20@ IF FEEE (152 =16 THEN 403
o OFEN 1,1,1

L GOTO SE6: REM--CONTINUE
AGE FRINT 16 FILES ARE OFEN, "
418 PRINTDO YOU WANT 1O CLOSE"
426 INFUT"ANY " 3 RS

DFLTN

0099 153 Default input device normally set
to the keyboard (0).

DFLTO

009A 154 Default ouput (CMD) device

normally set to the screen (3).
When you turn the power to the computer on, the screen is where
you see information. The BASIC command CMD changes that if

you use an open statement. For example, to have a printer send a
listing of a program you already have in memory, do this:

OPEN 1,4:.CMD 4:LIST

31

Here’s a list of the different numbers used.

PRTY
009B

DPSW
009C

MSGFLG
009D
PTRI
009E

PTR2
009F

TIME
00A0-00A2

155

156

157

158

159

160-162

DEVICE

NUMBER | PERIPHERAL
0 Keyboard

1 Cassette

2 Modem

3 Screen

4or5 Printer

8toll Disk Drive(s)

Tape character parity.

Flag: Tape byte-received.

Flag: 128 => Direct mode 0 =
Program mode.

Tape pass 1 error log.

Tape pass 2 error log.

This is the “JIFFY” clock. A jiffy is
1/60th of a second. The computer
uses this to help time the different

operations it performs. Here’s what these locations do: every 1/60th of a
second 1 is added to the number in 162 until it reaches 255. Then, 162
turns to zero and 1 is added to 161 until it reaches 255. Then 161 turns to
zero and 1 is added to 160. When 160 reaches 255 all 3 locations are set
to zero. You can use this location to make a stopwatch to check your

reaction time.

32

18 FRINTCHRS (147)

tier FRINTY STOPWATOH REACTTON T Ere"
12d FQk 2R, LrFORESZE81, 1 FOELSd L. o

LZe PRIMT

146 PRINT

156 PRIMTUWHER YOU SER THE BLUE AT,

Téag PRIMTY FRECSS TUHE SFACE RAR AKMD YOUR Y

178 FRINT" REACT TGN FIME WILL RE SHOWN."

13¢ S=INT (1E=RND (1))

194 FOR FAUSE= 1 T0O S*I6NEXT

268 FOR D=1 TO Z:FRINTOHRS (17) TRE

219 FORF=1 T0 1Z:FRINTCHRS (29) 3 i REx]

dOPRINTCHRS (1 15)

L= lESTOLH2 T FOEET (@I NEXT

(1?7 =564 THERN 244

256 PRINTA(FEER (16@) #55526HFEER (18610 % 20
Ptk (L EEY) A&

This will show how quickly you can hit a key. This routine will allow
you to read time in amounts less than 1 second! In BASIC, time is kept in
the string TI$ and in a jiffy counter, TI. T starts at *‘000000”* when you
turn the computer on. The computer uses a ‘24 hour clock™ whichmeans
that one o’clock in the afternoon is called 13:00. You can reset the clock
to zero by entering TI$ = ‘000000 or set it to the correct time of day
(right to the second) by saying, for example TI$ = “041325” for 4
o’clock, 13 minutes and 25 seconds AM while4 PMis* 161325, Asfor
TI, well it’s a counter based on the information in locations 160-162.
Both TI$ and TI will reset to zero by POKEing these locations with a
zero.

For I = 160TO162:POKELO:NEXT

Try substituting this for line 270

Z7E FRINT TI/Z&@8" SECONDSY

33

Here’s an example of using TI$ to produce a clock on your screen.

TEer PRINTEHRS C(147)

Pl PORESZEEE, 1D PORESDZZBL, LI POREESYL 6

P2 PRINT, "HOURS" , "MINUTESY, "EECOHDEY

T2 PRIMTOHRS (1Y) 5

e PRINT,MIDS T TE, 1,20 MIDS(TIH, 5,00,
FITD&HE S UEE , L

1 GOV

TIS$ and TTI are also reserved words used by BASIC. Don’t use these
names for your variables.

00A3-00A4 163-164 Tempory data area.
CNTDN

00AS 165 Cassette sync. coutdown.
BUFPNT

00A6 166 Pointer: tape I/O buffer.

These are the zero-page memory locations for the RS-232. The
system’s software allows compatability with any RS-232 device (prin-
ter, modem, etc.). This allows RS-232 programming accessible in
BASIC through the Kernal routines. These locations are used directly
by the RS-232 device through the system routines and are not controlled
by the programmer. See the appendix on the RS-232 in back. During
cassette or any other serial bus activities, data can NOT be received
from RS-232 devices. This is how temporary cassette data locations can
be shared with RS-232 locations.

INBIT

00A7 167 RS-232 input bits/cassette tempor-
ary.

BITCI

00A8 168 RS-232 input bit count/cassette
temporary.

34

62 - 182

RINONE

00A9 169 RS-232 flag: Check for start bit.

RIDATA

00AA 170 RS-232 input byte buffer/cassette
temporary.

RIPRTY

00AB 171 RS-232 input parity/cassette short
count.

SAL

00ACO0AD 172-173 Pointer: Tape buffer/screen scrolling.

EAL

O0AE-O0AF 174-175 When you LOAD or SAVE, the

computer looks at a part of memory to

read from or write over. If you or
your program changes the start of BASIC variable pointers (locs. 45-46)
so you can store more BASIC text, your cassette or disk drive won’t be
aware of the change and wili lose some text. Whenever you change
locations 45-46, and you want to SAVE or LOAD a program on
cassette. Make sure you POKE these locations with the same values as
locations 45 and 46. This will make sure you save all of your program.

CMPO

00B0-00Bl 176-177 Tape timing constants.

TAPEI

00B2-00B3 178-179 Pointer: start of tape buffer. This can
be used as an indirect zero-page jump
routine in the buffer.

BITTS

00B4 180 RS-232 out bit count/cassette temp-

orary.

Locations 180 thru 182 act the same as 166 thru 171.

NXTBIT

00B5 181 RS-232 next bit to send/tape EOT
(End-Of-Tape) flag.

RODATA

00B6 182 RS-232 out byte buffer.

35

FNLEN

00B7 183 Length of current file name. The
number of characters in the file name
itself. Same as PRINT(LEN
(FILES$)) where FILES is the name
of your file.
LA
00B8 184 Current logical file number.
SA
00B9 185 Current secondary address. In
BASIC, the secondary address is
used with the OPEN command. The
secondary address tells the other
device what to do after it is opened.
DEVICE SECONDARY
DEVICE | NUMBER | ADDRESS DESCRIPTION
Cassette 1 O=Input file name
1=Output
2=CQutput end of tape
Modem 2 0 control register
Printer 4or5 O=uppercase/ PRINT text
graphics
7=upper/lower
Disk 8toll 2-14 data drive#, file type,
channel read/write
1 5=command command
channel
For example:
OPEN 1, 4,7

This OPENS a channel to the printer (device 4) and tells the printer to

type upper/lower case letters.

If you want to write some data about your debts on a cassette tape,

OPEN 3, 1, 2, “DEBTS”

36

| 183 - 197

tells the computer that file #3 (it could be any number you choose
between 1 and 255) will be written as a cassette file (the number 1 after
the 3), and, besides writing the data on the tape, put an ““End Of Tape™
notice (the number 2). The *“End Of Tape” (EOT) will tell the computer
to stop looking for more data on this tape. Only use the EOT mark on
the last data file or program you put on a cassette. “DEBTS” will be
the name of the file.

FA
00BA

FNADR
00OBB-00BC

ROPRTY
00BD

FSBLK
00BE

MYCH
00OBF

CASI
00CO

STAL
00C1-00C2

MEMUSS
00C3-00C4

LSTX
00C5

186

187-189

189

190

191

192

193-194

195-196

197

Current device number.

Pointer: current file name.

RS-232 out parity/cassette temp.

Cassette read/write block count.

Serial word buffer.

Tape motor interlock.

1/O start address.

Used for temporary storage of in-
formation while information is load-
ing from the cassette.

Current key pressed. The last key
put into the keyboard buffer. There
will be a 64 here if a key isn’t held

down. The “‘stopwatch” program under location 160-162 uses this
address to see if any key has been pressed.

If more than 1 key is held down at the same time, the key with the
highest priority will appear on the screen.

37

This program will give you a list of the keys and their priority.
lesg GET A

11¢h IF fAg= """ THEN 163

1265 PRINT FEEE (127)

12¢ GOTO 1¢

PRIORITY / KEY CHART

KEY # KEY # KEY # KEY
0 INST 16 5 32 9 48
1 RET 17 R 33 1 49 *
2 ECRSR 18 D 34] 50]
3 7 19 6 35 0 51 CLR
4 fl 20 C 36 M 52
5 f3 21 F 37 K 53 =
6 f5 2 T 38 0 54 1
744CRSR | 23 X 39 N 55/
8 3 24 7 40 + 56 1
9 W 25 Y 41 P 57 =—
10 A 26 G 42 L 58
11 4 27 8 43 - 59 2
12 Z 28 B 44 60 SPC
13 S 29 H 45 | 61
14 E 30 U 46 @ 62 Q
15 31V 47 63
NDX
00C6 198 Number of characters presently in the

keyboard buffer. Normal value: O.
Poking this location with a zero
will empty the buffer. This is very useful in games or other
applications where keys will be struck quickly. You should always empty
the buffer before using the GET statement.

1@ PORE 198,43

118 PRINTUFREZS ANY EEY TO CONTINUE"
128 GET R$

12 IF R$= """ THEW 12¢

38

Lag FORE 198, 0

thel PRINTUFRESS O T COMT INMUE
128 GET H$
12 IF R$ 2 "0 THEN [Z¢

The first program checks for any key. The second will continue if only
one key is pressed.

RVS

00C7 199 Reverse character switch. Normal: O.
The value switches to 18 when
reversed characters are printed.

POKE with 1 or 18 before every PRINT to reverse characters. It’s

easier to use the RVS ON and RVS OFF keys.

INDX

00C8 200 Pointer: end of the logical file for
INPUT. This location returns the
screen column number of the end of

the INPUT record. Unless you use a semicolon or the cursor keys inside

a string, the computer will put the input question mark in the third column

of the screen.

Here are some examples of how to change the position of the INPUT.

1@ INPUTY NAME"3iNS$
18 INPUT" HELLO DO YOU NEED HELF"iPM%
1@ INFUT"ADDRESS" (NE

LXSP

00C9-00CA 201-202 Cursor X-Y position at start of
INPUT. These two bytes store the X,
Y coordinates respectively where the

INPUT statement accepts data. POKEing these locations has no affect

on the screen positioning of INPUT records.

SFDX

00CB 203 Flag: Print shifted characters. Nor-
mal value is 64. This location will
show the value listed in 197 when
characters are printed.

39

CURSOR LOCATIONS

Use these locations to produce a cursor during a GET statement.

BLNSW
00CC 204 Flag: Cursor blink toggle.
O=cursor on l1=cursor off.

13 FORERS4, 31 FOREDST, &1
2 [FAS=""THEN 1@

@ FRINTASS

4 [FAs=CHRS (1 T) THEMT G
B ES=REEAE

&6 GOTGLE

76 FRINTES

BLNCT

00CD 205 Timer: Countdown to toggle cursor.
Normal value: 2.

GDBLN

00CE 206 Character under cursor in ASCIL
Normal value is 32.

BLNON

00CF 207 Flag: Last cursor blink on/off.

Normal value is 0.

Here’s how a sample program to add a cursor might look:

16 REM——-CURSOR WITH GET

2g5 Be=""Y

I POREZSS, S POREZET, 41 6ET AP
4@ ITF Af="" THERN 2

S PRINTASS

LS IFAS=CHR$ (13 THEN a8

Tehi BE=HB+AE

e GOTO e

i FRINTHS

40

If you want the cursor to blink during a GET, you should have the
POKE:s on the same line as the GET command. If you press return while
the cursor is on it will stay on the screen as a square. This won’t change
the value of your input. Run the demonstration program and press
RETURN while the cursor is on. Notice the variable B$ ignores the
cursor.

CRSW

00D0 208 Flag: INPUT or GET from key-
board. Normal value: O.

PNT

00D1-00D2 209-210 Pointer: Current screen line address.
POKEing this address can position
word output on the screen. This is
similar to using cursor controls, but
not as easy.

For example:

1@ FORE 209,

2% FPOKE 2ig,4

Z@ PRINT "HERE I Ap"

will print the string in Line 20 at the top left part of the screen.

Here’s another program example that will show you the screen
address.

o Rl W

41

00D3 211 Cursor column on current line. This
location stores the number of spaces
on a printed line, just like using the
BASIC command TAB(X) where X
would be the number of spaces you
want to move forward.

QTSW

00D4 212 Flag: Editor in quote mode. 0 means
you are not in the quote mode.

LNMX

00D5 213 Physical screen line length. Normal

default value: 39. POKEing this loca-

tion with a value less than 39 will
limit printed items on a line to that number by truncation and will NOT
be wrapped around.

42

This program is a demonstration. Line 20 makes a 40 character string
by adding the word to itself 4 times.

1
11a
12
13¢
144
15
164
17
184
19¢
2@
214
224
234
244
254
264
27
284
294
K323
14
324
33
RS

3478

TBLX
00D6

REM *%x CONCATENATION **#*

PRINT CHR$(147): REM - CLEAR SCREEN
REM — CONCATENATE A STRING
Ce="RLIZZARD"

Ce=CH+CE+CE+LH

REM — TRUNCATE STRING IN LOOF

FOR I = 32 70 8 STEF -1

REM ~ SHORTEN PHYSICAL LINE LENGTH
POKER213,1

REM —~ EXAMINE STRING CONTENTS

FOR C = 1 TO LEN(CS$)
PRINTMID$(C%,C, 1)}

REM — FAUSE A MOMENT
FOR FAUSE = 1 TO 3@: NEXT

REM — GET NEXT VALUES
NEXT C

FRINT

NEXT I

214 Current cursor physical line number.

Normal values: 0-24. POKE this @
location with values from O to 255 to
move the cursor’s vertical position.

43

This program will make two words, "SELECT™ and “"LINE" scroll

up and down over each other.

44

00D7

INSRT
00D8

LDTBI
00D9%-00F2

217-242

214 - 254

Temporary data area.

Flag: Insert mode or the number of
inserts from the left on a given
PRINTed line. POKEing with a 0
turns off insert mode.

Screen line link table and also
temporarily used as a single editor
buffer in the immediate mode.

There are two ways of talking about lines in most computers. The line
you just worked with each time after pressing the RETURN key is the
logical line. Each line you see on the screen is a physical line. When a
logical line takes up more than that one physical line, those lines are
*“linked” together and stored in a link table. The computer treats them as
if they were all one long line. These locations are where those links are
stored. To demonstrate how links can be used in a program, see the
‘Alternate Screens’ example under location 648.

USER
00F3-00F4

KEYTAB
00FS-00F6

RIBUF
00F7-00F8

ROBUF
00F9-00FA

FREKZP
00FB-00FE

243-244

245-246

247-248

249-250

251-254

Pointer: Current screen color RAM
location. This address points to the
area used to hold the colors for each
locations on the screen (see 55296 for
more information).

Vector: Keyboard decode table.

RS-232 input buffer pointer.

RE-232 output buffer pointer.

Free zero-page space for user pro-
gram. This is a COMMODORE
freebee! These locations provide

four bytes out of the first page of memory so you can write your assembly
language routines in the zero-page indexed mode.

MMM-D

45

BASZPT
0OFF

255

BASIC temporary data area.

Locations 256 to 511 are used by the microprocessor stack. If you're
programming in BASIC, you won’t be using these locations.

0100-010A

BAD
0100-013E

013F-01FF

BUF
0200-1258

256-266

256-318

319-511

512-600

Floating to string work area.

Tape input error log.

This area is used by the stack and
other system operations and is un-
available for other uses.

System INPUT buffer. This is where
the information goes when you type
on the computer. It only stays here
until the information is needed else-
where.

These next 3 locations also aren’t that useful to the BASIC pro-
grammer. They store the parameters for channels OPENed and
accessed by Kernal routines. These behave in the same way as locations
184-186 except that they store all the file information and not just that of
the most recently opened channel. They each take up 10 bytes. This is
the limiting number of files you are allowed open at any one time. More
on the Kernal is shown in *‘Addressing the KERNAL”.

LAT
0259-0262

FAT
0263-026C

SAT
026D-0276

601-610

611-620

621-630

Kernal table: Active logical file
numbers.

Kernaltable: Device number for each
file.

Kernal table: Second address each
file.

46

KEYD =
0277-0280 631-640 Keyboard buffer queue. This area is ,ﬁ&.
where characters typed in from the
keyboard are temporarily stored. If
characters are POKEd in here and location 198 (which holds the
number of characters in the buffer) is changed, it will be as if the
characters were typed from the keyboard.

The append routine at location 43 uses this location to make the
computer think something has been typed in.

MEMSTR

0281-0282 641-642 Pointer: Bottom of memory opera-
ting system. Normal value is 2048.

MEMSIZ

0283-0284 643-644 Pointer: Top of memory for operat-

ing system. Normal value is 40960.

These are important places! They control the amount of space you @
have to write programs. These values are set by the INPUT/OUTPUT
control register (location 1) during power-up and may be different with

each memory map configuration. Don’t confuse these locations with the

ones that locate parts of the BASIC text (locations 43 thru 56).

There are lots of pointers used by BASIC to find out where the
computer stores the different parts of your program. Often, it’s good for
you to know where, too. If you write programs that modify different
places in memory, this little program could be of help. It keeps track of
these pointer values.

LERNGTH C

47

TIMOUT

0285 645 Flag: Enable-disable serial IEEE
T.O.

COLOR

0286 646 Current character color code. Nor-

mal power-up value: 14 (light

blue). Poke with values from O to
15, the character color code, to see cursor and characters change
color. Using this location is like using the color keys on the
keyboard.

GDCOL

0287 647 Background color under cursor.
HIBASE

0288 648 Bottom of screen memory (page).

This shows the normal location of the
screen in “pages”’, that is 256 byte
chunks. Normally set to 4. This is the top left corner of the screen. 4 x
256 = 1024 which is the beginning of the memory area for the screen.

You can use this information to create alternate screens and switch
back and forth. This program is a sample of what two screens could look
like.

48

100 REM DUAL SCREEN BY JIM BUTTERFIELID
105 REM TRANSLATED FOR &4 BY FALL PAVELED
110 FPOEESS G FOREDSE , S0 CLR

120 DLML %

S0 H«TNTK&
4030 F\F I*I ‘-)lAJJ Il'H

I PRETRY SRTWIV:
22 BTS00

: M:.-_N E IR

FHORE A8 S e POk R S S R F R R R @D
DRT

FFORT =GRS

Eb CO+20 70 s BORE 217 L% 0T

2 RE TURN a

Enter the program and run it. The screen will momentarily fill with
random characters. You are actually looking at a bit of memory! The
screen will clear and return to the original screen. Type in ““This is screen

e . Now press the f 1 key on the right side of the keyboard and the
screen will blank. Type ““This is screentwo’. Press f 1 and you’re back to
screen one. This is called “‘Page Flipping”. It is used for such things as
word proccessors and games.

XMAX
0289 649 The size of keyboard buffer, nor-

mally 10. POKEing this with values

from O to 255 controls the @2
number of characters the buffer can hold before it loses characters. This 'ﬁ'
isn’t like location 198. If you POKE a zero here, the buffer can’t hold any
letters. Nothing will print on the screen. Pressing RUN/STOP and
RESTORE will get you back to normal.

POKE 649.,0

will disable the keyboard. Use this if you only want someone to use the
joystick or paddles for input.

49

POKE 649,10

returns the buffer to the standard size.

RPTFLG
=5 028A 650 Flag: REPEAT key used. POKE
@' 650,100: disables repeat of all keys.
POKE 650,255: enables repeat of
all keys. POKE 650,0: return to normal operation. Use this location
to help write graphics programs. As soon as you turn the computer on,
POKE 650,255 and drawing pictures becomes a lot easier when every

key repeats.
KOUNT
028B 651 Repeat speed counter. Normal value:
4 POKEing with values from0 to 255
varies the time before keys repeat.
0 and 255 will give the longest delay
times.
DELAY
028C 652 Repeat delay counter.
SHFLAG
028D 653 Flag: Keyboard shift key, CTRL key,
Commodore key (€=). This location
shows if these keys are being held
down.
Key Pressed Value in 653
Shift 1
Commodore (Cz) 2
CTRL (control) 4

If all 3 keys are pressed at the same time the value in 653 would be 7.

Since it would be unusual for all 3 keys to be down at the same time,
you could use this as safety stop.

See how this location changes with,

1@ GET ASIFRINT PEEE (L53) 10 IF A% = "" THEN 1@

50

You can use the WAIT command to detect changes in these keys in the
same fashion as in location 197. Try these,

1. WAIT 653,1,0 => wait for shift
2. WAIT 653,2,0 => wait for C= key
3. WAIT 653,4,0 => wait for CTRL key

FREONT P HOL D D0WN THE SHITFT, CONTRGH
FRIRTYAND THE COFIFODURE FEYS "

FRIMNT
FRINT T
FOR Bl)i
IF PEEE (653 =7
NEXT

EIO OPRINT “FROGRAM SRR

SA4G END

1000 FRINT

1010 FRINTYFROGRAM DESTROYEL"
1020 NEW

FRINT 10 Dl TROY e L PROGRSM

FROEREM . DO ROTH MG,
SO0
THEN 1000

LSTSHF

028E 654 Last keyboard shift pattern.

KEYLOG

028F-0290 655-656 Vector: keyboard table setup. Nor-
mal value: 60232

MODE

0291 657 Flag: 0 = disable shift key, 128 =
enable. This doesn’t turn the shift key
off and on, but will show a 128 if
CHR$(8) is entered and a O if
CHRS$(9) is entered.

AUTODN

0292 658 Flag: Auto-scroll down 0 = ON.

51

RS-232 LOCATIONS 659-670

Locations 659-670 will be used if you write programs that need to
communicate through the RS-232 port to other computers, printers etc.
Most BASIC programmers won'’t use these locations. Skip them if you
wish. If you do use these locations, remember the OPENing of an RS-
232 channel automatically allocates 512 bytes of memory for two
buffers which help prevent the loss of data when transmitting or receiving
RS-232 information.

If there is not enough free space beyond the end of your program, part
of your program will be destroyed to make room for the buffers. Be

careful’
MSICTR
0293

M51CDR
0294

MS51AJB
0295-0296

RSSTAT
0297

BITNUM
0298

659

660

661-662

663

664

RS-232: 6551 control register image.

RS-232: 6551 command register
image.

RS-232: Non-stantard BPS(time/2-
100). 661 and 662 contain the baud
rate for the start of the bit test during

the interface activity. This is used to
calculate baud rate.

RS-232: The RS-232 status register.

RS-232: Number of bits left to send.

52

BAUDOF

0299-029A 665-666 RS-232: Baud rate of full bit time.
Two bytes that are equal to the time of
one bit cell. (Based on system clock/

baud rate)

RIDBE

029B 667 RS-232: Index to end of input buffer.
The byte index to the end of the
receiver FIFO buffer.

RIDBS

029C 668 RS-232: Start of input buffer (Page).
The byte index to the end of start of
the receiver FIFO buffer.

RODBS

029D 669 RS-232: Start of output buffer
(Page). The byte index to the start of
the transmitter FIFO buffer.

RODBE

029E 670 RS-232: Index to end of output
buffer. The byte index to the end of
the transmitter FIFO buffer.

IRQTMP

029F-02A0 671-672 This temporarily holds IRQ vector

during INPUT or OUTPUT with a

cassette. If maskable interrupt is
generated during tape operation, this location holds the vector address
until the operation is over before servicing the interrupt.

ENABL

02A1 673 RS-232 Enables.

02A2 674 TOD Sense During Cassette 1/O.

02A3 675 Temporary storage for cassette read.

02A4 676 Temporary DIIRQ indicator for
cassette read.

02A5 677 Temporary for line index.

02A6 678 PAL/NTSC flag, 0 = NTSC, 1 =

PAL.

53

02A7-02FF 679-767 Unused.

IERROR
0300-0301 768-769 Vector: Print BASIC error message.

These address registers from 770 - 779 vector directly into the BASIC
ROM memory and run these routines to handle important interpreter
functions.

IMAIN

0302-0303 770-771 Vector: BASIC warm start.

ICRNCH

0304-0305 772-773 Vector: Tokenize BASIC text.

IQPLOP

0306-0307 774-775 Vector: BASIC text LIST.
POKE 775,200 will prevent some-
one from LISTing your program after
it has been run. To restore LIST
POKE 775,167.

IGONE

0308-0309 776-777 Vector: BASIC character dispatch.

IEVAL

030A-030B 778-779 Vector: BASIC token evaluation.

SAREG

030C 780 Storage for 6502 . A register. A,
Accumulator.

SXREG

030D 781 Storage for 6502 .X register.

SYREG

030E 782 Storage for 6502 .Y register.

STREG

030F 783 Storage for 6502 .SP register .SP,

Stack pointer.

54

These locations shadow the 6502 internal registers. They are loaded
with values prior to a SYS command for passing information on to
machine language routines or are at the system ROM routines in order to
achieve non-standard results. Here is an effective method for recording
and updating the current cursor positions. This can be used as a ‘PLOT’
subroutine.

10 X=781 1¥y=782 :1F=78%3 :FLOT=68520

20 FOEE Pyl s REM SET CARRY FLAG

Z0OBYS PLOT :REM EERNAL PLOT SUBROUTINE
40 PRINTYCURRENT CURSDR FOSITION IS:"
SO PRINT FEEE (X)) 3 FEEE (Y)

10O X=781 1Y=782 :F 5 PLOT=A5520
20 INPUT"WRITE CURSOR FODS. (X,Y) Ui <P, YF
IO OFPOKE £,0 1REM CLEAR CARRY FLAG

X S Y

40 FT) =
ElkRREL FLOT sURROUT TNE

sy =R
:REM EERNAL FLODT SLiE.
tREM EERNAL CHROUT SUE.,
X, 0

[
i

LOG A=7H0 1 X=781
110 PLOT Narwely
120 CHROUT =6&%:
L3O FRINT " 1P
140 FOR YF = TS
150 FOEE F,0:REM CLEAR CARRY FLAG

140 FOREE Y, YF

170 & FLOT

16303 Ay FESS T REM SEND OUTEUT CHAR.
190 CHROUT

FOO NEXT YR

RER EERNAL SCNEEY ROUTINE
pEM KERNAL GETIN ROUTINE

55

The next three bytes store the information set by the USR(X)
command in BASIC. Altering their contents may be useful for passing
arguments in assembly routines.

USRPOK

0310 784 This byte stores the 6502 Op-code for
the jump instruction (JMP). Normal
value: 76 (4C-hex).

USRADD

0311-0312 785-786 This is the low and high byte of the
USR(X) starting address.

0313 787 UNUSED

CINV

0314-0315 788-789 Vector: Hardware IRQ vector.

Default starting address where IRQ
(interrupt request) routines are ser-
viced. Normal value: 59953.

The stop key is in a safe place and isn’t usually pressed by mistake. But
if you don’t want people to accidentally stop your program while it’s
running, you can turn off, (it’s called ““disable’’), the RUN/ STOP key
this way:

POKE 788,52

This also stops the clock (TI$ and TI) so don’t use this POKE if you need
the time functions in your program. POKE 788,49 turns on the clock and
will enable the RUN/STOP key. See location 808 for more information.

CBINV

0316-0317 790-791 Vector: BRK instruction interrupt.
NMINV

0318-0319 792-793 Vector: non-maskable interrupt.

Default starting address where the

56

NMI routine is to be service. Normal
value 65095.

This is the jump table to the starting address of the above Kernal
routines within the 8K of Kernal. See in the appendix ‘“ Addressing the
Kernal” for a more detailed explanation of the Kernal operating system.
You can intercept these vectors for home made machine language

subroutines.
IOPEN
031A-031B

ICLOSE
031C-031D

ICHKIN
031E-031F

ICKOUT
0320-0321

ICLRCH
0322-0323

IBASIN
0324-0325

IBSOUT
0326-0327

ISTOP
0328-0329

794-795

796-797

798-799

800-801

802-803

804-805

806-807

808-809

Kernal OPEN routine vector.
Kernal CLOSE routine vector.
Kermal CHKIN routine vector.
Kermnal CHKOUT routine vector.
Kernal CLRCHN routine vector.
Kernal CHRIN routine vector.
Kernal CHROUT routine vector.

—

Kernal STOP routine vector. ‘/ﬁ'

POKE 808,239

will disable the RUN/STOP key without stopping the clock.

POKE 808,237

will enable the RUN/STOP key.

57

POKE 808,225

will disable the RUN/STOP and RESTORE keys. Once your program
starts, there isn’t any way to break out unless the program ends or this

line,

POKE 808,237

is run as part of the program.

IGETIN

032A-032B 810-811 KERNAL GETIN routine vector.
ICLALL

032C-032D 812-813 KERNAL CLALL routine vector.
USRCMD

032E-032F 814-815 User-defined vector. How this useful

6393

63994

63995
6I996

bLIFFPT7
63998

63999

address is used is completely up to
you! Here is an automatic line num-
bering routine using a defined vector.

INFUT" (CLR) STARTING LINE #"3;A: INPUT”
INCREMENT"; B: POKEB1S, R: PRINT" (CLR) "
B=A/256:FPOKE784, (RB—INT(R)) *256: POKE
814,B:PRINTAS
GETA%$:PRINTA$; : IFA$< *CHR$ (13) THENGIF9S
PRINT"GO&3998" : FORA=6Z1T0&634: POKEA,
145 NEXT '
POKEA, 13: POKEGT6, 132 POKEL198, &1 END
PRINT" (UF) (UP) ":FORA=1TOI: PRINT

" "INEXT:PRINT" (UF) (UP) (UP) "3
A=PEEK (784) +FEEK (814) *2S4+FPEEK (815)
:GOTO63994

When you run this, the words “‘starting line#’* appear on the screen.
Enter the number you want for the first line number of your program.
1000 would be a good start. Press return. Next, “‘increment’”” means how
many numbers between each line. 10 would be good here. Press return
and your program lines will be automatically numbered.

58

ILOAD

0330-0331 816-817 Kernal LOAD routine vector. Using
the SYS command and this location’s
address starts LOAD operation on a
serial device. It automatically
LOAD:s the first program.

ISAVE

0332-0333 818-819 Kernal SAVE routine vector. Same
as above location except it works with
the SAVE command.

0334-033B 820-827 Unused.

TBUFFR

033C-03FB 828-1019 Tape I/O buffer. This is the first place

your cassette programs go when they
are being loaded.

It is also storage area #13, 14 and 15 for sprite data. If you have a
sprite on the screen while loading another program from tape, expect
your sprite to look strange. This happens because the incoming data from
the tape changes the data for the sprite. The sprite must be redefined. If
you use a cassette to save programs, sprite areas #192 - 198 would be a
better place to put them. They will not be changed by using the cassette.
For information on storing sprites, see the appendix ‘“Making a Sprite™.

03FC-O03FF 1020-1023 Unused.

SCREEN DATA AREA

VICSCN s

0400-07E7 1024-2023 This is where data must be put to be .ﬁ\
seen on the screen. The computer
does this automatically. You can do

this, too by using the POKE command. POKE 1024,81 will put a heart

in the upper left corner of the screen. POKE 55296,7 will make the heart

turn yellow. Each screen location from 1024 to 2023 has a matching

color location from 55296 t0 56295. To make things you POKE onto the

screen any color you want and you must also POKE the color locations.

The screen is made up of 1000 locations, 25 rows of 40 columns. To
print a specific row and column, use this formula.

59

POSITION = 1024+COLUMN NUMBER+40*ROW NUMBER

Here's a sample program that will print a cyan heart in the 4th row,
15th column.

R LJI'»H.L, 43

W
L
:E:;.

-

)
i

i
-~
L

i

On the early 64’s, any character POKEd to the screen would
automatically be white. It’s been reported that this has been changed to
blue an newer machines. That means the POKEd characters would be
the same color as the backround. To make POKE:s to the screen visible
POKE the color location too. Use:

COLOR POSITION = 55296+COLUMN NUMBER+40*ROW
NUMBER

07F8-07FF 2040-2047 Sprite data pointers.

e

The sprite pointers tell the sprite-making part of the computer where to
go to get the information to make a sprite.

For example:
POKE 2040,13

This tells the computer that the data for sprite O can be found in the
13th block.

60

POKE 2043,192

This means data for sprite 3 is in the 192nd block. See the appendix
“How to Create a Sprite”” for more information.

0800-9FFF 2048-40959 Your BASIC programs are stored
here. You can make the space smaller
by using locations 43 - 46.

This handy renumber routine checks the area inside this memory to
see where the line numbers are stored. Then it goes through and changes
all of them to make your program look neater.

Beware though, it doesn’t change the line numbers after a GOTO or
GOSUB command. You will have to go back and do it by hand.

To renumber a program you have in memory, use the append routine
(locations 43-46) or follow these instructions.

1) Type in POKE43,PEEK(45)-2:POKE44,PEEK(46):CLR
2) Load in the renumber routine
3) POKE43,1:POKE44,8

4) Type in RUN 10000 and press RETURN

794 END &
e REM RERNUMEER ,@.

Pl Ye=2E4gr v T=1d

OITFFEER (Va+E] —DMJUF EEE Uy a+4) =TT THERERD

Y D= INT\\ 7= 7 —206¥YE

CFOREEY S, FClIL\LHH...JL

1ands IFPEER (Ya+E) < FETHENY &=v &+

VBSSd Y=YV ldrYa=sY e+ GOTO L goas

S EOTO e ge

The next program is a *‘cruncher’’, that is, it combines many program
lines into as few lines as possible. This could mean your program would
run a bit faster and take up less room in memory. It will also make your
program less readable. If you “crunch” a program, always save an
expanded version, too. It's much easier to find errors and make
corrections on an “‘un-crunched”” program.

61

RR S B

PO INFUTYCOMEINE LINES FrROM, 7O"3L, U C=Dg4?
s E=EES I E=FERR (45 +BeFERER (440 -4

2 LT*FFr}\L*L)*E*lLL} CC+HTY s FRIMTLT S

2O IFLTOLTHENC=FEEN (C) +E+FEER (C+1) 0 GOTOZ

4 IFLTHLTHENFRINMNTULINE NOT FOUNDY L EMD

ol i IR =00 C=C+4

& C TR baTHEMC=C+ 1 G070

7 (F+13L“F7ixc+”3~uTH MO

3 klk I +BRFEER RIWHTLT:

e EMC:C41"F71;_¢N} C-IMTC B

LInkE+L,C ,[CDT
1 “SC\” c =ikl od+4)
1 G NEX

To use this program, first load it in then use the method explained
above to hide it. Next, load in the program you want to “crunch’.
Then POKEA43,1:POKE44,8 will allow you to see and use the
crunch program.

To save yourself time and trouble use the append routine.

8000-9FFF 32768-40959 VSP (Video/Sound Package) cart-
ridge ROM => 8192 bytes.

The **Video/Sound Package™ is a cartridge Commodore plans to
release that will make programming of sound and sprites easier. The
penalty is a loss of 8192 bytes of memory.

AO00-BFFF 40960-49151 BASIC ROM => 8192 bytes (or
8K RAM).

This is where BASIC sits. By using location 1, it is possible to have the
computer temporarily pretend BASIC isn’t around any more. Most of us
will never do something like that, but machine language programs might,
in order to have more room for longer programs.

So, in a way, we’ve come full circle from location O to 49151 which
points us back to the beginning again. Our next section embarks on an
exploration of new territory - the powerful regions of Graphics and
Sound.

62

GRAPHICS

If you’re not familiar with bytes and bits, please read the very helpful
section on page 10 to 13. Sound and Graphics on the 64 require some
knowledge of bytes in order to control the power of the machine.

Hexadecimal

Decimal Loc. Bits Description
D000-DOOF

53248 Sprite 0 X position
53249 Sprite 0 Y position
53250 Sprite 1 X position
53251 Sprite 1 Y position
53252 Sprite 2 X position
53253 Sprite 2 Y position
53254 Sprite 3 X position
53255 Sprite 3 Y position
53256 Sprite 4 X position
53257 Sprite 4 Y position
53258 Sprite 5 X position
53259 Sprite 5 Y position
53260 Sprite 6 X position
53261 Sprite 6 Y position
53262 Sprite 7 X position
53263 Sprite 7 Y position

63

These are magic locations! By changing them you can move up toeight
sprites across the screen with a FOR/NEXT loop.

Look at the description for sprite #0. The term ““X position’’ means
the movement from left to right (or right to left) on the screen. “Y
position™ is movement up and down.

Here’s a way to make programming easier. By calling the first address
by a variable name (V) for example, all the other graphic addresses can
be reached by adding an appropriate number. That makes it easy to
remember. For example, to move sprite #7 you could use V+14 and
V+15 instead of 53262 and 53263.

This program creates a solid sprite. By setting V equal to 53248 in line
140, all the other references to the graphics can be easily written. This
method of using variable names (like V or S or Al) for frequently used
numbers, will also speed up your program.

REM--5SFRITE HALFWAY ACROLBS SCREER.
K an g SLR S) kA
h ALY . 4 O

REM--SFRITE HALFWAY DOWN SCREEN.
FOREV+1, 158

The position of sprite is calculated from the top left corner of the 24 x
21 dot area that make up the unexpanded sprite. Even if only one dot is
used as a sprite, and you happen to want it in the middle of the screen, you
must still calculate the positioning by starting at the top left corner
location.

64

DO10

53264 (V+16) Sprites O to 7 X position past position
256

Positioning in the horizontal direction is a little complicated. Even
though you have a 320 pixel wide screen for your sprite, if it moves past
the 256th pixel from the left (about eight-tenths of the way across the
screen) you need a ninth bit to describe the sprite’s position, because a
byte can only hold a number up to 255.

When a sprite crosses the 256 dot “seam”, the proper bit in this

location must be turned on. When crossing back, the bit must be turned
off.

For example when sprite 0 moves across the seam to the right:
POKE V+16, PEEK (V+16) OR 1

If sprite 4 crosses then
POKE V+16, PEEK (V+16) OR 16

To cross sprite O back to the LEFT

POKE V+16, PEEK (V+16) AND 254

Another thing to consider when positioning sprites is that they are
visible within certain limits even if you want to move them off screen.
These border parameters vary with dimensions of your display and
change when your sprites are expanded or unexpanded.

The best way to find the limits is to create a solid sprite and move it
back and forth. See the appendix ‘““How To Create A Sprite™.

D011
53265 (V+17) VIC control register.
7 register compare: (8 bit) see 53266
6 extended color text mode: 1 = enable
5 bit-map mode: 1 = enable
4 blank screen to border color: 1 =
blank
3 select 24/25 row text display: 1 = 25
rows
2-0 smooth scroll to Y dot-position (0-8)

65

Most beginning programmers can skip this location. This description
will interest intermediate or advanced programmers. Think of this
register as the main control box for your graphics where each bit acts as
an on/off switch for the graphics modes.

BIT 6 - EXTENDED COLOR MODE

In this mode, each character takes on a background color in addition to
the color of the character itself. Your screen color may be different, so for
example, you could have a white character with a green background on a
yellow screen. There is an important limitation in this mode. Since
memory out of your character code is used to determine this extra

background color, you are limited to the first 64 characters. See location
53270 for information on extended color modes.

3 BIT5 - BIT MAP MODE

If you take a magnifying glass to your screen you’ll see the countless
phosphor dots that comprise the pixels used to fill the screen with color.
This is the smallest increment of resolution that is available for graphics,
the bit map mode. The standard bit map mode gives you a 320 horizontal
dot by 200 vertical dot resolution, with a choice of two colors ineach 8 by
8 bit character.

ENABLE HIGH-RESOLUTION BIT MAP MODE:
POKE 53265, PEEK(53265) OR 32

DISABLE HIGH-RESOLUTION BIT MAP MODE:
POKE 53265, PEEK(53265) AND 233

This example of bit mapping is a spiral drawn against a plain
background. First the screen will go black, then slowly, the screen will
clear. Then a cyan background is produced and the spiral is plotted.
When it’s finished a black square appears in the top left corner. Press
RUN/STOP and RESTORE to return to a normal screen.

66

10GO PRINT OHRE (147
FRINT

FRINT

] FRINT

1¢)4 G FRINT"WHERN SE LRG0 SRV
1TORG PRINTYBLATCE BUL WILL AFFE
106G PRINTYUFFER LEFT CORMER, ™
107G FRINTY

1080 FPRINTYFRES:S
FOP0 PRIMTYRETLURN TO MNORMAL
1100 & (’H EO1&E 2 s kEM DLRGOR
111G PRI
1180 PRINT
117350 PRINT"FRE
114G GET aF: - A
1150 PRINT CHRE (147)

iy TO BESINY
THEN 1140

116G hFH =TT BIT O FAR
1170
1180
1 i¢ /U

AT 8192

FENTER BIT MA
b, FEER (DE265) HF\ i
e BIT MAF

TO BASE+7999: FORE]

. '[0
SOURVE WTL L

= OTOL7 ST
¥=1504+ lNl { J“-'U Tap
YomQO—TT {1 2028 X
= INT ()\ =y
it o= TR O S

Tl TH El'

By, FEER (Fv s O (0 B

NE H
FORE TCd, 16
BT A7

FLINZ S TOF GRD RESTOR

GOG & FOKE :',F"E CiEEE

7TEyOR8

IO NEXT
’ P{\("F AND BORDER COLORS

C : REM BDRDER T D CYAN
FUFED, 1z NEX T

B

Here’s a formula to turn on and off individual pixels on the screen.
Keep in mind that the screen dimensions are 25 rows by 40 columns.
That means 1000 (25X40) characters can be printed on the screen. Lets
call each one of these places a CHARACTER POSITION. Then this

formula is used to plot which pixel to turn on.

67

The character position number is found this way:
CHARACTER POSITION = INT(X/8)*8+INT(Y/8)

X and Y are the horizontal and vertical positions of the pixel you want
to turn on. X will be number between O and 320. Y will be a number
between 0 and 190.

The row is found by:
ROW = (Y/8 — INT(Y/8))*8

Therefore, the byte in which character memory dot (X,Y) is located is
calculated by,

BYTE = 1023 + CHAR*8 +ROW
The bit to be modified is..
BIT = 7 — (X—(INT(X/8)*8)
Finally, to turn on any bit...
POKE BYTE,PEEK(BYTE)OR(24 BIT)
BIT 4 - SCREEN BLANKING
You can hide anything printed on the screen by:
POKE 53265, PEEK(53265) AND 239
The screen will turn the same color as the border.

POKE 53265, PEEK(53265) OR 16

will make the screen visible again.

With this location you could turn off the screen then have
messages or graphics printed on the screen. Then “pop” the screen into
view all at once.

This program will:
1) Blank the screen

68

2) Print a message
3) Turn the screen back on

13 FPRINTCHR$ (147

28 PRINTHERE I AM"

ZE FRINT"NOW ITLL GO AWAY!

4¢0 FOR FAUSE = 1 TO 1@ NEXT

S FORESIZIRSS, PEER (GZ2465) AND 239

SiE FPRINT

JEOFPRINT"ISM BACE DY

Qe FOR PAUSE = 1 TO L@@l NEXT
i

o FORFESIZOHE, FEEE (B32863) OR

BIT 2-0 - SCROLLING

You can scroll screen information by moving the screen display in any
of four directions, moving as slow as 1 pixel at a time or as fast as 8 pixels.

When you do this, shrink your screen size from 40 to 38 columns wide
or from 25 to 24 rows tall depending on the direction you want to scroll.
This gives the computer a place to assemble the information before it
scrolls onto the screen.

To do truly fine scrolling you’ll need a machine language routine.
Without that routine, scrolling can only be done with text or keyboard
characters.

1E88E REM 2699 9696 % 5 36 36 5 2569 %K 3 % 5 5 965 % 3 3 % % 3% 36
1314 REM * FROTO SCROLL ROUTIME ¥

FUET 3 336 36 36 36 36 3 9 56 36 3 3 36 3 96 46 9 5 3 69 56 5 5 X%

DIM C{8,8)REM CHARACTER MATRIX

“Ed = GHRINE THE SCREEN
FORE ST245,FPEER(EIZSE) AND 247
FEM 3 STORE CHARACTER INMFG.

FOR I = 1T{8
FOR J = 1708

@9 READ COE,.00

PNEXT J,1

69

70

BIT 3 - 24/25 ROW SELECT

By POKEIing this bit off you will make the screen 24 rows from top to
bottom, instead of the normal 25. This is used in the fine scrolling mode.
Half a row is taken from both the top and bottom of the screen. To see this
work

POKE 53265, PEEK (53265) AND 247
To get 24 rows
POKE 53265, PEEK (53265) OR 8

will return you to 25 rows.

D012

53266 (V+18) Read/write raster value for compare.
Lower 8 bits out of 9 bits (see location
53265).

The raster register is a dual purpose register. When you read this
register it returns the lower eight bits of the current raster position. The
raster position of the most significant bit is in location 53265. You use
the raster register to set up timing changes in your display for vertical and
horizontal band scrolling, mix-moded display (hi-resolution with char-
acters) and other kinds of interrupts.

The changes of your screen should be made when the raster is not in
the visible postion of the display area. The visible positions are those
between 51 and 251.

D013
53267 (V+19) Light-pen latch X position.
D014
53268 (V+20) Light-pen latch Y position.

These locations return the light-pen X, Y positions across the screen
from O to 255. Interrupts can be generated when the pen is triggered.

DO15 /-
53269 (V421) Sprite display -ﬁ"

When you want to make a sprite visible, this is the place!

71

Each bit handles a sprite. Sprite O is controlled by bit 0, sprite #1 by
bit #1 and so forth.

Here’s how to make sprite #4 show on your screen:
POKE 53269, PEEK (53269) OR 16
POKE 53269, PEEK (53269) AND (255-16)
will make sprite #4, and only sprite 4, disappear.
POKE 53269, PEEK (53269) OR 170
will put sprites #1, 3, 5, and 7 on the screen.
POKE 53269, PEEK (53269) AND (255-170)

will take them off.

D016
53270 (V+22) VIC control register
7-6 unused
S unused
4 multi-color mode: 1=enable (text/
map)
3 select 39/40 column text: 1=40 cols.
20 smooth scroll to X position

Here is another place that is used mainly by advanced graphics users.
It is aninteresting location, but if you program in BASIC only, just take a
look at the changes you can make in the scrolling Proto. (Location
53265)

BIT 4 - MULTICOLOR MODE
The multi-color mode for text is turned on by:
POKE 53270. PEEK (53270) OR 16
Turn 1t off with

POKE 53270, PEEK (53270) AND 239

72

Normally, each of the 1000 screen positions or “blocks’ can have
only two colors, a background color and a text color. For example, when
the computer is turned on the background of each block is dark blue and
the text color is light blue.

POKE:ing this location gives you four colors to play with: screen color
(loc. 53281), and background colors 1 to 3 (loc. 53282-53284). But
there is a penalty, multi-color mode will work for only the first 64
characters in the character set, and it needs two bits todescribe any of the
colors.

Like this:
[JONONoNON N N
76543210

Each letter printed on the screen is really an 8x8 block of pixels with
some turned on and some off. The ones turned on are the letter you see. In
the sample row of pixels above, #1, 4, 6 and 7 are on.

In the multi-color mode they are in pairs.

7 6] (5 4
A B

@O OO |0 (X]
3210
C D

The pattern ““A” tells the computer to get the color from the back-
ground #2 (loc. 53283). B gets its information from background #0
(loc. 53281) which is the screen color). C indicates the color comes from
background #1 (loc. 53282) and D gets its information from the color
memory area from 55296 to 56295 - different for each screen location.

Because of this “‘two-bit’" reading of the data, your resolution will be
less than normal but you have more color available.

MULTICOLOR BIT MAP MODE

This uses two locations (53270 and 53265). The same principles of
“BIT PAIRS” are used here as in the mode described above.

Enable this with:

POKE 53270, PEEK (53270) OR 16

73

POKE 53265, PEEK (53265) OR 32
Remember, horizontal resolution is decreased.
BIT 3 - SELECT 38 OR 40 COLUMN MODE
1 = 40 COLUMN
POKE this bit to zero to narrow the screen area. That gives you space
on each side of the screen to assemble the characters before you scroll.
Doing this will keep the scrolling smooth.
BIT 2 - FINE SCROLLING
By adding
1365 POKE 53270, (PEEK (53270) and 248) + P
to the programin location 53265, you can make Proto scroll diagonally.
Again, to do truly fine scrolling you need a machine language routine.

The example under location 53265, written in BASIC, allows you to
scroll text and keyboard graphic characters only.

D017
53271 (V+23) Sprites O to 7 expand sprite 2 times
(vertically)

This location will make your sprites twice as large vertically. This has
a one-to-one correspondence, that is, turning on bit #0 expands sprite
#0.
POKE 53271, PEEK(53271) OR 1

To return sprite # to normal size:
POKE 53271, PEEK(53271) AND (255-1)
To expand sprites #7 and #1:
POKE 53271, PEEK (53271) OR 130

Also see location 53277.

74

D018 (=)
53272 (V+24) VIC memory control register ""
7-4 video matrix base address (inside
VIC)
3-1 character dot-data base address (in
VIC)

This location is responsible for the location of both screen memory
and character memory.

POKE 53272,23
will convert the screen display to lower case.
POKE 53272,21

will change the screen display back to upper case.

Another example of the use of this address is seen in location 648, screen
flipping.

SCREEN MEMORY LOCATION

Screen memory location is controlled by the last four bits (most
significant nybble) of 53272. To move the screen, use the following:

POKE 53272, (PEEK(53272) AND 15) OR A

A must be one of the decimal values on this chart.

75

Location

A Decimal Hexadecimal
0 0 $0000
16 1024 $0400
32 2048 $0800
48 3072 $0C00
64 4096 $1000
80 5120 $1400
96 6144 $1800
112 7168 $1C00
128 8192 $2000
144 9216 $2400
160 10240 $2800
176 11264 $2C00
192 12288 $3000
208 13312 $3400
224 14336 $3800
240 15360 $3C00

Normally, A’s value is 16, and the screen begins at 1024.
To create your own character set you modify bits 3 to 1.
POKE 53272, (PEEK(53272) AND 240) OR B

where B is the decimal value from this chart.

VALUE
of B DEC HEX
0 0 $0000-$07FF
2 2048 $0800-30FFF
4 4096 $1000 -$17FF
6 6144 $1800-$1 FFF
8 8192 $2000-$27FF
10 10240 $2800-$2FFF
12 12288 $3000-$37FF
14 14336 $3800-$3FFF

B is normally set to 4.

76

See the appendix ““Being an Artist on the Commodore 64 for an
example of creating your own character set.

D019

53273 (V+25) VIC interrupt flag register (bit=1:
IRQ)

set on any enable VIC IRQ condition
light-pen triggered IRQ flag

sprite vs sprite collision IRQ flag
sprite vs background collision IRQ f1
raster compare IRQ flag

O = N W=

This location is best handled with machine language since the values
here can change rapidly.

DO1A

53274 (V+26) IRQ mask register: 1=interrupt
enabled.

This location is set the same way as the location above. Unless the

corresponding bit in the interrupt enable registeris settoa 1, nointerrupt

from that source will take place. Practice your machine code before using

this!

DO1B %

53275 (V+27) Sprite vs background display priority:
1 = sprite.

With this location you can make a sprite pass in front or behind of
printed characters.

POKE 53275,2 PEEK(53275) OR 2
means sprite #1 will pass behind text or graphics on the screen.
POKE 53275,7 PEEK (53275) OR 7
will do the same for sprites #0, 1 and 2.
POKE 53275, PEEK (53275) AND (255-7)
will put sprites #0, 1 and 2 in front of the text.

77

DO1C
53276 (V+28) Sprites 0-7 multi-color mode select:
1=MCM.
You can create a sprite with up to 3 colors by POKFEing on this location.
POKE 53276,1

puts sprite #0 in the multicolor mode. The three color choices come from
the sprite color locations (53287 to 53294, depending on the sprite
number you're working with), and the sprite multicolor locations, 53285

and 53286.
See the appendix ““How to Create a Sprite’’ for more information.
DO1D
53277 (V+29) Sprites 0-7 expand sprite 2X (hori-
zontally).
Like 53271, this is the place used to expand a sprite, horizontally.
POKE 53277, PEEK (53277) OR |
will expand sprite O, making it twice as wide.

POKE 53277, PEEK (53277) OR 18

will expand sprites 4 and 1. Also see location 53271.

DO1E
53278 (V+30) Sprite vs sprite collision detect.

If a sprite is touching another sprite, the bit for that sprite is turned on.

IF PEEK (V+30) = 1 THEN ACTION

is a typical use of this location. It asks if sprite O has bumped into another
sprite.

78

53276 - 53281

Once you PEEK here, this register resets itself to zero. It’s a good idea
to save the value here by putting it in a variable.

If PEEK (V+30)=1THEN B=1

DO1F
53279 (V+31) Sprite vs background collision detect.

This works just like the previous location, checking to see if a sprite has
bumped into some text or graphics. This register also resets to zero after
being read so if you need to save the value, use a variable.

If you PEEK (V+31) and read 128 that means sprite #7 has bumped
into some characters.

D020
53280 (V+32) Border color. Normally set to 14

Poking the numbers from O to 15 here will change the border color. %
This chart shows the number to POKE to get each color.

0 BLACK 8 ORANGE

1 WHITE 9 BROWN

2 RED 10 Light RED

3 CYAN 11 GREY!

4 PURPLE 12 GREY 2

5 GREEN 13 Light GREEN
6 BLUE 14 Light BLUE

7 YELLOW 15 GREY 3

These numbers are used any time you work with colors.
53281 (V+33) Background color 0.

True, this is called a background color, but it is also the screen color.
This location shows a 6 when the computer is turned on or RUN/STOP
and RESTORE are pressed.

This program will show you all the combinations of screen and border
colors.

79

100 FRIMTCOHRE (147)

110 FOR A= O TO 15

120 FOR B= O TO 13

120 FOEESTERO,A

140 FOEESEZEE1,R

150 C=R

160 IFC=15THENC=0

170 FORESLHAS,CH+]

180 FRINTCHRE (19)

190 FOR D = 1 TO 12:FRINTCHR#£(17) ;s NEXT D
200 PRINTYHELLG!™M

210 FOR E =1 T0O Z00: NEXT E
220 NEXTEB

230 NEXTA

53282 (V+34) Background color 1.
53283 (V+35) Background color 2.
53284 (V+36) Background color 3.

These are the color registers used with the multi-color modes in
locations 53265 and 53270. POKE the numbers on the colors you want
to use. See location 53270.

D025-D026
53285 (V+37) Sprite multi-color register 0.
53286 (V+38) Sprite multi-color register 1.

When the sprite multi-color mode (loc. 53276) has been selected the
colors in these registers are used in addition to the usual sprite color (loc.
53287-53294). See the appendix “How to Create a Sprite” for more
information.

D027-DO2E

53287 (V+39) Sprite O color.
53288 (V+40) Sprite 1 color.
53289 (V+41) Sprite 2 color.
53290 (V+42) Sprite 3 color.
53291 (V+43) Sprite 4 color.

80

53281 - 53294

53292 (V+44) Sprite 5 color.
53293 (V+45) Sprite 6 color.
53294 (V+46) Sprite 7 color.

These are the color registers for each sprite.

Each sprite has a ““default’ color, that is, if you don’t POKE a color
for your sprite, the 64 will automatically give it a color.

Sprite | Default Colors
0 White
1 Red
2 Cyan
3 Purple
4 Green
5 Blue
6 Yellow
7 Grey 2

81

If you are new to sound programming, get ready to be amazed! The
Commodore 64 has sound capabilities unheard in other computers.

You need to use the BASIC commands PEEK and POKE to produce
sound, so if you're not sure what these commands do, just re-read the
sections “How to PEEK and POKE” and ““BYTES and BITS” on
pages 6 to 13.

By calling the first address by a variable name (S), all other sound

P |

addresses can be reached by adding an appropriate number.

10 LET S = 54272

It is also a good idea to clear the voices by POKEing all the sound
locations to zero. That keeps unwanted settings out of your program.

VOICE #1 REGISTERS

D400
54272 (S=54272) Voice 1: frequency control, low-byte.
D401
54273 (S+1) Voice 1: frequency control, high-

byte.

The values to POKE here to produce musical notes are in the note
table on page 175.

An example of values to POKE:

82

T

Ao R

Produces a C note in the Sth octave. Not every sound you want to
make will be a musical note. To produce a frequency not on the musical
note table, use this program. It will give the numbers to POKE in the high
and low bytes.

10 PRINTOHRE (1479

S0 INFUTYWHAT FREQUENDY DOOYOL WANT";F 1
200 F1=0RS (F1)

4' ‘:) .

I
&HO

S

AUy b

ot
R LU Y T
SOOFRINTYFOEE HIGH BY Tk

Pty

D402
54274 (S+2) Voice 1: pulse waveform width, low-
byte
D403
54275 (S+3) Voice 1: pulse waveform width.
7-4 unused
30 high-nybble

Another quality that is given to any frequency of the voice is how
distinct sound peaks are. This is how you produce tonal textures such as
vibrato (the vibrating aspect of sound that gives it a singing quality). This

is done with pulse waveform. The different types of waveforms are
discussed in the next register.

In location 54274, POKE a number in the range 0-255.
In location 54275, POKE a number between 0-15.

See the “airplane” program in the appendix for an example of pulse
waveform manipulation.

83

D404
54276 (S+4)

[NS IS TRV, B

Voice 1: control register.

select random noise waveform 1 =
ON

select pulse waveform 1 =ON
select sawtooth waveform 1 = ON
select triangle waveform 1 = ON
test bit: 1 = disable oscillator 1
ring modulate osc. 1 with osc. 3
output 1 = ON

synchronize osc. 1 with osc. 3
frequency 1 = ON

gate bit: 1 = start att/dec/sus

0 = start release

This is the place! Here you can decide what kind of note you want to
create, from the muted sound of a violin to the crash of ocean surf. It all
depends on the type of waveform you choose.

Take a look at all the bits in this location. Bits 0, 4, 5, 6 and 7 will be
used often by everyone. Bits 1, 2 and 3 are used for advanced sound

techniques.

Bit O: This is the ON/OFF switch of voice one, but it should be used in
union with one of the waveform bits. When this bit is set to 1, the attack,
decay and sustain cycle begins. When it is poked with a 0, the release of

the note starts.

POKE 54276,17

will begin the A/D/S cycle for the triangle waveform.

POKE 54276,16

will start the Release cycle.

The waveforms are designed to be used one at atime. You should try to
add two or more together to experiment.

Bit 1: This bit, when turned on, will allow the interaction of voice 1 and
voice 3, blending both waveforms. To hear this, the frequency of voice
three should be lower than voice 1.

84

: r

54276
Bit2: Thering modulation effect creates the sounds of bells or gongs. It is
also used with voice 3. In order to hear the ring modulation, voice 1 must

use the triangle waveform and voice 3 must be set to a frequency higher
than zero.

Bit 3: This bit, if turned on, will reset voice 1 until it is POKEd back to
ZEro.

Bit 4: The triangle waveform is smooth and flute-like. The sound is made
by POKEing this bit and the gate bit on.

ON: POKE 54276,17

OFF: 54276,16

JANRWAN
A A

Bit 5: Listen to the brass sound of the sawtooth waveform.
ON: POKE 54376,33

OFF: POKE 54276,36

NN
%

Bit 6: The pulse waveform can be changed by using location 54275 to
vary the width of the pulse. You can create sounds from a piano to a
clarinet.

ON: POKE 54276,65

OFF: POKE 54276,64

AFFE

85

Bit 7: The noise bit. Use this to make rocket blasts to surf sounds.
ON: POKE 54276,129

OFF: POKE 54276,128

D405

54277 (S+5) Envelope generator 1: att/dec cycles.
7-4 select attack cycle duration: 0-15
30 select decay cycle duration: 0-15

The attack cycle is one of 4 parts that make up any note played by an
instrument. In the attack, the volume of the note rises to its highest
volume. Then it begins to ‘decay’ or fall in volume to lower level. Decay
is the second part of a note.

Some instruments, like a trumpet, have a fast attack. Others, like the
violin, have a very slow attack!

Here’s an example of how to set both attack and decay.

ATE THE aTiale RATE.
— IT DEr BE ARNY MUMBER FROM

AT I 6 T B

Doib THE D RaN

U7 oak BE ARY RO
SO 0 R T R T

NI I PN e
et

Y

FidkF

This sets a medium attack and decay.

D406
54278 (S+6) Envelope generator 1: sus/rel cycles.

86

7-4 select sustain cycle duration: 0-15
30 select release cycle duration: 0-15

Sustain and release are the other parts of a sound. When a sound
decays, the volume falls to the sustain level. The volume stays at this
level until the release cycle begins.

Use bits 7-4 to set the sustain level from O to 15, zero would be the
lowest sustain, 15 is the highest sustain.

The release cycle starts the fall in volume from the sustain level to
zero. The release cycle follows an exponential curve that mimics the way
instruments that are blown or bowed actually respond.

Here’s a sample program to produce a single tone. .

100G
111G 9
130

SOUND CHLP = TERTING ADDRE
CLEAR THE REL TS RS,

e
e v

AT EHEST VO LI,

Lo BTt
I VOTIE

FREM - SET THE &7 TaCk /DECAY
REM = & = OTTACK; D = Lk
=

D=1%

FORESIDE A% 14+D

REM — SET THE SUSTAINRELE
SLGBTATIN; R o= RELEASE

..... =B THE SAaWTO0TH WAVEFTDIRM
REM - AND TLHRKN LT O,

IHO PORES D4 RS

87

Js5w REM > HOLD THE NOTE A WHILE
378 FOR PAUSE = 1 TO 128: NEXT
I8¢ REM — START THE RELEASE CYCLE
394 POKESID+4, 32

The registers of voices 2 and 3 are handled in the same manner as
voice 1. There are a few differences in the voice control registers for ring

modulation and syncronization. The changes are marked in bold.

VOICE #2 REGISTERS

D407-D40D
54279 (S+7) Voice 2: frequency control, low-byte.

54280 (S+8) Voice 2: frequency control, high-
byte.

54281 (S+9) Voice 2: pulse waveform width, low-
byte.

54282 (S+10) Voice 2: pulse waveform width.
7-4 unused
30 high-nybble

54283 (S+11) Voice 2: control register.
7 select random noise waveform
1=0ON
select pulse waveform 1=0ON
select sawtooth waveform 1 =ON
select triangle waveform 1=0N
test bit: 1=disable oscillator 1
ring modulate osc. 2 with osc. 1
output 1 = ON
1 synchronize osc. 2 with osc. 1
frequency 1 = ON
0 gate bit: 1=start att/dec/sus
O=start release

N WALV

54284 (S+12) Envelope generator 2: att/dec
7-4 select attack cycle duation: 0-15
3-0 select decay cycle duration: 0-15

88

54285 (S+13) Envelope generator 2: sus/rel
7-4 select sustain cycle duation: 0-15

VOICE #3 REGISTERS

D40E-D414
54286 (S+14) Voice 3: frequency control, low-byte.

54287 (S+15) Voice 3: frequency control, high-
byte.

54288 (S+16) Voice 3: pulse waveform width, low-
byte

54289 (S+18) Voice 3: pulse waveform width.
7-4 unused
30 high-nybble

54290 (S+18) Voice 3: control register.
7 select random noise waveform
1=0ON
select pulse waveform 1=0ON
select sawtooth waveform 1=0ON
select triangle waveform 1=0N
test bit: 1=disable oscillator 1
ring modulate osc. 3 with osc. 2
output 1 = ON
1 synchronize osc. 3 with osc. 2
frequency 1 = ON
0 gate bit: 1 = start att/dec/sus
0 = start release

N WA OV

54291 (S+19) Envelope generator 3: att/dec
7-4 select attack cycle duration: 0-15
30 select decay cycle duration: 0-15

54292 (S+20) Envelope generator 3: sus/rel
7-4 select sustain cycle duration: 0-15
30 select release cycle duration: 0-15

54293 (S+21) Filter cutoff frequency: low-nybble.
(bits 2-0)

89

54294 (S+22) Filter cutoff frequency: high-byte.
These locations set the cutoff frequency used by the filters.
For example, to make 1000 Hz the cutoff frequency:
POKE 542933
POKE 54294,232

In other words, (3 * 256) + 232 = 1000. Only numbers from 0 to 7 can
be POKEA in location 54293. The filtering location at 54296 will look
here to find the frequency to work with.

D417

54295 (S+23) Filter resonance/voice input control.

-4 select filter resonance: 0-15
filter external input: 1I=YES 0=NO
filter voice 3 output: I=YES 0=NO
filter voice 2 output: I=YES 0=NO
filter voice 1 output: I=YES 0=NO

O —= N W=

This is the switch box that turns on and off the filter for the voices you
select. To turn on the filter if V" is the voice number:

POKE 54295, PEEK (54295) OR 24V
Example:
POKE 54295, PEEK (54295) OR 4
will turn on the filter for voice 2.
POKE 54295, PEEK (54295) AND (255-V+42)
turns off the filter.
POKE 54295, PEEK (54295) AND 251

turns off the filter for voice 2.

90

You can filter more that one voice at a time by turning on the proper
bits. The filter resonance area, bits 4-7, can make the voice sound either

sharp or dull. There are 15 possible resonance settings. To enter them let
R = the resonance desired.

POKE 54295, PEEK (54295) + (R * 16)

D418

54296 (S+24) Select filter mode and volume.
cut-off voice 3 output: 1=OFF
select filter high-pass mode: 1=0ON
select filter band-pass mode: =ON
select filter low-pass mode: 1=0ON

0 select output volume:
0 (off) — 15(max)

W h LA

The volume of the sound is controlled here. Poke a number between O
and 15.0is off, 15 is the loudest volume. The volume is set the same for
all voices, so if you want one voice to sound louder than another, this
register will have to be rePOKEd every time you change the volume.

POKE 54296,15
sets the highest volume.

Bit 4: You turn on the low pass filter at bit 4 with:
POKE 54296, PEEK (54296) AND 16
This passes any frequency lower than the cut off set in location 54293
and 54294. The frequencies above the cut off are reduced in volume. The

higher the frequency, the greater the reduction in volume.

Bit5: The high pass filter will pass on frequencies higher than the cut off.
Low frequencies will be lower in volume.

POKE 54296, PEEK (54246) AND 32
will start the high pass filter.
POKE 54296, PEEK (54296) AND 48

will start both the high pass and low pass filters. This is called a notch

91

reject filter. All frequencies except those near the cut off will pass
through.

Bit 6: The bandpass filter is the opposite of the notch reject filter. It will
pass only frequencies near the cut off.

POKE 54296, PEEK (54296) AND 64

will turn it on.

Bit 7: Voice 3 can be set so its voice can’t be sent to a speaker. This is
useful if you want to use the output of voice 3 in modulation with other
voices.

POKE 54296, PEEK (54296) AND 128

will turn off the output of voices.

D419-D41A

54297 (S+25) A/D converter: game paddle 1 (0-
255).

54298 (S+26) A/D converter: game paddle 2 (0-
255).

Games using paddles must use a machine language paddle routine
because of the complexity of the conversion from reading these
locations. See location 56320 for a machine language game paddle
routine.

D41B
54299 (S+27) Oscillator 3 random number gener-
ator.

This location produces a random number from 0 to 255 when voice 3
is set to the noise waveform.

D41C
54300 (S+28) Envelope generator 3 output.

If voice 3 is turned on, this location will have digital output of the

A/D/S/R “‘envelope” for voice 3. This can be added to the filter
frequency, for example, to produce a range of interesting sounds.

92

54296 - 56319
D500-D7FF

54528-55295 RESERVED FOR FUTURE /O
EXPANSION

Commodore has plans for this area...someday. But until they do, this
would be a great place to put machine language programs.

SCREEN COLOR AREA

&

D800-DBFF

55296-56319 SCREEN COLOR CONTROL
RAM
(ONLY BITS 3-0 USED)

This area parallels the screen memory area 1024 to 2023. If you are
POKEIing characters to the screen then you must also POKE the color of
the character here.

POKE 1024,83
puts a heart in the top left corner of the screen.
POKE 55296,2

will make it a red heart.

Here are the values to POKE into a color memory location to change a
character’s color:

BLACK 8 ORANGE
WHITE 9 BROWN
RED 10 Light RED
CYAN 11 GREY I

PURPLE 12 GREY2
GREEN 13 Light GREEN
BLUE 14 Light BLUE
YELLOW 15 GREY3

AWV b W —=O

This program will fill the screen with hearts, then use all the colors
available on the computer.

1ot RiEM
11e REM
129 REM

REM
PRIM

REM
MIM
MAX

M
P FOR

REM
FOR

REM

REM
FOF

P PORE

e H T AT T KA I R 2
* RAMDOM COLOR HEARTSZ *

FE 9 - 3 36 3 3 I HE R I A 0 HE 6 6 36 56 30 6 6 R 16 R

CLEAR
CHRE$ {147

| SCREEN
T
START OF
FEER {Z47)
MIN + 999

COLOR MEMORY <
+ ZEa*FEEK (244

s FORE HEARTS ONTO SCREM
H=1d24 TO Z2EZ3IFPOKE H,8IZ0NEAT H

TaG6GLE
CO=4 TO 15

THROUGH COLORS

FAMOTOM
CH=MIN T0

P
C, CTO

I

RETURE

T3

REFEAT

94

COMPLEX INTERFACE ADAPTER

(CIA) 21

This is a pretty technical area. But in this high-tech world are the
controls for joysticks and paddles. See location 56321 if you want to add
these routines to the programs you write.

DC00

56320
7-0
7-6
4
30

DCO1

56321
70
7
6
4
30

PEEK at this address to read the
joystick at control port 2.

Data port A: keyboard, joystick,
paddles

write keyboard column values for
keyboard scan.

select paddle input port:

Ol=port A, 10=port B

joystick 2 fire button: 1=fire
joystick 2 direction (0-15)

PEEK here to read the joystick
values at control port 1.

Data port B: keyboard, joystick,
paddles and lightpen

read keyboard row values for key-
board scan

timer B toggle/pulse output

timer A toggle/pulse output

joystick 1 fire button/lightpen trigger
(1=fire)

joystick 1 direction (0-15)

95

These two locations have a lot of work to do like scanning the keyboard
to see if a key has been pressed, and checking to see if a joystick, paddle
or lightpen is in use.

Plug your joystick into control port 1 and run this program.

188 FORE=2TOLE
115 READDRS () iNEXT

1280 DATAM!, "N, ST, W, TN

13% DATA"SW", """, "E", "NE", "3E"

143 PRINT"GOING...":

158 GOSURZHE

143 IFDR$(JV)=""THEN 13&

174 PRINTDR$(IV)§" M3

18# IFFR=1&6THEN 15

198 PRINT" #%%F %% [%% eR*xxEx%%" 16070158

28 JV=FEEK (55321)

218 FR=JVAND1&

229 JV=15- (JVAND1S)

279 RETURN C

Moving the joystick will print out the direction you’re headed on the
screen. Press the fire button too.

Since the keyboard is scanned, these 4 keys will act as a “mock
joystick™: the back arrow (=), the CTRL, 1 and 2.

Run the program again and try these keys instead of the joystick. Some
combinations aren’t allowed, like trying to go east and west at the same
time.

This is the compass rose that shows which direction the joystick is
pointed. Check these values for movement in your subroutines.

96

A machine language routine is needed to check the paddles because of
the complexity of reading them.

The values in each location range from O to 255 depending on the
rotation of the paddles.

&

163 PRINTCHRS (147)

116 C=12#%4094

123 FORI=#ITO6T: READA: FOKEC+T, AT NEXT

135 8YS ©

14% F1=FEEK (C+257)

158 F2=FEEE (C+258)

168 FI=FEEK (C+259)

176 P4=FEEK (C+ZaE)

186 WI=FEEK (C+261) 1 W2=PEER {C+287)

19% PRINTFL,F2,F3,F4

@e FRINT: FRINTYEIRE A":Wl, "FIRE E"3WZ

21% FORW=1TOSE: NEXT

22 FRINTCHRS (195 :60TQ 138

236 DATA 162,1,128,173,2,225, 141,93, 197

249 DATA 189,192,141,2,220, 145

256 DATA 128, 141,49, 220, 169, 128,234, 176
DATA 14,252,173,25,212, 157

DATA 1,193,173, 26,210,157, 3, 193, 173

.
Ple ih .328q141q2.1€3

DaTA

O/TE

When plugged into port 1, the paddles are read at (C+257) and
(C+259) and the fire button is read at (C+262). The value in (C+262)
will change depending on which fire button is pressed or if both are
pressed at the same time.

Paddles in port 2 are read at (C+258) and (C+260). The fire buttonis
(C+261). It is read the same way indicated above.

DC02
56322 Data direction register, port A

97

DCO03
56323 Data direction register, port B
Normal values for each, 241

These are the data direction bytes for the control port registers. When
a bit is set to one, that means that the port is receiving input. A zero turns
on that bit for output.

Bit 5 is not counted because line five carries voltage. These data
direction registers must be POKEd before you set the proper values of
the control registers.

DC04
56324 Timer A: low-byte
DCO5
56325 Timer A: high-byte
DQO06
56326 Timer B: low-byte
DCo7
56327 Timer B: high-byte

Both CIA chips have two powerful 16-bit timing devices. They can be
used to time various waveforms, pulse widths and frequencies for
internal and external signal generation. These timers can be used
individually or linked together to expanded timing durations. These
registers are read in BCD (binary-coded decimal), each nybble describes
a digit in the timer value. BCD format is faster for I/O operations.

DCO08

56328 Time-of-day clock: 1/10 seconds
DC09

56329 Time-of-day clock: seconds
DCOA

56330 Time-of-day clock: minutes
DCOB

56331 Time-of-day clock: hours

7 AM/PM flag

98

These four registers store a real-time AM/PM TOD, time-of-day clock.
This is another programmable CIA timing feature which, when read,
returns the respective TOD values. When written to (via setting bit 7 in
control register 56335), these values latch on the ALARM. This
programmable alarm allows the CIA to generate an interrupt at a
specified time. Only the MSB (most significant bit) of the hours register
is used to specify AM or PM. The values must be latched in one at a time
starting with the hours register and the clock will not start until the 1/10
sec. register is set. This ensures that the proper time is specified.

DCOC
56332 Synchronous serial I/O data buffer.

This register stores the values of the serial port which is a buffered, 8-bit
synchronous shift register system. With every eight clock counts (CNT),
the shift register deposits a value in this register. The clock counts are
generated by TIMER A which is also used as a baud rate generator.
After eight clock counts an interrupt is enabled to send for more data.
This constitutes a double-buffered I/O system where the micro-
processor stays one byte ahead of the shift register which stays a byte
ahead of the serial port buffer. This lets you load new data on the serial
bus before the shift register clears.

DCOD
56333 CIA interrupt control: read IRQs/
write mask (to IRQ)
7 IRQ flag (I=IRQ occurred)/set-
clear flag
4 FLAGI! IRQ (cassette read/serial

IEEE SRQ input)

serial port interrupt

time-of-day clock alarm interrupt
timer B underflow interrupt
timer A underflow interrupt

O = N W

This is the register that contains the interrupt and masking information
for the five sources of interrupts from the 6526. These interrupts are the
underflow from TIMER A, the underflow from TIMER B, TOD
ALARM, FLAG and serial port full/empty conditions. When read, this
location becomes a data register which accepts the interrupts being
generated. When written to, this location creates a mask for the IRQ line
which provides selective control over the interrupt system. If bit 7 is

99

zeroed, any mask bit which is on (1) is cleared while off bits are sent
through.

DCOE
56334 CIA control register timer A
7 time-of day clock frequency:
1=50Hz, 0=60Hz
6 serial port I/O mode: 1=output,
O=input
5 timer A counts: 1=CNT signals,
O=system 02 clock
4 force load timer A: 1=Yes
3 timer A run mode: 1=one-shot,
O=continuous
2 timer A output mode to PB6:
I1=toggle, O=pulse
1 timer A output on PB6: 1=Yes,
0=No
0 start/stop timer A; 1=start, 0=stop

This is the control register for the internal TIMER A and the TOD
clock talked about under locations 56324 thru 56331.

(BIT 0) START - This bit enables and disables TIMER A. When an
underflow condition occurs in the one-shot mode, this bit is auto-
matically reset.

(BIT1) PBON - When on, this bit allows the timer output of A to appear
on Port B.

(BIT 2) OUTMODE - This allows the ouput of PORT B to either toggle
(flip on and off) or pulse singly over one cycle duration.

(BIT 3) RUNMODE - This chooses the one-shot or continuous modes.
In the one-shot mode, the timer will count down to zero from the value
latched into it, enable an interrupt, and then stop. In continuous mode,
the value is re-latched and done again.

(BIT 4) INMODE - This bit controls which clock is used to decrement
the timer; either the 02 clock pulses or the external pulses applied to the
count (CNT) pin.

(BIT 6) SPMODE - This bit controls how TIMER A clocks the serial
bus. When one, the timer writes out to the serial bus. When zero, the
serial bus provides input.

(BIT 7) TODIN - Sets the TOD pin for accurate time.

DCOF
56335 CIA control register timer B
7 set alarm/TOD clock
I1=alarm, O=clock

This is the same register for TIMER B with the exception of bits 5 and
6. These bit pairs are used for timer count transitions and extended timer
use (using both timers together).

COMPLEX INTERFACE ADAPTER
(CIA) #2

DDO00

56576 Data port A (serial IEEE, RS-232,
VIC memory control).
serial IEEE data input
serial IEEE clock pulse input
serial IEEE data output
serial IEEE clock pulse output
serial IEEE ATN signal output
RS-232 data output (user port)

0 VIC chip system memory bank select

— N W A LN

This multi-functional register controls video bank-select, and is the
control register when an IEEE-488 interface is present on the expansion
port. This register must be set in correspondence with its data direction
register (56578).

DDO1

56577 Data port B (user port, RS-232)
user / RS-232 data set ready
user / RS232 clear to send

user

(W e NN |

101

S =N Wk

user / RS-232 carrier detect

user / RS-232 ring indicator

user / RS-232 data terminal ready
user / RS-232 request to send
user / RS-232 received data

user / RS-232 receive: start-bit (IRQ
flag)

Similar to location DDOQO, this register returns values of user PORT B.
It also handles the RS-232 connection. This register, too, must be
POKEC(in conjunction with its data direction register (56579) to achieve

results.

The following registers behave the same as on CIA #1. Both 6526
chips have identical timing and clock capabilities.

DDO02
56578

DDO03
56579

DDO04
56580

DDO05
56581

DDO06
56582

DDO7
56583

DDO08
56584

DD09
56585

THE FOLLOWING LOCATION DECRIPTIONS
APPLY FROM CIA #1

Data direction register, port A

Data direction register, port B

Timer A: low-byte

Timer A: low-byte

Timer B: high-byte

Timer B: high-byte

Time-of-day clock: 1/10 seconds

Time-of-day clock: seconds

102

DDOA
56586 Time-of-day clock: minutes
DDOB
56587 Time-of-day clock: hours
AM/PM flag (bit 7)
DDOC
56588 Synchronous serial I/O data buffer.
DDOD
56589 CIA interrupt control: read NMIs/
write mask (to IRQ)
7 IRQ flag (1 => IRQ occurred) / set-
clear flag
4 FLAGI1 IRQ: cassette read/ serial
IEEE SRQ input
3 serial port interrupt
2 time-of-day clock alarm interrupt
1 timer B underflow interrupt
0 timer A underflow interrupt
DDOE
56590 CIA control register A, same as CIA
1
DDOF
56591 CIA control register B, same as CIA
1
DEOO-DEFF
56832-57087 RESERVED FOR FUTURE I/O
EXPANSION
DF00-DFFF
57088-57343 RESERVED FOR FUTURE I/O

EXPANSION

103

104

APPENDICES

105

RE-CONFIGURING
THE MEMORY MAP

With the COMMODORE 64 you get more than one kind of machine.
You have the ability to rearrange sections of memory into eight different
memory maps.

Admittedly, this isn’t for the novice, but if you are the kind of
programmer that can make a computer dance, the 64 will do a fine jig.

There are 8 memory map possibilities. Here’s a chart:

X = Don’t Care
0 = OFF
1 = ON
Map #1
1/O expansion (disk)
8K KERNAL ROM I/O expansion (CP/M)
E000 CIA #2 memory
4K I/O CIA #1 memory
Color RAM
4K RAM (BUFFER
C000 {) SID memory
8K BASIC ROM VIC memory
A000
8K RAM Normal power up memory
8000 map. It gives the user 38K for
programming.
16K RAM
USER
= LORAM =0
16K RAM HIRAM = 1
[~ EOVVE—REDEESS] GAME = 1
SYSTEM —
0000 EXROM = X

106

C000

8000

4000

0000

EO000

8000

4000

0000

Map #2

8K RAM

4K I/O

4K RAM

16K RAM

16K RAM

16K RAM

Map #3

8K KERNAL ROM

4K I/O

4K RAM

16K RAM

16K RAM

16K RAM

107

60K RAM for I/O devices w/o
system routines.

LORAN =1
HIRAM =0
GAME=1o0r0
EXROM = X

52K for I/O devices and other
languages including CP/M.

LORAM =0
HIRAM = 1
GAME =1
EXROM = X

QG000

8000

4000

0000

E000

C000

A000

8000

0000

Map #4

16K RAM

16K RAM

16K RAM

16K RAM

Map #5

8K KERNAL ROM

4K I/O0

4K RAM (BUFFER)

8K BASIC ROM

8K ROM CARTRIDGE
(BASIC EXP)

16K RAM

16K RAM

108

Full 64K free RAM. No I/O
operators can be done here.

LORAM =0
HIRAM =0
GAME=1or X
EXROM = X or 0

32K RAM for BASIC user
with 8K taken up for expansion
cartridges.

LORAM =1
HIRAM = 1
GAME =0
EXROM =0

E000

C000

A000

8000

4000

0000

C000

8000

4000

0000

MM-H

Map # 6

8K KERNAL ROM

4K I/O

4K RAM (BUFFER)

8K ROM CARTRIDGE

8K RAM

16K RAM

16K RAM

Map #7

8K KERNAL ROM

4K I/O

4K RAM (BUFFER)

16K ROM (CARTRIDGE)

16K RAM

16K RAM

109

g FE
T S

40K of user RAM with 8K of
expansion ROM that does not
reduce BASIC.

LORAM =0
HIRAM =1
GAME =0
EXROM =0

Same as Map #6 except that
32K is for the user and 16K
ROM for expansion.

LORAN = X
HIRAM = X
GAME =0

EXROM = 1

Map #8

This configuration is used for
8K CARTRIDGE ROM the ULTIMAX video game
E000 cartridges so that they are com-
D000 4K /O patible on the Commodore 64.
4K OPEN
8K OPEN
A000
8K CARTRIDGE ROM
16K OPEN
12K OPEN
1000
4K RAM

You have the capability of flipping some of these memory sections in
and out, freeing that area for other uses such as free RAM for
programming. Second, you can internally re-locate some smaller
sections such as screen and character memories (see loc. 648). This
gives flexibility to several kinds of programming environments.

For example, locations O and 1 in the memory show how to switch the
3 important ROMS, the KERNAL, BASIC and the Character Gener-
ator in and out. This is done by the lower three bits of location 1. This
location is actually the control register for some of the processor’s (6510)
addressing lines.

You can even move BASIC into RAM and make your own modi-
fications to it.

There are other addressing lines monitored by location 1 which are
connected to the expansion port that you have no control over (at least
not with software). These lines automatically reconfigure the memory
map to the specifications determined by what expansion cartridge is in
use. The cartridge could be a game or word processor, for example.

110

ROM MEMORY MAP

To start out with, the BASIC and KERNAL ROMSs share the 64K
addressing space. This means that while your ROMs are present upon
turning on the computer, there is still the RAM hidden ‘behind’ it. When
you read this area, you get the contents of the ROM routines. If, however
you write to it, your information is stored in the RAM behind it. This is
convenient if you want to store something in this RAM, but how can you
get to it? The solution is to flip out any or all of the ROMs present in the
overall memory configuration using the Commodore 64’s impressive
‘bank-switching’ feature (see loc. 1). You can free up to 16K ROM
memory this way and this amount of memory for extra RAM.

WHAT IS INSIDE THE BASIC
AND KERNAL ROMS?

Let’s start with the BASIC interpreter which everyone gets auto-
matically when they turn on their Commodore 64. An interpreter is a
large library of routines and subroutines which break down the BASIC
commands (tokens) and execute the proper functions in machine code.

An interpreter is different from a compiler which must methodically
break down the ‘source code’ several times (passes) to be reconstructed
in another binary ‘object code’ file. An interpreter, while not as efficient
as a compiler, is certainly a lot easier to use because you don’t need
to wait each time for a compilation process (which can take several

111

minutes) each time you debug your program. In addition, the interpreter
accepts and processes most of the commands that you execute directly
into the computer in the ‘immediate mode’.

The Kernal is a similar bag of tricks. Itis a miniature operation system,
not as versatile as the BASIC interperter, but built for speed and
efficiency of operation. This is useful if you need to write machine
routines and you do not want to re-invent the wheel, that is, constantly
writing the same input or output routines. Just use the built-in KERNAL
subroutines.

When you use BASIC, the computer *‘automatically’ knows what to
do with what you wrote and where to go to get the information. The
KERNAL, however, isn't so automatic. There are certain “calling”
procedures that must be followed. ““Calling” means setting up the
information the KERNAL routine needs to have before the routine can
be used. See Commodore’s “*Programmers Reference Guide™ for the
correct calling procedures for each KERNAL routine.

The list of locations in this section contain the starting address of all
the BASIC Interpreter and Kernal operating system routines. They are
important to know because you can change them or at least alter their
inputs to non-standard results. You can map all or just a section of these
ROM routines with this FOR/NEXT loop. For instance, to map
BASIC into RAM:

FOR I =40960 TO 49151: POKE LI: NEXT I

That’s right. You just POKE an area with its own contents! Remember
you must take out the ROM when you are done so that you can read the
RAM. Take the ROM out of operation. You can change the ROM
routines if you wish. You can modify or even create your own BASIC.

A few last things to note. First, the sharp-eyed reader will take notice
of the fact that a number of BASIC ROM routines are in the Kernal 8K
section. As a result, if you rid yourself of the Kernal, your BASIC will
not function normally. Second, the ROM memory map locations are not
all in chronological order. This is to consolidate certain routines which
are used together.

112

THE KERNAL

The Kemnal is Commodore’s name for a table of standard subroutines.
Everything that goes in or out of the computer uses these routines.

If you write programs in machine language, the list of routines here will
enable you to use some of the power of the machine instead of writing
your own. These locations can be called by BASIC using the ‘SYS’
command after loading locations 780-783 with necessary inputs. (see
program)

The Kernal is like a wall between you and the inner workings of the
operating system. These routines are like doors in the wall, allowing you
to use different parts of the system. Advanced programmers may want to
cut some windows in the wall to get to some of the subroutines that the
Kernal uses. Don’t do this. Commodore is noted for ROM upgrades,
which means they will rebuild that wall. They promise to keep the doors,
but the windows will be gone!

Here is a brief summary of the Kernal routines.

Label

Hex. Addr. Dec. Loc. Description

ACPTR

FFAS 65445 Input byte from serial port.
CHKIN

FFC6 65478 Open channel for input.
CHKOUT

FFC9 65481 Open channel for output.
CHRIN

FFCF 65487 Input character from channel.
CHROUT

FFD2 65490 Output character to channel.
CIOUT

FFAS8 65448 Output byte to serial port.
CINT

FF81 65409 Initialize screen.

113

CLALL
FFE7

CLOSE
FFC3

CLRCHN
FFCC

GETIN
FFE4

IOBASE
FFF3

IOINIT
FF84

LISTEN
FFBI

LOAD
FFD5

MEMBOT
FF9C

MEMTOP
FF99

OPEN
FFCO

PLOT
FFFO

RAMTAS
FF87

RDTIM
FFDE

65511

65475

65484

65508

65523

65412

65457

65493

65436

65433

65472

65520

65415

65502

Close all channels and files.

Close a specified logical file.

Close input and output channels.

Get character from keyboard buffer.

Returns base address of I/O device.

Initialize input/output.

Command serial bus device to
LISTEN.

Load RAM from a device.

Read/set the bottom of memory.

Read/set the top of memory.

Open a logical file.

Read/set X,Y cursor position.

Initialize RAM, allocate tape buffer,
set screen $0400.

Read real time clock.

114

READST
FFB7

RESTOR
FF8A

SAVE
FFD8

SCNKEY
FF9F

SCREEN
FFED

SECOND
FF93

SETLFS
FFBA

SETMSG
FF90

SETNAM
FFBD

SETTIM
FFDB

SETTMO
FFA2

STOP
FFEl

TALK
FFB4

TKSA
FF96

65463

65418

65496

65439

65517

65427

65466

65424

65469

65499

65442

65505

65460

65430

Read I/0 status word.

Restore default I/O vectors.

Save RAM to device.

Scan keyboard.

Return X, Y organization of screen.

Send secondary address after
LISTEN.

Send logical-file, device, secondary
address.

Control Kernal messages.

Set file name.

Set real time ‘jiffy’ clock.

Set timeout on serial bus.

Scan stop key.

Command serial bus device to
TALK.

Send secondary address after TALK.

115

UDTIM
FFEA

UNLSN
FFAE

UNTLK
FFAB

VECTOR
FF8D

65514

65454

65451

65421

Increment real time clock.

Command serial bus device to
UNLISTEN.

Command serial bus device to
UNTALK.

Read/set vectored I/O.

116

mb N
-

BASIC ROM ROUTINE
STARTING ADDRESSES

This list of ROM addresses was published by Commodore in the
October/November 1982 issue of their magazine. According to some
sources, a few of the routines listed here have been changed. Try these
first to see if what you want to do will work. For detailed information, you
should contact customer service at Commodore either through regular
mail or electronic mail on Compuserve.

One location you should try is 64738. By using the command SYS
64738, the 64 will reset itself and display the same message as if you had
just turned on the computer. This is called a ‘cold start’. It’s just like
turning the computer off and then on again. Everything is set to its default
value and any program in the computer is destroyed. This SYS will save
wear and tear on the switch and the power supply.

HEX DEC. ROUTINE

A000 40960 ROM control

A00C 40972 Keyword action vectors
A052 41042 Function vectors
A080 41088 Operator vectors
AO9E 41118 Keywords

Al9E 41374 Error messages
A328 41768 Error message vectors
A365 41829 Misc. messages
A38A 41866 Scan stack for FOR/GOSUB
A3B8 41912 Move memory

A3FB 41979 Check stack depth
A408 41992 Check memory space
A435 42037 *out of memory*
A437 42039 Error routine

A469 42089 BREAK entry

Ad474 42100 *ready*

A480 42112 Ready for BASIC
A49C 42140 Handle new line
AS533 42291 Re-chain lines

AS560 42336 Receive input line
A579 42361 Crunch tokens

A613 42515 Find BASIC line
A642 42562 Perform [NEW]

117

A65SE
A68E
A69C
AT742
ATED
A81D
A82C
A82F
A831
A857
A871
A883
A8A0
A8D2
A8F8
A906
A928
A93B
A94B
A96B
A9AS
AA80
AA86
AAAO
ABI1E
AB3B
AB4D
AB7B
ABAS
ABBF
ABF9
ACO6
ACFC
ADIE
AD78
AD9E
AEAS8
AEF1
AEF7
AEFF
AFO08
AF14
AF28

42590
42638
42654
42818
42989
43037
43052
43055
43057
43095
43121
43139
43168
43218
43256
43270
43304
43323
43339
43371
43429
43648
43654
43680
43806
43835
43853
43899
43941
43967
44025
44041
44284
44318
44408
44446
44712
44785
44791
44799
44808
44820
44840

Perform [CLR]
Backup text pointer
Perform [LIST]
Perform [FOR]
Execute statement
Perform [RESTORE)]
Break

Perform [STOP]
Perform [END)]
Perform [CONT]
Perform [RUN]
Perform [GOSUB]|
Perform [GOTO]
Perform [RETURN]
Perform [DATA]
Scan for next statement
Perform [IF]

Perform [REM]
Perform [ON]

Get fixed point number
Perform [LET]
Perform [INPUT#]
Perform [CMD]
Perform [PRINT]
Print string form (y.a)
Print format character
Bad input routine
Perform [GET]
Perform [INPUT#]
Perform [INPUT]
Prompt & input
Perform [READ]
Input error messages
Perform [NEXT]
Type match check
Evaluate expression
Constant - Pi
Evaluate within brackets
*) %

comma..

Syntax error

Check range

Search for variable

118

AFA7 44967 Setup FN reference
AFE6 44790 Perform |OR]

AFE9 45033 Perform | AND]
BO16 45078 Compare

BO81 45185 Perform [DIM]

BO8B 45195 Locate variable

B113 45331 Check alphabetic
B11D 45341 Create variable

B194 45460 Array pointer subroutine
B1AS 45477 Value 32768

B1B2 45490 Float-fixed

BID1 45521 Set up array

B245 45637 *bad subscript*

B248 45640 *illegal quantity*
B34C 45900 Compute array size
B37D 45949 Perform |FRE]

B391 45969 Fix-float

B39E 45982 Perform [POS]

B3A6 45990 Check direct

B3B3 46003 Perform [DEF]

B3El 46049 Check FN syntax
B3F4 46068 Perform [FN]

B465 46181 Perform [STRS]
B475 46197 Calculate string vector
B487 46215 Set up string

B4F4 46324 Make room for strings
B526 46374 Garbage collection
BSBD 46525 Check salvageability
B606 46598 Collect string

B63D 46653 Concatenate

B67A 46714 Build string to memory
B6A3 46755 Discard unwanted string
B6DB 46811 Clean descriptor stack
B6EC 46828 Perform |[CHRS$]
B700 46949 Perform [LEFTS]
B72C 46902 Perform [RIGHTY]
B72C 46892 Perform [RIGHTS]
B737 46903 Perform [MIDS$]
B761 46945 Pull string parameters
B77C 46972 Perform [LEN]

B782 46978 Exit string-mode
B78B 46987 Perform |ASC]

B79B 47003 Input byte parameter

119

B7AD 47021 Perform [VAL]
B7EB 47083 Parameters: POKE/WAIT
B7F7 47095 Float-fixed

B80D 47117 Perform [PEEK]
B824 47140 Perform [POKE]
B82D 47149 Perform [WAIT)]
B849 47177 Add 0.5

B850 47184 Subtract-from

B853 47187 Perform [subtract]
B86A 47210 Perform [add]

B947 47431 Complement FAC#1
B97E 47486 * overflow *

B983 47491 Multiply by zero byte
BI9EA 47594 Perform [LOG]
BA2B 47659 Perform [multiply]
BAS9 47705 Multiply-a-bit

BASC 47756 Memory to FAC#2
BAB7 47799 Adjust FAC#1/#2
BAD4 47828 Underflow/overflow
BAE2 47842 Multiply by 10
BAF9 47865 + 10 in floating point
BAFE 47870 Divide by 10

BBI12 47890 Perform [divide]
BBA2 48034 Memory to FAC#1
BBC7 48071 FAC#1 to memory
BBFC 48124 FAC#2 to FAC#1
BCOC 48140 FAC#1 to FAC#2
BCI1B 48155 Round FAC#1
BC2B 48171 Get sign

BC39 48185 Perform [SGN]
BCS8 48216 Perform [ABS]
BCSB 48219 Compare FAC#1 to memory
BC9B 48283 Float-fixed

BCCC 48332 Perform [INT]

BCF3 48371 String to FAC

BD7E 48510 Get ASCII digit
BDC2 48578 Print *IN..*

BDCD 48589 Print line number
BDDD 48605 Float to ASCHI
BF16 49818 Decimal constants
BF3A 48954 TT constants

BF71 47089 Perform [SQR]
BF7B 49019 Perform [power]

120

BFB4
BFED
E043
EO059
E097
EOF9
ElI2A
E156
E165
E168
E1BE
E1C7
E1D4
E206
E20E
E219
E264
E26B
E2B4
E30E
E37B
E394
E3A2
E3BF
E447
EA452
E4SF
E500
E505
ESOA
ES18
E544
E566
E56C
ESAQ
E5B4
E632
E694
E691
E6B6
E6ED
E701
E716

49076
49133
57411
56433
57495
57593
57642
57686
57702
57704
57790
57799
57812
57862
57870
57881
57956
57963
58036
58126
58235
58260
58264
58303
58439
58451
58463
58624
58629
58634
58648
58692
58726
58732
58784
58800
58930
59012
59025
59062
59117
59127
59158

APPENDIX D

Perform [negative]
Perform [EXP]

Series evaluation 1
Series evaluation 2
Perform [RND]

77 breakpoints ?7?
Perform [SYS]
Perform [SAVE]
Perform [VERIFY]
Perform [LOAD]
Perform [OPEN]
Perform [CLOSE]
Parameters for LOAD/SAVE
Check default parameters
Check for comma
Parameters for OPEN/CLOSE
Perform [COS]
Perform [SIN]
Perform [TAN]
Perform [ATN]

Warm restart
Initialize

CHRGET for zero page
Initialize BASIC
Vectors for $300
Initialize vectors
Power-up message
Get I/0 address

Get screen size
Put/get row/column
Initialize I/O

Clear screen

Home cursor

Set screen pointers

Set 1/O defaults

Input from keyboard
Input from screen
Quote test

Setup screen print
Advance cursor
Retreat cursor

Back into previous line
Output to screen

121

E87C
E891
E8AI
E8B3
E8CB
ESDA
ESEA
E965
E9C8
E9EO
E9FO0
E9FF
EA13
EA24
EA31
EA87
EB79
EB81
EBC2
ECO3
EC44
EC4F
EC78
ECB9
ECE7
ECFO
EDO09
EDOC
ED40
EDB2
EDB9
EDBE
EDC7
EDCC
EDDD
EDEF
EDFE
EE13
EES85
EESE
EE97
EEAO
EEA9

59516
59537
59553
59571
59595
59610
59626
59749
59848
59872
59888
59903
59923
59940
59953
60039
60281
60289
60354
60419
60484
60495
60536
60601
60647
60656
60681
60684
60736
60850
60857
60862
60871
60876
60893
60911
60926
60947
61061
61070
61079
61088
61097

Go to next line
Perform [RETURN]
Check line decrement
Check line increment
Set color code

Color code table

Scroll screen

Open space on screen
Move a screen line
Sync. the color transfer
Set start-of-line

Clear screen line

Print to screen

Sync. color pointer
Interrupt - clock etc.
Read keyboard
Keyboard select vectors
Keyboard 1 - unshifted
Keyboard 2 - shifted
Keyboard 3 - COMMODORE
Graphics/text control
Set graphics/text mode
Keyboard 4

Video chip setup
Shift/run equivalent
Screen In address low
Send *talk*

Send *listen*

Send to serial bus
Serial timeout

Send listen SA

Clear ATN

Send talk SA

Wait for clock

Send serial deferred
Send *untalk*

Send *unlisten*
Receive from serial bus
Serial clock on

Serial clock off

Serial output *I*

Serial output *O*

Get serial in & clock

122

- APPENDIX D
EEB3 61107 Delay I ms.

EEBB 61115 RS-232 send

EFO06 61190 Send new RS-232 byte
EF2E 61230 No-DSR error

EF31 61233 No-CTS error
EF3B 61243 Disable timer
EF4A 61258 Compute bit/count
F8DO 63696 Check tape stop
F8E2 63714 Set read timing
F92C 63788 Read tape bits
FA60 64096 Store tape characters
F8BE 64398 Reset pointers

FB97 64407 New character setup
FBA6 64422 Send transition to tape
FBC8 64456 Write data to tape
FBCD 64461 IRQ entry point
FC57 64599 Write tape leader
FC93 64659 Restore normal IRQ
FCBS8 64696 Set IRQ vector
FCCA 64714 Kill tape motor
FCD1 64721 Check R/W pointer
FCDB 64731 Bump R/W pointer
FDS0 64848 Initialize sys. constraints
FCE2 64738 Power reset entry
FDO02 64770 Check 8K-ROM
FDIO 64784 8K-ROM mask
FCDB 64731 Bump R/W pointer
FCE2 64738 Power reset entry
FDO02 64770 Check 8K-ROM
FD15 64789 Kernal reset

FDIA 64794 Kermal move

FD30 64816 Vectors

FD9B 64923 IRQ vectors

FDA3 64931 Initialize I/O
FDDD 64989 Enable timer

FDF9 65017 Save filename data
FEQ0O 65024 Save file details
FEO7 65031 Get status

FE18 65048 Flag status

FEIC 65052 Set status

FE21 65067 Set timeout

FE25 65061 Read/set top of memory

123

FE27 65063 Read top of memory
FE2D 65069 Set top of memory
FE34 65076 Read/set bottom of memory
FE43 65091 NMI entry

FE66 65126 Warm start

FEB6 65206 Reset IRQ & exit
FEBC 65212 Interrupt exit

FEC2 65218 RS-232 timing table
FED6 65238 NMI RS-232 in
FFO7 65287 NMI RS-232 out
FF43 65347 Fake IRQ

FF48 65352 IRQ entry

FF81 65409 Jumbo jump table
FFFA 65530 Hardwire vectors
FES9 65113 RS-232 receive
EF7E 61310 Setup to receive
EFC5 61381 Receive parity error
EFCA 61386 Receive overflow
EFCD 61389 Receive break
EFDO 61392 Framing error

EFEl 61409 Submit to RS-232
FOOD 61453 Send to RS-232
FOOD 61453 No-DSR error

FO17 61463 Send to RS-232 buffer
F04D 61517 Input from RS-232
F086 61574 Get from RS-232
FOA4 61604 Check serial bus idle
FOBD 61629 Messages

F12B 61739 Print if direct

F13E 61758 Get..

F14E 61774 ..from RS-232
F157 61783 Input

F199 61849 Get..tape/serial/RS-232
FICA 61909 Output..

FIDD 61917 ..to tape

F20E 61966 Set input device
F250 62032 Set output device
F291 62097 Close file

F30F 62223 Find file

F31F 62239 Set file values

F32F 62255 Abort all files

F333 62259 Restore default [/O
F34A 62282 Do file open

124

MMM~ |

F3D5
F409
F49E
FSAF
F5Cl1
F5D2
F5DD
F68F
F69B
F6BC
F6DD
F6E4
F6ED
F6FB
F72D
FT76A
F7DO
F7D7
F7EA
F80D
F817
F82E
F838
F841
F864
F875

62421
62473
62622
62895
62913
62930
62941
63119
63131
63164
63197
63204
63213
63227
63277
63338
63440
63447
63466
63501
63511
63534
63544
63553
63588
63605

APPENDIX D

Send SA

Open RS-232

Load program
searching

Print filename
loading/verifying
Save progrram

Print *saving*

Bump clock

Log PIA key reading
Get time

Set time

Check stop key
Output error messages
Find any tape header
Write tape header
Get buffer address
Set buffer pointers
Find specific header
Bump tape pointer
press play..

Check tape status
press record
Initiate tape read
Initiate tape write
Common tape code

125

THE SERIAL BUS

The 64 communicates with a printer or disk drive through the serial
port, the six-pin socket on the back of the computer. This connects the
peripheral device to the serial “Bus”. A ““Bus” is a collection of
communication lines shared by such things as disk drives and printers.

Imagine youself as a switchboard operator in a train station. Your job
is to tell when and how the trains are to enter and exit the station. It is
obvious you must be able to monitor each train’s course and in turn, each
train engineer must notify you of his intentions. Among other things,
your most critical function is to make sure that trains are not on the same
track at the same time. The consequences may be disastrous.

Back to the Commodore 64. It has the role of being the switchboard
operator of the serial bus. Devices on the serial bus can either ‘talk’ or
‘listen’, that is, send or receive information but never at the same time or
else all the data would be scrambled. You know how hard it is to
understand two people speaking at the same time! The 64 not only talks
and listens but ‘controls’ who will talk and who will listen. Only the
computer has this privilege.

The bus has three input lines that bring in data and three output lines
that send. Of each three, one line wakes up the device, one line controls
the timing of data sent on the serial bus, while the third conveys the data.
Recall the train station analogy. In serial transmission, each car of the
train is a bit of information.

126

Here's two more points to keep in mind. First, eachdevice on the serial
bus must be recognized by its device address. That is the second number
used in the BASIC OPEN statement. For example,

OPEN 1,4
tells the printer, device number 4, to get ready to do some work. The
second thing the bus can do is set the device into its selective modes as
specified by the third number in the OPEN statement.
OPEN 1, 4,7

tells the printer to print in upper and lower case letters.

Using BASIC or machine language you can use the serial bus to
control other devices.

127

THE COMPLEX
INTERFACE ADAPTERS (CIA)

THIS CIA is not secret, but it is complex. Ask yourself this question:
Why is a separate chip required to handle communication tasks? There is
no obvious answer. Let’s start by saying that there are a number of tasks
that the computer must perform in the right sequence in order to ‘talk’ and
‘listen’ to another device such as the printer, drives and modem
(modulator-demodulator). Each device shares a number of lines with
other devices; when one device ‘talks’ all others ‘listen’. These shared
lines of communication are known as the serial bus.

Another dilemma facing communications is that these devices may
speak in different ‘dialects’ at different rates to one another. Whenever
communications are not dependent on each other’s timing, then a
method for coordinating their operations are required. This is known as
‘asynchronous communication’. It requires special software and/or
hardware support.

COMPLETELY CONFUSED?

Now, pretend you are the computer. You have data you transmit to one
of the peripherals, say the printer. But the printer is busily chattering
away, printing something else that you told it and hasn’t finished. The
printer tells you that it is not ready to print what you have, but to ‘wait’
until itis ready. So you, the computer, put your ‘task’ on what is known as
a ‘queue’ which tells the printer what it has to do next. Meanwhile, you
periodically ask the printer if it is ready to accept the information you
want it to process. When the printer responds positively, you can now

128

empty the queue and process your task. This is what is known as a
‘handshaking’ protocol and there are several kinds which are constantly
occuring in a system which interfaces one or more devices.

This computer has two dedicated CIA chips. They handle the required
memory locations in the 64K user-accessible memory space which the
computer or user needs to interrogate and modify. When a device or any
one of the internal dedicated chips need processing from the 6510 central
processor, a signal is sent to one of the CIA chips to request the processor
to give some of its time to the task. The CIA has the special privilege of
telling the 6510 what it can do with its time on certain occasions. So a big

part of the CIA’s task is to process the information from these other
devices.

129

WITH COMMODORE 64 GRAPHICS

Often the creative mind has limited channels to express itself. Suppose
you tried to paint a masterpiece or write a symphony with no prior
training in those skills and only conventional tools at your disposal. It
may take years of time and labor to achieve your aim. Lots of us have
found, in micro-computers, direction in our creativity that we could not
achieve elsewhere. With the Commodore 64 you may find for yourself a
whole new dimension beyond paintbrush and manuscript for creating
graphics and sound. The extentions of your creativity need only conform
to understanding the practices for constructing programs that sing and
paint.

Now the key to all of this, or at least the graphics end of things is the
6567. In other circles it is called the VIC-II chip. If you wondered what
ever happened to the VIC-I chip, it was put in the VIC-20. Remember
V.1.C. stands for Video Interface Controller. The VIC-I or 6560 used in
the VIC-20 is used for both graphics and sound without the powerful
ability to handle things like Sprites like the Commodore 64 can. There is
a lot of stuff to play with here, such as the ability to build your own
characters and even write new alphabets. That is only the beginning! You
can control the destinies of eight different movable objects called Sprites.
You control how they move, what they do when they hit other objects, or
what they do when they hit each other.

LETS GET TECHNICAL FOR A MOMENT...

First of all, the VIC-1l s, in fact, a two chip processor. The companion
chip is the 6566 chip. About the only difference between them is how

130

they access the system’s address busses. Other than that, normal
operations between the two are completely transparent to the system and
for all practical purposes they can be considered as a single functional
unit. The VIC-IL, like other dedicated graphics chips on the market, has
direct memory access (DMA) to the central processor (6510). This
means that when the VIC-II needs to get something done it has to ask the
6510 if it can use the system’s 8-bit bi-directional data busses to convey
information to the 64K of RAM. The 6510 has to give up machine cycles
to comply with the request, thereby slowing down processing.Inci-
dentally, the user can disable the DMA to speed up the system’s proces-
sing through screen blanking (see location 53265) and disable the
interrupts along the address busses so that graphics processing won’t
interfere with the rest of the system (see location 56334). For those who
insist on seeing a simple hardware overview:

PIN CONFIGURATION PIN CONFIGURATION

7 7
on, a on. 2] B
on, 8 os, E ZI 0By
o, on s, [¢]] os.
o %) on o8, %] oo
o o o8, [5 [] o,
. e wm [l R
b w0 [+]]
N o E I] Ax
6566 6567 3 N

»
H

30 Ayt

> >
2 T
3
z
>

>
2
I
>
»

[ER| ENEN B

<

Wmmﬁﬁmﬁmﬁﬁl—lﬁmﬂr\!—lﬁﬁﬂﬁ

>
S

»
»
-

25 Ayagl

T
»
E

24| Agay

>
»

»
=
v
I
z

LI G TE I E T EE T EE]

CIEE I ECCIEEE

<
»
<

21 PHCL

(Multiplexed addresses in parentheses)

131

In addition, the chip takes care of test display, high resolution
graphics, sprites, sprite priorities and sprite collision direction. All of the
Commodore 64's graphics are available in multi-color mode which give
your display objects more colors to chose from. A rule of thumb is what
you gainin colors you lose in resolution. That’s because the 8 bits in the
byte are read in ‘bit pairs’

@O OO |O L X
7 6] (5 4 |3 2[|10

A B C D

A gets color from location 53281 - the screen color.
B gets color from location 33282 - background #1 color.
C gets color from location 53283 - background #2 color.

D gets color depending on where it is located on the screen. This comes
from the color RAM area 55296 to 56295.

132

e

,/ s &!13
4 p v&'Qc¢
/@ @ m‘,:ﬁf R

) a : E—f A

N
QJ %%7 MODIFIED STANDARD
CHARACTER CHARACTER
SET SET
C
T
GRAPHICS
PROGRAMMING

VIDEO BANK SELECTON

With the computer, we think that all the memory is available at the
same time. 64K is 64K, right? To the VIC-II chip’s addressing lines,
only 16K chunks of memory can be considered at any one time. There
are four sections of 16 K banks to choose from when changing the starting
locations. The VIC-II chip, however does not have control over what
section of memory it sees. This is accomplished by the 6526 Complex
Interface Adapter #2 (CIA #2). Two bits used out of control PORT A
are used to select the start address location. Here is how to modify these
bit selections:

To change video bank:
POKE 53272, PEEK (53272) AND 15 OR A

The values of ‘A’ control the following values:

Value Starting | VIC-II
Of A | Bits | Bank | Location | Chip Range
0 00 3 49152 ($C000-$SFFFF)*
1 01 2 32768 ($8000-$BFFF)
2 10 1 16384 ($4000-$7FFF)*
3 11 0 0 ($0000-$3FFF)
(DEFAULT VALUE)

*NOTE: The Commodore 64 character set is not available to the VIC-II
chip in BANKS 1 and 3.

133

The only part of graphics memory that is not relocatable is screen
color memory. It always starts at location 55296 ($DBE7) and ends at
location 56295 ($DBE7). Actual color is determined by the nybbles in
each color byte since a nybble can describe sixteen colors. Whenever a
character is POKEd onto the video matrix with the proper screen color
code (see screen color code table at the end of this section), its color is
determined by the values in the color memory.

PROGRAMMABLE CHARACTERS

Perhaps one of the most versatile techniques in modern graphics
programming is the ability to create custom characters for any one
variety of purposes. With this technique you can create an entirely new
character set, different from the one found in the character generator
ROM. Think of the possibilities! An entirely new alphabet, or font, of
special characters used for building certain kind of displays. Fonts are
particularly useful for writing arcade style games or creating several
characters to animate. Fonts are a kind of portfolio for the re-defined
character information employed in these more advanced programming
techniques.

A PROTO EXAMPLE

This example changes 4 characters: the 2, <, 7 and = into Prototype.
The steps followed here will work with any characters you want to
modify from the standard character set.

The first step is to turn off the keyboard and all input and output. Then
move the characters from ROM (Read Only Memory) to RAM
(Randam Access Memory - memory you can modify) so you can make
the changes. Lines 1040 to 1260 do just that.

1W4¢ REM > TURN OFF 1,0, BRING IN ROM
1655 FOKE 56334, FEEK (56334) AND 254

s FORE 1L.FEERE (L) AND 251

17

1938 REM > NO. OF BITS FROM CHAR. ROM
19w FOGR I=# TO &3

1loe o

1116 REM »> RANGE OF BYTES/CHARACTER

1128 FOR J=8 70 7

134

APPENDIX H
1170 :

1143 REM - CORPY BYTE OVER IMTI RAM
1159 FOREE 12Z283+1«83+J,FEER (S3Z245+I%3+0)
11l o

1178 REM »: NEXT BYTE OR CHARACTER

1188 NEXT J,1

119d =

1208 REM >3 TURN QN I/0 AND ROM QUT
1218 FORE 1, PEER(1)OR4

@ FPORE 58334, FEEK(S35334) OR 1

U]H

1"4' REM o» RESET CHARACTER MEMORY

1258 REM &> FOIMTER 7O 123234 -
1268 FORE SZZ27Z, (PEEF (SITZEVZ)ANDZ4E) +1 2

1278 %

Next, modify the character. Each one is stored in 8 bytes. That is the
job of these lines.

TED ILOOFRS SToORE
E5 FER CHGRACTER
HiE TG &3

STORE NEW DATA INTO CHAR.
i 12288+ {8=CHARY +BYTE, HUM

[T T T e el ol o
AN
e fd fad ed e ‘AR

13288 @

13%¢ REM >> NEXT BYTE OR MNEXT CHAR.
1485 NEXT BYTE.CHAR

141@ 3

This puts the redefined character on the screen. By pressing any key
the characters will change back to the standard character set.

142¢ REM »» PUT RE-DEFINED CHAR ON

1479 PRINTCHR$ (147) TAR(ZSS) CHR® (&63) 3

144% REM > USER FRESSES KEY TO SEE .
1458 PRINTCHR$ (51) TAB(SS) CHRE (6Z)CHR$ (6)
14568 REM »» NORMAL CHARACTERS <

135

147¢
1489
14949
1 Saig
1514@
1529

This

GETA$:IF A$="" THEN GOTO 147

>» RESET CHAR MEM POINTER SN
REM >3 TO NORMAL
FPOKE SZ3272,2

last section is the data necessary to change the standard

characters into Proto.

153

1344
1558
1564
157@

1584

REM" NEW CHAR. DATA <4
DATA 7,7,30,34,127,127,31, 51

DATA 224,224,12¢, 128, 225,225, 248, 248
DATA 24,24,24,24,24,24,102, 1H2

DATA 24,24,24,24,24,24, 157, 157

END

Character Graphics is a powerful tool for programmers who want to
customize programs. It gives added dimension to games, too.

136

APPENDIX H

ASCIl and CHRS CODES

PRINT CHRS | PRINT CHRS | PRINT CHRS | PRINT CHRS
0 | RrED 28 8 56 T 84
1| SERSOR - o9 9 57 U 85
2 | GREEN 30 58 Y 86
3 BLUE 31 ; 59 w 87
4 | SPACE 32 (- 60 X 88
WHITE 5 , 33 = 61 Y 89
6 34 > 62 y4 90
7 # 35 ? 63 (91
PN (@8 $ 36 @ 64 £ 92
BNt @9 % a7 A 65] 93
10 & 38 B 66 1 94
11 39 C 67 — 95
12 (40 D 8| = 9
RETURN 13) 41 E 69 97
LOWER CASE 14 * 42 F 7o | ([98
15 . a3 G 7| H 99
16 , 44 H 72 | H 100
CURSOR {7 - 45 | 73 | O 101
REVERSE ON 18 46 J 74 Q 102
HOMF 19 / 47 K 7s | [] 103
Msesl 20 o as| t 7| [104
21 1 49 M 77| K] 105
22 2 50 N 78 | [Y 106
23 3 51 o 79 | P] 107
24 4 52 P so | [J 108
25 5 53 Q 81 | N 109
26 6 54 R g2 | 110
27 7 55 S 83 | [111

137

PRINT CHRS PRINT CHRS PRINT CHRS PRINT CHRS
-] 112 132 | GreEY2 152 m 172
@ 113 f1 133 | LT GREEN153 T 473
E 114 13 134 LT. BLUE 154 E 174
(v 115 5 135 | GREY3 155 — 175
L 11 7 136 | Pukee 156 | O 176
2 17 | = 1 | et st B oam
X 118 f4 138 | vELLow 158 = 178
O 119 6 139 | cvyan 159 H 179
% 120 S:I?FT 140 I;EXEESE 160 D 180
| 121 RETURN 141 g 15 L &
$ 2 et | o ove2| (B e
EE 123 143 D 163 B 183
B 124 | BLACK 144 Ll 164 - 184
M 125 | G5°% 1as [0 es| g es
M 126 | Grr o 146 B ee] 186
N 2z | G 97 (1 wer| g te7
128 | DNSERT 148 w168 LR
ORANGE 129 | BROWN 149 P e g1 189
130 LT.RED 150 1 170 | R
131 GREY1 151 H n 19
CODES 192-223 SAME AS 96-127
CODES 224-254 SAME AS 160-190
CODE 255 SAME AS 126

138

SCREEN DISPLAY CODES

o} N o
e 528335883 885B83RFANRILERRRB5 83
£
> <«mOOWUL O - "X 132z 0a0cCcou
7
Gl o o v r oD EMEIOUOOUEMHNNUNOD®]]

- - 0

8RB 8838 8 5889792328593 506 5333
Q
&
(o]
=
w
© 48]
—_ Q
= o~ e | < - # & 2 g - = —~ « + | - O -~ NN O ¢ 0 O ~
R Py
n w
Blo @ o v 0w o ® o 2 - ¥ Q23X 0 0L P2 38483 8%4a8K
o]
a.
H @ O OB O - L - — X — F £ O O o &~ W + D3 > T X > N
7
m@ABCDEFGH — -2 ¥ 43 Z2 00 0 @nkFr D> X >N —
w

139

SET1 SET2 POKE

SET1 SET2 POKE

SET1 SET2 POKE

b
4 u
Y
O w
X
(0 v
¢ =z
2
8
1]
DI-
N N
SPACE
L
-

84
85
86
87
88
89
80
91

92
93
94
95
96
97
98

BRIDP A O NEIU&ON]

N

99

100
101
102
103
104
105
106
107
108
108
110
111
112
113

114
115
116
117
118
119
120
121
Vo122
123
124
125
126
127

alluli=iN] 0] BN N |S{mimi==]=]

140

HOW TO CREATE SPRITES

Sprites are special movable objects you can design yourself. After the
design work - and it is a bit of work - the computer will help you easily
move them, check for collisions with other sprites, with text or other
graphics, and even keep track of priorities, in other words, which sprites
will pass in front of the others.

DESIGN THE SPRITE

A sprite is designed using 63 bytes of memory - 21 rows with 3 bytes
in each row. With eight positions in each byte, you have 24 (3 times
8) spaces in each row.

Mark off a 24 x 21 section of graph paper. This is the grid needed to
represent your sprite.

I
cont. ;% e

—

Now draw lines dividing the grid into 3 equal columns of 8 squares
each.

- 141

Row 1

Row 3

Row 4

4 |
ocont. / p—— S

(D S S

These markings are used later to calculate the byte values needed for

the

Row |

Row 2

Row 3

Row 4

data statements. The first row and first column looks like this:

128 64 32 16 8 4 2 1 128 64 32 16 8 4 2 1128 64 32 16 8 4 2 1

JH S —

_________/% — —

Of course, all the 62 other pieces of the graph look like this, too. To
turn on the parts of the sprites marked, you would write a data statement
for each of the 63 bytes needed. To have a first row that looked like this

Row |

Row 2

Row 3

cont.

120 64 32 16 8 4 2 1 128 64 32 16 8 4 2 1 128 64 32 16 8 4 2 [}

i ,_L —
|| —

would need a DATA statement like this:

DATA 63,255,192

Finish designing your sprite then calculate the value of the 63 bytes
needed for each sprite.

STORING THE SPRITE IN MEMORY

After building the sprite and calculating the DAT A statements, you
must POKE the data into memory. You can put sprites safely in the
locations shown on the following chart. Other places can be used,
too, but require that you reserve space in the computer. See locations
55 and 56 for a routine to do this.

142

LOCATION | DATA

(D) POINTER
832 13
896 14
960 15
12288 192
12352 193
12416 194
12480 195
12544 196
12608 197
12672 198

If you use a cassette to store programs, then remember location 13, 14
and 15 are used by the cassette for temporary data storage when loading
or saving programs. The two operations will cause the sprite data stored
there to be changed. The sprites should be redefined by reading the spite
data again and rePOKEing it into memory.

Use a FOR/NEXT loop to POKE in the data; for example;

16 REM #% L = THE START OF SRITE DATA
11 L=12288

1295 FOR I = & TO &2

13¢5 REM %% SD = SFRITE DATA ELEMENT
143 READ SD

15¢ FOKE L+1,SD

165 NEXT

175 REM *% SAMFLE DATA

18 DATA &6%,255,192,35,17#,85,12d¢, ETC
199

2k 1

SETTING THE SPRITE POINTERS

Each sprite has a location that tells the computer where to go to get
the data necessary to put the sprite on the screen. The sprite pointers
are locations 2040 to 2047 and they point for sprites 0 to 7,
respectively. If you POKE for information for sprite 0 in location
960 then:

143

POKE 2040,15

See the chart above to find the right data pointer. If you don’t want to
use the chart, just divide the location address by 64 to get the pointer
number.

960/64 = 15

If you want 4 sprites to look exactly the same, just POKE the data
once and set the pointers for the 4 sprites to the same area. This makes
sprites 0, 1, 2 and 3 look exactly alike.

1 FOR 1 = 2¢4@ TO 2¢143
114 FOKE 1,15

12¢8 NEXT I

CHOOSING THE COLOR

Once you have the sprite data in memory then decide on the color the
sprite will be. Each sprite has a default color, that is, a color already set
by the computer. If you want, choose a color from this chart and POKE it
into the sprite color locations (55287-55294).

Sprite | Default Colors
0 White
1 Red
2 Cyan
3 Purple
4 Green
5 Blue
6 Yellow
7 Grey 2

144

MULTICOLOR SPRITES
A mulitcolored sprite is a more advanced technique. In this mode, the

computer reads your sprite data in a slightly different way, in bit pairs.
Two bits are read as one piece of data.

X
35]10

A B C D

Sl
a0
wuO
&0

O

Bit pair ‘A’ tells the computer to get the color for the area from the
sprite color register (from 55287-55294, depending on the sprite you're
working on).

B is screen color, so it will look like a blank space.
Cis the color value POKEd into location 53285, multicolor register #0.
D is the color in multicolor register #1, 53286.

The program below switches a sprite from standard mode to multi-
color mode.

VARIATIONS ON A THEME OF PROTO

1iéhE REM 3 INITIALIZTION SN
1878 REM =3 CLEHR SCREENM/RBLUE CURSOR
16189 FPRINT CHR$ (147 (FOKE 214, 5
1@9¢ G0 TO 13299

1o =
1116 REM »» SUBROUTINES GO ON TOF
112w REM Fx REBET SWITCH SURROUTIME

11Z2@ IF N=1 THEN N=@g IRETURRN

114 @ pN=1 [RETURN

115¢ 2

1148 REM 5k EXFAND SUBROUT INE
1178 REM = CHECK FOR "F17 FEY FIRST
118 IF FEEK{197)< =4 THEMN RETURN
119# FOREE 93285, 11 (REM BLANE SCREEM
12¢@ POFE VIC+Z3,N (FOKE VIC+HZF, N

145

FOEE 5*2&q.27 REM SCREEM O

3 GOSUR 113 PREM SWITCH SURH.
W RETURRM

REM = SINGLE/MULTI-COLOR SUEBR.
REM »» CHECE FOR "FZ7 KEY FIREST
IF PEEV(;WT) 2T THER RETURRN

3 oFORE 1 BI_ARE SCRERERM
PR

S N S 27

5 GOSUR 1134 o
b RETURR

— e

1

)

I
| BCREEN
t

)

SWITOH

[

iy
imom I

LSO W)
s
i

a

M MEADER THFD. SURFROUT TRE
A0 HDE, M CPRINT HDS" T HEcE
T LR

“EM e PPINT ot T
< 1k (29

L O S) T T O o
SUTOEFRIONTORHRS L7y CHES (229 8
1
130

LAt Lk 170 GO Ol
“”Il'fCJ SERIMTOMRS (L7 CHRES (29 4
I

N 1~.“Ih FRIMTCHRS (29 § s REXT 1
POFRINT"HIT ARMY EEY 7O CORMTIMUE
GET A T A= THER 1 e

FROMT CHEFS C1a7) 2=

: . LH UIC.(J1IP
. & RO R OF D Qs
Lo P = SdwTRLREM LG, GF SRFRITRS

ST R R ER
11

146

APPENDIX |

EGEC L ARD BURDER SOl
o0k =aegl, 1

GRFRITE DaTas FOINTER
T

TURM O SFRITE #
MICeEl, ol

FOSTT TORN

SHRTTE :
MICHE, 1

FEG.#HL
et COLLOR

OFTION 7O EXFARD
NERR
Lo RER

o I R P P P O R W B G 4

T]ﬁ

WITH &

MASHE

o

PR
moi

i

=

-.,,
<
T
T
-
i

DETA WG LE1a1dl) MASsE
T =Y

L OEM D), FoAaND s

FEAD DAETH WA TL@1s1616) MABk
ST &
A MEED P alD LT

EACE (O

SET OSMITCOHAWHTTE CURSDIR
Pl=1 (FOEE &44, @

147

T FLASH
AT FRIMT CHRE (L4
G OFORT=1TOLS o p
1 MEXT 1
PRLTRT R

S MEDCT W
MEXT W

SXEAND GFRITE

STNGLE MUY L€

FoOTNFQ. DATA oy

REM e
DATA HIT
BODATA UR-EXFAF
DATA HIT “FE
DETH TE:

FO EXFAMD OF
SFR1TE
TOSEE MULTL COLGRK

DETA

1§

The other parts of sprite programming such as priorities and collision
detection are rather straight forward. Just refer to the necessary location
for more details on their use. With priorities, just remember that they are
set automatically with sprite O having the highest priority. Sprite O will
pass in front of sprites 1 to 7. Sprite 1 will pass behind #0 and in front of 2
to 7. Sprite #2 will pass behind #0 and #1 and in front of 3 to 7. You can
see the pattern. All sprites have priority over background data. If you
want to change any particular sprite’s priority with respect to the
background and make the sprites pass behind the text, the proper bit in
the sprite priority register must be set (see loc. 53275).

Collision detection is no harder to use. The sprite collision registers
are “‘read only” registers whose bits change to 1 whenever a collision has
occurred (see locs. 53278 and 53279). It is easy to test for the collision,
but that test must be done strategically in your code such as in a main
motion loop. Collisions can be determined by one line of code.

148

APPENDIX |
FOR SPRITE-TO-SPRITE COLLISIONS USE:
IF PEEK(V+30) AND X THEN [ACTION]
FOR SPRITE-TO-BACKGROUND COLLISIONS USE:
IF PEEK(V+31) AND X THEN [ACTION]

where ‘X’ is the decimal value of the bit in the collision register.

SPRITE # BIT VALUE
0 1

1 1 2

3 2 4

3 3 8

4 4 16

5 5 32

6 6 64

7 7 128

In a very brief outline form, here’s how to create a sprite. Part I (A) is
true for all programs you write, the remainder deals with only the sprites.

Those marked with an * are optional depending on your level of ability

and how you want the sprites to look. You can create and move sprites
without them.

149

SPRITE ALGORITHM OUTLINE

1. PROGRAM INITIALIZATION
A) Declare Program Parameters
1. Dimension arrays

a. integer
b. string
c. real

2. Set constants and variables (same items as under arrays)
B) Declare Sprite parameters
1. Set constants and variables pertinant to sprites
a. VIC=53248 => start address of the VIC-II
*2. Tum off screen (POKE VIC+17,11)
3. Store sprite data
a. set data pointers (locs. 2040 - 2047)
b. use FOR/NEXT loop to read in data
4. Enable Sprites (VIC+21)
5. Set sprite color registers
a. single color sprites (POKE locs.
VIC+39 + VIC+46)
*b. multi-color sprites (POKE locs.
VIC+37 + VIC+38)
*6. Enable sprite color mode
a. Turn bit four on in multi-color register (VIC+22)
*7. Select expanded sprites (VIC+23 and VIC+29)
*8. Turn screen back on (POKE VIC+17,27)
2. MAIN PROGRAM LOOP
A) Set sprite motion FOR/NEXT loop
1. PEEK at sprite positions (VIC + VIC+16)
a. callthem X andY
2. Determine how far you want to move
a. call the amount of motion DX and DY
3. Determining direction of motion
*4. Monitor sprite collision registers (DX=—DX,
DY=-DY)
a. sprite-sprite collision
» b. sprite-data collision
5. Check X positions of sprites whether to POKE MSB in
VIC+16
a. Check position border constraints (see sprite pos. locs.)
6. Add offsets to original position: X=X+DX,
Y=Y+DY
7. Exit position update loop

150

B) Evaluate multiple sprite displays
1. POKE VIC+16 with the value determined by the sprites
whose X position is greater than 256.
*2. Check raster register for special interrupt conditions
a. mix-moded displays (character w/ bit-map mode)
b. moving more than eight sprites
c. light-pen
3. POKE updated position (X,Y) back into position registers
4. GobacktoIl-A)ify

Determine
Offsets and
Direction of
Motion

Sprite .
Collision No Check Sprites
Routine X-Pos. > 256

No

Check Sprites
X-Pos. > 255

.

Check Raster
Register for
Interrupt
Conditions

End or another
part of program

151

This last program contains a machine language routine to move sprites
quickly across the screen. The speed range is from 1 to 5. Press
RUN/STOP to end the program.

132501 REM %3 3 3 36 3 36 36 3 3 96 3 3 9 % 36 3 3 3 % 3 3% 965 3 ¥ % 36 %%
1910 REM * THEME ON A VARIATION OF *
1026 REM * FROTO *
19Z@ REM * MOVING PROTO WITH JOYSTICK *
1G4 REM * ALGORYTHM RBY SHELDON LEEMON*
1603500 REM 9% 355 5 3% 0 36 5 3 3 3 5 9 3 % 36 56 36 36 % 33 33 % %% %
1368 :

167% PRINTCHR$ (147) ; CHR$ (5) : SP=53248
1986 INPUT"SFEED (1-5) ":iS:G0TO 1199
109 @

1190 REM 30505 SELECT SFEED $aGd
1119 ON S GOTO 112, 1130, 1149, 1158, 1 160
1128 SYS(494%39) :GOTO 1129

1170 SYS(49456) :GOTO 1138

1149 5YS(49407) :GOTO 1149

115@ SYS (4948%) :60TO 1150

1168 SYS(49417) :GOTO 1168

1179 :

118% REM »::>> STORE SPRITE DATA <<<<<
1198 FORI=871T0895:FOKE I,#:NEXT

1200 FORI=832T0894:READ A:FOKE I,A:NEXT
1218 :

12208 REM >3>:% SET SPRITE FARAMETERS <«
1238 POKE SP+21,1 :FOKE 204,13

124% POKE SF+39,& :FOKE SF+29,1

25¢ POKE SP, 168 :FPOKE SF+1, 100

1260 POKE SF+32,8 :POKE SFP+33,0

127% PRINT CHR$(147)

1289 :

12968 REM »»33» PLACE STARS IN <<{<<
1369 FORI=1TOS®

1316 1 POKE 1024+INT (RND (&) *1080) , 46
1326 NEXT

133%

1346 REM 3333 PROTO"S DATA G
1356 DATA @,60,8,1,255,128,7,255, 224,31
1368 DATA 231,252, 63,231,254, 15,255,248
1376 DATA 7,255,240 ,4,255,128,0,255, 128
138 DATA #,193,128,%,193,128,d,193, 128

152

17396
1 33
1410
1426
14754
1444
1458
14469
147
1489
1494
1509
151¢
C""\k’
1530
1549
1558
1564
157a
1580
1594
1 L
1614
1628
16Z
15654
16548
1664
1674
1568¢
1696
17980
171ﬂ

17 --u—-.

DATA ©,193,128,%,193,128,8, 193, 128
DATA ®_19?,1L8 @,193,128,8,193, 128
DATA @, 197,128,3,247,224,3,54,96

REM STORE
REM MACHINE LLANGUAGE
REM ROUT INE

FORI= ITDIEI
: READ AIFOKE 49151+1,A
NEXT

FORI=1T019
: READ AIPOKE 49399+1,A
NEXT

RETURN TO UPDATE <<<<
FOSITION LELs

REM 5333 MACHINE LANG. DATA <<<<<
DATA 173,1,220,74,176,3,206,1, 208
DATA 74,176,3,238,1,208,74,176,38
DATA 173,0,208, 208,155,173, 16, 208
DATA 41,1,246,12,173,16,208,41,254
DATA 141,16,208, 206,10, 208,96, 173
DATA 16.2@8 9,1,162,63,141,16,208
DATA 142,8,208,96,74,176,32,238
DATA ’,2@8, 24, 28,173, 16,208,481, 1
DATA 248,28, 169,64, 205, 3, 208, 208
DATA 13,173,16,268,41,254,162,8
DATA 141,16,208,142,8, 208,96, 173
DATA 16,208,9,1,141,16,208,96

DATA 32,%,192,32,0,192,32,9, 192,32
DATA ©,192,96,32,8,192,76,5,193

153

COMPOSING MUSIC

Rattle off a quick tune in your head. Now think for a moment all the
variations of pitch, volumn and tonal qualities that go into just a few bars
of it. If you pick up the manuscript of a fully scored symphony, you may
find overwhelming amounts of description for all the sounds that each
instrument is responsible for. Little wonder how much training a modern
composer or conducter must have to to attain mastery over musical
expression.

With the advent of electronic synthesizers in the mid-1970’s, key-
board musicians were introduced to new vista of musical performance
with a wide range of dynamics, phrasing and articulation. The resulting
explosion of creativity has lead to altogether new musical forms and
ideas. And now in the 80’s this has taken another step with the
introduction of musical synthesis in home computers.

SOUND PROGRAMMING TECHNIQUES

The nice thing about programming sound on the Commodore 64 is that
all its given features can be programmed in BASIC up to three voices.
The 3 voices are just like having 3 musicians ready to make any sound
you want. The only difficulty involved in sound programming consists of
closely watching which values have been POKEd into the sound
registers.

154

- APPENDIX J°

Needless to say, BE PATIENT. You will find after sound program-
ming experimentation that even your mistakes may produce useful
sound.

Let’s get to some basic techniques. For practical purposes, there are
only two ways to provide the information you need to make sounds. You
can generate the sounds by POKEing in numbers one at a time, or put
this information in data statements to be read as the program runs.

Before a sound can be made, be sure to do these things first.

1) Clear the SID chip to get rid of any unwanted values in the registers.
A FOR/NEXT loop will do the job.

is the highest volume.

3) Set the frequency you want. Check the note table at the end for the
values you need.

These are the values for C in the 5th octave, middle C.

155

4) Set the Attack, Decay, Sustain and Release values.

GET THE

TO+5, 1é

T VAT DEDEY FESTE.

M

i -
QRS

FI'

THE SUSTETR/FRELEASE RATE
ydn, D45

With those steps taken care of, you can now work with filtering,

modulation and syncronization or just enter all the above lines and turn a
specific waveform on.

A REM -~ CHOOSE THE SAWTOOTH Wé
280 REM ~ AND TURN TT ON.
290 FORESID+4, 33

and off

206 REM -~ BTART THE RELEGSE CYCLE
b FORESTD+4, 50

et

OUTLINE FOR SINGLE VOICE

This short outline contains all the steps necessary to produce a sound
with a single voice. Part I (A) is true for all programs. You write,

156

APPENDIX]

I. PROGRAM INITIALIZATION
A) Declare Program Parameters
1. Dimension arrays
a. integer
b. string
c. real
2. Set constants and variables for the other parts of your
program.

B) Declare Sound Parameters
1. Assign constants and variables pertinent to sound
a. SID=54272, the start address of SID chip. See location
54272 for an example of using this method.
2. Clear the sound chip
a. use FOR/NEXT to POKE zero into the SID chip
registers (SID to SID+24)

II. MAIN PROGRAM LOOP TO PLAY NOTES
A) FOR/NEXT loop for voice production

1. Define functions for any one or all of the voice parameters
a. Define frequency (SID + voice frequency used)
b. Define waveform (SID + voice control register)
c. Define A/D/S/R (SID + A/D/S/R registers)
d. Define filter (SID + filter control register)
e. Define filter (SID + filter control register bits 0-3)

2. Define sound duration

3. GATE ON voice control bit for specified duration

4, GATE OFF voice control bit for specified duration (rest)

B) FOR/NEXT loop for voice production stored in DATA state-
ments
1. Store above voice parameters in DATA statements
a. Store one or more parameters individually or,
b. consolidate more than 1 parameter per given DATA
element.
2. READ voice information into voice parameter variables
3. POKE voice information into respective voice parameter
register

1. DATA STATEMENTS OR NEXT PART OF PROGRAM

MMM-K l 57

VOICE Initialize
Program
T
Initialize
Voice(s)
Parameters
Set Pulse
Width &
Filters
Set Ring
Modulation
& Harmonic
Modulation
Reset
Filters
Modulation(s)
End or Next Yes
Part of Program

158

APPENDIX J

The programs below are samples of single voice programming. Play
with these as much as possible, POKFEing different values into the sound
registers. Even your mistakes will lead you down new paths.

O BB 503 3 36 3 556 2% 5 3 5 3 3 96N X KN R %
110 REM * SOLND EXAMPLE #1 SUALES *
L0 REPT 35358 % %35 % %% 33 9 %0 X 56 W% X%

STD=54272:REM ~-3> START OF S0OLND

REM =x=Hx CJLEAR SDUND CHIF
FOR S=SIDTOSID+24:FOFE S,0:NEX

MR

REM Hx>:x SET VDICE VOLUME <0
FOKE SID+24,79:REM - MAXTMLM

REM H5::5Hx SET A/D/S/R CYCLE
FOKE SID + 5,9: REM SIU + 6,

REM Hx%:% READ FRED. DATA SRS
RE&D HF, LF sREM HI FREG. ,LOW FREG.

REM o= DHECK FOR OEND el
IF HF < O THEWN FOEE STID+4,0: END

REM ==::x> FOFE IN FREQ, I
FOREE SID, LF:s FOFE SID+H1, HF

BATE VOICE | W/ «<oas
sunn BAWTOOTH WAVEFORM <<
FORE 1D + 4, 7%

DELAY LOOF FOR
NOTE DURATION

159

400 FOR DUR = 1 TO 2502 NEXT DUR

410

470 REM Hxxx> TURN OF VYOICE 1 R
470 FPOKE SID + 4, Z2

44

450 REM x50 GET NEXT NOTE R
4460 BOTO 230

470 =

480 REM »onwnb MUSIC DATA AR
490 DATA Z24,75,383,1326,43,52,45,198,5

500 DATA 97.,57,172,64,1688,68,149

S10 DATA 76,252,86,105,91,140,102,194
SE0 DATA 115,88,129,120,137 , 4% ,-1,-1

160

APPENDlX j

TP o

This example uses a high-pass filter and volume manipulation to
produce the sound of an old water pump.

L0 REPT %% % % % 0% 2 % 3% K % 3 % 5 353 3% %3 X3 % %333 % X =
110 REM % SOUND EXAMFLE #2 FLF *
120 FREPD %55 %35 % 5 565 5 9 3 3 3 3% 5 % 3 X 9 % 3 X% 3% % % %%
150

140 STD=5427 20 REM —— = START OF S00LIND
150 &

160 REM =xx% CLEAR SOUND CHIF a0
170 FOR S=8IDTOSID+24:FOEE S,0:HEXT S
180 3

L0 SET VOICE VIOLUME
195 KRG HIGH FASS FTILTER AR
SO0 FORE STDH24 ,79:REM ~—+ MAX. VOL.
210

SET A/D/S/R CYCLE < 0
5,148: FOKE S5ID + &, 26

FOKE TN FREC.
24C: FDEE SID+1,

GATE VOICE 1 W/
NOISE WAEVEFDRM
4, 1731

y ; DECREASE VOLIME <
290 FOR VOL=1% T O STEF -1
400 FOEE SID + 24, V0L
410 =
420 REM
4Z0 REM

SUSTAIN YOI WITH
A DELAY LODF

161

FOR DUR = © T0O 25 sNEXT DR

REM wxwt NEXT VOLUME SET Do
NEXT VOl

REM =:>:2 TLRM OFF VOICE 1 AR
FOKE SID + 4, O

REM

sus RETURN TO REFEAQT <0
GO TO 360

162

APPENDIX |

i

A low pass filter plus the interaction of voices 2 and 3 for the falling
bomb effect - complete with explosion.

NI I M TS F T E T PSR EEEE T E T
110 REM * SOUND EXAMELE 3 O *
JEUe REPT 50956 350 %0 230 5 3% 5% 35 % 30303 % 3% %o % %

e RERD e s BTART O OF SOUIND

V&G REM = DL EAR QDURND CHIRF o0

170 FOR S=SIDTOSID+Y4:FPORE S,0:NEXT 8

: MOTICE 5 AD//S/R a0
SID+H1%,20:FOKE SID+20, 20

- FTLTER CUTOFF FREQ.
SID+21 1« POKE SID+EE, 110

e QET MOTOE 5 FILTER
A

W/ LOW-FAESS FILTER <49
' % CUTOFF o
SUD+T4, 159

canes BATE VOTOE 3 WITH
saiss TRIANBLE WAVEFORM
IS0 POKE SID + 18, 17

IT70 REM Hhkn BLIDE DOWR VOTCOE &

163

Q0 REM FREGUE NG v
TH0 FOR HF=220TOR06 TEF- |

460 FOR | F=25RT00 STEF-100

410 FOKE SI0+14,0 F: FORE S1D+ 1% HF
4720 MEXT LF

470 TF LF20 THEM NEXT HF

50 REM sxwrs TURM OFF VDOICE 3 000
460 FOEE SID+18,16:REM —— > RELEASE

480 REM =xxxs PAUSE A MOMENT <
490 FUR DUR = 1 T0O 10CG:NEXT DUR

210 REM
520 REM

SET UF YOICE 2 FOR
=r HARD SYNC. WITH &
SID+8,5:REM ————
SID+H1E2,15: REM ——m—
SID+15, 255 REM =" S/R CYDILE

srrrx BATE VOITCES & & 35 <0
STD+11, Z1: FOREE SID+1B, 137

SOUND AN EXFLOSTOM
W/ VOICE 7 DECRFASE [«
ety S OF vl UHE gae
6TO FOR L=10T00 STEF —. O

640 FOKE SI0 + 24, |

S0 NEXT L

PN

670 REM sures TURN OFF QOTCE 2 -
&BO FOKE SID+H11 O3 REF - - RELEmMSE
690 END

164

APPENDIX |

An example of ring modulation
using voices 1 and 3 produces
this sound.

TOO REPT %% 5% % 3% % 3% 3% % 5 59 2 96 3 % 990 5% 9 56 9% 6% 8% %
1O REM = SOUND EXAMELE 4 BUSY SIGNAL X
120 REP %% %% 5% 3 % 3 56 3% 5 R 3% 5% 969 3 3 3 5 3% 2 563 % % %%

1340 5TD=04070 s REM ——» START OF SOUND

; i CLEAR SOUND THIF o000
FOR S=01DT0OSTH+E24: FORE S, 080NEXT 5

REM c@ser SET FRED. YOTCE
FOKE SID+1, 79

FeEH

1 AMDSAR o
FOFE STDHes, 200

REF P SET FREGL. VOICE 3

FOREE STD+H15%, 24

REM e S5ET VOLUME A
FOEE SID+24,15%:REF ——3 Max ITMUM
REM =X SET DELAY LOOF <4l
FOR DUR=1TD1GG MEXT DUR

REM »xxnb GATE VYOIDE 1 W/
FOTRIANGLE WAVEFDRM

¥ Fxo 8 RING MODULATION
E70 POKE SID+4, 2

Q0 REM x ARNOTHER DEL.AY LOOF
400 FOR DJR=1TO1O00Q:NEXT DUR
41 s

470 REM == : TURN OFF VOICE | <]
470 POEE SID + 4, OsREM ——7% RELEASE
440 -

450 REM »@xxx RETURN T REPEAT <04
460 D TO 290

165

Two voices, one siren with hard syncronization.

L OO
110
120
1730
140
150
160
170
180
190
200
210
220
2350
240
250
260
270
280
290
200
210

I R S AR L e LT e e TR T
REM * SOUND EXAMFLE 5 SIRER #*
FUE DT 36 36 3 306 36 96 36 36 36 36 36 38 36 X 356 06 39 3 3 3 % 6 e 6 3 6

SID=54272:REM > START OF SOUND

REM =35 x:x CLEAR SDUND CHIF <00
FOR S=5IDTNOSID+Z4:FOEE S,0:NEXT 5

REM =3xx:x% VOICE 1 A/D/G/R
FPOEE SID+5,100: FDOEE 5ID+46,100
REM b SET VOLUME DRI
FORE SID+24, 15 REM -3 PMAXITMLIM

REM =3%% SET FREG. VYOICE
FORE SID+15,30

GATE VOICE 1 W/

- TRIANGLE WAVEFORK
- L HARD SYNC.
FOEE SID+4, 1%

REM INCREASE VOICES 1 <<«
REM =xxwx & 3 FRECUENTIIES)
FOR HF = Z0O Ty 40

FOR LLF = O T0O 2559 STEF 20
FOEE STD+1, HF: FOFE SID, L.F
FOEE SID+H1IS5 HF: FOKE SID+14,LF

166

APPENDIX |
41 MNEXT LF HFE

420

475C0 REPM e GET DELAGY LOOF Tl

440 FOR DUR=1TOZS50:NELXT DUR
450G 2

460 REM Frrn DECREASE VODICES |
470 REM F s VoD FREODUENCIES
480 FOR HF = 40 TO 30 STEF-1
490 FDROLF = 25570 O STEF-20
SO0 8

510 FOFE SID+1, HF:FOKE SID,ILF
520 POREE SID+H1S,HF:FORE SID+H14,10F
530 s

540 NEXT LF . HF

550 2

560 REF sxs SETY DELAY LOOF <
70 FOR DUR=1TO250:NEXLT DUR

S80 1

520 REM Fexr RETURN TO REFEST <000
&O0 B0 TD S

167

The ‘drip’ uses a pulse waveform and ring modulation.

18 REM 3333636 3 5 3 96 3 3 5 % 3 5 5 33336 3 3 3% 4 %3 3% %

11¢8 REM * SOUND EXAMPLE 6 DRIPPING *
1200 REM 39635 53 5 5 8 3 3 9 369 3 39 3 3 336 3696 636 3 3% %

13@ 2

14¢s SID=54272:REM —-—> START OF SOUND
15¢ @

1688 REM >3>533: SET FOR/NEXT STEP <<<d{<
17¢ SP = @.1

184 :

19@ REM »>>:3> CLEAR SO0OUND CHIP {444«

2048 FOR S=SIDTOSID+24:POKE S,@:NEXT S
214

2240 REM >>»>> SBET VARIABLE DELAY <d<<
23¢ FOR DUR=1TO1ld@e STEFP SP+d, 1

244

259 REM 3>3>>% S8ET VOICE 1 FREQ@. <<
264 FPOKE SID+1, RND(1) *2¢@+1
27a L

288 REM >33 VOICE 1 A/D/S/R <<
294 POKE SID+35,1¢: FOKE SID+6,255
J@d

J1@ REM »:x>:> SET VOICE 3 FRE@. <<«
J2¢ FOKE SID+15, RND (1) x2@g+1

339 =

34y REM >335 SET VOLUME LS

35¢ POKE SID+24,15:REM —-> MAXIMUM
J69

374 GATE VOICE 1 W/
g=1n) SOUARE WAVEFORM N
I & RING MOD. NN

408 POKE SID+4 &9

168

APPENDIX |
41 =

42 REM »>>33%3 SET VARIABLE DELAY <<«
470 FOR T=1T01w¢H8/DURI NEXT T

444

453 REM >5x>5:% GATE VOICE 1 W/ <asd<
4601 REM TRIANGLE WAVEFORM << <<
478 REM 5xxi> ¥ KING MOD. Qaandd
48¢ POKE SID+4, 21

494

S REM 5xekx INCREMENT STEP VALUE <<
514 SF = SP + @.9

oS24

530 REM >33k NEXT DURATION DA A
5441 NEXT DUR

169

If you put

this airplane

example with the bomb you’re halfway to some game sound effects.

jurs
110
120
150
14
150
160
170
180
150
200
210
220
230
240
250
260
270
280
290
200
I
20
30
40
EE0
60
=0
EBG
EQO
400
410
420
4350
440

450

Febo bl m R % % % % % 3 % 6 %% R ¥R A RN RN
REM = SOLINTY E Xl B 7 [R TL *
FOE Tl 5% 56 3 3 3 % o % 3 3 W3RN W R BN AN

SID=547 e REF - BTART OF SOLIND
REM =5 ebs CLEAR SOLND CHIF <000
FOR S=5IDTOSTD+H24: FOEE S,0:NEXT S5

REM > VOICE 1 A/DAS/R wdadd
FOEE SID+5,20: FOREE SID+e, 20

- SET VOLLIFE AR,
SID+24 15 REM —~—" MAXIMIM

SET CONSTANT FREQ.

HFE = 7

BATE VOIDE 1 W/
+ SOUARE WAVEFORM

FOKE SID+4, &5

REM =k THOREASE FLLSE

~‘-' x WIDTH MO AT IO
FOR FH = O TO 15
FOR FPL = O TO 255 STEF 106
FOEE SID+d, Fl: FOEE STD+Z, PH

FEM =% SET VOTCE | FREQ.
FOEE S5TD. LF:FOEE STD+1, HF

REIM =2@:% DECREASE FREQ. oo
LF = LF = 5
TF LF<O THEN LF=255: HF = HF -1

MEXT FL,FH

170

MULTIPLE VOICE PROGRAMMING

Consider for a moment what might be involved in programming more
that one voice. Here again, plan well or you may run into complications.
In setting up a multi-voice program, you should introduce more variables
and arrays for easy storage and computation os each separate element of
voice information.

This presents a problem if you are getting all your information from
data statements. Think of how long your data statements might be if you
had to store the frequency, waveform, A/D/S/R cycle, duration, or any
other involved voice information sepaprately for each voice! If nothing
else, it would take forever for it to be READ into arrays.

For long sound program, this time to load your voice information
cannot be avoided. However, there are several ingenious methods for
using a given data element for describing more that one voice parameter.
This cuts down on DATA elements, hence the time it takes to read them
in. Here is just one such method provided in Commodore’s ‘““‘Pro-
grammer’s Reference Guide”. It lets you write a multi-voice program by

creating proper DATA tables for all your sound information. These are
the steps:

1) Take each note’s duration (the number of 1/16ths which it constitutes)
and multiply it by 8.

2) Add the result of step 1 to the octave (0-7) from the note table.
3) Take this result and multiply it by 16
4) Take this result and add your note to it from the note table

171

Another way of saying this is to have D, O and N represent duration,
octave and note respectively. The result of this little formula is one
DATA element for one voice’s information:

Data Element = (((D*8)+0)*16)+N)

Now all that your code has to do is disassemble this information to be
POKECd into the correct registers.

The next thing to consider is to coordinate the two or three voices
together. In other words we must determine the durations and rests of
multi-voices at one time.

1) Divide each musical measure into 16 parts.

2) Store the events that occur in each 1/16th measure interval in three
separate arrays.

3) Process array information using the waveform control byte as a
starting signal for beginning a note or continuing a note that is already

playing.

172

APPENDIX }

The multi-voice outline is more complex than the single voice, but it
really does more.

OUTLINE FOR MULTI-VOICE

I. PROGRAM INITIALIZION
A. Declare program parameters (same as the single voice outline)
B. Declare multi-voice parameters
1. Dimension arrays to contain activity of music
a. 16th measure per location
2. Dimension array to contain the base frequency for each note

II. MAIN PROGRAM LOOP FOR MULTI-VOICES
A. FOR/NEXT loops for storing into 3-voice information arrays
1. frequency start address array
2. waveform control byte array
a. one element/voice

B. Set parameters inherent of all three voices
1. Set voice registers that do not change in rest of program
a. filter values
b. pulse-width values
c. etc.
2. Special modulations
a. ring modulation or hard sync.
b. harmonic modulation (see S+28)
c. any other additive modulations
C. Nested FOR/NEXT loops for actual music execution
1. Set pointer to 3-voice activity array
2. Begin decode loop for each voice’s parameter:
a. assign variables to each decoded parameter.
3. POKE in respective values into respective voice control
register
4. Increment 3-voice activity pointer
5. Go to II.C-1 to process next measure

III. DATA STATEMENTS
A. Set up DATA tables
1. Put starting frequencies per voice in one table
2. Put encoded voice information in another table
3. Use an element(s) to delimit end of program

IV. GO ON TO NEXT PART OF PROGRAM OR END

M- 173

If you can think of any brilliant alternative algorythms for multi-
voices, you may have poineered a whole new approach, so please tell the
world. About the only limitation using multi-voices is that you don’t have
the diversity of special modulation you have with one voice because all
voices are dedicated to their assigned waveforms and are not free to be
added to others to produce some desired blends. However, you probably
won’t find this to be a problem for programming sound ideas.

This sample program from Commodore’s Programmers Reference
Guide is a fine example of a multi-voice song. After you type ‘RUN’, the
program will take 30 seconds to set up the data arrays necessary for the
voices.

10
20

20

S=54272: FORL=5TOS+24: FOKEL , O: NEXT
DIMH(2,200) ,L (2,200) ,C(2,200)
DIMFR (11)

40 V() =17:V(1)=65:V (2) =33
50 POKES+10,8: FOKES+22, 128: FOKES+2T, 244
60 FORI=OTO11:READFQ(I) :NEXT

100
110
120
1320
140
150
160
170
180
190
200

210

FORKE=0OTOZ

I=0

READNM

ITFNM=0THENZSO

WA=V (k) : IFNM< OTHENNM=-NM: WA=1
DRY%=NM/128:0C%=(NM—128%DRY%) /16
NT=NM-128B*#DR%—-16%*0C%

FR=FR (NT)

IFOCY%Z=7THENZOO
FORJ=6TODOCALSTEP-1:FR=FR/2:NEXT
HF7%=FR/256: LF/=FR-25&6%HF %
IFDRYZ=1{THENH (K, I)=HFZ: L (K, I)=LF%Z:C (K, I)
=WA: I=1+1:60TAL20
FORJ=1TODRYZ-1:H{E,I)=HFZ: L (K ,I1)=LF%:C
(K, I)=WA: I=I+1 s NEXT

H , I)=HFZ:L(K,I)=LF%:C(k,I)=WA-1
I=I1+1:60T0120

IFI-IMTHENIM=1

NEXT

FOEES+5,0: FOEES+6,240
FOKES+12,85: FOKES+1Z, 133
FOEES+19,10:FOKES+20,197
FOKES+24,21

174

APPENDIX)
S40 FORI=OTOIM

550 FOEES,L (O, 1) :FOKES+7,L(1,1):FOKES+14,
L(2,I)

S60 FORES+1,H(O, 1) : FOKES+8,H(1,1):
FOKES+1S,H(2, 1)

570 FOKES+4,C(0,1) :FOKES+11,C(1,1):
FOEES+18,C(2,1)

SB0O FORT=1TO80:NEAT:NEXT

590 FORT=1TO200:NEXT:FOKES+24,0

OO DATATATIA,T6I76,IB539, 40870

610 DATAATIISS,45870,48556,51447

620 DATASAS0R,S57747%,61176,64814

1000 DATAS94,594,594,596,596

1010 DATA1618,587,592,587,585,331,536

1020 DATAL097,587,585,585,585,587 ,587

1070 DATAL609,585,331,337,594,594, 593

1040 DATA1618,594,596,594,592,587

1050 DATA1616,587,585,7751,376,841,727

1060 DATAL1607

1999 DATAO

2000 DATASSX,S585,587,587,327,329

2010 DATA1611,5837,585,578,578,578

2020 DATA196,198,58%,326,578

2030 DATAIRG,327,329,327,329,326,578,583

2040 DATAL1606,582,322,324,582,587

2050 DATAI29,I27,1606,587

2060 DATAZZ27,329,587,331,329

2070 DATAZZY,I28,1609,578,874

2080 DATAIR24,I22,727,585,1602

2999 DATAO

T000 DATASLT ,566,567 ,304,306,308,310

T010 DATALS91,567,311,710,567

TOZ0 DATATOA,T04,299,708

T03I0 DATAZ04,171,176,306,291,551,206,T08

040 DATATLIO,T08,310,306,295,297,299,304

I0SO DATALSB6,562,567,310,315,711

I060 DATAZOS,313,297

T070 DATALSBGL,S567,560,311,309

T080 DATAZO8,309,306,308

I090 DATALST7,299,295,306,310,311,704

T100 DATASLZ,546,1575

1999 DATAD

175

ADVANCED SOUND PROGRAMMING TECHNIQUES

Advanced techniques center on the use of modulation, filtering and
variations of the A/D/S/R envelope. Here are some sample programs
using these special features. The rest is up to your ability to POKE
different values in to appropriate locations to hear the differences. Have

a fun time programming sound!

Sound in the commodore 64 lives in the MOS 6581 chip called SID.
SID stands for Sound Interface Device and is a single-chip 3-voice full
electronic music synthesizer/sound effects generator. This chip provides
all pitches, tonal qualities and dynamics that you can dream of in a
computer. Specialized control circuitry has reduced the overhead in
software required to produce wide sound variations. Here is a brief

description of SID’s chip specifications and pin configuration:

3 TONE OSCILLATORS

Range: 04 kHz
4 WAVEFORMS PER OSCILLATOR PIN CONFIGURATION
Triangle, Sawtooth, Variable Pulse, Noise N

CAP.,

3 AMPLITUDE MODULATORS
Range: 48 dB

CAPg

3 ENVELOPE GENERATORS
Exponential response
Attack Rate: 2mS-8S
Decay Rate: 6mS-24S
Sustain Level: O-peek volume
Release Rate: 6mS-24S

o

>
D
o
o 3

6581
SID

o
b3

[BaaE I nE s

OSCILLATOR SYNCHRONIZATION

Ed

RING MODULATION N
PROGRAMMABLE FILTER A
Cutoff range: 30 Hz-12 kHz [

12 dB/octave Rolloff
Low pass, Band pass,
High pass, Notch outputs onD
Variable Resonance

s

AUDIG OUT

EXTIN

<

3| POt Y

2| o,

o]
&

n~
S
<]

D EEEEEE]

9] D,

0| Dy

=]

| o,

L IEIE]

150 Dg

MASTER VOLUME CONTROL
2A/D POT INTERFACES
RANDOM NUMBER/MODULATION GENERATOR

EXTERNAL AUDIO INPUT

176

APPENDIX |

MUSIC NOTE VALUES

MUSICAL NOTE OSCILLATOR FREQ
NOTE OCTAVE DECIMAL HI LOW
0 c-0 268 1 12
1 C#-0 284 1 28
2 D-0 301 1 45
3 D#-0 318 1 62
4 E-0 337 1 81
5 F—0 358 1 102
6 F#-0 379 1 123
7 G-0 401 1 145
8 G#-0 425 1 169
9 A-0 451 1 195
10 A# -0 477 1 221
1N B-0 506 1 250
16 C-1 536 2 24
17 C#-1 568 2 56
18 D-1 602 2 90
19 D#—1 637 2 125
20 E-1 675 2 163
21 F—1 716 2 204
22 F#—1 758 2 246
23 G-1 803 3 35
24 G#-1 851 3 83
25 A-1 902 3 134
26 A#—1 955 3 187
27 1 1012 3 244
32 c-2 1072 4 48
33 C#-2 1136 4 112
34 D-2 1204 4 180
35 D#-2 1275 4 251
36 E-2 1351 5 71
37 F-2 1432 5 152
38 F#-2 1517 5 237
39 G-2 1607 6 71
40 G#-2 1703 6 167
4 A-2 1804 7 12
42 A# -2 1911 7 19
43 B-2 2025 7 233
48 C-3 2145 8 97

177

MUSICAL NOTE

OSCILLATOR FREQ

NOTE OCTAVE DECIMAL Hi LOW
49 C#-3 2273 8 225
50 D-3 2408 9 104
51 D#-3 2551 9 247
52 E-3 2703 10 143
53 F-3 2864 1N 48
54 F#-3 3034 1 218
55 G-3 3215 12 143
56 G#-3 3406 13 78
57 A-3 3608 14 24
58 A#-3 3823 14 239
59 B-3 4050 15 210
64 C-4 4291 16 195
65 C#-4 4547 17 195
66 D-4 4817 18 209
67 D#-4 5103 19 239
68 E-4 5407 2] 31
69 F-4 5728 22 96
70 F#—4 6069 23 181
71 G-4 6430 25 30
72 G#-4 6812 26 156
73 A-4 7217 28 49
74 A#—4 7647 29 223
75 B—4 8101 31 165
80 c-5 8583 33 135
81 C#-5 9094 35 134
82 D-5 9634 37 162
83 D#-5 10207 39 223
84 E-5 10814 42 62
85 F—5 11457 44 193
86 F#-5 12139 47 107
87 G-5 12860 50 60
88 G#-5 13625 53 57
89 A-5 14435 56 99
90 A# -5 15294 59 190
91 B-5 16203 63 75
96 Cc-6 17167 67 15
97 C#-6 18188 71 12
98 D-6 19269 75 69
99 D# -6 20415 79 191
100 E-6 21629 84 125

178

E—
MUSICAL NOTE OSCILLATOR FREQ

NOTE OCTAVE DECIMAL HI ' LOW
101 F-6 22915 89 131
102 F#-6 24278 94 214
103 G-6 25721 100 121
104 G#-6 27251 106 115
105 A-6 28871 112 199
106 A#H—6 30588 119 124
107 B-6 32407 126 151
112 c-7 34334 134 30
113 C#-7 36376 142 24
114 D-7 38539 150 139
115 D#-7 40830 159 126
116 E-7 43258 168 250
17 F—7 45830 179 6
118 F#—7 48556 189 172
119 G-7 51443 200 243
120 G#-7 54502 212 230
121 A-7 57743 225 143
122 A# -7 61176 238 248
123 B-7 64814 253 46

179

INDEX TO MEMORY LOCATIONS

Because of the unique way that this book presents its information, we have
grouped the memory locations by major topic. and then alphabetized
them within the groupings. Names are given to locations as they are

commonly called by either Commodore or a consensus of the literature.
Many locations have not been named. Also, many locations do not have a
simple common use that they could be listed hereby. If vou don’t see what
vou are looking for under a topic such as “Input Output™. then look at the
locations without descriptions. You may. of course, “fill in the blanks™ as

vou discover uses for locations.

DESCRIPTION

Basic ROM routines

BASIC VARIABLES
Address of current data item
BASIC mode flag

BASIC program storage area
Character dispatch

Current BASIC line number
Current BASIC variable data
Current BASIC variable name
Current byte of BASIC text
Current DATA line number
Frror Message

Index variable for FOR NEXT loops
Input prompt flag

Previous BASIC line number
Temporary data area
Temporary pointer data area
Text LIST

Token evaluation

Tokenize text

Warm start

Bytes and Bits

clock

180

MEMORY
LOCATION

Pages
117-125

16
65-66
157
204%-40959
776-777
57-58
71-72
122-123
63-64
768-769
73-74
19
59-60
255
75-96
774-775
778-779
772-773
770-771
17
34-37
61-62
67-68
Pages 10-14
160-162

NAME

SUBFLG
DATPTR
MSGFLG

IGONE
CURLIN
VARPNT
TXTPTR
DATLIN
IERROR
FORPNT

OLDLIN
BASZP1

IQPLOP
IEVAL
ICRNCH
IMAIN
INPFLG
INDEX
OL.DTXT
INPPTR

MEMORY
DESCRIPTION LOCATION NAME

COMPLEX INTERFACE
ADAPTER (CIA)

General Description Pages 128-12
CiA |
Control register
Control register timer A 56334
Data direction register port A 56322
Data direction register port B 56323
[/O 56332
Interrupt control 56333
Joystick | fire button/lightpen trigger 56321
Joystick 2 direction 56320
Joystick 2 fire button 56320
Read keyboard row values 56321
Time-of-day clock: hours 56331
Time-of-day clock: minutes 56330
Time-of-day clock: seconds 56329
Time-of-day clock: 1/10 seconds 56328
Timer A high-byte 56325
Timer A low-byte 56324
Timer B high-byte 56327
Timer B low-byte 56326
Write keyboard column values 56320
ClA 2
Control register A 56590
Control register B 56591
Data direction register Port B 56576
Data direction register Port B 56579
Data port A:

serial IEEE/ RS-232 output 56576
Data port B: RS-232 56577
Future 1. O expansion 56832-57087
Future I/ O expansion 57088-57343
1,0 56588
Time-of-day clock: hours 56587
Time-of-day clock: minutes 56586
Time-of-day clock: seconds 56585
Time-of-day clock: 1’10 seconds 56584
Timer A high-byte 56581
Timer A low-byte 56580
Timer B high-byte 56583
Timer B low-byte 56582

181

DESCRIPTION

CURSOR

Character under cursor in ASCII

Countdown to toggle cursor
Cursor blink flag

Cursor blink toggle
Glossary
INPUT/OUTPUT

Buffer start pointer

Byte received flag
Character parity

Current device number
Current file name

Current secondary address
Default input device
Default input device

I O butfer pointer

I O start address

Input error log

Length of current file name
l.oad save memory pointers
Load verify flag

lLogical file number
Number of open files
Pass I error log

Pass 2 error log

Read write block count
Serial word bufter

Sync. countdown

Sync. number

Tape 1 O buffer

Tape motor interlock
Temporary data arca

Temporary DIIRQ indicator for

cassette read

Temporary storage for cassette read

Timing constants

TOD sense during cassette 1, O

182

MEMORY
LOCATION

206
205
207
204

Pages 3-5

178-179
156

155

186
187-18%
185

153

154

166
193-194
256-318
183
174-175
147

184

152

158

159

190

191

165

150
828-1029
192

151

676
176-177
674

0

148

149
172-173
180

181

NAME

GDBLN
BLNCT
BLNON
BLNSW

TAPEI
DSPW
PRTY
FA
FNADR
SA
DFLTN
DFLTO
BUFPNT
STAL
BAD
FNLEN
EAL
VERCK
LA
LDTND
PTRI
PTR2
FSBLK
MYCH
CNTDN
SYNO
CASI

CMPO

D6510
C3PO
BSOUR
SAL
BITTS
NXTBIT

DESCRIPTION

INTERNAL REGISTERS

Storage for 6502 .SP register
Storage for 6502 .X register
Storage for 6502 .Y register
Storage for 6502 A register

KERNAL

Active logical file numbers
BRT instruction interrupt
CHKIN routine vector
CHKOUT routine vector
CHRIN routine vector
CHROOUT routine vector
CL.ALL routine vector
CI1.OSE routine vector
CL.RCHN routine vector
Device number for each file
GETIN routine vector
Kernal routines

[.OAD routine vector
Non-maskable interrupt
OPEN routine vector
SAVE routine vector
Second address each file
STOP routine vector
KEYBOARD

Current key
INPUT GET from keyboard
Kevboard decode table
Kevboard shift key flag
Keyboard table setup vector
Last keyboard shift pattern
Number of characters in
keyboard buffer
Repeat delay counter
Repeat speed counter
REPEAT key flag
Shift key flag

183

MEMORY
LOCATION

182
195-196
200
645

783
781
782
780

601-610
790-791
798-799
800-801
804-805
806-807
812-813
796-797
802-803
611-620
810-811
Pages 113-116
816-817
792-793
794-795
818-819
621-630
808-809

197
208
243-244
653
655-656
654

198
652
651
650
657

NAME

RODATA
MEMUSS
INDX
TIMOUT

STREG
SXREG
SYREG
SAREG

LAT
CBINV
ICHKIN
ICKOUT
IBASIN
IBSOUT
ICLALL
ICL.OSE
ICLRCH
FAT
IGETIN

ILOAD
NMINV
IOPEN
ISAVE
SAT
ISTOP

LSTX
CRSW
KEYTAB
SHFLAG
KEYLOG
LSTSHF

NDX
DELAY
KOUNT
RPTFLG
MODE

DESCRIPTION

Stze ot kevboard butter
STOP RVS key llag
MATH

Floating RND tunction seed value

MEMORY MANAGEMENT

Bottom of memory for
operating svstem

Bottom of string storage

End of BASIC arravs (+1)

Highest address used by BASIC

I oad save memory pointers

Start of BASIC arravs

Start of BASIC text

Start of BASIC vanables

Lop of memory for operating svstem

Uulity string pointer

MISCELLANEOLUS

Temporary data area
Unused
Unused

184

MEMORY
LOCATION

649
145

139-143
34

5-6

13

14

(B
20-21
3842
97
98-101
102

103

104

105
106-109
110

111

12
113-114
256-266

641-642
S1-52
49-50)
55-56
174-175
474K
4344
4546
643-644
53-54

15

146
163-164
679-767
787

NAME

XMAX
STKEY

RNDX
ADRAYI
ADRAY?2
VALTYP
INTHFLG
TANSGN
LINNUM
RESHO
FACEXP
FACHO
FACSGN
SGNLG
BITS
ARGEXP
ARGHO
ARGSGN
ARISGN
FACOV
FBUEP

STRMEM
FRETOP
STREND
MEMSIZ
EAL
ARYTAB
IXTTAB
VARTAB
MEMSIZ
FRESPC

GARBEL
SVXT

DESCRIPTION

Unused
Unused

Peek and Poke
Reconfiguring the memory map
RS-232

Enables

Index to end of input buffer
Index to end of output buffer
Input bit count

Input bits

Input byte buffer

Input parity

Next bit to send
Nonstandard BPS

Number of bits left to send
Out bit count

Out byte buffer

Out parity

RS-232 status register

Start bit flag

Start of input buffer (Page)
Start of output buffer (Page)
6551 command register image
6551 control register image

SCREEN

Background color
Background color
Background color |
Background color 2
Background color 3

Border color

Bottom of screen memory
Character color code
Current cursor line number
Cursor column on current line
Cursor X-Y position
Editor in quote mode flag
Insert mode flag

Print shifted characters flag
Programmable characters

185

MEMORY
LOCATION

820-827
1020-1023
671-672

Pages 6-9
Pages 106-110

673
667
670
168
167
170
171
181
661-662
664
180
182
189
663
169
668
669
660
659

647
53281
53282
53283
53284
53280
648

646

214

211
201-202
212

216

203
Page 134

NAME

IRQTMP

ENABL
RIDBE
RODBE
BITCI
INBIT
RIDATA
RIPRTY
NXTBIT
MS51AJB
BITNUM
BITTS
RODATA
ROPRTY
RSTAT
RINONE
RIDBS
RODBS
MSICDR
M51CTR

GDCOL

HIBASE
COLOR
TBLX
PNTR
LXSP
QTSW
INSRT
SFDX

DESCRIPTION

RAM start

Reverse character switch
Screen color

Screen color area
Screen data arca

Screen display codes
Screen line length

Start of screen data area
Video bank selection
VIC control register

Serial bus

SOUND

Advanced programming techniques
Multiple voice

Music note values

Programming techniques

Single voice

Voice | registers

Control register waveform oscillator
Envelope generator cycle duration
Frequencey control

Pulse wavetform width

Voice 2 registers

Control register wavetorm oscillator
Envelope generator cyele duration
Frequency control

Pulse waveform width

Voice 3 registers

A D converter: game paddle |

A D converter: game paddle 2

Control generator wavetorm oscillator

Envelope generator

Envelope generator output

Filter cutotf frequency

Filter resonance voice input control
Frequency control

Oscillator random number generator
Pulse wavetorm width

Select filter mode volume

186

MEMORY
LOCATION

243-244
199

55296-319
1024-2023
Pages 139-140
213

209-210

Pages 133-134
53265

217-242

Pages 126-7

Pag 176
Pages 171-175
Pages 177-179
Pages 154-156
Pages 156-170
54276
54277-27%
54272-273
54272-273
54274-275

54283

54277-278
54278-280
54281-282

54297
54298
54290
54291-292
54300
54293
54295
54286-287
54299
54288-289
54296

NAME
USER
RVS
VICSCN
LNMX

PNT

LDTBI

DESCRIPTION

SPRITES

Algorithm outline
Choosing color
Designing

Light-pen X position
Light-pen Y position
Multicolor
Multicolor register 0
Multicolor register |
Setting pointers

Sprite background display priority

Sprite collision detect
Sprite collision detect
Sprite colors 0-7

Sprite display

Sprite positions

Sprite 0-7 color mode select
Sprites 0-7 expand sprite

STRING MANIPULATIONS
Last temporary string stack
Search character

Temporary string stack
Temporary string stack pointer

USER COMMANDS/ROUTINES

Hardware IRQ vector
Non-maskable interrupt
User-defined vector

USR (X) starting address

MEMORY
LOCATION NAME

Pages 150-151
Page 144
Pages 141-142
53267

53268

Page 145
53285

53286

Pages 143-144
53275

53278

53279
53287-294
53269
53248-264
53276

53277

Pages 142-143

23-24 LASTPT
7 CHARAC
25-33 TEMPST
22 TEMPPT
8 ENDCHR
I COUNT
788-789 CINV
792-793 NMINV
814-815 USRCMD
785-786 USADO

187

FOR BEGINNERS OR EXPERTS -
THIS BOOK IS FOR YOU!

At last! An easy-to-read book that shows you the
technical tricks to get the most out of your
computer.

The MASTER MEMORY MAP is a clearly written,
friendly guide to the inner workings of the Com-
modore 64 computer.

Full of useful explanations and examples, this book
is a guided tour of all the memory locations - places
inside the computer that make it act in special ways.
You'll learn lots of uses for the Commodore 64,
including how to make music; even how to create
the special characters used in games.

If you're just beginning to program, we'll give you
the information you need to write exciting programs
- even add sound effects! If you've been program-
ming for a while, the book will take
you farther, allowing you to learn

even more. Advanced pro- . A
grammers will use this book 2
again and again as a powerful 'F\]
reference tool. . /
2 C
. (< E
> A
(35 L O R I L o] T
i O] ISBN 0-13-574351-b
15 5 L1
T : 9 1780135743515 |
! "f'?’fi AR P EERAASNEEREEE R
HENE RSN RO S R

